UNCLASSIFIED

o 2410225

DEFENSE DOCUMENTATION CENTER

FOR
SCIENTIFIC AND TECHNICAL INFORMATION

CAMERON STATION. ALEXANDRIA. VIRGINIA

UNCLASSIFIED



NOTICE: When government or other dravings, speci-
fications or other data are used for any purpose
other “han in connection with a definitely related
govermment procurement operation, the U. 8.
Government theredby incurs no responsidility, nor any
obligation vhatsoever; and the fact that the Govern-
ment may have formulated, furnished, or in any way
supplied the said drawings, specifications, or other
data 1is not to de regarded by implication or other-
vise as in any mamner licensing the holder or any
other person or corporation, or conveying any rights
or permission to mamufacture, use or sell any
patented invention that may in any vay de related
thereto.



DIGITAL COMPUTER LABORATORY
UNIVERSITY OF ILLINOIS
URBANA, ILLINOIS

REPORT NO. 137

PHASE PLANE THEORY OF TRANSISTOR BISTABLE CIRCUITS

by

Sergio Telles Ribeiro

Lo C

R i
I sras |

JUL 3G

e

| DCC
4 1 O 2 2 5 ‘ iﬁs\TAPL‘(I))GEKIo?Y 410225

June 6, 1963

(This work is being submitted in partial fulfillment of the requirements
for the Degree of Doctor of Philosophy in Electrical Bugineering,

May, 1963, and was supported in part by the Office of Naval Research
under contract Nonr-1834(15).)




FER ok

DIGITAL COMPUTER LABORATORY
UNIVERSITY OF ILLINOIS
URBANA, ILLINOIS

REPORT NO. 137

PHASE PLANE THEORY OF TRANSISTOR BISTABLE CIRCUITS
by

Sergio Telles Ribeiro

June 6, 1963

»

(This work is being submitted in partial fulfillment of the requirements
for the Degree of Doctor of Philosophy in Electrical Engineering,
May, 1963, and was supported in part by the Office of Naval Research

under contract Nonr-1834(15).)



ACKNOWLEDGMENTS

The author wishes to express his deep appreciation to his advisor,
Professor W. J. Poppelbaum; for his advice, encouragement, and valuable sug-
gestions to improve the manuscript. Thanks are also due to his colleagues
Bruce E. Briley for his invaluable help with proofreading and Gabor K. Ujhelyi
for his cooperation in the preparation of Chapter 6; to Mrs. Phyllis Olson for
her unusual skill in typing this text, and to Kenneth C. Law and his draftsmen
for their great ability and good will in the execution of the figures. Finally,
the author wishes to thank his wife, Laura Beatriz, for her unconditional

support, patience and understanding.



TABLE OF CONTENTS

é‘,"i
%, Page
& .
§ 1. INTRODUCTION « « v v o o o o o o o v o o o o s o o o o o s o o s 1
“ 2. THE FLIPFLOP DIFFERENTIAL EQUATION . .+ ¢ &+ ¢ ¢ s o o o o o s o L
. 2.1 Introduction « « ¢« ¢ ¢ 5 4 o 6 s e 6 v e a6 o e o s e 4 . N
2.2 The Transistor Pailr Transfer EQUation « . + +» « o « s « o L
2.3 The Asymmetric FIipfloP v « « o ¢ « ¢ o o o o o + o o o o o 16
2.4 The Eccles-Jordan FLipflop « o « « « o o o o o s o « o o & 19
2.5 TrigEering . o + « o o ¢ o o o o s o o « 4 o b 6 0 0w 24
2.6 The Approximation Problem . .« « « « « o o o « « o o « o o & 31
2.7 SUMMATY & o o « o ¢ o ¢ s o o o s s « o o s s o s o o & o« o 38
3. STUDY OF THE FLIPFLOP EQUATION FOR THE CASE OF A RECTANGULAR
TRIGGER ¢ ¢ o 5 o o o 6 s o « o o s s s o o s s o s o o o o o o Lo
3.1 Tntroduction . o o « o« o o o s o o o « o o s 0 o 80 0. . Lo
3.2 Phase-Plane Analysis of the Basic Flipflop Equation . . . . 43
3.2.1 General RemarKS .+ + « « o « o o o s o o o o &+ s o« o L3
3.2.2 Existence of Singularities . . « « « o ¢ 4 « ¢ o« « 45
3.2.3 The Nature of the Singularities . . . . . . e e 50
3.2.4 Diagonalization of the Characteristic Matrix of the
SYSTEM & o « « o o o « o ¢ = o o s &+ 2 s+ & o o o o 58
3.2.5 Comments on Figs. 14 . &« ¢ v v o o & o o s o o o o 70
3.3 Trajectory EQuations . . + ¢« o o o o o o o ¢ s ¢ o o o + = T2
3.4 SeparatriCesS . . o 4 4 e b 4 e e n e e e e e e e e T7
. 3.5 Trajectories and the Action of the Trigger . . . « « . + . 84
3.5.1 Turning the Trigger ON and Possibility of
"Under-Triggering” . . « ¢« ¢ v ¢ v ¢ ¢ 4 ¢ 4 0 e 4 s 84
3.5.2 Virtual Singularities and the Trajectory . . . . . . 89
. 3.5.3 Turning the Trigger OFF . . . . ¢ . « + + & « « & & 90
3.5.4 Discussing Trigger Duration . . . . . . « « . « . . 90
3.5.5 The Concept of "Optimum Trigger Duration" . . . . . 92
3.5.6 Possibility of "Back-Triggering" . . . « v +« « « « & 93
3.5.7 Trajectory After the Trigger is Turned OFF . . . . . 94
3.6 Under-Triggering and Back-Triggering . . . « « + « o« & o & 95
3.6.1 Under-Trigering « o « « + « o o o « o ¢ v o o o« o » 96
3.6.2 Back-Triggering . « o « v ¢« v ¢ o o o o« o o o o o 100
3.6.3 DiSCUSSLION &4 « ¢ o o « ¢ o o o = o o o o 0 e 0 b . e 105
3.7 SUIMAYTY « + o o o o o s s o o 5 s o o s s o s o s o« s o s « 112

L. ANALYSIS AND DESIGN TECHNIQUES . + ¢ « « o o « o o s o o s o o & 113

Ll Introduction . o o & v o o o o s o s 4 4 0 e e 4 4 s e u u 113

4,2 Definitions of Time Intervals . . « « « + ¢« o s » o & o & & 113
k,3 Calculation of a Time Interval Over a Trajectory by an

Tterative FOrmula . o ¢ o o + o o o ¢ o o o o+ s o + o + o » 116

L4 Graphical Constructions . . . « + + ¢ v ¢ ¢ o 4 o o & « 4 126

L,4.1 The (,x) Plane Method . . . « +« + v v + & o« & + o 126

L.4.2 A Simple Method on the (x,y) Plane . . . . « + « . . 129

4.4,3 An Approximate Method on the (x,y) Plane . . . . . . 133

‘ 4.5 Approximate Analysis of Waveforms . . . . « « « v & « « o« 135

4,5.1 Collector and Base Currents . . . « « « « « « « « & 136

L,5.2 Collector VoltBEES + « « o« « « o s o = « s o o o o 137

i, W s et o AT

=iv-

R



¥
i
i

L ROrma g b 2

TABLE OF CONTENTS (CONTINUED)

4. ANALYSIS OF DESIGN TECHNIQUES (CONTINUED)

4.6 The Influence of Parameters on Transition Times--Simplified

Bquations . . . . ¢« ¢« ¢ v ¢ ¢ 4 o b 4 e e e e
L.6.1 The Optimum Flipflop . . . . .

4.6.2 The Total Charge Interchanged Between the Transistor

Bases . . & v 0 4 6t e e s 0 e e e e

4.6.3. Collector Voltages--Meximum, Minimum and

Values . &+ v 4 v o o o o o o & o o 2 o o

L.6.4 Peak Values of Base Current . . . . . .

k.7 The Problem of Circuit Optimization e e e e
L8 Summary . « ¢ v v v v e e e e e e e e e e e

5. EXTENSION OF THE THEORY . . . . v + ¢ v v ¢ o & & &

5.1 Introduction . . . e e s s e s e e e e e s
5.2 Case When T is Negligible o e s e e . .« o e
5.3 Case of Negligible External Capacitances . e e
5.4 Nonsymmetric Eccles-Jordan Flipflops . . . . .
5.5 Other Types of Trigger . « .« ¢« +v ¢« « « « o o &

5.5.1 Introduction . . . « & « &« & o & « « &

5.5.2 Impulse Trigger . . . . v o ¢ ¢ « s « &

5.5.3 Exponential or Sinusoldal Triggers . . .
5.6 Use of Integral Transformations . . . . . . . .
5.7T SUMMATY o ¢ v &+ o o o o o o o o o o o o o « o
6. EXPERIMENTAL EXAMPLES . . & « v + o « o & o o « &

Introduction . . . e 4 e e s e e s e

AANONONON
W

An Tilustrative Example . + ¢ v v ¢« o o o o o o
6.4.1 Graphical Method A . . . . . . . . ..
6.4.2 Approximate Graphical Method B . . . .
6.4.3 TIterative Numerical Method . . . .

T. CONCLUDING REMARKS . . . v & v & &« 4 v o v s o o & &

Tl SUMMATY o o o o o s & o o o o o o o o s o o o o
7.2 Conclusions . . . o s e e s e s 4 e « o
7.3 Further Investigations e e e e e e e e e e s

BIBLIOGRAPHY . . © & ¢ & v v & o o s o o o o s o o o o &

-v-

Measurement of 7, C and Co e s e e 4 e s e s e
Equation Parameters v e s e e e e e e s e e e e

¢ s &

Settled

Page

140
141

148

1k9
150
151
153

154

154
154
155
157
161
161
161
164
164
166

168

168
168
173
174
183
190
194

197

197
198
198

200




-

Table
I.1
I.2
II
III

Iv

\'
VI

VII

VIII.1

VIII.2

X

X1

XII

XIII

XIv

Xv

XVI

XVII

XVIII

LIST OF TABLES

COEFFICIENTS OF (2.103) (SEE FIG. 9) « + « « o « « 4+ .
COEFFICIENTS OF (2.104) (SEE FIG. 9) . « « « & « o « «
SINGULARITIES (SEE FIG. 9) + + ¢ « ¢ & o 4 o o o o « &
SINGULARITIES (SEE FIG. 9) « v « v ¢ v ¢« v s o v o & »

A SUMMARY OF THE NATURE OF THE SINGULARITIES IN ALL
POSSIBLE SITUATIONS (SEE FIG. 9) ¢ « « « o « o o o «

IMPULSE VALUES FOR CHANGES IN VP v « « « + o o o o & o
PARAMETERS OF THE SEPARATRIX EQUATION (3.64) . . . . .

RESULTS OF EQUATIONS (3.62) FOR THE BRANCHES OF THE
TRANSITION SEPARATRIX INSIDE REGION II . . . « « « . =

PARAMETERS OF (3. 83) AS FUNCTIONS OF THE PARAMETERS
OF (3.79) . . . . e e e e e e e e

PARAMETERS OF (3. 9&) AS FUNCTIONS OF THE PARAMETERS
OF (3.90) . e e e e e e

DEFINITIONS OF TIME INTERVALS OVER A TRAJECTORY
(SEE FIG. 21) cvo o o « o o o o o o 6 o o o o o & o »

DEFINITION OF THE PARAMETERS OF EQUATION (4.3) .
PARAMETERS FOR THE TWO EXPERIMENTAL FLIPFLOPS

PARAMETERS AND CONSTANTS INVOLVED IN THE EQUATIONS
REPRESENT ING THE TWO EXPERIMENTAL FLIFFLOPS

DESCRIPTION OF APPROXIMATE TRAJECTORIES BY METHOD A

COMPARISON OF TIME INTERVALS OVER THE TRAJECTORIES OF
TRANSITIONS BOTH CALCULATED BY METHOD A AND MEASURED .

COMPARISON OF TIME INTERVALS OBTAINED BY METHOD B WITH
EXPERIMENTAL RESULTS . e e e e o e e e

COMPARISON OF TIME INTERVALS OBTAINED BY A VARIANT OF
METHOD B WITH EXPERIMENTAL RESULTS . . . . . . . . .

PARAMETERS AND TRAJECTORY KEY ORDINATE FOR THE
ITERATIVE NUMERICAL METHOD . . ¢ o &« ¢ « & o o o o o »

COMPARISON OF TIME INTERVALS OBTAINED BY THE ITERATIVE
NUMERICAL METHOD WITH EXPERIMENTAL RESULTS .

-yie

Page
39
Lo

k9
50

25
Th
83

83

101

106

188

192

193

195

195




T

e

Figure

Lo w

O o =N O W

10

11

12

13

14
15

16

17
18

19
20

21

I e et ke YU 03

LIST OF ILLUSTRATIONS

LOADED COMMON EMITTER COUPLED TRANSISTOR PAIR. . . . .

UNLOADED TRANSISTOR PAIR, WITH JUNCTION CAPACITANCES

NEGLECTED « ¢ o« « + o o o o » 5 o o o s s s o o s o 4
ASYMMETRIC FLIPFLOP « ¢ & &+ « ¢ o ¢ ¢ o o o o« s o o &
TRIGGERING SOURCES « « ¢ « &+ & o & ¢ o s o s o o o« o 4
THE GENERAL ECCLES~JORDAN FLIPFIOP . . . « « ¢« « « « o
TRIGGER WAVEFORMS . & « & v ¢ ¢ o 4 ¢ v o s o s o« o &
TRIGGER SOURCE + ¢« & & o 4 o o o o o o o s s s s s o &

THE APPROXIMATION OF tanh x BY f(x) . « « + v « + . .

EFFECT OF VARIATIONS drp,, OF g(x) = dy, - ¢

X
THE POSITICN OF SINGULAR%TIES. « v s e s e s e

CANONIC SYSTEM TRAJECTORIES WHEN THE SINGULARITY IS A

NODE. . . . . . . e e e e e e e e e e
CANONIC SYSTEM TRAJECTORIES WHEN THE SINGULARITY IS A
SADDLE POINT & & « « v v v o v o o v o v v e e v u
TRAJECTORIES IN THE SYSTEM OF THE FIRST AFPROXIMATION,
CASE OF A STABLE NODE WITH lx | > lx | - (CORRESPONDS
TO FIGURE 10b) . R L C e

TRAJECTORIES IN THE SYSTEM OF THE FIRST APPROXIMATION,

CASE OF A SADDLE POINT, WITH X, >0, A, <O . . . ..

g(x) = d, =y Gy, Cy, ASINTABIETI .. .. ..

SEPARATRIX FOR A SYSTEM WHERE d >0, c < 0, AND
|d II|.1 IIp
IIp. II

| <1/y .o OO0 DL
EFFECT OF TRIGGER ON PHASE PLANE PORTRAIT. . . . « . .
TRAJECTORIES AFTER TRIGGER TURN-OFF. . + « + « « o & .

TRAJECTORIES AFTER TRIGGER TURN-OFF IN TIME DOMAIN,
CORRESPONDING TO CASES ILLUSTRATED IN FIGURE 17. . . .

UNDER-TRIGGERING « + + « ¢ + o o o o s v o o s + o o 4
BACK-TRIGGERING ® s 6 ¢ » s+ e ¢ & + & & 2 e s s 3

DEFINITION OF TIME INTERVALS OVER A TRAJECTORY IN THE
TIME DOMAIN, RELATED TO THE PHASE PLANE (SEE TABLE IX)

-vii-

o -

Page

12

17
20
a5
27
33

51

6k

66

67

68
69

19
80

87

97

107




LIST OF ILLUSTRATIONS (CONTINUED)

;
j

Figure Page
* 22 NOTATION FOR A TRANSITION CALCULATION. . . . « & + .« & 125
23 APPROXIMATE GRAPHICAL METHOD A OF TRAJECTORY
. CALCULATION ON THE PHASE PLANE . « ¢ ¢« ¢« « o« o « s o & 131
2l PASSIVE NETWORK YIELDS THE EQUATION FOR THE OUTPUT
VOLTAGE '« & & s o o ¢ ¢ s o o ¢ o o o o s o o o o o s 138
25 ILLUSTRATION OF THE HYBRID METHOD TO ANALYZE A GENERAL
ECCLES-JORDAN FLIPFLOP . . . « . ¢ + v &+ o ¢ s & o « 159
26 BASE CURRENT DUE TO CHARGE STORAGE . . « . . . . . . . 170
27 Tl BASE VOLTAGE RISE « + & & ¢ « + « @ v & o o s o s » 171
28 COLLECTOR VOLTAGE RISE UNDER INJECTED CURRENT . . . . 172
29 TRANSITION CURVES FOR CASE 1 . . + & « & v s ¢ & + « & 177
30 TRANSITION CURVE FOR CASE 2, WITH W = O.445 . ., . . . 178
31 TRANSITION CURVE FOR CASE 2, WITH W = 0.667 . . . . . 179
32 CASE 2, W = 0.667 - GRAPHICAL METHOD A . . . . . . . . 180
. 33 CASE 2, W = 0.667 - SIMPLIFIED GRAPHICAL METHOD A. . . 181
34 CASE 2, W = 0.667 - APPROXIMATE METHOD B . . . . . . . 182

=-viii-




(R ————

ABSTRACT

A.l1 Introduction

It is our purpose to establish a theory describing the state transition
of transistor flipflops making use mostly of phase plane techniques, but using
also a time or even frequency domain point of view whenever helpful. Based on
such a theory, we further wish to devise practical engineeriqg methods of
analysis, design, and optimization of transistor flipflops.

We shall restrict ourselves to considering the asymmetric (Fig. A.l)
and the Eccles-Jordan (Fig. A.2) flipflops, with constant current I, fed into
the common emitters, and except for a short discussion, we shall consider only

the case of a rectangular trigger.

A.2 The Flipflop Differential Equation

Based on the differential equations relating terminal voltages with
the charges at the Junctions and diffusion tails in a transistor we obtain the

transistor pe.irT characteristics below.

w. = 2[1 - (-1)%tanh x) (A.1a)
x -2
2, =9 +L1=Qy (A.1b)

where k = 1, 2, is the transistor index used in Figs. 1 and 2, and the symbol

£ = g% ; besides,

X =X - X = normalized base-to-base voltage

1 Throughout this volume the expression "transistor pair" refers to the pair
of identical transistors with the constant current IE fed into the common
emitter, as in Figs. 1 and 2.

ixe
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X1~
. qvk 't
X = 3% - normalized base voltages
[ ] iCk
w, = —=— = normalized collector current
k aIE
py
z, = — = normalized base current
k aIE
tl
t =T = normalized time variable

t' = real time variable
T = collector time constant of the transistors

Equations (A.l) therefore, relate the collector and base currents of
the transistor pair to the base-to-base voltage.

Analysis of the feedback networks yields a differential equation in
the variable X for each value of k (k = 1, 2 for the Eccles-Jordan, but k = 1
for the asymmetric flipflop), respectively related to trigger plus base currents
(ik + in) and collector currents i,,, 4 £ k.

We shall concentrate our ettention on the asymmetric flipflop. The

result, after normalization, is:

1 o000 i ol 00 Tio 9 Q Rs
T X+ X +x = 2p {? +, o+ (6l + zl) + ﬁ; (9l + zlz}

. (A.2)

where:

t The k in the denominator is the Boltzmann constent.
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Ty = Riciw
# "0 = R:G
. L -- time constants
: ot = RoCy
T =RC
) 0’0
J
IBRs * Ec
B = ~————— = bilasing condition

R,

i
el = al— = normalized trigger current actually
IE fed into the flipflop circuit
Since 61 is the trigger current actually fed into the flipflop, it
depends on the nature of the trigger circuit, and depends also on x itself.
In general, if the trigger circuit of transistor Tk is represented by

a current source of intensity i . and shunt interval conductances Gk’ we get

tk

O = 8~ Gx (A.3)

where,

i
sk = a%i = normalized trigger current source intensity.

£

:

8
S
%
§
%

Use of (A.1) with (A.2) and (A.3) will result in a second order non-
linear differential equation in x containing terms in tanh x along with its
firgt and second derivatives, and under a forcing function sl(t), and its first

derivative gﬁt). This equation shall te called "the flipflop equation.”
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A.3 Pilecewise Linear Approximation

A general solution to the flipflop equation is not known. Let us

consider, however, instead of (A.l), the characteristics below:

we = 511 - (-1)%(x)) (A.ba)
2, =9 4229y (as before) (A.L4b)

k k a k’

where,
( 1
-1, x < - 5 region I
p(x) = <7x, [x]| < % region II (A.5)
1 :
+1, X 2>+ = region III
. - Y

and 7 is selected so that ¢(x) is the best possible piecewise linear approxi-
mation to tanh xj. We are; therefore, considering an ideal transistor pair
whose behavior aspproximates that of the real transistor pair, but whose char-
acteristics are piecewlise linear functions.

Equations (A.2), (A.3) and (A.l) will furnish equation (A.6), i.e.,
a second order differential equation in x; where the forcing functions Sl(t)
and gl(t), although nonlinear in the whole range of x, will be formed by three
linear equations, respectively valid in the three regions as in equation (A.5)
above. The second derivative of @(x) is a pair of impulse functions occurring

in the transitions of x into and out of region II.

1 With €(x) = 9(x) - tanh x, both a criterion of getting 7 such that max €(x)

is minimum or 7 such that | €(x)dx = O will lead to 7 ™ 0.7.
0
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ag:°+b§+cx=d+mg+ns+f(>°:)-5(x1;—') (A.6)

vhere a, b, ¢, 4, m depend on the region containing x, i.e., they are step
functions of x, discontinuous at x = + % .

A solution of (A.6) can be obtained by solving a second order linear
differential equation in each region, using the final conditions in each region
as the initiasl conditions of the next region. The impulse functions can be

considered as discontinuities in the value of g.

A.lL  The Rectangular Trigger and the Phase Plane Portrait

If sl(t) is a rectangular function of time, of duration T, then go(t)
is also a pair of impulse functions and can be taken account of as discontinu-
ities of X, at t = O and t = T, whereas sl(t) itself can be represented as a
constant equal to W if the trigger is ON and O (zero) if the trigger is OFF.

w2 have, so far, succeeded in reducing the analysis of a flipflop to

the solution of three equations like (A.T) below:

8% + bX + cx = D (A.7)

d + W 1if the trigger is CON
p-{

d if the trigger is OFF

in three regions of values of X, matching their solutions in the boundaries

X =+ , and considering discontinuities of Ratt= O, t =T, and at

+1
RN R+

X =

The phase plane equation corresponding to (A.7) is

g.boox (4.8)

PRTSERPt peT e ——————
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where
.0
y =X

The singular points (points of 3 = y = 0) are given by the solutions of

L}
(@]

(A.9)

D - cx

i.e.,

olg

(A.10)

and the nature of these singular points can be analyzed by studying the naturel
frequencies of the system (A.l1l) below in a neighborhood around each

singularity.

Xo
]
<

(A.11)

<0
i
oo
L}
olo
»
]
®io

This analysis shows that, if the trigger is OFF, and under proper

biasing conditions, these singularities are two stable nodes,T one in each

tt

The action of a trigger of amplitude W is essentially to shift the

stable nodes by an amount Ax = %g , and the saddle point by an amount &x = - %?

region T and III, and a saddle point in region II.

(parameters always calculated in the correct regions!).

T In a neighborhood of a stable node both natural frequencies of the system
are real and negative (by definition).

11 In a neighborhood of a saddle point the natural frequencies of the system
are real and have opposite signs (by definition).
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When a singular point is shifted out of its proper region we say it
has became "virtual" because its nature still determines the behavior of the
system in that reglon; but it does not really exist. There is a value of W
above which the saddle point and one of the stable nodes become virtuel. Then
the representative point P of the system will describe a trajectory towards
the remaining steble node. When the trigger is turned OFF this remaining stable
node (and also the other two singularities) returns to its resting position;

P will now move towards this point, which is, in effect, one of the two stable
states of the flipflop. Figures A.3a, b, c, d illustrate a transition.

Clearly, improper biasing may result in other singularity configura-
tions which will not correspond to flipflop behavior.

Study of some geometrical properties of the flipflop phase plane
portrait, expecially the study of the separatrices and of certain properties of
the trajectories can be made by analytical solutions tu equation (A.8). The
usefulness of this approach is limited, however, by the complexity of the

algebraic expressions involved.

