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( ABSTRACT

A.1 Introduction

It is our purpose to establish a theory describing the state transition

of transistor flipflops making use mostly of phase plane techniques, but using

also a time or even frequency domain point of view whenever helpful. Based on

such a theory, we further wish to devise practical engineering methods of

analysis, design, and optimization of transistor flipflops.

We shall restrict ourselves to considering the asymmetric (Fig. A.1)

and the Eccles-Jordan (Fig. A.2) flipflops, with constant current IE fed into

the common emitters, and except for a short discussion, we shall consider only

the case of a rectangular trigger.

A.2 The Flipflop Differential Equation

Based on the differential equations relating terminal voltages with

the charges at the junctions and diffusion tails in a transistor we obtain the

transistor pairt characteristics below.

=[ - (-)k tanh x] (A.la)
wk 2

o 1 -a (A.b)
Zk - wk +awk

where k = 1, 2, is the transistor index used in Figs. 1 and 2, and the symbol

o dx
x T ; besides,

x = xI - x2 = normalized base-to-base voltage

T Throughout this volume the expression "transistor pair" refers to the pair

of identical transistors with the constant current IE fed into the common
emitter, as in Figs. 1 and 2.
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S2kT = normalized base voltages

wk = - normalized collector current

z = - normalized base current
kaE

t = 7 = normalized time variable

t' = real time variable

= collector time constant of the transistors

Equations (A.1) therefore, relate the collector and base currents of

the transistor pair to the base-to-base voltage.

Analysis of the feedback networks yields a differential equation in

the variable xk for each value of k (k = 1, 2 for the Eccles-Jordan, but k = 1

for the asymmetric flipflop), respectively related to trigger plus base currents

(ik + iBk) and collector currents ic, C V k.

We shall concentrate our attention on the asymmetric flipflop. The

result, after normalization, is:

-roo -i +xo eB +io o
__2p____ io (01 o s-x + i oB+w + ( T 1

(A.2)

where:

The k in the denominator is the Boltzmann constant.
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T =RC
i ii

io RiCo
io i -- time constants

-r =RC
oi o i

T0 R0 C0

IBRs + EcB = a _= biasing condition

i1

1 =1 normalized trigger current actually
1 a'E fed into the flipflop circuit

Since e1 is the trigger current actually fed into the flipflop, it

depends on the nature of the trigger circuit, and depends also on x itself.

In general, if the trigger circuit of transistor Tk is represented by

a current source of intensity itk and shunt interval conductances Gk, we get

ek = k - Gkx (A-3)

where,

itk

k  a = normalized trigger current source intensity.

Use of (A.1) with (A.2) and (A.3) will result in a second order non-

linear differential equation in x containing terms in tanh x along with its

first and second derivatives, and under a forcing function s1 (t), and its first

derivative 1 (t). This equation shall ba called "the flipflop equation."
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A.3 Piecewise Linear Approximation

A general solution to the flipflop equation is not known. Let us

consider, however, instead of (A.1), the characteristics below:

wk =-l 1 )kP(X)] (A.4a)

Z W - W (as before) (Ao4b)
k  wk  a k'

where,

-1, x <- : region I

CP(x) = x, xj < region II (A.5)

- 7
1+i, x > + :region III

and 7 is selected so that c(x) is the best possible piecewise linear approxi-

mation to tanh x. We are, therefore, considering an ideal transistor pair

whose behavior approximates that of the real transistor pair, but whose char-

acteristics are piecewise linear functions.

Equations (A.2), (A.3) and (A.4) will furnish equation (A.6), i.e.,

a second order differential equation in x, where the forcing functions sl(t)
01

and sl(t), although nonlinear in the whole range of x, will be formed by three

linear equations, respectively valid in the three regions as in equation (A.5)

above. The second derivative of cp(x) is a pair of impulse functions occurring

in the transitions of x into and out of region II.

With E(x) = qP(x) - tanh x, both a criterion of getting 7 such that max (x)

is minimum or 7 such that J -(x)dx = 0 will lead to 7 0.7.
0
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o00

ax a+b+cx d +m+ns+f() 8(x+ (A.6)

where a, b, c, d, m depend on the region containing x. i.e., they are step

- 1
functions of x, discontinuous at x = +

A solution of (A.6) can be obtained by solving a second order linear

differential equation in each region, using the final conditions in each region

as the initial conditions of the next region. The impulse functions can be

considered as discontinuities in the value of X.

A.4 The Rectangular Trigger and the Phase Plane Portrait

If sl(t) is a rectangular function of time, of duration T, then so(t)

is also a pair of impulse functions and can be taken account of as discontinu-

ities of X, at t = 0 and t = T, whereas s1 (t) itself can be represented as a

constant equal to W if the trigger is ON and 0 (zero) if the trigger is OFF.

Ta. have, so far, succeeded in reducing the analysis of a flipflop to

the solution of three equations like (Ao7) below:

ax+ + cx D (A-7)

d + W if the trigger is ON
D

d if the trigger is OFF

in three regions of values of x, matching their solutions in the boundaries

- 1 0
- ,1 and considering discontinuities of x at t = 0, t = T, and at

-

The phase plane equation corresponding to (A.7) is

D - cx b (A.8)
dx ay a
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where

0
y =x

The singular points (points of y = y = 0) are given by the solutions of

D cx =0 (A.9)

i.e.,

D (A.o)
c

and the nature of these singular points can be analyzed by studying the natural

frequencies of the system (A.11) below in a neighborhood around each

singularity.

0x= y

(A.11)
0 d c by a -a X.a

This analysis shows that, if the trigger is OFF, and under proper

biasing conditions, these singularities are two stable nodes,t one in each

region I and III, and a saddle point' in region II.

The action of a trigger of amplitude W is essentially to shift the

stable nodes by an amount Ax = - , and the saddle point by an amount ' N nW
c 'c

(parameters always calculated in the correct regions!).

In a neighborhood of a stable node both natural frequencies of the system
are real and negative (by definition).

In a neighborhood of a saddle point the natural frequencies of the system

are real and have opposite signs (by definition).
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When a singular point is shifted out of its proper region we say it

has became "virtual" because its nature still determines the behavior of the

system in that region, but it does not really exist. There is a value of W

above which the saddle point and one of the stable nodes become virtual. Then

the representative point P of the system will describe a trajectory towards

the remaining stable node. When the trigger is turned OFF this remaining stable

node (and also the other two singularities) returns to its resting position;

P will now move towards this point, which is, in effect, one of the two stable

states of the flipflop. Figures A.3a, b, c, d illustrate a transition.

Clearly, improper biasing may result in other singularity configura-

tions which will not correspond to flipflop behavior.

Study of some geometrical properties of the flipflop phase plane

portrait, expecially the study of the separatrices and of certain properties of

the trajectories can be made by analytical solutions to equation (A.8). The

usefulness of this approach is limited, however, by the complexity of the

algebraic expressions involved.

A.5 Engineering Methods for the Solution of Flipflop Problems

These methods consist essentially of the drawine of figures like A.3,

i.e., phase plane portraits which are good approximations to the true phase

plane portrait of a trajectory.

The time durations of any portion of a trajectory, say, between two

points Pa and Pb is given by:

Tab =tb -t a  y id
x

But if y(x) is a straight line,
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a T =~ t c '_
Tab ta - tb = A ' a

Various procedures can be devised for the drawing of these approxi-

mate portraits once the coefficients of (A.8) are known in every region, both

for trigger ON and OFF. From any approximate form of y(x) it is a simple matter

to obtain any waveform nf interest, such as x(t), wk(t), zk(t), etc., by very

simple graphical constructions.

Even though only the asymmetrical flipflop is considered in this

Abstract, it is very simple to show that the symmetric Eccles-Jordan flipflop

is formally equivalent to the asymmetric circuit.

A.6 Extensions

A.6,l--Simple formulae for fast estimates of flipflop transition times can be

derived from geometrical properties of the transition phase plane portraits.

A.6o2--The general (nonsymmetric) Eccles-Jordan flipflop can be treated by a

modified phase plane which takes into account the two sets of variables (Xk Yk)

k = 1, 2, with some use of curves in the time domain xk(t), and of a plane

(Xl,x). In some cases where there is a certain relationship between its para-

meters a nonsymmetric flipflop may be reduced to the asymmetric case.

A.6.3--Some degenerate cases, where one or more capacitances are zero can have

y(x) expressed in analytical and closed form.

A.6.4--Flipflops under other types of trigger can be studied by other techniques

than phase plane techniques, such as frequency or time domain techniques.
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* A.7 Practical Results and Future Developments

Comparison of theoretical with experimental results indicates that

an error of the order of + 10 per cent is to be expected from the application

of this theory.

There are strong indications that a large part of this error is

caused by the fact that, although (P(x) z tanh x, this is not so for the first

and second derivatives of these functions. However, the results are satisfactory,

and the theory could be extended in future to consider, for example: the non-

linearity of the capacitances involved, inductances in the passive network, or

perhaps the fact that these are distributed parameters. In another direction,

it could be improved by a formal mathematical investigation of the piecewise

linear approximation method for solving nonlinear differential equations.



( 1. INTRODUCTION

Many attempts have been made in the past to establish a theory of

bistable systems. The nonlinear nature of bistable circuits (flipflops), how-

ever, makes it impractical to approach the analysis of such systems by means

of mathematical techniques developed specially for the study of linear systems.

Nevertheless, several flipflop theories have been devised making use

of strictly linear techniques (3, 16, 19, 231.1 However, these theories, one

way or another, had limited objectives. Typically, each of them aims at a

specific problem among, for example, obtaining an approximation for the transi-

tion time, or finding minimum values for trigger duration and amplitude, or

studying some aspect of stability, etc. These limited objectives could be,

and were, attained with the linear techniques employed.

Adopting a quite different point of view, flipflop theory can be

reduced to the study of nonlinear bistable equations or systems of equations (in

general two first order equations) [26, 27]. The phase plane is the mathematical

tool that immediately suggests itself for this type of problem [1, 26].

In the literature, authors are usually not concerned with the analysis

of any specific physical problem, or mathematical model, but just with the

development of the mathematical technique itself. Objectives here were also

limited, since the establishment of a general theory was not aimed at, but it

was desired to show that some results could be obtained by applying phase-plane

methods to certain types of equations [26, 27].

It seems natural to attempt a general analysis of bistable physical

systems using the phase-plane as the main technique. However, a general

analysis of this kind would be of very little use (if it could be made at all)

A square-bracketed set of numbers refers to works listed under "Bibliography"
at the end of this dissertation.
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* first because nonlinear systems do not lend themselves too easily to

generalization and second, because whatever generalization we would achieve,

we would pay by not being specific about the most important of all electric

bistable systems (we consider the common switch as being a mechanical bistable

system... ) and the only one in which we are really interested, namely, the

transistor flipflop.

Thus the analysis of transistor flipflops--and of these only--appears

to be attractive, since specific results and methods can be obtained and applied

immediately. This is the objective of this report: a general analysis of

transistor flipflops by phase-plane methods. It is general in the sense that

any information about the flipflop behavior can be obtained from it, and also

in the sense that the general (nonsymmetric) Eccles-Jordan flipflop is con-

sidered. Its differential equations are established along with the more impor-

tant cases of the asymmetric (one base grounded) and the symmetric flipflops,

and we go as far as suggesting means to analyze this general case on a special

phase-plane.

Of course, phase-plane treatment practically outlaws any other but

the rectangular trigger (as will be clear in the sequel). However, the equations

established do not demand phase-plane treatment; in fact, for other types of

trigger, numeric solutions may be necessary. But we shall concentrate our

attention on the rectangular trigger case. The first part of the theory is

concerned with the establishment of the general' dynamic transistor flipflop

equations.

In a common emitter coupling configuration, i.e., we consider a general

Eccles-Jordan, and the asymmetric flipflops.
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Next the problem of approximating the system is discussed; a set of

approximate differential equations is established on a basis of piecewise

linear approximation to the original system.

This set of approximate equations is then analyzed in the phase-plane

using the time domain whenever expedient; this analysis includes the study of

existence and nature of singular points and the description of separatrices.

Then follows a discussion of triggering conditions, establishing their relation-

ship with the system parameters. A specially detailed discussion of trajectories

and their relation to parameters and trigger is presented. Some theorems about

the geometry of the system phase-plane portrait are proved.

On the basis of the above analysis some techniques are described for

the actual computation of trajectories, transition times, waveforms) or general

characteristics of a given flipflop driven by a given triggering circuit.

Especially simple formulae are presented with the purpose of better under-

standing the qualitative influence of the various parameters; these formulae

are also useful when a quick estimate of some transition characteristics is

needed.

Several extensions to the theory are also discussed, such as three

degenerate cases, the nonsymmetric Eccles-Jordan, and other types of trigger.

Finally, some experiments are reported on and their results compared

with the theoretical results.



2. THE FLIPFLOP DIFFERENTIAL EQUATION

2.1 Introduction

We shall try to find an equation which will not only describe the

flipflop behavior but which is also relatively simple. This is a rather

difficult task, since the number of equations describing such a circuit is not

finite. However, if we add the further requirement that the state variable be

a natural circuit variable, i.e., either a node-to-node voltage or a branch

current, then the possible number of such equations is reduced to about a dozen

possibilities.

A comparison among the most promising ones leads us to select the

base-to-base voltage as the circuit state variable. The ensuing analysis

illustrates the relative simplicity of such a choice.

2.2 The Transistor Pair Transfer Equation

Analysis of the transistor pair presented in Fig. 1 furnishes the

following system of equations, which represents an entirely general description

of the circuit both statically and dynamically [2, 15].

0 0

i El l q + + JEl(exp~vEl - i) - ClJCl(expqvcl - 1) (2.1)

iE2 = + qB2 + J 2 (expn vE2 - - (c2J 2(explvC2 - i) (2.2)

Cl qCl + eElJEl(exp vEl - 1) - icl(exprvcl- 1) (2.3)

ic2= -c2+ aEJE(expwvE2 i ) - Jc2(exprqvc - 1) (2.4)

0 0 0iBl + + + (+ - aEl)JE(expTWVEl - i) - (I - C1 )Jcl(expivCl - i)

(2.5)

-4-
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FIGURE 1: LOADED COMMON EMITTER COUPLED TRANSISTOR FAIR.
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(2.6)

El + iE2 E (2.7)

vE2 v El =v (2.8)

vcl 0 EC1 + RLlCl - v, (2.9)

VC2 = EC2 + R iC2 - v2  (2.10)

v - v 2 : v (2.11)

In the system above:

dxa) The symbol R means C7, and t' is the time variable.

Er electron charge

b) T with k =kBoltzmann constant

T = absolute temperature

c) RLI, R12 are the load resistances.

d) qEk ' qBk, qCkare the charges stored in transistor Tk capacitances:

qEk at emitter diffusion tail and depletion layer of the emitter-base

junction.

qBk at the base diffusion capacitance.

qCk at the depletion layer of the collector to base junction.

e) JFk' JCk are the saturation currents of transistor Tk, respectively of its

emitter-base and collector-base junctions, measured with the opposite

terminal short circuited to the base.

f) Ok , aCk the normal and inverse alphas of transistor Tk respectively from

emitter to collector and from collector to emitter.
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Obs.: Notice the unusual convention of signs, which has been adopted in this

report for convenience only.

Comments: The system has 11 equations and 13 variables; usually variables vI

and v2 would be independent, and then any other variable can be expressed as

functions of them.

However, this system of equations can be considerably reduced by

making the following simplifying assumptions (see Fig. 2).

The transistors and operation points are such that the following

relations hold, accordingly simplifying equations (2.1) through (2.6):

JEl(expqvEl - 1) aClcl(exp~vl - ) Cl

JE(expv E2 - 1) >> aC2Jc2(expqvC2 - 1) P -ac2Jc2 (2.13)

aElJEl(expqvEl - 1) >> Jcl(expqvcl - 1) -Jcl (2.14)

aE2jE2(expqvE2 - 1) >> Jc2(exp'vc2 - 1) - C2 (2.15)

(1 - aEl)Jhl(expvEl - 1) >> (1 - al)jcl(expqvc0  - ) -(i - l

(2.16)

(1 - ad)jE 2 (expiv2 - 1) >> (l - C2)JC 2 (expvc -) = -(1 " 2)c2

(2.17)

For each transistor, the following relations hold, accordingly

simplifying equations (2.1) through (2.6):

qEl I qBl and qCl I qBl (2.18)

qE2 << qB2 arl qC2 < < qB2 (2.19)
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FIGURE 2: UNLOADED TRANSISTOR PAIRWITH JUNCTION CAPACITANCES
NEGLECTED.
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i ~and m = 2c (2.20)
qBl = CliCl B C22

where T~ is the "collector time constant" of transistor T The transistors

are such that the following relations hold, accordingly modifying equations

(2.1) through (2.6):i

TCl - c C2 = (2.21)

' El = a (2.22)

JEl = E= 1 (2.23)

T, a, j independent of any system variable. (2.24)

Assumptions (2.12) through (2.17) divide the system (2.1) through

(2.11) into two interdependent systems, namely (2.1) through (2.8) and (2.9)

through (2.11). The first has eight equations and nine variables, so that all

variables are determined if one of them is given; v is the "natural" independent

variable. The second system has three equations and seven variables, so that

four variables must be specified; in general, v1 and v2 would be given (thus

specifying v by (2.11)) and also i and iC2 which are solutions of the first

system of equations.

These approximations restrict our analysis to nonsaturating matched

transistors. Constancy of parameters with respect to system variables as well

as negligible Junction capacitances are fairly strong assumptions, since they

cannot occur in practice [15]; however, we feel that the increased complexity

involved in trying to take into account such things is too high a price to pay

for the small increase in accuracy to be obtained.
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We obtain the system of equations below by substituting (2.12) through

(2.24) into equations (2.1) through (2.8):

o 1
iEl = TiCl + (2.25)

o 1
iE2 = TiC2 +- iC2 (2.26)

iCl = aEexpTjvEl (2.27)

it2 -- o E expqvE2 (2.28)

iB = iCl - C (2.29)

im = Ti 1- a i (2-30)

i 2 + a C

iEl + i E--mIE (2.31)

v E2 - VE = v (2.32)

Here we have neglected all terms JCk' CkjCk ( - %Ck)JCk; in the

same spirit we have used the approximation

JEk'expivEk Z iEk(exp'vEk - i) (2.33)

which is not strictly valid. Actually, it is only valid as long as vEl is

positive, but not if vE1 is negative. However, to use this approximation (or

should we call it a substitution!) for all the range of vEk is equivalent to

connecting a current source of strength jEk in parallel with the emitter-base

junction of Tk, in a direction such as to yield input current zero when

VEk --



This will make very little difference as far as results are concerned,

but will considerably simplify the algebra involved. To be sure, it will tend

to compensate for the fact that we have already neglected the collector-base

junction saturation current, yielding even a better composite characteristic

for the transistor pair.

Equations (2.9) through (2.11) are now irrelevant since we seek to

express the currents as functions of v, which can be obtained just by solving

system of equations (2.25) through (2.32).

For convenience, we apply the following transformations of variables

to this system:

t = t (2.34)

wk , k =l, 2 (2.35)

zk = -, k = 1, 2 (2.36)

X Iv (2.37)

R0 is the output resistor as shown in Fig. 3.

From now on, the symbol R will be used for 2, unless otherwise

specified. We obtain:

1 + w2 ) + (11 2

w2 = W 1exp2x (2.39)

w2 = (wO + 2 w1)exp2x (2.40)
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o 1- a
zi = w 1 +-- w1 (2.41)

1 = -a (2.42)
z2  -2 w2

from which we get, using (2.38), (2.39) and (2.40):

+ +°i± + tanh xrW, (1 tawzux) (2.43)

This equation can be written in the form:

Mdt + Ndw = 0 (2.44)

If this is done, then we have:

W - S) + °(l + tanh x) - g(t) (2.45)

where g(t) is only a function of t, i.e., it is independent of wl; here we

assume that x = x(t) is a given function of t, independent of wI .

Then IL(t) = exp g(t)dt is an integrating factor for equation

(2.43) [8]. We have then:

exp {+f(1 + tanh x)d} (2.46)

But

Hece + tanhx)xdt (1 + tanh x)dx x + £m'(cosh x) + const. (2.47)

Hence, ignoring the constant,

t

p(t) -exp&. + x) cosh x (2.48)1 - tanh x
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The differential equation can now be easily solved.

Let F(v4l,t) 0 be the solution; then:

' l p (t) (since M 1 )

and (2.49)

dF
a= Np4t)f

We get from (2.46):

F(wl,t) = w1 * p(t) + f(t) = 0 (2.50)

and from (2.49) and (4.50):

Np(t) = w2 "(t) + ?(t) (2.51)

Therefore

f(t) = - 1 (1 - tanh x).i(t) (2.52)2

So:

f(t) =- gfl - tanh x) p(t)dt (2.53)

From 12.48) into (2.53):

a t

f(t) = - exp + const.) (2.54)

From (2.50), explicitating wl, we finally get:

1- - tanh x)[ + Cexl(- t)] (2.55)
2l ( l (
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where C is an arbitrary constant determined by some initial charge stored in

the bases prior to the moment t = t0 when the circuit takes on the configuration

described by (2.43). Therefore, for all practical purpose Cexp(- t) is zero,

since we can assume this configuration to be in existence for an arbitrarily

long time; we finally have, using (2.56), (2.39), (2.41) and (2.42):

The "transfer functions":

W, (1 tanh x) (2.56)

w (1 + tanh x) (2.57)w2 --

and the "input functions":

i a (1- tanh x) - o sechx; (2.58)

1 fl a (1 + tanh x) + o. sech2x} (259): z2 -- sh -1 (259

For completion, we have, with k = 1, 2

o~~ kl-ao0 00 0Z k ° + x 2(x) tanh x • sech2x (2.60)

which are the characteristic functions for a transistor pair connected as in

Fig. 2.

