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PREFACE 

The Cognitive Systems Research Program, vhidi carre ntly awjplngrg ,n staff 

of about Wenty petylfe^ is primarily concerned with the study of models of 

central nervous system functioning, and the testing and verification of such 

models by means of biological experiments. The twelve papers in this volume 

present the results of work performed under the Cognitive Systems Research 

Program since the publication of the first volume of Collected Technical 

Papers in January, I96I. The papers are divided into the following main groups, 

reflecting the principal areas of research conducted by the ftrogram: 

(1) Mathematical theory of neural networks (the first four papers). 

(2) Biochemistry (one paper). 

(3) Simulation and numerical experiments (four papers). 

(k) Physical models and engineering studies (two papers). 

(5) A bibliography of published work on perceptrons. 

Considerable additional work in most of these categories has been 

accomplished during the period covered by this volume, but has either been 

reported elsewhere (see the bibliography) or will be described in separate 

reports to be issued shortly. In particular, detailed reports on the following 

topics are currently in preparation: 

(l) Circuit designs for the Tobermory perceptron (by George Nagy). 

(2) Manual for a general purpose perceptron simulation program (by 

Trevor Barker). 

(3) Biochemical studies of neural transmitter substances (by Roger 

Marchbanks). 

(4) Simulation studies of adaptive four-layer and cross-coupled perceptrons 

(by Prank Rosenblatt). 

(5) Theory of biological memory mechanisms (by F. Rosenblatt). 

The editor wishes to take this opportunity to express his appreciation 

for the work performed by all members of the CSRP staff, as well as the assistance 

of such collaborating organizations as the Courant Institute at New York 
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University, and the Stanford Research Institute, uhich have contributed 

substantially to the research reported here. 

Frank Rosenblatt 
Director, CSRF 
July 30, 1963 
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A HOTE ON PROBABILISTIC COMVERGENCE IS 

ADAPTIVE FOUR-LATER PERCEPTROHS* 

By Harry Kesten 

1. Introduction 

As suae that there are n different stimuli.. A sequence of stimuli is 

shown to a four-layer perceptron. Ve assume that the sequence of stimuli is 

a Markov chain, and that one stimulus is shown every At units of time. The 

procedure is as described in Principles of HeurodynamLcs, Section 16.2.1. 

The following small changes were made: 

i) We have written n^ j for 

ii) The function <j) was changed into a function <f) satisfying 0 < <j> (x) <1, and 

I <(> (x^- 4(¾) I < c1lx1"x2l * 

* EDITORS NOTE: When the analysis of adaptive four-layer perceptrons was 
first published (Block, Knight, and Rosenblatt, Reviews of Modern Hayslcs, 
34, 135-142, 1962) it was pointed out by a number of readers that convergence 
had not been demonstrated rigorously for the case of a random preconditioning 
sequence. Several critics, in fact, felt that the system would not converge 
at all under these conditions, since (if one waited long enough) a "disruptive'1 
sequence of stimuli would be certain to occur, of sufficient duration to force 
the perceptron out of its steady-state condition. It was proposed by Rosenblatt 
that it should be possible to prove a theorem demonstrating that the perceptron 
would still converge in a weaker, probabilistic sense; namely, that by taking 
At, the time interval between successive stimuli, small enough, it should be 
possible to guarantee that the probability that the state of the perceptron 
differs from the previously predicted state at time t can be made arbitrarilly 
small. An appeal was made to Prof. Kesten for assistance in proving this con¬ 
jecture, and the above paper is the result, (it is assumed that the reader is 
familiar with the earlier work by Block, Knight, and Rosenblatt. The version 
refered to by Kesten appears as Chapter l6 in Rosenblatt, Principles of 
Neurodym^cs, Spartan Books, Washington, D.C., I962.) 

It is worth noting that the introduction of the Lipschitz condition for <p , 
in Kesten*s analysis, is actually a step closer to a physically realistic 
system, since the assumption of an abrupt discontinuity of neural activity at 
the threshold is replaced by the assumption of a neuron which gradually "becomes 
active" as the input signal is increased. The frequency responses of biological 
neurons would, of course, satisfy this condition. 
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Under these circumstances it is shewn that the solutions j ^ of the difference 

equations (3) (and houndary conditions (2)) are with large probability close to 

the solutions of the differential equation (lO) (with boundary conditions (11)), 

when At is sufficiently small. 

It is perhaps unpleasant that (j> is required to satisfy a Lipschitz 

condition. The estimates show, however, that c1 may be replaced by a function 

which depends on At, and that the function, c^At), may tend to infinity as 

At—► 0, if ^(At).At does not increase too fast. 

2. Analysis 

Let cj> be a function satisfying 

(1) I ^ (^)- + (x2)l 5 cilxrx2l ' °<*<i 

where is some positive constant. 

For a given sequence of integers J_1, J0, Jg'**** (1 £ ^ £ n = total 

number of different stimuli) define (k) for 1 < i < n by 

(2) 5 (0) = 0 

(3) (bh-2) - (m+l) = T).At. [ß^nH-1^ + ^ ^mfl^ (m+l)] ^ a - 5-At. (m+1 
f tljjj 

where 11, ô, At are given positive constants, n. ., are non-negative 

constants for l<i<n, l<j<n. (This clearly is the analogue of (16.6) 

Principles of Neurodynamics.) 

LEMMA. 1: If j is defined by (2) and (3), and if 5 At < 1, then 

(4) 0< $ ^ (nw-1) < (¾ + n*^t) myc ^ j . 

(5) I 5 (nH-2) - J (bh-I)I < 3T)-At myc 

Proof: For (4) we have 

(6) ^ ^ (nH-2) = (l-B At) j (bh-1) + T].At n^j [ß + j ^(mfl)]. 



It follows by induction (on m) that (m) > 0 If 6 At < 1. As for the 

right-hand inequality of (4), assume that it is false, and that mo is the first 

index for which it is violated, i.e., 

(7a) (m) < ( ^ + T) At) ajx ^ ^ for all m < mQ 

(7b) (m0 + 1) > ( I + ti At) nyc 

Case 1: (m ) < J max n. . 
°-o j i,j 

In this case, by (6) and (l) 

(»+1) < (a.) + ipAt max n. , < ( 5 + H At) max n. , 
u ■“ ° j — o j i,j 

which contradicts (7b). 

,(0 Case 2: 5U (mo)>í "““i. 
3 

In this case, by (3) and (l), 

,(i)( |vi;(itto+l) - 5(1) (mQ) < ti At max ^ j - & At ^ max n^ ^ < 0. 

Hence i (mo +l) < (mo) < ( ^ + T ^t) max ni ^ which again contradicts (7b). 
j 

Thus (4) is always valid. 

(5) follows immediately from (4) and (3), and 6 At < 1. 

We now define a function differing slightly from 1^. For J=l,...,M 

we define (kMfO) by 

(kM) = (kM) and 

(8) - CU)(kMtj-l) = Tj At [ß^+J-1 + n 
^0-2 

.(1) 

-6 At (kM) 

0 — 1,... ,M. 

(Actually ( also depends on k but it seems unnecessary to indicate this more 

explicitly). 



LEMMA. 2: Let T = Jî] max ^ 4 
- i,J 

C T2 
/° = C1 + 5t 

3 

(9) |C(i) ((k+l)M) - 5(1) (Ot+l)K)l < («(Mût)2 

Proof: Comparing the definitions of 5 and t¡ ve see that the left hand side 

of (9) is bounded by 

T)At max n^ ^ | <(, + | - f [ß0^'1 + 

,r ,)=1 
M 

+ Ô At £ ll^1^ (Mi) I < 

j=l 

sup UU (Mi) - 6U(k»tj-l)| 
P 

sup |SU(kM) - ^(Mitj-l)! < (by (5)) 
u> 

M M 

(j-ljTAt + Õ At Y (j-ljTAt 

^ j=i j=i 
Q 

< -JL (MTAt)2 + BT(MAt)2 
- 3 

Let be the solution of the differential equation 

(10) g^’ = £ ï k ”i,j (0(lt)+ ’(k) (*» - ^(1) <*> 
j=l k=l 

M 

T)At ?“Vci I 
i'1- j=i 

M 

+ ô At y 

J=1 

satisfying 
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(11) (0) = 0. 

Here f j,k - 0 ' L fJ,k = 1. 

We want to compare 7^^ (t) with ([t/^t]) vhen there Is a relation such 

as (li*) between f , and the sequence J ,, J ,... 
-10 

First, we have the analogue of Lemma 1, i.e., 

I01MA 3t For t > 0, 

(12) o< r(1) (t) < ^ 

,(0 . 

max n 
i,J 

(13) 
¿7 
dt 

,( i) 

< 2ti max n. < t j i,j - 

Proof: ^-- *(t) - 87^1^ (t) 

t 

and 7^ (o) = 0 implies 7^^ (t) *= e"^ J ^(b) e^s ds. Any solution of (lO) 

satisfies d7 (i) 
,(i) 

dt t(t) - W J (t) for some f, 0 < t < T) max n .. This implies 

0 < e -5t 
J f(s) 

ds . . n e ds < ^ max n. .. 
- « j ^ 

The second inequality in Lemma 3 follows immediately from the first one and (lO). 

Now let (i,j) • jnumber of r, kM-1 < r < (k+l)M - 2, for which jr=l> 

and assume that for some numbers f 

(14) |A^(i,j) - <M“1/2+a far alii,j<n, 0<a< 1/2 . 
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t 

I^A 4: Put £ = max I [ism) - (kM) I. Then 
i<n 

^.+1< (1+^-) £ +2/0(Kût)2+l n2 M1/2 + 3 At . 

Ppoof« We vant to estimate ((k+l)Mût) - ((k+l)M). 

Replacing ((k+l)M) hy ((k+l)M) 

(Mût)2 by Lemma 2. However, 

Introduces an error of at most 

M . 

C'1) ((k+l)M) - (kM) = TjAt Y i|[ß ^J*1 + g ^^(Ht)] . n 
. . J 

-ÔAt^1^ (kM) 

kMfj-2 

u k 
= >1 At M ^ XM (r,s) 4 [ßM + |(») (kM)] ni>r . ^(i) (l!M) _ 

r,s=l 

This last expression differs from 

n 

ti At m y f^8 (J, [ßi8^ + (mKjJn^ - fiAtM^,1^ (kM) 

r,s=l 

by at most 

^ At M n2 M"1/2 + a max n. < I n2 M1^2 + a At. 
r - 3 

Similarly, 
(k+l)MAt 

r 1 (Ot+DMAt) - r(1) (mt) = J" ( |- r(l) (u))du 

kMAt 
n n 

= Mût y y Î] fr^e n^r <f [ß(s) + 7(s) (Uiût)] - 6MAt 7(l) (kMût) 

r=l s=l 

(k+l)MAt 

+ * f I ï f n {<|>[ß^s) + 7^s) (t)] -<j>[ß^ +7^ß) (ikMAt)] } 
kMût r s r'8 ’ u ' J 

(k+l)Mût 

" 6 / " 7^ } dt* 
kMAt 

dt 
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The àbsolute value of the last two Integrals Is at most 

MâtTl max n sup sup C, |7^ (t) - 7^ (kMAt)| 
l,r ’ s kmt<t<(k+l)Mt 

+ 6 M At sup (7^1^ (t) - 7^ (kMt)| . 
kMU<t<(k+l)MAt 

(13) shows that sup sup (7^8^ (t) - 7^ (kMAt)| < MAtT so that 
s kMAt<t<( k+1 )MAt 

the integrals are hounded hy 

(MfAt)2 + &r(MAt)2 < /O(MAt)2 . 

Finally we have the estimate 

imt ^ fr^ n1#r| + [ß(8) + (kM)] -^[ß(s) +7(s) (kMAt)] | 

+ 8AtM| (kM) - 7^1^ (kMAt) I 

< nMAt sup ^ : C1 ek + ÖAt M Ck = Ç MAt^ . 
i,r ’ 

Adding all error terms ; ve find 

)7^1^ ((k+l)MAt) - ((k+l)M)| < 2/<?(MAt)2 + j n2 M1^2 +aAt + ^(1+ ^ MAt) . 

THEOREM 1¾ Let (k) he determined hy (2) and (3), and 7^ (t) hy (lO) and (ll). 

If (14) holds for all k < [ ] then 

|rU) (t) - 5(i) ([t/At])| < t*/' (4t»» + M-1/2 

for t/MAt sufficiently large. 



Proof: Let t1 = [t/Mût]Mût and -■ [t/Kût]. 

First we estimate 

mot |r(l) (t.) - !(1) (k-M)I - £ . 
1 i 1 *1 

By Lemma 4, 

¿k - + j nSi1/2 +aAt) 

< (1+Ä )\^2 + (1+ Ä ) [^(MAt)2 + I n2 M1/2 +a At] 

+ 2^o(MAt)2 + j nV/2 + a At .... 

(1+ ÜËt ) 1 _! 

< -pmr- (2/°(Mût)2 + j n2 M1/2 +a At) 

since ¿Q = 0. 

Since < t/MAt we get 

£ki < (1+ Ä jVMAt . ^T_ + T n2 |jl/2 « Ä] 

< ^ (2 + ^ H'1/2 +a ) . 
¿r 

By (5) and (13) 

([t/At]) - (k,M)| + (t) - (t^l < 2MAt -r . 

This proves the theorem. 

IÆMMA $: If1 j 1, jp... is a random sequence, forming a Markov chain with 

state space (l,2,...,n) containing exactly one ergodic class, and stationary 

probabilities 

hm ^ P(J» = 1) 
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and transition probabilities p4 , = PÜ ,=.11.1 = i) 
i,j "nH’l ,1¾ 

then, putting .= pjL p1^, there exist constants B,C (depending on n, Vj_ 

such that for sufficiently small € > 0 

,P(| (i,j) - f^jl > e for some i,j) < ^ . 
€ 

Proof: Melvin Katz and A. J. Thomasian, in "An exponential bound for functions 

of a Markov chain", Ann. M»th. Stat. 3I (i960) 470-474, prove that for each 
fixed i,j 

HI*#0 (ij) > e) < -36¾ 

1-e -BE' 

for constants B,C depending on p., p. and n only. 
1 1 j J 

We obtain 

, (ij) - > € for some i,j) < On -36¾ 

1-e -BE 

2 2 
Since for1 small €,1-6^ > , the lemma follows. 

N.B. In order t(o apply the Katz and Thomasian result we have to consider the 

Markov chpin of pairs1 (j.rJ0), (^, ^),.... 

CQROLIARY: Under the assumptions of Lemma 5, for large M 

P((l4) holds for all k < [t/MiM;]) 

t D > 1 - 
M2^ 

Dt 

M^At 

THEOREM 2¾ Under the assumptions of Lemma 5, for sufficiently large M and 0 < a < 1/2, 

P(|r(i) (t) - !(1) ([t/At])| < (4TMAt + M-l/2 ^ ) fcr 1 < 1 < n ) 
- 3/0 - - 

> 1- Dt -BM2“ 

At 
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In particular, with M = (At)“ 2/(3-2a) ^ 

p{|r(1) (t) - 5(1) ([t'/At])I < ^ (4t + ¿i.) (At) U-2“)/(3-») for ! < i < n 

> 1 - Dt (^)-(3-^)/(3-^) e-B(At) -^/(3-20) 

or, far any e, 

(t) - ^ (Ct/At])| < € far 1 < i < nj > 1-e 

if At is sufficiently small. 

Proof: Immediate from Theorem 1, and the corollary to r^mm«. 5. 

This theorem justifies in a certain sense the approach in Sec. 16.2 of 

Principles of Neurodynamics. It shows that, even though the sequence of stimuli 

is a random sequence, with "large probability" the state of the perceptron is 

"close" to the solution of the differential equation (lO) or equation (16.IO) 

in the above reference. 

Remark: It is worthwhile to look at the size of the constants in Theorem 2. 

D, B depend on n, p^ ^ and will increase quite rapidly with n = total number 

of different stimuli. 

t= 3T] max n 

i,J JU 

V /°=-T- + ÔT . 

2 
Hence *//<>< 3/^ (which tends to zero as C^«»). 

However, /°/t = (c^ */3) + & • If is replaced by a function Cj(At), then 

C-^(At) may tend to infinity as At -* 0, but we should have 

e0^) ‘ n/3 (At) (^^)/(3-^)-.0. 
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í 1 YB, 0,1 

A NOTE OS ÜBE CASE CF ÜBE ADAUKE VB. THE SIMPIg R-UKET 

Sgr C. Kesler and G. Nagy 

Periodic outbursts of speculation regarding the relative efficacy of 

the +1 adaptation scheme advocated by Widrow1 and the 0,1 scheme used in 

Rosenblatt's simple perceptron have necessitated a more careful evaluation 

of the merits of the two systems. Two questions in particular must be 

answered: 

1. Does either system show a marked superiority in the number of 

dichotomies achievable by a single threshold logic unit? 

2. If a dichotomy nay be achieved by both systems, is there a 

significant difference in convergence time? 

ais note proposes to show, first, that the adaline1 and the simple R-unit2 

are virtually equivalent in regard to the problems they can solve, and second, 

that the relative speed of convergence depends on the average density of active 

input elements. 

Ihe answer to the first question is in the form of a theorem: 

THEOREM: A threshold logic unit with variable threshold has solutions to the 

same set of dichotomies whether its input vector has components plus one and 

minus one, or zero and one, provided that minus ones in the one case are replaced 

by zeroes in the other. 

Corollary 1: An adaline and a simple R-unit, both with an extra, 

permanently active input, have solutions to exactly the 

same set of dichotomies. 

Corollary 2: If an adaline can do a problem, so can a simple R-unit 

with one extra, permanently active input. 

Corollary 3 : If a simple R-unit can do a problem, so an «dan n» 

with one extra, permanently active input. 
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Rroof 

First ve shall show that If a solution to a given dichotomy Is known for 

il Input, then It is possible to specify a threshold which will yield a solution 

to the corresponding 0,1 input. 

Consider an adallne with n Inputs capable of dealing with some 

classification C where some of the stiauli are in C+ (the positive class), 

and some ln C“ (the negative class). The are n-dlaenslonal vectors with 

components +1 or -1. 

Then a solution may he described by the inequalities 

®i’® =* » s1e c+ (i*) 

S1-ícea) Ã£ c" (11>) 
where 9 is a fixed solution weight vector and 0 is the 

SI 

threshold of the adaline. 

Now add 0*9, where 0 is the n-dimensional vector whose components are 

all +1, to both sides of (l), and divide through by 2: 

1/2 (0*9 + Si*9) = 1/2 (0 + *9 ^ 1/2 (Qa + 0*9), C+ (2a) 

1/2 (0*9 + 8i*9) = 1/2 (0 + Si) *9 < 1/2 (9a + 0*9), 3^ C“ (2b) 

Let S* = 1/2 (0 + S, ), and = l/2 (ft + 0*9), 
X X P el 

Then 

Sj • 9 > Or , Si e C+ 

Sj-9^0r, Sje-C* (3b) 

shows that 9 is also a solution to the corresponding classification with the 

minus ones in 8i replaced by zeroes in 

replaced by the threshold Or of the 8-unit. 

To show that the adaline can solve a problem to which a solution exists 

in the R-unit with threshold 0 and solution vector 9, let 
r 

3|, and the threshold Oa of the adaline 
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S, = 2S* - Ö, and O = 2Q - õ • 
il ft r 

Q.E.D. 

The proof of the corollaries follows from the fact that for an R-unit or 

adaline with fixed threshold, an extra input which is permanently active is 

equivalent to an adaptive threshold. 

It is worth noting that with the appropriate change in threshold, the 

same solution weight vector will serve in both cases. 

To .study relative speeds of convergence, simulation experiments were 

run on a threshold logic unit with 5 inputs. All possible dichotomies of 10 

randomly chosen equal area stimuli were generated. For each dichotomy, it 

was either shown that no solutions existed, or the TUJ was trained to a 

solution using quantized a-system error-correction reinforcement with zero 
p 

starting weights, and cyclic presentation of stimuli. 16 cases were 

computed (with different random stimulus sets) for each of the four possible 

nontrivial stimulus areas (k plus ones, 3 plus ones, 2 plus ones, and 1 plus one). 

Since there are only 5 possible^ stimuli with 4 plus ones or with 1 plus one, the 

sets of 10 stimuli necessarily include; repetitions of the same stimulus. No 

attempt was made to guarantee that these repetitions would be classified 

identically. Both the adaline and the simple R-unit learned exactly the same 

set of dichotomies (a demonstrable consequence of the equal size and odd number 

of components of the stimuli). 
■ ■ ' . ■ , ° 1 

Dichotomies of 10 stimuli represent a fairly difficult task for a 5 

input TUJ; of the 65,536 dichotomies presented, only 3,186 were learned. 

The relative speeds of convergence, denoting the average number of cycles 

through a +1 stimulus sequence before perfect learning occurred divided by the 

corresponding figure for 0,1 inputs, were as follows: 

Stimulus Size Rel. Speed of Convergence 

8056 

60* 
40* 

20* 

.58 

.67 

•79 

1.20 
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A similar shift in favour of the 0,1 system for small stimuli vas also 

observed in an SRI program5; nevertheless on the basis of those experiments 

it vas concluded that the Í1 system is generally superior. 

A heuristic argument to interpret our results might be constructed as 

follows. The degree of interference between two stimuli in opposite classes 

is proportional to their scalar product ^ or Sj • S* ^ still represents 

-1 stimuli, and 3* , 0,1 stimuli). With proper normalization such terms are 

analogous to the corresponding off-diagonal elements of the G-matrix2, and for 

fast learning it is desirable to have such terms as wnmii as possible. 

As a guide to what we should expect in more complex cases, ve calculate 

the expected value of ^ and of 3| • S* for two n-bit stimuli whose 

elements are chosen independently with uniform probability ? . 

Then E {S1 • gj } = n (2 ? -I)2 (I*) 

= “(S)2 m 
After appropriate normalization (dividing (4a) by E ■[ Si • S1 ]• and 

(4b) by E ^ S* • equations (4) yield the final interference terms: 

Q (adaline) = (I”1 -i)2 (5a) 

Q (simple R-unit) = ? (5¾) 

It is seen that the interference term in the adaline reaches its 

minimum at m = ^ , while in the simple R-unit it is an increasing linear function 

of m. Traditionally, +1 systems are run at the 5056 activity level, while 

perceptrons aim for threshold settings insuring less than about 15$ activity. 

It is also interesting to note that, in the above instance, the inter¬ 

ference terms Q (adaline) and q (simple R-unit) are equal at m = j? , 

corresponding to a stimulus size of 25$. This figure is in happy agreement 

with the simulation results. 

The material presented in this note shows that the choice of activity 
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scheme In a pattern recognition machine depends in relatively straightforward 

fashion on the expected input to the variable weight layer. For low density 

stimuli, the 0,1 scheme is preferable, while for larger patterns Í1 is faster. 
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FURTHER STUDIES OF REINFORCEMENT EROCEDURES AND RELATED PROBLEMS 

by Carl Kesler 

I. Introduction 

This paper Is concerned with the existence of solutions to classification 

probleas in simple perceptrons (Ref. 4j. It also contains some analysis and 

simulations of reinforcement procedures for simple perceptrons. Familiarity 

with CSRP Report No. 2 (Ref. 2) is assumed in several sections. 

Section II contains corrections to CSRP Report No. 2. 

In section III, several procedures are presented which attest to solve 

a finite set, denoted by E, of constant coefficient linear inequalities. 
* 

Three convergence theorems are proved about these reinforcement procedures. 

Then results are presented from four computer simulation experiments which 

compare different reinforcement procedures. From these results, it appears 

that if there is a solution to E, if solving E is relatively difficult, and 

if some parameters and conditions are properly specified, then the reinforce¬ 

ment procedures presented in section III will usually converge faster than those 

found in references 2 and 4. 

In section IV, a method is outlined for quickly determining, with "high" 

probability or with certainty, whether a finite set of vectors, with integer 

components, is linearly dependent or linearly independent. 

In section V, results are presented from two computer simulation experi¬ 

ment?. From these results, it appears that a small minimal universal perceptron 

is not difficult to realize using "random" S-A connections. 

In section VI, three lemmas, five theorems, and two false conjectures 

attack the problem of how many orthants are achievable by linear combinations of 

n m-dimensional vectors. A method is outlined which determines which (and hence 

how many) orthants are achievable by linear combinations of n m-dlmensional 
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vectors. Considerlog a finite set of vectors with integer components, the 

flow diagram in Figure 6 might either find that the vectors are linearly in¬ 

dependent or find a linear relation among a linearly dependent subset of the 

vectors. 

II. Corrections to C8RP Report No. 2 

The following definitions will he required: Let C he any n by n matrix 

i 
t t 

of known constants. Let c. he the ith column vector of C , where C is the 

transpose of C and i=l,2,...,m. Let x = 

n 

he a column vector of unknown 

variables in N, where N is a real inner product vector space having n dinen- 

"rl 

. Let £ he the following set of inequalities: sions. Let r = Cx = 

(c^x) > 0, where ( , ) denotes the inner product of the contained vectors and 

1=1,2,...,m. A solution of E is any vector x such that r^ > 0 for i=l,2,...,m. 

Let ï denote the subset of E defined as follows. Any inequality, say the ith, 

is in Y if and oaly if there is a set of non-negative numbers ja,} such that 
m “ 

a, > 0 and ï “jcj = 0- denote the set of numbers such that the 

J=1 

jth inequality is in Y. Let V denote the set of numbers |i} such that the ith 

inequality is in E-Y. 

The definition of Y implies that there is a set of positive numbers jô^J 

such that ^ = ( £ 6ici,x) = (0,x) = 0. Thus Y can be thought of as the 

U \ ' U ’ . 

inequalities which are in contradictions; and E-Y can be thought of as the 

inequalities which are not in contradictions. 

The following errors occur in reference 2: The equations at the bottom 

of page 15 might not hold because some k^ might be infinite ( 1 § i á m). The 

lemma on page 16 might not hold if V is empty. The sentence beginning on the 

third line of page 17 is incorrect. To correct these three errors, the material 
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■between the proof of Theorem 5 and the statement of Theorem 6 can be replaced 

by the following lemma. 

Lemma: If E does not have a solution and if E-Y is not empty, there exists an 

infinite number of vectors x in N such that r. 
=0 for i in 
>0 for i in V 

n 
V J • 

Proof: Let Q be the subspace of N spanned by the set of vectors |cj| such 

that j is in Ü. Let P be the subspace of N vhich is orthogonal to Q and such 

that P+Q is the span of the column vectors of C^. Let R be the orthogonal 

complement of P+Q. Then N is divided into three mutually orthogonal subspaces 

P,Q, and R, such that P+Q+R = N. Let the superscripts P,Q, or R on a vector 

denote that the vector is in P, Q, or R respectively. For j in U+V, define 
P 0 P Q, 

c. and c: by c. + c; = c,. 
J j ¿5 j d 

Assume there is a set of non-negative numbers -jci^j , not all zero, such 

that ^ ctjCj = 0. Then ^ a^Cj = ^ = ^ ßjC^ for some set of 

V V V u 
numbers jß.j- . The definition of Y implies that there is a set of positive 

numbers jô.j such that ^ ô.e, = 0. By subtracting this equation enough 

U 

times from ^ ß^Cj = ^ one can find a sefc of ne8ative nunibers 

Ü V 

such that Y 0).0. = / a c,. Therefore some inequality is a member of both 
Z-j J J Z-j j j 

u V 

Y and E-Y, which is a contradiction. Consequently there does not exist a set 

of non-negative nunibers -jctjj , not all zero, such that ^ otjC^ = 0. (2.1) 

V 

Therefore by Theorem 3, a solution exists to the following set of inequalities: 

(cj,x) > 0, where j is in V and ( , ) denotes the inner product of the contained 

vectors. Therefore by Theorem 5, if ABIE is applied to this set of inequalities 

with x initially equal to ^ c^ , then in a finite amount of time, one obtains a 
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vector X such that x is a solution of this set of inequalities, x = Y ß cP for 
¿i J J 

a set of positive nunbers {ß J , and x is in P. But such an x, as veil as any 

positive nuiriber times x, satisfies ^ I =0 f or i in U l 
L >0 for i in V J Q.E.D. 