A.5 Engineering Methods for the Solution of Flipflop Problems

These methods consist essentially of the drawing of figures like A.3,

i.e., phase plane portraits which are good approximations to the true phase

plane portrait of a trajectory.

The time durations of any portion of a trajectory, say, between two

points Pa and Pb is given by:

o 1
Tab=tb-ta=f mdg
X

a

But if y(x) is a straight line,
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Various procedures can be devised for the drawing of these approxi-

Sanus g

mate portraits once the coefficients of (A.8) are known in every region, both
for trigger ON and OFF. From any approximate form of y(x) it is a simple matter
to obtain any waveform nf interest, such as x(t), wk(t), zk(t)4 etc., by very
simple graphical constructions.

Even though only the asymmetrical flipflop is considered in this
Abstract, it is very simple to show that the symmetric Eccles-Jordan flipflop

is formally equivalent to the asymmetric circuit.

A.6 Extensions

A.6.1--Simple formulae for fast estimates of flipflop transition times cen be

derived from geometrical properties of the transition phase plane portraits.

A.6.2--The general (nonsymmetric) Eccles-Jordan flipflop can be treated by a
modified phase plane which takes into account the two sets of variables (xk,yk),
k = 1, 2, with some use of curves in the time domain xk(t), and of a plane

il (xl,xp)u In some cases where there is a certain relationship between its para-

meters & nonsymmetric flipflop may be reduced to the asymmetric case.

A.6.3--Some degenerate cases, where one or more capacitances are zero can have

y(x) expressed in analytical and closed form.

A.6.4--Flipflops under other types of trigger can be studied by other techniques

than phase plane techniques; such as frequency or time domain techniques.
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A.7 Practical Results and Future Developments

Comparison of theoretical with experimental results indicates that
an error of the order of + 10 per cent 1s to be expected from the application
of this theory.

There are strong indications that a large part of this error is
caused by the fact that, although ¢(x) = tanh x, this is not so for the first
and second derivatives of these functions. However; the results are satisfactory,
and the theory could be extended in future to consider, for example: +the non-
linearity of the capacitances involved, inductances in the passive network; or
perhaps the fact that these are distributed parameters. In another direction,
it could be improved by a formal mathematical investigation of the piecewise

linear approximation method for solving nonlinear differential equations.
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1. INTRODUCTION

Many attempts have been mede in the past to establish a theory of
bistable systems., The nonlinear nature of bistable circuits (flipflops), how-
ever, mekes it impractical to approach the anelysis of such systems by means
of mathematical techniques developed specially for the study of linear systems.

Nevertheless, several flipflop theories have been devised making use
of strictly linear techniques [3, 16, 19, 23].1 However, these theories, one
way or another, had limited objectives. Typically, each of them aims at &
specific problem emong, for example, obtaining an approximation for the transi-
tion time, or finding minimum values for trigger duration and amplitude, or
studying some aspect of stability, etc, These limited objectives could be,
and were, attained with the linear techniques employed.

Adopting a quite different point of view, flipflop theory can be
reduced to the study of nonlinear bistéble equations or systems of equations (in
general two first order equations) [26, 27]. The phase plane is the mathematical
tool that immediately suggests itself for this type of problem [1, 26].

In the literature, authors are usually not cuncerned with the analysis
of any specific physical problem, or mathematical model, but Just with the
development of the mathematical technique itself. Objectives here were also
limited, since the establishment of a general theory was not aimed at, but it
was desired to show that some results could be obtained by applying phase-plane
methods to certain types of equations [26, 27].

It seems natural to attempt a general analysis of bistable physical
systems using the phase-plane as the main technique. However, a general

analysis of this kind would be of very little use (if it could be made at all)

I A square-bracketed set of numbers refers to works listed under "Bibliography"
at the end of this dissertation.
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first because nonlinear systems do not lend themselves too easily to
generalizdtion and second, because vhatever generalization we would achieve,
we would pay by not being specific about the most important of all elecﬁric
bistable systems (we consider the common switch as being a mechanicel bistable
system...) and the only one in which we are really interested, namely, the
transistor flipflop.

Thus the analysis of transistor flipflops--and of these only--appears
to be attractive, since specific results and methods can be obtained and applied
immediately. This is the objective of this report: a general analysis of
transistor flipflops by phase-plane methods. It is general in the sense that
any information about the flipflop behavior can be obtained from it, and also
in the sense that the general (nonsymmetric) Eccles-Jordan flipflop is con-
sidered., TIts differential equations are established along with the more impor-
tant cases of the asymmetric (one base grounded) and the symmetric flipflops,
and we go as far as suggesting means to analyze this general case on a special
phase-plane.

Of course, phase-plane treatment practically outlaws any other but
the rectangular trigger (as will be clear in the sequel). However, the equations
established do not demand phase-plane treatment; in fact, for other types of
trigger, numeric soluticns may be necessary. But we shall concentrate our
attention on the rectangular trigger case. The first part of the theory is
concerned with the establishment of the general1 dynamic transistor flipflop

equations.

T In a common emitter coupling configuration, i.e., we consider a general
Eccles-Jordan, and the asymmetric flipflops.
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Next the problem of approximating the system is discussed; a set of
approximate differential equations is established on a basis of pilecewise
linear espproximetion to the original system.

This set of approximate equations is then analyzed in the phase-plane
using the time domain whenever expedient; this analysis includes the study of
existence and nature of singular points and the description of separatrices.
Then follows & discussion of triggering conditions, establishing their relation-
ship with the system parameters. A specially detailed discussion of trajectoriles
and their relation to parameters and trigger is presented. Some theorems about
the geometry of the system phase-plane portrait are proved.

On the basis of the above analysis some techniques are described for
the actual computation of trajectories, transition times, waveforms, or general
characteristics of a given flipflop driven by a given triggering circuit.
Especially simple formulse are presented with the purpose of better under-
standing the qualitative influence of the various parameters; these formulae
are also useful when a quick estimate of some transition characteristics is
needed.

Several extensions to the theory are also discussed, such as three
degenerate cases, the nonsymmetric Eccles-Jordan, and other types of trigger.

Finally, some experiments are reported on and their results compared

with the theoretical results.
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2. THE FLIFFLOP DIFFERENTIAL EQUATION

2.1 Introduction

We shall try to find an equation which will not only describe the
flipflop behavior but which is also relatively simple. This is a rather
difficult task, since the number of equations describing such a circuit is not
finite. However, if we add the further requirement that the state variable be
a natural circuit variable, i.e., either a node-to-node voltege or a branch
current, then the possible number of such equations is reduced to about a dozen
possibilities.

A comparison among the most promising ones leads us to select the
base-to-base voltage as the circuit state variable. The ensuipg analysis

illustrates the relative simplicity of such a choice.

2.2 The Transistor Pair Transfer Equation

Analysis of the transistor pair presented in Fig. 1 furnishes the
following system of equations, which represents an entirely general description

of the circuit both statically and dynamically [2, 15].

_ 0 Q _ - _
iEl = qu + qu + JEl(exanEl l) aClJCl(eXanCl l) (2.1)

- o O - - Y - f
igo = Qo * dp, + ng(expTlvE2 1) aCQJCE(expﬂvCQ 1) (2.2)

— _0 - - - (4

1 = -9 + og g (expivy) - 1) - I (expive, - 1) (2.3)
= —O - - -

lop = “Ggp + Opdpo(explivg, = 1) - Jo (expivy, - 1) (2.4)
1 =8 . + Q. +8. +(1-a. ). (expiv., ~ 1) - (L - a.. ). (expv, . - 1)

Bl m * 9% T2 E1/YEL El a¥a c1
(2.5)

-k
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1 = 8 + 8 + 8 + (1 - oy N (expivy, - 1) - (1 - @) (expnvg, - 1) .
(2.6)
g *+ i = I (2.7) .
Voo = Vg <V (2.8)
Va = Ea *fala "M (2.9)
Voo = Egp + Ripley = (2.10)
V-V, =V (2.11)

a)

b)

c)

In the system above:

The symbol £ means %%7, and t' is the time variable,

€ = electron charge
n= ﬁ% , with k = Boltzmann constant
T = absolute temperature

RLl’ RL2 are the load resistances.

Qg g 9y BT the charges stored in transistor Tk capacitances:

Sk
Junction.

Ay at the base diffusion capacitance.
qu at the depletion layer of the collector to base junction.

g o

at emitter diffusion tail and depletion layer of the emitter-base

are the saturation currents of transistor Tk’ respectively of its .

emitter-base and collector-base junctions, measured with the opposite

terminal short circuited to the base.

aEk’ aCk the normal and inverse alphas of transistor 'I'k respectively from

emitter to collector and from collector to emitter.
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Obs.: Notice the unusual convention of signs, which has been adopted in this

report for convenience only.

. Comments: The system has 11 equations and 13 variables; usually variables vl

and vy would be independent, and then any other variable can be expressed as

functions of them.

-

However, this system of equations can be considerably reduced by

5
=
A
g
L
&
'

making the following simplifying assumptions (see Fig. 2%.
The transistors and operation points are such that the following

relations hold, accordingly simplifying equations (2.1) through (2.6):

JEl(expnvEl -1) > aClJCl(expﬂvCl -1) = G doy (2.12)
JEE(expnvEe -1) > acejce(expnvce -1) = “Cand o (2.13)
. aElJEl(expTlvEl -1) > JCl(expT]vCl -1)= a1 (2.1%)
' O g (EXPIVL, = 1) >> § o, (expivey, - 1) ® -dyp (2.15)

(1 - aEl)JEl(expnvEl -1)> (1 - aCl)JCl(expTval -1)®™ (1 - aCl)JCl

(2.16)

(l - aEe)JEe(expnsz = l) >> (l = aCQ)ch(exanCE - 1) ~ '(l - aca)vjcg

¥
:
:

(2.17)
. For each transistor, the following relations hold, accordingly
simplifying equations (2.1) through (2.6):
. Uy < ap  amd gy Ky (2.18)
9 << O ari U << dpo (2.19)

S NI
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=711 (2.20)

and cele

9

where 7., 1s the "collector time constant" of transistor TJ’ The transistors

%)
are such that the following relations hold, accordingly modifying equations

(2.1) through (2.6):

Tog =T =7 (2.21)
Uy = Uy = @ (2.22)
Jgp = I =4 (2.23)
T, &, J independent of any system variable, (2.2&)

Assumptions (2.12) through (2.17) divide the system (2.1) through
(2.11) into two interdependent systems, namely (2.1) through (2.8) and (2.9)
through (2.11). The first has eight equations and nine variables, so that all
N variables are determined if one of them 1s given; v is the "natural" independent
variable. The second system has three equations and seven variables, so that
four variables must be specified; in general, vy and v, would be given (thus

2
specifying v by (2.11)) and also i, and 102 which are solutions of the first

C1
system of equations.

Thes~ approximations restrict our analysis to nonsaturating matched
transistors. Constancy of paremeters with respect to system variables as well
as negliglble junction capacitances are fairly strong assumptions, since they
cannot occur in practice [15); however, we feel that the increased complexity

involved in trying to take into account such things is too high a price to pay

for the small increase in accuracy to be obtailned.

- s
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We obtain the system of equations below by substituting (2.12) through

(2.2&)'into equations (2.1) through (2.8):

ip = r‘i’u + é i (2.25)
lp =T+ 21, (2.26)
14 = adgexplvy, (2.27)
1y, = OJEeXPIVE, (2.28)
1g) = Tl + 1 = o 1o (2.29)
132=TiC2+1(;a102 (2.30)
ig + i = Ig (2.31)
Ve " Vg =V (2.32)

Here we have neglected all terms J .y, Qe (1 - aCk)JCk; in the

same spirit we have used the approximation

Igy EXPMWVp N jEk(expnka -1) (2.33)

which is not strictly valid. Actually, it is only valid as long as Vel is

positive, but not if v, is negative. However, to use this approximation (or

El
should we call it a substitution!) for all the range of Ve is equivalent to
connecting a current source of strength JEk in parallel with the emitter-base

Junction of Tk’ in a direction such as to yileld input current zero when

V. - -0,

Ek
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This will meke very little difference as far as results are concerned,
but will considerably simplify the algebra involved. To be sure, it will tend
to compensate for the fact that we have already neglected the collector-base
Junction saturation current, yielding even a better composite characteristic
for the transistor pair.

Equations (2.9) through (2.11) are now irrelevant since we seek to
express the currents as functions of v, which can be obtained just by solving
system of equations (2.25) through (2.32).

For convenience, we apply the following transformations of variables

to this system:

.tl
t=5 (2.34)

W, === k=1, 2 (2.35)

1

- Bk =
zy = oL, ’ k=1, 2 (2.36)
x = % nv (2.37)

RO is the output resistor as shown in Fig. 3.

From now on, the symbol f will be used for %% » unless otherwise

specified. We obtain:

a(gl + 82) + (wl + we) =1 (2.38)

W,

p TV

1 eXPex (2.39)

0 0 Q
v, = (wl + 2xwl)exp2x (2.40)
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. 2, = 9. + 222 (2.41)

. 2, = 9 4+ 12 (2.42)

from which we get, using (2.38), (2.39) and (2.40):
81 +{é+>°c(1 + tanh x)}wl =% (1 - tanh x) (2.43)

This equation can be written in the form:

Mit + Naw, = 0 (2.44)

If this is done, then we have:
. %(g%; -g%) ={é+g(l + tanh x)}- g(t) (2.45)

where g(t) is only a function of t, i.e., it is independent of vy here we
assume that x = x(t) is a given function of t, independent of v .
i Then p(t) = exp \:fg(t)dt] is an integrating factor for equation

(2.43) [8]. We have then:

AL ST

p(t) = exp {(—Z— +ﬁl + tanh x)%dt} (2.46)

But
. f(l + tanh x)Rdt =j(l + tanh x)dx = x + v/ (cosh x) + const. (2.47)

Hence, ignoring the constant,

t
exp-a-

Tt x (2.48)

u(t) = exp(g + X) * cosh x =




PRUS.

ell-

The differential equation can now be easily solved.

Let F‘(vl,t) = 0 be the solution; then:

e R N,

g%— = u(t) (since M = 1)
1l
and
S%' = Nu(t)

We get from (2.46):

F(wl,t) =w u(t) + £(t) =0

and from (2.49) and (2.50):

Ma(t) = wy * R(t) + B(t)

Therefore

£(t) = - £ (1 - tanh x)u(t)

So:

£(t) = - %ﬁl - tanh x) * p(t)dt
From (2.&8) into (2.53):
= - (2 ]
f(t) (% exp 5+ const. )
From (2.50), explicitating w), ve finally get:

W, = % {1 - tanh x)(1 + Cexp(- 5)]

1

(2.

(2.

(e

(2.

(2.

(2.

.49)

50)

51)

.52)

53)

54)

55)

o R
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. where C is an arbitrary constant determined by some initial charge stored in
the bases prior to the moment ¢ = to when the circuit takes on the configuration
described by (2.43). Therefore, for all practical purpose Cexp(- g) is zero,
since we can assume this configuration to be in existence for an arbitrarily

long time; we finally have, using (2.56), (2.39), (2.41) and (2.42):

The "transfer functions":

W = % (1 - tanh x) (2.56)
v, = % (1 + tanh x) (2.57)
and the "input functions":
. z) = %-{l & % (1 - tenh x) - % - seche%} (2.58)
g | z, = %'{ljéiz (1 + tanh x) + % - sechef} (2.59)
% For completion, we have, with k = 1, 2
2 - (-1)¥ % {1 ~224% - 2(2)° tanh x:l . sech®x (2.60)

which are tne characteristic functions for a transistor pair connected as in
Flg. 2.
As a corollary of this solution, we notice that, at all times, the

following relations hold:




.

I T

. AT 1 R S B

(2.61)

which check with (2.7): i * g = I

2.3 The Asymmetric Flipflop

The asymmetric flipflop shown in Fig. 3 has a feedback network whose
configuration depends on the trigger circuit, as shown in Figs. ha and kb,

However, we can obtain the equilibrium equation for this network
assuming an arbitrary trigger current i, which can be replaced by its value
when a trigger is specified (see section 2.5).

Analysis of the circuit of Fig. 4a yields:

s

TiT;¥; + (Ti +Toy ¥ To)gl +v; =Riy + IR +E,+ RoTio(g + gBl) + Rs(i-fiBl) ]
(2.62) i}
where:
a) T, = RCy (2.63a)
b) T, = RC, (2.63v)
¢) T, =RCy (2.63¢)
a) Toy = B,Cy (2.634) :
e) R, =R, +R_ (2.63e) .




-17-

ls ‘9 i“- | ’
| G S .
lT u = =—C 1R T'“
/777 /777 gc

a) FEEDBACK NE TWORK AND EQUIVALENT CURRENT SOURCE
FEEDING TRIGGER CURRENT ij.

b) THE CURRENT SOURCE WITH AN INTERNAL CONDUCTANCE
. gU"?;UETHI-SA?ED BY AN IDEAL VOLTAGE SOURCE WHOSE

FIGURE 4 TRIGGER SOURCES
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Notice that in this asymmetric flipflop (Fig. 3) vy B v, Let us
apply to (2.62) the same transformations of variables used in section 2.2, i,e,,
equations (2.34) through (2.37), and also (2.64) below (a similar transformation

for the trigger current):

6 = - (2.64)

*Tg

The result, with % again standing for g: s will be:

T.1 T, +T . + 1T
1209:0+i :1 2R +x = p{2B+2w2+2—(8+ )+2 (9+z)}
T
(2.65)
where
; IBR + E
: < C
a) B = e (2.668.)
c"IERO
{
l-qa R
b) o = ==  (not explicit above) (2.66b)
o RO
1
c) P = 'E TnIERO (2.66C)

If we expand (2.65) by replacing z, according to (2.58) we get:

T,T T, + T, + 7T
o
ioo,?+i i °§+x

72 T (2.67)

=p{(1+2B+p)+(l-p)tanhx+2 (9+g)+2:o(9-zo)}

where

L

| WA
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-
[

29 =5 2 sech®x (2.68)

n

The condition given by
1+2B+p=0 (2.69)

is called "state-symmetry."

In practice the effect of the base current on biasing, represented
by the term pp,1 is usually small (see (2.66b)), so that the state-symmetry
condition can be approximated by setting 1 + 2B = O, Of course the larger «
is (closer to 1), the better this approximation will be.

Equation (2.65), whether in this form or its more explicit form

(2.67), is the genersl asymmetric transistor flipflop equation.

2.4, The Eccles-Jordan Flipflop

Analysis of the two feed-back circuits of the flipflop of Fig. 5

leads to the following pair of differential equations:

Tikokop | Tk * "otk * Tokg |
2 Ok T k * *k
(2.70)
T R
- ik 9 o sk
=D {éBk +2w, +2 = (6, +Z,)+02 R (6, + zki}
withk=1,2; £ =1,2; £ #k; T as in (14.1) and (14.4) and:
t a) T, =R,.C (2.71a)

ik ik~ik

t Notice that this term implies that the base-to-base voltageiv (in this case
identical to vl) will have a constant component equal to %(1 - a)IERs'
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, b) Tok = RoxCox (2.71v)
) Tyox = RuCok (2.71¢)
) Tosx = RoCix (2.720)
e) Ry = Ry + Ry (2.71e)
R, +E
f) Bk = __l._&__g.‘; (2,71f)
= ol R
2 ok
_1
g) % =3 (2.71¢)
1
; h)  p = IR, {2.71h)
; ’
1y
i) 6y = EE. (2.711)
J) w, and z, are given by equations (2.56) through (2.59) with
x replaced by (xl - xz). : (2.713)
Notice that ik is the trigger current actually fed into the flipflop;
itk is the trigger current put out by the pure current sources (see Figs. h).

Executing (2.713), w, and z, turn out to be:

. v =2 {1 + (-1)* tanh(x, - xa)}' (2.72)

' 2, = %{-l—é—g 1+ (-l)k ta.nh(x:L - xe)] + (--1)1‘(:‘%1 - ga)sechg(xl - x2)}

(2.73)
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Teking (2.72) and (2.73) into (2.70) we get:1

1,7 T, +T . +7T

ik ok ik oik ok -

5 R = B+ % pk{(1+25k+pk) o)
2.7

- (-l)k(l - pk)'t;anh(xl - 2) +2 23%15 (gk + gk) +2 ;55 (ek + (-l)kzo)}

ok
where, with k = 1, 2:
R
_l-0sk
a) p, = % & (2.758)
ok
1,0 o) 2
b) z, = 5 (xl - xe)sech (x; - x,) (2.75v)

Equations (2.74) describe a general Eccles-Jordan transistor flipflop.
The asymmetric flipflop equation (2.67) is a special case of (2.74), and so is

the symmetric flipflop, represented by equation (2.77), as follows:

UL e

Let us consider the case of a symmetric (but possibly unsymmetrically

biased) flipflop. Subtraction of (2.70, k = 2) from (2.70, k = 1) yields:

TTooo Ti+Toi+Too
X + x+x=p{2(Bl-Ba)+2(wl-w2)

(2.76)

T R
+ 2 _i_o [(81 - 82) + (21 - 32)] + 2 ﬁf [(6l - 62) + (z:L - 22)]}

This furnishes (2.76) below, which can also be obtained directly by

subtraction of (2.7h, k = 2) from (2.74, k = 1):

t Notice that (-1)k = -(-1)‘.

RIS A
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2 T
T
(2.77)
T R
_ io O 8
—p{E(Bl- B2)+2(l-p)tanhx+2 = (6 + 2] +2 R ] -220]}
vhere the indices 1, 2 have been dropped from all parameters P whenever
Pl = P2; in the case of the variables we have as before:
a) x = X, - X, (2.78a)
b) 6 = 6, - 6, (2.78v)
c) z =2, -3z, = - 1-Q ianhx + 2z from (2.73)
1 2 a o]’ '
(2.78¢c)
and (2.78a)
a) zg = % £ sechx (2.784)

Inspection of (2.7h) and (2.75) shows that the symmetric flipflop is
formally equivalent to the asymmetric1 one. Furthermore, if it is biased in
such a way that B1 = B2 (not necessarily symmetric biasing), then it is
formally equivalent to a state-symmetric asymmetric flipflop.

We should stress the importance of this conclusion, since it actually
doubles the effectiveness of thé theory! But better yet, it allows us to
compare the performance of any symmetric flipflop with its asymmetric counter-

part, for we will actually be comparing formally equivalent things.

I In this report, the word "asymmetric" is reserved for the flipflop of Fig. 3.
The Eccles-Jordan with different parameters on either side will be called
"nonsymmetric,"”
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We can anticipate here that (as will be seen in the following) that
all other things being equal, the asymmetric flipflop besides being simpler,

performs better than the symmetric flipflop with the same parameter values.

2.5 Triggering

The equations we have found so far take the trigger into account in
a rather general form. Among the infinite possible trigger waveforms, however,
we shall discuss only those which are the most important in practice, and
study them in some detail.

First we consider the type of trigger circuit. It can be a:
a) Voltage source with negligible internal resistance.
b) Current source with negligible internal conductance.
c) Voltage source with considerable internal resistance.
d) Voltage source with considerable internal conductance,

So for the trigger current waveform, the following are three
important types (see Fig. 6):
a)} Rectangular.
b) Impulse.
c) Pair of rising and decaying exponentials.
d) Sinusoidal wave plus constant, simulating usual trigger.

We will study type a) in detail, and discuss types b), c) and d)
(see section 5.5).

The asymmetric and symmetric flipflops will be treated together
(since they are formally equivalent), and an indication will be given as to
how & basically similar method applies to the more general nonsymmetric
Eccles-Jordan flipflop. This is Justified because of the much greater practical
importance of the asymmetric and symmetric case, compared to the more academic

importance of the nonsymmetric case.
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a) RECTANGULAR TRIGGER.
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In the treatments of both voltage and current triggering sources, we ‘
# will assume that the trigger'has a definite duration, outside of which current
sources have zero output current, and voltage sources are isolated from the
input of the flipflop (say, by means of an open diode gate).

One way of simulating this condition 1s to require that,outside the

H duration of the trigger, the voltage or current of the triggering sources are
such that the normalized trigger currents Gk be zero, for any k.

Let us consider the various types of trigger: type a) is a trivial
case, since the variable x is specified; case b) is both theoretically and
formally a special case of d) and case c) is shown to be formally equivalent
to d), which is not surprising since one case can be converted into the other
by Thévenin or Norton transformations.

We will establish expressions for 8 in each of the special cases
mentioned above except case a).

Case b): See case c).

