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ABSTRACT

Based upon the classical vortex system representation,
the induced velocities of a finite-bladed propeller with
arbitrary circulation distribution are derived and Fourier
analyzed. The zeroth harmonic, or steady corponent, of the
induced velocities is considered in detail arnd tormulas involv-
ing only an integration over the blade radius are found. The
mathematical equivalence between these results and the conven-
tional actuator disk representation of the propeller is demon-
strated. Sample calculations of both the axial and radial
velocity components for an arbitrary representative circulation
distribution closely approximating the Goldstein optimum are
presented. For the special case of a uniformly loaded pro-
pellexr, expressions for the induced velocity components are
given in simple closed form and velocity profiles ar: compared

with the representative results.
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INTRODUCTION

The problem of developing suitably simple, yet accurate,
expressions for the induced velocity components of a free
propeller has long occupied the attentjion of beth the aerody-
namicist and the naval architect. pDetailed kncwledge of the
velocity field is extremely important for many applications
such as the design of ducted propellers for VIOL aircraft, the
evaluation of the interaction between a propeller and a wing
immersed in its slipstream, the prediction of the loading on
nearby appendages, and the determination of the free-space
sound field.

Early apprcaches to the development of airscrew theory
followed two lines: one, the momentum theory of R. E. Froude [1]
and W. J. M. Rankine [2] and the related actuator disk con-
cept; and the other, the blade-element theory of W. Froude [3]
and S. Drzewiecki [4]. while able to preaict propeller
performance with some reasonable accuracy, the utility of each
theory is limited by basic deficiencies. On the one hand,
momentum theory yields neither a relationship between the
propeller geometry and the thrust and torque nor any detailed
knowledge of the induced velocity field. On the other hand,
blade-clement theory suffers from the uncertainties involved
in assunming the aerodynamic characteristics of the blade

sections. It also gives no information regarding the induced




velocity field.

Predictica of the induced velocity field and in partic-~
ular the local inflow at the propeller plane was finally
achieved with the now-classical vortex theory of the propell-
er. Analyzed in detail by A. Betz and L. Prandtl [5] and
S. Goldstein [6] and refined by others [7] & 78], it has
enabled, in conjunction with blade-element theory, the
accurate determination of propeller performance for the
forward flight regime. Still, most calculations of induced
velocities using vortex theory are either so complex as to
require extensive time on high-speed electreonic computers,
can not be readily carried out for arbitrary distributions of
blade circulation, or are based on the oversimplifying assump-
tion that the number of blades is very large and the flow
periodicity may »s nsylected.

The purpose of this paper is to remove some of the
undesirable features of these theories, the results being
essentially an extension of part of an earlier analysis for
the ducted propeller by D. E. Ordway, M. M. Sluyter and
B. U. O. Sonnerup [9]. In outline, we consider a lightly-
loaded propeller of arbitrary blade number and circulation
distribution operating at zero incidence in a uniforn: free
stream. The propeller is represented by the conventional
vortex system and the induced velocities at any field poant

are determined from the Biot-Savart law. These velocities




are then Pourier analyzed. The zeroth harmonic, or steady
component, is considered in detail and identified with the
actuator disk, or infinite-blade-number solution. Simplified
formulas involving only an integration over the blade radius
are derived and sample calculations for an arbitrary represen-
tative circulation distribution are carried out., For the
special case of uniform prcpeller loading, the integrations

are performed analytically yielding simple clcsed-form express-
ions for the velocity field. Several profiles are calculated

and compared with those for the representative case.

BASIC FORMULATION

consider a propeller operating at zero incidence in a
uniform, inviscid, incompressible stream of speed U . We
assume the propeller to be lightly loaded with N equally
spaced blades of radius R which are rotating about their
axis at a constant angular velocity Q . 1In addition, we
assume that both the blade thickness~to-chord and chord-to-
radius ratios are negligibly small and, for simplicity, dis-
regard the hub.

A cylindrical propeller~fixed coordinate system (x,r,6)
is chosen such that the propeller disk is normal to the
x-axis and is located at x = 0 , see Fig. 1. 1In accordance

with our assumptions, we can now represent the propeller by




FIGURE 1

COORDINATE SYSTEM AND SCHEMATIC VORTEX REPRESENTATION
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the classical model of a houxnd radial vortex line of strength
P(rv) for each blade accompanied by a helical sheet of vor-
tices of strength -~ dr‘/’drv trailing from each line, where
x, is the radial distance to any element of the vortex line.
Also consistent with our assumptions, the helical path of the
trailing vortex system is determined solely by the incoming
free stream with tramslation U and xotation 3 .