As a corollary of this solution, we notice that, at all times, the

following relations hold:

A'
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w11 + W2  Cl + i C 2 .

(2.61)
S+  ( ) + a)

1~ '2 a> iBl B2 T 1-)E

which check with (2.7): i + i! .

2.3 The Asymmetric Flipflop

The asymmetric flipflop shown in Fig. 3 has a feedback network whose

configuration depends on the trigger circuit, as shown in Figs. 4a and 4b.

However, we can obtain the equilibrium equation for this network

assuming an arbitrary trigger current i, which can be replaced by its value

when a trigger is specified (see section 2.5).

Analysis of the circuit of Fig. 4a yields:

oVi + i + i+ oi + T v) 1  v, R + +R 8 Ec +R i( iBl)+ Rs(i +iB1)

(2.62)

where:

a) - i = RiCi (2.63a)

b) 0 o= -- C (2.63b)

c) io = RiCo (2. 6 3c)

d) 'oi =RoCi (2.63d)

oi
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Notice that in this asymmetric flipflop (Fig. 3) vI z v. Let us

apply to (2.62) the same transformations of variables used in section 2.2, i.e.,

equations (2.34) through (2.37), and also (2.64) below (a similar transformation

for the trigger current):

e = (2.64)
alE

o dx
The result, with x again standing for w , will be:

°° i + ~ +' ° T °  zl R )- +  T R+2 +

22

(2.65)

where

. IR s + EC

a) B s + (2.66a)
aIERO

R

b) p = i - a s (not explicit above) (2.66b)Ro

c ) p = r RO (2. 66 c)

If we expand (2.65) by replacing z 1 according to (2.58) we get:

i000 i + Toi + To o
i--O i 0x+x (2.67)

p (1 + 2B + p) + (1 - p)tanh x + 2 T (O+ )R8( - z

where

-%I1111 wmm ,, ,
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z sech2x (2.68)
0

The condition given by

l+2B+P =o (2.69)

is called "state-symmetry."

In practice the effect of the base current on biasing, represented

by the term pp, is usually small (see (2.66b)), so that the state-symmetry

condition can be approximated by setting 1 + 2B = 0. Of course the larger a

is (closer to 1), the better this approximation will be.

Equation (2.65), whether in this form or its more explicit form

(2.67), is the general asymmetric transistor flipflop equation.

2.4. The Eccles-Jordan Flipflop

Analysis of the two feed-back circuits of the flipflop of Fig. 5

leads to the following pair of differential equations:

T ikokoo T ik +  oik + T ok o
2 xk + T xk + Xk

(2.70)

12 2w 2 iok 0o Rsk )+P Pk f2k + 2 + 2 T (ek + zk) + 2 -- (ek +
% k k  + -k j

with k = 1, 2; 1 = 1, 2; 1 k; r as in (14.1) and (14.4) and:

a) ik RikCik (2.71a)

Notice that this term implies that the base-to-base voltage iv (in this case
identical to vl) will have a constant component equal to W(l - a) R.
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b) Tok" okk (2.7b)

c) r iok =Rik ok (2.71c)

d) Toik -RokCik (2.71d)

e) Rk = Rik + Rok (2.71e)

t) B k IkRsk + Ek (2.71f)
1alERk2 ok

g) x 'vk (271 )

h) k =1 T"2ok27h)
i
k

i) eL  k (2711)

k 
a

J) wk and z k are given by equations (2.56) through (2.59) with

x replaced by (x1 - x2). (2.71J)

Notice that ik is the trigger current actually fed into the flipflop;

itk is the trigger current put out by the pure current sources (see Figs. 4).

Executing (2.71J), wk and zk turn out to be:

w* 2 f + (_,) k tanh(x - (2.72)

z [1 + ( _)k tanh(x1  _ X2 )] + ( _)k( 2 )se h (. - x2 )}

(2.73)
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Taking (2.72) and (2.73) into (2.70) we get:1

ik.okc jik + oik + okk

T k fi +k o_2Bk+Pk) (2.74)

- (-)k(1 - )th(x -x2) + 2 iok + Rsk ( (+l2kz?(
k k + R 2 -(k 0O 1ok

where, with k = 1, 2:

1 - a Rsk
a) pk = a Rok (2.75a)

b) z = ( - )sech2(x- x2 ) (2.75b)

Equations (2.74) describe a general Eccles-Jordan transistor flipflop.

The asymmetric flipflop equation (2.67) is a special case of (2.74), and so is

the symmetric flipflop, represented by equation (2.77), as follows:

Let us consider the case of a symmetric (but possibly unsymmetrically

biased) flipflop. Subtraction of (2.70, k = 2) from (2.70, k = i) yields:

Ti To OO i + oi + T 2
2 - x + x f2 (Bl B2) + 2(w- " w2)

(2.76)

Tio [ol o Ri 0
+ 2 - [( 1 - 62) + (e l - 22)1 + 2 0 [(e1 - e2 ) + (zl - z2)!}

This furnishes (2.76) below, which can also be obtained directly by

subtraction of (2.74, k = 2) from (2.74, k = 1):

Notice that (_l)k 
-
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Tiooo Ti + Toi 0 0+ T'-  x + X+ X

(2.77)

= p {2(B 1 - B2 ) + 2(1 - p)tanh x + 2 -i- [9 + + 2 E- [9 - 2zo]}

where the indices 1, 2 have been dropped from all parameters P whenever

P1 P2; in the case of the variables we have as before:

a) x = x1 - x2  (2.78a)

b) 0 = el - e2  (2.78b)

c) z = zl- Z - tanh x + 2zo] from (2.73)

(2.78c)
and (2.78a)

d) zo = sehSsecx (2.78)

Inspection of (2.74) and (2.75) shows that the symmetric flipflop is

formally equivalent to the asymmetrict one. Furthermore, if it is biased in

such a way that B1 = B2 (not necessarily symmetric biasing), then it is

formally equivalent to a state-symmetric asymmetric flipflop.

We should stress the importance of this conclusion, since it actually

doubles the effectiveness of the theory! But better yet, it allows us to

compare the performance of any symmetric flipflop with its asymmetric counter-

part, for we will actually be comparing formally equivalent things.

In this report, the word "asymmetric" is reserved for the flipflop of Fig. 3.
The Eccles-Jordan with different parameters on either side will be called
"nonsymmetric."
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We can anticipate here that (as will be seen in the following) that

all other things being equal, the asymmetric flipflop besides being simpler,

performs better than the symmetric flipflop with the same parameter values.

2.5 Triggering

The equations we have found so far take the trigger into account in

a rather general form. Among the infinite possible trigger waveforms, however,

we shall discuss only those which are the most important in practice, and

study them in some detail.

First we consider the type of trigger circuit. It can be a:

a) Voltage source with negligible internal resistance.

b) Current source with negligible internal conductance.

c) Voltage source with considerable internal resistance.

d) Voltage source with considerable internal conductance.

So for the trigger current waveform, the following are three

important types (see Fig. 6):

a} Rectangular.

b) Impulse.

c) Pair of rising and decaying exponentials.

d) Sinusoidal wave plus constant, simulating usual trigger.

We will study type a) in detail, and discuss types b), c) and d)

(see section 5.5).

The asymmetric and symmetric flipflops will be treated together

(since they are formally equivalent), and an indication will be given as to

how a basically similar method applies to the more general nonsymmetric

Eccles-Jordan flipflop. This is Justified because of the much greater practical

importance of the asymmetric and syuetric case, compared to the more academic

importance of the nonsymmetric case.



-25-
#no 8.9 a 9#n

TT

a) RECTANGULAR TRIGGER.

-~MM 
,___ __t

to0

b) IMPULSE TRIGGER.

to -o;* -l

W.-T -1o

W) FAIR OF RISING AND DECAYIN4G EXPONENIALS.

9*so0 9u1 (I-sMfL) 9n.0

- toi ~ to T t
me- T -. 1

d) SIUSOIDMEAl AVE PLUS CONSIA'r
SiMULATI USUAL TRIGGE.

FWGRE 6: TRIGGE WAVEFORM.



-26-

In the treatments of both voltage and current triggering sources, we

will assume that the trigger has a definite duration, outside of which current

sources have zero output current, and voltage sources are isolated from the

input of the flipflop (say, by means of an open diode gate).

One way of simulating this condition is to require that, outside the

duration of the trigger the voltage or current of the triggering sources are

such that the normalized trigger currents ek be zero, for any k.

Let us consider the various types of trigger: type a) is a trivial

case, since the variable x is specified; case b) is both theoretically and

formally a special case of d) and case c) is shown to be formally equivalent

to d), which is not surprising since one case can be converted into the other

by Th~venin or Norton transformations.

We will establish expressions for 6 in each of the special cases

mentioned above except case a).

Case b): See case c).

Case c): Let the trigger circuit be as shown in Fig. 7a. We get,

with k 1, 2:

GkRo

e k = et 2pGk  k  (2.79)

0 0 GRkok o
ek = etk 2 k xk (2.80)

where
it

S_ =tk is the normalized trigger current put out by (2.81a)
Otk the ideal current source.

ak = k is the normalized trigger current actually fed (2.81b)
CIE into the flipflop terminals.



-27-

itkl I Gk Vk FL I P-FLOP

FIGURE 7a: TRIGGER CURRENT ik PRODUCED BY CURRENT SOURCE.
CLEARLY, IkmitkGkvke

Vt vVi FIPFLP tk I ?kIt FLIP-FLOP

* FLI~FLO-.mmk1 I

FIGURE 7b: TRIGGER CURRENT ik PRODUCED BY VOLTAGE SOURCE.
CLEARLY,

IF I*~G~t ANDR

FIGURE 7: TRIGGER SOURCE
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Gk is the trigger circuit internal conductance. (2.81c)

Now case b) is obtained by letting Gk - 0 in equations (2.79) and

(2.80).

Case d): Let the trigger circuit be as shown in Fig. 7b. We get,

with k =1, 2:

R Ro
"ok (2.82)9k = kR tk" kRk'k

0 l o 1 o
6 k l tk ] X (2.83)Ok 1 Xt -1 k

2 1 2t i Rk

where:

1

X = V is the normalized source voltage. (2.84)

Hence, independently of the nature of the trigger circuit the form

of ek is the same. In other words, the voltage source xtk with internal

resistance Rk can be converted into a current source of intensity etk and

internal conductance Gk given by:

e R(
tk 2PkRk X (2.85)

G* 1 (2.86)

From now on sk will be used meaning either etk or 0*kJ whatever the case may

be.
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Furthermore we will require that whatever the waveform of Sk, it

must be nonzero only for a time interval (tak tbk), being zero at any other

time.

From now on we will use only sk and Gk to describe the trigger.

For the asymmetric flipflop, we will have only sl and GI; for the

symmetric Eccles-Jordan s I - 8 = s, and we require G, = G2 = G. For the non-

symmetric Eccles-Jordan we will keep sk and Gk, k = 1, 2, in their respective

independent equations.

We can also account for the possibility that Gk has one value when

the trigger is ON and another when it is OFF by using an index p to indicate

which case is being considered: Then 4 = 0 or 1 will indicate respectively

trigger OFF or ON, and G will assume the appropriate one of its two possible

values, GkO or G
kO kl

With this notation, the general flipflop equations are:

For the asymmetric case:

lb

T iooo i oi o + o + (T i R A4 )
x +  + + (1 +RoGo)x

T2 x+T s

oi
= {(1 + 2B + P) + (1- P)tanh x 03 2.c+ a) + " s

T a/ RT

" iO (o)2tanh x3 sehx 2 _o R ' }(.7
- -  + + (2.87)

For the symmetric Eccles-Jordan case (not necessarily symmetric

trigger):
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i 0 2 + Toi +1T0 + iOGt)
T2 9+ ( 1 R8G14)

=p {2(B1  B2 ) + 2(l - p)tanh x - 2 ['io291+ (i;a) 'i_

where:

x x - x2 x (2.88)

1 s2 (2.89b)

G = G1  = G 2p (2.89c)

All other coefficients being the same for both
values of circuit index k, the index has been dropped. (2.81)

For the general nonsymmetric Eccles-Jordan flipflop:

ikTok oo 'ik + 'oik + Tok + Tiokoktk io

-2 - k +  - °k  + (l + RskGk )xk

SPk f(l + 2Bk + k) - _(-i)k(l - Pk ) tanh x

+ (_l)k [' +(-," iok 02+)tIx sechOx
aI7_- "O + 'ok,/ " k (X)L

I \ o

* 2 k + s , k =1, 2 (2.90)Rok
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2.6 The Approximation Problem

We have thus established the nature of flipflop behavior through

equations (2.65), (2.70), (2.74) or their respectively equivalent forms.

It is clear that the chances of success of an attempt to solve such

equations exactly are very slim indeed [18).

Therefore, in order to get useful results, we must bow and try to

find approximate solutions to these equations.

There are two possible approaches to this problem. One is to find an

approximate model to the circuit. This model must be described by solvable

equations. We then consider such solutions as approximations to the exact

solution of the original problem. The other approch is to approximate the

original equations directly, rather than the model. The latter approach would

probably allow more accurate results to be obtained, since an error introduced
O0

in approximating say ick(v) would not necessarily propagate through iCk(v) to

ik(v), and then to i (v). That is to say that each function would be

calculated exactly for our original model and then each one of them would be

approximated as well as possible.

However, as we will show, this question does not necessarily affect

the nature or even the complexity of the equation or system of equations we

must analyze. For in fact, since an exact solution is not to be found but

instead we must be content with an approximation, we might as well linearize

the problem. This would involve dividing the x-axis into regions where the

function of x appearing on the right-hand side of the equation can be approxi-

mated by a linear function of x. Let N be the number of such regions. Then

we would reduce our problem to that of solving N linear second degree

differential equations valid in their respective regions and match the solutions



-32-

at the border between every pair of adjacent regions. On both the phase plane

and time domain, these regions are N strips separated by (N - 1) lines of

x = constant.

One of the great advantages of this type of approximation is the

relative simplicity of its applications, whether in the problem of analyzing

the properties of the circuits involves, or in the actual computation of

transition times and waveforms.

If this direction is chosen, then we have decided to pay a price in

exactness for the advantages of simplicity and usefulness. Then it is a

question of inspection to see that the most promising way to arrive at con-

sistent results is to approximate the transistor pair model, i.e., equations

(2.56) through (2.59) must be the basis for the definition of a "reasonable"

piecewise linear model [26].

Of course the problem centerson how to linearize tanh x. There is a

good degree of arbitrariness here, but we will select the following three

region approximation (see Fig.8).

tanh x q(x) (2.91)

-1, x <
7

_(x) 7x, 1 < < (2.92)

+1, + 1 < x

where 7 is a factor which depends on the criterion for the approximation. In

general 7 will be somewhere between 0.5 and 1.0, especially if a minimum

integral error is sought. In this case, we would have:
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1

lim{ (tanh x - x)dx + (tanh x - l)dx - 0

0 1

lim {hN cosh - - " + - I+- 0

i.e.,

1
= -> 2 = 0.721

This criterion, of course, is quite arbitrary, and there is nothing

to prove that it is the best; however, it also reduces the maximum absolute

difference between the two functions to about 0.120 at the worst point. This

is not a minimum; if y is selected to minimize this maximum absolute error

rathL- than the integral, then it would be 7 0.714 and the maximum absolute

error would be about 0.115.

So, for simplicity, we could for example, take 7 = 0.7, or alter-

nately (and perhaps better) take 7 = 5
7.

Whatever the criterion may be, the intention of using such a factor

r is to reduce somewhat the error by which the solution to the differential
equation is affected due to the piecewise linearization process. This would be

the ideal criterion if it were not impractical.

A five region approximation could also be used with perhaps better

accuracy, but increased labor involved both in computation and analysis. In

general the accuracy can be improved by increasing the number of regions, which

results also in increased labor.

Since the technique does not change in essence, we shall use the

three region approximation in this dissertation.
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Equations (2.56) through (2.59) become:

1k = + (-)k(x)} (2.93)

zk = l [1 (-1)kcq(x)] + (-) k xc'(x (2.94)

k = a-~k7x

= ,~kfF-ao o1..,~ij- iX XOIw j +)1.wI (2.95)

with k = 1, 2. The prime indicates differentiation with respect to x. Also,

2, X CP'(x) (2.96)z0 2

And obviously,

, 0, x <-i

q '(x 7, i< x < +i
V (x) -, (2.97)

*7 7

1
0., + < x

Differentiation of C'(x) will clearly consist of two impulse functions,

since cp'(x) is constant everywhere except for two discontinuities. We get:

q"(x) = r (x + 7) - 5(x - )(2.98)

where 75(x) is an impulse function of strength 7 occurring at x = 0.

The flipflop equations (2.87), (2.88) and (2.90) will be approximated

by the following equations, respectively:

For the asymmetric case, (2.87) is approximated by:
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-0 Ooo + + (1 + PG)

['ILo CT o+R X
(1~~~ ~ ~ ~ + B+ )+ x)()a

° 0 1"x)

For the symmetric Eccles-Jordan case (also not necessarily symmetric

trigger), (2.88) is approximated by:

Tiooo+ Ti + Toi + T x + (+ RG )x
T2 T

-- 2(B1 - B2) + 2(l - p)lp(x) - r L x a 1 T Rq ) • 1p (x)

Tio (o)2 R ) 1.O
-2 - " ( (x) (2.100)

with

x = xI - x2  (2.101a)

s = sI - s2  (2.101b)

G G = G21 (2.101c)

All other coefficients being the same for both values (2.10d)
of circuit index k. the index has been dropped.
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For the general nonsymmetric Eccles-Jordan flipflop, (2.90) is

approximated by:

*ikokoo ik 'roik + ok O ikR0okGtkU0 (o +
- +x + (1 ~ )x

* Pk (l + 2Bk + oI - (-)k( - Pk)f(x)

(2.102)

+ iokoo 1 - a Tiok Rsk

' .'" x + a _T R - IV (x)

t R
+ (-,)kTik () 2 ,,(x) + 2 -iok s k o k =1,2

°2 Ts k +-k 8 , k 1 , 2
Roh

Therefore, equations (2.65) and (2.77) will be approximated by an

equation of the type:

a b + c = d + f(0)[5(x + -) - 8(x - -)] + m s + ns
V vgi VPi V 7 7 Y

(2.103)

where

v = 1, 2, ... , N, is the region index, and

{ = 0, 1 is the trigger index.

The system of equations (2.70) can be similarly approximated:

00 0 fII III 20 0 1
A bhvpk kvp xk a~~+ x+ ckVx + d3kV + fk~/I)LJ~ + B- 17))~p

+ mvk+ nksk (2.104i)
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where

x=x - x 2, k , 2,

V and p as for (2.103) above

Obs.: Notice that C and C may vary with the state of the transistors. We

will recognize the possibility of one value in each region, and so, strictly

speaking, Ti) Ti0, TOi and T0 depend on V, the region index. When necessary

we shall indicate this dependence explicitly, but not otherwise.

Tables I.1 and 1.2 contain the values of all the parameters of

equations (2.103) and (2.104) for the case where the number of regions is three.

Therefore, a detailed study of such equations is useful; it informs

us about flipflop characteristics and also serves as a basis for analysis and

design procedures, optimization of trigger, and study of interaction with

adjacent circuits.

2.7 Summary

In this chapter we have analyzed a general transistor flipflop circuit

and discussed its equilibrium equations.

a) The characteristic equations for the transistor pair with both emitters

connected to a common constant current source is obtained.

b) Analysis of the asymmetric flipflop leads to a second order nonlinear

differential equation.

c) Analysis of the general Eccles-Jordan flipflop leads to a system of two

second order nonlinear differential equations. It is shown that both the

asymmetric flipflop and the symmetric Eccles-Jordan flipflop can be

represented by a single differential equation. In the first case, because

one of the equations does not arise since its corresponding would-be
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variable is forced to be zero at all times. In the second case, because the

difference between the two original equations is taken leading to another

equation of the same type. Therefore the formal equivalence between

symmetric and asymmetric flipflops is established.

d) Triggering is discussed and the representation of triggers in the flipflop

equations is presented.

e) Finally, the approximation problem is discussed and a course of action is

decided upon, which, although somewhat arbitrary, seems to minimize the

unavoidable error.

!I



3. STUDY OF THE FLIFFLOP EQUATION FOR THE CASE OF A RECTANGULAR TRIGGER

3.1 Introduction

We have, so far, broken down the problem of flipflop analysis and

design into the analysis of two possible cases a) and b) below:

a) Problem of the fourth degree: the general nonsymmetric Eccles-

Jordan flipflop, described by a system of two second order nonlinear differential

equations.

b) Problem of the second degree: the asymmetric flipflop and

symmetric Eccles-Jordan flipflop, which can both be described by the same

single second order nonlinear differential equation. This will be called "the

basic flipflop equation," because its analysis, besides its greater practical

importance, turns out to be fundamental for the analysis of the general case,

since the two equations describing the latter are closely related (formally) to

the single equation describing the former. It is also basic (in a sense) in

obtaining the equation for the following special case.

c) Problem of the first degree (internally restricted flipflop):

We are considering only the second case where the transistors are identical.

In this case, if the circuit capacitances are negligible, no matter what the

symmetry of the flipflop may be, it can always be described by a single first

order nonlinear equation which can have its exact solution presented as a

quadrature formula.

In this chapter the problem of the second order (case b)) under a

rectangular trigger will be analyzed mainly from a phase plane point of view,

but the time domain will be used whenever convenient, to complement such

analysis.

In Chapter 5 we will extend the theory to treat a general Eccles-

Jordan flipflop (case a)) and also the internally restricted flipflop (case c))

which will be treated as a problem in its own right.

-42-
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The possibility of different kinds of trigger will also be discussed

in Chapter 5, and the methods available for the treatment of such problems will

be examined.

Our main concern is the phase plane analysis of the second order

flipflop under a rectangular trigger, but, nevertheless, we shall try to

approach the most general problem as much as possible.