Case ¢): Let the trigger circuit be as shown in Fig. Ta. We get,

with k = 1, 2:
G R
_ k ok
%~ % " 2p (2.79)
G R
@ 9 k ok o
6 = 64y —apk X, (2.80)
where
1tk .
6, =—= is the normalized trigger current put out by 2.81a)
tk «
IE the ideal current source.
]
i

6, = 37  1s the ncmalized trigger current actually fed (2.81b)
IE into the flipflop terminals.




R T

A g B AN Srcian,

o
+ 1

'tkT 16 :fu g
S

FLIP -FLOP

FIGURE 7a: TRIGGER CURRENT i lk PRODUCED BY CURRENT SOURCE.

CLEARLY, ix= 'fk-ekvk'

Rg J‘..
bl
vﬂ:’ vk E FLIP-FLOP
NERE

FLIP-FLOP

FIGURE 7b: TRIGGER CURRENT iy PRODUCED BY VOLTAGE SOURCE.

CLEARLY,

| »
= e = i =G

IF ify=GLvy, AND G =

Rx

FIGURE 7 TRIGGER SOURCE




pp———

e 2 e

g,

-~28-

G is the trigger circuit internal conductance. (2.81c)

k

Now case b) is obtained by letting Gy = O in equations (2.79) and
(2.80).
Case d): Let the trigger circuit be as shown in Fig. Tb. We get,

with k = 1, 2:

R R
ok ok

8, = om———y - —— (2'82)

k ~ Zp,R Mtk T B Rk

o 1 o9 1l o

6, = I, Xk~ 1 . X, (2.83)
2 "By 2 Ry

where:
=1
Xk =5 Wi is the normalized source voltage. (2.84)

Hence, independently of the nature of the trigger circuit the form

of ek is the same. In other words, the voltage source Xyp with internal

*
resistance Rk can be converted into a current source of intensity etk and

*
internal conductance Gk given by:

oF = K 4 (2.85)

6 =§-lk (2.86)

*
From now on s, will be used meaning either Ot or etk’ whetever the case may

k k

be.
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Furthermore, wve will require that whatever the waveform of 8y it

must be nonzero only for a time interval (tak’tbk)’ being zero at any other

time.
From now on we will use only 8y and Gk to describe the trigger.
For the asymmetric flipflop, we will have only 8, and Gl; for the

symmetric Eccles-Jordan 8) - 8, = 8, and we require Gl = GQ = G. For the non-

symmetric Eccles-Jordan we will keep s, end Gk’ k =1, 2, in their respective

k
independent equations.

We can also account for the possibility that Gk has one value when

the trigger is ON and another when it is OFF by using an index p to indicate
which case is being considered: Then u = O or 1 will indicate respectively

trigger OFF or ON, and Gku

will assume the appropriate one of its two possible
values, Gko or le.
With this notation, the general flipflop equations are:

For the asymmetric case:

TiTooo T1 * Toi M To + T1oRoth g

= + (1 +RG X

¢

T T
=p{(1+23+p)+(1-p)tanhx-\:%?(°+<£:_ﬁl_ﬁ_ri£’.+

»o

T R
-2 -,%,-9 (;og)eta.nh x] sechox + 2(1-—-?- 2+ Es- ;} (2.87)
o

For the symmetric Eccles-Jordan case (not necessarily symmetric

trigger):
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T,T T, +T ., +T +7T,RG
ioo,?+ i ol o) ioot“g+(l+Rst)x

12 T

=p{2(31 - B,) +2(1 - p)tanh x -2[%2??\« (1&"‘ -T-ii+§£>§

i .
! T T R
i - % (g)etanh x] sechx + 2(—,{:3 g+ §§ s)} (2.88)
; o
: where:
= - i
X =X - X, "‘ (2.89a)
s =8 -8, (2.89v)
G =G, =G 2.89¢
All other coefficients being the same for both (2.894)
: values of circuit index k, the index has been dropped. ¢
i
i
: For the general nonsymmetric Eccles-Jordan flipflop:
Tiktok g0 . ik * Totk * Tok * TiaPorCiig 2 v (LeRr.c )
2 k T k sk 'ku Xk
= Py {(l +2B +o.) - -1)%a - Py ) tenh x
T T R T
+ (~1)K [____iokoj? +({=a) iok + ﬁ)ﬁ - Lok (2 ann x] . sech®x
T a T R T
ok
T R
e T T 1 S T (2.90)
| T 'k Rok k
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2,6 The Approximation Problem

We have thus established the nature of flipflop behavior through
equations (2.65), (2.70), (2.74) or their respectively equivalent forms.

It is clear that the chances of success of an attempt to solve such
equations exactly are very slim indeed [18],

Therefore, in order to get useful results, we must bow and try to
find approximate solutions to these equations.

There are two possible approaches to this problem. One is to find an
approximate model to the circult. This model must be described by solvable
equations. We then consider such solutions as approximations to the exact
solution of the original problem. The other approch is to approximate the
original equations directly, rather than the model. The latter approach would
probably allow more accurate results to be obtained, since an error introduced
in approximating, say idk(v) would not necessarily propagate through ng(v) to
in(v), and then to gBk(v)' That is to say that each function would be
calculated exactly for our original model and then each one cf them would be
approximated as well as possible,

However, as we will show, this question does not necessarily affect
the nature or even the complexity of the equation or system of equations we
must analyze. For in fact, since an exact solution is not to be found but
instead we must be content with an approximation, we might as well linearize
the problem. This would involve dividing the x-axis into regions where the
function of x appearing on the right-hand side of the equation can be approxi-
mated by a linear function of x. Let N be the number of such regions. Then
we would reduce our problem to that of solving N linear second degree

differential equations valid in their respective regions and match the solutions
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at the border between every pair of adjacent regions. On both the phase plane
and time domain, these regions are N strips separated by (N - 1) lines of
X = constant.

One of the great advantages of this type of approximetion is the
relative simplicity of 1ts applications, whether in the problem of analyzing
the properties of the circuits involves, or in the actual computation of
transition times and waveforms.

If this direction is chosen, then we have decided to pay a price in
exactness for the advantaeges of simplicity and usefulness. Then it is a
question of inspection to see that the most promising way to arrive at con-
sistent results is to approximate the transistor pair model, i.e., equations
(2.56) through (2.59) must be the basis for the definition of a "reasonable"
piecewise linear model [26].

Of course the problem centerson how to linearize tanh x. There is a
good degree of arbitrariness here, but we will select the following three

region approximation (see Fig.8).

tanh x ™ @(x) (2.91)
r 1 N
-1, x < - ;
ox) =4 7, -F<x<+3F o (2.92)
1
\+1, + 5 <x J

vhere 7 1s a factor which depends on the criterion for the approximation. In
general 7 will be somewhere between 0.5 and 1.0, especlally if a minimum

integral error is sought. In this case, we would have:




$(x)

-a) THE PIECEWISE
APPROXIMATION OF
tanhx BY ¢(x)

lL’(.x)‘

b) THE FIRST DERIVATIVE
OF $(x)

e e b

+
8

+
~-

¢) THE SECOND
DERIVATIVE OF ${x)

FIGURE 8: THE APPROXIMATION OF tashx BY ¢(s)
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g-»oo

1
lim{fy(tanhx - rx)dx +fg(tanh‘x - l)dx}= o}
0 1
Y

1 1 1 _
lim < 4w cosh & - 5 - E o+ %} 5y " =20

-
i.e.,

7=gphs => 7 =0.721

This criterion, of course, is quite arbitrary, and there is nothing
to prove that it is the best; however, it also reduces the maximum absolute
difference between the two functions to about 0.120 at the worst point. This
is not a minimum; if 7 is selected to minimize this maximum absolute error
rath. ~ than the integral, then it would be 7 ® 0.714 and the maximum absolute
error would be about 0.115.

S0, for simpliecity, we could for example, take 7 = 0.7, or alter-
nately (and perhaps better) take y = %.

Whatever the criterion may be, the intention of using such a factor

7 1s to reduce somevhat the error by which the solution to the differential

equation is affected due to the piecewise linearization process. This would be
the ideal criterion if it were not impractical.

A five region approximation could also be used with perhaps better
accuracy, but increased labor involved both in computation and analysis. 1In
genersl the accuracy can be improved by increasing the number of regions, which
results also in increased labor.

Since the technique does not change in essence, we shall use the

three region approximation in this dissertation.
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Equations (2.56) through (2.59) become:

v, = %'{1 + (-l)kw(xi} (2.93)

;‘{1 -q k ko,
2 = A0 11 4 (c1f000)] + (1% S0 () (2.94)
- (0 { At ] ew « 0P} @)

with k = 1, 2. The prime indicates differentiation with respect to x. Also,

= 1 Q01

zo = 2 x¢ (x) (2'96)

And obviously,

4 3

0, x<-=
'(x) = <7, -%<x<+% > (2.97)
1

0, + :’-<x J

Differentiation of ®'(x) will clearly consist of two impulse functions,

since @'(x) is constant everywhere except for two discontinuities. We get:
" 1 1
9"(x) = 7 18(x + J) - 8(x - ) (2.98)

where 75(x) is an impulse function of strength ¥ occurring at x = 0,
The flipflop equations (2.87), (2.88) and (2.90) will be approximated
by the following equations, respectively:

For the asymmetric case, (2.87) is approximated by:




%
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T7T T, + 7T +1' + T, R@G
12°&°+ 1 ol i°°E§+(l+RG)x
T T

p{(l +2B+p)+ (1 -p)p(x) - [:???-»(l—é-g:%g + ;i)g]q)'(x)

‘1'1-2 (g)zw"(x) + 2(—,—1‘,—9 g+ :—: s>} (2.99)

For the symmetric Eccles-Jordan case (also not necessarily symmetric

trigger), (2.88) is approximated by:

TiTooo ‘ri + Toi + 1.' + TioRo%J:

X + 1: +(l+RG)x

-2 fe(s, - 5,0 + 200 - dota) - 2 [HRo (A2 e ) e)

- io (2)%"(x) + 2 + — >} : (2.100)
with
X =X - X, (2.101a)
s =8, -8, (2.101b)
Gu = Glu = G2u (2.101c)

All other coefficients being the same for both values

of circuit index k, the index has been dropped. (2.1014)
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For the general nonsymmetric Eccles-Jordan flipflop, (2.90) is

approximated by:

T, 7T T + 7T + To

ik okoo ik

oik Kk * TiokRokctgp o)

= Py {(l

= X, + (1 + Rsthku)xk

+ 2B+ p,) = (1)1 - o, )olx)

(2.102)

a T

T T R
N (_l)k[ lokep, Ll-o 1ok, sk ﬁ}p'(x)

ok

T T R
£ (1) 22 )P (x) 4+ 2 A Q 4 EK }, k=1, 2

Therefore

o> 8
T k Rok k

, equations (2.65) and (2.77) will be approximated by an

equation of the type:

aX+b L+c x= d,, + £(2)(8(x + %)‘- s(x - %)] +m8 + ns

v Vit

where

<
L}

v
L}

v v
(2.103)

1, 2, ..., N, is the region index, and

0, 1 is the trigger index.

The system of equations (2.70) can be similarly approximated:

o] o)

Q 9 = gt 1 9 [ 2 iy -1
akv£; + kapxk * CunXi S ERNE RN R fk(x)[a(x + 7) 5(x 7)]

+ mkvgk + o8, (2.10%)
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where
X=X = Xp k=1, 2
v and p as for (2.103) above

Obs.: Notice that Ci and Co may vary with the state of the transistors. We
will recognize the possibility of one value in each region, and so, strictly
speaking, Ti’ TiO’ 101 and TO depend on v, the region index. When necessary

we shall indicate this dependence explicitly, but not otherwise.

Tables I.1 and I.2 contain the values of all the parameters of
equations (2.103) and (2.104) for the case where the number of regions is three.

Therefore, a detailed study of such equations is useful; it informs
us about flipflop characteristics and also serves as & basis for analysis and
design procedures, optimization of trigger, and study of interaction with

adjacent circuits.

2,7 Summary
In this chapter we have analyzed a general transistor flipflop circuit

and discussed its equilibrium equations.

a) The characteristic equations for the transistor pair with both emitters
connected to a common constant current source is obtained.

b) Analysis of the asymmetric flipflop leads to a second order nonlinear
differential equation.

c) Analysis of the general Eccles-Jordan flipflop leads to a system of two
second order nonlinear differential equations., It is shown that both the
asymmetric flipflop and the symmetric Eccles-Jorden flipflop can be
represented by a single differential equation. In the first case, because

one of the equations does not arise gince its corresponding would-be
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variable is forced to be zero at all times. In the second case, because the
difference between the two original equations is taken leading to another
equation of the same type. Therefore the formal equivalence between
symmetric and asymmetric flipflops is established.

Triggering is discussed and the representation of triggers in the flipflop
equations is presented.

Finally, the approximation problem is discussed and a course of action is

decided upon, which, although somewhat arbitrary, seems to minimize the

unavoidable error.
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3. STUDY OF THE FLIPFLOP EQUATION FOR THE CASE OF A RECTANGULAR TRIGGER

3.1 Introduction

We have, so far, broken down the problem of flipflop analysis and
design into the analysis of two possible cases a) and b) below:

a) Problem of the fourth degree: the general nonsymmetric Eccles-
Jordan flipflop, described by a system of two second order nonlinear differential
equations.

b) Problem of the second degree: the asymmetric flipflop and
symmetric Eccles-Jordan flipflop, which can both be described by the same
single second order nonlinear differential equation. This will be called "the
basic flipflop equation," because its analysis, besides its greater practical
importance, turns out to be fundamental for the analysis of the general case,
since the two equations describing the latter are closely related (formally) to
the single equation describing the former. It is also basic (in a sense) in
obtaining the equation for the following special case.

c) Problem of the first degree (internally restricted flipflop):

We are considering only the second case where the transistors are identical. ’
In this case, if the circuit capacitances are negligible, no matter what the
symmetry of the flipflop may be, it can always be described by a single first
order nonlinear equation which can have its exact solution presented as a
quadrature formula.

In this chapter the problem of the second order (case b)) under a
rectangular trigger will be analyzed mainly from a phase plane point of view,
but the time domain will be used whenever convenient, to complement such
analysis.

In Chapter 5 we will extend the theory to treat a general Eccles-
Jordan flipflop (case a)) and also the internally restricted flipflop (case c¢))

which will be treated as a problem in its own right.

42-
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The possibility of different kinds of trigger will also be discussed

in Chapter 5, and the methods available for the treatment of such problems will

be exemined.

Our main concern is the phase plane analysis of the second order
flipflop under a rectangular trigger, but, nevertheless, we shall try to

approach the most general problem as much as possible.

3.2 Phase Plane Analysis of the Basic Flipflop Equation

i 3.2.1 General Remarks

Before discussing our specific problem, we should briefly describe
the various possible types of singulerities on the phase plane for a system of

equations such as (3.1), where P and Q are polynomials with no common factor.

Q
X P(x)}')

€3.1)

(})’ Q(x) y)

The plane (x,y) is called the phase plane {by extension, even when
y # 2); on the phase plane the points (xo, yo) such that § = % = 0 are called
"singular points"” or "singularities" of the system (points of "velocity” zero,
"equilibrium points,” or "states" of the system) [1, 4, 17, 22].

The singulerities are essentially "point paths" in the phase plane,
and therefore, as a consequence of the existence and uniqueness theorem a path
may tend to a singularity, but will never reach it.

' The nature of a singularity PO is given by the behavior of the system
in an arbitrarily small neighborhood of Po. This behavior 1s the same as that
of the "system of the first approximetion about Po."

Ir Po has coordinates (xo, yo), the system of the first approximation

about PO is the linear system obtained by:




R

:
£
i
F
®
i

ebla
a) making a transformation of variable

x = x - x P(x,7) = Flx,y)

8o (3.2)
Y=Y - Qlx,¥) = Ux,y)

b) taking
o]
X = Allx + A12y
(3.3)

[o]
T = Ayx + Ay

where the Ai are the coefficients of the terms of first order of P and a, in

J
the order indicated.
The solution of (3.3) in parametric form with parameter t will con-

tain exponentials of Nat and A, t, where %1 and A, are the two characteristic

B B
frequencies of the system, i.e., the two eigenvalues of the matrix (Aij)’ given
by the solutions of
Ay -2 Ao
=0 (3.4)
Ay By - A

By definition, the singularity Po(xo,yo) of the original system is
called:

(1) stable node if A, and Aa are real and negative, i.e., x(t) and y(t)

contain only damped exponentials.

(11) Unstable node if A, and Ay are real and positive, i.e., x(t) and y(t)

B

contain only growing exponentials.

(1i1) Saddle point if A, 8nd Ay are real and have opposite signs, 1i.e., both

B
x(t) and y(t) include one growing exponential.
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. (iv) Stable focus if Au and XB are complex with negative real pert, i.e.,

x(t) and y(t) undergo damped oscillatory motions.

(v) Unstable focus if Na and kﬁ are complex with positive real part, i.e.,
x(t) and y(t) undergo growing oscillatory motions.
The study of singularities is important mostly because if a system
meintains the same qualitative properties in a relatively large neighborhood of
& singularity, then the nature of the singularity will give us considerable

information about its behavior in this neighborhood.

3.2.2 Existence of Singularities

Taking into account equations (2.91) and the group (2.93) through
(2.96), equation (2.103) was obtained from (2.65) and (2.77), with parameters

as described in Table I; for convenience, we repeat (2.103):

00 o) _ o) 1y . 1 o]
a X + qux ey X = d, + F(x)s(x + 7) 8(x 7)] +mS + ns (2.103)

where v = I, II, III, is the region index.
We define a new variable y = g, and express (2.103) as a system of

two first order equations:

B SR

i 0

¥ X=y

! (3.5)
¢ c b

£ °o_D _w ATy

: Y= “Ta *~ B ¥

g v v v

. where

D=a,+ f(g)[s(x + %) - 5(x - %)] + mvg + ns
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Notice that dv is a constant in each region, and that the impulses
occur in the borders between regions I and II and between regions II and III

(this is a direct consequence of the way ¢(x) is defined).

Let us assume that s is a rectangular function and that therefore g

*

is a pair of impulses:

r 3
0, t <ty
s= KW, t;<t<ty,+Ty > (3.6)
LO, te + Te <t
s = W(s(t - ty) - 8(t - t, - )] (3.7)

Convention on Impulse Amplitude: The impulse contained in 2 has its strength
proportional to ye/a, but occurs at a point where both "y" and "a&" are discon-
tinuous. In that case we will take those values of "y" and "a" adjacent to the
discontinuities but inside region II.T

It is easy to see that any impulse of amplitude A contained in D will
correspond to a discontinuity A% in %:

In the time domain:

As(t - t) ~ A% = t_i”g[’%(ta +€) - g(ta - €)= ﬁ; (3.8)

In the phase-plane:

1 This is not so arbitrary as it may seem., In fact, we are trying to analyze a
nonlinear differential equation by means of a piecewise linear approximation,
It is very easy to show that any other choice for "y" and "a" between the
respective extremes of their discontinuities will lead to the existence of
crossed paths in the phase plane, which certainly will not be a portrait of

any physical system.
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As(x - xa) - AR= lim{g(xa +1) - J%(xa -n)) = £— (3.9)
N0 v
Therefore, whenever an impulse occurs, it can be taken into account
by assuming new initial conditions after the impulse with the discontinuity
in % descrived by (3.8) or (3.9) and x(t) being continuous.
With this device we completely eliminate the impulse functions from
our equation, absorbing them into suitable discontinuities of L.

Now we can express (2.104) as two separate cases:

o)
X =y
(3.10)
o _tw_ Sw, Pw
Y 8 & *"a ¥ ‘
v v v
Therefore, the phase-plane equation is:
d =-c¢.x b
22:.21-‘_.__%___11:‘. (3.11)
dx avy a,

where:

if trigger is OFF, p = O
de = dv + vnW, where .
if trigger is ON, p =1

Obs.: Notice that the definition of de hes a meaning only in the case of a

rectangular trigger.

The singularities x " of (3.11) have the coordinates (XVu’qu)’ where

v

the xVu are the roots of

dvu - cv“x =0 (3.12)
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We get
dw
Xy = 3 and Yyu = 0 (3.13)
vu
where
Xy, = (xVu,O) is in region v, and p is the trigger index.

1f xVu is not in region v for a particuler value of vu, then we refer
to this point as a "virtual singularity,” since it has an effect on a repre-
sentative point P only if P is in region v, but ceases to have any effect over
P if P leaves region v. Since xvu itself is outside region v, there is a
neighborhood of XVu in which P is not affected at all by xVu'

Table IT lists all possible values of xv“, and also the effect of the
trigger; the important special case of state-gymmetry and trigger OFF is
presented in Table III.

It is not superfluous to point out some of the important results

presented in these tables. Let us consider Tables II.1l and II.2 and III.

Notice that if I'.1 < pr¥ holds, then:

1
- h = N
a) X1y 7’teanIu X,
b) Xroy = 0, then Xp, = Xrpqy-
=4 L =
c) X =ty then Xr1y = X110
1
d) ® + un'W is such that xI“ is virtual, then xIIp is also virtual, but xIIIu
is real.
]
e) @ + un'W is such that xIIg is real, then qu and xIIIu are also real.
]
£} ¢ + un'W is such that xIIIu is virtual, then xIIu is also virtual, but qu
is real.
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. TABLE II. SINGULARITIES (SEE FIG. 9)

TABLE II.l

Necessary and Sufficient
Singularity Value Condition to be Real
S un'V - B + @
Xy = P I <pr(hv - ¢ - un'W)
I ey I Tl
1] v
et g’V + @
= ! -
X1, o L T p7|® + un'W| < |1, - Hoyv|
dIIE pn'v + B + @
T T 3 P T Iu <pr(HY + @ + pn'wW)
IITn M
]
TABLE II.2

Assumption: Rectangular trigger: S = uW

o
[e]
pe
;é‘ Asymmetric flipflop: s = uW
o}
© | Symmetric flipflop: s =8; -8, = u(wl - w2) = pW
-1 da
V)
dvu = p(un'w + w [ O] + ¢) xv“ = -C——E
a +1 Vi
o]
s 0
P =1 - 1 I =1+RG
ﬁ v T Hp7Y [o] M s
&
5-1l-als ¢-1.1-0B | 0as defined in
Qa Ro a Ry Table I
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TABLE III. SINGULARITIES (SEE FIG. 9) .

stnguaarsty | Veaue | Tegeasary wnd eutticten ..
| X0 -Hp %6 IO < Hprv

X110 0 always real

X 1110 +Hp %.5 To < Hp7¥

Obs.: This is a special case of Table II for the case
of =0and p =0, i,e., assuning an untriggered,
state symmetric flipflop.

g) Therefore, the possibilities are:
1) either three real singularities .

i1) or one of the extremes (xI ) are real, the other extreme

" or xIIIu

(xIIIu or qu) and the median (x.._ ) are virtual.

ITu 4
However, if Iu > prv,
h) Only one (any of the three) singularities is real;, the other two being
virtual.
Figure 9 illustrates these conclusions.
We will now prove that whenever:
1) three singularities are real (case g-i), the extremes are stable, the

median is unstable;

11) only one singularity is real (cases g-ii or h), it is stable. .

3.2.3 The Nature of the Singularities .

We have discussed the existence of singular points, and established

the lmportanceof several relationships among parameters upon the position of
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singular points, and therefore upon their real or virtual nature. Now we should

like to study the nature of these singularities. The system of equations (3J0) cen

be written in the form of (3.1):

®O
"

P(x: 3’)
(3.14)
Q(XJY)

<o
"

The "system of the first approximation about the singular point
(XVp’qu)" has been defined as being the system formed by replacing P and Q by

their respective first terms of corresponding Taylor series expansions about
d
Vi

i (C_'E: O).
vu

Iet us define the new variables:

. X=X -xgi Y=Y -y (3.15)
d
| The system of equations (3.14%) becomes:
] R - Py (xys yvu)X + Py(st yvp)Y
{ Y- (x X + Q (x Y
3 Sy Ty X+ Qlxy0yy,
Comparison of (3.14) with (3.10) shows that:
P(x,y) =y
(3.17)
dV cV bV
.’ : Q(x,)’)=;'g-'a—gx-;-gy
hY A% v

Therefore
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\
Px(xvu)yw) - 0) Py(xvu)yv") =1
> (3.18)
w W
“ Qx(xvp)yv”) = - a ’ Qy(xvu)yvu) = a
/
Let
Cy Py
D=-—% gana E=-—£ (3.19)
a )
v v
Then (3.16) becomes
0
X=0-X+1"%
. (3.20)
Y=D*X+E Y
* The characteristic equation of this system is:
-\ 1 o
. =0, i.e., A -EN-D=0 (3.21)
D E-XM
So
I l{E + NEP 4 hn} (3.22)
3 o, B 2 -
i.e.,
N
hy =3 {e -V v}
} (3.23)
K-ERR
Ay = 1 E + JEQ + 4D
B 2 )
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and we have the following rules:

(1) A, 80d Ay real and negative => stable node.

w

(11) A, 8nd Ay real and positive => unstable node.

w»

! (111) A, &nd A, real and opposite signs => saddle point.

w

(iv) A, 8nd Ay complex conjugates

vy

with negative real part => stable focus.
(v) )"a and XB complex conjugates
with positive real part => unstable focus.
Application of these rules to equation (3.22) or (3.23) is straight-
forward; replacement of D and E by their expressions in terms of parameters

(through equations (3.19) and Table I) will produce the results summarized in

Table IV, as can be shown by the following analysis:

Theorem 1. If x. or x exist they are stable nodes.