In oxdexr to express the induced veloclty field it is
convenient to introduce three cicmeéntary vector velccity
fields [9]. These fields or influence functions I o Iy
and ;e are due to vortices of unit strength and unit length
which lie in the axial, radial and circumferential directions

respectively. From the Biot-Savart law we have,
I, .. =1xD/ bnfpf (1)

where i is the unit vector in the poritive direction of our
desired element and D is the vector from the eiement at
(x,0T,e8,) to the field point (x,r,6) . With i , i,  and
ie corresponding to the unit vectors in the x,r and 6

directions at the field point, the influence functions reduce
to

. -x 8in(6-6 )1, + [r-r cos(6-8 )],
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r 8in(0-6_ )1, - (x-x )sin(6-6_ )i, - (x-x_)cos(6-8_)ig
’ % © " 4pd

[z, -z cos(6-8 )11, + (x-x,)cos(6-8 )i, - (x-x,)sin(6-6 )i,
Umod

-I-e =
(2)
where

D= [(x-xv)2 + 2% 4 rva - arrvcos(e-ev)]¥ (3)

with these results, the total velocity field for both the
bound and trailing vorticez m2y bhe simply expressed. For 9p o©r
the velocity induced by the N bound blade vortex lines, we

integrate over each blade and sum the result over all bladzs, or

N R
9 = ‘Zl £ r(z,) 1.(0.,x,,2md/N) dr, (4)

Hexre, the argument of lr is the location of the vortex element,
the field point remaining arbitrary for the present, and the
index £ dJdenotes the ordinal number of the blade.
For gn. ox the velocity induced by the trailing vortices,
we first combine an axial and a tangential element appropriately
. to form an arbitrarv helical element lying alony the free stream.
Then we integrate over the vortex trailing from each radial

location. carrying out a second integration over the radius and




summing over the propeller blades, we arrive at

N R @
g --zzl {-r'(rv) {(v;xwrv I)arar,  (5)

where we have set I’ = dr‘/’drv and the arguments of I, and
;9 are

L, =L (Ur,r,,2nt/0 + Q1)

I, = ;e(Ur,rv,2n£/N + Qr) (6)

The dummy variable T represents the time for a trailing
element convected by the free stream to travei from the blade
to its position downstream and the corresponding integral over
T 1is equal to the velocity induced by a semi-infinite helical
vortex of unit strength, radius x, and pitch U/’Qrv .
Superposition of the velocity fietds given by Egs. 4 anu §
determine then, within the limits of our formulation, the total
induced velocity at any field point. wWithin the propeller

slipstream these integrals 2re to be interpreted in the Cauchy

Principal value sense.

FOURIER ANALYSIS OF VELOCIIY FIELD

In the coordinate system translating but not rotating with
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¢ the propeller, the flow is periodic with time. That is, the
velocity at any f£ield point will consist of a steady or time-
dependent component plus a superimposed fluctuating component
which has a period of 2x/N) . Accordingly, we can express
9 and 9p- in the complex Fourier series

'E‘ Y,

9 =T L grm(x,r) elPN8
M= e

gp- = U z g_r,x;‘(x,r) L (7)
M=

in our propeller-fixed coordinates in which the angular varia-
tinn is equivalent to the time dependency. The complex Fourier

- velocity coefficients grm and Erx;\ are

m
1 ~tmN6
e, = oy [ g @
-

‘(_!r,:

™
o 2 ~{mNG
< = 350 L{:g{,, e a9 (8)

from orthogonality, U being introduced for dimensional pur-

poses.
At this point it is convenient to decompose SF R gr, R

c and ¢,. into their axial, radial and tangential compo-

T T

nents respectively, or
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gr'Eu'ix'i-v;i + w,.i (9)

and the components of the complex Fourler velocity coeffi-

cients associated with u, ... will be denoted by el

P P L LR ) *
m
To f£ind, say, the axial component c: ., we replace I,
m
by I..i, in Eq. 4 using the second of Eqs. 2 . From the

first of Eqs. 9 the resulting expression represents ur . If,

in turn, we replace by this wu_, in the first of Egs. 8
5

T
and reverse the order of the r, and 6 integrations, we can
carry out the 6 integration in terms of Legendre functions
{10]. Noting that each blade contributes equally to any
harmonic for N identical blades, we obtain