311 * Improved Single Perceptron Error Correction Reinforcement Procedure 

In this section, several procedures are presented which attempt to solve 

a finite set, denoted by E, of constant coefficient linear inequalities. Three 

convergence theorems are proved about these reinforcement procedures. Then 

results are presented from four computer simulation experiments which compare 

different reinforcement procedures. From these results, it appears that if 

there is a solution to E, if solving E is relatively difficult, and if some 

parameters and conditions are properly specified, then the reinforcement pro¬ 

cedures presented in this section will usually converge faster than those found 

in references 2 and 4. Hie experimental parts of this section assume some 

knowledge of perceptron terminology, which may be obtained from reference k. 

Unless explicitly stated otherwise, it is assumed that all constemts and 

variables mentioned below are real and finite. 

The following definitions will be required: Let C be any m by n matrix 

of known constants. Let c^ be the ith column vector of C^, where is the 

transpose of C and i=l,2,...,m. Let x = 

vector of unknown variables. Let r = Cx = 

n 

m 

be an n-dimensional column 

Let 6 be any known, non¬ 

negative constant. Let E be the following set of inequalities: (c^,x) > Ô, 

■where ( > ) denotes the inner product of the contained vectors and i=l,2,...,m. 

A solution of E is any vector x such that r^, > Ô for 1=1,2,... ,m. 

I*t BELA, denote the following error correction procedure applied to x. It 

is assumed that the initial value of x, call it x^, is nmte. The initial value 
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of k is defined to be zero, vhere k = 

k 

m 

is an ^dimensional column vector 

such that Ax = C Zk during the application of EEIA to x. The inequalities in E 

are examined in any sequence, provided each is reexamined within a finite number 

of time units after its most recent examination, where the time unit is the time 

between successive examinations. Let time t begin at t = 0. It is assumed 

that there is a constant T such that each inequality is examined at least once 

before t = IY Let u be any known positive constant. Define the constant a 

by 6 = uf.. Let g be any known variable satisfying -1 < -g * g á g < 1, where g 

is a.known constant. Suppose any inequality, say the ith, is being examined. 
"b c 

Define r. and r. to be the values of r. just before and just after the examination 
1 1 1 

respectively. Let A denote the change during the examination. If r? > S, 
"b "b 

define ¿k = 0. Then r^ = r^ . But if r° § ô, say that an error has occurred 

on the ith inequality and for j=l,2,...,m, define 

f 0 

^j = max . 
(S-rp (1+g) 

(Ci,Ci) 
u 

if j^i or (cj,Cj) = 0 

if j=i and ^ 0 
So if an error 

occurs on the ith inequality and if (¢^,0^)/0, then r^=T^+(ci,Ax)= 

max { 6+g(ô-r^),r^+u(ci,c1) }. On the basis of this equality, g could be 

called the "overshoot". The vector x may be doubled between examinations, but 

the following condition, called Condition 1, must be satisfied just before every 

doubling of x: The present value of (x,x) must be greater than the value of 

(x,x) just after the most recent doubling of x. 

Let [ ] denote the integer.part of the contained number. Let "integer 
• c:-J '*•_ ãi>. / . 

HEIA" denote BEIA modified as follows. Let u be any known positive integer 

constant.. If an error occurs on the ith inequality, then for j=l,2,...,m, define 

0 

bi 

if j^i or (cyCj) = 0 

max < 
(5-rJ) (l+g) 

(Ci,ci) 
■] , u ^ if j=d and (Cj,Cj) ± 0 

Let "cycle BEIA" denote integer BEIA restricted as follows. The sequence 
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of examinations Is restricted so that whenever any Inequality is examined at 

any time t, it is also examined at time t+P. Let the first P examinations be 

called the first "cycle"; let the next P examinations be called the second 

"cycle"; etc. All conditions concerning the doubling of x must be of such a 

type that if x just after any cycle equals x Just after a later cycle, then x 

will have become periodic. 

An example will now be presented illustrating some of the motivation 

responsible for cycle BEIA. The problem to be illustrated in Figure 1 has B = 0 

and C 
[+10 +2] 
[-11 -ij ‘ 

+10x1 +2x2 > 0 

-llx1 -lx2 > 0 

Thus E consists of the following two inequalities: 

One error correction reinforcement procedure to be 

applied to x to find a solution of E is ABIE (Ref. 2) with the following 

conditions: 

1. The two inequalities are examined in an alternating sequence, 
beginning with the first inequality. 

2. x is initially zero. 

J. At every error on ary inequality, say the ith inequality, b^=l. 

The other error correction reinforcement procedure to be applied to x to find 

a solution of E is cycle BELA, with the following conditions : 

1. Ô = 0, u = 1, g = O.9, P = 2 
2. The first inequality is examined when t = 0 and the second 

inequality is examined when t = 1. 

3. x is initially zero. 

4. x is not to be doubled except between cycles. 

5. x is to be doubled between cycles whenever Condition 1 is 
satisfied. 

As can be seen from Figure 1, ABLE needed 25 examinations (and 25 errors) to 

attain a solution of E while cycle BEIA needed I3 examinations (and I3 errors) 

to attain a solution of E. 

Let BEIA', integer BEIA', and cycle BEIA' respectively denote BEIA, integer 

BEIA, and cycle BEIA modified as follows: 
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1. Replace each doubling of x by a halving of u and 5. 

2. Condition 1 new applies to the halving of u and 6 instead of 
applying to the doubling of x. 

3. Redefine [ ] by the following: For any number j, let [j] denote 

that integer multiple ofi defined by j - -^c<[j] S j, where h is 
2 2n 

the number of times that u and 6 have been halved. 

Let x' = x during any particular application of BEIA', integer BELA.', or cycle 

BEIA' to x. 'Let x" = x during the corresponding application of BEIA, integer- 
h 

BEIA, or cycle BEIA to x. Then 2 x' = x". (3*1) 

Theorem 1: If a solution of E exists, BEIA will yield a solution of E in a 

finite amount of time. 

Proof: In this proof, assume a solution of E exists. By (3*l)> if this theorem 

is true for BEIA', it is also true for BEIA. This theorem will therefore be 

proven for BEIA'. 

Suppose an error occurs on any inequality, say the ith. Assume 

u. Then r^+r£ S -(l-g0)(6-r^) + 2Ô. So (5-r^ ) ê iL- -gc 

(S-r^) (l+g) 

(V'i) 
implies s 0. Therefore A(x,x) - (¿ác^)(r^+r^) S 

(8-r^)(l+g0)28 ^ 4u2a2(l+go) 

minimum (c.,c.) (l-ß^) minimum (c.,c.) 
ISiàn 11 líLân 

b. 

when ó-r¡? § 
I l-ß. 

when ô-r^ < -r— 
I l-ß. 

(3.2) 

(ô-r^) (l+g) 
Now assume instead that ■ ■ ■ ■ --< u. Then 

c1) 
^ O 

a(x,x) = (Æk.) (r?+r:) S u(2Ô + (u)maximum (c.,c ) ) = u (2a+maximum(c.,c.) ). 
1 11 ISiSm . • ISiSm 1 

r O 
(l+g0) 

2 2 
Combining this with (3-2) yields a(x,x) S u max j (l-g yH>ni1tn( ^j 

0 ISiSm 1 i 

2a+maximum( c.,c.) 
ISiSm x 

2 = u y, (3.3) 
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where this is the definition of the positive constant y. 

Let s he any fixed solution of E. Let ^ = k'6) . Let 

(s,s) 

Suppose an error occurs on any inequality, say the ith. Then 

z.tk. (u)“!»!«» 
*0. 

n 

= Cs. 

TsTsJ (3.4) 

oo m 

I E dlverSesi where A denotes the change during an 
t=0 i=l 

examination. Then hy (^.4), ^ is unbounded as t approaches infinity. (3.5) 

Therefore by (3«3) ^nd (3*4), there is a time tQ such that for any error on any 

inequality, say the ith inequality, which occurs when t > t 
0 

A(x-^s,x-^s) = A((x,x)-^ (s,s)) S u^y-(^k.)2^(2^-^) S u(uy-2^‘minimum z.) S 0. (3.6) 

in láÍSm 1 
Let 6 n denote the initial value of 6. Then by (3.4) and (3.5), there is a time 

,in 
t1 such that 

ftXJUi 

for t > tp (c^,^s) = ^z^ > - for i=l,2,...,m (3.7) 

Consider any i satisfying láiân. Let q = 

gin 
(c.^s+t) ) = -r- . 

2 

'n 

Define the vector n = by r\ 

Bln 

r Rin 

. (v'i) 

be the shortest vector such that 

(3.8) 

(3-9) ci + \l. 

(3.9), (c1,^s+ti ) = (^,n) + -jj- . Therefore by (3.8), (^,ja) = 0. Then by 
(3.8) and (3.9), 2 

(w) = 

sin 
- (Cj.iis) 

IcJI 
(3.10) 
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Let 7 = 

n 

gin 
be the shortest vector such that (c. ,¿s+7 ) = -ç- for some i 

1 _h 

satisfying ISiSm, say 1=,), and (c^s+7 ) ê for all i satisfying ISiSm. (j.ll) 
in 

r gin 

Then by (3*7) and (3*10), (7,7) = minimum 
ISiSm 

‘(clM 

«cill J 
for t > tr (3.12) 

Therefore by (3-.5), (7,7) is unbounded as t approaches infinity. (3.13) 

By (i*?) and (3.11), when t > t^, (x-^s,x-^s) < (7,7) implies that no error 

can occur on any inequality. (3.14) 

Sy (3.6), (3.13)> and (3.14), there is a finite time when x becomes a solution 

of E. 

00 m 

New assume instead that ^ ^ ^ converges and that BEIA' does not 

t=0 i=l 

(3.15) yield a solution of E in a finite amount of time. Then lim x exists. 
t*» 

Therefore for i=l,2,...,m, lim ri exists. 
t4« 00 m 

If h is bounded as t approaches 00, I I diverges. 

t=0 i=l 

Therefore h is unbounded as t approaches infinity. 

Assume lim r. < 0 for some i, say i=j. Then by (3.I7), there is a time t„ 
t4«o '2 

such that for any error which occurs on the jth inequality when t > t0, 

(3.16) 

(3.17) 

Akj = max « 
(6-i\j) (l+g) 

“W“’“ 
(-rp(l-go) 

' “ Tr n ) > d > 0, where d is a suit- 1 j’V 
able constant. Since this result implies that 

oo m 

I I ^ diverges, lim ^ < 0 is not possible. 

t=0 i=l 
(3.I8) 

Let YE be the set of numbers {ij- such that lim ri = 0. Let NE be the set of 
t^oo 
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numbers jij such that lim ^ > 0. Then by (j.l?), there is a time t, such 
t4» ^ 

that u and 6 are halved vhen t=^t,, and such that for t > t, and i in NE, no 

error occurs on the ith inequality. Consequently by letting A denote the change 

during the time interval from t^ to co, (3.15), (3*16), and (3*18), there is a 

set of numbers jß^J such that A(x,x) = 2(£sc,x+¿k)-(¿k,A¡c) = 2( ^ ß^c^x+A*) - 

r ÏE 
(Ax,A>0 S (2) ^ = 0. But there is a finite time vhen this result, 

YE 

(3.15), (3*17), and Condition 1 form a contradiction. Q.E.D. 

Theorem 2: If a solution of E exists, integer EEIA will yield a solution of 

E in a finite amount of time. 

Proof: A proof will not be given because there is a proof of this theorem 

which is almost identical to the proof of Theorem 1. Q.E.D. 

The following is an alternate form of Theorem 3 in reference 2. There is 

no solution of E if and only if there is a set of non-negative numbers {aj, not 

m 

all zero, such that ^ = 0. (3*19) 

i=l 

Statement (3*19) holds for the definitions given above, even though the 

definitions of E given above and in section II (or in reference 2) are slightly 

different. 

let Y denote the subset of E defined as follows. Any inequality, say the 

ith, is in Y if and only if there is a set of non-negative numbers {“Jsuch 

m 

that > 0 and ^ o^c^ = 0. Let U denote the set of numbers |i| such that 

«K 

the ith inequality is in Y. Let V denote the set of numbers • ij such that the 

ith inequality is in E-Y. Let W denote the set of numbers |i • such that 

(c^c^) = 0. Notice that W is a subset of U. The definition of Y implies that 

there is a set of positive numbers 

I Vi = ( 18iVx) = <0'x> = °- 
such that 

U U 

(3.20) 
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Thus Y can be thought of as the inequalities vhich are in contradictions^ «.nfl 

E-Y can be thought of as the inequalities vhich are not in contradictions. Çy 

(3-19), a solution of E exists if and only if Y is enpty. 

Theorem 3: If a solution of E exists, cycle BEIA will yield a solution of E 

in a finite amount of time. If no solution of E exists, if the 

elements of xln and C are integers, and if cycle BEIA is applied 

to X, then after a finite amount of time, no error will occur on 

any inequality in E-Y and x will become periodic. 

Eroof: Since the proof of Theorem 2 can be applied if U-W is empty, for the 

rest of this proof, assume U-W is not empty. Therefore m ë 2. 

Let N be the n-dimensional vector space vhich contains the column vectors 

of C . Let Q be the subspace of N spanned by the set of vectors jc^j- such that 

i is in U. Let P be the subspace of N which is orthogonal to Q and such that 

P*Q is the span of the column vectors of C^. Let R be the orthogonal complement 

of BK}. Then N is divided into three mutually orthogonal subspaces P,Q, and R, 

such that BfQ+R = N. Let the superscripts P, Q, or R on a vector denote that 

the vector is in P, Q, or R respectively. 

If during an application of cycle BEIA1 to x, x becomes periodic and a 

period contains one or more halvings of u and S, then Condition 1 is contra¬ 

dicted. Thus by (3-1), if this theorem is true for cycle BEIA', it is also 

true for cycle BEIA. This theorem will therefore be proven for cycle BEIA'. 

The portion of x vhich is in R does not affect r and is not altered by the 

application of cycle BEIA' to x. Therefore, for the rest of this proof, 

assume that x is entirely in F+Q. 

Define c£, cj, x-P, xQ, xPn, and xjn by cP+cJ = c1, xP*xQ = x, and xPn-fxJn = xin. 

Then (cP,cP)+(cJ,cJ) = (c^), (xP, xP)+(xQ,xQ) = (x,x), ^ (xPn,xPn)+(xJn,xJn) = 

(xin'xin)* Thus by the assumption that xin is finite, xPn and x^n are also 

finite. (3.21) 

Suppose an error occurs on any inequality, say the ith. Then 

a(x,x) = (¿l^XrJ+rJ). (3-22) 
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» ' . (ô-r^)(l+g) 
Assume that i is in U+V-W and that [ —pi-p- ] è u. Then 

'ci,ci' 

rj+r° S -(l-go) (6-rJ)+2Ô. 

Consequently (ô-rj) è implies r^+r° i 0. Then hy (3.22), 13.-0 

A(x,x) s . (ô-r°) (l+g0)26 4u a (l+gn) 

minimum (c.,o.) â Hg 
L ü+v-w 11 0 

when ô-r? è S— 
i i-go 

iften 5-r^ < 
i 1-g, 

(ô-fj)(l+g) 

(3.23) 

(3.24) 

Nov assume instead that i is in U+V-W and that [—pi-^-] < u. Then by 
vc1,ciJ 

(3.22), a(3ç,x) á u(26+(u)max(0.,0.)) = u2(2a+max(c.,c.)). Therefore by (3.24) 
U+V u+V 1 1 

and the fact that 2/ 

a(x,x)=0 if 1 is in W, a(x,x) £ u2 max {■“""'l ß —* , 2a+max(c.,c. ) } = u2y, (3.25) 
”so U+V 1 1 J 

where this is the definition of the positive constant y. 

Next it will be shown that there is a constarft fî such that the following is 

true. If at aby time to there begins an interval of length At=fl which contains 

no error on any inequality in E-Y, then for t > tQ, no error will occur on ary 

inequality in E-Y, and x will have become periodic before t = to+ß. (3*26) 

Until (3.26) is proved, assume that we are restricting our attention to a 

finite time interval beginning at t=tQ, where to is ary non-negative time. 

By (3.20), 0 = Y Vi " (m-1)(n,ax OOnin r.) + (min 6.)(max rj. (3.27) 
U U UiU1U1 

Let B denote a basis of Q consisting of c^s such that i is in U. Let G denote 

a basis of Q obtained from B by the Gram-Schmidt orthogonal!zation process. Let ■ 
B^ and G^ denote the ith element in B and G respeôtively. Then there is a set of 

numbers such that each G1 satisfies I ßijV Thus (xQ,xQ) = ^ (x^G^ 

Therefore by (3-20), lxQ||. = 1 implies 
J i j 

max ^ è 7, where 7 is a positive constant. Therefore ||x^|| = v1 implies 
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è vl7 far all non-negative numbers v^ Then by (3.27), 

-(min Ô )(max r.) ,-(min 6,)7 ||xQ|| 

(m-l)(ioln r,) * -»J/ S-g 1. . 
Tj 1 max 0. — e 

U 
max &4 
Ü 

Therefore (x^x^) S 

(m-l)(max 6. )(min r. ) 
U 1 U 1 

““ 7( min 61) 
Ü 

(3.28) 

(3.29) 

Id 
Let ü)ä = minimum r , where the «th cycle is any cycle that occurs 

jjtth cycle]. 
I U+V-W J 

entirely after t *= tQ. Let uo be the value of u at t = to. Letting A denote 

change during an examination in the «th cycle, 

max Ar s (max ¿k ) max(c ,c )'á (max(c.,,cj) max { . , u } . 
U+V U+V 1 U+V 1 J U+V 1 J I minimum^c. ,c. ) ' o J 

UfV-W 1 ^ 
Therefore.by (3.20), just before the «th cycle, 

r (6-co )(l+g ) 
r. ë min r. > œ -6-r(niax(c.,c.)) max j / ,—2—. , u ]■ = 
1 U+V 1 Ä U+V 1 J ^ minimum(c. ,c. ) ’ 0 J 

; U+V-W 1 1 

0 ë min 
U 

r(max( c^,Cj))(ô-a)Â)(l+go) 

min { (o)Ä-B) - ;- , (^-6) - ruo max^c ) } ê 

U+V-W 1 1 u+v 

r(l+g )max(c.,c ) 
/., u IMT x J 

V8 2 + “minimum Uj^c ) ^ “ ^0 ^ci,cj^ 
U+V-W 1 1 u+v 

Therefore just before the «th cycle, (min r.)2 < 
U . 

(3.30) 

max { (v6>! 

r(max(c ,c ))(l+g f 
n . U+V 1 J 0 1 + 

minimum (c. ,c. ) 
UfV-W 1 1 

((<üä-B) - ruo max(c1,c ))2 } . (3.31) 
U+V 

Notice that (3.3O) and (3.31) would still hold if the definitions of the 

first cycle, the second cycle, etc. were changed by beginning to count 

examinations after the first i examinations had passed, where 1 á i S P-l. (3.32) 

* 

Let the negative constant d be defined by d = tt^-t a + lla2+2yr max(c ,c ) 
1 V V u+v i, 1 
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Let the tfth cycle be called a "case 1" cycle vhen cj^-b < 2uQd and called a 

"case 2" cycle vhen a>Â-ô ê 2uod. Assume the nth cycle is a case 1 cycle. Then 

-4au 

^-5 < ~r-T n l-g 
g 0 and co -B < Jt l-g. ■g. 

< 0. 

QSius (-1+g )(B-cd ) + 28 ë (co -8)(l-g ) + 2au < -2au S 0 
O il a O 0 0 

(ô-cürt)(l-go) 

^ [ ] ä [ ^ 1 > uo- (3-33) 
u*v. 

Then by (3*22), (3-23), (3«25 ), and letting A denote the change during the 

nth cycle, 
(6-0) )( l-g ) 

4X’X> s 1 m>xU.,c.) 1 + 28) + (r.l)u^r 
u+v 1 i 

(cd-8)(l-g ) 

■ rwáic^j ((1-go)(v6) + 2“0)+ 
U+V 

= f(^-8), (3.34) 

where this is the definition of the function f(coÄ-8). Therefore fícD^-B) è 0 

implies (co^-8) ^ 

au (l-g ) 
o^ ^o' + 

max(c,,c ) 
U+V 1 1 

'auo(l.go) ' 2 2ru^(i-g0)2 
max(c ,c ) 

Lu+v 1 1 J UtV 1 1 

mxTcTTcTT 
U+V 1 1 

= u d. 
o 

a + l/a¿+2yr max(c ,c, ) 
» U+V 1 

Then by (3*34) and the assumption that the nth cycle is a case 1 cycle, 

A(x,x) < f(coÄ-8) < f(2uod) < f( ! uod ) < 0. (3.35) 



Until (3-26) is proved, assume that the finite time interval beginning at 

t=tQ contains no error on any inequality in E-Y. Then for any error when tãtQ, 

A(x,x) = 4xQ,xQ). So by (3-35), (3-29), (3-31), (3.3*0, the second part of 

(3-33), and the assumption that the «th cycle is a case 1 cycle, somewhere 

within the 
r > 

(m-l)(max Ô ) 
U x 

1 + 

r(max(c,,c ))(l+g ) 
U*V J 
mini ium(c. ,.cJ 
UfV-W 1 1 

7(min 6 ) 
U 1 " 

(œ^-ô)' 

■f(o3-6) ■] =[ 
va(V8)2 

-Ï(V8) ] 

U-ô)£ 

] ã [ 
2 ! r V2(2u0d)‘ 

'-f(2u^d)'l ^ = *■ -f(2uod) 

(2uod)£ 

] = w 

cycles just after the «th cycle, Oj-S ^ Su^d; (3-36) 

the positive constants v2 and w are defined by the equations (in this result) 

in which they first appear. ïn other words, (3*36) states that if the «th cycle 

is a case 1 cycle, then a case 2 cycle will occur within the w cycles immediately 

following the «th cycle, where w is a positive constant defined in (3-3^). (3-37) 

Now assume instead that the «th cycle is a case 2 cycle. Then by (3-37), 

a case 2 cycle will occur within the w+1 cycles just after the «th cycle. (3-38) 

By the assumption that the «th cycle is a case 2 cycle, (3*29), and (3-30), just 

before the «th cycle, (x^,x^) < 

12 ^ (m-l)(max 6 ) 
U 

r(m:V Ô ) 

U ' 

2u d 
o 

r(l+g )max(c,,c.) 
P , u+v 1 \ 
^ minimum 

UfV-W 

Pu max(c. ,c.) 
0 Uf V ^ 

UqZ, (3-39) 

where this is the definition of the constant z. 

(3-25), (3-37), (3.38), and (3-39), (xQ,xQ) < u^z + (w+l)ru^r for 

t > t +r(i+w). (3-*»-o) 0 

Let t^ be any particular time such that t,^to. Let u^ be the value of u at t^^. 



(3.U) 

Then (3^0) can be generalized to the following: for t > t^+rfl+w), 

(x^,x^) < u^z + (w+l)ru^y. 

Thus for t > t^ril+v), the magnitude of each component of x^ is less than 

u^ >/z+(w+l)IV. Therefore because of the definition of [ ] and the assumption - 

that the elements of C are integers, there is a constant v_ such that the 

following is true: For any t1 such that no halvings of u and 6 occur when 

t > the number of different states x can be in when t > t^+r(l+w) is less 

than v^. Thus for any t^ such that no halvings of u and Ô occur when t > t^, x 

will be periodic before t l l+w+v^)+1. Consequently if (3*26) is false, 

then for t > tQ, u and 6 must be halved within the interval, of length 

At = r(l+w+v^)+l, just after each halving of u and Ô. (3-^2) 

Let uin denote the initial value of u. Let t be the smallest integer such 

that t > 1 and 
ru 

_o 

,2u 

u 

in 
(z+(w+l)iy). Assume that (3*26) is 

false. Then by (3.42), the assumption that the elements of xin and C are integers, 

2 

and Condition 1, (x^,x^) ^ -j just after the second, and all 

subsequent, halvings of u and Ô after t=t (3.43) 

By (3*42), the assumption that (3*26) is false, and by applying (3*41) to the 

time ^ just after the Tth halving of u and Ô after t^tQ, 

for t > tj+rfl+v), (xQ,xQ) < 
u 

2T 
(z+(w+l)ry) S 

u 

2u 
‘in 

Therefore 

by (3*43)# u and B cannot be halved when t > t-^+r( 1+w). (3*44) 

By (3.42) and the assumption that (3*26) is false, the time t^ just after the 

rth halving of u and 6 after t=*to satisfies t^ á to + T(r(l+w+v^)+l). Therefore by 

(3.44), u and 6 cannot be halved when t > to + T(r(l+w+v^)+l)+r(l+w). (3*45) 

By (3.42) and the assumption that (3*26) is false, u and B must b,e halved in the 

interval to+(t+1)(F(1+w+v^ )+l)+P(1+w)+2 > t > to + t(P(1+w+v^)+1)+P(1+w). Therefore 

hy (3*45); (3.26) is true with fl = (T+l)(P(l+w+v^)+l)+r(l+w)+2. (3.46) 
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By (j.tó), this proof is complete if E-Ï is enpty. Œherefore for the rest 

of this proof, assume E-Y is not empty. 

Let s he any fixed vector x obtained as outlined in the proof of the lemma 

in section II. Let ^ s ,s, Let = Cs. Suppose an error occurs on 

any inequality, say the ith. Then A^=0 unless i is in V, in vhich case 

(u)min z. 
V 1 

i i - 0. (s,s) 
r2/ . 2 

ùà = r.- r ^ ^ U,sj 
(3.^7) 

Also, by (3.25), A(x-¿s,x-|¿s) - ^(x,x)-^ (s,s)) S u (3-^8) 

For the rest of this proof, assume that every interval of length At = ft 

contains at least one error on an inequality in E-Y. (3*^9) 

Assume there is a constant hQ such that h á hQ as t approaches infinity. 

Then by (3.47), at any error on an inequality in E-Y, 

A¿ § > 0. (3.50) 

By (3.47), (3.49), (3.5O), and the assumption that xin is finite, there is a time 

t2 such that for t > t2, / > 0. Therefore by (3*40), at any error vhen t > tg 

2 ulnzi(2^) 
on any inequality, say the ith inequality, A(x-¿s,x-¿s) á ulny - -- • 

Thus by (3-49) and (3.50), there is a finite time when (x-¿s,x-¿s) < 0, which is 

a contradiction. (3.51) 

00 

Assume ^ ^^i ^ver8es > 'di®1’* ^ denotes the change during an examination. 

t=0 V 

Then by (3*47), monotonely approaches infinity as t approaches infinity. (3-52) 

au in 
Therefore there is a time t^ such that for t > ty (c^jta) = > —p for 

i in V. (3.53) 
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5y (3*48), (3.49), (3*52), and letting A denote the change during an interval of 

length At = ß, there is a time t^ such that for any interval of length At = ß 

occurring after t=d;., A(x-/s,x-¿s) S fiu2y-2¿u(min 2 ) = u(ufly-2#min z )) S 0. 
V 1 V 1 

Then by (3.48) and (3*52), (x-/ta,x-^s) is bounded as t approaches infinity. (3.54) 

in rv 
Let Ô denote the initial value of 6. Consider ary i in V. Let tj = 

the shortest vector 

Define the vectcr |a 

-in 
such that (cj^^s+ii ) = . 

’n 

be 

by n = 

"in 
0 t 
T ' ^ V 2 1 ci + [i. 

(3.55) 

(3-56) 

. (V5!) . 
gin 

By (3-56), (ci^s+n ) = + . Then by (3-55), (¢^,n) = 0. Thus by 

r gin 

(3-55) and (3.56), ( t) , t] ) = 

Let i)r = 

n 

(3.57) 

fe 
be the shortest vector such that (c.^s+i ) = for some 

2“ 
B1-11 

i in V, say i=j, and (c.,^s+t ) ë for all i in V. (3-58) 
2n 

in 

^ Bin 

Then by (3-53) and (3.57); ( ♦ ; Ÿ ) = min 
V 

j- - (oyM 
for t > t3. (3.59) 

Therefore by (3-52), (^, + ) is unbounded as t approaches infinity. (3.60) 

By (3-53) and (3-58), when t > (x-f6s,x-¿s) < (¢,1) implies that no error 

can occur on any inequality in E-Y. (3.6I) 

So there is a finite time when (3-49), (3-54), (3-60), and (3.61) form a 

contradiction. (3-62) 

For the rest of this proof, assume that h is unbounded as t approaches 
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oo 

infinity-and that ^ £ Ækj, converges, where A denotes the change during 

t=0 V 

an examination. (3-6^) 
Set tQ = (j-ljr, \diere j is any positive integer. Then hy (3.28) and (3.30), 

just before the jth cycle, 

(ô-ÍOj) > 

(m-l)(max Ô )ru (max(c ,cj) 
U 1 °U+V 1 K 

7 min 6. 
U. 