Ip ITIp
Proof : From definitions of E and D, and from Table I for regions I and IIT
we have:
b T,+T . +T+7T, RG
E=“E-v£ S - 1 (’:‘.T/T)ioog<o (3-2’4’)
v |v=I,IIT
cy 1+ RsG
D=~ = —=F£<o0 (3.25)
v |v=I,IIT TiTo/T

Therefore, NEQ + 4D | cannot be greater than lEI, we will show next that

E2 + 4D > 0: 1in fact, from the expressions above for E and D, we have

o TR N ST

¥ (Ti+1’

% | 2 e T+ TioRoEp) - (1 + RyG, .t

(v /7N

oi 1 o] (3.26)

Consider the numerator M of the fraction above:




:
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TABLE IV. A SUMMARY OF THE NATURE OF THE SINGULARITIES
IN ALL POSSIBLE SITUATIONS (SEE FIG. 9)

Posgible Situations
Parameter Condition
Exists | Does Not Exist Nature
x N Stable Node Ay _ 1
Iy cIIu >0 and < < ==
& Im 7
N
- a
x J cIIu <0 and -CE:E >+ 1
IIIy IIy 7
N} >
qu cIIp. 0
X \/ Stable Node and
IIn a
ITp 1
N c <37
XITTu | 7
d
Iy v Iy >0 and ——B’-‘CI >4+ 2
Iy 7
xIIu J or
d
X \/ cIIu <0 and Lip < - 1
IIIn Stable Node C114
c.. <0
* v Stable Node I
and
- N} Saddle Point a
c ) ,
x| Y Stable Node T
%




2
M= ('t'1 T HT N TioRoGu) - b(1 + R'Gu)'ri'ro

2

o 2 2
T H AT 4T+ 2(1i + ‘l‘o)‘l'oi *Tyt 2(1'1 Ty * To)ToRiGu

2.2 .2
+ 'L'ORic;u - ln'iwo - hTiToRst

_ .2 2 2

=T - R T 4T+ Z(Ti - *ro)roi Tyt b'ToToi - 2(':1 + T - To)ToRiGu
% 2.2.2
; + 'ronicu
i
_ 2 2.2 2

= ('roi +T, - 1:0) - 2R1GMTO(TO:|. +T, - 'ro) + ToRiG“ + Ty * lﬂ":;roi

So
- _ 2
M= [t +7, -7 (1+ ToRiGu)] +7 M+t >0 (3.27)

This implies that E2 + 4D > 0, and so Na and xﬁ are reel and negative in both
regions I and III, which means that qu and xIIIu’ if they exist, are stable
nodes, which was to be shown.

Notice that even if one of them (or both) is virtual, its action upon
its corresponding region will be that of a stable node. This follows from the

proof of Theorem 1 and from the nature of the coefficients of equation (2.103)

Theorem 2. If pyv > IpT and if xIIu exists;, then it is a saddle point.

t Parameters as defined in Table II; this is a necessary condition for bistable
behavior (but not sufficient), for otherwise, either x. or x will exist,
but not both! This is stated in an equivalent way in ggnclusfgguh, page L8.
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Proof: From definitions of E and D, and from Table I for region II we have:

T R
i-a, 0, s
bI Ty + Ty v T * TioRoGp + pre [ a T 'R ]
. E=--—IE=- °<0
a T
II io + Dyt
T P io
i (3.28)
e (I - pry)
D=Ll _ _ __ 1 >0 (3.29)
a T
II io + DIt
£ T P40

Therefore IJEQ + 4D l > IE]; Aa and AB are then resl with opposite signs, and

consequently x is a saddle point as was to be shown.

ITu
Theorem 3. If py¥ < Ip,1 then the existing XVu will be a stable node.
Proof: Using the calculations made for the proof of Theorems 1 and 2 we

get, if region IT is considered:

TN

) B2 + 4D = - S (3.30)
io
<TT + PyTiq)
where
T R
_ 1-a lo, s
N=M+ 2(1’i T AT H TioRoGu)p7 [ 5= Tt Ro]
(3.31)
T R 2 T, T
1-a 0, 8] " _ 1o .
+ {P7[ o Tt Ro]} AT P pw( = * p7Tio> >N
T1To
LY 1 B
N =M - IpT, o+ Iu( — + pn1> (3.32)

! No bistable behavior is possible!

TSR TS EI00SAA W BAATAS | IS
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where M' stands for the sum of the first three terms of N, and py¥ < Ip was
used. Then

TiT
N =M+ I 2 (3.33)

T

since M> O, M' > 0 and N' > 0. Therefore N > 0; as a consequence, Aa and XB
are real and negative and if xIIu exists it is a stable node. Of course the
proof of Theorem 1 is independent of 2§! , and therefore it is valid under the

W
present hypothesis of prv < Iu. Thus the proof of this Theorem 3 is complete.

3.2.4 Diagonalization of the Characteristic Matrix of the System

The eigenvalues and corresponding eigenvectors of the characteristic

0 1l k k
r= > <1 =a [t (3.34)
b &/ \4, 3

Therefore, Ei =Nk 1=0, B

matrix are given by:

Let k, = 1 arbitrarily, and Zi =N

1
Column 1 can be normalized by multiplying it by a factor 5
Jhi + 1
but it is more convenient not to normalize it.
The polar matrix of I’ is
1 1
r = .
o (3.35)
Aa KB

Its inverse is:

R——




' B
-1 1
I == (3.36)
P KB o
-ku +1
The diagonal matrix of I’ is
%u 0
Ty (3.37)
0 KB
and the diagonal form of I’ is [28]:
r=r_-r,-rt (3.38)
P a 'p

Therefore:

0] 1l 1 1 Xa 0 KB -1
i 1
A, = A
- B (04
D E %a A 0 hB -%a +1

(3.39)
The system of equations (3.20) can be expressed in matrix form
0
X ¢] 1 X
= (3.40)
o)
: Y D E Y
!
: whose solution is:
X g é)T Xy T=1t-t,
= e . ;  with <X = X(0) (3.41)
Y Y, LYo = ¥(0)
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where, by definition, given a diagommlizable matrix A, with polar matrix Ap

and corresponding diagonal matrix A.,

d
A .
A a -1
= A - A .h2
e o € o (3.42)
and for any diagonal matrix Q
q
1
e 0 ces ql 0 e
eQ ={ 0 qu if Q= 0 a9y (3.43)

Therefore, from (3.39), (3.41), (3.42), (3.43), we get:

AT

o
<j: l::)<:f O XB . l <:?::)
= AT N - A
B - B T« .
Y ha kB 0 e )\a +1 Y
(3.14)
and this turns out to be:
AT A T1 AT AT
a B o B
X Xo [hse - xae | + Y0 [-e + e ]
1
vy (3.45)
p o N AT AT AT
Y XO}‘a)‘B [e -e ] + Y, [-)»ae + )\Be ] .

In another form
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. XA - Y. AT XA +#Y. AT
R o b ver v
B o' B o
k (3.L46)
* XN, = Y AT XA +Y AT
Yo e ® v 520 P
B a 8~ "o J
and we recsll the definitions of X and Y:
X=x-xvu; Y=y-yv“=y, since pr.=o (3.15)

Equations (3.46) furnish the integration constants A and B of the
differential equation as functions of natural frequencies and initisl values.

Substitution of (3.15) into (3.46) yields the general equation for
the flipflop transition, if we keep in mind that:

(1) Changing from one region into another changes all
parameters; therefore one must be careful in calculating
new initial conditions, new singularity position (which
can be virtual!) and new natural frequencies.

(ii) The same thing occurs if there is a change in trigger
level, in particular when it is turned ON or OFF.

(111) Impulses produce discontinuities in y (and therefore in
Y), but everything else remains unchanged. Remember

that the effects of such impulses depend on 8, which

P G, A3 et 2 L s . e e n

changes from one region to another; the impulses due
to effects of base current occur when a,, is changing
from ey to arg and also when it is changing from 817 to
ar1ps in each case we will take the average of the two

adjacent values of 8,




T
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The results are presented in equation (3.56), section 3.3.

s W g

However equation (3.&6) is also a very practical form; discontinuities
of X and Y can be calculated from equations (3.15) whenever they occur.

Some more information can be obtained from the "canonical system of

the first approximation"; this is defined as:

O

® Ad 0 d
= (3.47)
R 0 A/ \x
where
o A -1 X
1 B
ol e (3.48)
X B o N, L/ \Y

Of course, system (3.47) is equivalent to system (3.40) under the
transformation of varisbles (3.48). Such a system clearly has a unique

singularity at the origin. Solution of (3.47) is:

AT
o\ e® o ¢O
X 0 e P X5
i.e.,
AT )
{ ® =0 @ .
i
¢ . (3.50)
¥ AT '
i X = xe P J .

from which we find




i
{ -63-
!
P bt =l ok (3.51)
! I P e
. and therefore,

(&jﬂ . (%O)K“ (3.52)

which is the equation for the phase plane trajectory in this canonic system.

If the singularity is a stable node, then AO < 0 and AB < 0, and we
assume either lxal < IKBI or lxal > |kB| (which is irrelevant, since the
ordering of A, and AB is arbitrary!).

From (3.52) we get:

(3.53)

and, by differentiation,

A Xo (’*e/"a)'l

d
= ¢ — (3.54)
5& N ¢(Aﬁ/Na)
0

-0

Therefore, (3.53) defines a family of curves of the parabolic type in the plane
@,x), for x = £() [1].
From (3.51) it is seen that the direction of movement of & repre-

sentative point P over any of these trajectories is clearly towards the origin.

¢
g

Figures 10 show the two types of parabolic curve according to whether
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FIGURE 100  CANONIC SYSTEM TRAJECTORIES WHEN THE
SINGULARITY IS A NODE. IFITIS A STABLE
NODE, i.e., F Aq & A\ ARE NEGATIVE, THEN
THE REPRESENTATIVE POINT P MOVES TOWARDS
THE ORIGIN (SINGULARITY) WITH INCREASING TIME.
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1xa| < lxsl or Ixal > lxal. If the singularity is a saddle point, then we take
Ay <0< A.B (again no loss of generality) and inspection of (3.53) and (3.54)
shows that (3.53) represents a family of hyperbolic curves with the coordinate
axes as asymptotes (1],

From (3.51) it is seen that the direction of movement of the
representative point P along any of these trajectories is found to be towards
smaller values of |4>| and larger values of le . See Figs. 1ll.

We wish to know how these curves transform into the (X,Y) plane, i.e.,
the system of the first epproximetion, which, although not canonic,also has a
unique singularity at the origin.

The best way to see this is to find the lines in the (X,Y) plane that

correspond to the ®andy axes. From (3.48) (definition of ® and X) we get:

"
(o)
\
%

"

A X

® axis: ¥ »

(3.55)

Y
<

A X .

X axis: ¢ 6

We realize that in the case of a node with ]A.al > I}\Bl, i.e., with
}"a < )\B < 0, the trajectories have the ® axis as the direction of their axes of
symmetry, and that they are tangent to the X axis at the singularity point
(origin), as shown in Fig. 9b. In the case of a saddle point, the curves are
asymptotic to both axes.

The linear transformation conserve all these properties, and also the
direction of motion of the trajectories with increasing times.

Therefore we can get a fairly good picture of the family of trajec-
tories in the (X,Y) plane if we know them in the (®,Xx) plane. The results are
gqualitatively illustrated in Figs. 12 and 13.

Figure 14 qualitatively shows some portraits of the original system

(x,y) from what we have found so far (1, 22].
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5
COMMENT: SLOPE OF aa' =\,
. SLOPE OF bb' = \s
xﬂ
SLOPE OF mm'= -;—%
at
. FIGURE 12: TRAJECTORIES IN THE SYSTEM OF THE FIRST APPROXIMATION,

CASE OF A STABLE NODE WITH [x,[>Iagl ~(CORRESPONDS
TO FIGURE 10b).




a
COMMENTS: SLOPE OF ad'=),
SLOPE OF bY = Ag
SLOPE OF mni=)g)g
: Aat Ag

THE CURVES ARE HYPERBOLIC, ALL ASYMPTOTIC
TO LINES ac'8 bB,WITH MAXIMA AND MINIMA

ON LINE mm’; ALL CURVES CROSS THE X-AXIS
PERPENDICULARLY. HEAVY ARROWS INDICATE
DIRECTION OF MOVEMENT OF P WITH INCREASING

TIME.
FIGURE I3 TRAJECT(RIES IN THE SYSTEM OF

THE FIRST APPROXIMATION, CASE OF
A SADDLE POINT, WITH [A,> 0

xﬂ<0.
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It is worth reminding that, due to the piecewise linear character of
our complete system in (x,y), in each region the solution of the corresponding
system of the first approximation is exactly equal to the solution of the

original system.

3.2.5 Comments on Figs. 14

a) Balanced g(x): = 0; this situation would usually correspond to a

ary,
state symmetric (dIIO = 0) untriggered (u = O) system. However, we could
have this same situation if dIIO f 0, oW = 'dIIO’ and 4 = 1, since
dIIu = dIIO + unW, in this case dIIl = 0.

b) and ¢) Nonzero bias on g(x): dIIu # 0; this situation would correspond
either to a state asymmetric (dIIO = 0) untriggered (u = 0) system, or to a

partially triggered (no matter what kind of state symmetry) system

(dIIl = dppy + W £ 0).
dr 1
d) and e) Monostable systems in either region I or III: IE—EE| > 7; either from
I

a large bias in an untriggered system, or from an adequete trigger in any
potentially bistable system.1
f) Stable system: cIIp > 0; the system is not a flipflop.

General Comments

1) Notice the relationship between dIIu (bias or triggering or both,

- , dg
dIIl dIIO + nW) and the position of the singularities; the value of ax

at a singular point and its nature:

' Potentially bistable system is any system which would exhibit bistable
behavior if adequately blased, i.e., any system for which 110 < 0; therefore,
the system of Fig. 13f is not potentially bistable.




2)

3)

L)
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%g > 0 = stable singularity (in our case, stable node)
%ﬁ < 0 = unstable singularity (in our case, saddle point)

Of course, the exacf nature of the singularity also depends on 8, and qu.
The position of the singularity, if it is real, must be inside its corre-
sponding regions otherwise, it is virtual.

The singularity nature and position is Just a translation of the coefficients
of the differential equation; this is one way to interpret the "action" of a
singularity over its corresponding region no matter where it happens to be
and justifies calling it "virtual"'if it happens to be outside its region of
influence: it does not really exist, but it would exist if the parameters
cvp and qu were the same throughout the phase plane as they are inside the
proper region. In this sense, this would-be singularity adequately trans-
lates the coefficients of the differential equation inside its proper region.

We have used a coded tag to describe the singularities in this figure:

(]

SN = Stable Node

b o]
]

Real

Sp Saddle Point V = Virtual

]
[}

The last symbol of the tags on the singularities 1s one of I, II or III, and
designates the proper (corresponding) region of the singularity; so, if the
position of the singularity agrees with this symbol, it is real; otherwise

it is virtual. The symbol R or V is therefore redundant, but has been used

for clarity.
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3.3 Trajectory Equations
Solution to equation (2.103) is

x, = A eNav“(t-tv“) + A eh v“(t-tv“) +c
Vi o PVl i
Yo, = %
v Vi

where

a) V refers to the region:

p refers to the trigger: u =

2 Ao p’ BVu
vu.

c) Ao W BV

a) t

v

e) The most common s
IIIO0.
f) Let us use, in ge

a', b', c',
Al B’ Cl

1 1
A M

tl, xl’ yl

1 Actually c

nothing to Hao w!%h

v=1I II, III

0, 1=> 0 trigger OFF, ON

is the instant of time when the pair of indices assumes a new value,

equence of index pair values 1is vu =

neral, a prime to mean:

d', differential equation parameter values in the
previous Yu condition
solution paremeter values in the previous vu

condition

natural frequencies in the previous vu condition

values of t, x, y at the end of previous vu

condition

is the abscissa of singular point

X =x - x_, used in the previous s

tion.
Vi

(3.56)

» Cy i are parameters corresponding to a given value of the pair

are the natural frequencles corresponding to a value of the pair wvu.

10, I, II, IIIl,

--and here x has

i At A it § BN P A
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Unprimed symbols will refer to parameters and variables throughout the

present vu conditions, which, whenever necessary, will be indicated.

g) ty = t'
Xq = x!
Yo=Y+
with

U = magnitude of any impulse occurring during the transition
from the previous value of vu to the present value; it is
zero if no impulse occurs at this point. It may be a

function of Y ©Or y', es in Table V.

to, Xqr Yo = values of t, x, y at the beginning of present

Vi condition.

. (xo - x*)Kﬁ - Y

h) By = X - hy
.o (xo - x*)%z - Yo
B8 XB - Aa
c=%=x*
where

(x*,0) = (%,O) = location of singularity corresponding to

present vu conditions,

T R A




«The-

TABLE V. IMPULSE VALUES FOR CHANGES IN wvu

vu Condition Change
Magnitude of Impulse U Comments
From To
T

10 n +2p =2 |w| W> 0
o T
0
z Tio 2
- Il I1l ~-Hp7y -;3 Yo ¥~ is initial value
5 09 ¥y in region II
- Tio 2
Hl m IIn +Hpy —?9 y' y' is final value of
H y in region II
3 T
Hl 1Imm 1110 -2p == |W| W>0

Tio

1II0 III1 -2p — [w] W<oO
o
7 T10 2
51 1n In +HpY = ¥, ¥, is the initial
a value of y in region
£ II
&
H Tio 2 .
o I11 Il -Hp7'1F— y y' is the final valug
: of y in region II
-
[ T

I 10 +2p -%9 | W <0

: 1 for asymmetric flipflop.

H is the symmetry factor: H =~{
2 for symmetric flipflop.




1) A =-]-'a-{-b +~/b2-hc}

J) And for completeness we repeat equation (2.103) in the new notation:
ax + e + ox = d, for a given vu

Now equation (3.56) becomes

A (t-t.) A (t-t,)
x=Ao‘ecz o+ABeB 0+X
- (3.57)
A (t-t.) A (t=t,.)
a 0 8 0
y= Aa)‘ae + ABA.Be )

In the phase plane, from (k) and (h),

llm(x-x*)ha-y l’m(x-X*)h-y 8
t - tO - X—B (xo - x*)Xa = yo - A—a (xo = x*ﬁe Sl (3'5 )
or, in another form:
AA(t-t.) X - X*\_ -y M (x - x*)\_ -y }‘B
e ®P °={ 2 ={ B (3.59)
(xO - x*)xa -y (xo - x*)kB -y

Notice that t and A are normalized and have no dimensions!
Obs.: Equations (3.58) and (3.59) are phase plane trajectory equations, and the
calculation of transition time is based on them. Also based on them is the phase
plane graphical construction which simplifies not only transition time calcula-

' tions but also the analysis of waveforms and design optimization of both circuit

and trigger.




=76~

{ In this analysis the trigger is assumed rectangular, so the term
ns = unW is imbedded into d; the impulse terms m$ = ymW(a(t - t,)

- 8(t - ty - TO)} and also £(®)[a(x + %) - 8(x - %)] are both considered in
g), with their magnitudes represented by U. This is summarized in Table V.

Therefore, expansion of g) ylelds for this special case:

Discontinuity Transition Through Line
v. o=yt - byP I~ II x=-3 (3.608)
0 0 ] :
Vo = ¥ 4Ly II - III x= 43 (3.600)
v. = y' + by° IIT - II x=4+2 (3.60¢)
0 0 7 )
Yo = v - 4y'" II-I x=-3 (3.604)
where
Hu o7
a) £ = 5a
I

b) mrr and a;; 88 in Teble I

c¢) H is called the "symmetry factor":

{ 1 for the asymmetric flipflop
H=

2 for the symmetric flipflop

We can write equations (3.60) in more explicit forms, and also obtain

the inverse functions:
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Discontinuity Transition Through Lines
’
(1) yo--é]j-{+\/l+hly' -1} .
r I-~1II x=-3 (3.61a)
(11) y' = (1 + Ly, ly, )
\
(1) yp=(1+ &)
> Il - III x=+2  (3.61b)
(11) y*' = 2—15{+ N1+ uyo - 1}J
\
(1) yo=§lz{-~/1-h'y' +1}} .
III » II x=+3 (3.61c)
(11) ¥' = (1 - Lyyly, )
N
(1) yo=(1-2&y')W .
,  II.I x--% (3.614)
(11) y' = 2%{- Vi hiy, o+ 1}4

Notice that in cases (a) and (b) we have the I to III transition, i.e.,
y > 0 through the transition, whereas in cases (c) and (d) we have the III to I
transition, i.e., y < O through the transition. The signs of the square roots

are selected from this physical consideration.

3.4 Separatrices

We are using the word separatrix in a somewhat looser sense than its
strictly mathematical meaning [17]. We shall call a "separatrix" any phase
plane trajectory which divides the phase plane portrait of the system into
qualitatively distinct families of trajectories.

The concept of "qualitatively distinct" is purposely vague; this means

that a separatrix will be so with respect to some stated qualitative distinction
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between the two families of trajectories in which it divides the phase plane
portra.;t of the system,

In order to define a separatrix, all we need to do is to find one of
its points Q, let Q = (xQ,yQ), and enter x, and y, instead of x, and y, into
equation (3.58) or (3.59). Also x* must be known (x* as defined in (3.56h)).

We have a special interest in defining two types of separatrix over
the whole portrait:

(1) "Transition Separatrix" which divides the portrait into two
families of trajectories: those that cross through region II and those that do
not. This separatrix, as illustrated in Figs. 15 and 16, is composed of four
branches: A, B; C, D; A, B; C, D.

These lines will be given special names:

a) ABCD: (I to III) transition separatrix.
b) ABCD: (III to I) transition separatrix.
cé) ABBA: end-point separatrix.

d) DcCD: initial-point separatrix.

Since

a) ABCD separates the lines which are trajectories from region I to region III
from the lines which are not so.

b) ABCD separates the lines which are trajectories from region III to region I
from the lines which are not so.

c) ABBA divides the portrait into two sets of trajectories: those that
terminate in qu and those that terminate in xIIIu'

da) DCCD divides the portrait into two sets of trajectories: those that
originate in region I and those that originate in region III.

(11) "Critical Separatrix,” whose importamewill be later explained,

divides the portrait into two families of trajectories: those that lie partly
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in region II and those that lie exclusively in region I or III. Fig. 15
1llustrates the separatrices and the notation used in this section. Notice
the following:

a) The Transition Separatrix Determining Points: Obviously, in region II,

the separatrix itself consists of the two asymptotes whose equations are

(see Fig. 1k4):

1 (s}

Vo = A.a-(x- x*); let g =
(3.62)
1 1
= . -y ) = -_— = - -
Vg = Mgr(x-x*);  let  y,=ya(+3) ¥ =vp(-3)
where
x is in region II
(x*,0) is the singularity corresponding to region II
xl and xz are the natural frequencies inside region II
. We find
é yA’ yD) y_A-) yﬁ
respectively from
Ype Yoo g ¥e
through equation (3.59):
‘ (3;11): (byi): (cyii): (d:i):
after the replacements:
{yA~y', Yp=¥o YV Y5,
Yg = Vo Yo=V's YUV YU
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We get the following equations:
¥ v, = (1+ byyyy (3.63a)
yp = (1 + byg)y, (3.63b)
£ vg = (1 + byg)yg (3.63¢)
¥ ¥ = (1 + Bya)ya (3.63d)

b) The Critical Separatrix Determining Points: Of course those trajectories

gt B e s LR AL R

which cross the x axis at points x = - -;‘ and x = % are the two branches of

the critical separatrix.

c¢) The Separatrices: The two separatrices, as illustrated in Fig. 15, are

given by the general trajectory equation (3.58) or (3.59) (they are entirely
equivalent). Since here we are more concerned with geometrical properties,
we prefer the latter, which we repeat here as equation (3.64), leaving out

the exponential of time, and replacing (xo,yo) by (xQ,yQ). So the

separatrices are given by:
(x - x*)k (x - x*))\ x'B
(xQ - x )k Q} {( - x*)k Q} (3.64)

and Tables VI and VII furnish the values of the parameters.