R

r(x,)
u = -iN v ’ - ’
M~ 872 VT | 7 37 [Qnm+l/'2(‘”1) QmN-3/2(‘°l)] dr,

(10)
where QmN+1/2 and QmN-3/2 are the Legendre functions of

the second kind and half-integer order with argument wy

2 2
x +(r-rv)

(11)
2rrv

) =1+

and the prime (°) denotes differentiation with respect to

this indicated argument.
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The remaining coefficients Cp .. are obtained in

m

slmilar fashion and are given by

X I‘(::

gﬂztm}, 372 f 37" Uer/2(®1) = O3/ (“’1)] dzy

R
r(x,) . ,
\£ ~—375 [Qmuu/e(“’l) + °mn-3/2(‘”1)] dr

R ’ »
r'(c) , ,
372 £ Jr—"-v j; [r°1m+1/2 (wy) + *Qrn-3/2(@p)

’ -{mNQT
- 2r Qg /2 (m2 )] e dr dr

=NQ

+ (5

(
7 | =

V

("‘“" !ny‘)ox;ml/a("’a)

Okﬁg

+ (x-Ut+ %)QI;N__VQ(me)]e'tmNm dv dr

R rl 00
r (rv)

W U ’ .

v

- ix+iU'r)QmN 3/2(0)2) - -—-- mN-l/e(a’e)] ~imNgT g dr,,

(12)
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where

(x-Ur)a-l-(r-rv)2

oy =1+ errv (13)

For x > R , the coefficients for the radial components may
be identified with previous results [9].

In general, further analytical simplification of these
coefficients to a simple, closed form involviny no integra-
tions is not possible. Still they represent an essential
simplification. That is, for any harmonic m only Qéu+l/2 '
Q&N-l/a and Q!;N_B/2 are required, or equivalently
QmN+1/2 B QmN~l/2 ¢ QmN-3/2 and QmN-5/2 from recurrence
formulas [10]. This is in contrast to results in terms of
elliptic integrals [1ll] in which the number of necessary func-
tions to be computed rises in geometric progression with m .

The Legendre function of secend kind and half oxder has
been examined in detail [10) in conniction with recent work on
the ducted propeller and extensive tables for orders of -1/2
through 21/2 have been computed {12]. Four a fixed value of
n, Qn-l/a(m) has a simple logarithmic singularity at o = 1
and decays monotonically to zexo as o increases to infinity.
In addition, Qn-l/E(m) decays monotonically to zero with
increasing n for a given o .

Altogether, it appears that the Legendre function of

second kind and half-integer order is the "natural" function
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for the study of the velocity f£field of a propeller.

STEADY VELOCITY FIELD

If we examine that part of the velocity field correspond-
ing to m = 0 , considerable simplification in the complex
Fourier velocity coefficients is p~ssible. Thiso part corre-
sponds to the steady, or time-independent part of the velocity

field. Using u to designate theze steady velocity

r LR
components, we obtain from Egs, 7, 9, 10 and 12 together with

the identity Q) (o) = Q73 5(w) . that

£1

R
r(x,)
= Nx v ,
P e/ \£ z, 2 0wy ) dx,

R ®
_ . r(x,) , ,
U = ﬁé_ J; - v £ [rQ%(me) - er-»”s(m2)] dr dr,

v

R

. r'(s,) f

VP' = —u‘"‘%% f b4 \!‘ (X-UT) 05;(0)2) dr drV
0 o}

A

R
r‘l( ) o
W ~u v Cr . .
P T 42g 372 f c 3/2 f [r 2 (mp) - 20 (wp)] dr dz
0 v 0

(14)
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As 2 result, we find that the bound blade vortices contribnute
to the tangentlal velocity only.

The integrations over ¢ occurritg in the expressions for

. GP' and GP, can be carried out analytically. Since it
is the simplest, we £irst consider GP' and note the
relationship
, rr\'
(x-ut) of{w,) = - -{,—3? Q. (5) (15)
to obtain
= —30 r’(x.)vxr_  (0,) ar (16)
lhréU‘\/? s v v ¥ \0) v

Since x appears only as a squared quantity in the argument

®, given by Eq. 11, we see immediately that v is symmetric

r
in x . Prom appropriate expansions of Q% for small and
large arguments [12], it can be shown that GF' is logarith.
mically infinite over the propeller disk and vanishes on the
propeller axis. Because GP = 0 , the same conclusions are
true for the total steady induced radial velocity
V= (Gr+6r,) .