3.2 Phase Plane Analysis of the Basic Flipflop Equation

3.2.1 General Remarks

Before discussing our specific problem, we should briefly describe

the various possible types of singularities on the phase plane for a system of

equations such as (3.1), where P and Q are polynomials with no common factor.

x = P(x,y)

(3.1)
y= Q(x,y)

The plane (x,y) is called the phase plane (by extension, even when

y # o); on the phase plane the points (xo, yo) such that = = 0 are called

"singular points" or "singularities" of the system (points of "velocity" zero,

Lequilibrium points," or "states" of the system) [1, 4, 17, 22].

The singularities are essentially "point paths" in the phase plane,

and therefore, as a consequence of the existence and uniqueness theorem a path

may tend to a singularity, but will never reach it.

The nature of a singularity P0 is given by the behavior of the system

in an arbitrarily small neighborhood of P0. This behavior is the same as that

of the "system of the first approximation about PO."

If P0 has coordinates (xo, yo), the system of the first approximation

about P0 is the linear system obtained by:

. . .. ... IIIIni n n n n n,0 ~,



a) making a transformation of variable

a a x - x ] P(xy) = P(xy)

so (3.2)

Y Y " Yot Q(x,y) = 4(xy)

b) taking

x = AllX + A1 2 y

(3.3)
y = A2Ix ' A22y

where the Aij are the coefficients of the terms of first order of P and Q, in

the order indicated.

The solution of (3.3) in parametric form with parameter t will con-

tain exponentials of %at and %0t, where %a and X are the two characteristic

frequencies of the system, i.e., the two eigenvalues of the matrix (Aij), given

by the solutions of

A 11 % A12
0 (3.4)

A21 A22 X

By definition, the singularity Po(xo,yo) of the original system is

called:

(i) Stable node if Xa and X are real and negative, i.e., x(t) and y(t)

contain only damped exponentials.

(ii) Unstable node if and X are real and positive, i.e., x(t) and y(t)

contain only growing exponentials.

(iii) Saddle point if XA and X are real and have opposite signs, i.e., both

x(t) and y(t) include one growing exponential.
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(iv) Stable focus if X and are complex with negative real part, i.e.,

x(t) and y(t) undergo damped oscillatory motions.

(v) Unstable focus if Xa and X, are complex with positive real part, i.e.,

x(t) and y(t) undergo growing oscillatory motions.

The study of singularities is important mostly because if a system

maintains the same qualitative properties in a relatively large neighborhood of

a singularity, then the nature of the singularity will give us considerable

information about its behavior in this neighborhood.

3.2.2 Existence of Singularities

Taking into account equations (2.91) and the group (2.93) through

(2.96), equation (2.103) was obtained from (2.65) and (2.77), with parameters

as described in Table I; for convenience, we repeat (2.103):

oo x o

ax + bx + cx = dV + f(x)[(x + 6)-(x - -1)] + mVS + ns (2.103)

where V = I, II, III, is the region index.

0We define a new variable y = x, and express (2.103) as a system of

two first order equations:

1 0
a(3.5)

o D C bP
y a y

V V

where

D = dV + f(°)tb(x + ) - B(x - + m ° + ns

I~~r" Yll / Ill l ll
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Notice that dv is a constant in each region, and that the impulses

occur in the borders between regions I and II and between regions II and III

(this is a direct consequence of the way p(x) is defined).

Let us assume that s is a rectangular function and that therefore

is a pair of impulses:

0, t < te

s = lW, to < t < te + Te t + o < (3.6)

0, te +Te < t

s = W(6(t - te) - 6(t - t2 - Te)] (3-7)

0

Convention on Impulse Amplitude: The impulse contained in z has its strength

proportional to y2/a, but occurs at a point where both "y" and "a" are discon-

tinuous. In that case we will take those values of "y" and "a" adjacent to the

discontinuities but inside region II.I

It is easy to see that any impulse of amplitude A contained in D will

correspond to a discontinuity t in x:

In the time domain:

AS(t- t ) A lim(x(t + E) (t- r L (38)

In the phase-plane:

This is not so arbitrary as it may seem. In fact, we are trying to analyze a

nonlinear differential equation by means of a piecewise linear approximation.
It is very easy to show that any other choice for "y" and "a" between the
respective extremes of their discontinuities will lead to the existence of
crossed paths in the phase plane, which certainly will not be a portrait of
any physical system.
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Ab(x- x ) -. = lim°(xC + ')-°(x - r)) -A. (3.9)

a a. aa

* Therefore, whenever an impulse occurs, it can be taken into account

by assuming new initial conditions after the impulse with the discontinuity

in 2 described by (3.8) or (3.9) and x(t) being continuous.

With this device we completely eliminate the impulse functions from

our equation, absorbing them into suitable discontinuities of x.

Now we can express (2.104) as two separate cases:

0x =y

(3.10)

0 d VP c VP b I
Therefore, the phase-plane equation is:

2z=d - cvx b (3.n)

dx aY

where:

if trigger is OFF, p = 0
" I d = d + VnW, where

f trigger is ON, ± = I

Obs.: Notice that the definition of d has a meaning only in the case of a

rectangular trigger.

The singularities xVP of (3.11) have the coordinates (x V,yv,), where

the xVP are the roots of

dV - cvx =o (3.12)

r I mll i~ m i l l lV l V1m ..



{

We get

xvg c Yv(313)
cVP

where

N,= (xVP,) is in region V, and p is the trigger index.

If xVP is not in region V for a particular value of V4, then we refer

to this point as a "virtual singularity," since it has an effect on a repre-

sentative point P only if P is in region V, but ceases to have any effect over

P if P leaves region V. Since x V itself is outside region V, there is a

neighborhood of xVP in which P is not affected at all by xV .

Table II lists all possible values of xV9, and also the effect of the

trigger; the important special case of state-symmetry and trigger OFF is

presented in Table III.

It is not superfluous to point out some of the important results

presented in these tables. Let us consider Tables II.1 and 11.2 and III.

Notice that if I < p7* holds, then:

4L 7 'texi~l iP a
1

a) x l , then x l = X .

b ) x 1 *=O'Wisthai svrul te l M i lo itabtXl4
c) x + then x i1 ix1 n ls

d) p + gn'W is such that x is virtual, then x ll is also virtual, but x

is real.

e) 4p + gn'W is such that x 1i~ is real, then x 14and x IIT4 are also real.

f) (P + An'W is such that x,,, is virtual, then x IIP is also virtual, but x IV

is real.
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TABLE II. SINGULARITIES (SEE FIG. 9)

TABLE II.1

Necessary and Sufficient
Singularity Value Condition to be Real

I di P n' - H* + (P

= CI: III I < p(H$ - p - in'W)

d ~ f I MW + q'pt)+ nW I p*
xI4L = c 1 ~ pI -HpY*PI~ l<I pY

dIA P pn'W + H* +-T I < py(H* + T + pn'W)

TABLE 11.2

= Assumption: Rectangular trigger: sk = PW
0

-H

Asymmetric flipflop: s = gW

o Symmetric flipflop: S = s - s2 = 4(W1 - W2) = PW

F11 dpdv= p(pn'W + 0] + P) xv = c
Vp ' +1~J ) Vp c

=V1 - I 1+RG

a R 1 a Rs q as defined in

LI = aRa *1 a R0 Table I
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TABLE III. SINGULARITIES (SEE FIG. 9)

Singularity Value Necessary and Sufficient
Condition to be Real

X -Hp 1 0 < Hp7*
10

Xll 0  0 always real

+Hp I < Hp7*xIIIO

Obs.: This is a special case of Table II for the case
of q) = 0 and p = 0, i.e., assuming an untriggered,
state symmetric flipflop.

g) Therefore, the possibilities are:

i) either three real singularities

ii) or one of the extremes (x I or x iII) are real, the other extreme

(XllI. or xi,) and the median (x114) are virtual.

However, if I > p7*,

h) Only one (any of the three) singularities is real, the other two being

virtual.

Figure 9 illustrates these conclusions.

We will now prove that whenever:

i) three singularities are real (case g-i),the extremes are stable, the

median is unstable;

ii) only one singularity is real (cases g-ii or h), it is stable.

3.2.3 The Nature of the Singularities

We have discussed the existence of singular points, and established

the importanceof several relationships among parameters upon the position of
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i4 singular points, and therefore upon their real or virtual nature. Now we should

like to study the nature of these singularities. The system of equationg (310) can

be written in the form of (3.1):
40

: x --P(x,)
(314)

0y Q(xy)

The "system of the first approximation about the singular point

(x V, yV.)" has been defined as being the system formed by replacing P and Q by

their respective first terms of corresponding Taylor series expansions about

VP

Let us define the new variables:

.X = x -xV; Y Y -YV (3.15)

The system of equations (3.14) becomes:

S V Xv +y( } (3.16)

Y 'P)X + Qy(xv;iYVP )y

Comparison of (3.14) with (3.10) shows that:

P(x,y) y

(3.17)

aV aV  aV

Therefore
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P(xv P~*) & 0; 1 XPV,

(3.18)
C bVI

VV
qx(:%vp .) -- %yxwjYi) a

Let

Dand E b (3.19)
aV  aV

Then (3.16) becomes

0
X=0 .X+ 1 Y

E I(3.20)
0
Y=D" X +E •Y

The characteristic equation of this system is:

S-x 1 i k2
% = , i.e., X EX- D 0 (3.21)
D E- X

So

X=, + {E E +4D' (3.22)

i.e.,

fE~ - J2+ 4

(3.23)

x {E + + 4 D}
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and we have the following rules:

(i) %a and X real and negative = stable node.

(ii) X and X real and positive -> unstable node.

(iii) X and X real and opposite signs => saddle point.a
(iv) %a and X complex conjugates

with negative real part : stable focus.

(v) X and X complex conjugates

with positive real part => unstable focus.

Application of these rules to equation (3.22) or (3.23) is straight-

forward; replacement of D and E by their expressions in terms of parameters

(through equations (3.19) and Table IJ will produce the results summarized in

Table IV, as can be shown by the following analysis:

Theorem 1. If x19 or xlIng exist they are stable nodes.

Proof: From definitions of E and D, and from Table I for regions I and III

we have:

E -- - 0 +° V < 0 (3.24)av V=l, III (-.iT )

D c VU <(3.25)a IV=I, III o 2

Therefore, IJ + 4D I cannot be greater than JEl; we will show next that
JE2

E2 + 4D > 0: in fact, from the expressions above for E and D, we have

(' TioRoG )2 4l+RG)

E2 + 4D=( +) 4(i+RGQ)i o
/T )2 (3.26)

Consider the numerator M of the fraction above:
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TABLE IV. A SUMMARY OF THE NATURE OF THE SINGULARITIES
IN ALL POSSIBLE SMATIONS (SE FIG. 9)

Possible Situations
Parameter Condition

Exists Does Not Exist Nature

X 4Stable Node dIp ~c I > 0 and IL

xi or

X Ci4 < 0 and > +

x Ip cii > 0

xii1 4 Stable Node and

xI. <1I

T41 CI > 0 and d > +
____ I~LCli 7

X it or
d_

Stable Node <0 and CI < -

C < 0
X Stable Node

and

x 4 Saddle Point d

X 4 Stable Node iJ 7
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M ( i + To0 + To + TioR G )2  -4(l + R GT °

2 i + 0+ o e + 2(-Ti + Te + TRo RG

T22.G? - 4r _ 4-i, oRsG

+oi io o5

T2 2 2
j. 2i~o + + 2('i T- ooi + IToi + 4T oi "2(Ti + oi " 0o)roR G

o ii 2G20

=0 -

~o +, o T)2 2R G T o(T + T T +o-T 2 R 2G + To2 + 4-oT~oi - 0oi 0o 0 01 oi oo

So

M =[Te0 + T - o(1 + To R iG )]2 + el pr + 4 T ] > 0 (3.27)

This implies that E2 + 4D > 0, and so %, and X are real and negative in both

regions I and III, which means that x and x if they exist, are stable
4± IIIgL

nodes, which was to be shown.

Notice that even if one of them (or both) is virtual, its action upon

its corresponding region will be that of a stable node. This follows from the

proof of Theorem 1 and from the nature of the coefficients of equation (2.103)

Theorem 2. If pY* > 1 and if x exists, then it is a saddle point.

t Parameters as defined in Table II; this is a necessary condition for bistable
behavior (but not sufficient), for otherwise, either x or x will exist,
but not both' This is stated in an equivalent way in knclusiikh, page 48.
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Proof: From definitions of E and D, and from Table I for region II we have:

a11  io !-I <
E b.. .. i < 0

o + PYT io

(3.28)

D C I T(I A p7*)

Iio T + PT io

Therefore iE" + 4D'I > JEI; %a and % are then real with opposite signs, and

consequently x is a saddle point as was to be shown.

Theorem 3. If p7* < 11, t hen the existing xv, will be a stable node.

Proof: Using the calculations made for the proof of Theorems 1 and 2 we

get, if region II is considered:

E2 + 4D N(330)

( i o +0.

where

'ioio0ioo0W4La T F0j

(3.31)

N' M I op7it + I (hai + PT (3.32)

No bistable behavior is possible!
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where M' stands for the sum of the first three terms of N, and pyt < I was

used. Then

N' = M' + I T 0(333)

since M > 0, M' > 0 and N' > 0. Therefore N > 0; as a consequence, %a and X

are real and negative and if xll exists it is a stable node. Of course the

proof of Theorem 1 is independent of P and therefore it is valid under the• I,

present hypothesis of p7* < I . Thus the proof of this Theorem 3 is complete.

3.2.4 Diagonalization of the Characteristic Matrix of the System

The eigenvalues and corresponding eigenvectors of the characteristic

matrix are given by:

0 1 k k
r = E) Q (334)

Therefore, I = k; i a, 0.

Let ki = 1 arbitrarily, and ii V
1

Column i can be normalized by multiplying it by a factor

but it is more convenient not to normalize it.

The polar matrix of r is

rp ines(335)

Its inverse is:
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r - (3.36)
p "a

The diagonal matrix of r is

%a 0

r d (3 37)a

and the diagonal form of r is [28]:

r r * rd r• (3.38)

Therefore:

(339)

The system of equations (3.20) can be expressed in matrix form

=) (3.40)
V

whose solution is:

(D 1)T ,/xo' FT = t " t O

= e K with X0  X(O) (3.41)

0) Lo Y(o)
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where, by definition, given a diagoualizble matrix A, with polar matrix A

and corresponding diagonal matrix Ad,

e A A e d Ad A (3.42)

p p

and for any diagonal matrix Q

eQ  0 eq2 if Q 0 2 (3.43)

Therefore, from (3.39), (3.41), (3.42), (3.43), we get:

C) = ( 0 oXT 1 - "a x

(3.44)

and this turns out to be:

X X [IXe - e ] + YO -ea + e

'xI ) " a e X a T e X j + Y a X e ' O T ] ( 3 .4 5 )

In another form
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o T -Xo + YO X
X = - Y " + .X e

" a '%C4
(3.46)Xo Yo e Xo%- + YO 11T

XX -y X.T -X XT
Y X + Xe

and we recall the definitions of X and Y:

X = x - xVP; Y-y - Yv Y, since Yv, 0 (3.15)

Equations (3.46) furnish the integration constants A and B of the

differential equation as functions of natural frequencies and initial values.

Substitution of (3.15) into (3.46) yields the general equation for

the flipflop transition, if we keep in mind that:

(i) Changing from one region into another changes all

parameters; therefore one must be careful in calculating

new initial conditions, new singularity position (which

can be virtual!) and new natural frequencies.

(ii) The same thing occurs if there is a change in trigger

leve in particular when it is turned ON or OFF.

(iii) Impulses produce discontinuities in y (and therefore in

Y), but everything else remains unchanged. Remember

that the effects of such impulses depend on % which

changes from one region to another; the impulses due

to effects of base current occur when a is changing

from a to a and also when it is changing from a to

a,,,; in each case we will take the average of the two

adjacent values of aV.



-62-

The results are presented in equation (3.56), section 3.3.

However equation (3.46) is also a very practical form; discontinuities

of X and Y can be calculated from equations (3.15) whenever they occur.

Some more information can be obtained from the "canonical system of

the first approximation"; this is defined as-

(~)(:0) 
(3.47)

where

: -i (3.48)

Of course, system (3.47) is equivalent to system (3.40) under the

transformation of variables (3.48). Such a system clearly has a unique

singularity at the origin. Solution of (3.47) is:

• e (3.49)

i.e.,

(3.50)

X X T
x = xwej fran which we find
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t (# ta (3.51)

and therefore,

which is the equation for the phase plane trajectory in this canonic system.

If the singularity is a stable node, then "a < 0 and %,, < 0, and we

assume either IX.1 < i%. or 1%,J > 1%,l (which is irrelevant, since the

ordering of X. and X is arbitrary!).

From (3.52) we get:

Xo (%xV/)
X a) (3.53)

and, by differentiation,

L2 ___ .XX )-l) (3-54)(x /) • 3.

0

Therefore, (3.53) defines a family of curves of the parabolic type in the plane

(0,x), for x f(O) [1.

From (3.51) it is seen that the direction of movement of a repre-

sentative point P over any of these trajectories is clearly towards the origin.

Figures 10 show the two types of parabolic curve according to whether
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(a) ikeI(141I

FIGURE 10 CANONIC SYSTEM TRAJECTORIES WHEN THE
SINGULARITY IS A NOCE. IF IT IS A STABLE
NODE, I., IF ). & )~p ARE NEGATIVE, THEN
THE REPRESENTATIVE POINT P MOVES TOWARDS
THE ORIGIN (SINGULARITY) WITH INCREASING TIME
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1%,, < %,J or I%l > IJXl. If the singularity is a saddle point, then we take

xa < 0 < X (again no loss of generality) and inspection of (3.53) and (3.54)

shows that (3.53) represents a family of hyperbolic curves with the coordinate

axes as asymptotes [1].

From (3.51) it is seen that the direction of movement of the

representative point P along any of these trajectories is found to be towards

smaller values of II and larger values of Ixl. See Figs. 11.

We wish to know how these curves transform into the (X,Y) plane, i.e.,

the system of the first approximation, which, although not canonic, also has a

unique singularity at the origin.

The best way to see this is to find the lines in the (XY) plane that

correspond to the tandX axes. From (3.48) (definition of D and x) we get:

axis: X = 0 > Y = XaX
a !~.(3-55)

X axis: 0 = 0 -> Y = XX

We realize that in the case of a node with I lXI > I Xl, i.e., with

%a < X < 0, the trajectories have the ( axis as the direction of their axes of

symmetry, and that they are tangent to the X axis at the singularity point

(origin), as shown in Fig. 9b. In the case of a saddle point, the curves are

asymptotic to both axes.

The linear transformation conserve all these properties, and also the

direction of motion of the trajectories with increasing times.

Therefore we can get a fairly good picture of the family of trajec-

tories in the (XY) plane if we know them in the (%X) plane. The results are

qualitatively illustrated in Figs. 12 and 13.

Figure 14 qualitatively shows some portraits of tUe original system

(xy) from what we have found so far (1, 221.
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FIGURE 12: TRAJECTORIES IN THE SYSTEM OF TH F IRJT APPROXIMATION.
CASE OF A STABLE NODE WITH I~IIp-(CORRESPONDS
TO FIGUlRE 10b).
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A SADDLE POINT WITH f"ke 0



' Iv y- 
Y

II | I

ii I ___

----- moo+x9+V.-r
z II

A A

iiV owl< % +,

U 3 I I

A A A

I I I-1 I 9

*I 
I

%/EO
I I

iomm INO~hL 1 : %/ /7 >1. MONOVaE SYS=U IN3: -

-- -_ 
j¢



y Y'

I IW

lyE SIAS ON g(x): d>0 but I%4/cl 6 MNMTE WIAS ON ok %CO

* <0 btd 4 Is,,. 4 <0

SPVIt, S!EVA I Swg

It x

XUIMLE SYSTEM IN I: d -I*y (4) SimW SYTE: WI >*

FO E W H a v -l pw vp G O



-70-

It is worth reminding that, due to the piecewise linear character of

our complete system in (x,y), in each region the solution of the corresponding

system of the first approximation is exactly equal to the solution of the

original system.

3.2.5 Comments on Figs. 14

a) Balanced g(x): dI M1 = 0; this situation would usually correspond to a

state symmetric (dn 0 = 0) untriggered (P = O) system. However, we could

have this same situation if d i 0 # 0, nW = -dil0 , and g = 1, since

dll = dli 0 + gnW, in this case di = 0.

b) and c) Nonzero bias on g(x): d IT $ 0; this situation would correspond

either to a state asymmetric (d110 = 0) untriggered (p = 0) system, or to a

partially triggered (no matter what kind of state symmetry) system

(dii = diI 0 + nW / 0).

d) and e) Monostable systems in either region I or III: c > 7; either from

a large bias in an untriggered system, or from an adequate trigger in any

potentially bistable system.'

f) Stable system: cii, > 0; the system is not a flipflop.

General Comments

1) Notice the relationship between d (bias or triggering or both,

dIl di0 + nW) and the position of the singularities; the value of
ii dU dx

kat a singular point and its nature:

Potentially bistable system is any system which would exhibit bistable
behavior if adequately biased, i.e., any system for which c < 0; therefore,
the system of Fig. 13f is not potentially bistable. 

110
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11 > 0 => stable singularity (in our case, stable node)dx

< 0 > unstable singularity (in our case, saddle point)dx

Of course, the exact nature of the singularity also depends on a and bV,.

2) The position of the singularity, if it is real, must be inside its corre-

sponding region; otherwise, it is virtual.

