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ABSTRACT

In the first of a series of experiments performed for the Department
of Defense to investigate the protection afforded by various typical struc=
tures agelinst prompt wespons radiation, radiation-intensity measurements
were made at the Tower Shielding Facility in two concrete-shielded bunkers
and in an interconnecting tunnel. Prompt weapons radiation was simulated
by the Tower Shielding Reactor II (TSR-II), which was operated 100 ft above
the ground. The distance between the reactor and the bunkers was approxi=-
mately 700 £t. The bunkers were each 12-ft cubes and were censtructed so
that the shield thickness on the front face of one and on the top face of
the other could be varied in U-in. steps from O to 20 in. The thickness of
concrete and dirt surrounding all other faces was sufficient to make them
black to incident radiation.

The immediste goels of the experiment were to study (1) the attenua-
tion of rediatlons by various thicknesses of ordinary concrete slabs,
(2) the buildup of radlation intensities within the cavities by scattering
of radiation in the walls, and (3) the transmission of radiation down a
tunnel with two right-angle bends. The gemma~ray and fast-neutron dose
rates and thermal-neutron fluxes measured at various positions within the
bunkers and in the tunnel and the pulse~height spectrs frome 3-in. sodium
iodide crystal determined at one position in the top bunker and one posi-

tion in the tunnel are reported.
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INTRODUCTION

A research program is being undertaken at Oak Ridge National Labora-
tory with the ultimate goal of producing simplified calculational methods
for estimating the protection afforded by various typical structures asgainst
prompt weapons radiation. The first experiment in this program was carried
out at the Tower Shielding Facility in consultation and cooperation with
the Department of Defense, Office of Civil Defense, and consisted of
rediation-intensity measurements in two concrete-shielded bunkers and an
interconnecting tunnel. Prompt weaspons radiation was simulated by the
Tower Shielding Reector II (TSR-II), which was operated 100 ft above the
ground. The distance between the reactor and the bunkers was approximately
700 ft.

The immediate goals of the experiment were (1) to study the attenua-
tion of radiations by various thicknesses of ordinary concrete slabs,
(2) to investigate the buildup of radiation intensities within the o ew
by scattering of radiation in the walls, and (5) to study the treansmission
of radiation down & tunnel with two right-angle bends. This report de-
scribes the experiment and presents the results. An analysis of the data
will be given in a subsequent report to be submlitted to the Defense Atomic
Support Agency (DASA).

FACILITY DESCRIPTION

The Tower Shlelding Facility consists of four 315-ft towers which
support the TSR-IT and other experimental equipment at heights as high as
200 ft. Each tower is located at the corner of a 100 by 200 ft rectangle,
with the TSR-II suspended between towers I and II as shown in Figs. 1 and
2., For thls experiment no other equipment was suspended from the struc-

ture.

The TSR-II is a water-moderated aand -cooled resctor constructed of
MIR-type fuel plates which form a spherical annulus. The entire assembly

1. L. B, Holland and C. E. Clifford, Description of the Tower Shielding
Reactor II and Proposed Prelimlna;y Experiments, ORNL-27H7 (1050);
T. E. Holland et al., Neutron Phys. Div. Ann. Prog. Rep. Sept. 1, 1959,
ORNL-28:2, p. %9; L. B. Holiand et al., Neutron Phys. Div. Ann. Prog.
Rep. Sept. 1, 1960, ORNL-3016, p. L 42,




a

- £3TTT0®BL BUTPTATUS Lm0l T *BTd

$0{55 C1LOHd |
GIASYIONNY




UNCLASSIFIED
2-01-056-039-1417

PLANT NORTH

by
/904\ 34°
4/0%9

(ELEVATION, 1111 ft
AT CENTERS OF

CUBICLES) .
¢ TOWERS AND
HANDLING POOL TOJ
BUNKER

== 18°49'
—m -—a—1
T T
O}AI/ER | °V§’ER [ = UNDERGROUND
BLDG. 7702
TOWER TOWER
1 v

REACTOR HANDLING

PCOL (ELEVATION, 1069 ft) FENCE

Fig., 2. Location of Concrete Bunkers and Tunnels.




