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ABSTRACT 

The normal bivariate density function is derived from ä priori consider- 
ations.   It is discussed in terms of probability area in a plane, and as a cor- 
relation surface.   Several numerical methods of solving the normal bivariate 
distribution double integral are presented, and a curve is included for converting 
elliptical error distributions to circular probable errors.   Regression and 
correlation coefficients are discussed.   Relative to weapons systems analysis, 
examples are given of uses in studying impact and location errors.   Analyses 
of search and detection for stationary and moving objects are given specific 
mathematical treatment.   An Appendix examines the elliptical properties of 
normally correlated distributions.   The investigation has resulted in a reference 
paper for the normal bivariate density function. 
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INTRODUCTION 

A normal bivariate distribution of data has a density function, f(x, y), 

as follows: 

f(x, y)  = 
277rr   rr V 1-p' 

x y 

exp 
-1 

2(1-0   ) 

2p   (x- x)   (y - Y) 

x       "y 

(x-x)2 
(y-v)2 

(i) 

wherG 
'A   =   area under the curve (unity for a density function), 

rr    and a„ are x and y directional standard deviations, x y 
0   =   data correlation coefficient, (equals one for perfect correlation), 

x and'y'  are the means of x and y values.    They are the centroids 

of the distribution and are equal to zero when centered 

at the origin. 

Since area under a density function is interpreted as probability, a 

defirsite double integral of f(x, y) for A = 1, represents the probability of an 

event occurring within the limits.   It is termed the normal bivariate distribu- 

tion integral. 

f(x, y) also represents a normal correlation surface, often called the 

normal bivariate surface.   It permits analysis of x and y relationships and 

enables value predictions by means of regression equations. 

As an analytical tool, the normal bivariate density function finds 

important military applications in target attack analysis and in problems such 

as searching for an object. 

To investigate the normal bivariate density function and its uses, 

first it will be derived from a priori considerations.   Second,  its double 

integral will be discussed as a probability area in a plane.    Third, the role 

of the function as a correlation surface will be examined.    Finally, its 
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analytical application to weapons systems problems will be discussed.   An 

Appendix presents some elliptical properties of normally correlated 

distributions. 

DERIVATION 

The equation of the normal probability curve follows from the basic 

statement of a normal, symmetrical, probability distribution of data (events). 

Letting the origin of a normal curve be at the mean, the derivative of the 

function at x = 0 must be zero.   Moreover, considering both sides of the 

y - axis, the curve gradually approaches the x - axis so that the derivative 

approaches zero as x increases in absolute value without limit.   During this 

process y approaches zero.   All of these properties can be expressed in a 

simple differential equation as follows: 

dy   =   -k xy dx. (2) 

The negative sign insures that there will be a maximum and not a minimum 

at x = 0.   k is a constant.   Solving, 

(3) 

2 
log y   =   " k Y  + log C (4) 

where log C is the integration constant. 

2 
Then, _    -k x /2 (5) 

y  = C e '    , 

-k x /2 j e dx. (6) 



( 
From definite integral tables, c, f. p. 89 of reference (2), 

c 

L -k x /2 . 
e dx 

lyfiT* 
r(i/2) = c i¥- (V) 

I 

and 
C   = 

^2n/k     ' (8) 

Ignoring tables, and integrating (6) by parts (dv  =   dx, and u =   the 

exponential expression) results in 

A   =   C x e 
-k x2/2 

/+   co 

X 

_ ,-n 

2     -k x /2 J e dx. (9) 

Since the first expression takes an indeterminate form, »/» ,  new 

numerators and denominators are obtained by independent derivatives, and the 

limiting value of the expression then becomes zero.    Since, by definition, 

the n-th moment of a frequency distribution is defined as 

n-th moment  = yx   f(x)dx, 

b 

(10) 

and since from fundamental principles the standard deviation is the square 

root of the second moment about the mean, then it follows, considering (6), 
2 

that the second expression in (9) becomes     A k cr 

2 2 
Thus, A   =   Akrr.    ork   =   l/cr   . 