(m-l)(max Ô. ) 
U 1 

7 min 6. 
U 1 

2 + 

rtl+gj(max( 
U+V 

ciick)) 

minimum (c.,c.) 
IffV-W 1 1 

, ■»diere 

this is the definition of the positive constants v, and vr. Therefore 
4 5 

if III ã u^ - 2uQv^d just before the jth cycle, then 0)^-8 < 2uQd. 

Therefore by (3*35) and letting A denote the change during the jth cycle, 

if |x^||<£ uo(v^-2v^d) just before the jth cycle, 

then A(x,x) < f(2uQd) < f( | uQd ) < 0. (3.64) 

By (3-21), (3*63)> and letting A denote the change during an examination, 

llx H =Jxin 1 I I ^1^11 “ Hxin II + I I II ci ^i II 
t=0 V t=0 V 

00 

S ||xfn|| + (max ||ci||) v6, (3.65) 

V t=0 V 

where v^ is a positive constant. 

Therefore (x^,x^) ^ (x,x) - v^. Consequently by (3.25) and (3.64), there 

is a positive constant v^ such that (x,x) < v^. (3-66) 

Prom the definition of s, there is a set of positive numbers jß^j- such 

that s = ^ ß lCiP. So there is a set of numbers such that 

V 

I ß i-Cj. " s = ^ PicJ = £ 

V VU 

(3.67) 
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The definition of Y inrplies that there is a set of positive numbers such 

that ^ ôici = 0. 3y subtracting this equation enough times from (3.67), one 

U 

can find a set of positive numbers w 
such that I Vi = 8- Therefore 

Ü+V 

¿ è -1 implies min r^ S -vg < 0, vhere Vg is a positive constant. 33aere- 
U+V 

fore if q is any non-negative number, ã -q implies min ^ S -qvg. There- 
U+V 

fore if q is any non-negative number, min r. > -qvg implies > -q. (3*68) 
U+V 

00 

By (3.21), (3*83); and the fact that lim = x^n + ^ ^ c^ lim x^ 

Ua n t=0 V Uo° 

exists. Thus there is a set of numbers ja^j-such that lim xP Vi* (5*69) 
t4oo v 

(3*35); (3*86), and Condition 1, the first case 2 cycle will begin a 

finite amount of time after t=0; and if a case 2 cycle begins at any time t^, 

then -the next case 2 cycle will begin a finite amount of time after t=t^. (3-7°) 

By (3.3O), if the nth cycle is a case 2 cycle, then just before the nth cycle, 

r(l+g )max(c.,c.) 
u TT+V ^ ^ 

min r. > (2u d)i2 + -ri-1 \ ’ ) i ' o /v mi.aimum(c ,cj 
v U+V-W 

Pu max(c.,c ). So by (3.47); (3-63); 
U+V J 

(3.68), and (3*70); Urn <f> exists and lim = lim ^ 0. 
t-*« t4<n t4® 

(3.71) 

From the definition of s, s satisfies the lemma in section II. There is a 

p 
small positive constant ß such that for i in V, s + ßc^. also satisfies the lemma 

in section II. Then by the arguments which led to (3.7I), for i in V, 

(x,s4ßc^) 
lim -«-p- 
t+» (s4ßc^,s+ßc^) 

(x,8+ßc^) 
exists and lim --— -p- ^ 0. (3.72) 

t+00 ( s+ßc^ , S+ßc1 ) 
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/ X (x,s-^c^) 
Assume lim = 0 ~ p P, 

t4« ^s,s' U<o (s+ß^^+ß^) 
= 0 far i in V. Then 

(ß)liraCx,A = Umtx.s^c^) - uKx.s) = 0 for 1 in V. Bierefore (lüi = 
Uto U<o Uto 

1íb(xP,c?) = lim(x,=f) = o far i in V. Then by (3-69), ( £<yi’l!i) = 0 for 1 in 

t4® U« ï 

V. Thus ( , l^l) = 0. Thus by (3.69), l^xP = 0. Th^efare for any 

V v 
particular positive constant C, there is a time tg such that for t > tg, U,x) S 

Ç + (xQ,xQ). Consequently by applying (3-64) to any cycle, say the Jth, Älch 

occurs after t=t6, and by letting A denote the change during the Jth cycle, if 

(x,x) ï Ç + u^tv^-adVj)2 Just before the Jth cycle, then a(x,x) < f(2uod) < 

f( |uod ) < 0. Then by (3-25), (3-66), and Condition 1, mere is a time 

sum Lat fOT t > V (x,x) < 5 ♦ u2(vr2dv5)2 + 2^^- ttus if ? is chosen 

smaU enough, then there is a finite time when this result, (3-63), and Condition 

1 form a contradiction. Thus hy (3*71) (3*72), either 

t \ (X;S+ßC.) (iT*)) 
lim í*¿4- > 0 or lip -—n-V > o for some i in V. 
D* is,s) t4® (3+ßc1,s+ßci) 

. p. p 
(x,stßCj) > 0 for soine t ln V) aay 1=J, then replace s by stßCj. 

!f iim r r 
t4® (s+ßCj^^+ßc^^) 

Then by (3-73), lim ji = lim > 0. 
t*» t->» 

(3-74) 

By (3-47), (3-63), and (3-74), there is a time tg such that for t > tg, 

,( > 0 and u(fluy-( ¿¡, )(min z^) * 0. Consider any interval of length At=0 

which occ^s after t=tg. let Ug and ^ denote the values of u »d ^ respectively 

at the beginning of the interval. let A denote the change during the interval. 

Then by (3-47), (3-48), (3-49), «a Condition 1, 
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â(x-^s,x-fós) á UgißUgjr-C ) (min z^)2^ ^ 0. (3*75) 

By (3.48) and letting A denote the change during any examination vhich occurs 

after t=*to, A(x-f¿s,x-¿s) á u2y. Therefore hy (3*63) and (3 ^75), Um (x-jís,x-j¿s) 
0 Ua> 

exists. Therefore lim ((x;x)-¿2(s,s)) exists. Therefore by (3*74), lim (x,x) 
t4oo t^oo 

exists. (3*78) 

Let be any positive constant. Then by (3«35), (3*63), and (3.76), there 

1} Id 
is a time t» such that for t > tQ, min r° £ min r? > -vQ. (3*77) 

9 y U Ü+V y 

Therefore by (3*29), (3*31), (3*32), and (3*63), lim (x^,x^) = 0. Uhus 
t4® 

lim x^ = 0. Therefore by (3*69), lim x exists. (3*78) 
t4® t4® 

Therefore for i in U+V, lim r. exists. Therefore by (3*30), (3*32), (3«63), and 
t*® 

(3.77), lim r. è 0 for i in U+V. (3*79) 
Ua> 1 

Let YE be the set of numbers {i} such that i is in U+V and lim ^ = 0. 
t+OP 

Let ME be the set of numbers such that i is in U+V and lim r. > 0. Then 
t+oo 

by (3.63), there is a time t1Q such that u and 6 are halved when t=^10, and such 

that for t > t^Q and i in HE, no error occurs on the ith inequality. Therefore 

by letting A denote the change during the time interval from t10 to 00, (3*78), 

and (3.79), there is a set of numbers {ß^ such that A(x,x) = 2(Ax,x+AK)-(dac,dBc) 

2( ^ ßici,x+Ax)-(Ax,Aic) £ (2) ^ß1(ci,x+Ax) = 0. But there is a finite time 

YE YE 

when this result, (3.63), (3.76), and Condition 1 form a contradiction. There¬ 

fore by (3.49), (3.51), and (3.62), after a finite amount of time, an interval 

of length At=4i occurs which contains no error on any inequality in E-Y. Thus 

by (3*26), the proof is complete. Q.E.D. 

Some results from four computer simulation experiments will now be 
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presented. 

Experiment 1 compared the convergence time of two types of a-system (see 

reference 4) and one type of cycle EEIA on a horizontal/vertical bar discrim¬ 

ination problem. Here is an outline of Experiment 1: 

Perceptron type : Binomial model elementary perceptron with a 
toroidally connected retina of simple S-units. 
Each A-unit had four excitatory input connections, 
no inhibitory input connections, and a threshold 
of 0.8. If the sum of the input signals to the 
R-unit was zero, the response was considered 
wrong. 

Retinal dimensions: 20 by 20. 

Humber of A-units: 20. 

Stimulus world: 

Training sequence: 

Initial A-R weights : 

Criterion for 
saying that no 
solution exists: 

Number of perceptrons: 

The 40 possible h by 20 horizontal and vertical bars. 
As cycle HEIA with : 

1. P = 40 
2. alternation of the stimulus classes 
3. the (i+2)th stimulus was the ith stimulus 

translated one retinal unit 

Zero. 

When the type of cycle BELA shown in Table 1 was 
used, the first 100 cycles contained errors. 

Out of the 40 generated, 25 had solutions. 

Table 1 shows the total number of cycles containing errors for the last 20 

perceptrons generated which had solutions (the first five perceptrons generated 

which had solutions were not run with any of the reinforcement procedures 

shown in Table l). 

Experiment 2 compared the convergence time of three types of cycle BELA, on 

an e/F discrimination problem. The following is an outline of Experiment 2: 

Perceptron type: Simple perceptron with a toroidally connected retina 
of simple S-units and all possible S-A connections. 
Each S-A connection had a value randomly chosen 
from the set of integers {0,1,...,9) . The output 
signal of an A-unit was equal to the algebraic sum, 
call if B, of its input signals if the one's digit 
of B was 5> 6, 7, 8, or 9j otherwise the output signal 
was zero. If the sum of the input signals to the 
simple R-unit was zero, the response was considered 
wrong. 
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Table 1. Experiment 1 convergence times. 

Perceptron Quantized 
number. a-system 

error 
correction 
reinforcement. 

The following type of non- 
quantized a-system error 
correction reinforcement: 
at each error, quantized 
a-system reinforcement was 
repeatedly used until that 
stimulus was just correct. 

Cycle HEIA with 
6=0, g=0.99, u=l, 
and doubling x 
between cycles 
whenever Condition 
1 was satisfied. 

1 
2 
3 
4 
5 - 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 - 
18 
19 
20 

Average : 

120 
49 

254 
55 
34 

321 
52 
65 

465 
94 

2567 
492 
102 
205 
37 

760 
22 

276 
34 
59 

302.95 

128 26 
50 19 

229 35 
54 19 
43 14 

333 55 
53 9 
24 14 

382 44 
109 22 

2355 87 
416 43 
98 25 

140 27 
40 14 

720 51 
26 16 

246 48 
29 13 
69 13 

277-20 29.70 

Retinal dimensions : 3 by 5 

Number of A-units: l8 

Stimulus world: The 30 possible upright 2 by 5 E's and F's. 

Training sequence: As cycle BEIAwith: 
1. r = 30 
2. alternation of the stimulus classes 
3. for odd integers i, the (i+l)th stimulus 

was the F most similar to the E which was 
the ith stimulus 

4. the (i+2)th stimulus was the ith stimulus 
slightly displaced 
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Initial A-R weights î Zero. 

Criterion for 
saying that no 
solution exists: When the type of cycle BEIA shown in the right-hand 

column of Table 2 was used, the first 100 cycles 
contained errors. 

Number of perceptrons: Out of the 23 generated, 20 had solutions. 

Table 2 shows the total number of cycles containing errors for the 

perceptrons which had solutions. 

Table 2. Experiment 2 convergence times. 

8 8 
Perceptron Cycle BEIA with 6=0, Cycle BEIA with 6=10 Cycle BEIA with 6=10 

number. g=0»99, u=l, and for the first four for the first four 
doubling X between cycles, 6=0 after the cycles, 6=0 after the 
cycles whenever first four cycles, first four cycles, 
Condition 1 was g=0-99, u=l, and no g=0.75, u=l, and no 
satisfied. doublings of x. doublings of x. 

1 
2 
3 
k 
5 
6 
7 
8 
9 

10 
11 
12 
13 
Ik 
15 
16 

17 
18 

19 
20 

k9 
10 
22 
23 

5 
8 

kl 
15 
30 
11 
11 
23 

7 
70 
24 
86 

7 
106 
126 

5 

37 
7 

16 
26 

6 
8 

31 
17 
22 

8 
10 

17 
7 

70 
24 
67 

9 
80 
68 

7 

Average : 34.25 26.85 

28 
8 

15 
21 

5 
8 

31 
18 
21 

8 
9 

16 
7 

68 
21 
52 

9 
63 

23.40 
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Experiment 3 compared the convergence time of some perceptrons on two 

different bar discrimination problems. The following is an outline of Exper¬ 

iment 3i 

Perceptron type; As in Experiment 2. 

Retinal dimensions : 10 by 10 

Number of A-units: 10 

Stimulus worlds: 

Training sequence: 

Initial A-R weights : 

Criterion for 
saying that no 
solution exists: 

The 20 possible 2 by 10 and 3 by 10 horizontal bars. 
Tie 20 possible 2 by 10 horizontal and vertical bars. 

As cycle BEIA with: 
1. P = 20 
2. alternation of the stimulus classes 
3* the (i+2)th stimulus was the ith stimulus 

translated one retinal unit 
4. in the horizontal bars problem, the (i+l)th 

stimulus and the ith stimulus had 20 S-units 
in common 

Zero. 

The first 200 cycles contained errors. 

Error correction 
procedure used: 

Number of perceptrons: 

Q 
Cycle BEIA with 0=10 for the first four cycles, 
6=0 after the first four cycles, g=0.75, u=l, and 
no doublings of x. 

Out of the 40 generated, 16 had solutions on the 
horizontal bars problem, 18 had solutions on the 
horizontal and vertical bars problem, and 9 had 
solutions on both problems. 



Table 3 shows the total number of cycles containing errors for the perceptrons 

which had solutions. A dash indicates that no solution exists. 

Table 3. Experiment 3 convergence times. 

Perceptron 
number. 

Horizontal 
bars 
problem. 

Hcriztmtal 
and vertical 
bars problem. 

Perceptron 
number. 

Horizontal 
bars 
problem. 

39 
38 
37 
36 
35 
34 
33 
32 
31 
30 
29 
28 
27 
26 
25 
24 
23 
22 
21 
20 

6 
7 

17 

8 
5 

18 

14 
4 

17 
6 

5 

18 

43 
26 
9 
7 

11 
19 

•» 

5 

8 
50 

19 
18 
17 
16 
15 
14 
13 
12 
11 
10 
9 
8 
7 
6 
5 
4 
3 
2 
1 
0 

Average for perceptrons with solutions on either problem: 

Average for perceptrons with solutions on both problems : 

13 

26 
8 
7 

11 

10.75 

10.00 

Horizontal 
and verti¬ 
cal bars 
problem. 

18 

60 
6 
7 

10 

47 
28 

8 

21.11 

I5.II 

Experiment 4 was like Experiment 3 except that the cases represented by a 

dash in Table 3 were not done, the stimulus sequence was different, and the error 

correction reinforcement procedures used were different. The following outline 

explains the stimulus sequence used in Experiment 4: 

Training sequence : Each training stimulus was picked at random from the 
stimulus world. 

Test sequence: After each 40 additional training stimuli were reinforced 
using an error correction procedure, the stimulus world was 
sequentially presented in what is called a "test". During 
each test, x was not altered and the number of errors which 
occurred was recorded. 
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Table 4 shows the total nuriber of tests containing errors for each perceptron 

with a solution on the particular problem. 

Perceptron 
number. 

Table 4. Experiment 4 convercence times. 

ABIE (see reference 2), 
where at any error on 
any inequality, say the 
ith inequality, ^=1. 

Integer BEIA with 6=0, 
g=0.99, u=l, and 
doubling X after tests 
whenever Condition 1 
was satisfied. 

o 
Integer BEIA with 6=10 
until after the second 
test, 6=0 after the 
second test, g=0.75, 
u=l, and no doublings 
of X. 

Horiz. Horizontal 
bars and vertical 
problem bars problem 

Horiz. Horizontal 
bars and vertical 
problem bars problem 

Horiz. Horizontal 
bars and vertical 
problem bars problem 

39 
38 
37 
36 
35 
34 
33 
31 
27 
26 
25 
24 
23 
21 
20 
16 
15 
13 
22 
11 
10 

9 
6 
5 
2 

3 
11 
95 

45 
12 

92 
123 

5 
72 
9 

1 

29 

1772 
29 

9 

8 

Average for the 
perceptrons with 
solutions on 
either problem; 144.68 

Average for the 
perceptrons with 
solutions on 
both problems: 215.00 

* Not completed because 

4 
157 4 21 

13 
676 68 
329 13 33 

16 4 28 
15 5 

14 
13 

121 3 18 
294 24 25 

2 
9 5 

24 1 12 
9689 148 

222 38 
9 

>12750» 380 
13 8 
21 69 6 

7 
32 4 6 

772 45 
114 10 28 
32 4 

>1403.66 12.12 48.66 

120.88 14.66 19.66 

of the computing time involved. 

4 
4 
11 

8 
4 

14 
7 
4 

17 
2 

2 

5 

28 
7 
4 

4 

16 

45 
26 
12 

3 

6 
11 

5 
9 

74 
18 

128 
3 
7 

10 
81 
27 

3 

7.81 26.88 

8.33 13.77 



Table 5* Horizontal bars problem percent-correct- 
in-test averages from Experiment 4. 

Average of the 16 perceptrons 
which had solutions on the Test 
horizontal bars problem. number. 

Average of the 9 perceptrons 
which had solutions on both 
problems. 

Integer Integer 
BELA. EEIA 
with with 

ABLE. 8=0.99. 8=0.75. 

Inteeer Integer 
EEIA BEIA 
with with 

ABLE. 8=0.99. 8=0-75- 

72.5 7I.O 6O.7 
79-4 82.2 66.6 
82.2 87.5 86.5 
80.O 88.2 87.9 
84.7 89.1 92.9 
85.8 91.0 95.7 
84.4 91-0 96.O 
85.O 94.7 97-9 
88.8 93.2 96.6 
90.0 94.4 96.9 
91-3 99-1 99-7 
93-8 99-7 100.0 
95-0 99-1 
94.4 99-1 
95-7 99-4 
96.0 100.0 
96.3 
96.3 
98.2 
98.5 
98.5 
99-4 
99-^ 
99-4 
98.8 
98.8 
99-1 
98.8 

100.0 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
20 
30 
40 
50 
60 
70 
80 
90 

100 
200 
3OO 
400 
500 
6OO 
7OO 
8OO 
9OO 

1000 
2000 

75-0 
78.9 
82.3 
83.9 
85.O 
85.6 
87.8 
87.3 
92.8 
9I.2 
95-0 
95-6 
95-6 
96.7 
97-8 
95-6 
97-8 
98.4 
97-8 
97-3 
97-3 
98.9 
98.9 
98.9 
97-8 
97-8 
98.4 
97-8 

100.0 

70.6 
81.2 
87.8 
91.7 
92.8 
93-9 
93-4 
96.2 
94.5 
96.2 
98.4 
99-5 
98.4 
98.4 
98.9 

100.0 

58.9 
66.7 
89.5 
91.2 
95.0 
96.2 
96.7 
97-8 
96.7 
96.2 
99-5 

100.0 

From Tables 5 and 6, one can plot some learning curves from Experiment 4 on 

4 cycle semi-logarithmic graph paper. For a more conplete description of the 

error correction reinforcement procedures mentioned in Tables 5 and 6, see Table 4 

and the outline explaining the stimulus sequence used in Experiment 4. 



Table 6. Horizontal and vertical bars problem 
percent-ccrrect-in-teet averages 
from Experiment 4. 

Average of the 18 perceptrons 
vhich had solutions on the 
horizontal and vertical bars Test 
problem. number. 

Average of the 9 perceptrons 
vhich had solutions on both 
problems. 

Integer Integer 
BEIA BEIA 
with with 

ABIE. 8=0.99. g=0.75. 

Integer Integer 
BEIA BEIA 
with with 

ABIE. g=0.99. g=0.?5. 

68.9 
74.2 
75.O 
77.5 
77.O 
81.7 
81.1). 
78.7 
77.3 
83.4 
88.4 
89.8 
90.6 
90.3 
90.O 
89.5 
89.2 
92.3 
92.5 
92.0 
95.6 
97-0 
97.O 
96.2 
97-8 
97-5 
97-5 
97.O 
98.1 
98.7 
97-5 
98.4 
98.1 
98.7 
98.7 
98.4 
98.9 

69.5 
76.2 
79.2 
79.8 

' 85.0 
85.3 
87.8 
86.2 
87.0 
86.7 
92.3 
95.3 
97.O 
97.3 
98.1 
97-5 
98.4 
98.9 
97.8 
98.7 
98.9 

100.0 

55.3 
59.8 
83.1 
84.2 
86.2 
88.7 
91.4 
89.8 
90.9 
92.0 
95.0 
97.3 
97.5 
98.1 
98.4 
98.1 
98.7 
99-5 
99.5 

100.0 

1 

2 
3 
4 
5 
6 
7 
8 
9 

10 
20 
30 
40 
50 
60 
70 
80 
90 

100 
200 
3OO 
400 
500 
600 
700 
800 
900 

1000 
2000 
3OOO 
4000 
5000 
6000 
7OOO 
8OOO 
9000 

10000 

67.3 69.5 53.9 
75.6 75.0 60.0 
75.6 81.2 85.0 
76.7 77-8 81.2 
78*2 83.4 84.5 
84.5 82.8 85.O 
83.9 87.8 90.6 
78.4 87.3 91.2 
76.7 86.7 91.2 
84.5 85.0 93.4 
88.9 94.5 96.7 
90.O 97.8 100.0 
89.5 100.0 
91.7 

90.6 
90.6 
89.5 
93.9 
95.0 
94.5 
98.4 

100.0 
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IT' SS °f Finding Whether » Set of m n-aimenslonal a.,„ 

ffe Hela of Xtitegers, )e Linearly IleMnâent gr Linearly 

Let C be any m by n matrix of known constants. let ^ be the ith coin» 

vector of 0*, vhere 0* is the transpose of C and 1=1,2,...,m. Choose one of 

the following definitions for the set of vectors {6 }, where 1=1,2,...,m. 
1. fi VlO -t+V,__._ » 1. Let Ôi be the ith row vector of CC*. 

2. Let be the ith column vector of CC^. 

m m 

ae^enl: Por every set of m „»ers {ßj, ^^ = 0 if and only if Vas =0. 

i-1 ^ i i 
1-1 i=l 

m m 

W: Assume ^^ = 0. Bren ^,0 )=0^=1,2,...^, aerefore 

i=! i=l 

y m m 

ly^O. Now assume instead that ^3^ = 0. aen ^3^0 ,0.) = 0 for 

i_1 i=l 1=1 j 

m m 

j=l,2,...,m. Consequently ( ^ , ^1^) = 0. 

j=l i=l 
Q«E.D. 

Assume that the elements of C are Integers and that one wishes to find 

whether the set of m n-dimensional vectors {cj is linearly dependent or 

linearly Independent. If m > n, the set {cj is linearly dependent. I* 

aeorem if m i n, the determinant of CC4 is non-sero if and only if the set 

rii 18 independent. tte IBM 7O90 computer flow diagram* in Figure 2 

was therefore devised to deal with the problem of whether the determinant of D 

is zero or non-zero, where D is any m by m matriz of Integers and Aere m > 1. 

This flow diagram has the following three possible outcomes (exits)! 

Outcome 1. The determinant of D is non-zero. 
Outcome 2. The determinant of D is zero. 
Outcome 3. With high" probability, the determinant of D is zero. 

As will be shown later, "high" probability means that if the determinant of D 

is non-zero, this flow diagram will end in outcome 3 only if the value of the 

determinant of 3 is a non-zero integer multiple of 217. Outcome ) was 

introduced so that this flow diagram could be made less time consuming. 

* This flow diagram is easily adaptable to other ccmputers or to a desk calculator. 



Figure 2. Computer flow diagram. 

Start here with D> where D is any m hy m matrix 
of integers and where m is any integer satisfy¬ 
ing m > 1. Ciet q denote the determinant of D. 
Is any rev or column zero? 

Yes 

No 

Is there any row or 
column containing 
on3y even numbers? 

.leg ^oose a row (column) containing only even 
numbers. Replace this row (column) hy this 

.row (column) divided hy two. Increase index 
register one hy one. 

No 

Is this the first time that 
this hex has been entered? 

No 

[Is there an odd element in the natrlx? 

Yes 

Box 1. Set index 
register 
one to 
zero. 

Box 2. 

No 
Yes 

No 

Is any row or 
column zero? 

No 

Yes 

Put an odd matrix element, call it r, in the top 
left corner of the matrix hy exchanging two rows 
and/or two columns. Apply the following three 
steps to every row, except the top row, which 
contains a non-zero leftmost element. 

1. Let the row he called the ith row. 
2. Let s he the value of the leftmost 

element in the ith row. 
3* Replace the ith row hy the row which 

results from subtracting s times the 
top row from r times the ith row. 

Reduce the size of the matrix under consideration 
hy one, i.e. reduce m hy one, hy discarding the 
leftmost column and the top row. truncate each 
element in the m hy m matrix mod ly 
2 , i.e. save only the sign and I7 low order 
hits of each matrix element. Is mr=l? 

Is index register 
one plus the num¬ 
ber of zero hits 
to the right of 
the rightmost non¬ 
zero hit in the 
single matrix ele- 
ment less than IT? 

Yes No 

Box 3. Outcome 
1. qjtó. 

Is the single 
matrix element 
zero? 

Box If. Outcome 3. 
With “high" 
probability, 
q=0. 
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Some explanation of the validity of the flew diagram in Figure 2 will now 
oe presented. 

If P is any integer, let [p] denote the result of truncating p mod 2^, 

i.e. [pj is the number composed of the sign and IT low order hits of p. 

Assume a = 21^ + c d - o^7_ . „ „17, 17 
D + c, d - 2 e + f, g = 2 'h + c, and 1 = 217J + f, „here 

are non-negative integers, c < 217, and f < 217. Then 

|[a-d]| = 

1? 0 If c = f 
2 +c-f ifc<f and a > d 

f - c if c < f and a < d 
c-f ifc>fanda>d 

- and 
,17 

+ f- c if c > f and a < d 

r 
i[g-i]| = ,1 

17 0 if c = f 
2 +c-f ifc<f and g > i 

£ - c if c < f and g < i 
17 c-f if c > f and g > i 

w +f-c ifc>fandg<i 

(4.1) 
Therefore either |[«-d]| = |[g.i]| |[a.d]| = 217 . |[g.1](_ 

I*t d1 denote ary element in the ith column of D. Then the determinant 

of D, call it q, can be written as 

q =Ipositlve terms (d^...^) + £ negative terms Then hy (h.l), either 

Ipositive terms ([d^dg]...^]) + ^ negative terms = |[q]| OT 

I[^positive terms ([d,]^]...^]) + ^ negative terms ([d1][d2]...(dm])]| = 

217-|[q]|. 
(4.2) 

Define a %lt-saving operation" to he any operation on an m hy m matrim 

of integers which satisfies the two conditions given below. Let u and v denote 

the value of the IT low order bits in the value of the determinant of the m by m 

matrix just before and just after the operation respectively. 
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1. If u=0, then v=0. 
2. Assume that the less significant bits, i.e. the lew order bits, are 

to the right. If u^O, then the number of zero bits to the right of 
the rightmost non-zero bit in u is the same as the nunber of zero 
bits to the right of the rightmost non-zero bit in v. 

Then by (h.2), the truncating operation in box 2 of the flew diagram in 

Figure 2 is a bit-saving operation. Therefore since all the other operations 

in box 2 are also bit-saving operations, bcuc 2 as a whole is a bit-saving 

operation. Therefore bcoc 3 is entered if and only if the value, of the 

determinant of the matrix under consideration when passing through box 1, has 

a non-zero bit in its 17 low order bits. Therefore the only way box k can be 

entered if q/O is for the 17 lew order bits in the value, of the determinant 

of the matrix under consideration when passing through box 1, to be zero. 

V. Minimal Universal Simple Perceptron Experiments 

This section assumes some knowledge of perceptron terminology, which may 

be obtained from reference 4. A simple perceptron is defined in reference k. 

A universal perceptron is any perceptron which has a solution for every 

classification of all the possible stimuli. A minimal perceptron is any per¬ 

ceptron which has only as many variable weights as the number of possible stimuli. 