Besides the separatrices three more lines at each stable node are
important in the qualitative study of trajectories in the phase plane. These
lines are: (by definition) assuming Ay < AB (see Fig. 12):

a) The "tangent line": y = A.B(x - x*), which is a tangent to all trajectories
at point (x*,0).
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Y TABLE VI. PARAMETERS OF THE SEPARATRIX EQUATION (3.6’-&)
Galculate by| -- | Equation (3.63) | mable 11 | Bauation (3.561)
. ' and Table I
x y xX* A
A Parameter < < i
(depend on p) 1i=qa B
% Branch Value
% Branch A -1 x A
b 7 Y M 1Ip
: Branch D | + = x A
¥ Transition y Ip IITu 11T
z Separatrix
% - 1
* Branch A -3 Y5 xIIIu )"iIIIp.
. Branch D -1 x A
7 ) Iu 1Ty
Branch E z (0] X A
. -
Critical U Tu ilu
Separatrix _ 1
Branch E + 7 0 xIIIp )‘iIIIu
-

Notice that the index p merely indicates if the trigger is ON or OFF; the

actual direction and effects of the trigger (if ON) must be computed through
Tables I and II.

TABLE VII. RESULTS OF EQUATIONS (3.62) FOR THE BRANCHES OF THE
TRANSITION SEPARATRIX INSIDE REGION II

- Branch Equations (3.62) Furnish

- 1 1

Branch B, B | y =A (x = x.7) |y =v.(-3) |ws=y.(+3)
Transition a” " II B Ya'™ 7 B Ya\ty
. Separatrix

Branch C, T | yg=Ag'(x - xyg) |vg= y§(+ %) ¥g = vg(- %)

Notice that both yi's and Ai's, i =q, B, depend on u, so all y's depend on u.
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b) The "direction line": y = A (x - x*), which does not cross any trajectory
except at point (x*,0), where it crosses all trajectories.

AN

c) The "max-min line": y = f‘-_;%-.— (x - x*) which crosses all trajectories at
a B

(x*,O) and also every trajectory at its point of maximum or minimum value

of y(x).
d) The line described in (b) also applies to the case of saddle points, except
that, at the singularity (x*,O) it crosses only the asymptotes, since

the other trajectories do not pass through the singularity.

3.5 Trajectories and the Action of the Trigger

The simplest trigger is the rectangular current trigger. In fact the
action of a trigger of a different waveform will, in general, differ in detail,
but not in principle from the action of the rectangular trigger. For this reason
we have considered it important enough to be the basis of this work, and, in

this section, we will discuss its action in a qualitative manner.

3.5.1 Turning the Trigger ON and Possibility of "Under-Triggering"

Figures 16 show various possibilities of trigger action upon the
phase plane portrait--singularities and separatrices--and also the corresponding
initial value of y.

Let us assume that the flipflop is in stable state I, i.e.,, the
representative point P is at stable node I, when a rectangular trigger of
amplitude W is applied (a positive trigger).

The immediate effect of the trigger upon the phase plane portrait is
to shift the stable nodes to points respectively A:I and mIH to the right, and

to shift the saddle point by AKII to the left, where A‘v = - X, 88 given

%1
by Table II.
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' At the same time P is shifted upwards to a point at (xIO’yO)’ 1.e.,

the x coordinate does not change, but y goes to an initial value

o 'HE

H

Vo= VW (3.65)
Suppose that the singularities have not been shifted out of their
proper regions (Fig. 16b). The transition separatrix in region I approaches the
critical separatrix (whose shape changes!), thus reducing the minimum initial

value Yomin of y necessary for a complete trensition to occur.

Let Xvu denote the singularity (xm,o), and let y, . be the least
initial ordinate at X199 for which a I to III transition occurs.

{ There will be two possibilities:
a) Yo < Yomin? then P will follow some parabolic trajectory and tend towards

X Here there are yet three possibilities.

Il.
1. Yo < )\aﬁcl: P will not cross the x axis, moving towards
XIl’ in an overdamped menner.

Yo = KGA:I: P will not cross the x axis, following a

straight path towards X 12 approaching it in a critically

I

T kb tad Bt
N
.

damped way.
3. Yo > XabcI: P will cross the x axis, moving towards

Xn in an underdamped way.

In case 3 we might still distinguish the two possibilities of P going
through region II (entering it under point ya") or not.
b) Yo > Yopips then P will also follow a parsbolic path towards qu in the
underdamped way, as in (a.3) above, but it enters region II above point Yo
before reaching the x axis. Then a transition occurs. This effect will be

called "under-triggering" (Fig. 19).
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One might then expect that the minimum velue wmin of W necessary to

cause a transition would be slightly less than the value W of W necessary

crit
to shift X, and X out of their proper regions (and into virtual existence!).

Iu Iy
But this is usually not so, as it will be proved at the end of this section
that, under certain (usual) conditions, of all possibilities menticned above
only (a.l) occurs, all others being impossible for the type of circuit under
consideration., Therefore, under-triggering usually does not occur for this type
of circuit. However, it 1is a possibllity, especially in a general equation,

whose coefficients were related in some other manner. We will later study this

effect in some detail.

3.5.2 Virtual Singularities and the Trajectory

We establish that Wm =W

in crit = Wos suppose that W > W,; then the

portrait becomes as in Fig. 16d. There is only one real singularity, and this

is the stable node X Il; the end-point separatrix vanishes (since all lines must

II

now terminate at X the critical separatrix and part of the initial-point

1
separatrix also vanish, and the remaining part of the initial-point separatrix

loses 1its meaning.
From its initial position at (xIO,yo), P "sees" only the virtual

stable node X (somewhere in region II or III) and starts to move on a parabolic

I

path towards it. However, before reaching x._., P crosses the line x = - % where

I1
y suffers a discontinuity (-Aby),1 and enters region II where now it "sees” only
the virtual saddle point xIIl (somewhere in region I) and changes its trajectory
into a hyperbolic path as ymptotic to the line y = kIIl«x"xIIl) (a remaining

part of the initial-point separatrix, and here we see why it is meaningless);

1 See footnote on page 90.
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finally, P crosses the line x = + % » where y suffers a discontinuity (-o—Acy),1

4
and enters region III.

Once in region III, P will "see" only the real stable node X
towards which it will start to move in a parabolic path (in an overdamped

manner, as will be shown).

3.5.3 Turning the Trigger OFF

The next event with the trajectory of P is the turning OFF of the
trigger.
Rigorously, the trigger may be turned OFF as soon as P has progressed
far enough into region II, i.e., to a point where, after the negative jump of y
caused by the trigger turning OFF, P finds itself at side III of the end-point
separatrix (of the p = O system, of course).
On the other extreme, we could leave the trigger ON for an indefinite
amount of time,
We are interested in establishing a criterion with which to judge the g

adequacy of the trigger duration.

3.5.4. Discussing Trigger Duration

Assuming the trigger is sufficiently long to produce a transition,
we recognize five possibilities for the trigger (see Figs. 17 and 18):
(1) Too short: if it is turned OFF while P is still in
region II.
(11) Short: if it is turned OFF long before P reaches the

line x = , but after P is in region III (Figs. 1l7a, b

X1110
and 18a, b).

2
1 Discontinuities caused by impulses + ly2 1%(’-‘1 respectively.
ax
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. (111) Pair: 1if it is turned OFF approximately as P crosses

the line x = xIIIO'

(iv) Long: 1f it is turned OFF long after P crosses the-
line x = X110 but before it approaches XIIIl
(Figs. 17c, 4 and 18c, 4).

(v) Too long: if it is turned OFF after P is already

close to XIIIl'
§’ Of course, these definitions can be formalized and made exact: so, a
sufficient rectangular trigger starting at to = 0 and having duration T is said
to be:

(1) Too short: if x(T) < - %
1

(i1) Short: if + 5 < x(T) < X110 " €0-
(iii) Fair: 1if X110 ~ 0o < x(T) < X110 * €os
) (iv) Long: 1if X110 * Sou < x(T) < X - €
(v) Too long: if Xrr - € < x(T)

where €-r €04t €, are positive numbers such that all the inequalities above
can be satisfied.

No matter which case occurs, y will suffer a discontinuity equal to

(-yo); from the point (x(T), y(T)), P will jump to (x(T), y(T) - yo), and then
it will move towards XIIIO by some parabolic path, thus completing the
transition.

NOTE: Of course, P never reaches XIIIO’ but given an arbitrary neighborhood

of X;rro» there is a time T ) such that for any t> T

] €1110 III
P is in €

rrro€1110 rr10(€ 11100

ITI0" We can therefore, arbitrarily select a neighborhood NIIIO of

xIIIO’ and, by definition, say that a transition is complete after P enters NIIIO

for the last time.
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3.5.5 The Concept of "Optimum Trigger Duration"

Call:
Pp_ the point (x(T), y(T)) W
and > (3.66)
P, the point (x(1), y(T) - yo) )
and let 3,1,_, e i'IIIO’ etc., be vectors with the same coordinates as the points

designated by the symbols under the arrows,

By definition, let

(w,0) = |B, -% (3.67)

Rrr1o T+ IIIo|

Given a rectangular trigger of amplitude W, we define "optimum duration

T#" as that value of T for which RIIIO(T) is & minimum. That is:

Rypro(W»T*) = m;n Rirrol¥sT) (3.68)
Since for each value of W there is a corresponding value T%#, we con-

clude that, for a given circuit, T* 1is a function of W:
T* = 8(W) (3.69)

This function 8(W) is a characteristic of the complete circuit, i.e. s flipflop
and triggering circuit together.

Notice however that the definition of T# is somewhat arbitrary, and
probably there 1s no ideal criterion on which to base a definition of optimum

duration. It certainly depends under what criterion we would like to have the

transition optimized.
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. A more practical definition is as follows: given a rectangular
trigger of amplitude W, we define "optimum duration T*#" as the value of T for

which x(T) = That is

. Xr110°

x(T#*) = X1110 (3.70)

The discussion presented in this subsection can be applied to a

IIT to I transition, if we make the necessary (and obvious) changes.

The criterion for the definition of T* expressed by equation (3.70)
is the most useful, and will be used throughout this report. So, unless other-
wise specified, the expression of "optimum duration” or the symbol T* will

imply "as defined by equation (3.70)."

3.5.6 Possibility of "Back-Triggering"
ggering

We have said that after the trigger is turned OFF, if it is suffi-

ciently long, P (whose y coordinate has suffered a negative discontinuity equal

to (—yo)) "sees" only X towards which it moves by some parabolic path.

IITIO
However, we must ask ourselves if this 1s always true. There seems

PRI nom gzt s

to be nothing in the nature of the equation to warrant this assumption. The
objection is: "The position (x(T-), y(T-)) of P at the moment of turning the
trigger OFF might be such that the new position of P, (x(T+), y(T+)) (where
y(t+) = y(T=) - yo) would be under the branch A of the transition separatrix,
and therefore P would return to xIO’ rather than going to XIIIO!“ This effect
will be called "back-triggering."

In fact, the possibility of back-triggering is small, unless the coef-
ficlents of the differential eqation were not related by the circuit parameters

(representing some other analogous type of bistable device).
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We will prove that, under certain (usual) conditions, back-triggering
is not possible for the circuits under consideration.‘ The conditions that
make back-triggering impossible are the same that make under-triggering
impossible.

Actually, these two characteristics are closely related. We will
presently discuss these effects in some detail, explain their interrelation, and

find the conditions that make them impossible to occur.

3.5.7 Trajectory After the Trigger is Turned OFF

let us assume the trigger duration is sufficient and that no back-
triggering occurs. Figures 17 and 18 illustrate the four cases as considered
below:

(1) x(T) <x y(T+) > 0

ITI¢’

(11) x(T) < =x y(T+) <0

IT10’

(111) x(T) > x y(T+) >0

1110’

(iv) x(T) <x y(T+) <0

III0’
Figure 19 illustrates the three possibilities in the case of optimum
triggering: x(T) = XI110°
(1) y(m+)>o0
(11) y(+) =0
(111) y(T+) <0
We should point out that x(T) is quite arbitrary, since we have

absolute control of the trigger duration T; but, for a given circuit, y(T+) is

1 We point out again that back-triggering refers only to the case of sufficient
trigger, i.e., there must be an interval of time T, <T < for which a
normal transition would occur. T < Tp4, means insufficient tr r duration;
Thax would be imposed by back-triggering.
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a function of x(T) given by the phase plane portraits of the differential

equations (with trigger ON and OFF). This means that, for a given differential
equation, selection of T = T# will lead to a certain value of y(T#+) for which
y(T*+) 2 0; the equation and also the trigger amplitude W will determine which

relationship holds.

% It would be interesting to know how the coefficients of the equation
and the circuit parameters, as well as the trigger amplitude affect the curve
¥(T) versus x(T). It would also be useful to know how T* and y(T#+) depend on

W for a given equation.

In the following chapters these questions will be considered.

3.6 Under-Triggering and Back-Triggering

Let us analyze the possibilities of under-triggering and back-
triggering for
(i) a given differential equation of type (2.103) with
¢ coefficients defined in the three regions
(i1) ignoring, in this section, the relationships established

in Table I, but still assuming

(i11) a rectangular trigger (i.e., (3.6) and (3.7) hold)
and that, as before

(iv) the function £(%) = £(y), the magnitude of the impulses

{
i
i
i
¥
.
¥
¥
|
¢

occurring at x = + <, are:

|+
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.
n [-£,°) sledec stx=F3 :
£() = (3.7)
undefined for any x # I% t .

.

with

1 "
.. = ===— or — , according to whether the flipflop is

I 28‘II 811 asymmetric or symmetric.

3.6.1 Under-Triggering

Suppose a trigger of amplitude W < Wo is applied to the system; assume

Pwas at X, = (xIO,O) before the trigger was turned ON.

I0
P Jumps to a point Po = (on,yo); if P is above branch A of the transi-
tion separatrix of the triggered system, then a transition will occur, with P
going to xIIIl’ rather than to Xn (under-triggering). Fig. 19 illustrates

this effect. Therefore a transition will occur if and only if
Yo ” Ya10

where y al0 is the ordinate of branch A of the transition separatrix of the
triggered system (p = 1) at x = X10°

The problem is to find the value W min of W that, for a given systenm,
will cause the point (on,yo) to be on branch A of the transition separatrix

of the triggered system (i.e., u = 1). e

t We could keep the expression £(y) = -£y° at any other point x § ¥ %, taking
4L =L, , v indicating region and state of trigger; but this would’be irrel-
evant, since the function is multiplied by zero at these points anyway!
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As could be expected, we will see that it is not possible to solve
this problem analytically, but only by a graphical or iterative numerical
procedure. In fact, we have a set of formulae, repeated here for convenience,
that can be used to solve this problem:

From (3.13) and the Obs. at the end of section 3.2.2,

d 4
N o Tl (3.72)
(VTR i
from which we get:
\
=L I
I0 cIO I10 cIIO
d 4
S ¢ n II n
Xypy = == 4 —— W X = - — ¥ > (3.73)
ey °p I ey °m
O<KWLW. Dx_<x.<-%2 o<wW<wW.=>0>x._ >-41
0 I0 I1 7 0 II1 74
From (3.62), using the notation xaVu and )\va. as before:
1
Y = MarntGrXmm) W <Wy =y >0 (3.74)
Yap = Vg (A+2fyg),  clearly y,. >y (3.75)
with
B mII 1 for the asymmetric flipflop
.y e
2 &11 2 for the symmetric flipflop

Also, from equation (2.103) itself (see section 3.5.1):




21
yo B - Y (3076)

And finally, the general trajectory equation, expressed by (3.59) can

be rewritten as:

(x, - x*h, - x*M -y B
B i
(x‘j - x*ﬁ j} { - x*)k‘3 - yJ} (3.17)

where (xi,yi) and (xJ,yJ) are any two points over the same trajectory, in the

same region, and x* 1is the abcissa of the singularity and ha and %.B are the

natural frequencies corresponding to that region; so, in (3.77) let:
(xini) = (on.'yo)’. xX* = xIl
(3.78)

(xJ’yJ) = (- %;YA),‘ Xa and AB = )‘aIl and )\Bu

Considering (3.73), (3.74), (3.75), (3.76) and (3.78), (3.77) ylelds:

my . dp + oW dI> »‘an
&, oIl c T o
Il IO
1 I+ nw>[ ( + nw> d + nW>
A =+ -
aIIl \7 aIIl Crr1 Il( )
_l )\ (dI + W i -d_I_(;> }‘BIl
i} °1 ‘n__ °1
N l +nw +nw c1] e _;+d1”‘"
alll aIIl IL\7 c
n
(3.79)

wvhich can be numerically solved for W,
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If a real and positive root W, can be found for (3.79), such that

er < Wo, then we have under-triggering whenever the trigger duration W satisfies
W <W<W, (3.80)
In this case,
Yoin * Vi G.8)

If no such er exists, then no under~triggering can occur, and we

have:

W =W (3.82)

Expansion of the numerator and denominator in the fractions appearing

in (3.79) furnish:

{ K (W +M ) )}Xan ={ Kap(W + Mg1) )}"an 5.6
(W2 + PaIw + Q1 (w2 + PBIW + QBI

with Ka MaI’ PaI’ %I’ KBI’ MEI’ PBI’ QBI es in Table VIII.1.

An entirely analogous analysis could be made for the case of a III to

I’

I transition: reverse the signs of all coordinates and trigger, and change

subscripts I to III, A to K, B to B.

3.6.2 Back-Triggering
Ve will consider only the possibility of back-triggering in the case

of too-long trigger, i.e., P is assumed to be at Xrm = (xnn,o) when the

trigger is turned OFF.
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TABLE VIII.1. PARAMETERS OF (3.83) AS FUNCTIONS OF THE PARAMETERS OF (3.79)

m
<_l A'aIl cn >
81 Il

KaI ) A n
oIl cIIl
L (%
oIl cn CIO
MctI mI n
= thno
I Il

A

]

I { ( II)
P 24\ =+ +
ol b G \y *

A

an®In 1}
oI 11

02 d
%‘ = {<}- * . > < l)
I n2 h‘a 4 ¢ CtIIl

1
A1 (7 +

=)

I n>
—= + A
CnI PIL cpy

Kar n\2
! Q"‘In °In)

<dI ) dI >
N, “p11 n ‘o
I
I n
—— + A
<mI BIL °11>

c d c
m { ( IT Ma11°1T1 }
P . 20\ + + -1
Bl 22— oIll °rri/  Aamn
2
% b _°m ;,L“_II_[A <;+f.zl_ -1]+x (1
I 2 7 ¢ aIll\7 ¢ BI1 \7
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P Jumps to & point P, = (xIIIl’ -¥o)i 1f P, is under branch A of the
transition separatrix of the untriggered system (u = 0), & transition will
occur, with P returning to xIO’ rather than going to xIIIO (bsck-triggering).

Figure 20 illustrates this effect. Therefore, a transition will occur if and

only if:
"yO < yEOl or yO > Iy§.01, (3'&)

vhere Ya01 is the ordinate of branch A of the transition separatrix of the
untriggered system (p = 0) at x = Xrme

The problem is to find the value wmax of W that, for a given system,
will cause the point (XIIIl’ -yb) to be on branch A of the transition separatrix
of the untriggered system (i.e., p = 0).

As for the case of under-triggering, we will see that this problem
cannot be solved analytically either, but only by a graphical or numerical
iterative procedure.

A set of formulas similar to the one used in the case of under-
triggering can be used to solve this problem.

We had obtained (3.72) which we repeat here for convenience:

4y _ Y n
xm=;:—u=c—'+ug—w (3.72)
v v vu

Ve get:
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-

. D < S e ol |

110 110 IIT0 1110
P » d a
; II n III n
Xy = +—W x s —mms e W > (3.85)
L e Cm HIL ey °mm
1
0<W<WO=>O>XII1>--7- O<W<Wo->xIIIO <xIIIl
1
< (2 - 3R J
Again from (3.62), retaining the notation XCZVH. and A'BVu:
Y50 = Mar10” 5 *+*110) (3.86)
BO all0 'y TITO *
Yio = Ygo* (1= £vg) (3.87)
From equation (2.103) itself:
~
m
_yo = - -AE w (3.88)
IIT

(we have implicitly taken arrr < 81 and Moy = By but they may be not strictly

.
:
H
£
H

true).

And, for convenience, we repeat the general trajectory equation (3.59),

in the form (3.77):

. (xi - x*))\a -y M ) (xi - x'll')iB - ¥y }‘5 (3.77)
(xJ - x*, - ¥, (xJ - x*)xB - 3.7
. with (xi,yi), (xJ,y'j ), x*, A, and AB as before,
Now let
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(xg5¥,) = (xpppys-¥odi X% = Xpppg

(xy,5,) = (+ %—, Yio )3

(3.89)

1
Ny 884 Mg = Norrro 888 Agrrro J

Considering (3.85), (3.86), (3.87), (3.88) and (3.89), (3.77) yields:

~

Brrr dIII M = 2 NeITI0
reiLi "aIIIo i
11 Crrm II1 |
N G ) e -1]+x <_1__d111>
arto\7 * T o no - oIII0\7 ~ S o J
¢ ‘ 3
I, dygp + AW dppy Ma1r10
ol }‘BIIIO c -
. IT1 In ITIO
\ <; 0) IIQ>_1]+K (}__%II)T
o110 \y aIIO - BIII0\? ~ rrro /
.

which can be numerically solved for V.

(3.90)

If a real and positive root erII can be found for (3.90), then we

have back-triggering whenever the trigger duration W satisfies

Verrr < ¥
In this case,
Voax = ¥r1r1
and in order to obtain a permanent transition, we must have

w<wma.x

(3.91)

(3.92)

(3.93)

If no such W 111 exists, then no value of W will cause back-triggering.
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Expansion of the numerator and denominator in the fractions appearing
in (3.90) furnish:

A
Ko™ + Myrrr) }}K"‘HIO ) { Kaprr(W + Marry) )} PLLIO (3.9%)

(W + Fartr® + Sarrr (W + Parr¥ * Serrr

vith Korrp Morrr Parrr Sarrr ¥errr Merrr Fprrr Sprrr 8¢ in Teble VIIL.2.

An entirely analogous analysis could be made for the case of a III to
I transition: reverse the signs of all coordinates and trigger, and change

subseripts III to I, A to A, B to B.

3.6.3 Discussion
It is clear from inspection of either Fig. 20 or equation (3.79) and

of either Fig. 21 or equation (3.90) that the necessary and sufficient conditions

for the impossibility of occurrence of

;{ > under-triggering:
5
¢ nr
: PNV B - >3 W 0V, (3.95)
E back-triggering:
Mr1r
Parrol * 1A%l > a2 03V ¥ (3.96)
- where
Ax, = %, (W) - x o (3.97)

Expansion of (3.97) ylelds
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TABLE VIII.2. PARAMETERS OF (3.94) AS FUNCTIONS OF THE PARAMETERS OF (3.90)

m
( . NITI0 T
a1y 1

all0

Karrz P ( % )2
Q10 ppg
N <dIII e 55 )
) arrto\ S " Trrro
oIl C’IH . n )
¥ < & [
¢ d A c
110 { 1 Y11 aIIIOCII0
P 20N ( + ) - - 1}
oIl | lh o U 0II0\7 " errg /7 Rrrotrino
2
q, °110 {(_1_ L > < + N <;_ 1 >}
| 7" oo Mrro \7 °uo QII10\7 g
2 IT0
m
(aIII * Marro © - )
X III 1IN
AITT A 3 )2
alI10 T
N CIII e 5 )
, BIIIONCrr11 1110
111 oI, n >
arry  PIIIO eprp
c d A c
110 { II BIIIOCTIO
P 24\ ( + >- - 1}
BIII | o U 0I0\7 * errg /7 NrrorTo
2
-
ur | 7, - Aaz1o \ 7 e Marrro \ 7 —
|




-107-

TC
i” U } BOTH ARE ofrmeo ONLY
IF tg =t(x30

GURE DEFINI TION OF TIME INTERVALS OVER A TRAJECTORY IN THE TIME
F! 2 DOMAIN, RELATED TO THE PHASE PLANE. (SEE TABLE IX),




-108-

d d C,, =€
%"v’ciw"?:!—'?:!-'c_n_w'dv l'lcvo (3.98)
vl vl vO vl vO~ vl

S s

Notice that if either of conditions (3.95) and (3.96) is not met,
then there will exist real positive solutions W , or W ... to (3.79) and (3.90)
respectively.