X X 

From equation (8), 

(ID 

C   = 
^xV^ (12) 
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The normal curve, then, from (5) and (8) and dropping the A, is 

I 
f(x) 

xv^ 
2/0     2 

e x 

A similar derivation follows for f (y) from symmetry.   Hence, 

(13) 

f(y) 
^ 

2/o        2 

-y /2 a 
e y (14) 

f (y) is also known as a Gaussian error function and specifies the probability of 

an error of value y as a function of that value.   If the x and y coordinates of any 

point in the distribution are assumed to be independent (a property of two- 

dimensional Gaussian distribution), and since the probabilities of simultaneous 

independent events combine as products, it follows that the probability of a 

point (event) occurring in the rectangular region 

xl   ^ x   <x2 

y, <y ^y2 

IS 

(("■ 
r(x,y)      1/ f(x)dx|  (    / f(y)   dy 1   = |        /       f(x) f(y) dy dx /■■/'■„. 

x,    y i    •'i 
(15) 

From (13) and (14), 

F(x,y) 
2v a     a 

xo   rVc 

/■/ exp 
X    y 1      yl 

dy dx, 
(16) 



which is the definite normal bivariate distribution integral for independent 

x and y. 

If x and y are not independent variables, a correlation coefficient must 

be introduced as in equation (1).    The development of the correlation coefficient, 

p ,   (-1 < p< 1),  for (16), will be left to the reader who is referred, e.g. to 

pp. 241-43 of Elderton (3), pp.  160-63 of Kenney (9), or pp. 155-57 of Hoel 

(8).    For those who do not consider equation (2) as intuitively obvious. West 

(19), pp.  135-38, presents a tedious but ingenious derivation of this 

differential equation. 

PROBABILITY AREA IN A PLANE 

A probability density function is a rate of change of probability with 

respect to random variable values.   A definite integral of the function, there- 

fore, is an area equivalent to the probability that an event (point) occurs 

between the limits.    If the x and y values are independent and normally dis- 

tributed, the occurrence probability of the event (x, y) depends only on the 

standard deviations and prescribed limits of the occurrence. 

Equation (16) represents the probability area in a rectangular region.    But 

integrations can be made over elliptical or circular areas as well as within 

elliptical or circular "rings," i. e. , regions bounded by equi-probability contours. 
2 

Letting J = the exponential of equation (1), the locust of J = c  , where c is a 

constant, is an equi-probability ellipse, so that, on this ellipse, f (x, y) is 

constant.   Also, the probability that a random point (event) will be in the 

ellipse defined by c is 

p   =   1 - e"C /2 . (17) 

The probability, p that a point (x, y) taken at random will be in the 

elliptic ring formed by the ellipses with parameters c and c + A c is 

approximately 

c  e 
-c /2 (18) 



I 
I 
i 

The Appendix treats further the elliptical properties of normally correlated 

distributions. 

_y JL 

if 
CT    =   a    - CT > /i Q\ x y i1») 

and if the area of interest is a circle „f radius R centered on the origin, then a 

transformation to polar coordinates and use of the Jacobian changes equation 

(IG) to 

I 
i       r^   r 

[ 
I 
I 

I 
i 

0 0 

This expression integrates readily by elementaiy function to 

2.       2 
F(r.fT)   =   1 -e'R /2CT    , (21) 

and specifies the probability that a random event, of standard deviation a, 

will occur within the area of radius R,  the event being,  of course, part of the 

distribution in question. 

v     ' x 

For the common case of rr     ^    a    , the double integral does not yield to 
y x 

elementary functions and numerical integration must be used. Harter (7) has 

applied a reduction technique in preparation for the numerical integration. In 

particular, the method develops circular probability areas equivalent in value 

to the actual elliptical error distributions.   The probability that a point (x, y). 



I 

I 

I 

I 

chosen randomly and independently from a normal bivariate distribution, will 

lie within a circle with center at the origin and radius K a   is 
x 

P(K.  CTX, ay)   =     /Yf (x,y)   d x dy 

2 2 
x     +   y     <  K cr 

Let x/rr    =   r cos 9 and y/cr     =   r sin 9, 
x y 

(22) 

then 

P(K, a , a )   =   ,)T, 
x     y 2TT "t/"/-(■ 

2 c cos   9 

+   —-— sin     6   11   rdr dG. (23) 

Next,  lot cr / rr   = a (the condition of a ^ 1 is maintained by defining the 

larger of the two standard deviations as rr   ),  and 0 =  29.    Then, 
x 

2TT  rK 
P(K,a)  = ''*a    I     I exp i 

0 0 4a 

2 2 
(1+ a   )  - (1 -a  ) cos 0 rdr d0 

(24) 

2 2 
Substituting r /4 -     =  0, 

P(K,a) 
.   n    /•(K/2^) 

2 ft / / v ' j 2 2 1 
exp    -ii (l+a)-(l-a)cos0        d ii d 0. rr 

/n    /•(K/2a) 

/ exp    -d'|(: 

0 0 
(25) 
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Taking one integration yields, 

P(K, a) 
2^. 
TT 

/     i - expv : 

./o (i + a 

■K2/4a2    [(1+a2) - (1-a2) cos 03J d0. (26) 
")   -   (1 - a )   cos 0 

For the numerical integration, values of cos 0 can be read into a 

computer and values of the exponential function are calculated as needed.   A 

printout of circular error probabilities can be programmed for selected 

values of K and a . 