Consider any minimal simple perceptron which has w simple S-units, where 

w is any integer satisfying w > 1. Then since (2w-l) is the number of possible 

stimuli (each stimulus must have at least one active S-unit), this perceptron 

has (2W-1) A-units. Therefore one can form the (2w-l) by (2w-l) matrix D by 

having each row represent a different stimulus and by having each column 

represent the output signal of a different A-unit. Then by (3.19), this per¬ 

ceptron is a universal perceptron if and only if the determinant of D is non¬ 

zero. Therefore if the output signal of each A-unit in this perceptron is an 

integer, then the computer flow diagram in Figure 2 can be applied to D to see 

whether this perceptron is universal (Outcome 1), not universal (Outcome 2), 

or probably not universal (Outcome 3)* That is what was done in the two 

experiments now to be described. 
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Experiment li 

Perception type: Minimal simple perceptron with v simple S-unlts and all 
possible S-A connections. Each S-A connection had | value 
randomly chosen from the set of integers {0,1,...,2-1), 
■where z is a parameter. Assume that the least significant 
hit is called the 1st hit, that the hit next to the 1st hit 
is called the 2nd hit, etc. The output signal of an A-unlt 
was equal to the algebraic sum, call it ß, of its input 
signals if the zth hit of ß was a one; otherwise the output 
signal was zero. If the sum of the input signals to the 
simple R-unit was zero, the response was considered wrong. 

Number of 
perceptrons: Ten perceptrons were generated for each line in Table 7. 

Table 7. Results of Experiment 1. 

Number which were 
w z not universal. 

Number which were Number which 
probably not universal. were universal. 

3 1 7 
3 3 3 
36 0 
71 6 
7 3 0 
76 0 

3 
0 
0 
h 
2 
0 

0 
7 

10 
0 
8 
10 

Experiment 2: 

Perceptron type: Minimal simple perceptron with w simple S-units and all 
possible S-A connections. Each S-A connection had a value 
randomly chosen from the set of integers 

i-(2z-l),-(2z-2),...,-2,-1,0,0,1,2,...,2Z-2,2Z-1), where 
z is a parameter. 

Consider any A-unit, say the ith. Consider any possible 
stimulus, say the jth. Let 0 denote the threshold of the 
ith A-unit. Let ß denote the algebraic sum of the input 
signals arriving at the 1th A-unit as a result of the Jth 
stimulus. Then the output signal of the ith A-unit, as a 
result of the Jth stimulus, was equal to 

{ ß~0 if ßlo * 0 } ’ If ß"° > °' say ^ ith A"unit 
was "active” to the Jth stimulus; if ß-0 s 0, say that the 
ith A-unit was "inactive" to the Jth stimulus. 
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üfce threshold of each A-unit vas an Individually chosen 
constant such that each A-unit vas active to about (lOOy) per¬ 
cent of the stimulus vor Id, vhere y Is a parameter. For 
example, consider any A-unit, say the 1th. Let 0 denote the 
threshold of the ith A-unit. The threshold of the ith A-unit 
vas chosen such that: 

1. 0 vas an integer. 
2. the ith A-unit vas active to equal or less than 

[y(2w-l)] of the (2W-1) possible stimuli, vhere 
[ ] denotes the integer part of the contained 
number. 

3. if 0 had been decreased by one, the ith A-unit 
vould have been active to more than 

[y(2W-l)] of the (2w-l) possible stimuli, vhere 
[ ] denotes the integer part of the contained 
number. 

If the sum of the input signals to the simple R-unit was 
zero, the response vas considered vrong. 

Number of 
perceptrons: Ten perceptrons vere generated for each line in Table 8. 

Table 8. Results of Experiment 2. 

y V z 

0.50 3 2 
0.50 3 5 
0.50 7 2 
0.50 7 5 
0.75 3 2 
0.75 3 5 
0.75 7 2 
0.75 7 5 

Number vhich vere Number vhich vere Number vhich 
not universal. probably not universal. vere universal. 

7 
1 
0 
0 
1 
0 
0 
0 

1 
1 
2 
0 
6 
0 
2 
0 

2 
8 
8 
10 
3 
10 

8 
10 

By comparing Tables 7 and lb is seen that for a given value of v, if the 

number of possible values for an S-A connection is about the same in Experiments 

1 and 2, then about the same percentage of perceptrons vill be universal in 

Experiments 1 and 2. From Experiments 1 and 2, it appears that a small minimal 

universal perceptron is not difficult to realize using "random" S-A connections. 



VI. The Problem of Hoy Many m-dlmenslonal Orthants Are Achievable 

by Linear Coriblnatlons of n m-dimenslonal Vectors 
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Unless explicitly stated otherwise, it is assumed that all constants and 

variables mentioned below are real and finite. 

An m-dimensional orthant can be thought of as a set consisting of all 

m-dimensional vectors whose components satisfy the following: 

1. The components are all non-zero. 
2. The corresponding components agree in sign. 

Let M(m,n) denote the maximum number of m-dimensional orthants achievable 

by linear combinations of n m-dimensional vectors. Then using a result proven 

in Appendix B of Reference 1, 

M(m,n) 
2 when n ê m 

2((^)+(^)+...+(^)) when m £ n 
m-1, 

-. (6.1) 

Let C be any m by n matrix of known constants. Let c. be the 1th column 
t t ^ 

vector of C , where C is the transpose of C and i=l,2,...,m. From here on, 

let "number of achievable orthants" be an abbreviation of "number of 

m-dimensional orthants achievable by linear combinations of the n m-dimensional 

column vectors of C". 

Since the number of achievable orthants is zero if any ^ = 0, ^0111 here on 

it will be assumed that each ci is non-zero. 

Let a "con" be any non-empty set of linearly dependent c^s such that if 

any one member of the set is discarded, the remaining members of the set are 

linearly independent. Let a con's a be any non-zero m-dimensional column 

such that 0^0=0 and such that for ISiSm, is non-zero 

if and only if c^ is a member of this con. 

Lemma 1: Any m-dimensional orthant cannot be achieved by a linear combination 

of the column vectors of C if and only if there is a con with an a 
such that every non-zero component of a has the same sign as the 
corresponding component of the orthant. 

Proof: By (3.19), the "if" part of this lemma is true. 

Bie flow diagram in Figure 3 proves the "only if" part of this lemma. 

vector a = 
a. 

a 
m 



Figure J. Flow diagram used in the proof of Lemma 1. 
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Lemma 9? Each a of any con, say the Jth con, is a non-zero multiple of every 

other a of the jth con. 

Proof: Consider any con, say the jth con. Assume there eure tvo Qt's of the Jth 

con, say ß and 6, such that ß and 6 are not non-zero multiples of each other. 

Kien there is a non-zero number a such that: 

1. (aß+6) has more zero components than ß. 
2. (aß+6) is non-zero. 

m 

3. ^(aß1+61)ci = C^aß+ö) = 0. 

i=l 

Therefore the jth eon is not a con, which is a contradiction. Q.E.D. 

T^mma 3; Let R he any set of u r-dimensional column (row) vectors, where r and u 

are any positive integers. For i=l,2,...,u, let denote the ith 

member of R. Then there is a positive number w such that if cd denotes 

any r-dimensional column (row) vector whose length is at most w, and 

if cd is added to any Jt^, say \=1iy every subset of R which was 

linearly independent is still linearly independent. 

Proof: Let denote the set of numbers (i) such that the kth subset of R 

contains it. and was linearly independent before cd was added to it.. Let 
j . J 

w = 0.5 
minimum minimum 

(numbers ß^ V I Vi Q.E.D. 

Theorem 5: Let q = min{m,n). Then the number of achievable orthants is 

M(m,n) if and only if each q c^s are linearly independent. 

Proof: By (3.I9) and (6.1), this theorem is true if n £ m. So for the rest of 

this proof, assume m > n. Let a "net" be any con which has less than n+1 members. 

The "only if" part of this theorem will now be proven. Assume there is 

a set of q c^s which is linearly dependent. Then there is at least one net. 

Let A denote any particular net. Let a denote the number of members in A. 

Let Pt denote the n by a matrix whose column vectors are the c^s in A, where 

pt is the transpose of P. Then by (3.19), there is an a-dimensional orthant, 

say the yth, such that no matter what n-dimensional column vector x is chosen, 

Px cannot achieve the yth a-dimensional orthant. (6.½) 

lhe flew diagram in Figure 4 conpletes the proof of the "only if" part 

of this theorem. 



Figure 4. Flew diagram used in the proof of Theorem 5. 
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Start here. Set J=0 

T 
■> —1Í2—^ Increase j by one 

Yes 

No 

+|Is Cj in any nets? 

I«t Q denote the n by a 
matrix whose column vectors 
are the present c^'s 

resulting from the c.'s in A. 
t 1 7 

where Q is the transpose of 
Q. All the nets which were 
originally present have been 
eliminated by this flow 
diagram. So by (3.19), there 
is an n-dimensional column 
vector X such that Qx is in 

the yth a-dimensional 
orthant. Choose such an x . 

Yes 

3. 

Redefine Q to be the present 

Q augmented by every column 
vector ci which satisfies 

(ci,^0)5^° and which is not 

already a column vector of 

the present 
" -—- I 

Choose a net containing and call it the vth 

net. Setting R equal to the c^s, u=m, r=n, and 

ÄfCj7 U8e Lemna ^ t0 w. Choose a vector to 
such that : 

1. to is in the orthogonal complement of the 
subspace sparmed by the c >s in the vth net 

c. w i. -10)1) > 0.*- A 

Il CO I is such that if c^ was redefined to 

be co plus the present c^, then the 

m-dimensional orthants which were achievable 
by linear combinations of the column vectors 
of C just before this redefinition can still 
be achieved by a linear combination of the 
column vectors of C just after this 
redefinition. 

Redefine c^ to be co plus the present c,. As a 

result of this redefinition, the vth net was 
eliminated and no new nets were created. So the 
total number of nets has been reduced by at least 
one. 

Is there 
any ci 

which is 
not a 
column 
vector 

No 

Yc; 

Choose a c1( say „hich is not a column vector of Q*. Then hy 

slightly altering xa, one can see that there is an n-dimenslonal 

column vector ^ such that (c^) > 0 and such that for every ^ 

which is a column vector of Qt: 
(c^,x^)^0. 

2. the sign of (ci,x1) is the seme as the sign of (c ,x ). 

Redefine xq to be equal to x.,. 1 ° 

Let M denote the m-dimensional orthant containing ¢^. So M can'nou be achieved 

combination of the column vectors of C. cs 

fÄÄÄ m -14 - ^^ * *4 
The m-dimensional orthants which could be achieved bv a Uno«.» „«„va 4.4 ^ 

Si““"“- "» " “* S.3; *• 
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Now the "if" part of this theorem will be proved. For the rest of this 

proof, assume each q c^s are linearly independent. Then each con has at 

least q+1 members and each q+1 c^'s are a con. (6.7) 

Assume that there are m-n+1 ex's of cons which are linearly independent. 

Then these linearly independent a's can be linearly coiribined to form a non¬ 

zero m-dimensional column vector 5 such that: 

1. 5 has at least m-n zero components. 

2. 0*0 = 0. 

Thus there are q c^s which are linearly dependent, which is a contradiction. 

Therefore there are at most m-n linearly independent a's of cons. Therefore by 

(6.1), the maximum number of m-dimensional orthants achievable by linear 

combinations of the a's of cons is equal or less than M(m,m-n). (6.8) 

Consider ary m-dimensional orthant, say the zth, which cannot be achieved 

by a linear combination of the column vectors of C. Then by Lemma 1, there is 

a con, say the sth, with an a, say 7, such that every non-zero congponent of 7 

has the same sign as the corresponding component of the zth m-dimensional 

orthant. Let B be a set consisting of exactly one a of each con which has 

exactly q+1 members, exactly one of which is not also a member of the sth con. 

Then by (6.7), there is a linear combination of 7 and the elements of B which 

is in the zth m-dimensional orthant. 

Thus by (6.8), at most M(m,m-n) m-dimensional ort’-nts cannot be achieved 

by a linear combination of the column vectors of C. Thu- fore since (6.1) implies 

that M(m,m-n) + M(m,n) = 2m, the number of achievable orthants is M(m,n). Q.E.D. 

Theorem 6: Let r be any integer satisfying m > r > 0. Then if each r+1 c^s 

are linearly dependent, the number of achievable orthants is 

at most M(m,r). 

Proof: Assume each r+1 c^'s are linearly dependent. Then there are at most r 

linearly independent c^s. Thus there are at most r linearly independent 

column vectors of C. Therefore by (6.1), the number of achievable orthants 

is at most M(m,r). Q.E.D. 

Theorem 7: let r be any integer satisfying m ê r > 0. Then if each r c^s are 

linearly independent, the number of achievable orthants is at least M(m,r). 

Proof: In this proof, assume each r c^s are linearly independent. Let A denote 

any m by r matrix. let B denote the set of r by r matrices whose row vectors are 

any r row vectors of A. Let B1 denote the ith element of B. 
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For each define a "kol" to he any column vector of such that: 

1. If there are any column vectors of B, to the right of the kol, then 
they are linearly independent. 1 

2. The kol together with the column vectors of B, to the right of the 
kol are linearly dependent. 1 

Then each B^ can have at most one kol. (6, 

The flow diagram in Figure 5 completes this proof. 

Figure 5« Flow diagram used in the proof of Theorein ?. 

Start here 
with A, 
where A is 
an m by r 
matrix of 
zeros. 

A is such that: 
1. 

2. 

Each r row vectors 
of A are linearly 
independent. 
Each column vector 
of A is a linear 
combination of the 
column vectors 
of C. (6.10) 

Therefore by Theorem 5, 
M(m,r) m-dimensional 
orthants can be achieved 
by linear combinations of 
the column vectors of A. 
Therefore by (6.10), the 
number of achievable 
orthants is at least M(m,r). 

Choose a B^, say B^, which contains a kol, say the 

kth kol. Let v be such that the vth column of B 

is the kth kol. By the assumption that each r 
c^s are linearly independent, the fact that the 

column vectors of any r by r matrix are linearly 
independent if the row vectors of the same matrix 
are linearly independent. Lemma 3, and (6.9), 
there is an m-dimensional column vector to 
such that: 

1. cd is a linear combination of the column 
vectors of C. 

2. If the vth column of A was replaced by (o 
plus the present vth column of A, then: 

1. For every Bj,, let B® and bJ denote 

Just before and Just after this 
replacement respectively. For every 

B^, if B^ has a kol in any column, say 

the zth, then B* had a kol either in 

the zth column or in a column to the 
right of the zth column. 

2. The vth column of B. would no longer be 
a kol. ^ 

Choose such an an. Replace the vth column of A by 
o> plus the present vth column of A. 

On the basis of Lemma 1, Lemma 2, Theorem 5, Theorem 6, and Theorem 7, it 

has been suggested that one or both of the following conjectures might be true. 

But it will be shown that both of the following conjectures are false. 

Conjecture 1: If one knows only how many pairs, how many triplets,..., and how 

many m-tuplets of c^s are linearly dependent, then one can find 

the number of achievable orthants. 
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Counterexample: If C = 

1 0 
1 0 
1 0 
1 2 
1 3 
1 1 

6 6 
then three pairs, (°) triplets, (^) quadruplets, 

(j.) quintuplets, and one sextuplet of c^s are linearly dependent; the number of 

achievable orthants is eight. If C = 

1 0 
1 0 
0 1 
0 1 
1 1 
1 1 

, then three pairs, (^) triplets, 

(^) quadruplets, (^) quintuplets, and one sextuplet of c^s are linearly dependent; 

the number of achievable orthants is six. 

Conjecture 2: If one knows only how many pairs, how many triplets,..., and how 

many m-tuplets of c^s are cons, then one can find the number of 

achievable orthants. 

Counterexample : If C 

1 0 
1 0 
1 0 
0 1 
0 0 
0 0 

0 0 
0 0 
0 0 
0 0 ' 

1 0 
0 1 

then three pairs, zero triplets, zero 

quadruplets, zero quintuplets, and zero sextuplets of c^s are cons; the number of 

achievable orthants is sixteen. If C = 

1 0 
1 0 
0 1 
0 1 
0 0 
0 0 

0 
0 
0 
0 
1 
1 

0 
0 
0 
0 ' 
1 
1 

then three pairs, zero 

triplets, zero quadruplets, zero quintuplets, and zero sextuplets of c^s are cons; 

the number of achievable orthants is eight. 

The following two definitions were motivated by (3.19)« Say that any 

m-dimensional orthant is a “strictly non-achievable" orthant if and only if there 

is an m-dimensional column vector ß such that C^ß = 0 and such that ß is in the 

m-dimensional orthant. Say that any m-dimensional orthant is a "partially achievable" 

orthant if and only if the orthant is neither a strictly non-achievable orthant 

nor achievable by a linear combination of the column vectors of C. 
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üheorem 8; Let r be any Integer satisfying m fc r > 0. If the rank of C is r, theni 

1. The number of strictly non-achievable orthants is at most M(m;m-r). 

2. The nuniber of achievable orthants is at most M(m,r). 

3* The number of achievable orthants is M(m,r) if and only If each r c/s 
are linearly independent. 1 

Proof: In this proof, assume the rank of C is r. Then there are at most r 

linearly independent column vectors of C. (6.11) 

By (6.11) and (6.1), part 2 is true. 

By (6.11) and Theorem 5, part 3 is true. 

Let B denote the subspace containing every vector Ô vhich satisfies Ct6 = 0. 

Then the dimension of B is m-r. Thus the number of m-dimensional orthants 

achievable by linear combinations of the vectors in B is at most M(m,m^r). 

Therefore part 1 is true. o.E 

Theorem 9: Let r be any integer satisfying m > r > 0. If each r c^s are 

linearly independent and each r+1 c^s are linearly dependent, then: 

1. The number of strictly non-achievable orthants is M(m,m-r). 

2. The nuniber of partially achievable orthants is zero. 

3« The number of achievable orthants is M(m,r). 

Proof: In this proof, assume each r c^'s are linearly independent and each 

r+1 c^'s are linearly dependent. Then: 

1. By Theorems 6 and 7, part 3 is true. 

2. Each con has at least r+1 members and each r+1 c^s are a con. (6.12) 

By (6.1), M(m,m-r) + M(m,r) = 2m. '' (6.13) 

Therefore by part 3; the number of m-dimensional orthants vhich cannot be 

achieved by a linear combination of the column vectors of C is M(m,m-r). (6.14) 

Consider any m-dimensional orthant, say the zth, vhich cannot be achieved 

by a linear combination of the column vectors of C. Then by Lemma 1, there is a 

con, say the sth, vith an a, say 7, such that every non-zero component of 7 has 

the same sign as the corresponding component of the zth m-dimensional orthant. 

Let B be a set consisting of one a of each con vhich has r+1 members, exactly one 

of vhich is not also a member of the sth con. Then by (6.12), there is a linear 

combination of 7 and the elements of B vhich is in the zth m-dimensional orthant. 

Therefore there is a vector ß in the zth m-dimensional orthant such that Ctß = 0. 

Therefore the zth m-dimensional orthant is a strictly non-achievable orthant. 

Thus by (3*19) and (6.14), part 1 is true. 

By (6.13), part 1, and part 3, part 2 is true. Q.E.D. 
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To find which m-dimensional orthants are achievable by a linear ccanbination 

of the column vectors of C and/or to find the exact number of achievable orthants, 

one can form an "a-table" consisting of two a's, each a negative multiple of the 

other, of each con. Then by Lemmas 1 and 2, any nudimensional orthant cannot be 

achieved by a linear combination of the column vectors of C if and only if there 

is an a in the a-table such that every non-zero component of this a has the same 

sign as the corresponding component of the orthant. Section IV, 2, and the 

following facts sometimes are useful in constructing an a-table: 

1. Any con cannot be a subset of any other con. 

2. If ß is any linear combination of the a's in the a-table, then cVo. 

Assume that the elements of C are integers. Then to see if the c 's are 

linearly dependent, and if so, to find a linear relation among the c 's, one 

can solve the Dlophantine problem outlined on page 98 of reference 3! But In 

solving this Diophantine problem, the nunibers involved often become too large 

to be easily handled. To avoid this difficulty, one can apply the flow diagram 

in Figure 6 to the Cj/s. In a finite amount of time, the flow diagram in 

Figure 6 might either find that the c^s are linearly independent or find\ 

linear relation among a linearly dependent subset of the c^s. Some theory and 

dozens of hand-computed examples went into the design of the flow diagram in 

Figure 6 in an effort to make it both simple and universal, but not very time 

consuming. The method outlined in Section IV can be used for the linear 

dependence tests in the flow diagram in Figure 6, although this might introduce 

a non-zero probability that the flow diagram in Figure 6 would never converge. 



Figure 6. Flow diagram, 
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Start here. Let B 
denote the set of 
c^'s. Is B 

linearly dependent? 
No 

Yes .Ils m=l? I Yes 
* „ I-TT- 
No 

The c^'s axe 

linearly 
independent. 

Let B denote such a 
linearly dependent 
^tuplet.__ 

Increase m hy one 

Redefine C to be the n by m matrix 
whose 

ln B. 

whose column vectors are the c^s 

Then redefine c^ to be the 

ith column vector of and 
redefine C to be the transpose of 

Let the vectors 

No 
Decrease m by one. Is there a 
linearly dependent nu-tuplet in B? 

k = and r = 

m 

be related by 

m 

Setki={Jto $}• 

Jes 
cc\ = Is c^ = 0? 

i=l 

Let H denote the set of integers 
h such that h is in S and such that 
Choose ,) at random from H._ 

rh 

lvi.) 
=max 

S 
í(c1,c1)}' 

Set t^= k^= 0 for 1=1,2,...,m. 

Turn off switch A. Set w = 0. 

Is d, =-1?. 
J_ 

No 

l£S 

Let S denote the set of integers i such that d.= 0. 
2 2 1 

Choose j such that r. f ri 
j is in S and such that t—“—-r=max|-7—- 
S have only one member? S ^ci,c g j}- 

Does 

Yes No 

Turn on 
switch A. 

_a_3 : 

No 
Is Tj> 0? 

Is any d^ = 0? 

Yes 
No 

No 

Choose j such that t,= max t.. Set t =^=01^ 
J láiám1 1 1 

for i=l,2,...,m. Set w = 0. Is ^ = 1? Yes 

For 
1=1,2,...,m, 
increase t. 
by one. 
Set t. = 0. 

J 
Add r^ to w. 

Increase 

by one and 
set dj = 1. 

Add Tj to w. 

Is w > 0? 

Yes Double k. 
Set w = 0. 

No 
I 

Yes 

Is switch 
A on? 
Jfi£ 

No 

No 

Is |r. 
for 
1-1,2,.., 
Yes 

= 0 

m?| 

For 1=1,2,...,m, let 
d^ denote the ith 

entry in a table. 
For i=l,2,...,m, let 
t^ denote the ith 

entry in another 
table. Set 
tj= di= k^= 0 for 

1=1,2,...,m. Let w 
denote a number. Set 
w = 0. Let switch A 
denote an on-off 
switch to be used 
for decisions in 
this flow diagram. 
Turn off switch A. 

M Assume +0=-0. Let S 
denote the set of 
integers i such that 
dj^ 0 and 

For i=l,2,...,m, 
increase t^ by one. 

Set tj = 0. Subtract 

r^ from w. Decrease 

kj by one and set 

d^ = -l. Subtract r^ 

from w. Is w > 0? 

V -vri 
Yes Is S empty? 

K. 

CC k = 0. So by 
Theorem 4, 
m 

Ikici=0- 
|i=l_ 
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TWO THEOREMS ON MAJORITY DECISIONS 

By P. Rosenblatt 

The following two theorems were discovered in the course of recent 

investigations of perceptron memory mechanisms (Ref. 3). While they do not 

bear directly on ary of the memory systems currently in use, the increasing 

use of majority decision schemes for such systems as Widrcw's Madeline suggests 

that they may be of general interest. The first theorem, in particular, may 

be of interest in connection with optimum administrative structures, since it 

suggests that a committee with two equally reliable members can make decisions 

no better than a ccmmittee with one member ( or, that a jury of twelve is no 

fairer than a Jury of eleven). 

THEOREM li Given any N interchangeable random variables, where R is odd, the 

probability that the majority of the variables are positive is 

equal to the probability that the majority of N+l variables are 

positive (where ties are counted positive with probability .5). 

Proof; Let Pm = probability that m or more events occur, out of a set of 

N possible events. 

Let Jt(k) = probability that ary given set of k variables are positive. 

Since the given variables are interchangeable, «(k) is identical for ary choice 

of k variables. 

Let = ^ p^ where p^ = probability that some particular set of k 

events occur, and the summation is over all possible sets of k events. 

Then from Feller (Ref 2, Rage 74) we have the equation; 

Pb = 3m - (m!l) S»1 + fà)*»* - ("l)s*.3 +'"î fcî) s» W 

Due to the interchangeability of the random variables, in the present case, it 

is clear that all terms pk in the sum 

Consequently, 

are identical, and equal to fl(k). 
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\ = (0*w • 
Bo» suppose N to be odd, and let m = [H/2]+l = | + ¿ . Then the probability 

that a majority of N variables is positive is given by: 

V10 -V - ^(Jx) - (^)(^) *<»*> 

-("i)(»3) *(•*)+■■■* (ti)««») (2) 
For the majority of »fl elements (vhere N is odd) ve have the corresponding 

probability (giving half-veight to those cases vhere exactly m variables are 
positive), 

Vfci> = h*j+ (3) 

where P^j = probability that exactly m out of »fl variables are positive, and 

*mfl *8 ^16 Probability that iftfl or more variables are positive. After Feller, 
ve have 

Pr S = S [mj m (4) 

Thus, expanding (3) yields: 

(“)(“) «-i • (f)te) ■<«).... (“)<«, 

+ x(mfl) - mflj 
fmf2)/»fl :) *(»tó)...T (®) rt(N+l) 

1 /Nfll 
2m; x(m) - 1 /mflj/Nfl 

2 1 m / [ mf 1 
»fl' 
mfli 

• • + 

M 

1 / m+lej Í»fl'l 
2 \ m /[mfk j " 

«(mfl) + 1 /dh-pVn+I^ 
2 \ m /[mf2; 

'mflV»fl\l 
k ® J J n(mf2) 

fmfk-1 j ( »fl 
i a / mfk n(mfk) .. 

(5) 



To prove the theorem, it is necessary to show that P ,(N) = P ,(114-1). 
maj maj 

Note that ^(N) depends only on *(m), n(nH-l),...,«(N), while P^jÍN+l) 

appears to depend on n(N+l) as well. However, the coefficient of «(N+l) in 

equation (5) can easily be shown to be equal to zero, so that we are left with 

terms in Jt(m)...«(N) in both equations. 

For the remaining terms, the coefficients in Equation (2) take the form 

/HH-k-n / N \ 

- \ m-1 / (uH-k/ 

while in equation (5) the corresponding coefficient is 
(6) 

(t) 

The signs of corresponding terms always agree in both equations. Therefore it 

remains to be shown that (6) and (j) are equal. 

fntít-l) f N \ 
\ m-1 / \iiH-k/ 

1 /mtk) /N+l\ /mfk-l\ / m+l\ 
2 \ m y ^ mtky ( m j [ m+k j 

(nH-k-l) 1 N1_ 
k! (m-1)! (N-m-kJ! (m+k)1 ” 2k 

(mtk)l (N+l)I (m+k-1)! (N+l)I 
fkl ml (N+l-m-k) 1 (mfk)l + (k-ljl ml (N+l-m-k)l(mfk) 

= 2ml (~nH-k)l |^2m[(nH-k-l)(m+k-2)...(k+l)][ (N) (N-!)...(N-m-k+l)] 

-[(nH-k) (m+k-1)...(k+l)][(N+l)(N)...(N-m-k+2)] 

+2[ ( nH-k-l) ( nnk-2 )... (k) ] [ (N+l) (N)... ( N-m-k+2 ) ]J 

= ~ (2m( K-m-k+l)-(m+k)(N+l) + 2k(N+l)] 

= è [2(f + + 5) -k+U - t(| + ^)+k](«+l)+smSkJ = 0. 

This completes the proof of the theorem. 



THEOREM 2; Given N unifarmly correlated Gaussian variables, with mean h and unit 

variance, the limit (as N becomes infinite) of the probability that 

the majority are positive is <J)^ ~ j, where/ö = correlation between 

any pair of variables, and <J)(z) is the cumulative normal probability 

distribution, from -m to Z. 