3) The singularity nature and position is just a translation of the coefficients

of the differential equation; this is one way to interpret the "action" of a

singularity over its corresponding region no matter where it happens to be

and justifies calling it "virtual" if it happens to be outside its region of

influence: it does not really exist, but it would exist if the parameters

cv, and d were the same throughout the phase plane as they are inside the

proper region. In this sense, this would-be singularity adequately trans-

lates the coefficients of the differential equation inside its proper region.

h) We have used a coded tag to describe the singularities in this figure:

SN = Stable Node R = Real

SP = Saddle Point V = Virtual

The last symbol of the tags on the singularities is one of I, II or III, and

designates the proper (corresponding) region of the singularity; so, if the

position of the singularity agrees with this symbol, it is real; otherwise

it is virtual. The symbol R or V is therefore redundant, but has been used

for clarity.

i
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3.3 Trajectory Equations

Solution to equation (2.103) is

x v g= ACge %OU (t't V ) + AV~e  v g (t'tvd) + cvg (3 56

0Y A= xvg

where

a) V refers to the region: V = I, II, III

p refers to the trigger: 4 = 0, 1> 0 trigger OFF, ON

b) ACP Av, c are parameters corresponding to a given value of the pair

V.'

c) % 11 are the natural frequencies corresponding to a value of the pair Vg.

d) t is the instant of time when the pair of indices assumes a new value.

e) The most common sequence of index pair values is Vg = TO, n, Il, i111,

1110.

f) Let us use, in general, a prime to mean:

at, b', c', d', differential equation parameter values in the

previous Vp condition

A', A', C' solution parameter values in the previous Vg
a

condition

X~ X natural frequencies in the previous Vp condition

t', x', y' values of t, x, y at the end of previous Vp

condition

Actually c x is the abscissa of singular point X --and here X has

nothing to gdo w~h X - x - xV used in the previous stion. Vp
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• - Unprimed symbols will refer to parameters and variables throughout the

present Vp conditions, which, whenever necessary, will be indicated.

g) to = t

9 0
X 0 = X1

yo = Y +a

with

U = magnitude of any impulse occurring during the transition

from the previous value of Vp to the present value; it is

zero if no impulse occurs at this point. It may be a

function of YO or y', as in Table V.

to, Xo' YO = values of t, x, y at the beginning of present

Vp condition.

h) A (X0 " x*)Xp -Yo

h) A =-+

(x0 - a Yo
A-

a

C Xd

c

where

(x*,O) (d O) = location of singularity corresponding to

present Vp conditions.
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TABLE V. IMPULSE VALUES FOR CHANGES IN Vp

Vg Condition Change
Magnitude of Impulse U Comments

From To

10 nl +2p~~ '10wi w> 0
0

Sio 2o I i -Hp To y is initial value
YO o? y in region II

T~io y2 y

In IIn +Hp7 -2F- y y' is final value of
H y in region II

ori

lIl III0 -2p Tiwi w > o

III0 Illl -2p i IwI w < 0

0
T io 2

IIi Ill +Hp7 F yo Y0 is the initial
value of y in region
II

0 n -Hp o y y' is the final value
4of y in region II

H 'io
II 10 +2p - Iwi w < o

1 frasymmetric flipflop.
H is the symmetry factor: H = for symetric flipflop.

2 fr symmetric flipflop.

'I
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"a - a + vut -

0O 2a

J) And for completeness we repeat equation (2.103) in the new notation:

00 0
ax + bx + cx= d., for a given Vp

Now equation (3.56) becomes

( t t )  (t-to)
xAea + Ae +

(3.57)
y x(t-t0 ) +, (t't O0

In the phase plane, from (k) and (h),

t t (x x*)X y - ( x* - (3.58)

0 X (x 0  x*)X -YO YO

or, in another form:

e a%(t-tO) ( * y r(X -X*)%13 -y X
(t) )X YXo .) (3.59)

Notice that t and X are normalized and have no dimensions!

Obs.: Equations (3.58) and (3.59) are phase plane trajectory equations, and the

calculation of transition time is based on them. Also based on them is the phase

plane graphical construction which simplifies not only transition time calcula-

tions but also the analysis of waveforms and design optimization of both circuit

and trigger.
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In this analysis the trigger is assumed rectangular, so the term

no mW is imbedded into d; the impulse terms mg - ImW[b(t - to)

- 8(t - t9 - T,)], and also f(k)[b(x + 1) - 8(x - are both considered in

g)., with their magnitudes represented by U. This is summarized in Table V.

Therefore, expansion of g) yields for this special case:

Discontinuity Transition Through Line

Y0 = Y  2 1 x = - 1 (3.60a)
7

y' +y, II III x = + 1 (3.6Ob)

YO= y' +y YIII-II x+ 1  (3.6Oc)7

Y y' " y, 2  I x .- 1  (3.60d)
7

where

a)
2aII

b) mI and aii as in Table I

c) H is called the "symmetry factor":

1 for the asymmetric flipflop

2 for the symmetric flipflop

We can write equations (3.60) in more explicit forms, and also obtain

the inverse functions:
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Discontinuity Transition Through Lines

(i) Yo= {+"X (3.61a

(ii) y' = + )y

(i) YO 
= (i + £y')y' 1

II -.III x - + (3.61b)

(ii) ='-- {+ J*+4 o  -i

i1 1
III}}I x-=+- (3.6c

(i1) y, = (' -

i) YO = Ci -

II -.I x - (3.61d)

(ii 1' f - 4y 0 + 1 
36d

Notice that in cases (a) and (b) we have the I to III transition, i.e.,

y > 0 through the transition, whereas in cases (c) and (d) we have the III to I

transition, i.e., y < 0 through the transition. The signs of the square roots

are selected from this physical consideration.

3.4 Separatrices

We are using the word separatrix in a somewhat looser sense than its

strictly mathematical meaning [17). We shall call a "separatrix" any phase

plane trajectory which divides the phase plane portrait of the system into

qualitatively distinct families of trajectories.

The concept of "qualitatively distinct" is purposely vague; this means

that a separatrix will be so with respect to some stated qualitative distinction
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between the two families of trajectories in which it divides the phase plane

portrait of the system.

In order to define a separatrix, all we need to do is to find one of

its points Q, let Q = (xQyQ), and enter xQ and y. instead of x0 and YO into

equation (3.58) or (3.59). Also x* must be known (x* as defined in (3.56h)).

We have a special interest in defining two types of separatrix over

the whole portrait:

(i) "Transition Separatrix" which divides the portrait into two

families of trajectories: those that cross through region II and those that do

not. This separatrix, as illustrated in Figs. 15 and 16, is composed of four

branches: A, B; C, D; A, B; C, D.

These lines will be given special names:

a) ABCD: (I to III) transition separatrix.

b) M: (III to I) transition separatrix.

c) ABU: end-point separatrix.

d) DCCD: initial-point separatrix.

Since

a) ABCD separates the lines which are trajectories from region I to region III

from the lines which are not so.

b) C separates the lines which are trajectories from region III to region I

from the lines which are not so.

c) ABU divides the portrait into two sets of trajectories: those that

terminate in x and those that terminate in x

d) DC divides the portrait into two sets of trajectories: those that

originate in region I and those that originate in region III.

(ii) "Critical Separatrix," whose importanewill be later explained,

divides the portrait into two families of trajectories: those that lie partly
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in region II and those that lie exclusively in region I or III. Fig. 15

illustrates the separatrices and the notation used in this section. Notice

the following:

a) The Transition Separatrix Determining Points: Obviously, in region II,

the separatrix itself consists of the two asymptotes whose equations are

(see Fig. 14):

y a % a - .(x -x * ); l e t y B = y ( 7 0 .6 2)V (3.62)

y -P.(x- x*); let YC= (+ Y = Yp("

where

x is in region II

(x*,O) is the singularity corresponding to region II

I and X2 are the natural frequencies inside region II

We find

YA' YD' '

respectively from

through equation (3.59):

after the replacements:

yA ' yY D ' y' y Y D y
YB ' YO1 YC ' " y ' Y1 Y
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We get the following equations:

AY= (1 + ZyB)yB (3.63a)

= (1 + £y)yc (3.63b)

y= (i + yN)yg (3.63c)

Y= (I + ly )ya (3.63d)

b) The Critical Separatrix Determining Points: Of course those trajectories

1 1
which cross the x axis at points x = - - and x = - are the two branches of

the critical separatrix.

c) The Separatrices: The two separatrices, as illustrated in Fig. 15, are

given by the general trajectory equation (3.58) or (3.59) (they are entirely

equivalent). Since here we are more concerned with geometrical properties,

we prefer the latter, which we repeat here as equation (3.64), leaving out

the exponential of time, and replacing (xo, yo) by (xQ, yQ). So the

separatrices are given by:

N x x*)%. - y xa N ( - x*)%13 -yL~Q x*)Xa  = L(X, x*lk% (3 .64)

and Tables VI and VII furnish the values of the parameters.

Besides the separatricee three more lines at each stable node are

important in the qualitative study of trajectories in the phase plane. These

lines are: (by definition) assuming X. < X (see Fig. 12):

a) The "tangent line": y = X.A(x - x*), which is a tangent to all trajectories

at point (x*,O).

lj O i lMJ IH
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TABLE9 VI. PARA1OMTERS OF THE SEPARATRflC EQUATION (3.64)

Calculate by -- Equation (3.63) Table II Equation (3.561)J and Table I

I I(depend on 11) i a C,

Tranch itaione

Branch A X X

Branchf D ~ xp

Craitil Brnh YD 0II xIT
Separatrix

Branch E 0 x

Notice that the index p merely indicates if the trigger is ON or OF?; the
actual direction and effects of the trigger (if ON) must be computed through
Tables I and II.

TABLE VII. RESULTS OF EQUATIONS (3.62) FOR THE BRANCHES OF THE
TRANSITION SEPARATRIX INSIDE REGION II

Branch Equations (3.62) Furnish

Transition Bac ,B y X ( x 1  nc() Yy (~

PaBranch C. C y m . -(X - x II) YC M YA(+ Y-) y -m O

Notice that both y1' e snd Ii- a.. Ay depend on p,. so all y's depend on pa.



b) The "direction line": y - X,(x - x*), which does not cross any trajectory

except at point (x*,O), where it crosses all trajectories.

C) The "max-min line": (x - x*) which crosses all trajectories at

(x*,O) and also every trajectory at its point of maximum or minimum value

of y(x).

d) The line described in (b) also applies to the case of saddle points, except

that, at the singularity (x*,O) it crosses only the asymptotes, since

the other trajectories do not pass through the singularity.

3.5 Trajectories and the Action of the Trigger

The simplest trigger is the rectangular current trigger. In fact the

action of a trigger of a different waveform will, in general, differ in detail,

but not in principle from the action. of the rectangular trigger. For this reason

we have considered it important enough to be the basis of this work, and, in

this section, we will discuss its action in a qualitative manner.

I.

3.5.1 Turning the Trigger ON and Possibility of "Under-Triggering"

Figures 16 show various possibilities of trigger action upon the

phase plane portrait--singularities and separatrices--and also the corresponding

initial value of y.

Let us assume that the flipflop is in stable state I, i.e., the

representative point P is at stable node I, when a rectangular trigger of

amplitude W is applied (a positive trigger).

The immediate effect of the trigger upon the phase plane portrait is

to shift the stable nodes to points respectively &I and 2III to the right, and

to shift the saddle point by KII to the left, where &V = 'V1 - xVO, as given

by Table II.

I __
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At the same time P is shifted upwards to a point at (XIoyo), i.e..

the x coordinate does not change, but y goes to an initial value

mI
= W (3.65)

Suppose that the singularities have not been shifted out of their

proper regions (Fig. 16b). The transition separatrix in region I approaches the

critical separatrix (whose shape changes!), thus reducing the minimum initial

value Yomin of y necessary for a complete transition to occur.

Let X denote the singularity (x O), and let Yin be the least
VP VP Yi

initial ordinate at xio, for which a I to III transition occurs.

There will be two possibilities:

a) YO < YOmin' then P will follow some parabolic trajectory and tend towards

XII. Here there are yet three possibilities.

1. Yo < p I: P will not cross the x axis, moving towards

XI, in an overdamped manner.

2. Yo = X c I P will not cross the x axis, following a

straight path towards XII, approaching it in a critically

damped way.

3. yO .> Xa l: P will cross the x axis, moving towards

X in an underdamped way.
32

In case 3 we might still distinguish the two possibilities of P going

through region II (entering it under point ya) or not.

b) YO > YOmin' then P will also follow a parabolic path towards X in the

underdamped way, as in (a.3) above, but it enters region II above point Ya

before reaching the x acis. Then a transition occurs. This effect will be

called "under-triggering" (Fig. 19).
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One might then expect that the minimum value Win of W necessary to

cause a transition would be slightly less than the value Wcrit of W necessary

to shift X and X out of their proper regions (and into virtual existence!).

But this is usually not so, as it will be proved at the end of this section

that, under certain (usual) conditions, of all possibilities mentioned above

only (a.l) occurs, all others being impossible for the type of circuit under

consideration. Therefore, under-triggering usually does not occur for this type

of circuit. However, it is a possibility, especially in a general equation,

whose coefficients were related in some other manner. We will later study this

effect in some detail.

3.5.2 Virtual Singularities and the Trajectory

We establish that W Wcrit WO; suppose that W > WO; then the

portrait becomes as in Fig. 16d. There is only one real singularity, and this

is the stable node XIIn; the end-point separatrix vanishes (since all lines must

now terminate at X the critical separatrix and part of the initial-point

separatrix also vanish, and the remaining part of the initial-point separatrix

loses its meaning.

From its initial position at (xio, Yo), P "sees" only the virtual

stable node X n (somewhere in region II or III) and starts to move on a parabolic
1

path towards it. However, before reaching x1l, P crosses the line x = - - where

y suffers a discontinuity (-y) and enters region II where now it "sees" only

the virtual saddle point X (somewhere in region I) and changes its trajectory

into a hyperbolic path asymptotic to the line y X In, (x - x in) (a remaining

part of the initial-point separatrix, and here we see why it is meaningless);

See footnote on page 90.
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finally, P crosses the line x - + , where y suffers a discontinuity (+.&y),

and enters region III.

Once in region III, P will "see" only the real stable node x IM,

towards which it will start to move in a parabolic path (in an overdamped

manner, as will be shown).

3.5.3 Turning the Trigger OFF

The next event with the trajectory of P is the turning OFF of the

trigger.

Rigorously, the trigger may be turned OFF as soon as P has progressed

far enough into region II, i.e., to a point where after the negative jump of y

caused by the trigger turning OFF, P finds itself at side III of the end-point

separatrix (of the p = 0 system, of course).

On the other extreme, we couJd leave the trigger ON for an indefinite

amount of time.

We are interested in establishing a criterion with which to judge the

adequacy of the trigger duration.

3.5.4. Discussing Trigger Duration

Assuming the trigger is sufficiently long to produce a transition,

we recognize five possibilities for the trigger (see Figs. 17 and 18):

(i) Too short: if it is turned OFF while P is still in

region II.

(ii) Short: if it is turned OFF long before P reaches the

line x - x1iiO, but after P is in region III (Figs. 17a, b

and 18a, b).

Discontinuities caused by impulses + J2 d2  respectively.-X
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(iii) Fair: if it is turned OFF approximately as P crosses

the line x = xliiO.

(iv) Long: if it is turned OFF long after P crosses the

line x = x1 llO, but before it approaches XIIII

(Figs. 17c, d and 18c, d).

(v) Too long: if it is turned OFF after P is already

close to XIIII.

Of course, these definitions can be formalized and made exact: so, a

sufficient rectangular trigger starting at to = 0 and having duration T is said

to be:

(i) Too short: if x(T) < - Y
(ii) Short: if+ <ox(T)<x

2'1110 0
(iii) Fair: if x1 1 1 0 - 0- < x(T) < x 1 i + EO0+

(iv) Long: if xii + E < x(T)<xiil -< 1

(v) Too long: if x - e < x(T)

where EO_, EO+, 61 are positive numbers such that all the inequalities above

can be satisfied.

No matter which case occurs, y will suffer a discontinuity equal to

(-yo); from the point (x(T), y(T)), P will jump to (x(T), y(T) - yo), and then

it will move towards X1 I1 O by some parabolic path, thus completing the

transition.

NOTE: Of course, P never reaches XIIIO, but given an arbitrary neighborhood

EIIIO of XIIIO, there is a time TIIIO(cIIIO) such that for any t> TI (e

P is in eIIIO. We can therefore, arbitrarily select a neighborhood NIII0 of

XiiiO, and, by definition, say that a transition is cmplete after P enters NIII0

for the last time.
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3.5.5 The Concept of "Optimum Trigger Duration"I Call:

PT_ the point (x(T), y(T))

and (3.66)

PT+ the point (x(T), y(T) - yo)

and let T-' fT+' 11110' etc., be vectors with the same coordinates as the points

designated by the symbols under the arrows.

By definition, let

RIIIO(W,T) = 0- (3.67)

Given a rectangular trigger of amplitude W, we define "optimum duration

T*" as that value of T for which RIIIo(T) is a minimum. That is:

RIIIO(W,T* ) = min RIIIO W,T) (3.68)
T

Since for each value of W there is a corresponding value T*, we con-

clude that, for a given circuit, T* is a function of W:

*= e(w) (3.69)

This function e(W) is a characteristic of the complete circuit, i.e., flipflop

and triggering circuit together.

Notice however that the definition of T* is somewhat arbitrary, and

probably there is no ideal criterion on which to base a definition of optimum

duration. It certainly depends under what criterion we would like to have the

transition optimized.
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A more practical definition is as follows: given a rectangular

trigger of amplitude W, we define "optimum duration T*" as the value of T for

which x(T) = x iii. That is

x(T*) = x1 110  (3.70)

The discussion presented in this subsection can be applied to a

III to I transition, if we make the necessary (and obvious) changes.

The criterion for the definition of T* expressed by equation (3.70)

is the most useful, and will be used throughout this report. So, unless other-

wise specified, the expression of "optimum duration" or the symbol T* will

imply "as defined by equation (3.70)."

3.5.6 Possibility of "Back-Triggering"

We have said that after the trigger is turned OFF, if it is suffi-

ciently long, P (whose y coordinate has suffered a negative discontinuity equal

to (-yo)) "sees" only XII.o towards which it moves by some parabolic path.

However, we must ask ourselves if this is always true. There seems

to be nothing in the nature of the equation to warrant this assumption. The

objection is: "The position (x(T-), y(T-)) of P at the moment of turning the

trigger OFF might be such that the new position of P, (x(T+), y(T+)) (where

y(t+) = y(T-) - yo) would be under the branch A of the transition separatrix,

and therefore P would return to XIO, rather than going to '" This effect

will be called "back-triggering."

In fact, the possibility of back-triggering is small, unless the coef-

ficients of the differential eqlation were not related by the circuit parameters

(representing some other analogous type of bistable device).
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We will prove that, under certain (usual) conditions, back-triggering

is not possible for the circuits under consideration.' The conditions that

make back-triggering impossible are the same that make under-triggering

impossible.

Actually, these two characteristics are closely related. We will

presently discuss these effects in some detail, explain their interrelation, and

find the conditions that make them impossible to occur.

3.5.7 Trajectory After the Trigger is Turned OFF

Let us assume the trigger duration is sufficient and that no back-

triggering occurs. Figures 17 and 18 illustrate the four cases as considered

below:

(i) x(T) < xiiO1 , y(T+) > 0

(ii) x(T) < xiilO, y(T+) < 0

(iii) x(T) > xIi1 , y(T+) > 0

(iv) x(T) < x1110, y(T+) < 0

Figure 19 illustrates the three possibilities in the case of optimum

? triggering: x(T) = XII10"

(i) y(T+) > 0

(ii) y(T+) 0

(iii) y(T+) < 0

We should point out that x(T) is quite arbitrary, since we have

absolute control of the trigger duration T; but, for a given circuit, y(T+) is

We point out again that back-triggering refers only to the case of sufficient

trigger, i.e., there must be an interval of time Tm.n < T < Tma x for which a
normal transition would occur. T < Tain means insufficient trigger duration;
Tma x would be imposed by back-triggering.
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a function of x(T) given by the phase plane portraits of the differential

equations (with trigger ON and OFF). This means that, for a given differential

equation, selection of T - T* will lead to a certain value of y(T*+) for which

y(T*+) :Z 0; the equation and also the trigger amplitude W will determine which

relationship holds.

It would be interesting to know how the coefficients of the equation

and the circuit parameters, as well as the trigger amplitude affect the curve

y(T) versus x(T). It would also be useful to know how T* and y(T*+) depend on

W for a given equation.

In the following chapters these questions will be considered.

3.6 Under-Triggering and Back-Triggering

Let us analyze the possibilities of under-triggering and back-

triggering for

(i) a given differential equation of type (2.103) with

coefficients defined in the three regions

(ii) ignoring, in this section, the relationships established

in Table I, but still assuming

(iii) a rectangular trigger (i.e., (3.6) and (3.7) hold)

and that, as before

(iv) the function f(o) _ f(y), the magnitude of the impulses

occurring at x = + , are:



,
-96-

f A~~im [Jiy3i1 at z 3.1C-0 Iiyll1=I 1- C

f(y) (3.71)

undefined for any x +

with

MI=  or m , according to whether the flipflop is

l2a asymmetric or symmetric.

3.6.1 Under-Triggeridi

Suppose a trigger of amplitude W < W0 is applied to the system; assume

P was at XIO = (XioO) before the trigger was turned ON.

P jumps to a point P0 = (xIoy 0j if P is above branch A of the transi-

tion separatrix of the triggered system, then a transition will occur, with P

going to Xiii1, rather than to X1 (under-triggering). Fig. 19 illustrates

this effect. Therefore a transition will occur if and only if

Yo >Yao

where YalO is the ordinate of branch A of the transition separatrix of the

triggered system (4 = 1) at x = x1 0 .

The problem is to find the value W of W that, for a given system,Wmm

will cause the point (xio,yo) to be on branch A of the transition separatrix

of the triggered system (i.e., P = 1).