The GP' and GP' components are reduced by rewriting
Qé(m) and Q:%(w) in their integral form [10], or

/2
Qi le) = - ‘T cos 2ng 1
n-y() Y p [2(a-1)+isin Za)37E an
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The order of the a and 1 integrations is then reversed,
after which the integrations over T and then over a may be

carried out. The £4insl results are

R
N ¢
Ups = - ;4;2; £ r (rv) Kl(x,r;rv) dr,,

R
. [ rotz)) leeiz,) ar, (18)
0
where

IF x<r, , x<0

X pul
T =0 (m)) + FA(Byy)
2vxx, OR x<r,, %30
Kl =
IF r _ , x<0
X oy (w)) -~ FA,(B)/K) ¢ B
— "\ 01/ T 2 fo\Pyety)
2 Ty OR x>r ., x>C
(19)
and K2 is identical to Ky with the radial inequality

signs reversed. Ao(Bl,kl) is the Heuman Lambda Function [13]

with argument Bl and modulus kl

-1 X k

A/x2+(r-rv)2

B]. S sin

(20)
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Eqs. 18 can be still further simplified if we integrate
by parts with P'drv as the differentinl and use the relation-
ship which we have found,

aA + IFP Krv
(- N § X [ ‘ ’ )]
T, "R )72 [ERylen) + X)) o o
v -
v
(21)

Since the circulation must vanish at ¢the tip, we £ind for GF'

IF X>R , —w<x<w
(IV) , — o
-Q_%in) dr, s
v OR ¥<R , %<0

o |
In“ur 0

R
o, o NOO(r) . NxQ riz,) Q' (w,) ax IF <R , x>0

NAOr(x

= 1 IF x<R , x=0 (22)

From the first of £qs. 14 and Eqs. 22, we see the following.

At radial stations greater than the precpeller radius, the total
steady axial induced velocity u = (ﬁr+ﬁrr) is antisymmetric
with respoct to x . At the propeller plane it vanishes off
the propeller disk and has the same shape as the blade circu-~
lation distribution over the propeller disk, cf. Refs. [14] and
{15) . Far down in the slipstream, U is twice that at the

propeller plane, the Jame as in momentum theory.
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For Wpe we get
R IF >R , ~o<x<o
[ ) o) e ;[ P
U2/ 2 r 372 5L T :
0 v OR x<R , %<0

R

r(x_)
Wy o = m - NX v ’ .
T e TR ) (2 Q) dr, 1 IF IER, %30
v
NP,,; 1 IF x<R , x=0 (23)

The total steady induced tangential velocity w = (ﬁr.-w?r')
from the third of Egqs. 14 and Egqs. 23 is, then,

IF IYDR , —w<X<»

0 :
OR r<R , x<0
=05 o orer, %0
NAY) ; 1F x<R 0 (24)
nr ' R x= <

That is, the tangential velocity vanishes everywhere outside
the propeller slipstream and is proportional to I'(r),r inside
the slipstream. This is the same result as we can derive
directly by application of Xelvin's Theorem using a circular

path about the x-axis.
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The results of Eqs. 22 and 24 as regards to the inflow at
the propeller plane are especially ncteworthy. 1In particular,
U/W = Qr/U and 30 from the velocity diagram at a blade section,
the resultant induced velocity vector is perpendicular to the
resultant free stream vector (UL -Rrig) . This is the same
as Moriya [7] found for thc total inflow, or steady plus
higher harmonics. Therefore, we conclude it must be true for
these harmonics as well.

In summary, the total axial component of the steady in-
duced velocity field is determined by Eqs. 22 and ﬁP = 0 , the
radial component by Eq. 16 and GP = 0 , and the tangential
component by Egs. 24. We see that thzse relations if expressed
in non-dimensional form would be independent of the blade

number for a fixed advance ratio J = U/QR and disk loading

4ac
T 2N r
d(x/R) 7T R UR (25)

el

where cT is the propeller thrust coefficient. Counsequently,
on a physical Lasis they must be equal to the respective com-
ponents of the ;ig (gr+gr;) of Eqs. 7 subject to the same
conditions. This limit corresponds to the velocity field
associated with what we now define as the GENERALIZEC ACTUATOR
DISK, i. e., the precise mathematical definition of the actua-
tor disk as opposed to a model with certain characteristics

assumed a priori.
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REPRESENTATIVE BLADE CIRCULATION DISTRIBUTION
VELOCITY PROFILES

To illustrate the theory, we have calculated several 1
and Vv profiles for the representative blade circulation dis-

trxibution given by

= A

win

—U% 1-£ (26)
This particular I’ was contrived because it simplifies the
calculations and approximates the familiar Goldstein optimum
distribution [6] guite well, particularly the proper square
root behavior at the tip, see Fig. 2. The constant A is
proportional to the propeller thrust coefficient Cp - By
substituting Eq. 26 into Eq. 25 and integrating, we have

= 105 m3
A= % Cp (e71)

where Cp = '1‘/'1rR2 &pU2 . T is the prupeller thrust and p is
the fluid density.