We clearly see that conditions (3.95) and (3.96) are formally the
same. . |
a) If we make the further assumption that the coefficients of equation (2.103)

except dv are the same in regions I and III (a realistic assumption!), then
the only difference between them is the effect of different values of the
coefficients with the index p (neglecting variation of capacitances).

b) If we make the further assumption that the coefficients of equation (2.103)
are invariant with p (i.e., trigger circuit is fixed!), then the two
conditions are identical.

This shows a close relationship between these two effects, i.e., they
have the same intrinsic nature and origin from the circuit parameter point of
view, and i1f any distinction exists between them, it is due to the fact that
the circuit itself is not the same in each case (unless the two conditions
above hold!).

One further assumption leads us to an interesting point: assume that

G = O, B = o; 1l (3'99)

i.e., consider the case of a trigger circuit that closely approximates a true

current source., Then we have the

Theorem 4, If equation (2.103) describes either an asymmetric or a symmetric
flipflop (coefficients as in Table I), and if the trigger circuit satisfies

(3.99) above, then no under-triggering or back-triggering can occur.

R RN
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Proof. Conditions & and b can be expressed as a single condition:

A +n>2 (3.100)

since
CVp.=l for v=1I, ITI; p =0, 1
and with
A= -(b+ 4;2 - ba ) L
Q 2a
o= i
12
b=Ti+Toi+To
) T
T
io
m = 2p ——
. P
R
n=2pﬁs-
o]

as in Table I, for regions I and III. Therefore, (3.100) becomes, after

expansion and simplification:

R
2 b ]
T, <{(11 + Tyt 'ro) + J('r1 + Tyt 1.'0) - h'ri'ro}-ﬁ;- (3.101)

This becomes

1 <% 1+ %) {(c +er+r)+ ~/(c +cr + r)2 - k;} = f(e,r) (3.102)
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where
C R
c= -éi, and r = ﬁg
(s} i

Now, let us make a change of variable, as follows:

so that f(c,r) becomes g(5,r):

g(s,r) s-é— (1 + %) {(5r + 5r2 r) +~/(5r + 5r2 + r)2 - her}

+

or

g(s,r) = % (r+1) {(l s +er) 4Nl + g+ o) - hg}1 (3.103)
Condition (3.102) has become:

1 < g(s,r) (3.104)

HETWR T TP g

Let us find the partial derivative of g(8,r) with respect to r:

2 ér r). %[(1+ 5+ 8r) +“[(l+ 8+ er) - h; + (r+ 1l {1 +3(12+15:br; -rbb}]

(3.105)

Then

1 The giscriminant alvays positive, since (1 + 3 + 5r)2 -by=(1 -3+ 51-)2
+ 4g°r > 0 so g(a,r) is a real positive mumber.
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éﬁé-gd‘)>o, forall §>0, r>0

Therefore

lim g(s,r) < g(8,r)
r-0 r
&0 )

But

lim 8(5)r) =1
r-0

&0
Substitution of (3.108) in (3.107) yields:

1 < g(s,r)
r>0
5>0

and therefore condition (3.100) holds, and the theorem is proved.

Comments :

(3.106)

(3.107)

(3.108)

(3.109)

1) Notice that the theorem is very strong, in the sense that condition (3.109)

is strong; in fact, 1 is not only a lower bound for g(s,r), but it is an

infimum of g(&,r), i.e., its greatest lower bound! So, anything at all

upsetting the assumptions made, may invalidate the theorem, and in this

case either under-triggering or back-triggering, or both, at least in

principle, could occur!

2) Notice also that (3.106) is weak. In fact,

sl | o> un 2l .
8~0

r>0
>0

(3.110)
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. So, in fairness, we should point out that the possibility of occurrence of
under-triggering or back-triggering in practice is not so great, since any
! "reasonsble"” value at all of ¢ and r ought to satisfy condition (3.100)
% with a good margin.
{

3.7 Summary
In this chapter we have analyzed the phase plane characteristics of

the basic flipflop equation in the case of a rectangular trigger.

Conditions related to the existence and nature of singularities were
discussed and three theorems were proved with respect to this point.

Some properties of the system were also established by dlegonalization
of the characteristic matrix of the system (in effect, considering two possi-
bilities, respectively for the two possible types of singularity).

A general trajectory equation was established, and the geometry of
the separatrices was discussed, as well as the action of a trigger upon the
system phase plane portrait, with special attention to the effects of turning
the trigger ON and OFF. Here the possibilities of under-triggering and back-
triggering were discussed, and a theorem on the conditions for such a possibility

to exist was proved for an important special case,

;
H
i
:
¢
£
4




L, ANALYSIS AND DESIGN TECHNIQUES

4.1 Introduction

At this point we would like to utilize this information we have about
the bistable system represented by equation (2.103) to the purpose of developing
some analysis and design techniques. Specifically, we woild like to find
efi’ect:tve‘i methods to solve the following problem: given a flipflop, its
loading and triggering circuits, find the transition wave forms of:

(1) vase currents and voltages

(11) collector currents and voltages

We would then be able to find the optimum trigger duration. Further-
more, knowledge of the base and collector currents and voltages as functions of
time would help to improve the design of the overall system [1, 4].

And finally, if the influence of the circuit parameters upon wave form
characteristics is known, we would have a means of optimizing the design of the
system towards approaching some transition requirements [7].

Lastly, if the transistors are given (T is given) and also the trigger,
but if the circuit (resistors and capacitors) is abritrary, then the lower limit
in transition time can be calculated, and a convenient figure of merit for
transistors describing their performance in switching circuits can oe defined,
and would certainly be useful in the selection of transistors for switching

applications (see Chapter 5) [10, 20].

4,2 Definitions of Time Intervals

We have divided the range of the variable x into three parts, which

were called regions I, II and III., Remember that x is a normalized form of

1 By "effective" we mean: "a sensible compromise between accuracy and ease of
application."

-113-
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the base-to-base voltage. Let us consider the variables Wies which are normalized .

forms of the collector currents (of transistors 1 and 2 for k = 1, 2, respec-

tively), as given by equation (2.93).

- It is clear that, as long as x is in region I, wl = 0 and v, = 1;
: whenever x is in region III, this situation is reversed, with v, = 1 and vy = 0;
in both these cases one of the transistors is cutt off, and the other is con-

ducting a fixed current, i.e., the transistors are inactive; they are active

only when x is in region II.

Def. 4.1. So, in a I to III transition, from the point of view of collector
currents, the time during which x is crossing region I, from x(to) towvards - %,
is really a delay. It will be called "delay time" and designated by TD'1 If

the circuit were settled, x(to)= X105 otherwise, it may happen that x(to) # X100

Def, 4.2. The time interval when x is in region II, going from - % to + %, is .

characterized by activity of the transistors, and variation of collector cur-

rents. It will be called "active time" and designated by T,.
p

Def. 4.3. And finally, for the time interval when x is already in region III,
from + % until final settling in & neighborhood N . of
currents are constant (having reached their final values) and the transistors

X1170? the collector

are again inactive., It will be called "complementary time" and designated by

i
¥
g

Tc.

However, many things can happen while x is in region III.

Def. 4.4, The time interval in which x goes from + % 10 Xprros With trigger O,

is called "balanced time" and designated Tge

Def, 4.5. The time interval between the moment the trigger is turned OFF and

the moment x settles inside N ,,, is called "settling time" and designated Tg.

f This time interval is often called "discrimination time.”
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. Def, 4,6, The time interval between the moment x reaches x (or wo1ld reach

IIIO
Xrv10 1f the trigger were kept ON) and the moment the trigger is turned OFF

is called "trigger excess overtime” and designated TEO’

convention of using negative values of TEO if the trigger is turned OFF before

We will make the

=T, - t( ) where

EO X11710
t(xIIIO) 1s calculated assuming a sufficlently long trigger (or measured!) and

¥

S

¥ X reaches x , 1.e., given the function t(x), then T
t III0

; Ty is the trigger duration,

Def. 1&.:{. The time interval between the instant x reaches + % and the instant
the trigger is turned OFF is called "trigger overtime" or simply "overtime,"

and designated T ., f.e., T, = T, - t(+ %).

ov ov -
With our criterion for optimum trigger duration ’I‘*e* (see equation

»

(3.70)) we will have:

T} = t(xIIIO) (4.1a)
. and if T, = T, then from Def. 4.6,
TEO =0 (k.1v)
And we define "optimum overtime" TSy
TH = T% - t(+ Z) =T (.1c)
ov ) Y R '

Def, 4,8, In the case of too long a trigger, we define the "long settling

1

time,” T ., a8 the time interval between the moment x reaches + 7 and the moment

1s

it settles inside a given neighborhood N of x .

IImn IIn
Def. 4.9. Finally, we call "I-IIT transition time,” Tygs the total time interval

between the moment the trigger is turned ON and the moment x crosses the line

X1110°
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The following relations are obvious from the definitions:

Tog = Tp + Tp + Tpp  1f x(to) = X5 (4.2a)
¢

TC = TOV + TS (4.2b)

Tov = T5 * To (4.2¢)

TEO = 0 implies Toy f Tgv = TB (4.2d)

Naturally, all the above definitions apply equally well to a III-I
transition by replacing III by I and I by III everywhere. The symbol TTﬁ
denotes the "III-I transition time."

Table IX contains these definitions of time intervals, which are

also illustrated in Fig. 21.

4.3 Calculation of a Time Interval Over a Trajectory by an Iterative Formula

Tt is not possible to explicit y in (3.59). Therefore, given an

initial point Po:(xo,yo)T and the abcissa x_, of another point P_,, in order to

T £

find the other coordinate Ve of Pf such that P0 and P} are on the same
trajectory, we must apply an iterative procedure to (3.59); the time intervals
can be found from (3.58).

Equation (3.59) can be expressed as

{fsé_’}k“ - {’-‘PE;_X}AB (4.3) .

l Read: P, "whose coordinate are” (xo,yo).
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TABLE IX. DEFINITIONS OF TIME INTERVALS OVER A TRAJECTORY (SEE FIG. 21)
Symbol Name Definition Comments
Ty, Delay Time t(- %-) - t, If circuit was settled at
at t o’ t( Xy
o&erwise t(x 3 ;‘ t tg
is the instan % the trigger
is turned ON.
1
T, Active Time |t(+ -7—) -t(- =) --
To Complementary |t - t(- L) t_ 1s the instant when P
Time 7 enters N for the last
ITIO
time.
1
Ty Balance Time ( 110" M 1) - (- )| t(x 11100 M = 1) is the
instant P crosses x=x s
assuming the trigger s‘H§8
ON (p = 1) all the time.
TS Settling Time ts - te t, 1s the instant the
trigger is turned OFF.
T Trigger Excess|t, - t(x , Bo=1) --
EO Overtime ] IIIO
T Trigger t, - t(+ -) -
ov Overtime o
TTR Transition ts - to Notice that it is measured
Time since t. (not  t(x..)!)
0 IO
until t_.
8
T Trigger _ .
o Duration tG 1:0
Tg Optimum Defined only if Of course, only approxi-
Trigger ty = t(on), equivalent | mately realizable.
Duration to letting
and tg = t{Xyrpe B = 1),
Tsv Overtime
respectively
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for region v and trigger condition p. Parameters Ma’ MB, %, Qa are given in

Table X.
We obtain either one of two formulae
A -
2| oﬁyn]
_ a
Voo = My - Qe (k.b4a)
or
A M -y
)
- B
Yool = Mg - Qe (4.4p)

The only difference between them is a question of convergence,

In fact, given two implicit functions f and g of y, the equation

£(y) = &(y) (4.5)

can be solved by an iterative procedure by means of a formula such 351 '
£(v,,,) = &(y,) (4.6)

i.e.,

Y, = £ laly,)] (4.7)

n+l

Let y, be the solution of equation (%.5)
The iterative formula (4.6) will converge, i.e., lim Yo = Yes if and ,
n-se

only if there is a number € > O such that, if Iyn - yfl < €, there is a positive

number K such that:

T No loss of generality, since the symbols f and g can be interchanged.
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TABLE X. DEFINITION OF THE PARAMETERS OF EQUATION (L.3)

Parameters of (4.3)| Expressed as Functions of the Parameters of (3.59)
M, (x - x*)ha
% (xg = x¥)ny = ¥
}
i
M‘5 ‘ (x - x*»‘B
QB i (xO - x*)XB - Yo

Comments: &) Region v, trigger condition p

* =
b) x X
c) N = Agw? Mg = M
a) (xo,yo) = any given point on the branch of trajectory

under conditions wu.

e) x = some abcissa such that there is an ordinate y
satisfying the condition: "(x,y) is on the same
trajectory vu branch as (xo,yo)."

f) y is to be found.
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&y
2l g, k<1 (4.8)
n
However, it is clear that
by g'(v,)
14m n+l _ f (4.9)
N0 Ayn f'(yf)

where the prime means "derivative with respect to yf."

Now (4.8) and (4.9) imply that (4.6) converges if end only if

g' (vp)

fiiyfs

<1 (4.10)

Therefore, one of formulae (4.4a, b) converges and the other diverges. There is
no way to know a priori which one will converge, since we would need the solu-
tion yf of (4.3) to answer this question. However, assuming we start from a
good initial guess y,, if we calculate y, and Y3 from both formulae (4.ka, b),
the initial tendency should be clear.

Another way would be to differentiate both sides of (4.3) with respect
to y, and compare the two results for the initial guess Yys hoping that compar-
ison &t y, would yield the same qualitative result. Call £(y) and g(y),
respectively, the sides of (4.3) with the larger and smaller absolute value at
point y,, and take that of formilae (4.4a, b) which conforms to (4.7).

If eventually, the selected formula diverges, then we should try to
improve the initial guess N and repeat the procedure outlined in the previous
paragraph.

A method of extrapolation usually allows improvement of any trial yn

using the previous results for y , and y ,: from (4.7) we write (4.11) below:
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: y =t Maly ) - v, (4.12)

So, to Yp-o and Yp-1 there correspond respectively the variations

@
i1
P

&y, 8nd &y . ; the two points (yn-e’A‘yn—E) and (yn_l,Awn_l) define a line

(yn,'A'vT'n):‘t

-— Ayn—l A‘yn-l

Avn = yn<Avn_2 - > + <yn-l " Yne2 Awn_2> (k.12)
Let

& =0
then:
’ _ yn-Elwn-l B yn-l Ayn-e
yn = Nn-l - Ayn_2 (hnl3)

Try substitutingy, into (4.11). Stop when 4y 1is small enough.

This method, even though more involved, would speed up the convergence,
it is more tolerant with respect to initial guesses, and stabilizes the method
to the point of usually producing a convergent sequence of numbers ¥, =¥, even
in a case for which, if directly applied, equation (4.7) would diverge.

If the problem consists in finding time intervals only, and we are
not concerned with otber characteristics of the trajectory, then the trajectory
equations (3.57) in the time domain could be used directly. They can be written

as

T En is the extrapolated, or expected, value of Awn.
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{ AT AT
a of of
x, = Ae + ABe B + xX* (k.14a)
AT AT
. o 0f glof
Yo = ANsE + ABxBe (4.140)

where Tof = tf - to, and x* is the abclssa of the singular point corresponding

to the region; clearly (xo,yo) is the initial point. So:

an XBTn
X .1 = As + Ase + X* (4.15)

and, by the use of a method like the one expressed by equation (h.13),

- xM‘n-l + (ann-l - xn-lTn) (h.16)

n+l X =X
n n-1

T

Now, T ., would be used in (4.15). The numbers x ., &nd x are

+1
respectively the results of (4.15) when fed with Tn—l and Tn. Clearly

6o =T -T . (4.17)

When Amn is small enough, the process is stopped and TOf corresponding
to x, could be fed into (4.14b) to £ind the corresponding value of y.

There remains the problem of how to find a fairly good initial value
for the iterative procedure. One good way is to assume that, in a crude
approximation, in regions I and III, P moves in a straight line towards the
singularity (virtual or real), and that in region II it moves parallel to the

| asymptote of positive slope.

¥
z
|3 Therefore:
s

In regions I and III, with x* standing for the corresponding

singularity:




s
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(x* - x

£¥% (4.18)

In region II, with xB being the positive natural frequency:

Both in (4.18) and (%4.19), (x ) is the initial position, and we

0’Y0
wish to find the first approximation MY to the ordinate Ye corresponding to the

abcissa xf.

To find a first approximation TO

) to (x,,¥.), consider the first approximation to the trajectory as
£7Yf

1 to the time interval for P to go
from (xo,yo
being a straight line from (xo,yo) to (xf,yl). We know that, whatever the

trajectory y(x) may be,
Xs .
TOf =f e ax (4.20)
*0

Therefore, if y(x) is a straight line with slope y', going through

(xo,yo) and (xf,yi), thenP crosses the line x after a time interval:

y
I NP
Ty = 7 ¥, (b.21)
and naturally,
Yy =Y
e (b.22)
f 0

NOTE: In a general form, if a trajectory is a straight line between points

Pa:(xa,ya) and P%:(xb,yb), Top = by - g 18




R

and

Whenever

o) £

(4.23)

(k.24)

and x_, are in different regions, we have to proceed by

steps. Assume a I to III transition with Xq in region I and Xp in region III;

Yo is, of course, given, and Ye is to be found. Then (with the notation shown

in Fig. 22):
(1)

(i1)
(111)

(iv)
(v)

(vi)

(vii)

(viit)

With (xo,y0

) as initial point on the equation, find

_ 1
Ygr at X, 7'_, by iteration.

Use equation (3.6la.i) to find Yo 8t X = - % .
With (xb,yb) as initial values on the equations,+find
Yor at X, =+ %I_, by iteration.

Use equation (3.61b.i) to find Vg 8t x4 = + %|+.

With (x4,¥,) as initial values, find the point §f, at

X = X, by iteration, assuming that P crosses x

while the trigger is ON.

Calculate all time intervals by (3.58).

1 =
Tor = Toa * The

Consider the trigger duration Th, and suppose that
P crosses x = Xp after the trigger is turned OFF,

either for the first or second time.

With (xd,yd

find (xe,§e), by iteration, where, after a time interval

T=T, - (Toa + Tbc)’ trigger turn-off occurs.

+ Tdf'

) as initial values of the coordinates,

W A e S 0 Rl
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(ix) Find Vo = Yo - Yo

(x) Wwith (xe,ye) as initial values, find y,, &t x = x,,

by iteration; there may be none, one, or two values.
(x1) The time intervals can be calculated by (3.58), and,

in this case, where P crosses x = x_, after trigger

f
turn-off,1

T..=T

of + Te

W f

Of course, this algorithm, with slight modifications of detail, can

be used to find optimum values for Tw, instead of having Tw as part of the data.

This same algorithm can be applied to a IIT to I transition, after

the obvious interchange of reference to regions I end III.

See illustrative examples in Chapter 6.

4.4 Graphical Constructions

L. 4,1 The &,X) Plane Method

Equations (3.15) and (3.48) define the transformation of variables

from (x,y) to @,x), and can be written equivalently in a single pair of

expressions:
~
1
® = —=— [+, (x-x*) - y]
KB - Ad B
>
X = 5o Ry (xx#) + v
B (o

7

NOTE: Considering that y* = O,

t

to which passage of P by x = X

9 we wish to calculate Te

fo

(4.25)

Of course, if P crosses x = x, twice after trigger turn-off, we must know up
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Here equation (3.50) and (3.51) are repeated for convenience, with

(t - to) replaced by T:

AN

. AT
¢ =0 @
> (4.26)
AT
- B
X = xoe J

1, ¢ 1
T == bwge = = b (4.27)
U P

Sk

We see that it is possible to define a new pair of variables, say & and )—(, as

follows:

\
§ = g
0

) \ (4.28)

- X
X = v =

Al xo /

where ¢ ) and X, are the initial values of ¢ and X, so that 50 = io = 0 by
definition.

Therefore, (4.27) becomes:
X
T === (4.29)
)\a KB

This means that in the (¥, X) plane, the trajectories are straight

lines, and intervals can be marked as a linear scale, either along a trajectory

|

or along a vertical or horizontal axis, since time is linear with either

‘ variable.
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On the other hand, (4.25) means that any straight line in the (x,y)

A S g 1 g

plane is also a straight line in the ®,x) plane.
From (4.25), it is clear that the transformations depend on the

region and trigger indices vu. This can be indicated by attaching these indices

tod, x, and also tod and X, 1.e., (4.25) becomes:

1l
‘b\’u Y = [+)\Bmf(x-xw) - yl]

Bvu  “ovu
C (.30)
1
Xy, = . (Ao, (x=~x, )+ ¥]
v XBVM A’avu aVu( Vi J
Also (4.27) becomes:
¢ X

T Sy S [ Sy (4.31)

And, of course, (4.28) becomes:

[
" vu0
r (4.32)
vy W 1".&.
x =
And finally, from (4.29):
J x.
T = ._!E. = _YL (h.33)
vu Aav ABVu

e ot TR R L S
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Draw, on a linear graph paper, with d?w and XVp axes marked on it, the
lines corresponding to the following phase plane lines:

(1) The coordinate x axis with a scale on it.

(11) The direction of the vertical lines.
On a log-log graph paper, mark the coordinate & e and 'iw axes, and the
direction of the trajectory lines, as well as a time scale, and also the
scaled curve corresponding to the x axis.
Given a trigger amplitude W, draw the corresponding lines x = + % in the
linear graphs where u = 1, and from these graphs, draw the corresponding
curves in the log-log graph, by means of a point-by-point transportation.
The log-log graphs representing the various (6vp’ -ivu) planes provide a
means for very fast calculation of times over the trajectory corresponding
to the given trigger amplitude.
The set of log-log papers plus the linear graphs allow a fast calculation
of trajectory times for any trigger amplitude (within the bounds of the
graph papers, of course).

It is clear that this method is advantageous mostly in the case where

several calculations must be performed for the same system.

4. 4.2 A Simple Method on the (x,y) Plane

This is a less accurate, but faster method, and more versatile in

solving problems for several different trigger amplitudes. It will be called

"the phase plane method A."

It consists in approximating the system phase plane portrait with

four straight line segments, under the following assumptions:
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We assume that, in regions I and III, P moves in a straight line towards

A SOy i sy 1 3100
[\
o

the corresponding singularity xvu, v=1I III; o = O, 1; and that in
region II it moves parallel to and in the same direction of the asymptote

nearest to it.

XU

b) The discontinuities of y at x = - % and at x = + can be calculated by
equations (3.61a.i) and (3.61b.i) respectively.

c) As a very fast method at the cost of obtaining a somewhat poorer accuracy,
these discontinuities of y at the boundaries of region II (i.e., at
X =+ %) can be completely ignored.

a) So, as illustrated in Fig. 23, we take a linear graph paper, mark on it the
scaled x and y axes, vertical lines x = + %, and singular points XVO’ and
also the direction of the asymptotes related to the saddle point of
region II.

Then, given a trigger amplitude W, we mark the points le and also
= P:(x

P Suppose a I to III transition; then P

0 10°Y0)"
(1) Draw the segment of the line P . contained in region I.
n

o

(11) The intersection of this line with x = - % is y,.

(1i1i) Find ¥y, b¥ (3.61a.1).

(iv) From Yo draw, inside region II, a line segment with
slope XBII (the positive - asymptote slope); its

intersection with x = + % is Yor

(v) Find g bY (3.61b.1).

l —
(vi) Consider Pd.(+ 5 yd), draw the line P.X;,..

Let xd be the slope of this line, and call it kd

line.1

T In the descriptions of these graphical methods, references to a line shall,
in general, be made using the symbol for its slope.
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(vii) Consider Pr:(xf,yf) be the intersection of lines
%} —_— .
: deIIIl and x Xgpe
] - )
(viii) Calculate Toe = Toa * Toe * Tag Y (4.21), supposing

that P crosses x = Xp while the trigger is ON.