'he addition of a lead-water shield to the outside of the
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A-‘general description of this shield,

BUNKER DESCRIPTTON
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“Tﬁ :fwo Qqcﬁéﬁeflined bunkers, which were 12-ft cubicles,
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a 1-ft-thick coneretc hatenh, opencd in

he middle leg.
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Five concrete shields were avallable for the open face of each Lunker,
varying in thickness from 4 to 20 in. in U4-in. steps. Because of their
large size, the shields were made Iin two sections and required l/2-in. steel
reinforcing bars on li-in. centers running the long dimension and 5/8-1n.
bars on 6-in. centers running the short dimension. The composition of a
concrete sample taken from one of the slabs was analyzed to contain the
following:

Element Weight Percent
Aluminum 2,65
Calcium 22,12
Carbon 4.83
Hydrogen 0.3%6
Iron 1.32
Magnesium 0.85
Oxygen L7.0oh
Silicon 20.83

The coordinate systems used for most of the measurements in the experi-
ment are shown in Fig. 5. Note that in each case the origin is the center
of’ the inside face of the variable shield.

INSTRUMENT DESCRIPTION

The instruments used in the experiment consisted of an anthracene scin-
tillation crystal, a Hurst-type proportlonal counter, a BFz proportional

counter, and a 3 x 3 in. Nal crystal.

The anthracene crystal, which was used for gamma-ray dose-rate mea-
surements, was mounted on a photomultiplier tube whose current was read
with a d-¢ integrator. Since the pulse output of the integrator was
proportional to the current input, the automatic plotting equipment that
requires a pulse signal could be used. The counter was calibrated against

the known intensity from a Co®° source.

The appreciable response that the anthracene crystal has to neutron
interactions within the crystal has not been corrected for in the data
precented here. The portion of the response due to fast-neutron inter-

actions can be estimated from date taken by General Dynemics/Fort Worth®

3. K. R. Spearman, Jr., Neutron Sensitivity of Anthracene Dosimeters,
NARF=55-67T (Oct. 1955).




with similar counters. If it is assumed that the fast neutrons have a fis«
sion energy spectra, the GD/FW data yield an equivalent gamma-ray response
of 0.125 erg/gtissue per erg/gtissue of fasteneutron dose. The anthracene
crystal also has a significant response to thermal-neutron fields. This ef=-
fect was cursorily investigated by meking measurements (see Fig. 6), with
and without a stainless-steel-canned Li® shield surrounding the dosimeter,
along the center line of the second and third legs of the tunnel leading
from the front bunker (with no front shield) to the top bunker (with a full
20-in. top shield)., An estimate of the thermsl-neutron-induced responsge

was obtained by using the ratic of the difference between the bare- and
Li®-covered-counter date to the thermal-neutron-flux data at the same loca-
tion. The region from D = O to 3 ft was ignored because of the complica=-
tions 1ntroduced by the high fast-neutron dose present. The region from
D=3 to 7 ft gave an estimate of 3.6 x 10°° erg.ggissue.hr'l
gamma~-ray response per unit thermal-neutron flux. The date from L = 1 to

equivalent

14 ft, in & reglon where the neutrons are quite thermal (the cadmium retio,
or ratio of bare BFy to cadmium-covered BFs readings, is around 70), gave
en estimate of 6.3 x 10 °

unit thermal-neutron flux.

-1 -1
erg.gtissue.hr equivalent gemme~ray response per

The calibration procedure for the Hurst=-type proportional counter,
which was used for fast-neutron dose-rate measurements, involved first set-
ting the system gain with a known garma-ray dose rate and then reading the
counter in a known field from a fast-neutron source. In particular, the
system gain was set co that a Co®° gamma-ray dose rate of 2 r/hr produced
40 pulses per minute larger than 6 v at the output of the linear amplifier.
The pulse output from the amplifier was integrated for the neutron dose
readings so as to obtain an output proportional to the ionization in the
chamber for neutrons. A Po<Be source was used for the dally calibrations

of the counter.

The BFs-filled proportional counter was used for thermale-neutron flux
measurements. Although the output from the counter more closely resembles
neutron d:insity than neutron flux, because of the nearly 1/v behavior of
the Blo(n,a) cross section, the readings were normallzed to cedmium-

difference measurements taken with gold foils in the radiation field from
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the reactor. The daily calibrations were checked with a Po-Be source in

a Tuclte moderater.