The axial and radial velocities were calculated on a
CDC 1604 digital computer from Egs. 22 and Eq. 16. The results
in terms of Cop from Eq. 27 are tabulated in Tables 1 and 2
and sketched in Figs. 3 and 4 respectively. Several features
are prominent in addition to those observed previously. From

Fig. 3 the steady induced axial velocity off the propeller disk
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A N=4|J=|/5
0 N=3,J=1/2

0.5 1.0
r/R

FIGURE 2

COMPARISON OF REPRESENTATIVE CIRCULATION DISTRIBUTION
WITH GOLDSTEIN OPTIMUM
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vanishes in the propeller plane, leaving the free stream unper-
turbed except for the radial velocity. 1Inside the slipstream
U quickly approaches within a blade radius twice its value at
the propeller plane and decays just as fast upstream. From
Fig. 4 we see a rapid change in the radial velocity in the
immediate vicinity of the propeller plane and a smoother vari-
ation farther away. Within a certain radius from the propeller
axis and near the propeller plane, Vv reverses and the radial
flow is outward. This reversal is due to the influence of the
trailing vortices inboard of the maximum value of I which

are of opposite sign to those outboard. At axial stations near
the propeller plane the velocity is stiil appreciable for large
radial distances, whereas the profile quickly decays with large
axial distance away from the propeller in the wvicinity of the

propeller axis.

CONSTANT BIADE CIRCULATION DISTRIBUTION
VELOC11Y PROFILES

For the special case in which the circulation distribution
over the propeller blade is constant, the results for the
steady induced velocities can be pu: in simple, closed form
because fundamentally they are the "building klocks" ror the
case of arbitrary circulation.

with TI'(r) = I, + it is easiest to reduce U Dby returning

to the intermediate forxm of GP' or the first of Eqs. 18.
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This yields only a contribution from the tip which, together
with ﬁl" =0 , gives

IJF x<R , x<0
~ [ '
n=y | 2yTR ¥ 3 gotrete OR x<R , x>0
' ——
-~ IF >R x<0
N _Q ="
c X T
Q. (wg) - ZA_(B k)]:
4n?y 2 VIR -3 2 Torr2'"2 OR ISR , XS0
(28)
where
oy e
37 2rR
B, = sinl —X - k, = _2_555__5 (29)
/x2+(r_R)2 x“+(x+R)

Across the cylinder (xr=R , x>0) , there is a constant jump in
velocity of m‘cn/enu which can be identified as the average
vorticity per unit length in the axial direction resulting from
the trailing tip vortices or (NFC/EnR)/J . Over the propeller
disk u becomes NF _Q/4nU , or one-half of its value far
downstream, the same as in momentum theory.

The radial component follows from Eg. 16 and ¥, = 0 in

r
similar £ashion, or

_ Nl"cﬂ R
vz - l;—-”TU J; Q%(ms) (30)
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As opposed to the rapresentative case, v now is finite over
the propellexr disk except at the tip. Furthermore, it does not
reverse sign as the only trailing vortices of opposite sign to
the tip vortices lie alcng the propeller axis and do not induce
any radial flow,

These velocities have been calculated and are tabulated in
Tables 3 and 4, They are compared back with the results for
the representative circulation distribution in Figs. 3 and 4.
From the figures we sc¢e that for radial stations less than the
propeller radius the results are not in close agreement, the
disparity being most pronounced within the propeller slipstream,
However, there is no aignificant difference between the two
results for x/R > 1.5 .

While the condition of constant circulation along the
ontire blade is physically impossible [1li], we can conelude
that the determination of the propeller .induced velocities out-
side the slipstream may be satisfactorily approximated by
assuming such a circulation distribution. On the other hand,
prediction of the flow £ield within the slipstrezm as well as
in the immediate vicinity ahead of the propeller plane will be

in serious crror if a constant hlade circulation is assumed.