(ix) Consider the trigger duration T,p and suppose that
P crosses x = Xp for the second timeT after the
trigger 1s turned OFF,

(x) Fina

= xd[TwF(T0a+Tbc)]

4

and mark 5e:(xe,§;), the point immediately before
trigger turn-off occurs.

(x1) Find Vo = Yo - ¥ &nd mark Pe:(xe,yé), the point
immediately after trigger turn-off.

(xi1) Draw the line P X o» @nd mark point Pf:(xf,yf)

e IIT
of intersection of the lines PeXIIIO and x = Xp
(xiii) Find T p Y (4.21), and then in this case where P
Crosses X = X, after trigger turn-off,

T o =T + T
e

of w f

Of course, after the obvious changes, the same algorithm can be

applied to a III to I transition,

s Speor pp s TN

T This method does not apply with acceptable accuracy if P crosses x = Xp for
the first time after trigger turn-off.
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L.4.3 An Approximate Method on the (x,y) Plane

This is

a slightly more sophisticated method then method A; it will

be called "the phase plane method B."

We will
convenience:

To plot

(1)

(i1)

. (iii)
t (1iv)
(v)

. (v9)

use the phase plane equation (3.11) which we repeat here for

ay G " Pw
3= = o, - 2, dvu = d, + unW (3.11)

a I-III transition in the phase plane, we do as follows:
Find Yo and xVu’ for all vu conditions.

- - x*
Draw the lines y XB(x x%*) for Xns X110 *11T0?

and X117110 and call them, respectively, the BIl’

Brr12 Brrroe 8nd Bppyy lines.

By (3.11), we find y

o at Poz(x

IO’yO)’ and call A

this derivative.

Draw & line with slope A, through Po, and call this

0
the ko line.
Check if the KO line intersects the 611 line inside

region I.

If this is so, call the intersection Pl:(xl,yl)

and call Pa:(- % _,ya) the intersection of the lines

.1
BIl and x = .
Otherwise, ignore the intersection of lines KO

_,ya) the intersection of

1

and B.,, and call Pa.(- 3
I ¥
lines BO and x = >

Find y, (x = - %|+) by (3.61la.1)
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(vii)

(viii)

(1x)

(x)

(x1)

(xi1)
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Find yc(x = +~% _) by the iterative numerical procedre
using, for example, one of equations (4.l4), or,
instead, assume the trajectory in region II is a
straight line of slope XBII' (The choice depends
entirely on a compromise between accuracy and com-
putation time.)

Find yd(x = 4 % +) by (3.61d.1).

By (3.11), calculate the slope %f at Pd:(+ % +,yd)
(for region III), and call Bd this derivative.

Draw a line with slope Kd through point Pd and call
it the xd line.

Find the intersection P3°(x ) of lines Ay and

373
BIIIl'

The trajectory in region IITI with a very
long trigger is teken as segments PdP3 and P3XIIIl
of lines xd and BIIIl' Call this the line PdXIIIf'
Do as directed in (vi) to (xiii) of method A, but
modify instruction (x) of thet method to:
(x) Find §e3(xe’§;)’ the point immediately before

trigger turn-off occurs by:

- exd[Tw-(T0a+Tbc)]
Ye1 = Ya

S -3 eXBIIIl[TW-(TOa+Tbc+Td3)]

ye2 el

#

e~ Yel’ if Ye1 > y3

<\

<1
n

Yopr 1f ¥ < 3
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Again, after the obvious modifications, this applies to a III to I
transition.

An 1llustrative example is presented in Chapter 6.
Obs.: Notice that this Method B can be & hybrid numerical and graphical
method. Various such combinations can be made and we feel that, some of these

combinations may be good compromises between speed and accuracy.

4,5 Approximate Analysis of Waveforms

One of the most important aspects of transition waveforms is the time
duration of the various phases of a transition as defined in section 4.2. The
exact shapes of a particular variable {voltage or current) as & function of
time 1s less important than its general characteristics, such as delay time,
rise time, average form in each region, minimum and maximum values, etc. The
exact shape is important insofar as it influences the calculations of these
characteristics, especially the various time intervals elapsed between the
definite changes in character of the curve, generally described by changes in
the values of the pair of indices wvu.

Furthermore, even if we do have the exact (analytic) solution of
(2.103), it will not do us much good.

We can solwve the problem for the waveforms of all variables based on
the solution of (2.103). But then--besides the fact that (2.103), and therefore
any solution based on it, is already an approximation to the real problem--the
important general characteristics of the waveforms are hidden in a fairly
cumbersome analytical formula, which would take a considerable time of tedious
labor to plot.

Our aims consist mostly in analyzing and evaluating an existing flip-

flop or improving its design, selecting a better trigger or loading circuits,

e, SR S
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determining optimum trigger duration and better waveforms, and better
understanding the operation of bistable circults.

For these purposes, an approximate plot of the several variables
which could be obtained in a reasonably short time would be far more useful.

In this section we will suggest some methods by which such graphs

can be obtained.

4.,5.1 Collector and Base Currents

Assume that an approximation to y(x) (phase plane) has been obtained,
consisting of four line segments, one for each value of vu (three line seg-
ments in the case of optimum trigger duration).

This can be obtained either by the second graphical method described
in section 4.4.2, or, if time durations are extremely important, by c#iculating
time durations with one of the iterative techniques described in section k.3,
and then using (4.21) and (4.22) to determine the position of line segments
which would result in the same trajectory time intervals. .
a) With (4.21), several points can be marked over this approximate trajectory

constituting indeed a (nonlinear) time scale.
b) Or else, considering that x(t) has the form

- At
X =A + Be ™ (4.34)

A, B and A can be found for each value of vu.

By a) or b) above, or any equivalent method, plot x(t) and y(t). ]

(1) Collector Currents

If (2.93) is assumed, an approximate graph of the collector current *

variables Wies k =1, 2, is immediate for they will be constants outside region II
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(either O or 1, whatever the case may be) and will be linear functions of x
inside region II, so that, by Just assigning new scales, the two curves wk(t)

can be obtained.

More accurate curves can be obtained by using equations (2.56) and
(2.57), which will yield results in closer approximation to the real transistor
currents, than the model represented by equation (2.103). Use of a graph of

the tanh x would allow a completely graphical procedure.

(ii) Base Currents

Here use of equation (2.94) yields graphs of Zys k =1, 2, with
almost equal ease., The first term is directly proportional to the corresponding
collector current Vs and the second term is proportional to y(t) in every
region, since ¢'(x) is a constant in every region.

In this case, use of (2.58) and (2.59) to improve accuracy would

hardly be justified.

L.5.2 Collector Voltages

By inspection of Fig. 24 we get immediately:

k=1, 2
dvk
Vor = Vi * RyCip ToT - Rik(ik +ig ¥ IBk),; £b=1,2 (L.36)

L#k

where t' is the nonnormalized time variable. Normalizing as before and setting

J=1,2 (4.37)

we get:
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FIGURE 24: PASSIVE NETWORK
YIELDS THE EQUATION

FOR THE OUTPUT VOLTAGE.




LT T e SRR T S

-139-
R R
. io9 _ik ik Bk
up =X v X - 2P R Ry (9 * 2 ) - % Tt "L, (4.38)
. withk =1, 2; £ =1, 2; £ f k. As before, we can interpret Gk in terms of
an equivalent current source of strength s, and a parallel conductance Gk’

X
: according to (2.79), repeated here for convenience. Assuming a rectangular

trigger, and making use of the index p = O, 1:

G, R
8. =38 _M

S T T k=1, 2 (4.39)

Substituting (4.39) into (4.38), and using Yy = gk’ we get:

RocT (4.40)

ug = (1 + Ry G Jxy + v Yi © %P Ei'l"{ (s +2) - 20y § o7 oL
ok

withk=1,2; £=1, 2; § # k.

This equation is very general, and allows one to find both collector
voltages of a general Eccles-Jordan flipflop (symmetrical or nonsymmetrical)
if xl and X, are known and also holds for the asymmetrical flipflop, by dropping
the indices k and £.

For the moment we shall focus our attention on the asymmetric flip-
flop and on the symmetric Eccles-Jordan.

In the first case (asymmetric flipflop) we get:

! By M (4.41)

u=(1+ RiG“)x +T ¥ -2p ﬁ- (s +2) - 2p == R oL

And in the latter case (symmetric flipflop) we get by subtraction,

and setting
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us=u, - ul* (4.42)

T R R -
u=(1+RiGu)x+Tiy-2p—lz-2p—l uW0<Iil——I?; (4.43)

RO o)

with

0; if trigger is OFF
H =‘{ l, 1if trigger .1s ON

These equations immediately suggest the procedure for obtaining the
collector voltage variable u(t) from x(t), y(t), z(t) and W; it is clearly a
very easy graph to obtain from the preceding ones, since, in each region, it
consists of a constant plus & linear combination of the previous curves, with
only the constant and possibly the coefficient of x(t) having different values

for the two distinct trigger states.

4.6 The Influence of Parameters on Transition Times - -Simplified Equations

We would like to have some qualitative notion about the effects of
the various parameters upon the overall transition time. We are also interested
in learning something about the total charge fed into and removed from
transistor bases and capacitors, and their relation, if any, with transition
times. Besides that, some characteristics of waveforms, such as maximum,
minimum and settled levels of collector voltages and peek base currents also
interest us.

At this point we must stress that we are searching for more qualitative

criteria, i.e., first order approximation formulae which could help considerably

T Notice that x = x

- X5, i.e., the order of the indices is reversed in the
two definitions.

1
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in the evaluation and understanding of flipflops, and not for exact (or good)
engineering design formulae. In this respect the character of this section

is entirely different from the general character of this dissertation.

4.,6,1 The Optimum Flipflop

Let us assume (since it is possible in principle) that a flipflop has
been constructed such that, if the trigger duration is optimum, i.e., if
Xg = X110 then Ye = 0, where Xg and y, are the coordinates of Pe, the position

of P immedjately after trigger turn off.

For this flipflop, we can say that, in a first order approximation,

the transition time is given by:

Xpw = X x X -x Xoppr. 1
TTR - I1 I In - flx + IIT1 IITO Mx -IIJ]‘.l (h.hh)
Yo 1~ *mo Yo 11 - *rrro
Let us assume that xIIIl - xIIIO = xn - xIO = M. Then
X..X
Ty = 5 v =220 (4.45)
0 (&%)
From Table II:
l+RG
= ——L—— 1 - -——-_—g——l—' N
O l+RG[nw+<l T a (u+m:)] (4.46)
s 1 s O
xr oo = (R Pi(n'w + 7 - (8)?] (. 47)
Il IIT1 1l + REGl °

T This comes from assuming a straight line approximation to the trajectory,
neglecting the active time, and using equations (4.23) and (4.24) in regions
I and ITII. Notice that state symmetry is not required for this approximate
equation to be valid.
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8o,
[ . < 1+ RsGl>( )]2
n'W + - m— )(J + BY
xIl . xIIIl i 1l + RsGO
(&) (a'w + 3P - (m)°
where:
Rs

a) n' =2 =—

R
c) v=1_£l_'£2._s

) { P, if it is an asymmetric flipflop
d) J=
&p = Cpl - cpz, if it is a symmetric flipflop
) { 1, if it is an asymmetric flipflop
e) H=
2, if it is a symmetric flipflop
Assume: 81 = 8r7r T & and Wy = Wppp = M.
m
I m
Vo=a . "=aV
I

where a and m are given in Table I:

Tio

a) m=2p =
T.T

b) a= 120

(4.48)

(4.49)

»
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And therefore

= 2P% y = 2T
Ya = W= W (4.50)
0 To1 ROC1
So:
& Roci 55 N 1+ RsGI T+ B (5,51
Yo (1 + RsGl; Ro 1+ RSG 2w )

It is clear that
vy, 1 (1 - a)RS < aR

so that B¢ ™ H.

And assumption of state symmetry eliminates biasing from the formula:

From (4.48) and (4.51) we get:

N R A o YT 1
R C R 1+RG R 1+RG 2w
T = o1 2.(1 s 1\J+BY |, o ) 5 0.
TR { G, )

T(1+R R "1+RG,/) oW R o
8 1 [} 8 <2_ﬁ_5_w+J>t._ (H')E
o}

0
(4.52)

And, if ¥ ®1 and J = O, we get
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[Es. . X
Trr = (T foiis ) [:—s * '2%] ) i 7] " 2 (4.53)
8 1 o] 8\ _(E
R 2w
l
i where
R !
1+ RsGO
As a final simplification, if
Gy = Gy (equivalently, K = 0)
we get:
RC
_ 5 1 1
T =TT T RO ) (k.5k)
s 1 1 - o ,
2RSW

Let us suppose that we have a fairly large trigger, and that p is

also sufficiently large1 so that

HRO
ERF << 1 (4.55)

Then taking the first two terms of the series expansion of the argu-

ment of the natural logarithm, and then taking the first term of the series

expansion of the logarithm itself, we obtain:

1 These conditions are not a property of flipflops. In fact HR /2R W close to
1l is practical, since W ~ 10-1 is practical. However, we assume £hat W has
been chosen large to speed up the transition.
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R T
T = 0ol (b.56)
TR bR.T(L + R_G W

Equation (4.56) should be an accepteble first order approximation
for the transition time whenever the flipflop and trigger satisfy all of the
agssumptions leading to it. Observe that there is a hierarchy of equations with
more and more restrictive assumptions; all of them assume the optimum flipflop

described before. Then:

Equation (4.52) is very general; the only assumption is that

the flipflop is either symmetric or asymmetric;
Equation (4.53) assumes, further, that ¥ = 1, and J = O;

Equation (4.54) assumes, still further, that Go = Gl’

i.e., that K = 0;
Equation (4.56), besides the above, assumes (4.55) to be valid.

Also remember that all times are normalized with respect to T, so that
nonnormalized times would not include T in the denominator. For example, (4.56)

would read:

2

e £ C T°§ 5 (4.57)
L1 + RSGl)w2 1+ 1
Remembering that W = EE— we get:
nG aIEI 8 .
% - (oL )2
' Eot (4.58)

TR =
kR _C, (1 + asc.l)li
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Another expression for T‘I‘R can be obtained as follows: Consider

that the charge variation Aqi of C‘__L between the two stable states is given by
(see (4.69)):

2pHC, _ HLT 1
{1+ RSGO)

H(x - X o)
,c=(IIIO Io)i,.,

8q; = (Virpo = Vi) © G
1 1
30 3 (1 + RsGO)

(4.59)

Therefore,

2

&\2 (1+RG.)

TéR=<B;Ii "TT+ RSGO) 'Ré (k.60)
t s 1 s 1

If G, = G, = 0 (i.e., the trigger circuits are perfect current

0 1

sources), and if ¢ ™ 1,

HA 2 .

o =<—i - (4.61)

TR "\ 2I R_C )
t 51

This equation should glve us a somewhat crude but satisfactory first
approximation to the transition time,

We insist that use of (4.59) should always be cautious, since some of
the assumptions made in its derivation are somewhat vague, and others, if
ligitimate, will seldom be fulfilled. So, (4.59) is usable for estimating

results, i.e,, as a kind of figure of merit; it is definitely not a design

formula.

1 This approximation is made under our assumptions: ¢ =0, ¥ =1, Go = Gl, 80
there is a cancelling out in the second term of (L4.60).
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At first glance it seems strange that the transition time does not
depend on T in a first approximation. In other words, it seems strange that T
is not a factor of prime importance in the transition time. The following
discussion should account for this observation.

First of all, since the beginning, we have completely ignored the
active region, and second, we have assumed that Yas the ordinate of P when
entering region III, would be such that Ve 0. Of course, if T has some
influence in the active region, it will determine the value of Y4é in assuming
Ya to have a convenient value, we have ignored the effects of the transistors,
or in a better way, we have assumed that there is a relationship between the
transistors and the passive network such that the optimum flipflop assumption
is verified. In this sense, T should be related to To1? and therefore
(especially if this relation were found to be linea.r) 'T.'o 4 could be replaced by
its expression in terms of T. Then T would be the prime factor in all those
equations, and To 1 would not appear at all. We could also have a linear com-

bination of both parameters. That we have started using To was a question of

i

convenience; the assumptions made establish a certain relationship between 'I.'o 1

and T. We conclude that, after all, T is a very important factor in the

transition time.

Even more important than the approximation of TTR

formulae in the case of an optimum flipflop, is the following consideration:

furnished by these

(1) Even if the flipflop is not optimum, the transition
time should not be substantially different from the
results obtained by the use of these formulae. They
would be, at any rate, a first order approximation to

the transition time.




-148-

(11) They would certainly be true in a qualitative sense,
i.e., as indications of the relative effects of the

various parameters, as well as the order of magnitudes

and directions of change.

- -eme'~mm .

4.6.2 The Total Charge Interchanged Between the Transistor Ba.ses1

These were established in Chapter 2, equations (2.20) as

g = Tlgy k=1, 2 (4.62)

Therefore, the total charge variation is

qp = Bral, (4.63)

Some relations can be established here, such as:

m%=7§=ﬁiu+%%) (4.64)

But let G, = G,; then, from (4.60)

&g, * b, T (1 + R G,)

H i B ol s 0
Mo == ° . (4.65
TR 211;)2 R.C,T T +RG,) )

Also,
. (PRt \?2 1
T'er "\ 217 "TT+RGJRC (k.66)
t s 17s 1

I Since the charge that enters one base is equal to the charge that leaves the

other, we can talk about the charge transferred between the bases, though

this transference is really only a mathematical cancellation, not physical
transference.
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Ir G, = o,
TR = "_—H::B:°>2 H (1.67)
t s 1
Also, it is clear that, if G= O,
T fg =T, Mg (4.68)

which is very 1llustrative of the type of condition relating the transistor
parsmeter, the pussive network parameters, and the two stable states.

Notice that for the symmetric flipflop,
98 = 9 " I +". fap = Aa) - Aoy

(4.69)
93 = 94y - 940 <Tebay = 0gyy - gy,

W= wl - w2 but the triggers wl and w2 are assumed to occur simultaneously

4.6.3 Collector Voltages--Maximum, Minimum and Settled Values

N
(1) Maximum: Voimax = Yok * Ro(Itz + aIE)
(11) Minimum: v smin = Vox * Ro(Itz + (1 - a)IE
(111) Settled: Vo110 = Vo1 * RO
r (4.70)
(1v) Voirrmo = Voo * R - )T
) Veeto = Voo * Ro(1 - @)Ig

(vi) Vearrro = Voo * B2Ig J
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where: k=1,2; £=1,2;0#k

Veoxvo = collector voltage of transistor 'I'k when x = Xy0

ka = collector supply voltage of transistor Tk

In case of the asymmetric flipflop, drop the indices k and £, and

v

Yoawvo = 'are

4.,6.4 Peak Values of Base Current

Considering the optimum flipflop, and the approximate model whose

equation is (2.103), it is clear that the peak base current would be given by:

* =
zpeta.k 7yd

(4.71)

{ zI ) if the flipflop is asymmetric
I - 25 , 1if the flipflop is symmetric
and the symbol "*" means the component of the current

corresponding to base charge variation

Y
The approximate form of ?h%’ from, say, (4.54), and the approximate

form of x yield:

IIn’

(1 + R.Gy) 1
_ s 1° nw
Ya© TTRE, T+ R3G;) (4.72)

so that:

t Notice that n = pn'.




-151-
2 =29  or 1 =2 4 4T (4.73)
) peak Toi Bpeak Toi t ‘

.We stress that this value of zpeak refers to, not only the approximate
model of equation (2.103), but to this model with all the restrictions

implicitly imposed in the evaluation of Vg

Therefore, such an expression is specially meant to give us an

e SRR L PR rS! e P

acceptably close idea of the values of the base current in any given case, when

Just a fast estimate is required.

4.7 The Problem of Circuit Optimization

; Whenever one tries to state a problem of optimization, besides a clear
statement of what is to be optimized, two basic questions must be answered.
First: "Under what criterion?”
Second: "What are the constraints?”

The amount of material written on these optimization questions is
very large. We shall not try to find complete answers here, but rather, to
open the discussion by some pertinent approximations.

The first question is what characteristics we could wish to optimize:

trigger duration and smplitude (if not its waveform! ), circuit parameters, or

the transistor characteristics.

This first question being decided, we could go on to the second

question, and try to be specific about stating an optimization criterion, i.e.,

an interpretation of the word "improvement!"

Of a host of possibilities, we can state the following three as

examples:
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a) The time interval between the moment when the trigger is turned ON and the
moment the collector voltage is settled (under what criterion to decide
this?) is to be minimized. Call this time the "collector voltage switching
time, " Tog*

b) The time interval between the moment when the trigger is turned ON and the
moment the base (or base-to-base) voltage is settled, that is, the
"base voltage switching time," T,

¢) Instead of minimizing switching times, one might wish to have a given delay

g’ is to be minimized.

time and & minimum active time, or & minimum switching time with a given
delay.
And so on! The above illustrates the point.

We have already attempted to approach question number one, in a very
tentative way, with respect to the variable x (see 3.5d and e) in defining, for
a special purpose, a concept of "optimum trigger duration," which was related
to the minimization of a defined "transition time" T

TR’
The difficulties were apparent and that discussion stands as a good example of

for the variable x.

the issues involved.

The second question is usually easier to settle, since constraints
are naturally stated either as inequalitles or as relations between the
variables, or some other mathematical statement. To incorporate constraints in
an optimization algorithm is still another thing; but it has been done success-
fully for several problems, and, once stated, there is no a priori reason to
expect the problem to be intractable. The theory presented so far suggests a
number of techniques to approach optimization problems, once they are stated in
a mathematical form.

As a last observation, it is worth reminding ourselves that problems

of optimization tend to raise questions of existence of solutions (realizability)
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and that nothing has been said, for example, about the realizability of our
hypothetical "optimum flipflop" so liberally used (as an approximation device)

throughout this Chapter 4.

4.8 éummarx

After defining a nomenclature for time intervals over a phase plane
trajectory, we have presented some methods for the calculation of points and
time intervals for a given trajectory.

An iterative numeric procedure allows the exact calculation of
yb(xb) and tb(xb) if ya(xa) and tb(xb) are known, for any given pair of abcissae
X, and X,

Similarly, a fairly sophisticated graphical construction using two
varisble transformations, (x,y) - (@,x) = @,Xx), was also presented, and shown
to yield accurate results, given the limitations of a graphical construction.

A more naive construction on the phase plane was described, which
ylelds somewhat less accurate results, but is extremely simple to apply.

It was also suggested that some hybrid constructions graphical and
numeric, might be ideal for accuracy and practicability of use.

A graphical procedure to obtain fairly good plots of collector and
base voltage and current waveforms was described.

Engineering interest in simple-minded formulae which can work as rules
of thumb for the rapid evaluation of circuit characteristics has led usg to
discuss, by means of an ultra-simplified model, a set of such relationships.

Finally, the optimization problem was proposed in a first approach

discussion.
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5. EXTENSION OF THE THEORY

5.1 Introduction

We have, so far, confined ourselves to the asymmetric and the
symmetric flipflops subjected to a rectangular trigger, and also we have
implicitly assumed that neither Ci’ Co or T is zero.

In this chapter we shall discuss the problems involved in applying
this theory to other situations, and indicate the methods and modifications

involved.

5.2 Case When T Is Negligible

This is a very unlikely possibility, but it may happen. 1In case it
does, we can take T = O as a good approximation. Then, the coefficients of the
equilibrium differential equations apparently are meaningless:

However, looking back to how these equations were established, we
will see that T was used only as a convenient time normalization constant. Of
course, if it is too small (or too large, as we shall see!) it ceases to be
convenient, and some other time interval T (such as ‘to 1? for example) could be
used as a time normalization constant.

In performing this renormalization of time, we replace T with T in
equation (2.34) and on all related equations from then on. By letting T = O in

)
equations (2.29) and (2.30), gcl and ice disappear from the expressions for i

B
The result of this is that the charge storage in the base along with
its reiated current will be negligible, and only the recombination component
of the base current needs to be considered. Then, the equilibrium equations
will not contain terms like z, and 20. Except for this, the theory is exactly

the same, and applies exactly in the same way.
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5.3 Case of Negligible External Capacitances

Again we have a possible, although unlikely situation, which becomes
important especially because it can be solved in a special way, i.e., not Jjust

an extension of the general theory.