Considering equation (21), it will be noted that for the circular distri- 

butions of a     =  CT    , (n = 1), equation (26) becomes 
y        x 

P(K, 1)   =   1  -e 
-K2/2 (27) 

Weingarten, and DiDonato (18) have simplified the non-circular normal 

bivariate distribution integral by another approach.   A transformation is made 

to polar coordinates, and reductions made by transformations to a single 

integral multiplied by a Bessel function.    The argument of the function is 

determined and values taken from standard tables, thereby simplifying the 

numerical integration. 

2 2        2 2 
Again let a =  CJ   / o    , and K   = (x   + y   ) /Q   . 

y       x x 

Then in polar coordinates. 

2n   rK 

P (K, a) 

JO      JO 

exp 
1     2 1 +a k -a cos 20) r drdc 

(28) 

where   0 ■$ cr   /rr 
y     x 

i. (29) 



P(K, a ) is simply transformed to 

K2/2 r n 
~] exp(-ßZ)/ 

o ^ 

P(K.^)=   / exp(-/3Z)/   exp (Y Z cos 6) de dz, (30) if P     # 

2 2 
where Y^   (1-a)   /2a   , and 

/3    =   (1  +a2)/ 2 a2. 

The second integral is found in Bessel function texts, e.g. , p. 46 of Gray 

Mathews, and MacRobert (5), and may be expressed as 

I     exp(Yzcos 6)   de   =  TT   I      (yz). (31) 
./O 0 

allere    I      (Yz) is a first kind,  zero order, hyperbolic Bessel function of the 

argument (•yz).    Values for ranges of the argument are available in tables. 

The computer calculations and printout selection are now principally concerned 

with solving 

/ 

2 
K  /2 

P(K, a)   =    I      (Yz)   1/a     /        exp(-/3z)   dz, (32) 

a task easily handled, e. g. , by the General Electric 225.    Printouts can be 

programmed for probability radii,  such as CEP vs standard deviation functions 

such as a   / rr   ; or , reference curves can be prepared such as, e.g. , 
y       x 

CEP/rr    vs rr   /a     (cf.  Figure 1 and reference (13). 
x y       x   ' 

-9- 
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I 
Relation to Standard Normal Variables 

Two variables (x, y) are distributed in bivariate normal fashion when 

each can be expressed linearly as a function of two independent, standard 

normal variables U and V.    Then 

x   =   aU+bV+d,  and 

y   =   fU    +gV+h. (33) 

The joint density function of the independent variables U and V is now 

the product of the standard normal densities of U and V, or, 

fu'v(u' v) 

The function 

2TT 
exp 

2 2 
(u     +   v   )   /2 (34) 

I 

I 

! 

^ v(U,V,0) 

2TT vr; /7 Ju    Jv 
exp 

1  -P 

,   2 2 
(x    -2 .- xy   +   y   ) dxdy (35) 

has been tabulated by Pearson (12), and, with the aid of this table, the integral 

of the two dimensional normal density fui.ctions over a rectangular area may 

be calculated.    Since the function contains three arguments, the table is rather 

voluminous.    A simpler table of a function with two arguments, from which it 

is comparatively easy to calculate F        (u, v, D), was published by Nicholson 

(11) in 1943.. Also, note reference (20). 