We could keep the expression f(y) - -jy2 at any other point x taking
A - IVA, Vp indicating region and state of trigger; but this would be irrel-
evant, since the function is multiplied by zero at these points anyway!
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As could be expected, we will see that it is not possible to solve

this problem analytically, but only by a graphical or iterative numerical

procedure. In fact, we have a set of formulae, repeated here for convenience,

that can be used to solve this problem:

From (3.13) and the Obs. at the end of section 3.2.2,

dv d n
x - C _ + P W (3.72)
xVI cvP cV cvg

from which we get:

d d i
X10 cI 0  XIIo Ci0

dI n dI n
n  = n CIl in Xl iI n

CIl I)IIl. Inl

0  io il 7 0 ii I  7

From (3.62), using the notation Xa and Xovl as before:

ii YB = "aIl(1+ XI~) W < W0  B (3.74)

Yt Y B.(l+ ym), clearly YAl > YB1 (3.75)

withI
H mII 1 for the asymmetric flipflop

2 aIi 2 for the symmetric flipflop

Also, from equation (2.103) itself (see section 3.5.1):
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aI

And finally, the general trajectory equation, expressed by (3.59) can

be rewritten as:

-(x ~x*)% ay 'c_(xi x*)% i

(xj x*) y - (377)

where (x, Yi) and (xj,Yj) are any two points over the same trajectory, in the

same region, and x* is the abcissa of the singularity and X. and X. are the

natural frequencies corresponding to that region; so, in (3.77) let:

(xi, yi) = (XioYo); x* - xi1 3

(xj,yj) = (- !,y); a'dX "X A an ( .7

Considering (3.73), (3.74), (3.75), (3.76) and (3.78), (3.77) yields:

I d + nw d

= a11 L- + W 1 dl1 +UaII 1  I c 1  Ci I 1 J + "aT-I +

- wjc + 
-

ad +n\W dI  + nW )

l-awniId 1  "n )J ]

(3.79)

which can be numerically solved for W.
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If a real and positive root Wri can be found for (3.79), such that

Wri < WO, then we have under-triggering whenever the trigger duration W satisfies

WrI < W < WO  (3.80)

In this case,

Win =WI (3.81)

If no such WrI exists, then no under-triggering can occur, and we

have:

Win = W0  (3.82)

Expansion of the numerator and denominator in the fractions appearing

in (3.79) furnish:

{K I a(W+MI) UI2 K I(W + io (383)
t( + pai? + %i - ( + P 0 w + sI (383

with KaI . Mai , %aI' Yi' I' 1 I, POI as in Table VIII.1.

An entirely analogous analysis could be made for the case of a III to

I transition: reverse the signs of all coordinates and trigger, and change

subscripts I to III, A to A, B to B.

3.6.2 Back-Triggering

We will consider only the possibility of back-triggering in the case

of too-long trigger, i.e., P is assumed to be at X iin = (xiiilO) when the

trigger is turned OFF.
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TABLE VIII.1. PARAMETERS OF (3.83) As FUNCTIONS OF TRE PARAMETERS OF (3.79)

(UI + xa n

(d Ild )1 +___ "1) + c)

I ~ (I -1

____ f 2 jX aIj + I \N anii
Pal 1 11-

i an )I

+ X~I

nAX

I a Il
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P jumps to a point PO = (x III11' "Yo ) ; if P0 is under branch'! of the

transition separatrix of the untriggered system (p - 0), a transition will

occur, with P returning to X10 , rather than going to X1 1 1 0 (back-triggering).

Figure 20 illustrates this effect. Therefore, a transition will occur if and

only if:

"yo < Y01  or yo > Iy oll (3.84)

where YiOI is the ordinate of branch A of the transition separatrix of the

untriggered system (p = O) at x = x lll.

The problem is to find the value Wma x of W that, for a given system,

will cause the point (x1ii, -yo) to be on branch A of the transition separatrix

of the untriggered system (i.e., p = 0).

As for the case of under-triggering, we will see that this problem

cannot be solved analytically either, but only by a graphical or numerical

iterative procedure.

A set of formulas similar to the one used in the case of under-

triggering can be used to solve this problem.

We had obtained (3.72) which we repeat here for convenience:

d d
=-- + 1--W (3.72)VP c cv c

We et :VP

We get:
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dlI d
xII0 = x

xiiI = -- + -- W x -- + n w (3.85)cI c II1 x III1 ciin II.

O<W<W 0 > O>x > O<W<W l> x <Xl0in 7 0 1110 1111

< (2 -
1 II2' 1110

Again from (3.62), retaining the notation \QV and X

y+0 = X IIO" (l+xIIO) (3.86)

=o o" (1- 'Bo) (3.87)

From equation (2.103) itself:

-Yo " -(3.88)
alll

(we have implicitly taken al =a and mi1 1 = Mi, but they may be not strictly

true).

And, for convenience, we repeat the general trajectory equation (3.59),

in the form (3.77):

r(xi x*)Xa:y a f(xix*) % '-

(x -X)X a  y " Xj) *)% (3.77)
3X 13 '

with (xi,Yi), (xjyj), x*, X. and X as before.

Now let
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(x, yi) * (xiIl,.YO); x* 
0  1 3f ~,. (3.89)

(x 3,y 3 ) (+ T YA0) and = %iii 0 and XPIIi 0

Considering (3.85), (3.86), (3.87), (3.88) and (3.89), (3.77) yields:

m III d I I I + nW dILI N aIII0
"I 1 11 -I III

IICI dl [A i + dI D .I+ kuiiiolIILii I 1110)

I ~ II d I I I + n d~r Il~Io +am ~~~~lW%11 +' c 1  511)

ddI dW_ II ] +1III ( II

1n 17i + -Irok 1]%-iIO (+ r Io( - I

(3.90)

which can be numerically solved for W.

If a real and positive root WrIII can be found for (3.90), then we

have back-triggering whenever the trigger duration W satisfies

W < W (3.91)

In this case,

max ril(3.92)

and in order to obtain a permanent transition, we must have

W <w (3.93)

If no such WriiI exists, then no value of W vil cause back-triggering.
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Expansion of the numerator and denominator in the fractions appearing

in (3.90) furnish:

Kii(W + MaIi) aIIIO rKIII (W+ 14irI) P III0

(W2 ________ 
= P(;+~ P3-4

+ PaIW+ %liII I(1+ + QIII3

with KI, %IIII PGII III, KOIII' IIII, PpIII, $III as in Table VIII.2.

An entirely analogous analysis could be made for the case of a III to

I transition: reverse the signs of all coordinates and trigger, and change

subscripts III to I, A to A, B to B.

3.6.3 Discussion

It is clear from inspection of either Fig. 20 or equation (3.79) and

of either Fig. 21 or equation (3.90) that the necessary and sufficient conditions

for the impossibility of occurrence of

under-triggering:

lxanl 'lI > a w, 0< w< W0  3.5

back-triggering:

1aIilol• 14ixIIlI > W, 0 < w < WO (3.96)

where

4V = xVl(W) - (3.97)

Expansion of (3.97) yields
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Yaill va111 +'III0
aIIO c 110)

(dii cj III0

M A n

c Io 2 (1.~ + dI1  -~aIIIocIO-

c2 dL [(jo( d

+ %

~III n

CIIIdII
Qaj, PIII

I 010 2 i p: -1

Io 21%ajo Y( 1 0) I pIo 11 0

nllab~ 1AJ + c,' 4 "aIo '
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n dv d V n C vl " CVo

W+ W dv c (3.98)
CV cV CVO CVl VoCV

Notice that if either of conditions (3.95) and (3.96) is not met,

then there will exist real positive solutions Wri or Wri i to (3.79) and (3.90)

respectively.

We clearly see that conditions (3.95) and (3.96) are formally the

same.

a) If we make the further assumption that the coefficients of equation (2.103)

except dv are the same in regions I and III (a realistic assumption!), then

the only difference between them is the effect of different values of the

coefficients with the index p (neglecting variation of capacitances).

b) If we make the further assumption that the coefficients of equation (2.103)

are invariant with g (i.e., trigger circuit is fixed!), then the two

conditions are identical.

This shows a close relationship between these two effects, i.e., they

have the same intrinsic nature and origin from the circuit parameter point of

view, and if any distinction exists between them, it is due to the fact that

the circuit itself is not the same in each case (unless the two conditions

above hold!).

One further assumption leads us to an interesting point: assume that

S= o = o, (399)

i.e., consider the case of a trigger circuit that closely approximates a true

current source. Then we have the

Theorem 4. If equation (2.103) describes either an asymmetric or a symmetric

flipflop (coefficients as in Table I), and if the trigger circuit satisfies

(3.99) above, then no under-triggering or back-triggering can occur.
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Proof. Conditions a and b can be expressed as a single condition:

i l~~al " n >-a(SO0
a> (3.100)

since

=1 for V =I, III; = O, 1

and with

X1(b + % 2 '-4a')1

i~oa2a

r2

Ti + Toi + To

Tio
m = 2p --

R
n = 2pj-

0

as in Table I, for regions I and III. Therefore, (3.100) becomes, after

expansion and simplification:

r2 R
2 io < (r + + T) + 4('r + o+ o)2 " 4io _2 (3.101)

This becomes

1 c) 2

1 <~ (1 ) {(c + cr + r) + (c + cr + r) - 4cr 3 f(c,r) (3.102)
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where

CO R

Now, let us make a change of variable, as follows:

r r

C b

so that f(c,r) becomes g(B,r):

g(b,r) = ; (1 + I) {(Br + br 2 + r) + 'l(Br + Br2 + r )2 
- Br2

or

g~Dr (r + 1){( + 5 + +r ! ++r24} 313

Condition (3.102) has become:

1< g(B,r) (3.104)

Let us find the partial derivative of g(b,r) with respect to r:

J.i (1+ 5+ 5r) +IlB r4 + (r+ ) +2(1+ 8+ r)}

(3.105)

Then

i The giscriminant always positive, since (1 + a + ar)2 4- 6 +l - 8
+ 4ar > 0 so &(ar) is a real positive number.
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> r >0, for all 5>0, r >0 (3.106)

Therefore

lim g(br) < g(5,r) t  (3.107)

8-0o  1 > 0

But

lir g(5,r) - 1 (3.108)
r-.0

Substitution of (3.108) in (3.107) yields:

1 < g(b,r) (3.109)Lr>O
8>0

and therefore condition (3.100) holds, and the theorem is proved.

Comments:

i) Notice that the theorem is very strong, in the sense that condition (3.109)

is strong; in fact, 1 is not only a lower bound for g(5,r), but it is an

infimum of g(5,r), i.e., its greatest lower bound! So, anything at all

upsetting the assumptions made, may invalidate the theorem, and in this

case either under-triggering or back-triggering, or both, at least in

principle, could occur!

2) Notice also that (3.106) is weak. In fact,

SIr> > lim 6gBr 1 (3.3110)
r > 0 r-P0 O> 0
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So, in fairness, we should point out that the possibility of occurrence of

under-triggering or back-triggering in practice is not so great, since any

"reasonable" value at all of c and r ought to satisfy condition (3.100)

with a good margin.

3.7 u

In this chapter we have analyzed the phase plane characteristics of

the basic flipflop equation in the case of a rectangular trigger.

Conditions related to the existence and nature of singularities were

discussed and three theorems were proved with respect to this point.

Some properties of the system were also established by diagonalization

of the characteristic matrix of the system (in effect, considering two possi-

bilities, respectively for the two possible types of singularity).

A general trajectory equation was established, and the geometry of

the separatrices was discussed, as well as the action of a trigger upon the

system phase plane portrait, with special attention to the effects of turning J

the trigger ON and OFF. Here the possibilities of under-triggering and back-

triggering were discussed, and a theorem on the conditions for such a possibility

to exist was proved for an important special case.



4. ANALYSIS AND DESIGN l iiiQuEs

4.1 Introduction

At this point we would like to utilize this information we have about

the bistable system represented by equation (2.103) to the purpose of developing

some analysis and design techniques. Specifically, we woaid like to find

effectivei methods to solve the following problem: given a flipflop, its

loading and triggering circuits, find the transition wave forms of:

(i) base currents and voltages

(ii) collector currents and voltages

We would then be able to find the optimum trigger duration. Further-

more, knowledge of the base and collector currents and voltageb as functions of

time would help to improve the design of the overall system [1, 4].

And finally, if the influence of the circuit parameters upon wave form

characteristics is known, we would have a means of optimizing the design of the

system towards approaching some transition requirements [7].

Lastly, if the transistors are given (T is given) and also the trigger,

b but if the circuit (resistors and capacitors) is abritrary, then the lower limit

in transition time can be calculated, and a convenient figure of merit for

transistors describing their performance in switching circuits can oe defined,

and would certainly be useful in the selection of transistors for switching

applications (see Chapter 5) [10, 20].

4.2 Definitions of Time Intervals

We have divided the range of the variable x into three parts, which

were called regions I, II and III. Remember that x is a normalized form of

By "effective" we mean: "a sensible compromise between accuracy and ease of

application."

-113-
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the base-to-base voltage. Let us consider the variables Wk, which are normalized

forms of the collector currents (of transistors 1 and 2 for k - 1, 2, respec-

tively), as given by equation (2.93).

It is clear that, as long as x is in region I, w1 = 0 and w2 = 1;

whenever x is in region III, this situation is reversed, with w1 = 1 and w2 = 0;

in both these cases one of the transistors is cutt off, and the other is con-

ducting a fixed current, i.e., the transistors are inactive; they are active

only when x is in region II.

Def. 4.1. So, in a I to III transition, from the point of view of collector

currents, the time during which x is crossing region I, from x(t0 ) towards - 1

is really a delay. It will be called "delay time" and designated by TD. if

the circuit were settled, x(tO)= xIO; otherwise, it may happen that X(t 0 ) iXo.
1 1

Def. 4.2. The time interval when x is in region II, going from - i to + i is

characterized by activity of the transistors, and variation of collector cur-

rents. It will be called "active time" and designated by TA.

Def. 4.3. And finally, for the time interval when x is already in region III,

from + Y until final settling in a neighborhood NIII0 of xiiiO, the collector

currents are constant (having reached their final values) and the transistors

are again inactive. It will be called "complementary time" and designated by

T C

However, many things can happen while x is in region III.

Def. 4.4. The time interval in which x goes from + - to x with trigger ON,

is called "balanced time" and designated TB.

Def. 4.5. The time interval between the moment the trigger is turned OFF and

the moment x settles inside NIIIO is called "settling time" and designated TS .

t This time interval is often called "discrimination time."
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Def. 4.6. The time interval between the moment x reaches xIIiO (or woild reach

xi if the trigger were kept ON) and the moment the trigger is turned OFF

is called "trigger excess overtime" and designated TEo. We will make the

convention of using negative values of T if the trigger is turned OFF before
TEO

x reaches x 1 i0, i.e., given the function t(x), then TEO = Te - t(xIII0) where

t(x ) is calculated assuming a sufficiently long trigger (or measured!) and

To is the trigger duration.

Def. 4.7 . The time interval between the instant x reaches + - and the instant

the trigger is turned OFF is called "trigger overtime" or simply "overtime,"

and designated TOV, i.e., TOV = Te - t(+ .

With our criterion for optimum trigger duration T, (see equation

(3.70)) we will have:

Te* = t(x 11iO )  (N.a)

and if Te = T, then from Def. 4.6,

TEO 0 (4.lb)

And we define "optimum overtime" T*V

o8v e: T* - (4 .1c)

Def. 4.8. In the case of too long a trigger, we define the "long settling1
time, TL, as the time interval between the moment x reaches + - and the moment

it settles inside a given neighborhood NII1 I of xIIil.

Def. 4.9. Finally, we call "I-III transition time," TTR, the total time interval

between the moment the trigger is turned ON and the moment x crosses the line

xiriO.
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The following relations are obvious from the definitions:

TTR = TD + TA + TB, if x(t 0 ) = X10  (4.2a)

TC = TOV + TS  (4.2b)

TOV = TB + TEO (4.2c)

T =0 implies TOV T* T (4.2d)

Naturally, all the above definitions apply equally well to a IIl-I

transition by replacing III by I and I by III everywhere. The symbol T-

denotes the "I-I transition time."

Table IXC contains these definitions of time intervals, which are

also illustrated in Fig. 21.

4.3 Calculation of a Time Interval Over a Trajectory by an Iterative Formula a

It is not possible to explicit y in (3.59). Therefore, given an

initial point P0 :(xo,yo)l and the abcissa xf of another point Pf, in order to

find the other coordinate yf of Pf such that Po and Pf are on the same

trajectory, we must apply an iterative procedure to (3.59); the time intervals

can be found from (3.58).

Equation (3.59) can be expressed as

= o.f~L21~.(43)

Read: P0 "twhose coordinate are" (x0 ,y0 ).
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TABLE IX. DEFINITIONS OF TIME INTERVALS OVER A TRAJECTORY (SEE FIG. 21)

Symbol Name Definition Comments

T Delay Time t(- t If circuit was settled atx at to, t(xi) - to;

ot erwise t(x I3 to. to
is the instantthe triggeor
is turned ON.

TA Active Time t(+ t) - t )
A7 7

T Complementary ts - t(- i) t is the instant when P
Time7enters N for the last

time.

TB Balance Time t(x1 ilO, . = 1) - t(- t(xIIIO 1) is the
instant P crosses x= x ,
assuming the trigger sR
ON (p = 1) all the time.

TS  Settling Time ts - t to is the instant the
trigger is turned OFF.

TEO Trigger Excess t 6 - t(xlllO, i ) i)
Overtime

T Trigger t - t (+ 1)
OV Overtime

TTR Transition t - tO Notice that it is measured
Time since to (not t(xio)!)

until ts

To Trigger
Duration t 0 to

To Optimum Defined only if Of course, only approxi-
Trigger t0 = t(x 0 ), equivalent mately realizable.
Duration to letting
and t o . t(X 11O ,  i

ThV Overtime
respectively
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for region V and trigger condition V. Parameters ma, Mo, QJ QP are given in

Table X.

We obtain either one of two fomulae

Yn+l -M- (4. 4a

or

X M-Yni

Yn+l = M " - e? Q (4.4b)

The only difference between them is a question of convergence.

In fact, given two implicit functions f and g of y, the equation

f(y) = g(y) (4.5)

can be solved by an iterative procedure by means of a formula such ast

(4.6)i ~f (Ynl) = g(Yn )  .6

i.e.,

n+l f'l[g(yn) (4.7)

Let yf be the solution of equation (4.5)

The iterative formula (4.6) will converge, i.e., lir yn = yf, if and

only if there is a number E > 0 such that, if lyn - Yfl < e, there is a positive

number K such that:

t No loss of generality, since the symbols f and g can be interchanged.
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TABLE X. DEFINITION OF THE PARAMETERS OF EQUATION (4.3)

Parameters of (4.3) Expressed as Functions of the Parameters of (3.59

M (x- x*)X0
cx (x

% i (xo -x*)X y
(x 0  -x*)% 13 YO

Comments: a) Region V, trigger condition g

b) x* =xVp

d) (xoy 0 ) = any given point on the branch of trajectory

under conditions V4.

e) x = some abcissa such that there is an ordinate y

satisfying the condition: "(x,y) is on the same

trajectory Vp branch as (XoPYo).

f) y is to be found.

I

4
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Sn+l
2-< K, K<l1 (4.8)

However, it is clear that

imn g' (yf)
nf

where the prime means "derivative with respect to yf."

Now (4.8) and (4.9) imply that (4.6) converges if and only if

< 1 
(4.10)

Therefore, one of formulae (4 .4a, b) converges and the other diverges. There is

no way to know a priori which one will converge, since we would need the solu-

tion yf of (4.3) to answer this question. However, assuming we start from a

good initial guess YI, if we calculate Y2 and Y3 from both formulae (4.4a, b),

the initial tendency should be clear.

Another way would be to differentiate both sides of (4.3) with respect

to y, and compare the two results for the initial guess yIV hoping that compar-

ison at yf would yield the same qualitative result. Call f(y) and g(y),

respectively, the sides of (4.3) with the larger and smaller absolute value at

point yI, and take that of formulae (4.4a, b) which conforms to (4.7).

If eventually, the selected formula diverges, then we should try to

improve the initial guess yl and repeat the procedure outlined in the previous

paragraph.

A method of extrapolation usually allows improvement of any trial Yn

using the previous results for y n- and y n-2 from (4.7) we write (4.11) below:
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by. = fl[g(yn)] - Yn (4.11)

So, to Yn2 and yn-i there correspond respectively the variations

An-2 and 6yn-l the two points (yn, yn2) and (yn_l,,ynl) define a line

-n %n-i & n-l-2 (4.12)AYn = y (n~.1 n-l"- Yn-2 n2

Let

An=O

then:

Yn-2'6n-i Yn-i '&Tn-2 (413)
Yn A n-i " yn-2

Try substituting y into (4.11). Stop when Ay is small enough.

n n

This method, even though more involved, would speed up the convergence,

it is more tolerant with respect to initial guesses, and stabilizes the method

to the point of usually producing a convergent sequence of numbers yn - Ys even

in a case for which, if directly applied, equation (4.7) would diverge.

If the problem consists in finding time intervals only, and we are

not concerned with other characteristics of the trajectory, then the trajectory

equations (3.57) in the time domain could be used directly. They can be written

as

n is the extrapolated, or expected, value of Yn"

n- : 1 grin'~ ml n laln m lwa n m m N - - - - - . . .
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X T X T
xf Ae +Of +Ae + x* (4 .14a)

a Of0 3O

yf 0 A Qe(.14b)

where Tof tf - to, and x* is the abcissa of the singular point corresponding

to the region; clearly (xo,Yo) is the initial point. So:

x =Ae an + Ae n+ X* (4.15)

and, by the use of a method like the one expressed by equation (4.13),

XtLn. +(XnTn. - XlT n)

T X= n-l + xn Tn-l - n-l n (4.16)n+l x - x (.6n n-i

Now, Tn+l would be used in (4.15). The numbers xn.1 and xn are

respectively the results of (4.15) when fed with Tn. and T n . Clearly

Xn = Tn - Tn-l (4.17)

When L n is small enough, the process is stopped and TOf corresponding

to xf could be fed into (4.14b) to find the corresponding value of y.