IDENTIFICATION WI'YH ACTUATOR DISK SOLUTION

A8 we said earlier, the assumption is often made simply

a priorxi that the blade number N 48 infinite and so, the
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propeller is replaced by an "imaginary" disk across which the
axial velocity is continuous while the £fluid pressurs is
suddenly increased in pussine from one side fo the other. In
the absence of swirl this permits the use of appropriate dis-
tributions of ring vurtices or sources to represent the
flow (16]. These representations can be related to our solu-
tion for the steady induced flow field of the finite-bladed
prepeller.

First consider the ring vortex representaticn for the
axial comgonent of the induced velocity. The stream function

Y for a ring vortex of unit strength is

= 2 S
¥ == Jrr, Qg(mh)
(x-xv)2+(r--rv)2
@y =1+ T (31)

v

where x, is the axial location of the ring and x, is the
ring radius. The corresponding induced axial velocity becomes

after simplification,

oY 1

B " e o) - sl (22

M=

With t replaced by x /U . we see that u from Eqs. L4 is

equal to the slipstream integrution of Eg. 32 weighted by the
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vortex strength -NQd?(rv)dxv/éﬂU . But this agrees exactly
with the usual expression for the induced axial velocity
associated with the actuator disk in terms of ring vortices:
Take for simplicity the case of uniform loading which requires
only a single semi-infinite solenoid of such vortices of radius
R . From momentum theory, the ratio of the to*al velocity in
the ultimate siipstream to U is \fI;E; , or linearized for
light loading (l+%cT) ; cf. Table 3, ﬁ/UcT = 0.25 at x=0 ,
r/R<l and G/UCT + 0.5 as x+» , r/R<l . Consequently,
&Uc,rdxv is the proper voriex strength. On the other hand,

dP(rv) = -['  at R and the vortex strength from the express-

c
ion above is then simply NQPcdxv/QﬂU which properly corre-
sponds to the velocity jump noted for Eqs. 28 times dxv .
substituting Cp = (N/nJ3)(F/UR) = nar /mu®  from integration
of Ba. 265, we arrive at BUCdev again. The case of arbitrary
loading follows from the superposition of such solenoids of
radius r, -

If we examine in turn the radial velocity of a vortex ring
or oY/rdx from Eq. 31 and compare it similarly with v from
Egs. 1lli, we obtain the identical rasult. WwWith regard to W,
the swirl is generally omitted from the actuator disk concept.
But if we incorporate a distribution of concentric cylinders of

semi-infinite straight vortices parallel to the x-axis, we can

establlish the equivalence as for U and v .




for the rcpresentation of the actuator disk by the distri-
bution of ring sources on the propeller disk, we can proceed
formally to prove the equivalence as for the vortex rings. In-
asmuch as the equivalence hetween the ring sources and vortex
rings has already been established [16] & (17], this is not
necessary. If desired, though, Eqs. 22 are best for the
axial velocity. For the radial velocity, integrate Eq. 16 by
parts. The respective velocities for a ring source follow f£rom

the potential ¢ per unit source strength,

1 1
¢ = - -I;;é- = Q_!i(a)l) (33)
v

where x = 0 4is the axial location of the ring and X, the
radius., We £ind that outside the propeller slipstream the
velocities are equal and the required strength of the ring
source is8 -NQr I(r )dr /U , i. e., a ring sink. Inside the
slipstream the radial velocities are the same but the axial
velocities differ by the constant NOI{r)/2sU , cf. Eq. 22,

since U for the ring source is antisymmetric in x every-

where.

CONCLUSIONS

From our study of the induced velocity field of a finite-
bladed propeller with arbitrary circulation distribution, we

have concluded the following:
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Relatively simple forms foxr the Fourier coefficients of
the axial, radial and tangential velocities can be obtained
involving only Legendre functions of the second kind and half
integer order. These appear to be the "natural® functions for
use in propeller theoxy.

A comparison of the steady velocity profiles for both a
representative and a constant circulation distribution reveals
that the two results in general agree closely outside the pro-
reller slipstream. However, calculation of the f£ield immedi-
ately ahead of the propeller as well as inside the slipstream
under the assumption of uniform loading may lead to serious
errors.

For the special case of constant cirxculation, the steady
induced velocity components can be expressed in closed form
involving no integration.

The axial and radial induced velocities for the conven-
tional actuator disk avre established as exactly equal to their
steady counterparts for a finite-bladed propeller, provided
the advance ratio and the disk loading are the same.