The NaI.crystal, which was used to determine gemma~ray pulse-height
spectra, was mounted on a 3=in. photomultiplier tube. The pulse output
from this counter was recorded with a 256-channel pulse-helght snalyzer.
Energy calibrations were made against s 37 and Co®° sources and the C2

decay gamma rays from a Po=Be source,

DOSE=RATE AND FLUX MEASUREMENTS IN BUNKERS

The first series of dose~rate and flux. measurements in the bunkers
were for fixed counter positions and various reactor sltitudes in order to
determine the effect of reactor height on the experimental results., The
meesurements, plotted in Figs. 7 and 8 for fast neutrons and gamme rays,
respectively, were made in the front bunker (lower curves) fully shielded
with 20 in. of concrete and in the top bunker (upper curves) shielded with
4 in, of concrete. It was concluded from these data that it would not be
© worthwhile, at least for this experiment, to teke measurements at more than
one altitude. Consequently, the rest of the measurements were taken at a
reactor altitude of 100 ft; for the various parameters shown in Table 1,

At this altitude a line from the reactor center to the center of the shield
on the front bunker was perpendicular to the shield, and the line from the
reactor center to the center of the shield on the top bunker struck the

shield at a grazing angle of 9.5°%.

Also in these series of measurements the effect of shield placement
on the open faces of the bunkers was investigated by recessing the 4ein.=
thick top shield 16 in. below ground level and then keeping it flush with
the ground level. -As can be seen by comparing the two upper curves in
Figs. 7 and 8, there was negligible difference between the results for the
two slab positionsi Therefore all later measurements were taken with the

slab recessed, since this position was more convenient.

‘Most of the later measurements in the bunkers were made as a function
of ¢one cf the variables defined In the rectangular coordinate systems shown
in Fig. 5. Unless otherwlse specified, all data taken in the top bunker
were for_the.case of a full front shield on the front bunker, and vice

versa (although. this was found to be unnceessary, as will be seen below).
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Flgures 9, 10, and 11* show measurements of fast-neutron and gammge
ray dose rates and thermmal-neutron fluxes, respectively, along the z axis
of the front bunker for verious front-shield thicknesses. The fast-neutron
end gamma-ray dose rates shown in Flg. 12 were also obtained as a function
of z, but for different x and y coordinates. For these latter measurements
the full 20-in. shield was maintained on the front face.

Figures 13 through 24 all show the data obtained in the top bunker as
a function of position within the bunker for several different top-shield
thicknesses, Figure 23 is representative of measurements taken close to
and across the opening to the intercomnecting tunnel in order to determine
whether variations in the shield on the front bunker affected measurements
in the top bunker, The front=slab thickness was varled from O to 20 in.
with less than a 10% effect observed in the gamme-ray dose rates and with

virtuelly no effect observed in the fast-neutron dose rates.

Figures 25 through 32 consist primarily of cross plots of the datae
glven in Figs. 13 through 23, each set of cross plots corresponding to a
specific top-shield thickness. These data demonstrate the variations of
radietion intensities with position in the bunker for a fixed shileld.

One of the objectives of the experiment was to determine the relative
contributions from each of the six surfaces of a cubilcle to the intensities
of the various radiatlons at the center of the cublcle. This was attempted
experimentally by using a shadow shield to block the detector's view of one
or more surfaces of the cubicle. Since most of the Interest was in fast-
neutron dose rates, the shadow shields were designed specifically for neu-
tron attenuation. They were bullt of 4 x 4 x 8 in. lithlated-paraffin
blocks consisting of 40 wt % lithium carbonate (natural 1ithium) and 60
wt % paraffin., The blocks were stacked so as to approximate & truncated
pyramid 20 in. high with & 22-in. square top and a 58-in. square bottom.
The two ends of the shadow shield were parallel to the surface belng
shielded, the small end being nearest the detector.

#These flgures and all succeeding flgures are assembled as a group fol=
lowing the last page of text.
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Filgure 33 glves the results of the measurements taken in the front
bunker with a fast-neutron dosimeter while various shadow shields were in
position and the front face was either open or covered with a UY-in. shield.
Horizontal traverses were made so as 1o obtain a normalization value at a
point far enough from the shadow shields far the reading not to be exces-
sively perturbed by the presence of the shadow shields. Each set of
curves was normalized to the average reading obtained at y = 5 ft.

Figures 34 and 35 give the corresponding shadow=-shield date for gamma~
ray dose rates and thermal-neutron fluxes, respectively. These data are
somewhat more difficult to interpret because the shadow shield was not
black to gamme rays and perturbed the thermal~-neutron fluxes excessively.
Figure 34 also shows the results of removing 4 in. from the large end of
the front shadow shield, namely, a 14% increase in gamma-ray dose rate.

The fast-neutron dose rate did not vary with this configuration cheange.
The approximate relative contributions of each wall, as derived from the
Tast-neutron dose-rate data by taking differences of the various measure=

ments, are shown below for the two front-shield configurations.