Proof* The problem is equivalent to determining the probability that N/2 

or more standardized variables (with mean zero and unit variance) are greater 

than -h, in an N-dimensional Gaussian distribution. This is given by 

N 

■ i ¢) 
k=[N/2]+l 

(8) 

where P^. = probability that exactly k out of N variables are <h, and N-k are < -h. 

h h -h -h 

Pk = / •••* /_ / - / <Mx1,x2,...xN)dx1dx2...dxN (9) 
V"50 ^+1=-00 Y*"00 

where ty' = the joint normal density function of the variables x^ . .Xjj. 

After Curnow and Dunnett (Ref 1), for the case of uniformly correlated variables, 

this is equal to 
00 

/hi +,(r)ar 

l -Tüfi / 
(10) 

where = h for i = l,2,...k, and hi = -h for i= k+1, k+2,...N. This is 

equivalent to the expression 

where F = <|) 
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Substituting (ll) in equation (8), and moving the summation inside the 

integral, yields 

Î: 

I 
k=[H/2]+l 

(j) Pk(l-P)N'lt f (ï)dï (12) 

The integrand is seen to be the product of a cumulative binomial probability and 

a normal density function. 

Now if N is large, the binomial distribution in (12) will have practically 

all of its mass concentrated in the neighborhood of the expected value, k=FN. 

Thus if k = FN is included in the range of summation, the cumulative binomial 

distribution can be taken equal to 1, while if k = FN is not included in the 

range of summation, the sum can be taken to be zero (for sufficiently large N). 

But it is clear that k = FN will be included in the range of summation if F > .5, 

which will be true if >0, or Y > -h/ J/d . Thus, for Y > -h/>//o , 4>'(Y) 
•Jl-p 

in equation (12) is multiplied by 1, and for Y < -h/ Jp it is multiplied by 

zero. Consequently, Equation (12) can be rewritten (for large N) 

oo 

which is what we set out to prove. 

(13) 
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BINDING CONSTANTS IN A MIXTURE 
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By R. Marchbanks and F. Rosenblatt 

In a number of experiments currently in progress, it is necessary to 

analyze a centrifugal fraction of brain tissue for the presence of large 

molecules which bind a known substrate, such as acetylcholine or serotonin. 

Since the fractions of interest generally contain a mixture of such binding 

molecules (the identities of which are unknown), it is of interest to determine 

the nuniber of species of binding molecules which may be present, and the 

concentration and binding constant of each. The following technique is 

suggested for making such a determination from measurements of the total sub¬ 

strate bound as a function of the substrate concentration. 

Let the mixture to be analyzed contain the proteins (or other large 

molecules) } let = concentration of P1 , and let k1 = 

binding constant of PjL for the substrate S. Let [S] = concentration of S, 

and ai = amount of S bound by Pi (measured as a concentration). 

In an experiment in which the substrate S is added to the unknown 

protein mixture, it is possible to measure [S] and ^ (the total amount 

of substrate bound). It is desired to determine the values of xi and ki for 

all significant components of the mixture. 

From the law of mass action, the following equation is known to apply: # 

(1) 

From this we obtain: 

ai “ k^SJ+1 (2) 
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and 

[S] 
i*l + K 

(3) 

Now let ^ a^/[S] = P[S] , and l/k^ = . This yields the equation 

ia 

F[S] = ^ 

i=l 

where [S] and F[S] can he measured empirically. 

00 

Our objective is to estimate values of and c^ (for an assumed value 

of m) which will give the best fit to the empirical data. A least squares 

method will be employed. 

Let Y. = measured value of F[S] for [S] = S,. Suppose there are n 
J . J 

such measurements (for n values of Sj). Then we must minimize the sum of 

squares; 

1= I [ïj - FtSj] 

j 
n r m 

] 2 

Sj+Ci 

2 

(5) 

2 is a function of 2m independent variables (x., x0,...;X ;c,, c.;...;C ) . 
X ¿ M J. 2 fll 

For convenience of notation in the following equations; we will rename these 

variables as follows: 

In terms of these variables; equation (5); for the sum of squares; becomes: 



To minimize this expression, ve obtain the partial derivatives of ¿ vith respect 

to each of the *i, set all of these derivatives equal to zero, and then solve 

the resulting set of 2m simultaneous (non-linear) equations for the values of z^. 

The partial derivatives are given by the equations: 

ï«, ■ i 
,)=1 i*l 

(fc= mfl,nH-2,,.., 

A method of solution by successive approximation is recommended for these 

equations (c.f. Milne, Numerical Calculus. Srinceton University Press, 1949). 

Specifically, let z be the vector of components and let 1^(z) be the 

equation of the system (7). Then a procedure for solution is as follows: 

(1) Assume approximate initial values for the variables cjL = z and 

compute corresponding initial values of ^ for 1 = 1, 2, ..., m frcuthffirst 

m equations of (7), which are linear in the unknown variables. Call these 

initial values zi (O);. , (Note that the initial values of c1 should All be 

different, to prevent á singular coefficient matrix in the simultaneous equations.) 

(2) Given the initial values obtained as above, let z - z(0) = ôz. 

Then, approximately, 
2m 

(8) 
i=l 

where = F^ziO)) 
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This gives a system of 2m linear equations which can he solved for 62. An 

improved approximation is then given hy z(l) = z(0) + Ôz. 

(3) Step (2) is iterated until the desired accuracy is obtained* 

The equations for Fkl which are required for the solution of (8) are: 

n 

l 

F = 
xi 

^j+w 

i-m 

(sj+zi)2 (sj+2k) 

(k < m, i < m) 

(k < m, i>m; i ^ BH-k) 

n 

-½ y W A L 

m 

A + 

r1 z. 
) -■ *1 + — ^ 
A S .+z S ,+z, 
q=l 0 nw-q J ij 

(k < m, i>m, i = nw-k) 

(9) 
n 

- I 
3=1 

(k > m, i < m) 

n 

l 
Ji-m 

j=i (3j+zi) 
(k > m, i > m, i k) 

n 

hi 
n 

-21^ 2Z 
Sj+Z-,„ S.+z. j q-i j nH-q j iJ 

Zq + 2i«m (k > m, i>m, i = k) 

Experimental results obtained by means of this technique will be reported 

in subsequent papers. An appropriate value for m (the number of proteins) can 

be found by solving the equations for increasingly large m, until components of 

negligible concehtration begin to appear. Die number of measurements, n, should 

always be greater than 2m, to avoid degenerate cases, and the accuracy of the 

fit can be improved by increasing n. 
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FURTHER SIMUIATIOK EXEERIMEHTS ON SERIES-COUPIÆD FERCEFTROHS 

By C. Kesler and F. Rosenblatt 

A number of simulation experiments on diverse topics are summarized in 

this paper. Preliminary data on some of these experiments have been presented 

previously, in Ref. 4. The experiments are grouped into four main categories: 

(l) Experiments on the modification of S-unit to A-unit connections; (2) A 

comparison of quantized and non-quantized reinforcement procedures; (3) Per¬ 

formance of four-layer similarity-constrained perceptrons; (4) Performance 

of a simulated cat's visual system in angle discrimination and alphabetic 

character discrimination. 

1. Simulations of Three-layer Perceptrons with Variable S-A Connections 

Four discrimination experiments were run on the IBM 7090 computer to 

study the learning curves of four three-layer perceptrons which were designed 

to allow the S-A connection weights to change with time. Each experiment 

used only one perceptron with a 20 by 20 toroidally connected retina. In 

each experiment, the stimulus world consisted of the following E and F in 

an upright position everywhere on the 20 by 20 retina: 

xxxmxxxx 
xmxxmx 

xxxxxmxx 
xxxmxxxx 

XX 
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XX 
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XX 
XX 
XX 
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xxxxxxxx 
XXXXXXXX 
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Thus there were 800 stimuli in the stimulus world, with the negative class 

consisting of 400 E's and the positive class consisting of 400 P's. The 

stimulus sequence was the same in all four experiments. This stimulus 

sequence consisted of 500 training stimuli, chosen at random from the stimulus 

world, followed by a test on 50 E's and 50 P's, followed by 500 additional 

training stimuli, then a repetition of the test, and so on. The set of test 

stimuli was selected to cover the retina in an approximately uniform fashion. 

Three different procedures for modifying the weights of the S-A 

connections were studied in these experiments. Each of these procedures makes 

use of the concept of an "elastic perturbation procedure" (originally defined 

in Ref Section 26.4) whereby a weight adjustment is tried on a tentative 

basis, and retained only if it leads to an improvement in the response of 

the system. Specifically, the three procedures are as follows: 

Procedure 1: Consider any stimulus in the training sequence, say S.. If the 
J 

response to Sj is wrong, a quantized a-system error correction reinforcement 

is applied to the weights of the A-R connections. If this corrective re¬ 

inforcement is sufficient to produce a correct response, the S-A weights are 

not changed, and the next stimulus in the training sequence is presented. 

If the response to S , is still wrong after applying the error-correction 
J 

reinforcement to the A-R weights, then the following procedure is used for 

modifying the S-A weights : 

1. Select a set of n A-units at random, with uniform probability. Let 

P designate this selected set. 

2. For every A-unit in P, negative quantized a-system (or 7-system) 

reinforcement is applied. * 

3. A response improvement test is performed as follows: Measure the 

new input sum to the R-unit for stimulus S^. If this sum has changed 

in an unfavorable direction (disagreeing in sign with the desired 

response) restore the previous S-A weights; otherwise go to the 

next stimulus in the training sequence. 

In a modified form of this procedure, step 3 (the response improvement 

* Negative reinforcement means that the sign is chosen so as to reverse the 
present activity state. 
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test) is omitted. 

Procedure 2i Identical with Procedure 1, except that in step 2 of the S-A 

weight modification procedure, non-quantized reinforcement is substituted for 

quantized reinforcement. This has the effect of reversing the activity of 

every A-unit in the selected set, which has at least one active connection 

when Sj is presented. Here again, step 3 (the response inprovement test) 

may be omitted in a modified form of the procedure. 

Procedure 3 : Identical with Procedure 2, except that the set P is chosen 

as follows: Consider any A-unit, say a^ Let denote the present weight 

of the connection from ai to the R-unit. The probability that ai is chosen 

to be in the set P is then ce ^lwil , where c and k are parameters. (This 

tends to increase the stability of A-units which have acquired large weights, 

at the expense of A-units with small weights.) Thus the three procedures 

are characterized by the parameters n, c, and k, the choice of an a or 7 system, 

and the inclusion or exclusion of the response improvement test, which makes 

reinforcement contingent upon its consequences. The four experiments which 

were performed to evaluate these procedures are as follows: 

Experiment 1: 

The perceptron employed in the first experiment was a binomially connected 

network with 50 A-units having 6 connections each, and a threshold of 3. In 

case of a zero signal to the R-unit, the response was considered wrong. 

Initial weights of S-A connections were 1, and initial weights of A-R connections 

were zero. Table 1 indicates the combinations of reinforcement parameters 

which were tested and the final level of performance in each case. 

The results shown in this table seem to confirm the view that very 

little learning is taking place in this experiment. The mean performance 

for the 32 sets of parameters tested is only slightly better than 5I percent 

accuracy. The control case (where no S-A modification was performed) and the 

two alpha system cases with Procedure 3 (with the response improvement test 

incorporated in the program) were run out to 10,000 training stimuli, and 

the learning curves are shown in Figure 1. The parameters c and k were so 

chosen that the probability of selecting an A-unit for the set P is .001 
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TABLE 1: PARAMETERS AND TERMINAL PERFORMANCES IN EXPERIMENT 1. 

S-A Reinfat. Response Tÿpe of S-A Percent correct 

Procedure Improvement Reinfat. a c k after I5OO 

Test stimuli 

None (Control) 51 
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7 

4 

b 

8 

8 

16 
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1 

1 

2 
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b 

Yes a 1 

Yes 7 1 

Yes a 2 

Yes 7 2 

Yes a 4 

Yes 7 If 

b9 

b6 
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52 

51 
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51 
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51 

47 
44 
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5 
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5 
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5 

No a 
No 7 

No a 

No 7 

Yes a 
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7 

a 

.05 .78 52 

.05 .78 49 

.05 .98 49 

.05 .98 54 

.05 .78 60 

.05 .78 51 

.05 .98 47 

.05 .98 49 7 
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with weights of 4 (k = .98) and 5 (k = .78)* Comparison with the control case 

shows that there is some slight improvement in performance, although it appears 

unlikely to rise much above 55 percent with these choices of parameters. 

The large fluctuations in the learning curves are due to the fact that each 

curve is obtained for a single perceptron, rather than the average of a set 

of perceptrons. This degree of instability is not unusual. 

Experiment 2: 

The perceptron was of the same type as in Experiment 1, but the number 

of connections was increased to twelve per A-unit, with a threshold of 4. 

The number of A-units was still equal to 50. Tests were limited to Procedure 

3 with a-system reinforcement, since this seemed to fare best in the preceding 

experiment. The response improvement test was employed in each case. Learning 

curves for the three cases run (including a control case, with no S-A modifica¬ 

tion) are shown in Figure 2. Increasing the number of connections appears to 

have helped the performance considerably, although the instability with the 

small value of k is even more marked than before. 

Experiment 3! 

The same procedures were tested again with the number of A-units in¬ 

creased to 100, 6 connections to each A-unit, and a threshold of 3* Perfor¬ 

mance is shown in Fig. 3• Doubling the number of A-units appears to have helped 

more than doubling the number of connections (in the previous experiment), 

although the gain in performance relative to the control case is not so clear. 

Experiment 4: 

A Perceptron of the same type as before, but with 100 A-units and twelve 

connections to each A-unit (with threshold of 4), was tested for a number of 

different values of the parameters c and k. Results are shown in Figs. 4, 5 

and 6. Note that as c increases and k decreases, the best performances tend 

to improve, although the fluctuations in the learning curve are more extreme. 

The great fluctuations may, in part, be due to the increased tendency towards 

instability of the active set of A-units; however, they are actually no 

greater than the fluctuations in the control case. It is worth noting that 
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the best performance obtained (85 percent correct, vith c = .20 and k = .65) 

is comparable to the performance of a four-layer similarity-constrained per- 

ceptron with I5OO A^1' units and 3OO units, as shown in Fig. 11. This 

shows that the modifications of the S-A network are, indeed, producing a 

much more efficient set of A-units than were initially available. 

It is also of interest to compare these results with the earlier exper¬ 

iments on S-A modification, illustrated in Figs. 38, 39, 69, and 70 of Ref. 3. 

The system employed here seems to be considerably more effective than any 

of those previously tried, although a direct comparison is hampered by the 

greater difficulty of the discrimination problem in the present case. As 

the discrimination problem becomes more difficult, it seems likely that the 

improvements due to S-A modification will be greater, since perceptrons which 

initially have no capability for finding a correct solution may acquire 

such a capability as a result of the modification process. This conclusion 

is borne out by the results of an experiment in which a perceptron which was 

known not to have a solution was compared with four perceptrons for which a 

solution was known to exist. The problem called for the discrimination of 

horizontal from vertical bars, and Procedure No. 2 was employed for S-A 

modification. Each of the five perceptrons tested had 20 A-units with four 

connections each. The S-A modification procedure was successful in obtaining 

a solution in the perceptron for which this was initially impossible. 

2. Comparison of Quantized and Non-Quantized Reinforcement Procedures 

The basic error-correction theorem for simple perceptrons (Ref. 3, Chapt. 

5) guarantees that if a solution exists to a classification problem, then 

either a quantized or a non-quantized reinforcement procedure can be 

guaranteed to solve the problem. It was originally believed that a non- 

quantized procedure, which always supplies a sufficient amount of reinforcement 

to make the response correct, would learn faster than a quantized procedure, 

which gives a fixed increment to the connection weights regardless of the 

magnitude of the error. The following experiments were performed in order 

to compare performance with these two systems. 
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Five simple perceptrons vith 100 A-units, 5 excitât cay and 1 inhibitory 

connection to each, and a threshold of 2, and a 20 by 20 retina were tested 

on two problems. The first problem, which is quite easy, was the discrimin¬ 

ation of horizontal and vertical bars (each bar 4 by 20 units). The second 

problem, which is quite difficult for simple perceptrons, was the discrimin¬ 

ation of a captial E from a capital F. Training sequences consisted of a 

random sequence of stimuli, which might appear with equal probability any¬ 

where in the retinal field. Performance on a fixed set of test stimuli 

was measured periodically. In order to measure variability due to training 

sequences, as well as variability due to perceptrons, each of the five 

perceptrons was trained with ten different random sequences for each of the 

two problems. In addition, tests on the E/F problem were carried out with 

a four-layer similarity constrained perceptron, having 100 A-units in the 

A(2) layer, and 500 A(l) units (See Ref. 5, Ompt- 15 for a detailed 

description of this model). This four-layer model was also tested with four 

different random sequences of stimuli. All runs were made once with quantized 

a-system error-correction, and once with a non-quantized procedure, in which 

sufficient reinforcement was given for each stimulus to make the response 

correct. 

The main results of these experiments are shown in Figures 7, 8, and 9- 

The heavy line in each case represents the mean performance over all perceptrons 

and training sequences. The light lines represent the envelope of learning curves 

for the different perceptrons, each averaged over the 10 training sequences. The 

data suggest that the dispersion in performance on different training sequences 

(when the performance is averaged over perceptrons) is slightly less than 

the dispersion due to variations in the perceptrons themselves. 

The principal conclusion is that there is no important advantage for the 

non-quantized system in these problems; in fact, on the more difficult problem 

(E vs. F) the quantized system seems to have a slight advantage. This advantage 

seems to be emphasized in the case of the four-layer similarity-constrained 

model, where all five perceptrons performed better with the quantized than the 

non-quantized procedure. This phenomenon does not have a rigorous theoretical 

explanation at this time, although it may be due to the fact that the larger 
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perturbations of weights in the non-quantized procedure do more harm by 

disrupting previous learning than is the case in the quantized procedure. 

A second effect worth noting is the greatly increased variability of 

performance on the more difficult problem, where the detailed organization 

of the perceptron network engenders striking differences in the learning 

curves. The particular perceptrons vhich performed well with the quantized 

procedure were the same ones which performed well with the non-quantized 

procedure, on all tests. There is also a slight suggestion of a correlation 

between performance on the horizontal/vertical bar test and performance on 

the E/F test, although the number of perceptrons run was too small to measure 

this correlation with confidence. 

3« Performance of Four-Layer Similarity-Constrained Perceptrons 

One set of learning curves for four-layer similarity-constrained per¬ 

ceptrons has already been presented in the previous section (Fig. 9). 

Previous results, reported in Ref. 4, have now been extended to obtain 

additional points in the early phase of learning curves for easy problems, 

and in an attempt to improve the parameters for the more difficult E/F 

discrimination problem. The results are shown in Figs. 10 and 11. 

Figure 10 shows the mean performance curves of 25 perceptrons on a single 

random sequence of horizontal and vertical bars. Zero-signals to the R-unit 

were given half-credit. The number of first layer A-units (m) connected to 
(2) 

each A unit is shown for each curve. The curve for m = 1 is identical with 
(2) 

the performance of a simple perceptron with N equal to the number of A' 1 units. 

The perceptrons with m = 5 and m = 10 were tested after every five stimuli 

for the first fifty stimuli df the training sequence, in order to determine 

how fast they were learning. Even so, the mean performance of the largest 

perceptrons run (N^ = JOG, m = 5) was up to .9855 after the first five 

training stimuli, and 20 of the 25 perceptrons in the sanple had already 

reached 100 percent accuracy. 

Figure 11 shows the results of the E/F experiment, with the best set of 

parameters tested. The perceptrons were the same as those used for Figs. 4(b) 



90 





92 

and 5(b) in Ref. b, except that the threshold was raised from 2 to 5. This 

higher threshold has improved the performance appreciably, since it tends 

to increase the weight of A-units whose connection patterns form specific 

templates for discriminating E's from F's. One perceptron in the sample 

achieved a score of 95 percent after I8OO stimuli, which is the best per¬ 

formance obtained to date on this particular problem. 

4. Performance of "Cat*' Model on Line and Letter Discriminations 

The five-layer "cat" model which is currently being tested was first 

described in Ref. 4. It makes use of recent data on the organization of 

receptive fields of single neurons in the visual cortex of the cat, as 

described by Hubei and Wiesel (Ref. 2). The retina consists of a 63 by 63 

field. The first association layer contains 18,000 local property detectors, 

with receptive fields organized to act as line detectors and edge detectors, 

as described by Hubei and Wiesel. The second A-layer contains 2000 units, each 

of which recieves connections from nine similar line detectors or edge 

detectors, so that it responds to any one of a set of parallel lines and 

edges (analogous to Hubei's and Wiesel's "complex units" in the cat cortex). 

These units go to a randomly connected A^ layer (with 1000 units), which is 

finally connected to the R-unit by means of adaptive connections. This 

organization is illustrated in Fig. 12. Connections from the A^ layer 

directly to the Aw/ layer are permitted in the model, but Were not employed 

in the experiments reported here. 

The first set of experiments was concerned with the discrimination of 

straight lines at different angles. Performance of the cat model is compared 

with performance of a simple perceptron with a 63 by 63 retina, on the same 

stimuli, in Figure 13. Figures I3 (a), (b), and (c) show tasks of increasing 

difficulty, as the angle between lines in the positive class (vertical) and 

lines in the negative class is reduced progressively from 90° to 10°. Note 

that for the simple perceptron (which must have retinal connections 

coinciding precisely with the stimulus line) these problems are all equally 

difficult. For the cat, the first problem seems to be somewhat easier than 

the other two, although the increase in difficulty is not marked. (These 
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learning curves start from 0 instead of .5, since zero signals to the R-unit 

were counted "wrong" in this program. ) 

The second set of experiments is shown ¿n Fig. 14, and deals with dis- 
i 

crimination of lines of different widths. All lines were vertical, and were 

either one retinal unit, two units, or three units in thickness. The markedly 

greater facility with which the cat was able to discriminate lines of thickness 

1 from lines of thickness 2 (Fig. Ik (a)) as opposed to the discrimination of 
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lines 2 units thick from lines 3 units thick (Pig. Ik (h)) is probahty due in 
part to the construction of the templates for the connections. Lines 

■which are only one unit thick would be expected to activate many of the line 

detectors, but few of the edge detectors, while the thicker lines would 

activate chiefly edge detectors. The distinction between the lines of aediua 

thickness and lines of ■axiaua thickness would not be so well Marked, since 

both would tend to activate edge detectors, differing only in the Magnitudes 

of the signals transfflitted. (The ^ and A^^ units in these experlaents 

were linear units, transmitting a signal proportional to their input, pro¬ 

vided the input signal exceeds the threshold of the unit.) 

The last experiment is only partially complete at this time, but the 

data are of sufficient interest to warrant presentation of some preliminary 

results. In a recent series of perceptual experiments with pre-literate 

nursery school children, E.J. Gibson has obtained a confusion matrix for 

discrimination of alphabetic characters (Ref. 1). It was decided that a 

comparison of her confusion matrix with one obtained from our cat model, using 

the identical alphabetic characters (in digitalized form) would be worth while. 

So far, only three discriminations have been tested, and the learning curves 

for these are shown in Fig. 15. The relative performance in these three cases 

agrees perfectly with the results shown in Gibson's confusion matrix. It 

is particularly striking that the discrimination of M and W, which look 

virtually identical to the "cat” model, was also the most difficult for 

Gibson's children. While it is obviously premature to place auch weight 

on these results, they suggest the possibility that the analyzing mechanisms 

present in the cat model may be quite close, in performance, to those which 

are operating in human infants, before more sophisticated perceptual tests 

have been learned. It will be particularly interesting to see whether dis¬ 

criminations of curved letters continue to show the close correlation with 

human performance which is being found for the straight-line letters. 
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SOME STUDIES OF PARAMETER OPTIMIZATION FOR SIMPLE PERCEPTRONS 

By F. Rosenblatt and C. Tappert 

1. Introduction 

Most theoretical and empirical studies of perceptrons (Ref. 2) have dealt 

vith broad classes of networks, such as simple perceptrons, similarity-con¬ 

strained models, or cross-coupled systems. These studies have either stated 

theorems applicable to the entire class of networks, or else they have drawn 

conclusions from conveniently chosen representatives of the class. Within these 

classes, however, wide variations in performance on any given test problem are 

likely to occur, depending on choice of parameters, and few attests have been 

made to establish the optimum performance for any given class of network. 

Optimization studies are likely to prove important for at least two purposes: 

(1) To assist in engineering design of practical systems. 

(2) To assist in the systematic comparison of different types of network 

organization, to ascertain which gives the best performance. 

Unfortunately, the task of finding optimum parameters for a given type of 

system is fraught with difficulties: The optimum organization depends on the 

nature of the environment, the task which the system is asked to perform, and 

the kind of training procedures employed. At the present time, we are unable to 

do more than scratch the surface of the problem, and the work presented here will 

be illustrative rather than difinitive. Several early conclusions on optimization 

of simple perceptrons (as in Section of Ref. 2) now seem to be premature: 

it will become apparent from the following discussion that parametric combinations 

previously believed to be optimum may, in fact, be nothing more than a local 

"plateau" in the parameter space. It is hoped, however, that the observations 

reported here (which are confined to "simple perceptrons", consisting of three 

layers with a single R-unit) will illustrate several basic features of optimal 

performance, and suggest possible strategies for dealing with the problem in 

future work. 



100 

2. Some Theoretical Notes 

Most studies of simple perceptrons published to date have dealt vith models 

in which all A-units are constructed with identical parameters^ i.e., the number 

of excitatory connections, the number of inhibitory connections, and the threshold 

are identical for every A-unit. An optimum organization may, however, require 

a mixture of A-units with different parameters, as shown by the following 

example. 

Consider a perceptron with two sensory units, s^ and Sg. The environment 

consists of three stimuli: 

51 = (1,0) 

52 = (0,1) 

Sj = (1,1) 

Stimuli Sj^ and Sg are to be classified positively, and stimulus S^ is to give a 

negative response. The perceptron is to have exactly two A-units. There exist 

eight possible A-unit activity vectors (each indicating the responses of a given 

A-unit to each of the three stimuli): 

(1) (0,0,0) (5) (1,0,0) 
(2) (0,0,1) (6) 1,0,1) 
(3) (0,1,0) (7) 1,1,1) 
W (0,1,1) (8) (1,1,0) 

Of these eight vectors, only the first seven can be realized with simple A-units. 

The eighth, which requires that an A-unit respond to s^ alone, and to Sg alone, 

but not to the union of s^^ and Sg, is not possible. If we let x = number of 

excitatory connections to an A-unit, and y = number of inhibitory connections to 

an A-unit (with weights of +1 and -1), and 0 = A-unit threshold, then the following 

activity vectors are possible, depending on choice of parameters: 

With 0 < (x-y)/2 all vectors except (l) and (8) are possible. 

With 0 > (x-y)/2 only vectors 1, 2, 4, and 6 are possible. 

If we now consider the A-unit activity matrices (representing the activity 

of each of the two A-units for each of the three stimuli) we find that the seven 

admissible vectors yield 49 possible matrices (or 28 which are not equivalent by 

interchanging A-units). Of these, however, only the two matrices 
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- c:í) 
have solutions to the given classification problem. In other words, we must 

guarantee that one A-unit responds to all three stimuli ^vector 7) while the 

other responds to S, alone (vector 2). Now with a random choice of A-units, this 

can be achieved by choosing 0 < (x-y)/2, provided we are exceptionally lucky 

in choosing precisely the right pair of A-units to yield the desired pair of 

activity vectors, out of the six vectors which might be realized with these 

parameters. Alternatively, we can pick one A-unit with parameters chosen so as 

to maximize the probability that it responds to all three stimuli (y = 0, and 

X > > 0), and we can pick the second A-unit with parameters so chosen as to max¬ 

imize the probability that it responds to alone (e.g., y = 0, and 0 = x > > 0). 

By picking large values of x in each case, it is clear that the probabilities of 

obtaining the desired response in each case will approach 1. The mixed parameter 

system is, therefore, clearly optimum for this problem. 

In general, where the environment consists of classes which are similar in 

size of stimuli and distribution of stimuli over the retina, it seems likely 

that a single uniform choice of parameters may be optimum (although this is an 

intuitive, rather than a theoretically established conclusion). In heterogeneous 

environments, where the perceptron may be asked to perform arbitrary classifications, 

a mixed population of A-units with different parameters is more likely to give 

it the desired capability. In particular, the Poisson model perceptron (Ref. 2), 

in which the number of excitatory and inhibitory inputs to each A-unit is a 

random variable, seems worth considering in this connection. 