REFERENCES

1. R. 2. Frouvde, "On the Part Played in Propulsion by
Differences of Fluid Pressure”, Trans. Inst. Nav. Arch.,
vol. 30, 1889, p. 390.

2. W. J. M. Rankine, "On the Mechanical Principles of the
Action of propellers", Trans. Inst. Nav. Arch., Vvol. 6,
1865, p. 13.

3. W. Froude, "On the Elementary Relation between Pitch Slip,
and Propulsive Efficiency", 7Trans. Inst. Nav. Arch.,
vol. 1o, 1878, p. i7.

4, s. Drzewlecki, "Théorie Générale de 1'Hélice", Paris, 1920.

5. A. Betz, "Schraubenpropeller mit geringstem Energiever-
lust", Appvendix by L. Prandtl, GBttinger Nachr., 1919,
p. 193.

6. S. Goldstein, "On the Vortex Theory of Screw Propellers®,
Proceedings of the Royal Society of London, A, Vol. 123,
1929, ». 440.




lo.

11.

12,

130

12“

15.

16.

17.

T. Moriya, "Selected Scientific and Technical Papers",
Moriya Memorial Committee, University of Tokyo, Tokyo,
August 1959,

M. Iwasaki, "Diagrams for Use in Calculation of Induced
Velocity by Propeller", Reports of Research Institute for
Applied Mechanics, xgushu University, Fukuoka City,

vol. VI, No. 23, 1958.

D. E. Ordway, M. M. Sluyter and B. U. O. Sonnerup, "Three-
Dimensional Theory of Ducted Prcpellers", THERM, Incorpo-
rated, TAR-TR 602, August 1960.

B. U. O. Sonnerup, "Expression as a Legendre Function of an
Elliptic Integral Occurring in wWing Theory", THERM, Incol-
porated, TAR-TN 59-~1, November 1960.

J. P. Breslin and S. Tsakonas, "Marine Propeller Pressure
Fieid Including Effects of Loading and Thickness", SNAME
Transactions, vol. 67, 1959, p. 386.

M. M. Sluyter, "A Computational Program and Extended
Tabulation of Legendre Functions of Second Kind and Half
Oxdex", THERM, Incorporated, TAR-TR 601, October 1960.

P. F. Byrd and M. D. Friedman, "Handbook of Elliptic
Integrals for Engineers and Physicists", Springer-vVerlag,
Berlin, 1954,

H. Glanert, "Airplane Propellers", Division L of "Aerody-
namic Theory", Edited by W. F. Durand, Dovexr Publications,
New York, 1963,

R. H. Miller, "Rotor Blade Harmonic Air Loading", IAS Paper
No. 62-82, January 1962,

L. Meyerhoff and A. B. Finkelstein, "On Theories of the
Duct shape for a Ducted Propeller", Polytechnic Institute
of Brooklyn, PIBAL Repori No. 484, August 1958,

D. Klichemann and J. Weber, '"Aerodynamics of Propulsion",
McGraw-Hill, New York, 1953.




0N

1’0
J_JO

r Y

Qn_%kwl

35

PRINCIPAL NOMENCLATURE

propeller thrust coeificient, T/‘rrRa%pU2

complex Fourier velocity coefficients for

g ad g
propeller advance ratio, U/QR
harmonic number

number of propeller blades

Legendre tunction of second kind and half-
integer oxder of argurent o

vector velocity induced by bound blade vortices

vector velocity induced by blade trailing
vortices

propeller radius
forward £flight velocity

axial, radial and tangential compenents
respectively of induced velocity

cvlindrical propeller-fixed coordinate system
propeller blade circulation

Heuman's Lambda function of argument 8
and modulus k




propeller angular velccity

differentiation of a function with respect
to its indicated argument

zeroth harmonic or steady part of induced
velocity

36




Approved Distribution List for Unclassified
Technical Reports Issued Under Contract Nonr-4357(00)

Chief, Bureau of Naval Weapons
{RAAD~3)

Department of the Navy
Washington, D. C. 20360

Chief, Bureau of Naval Weapons
(RAAD-22)

Department of the Navy
Washingten, D. C. 20360

Chief, Bureau of Naval Weapons
(RAAD-32)

Department of the Navy
Washington, D. C. 20360

Chief, 3ureav of Naval Weapons
(RAAD-33)

Department of the Navy
Washington, D. C. 20360

Chief, Bureau of Naval Weapcns
(—nn---s‘;)
Department of th

~
v W wis e
.