Contribution (%)

Shield on Front Face (in.) Front Side Rear

0 7 b T
L ™ 5 5

Figure 36 shows messurements of fast=neutron and gamme-ray dose rates
and thermal-neutron fluxes taken along the z axis of the front bunker with
no shield on the front face. It will be noted that these measurements
extended out the bunker to over the concrete pad in front of the bunker.
Inciuded as notes on the figure are values, at four positions, of the
cadmium ratio, defined as the ratio of the measurements made with the

bare BFs counter to those with a cadmium-covered counter.
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DOSE-RATE AND FLUX MEASUREMENTS IN TUNNEL

Figures 37 through L0 give results of traverses along the center line
of the interconnecting tunnel for varlous slab configurations on the bunkers,
The data in Figs. 37, %8, and 39 were tsken with the full shielding on the
top bunker. In Fig, 37, which is for the case of no shield on the front
bunker, the measurements are plotted as a function of the distance along the
center line of the tumnel, starting from the x,2z plane of the front bunker
and continuing along the center lines of all three legs, as shown in the

insert on the figure.

Figures 38 and 39 show the effects of varilous front-slsb thicknesses
on the fast~neutron and gemma-ray dose rates, respectively, measured along
the center line of the long center leg of the tunnel. These data are
plotted as a function of the distance from the tunnel wall closest to the
source and include measurements for front-shield thicknesses of 0, 4, 12,
end 20 in. The zero~thickness curves in these figures correspond to the
date between 12.5 and 18.5 ft in Fig. 36.

Figures 38 and 39 also show measurements made with only one side of
e front sleb in place. The curve labels indicate the shield thickness on
each side; that is, "k in. W - O in. E" indicates that the west side of
the front face of the bunker had a b-in.=-thick shield, whereas the emst,
or right, side was unshielded. Figures 3T and 38 also include measurements
taken with a 20-in. shield on both bunkers but with the hatch removed from

the entrancewsy.

Figure 40 shows data for no shield on the top bunker and for 20 in.
on the front bunker plotted as a function of the distance slong the center
line of the tunnel, starting with the w,u plane of the top bunker. Except
for the reglons close to the bunkers, the shapes of these curves are quite
similar to those in Fig. 36, which gives comparable data for no shield on
the front bunker.

The data obtained in the tunnels illustrate the importance to the
gamma-ray dose rates of the thermal-neutron captures in the tunnel walls,
as evidenced by the similarity of shape of the gemma-ray dose-rate and
thermal=neutron-flux curves. In order to calculate the production of
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cepture gamma rays in the walls, it was necessary to know the thermsl-
neutron flux distribution in the tunnel. To aid such calculations in this
and similar geometries, an attempt was made to measure the angular dis-
tribution of thermal neutrons leaving a small area of the tunnel wall.

The megsurements were made with a 3-in.-diam BFz counter whose housing
was wrapped over its entire length with cadmium sheeting that extended

9 in. beyond the end of the counter, thus foming & collimator. The
collimator was used to "view" from several angles a spot on the tunnel
wall located at about the middle of the center leg. At each angle, mea-
surements were made with and without a cadmium cover over the opening in
the collimetor, in order to correct for the contribution from the neutrons
above the cadmium-cutoff energy. The results showed that, for angles from
0 to 60 deg from the normal to the wall, the fluxes were constant to within
experimental error. Thils indicates g cosine distribution of the current
leaving the wall, since the wall srea seen by the counter through the
collimator varles spproximately as the inverse of the cosine of the polar
angle,

GAMMA-RAY SPECTRA DETERMINATIONS

In sn sttempt to assess the relative importances of various sources
of gamma rays, the pulse-height spectra of gamma rays in the center of both
the tunnel and the top bunker with various top-slab configurations were
determined with a ?~in. Nal crystal. Flgure 41 shows pulse-height spectra
cbtained in the top bunker with top-shield thicknesses of O, 4, and 20 in.
Figure 42 repeats the lL-in.-slab data and also includes data for a top-slab
configuration consisting of 2 in. of borated polyethylene and 4 in. of
concrete and for one consisting of layers (from the top down) of 2 in. of
polyethylene, 2 in. of borated polyethylene, and 4 in. of concrete.

Figure 43 gives the data obtained in the tunnel, with and without a boron
cover surrounding the crystsl. Reduction of these date to incident spectra
has not been accomplished at this time.
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