There remains the problem of how to find a fairly good initial value

for the iterative procedure. One good way is to assume that, in a crude

approximation, in regions I and III, P moves in a straight line towards the

singularity (virtual or real), and that in region II it moves parallel to the

asymptote of positive slope.

Therefore:

In regions I and III, with x* standing for the corresponding

singularity:
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(x* - xf)Yo  (4.18)
Yl= X* -X 0

In region II, with X being the positive natural frequency:

Yl= (xf - Xo) + Y0  (4.19)

Both in (4.18) and (4.19), (xoy 0 ) is the initial position, and we

wish to find the first approximation Y1 to the ordinate yf corresponding to the

abcissa x f.

To find a first approximation To1 to the time interval for P to go

from (xo, Yo) to (xf,yf.), consider the first approximation to the trajectory as

being a straight line from (xo,yo) to (xf,Yl). We know that, whatever the

trajectory y(x) may be,

x
TOf f dx (4.20)

Sx0

Therefore, if y(x) is a straight line with slope y', going through

(x 0 yo) and (xf,yl), thenP crosses the line x after a time interval:

-1 1"Yl (4.21)

01 y' YO

and naturally,

y,: l " Yo ( .2
y x x(4.22)

xf - 0

NOTE: In a general form, if a trajectory is a straight line between points

a :(a, ya) and Pb:(Xbyb), Tab = tb - ta is
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T -b(4.23)

and

y1 Yb a (4.24)
Xb - xa

Whenever x0 and xf are in different regions, we have to proceed by

steps. Assume a I to III transition with x0 in region I and xf in region III;

y0 is, of course, given, and yf is to be found. Then (with the notation shown

in Fig. 22):

(i) With (xoYo) as initial point on the equation, find

Ya' at Xa= - by iteration.

(ii) Use equation (3.61a.i) to find yb' at xb -
+

(iii) With (xb, yb) as initial values on the equations, find

Y at xc = + -' by iteration.

(iv) Use equation (3.61b.i) to find d at Xd = + .

(v) With (xdyd) as initial values, find the point yf, at

x = Xf, by iteration, assuming that P crosses x = xf

while the trigger is ON.

(vi) Calculate all time intervals by (3.58). Then

T' =T +T +T
Of Oa bc df.

(vii) Consider the trigger duration TW, and suppose that

P crosses x = xf after the trigger is turned OFF,

either for the first or second time.

(viii) With (xdyd) as initial values of the coordinates,

find (XelYe)' by iteration, where, after a time interval

T = TW - (Toa + Tbc), trigger turn-off occurs.
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(ix) Find Ye 5e "YO

(x) With (xe ye) as initial values, find yf, at x = xf,

by iteration; there may be none, one, or two values.

(xi) The time intervals can be calculated by (3.58), and,

in this case, where P crosses x = xf after trigger

turn-off,f

TOf T W + Tef

Of course, this algorithm, with slight modifications of detail, can

be used to find optimum values for TW, instead of having TW as part of the data.

This same algorithm can be applied to a III to I transition, after

the obvious interchange of reference to regions I and III.

See illustrative examples in Chapter 6.

4.4 Graphical Constructions

4.4.1 The (,X) Plane Method

Equations (3.15) and (3.48) define the transformation of variables

from (x,y) to PO,x), and can be written equivalently in a single pair of

expressions:

(x - y]

a
x_ ~- 1 [' a"(x -x*) + y)

NOTE: Considering that y* = 0.

Of course, if P crosses x = xf twice after trigger turn-off, we must know up
to which passage of P by x = xf we wish to calculate Tef.
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Here equation (3.50) and (3.51) are repeated for convenience, with

(t - 0 ) replaced by T:

XaT@ =~ 0e k o

(4.26)
X.T

x = Xe f

T L,,W_. = -L h,,vI (4.27)

We see that it is possible to define a new pair of variables, say and x, as

follows:

0
(4.28)

x =o

whereCo and X0 are the initial values of€ and X, so thato = 0 0 by

definition.

Therefore, (4.27) becomes:

J T . (4.29)

r This means that in the ( , j) plane, the trajectories are straight

lines, and intervals can be marked as a linear scale, either along a trajectory

or along a vertical or horizontal axis, since time is linear with either

variable.
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On the other hand, (4.25) means that any straight line in the (x,y)

plane is also a straight line in the (OX) plane.

From (4.25), it is clear that the transformations depend on the

region and trigger indices Vg. This can be indicated by attaching these indices

toe, x, and also tof and -X, i.e., (4.25) becomes:

0 -4 = I ( V4)-

(4.30)
X4= x X -vP(] V9

Also (4.27) becomes:

=- -YAUOV 1 I'mXVP 4-1TVP = x .L xjaO

And, of course, (4.28) becomes:

Vf

(4.32)

VP XV0

And finally, from (4.29):

TV, P XVIL (4.33)
VP O X

Now, for each value of Vp that occurs in the problem (this must be

known):
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a) Draw, on a linear graph paper, with OV& and XVA axes marked on it, the

lines corresponding to the following phase plane lines:

(i) The coordinate x axis with a scale on it.

(ii) The direction of the vertical lines.

b) On a log-log graph paper, mark the coordinate VP and XV1 axes, and the

direction of the trajectory lines, as well as a time scale, and also the

scaled curve corresponding to the x axis.
1

c) Given a trigger amplitude W, draw the corresponding lines x = + in the

linear graphs where 4 = 1, and from these graphs, draw the corresponding

curves in the log-log graph, by means of a point-by-point transportation.

d) The log-log graphs representing the various (F ,VP) planes provide a

means for very fast calculation of times over the trajectory corresponding

to the given trigger amplitude.

e) The set of log-log papers plus the linear graphs allow a fast calculation

of trajectory times for any trigger amplitude (within the bounds of the

graph papers, of course).

It is clear that this method is advantageous mostly in the case where

several calculations must be performed for the same system.

4.4.2 A Simple Method on the (x,y) Plane

This is a less accurate, but faster method, and more versatile in

solving problems for several different trigger amplitudes. It will be called

"the phase plane method A."

It consists in approximating the system phase plane portrait with

four straight line segments, under the following assumptions:

'I _ _ ___ _
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a) We assume that, in regions I and III, P moves in a straight line towards

the corresponding singularity x , V = I, III; g = 0, 1; and that in

region II it moves parallel to and in the same direction of the asymptote

nearest to it.
1 1

b) The discontinuities of y at x = - - and at x = + - can be calculated by7 7

equations (3.61a.i) and (3.61b.i) respectively.

c) As a very fast method at the cost of obtaining a somewhat poorer accuracy,

these discontinuities of y at the boundaries of region II (i.e., at

x = +I) can be completely ignored.

d) So, as illustrated in Fig. 23, we take a linear graph paper, mark on it the

scaled x and y axes, vertical lines x = + 4, and singular points XVO , and

also the direction of the asymptotes related to the saddle point of

region II.

Then, given a trigger amplitude W, we mark the points X and also

P0. Suppose a I to III transition; then PO = P:(XIo'Yo)"

(i) Draw the segent of the line Poxn contained in region I.

(ii) The intersection of this line with x =- is Ya"

(iii) Find yb by (3.61a.i).

(iv) From Yb draw, inside region II, a line segment with

slope X (the positive asymptote slope); its

intersection with x = + 1 is Yc"

(v) Find yd by (3.61b.i).

(vi) Consider Pd:(+ 4, yd); draw the line d I

Let Xd be the slope of this line, and call it "d

line.

t In the descriptions of these graphical methods, references to a line shall,
in general, be made using the symbol for its slope.
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(vii) Consider Pf:(xfYf) be the intersection of lines

PXI and x xf.

(viii) Calculate Tof = Toa + Tbc + Tdf by (4.21), supposing

that P crosses x = x f while the trigger is ON.

(ix) Consider the trigger duration T and suppose that

P crosses x = xf for the second timet after the

trigger is turned OFF.

(x) Find

Ild[Tw- (T oa+Tbc)]

ye de

and mark Pe :(xe, ye ), the point immediately before

trigger turn-off occurs.

(xi) Find ye = 'e - yo, and mark Pe:(xe,ye), the point

immediately after trigger turn-off.

(xii) Draw the line PeXIIIO, and mark point Pf:(xf, yf)

of intersection of the lines PeX 110 and x = xf,

(xiii) Find Tef by (4.21), and then in this case where P

crosses x = xf after trigger turn-off,

Tof =T + T
Of W ef

Of course, after the obvious changes, the same algorithm can be

applied to a III to I transition.

I This method does not apply with acceptable accuracy if P crosses x xf for

the first time after trigger turn-off.
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4.4.3 An Approximate Method on the (xjy) Plane

This is a slightly more sophisticated method then method A; it will

be called "the phase plane method B."

We will use the phase plane equation (3.11) which we repeat here for

convenience:

d ay -y c aVx - , d. = d + pnW (3.11)dx a VY %aV

To plot a I-III transition in the phase plane, we do as follows:

(i) Find y0 and xV, for all Vp conditions.

(ii) Draw the lines y = X(x - x*) for xi 1 , xIi 1 , xiIiO,

and xi1 1, and call them, respectively, the Pil,

.1Il' I,1Op and PIIl lines.

(iii) By (3.11), we find dY at Pc:(x 1 o,y 0 ), and call X0

this derivative.

(iv) Draw a line with slope X 0 through PO, and call this

the X0 line.

(v) Check if the k0 line intersects the line inside

region I.

If this is so, call the intersection P1 :(xlyl)

and call P ,y) the intersection of the lines

andx - 1

Otherwise, ignore the intersection of lines X0

and PIl' and call P:(- 1 -'Ya) the intersection of
a1

lines P and x =
0 7"

(v) Find Yb(x - ! ) by (3.61a.i)i7
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(vii) Find Yc(x = + ) by the iterative numericalprocedre

using, for example, one of equations (4.4), or,

instead, assume the trajectory in region II is a

straight line of slope % 1 1. (The choice depends

entirely on a compromise between accuracy and com-

putation time.)

(viii) Find yd(x = + 1 ) by (3.61d.i).

(ix) By (3.11), calculate the slope 2d at Pd:(+ 11 +'Yd)

(for region III), and call Pd this derivative.

(x) Draw a line with slope Xd through point Pd and call

it the Xd line.

(xi) Find the intersection P3 (x 3 ,y 3 ) of lines Xd and

IIn"

The trajectory in region III with a very

long trigger is taken as segments PdP3 and P3XIII1

of lines "d and PIIIl" Call this the line PdXIIif.

(xii) Do as directed in (vi) to (xiii) of method A, but

modify instruction (x) of that method to:

(x) Find Pe:(xe ,e), the point immediately before

trigger turn-off occurs by:

-d [TW"(TOa+Tbc)]
Yel = yde

- X PIl [TW (TOa+Tbc+Td3)]

Ye2 Yele

Ye' if yel > y3

1.e Ye2l i el Y3
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Again, after the obvious modifications, this applies to a III to I

transition.

An illustrative example is presented in Chapter 6.

Obs.: Notice that this Method B can be a hybrid numerical and graphical

method. Various such combinations can be made and we feel that, some of these

combinations may be good compromises between speed and accuracy.

4.5 Approximate Analysis of Waveforms

One of the most important aspects of transition waveforms is the time

duration of the various phases of a transition as defined in section 4.2. The

exact shapes of a particular variable (voltage or current) as a function of

time is less important than its general characteristics, such as delay time,

rise time, average form in each region, minimum and maximum values, etc. The

exact shape is important insofar as it influences the calculations of these

characteristics, especially the various time intervals elapsed between the

definite changes in character of the curve, generally described by changes in

the values of the pair of indices Vp±.

Furthermore, even if we do have the exact (analytic) solution of

(2.103), it will not do us much good.

We can solve the problem for the waveforms of all variables based on

the solution of (2.103). But then--besides the fact that (2.103), and therefore

j any solution based on it, is already an approximation to the real problem--the

important general characteristics of the waveforms are hidden in a fairly

cumbersome analytical formula, which would take a considerable time of tedious

labor to plot.

Our aims consist mostly in analyzing and evaluating an existing flip-

flop or improving its design, selecting a better trigger or loading circuits,
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determining optimum trigger duration and better waveforms, and better

understanding the operation of bistable circuits.

For these purposes, an approximate plot of the several variables

which could be obtained in a reasonably short time would be far more useful.

In this section we will suggest some methods by which such graphs

can be obtained.

4.5.1 Collector and Base Currents

Assume that an approximation to y(x) (phase plane) has been obtained,

consisting of four line segments, one for each value of VI (three line seg-

ments in the case of optimum trigger duration).

This can be obtained either by the second graphical method described

in section 4.4.2, or, if time durations are extremely important, by calculating

time durations with one of the iterative techniques described in section 4.3,

and then using (4.21) and (4.22) to determine the position of line segments

which would result in the same trajectory time intervals.

a) With (4.21), several points can be marked over this approximate trajectory

constituting indeed a (nonlinear) time scale.

b) Or else, considering that x(t) has the form

x = A + (434)

A, B and % can be found for each Value of Vp.

By a) or b) above, or any equivalent method, plot x(t) and y(t).

(i) Collector Currents

If (2.93) is assumed, an approximate graph of the collector current

variables Wk' k = 1, 2, is immediate for they will be constants outside region II
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(either 0 or 1, whatever the case may be) and will be linear functions of x

inside region II, so that, by Just assigning new scales, the two curves w (t)
k

Wcan be obtained.

More accurate curves can be obtained by using equations (2.56) and

(2.57), which will yield results in closer approximation to the real transistor

currents, than the model represented by equation (2.103). Use of a graph of

the tanh x would allow a completely graphical procedure.

(ii) Base Currents

Here use of equation (2.94) yields graphs of Zk, k = 1 2, with

almost equal ease. The first term is directly proportional to the corresponding

collector current Wk, and the second term is proportional to y(t) in every

region, since q'(x) is a constant in every region.

In this case, use of (2.58) and (2.59) to improve accuracy would

hardly be Justified.

4.5.2 Collector Voltages

By inspection of Fig. 24 we get immediately:

v m vk +RikCik - Rik(ik + iBk + I ); { = , 2 (4.36)

where t' is the nonnormalized time variable. Normalizing as before and setting

1

uj = T 0~o j = 1, 2 (4.37)

we get:

I _ _ _ _ _ _ _ _ _ _ _ _
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FORTHE OUTPUT VOLTAGE.
T T

f~n
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0 2p Rik RikIBk (4.38)ul - Xk +  k2Pk Rok +k) 2Pk RoaIE

with k 1, 2; = 1, 2; 1 k. As before, we can interpret 6k in terms of

an equivalent current source of strength sk and a parallel conductance Gk,

according to (2.79), repeated here for convenience. Assuming a rectangular

trigger, and making use of the index p = 0, 1:

k k - G kRk Xk, k = 1, 2 (4.39)k k 2Pk

Substituting (4.39) into (4.38), and using 0k , , we get:

T ik Rik RkIBk
uZ = (1 + RikGk )Xkk + Yk - 2Pk R (sk + zk) 2pk R kI E )

ok 0k'

with k 1, 2; 1 = 1, 2; 1 k.

This equation is very general, and allows one to find both collector

voltages of a general Eccles-Jordan flipflop (symmetrical or nonsymmetrical)

if x and x2 are known and also holds for the asymmetrical flipflop, by dropping

the indices k and 9.

For the moment we shall focus our attention on the asymmetric flip-

flop and on the symmetric Eccles-Jordan.

In the first case (asymmetric flipflop) we get:

i Ri RiIB (4.41)
u (1 + RiG)x +7 y - 2p ° (s + z) - 2p Ro

And in the latter case (symmetric flipflop) we get by subtraction,

and setting
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u u - U (442)

u-(1+RiG)x+Ay-2p -2p 2poR z(-2p 11 (4.43)
0 0o

with

{ 0, if trigger is OFF

= 1" if trigger .is ON

These equations immediately suggest the procedure for obtaining the

collector voltage variable u(t) from x(t), y(t), z(t) and W; it is clearly a

very easy graph to obtain from the preceding ones, since, in each region, it

consists of a constant plus a linear combination of the previous curves, with

only the constant and possibly the coefficient of x(t) having different values

for the two distinct trigger states.

4.6 The Influence of Parameters on Transition Times -- Simplified Equations

We would like to have some qualitative notion about the effects of

the various parameters upon the overall transition time. We are also interested

in learning something about the total charge fed into and removed from

transistor bases and capacitors, and their relation, if any, with transition

times. Besides that, some characteristics of waveforms, such as maximum,

minimum and settled levels of collector voltages and peak base currents also

interest us.

At this point we must stress that we are searching for more qualitative

criteria, i.e., first order approximation formulae which could help considerably

Notice that x - x - x2, i.e., the order of the indices is reversed in the
two definitions.
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in the evaluation and understanding of flipflops, and not for exact (or good)

engineering design formulae. In this respect the character of this section

is entirely different from the general character of this dissertation.

4.6.1 The Optimum Flipflop

Let us assume (since it is possible in principle) that a flipflop has

been constructed such that, if the trigger duration is optimum, i.e., if

xe = xlilO, then Y. = 0, where xe and ye are the coordinates of Pe ,the position

of P immediately after trigger turn off.

For this flipflop, we can say that, in a first order approximation,

the transition time is given by:

xil- i L xl +xiii nII0h n - (4.144)
TTR  yo x11 - x i l yl xin - XII

Let us assume that x ii 1 - xiiiO = x 1 - xio = 4. Then

TR = xi (4.45)
TB yo (&)2

From Table II:

&l+RG n~w+( l R ~ ( + ~ (4.46)-- + RsG1  1 + R +

xI1 x Hl )2[(nW + j) 2  ()2] (4.47)

This comes from assuming a straight line approximation to the trajectory,

neglecting the active time. and using equations (4.23) and (4.24) in regions
I and III. Notice that state symmetry is not required for this approximate
equation to be valid.
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So,

n1W + 1 + - O (i + H* )]
xl " x IITl 1 + R.sG!10

(&)2 (n'W + J)2 . ( 2(

where:

RB
a) n' 2 R--R

0

b) (Pk[1 +2Bk+ p]

) a .(l- ) R s

a R
0

d j p, if it is an asymmetric flipflop
d) J 1

AT = l "P2' if it is a symmetric flipflop

e) H , if it is an asymmetric flipflop

2, if it is a symmetric flipflop

Assume: a= aii I = a, and mI = mi I  m.

m I =-W-- YO a a (4.49)Y0 = a I  a
I

where a and m are given in Table I:

Tio
a ) m -2 p i -

Ti o
b) a=T2
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And therefore

Wo -- - W (4.50)3,0 Oi RoCi

So:

o_ RC rR 1 + R8 G\ j + 1
y0 ~ ~ ~ ~ -'r(RR L + 1R 5 Q.2W 4

It is clear that

1rzli if (1- a)R << aR

so that H* - H.

And assumption of state symmetry eliminates biasing from the formula:

J=0

From (4.48) and (4.51) we get:

rR 1_+_____G H12
R2~ s 1 1 1RG\L

B C r R 1 + R EL . J + HR G0J 2 W j
T = w _+.G)2I2

TB 0(+R1  L (2ksW + T - (Hr)2

(4.52)

And, if t 1 and J 0, we get
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(1+E 5G1 ) *2i

where

1 + RsG1
K=I +R1 + Rs Go

As a final simplification, if

GO  G1  (equivalently, K = 0)

we get:

RCi(454)
TTR (l + RsGl ) l- \o 2

Let us suppose that we have a fairly large trigger, and that p is

also sufficiently largei so that

(HRo)'*2« << l (4 55 )

Then taking the first two terms of the series expansion of the argu-

ment of the natural logarithm, and then taking the first term of the series

expansion of the logarithm itself we obtain:

These conditions are not a property of flipflops. In fact HR0 /2R W close to

1 is practical, since W 1 10-1 is practical. However, we assume that W has
been chosen large to speed up the transition.
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R oi (4.56)

IEquation (4.56) should be an acceptable first order approximation
for the transition time whenever the flipflop and trigger satisfy all of the

assumptions leading to it. Observe that there is a hierarchy of equations with

more and more restrictive assumptions; all of them assume the optimum flipflop

described before. Then:

Equation (4.52) is very general; the only assumption is that

the flipflop is either symmetric or asymmetric;

Equation (4.53) assumes, further, that 1 = , and J = 0;

Equation (4.54) assumes, still further, that Go  G 1,

i.e., that K = 0;

Equation (4.56), besides the above, assumes (4.55) to be valid.

f Also remember that all times are normalized with respect to 'T, so that

nonnormalized times would not include in the denominator. For example, (4.56)

would read:

T_ oi (4.57)

4(1 + RsG 1)W
2  (Ti + T o)

Remembering that W = -, we get:
a' E

rP 2.(IEoif (4.58)TE 4R.Ci(l + R Gi)I
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Another expression for TTR can be obtained as follows: Consider

that the charge variation 6qi of Ci between the two stable states is given by

(see (4.69)):

v H(xIIIO - xlo)Ci 2pHCi 1bIErol I

hi=(IIIO " v0)'C= 1 1 n(I + R (i 3 sGo)

Therefore,

T N\2 (1+RG )2 1 (4.6o)
T;R = 2It) (1 + RsGI) RsC

If Go = G = 0 (i.e., the trigger circuits are perfect current

sources), and if 1 ,

(Hbqi,2 1_4.1
TTR 52It RsCi(6

This equation should give us a somewhat crude but satisfactory first

approximation to the transition time.

We insist that use of (4.59) should always be cautious, since some of

the assumptions made in its derivation are somewhat vague, and others, if

ligitimate, will seldom be fulfilled. So, (4.59) is usable for estimating

results, i.e., as a kind of figure of merit; it is definitely not a design

f ormula.