It would beTinstructive for the reader to^exafnine, Lindgren's development 

(10), p. 99, of the bivariate normal'density function in terms of the determinant 

of a second moment matrix.    In relation to the constants of equation (33), and 

■11- 
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also expressed as variances and covariance, the second moment matrix, M, 

the starting point,  is expressed as 

M = 

2 
CT 

y 

THE CORRELATION SURFACE 

In addition to being a probability density in a plane, the normal density 

function of two variables may be treated as the equation of a surface in three 

dimensions.   Thus, 

f(x, y)   =   / o        exP 
2TT 

x   y 
CT    CT      Vl-   O2 2 

2(1 -D ) 
y 

(37) 

is the equation of a surface,  of which the corresponding volume is uniaxially 

symmetrical, being centered at the origin.   It is called the normal correlation 

surface and is pictorially presented in a number of texts,  including p. 154 of 

Hoel (8), or p. 586 of Hald (6).   All sections of this surface cut by planes 

parallel to the XZ-plane are normal curves; and all sections parallel to the 

yz-plane are normal curves.    AH sections cut parallel to the XY-plane are 

ellipses. 

The eccentricity of the elliptical contours of different normal correlation 

surfaces varies with the degree of correlation existing in the corresponding 

data universe.   A surface with narrow elliptical contours signifies a universe 

in which there is high correlation.   If the variables are completely independent 

in the probability sense, and if the variables have been converted to standard 

normal variables,  the contour lines are circles.    If the variables have not 

„ been converted .to standard normal, and p = 0, the contour lines may be 

■12- 



ellipses, but their major and minor axes will coincide with the X and Y axes. 

As may be intuitively suspected, the elliptical contour lines orthogonally 

projected to the XY-plane represent areas of probability for the event (x,y). 

Since conversion to standard normal variables transforms the contour 

lines to circles,  the conversion provides a basis for expressing elliptical 

probability areas (elliptical error distributions) as circular probable errors. 

Regression and Correlation Coefficients   i .       H 

The line of regression which fits the means of a y-array on x (Figure 2 

shows such a line) is 

y   =  P a x 
x . 0 s p < l. (38) 

Similarly, 

y 

(39) 

Figure 2.    An X-Array of y's and Deviations from ä Predicted Value 

-13- 



The expressions o a / a   and DO   /a     are called regression coefficients, 
y      x x      y 

and p, as defined in the Introduction is the correlation coefficient between x and 

y.   It is important to note that although the value of the correlation coefficient 

is independent of the original units of measurement, the values of the standard 

deviations and, therefore, of the regression coefficients are not. 

The regression coefficient is very useful not only for purposes of 

statistical measurement but also for providing the best interpretation of the 

correlation coefficient.    If, e.g. , the average of a set of variables is regarded 

as the most probable value, a chosen value of x need only be multiplied by 

the value of the regression coefficient in equation (38) to give the most probable 

associated value of y. 

If the equation of the regression line is written as 

=   p    -^-. (40) 
a CT 

y x 

it is obvious that if the deviations of x and y are considered as expressed in 

standard units by dividing by the value of the standard deviation, the regression 

coefficient becomes identically the correlation coefficient and is then subject 

to the same interpretation previously given for the regression coefficient. 

It is easily verified that the correlation coefficient is the geometric 

mean of the two regression coefficients. 

A final remark pertinent to correlation - an array of y values for 

selected x implies a conditional distribution; and it is important to remember 

that the conditional distributions of a joint normal distribution are also normal. 

APPLICATIONS TO WEAPONS SYSTEMS ANALYSIS 

The normal bivariate density function is important to weapons systems 

analysis whenever an appropriate analytical probabilistic model contains two 

•14- 
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variables which are jointly normally distributed.   A very important application 

is the study of impact and location errors.    Examples of pertinent areas are: 

[1.    Warhead delivery 

2.     Geodetic measurements 

I 3.     Mapping measurements 

4. Intelligence estimates 

5. Artillery attacks 

6. Depth charge control 

7. Design of warhead attack patterns 

8. Determination of geometry and probability density of an expected 

impact area. 

9. Determination of geometry and impact area for a selected probability. 

10. Optimization of search and detection programs. 

11. Space capsule return,  search, detection and recovery; crashed 

aircraft search plans. 

12. Lunar impact and landing analyses. 

13. General accuracy analyses,  including conversion of elliptical 

probabilities to circular probabilities.    The CEP, e.g.  is a convenient 

input to the single-shot-kill probability. 

14. Radar sightings 

15. Ephemeris calculations 

The section on probability areas in a plane discusses the handling of the 

normal bivariate distribution integral that would apply to most of the above 

problem areas.   In addition, a typical problem,  that is applicable to many of 

the above areas,  is presented and solved by Hald (6), pp.   601-2.    The problem 

is as follows:   Given a two-dimensional normal distribution with means (0,0), 

standard deviations a      =1.5 and a      =   1.0, and the correlation coefficient 
x y 

o   =   0, 75.    Find the regression lines and the 95% (probability) contour ellipse. 