Washington, D. C

Cnief, Bureau of Naval Weapons
{RA-4)

Department of the Navy
Washington, D. C. 20360

Chief, Bureau of Naval Weapons
(R-55)

Department of the Navy
Washington, D. C. 20360

Chief, Bureau of MNaval Weapons
{RRRE-4)

Department of the Navy
Washington, D. C. 20360

Commanding Officer

U. S§. Army Transportation Research
Command

Port Eustig, Virginia

—-—aadlia

ATTN: SMOFE-TD (1 copy)

Research Reference Centcr (1 copy)

Chief of Naval Research (Code 46))
Department of the Navy
Waghington, D. C. 20360 (6 copies)

Chief of Naval Research (Code 438)
Department of the Navy
Washington, D. C. 20360

Ccmmanding Officer

Office of Haval Research Branch
Office

Navy #1900, Box 39, F.P.O.

New York, New York (2 copies)

Commanding Officer

Office of Naval Research Branch
Office

346 Broadway

New York 13, New York

Director

Naval Research Laboratory
Technical Information Office
Washington, D, C., 20380 (6 copies)

Commander

Army Material Command
ATTN: AMCRD-RS-PE~-A
Department of the Army
Washington, D. C. 20315

Commanding Officer and Director
David Taylor Model Basin
Aerodynamics Laboratory Library
Washington, D. C., 20007

Army Research Office
Physical Sciences Division
ATTN: Mr, R. Ballard

3045 Columbia Pike
Arlington, Virginia 20310

U. S§. Air Force (SRGL)
ffice of Scientific Research
Washington 25, D. C.

Research and Technology Division
ATTN: SESSC (M. Lindenbaum)
Wright~Patterson AFB, Ohio 45433

Defense Documentation Center

domdd
Hq., Cameoren Staticn

Building #5
Alexandria, Virginia 22314
(20 copiec)

National Aeronautics and Space
Administration

600 Independence Avenue, S.W.

ATTN: Ccde RA, Code RAD

Washington, D. C. 20546 (2 copies)




P

Library

American Institute of Aeronautics
and Astronautics

Two East 64 Street

New York 21, New York (2 copies)

Research and Technology Division
ATTN: FDM (Mr. Antonatos)
Wright-Patterson AFB, Chio 45433

Cornell Aeronautical Lab., Inc.
4455 Genesee Street
Buffalo 21, New York
ATTN: Tachnical Director
Mr. H. A. Cheilek

Collins Radio Company
Cedar Rapids, Iowa
ATTN: Dr. A, Lippisch

Mr, A, M, O. Smith, Supervisor
Aerodynamics Research Group
Aircraft Division

Douglas Aircraft Co., Inc.
Long Beach, California

Georgia Institute of Technology
School of Aerospace Engineering
Atlanta 13, Georgia

ATTN: Mr. D. W. Dutton

Vehicle Research Corporaticn
1661 Lombardy Road

Pasadena, California

ATTN:s Dr. Scott Rethorst

University of Virginia

Aercspace Engineering Department
Charlottaville, Virginia

ATTN: Dr. G, B. Matthews

Mississippi State University

Bngineering and Industrial Reseaxch
Station

State College, Mississippi

ATTN: Dr, J. J. Cornish

vidya Division

1450 Page Mill Road
Stanford Industrial Park
Palo Alto, California
ATEN: Pr. J. N. Nielsen

Syracuse University

Mechanical Bngineering Department
Syracuse, New York

ATTN: Dr. S, Eskinazi

Naval Postgraduate School
Aeronautical Engineering
Dapartment
Monterey, California

ATTN: Dr. R, Head

Technical Likrary (Code PB0962)
U. S. Raval Ordnance Test Station
Pasadena Annex

3202 E, Foothill Blvd.

Pasadena 8, California

Commanding Officer and Director
David Taylor Model Basin
Aerodynamics Laboratory
Washington, D. C. 20007

APTN: Mr. H. Chaplin

Mr. Maurice Sevik

Ordnance Reseaxch Laboratory
Pennsylvania State University
P, 0. Box 30

University Park, Pennsylvania

Mr, Paul Granville
Hydrodynamics Laboratory
David Taylor Model Basin
Cede 581

Washington, D. C. 20007

Commanding Officer and Director
David Taylor Model Basin
Hydrodynamics Laboratory
Washington, D. C. 20007

ATTN: Dr, William B. Morgan