This approximation is made under our assumptions: ( = 0, $ = 1, Go = GI, so

there is a cancelling out in the second term of (4.60).
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At first glance it seems strange that the transition time does not

depend on T in a first approximation. In other words, it seems strange that T

is not a factor of prime importance in the transition time. The following

discussion should account for this observation.

First of all, since the beginning, we have completely ignored the

active region, and second, we have assumed that yd' the ordinate of P when

entering region III, would be such that Ye = Ok Of course, if r has some

influence in the active region, it will determine the value of yd; in assuming

Yd to have a convenient value, we have ignored the effects of the transistors,

or in a better way, we have assumed that there is a relationship between the

transistors and the passive network such that the optimum flipflop assumption

is verified. In this sense, T should be related to Toi' and therefore

(especially if this relation were found to be linear) T oi could be replaced by

its expression in terms of T. Then T would be the prime factor in all those

equations, and T oi would not appear at all. We could also have a linear con-

bination of both parameters. That we have started using To, was a question of

convenience; the assumptions made establish a certain relationship between Toi

and T. We conclude that, after all, T is a very important factor in the

transition time.

Even more important than the approximation of TTR furnished by these

formulae in the case of an optimum flipflop, is the following consideration:

(i) Even if the flipflop is not optimum, the transition

time should not be substantially different from the

results obtained by the use of these formulae. They

would be, at any rate, a first order approximation to

the transition time.
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(ii) They would certainly be true in a qualitative sense,

i.e., as indications of the relative effects of the

various parameters, as well as the order of magnitudes

and directions of change.

4.6.2 The Total Charge Interchanged Between the Transistor Bases'

These were established in Chapter 2, equations (2.20) as

qBk = 'riC k = 1, 2 (4.62)

Therefore, the total charge variation is

A = HraIE (4.63)

Some relations can be established here, such as:

b- - (1 + RG O ) (4.64)

But let G1  GO; then, from (4.60)

'Iq *N n ' 'To, (I +RsG O)
TTR L ' _ i_ (1 + HG0 ) (4.65)

Also,

T'TR ( 2 (1 + R G1 )RsC(

Since the charge that enters one base is equal to the charge that leaves the
other, we can talk about the charge transferred between the bases, though
this transference is really only a mathematical cancellation, not physical
transference.
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If Gl = 0,

T~R (~B~o~ . 1(4.67)

Also, it is clear that, if G 0,

:i '6qi T Ioq" (4.68)
'~*~ioiB

which is very illustrative of the type of condition relating the transistor

parameter, the passive network parameters, and the two stable states.

Notice that for the symmetric flipflop,

q B = qB1 - qB2 "' B = 8B1 - 6B
2

(4.69)

qi = ql - qi2 Aqi =qil Li 1

W = W - W. but the triggers W and W2 are assumed to occur simultaneously

4.6.3 Collector Voltages--Maximum, Minimum and Settled Values

(i) Maximum: V x =Vck + Ro(It + IE)

(ii) Minimum: v lwiin = Vck+Ro(It+(i - )I

(iii) Settled: vCIIO = VC + Ro aEI, (4.70)

(iv) v 1III0 = VC, + R0(1 - a)IE

(v) Vc2 io = VC2 + R(1 - a)IE

(vi) VC2 IIIO = VC2 + ROaE
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where: k = 1, 2; = ,2; 2 k

V 0 = collector voltage of transistor Tk when x =XV0

V = collector supply voltage of transistor Tk
Ck T

In case of the asymmetric flipflop, drop the indices k and L, and

v~lvO --VCI.

4.6.4 Peak Values of Base Current

Considering the optimum flipflop, and the approximate model whose

equation is (2.103), it is clear that the peak base current would be given by:

peak =Yd

(4.71)
Xll

Yd =-YO A--c

z*, if the flipflop is asymmetric
with z*= 1

z*- z if the flipflop is symmetric

and the symbol "*" means the component of the current
corresponding to base charge variation

YO

The approximate form of -, from, say, (4.54), and the approximate

form of x lll, yield:

T(I + RsG )  nW

Yd Ci (1 + RsG1 )

so that:

Notice that n = pn'.
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zpe 2 7W or i 2 J- tOi Bpeak oi

We stress that this value of zpeak refers to, not only the approximate

model of equation (2.103), but to this model with all the restrictions

implicitly imposed in the evaluation of

Therefore, such an expression is specially meant to give us an

acceptably close idea of the values of the base current in any given case, when

just a fast estimate is required.

4.7 The Problem of Circuit Optimization

Whenever one tries to state a problem of optimization, besides a clear

statement of what is to be optimized, two basic questions must be answered.

First: "Under what criterion?"

Second: "What are the constraints?"

The amount of material written on these optimization questions is

very large. We shall not try to find complete answers here, but rather, to

open the discussion by some pertinent aprroximations.

The first question is what characteristics we could wish to optimize:

trigger duration and amplitude (if not its waveform!), circuit parameters, or

the transistor characteristics.

This first question being decided, we could go on to the second

question, and try to be specific about stating an optimization criterion, i.e.,

an interpretation of the word "improvement!"

Of a host of possibilities, we can state the following three as

examples:
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a) The time interval between the moment when the trigger is turned ON and the

moment the collector voltage is settled (under what criterion to decide

this?) is to be minimized. Call this time the "collector voltage switching

time," T
Cs,

b) The time interval between the moment when the trigger is turned ON and the

moment the base (or base-to-base) voltage is settled, that is, the

"base voltage switching time," TBS, is to be minimized.

c) Instead of minimizing switching times, one might wish to have a given delay

time and a minimum active time, or a minimum switching time with a given

delay.

And so on! The above illustrates the point.

We have already attempted to approach question number one, in a very

tentative way, with respect to the variable x (see 3.5d and e) in defining, for

a special purpose, a concept of "optimum trigger duration," which was related

to the minimization of a defined "transition time" TTR, for the variable x.

The difficulties were apparent and that discussion stands as a good example of

the issues involved.

The second question is usually easier to settle, since constraints

are naturally stated either as inequalities or as relations between the

variables, or some other mathematical statement. To incorporate constraints in

an optimization algorithm is still another thing; but it has been done success-

fully for several problems, and, once stated, there is no a priori reason to

expect the problem to be intractable. The theory presented so far suggests a

number of techniques to approach optimization problems, once they are stated in

a mathematical form.

As a last observation, it is worth reminding ourselves that problems

of optimization tend to raise questions of existence of solutions (realizability)
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and that nothing has been said, for example, about the realizability of our

hypothetical "optimum flipflop" so liberally used (as an approximation device)

throughout this Chapter 4.

4.8 Summary

After defining a nomenclature for time intervals over a phase plane

trajectory, we have presented some methods for the calculation of points and

time intervals for a given trajectory.

An iterative numeric procedure allows the exact calculation of

yb(xb) and tb(Xb) if Ya(xa) and tb(xb) are known, for any given pair of abcissae

x a and xb.

Similarly, a fairly sophisticated graphical construction using two

variable transformations, (x,y) - (cZX) - (6,X), was also presented, and shown

to yield accurate results, given the limitations of a graphical construction.

A more naive construction on the phase plane was described, which

yields somewhat less accurate results, but is extremely simple to apply.

It was also suggested that some hybrid constructions graphical and

numeric, might be ideal for accuracy and practicability of use.

A graphical procedure to obtain fairly good plots of collector and

base voltage and current waveforms was described.

Engineering interest in simple-minded formulae which can work as rules

of thumb for the rapid evaluation of circuit characteristics has led us to

discuss, by means of an ultra-simplified model, a set of such relationships.

Finally, the optimization problem was proposed in a first approach

discussion.



5. EMXON OF THE THEORY

5.1 Introduction

We have, so far, confined ourselves to the asymmetric and the

symmetric flipflops subjected to a rectangular trigger, and also we have

implicitly assumed that neither Ci, Co or T is zero.

In this chapter we shall discuss the problems involved in applying

this theory to other situations, and indicate the methods and modifications

involved.

5.2 Case When T Is Negligible

This is a very unlikely possibility, but it may happen. In case it

does, we can take T = 0 as a good approximation. Then, the coefficients of the

equilibrium differential equations apparently are meaningless!

However, looking back to how these equations were established, we

will see that T was used only as a convenient time normalization constant. Of

course, if it is too small (or too large, as we shall see!) it ceases to be

convenient, and some other time interval? (such as Toi' for example) could be

used as a time normalization constant.

In performing this renormalization of time, we replace T with T in

equation (2.34) and on all related equations from then on. By letting T = 0 in

0
equations (2.29) and (2.30), Tcl and ic2 disappear from the expressions for iBl

and iR.

The result of this is that the charge storage in the base along with

its related current will be negligible, and only the recombination component

of the base current needs to be considered. Then, the equilibrium equations

will not contain terms like z0 and 10" Except for this, the theory is exactly

the same, and applies exactly in the same way. v
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Again we have a possible, although unlikely situation, which becomes

important especially because it can be solved in a special way, i.e., not just

an extension of the general theory.

By making Ti. IT' io oi and To all zero in equations (2.87), (2.88)

and (2.90), we would get, respectively:

For the asymmetric flipflop, from (2.87)

y Rw-l(l P)tanx !,(l + RG)x + (1l+2B+ p) +2t sR coshx

(5.1)

For the symmetric Eccles-Jordan flipflop, we get from (2.88)

y =2{(1 p)tanhx - (1 + R G)x + (B 1 -B 2  t} cosh x
s 0

(5.2)

For the nonsymmetric Eccles-Jordan flipflop, i.e., the most general

case, directly from (2.90):

(l Rk~qixk= Pk fl+2Bk + k) - ( 1 -k Pk)taflh x

(5.3)

R~ R sk
ok ok

so that, since x =x 1 - x2, we get:
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1, (1 + 2B, + Pl) + (1 t -Re

P2 (+ 2B+ p) -(1- R2)tn + s
2 ysech

2x + 2 %5
2

(I+ Rs2G2g) 2o2 Ro2

(5.4)

with the result that:

cosh x [P( - Pl ) P2( - P2)
Pi Rsl FRs2L1 +R slGV + R G tahx-

71 + RslG)Rol Rs2G2 R2

[ll+ 2B+ pl) p2(1 + 2B2 + P 2 I 1sl 1 P2 Rs2 s2

Li + R .I -,l + R 82 G2 i j~L1+51 G1 4ROi (1+ R 2G2V R0 2J

(5-5)

So, in every case we have y = f (x); of course we are assuming that

s (t) is a rectangular function. Therefore, we can find x(t), or better t(x),

by the formula:

tt - 1= X dt, where yl.(t) = f4(t) (5.6)

:0

and we mean that, if p changes, at a certain point, we must find its abcissa

Xa, and continue the integration after xa with the new function of x.

It is easy to see from equations (2.87) and (2.88) that these cases

are still exactly solvable even if only Cok = 0 and Cik 1 0, in the same way as

when C = C = 0. The only difference is that, in (5.1) and (5.2), instead
ik ok

R 2
of R cosh x as a factor on the right-hand side, we shall have the following

modifications:
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For the asymmetric case, from (2.87), replace,

R 21
in (5.1), 2 cosh x by (57)

sechx Ci
R

For the symmetric case, from (2.88), replace,

! in (5.2), S cosecby2x Ci (5.8)in cosh2x by (58

R +S R0

Note in (2.90) that, if Cok = 0, even the nonsymmetric case is con-

siderably simplified, since it will be reduced to a second order case, i.e.,

two first order equations. Then, if Rs1 = Rs2, the system can be exactly solved,

Just like the symmetric case. Otherwise it would be approximately solvable, like

the nondegenerate symmetric system.

5.4 Nonsyimnetric Eccles-Jordan Flipflops

The difficulty in the case of the nonsymmetric Eccles-Jordan flipflop

is that there is no way (except for some extremely fortunate coincidence) to

reduce the two equations (2.74) in x1 and x2 into a single equation. The fact

is that this circuit has one more degree of freedom and there is no possible

reduction to the previous cases. Nevertheless, we can do something about solving

the system. Suppose that we carry out an approximation of equations (2.74),

taking q(x) instead of tanh x Just as we have done to obtain equation (2.103).

The result will be the pair of equations expressed by (2.104), whose coefficients

are shown in Table 1.2, and which is repeated below for convenience:
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+ bkf + ckX = a ? + b'~ + d~

fk()[B( x + (x - + MkV k + nksk

with

k =1, 2

These two equations are coupled only in the active region II (here the

three regions are still defined in terms of the base-to-base voltage variable

x = x1 - x2 ). Except for region II, each equation is of the same form as

(2.103):

Thus, we can define another plane where x1 and x2 are represented

independently but on the same horizontal axis. Call it the xk axis.

In this plane, y1 and y2 would also be represented independently but

on the same vertical axis. Call it the Yk axis.

We will still divide this plane into three regions, but the region

boundaries will be determined on the (x,y) plane, rather than on the (xk, k

plane.

That is to say: If x is in region I or IIof the (x,y) plane then

x is in its region I or III and x is in its region I or 1112 of the
11 1 2 122

(Xk'yk) plane.

If x is in region II of the (x,y) plane, then both x1 and x2 will be

in their respective regiom ll1 and 112 of the (xkyk) plane.

Therefore, region II, which is nothing but the representation of the

active region of both planes, in the case of the (xk,y k) plane, will correspond

to two regions, one for x1 and another for x2. These regions are determined by

the values of xI and x2 when Ix1 - x21 1 (see Fig. 25).

Lllllll1 2 1 2 1' I l 7l 
'
... . -IIIII I I
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In turn, these values depend only on how they start, i.e., the

relative values of their respective initial ordinates Y10 and y,, and which

one starts first (receives a trigger first). So, the regions for x, may not

coincide at all with the regions for x2, and besides they have a certain con-

figuration only for a given transition: i.e., in the (xk, yk) plane the region

configuration is a function of the system and of the triggers.

Another plane is very helpful, and can be used. It is the (xl, x2 )

plane, in which the active region is a strip of parallel lines going through

the origin, intersecting the coordinate axes at points (+ 1 + I) thus bisecting

the first and third quadrants. The representative point Q of the system is

the point of coordinates (xl,x 2 ), and it is a simple matter to go from the time

scaled trajectories of the two points P1 and P2 in the (xk, k) plane to the

trajectory of Q in the (Xlx 2 ) plane.

Use of the (Xl,x2 ) plane makes it easier for us to find the points

(X y and (x2 - 1 (the sign ± according to theXla"Yla) a Xa , y2a-) where (Xla - x2 a) = +

direction of the transition), i.e., the points where x enters or leavesthe

active region.

Now, inside the active region, equations (2.104) form a system of

two linear second order differential equations in xk(t), k = 1, 2. We can

easily solve this system of equations for x (t) and x2(t), yl(t) and y2(t), and

so, x(t) = x - x2 and y(t) = y1 - y2 can be found, and from these, the points

(xlC I (x2 -,y2 ) where x comes out of the active region.

From then on, the equations (2.104) are again independent, and the

remaining trajectories yl(xl) and Y2 (x 2 ) can be found. Figure 25 illustrates

this discussion.

The case where both Cik and Cok or just Cok are negligible has already

deserved special mention in the previous section, for it is exactly solved by

equations (5.1) to (5.8).



5.5 Other Types of Trigger

5.5.1 Introduction

We have concentrated our efforts on a theory using a rectangular trigger

for two main reasons: the wave form can often be approximated by a rectangular

form, and a rectangular trigger lends itself easily to a phase plane treatment.

We feel, however, that some comments are necessary on the most

common nonrectangular trigger waveforms, such as those mentioned in 2.4.

5.5.2 Impulse Trigger

A trigger can be considered as an impulse if the two approximate

conditions hold:

(i) Wav Wmin

(5.9)
(ii) qt -q +

where:

(i) W = average trigger current variableav

(ii) Win = minimum rectangular trigger amplitude necessary

for a transition

(iii) qt = W Tt, is the charge transported by the

trigger

(iv) Tt = trigger duration, assumed here to be well defined

(v) 6qi, 6B' as defined in (4.6.2), are the total

variations of charge between the two states, of,

respectively, the input capacitors Cik and the

base storages.
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(vi) To simplify matters, we shall reason only with the

asymmetric or symmetric flipflops in this section.

If conditions (5.9) are met, there are two ways to compute transition

times (in the case of an impulse trigger the transition waveforms are meaning-

less); we will assume that Tt = TTR.

As the crudest possible transition time evaluation, assume a

rectangular trigger of amplitude W and duration Tt = TTR. Then

M = ? w (510)
YO M aav =oi av

TT III0dx a(Xlllmwav xl0)

T: mW (5.11)
TR 0 av

xI0

We find T' from its normal form T
TR TR

Roif

TR (1 + RsGo)Wav if T T (5.12)

As a less crude method, assume the transition is complete when the

charge fed by the trigger into the input capacitances and the bases is equal

to the total chmrge variation between the stable states:

t -- B + i (5.13)

We are implicitly assuming that the charge lost through both recom-

bination inside the bases and the input resistances during the transition is

small compared to the variation of stored charge. The trigger duration is again

assumed to be optimum.



-163-

* From (4.64),

,6B= (s~i4)

4q :T oi IE( l + Rs50) (5.15)

=t aIEWavt , IEWavT (5.16)

From (5.43), after denormalizing TTR into TT

T , H 1+ ' + RsGo)], if Tt  T (5.17)
W av TR

where H = 1, 2, is the symmetry factor.

Further simplification in (5.12) and (5.17) is possible if Go  0.

We get from (5.12):

Hoi
T R (5.18)

and from (5.17)

I~T -' H + o ] (5.19)
,TR Wayi

av

And we see that assumption of a constant value y0 of y(x) is equiva-

lent to neglecting the transistor's collector time constant T with respect to

,io' which may be warranted or not. From (5.19), we conclude that

m1 a cIE (5.20)rain I t

is the minimum transition time that can be obtained from the given transistors

and trigger (by making Ci = 0). As a result, we can use
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qB a (5.21)

as a figure of merit of a transistor for use in switching circuits.

And for the flipflop and trigger we have:

I T' =H
min B (5.22)

5.5.3 Exponential or Sinusoidal Triggers

Here the trigger waveforms are continuously changing functions of

time, and therefore phase plane treatment is not indicated, since the time

variable appears explicitly in the differential equation(s) and cannot be

eliminated.

We have to work either in the time domain or in the frequency domain

by means of integral transforms. It is, in general, easy to solve, directly or,

for instance, by Laplace transforms, the three region second order linear

differential equation under an exponential or sinusoidal forcing function, so

that, in any given problem, a numerical solution can always be found for wave-

forms, transition times, etc.

A theory covering these and other time-varying trigger waveforms,

i.e., finding analytical expressions, relationships, approximate formulae and

methods for the fast calculation of transition times, waveforms, etc., would be

an entirely new proposition altogether, and clearly outside the scope of a

phase plane theory of flipflops such as the present work proposes to be.

5.6 Use of Integral Transformations

In any of the three regions, (2.103) is a linear second order dif-

ferential equation, and (2.104) is a system of two linear second order

differental equations.
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Therefore integral transform--or operational methods--except for

other reasons--can be used, with whatever advantage one might have from them.

In particular, Laplace transform methods could be used. The main advantage of

these transform methods is that they simplify the solution of the differential

equation under an arbitrary transformable forcing function, In our case, the

arbitrary trigger. One added advantage of these methods is that they make it

easy to solve (2.104) for x, which is the system's state variable.

The results are presented below, for completeness:

From (2.103) one gets:

W t(a) =X[s(t)]

with X(W ) =x(t)]

a = ar + J i is a complex variable

2
mV i + no+d Xoa + YO

x( ) - "2(a) + (5.23)
a(aa2 + bV4 a + C V4) a

where P0 :(xo,yo) is the initial point under each Vp-condition.

From (2.104) one gets,

Wtk(a) = X[Sk(t)]

with L Xk(a) X[xk(t)]

And also:

S0 x1
O " 20

; YO Y10 Y20
x X1 -X X
Pree1 2 2

Parameters are as given in Table 1.2.
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222 2

X (0 )a )n 0'2)(ala *b 4 ac lo)w)(@

a((aa+bO+C)(a 2 +bio+c) - [(a-a' (bV-b2V ))l1 L14)(a2~ . l Vo(bb 2 t7(ciV-2V)]

XOa + YO (5.24)
+ 2

a

where Po:(xoyo) is the initial point under each Vp condition.

This makes it obvious why the approximate and graphical methods are

important!

We can also find Xl(o) and x2 (a), by:

(a 2 + b a + c) 2 2X(a) - Xo a- yo) + a • (mkVa 2 + nka~dk,) Wtdo)
X k() = a2(mkV 2 + nco + dkv)

(5.25)
xkOa + YkO

2
a

where PkO:(xko, Yk0) is the initial point under each Vp condition.

Since X(a) would have to be found first, this makes it doubly obvious

why the approximate and graphical methods are important.

5.7 Summay

In this chapter we have shown how two degenerate cases (T = 0 and

C = C = O) relate to the theory presented so far. The case of T = 0 was

shown to be essentially included in the theory, since T has been used as a

normalization constant for no other reason than that of convenience. The other

case of Cik = Cok = 0, or Cok ' 0, have been shown to be exactly solvable, the

first even for the nonsymmetric flipflop, and the second for at least the
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asymmetric and symmetric flipflops, and possibly (if Rsl = R s2) for the

nonsymmetric case which, at any rate, is reduced to a system of the second

order.

A phase plane method suitable for the general nonsymmetric Eccles-

Jordan flipflop was given, and a discussion showed that there are areas where

the nonsymmetric flipflop is equivalent to two independent asymmetric flipflops

(regions I and III); the trajectories in the active region (region III) must be

found by solution of the system in the time domain.

Finally, we have discussed other types of trigger waveform. Besides

the almost trivial impulse trigger, for which some relationships have been

established, the other cases, such as exponential or sinusoid, cannot be treated

by a phase plane theory. They can be treated analytically or numerically;

however no general results are available. The equations must be solved in each

specific case.