For the remainder of this paper, however, we shall limit our attention to 

the performance of simple binomial perceptrons having a uniform population of 

A-units, and investigate the nature of optimum choices of parameters for such 

systems. In particular, we shall study the discrimination of horizontal from 

vertical lines, on a square retina, by such perceptrons. 

Although the procedure generally employed to train a simple perceptron is an 

error-correction procedure, a quantitative analysis of performance as a function 

of system parameters is not available for this procedure. A suitable analysis 

has been completed by Joseph for the S-controlled reinforcement procedure, however 

(Ref. 2), and since optimum perfarmance with the S-controlled procedure is closely 

related to ease of classification by means of an error correction procedure, 
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the S-controlled system will he considered here. In particular, ve shfti 1 try to 

elucidate the nature öf the relationship between optimum performance and the 

parameters of the network, by means of the following example. 

The performance of a perceptron, under the S-controlled procedure, is 

generaler measured by the probability of obtaining a correct response to a test 

stimulus. This probability is a monotone function of the ratio E2 (u )/ d2(u ), 
X X 

where 

E(ux) = expected signal to the R-unit when the test stimulus S is shovra, and 
X 

2 
6 (u ) = variance of the R-unit input signal for stimulus S . 

x X 

The equations for these variables are given in Ref. 2, Equations 7.3 and 7.6. 

Specifically, for the case of a fixed stimulus sequence where each stimulus in 

the environment appears exactly once, the equations are 

E(ux) = Ka I (1) 
i 

* 'V - "a I I /°j V W 
Ô k 

where 
+1 if stimulus is in the positive class 

-1 if stimulus S. is in the negative class 

(2) 

N 
a 

= probability that an A-unit responds to all of the subscripted 
,,x stimuli. 

= Number of A-units in the perceptron. 

For comparing different systems, it is generally convenient to fix N at some 
a 

convenient value. In the present case, performance measures will be computed 

for = 1, so that this variable can be dropped from the above equations. 

(Changing merely introduces a scale factor in the computed performance measures.) 

For ease of analysis, we will consider the case of a square r x r retina, 

with an environment of r vertical lines (one unit in thickness and spanning the 

retina) and r horizontal lines, which form the positive and negative class, 
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respectively. We also take the A-unit threshold 0 > x/2 (where x = nuniber of 

excitatory connections to each A-unit). For these conditions, Q., for two 
jK 

different stimuli of the same class = 0, and Q„ for stimuli of different classes 
2 J* 

= Qj . It can therefore readily he shown from equations (l) and (2) that 

E(ux) = ft - rQ2 (3) 

= « - (r+1)«2 + 21¾5 - rV (It) 

and 

= (5) 

X7 

where Q = = prohahility that an A-unit responds to any one of the line 

stimuli (see Chapter 6 of Ref. 2, and Ref. 1 for tables of Q functions). To 

optimize the perceptron, it is necessary to maximize the value of Equation (5). 

It can be seen that this equation has the form x/(l-x) which does not 

have a maximum, and is singluar at x = 1. But it can easily be demonstrated 

that for ary choice of connection parameters, the numerator of (5) must be 

less than 1, and greater than zero. Subject to this constraint, it is clear 

that Equation (5) will be maximum when its numerator is maximum. Setting the 

derivative of the numerator equal to zero we have 

1 - 2rQ = 0 

and the optimum value of Q is therefore l/2r. 

But this solution gives the optimum performance in terms of Q, the probability 

that an A-unit responds to a stimulus, rather than in terms of the physical 

parameters x, y, and 0, which characterize the network. In a particular connec¬ 

tion scheme, such as the binomial model, it is possible that no values of x, y, 

and 0 exist which yield the optimum value of Q exactly, although one may come 

very close by letting x, y, and 0 range over a sufficiently large domain. As 

will be seen from the numerical examples in the following section, there may, 

in fact, be innumerable local "plateaus" in the x, y, 0 space, without any true 

optimum, even though an optimum value of Q (or, more generally, an optimal set 

of Q functions) exists. Nonetheless, the optimum may be approached quite closely 



in practise, by considering a large variety of parameter combinations and selecting 

the best of them. In most practical cases, constraints are set by rnwytmim per¬ 

missible numbers of connections, and a network may be optimized within the 

given bounds. This approach is illustrated in the folloidng section. 

3* Performance Tables for Discrimination of Horizontal and Vertical Lines 

The following numerical study was performed to determine optimum perfornance 

in horizontal/vertical line discrimination for perceptrons constrained to a nmy-tmim 

of 20 connections per A-unit, and to determine the effect of deviations from the 

optimum parameters upon performance. * The expectation and variance of the signal 

to the R-unit was computed from Equations (l) and (2), for = 1, and the 

resulting ratios E2(u ) / ó2 (u ) are shown in Tables 1 through 15 for a 5x5 
•rw Jv. 

retina, Tables 16 through 2k for a 20x20 retina, and Tables 25 through 50 for 

a 65 X 65 retina. Each table assumes’a different value of 0. , Values were com¬ 

puted for all combinations of x and y totalling 20 or less, with values of y 

taken through the optimum performance for each line of the table. (Further 

increases in y, keeping x and 0 fixed, will always lead to a decrease in perfor¬ 

mance.) Each table begins with x = 0, as a minimum value for x. Since it seems 

clear from the nature of the problem that an optimum set of parameters will have 

a threshold no less than 2, each set of tables begins with 0 = 2, and goes up 

to the maximum threshold for which ratios greater than zero were confuted. 

The following conclusions appear from an examination of these tables: 

(l) For a 5 x 5 retina, with x+y < 20, the optimum parameters for a simple 

binomial perceptron on this problem are x=3, y = 0, 0 = 2. (This is close to 

the "optimum" parameters found for the horizontal/vertical bar discrimination 

problem, where the stimuli have similar proportions, in Table 3 of Ref. 2.) For 

a 20 x 20 retina, the optimum parameters are x = 1?, y = 3, and 0=3, although 

nearly identical performance is obtained with x = 9, y = 11, and 0 = 2, as well 

as several other combinations of parameters. For the 63 x 63 retina, the optimum 

* The writers are indebted to W. Blecher and T. Barker for their assistance in 
computing these tables. 
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TABIBS OP E2(ux)/d2(ux) FOR HCMZOWEAL/VERTICAL LIME DISCRIMTHATION* 

Na =: 1; r = Mansion of Retina 

TABLE 1. r = 5; 0 = 2. 

X y 

3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

13 
14 
15 
16 
17 
18 

19 
20 

0 1 

0077 OQ62 
0241 0200 
0429 0577 
0508 0494 
0443 0488 
0344 0410 
0269 O327 
0223 0266 
0196 0225 
OI81 0199 
0172 ÖI83 
0166 OI73 
OI61 0166 
OI55 OI60 
0150 OI54 
0143 0148 
OI35 0142 
0127 

i 

2 

O505 
0461 
0386 
0315 
0262 
0225 
0201 
0184 
OI73 
0166 

0159 
0153 

1_It 

0497 
0493 O505 
0437 0476 
0367 0416 
0306 0353 
0259 0298 
0225 0255 
0201 0224 
OI85 '0202 
OI74 0186 
0166 

s—l 

0499 
0500 0507 0498 
0458 0488 0505 
0399 0441 0475 
0341 0384 0426 
0291 0331 0372 
0252 0285 
0223 

8 2 

0507 0496 
0497 0508 
0461 

* Decimal points are understood at the left of each tabulated value. 
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TABLE 3. r = 5, 0 = 4 

TABLE k. r = 5, © = 5 TABLE 5. r = 5, 0 = 6 

X 

0 

5 
6 
7 
8 
9 
10 
11 
12 
13 
14 

OOO3 
0016 
0046 
0100 
OI80 
0281 
0386 
0469 
0504 
0489 

15 
16 

17 
18 

19 

0440 
0380 
0324 
0278 
0242 

1 

OOO3 
OOI3 
OÖ38 
OO83 
OI52 
0242 
O344 
0454 
0492 
0504 
0475 
0424 
0368 
0316 
0274 

y 
2 3 4 

0503 
0497 0506 0501 
0461 0488 0503 
0410 0448 

Q357 

X 

6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 

17 
18 

19 
2O1 

y 
012 

0001 0001 
0004 0003 
0012 0010 
0030 0025 
0062 0052 
0111 0093 
0178 0152 
0261 0226 
O350 03II 
0431 0394 
0486 0461 
0505 0499 
0489 0503 0505 
0449 0478 

0397 
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TABLE 6. r. = 5; 0 = 7 TABLE 7. r - 5, 0 = 8 

X y 

7 
8 
9 
10 
11 
12 
13 
14 

'15 
16 

17 
18 

19 
20 

0 1 

0000 0000 
0001 0001 
0005 0005 
0009 0007 
0019 0016 
0038 0032 
0068 0057 
0111 0094 
0167 0143 
0235 0205 
0312 0276 
0388 0351 
0451 0420 
0493 

TABLE 8. r = 5, 0 = 9. TABLE 9. r = 5, 0 = 10. 

1 

9 
10 
11 
12 
13 
'14 
15 
16 
17 
18 
19 
20 

00000 00000 
00000 00000 
00002 00002 
00006 OOOO5 
00017 00014 
00038 00031 
00078 00065 
00147 00122 
00255 00214 
00418 OO353 
00648 OO551 
OO957 

1 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

00000 00000 
00000 00000 
00000 00000 
00002 00001 
00005 00004 
00011 00009 
00025 00020 
00049 00041 
00091 00076 
00157 00132 
00257 
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TABIE 10. r = 5, 0 = 11. TABEE 11. r = 5, 0 = 12. 

11 00000 00000 
12 00000 00000 
13 
Ik 
15 
16 

17 
18 

19 
20 

00000 00000 
00000 00000 
00001 00001 

00005 00003 
00008 00006 
00016 00013 

00031 00026 
00056 

X y 
0 

12 

13 
Ik 
15 
16 

17 
18 

19 
20 

000000000 
000000037 
000000246 
000001006 
000003301 
000009157 

000022449 
000049777 
000101686 

1 

000000000 
000000030 

000000194 
000000820 
000002690 
000007495 
000018463 
000041120 

TABEE 12. r = 5, 0 = 13. TABEE 13. r = 5, 0 = 14. 

X 

. 0 

13 000000000 
14 000000007 
15 000000052 
16 000000246 

17 
18 
19 
20 

OOOOOO857 
OOOOO25I8 

OOOOO6504 
OOOOI5154 

1 

000000000 

000000007 
000000045 
000000194 
000000693 
000002056 

000005335 

X y 
0 

14 
15 
16 

3 
19 
20 

000000000 
000000000 
000000007 
000000060 
000000216 
000000678 
000001840 

1 

000000000 

000000000 
000000007 

000000045 
000000171 

000000551 

TABEE 14. r = 5, 0 = I5. TABEE 15. r = 5, 0 = l6. 

X y 
o 

15 
16 
17 
18 
19 
20 

000000000 
000000000 
000000000 
000000007 
000000052 
000000179 

1 

000000000 
000000000 
000000000 
000000007 

000000045 

X 

16 
17 
18 
19 

000000000 
000000000 
000000000 
000000000 

20 000000007 

1 

000000000 
000000000 
000000000 
000000000 
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TABLE 17> r= 20,0=3- 

X y 

3 
k 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

0 

00012 
00048 
00113 
00213 
00345 
00503 
OO674 
00845 
01000 
OII32 
OI233 
01303 
01344 

'01359 
OI355 
OI335 
01303 
01263 

1 

00012 
00045 
00108 
00203 
OO33O 
00483 
OO65O 
OO818 
00975 
OIIO9 
OI215 
OI29I 

, OI338 
OI36I 
OI362 
01348 
OI32I 

L_1 

01360 
01368 01371 
01359 



TABLE 18. r = 20, 0 = 5- r = 20, 0 = 4. TABLE 19. 

X y X y 

o 

4 
5 
6 
r» 
I 
8 
9 
10 

00001 
00003 
00009 
00019 

00037 
00063 
00101 

11 
12 
I? 
14 
15 
16 

17 
18 

19 

00150 
00212 
00288 
00376 

00475 
00582 

00693 
00806 

00915 
01018 

1 

00001 

00003 
00008 

00002 

00035 
00060 
00096 

00143 
00203 
00276 
00361 

00457 
00561 
00670 
00781 
00890 

5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 

17 
18 

19 
20 

00000 
00000 
00001 
00002 
OOOO3 
00006 
00011 

00018 
00028 
00042 
OOO6I 

00084 
OOII3 

00149 
OOI92 
00241 

1 

00000 
00000 
00001 
00001 
00003 
00006 
00011 
00017 
00027 
00040 
00058 
00080 
00108 

00143 
00184 

TABLE 20. r = 20, 0 = 6. 
i 

TABLE 21. r = 20, 0 = 7- 

X y X y 

0 

6 
7 
8 
9 
10 
11 
12' 

13 
14 
15 
16 

17 
18 

19 

00000 
00000 
00000 
00000 
00000 
00001 
00001 
00002 
00003 

00005 
00008 
00012 
00017 
00024 

20 00033 

1 

00000 
00000 
00000 
00000 
00000 
00001 
00001 
00002 
00003 
00005 
00008 
00011 

00016 
00023 

0 

7 
8 
9 
10 
11 
12 
13 
14 

000000000 
000000000 
000000022 
OOOOOOÓ82 

0000Ò02Ó9 
000000492 
000001021 
000001959 

15 
16 

17 
18 
19 
20 

000003517 

000005975 
000009723 
00Ó015222 
000023052 
000033922 

1 

000000000 
000000000 
000000022 
000000075 
000000201 
000000469 
000000976 
000001863 

000003345 
000005700 

000009269 
000014514 

000021987 



r= 20, 0 = 9. TABLE 220 r* 20, 0 = 8. TABLE 23. 

X y X y 
o 

8 
9 

10 
11 
12 
13 
14 

15 
16 
17 
18 
19 
20 

ooodooooo 
öoooooooo 
000000000 
000000000 
000000015 
000000037 
000000082 
000000179 
000000343 
000000626 
000001080 
000001788 
000002854 

1 

000000000, 

000000000 
oooooooöo 
000000000 
000000015 
000000037 
000000082 
000000171 
000000328 
000000596 
000001028 
000001706 

o 

9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

000000000 
000000000 
000000000 
000000000 
000000000 
000000000 
000000000 
000000015 
000000030 
000000060 
000000112 
000000194 

1 

000000000 
000000000 
000000000 
000000000 
000000000 
000000000 
000000000 
000000015 
000000030 
0Q0000060 
000000104 

TABLE 24 r = 20, O = 10. 

X y 
o 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

000000000 
000000000 
000000000 
000000000 
000000000 
000000000 
000000000 
000000000 
000000000 
000000000 
000000007 

1 

000000000 
000000000 
000000000 
000000000 
000000000 
000000000 
000000000 
000000000 
000000000 
000000000 
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TABLE 25. r = 63, O = 2. 

TABLE 26. r = 63, 0=3. TABLE 2?. r = 63, 0 = 4. 

X y X y 

3 
4 

5 
6 
7 
8 
9 
10 

00000 
00002 
00004 
00008 
OOOI3 
00021 
OOO3I 
00043 

11 
12 
13 
14 

OOO57 
OOO74 
OOO93 
00114 

15 
16 
17 
18 

00136 
00160 
OOI85 
00211 

19 OO237 
20 OO262 

1 

00000 
000Ó2 

00004 
00008 
00013 
00020 
OOO3O 
00042 
OOO56 
OOO73 
OOO9I 
00112 
OOI35 
OOI58 
OOI83 
OO209 
OO234 

4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

0 

OOOOOOO6O 
OOOOOO3I3 
000000924 
OOOOO213I 
000004217 
OOOOO7495 
OOOOI233I 
OOOOI9133 
OOOO28312 
000040345 
OOOO55693 
OOOO74863 
OOOO98363 
OOOI26675 
OOOI603O7 
OOOI99743 
OOO24543O 

1 

000000060 

OOOOOO305 
OOOOOO909 
000002101 
OOOOO415O 
OOOOO7376 
000012144 
OOOOI8835 
OOOO27873 
OOOO39719 
000054844 
OOOO73723 
OOOO96872 
OOOI24767 
OOOI57915 
OOOI96777 



TABUS 28. r = 63, O = 5. TABUS 29. r 

X y 

5 
6 
7 
8 
9, 
10 
11 
12 

13 
14 
15 
16 
i? 
18 

19 
20 

0 _1 

000000000 000000000 
000000000 000000000 
000000015 000000015 
000000052 000000052 
000000119 000000112 
000000231 000000231 
000000425 000000417 
000000723 000000715 
000001162 , 000001147 
000001788 OOOOÒ1758 

000002645 000002608 
000003800 00000374,0 
000005312 000005230 

000007257 000007145 
000009716 000009567 
000012785 

X y 

6 
7 
8 
9 

o 
000000000 
000000000 
000000000 
000000000 

10 000000000 
11 
12 
13 
14 
15 
16 

17 
18 

000000000 
000000007 
000000022 
000000037 
000000067 

000000104 
000000164 
000000246 

19 000000358 
20 000000507 

TABUE 30. r = 63, 0 = 7. 

y 

o 
7 
8 
9 
10 
11 
12 
13 
14 

15 
16 

17 
18 

000000000 
000000000 
000000000 
000000000 
000000000 
oopoooooo 
OÓOOOOOOO 
000000000 
000000000 
000000000 
000000000 
000000000 

19 000000007 
20 000000015 

1 

000000000 
000000000 
000000000 
000000000 
000000000 
000000000 
000000000 
000000000 
000000000 
000000000 
000000000 
000000000 
000000007 

63, 0 = 6. 

1 

000000000 
000000000 
000000000 
000000000 
000000000 
000000000 
000000007 
000000022 
000000037 
000000067 

000000104 
000000164 
000000246 
000000358 



each case, the optimum 0 is occurs vith X = 15, y = 5 and 0 = 2. Note that in 
rather small. 

(2) There is a considerable region in the phase space ehich gives perfor- 

aances close to the pptisnm, vithin the given constraints. For example, in 

Table 1, 12 ont of 127 computed ratios are vithin 5 Percent of the optimum value, 

and 21 ratios are vithin 10 percent of the optimum. In Table 2 (vhich does not 

include the optimum for this size retina) 9 out of 91 ratios are vithin 5 percent, 

and 19 are vithin 10 percent of the optimum performance. Sven in Table 5 (vhere " 

the threshold is three times its optimum value) 4 out of JO computed values are 

vithin 5 percent and 6 are vithin 10 percent of the optimum. For the larger 

retinas, it is clear that there is a region in the neighborhood of the optimum 

for each table, vhere changes in parameter values mke little difference in 

performance, i.e., the optima are not sharply defined, and small variations in 

parameters are unlikely to have a serious effect on performance. In Table 25, 

vhich includes the optimum for the large (63 x 63) retina, 35 out of 57 computed 

values are vithin 5 percent of optimum performance, and 42 are vithin 10 percent. 

(3) For a fixed value of 0, the best performances seem to occur consistently 

in a single "connected” region of the x,y parameter space; there is no case of 

more than one plateau appearing vithin a single table. On the other hand, a 

slight change in 0 may lead to a radical change in the location of the optimum. 

For example, Increasing 0 from 2 to 3, for the 5 x 5 retina, moves the optimum 

from x=3, y=0 to x=ll, y=9. Increasing the threshold one more step (Table 3) 

changes it to x = 13, y=6. similar phenomena are apparent vith the 20 x 20 

retina, Aere the optima change from x=9, y=U to x=17, y=3 as 0 goes from 2 to 3. 

These numerical results, together vith the theoretical conclusions cf the 

preceding section, bear out the concept that a perceptron having a broad spectrum 

of A-unit types is likely to include sub-populations of A-unlts vhich are nearly 

optimum for any given problem, or set of problems. Thus it is generally 

unnecessary to undertake an extended search for optimum parameter values, if a 

perceptron is being designed as a "general purpose system", vith a capability for 

a variety of different tasks. In such a case, it is more important to diversify 

the A-unit parameters than to optimize them for any particular problem vhich the 

perceptron may encounter. Moreover, the parameter space need not be densely 
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covered Toy the sample of A-units included in the perceptron, in order to ensure 

that a subpopulation of nearly-optimum units exists for any given problem. 

While these conclusions have been reached primarily on the basis of a 

particularly sinple discrimination problem, it seems likely from our experience 

with simulated perceptrons on alphabetic character recognition and other, more 

difficult, experiments that they can be supported for most pattern-recognition 

problems of practical interest. 
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SIMULATION EXPERIMENTS WITH A FIVE-LAYER PHONEME ANALYZING PERCEPTRON 

By W. Eisner, P. Rosenblatt, and R. Tuttle 

A five-layer perceptron which appeared to have some capability for learning 

to distinguish the phonemes of a language, as a result of being trained to 

discriminate words (consisting of several phonemes each), was described by 

Rosenblatt in Ref. 1, Section 23.2. A number of digital simulation experiments 

designed to test this concept were initiated in June, I961, using a Burroughs 

220 computer. Four perceptron models were studied, all having five-layer 

organizations. Only limited success was obtained with these models, and 

further experiments have been discontinued at this time, although suggestions 

are made for possible new approaches. 

The "environment" of these perceptrons is a greatly simplified model of 

a human language, consisting of words of two phonemes each. The phonemes are 

represented by patterns on a set of eighteen sensory units, divided among six 

frequency bands, with three different amplitude thresholds at each frequency 

(see Fig. 1). It was postulated that each phoneme would be identified by two 

formants, one occurring at a greater amplitude than the other. The frequency 

of the formants, and their relative amplitude, was to provide the information 

serving to identify the phoneme. The six available frequencies were classified 

into three "formant bands" of two frequencies each, and a phoneme consisted of 

some choice of frequency and amplitude in each of two formant bands. For 

example, a phoneme characterized by a combination of a low-amplitude formant 

in the middle band, and a high-amplitude formant in the high-frequency band 

might have 12 variations (or allophones), which are illustrated in Fig. 1. 

This phoneme is designated by the expression F2 < F^, indicating the non-zero 

formants and their relative amplitudes. Note that for the given phoneme, two 

allophones may activate disjoint sets of S-points. Despite the obvious 

simplifications, it was felt that this model would provide a degree and type 

of variability comparable to that of phonemes in a natural language. In all, 

the model permits 72 different allophone patterns, divided into six phoneme 

classes ^ > F2; F^^ < F2; F1 > F^j F^^ < F^; F2 > F^j Fg < F^). 

It was assumed that any pair of non-identical phonemes, occurring in 

sequence, could form a "word". Thus, with six phonemes, the language 
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FIG. 1. SENSORY ORGANIZATION AND TYPICAL STIMULUS PATTERNS 

AMPt/rutve •* 

FpequeucY : 

Fo*mak>t oak/ds : F, F3 

tí seNSow Pamts 

ALLOPHO/JS& O/r rt/e PHOMerte •' (SuaPiki« /»mcArmS ACTi\/a S-z^o/^rr) 

9 
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consisted of thirty words. Phonemes were only presented to the perceptron in 

word combinations, and were never individually identified for the perceptron, 

apart from the words in which they were used. The object of the training 

program was to teach the perceptron a five-bit response code for each word. 

The perceptrons were so designed that they could not learn this task unless 

they developed an internal "phoneme code" in the third layer of the network. 

The organization of the five-layer perceptrons employed in these 

experiments is shown in Pig. 2. The sensory system consists of the eighteen 

S-units organized as in Fig. 1. The first layer of A-units, A^, is organized 

as in a binomial-model perceptron, i.e., each A-unit receives a fixed number of 

excitatory and inhibitory connections, with fixed weights, originating from 

randomly chosen S-points. In the simulation experiments, there were 200 A^ 
(2) 

units. Each of these units is connected to each unit in the A layer by 
(2) 

means of variable-weighted connections. There are five A units in most of 

the simulated models. Up to this point, all connections are assumed to 

have zero transmission time,* the connections from A^ to however, 
(3) have delays of either one or two units, so that the A'" units will tend to 

respond to specific sequences of duration 2, as described in Chapter 11 of 
(3 ) Ref 1. The connections to the AN>/ units again are organized according to a 

binomial scheme (origins chosen at random), and the A^ outputs are fully 
(3) 

coupled to the set of five R-units by means of variable connections. 100 A' 

units were used in the program. 

When a word (a sequence of two phonemes) is presented to this perceptron, 

the sequence of events is as follows: After appearing in the S-units, each 

phoneme in turn sets up an activity state in the A^ set, which is 

characteristic of that phoneme. From here, signals go to the small set of 
.(2) units, where it is hoped a unique state will occur for each phoneme. 

(2) ‘ (2) 
Since the number of A units is so small that there are less A' ' states 

than the number of allophones in the language, the perceptron is obliged to 
(2) encode a number of different allophones with a single A' state. It is 

hoped that parameters can be found which will encourage the system to 

generalize the A^ 

representing a common phoneme). The A^7 units have thresholds and numbers 

of short-delay and long-delay connections chosen so that they will respond 

'(^ responses over sets of related allophones (i.e., those 

.(3) 

(2) 
only after the word is complete, two successive states having appeared in the A 

(3) 
system. Thus the A state represents the occurrence of a particular word. The 

(3) appropriate response is then associated to the Aw/ state by means of an oc-system error 
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correction procedure (see Ref. 1, Chapter 5)* 

Clearly, the correct code can not be learned for every word in the 

language unless each phoneme can be discriminated from the others at the 
(2) 

A' ' level. Thus, unless a phoneme code is found which assigns a unique code 

to each phoneme, there will be conflicts in the responses of the perceptron, 

and the system will never converge. The object of reinforcing the to 
(2) 

A' ' connections is to try to encourage the formation of such a code, which 

not only distinguishes the phonemes from one another, but generalizes 
(2) 

the allophones for a given phoneme to a single A ' code. If such 

generalization occurs, then new variants of a previously learned word will 

automatically induce the correct response, even though the particular 

combination of allophones may never have occurred before. Several 

diffp^^+ ■»''’inforcement schemes for the preterminal connections (from A^ 

to A were tried in the following experiments. 

Experiment 1: 

The reinforcement procedure which was first studied for the A^ to A^ 

connections is described in Ref 1, page 5^2. Specifically, using the 

notation defined in the reference, 

1. With each connection, c^, from an A^ to an A^ unit, is 

associated a time-dependent probability, P^(t) , called the Instability 

coefficient of the connection. 

2. Reinforcement at the preterminal level is applied only when a ter¬ 

minal reinforcement (of the A^ to R connections) fails to correct an error. 

Otherwise, the values of these connections remain unchemged. 

3. If preterminal reinforcement is applied at time t, all 

instability coefficients are changed by the amount Aï\^ = a|£ - 5P^j(t), 

[0< £ < 1]. If no reinforcement is applied at time t, AP^ = -BP^it), 

i.e., the instability coefficients decay, making the connections more stable 

when correct responses are obtained. 

4. If reinforcement is applied, assume that the current activity 

states of all A^ units are "wrong", and apply the correction = (-l)aj • (a*Tj) 

with probability P^t). (This is equivalent to an a-system error correction 

applied with an independent probability for each connection. ) 
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Note that in this model, connections coming from units vhich are 

active at the time of an error are most likely to be reinforced, vhile 

units vhose activity always leads to correct responses develop highly stable 
(2) 

connections to the A ' layer. It was hoped that this procedure would perturb 

the weights of the preterminal network until a satisfactory phoneme code was 

found, at which point all weights would become stable. 

A flow diagram of the program used for simulating this perceptron ( on 

a Burroughs 220 computer) is shown in Figure 3. In the course of the 

experiments, training periods were alternated with tests of performance. In 

this experiment, only one allophone was used for each phoneme (chosen at 

random from the twelve possibilities permitted by the model). The following 

parameters were employed to control the organization of the perceptron: 

X, = number of excitatory connections from S-system to an A^ unit. 

Y-|_ = number of inhibitory connections from S-system to an A' ' unit. 

X21 = number of excitatory connections from A^ to an A^ unit with r =1. 

= number of inhibitory connections from A^ to an A^ unit with r =1. 
dL (0} (x) 

X22 = nurriber excitatory connections from A' ' to an Av^' unit with r =2. 

Y^p = number of inhibitory connections from A^ to an A^ unit with r =2. 