A brief discussion on applications to search and detection analysis will 

complete the paper. 

-15- 
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Search and Detection for a Stationary Obiect 

Randolph and Harrison (15) have analyzed the effectiveness of a given 

search force under selective deployment, and,  in doing so, have made 

skillful use of the normal bivariate distribution. 

If an object is located in a rectangle bounded by x, x +  ^x; 

y, y   +  Ay, the conditional probability that it is detected is defined as 

F     0 (x, y)     A x Ay, and the probability that the object is located as well as 

detected in this rectangle is approximately 

fx Y   (x,y)   F  U (x, y)]   Ax   Ay, (41) 

where X and Y are mutually independent, normally distributed random 

variables with zero means.    Then, the probability that an object is detected 

in R, the domain of f (x, y) is 
A, Y 

P  = / /   ^.Y ^ y)  F[^(x'y)]   ^ dy- (42) 

The conditional probability of detection is essentially determined by test 

and experiment, although analysis is usually necessary to predict the effectiveness 

of new, untried equipment. 

If the object is located within a normal probability density, then 

i 

(        (x.y) 
2TT CT     a 

x   y 

exp - 1/2 •     (43) 

and XY plane projections of the correlation surface contour lines form 

elliptical boundaries which are of fixed probability density.    In the discrete 

sense, elliptical rings formed by successive contour lines will also have a 

constant probability density (area).    Consequently, an optimum search effort 

is constant for all points in a selected ring.    The probability that the object 

-16- 



is in a selected ring is given by equation (18) where the constant has been 

defined as the square root of the exponential of equation (1).   Also see 

equation (67). 

To find the coverage region for a selected detection probability, let 

x , y 
u   =      ,   and  v  =  — (44) 

Then the density of U and V is given in equation (34) and, in the UV plane, R 

is the region such that 

R {u,v:    fU)V    (u,v)    =  d }      , (45) 

d being a constant.    But for U and V independent. 

fu,v (u,v) = fu (u)-   fv (v)- 

2TT 
exp yßi~    R1 

^     (r). 

(46) 

(47) 

where R   is a random variable of the radius, r is the particular radius of the 
.222 

circular region R, and f     (r) is the normal density at a point r  , with r    = u   + v . 
R1 1 

If R is an elliptical area such that 

R  =       x, y; (48) 

-17- 
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then in the UV plane the corresponding area is enclosed by a circle of unit radius, 

such that 

R=<u,  v :       u+v      =   1 |  . (49) 

A circular normal bivariate density function is now implied, with the 

region, R, the area inside one standard deviation.    Hence the area of R is rr, 

and, from equation (47), 

i e~ 0  2427 
t^jw^jw-^jw- =0-0965 (50) 

The relationship for P (cf equation (42)) and d is as follows: 

//fu,v <u'v> P    =     / /   fTT   .r    (U. V)    du    dv    "    AW d' (51) 

2 2 
here A (R)    =  area of the R region.   Since u     +   v     =   1, 

f (u,v)   du dv   =   0.6827. (52) 
U , V 

P   =   0.6827   -n (0.0965)   =   0.38. (53) 

To interpret, if the search objective is to achieve a 0. 38 probability of 

locating the object, the searching effort need only be conducted within the 
2 2 

circle formed by u     +   v     =   1.    Ot 

effort in the XY plane of the ellipse 

2 2 
circle formed by u     +   v     =1.    Obviously,  this is equivalent to a search 

2 2 
X + y 

2 2 
rr » 

X ■ y 

1. (54) 
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r 
Thus, the normal bivariate distribution integral can be used in optimizing 

search strategy (minimum area and, therefore, minimum time) for a selected 

detection probability. 

Search Density Function for a Moving Object 

The probability density function for the location of a stationary object is 

fixed with respect to time, once the related parameters are defined; but, for 

an object capable of movement, the positional distribution changes with time. 

With the conditions as defined by equations (19),  (20),  and (21), the probability 

density function that an object is in the area element dA at a distance R from a 

central point (e.g. , the point where the object was previously sighted at time t) 

can be defined as f(r) dA.    The speed of the object can be expressed as S, but 

in an unknown direction.    However, directions are random inasmuch as any 

one direction may be considered as probable as any other.    Then, 

2 2 
f(R)   dA   =  —r-9—e dA. (55)' 

L        be the object location at time t  =   0, 
o J 

L        its location at time t, 

A =     Z. OL     L   , 
t      o 

R =   distance OL   , 
o o 

R =   distance OL . 