Approximations (2.103) and (2.104) are also important in allowing a

phase plane treatment of the most important cases (second order), besides

allowing treatment in the time domain (directly) or in the frequency domain

(integral transforms) for any case.

Finally, we have briefly discussed the application of Laplace trans-I form methods to (2.103) and (2.104), and presented special formula (5.23) and

entirely general formula (5.24), thus covering all possibilities.

S --' I~l IIl--I I Il I I III I ,, .



6. EXPERMENTAL ECAMLES

~6.1 Introduction

The present chapter has a double purpose. We wish to illustrate the

application of some of the described procedures, and also to test the accuracy

of the theoretical results as compared to experimental fact. No extensive

program of experimentation is intended; only a few examples were treated which

should suffice to provide same feeling for the quality of the theory.

The experiments we have carried out consist in triggering a flipflop

with a rectangular current trigger from what was practically a current source,

i.e., the collector of a transistor. The trigger had a reasonably good waveform

but we did not attempt to obtain an exceptionally good rectangular shape.

As for the flipflops themselves, we took two classes: one was a

slowed-down flipflop where relatively large capacitors were paralleled with

the T1 base-to-ground and T2 collector-to-ground terminals; the other had just

parasitic capacitances, which were carefully measured. Only the asymmetric

structure was used. In each case transition times and waveforms were measured

and recorded for different values of trigger amplitude and various values of Ri

and R0.0

Corresponding calculated values were found and comparisons between

theoretical and experimental values are presented in the tables. The transistors

used were the same for all flipflops, 2N1309's.

6.2 Measurement of T, Ci and Co

The collector time constant T determines the influence of the base

current terms apon the solution of the flipflop equation.

Whenever is negligible compared to the other time constants of the

system, it becomes irrelevant and the base current terms may be ignored, as

-168-
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in Chapter 5. But if r is ccmparable to the other system time constants, it

becomes critical and must be carefully measured.

The system used here was as follows:

a) The transistor pair whose collector time constants (assumed equal) are to be

measured were assembled into a switching amplifier, with no collector lead,

and a current of 1 ma fed into the parallel emitters.

b) A (periodically repeated) step voltage with amplitude just enough to switch

the current from one transistor to another was applied to the base of T1 ,

and the base current of T2 was recorded and integrated with respect to

time (see Fig. 25).

c) Since there is only a negligible voltage variation at the base of T2

(grounded lead) the parasitic capacitances have only a negligible effect

on the measurement. Recombination current can also be neglected in compar-

ison to the storage current.

From Fig. 25 we obtain by integration

- 15.1 nsec (6.1)

The parsitic capacitances have to be measured in situ. This can be

done by measuring the time constants of voltage curves under applied step

currents. So, Figs. 27 and 28 yield Ci and C0 in all regions.i Ci is found to

vary slightly from one region to another (Figs. 6.5a and 6.5b) but C remains

essentially the same in all regions. In calculating C0 it is necessary to sub-

tract the injected current time constant (TI = 15 nsec) from the total collector

voltage time constant ('T = 61 nsec) in order to obtain the true collector

circuit time constant (-To  RoCO = 46 nsec).

Ci is the base-to-ground capacitance of TI; C0 is the collector-to-ground
capacitance of T2 (see Fig. 3 and also Fig. 5 for comparison).



-170-

Lo II

ze

I IM



HH

H4-
Hot

m 00

444C



-172-

!&

FIGURE 28: COLLECTOR VOLTAGE RISE UNDER INJECTED CURRENT

Curve: v vs. t
C

Scales: Vert.: 90 mv/div
Horiz.: 20 nsec/div

Total time constant: 'TT = 61 nsec

Time constant of the injected current:1 .I = 15 nsec

Time constant of the collector circuit:
RoC 4 6 nsec

0 0 0

SinceR =l K1 , Co  46 pf

I Not shown here.
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This is not done in the measurement of Ci, since in normal operation

the trigger circuit does contribute to Ci, whereas it does not contribute to

C.
0

We get the values presented in (6.4).

By way of approximation we have used as a value of Ci iri region II

th e average of its values in regions I and III, although in reality it is a

continuously changing value.

6.3 Equation Parameters

We have considered two possibilities:

1. A flipflop loaded with relatively large capacitors.

2. A flipflop with only parsitic capacitances.

For case 1 we used

C =0.02 if and CO =0.01 Lf (6.2)

and had

R =2 kn and Ro =1 k (6.3)
i

In case 2 there are only parasitic capacitances:

(56.7 in region I

Ci =,61.7 in region II and Co  46.0 pf (6.4)

66.7 in region III

The two resistors were chosen to be

R, =2k and Ro  lkO (6.5)

Besides this we had:
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Case 1: IB= 3  ma;IE -  ma, p-l (6.6)

iiiiE2: I h 5 ma; IE -0.9 ma, p -t 

with the values of p calculated on the assumption that :40 v .1

In both cases the value of E Cwas adjusted to make the system state

symmetric, i.e., to have the stable values of the base voltage of T1 symmetric

with respect to ground.

Table XI presents these parzaeter values in a convenient form.

The equation coefficients are obtained from Tables I and II, and

presented in Table XII.

Notice that all three cases are normalized with respect to T.

6.4 An Illustrative Example

In order to illustrate some of the techniques described in the previous

chapters, we shall consider case 2, under a rectangular current trigger of

amplitude

W = 0.667, i.e., It 0.6 ma

and we will calculate the delay, active, balance and transition times by

three different methods, and compare the theoretical results with the experi-

mental ones.

a) Graphical Method A: see Figs. 32 and 33

b) Approximate Method B: see Fig. 34

c) Iterative Numeric Method.

iV
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TABLE XI. PARAMETERS FOR THE TWO EXPERIMENTAL FLIPFLOPS

Parameter Case 1 Case 2

0.02 pf 61.7 + 5

C0  0.01 f 46.o pf

R 2 kf 2 kQ

R0  1 k 1 W

'B 1ma 0.9 ma

E c adjusted for state symmetry

40 psec 123.4 + 10 [ nsec

io 20 psec 61.7 + 5 [1 nsec
Toi 20 I.sec 92.0 nsec

1 00 psec 46.0 nsec

4 N T

15,1 nsec

7 0.7 0.7

p 10 10

- a 0.007
tr (U) 0.979 0.979

( ) 0

a!
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TABLE XII. PARAMETERS AND CONSTAMTS INVOLVED IN THE EQUATIONS
REPRESENTING THE TWO EXPERIMENTAL FLIPFLOPS

Coefficient Case 1 Case 2

aV  1.755 • 106 + 1 29.0
0" L26.9 J

bV4 4.63 103 + 86 [ [38:3|

F 10 -101
+1 +10

3F75.27
R=V 26.5 • 10 |81.81

188 .4

n' 6 6
n 60 60
(o) -9.275 10 -28.65 2

YO 15.1 • 103 .w 3.28 -W

5.26 • 10 - 3  0.9m

XV0 1 O 10 [
6XI 11 60 W 6o • w

41I -10 W -10 • W

"aI -2.40 10 - 3  -0.658

l -0.236 • 10 -  -0.067

X a I I -3.611 - lo-  -1.46

x 01i +0.913 " 10"3  +0.142

k-iii -2.40 • 10- 3  -0.608

x iii -0.236 1o-3 -0.0610
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a) Upper curve: vi vs. t

Lower curve: v vs. t

Scales: Vert.: 0.25 v/div
Horiz.: 10 gsec/div

b) vi vs. t vi vs. t

Long trigger Optimum trigger

v vs. t v vs. t
0 0

Long trigger Optimum trigger
e {Vert.: 1.0 v/div

.Horiz.: 0.5 msec/div

c) v vs. vi (approximate)

fper curve: long trigger
LImer curve: optimum trigger

Scales: Vert: 12.5 (v/msec)/div
Horiz.: 0.25 v/div

@

FIGURE 29: TRANSITION CURVES FOR CASE 1

Comments:

Part a) illustrates the relationship between the transition curves for T1

base voltage vi and T2 collector voltage v . Delay, active and

balance times are apparent. The time duration of the transmission

phases can be measured from it.

Part b) illustrates the effects of trigger duration upon the waveforms of

both vi and v

Part c) is an approximate phase plane portrait of the transition, both for the

long trigger (upper curve, showing the return of P from XI1 to XIOP

after trigger turn-off) and optimum trigger. Both curves are slightly

tilted to the right due to imperfect differentiation of v i .
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I

FIGURE 30: TRANSITION CURVE FOR CASE 2,
WITH W = 0.445; v, vs. t

Scales.: Vert.: 0.225 v/div

Sce Horiz.: 20 nsec/div

N

It_ __ _
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FIGURE 31: TRANSITION CURVE FOR CASE 2,
WITH W = o.667; vi vs. t

Scales Vert.: 0.225 v/div
Scales: Horiz.: 20 nsec/div
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6.4. rahial ehod A

We calculate xi 1 , xii 1 O, i i' l x~I, xiii and Y0 by the

formulae on Table II:

xo -p I -p = -10

x = nW = 40.0

Xil x 0 + x = 30.0

xTT10 +p a M +p = +10

"xii I = nW = 40.0

xIII1 = .xIIIO + XIII = 50.0

mIYO - W = 2.19

We also need 2 and X l3; we find from the note on equations (3.60):

~ml
2 = 2-1 = 0.988; 2a i

and, obviously,

-b II + bI " aIIII =0.142

2aii

Then (see Fig. 34):



(i) We draw the line PoXl

(ii) Intersection of PoX with x = - - is P
0ofl 7 a

1
x +-

(iii) Using equation (3.61a.i) we find yb from Ya:

Yb =27(Il+4'ya

We have:

Ya = 1.72

and:

I = 0.988

so:

yb= 0.92

(iv) Draw, through Pb' the line of slope X Pl, whose

1
intersection with x = + - is Pc" Since

"a II = 0.142

through

Ax = 2.86

cauaes

S= 0.06
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so that

Yc 1.33

(v) Pd is found from Pc by (3.61b.i).

Yd (1 + yc)yc

We have:

Yc = 1.33

and:

A = 0.988

so:

Yd = 3.00

(vi) (Simplified in our case) we draw the line P-X-Ill

and its intersection with x = X III is P e

~e ~d

Ye 2' Yd 6I 1 =2.52

1111l -

The time intervals over the trajectorycan be calculated by using

equation (4.21), which we repeat here, for convenience, in a slightly different,

but equivalent form:

• t 6x (6 7)

b a A" Y
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Applied to region I we get:

TD 1 Ax y = 4.31D yo.yo

T % 1 £Yc = 2.55PA-XII  Yd

T - XIII - = 3.05
B ye Yd

TT =TD + TA + TB = 9.91

Therefore,

TD' = T • = 65.1 nsec

T= T A 38.4 nsec

T= T B 46.0 nsec

T TT  149.5 nsec

Similarly we can find the trajectory for the other cases and fill

out Table XIII.l.

Experimental values for the time durations over the trajectories are

taken from Figs. 29 and 30, which are reproductions of pictures of oscilloscope

images of the actual transitions.

Observe on Table XIV.1 the excellent agreement between experimental

and calculated values of total transition times (TT). Notice also that in

case 1, the agreement for the partial time durations (TD, TA, TB) is also

excellent. But in case 2 the agreement for the partial time durations, although
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fair, is less satisfactory. There is, however, a compensation of errors,

especially between values of TA and TB. This seems to be a property of this

approximate way of taking the base current into account. When the base current

has negligible effect, as in case 1, this effect does not occur.

An apparently paradoxical fact is that we get a better agreement on

partial times, although worse for the total transition time, if we take 2 = 0,

i.e., if we completely neglect the effect of the second derivative of the base

current. The graph is shown in Fig. 33, and Tables XIII.2 and XIV.2 present

the ordinates and times for this very simple procedure.

This apparent paradox can be explained if we consider our type of

approximation at the model level. The piecewise linear model has a behavior

that differs in detail from the nonlinear real transistor pair; but the dif-

ference is such that it tends to cancel out over the different phases of a

trajectory, yielding good overall results.

If an approximation at the equation level had been used, no impulses

would appear.1 Clearly, ignoring the impulses brings us "closer" to such a

type of approximation in the sense of yielding a solution differing less from

the exact one. The differences, however, although smaller, do not average out,

and the overall result is, as expected, not so good.

Considering the crudeness of this graphical method B, it is an

additional advantage that the results tend to be conservative, yet fairly close

to the experimental values.

A last comment is necessary here. We pointed out the fact that in

case 1, where we had the (in practice) exact values of all the circuit components,

This would also be true if the approximLtion at the model level had a smooth

characteristic (i.e., continuous with differentiable first derivative), which
is not the case of the piecewise linear function q(x).

_ _ _ _ _
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including known constant capacitors the agreement is as good as one can

possibly have. So, we infer that part of the error obtained in case 2 should

be blamed on nonconstant capacitances and the necessarily incorrect values

taken for them.

6.4.2 Approximate Graphical Method B

Figure 34 and the description given in subsection 4.4.3 entirely

complement each other.

X0 =  x nW b n b =.0745

0 x cxXoa.a -a---~

with a, b, m, n calculated for Vt = Il. And

S ( , 1) - d - c/7 _ = 0.0757
d dx 7 ayd  a

where Yd = 2.52 is obtained from the graphical construction itself.

X Pi and X0i I are given in Table XII. Observe that, in order to

obtain a closer detailed approximation, we have taken I = 0.

The numerical values of the ordinates of the break points are pre-

sented together with the graph in Fig. 34 itself.

Successive application of equation (4.21) to the five branches a, b,

c, d, e, of the piecewise linear approximate phase plane path yields the time

intervals over these five phases of the transition.

This is certainly not true, and is actually a somewhat crude approxi-

mation, consistent with good results for two reasons: region II is relatively

narrow, so this assumption affects little the value of TA, and the error
AI

propagates only to region III, yielding poor values of TB, but still good values

of TT.
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The following variation of method B is less subject to this

restriction:

a) Instead of assuming the path to be a line of slope X lll inside region II,

we draw the lines of slope X ail and X pin through point XIII, and we draw,

through Pa' an approximate hyperbolic arc consistent with the two asymptotes.

This arc shall be taken as an approximation to the trajectory inside region

II, and its intersection with the line x = + 1 determines the ordinate

of Pd (we take £ = 0).

b) We proceed in region III as for the regular method B.

The results are presented in Table XVI, alor with corresponding

experimental values. Notice that this method allows us to distinguish more

distinct phases of the path, i.e., one phase for each value of ly (over this
dx

approximate broken line path).

We can see that the agreement is exceedingly good for region I and II,

even for the detailed shape of the curve, but it is not so good in region III.

The difficulty is mostly due to the calculation of the branch in the

active region. Any small error in the calculation of point Yd is magnified

throughout region III, so, even with a numerical method we should expect larger

errors in region III. Even the variations of temperature would cause errors

by changing the transistor-pair characteristic through k5T affecting especially

the boundaries of region II.

So far we have assumed that the trajectory is a straight line of

slope X throughout region II.

c) Guided by the straight lines in region I and III, and by the points P and

P we draw the parabolic arcs in region I and III, and join them smoothly

by a suitable arc inside region II, so that these three arcs form a curve

which shall be taken to be an approximation to the real trajectory.

5r
it,_



TABLE XV. COMPARISON OF TINE INTERVALS ONTAINED BY METHOD B
WITH EXCPERIMENTAL RESULTS

Time Interval (in nsec)

Over Branch
Theoretical Eprmna

(by Method B) cermta

23.5 P2 a

32.6 30 b

56.1 52 a and b, i.e.,
region I

19.0 22 c, i.e.,
region II

18126 d

30.2 38 e

48364 d and e, i.e.,
region III

124.3 138 Total Transition
Time
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TABLE XVI. COMPARISON OF TIME INTERVALS OBTAINED BY A VARIANTj OF METHOD B WITH EXPERIMENTAL RESULTS

Time Interval (in asec)

Theoretical Over Branch

(by a Variant Experimental
of Method B)

20.1 22 a

35.2 30 b

55.3 52 a and b, i.e.,
• region I

12.0 + 8.9 c and d, i.e.,
20.9 22 region II

23.3 26 e

30.6 38 f

53.9 64 e and f, i.e.,
region III

4 130.1 138 Total Transition

I'A'__
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d) Now we draw a convenient piecewise linear approximation to this curve and,

by repeated applications of equation (4.21) to its linear branches, we can

calculate the corresponding time intervals.
4

Note, in Table XVI, that the tendency persists for longer theoretical

time intervals in region I, and shorter in region III, but results are somewhat

better than those for plain method B. Note also that, since this method makes

use of a degree of arbitrariness, results are bound to vary a little with the

operator's judgnent.

6.4.3 Iterative Numerical Method

The iterative numerical method offers no special difficulty. It is

clear that equation (4.4b) converges in every region.tt The values of M Q,

M , QP as well as the computed ordinates YO- Ya, Yd' and Ye are shown in

Table XVII. We have again taken i = 0.

A direct application of equation (3.58) for each region yields the

respective time durations, which are presented in Table XVIII.

Notice that the results are somewhat better than for the other methods,

but they are not perfect. It is even worse for region II. However, this

numerical method is the exact solution of the differential equation, so we

conclude that an error is due:

We might be tempted to use equation (3.58) but this could be disastrous.

This equation is valid only for points exactly on a true trajectory, and is
very critical. If the points are only approximately on a trajectory, the
results obtained by use of (3.58) will probably be meaningless.

It A rule of thumb is to work always with the large magnitude exponent "c
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TABLE XV II. PARAMETERS AND TRAJECTORY KEY ORDINATES
FOR THE ITERATIVE NUMERICAL METHOD

Region I Region II Region III

Ma 20.68 -11.82 24.32

Q 26.32 - yo= 24.13 -7.65 - Ya = -9.716 29.45 - yd= 28.24
a

MP2.105 1.15 2.44

$ 2.68 - yo= 0.49 0.744 - ya = -1.322 2.955 - Yd= 1.741

Y = 2.19 a Y= 2.066 Yd=1.214 =>y = 2,294

TABLE XVIII. COMPARISON OF TIME INTERVALS OBTAINED BY THE ITERATIVE
NUMERICAL METHOD WITH EDCPERIM ENT AL RESULTS

Time Interval (in nsec)
Region

Theoretical Experimental

5843n I

31.3 22 II

61.6 64 111

151.3 138 Total



r
-196-

a) to the piecewise linear approximation use for the most exact nonlinear

differential equation.

b) to assumptions of lumped parameters, constant in each region.

c) to the measurement of circuit parameters and transistor constants.

d) possible departure of the transistor characteristics from the ideal one

we have assumed.

e) the imperfection of the rectangular trigger used in the experiments.

Under the above considerations the error of about ten per cent in

total transition times, along with the good agreement in waveform (in the case

of method B, for example) is a satisfactory result.



7. CONCLUDING REMARKS

7.1 Summar.

The purpose of this investigation was to describe in detail the

operation of flipflops from a mathematical point of view, and to devise, based

on this mathematical description, practical methods of analysis, design and

optimization of both flipflop and triggering circuits.

The mathematical description has been accomplished with the establish-

ment of equations (2.87), (2.88) and (2.90) in Chapter 2, and with those

qualitative aspects of their piecewise linear approximations--equations (2.99),

(2.100), (2.102)--which clearly apply to the original system.

Methods of analysis and design were devised by means of a detailed

study on the phase plane of the piecewise linear equations, taken as approxima-

tions to the original nonlinear equations. The singularities of the system,

t he conditions for their existence and the dependence of their nature upon

the system parameters, have been thoroughly described. The phase plane portrait

of the system was described with some emphasis on separatrices, trajectories,

4and the influence of the singularity corresponding to a given region, whether

this singularity exists in its proper region or has a virtual image in another

region.

Based on this study some engineering methods of analysis and design

have been described in Chapter 4, and some simplified formulae for the rapid

estimate of flipflop behavior have been presented in Chapter 5.

The experimental example presented in Chapter 6 illustrates the use

of some of these methods, and also, by compa-ing theoretical with practical

results, some feeling is obtained for the adequacy of the various methods and

for the type of approximations (piecewise linear at the model level) used in the

theory.

-197-
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7.2 Conclusions

It is apparent that we have obtained a useful and, for most practical

purposes, adequate theory.

We feel, however, that there are some questions to which we do not

have even unsatisfactory answers. A first question is: why is it that the

best of all methods when applied to the active region yields a path which

obviously differs considerably from the true path? Even the crude device of

assuming the path, in region II, to be a constant equal to Ya would produce a

result closer to the true one in that region!

Another question is: why is it that results are worse if the impulses

(second derivatives of (P(x)) are considered than the results we get when they

are ignored?

We feel that the answer lies in a more detailed study of the relation-

ship between a nonlinear differential equatiun (especially of the second order!)

and another equation which formally is a piecewise linear approximation to the

nonlinear one. Specifically, what are the effects of

a) the break points (error in derivatives!)

b) the error itself

c) the constancy of coefficients

on the solution of the approximate equation with respect to the original one?

The present investigation gives the impression that this type of approximation

should be studied in detail and formalized.

7.3 Further Investigations

There are three directions for further investigation:

a) The study of approximate solutions to nonlinear differential equations by

use of solvable formally approximate equations to the original one, such as
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piecewise linear equations or other standard types of equations with known

solutions.

b) The polishing of the present theory by considering other types of approxi-

mation, such as, for example, approximation at the equation level.

c) Application of the ideas we have described to more complex situations, for

example,

(i) considering the nonlinearity of parasitic capacitances,

(ii) taking the collector-base junction capacitances into

account,

(iii) considering inductances in the passive circuit,

(iv) considering the distributed nature of some of the

parasitic capacitances.

Advances in one, some, or all of these directions would certainly improve the

d present-day techniques of switching circuit design for digital computers.

I'

I
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