0-1,0.,0,0. = thresholds of A^, A^, A^, and R-units 
123 <R 
£ and 5 = probability increment and decay rate, defined above. 

The best choice of parameters found for this experiment was: 

X1 = 5' Y1 = 2' X21 = Y21 = X22 = Y22 = 2; °1 = °3 = °2 = °R = ^ £ ='9’ 8 • 

It was found that for more difficult problems, the probability increments and 

decay rate had to be made smaller than for this simplified problem. 

Four perceptrons were generated using these .parameters, and were tested 

on performance, after being trained on the complete vocabulary (restricted 

to one allophone per phoneme). Of the four perceptrons, all but one found a 

"good" code for the six phonemes after having been given each word only once. 

The one perceptron which failed to achieve a satisfactory code illustrates a 

basic problem with this type of organization, however: the possibility of 

stabilization of preterminal weights prior to achieving a complete solution. 

It became apparent that it was possible for a nearly correct solution to 

become stable due to the fact that a single correction applied to the terminal 

weights would always be sufficient to correct any error in the R-units; 
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FIG. 3* FLOW DIAGRAM OF FIVE IAÏER AUDIO PERCEHTRONS 
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consequently, the ^ to connections were no longer reinforced, and a 

perfect code was never found. 

Experiment 2: 

The procedure and choice of parameters was the same as for Experiment 1, 

except that two allophones of each phoneme were permitted, yielding a total 

of 12 allophones in the stimulus world. The program was constrained, 

however, to pick only one alomorph of a word (without varying the choice of 

allophones) in any one cycle through the flow diagram (Figure 3). With a 

random choice of allophones, this problem was found to be too difficult for 

the perceptron, and consequently the experimental design was further 

modified by choosing pairs of allophones which were expected to generalize 

readily to one another. (For example, one allophone of a phoneme might 

have an amplitude of three units in the lower frequency of a formant band, 

and the other would have an amplitude of two units in the same band.) In 

addition, the parameters were modified to provide for all-excitatory S to A^ 

connections, which also tends to increase the generalization tendencies of 

the system. Finally, £ and 6 were modified to slow the rate of change of 

the probabilities. The final parameters used in Experiment 2 were: 

Xx = 4, ïx - 0, X21 = Y21 - *22 = ïgg = 2, 01 = 3, #2 = = 1, Oj = 2, £ =.1, 

and 6 = .1. 

This perceptron was still unsuccessful in finding a satisfactory set of 

phoneme codes. After a few cycles, the new codes appeared to be changing 

in a random fashion, thus causing instability of previously learned 

responses at the terminal end of the network. 

Experiment 3: 

The parameters used in Experiment 2 were retained, but the perceptron was 

further modified in an attempt to increase the generalization tendency of the 

A layer. Whereas the previous models reinforced connections from A^^ to A^^ 

units on the assumption that the A(2) response should always he reversed, the 

revised model assigned a higher probability for decrementing the weights than 

for incrementing them. A bias was thus introduced, tending to keep more A^ 
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units off than on, so that a typical phoneme code would consist of only one, 
IS) 

or at most two A ' units being active. Since only a small number of phoneme 

codes were now available, however, this resulted in a phenomenon of "over¬ 

generalization", with too many phonemes being assigned to the same code. The 

resulting conflicts among the codes for different phonemes led to a 

continuing oscillation of weights, and an inability to learn the problem. 

Experiment *: 

In the previous models, the program kept track of the probability that 
(l) 

an Av unit was "on" when errors occurred in the response, and changed the 

connections from such units to the A^ units. The fourth model was 

changed to keep track of the probabilities that the states of the A^ units 

were correlated with errors in the responses, and used these probabilities to 

govern the reinforcement of connections to erroneous A^ units. With only 

this change introduced, it was found that the behavior was similar to the 

previous model, which tended to over-generalize. This resulted from the 

fact that successive words in the training sequence were apt to find almost 

the same probabilities associated with the A^ units, and consequently 

tended to establish the same codes for their phonemes. An attempt was therefore 

made to achieve a compromise between the two systems, by using the products 

of the probabilities that the A^^ units were on when errors occured, and the 
, (2) 

probabilities that the A' units were in their present state when errors 

occurred. Thus a connection was likely to be modified only if it went from 

an active A ^ unit whose activity was correlated with response errors, to an 
(2) 

A unit whose current state was also correlated with response errors. The 

parameters employed were similar to those used above, but were chosen so that 

the probabilities would change very slowly. Specifically, the parameters 

were: 

X1 Y1 X21 = Y21 = X22 = Y22 s= 2’ °1 = °2 = lf % = 2> °R = 

= «O1* £*2 = 5l = 82 = ,0^* ßul:)SCriP'ts on ^ 6 refer 

to the A^Y^ probabilities and the A^^ probabilities, respectively). 

This scheme provided the most promising results of the series of 

experiments (for the two allophone per phoneme environment). Although a 
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perfect solution to the problem was not obtained, the learning curve was a 

reasonable one, and the perceptron seemed to be systematically searching for 

a suitable code. It seems likely that further study of this model, or a 

related one, might yield greater success than has been obtained to date. 

The learning curve of this system exhibits several features of interest. 

The system will typically begin with a large number of conflicts (i.e., codes 

which are assigned to more than one phoneme) most of which are resolved by 

probabilistic reinforcement of the preterminal network. Since this means 

that some of the phoneme codes have been changed, much of the previous 

learning which has occurred in the terminal part of the network is no longer 

valid, and the percentage of correct responses to words drops accordingly. 

This, in turn, tends to increase the probabilities that preterminal corrections 

will be made, so that the codes are likely to be further modified while the 

perceptron is trying to adjust its terminal responses. The resulting learning 

curve tends to be "stepped", each plateau occurring when a better code has 

been evolved. Unfortunately, this stepwise improvement in performance tends 

to break down when the system comes close to a complete solution, due to the 

fact that the codes are then perturbed faster than the terminal network can 

be retrained.. What is apparently needed is a mechanism for slowing down front- 

end changes while speeding up the terminal changes, or a better criterion for 
(2) evaluating the coding at the A' level. 

One approach tu these problems would be the use of a two-pass 

training cycle. In the first pass (in which each word would be presented) 

only the to R-unit weights would be modified, so that the overall 

performance with the currently established code could be evaluated. The 

second pass would be the same as the present training procedure, modifying 

both terminal and preterminal weights, or else would be restricted to modify 

only the preterminal weights, but without changing the probabilities. Such 

a procedure seems analogous, in some ways, to some concept formation, in 

which a concept is radically changed on the basis of an estimate of how 

well it has "worked" over a period of time. 

An alternative approach seems to be the use of an "elastic perturbation" 

reinforcement system, which was originally proposed in Ref 1, (Section 26.k), 
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and has subsequently been used with considerable success in a number of 

simulation experiments. In this model, when an error occurs, one of the 

units would be chosen, at random, to be readapted. The exact rules for 

changing weights could be similar to those employed in the above systems. 

The resulting performance of the entire network would then be reevaluated. 
(2) 

If the change in the A' ' code has led to an improvement in performance, 

the change would be stabilized, otherwise it would be "erased", the 

preterminal network returning to its previous condition. This would tend 

to retain those code features which proved useful, while allowing only those 

codes to change which actually interfere with the operation of the network. 

A preliminary prc^ram was written to study this procedure, but the 

experiments carried out were insufficient to permit any meaningful evaluation 

of performance. 

In all of these five-layer perceptron experiments, the basic philosophy 

of operation was to allow the system to hunt, more or less "at random", for 

a phonemic organization of the environment which would make it possible to learn 

"words" consisting of several phonemes each. In retrospect, it seems 

questionable that the process by which a human learns to distinguish phonemes 

is likely to operate in this fashion. The active production of sounds, or 

imitation, seems to play a most important part in human speech perception, 

and it seems likely that the sounds which a person can reliably distinguish 

correspond closely to those which he can reliably produce. Thus, if our A^ 

layer, rather than consisting of an arbitrary set of "neurons" with no inherent 

significance of their own, actually consisted of a set of motor neurons 

regulating speech production, there would, in fact, be only one correct code 

possible for each phoneme; the system could then distingusih incorrect codes 

by a mechanism permitting the registration of discrepancies between the "copied" 

sound (emitted under the control of its own A^ units) and the sound heard 

as part of the spoken word. Future experiments (which have already been 

initiated by Carl Kesler) will be directed towards a model of this variety. 

REFERENCE: 

1. Rosenblatt, F. Principles of Neurodynamics: Perceptrons ^ the Theory 
of Brain Mechanisms. Spartan Books. Washington. D.n'. . loAo. ^ 
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A PILOT STUDY ON THE APPLICABILITY CF PERCEPERONS TO THE CLASSIFICATION 

OF BOBBIE CHAMBER fflOTOGRAEBS 

By Sheraan Chew 

1. Statement of Problem 

The purpose of this study is to shew hew a perceptron may he used to 

analyze data from photographs obtained in bubble chamber experiments. 

When a particle enters a chamber, it leaves a trace on a light 

sensitive film. If this particle collides with another particle, the trace 

deviates from the horizontal direction and forms a Y • Since the collision 

may occur at ary point inside a chamber, the position of the Y cannot be 

predicted. The direction of deviation is a function of properties of the 

colliding particle, and, therefore, is also impossible to predict (Fig. 1 and 

Fig. 2). 

It would be desirable to separate the photographs of experiments in 

which a collision occurs from those in which no collision occurs. Since large 

numbers of photographs are taken for each experiment, the task of sorting by 

human operators becomes tedious. This paper will evaluate the performance 

of a perceptron in classifying photographs in which no collision occurs from 

those in which a collision has occurred. 

The perceptron and the tracks of the particles were simulated on a 

7O9O ccmputer and experiments were carried out under various conditions. 

1.1 A Comparison of Track Recognition Using a Digital Computer and the 

Perceptron. 

Many attempts have been made to use a digital computer for pattern 

recognition (e.g., Refs. 1,4,8). Some of these schemes propose to store the 

shape of all patterns to be recognized in a digital computer memory. When a 

stimulus appears, the computer searches through the memory to find the stimulus 

which most closely resembles the one shown and bases its decision upon it. For 

problems where the shape of the stimuli are well-defined, and the size and 

orientation can be fixed, this method will give good results with limited 
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equipment. In others, such as bubble tracks, the shape of the stimuli are not 

always the same; in fact, it is not possible to predict what the stimuli may 

do. If all possible patterns of an n by n square array are to be stored in 
O n2 

memory, the total amount of storage required to do so would be n X 2 bits. 

For n of, for example, 6k, this number will exceed the number of bits of storage 

available even in the largest computer. 

Track recognition using digital computers has also been tried 

(c.f. Ref. 4). The most notable effort uses a digital computer and a 

scanning device which scans for lines in the photograph. The slopes of the 

lines are calculated and the lines are extended in the indicated direction. 

If any of the lines are shown to intersect, the computer recognizes this as an 

event. A problem encountered in this program is that there are a great many 

discontinuities in the lines, so that the computer is unable to determine the 

orientation of the pertinent lines. 

The perceptron, vhich may be designed to generalize from one stimulus 

to a totally different one, does not require an exact correspondence between 

the training stimulus and the test stimulus (Ref. 6). Noise will not have 

any great effect upon identification of the stimuli provided that the noise is 

random in nature. 

A preliminary study was undertaken by Kesler using a simple perceptron 

to detect angles and straight lines of bubble chamber tracks (Ref. 3)* In 

these experiments, a 20 X 20 retina was used. Two classes of stimuli were 

generated: one having only horizontal lines, the other containing a mixture 

of horizontal lines and one angle. All the line segments are continuous. 

The parameters of the perceptron were as follows : 

Number of A-units 300 
Number of excitatory connections 

per A-unit 6 
Number of inhibitory connections 

per A-unit 0 
Threshold of each A-unit 2 

The connection of the A-units were arranged in such a way that an 

angle will cause some A-units to be active. 

The results of these experiments show that a simple perceptron can 
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learn all the classifications after about 500 trainings. 

The experiments described in this paper are extensions of these 

experiments with a different type of perceptron, using larger stimuli and more 

variation in noise patterns to conform with actual bubble track photographs. It 

is believed that a perceptron containing a larger number of A-units will be 

necessary to perform classifications under these more difficult conditions. 

2. Detailed Description of Track Recognition Perceptron 

The perceptron is required to give information concerning the location 

of the collision as well as whether a collision has taken place. It was 

decided, therefore, to use a narrow retina and scan the photographs. The 

direction of the scan is perpendicular to the direction of motion of the 

particles. When a collision is detected, the perceptron can be made to 

indicate the position at which the collision was discovered. 

The perceptron is, then, designed to recognize a collision only if 

the collision appears on the horizontal axis of the retina, midway between 

the horizontal edges. 

The track recognition perceptron is a perceptron with one sensory 

layer followed by three A-layers. There is only one R-unit so that it can 

only dichotomize the stimuli into two classes. A diagram of this system is 

shown in Fig. J. The variable connections are between the third A-layer and the 

R-unit. 

2.1 Local Property Detectors 

The retina consists of a 15 X 65 rectangular mosaic of light sensitive 

elements. The connections from the retina to the A-layer form "local property 

detectors" as suggested by the discovery of Hubei and Wiesel in the visual 

cortex of the cat (Ref. 2). They discovered that there are cells in the cat’s 

visual cortex that will respond to lines and others that will respond to edges 

and gradients (Fig. 4). It is calculated that these "local property detectors" 

combined with proper connections to the deeper layers will result in more 

efficient use of the cells for processing the images (Ref. 6, pp. 512-521 and 

Ref. 7). 
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Fig. 3 

Diagram of the Track Recognition Perceptron 
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2.2 The S to Connections 

The S to connections are In the farm o£ ”local property detectors . 

For the particular problem of track analysis, the stimuli consist of lines and 

angles. There are 40 different types of local property detectors scattered on 

the retina. Some examples of these detectors are shewn in Fig. 5* These “local 

property detectors" are constructed in a similar manner to those found in the 

cat, hut due to the particular geometry of the stimuli, will he mostly "angle 

detectors", which actually do not exist in the cat. 

The 40 local property detectors are made up of two groups of twenty 

different connection configurations. The difference between the groups is 

that the thresholds are set at 5 and 7 respectively. 

2.5 The A1 to Ag Connections 

The cells of the A^ and Ag layer are such that the value of the output 

will he equal to the input signal for inputs greater than the threshold, and 

0 otherwise. 

The cells of the A1 layer will respond to tracks of a particular shape 

in a particular location. Since these tracks may appear anywhere along the 

horizontal axis of the retina, it is desirable that the perceptron respond to 

stimuli that are horizontal translates of each other in the same manner. 

To accomplish this, the contour detectors of the same type along the 

horizontal axis will he connected to the same Ag unit, and the threshold of 

the Ag unit will he set at zero. Now the translates of the same stimuli will 

activate the same Ag unit. 

2.4 The Ag to Aj Connections 

The connections between Ag and A^ are organized in a "binomial mode. 

This mean» that each A^ unit receives a fixed number of connections from the 

A units. The origins of these connections in the Ag layer are picked at 

random. Since the signal to each A? unit is the difference of two binomially 

distributed random variables, this type of connection is called "binomial" 

(Ref. 6). 
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RETINA CORTEX 

Fig. 4 Organization of Sensory Fields of Cells in the Visual Cortex of the Cat 
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2.5 The Aj to R Connections 

The to R connections are weighted, and the values of these weights 

may he changed during training. 

3* The Perceptron Simulation Experiments 

A perceptron is simulated on the 7090 digital computer (Pig. 6). The 

performance cf this simulated perceptron is tested hy generating a set of 

stimuli on the computer and computing the percentage of correct responses. The 

parameters of the perceptron can he easily changed (Ref. 5). 

3*1 The Stimulus Generation Program 

lhe stimuli generated hy the program consist of points in a square 

field 13 X 63. In general, the stimuli are divided into two classes. For 

example, one class can consist of a set of pictures in which there are no 

collisions and the other of a set of pictures in which there are collisions. 

Alternate stimuli in the sequence always come from opposite classes. 

Prototype stimuli are presented to the perceptron from punched cards. 

These may consist ol a few samples of each class; The computer will automatically 

rotate, translate, expand or contract the stimuli given to create new stimuli. 

Examples of prototype stimuli are shown in Pig. 7A and 7B. 

In some of the stimuli there will he curved tracks which represent 

electrons given off during a collision and curving under the influence of the 

magnetic field. These curved tracks are to he ignored hy the perceptron. 

Other types of background noise such as spots due to photographic imperfections 

can also he simulated hy the program. 

These stimuli can he generated hy the computer and stored on tape. 

These are available to the computer when they are needed. 

The stimulus size is 63 X 63 while the size cf the retina is I3 X 63 

with the longer dimension in the direction of the particle track. A scanning 

procedure will he used hy the perceptron to cover the whole stimulus. 
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5,2 g*16 Perceptron Generation Prn^Am 

The parameters of each perceptron are fed into the computer from 

punched cards, and each perceptron may be constructed from these parameters. 

The parameters fed into the computer consist of the following: 

1. Number of cells in each layer 

2. Number of excitatory and inhibitory connections per cell 

3. Threshold of cells in each layer 

4. The type of connections (see below) 

If the cells of layer J and the cells of layer J + 1 are to he "hinomially’ 
connected, the program vill generate K random numbers ranging from one to 

M where K Is the total number of connections from the J to the J + 1 layer and 

M the number of cells In the Jth layer. This table will specify the location 

at which each connection will originate in the Jth layer. If the Jth and 

J + 1 layer are not randomly connected, the prcgrammer may store the desired 

connection scheme Into the memory of the ccsputer from cards, ais process 

may be repeated for each successive layer. 

3*3 Training Sequence 

When all the connections have been canpleted the training and testing 

sequence Is ready to begin. The stimuli are read from tape and the active cells 

in the last layer for each stimulus Is obtained; then these are stared. The 

activity of the. i* A-unlt is designated The weights of A unit outputs will 

always start at ^ = 0, a2 = 0....a = 0. Mow 
n n 

d'¿ 
will be calculated. Since alternate stimuli are from opposite classes then 
the inequalities 

dn >0 

4n+2 >0 
must be satisfied where dn is the signal to the R unit from the nth training 

stimulus on tape. If one of the Inequalities Is not satisfied, the a’s 
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corresponding to the active A-units are adjusted to decrease the error and the 

process is repeated until there are no more stimuli on tape or the process 

is ended by the program. 

3*4 Test Sequence 

Periodically, during the training sequence the process is stopped and a 

sequence of test stimuli is read from tape. The same procedure is followed 

in the test as in training except that o:;s are not adjusted. If an error has been 

made during this test sequence, it is recorded, thus giving a measure of the 

performance of the perceptron. If all the training stimuli are identified 

correctly, the whole program will halt, otherwise, it will continue until 

all the training stimuli have been used up. 

3*5 Information Printed by the Program 

The following information is printed out by the program. 

1. All data fed into the computer from punched cards. 

2. The number of cells in the A:, layer excited by each stimulus. 

3* The nuniber of cells in the layer excited by each stimulus. 

4. The value of all a;s at the end of training procedure. 

5. The number of training stimuli shown so far. 

6. Input signal to the R-unit for each training and test stimulus. 

7» Percentage of errors after each test sequence. 

4 Experiment in Event Recognition 

Perceptron characteristics : 

A perceptron was simulated on the 709O according to 

described previously. The parameters of the perceptron are 

1. Number of units in layer 

2. Number of units in layer 

3. Number of units in A^ layer 

4. Excitatory connections from Ag to A^ 

5. Inhibitory connections from Ag to A^ 

6. Threshold of A^ 

7* Threshold of A^ 

the rules 

as follows: 

2160 

240 

1000 

10 

10 

5 and 7 

0 
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2 

13 X 63 

in the form of "angle 

of some configurations 

4.1 The Stimuli 

The stimuli are generated by the 7O9O from information fed into the 

memory on punched cards. 77O stimuli are generated, consisting of two classes 

alternating, recorded on magnetic tape. The first 700 are used for training, 

and the last 70 for testing. 

The stimuli have the following properties: 

1. All collisions must leave at least one track that is more than ± I50 

and less than t 75° from the horizontal axis. 

2. All other tracks must be less than t 5° from the horizontal axis. 

3. There will be spiral-shaped tracks representing the motion of 

electrons splitting off and curving under the influence of the 

magnetic field. 

4. All lines must be continuous. 

The positive class will be comprised of all stimuli that have at least 

one collision on the horizontal axis in the center of the retinal field. The 

negative class will be comprised of all stimuli that have no collisions on the 

horizontal center line of the retina. Collisions away from the center line must 

be counted in this class because the stimuli are moved across the retina, and 

all collisions will eventually appear at the center. 

The task of the perceptron will be to differentiate between the two 

classes. The simulation program is arranged so that training stimuli will be 

shown to the perceptron, and the perceptron will be trained using these 7OO 

stimuli. The JO test stimuli will be used to check the performance of the 

perceptron periodically during training. The test stimuli and the training 

stimuli are in no way similar except for the above rules. The perceptron must 

learn the classifications of the training stimuli and generalize to the test 

stimuli. 

8. Threshold of A 

9- Size of retina 

The connections from the retina to A1 units are 

detectors". There are 40 different types, and examples 

used are shown in Pig. 5« 
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4.2 Result of Experiments Under Noiseless Conditions 

The result of the above experiment shows that the perceptron is able to 

learn up to 98# of the stimuli correctly (Fig. 8). In the TO test stimuli the 

only error made is misrecognition of the negative class. This means that all 

tracks containing collisions are correctly identified, while one error was 

made in which a track containing no collisions was mistaken for one containing 

a collision. This type of error is less serious than if a collision is 

missed by the perceptron. The performance of the perceptron may be biased by 

changing the R-unit threshold. Some quantitative results of R-unit threshold 

variation may be seen in Fig. 14. 

4.3 Detection Experiments Under Noisy Conditions 

In actual photographs of bubble chamber tracks the line segments will 

not be continuous. There also may be random noise in the background caused by 

imperfection in the photographic process. 

Noise introduced in the simulation program is controlled by two 

parameters. An "illuminated" point can be turned off with probability P1 and 

an "unilluminated" point can be turned on with probability Pg. Examples of 

noisy stimuli with various values of P1 and Pg are shown in Figs. 7A, TB, 9> 

10, 11 and 12. The performance of the perceptron under the various noise 

conditions is shown in Fig. 8. 

The results of the experiments can be summarized as follows: 

1. Noise of the type due to photographic imperfection represented by 

randomly placed spots in the stimulus did not cause serious 

deterioration in recognition. Random noise spots up to about 20 

per cent of stimulus size have been tried and the decrease in 

performance due to this additive noise is small. 

2. Noise due to discontinuity up to 20 percent of the total line length 

can be tolerated without seriously affecting the performance of the 

perceptron. When more than 20 percent of the tracks are missing from 

the photographs the performance is seriously affected. 

3. When the threshold of the R-unit was raised from 0 to l8 all stimuli 

containing a collision were correctly identified. However, one more 

track was erroneously identified as a collision where there was no 



Fig. 7a Example of Stimulus Containing No Collision = 0 *2 = ^ 
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Fig. 8 Perceptron Performance Under Various Noise Conditions 
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Fig. 9 Example of Stimulus P1 = .10 = 0 
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Fig. 10- Example of Stimulus; = .20 = 0 



Fig. 11 Example of Stimulus; = .20 Pg = .01 



Fig. .1.2 Example of Stimulus; P1 = .30 = .01 
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. 13 Effect of Lowering Threshold Under Noisy Conditions Fig 
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actual collision. Effects or errors from each of the two classes 

plotted against the R-unit threshold for values close to zero are 

shewn in Fig. 14. 

!*•. The values of the A-unit output ranged from +15 to -15 at the end 

of the last training cycle. For a distribution of weights see 

Fig. 15. These weights will give some idea of the range of 

unit output required in order to achieve a solution in a class¬ 

ification of this complexity. 

4.4 The Effects of A^^ Unit Threshold 

In the experiments described above the local property detectors 

are divided into two groups which are identical except for their thresholds. 

One group has a threshold of 5> and the other has a threshold of 7. It is 

found that with these thresholds performance in the case where P1 = .JO, 

Pg = 0 is very poor. In fact, in some cases, the performance went below 50$ 

(see Fig. 8). The large fluctuation in the learning curve would indicate 

that the perceptron had not found the solution at the end of the training. 

From the configurations of the local property detectors used (see 

Fig. 5) it is hypothesized that with A^ thresholds of 7 any stimulus with a 

large percentage of line segments missing would have a relatively small 

chance of activating an A^ unit. To test this hypothesis, the A^ units with 

a threshold of 7 were exchanged for a group with a threshold of 4. The 

experiment was repeated and the results are shewn in Fig. 1J. An example 

of a stimulus used is shown in Fig. 12. As seen from the graphs, the result 

of lowering the threshold seems to be that the performance of the perceptron 

improves when the threshold is decreased. This seems to indicate that the 

hypothesis is correct. 

The second indication that the hypothesis is correct is that A^ 

activity increased appreciably in every case with the lowered threshold. It 

can be concluded that with discontinuous line segments, performance may be 

improved by lowering the threshold of A^ units. 
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Conclusions î 

5. Design Criteria Derived from Simulation Experimente 

The series of experiments vas designed to find the parameters of a 

perceptron which will perform the track recognition problem satisfactorily. 

The following specifications were written with the limitation of available 

hardware In mind, and are based upon the particular perceptron which was 

simulated. 
1. The A,-units should have at least 50 inputs. This will include 

both the excitatory and inhibitory inputs. Experiments have been 

tried with smaller numbers of connections, hut the perceptrons 

appear to be excessively sensitive to noise. There should also 

be an adjustable threshold 0 for each unit that can be varied in 

value from 0 to 10. 

2. The output of the A-unit should have at least thirty levels 

uniformly spaced. If quantized a-reinforcement is to be used, 

then the values of the output must be able to change by one 

integer step at a time. 

5.1 Training Procedure 

The suggested training procedure for this perceptron Is as follows: 

A series of photographs can be selected from the experimental results, ttese 

can be classified by the experimenter, and used to train the perceptron. If 

necessary, the photographs classified by the perceptron as non-events can be 

reclassified by another perceptron trained from different photographs of the 

same experiment. In this manner the errors in that class can be reduced. 

5.2 Additional Experiments 

One additional series of experiments has been planned in this program 

Some actual photographs will be digitalized and recorded on magnetic tape. 

These will be classified and arranged In the same sequence as the stimulus 

tape described In section 4.1. The experiments described In section 4.3 and 

4.4 will be repeated. 

This experiment will give more information on some parameters as 

yet undetermined? 
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1. Optimum magnification of the photograph for best performance. 

2. Amount of overlap between successive scanning frames. 

5. The distance between the cells in the S layer. 

Another useful experiment would be to use the perceptron to differentiate 

the different interactions of the particle. For example, it would be useful to 

test whether a perceptron can be designed to differentiate "two prong" events 

from tracks with two or more prongs. For this experiment the "local property 

detectors" must be changed accordingly. With the information obtained in these 

experiments a hardware model of a track recognition perceptron might be built 

with a good chance of success. 
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A DESCRIPTION OF THE TOBERMORY EERCEPERON 

By p. Rosenblatt 

1. Introduction 

In the Spring of I96I, design work was initiated on a new physical model 

of a perceptron system, intended primarily for work in speech recognition. This 

system has since been named Tobermory, after H.H. Munro's talking cat. The 

original design called for a three-layer audio-perceptron, which has been 

described in Ref. 6. Subsequent modifications have converted this into a four- 

layer system, organized as shown in Fig. 1. Provisions are being made for 

the addition of a binocular visual input, having the organization of a four- 

layer similarity-constrained model (Refs. 7,8). The addition of'further 

weighted connections is also contemplated as a possible future modification, 

to permit studies of selective attention controlled by audio inputs (Ref. 7, 

Chapt. 21) and to provide a new type of sequential memory (Ref. 9). A 

tentative design for this expanded system is shown in Fig. 2. 

Since the number of adaptive weights in the connections of this system 

is considerably greater than in any physical model previously constructed, the 

highest priority task at the outset was to find a satisfactory economical 

integrator design. Electromechanical integrators, which were employed in the 

Mark I perceptron (Ref. 3),were rejected at the outset as too slow and too 

expensive for the Tobermory application. Studies of electrolytic and magnetic 

integrators were undertaken, and a magnetostrictive integrator (proposed by 

Charles Rosen at the Stanford Research Institute) was developed by George Nagy 

to a point where it would satisfy the cost and performance criteria which had 

been established (Ref. 4). More recently, however, a still simpler design 

employing tape-wound cores has been developed by Nagy in collaboration with 

the SRI group, and this will be the integrator actually employed in the system 

(See Refs. 1,2,5). 