Figure 3 shows the relationships. 

By law of cosines. 

2 2 2   2 
R      =   R     +   S   t     -   2R    St cos A , (56) 

since St  =   L     L^ , 
o      t 

•19- 
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Figure 3.    Probabilistic Location Geometry of an Object Moving 
in a Random (Unknown) Direction 
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and                                                                               /      R2 +S
2t2-2R   StcosX        , 

f(Ro)   dA   =   f(Rt,t)  dA  =   —^Y  expl -   — *     »    " 

(57) 

Defining the probability of an angle change, cU, as d A/ 2 77, the probability P , 

of the object being at L  and arriving there from any direction becomes 

P    =   f(R , t)   dA   dX/277. (58) 

Also, 

2       2    2 
,   R    + S    t     . 

f(Rt> t) 2       expl—1  1     Jo(iRtSt/(T   ) (59) 
277 rr 

where i is the imaginary term,      «/ -1, and where 

J    (i R^   St/a2)   =   1    (R+ St/a2), (60) 
o t o       t 

a first kind, zero order Bessel function. 

A full study of the search probability density function for a moving object 

would necessitate a separate detailed publication; but the treatment given here 

indicates the role of the normal bivariate density function in this type of search. 

The applications are, of course, in problems of drifting boats, submarine 

detection and intermittent surveillance, and,  in the abstract mathematical 

sense, a search for optimum values in the regions of certain functions. 

CONCLUSIONS 

This investigation has developed a reference paper for the normal 

bivariate density function.    The derivation, properties, solution of the integral, 

and an indication of the applications should help to clarify the general under- 

standing and role of this important analytical model.   New uses will undoubtedly 
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be found in space systems development in addition to more obvious requirements 

for multivariate distribution models.   In the interests of brevity, examples of 

correlation uses were not presented.   Obviously, however, the applications 

pertain to any case where two normally distributed, random variables are 

mutually or singularly dependent. 

It is interesting to note that there is sometimes an indirect dependence 

between mutually independent variables.  E.g., increasing missile trajectory 

energy (lower apogee and attack angle) may increase the downrange standard 

deviation; but,  since trajectory time is less, the crossrange standard 

deviation (partly a drift error) is decreased. 
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APPENDIX 

Elliptical Properties of Normally 
Correlated Distributions 

The equal-frequency curves obtained by making f(x,y), in equation (37), 

have constant values form an infinite system of homothetic ellipses.    Each 

ellipse is expressed by the following equation: 

2o 

r. 
a  a 

x y 

=  z. (61) 

The area of any of the ellipses is 

TT  Z.,    a     a 
1       x     y 

(62) 
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The probability that a random event,  (x, y), will occur in any ellipse 

defined by assigning a value to the constant,   Z  , is expressed as 

2 TT a    a 
 x -y 

TT a    a     V 1 - p' 
x    y 

exp 
2.       1 2(1 - o ) 

z1   dZ^ 

(63) 

or 1   - exp 
2(1   - P  )     J (64) 

Analogous to the concept of Circular Probable Error is the term Elliptical 

Probable Error.    The ellipse representing an EPE is sometimes referred to as 

the equal frequency ellipse or probable ellipse.   It may be defined as that 
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ellipse of the system having a probability of 0. 5 that a random event (x,y) 

will occur within it.   Thus, from equations (63) and (64) 

2(1 
2 

o   ) 

=   0.5 (65) 

2 2 
or      Z       =   1.3863 (1-c  ) (66) 

From (64) it can be confirmed by inspection that the probability that 

an event (x,y) taken at random will occur in a small ring obtained by assigning 

values of Z    in A   Z    is as follows: 

1-c 
exp 

2 (1 - P  ) 
A Z, (67) 

2 2 
For a constant A   Z   , the probability must be a maximum when Z    = 1 - c  . 

Therefore, the ellipse of maximum probability is as follows: 

2 c xy 
2 

T 

'y 

(68) 

This represents the ellipse along which more events are expected to occur 

than along any other ellipse of the system. 

2 2 2 2 
If now,  Z        =   1   - r   ,  is compared with Z      =   1.3863(1 -c   ) it is noted 

that the equal frequency ellipse, or probable ellipse,  is larger than the ellipse 

of maximum probability. 
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