In the meantime, work has progressed on the design and construction of 

parts of the sensory system and R-units, which are independent of the integra¬ 

tor design. Barts of the system which are now under construction are shown in 
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Fig. 3. It is hoped that most of the Tobermory system will be operable by 

the fall of 1963. The following description covers the detailed organization 

of the blocks shown in Figure 1. 

2. The Sensory System 

A detailed block diagram of the audio input system, units, and 
(2) 

delay-connections to the Av 7 system is shewn in Figure 4. 

The sensory inputs can be any mixture of signals from a tape recorder, 

microphone, a pair of audio oscillators, and a noise generator. An AGO 

amplifier with 23 db. compression can be switched into the system at the 

operator's discretion. From here the signals are amplified for input to the 

filter network. The signal coming from this main amplifier is available for 

display on an oscilloscope in the control room, as are the outputs of the 

filters. The audio signal also goes to monitoring speakers, a volume meter, 

and an amplitude measurement circuit which emits a voltage proportional to 

the logarithm of the average amplitude of the signal. This measurement is 

used to trigger the word termination detector (or pause detector) vhich is 

activated by a period of silence following an audio input signal. It is 

also averaged over a longer time period, to provide information to the 

perceptron on the amplitude profile of the input pattern, which would other¬ 

wise be lost in the frequency analyzing network. Both the "momentary amp¬ 

litude" and the "average amplitude" are available, along with the logarithms 

of the 45 filter outputs, at Plug Board No. 1. The word termination detector 

initiates a timing sequence (with delays which can be set by the operator) 

which freezes the response state of the perceptron (to prevent random changes 

in response at the end of a word) and controls the period of reinforcement, 

so that the perceptron will be reinforced only for a short period while the 

word is "in register" in the delay network. This prevents reinforcement from 

being given, for example, during the first few phonemes of a long word, 

before the response of the system has been clearly established. 

Each of the 45 filters can be set to a choice of three center frequencies 

and five bandwiths. If all filters are set to their first frequency position, 

they will cover the range from 30 to 4700 cycles per second, with a uniform 
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Fig. J: PAKTS OF THE TOBERMORY SYSTEM 

(a) Panel With 10 Audio Filters 

(b) Printed Circuit Board With 20 

Delay Multivibrators 

(c) Memory Module With 6OO Integrators 

(d) Plug Board No. 2 (Front View) 

(e) Plug Board No. 2 (Rear View) 
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distribution in the Mel scale» In position No. 2, they cover the reuige from 
4? to 7,000 cps, and in position No. 3 they cover the range from 60 to 9400 cps, 

likewise uniform in the Mel scale. The five bandwiths available for each 

filter give a choice of Q values of 1, 3; 5; 8; and 12 (corresponding to a 

choice of bandwiths equal to 100 percent, 33 percent, 20 percent, 12.5 percent, 

and 8.4 percent of the center frequencies). 

Each of 40 differential anplifiers (representing the units of Fig. 1) 

can be connected to any pair of signals from filters or amplitude measuring 

devices, by means of the first plug board. Since all of these signals are 

represented in logarithmic form, the signal from the differential amplifier 

represents the ratio of the two amplitudes, rather than the absolute difference. 

This eliminates the need for a high quality AGO amplifier, and effectively 

normalizes the speech input for variability due to changes in volume, distance 

from microphone, etc. Each differential anplifier has two output channels, 

one of which carries a signal if the difference is positive, and the other 

if the difference is negative. Each of these differences is fed to a threshold 

gate, with an adjustable threshold. This system, then, effectively analyzes 

the profile of the frequency spectrum, or the ratio of the amplitudes at 

selected pairs of points throughout the spectrum. It is this set of ratios 

(now represented in digital form by the outputs of the 80 threshold gates) 

which characterizes the audio pattern for the subsequent parts of the system. 

In order to represent the time dimension of the input pattern, the sets 

of eighty signals representing the momentary frequency spectrum are fed into 

a set of 16OO one-shot delay multivibrators, arranged in eighty channels of 

20 multivibrators each. Whenever a threshold gate is activated (indicating 

that some ratio of frequency amplitudes has exceeded its threshold) it permits 

a pulse from the trigger multivibrator to touch off the first delay multi¬ 

vibrator in the corresponding chain. This signal travels down the line of 

multivibrators, triggering each one in turn. As each multivibrator is triggered, 

it also sends a signal to the main plug board (shown in Fig. 3) where it can 

be connected to any combination of A^ units. Several signals may be 

travelling down a single multivibrator chain at any one time, representing 

the time-pattern of frequency components of the appropriate type. The delay 

for each multivibrator can be separately adjusted, over a range from 10 to 
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iOO milliseconds; thus the entire audio pattern represented at one time hy 

the sensory system may cover any period from 0.2 to 2.0 seconds. 

3* A-units, R-units, and Memory 

The units have already been described above; these are simply the 

differential amplifiers vhich feed the delay system. The main Tobermory 

plug board contains ten excitatory input hubs and ten inhibitory input hubs 
Í2) for each A' 7 unit. These inputs may be wired to any of the I6OO sensory 

points (the outputs of the delay multivibrators) each of vhich is represented 

by thirty hubs in the plug board. The organization of these A-units, their 

weighted connections to the R-units, and the R-units themselves, are shown in 

Fig. 5. 

The A-units themselves consist of a differential amplifier, with an 

adjustable threshold, and a pulse stretcher, vhich produces an output pulse 

of a duration which can be adjusted between 3 and 50 milliseconds. The 

threshold and timing controls can be set independently for each A-unit. The 

A-unit outputs are accumulated by an activity integrator, to provide a display 

of the level of A-unit activity on the CRT in the control room. This integrator 

may also be used in the future to provide a servo control for the A-unit 

thresholds, to maintain a constant level of activity in the system. 

The memory consists of 12,000 tape wound cores, arranged in a 12 by 1000 

matrix, as shewn in Fig. 5« When an A-unit is active, it opens a gate, 

permitting a 100 kc signal from the power oscillator to pass through the 

drive winding of the twelve cores to vhich the unit is connected. The signal 

from all active A-units in a column of the matrix is then summed by the output 

windings, and the second harmonic is extracted by the 200 kc bandpass filter 

for each R-unit. This second harmonic signal will agree in phase with the sign 

of the stored weights, and will agree in amplitude with the magnitude of 

the weights. Writing is done by gating O.jJ millisecond pulses to the same 

windings as are used for reading, and erasure (which can be performed indepen¬ 

dently for each R-unit) is done by switching an AC signal to these same 

windings. This matrix arrangement makes individual gates or switches for each 

Integrator unnecessary, and provides a highly economical arrangement for a 
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large matrix. A module of 600 of these integrators is shewn in Pig. 3. 

The sum of the signals from each column of the weight matrix goes to the 

input amplifier of the corresponding R-unit. The output of this amplifier can 

be displayed on the CRT, for monitoring of reinforcement effects. This 

amplifier can be cut off by the response freezing signal from the word 

termination detector (see Pig. 4), to prevent further changes in the state 

of the R-unit after an input message has been completed. The "positive 

phase" and "negative phase" are distinguished by comparison with a phase 

reference, and a separate positive and negative threshold (0+ and 0") is 

provided for each R-unit. If a signal of magnitude greater than either of 

these thresholds is received, the flip-flop, which records the state of the 

R-unit, is either set or reset. Thus, the R-unit may "change its mind" 

several times before the response is finally frozen. The output of the 

flip-flop is displayed in the control room, and may be printed by an automatic 

typewriter after each word. 

Reinforcement is generally performed by an error correction procedure, 

which requires that the desired response must be set up before a word is 

presented. This desired response is registered by 12 DEDT relays such as the 

one in Pig. 5. As can be seen from the figure, if the desired response is 

positive, and the obtained response is negative, the positive pulse gate from the 

reinforcement pulse generator is opened. If the desired response is negative, 

and the obtained response is positive, the negative pulse gate is opened. 

The reinforcement pulse generator is turned on only during the period for 

which reinforcement is permitted, as determined by the word termination 

detector. This period will generally be set for a few milliseconds after 

the entire word is "in register", and overlapping the point at which the 

response state is frozen. The reinforcement overshoot control circuit is 

used to guarantee a brief continuation of reinforcement beyond the time at 

which a corrected response resets the flip-flop. The amount of this over¬ 

shoot is adjustable for each R-unit. The circuit is designed to sense the 

input signal to the R-unit, and to hold the appropriate reinforcement gate 

open until its own threshold has been reached. 

A sketch of the canalete Tobermory system is shown in Pig. 6. The control 

room will be a soundproof room, with an automatic typewriter for construction 
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of program tapes and printing of output information. Manual control of all 

phases of operation is also possible, but it is expected that for most training 

routines, a tape controlled mode vill be employed. The tape has tvo channels, 

one for the audio signals vhich the machine is to recognize, and the other 

for command codes vhich set up the desired response, and control the printing 

of output information between words. 

It is hoped that the auditory system will be functional in the fall of 

1963, at which time work will be initiated on the visual system, as shown 

in Fig. 2. 
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ANALOGUE INFORMATION STORAGE ELEMENTS 

George Nagy 

Cornell University, Ithaca, New York 

Summarjr. Widespread and persistent interest in the implementation of multi¬ 

linear logic, conditional probability computers, learning machines, and 

brain models has created a need for an inexpensive analogue or quasi-digital 

storage element. A number of possible approaches to this problem, ranging 

from the slow and reliable electromechanical systems to the many forms of 

charge and flux integration, are reviewed, and the suitability of each 

device for various fields of application is briefly discussed. 

Introduction 

During the course of the last decade several investigators have voiced 

the opinion that a workable solution to the problem of pattern recognition 

will have to be found before more sophisticated problems in the general 

field of "artificial intelligence" may be effectually tackled. The sub¬ 

field of pattern recognition may be further subdivided, somewhat arbitrarily, 

into two schools of thought; the logic tree faction and the nerve net 

faction. The logic tree approach is based on the common binary operations, 

and is applicable chiefly to cases where the characteristics of all the 

patterns to be presented to the pattern recognition machine are specified 

ahead of time in full detail. This scheme exhibits complete structural 

staticity, and may be easily implemented with existing digital hardware. 

The nerve nets, on the other hand, often incorporate a number of variable, 

weighted connections, whose levels must be set during the course of a 

\ 
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training routine to correspond to the probability density functions 

characterizing the input or the system structure. The object of this paper 

is to provide a comprehensive review of the kinds of memory elements which 

may be useful in implementing the information storage system of such nets. 

The striking feature common to all these nets, be they part of a 

conditional probability computer, a pattern recognition device designed to 

classify bubble chamber photographs, or a model of the cat's visual cortex, 

is that the degree of interest and usefulness of the performance displayed 

increases with the number of variable strength links embodied in the system. 

Consequently, low unit cost is often the overriding consideration in 

choosing a storage device for a particular machine. 

Fortunately, the logical design of most pattern recognition devices 

does not impose too stringent requirements on the performance of individual 

memory cells. As a rule, the outputs of a large number of weighted 

connections are added, and the correct classification of the input signal 

depends on whether the algebraic sum is greater or less than a given 

threshold (threshold logic), or greater or less than other similarly 

constituted sums (majority logic). 

If only a coarse level setting arrangement is available, or if only 

a finite number of levels may be obtained, a well designed system will still 

converge to a solution, although a longer training sequence (adaptive period), 

or more adaptive links, may be necessary. Nor will malfunctioning of a few 

units crucially affect overall performance. 

What is needed, then, is a low cost device with a range of about 30 to 

40 discrete levels; a much higher resolution would be wasted unless the 

signal to noise ratio of the input patterns was extremely high. It should 

be possible to increment or decrement the value one level at a time, but it 
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is not necessary to be able to reproduce a given level exactly, as it would 

be if the machine were to perform arithmetic operations. A way of resetting 

the value to some arbitrary zero level would also be desirable, in order to 

erase traces of previous learning before starting on a new problem. 

The required speed of operation is more closely dependent on the 

particular application in view. For example, in a constantly updated radar 

monitor a faster reinforcement rate would be advantageous than in a character 

recognition device which would be retrained comparatively rarely. A speech 

processor operating in real time would likely have to be faster than the 

visual models built to date. Sophisticated configurations incorporating 

feedback, reverberating loops, and built-in decay,^ would be able to take 

advantage of higher rates than a series-coupled system paced by the speed 

of the input equipment. Furthermore, one attempt at least has already been 

made to couple directly a parallel device of the nerve net type to a con- 

1 fi 
ventional sequential digital computer/ 

The degree of permanence required may also vary from a few hours in a 

laboratory machine designed to check system performance to several months 

in an automatic page reader which would normally be left alone as long as 

radical changes in the type present in its input did not occur. 

This completes the list of features which may be relevant in selecting 

a memory component. Let us now see where we may hope to find a device 

Satisfying our rather modest demands. 

State of the Art 

1. Electromechanical Memory Elements. As had been the case with both 

digital and analogue computers, the first large scale parallel pattern 

recognition machine made extensive use of electromechanical elements. The 
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Mark I perception,built at the Cornell Aeronautical Laboratory, includes 

512 gear head direct current motors to actuate the potentiometers repre¬ 

senting the values of its weighted connections. While in a larger system 

cost and space requirements could be cut down considerably by mounting a 

number of potentiometers — possibly as many as forty or fifty — on a 

common shaft, and clamping appropriate ratio arms to the rotating shaft by 

means of a magnetic clutch arrangement, J on the whole electro mechanical 

elements are obsolete for parallel storage. 

2. Thermistors. The currents which flow through a thermistor raise its 

temperature through ohmic dissipation, and the temperature characteristics 

of the device are such that its conductance is therely increased. Thus 

thermistors are ideally suited for the type of training required in certain 

4 
four layer and cross-coupled systems: only links originating at "active" 

signal generating units carry current, and are consequently reinforced. 

Unfortunately reinforcement is strictly monopolar. A further drawback is 

the short "half-memory" of thermistors: it is only of the order of three 

or four minutes.^ 

3« Photochromie Storage Devices. The characteristic curves of the photo- 

chromic or phototropic film on which these devices are based are displayed 

in Figure 1. The unique property of this film is that its transmittance 

near the center of the visible spectrum may be reversibly altered by 

exposure to high intensity radiation in the borderline regions. Curve A 

shows the transmittance of the film after it has been exposed to a flash 

of light of the spectral composition indicated by curve C (yellow filter), 

while curve B shows transmittance after an "erase" pulse through blue 

filter D. Curve S describes the "read" filter which has been found to 
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interfere least with the condition of the film, Reading is, of course, 

performed at relatively much lower intensities than reinforcement; the 

overall transmissivity varies from about .3 to .8. The material is not too 

unstable: at room temperature it decays towards an equilibrium point with 

a time constant of several hours. 

A rather elegant photochromie device, designed by Scott H. Cameron/ 

consists of a modified automatic slide projector. The input patterns, in 

the form of transparencies, are introduced into a collimator in front of 

the photochromie film. A photoresistor behind the film measures the total 

amount of light transmitted during a "read" cycle. If the intensity exceeds 

a preset threshold and the input pattern is to be classified in the 

"positive" class, a flash of "blue" light is triggered. If the input is to 

be classified "negative", and the intensity fails to reach threshold level, 

the film is flooded with "yellow" light. It may be shown that iteration of 

this procedure will enable the machine to form dichotomies among a broad 

class of patterns: in fact, the machine is designed to run through its 

magazine of slides until it stops making mistakes. 

Photochromie devices are proving their usefulness in the two-layer 

processing of visual data, but there appears to be no simple way of adapting 

them to more complicated topologies. 

Charge Integration. The engineer's concept of a circuit with a memory 

generally involves one or more charged capacitors, so it is reasonable to 

investigate whether these hold out any promise for present nerve net 

applications. Charge integration in capacitors presents the problem that 

for linear operation a constant current source, implying in practice a 

large series resistance, is required. This in turn renders incrementation 



<l 

Sd 
wo 

F
i
g
u
r
e
 
2.
 

B
a
b
c
o
c
k
’
s
 
'
•
R
e
f
i
n
e
d
 
F
a
c
i
l
i
t
a
t
o
r

**
 



175 

intolerably slow» since for reasonable storage times large capacitance 

values are necessary. The sensing of the charge offers a further problem, 
2 

These difficulties are largely overcome by Babcock's "Facilitator," 

shown in Figure 2. The facilitator is rather too expensive to use in 

conventional pattern recognition machines, and should be of interest 

chiefly to specialists in complex neuron interactions. 

5* Solions. Solions21 is the generic name of a family of amplifying 

devices which function by controlling and monitoring a reversible electro¬ 

chemical reaction. 

The reaction utilized in solions is a so-called "redox" reaction in 

which oxidation and reduction take place in turn. In the solion tetrode 

four inert electrodes are immersed in an electrolyte containing both the 

oxidized and the reduced species of an ion, and by controlling the charge 

transferred between the two input electrodes, a change in conductivity 

proportional to the input current may be obtained between the output 

electrodes. 

Figure 3 is a simplified diagram of a solion tetrode connected as an 

integrator. The electrolyte used is an aqueous solution containing a small 

amount of iodine and a comparatively larger amount of potassium iodide. 

The amount of tri-iodide (resulting from the dissociation of the iodine in 

the presence of the potassium iodide) transferred from the Reservoir to 

the Integral Compartment by the input current is, by Faraday's Law, pro¬ 

portional to its integral with respect to time. The output current is 

proportional to the concentration of tri-iodide in the Integral Compartment, 

and hence to the integral of the input current. The polarized shield merely 

serves to reduce the tri-iodide concentration near it to the point where 

diffusion through the small perforations of the electrode is negligible. 
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Figure 3» Solion Tetrode Connected as an Integrator 

Figure 4. Schematic of Electrolytic Integrator 
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Because of the concentration potential resulting from the difference 

in ion concentration in the vicinity of the two input electrodes, the input 

impedance of the solion tetrode varies by a ratio of 5'A in the operating 

range of the device. An even more serious drawback is the low output 

impedance of the device, which causes units connected together for the 

purpose of summing operations to discharge through one another. These ■ 

difficulties are similar to those encountered with capacitors, though the 

time constant is greatly magnified in solions by the use of a liquid medium. 

At constant temperature, the stability of isolated solions is reported 

to be excellent, with drifts of only a fraction of 1$ over periods of 

several days. Reasonably high packing densities may already be achieved -- 

the volume of a tetrode now on the market is approximately ,2* cu. in. — 

but prices are still rather high. If solions are to be seriously considered 

for embodiment in large nerve nets, considerable redesigning is required, 

with the emphasis shifted from precision to ease of mass production. 

6. Electrolytic Integrators. Yet another form of charge integration is 

exhibited in the "electrolytic integrator." The basic principle behind it 

is so simple that it had occurred to practically every investigator in need 

of a cheap and reversible memory device, but the first really workable 

19 device was developed by B. Widrow using high precision electro-chemical 

techniques and, it is said, a number of incantations devised originally 

in connection with the touch-stone research program. 

The electrolytic integrator, in its basic form, consists of two 

electrodes immersed in an electrolyte (see Figure 4) in such a way that 

it is possible to vary their resistance relative to one another by trans¬ 

ferring metal in ionized form through the solution. In practice, one of 
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the electrodes, the variable element, is a fairly high resistance conductor 

with two terminals accessible in order to detect resistance changes. The 

other electrode, the source, is simply a bar of metal. 

The basic resistance of the variable element must lie in a relatively 

narrow range. If the basic resistance is too low compared to the resistance 

of the source metal, then in order to produce a detectable resistance 

change, very large amounts of the source metal must be deposited on the 

surface of the variable element. Since the maximum permissible plating 

current is limited by the need for even plating action, low basic resistance 

entails inadmissibly slow integrating action. If, on the other hand, the 

basic resistance is high compared to that of the solution, then the 

resistance change measured at the terminals of the variable element will 

again be small, due to the constant low resistance of the solution which is 

essentially in parallel with it. 

Commonly used substrates include metallic oxide films deposited on 

glass, graphite, and thin resistance wires. The electrolyte is usually a 

solution of copper sulphate in water, with various chemical agents added 

to regulate the Ph factor and insure even plating characteristics. 

Currents of the order of a milliampere and time constants of a few seconds 

are typical of the small airtight integrator capsules now available. 

A slight variation on the electrode resistance integrator, investigated 
Q 

by H. Y. Chiu and others, deserves mention. Chiu advocates the use of cells 

where the resistance between the electrodes, rather than that of one of the 

electrodes, is changed as the result of copper transfer. For example, the 

cathode of such a cell may be a cylinder of copper foil, while the anode 

would consist of a thin gold wire concentric with the cathode. The 

reversibility of a process based on such a geometry is questionable, and 

the data obtained by Chiu are not too encouraging. 
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The Optirnistor is yet another version of the electrolytic integrator. 

Here a very thin layer of metal is deposited on a transparent substrate, and 

the thickness of the layer is sampled with a light beam. Because of the 

relatively large ratio of exposed surface to amount of material present, 

this arrangement is rather unstable. 

Experiments have also been conducted on transferring silver ions 

12 
through a thin film of silver bromide. The nonlinearity of this process 

renders it suitable for coincidence mode selection of the points to be 

incremented in a memory matrix. The matrix consists simply of the points 

of intersection of thin silver wires electrolytically coated with a 

10 micron tungsten bromide film. When current is passed through a point 

of intersection, silver ions are released from the wire acting as the anode, 

transported across the bromide film, and deposited on the cathode wire. 

Eventually a bridge of silver is built up between the wires, and the 

resistance between them changes from about 1 megohm to less than 10 ohms. 

Here again, reversibility is the chief problem. A program to investigate 

solid solutions with a view to electrolytic integrator applications is 

reported to be under way at the Cornell Aeronautical Laboratory. 

7. The Transpolarizer. The transpolarizer,^ an electrostatic analogue of 

the more widely known transfluxor, consists of two capacitors with a 

crystalline ferroelectric dielectric and a nearly rectangular hysteresis 

loop. The basic circuit is shown in Figure 5» and the ra°de operation 

is as follows. 

One of the capacitors, say is maintained in a polarized state by 

means of a d.c. bias. Then the transpolarizer is said to be in the unblocked 

state if Cg is polarized in the same direction as In this case the two 

capacitors in series behave essentially as a single ferroelectric element, 
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Figure 5. Basic Circuit of a Transpolarizer 
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and present a low impedance to a small a.c. sensing signal. If, however, 

Cg is polarized oppositely to , then any attempt to switch would result 

in Cg being driven further into saturation. Hence no switching occurs, 

and the transpolarizer is said to be in the blocked state. The combination 

acts as a small linear capacitor, and therefore has a relatively high 

impedance at the driving frequency. 

Making use of the partially blocked states of the transpolarizer, 

about thirty discrete and reproducible steps are attainable. The polariza¬ 

tion is set to the desired level by 1 microsecond pulse of the appropriate 

polarity. With recently developed materials, such as tri-glycine sulfate 

(TGS) and tri-glycine fluoberyllate (TGFB), extremely stable operation may 

be expected, and sensing voltages several times as large as the coercive 

voltage may be safely applied. 

8, Magnetic Flux Integration. Modelled on the core memories so widely used 

in digital computers, most flux integrators use the partial switching of the 

domains in a toroidal core under a current impulse as the basic incremente 

Differences between particular designs arise chiefly in the mode of non¬ 

destructive read-out employed. 

One popular approach to the read-out problem makes use of quadrature 

fields. A weak "strobe” field is applied orthogonally to the "write" axis 

of magnetizationj it causes the flux vector to rotate slightly, generating 

a voltage proportional to its rate of change (and hence its magnitude) in 

the read winding (which may be the same as the write winding). At the end 

of the strobe pulse, the flux vector springs back to its original preferred 

orientation by virtue of "domain elasticity." Figure 6 shows a core which 

was used in a small perceptron^ utilizing this principle for information 

storage and modification. 
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Another working analogue storage device has been developed at the 

Stanford Research Institute by A. Brain,^ using the multiaperture device 

(MAD) derived earlier from the transfluxor configuration by Bennion and 
3 

Crane. A schematic of the MAD ferrite, as used for analogue storage, is 

shown in Figure 7. The current through the bias winding holds the core 

material near the inside perimeter of the core in a saturated condition, 

thus "trapping" any flux which may be present around the small apertures. 

Pulses through the set winding vary the total amount of flux in the core, 

with the amount of flux switched at e ach increment held constant by means 

of a "bucket" core. 

A slightly different version of the toroidal flux integrator is now 
2 

being patented by J. Divilbiss of the University of Illinois. His device 

is shown in Figure 8. The novel feature here is the variable resistance 

short circuited loop, which controls the field available for flux switching. 
18 

A mode of readout first investigated by Widrow has been recently 

12 perfected by H. J. Honerloh at the Technische Hochschule in Karlsruhe, 

Germany, and is about to be incorporated into an 8,000 element "Lernmatrix." 

Here the readout signal is proportional to a difference frequency generated 

by core nonlinearity between two drive frequencies in the low broadcast 

range. The signal is very small, but the summing operation characteristic 

of parallel pattern recognition machines raises it above noise level. In 

the Lernmatrix the cores are simply threaded onto the read and write wires 

in the manner of conventional digital core memories, and incrementation 

takes place by coincidence mode switching. 

Reversible flux switching in a tape-wound toroidal core, which takes 

place at harmonic frequencies of a drive current due to core non-linearity, 

22 
has been successfully exploited for read-out purposes by H. S. Crafts. 
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An early version of the so-called second-harmonic integrator consists of 

two cores wound in such a manner that in the output winding the second- 

harmonic components, which are proportional to the flux level, add, while 

the fundamental cancels out. Because the high-level radio frequency drive 

effectively lowers the core coercivity, coincidence mode incrementation is 

readily practicable. Other features, such as relatively low cost, large 

number of levels available, and the simplicity of the required auxiliary 

circuitry, contribute to make this device a strong contender for a leading 

position among practical integrators. 

We shall conclude this sampling of flux integration techniques with 

an idea originated ty C. Rosen of the Stanford Research Institute. When a 

magnetostrictive element is acoustically excited, an alternating flux wave 

is generated whose magnitude is proportional to the initial magnetization 

of the element, A device based on this principle is illustrated on Figure 9* 

the flux carrying medium is the 10 mil permalloy wire, ultrasonically driven 

by a piezoelectric transducer. With this arrangement it is possible to 

obtain up to 80 discrete steps, using only a very modest amount of auxiliary 

circuitry. Further development work on this device is being carried on both 

6 14 
at the Stanford Research Institute and at Cornell University, in con¬ 

junction with the construction of large scale Visual and audio pattern 

recognition devices. 

Conclusion 

The list of analogue memory devices presented in the preceding para¬ 

graphs does not pretend to be exhaustive. One may gain some idea of the 

staggering variety of processes which may be potentially harnessed to 

fulfill nerve net memory functions by considering the number of physical 
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phenomena characterized 6y a first order differential equation. Since 

the specifications for the simultaneous access storage in a pattern 

recognition computer are often rather loosely formulated, the choice 

between the various approaches available is not an easy one; a quantitative 

evaluation based on performance curves and cost would be a major research 

project in itself. 

Among the alternatives presented, the various magnetic flux integrating 

devices offer perhaps the most flexibility for many applications. The 

popularity of the toroidal cores for analogue storage is bound to grow as 

improved fabricating methods and materials become available for thin film 

deposited cores, and for the application of printed circuit techniques to 

provide the necessary windings. Coincidence mode incrementation will no 

doubt be employed on all large scale machines. 

It is also possible that improvements in electron-optical machining 

17 techniques, now being developed by K. Shoulders in Palo Alto, may obviate 

the necessity for analogue storage. In principle, any pattern recognition 

machine using weighted connections may be simulated on a binary machine of 

sufficiently large capacity. With cryogenic storage elements, it may be 

possible to build large, fairly general purpose parallel computers, on 

which any specific connection scheme necessary for a given task may be 

established by external control. 

Even the considerable improvements in components almost within reach 

are not likely to close the existing gap between proposed theoretical 

models and their hardware realization. As much as ever, it will remain 

up to the individual designer to maximize the yield of machines severely 

handicapped by the lack of a really cheap, reliable, and fast analogue 

memory component. 
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