By meking T,, T, , T , and T all zero in equations (2.87), (2.88)
and (2.90), we would get, respectively:

For the asymmetric flipflop, from (2.87)

2

R
y = =2<(1 - p)tanhx - i (L+RG X+ (1+2B+p)+2=—5 cosh®x
Ry P 8 Ro

(5.1)
For the symmetric Eccles-Jordan flipflop, we get from (2.88)
Ro 1l Rs 2
y = -k—s-{(l - pYHanhx - % (1 + Rst)x + (13l - 132) + R_o s} cosh“x
(5.2)

For the nonsymmetric Eccles-Jordan flipflop, i.e., the most general

case, directly from (2.90):

1+ Rskau)xk = Dy {(1 + 2B + pk) - (-1)1‘(1 - pk)tanh x
(5.3)

R R
+ (-l)k §§E y sech°x + 2 §§§ sg}
ok ok

so that, since x = Xy < Xy, we get:
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R
sl sl
T R519 ~{(l + 2B, + pl) + (1 - pl)tanhx - R, ysech X + 2 R,y si}

P, Reo 2 Rso
m (l+23 +pa)-(l-92)ta.nhx+R ysechx+2-ﬁ——52
82 21 o2 o2
(5.4)
with the result that:
coshx Py (1 -p) py(1-py)
y= P.R PR "1IT+8% 6 *T+gR.g, | teahx-x
1 sl 2 52 sl 1p 82 2n
(1 + Ry lu)R M R G o0 )R
N [pl(l + 28 +p) B(1+2B ¢ °2)] .o [ P1R1%) PoRsp%) ]}
1+ 8,6 1+ R Gy (T+R_; lu)ROl (1+R G, R
(5.5)

So, in every case we have y = fu(x); of course we are assuming that
s (t) 1s a rectangular function. Therefore, we can find x(t), or better t(x),

by the formula:

X
~ i 1 -
t - to = . m dg, where yu(E) = fu(E) (5-6)

and we mean that, if pu changes, at a certain point, we must find its abcissa
x#, and continue the integration after x, with the new function of x.
It is easy to see from equations (2.87) and (2.88) that these cases

are still exactly solvable even if only Cok = 0 and C1k f O, in the same way as

vwhen C,, = C, = 0. The only difference is that, in (5.1) and (5.2), instead
R

of ﬁg coshex as a factor on the right-hand side, we shall have the following
]

modifications:

e
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For the asymmetric case, from (2.87), replace,

Ro 2 1
in (5.1), 7 cosh’x by 5 5 (5.7)
, S R gech x +_1
8 R T
(o}
For the symmetric case,vfrom (2.88), replace,
By 2 1
B in (5.2), F cosh™x by > G (5.8)
s R sech x + i
8 Ro 2T

i Note in (2.90) that, if C.x = 0» even the nonsymmetric case is con-
siderably simplified, since it will 'be reduced to a second order case, i.e.,

two first order equations. Then, if Rsl = ng, the system can be exactly solved,
Just like the symmetric case. Otherwise it would be approximately solvable, like

’ the nondegenerate symmetric sjrstem.

» 5.4 Nonsymmetric Eccles-Jordan Flipflops

The difficulty in the case of the nonsymmetric Eccles-Jordan flipflop
is that there is no way (except for some extremely fortunate coincidence) to

reduce the two equations (2.74) in x, and x, into a single equation. The fact

1 2

is that this circuit has one more degree of freedom and there is no possible
reduction to the previous cases. Nevertheless, we can do something about solving
the system. Suppose that we carry out an epproximation of equations (2.74),
taking ¢(x) instead of tanh x just as we have done to obtain equation (2.103).
The result will be the pair of equations expressed by (2.104), whose coefficients

are shown in Table I.Z2, and which is repeated below for convenience:




¢
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ak$£k+bk2+ckx=ei\°f+ bl'w:?+cl'wx+dkv
(2.104)

+ fk(ﬁ)[a(x + %) - 8(x - %)] +m 8, o8,

k=1, 2

These two equations are coupled only in the active region II (here the
three regions are still defined in terms of the base-to-base voltage variable
X =% - xe). Except for region II, each equation is of the same form as
(2.103)!

Thus, we can define another plane where x, and x, are represented

1 2

independently but on the same horizontal axis. Call it the X axis.,

In this plane, Y1 and Yo would also be represented independently but
on the same vertical axis. Call it the yk axis.

We will still divide this plane into three regions, but the region
boundaries will be determined on the (x,y) plane, rather than on the (xk, yk)
plane.

That is to say: If x is in region I or IIIof the (x,y) plane then
x

is in its region I, or III. and x, is in its region I, or III2 of the

1 1 2 2

(x,,,) Plane.

1

and x, will be

If x is in region II of the (x,y) plane, then both x, -

in their respective regiors IIl and 112 of the (xk,yk) plane,

Therefore, region II, which is nothing but the representation of the
active region of both planes, in the case of the (xk,yk) plane, will correspond
to two regions, one for Xy and another for x.. These regions are determined by

2

1
the values of x, and x, when le - x2| 3 (see Fig. 25).




-159-

e - et R T T :
e T e e O R

GENERAL ECCLES-JORDAN FLIPFLOP.

FIGURE 25 ILLUSTRATION OF THE HYBRID METHOD TO ANALYZE A
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In turn, these values depend only on how they start, i.e., the
relative values of their respective initial ordinates Y10 and Yo5 and which
one starts first (receives a trigger first). So, the regions for x, may not

coincide at all with the regions for x.,, and besides they heve a certain con-

2)
figuration only for a given transition: i.e., in the (xk,yk) plane the region
configuration is a function of the system and of the triggers.

Another plane is very helpful, and can be used. It is the (xl,xe)
rlane, in which the active region is a strip of parallel lines going through
the origin, intersecting the coordinate axes at points (i %, + %) thus bisecting
the first and third quadrants. The representative point Q of the system is
the point of coordinates (xl,xe), and it 1s a simple matter to go from the time
scaled trajectories of the two points Pl and Pé in the (xk,yk) plane to the
trajectory of Q in the (xl,x2) plane.

Use of the (xl,x2) plane makes it easier for us to find the points
(xl 3¥y.) and (x_ =, y,=) where (x,_ - x,=) = + : (the sign + according to the

a’’la 2a’ Y2a la 2a 7
direction of the transition), 1.e., the points where x enters or leavesthe
active region.

Now, inside the active region, equations (2.104) form a system of
two linear second order differential equations in xk(t), k=1, 2, We can
easily solve this system of equations for xl(t) and xe(t), yl(t) and yé(t), and
so, x(t) = X, - X, and y(t) = ¥ - ¥, can be found, and from these, the points
(xlcQ&C) (xea,yéa) where x comes out of the active region.

From then on, the equations (2.104) are again independent, and the
remaining trajectories yi(xl) and yé(xe) can be found. Figure 25 illustrates
this discussion.

The case where both Cik and Cok or just Cok are negligible has already

deserved special mention in the previous section, for it 1s exactly solved by

equations (5.1) to (5.8).
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i 5.5 Other g of Trigger
5.5.1 Imntroduction

We have concentrated our efforts on a theory using a rectangular trigger

for two main reasons: the wave form can often be approximated by a rectangular

form, and a rectangular trigger lends itself easily to a phase plane treatment.

We feel, however, that some comments are necessary on the most

o wrmry R T T .

common nonrectangular trigger waveforms, such as those mentioned in 2.k,

5.5.2 Impulse Trigger
A trigger can be considered as en impulse if the two approximate

conditions hold:

(i) wta.v >> wmin

. (5.9)
(11) q; ™ 8a, + Loy

- where:
3 (1) W , = average trigger current variable
1
‘ (11) W ;, = minimm rectanguler trigger amplitude necessary

for a transition
111) =W * T, is the charge transported by the
% t
trigger
(iv) Tt = trigger duration, assumed here to be well defined
v) &q,, &q., as defined in (4.6.2), are the total
i? 7B
variations of charge between the two states, of,

respectively, the input capacitors C ™ and the

base storages.
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(vi) To simplify matters, we shall reason only with the
asymmetric or symmetric flipflops in this section.

If conditions (5.9) are met, there are two ways to compute transition
times (in the case of an impulse trigger the transition waveforms are meaning-
less); we will assume that T, = Tpg-
As the crudest possible transition time evaluation, assume a

rectangular trigger of amplitude wav and duration Tt = TTR' Then

-0 = 2p%
Yo = a wav T wav (5.10)
ol
X11710 a(x -x.)
dax _ IIIO I0
TTR = v, -] (5.11)
% 0 av
I0

) .
We find TTR from its normal form TTR'

I'l'roi
' = =
. TR @+rowm. ’> T Tp= T (5.12)

s O/ av

As & less crude method, assume the transition is complete when the
charge fed by the trigger into the input capacitances and the bases is equal

to the total charge variation between the stable states:
a, = B4 + ba, (5.13)

We are implicitly assuming that the charge lost through both recom- .
bination inside the bases and the input resistances during the transition is
small compared to the variation of stored charge. The trigger duration is again

assumed to be optimum.
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From (4.64),
tqp = HTOT, (5.14)
fq, = HT oL (1 + RGy) (5.15)
q = oI Ty = o‘IE"’av'I"i‘Fl (5.16)
From (5.43), after denormalizing T, into Tn.,
The = W—I:: [t +1,(1+RG)], if T, =Ty (5.17)

where H = 1, 2, is the symmetry factor.
Further simplification in (5.12) and (5.17) is possible if G = O.

We get from (5.12):

! it (5.18)
TR = W >
av
and from (5.17)
s (T T ] (5.19)
TR W . ol *
av

And we see that assumption of a constant value Yo of y(x) is equiva-
lent to neglecting the transistor's collector time constant T with respect to

Tio’ which may be warranted or not. From (5.19), we conclude that

T % ol (5.20)

is the minimum transition time that can be obtained from the given transistors

and trigger (by making Ci = 0). As a result, we can use
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qg = Tal, (5.21)

as a figure of merit of a transistor for use in switching circuits.

And for the flipflop and trigger we have:

' =
LT ., = Hog (5.22)

5.5.3 Exponential or Sinusoidal Triggers

Here the trigger waveforms are continuously changing functions of
time, and therefore phase plane treatment is not indicated, since the time
variable appears explicitly in the differential equation(s) and cannot be
eliminated.

We have to work either in the time domain or in the frequency domain
by means of integral transforms. It is, in general, easy to solve, directly or,
for instance, by Laplace transforms, the three region second order linear
differential equation under an exponential or sinusoidal forcing function, so
that, in any given problem, a numerical solution can always be found for wave-
forms, transition times, etc.

A theory covering these and other time-varying trigger waveforms,
i.e., finding analytical expressions, relationships, approximate formulae and
methods for the fast calculation of transition times, waveforms, etc., would be
an entirely new proposition altogether, and clearly outside the scope of a

phase plane theory of flipflops such as the present work proposes to be,

5.6 Use of Integral Transformations

In any of the three regions, (2.103) is a linear second order dif-

ferential equation, and (2.104) is a system of two linear second order

differental equations.
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. Therefore integral transform--or operational methods--except for
other reasons--can be used, with whatever advantage one might have from them.

In particular, Laplace transform methods could be used. The main advantage of

these transform methods is that they simplify the solution of the differentisl
equation under an arbitrary transformable forcing function, in our case, the

arbitrary trigger. One added advantage of these methods is that they make it

< ranrEE P N L W TR N

easy to solve (2.104) for x, which is the system's state variable.
The results are presented below, for completeness:
From (2.103) one gets:

(W, (o) = £s(t)]

with J x(g) =2[x(t)]

o= 9, + ,jai is a complex variable

"
: m.o> + ng+ d X g+ Y
v hd 0 0
X(g) = 5 "W (o) + —— (5.23)
N o(&vc + pr,“ * Cyu g

where PO:(xO,yo) is the initial point under each vu-condition.

From (2.104) one gets:

Wy (a) = £lsy (1)

with
Xk( o) =£[xk(t)]
And also:

»

Xn = Xom = Xnms YA = Yen = Y
X =x -x 0 10 207 Y0 10 20
1 2
A X=X -X

Parameters are as given in Table 1.2,
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(my,, 62+nlc+dlv)(a q2+b2“c+c2u)wtl(a) - (my0 *na""dav)(a]_" +pr°+cl“) (o)

X(o) =
° ol (8, a+b L0 )( a+b2“0+02u) - [(ay,- ev)" + (b1 b5 Yo+ (e -e3,)])

X0 + ¥, (5.24)

2
0

+

where PO:(xO,yO) is the initial point under each vu condition.
This mskes it obvious why the approximate and graphical methods are
important!

We can also find Xl(a) and X2(°)’ by:

(ako + b0+ cp) (o*X(o) - X0 = ¥g) + o ¢ (mkv"e + nk°+dkv)' W, \{o)
°2(mkv°2 tmo+d,)

(5.25)

*1k0% * Yxo

2
o

+

where Pkoz(xko,yko) is the initial point under each vu condition.
Since X(g) would have to be found first, this makes it doubly obvious

why the approximate and graphical methods are important.

5.7 Summary

In this chapter we have shown how two degenerate cases (T = G and

c,, =¢C k= 0) relate to the theory presented so far. The case of T = O was

ik o

shown to be essentially included in the theory, since T has been used as a
normalization constant for no other reason than that of convenience. The other
case of Cik = Cok = Q, or Cok = 0, have been shown to be exactly solvable, the
first even for the nonsymmetric flipflop, and the second for at least the
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. asymmetric and symmetric flipflops, and possibly (if Ry ® RBQ) for the

1
nonsymmetric case which, at any rate, is reduced to a system of the second

order.

A phase plane method sultable for the general nonsymmetric Eccles-
Jordan flipflop was given, and a discussion showed that there are areas where

the nonsymmetric flipflop is equivalent to two independent asymmetric flipflops

i e i BT VPO ‘ i Gk s * .

(regions I and III); the trajectories in the active region (region III) must be
found by solution of the system in the time domain.

Finally, we have discussed other types of trigger waveform. Besides
the almost trivial impulse trigger, for which some relationships have been
established, the other cases, such as exponential or sinusoid, cannot be treated
by a phase plane theory. They can be treated analytically or numerically;
however no general results are available. The equations must be solved in each
specific case,

; Approximations (2.103) and (2.104) are also important in allowing a
phase plane treatment of the most important cases (second order), besides
allowing treatment in the time domain (directly) or in the frequency domain
(integral transforms) for any case.

Finally, we have briefly discussed the applicetion of Laplace trans-
form methods to (2.103) and (2.104), and presented special formula (5.23) and

entirely general formuls (5.24), thus covering all possibilities.
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6. EXPERIMENTAL EXAMPLES

6.1 Introduction
The present chapter has a double purpose. We wish to illustrate the

aspplication of some of the described procedures, and also to test the accuracy
of the theoretical results as compared to experimental fact. No extensive
program of experimentation is intended; only a few examples were treated which
should suffice to provide same feeling for the quality of the theory.

The experiments we have carried out consist in triggering a flipflop
with a rectangular current trigger from what was practically a current source,
i.e., the collector of a transistor. The trigger had a reasoﬁably good waveform
but we did not attempt to obtain an exceptionally good rectangular shape.

As for the flipflops themselves, we took two classes: one was a
slowed-down flipflop where relatively large capacitors were paralleled with

the T, base-to-ground and T2 collector-to-ground terminals; the other had Just

1
parasitic capacitances, which were carefully measured. Only the asymmetric

structure was used. In each case transition times and waveforms were measured
and recorded for different values of trigger amplitude and various values of R1
and Ro.

Corresponding calculated values were found and comparisons between
theoretical and experimental values are presented in the tables. The transistors

used were the same for all flipflops, 2N1309's.

6.2 Measurement of T, C; and C_

The collector time constant T determines the influence of the base

current terms upon the solution of the flipflop equation.

Whenever T is negligible compared to the other time constants of the

system, it becomes irrelevant and the base current terms may be ignored, as

-168-
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in Chapter 5. But if T is comparable to the other system time constants, it
becomes critical and must be carefully measured.
The system used here was as follows:

a) The transistor pair whose collector time constants (assumed equal) are to be
measured were assembled into a switching amplifier, with no collector lead,
and a current of 1 ma fed into the parallel emitters.

b) A (periodically repeated) step voltage with amplitude just enough to switch
the current from one transistor to another was applied to the base of Tl,
and the base current of Te was recorded and integrated with respect to
time (see Fig. 25).

¢) Since there is only a negligible voltage variation at the base of Eb

(grounded lead) the parasitic capacitances have only a negligible effect

on the measurement. Recombination current can also be neglectcd in compar-

. ison to the storage current.

From Fig. 25 we obtain by integration
= 15.1 nsec (6.1)

The parsitic capacitances have to be measured in situ. This can be
done by measuring the time constants of voltage curves under applied step
currents. So, Figs. 27 and 28 yield C, and C_ in all regions.1 C, is found to
vary slightly from one region to another (Figs. 6.5a and 6.5b) but C, remains
essentially the same in all regions. In calculating C° it is necessary to sub-
tract the injected current time constant (TI = 15 nsec) from the total collector

voltage time constant (1'T = 61 nsec) in order to obtain the true collector

circuit time constant (To =RC, = 46 nsec).

T C; is the base-to-ground capacitance of T;; C, is the collector-to-ground
capacitance of T (see Fig. 3 and also Fig. 5 for comparison).
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COLLECTOR VOLTAGE RISE UNDER INJECTED CURRENT
Curve: vc vs., t

Scales: Vert.: 90mv/div
Horiz.: 20 nsec/div ”

Totel time constant: T, = 61 nsec
Time constant of the injected currem::1 TI = 15 nsec

Time constant of the collector circuit:
RQCo =T,= L6 nsec

Since R, = 1 KQ, C_ = 46 pf
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This is not done in the measurement of Ci’ gince in normal operation
the trigger circult does contribute to Ci’ whereas it does not contribute to
Cor

We get the values presented in (6.4).

By way of approximation we have used as a value of Ci ir region II
the average of its values in regions I and III, although in reality it is a

continuously changing value.

6.3 Equation Parameters

We have considered two possibilities:
1. A flipflop loaded with relatively large capacitors.
2. A flipflop with only parsitic capacitances,

For case 1 we used

C, =002 uf and C_ =0.01 pf (6.2)

i

» and had

R, = 2 k0 and R, = 1 kA (6.3)

In case 2 there are only parasitic capacitances:
56.7 in region I
c, = 61.7 in region II and C, = 46.0 pf " (6.4)
66.7 in region III

The two resistors were chosen to be

R,=2kd end R =1k0 , (6.5)

Besides this we had:
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Case 1: IB = 3 ma; IE =1 me, p=10 6.6)

Case 2: IB = 5 ma; IE =0,9ma, p=10

with the values of p calculated on the assumption that fﬁ = 4o v'L,

In both cases the value of Ec was adjusted to make the system state

symmetric, i.e., to have the stable values of the base voltage of Tl symmetric

with respect to ground.
Table XI presentes these parameter values in a convenient form.
The equation coefficients are obtained from Tables I and II, and

presented in Table XII.

Notice that all three cases are normalized with respect to T.

6.4 An IMlustrative Example

In order to illustrate some of the techniques described in the previous
chapters, we shall consider case 2, under a rectangular current trigger of

amplitude

W= 0.667, 1i.e., I, = 0.6 ma

and we will calculate the delay, active, balence and transition times by
three different methods, and compare the theoretical results with the experi-
mental ones.,

a) Graphical Method A: see Figs. 32 and 33

b) Approximate Method B: see Fig. 34

¢) TIterative Numeric Method.
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TABLE XI. PARAMETERS FOR THE TWO EXPERIMENTAL FLIFFLOPS

Parameter Case 1 Case 2
] -1
: Ci 0.02 pf 61L.T+ 5 [ O:I pf
4 +1
% Co 0,01 uf 46.0 pf
Ri 2 kQ 2 kQ
R0 1k 1 kQ
I3 . 3 ma 5 ma
IE 1l ma 0.9 ma
EC _ adjusted for state symmetry
=1
T, 40 psec 123.4 + 10 [ 0:‘ nsec
+1
-1
Ty 20 usec 61L.7+ 5 [ O] nsec
o
+1
N Toi 20 usec 92.0 nsec
71:0 10 usec L6.0 nsec
TN T T
T 15,1 nsec
7 0.7 0.7
P 10 10
l-a 0.007
v (%) 0.979 0.979
? (%) o
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TABLE XII. PARAMETERS AND CONSTANTS INVOLVED IN THE EQUATIONS
REPRESENTING THE TWO EXPERIMENTAL FLIPFLOPS
Coefficient Case 1 Case 2
6 0 22,9
8, 1.755 « 10° + 10"[1] [29.3] ,
. 0 26.
3 0 16.6
b, L.63 « 10° + 86 [1] [38.3]
H 0 18.0
1 1
c 4] <]
Mo 1 1
o) (el
0 0
dv +10 +10
75.2
m, 26.5 + 10° [81.8]
88.4
n' 6 6
n 60 60
£(2) -9.275 - 105 - y° -28.65 - y°
Yo 15.1 - 103 - W 3.28 - W
) 5.26 «+ 1073 0.988
1] 10[ 9]
X 1 0
V0 +1 +1
AxI ITI 60 - W 60 - W
-
o -10 - W -10 - W
. 3
"aI -2.40 * 10 -0,658
. 10”3 -
Mg -0.236 * 10 0.067
. 10-3 R
kau -3.611 - 10 1.46
. -3
Aarp +0.913 * 10 +0.142
_3 ]
NyITI -2,40 10 -0.608
A -0.236 + 1073 -0.0610

-
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a) Upper curve: v, ve. t

Lover curve: vo ve, t

. [ vert.: 0.25 v/aiv
Scales: {Horiz.: 10 usec/div

b) vyve. t v, ve. t

Long trigger Optimum trigger

v_vs, t I

° vo v, t
Long trigger Optimum trigger

S agp et B R TR SRS R s

. [ vert.: 1.0 v/aiv
Scales: { Horiz.: 0.5 msec/div

c) 91 vs. v, (approximate )

Upper curve: long trigger
Lower curve: optimum trigger

Vert.: 12.5 (v/msec)/fdtv

Seales: 1 poriz.: 0.25 v/aiv

FIGURE 29: TRANSITION CURVES FOR CASE 1

Comments :

Part a) illustrates the relationship between the transition curves for 'I‘1
base voltage v 1 and T2 collector voltage Ve Delay, active and
balance times are apparent. The time duration of the trensmission
phases can be measured from it.

Part b) illustrates the effects of trigger duration upon the waveforms of
‘both v, and v

Part c) is an approximate phase plane portrait of the transition, both for the
long trigger (upper curve, showing the return of P from Xp to Xy

' after trigger turn-off ) and optimum trigger. Both curves are slightly

tilted to the right due to imperfect differentiation of Vye
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FIGURE 30: TRANSITION CURVE FOR CASE 2,
WITH W = 0.4k5; v, V8. %

. vert.: 0.225 v/aiv
Scales: {Horiz.: 20 nsec/div

Oy A e e
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FIGURE 31: TRANSITION CURVE FOR CASE 2,
WITH W = 0.667; v, vs. t

»
.. J vert.: o.225 v/aiv
Scales : { Horiz.: 20 nsec/div
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6.4.1 Graphical Method A

We calculate Xy0? *17T0° Amil’ AxIIIl’ X190 X171 and Yo by the

formulese on Teble II:

e o BN
Xpo= P77 ¥-p=-10
n
AxI = nW = 40.0

Xy = X4 + AxI = 30.0

= +p BY -
xIIIO +p T ¥ +p = +10

AxIII = nW = 40.0
Xrrm ~ *rro t &qr = 99-0

3 - EI

Yo =3 W=2.19

-

We also need £ and A

aIT ¥e find from the note on equations (3.60):

B8

IT

¢ = = 0.988
2811
and, obviously,
» J 2 ]
N - St il =50 = SN
BII Zars .

Then (see Fig. 34):
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(1) We draw the line P X

oIl R
X =. 1
(i1) Intersection of PXp withx = - 2 is B,
l 4
Xpy + 5
— . Il 7 =
Ya = Yo ' Tax 1.72

(111) Using equation (3.6la.i) we find ¥y, from y,

Yy, =2£Z (V1 + M’:ya - 1)

We have:
Yo = 1.72
and:
£ =0.988 ‘
80 2
Yy = 0.92
(iv) Draw, through P , the line of slope Na1p? whose
intersection with x = + %‘is Pc‘ Since
AaII = 0,142
through
«
&x = 2.86
causes ‘

by = 0.406
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so that
¥, = 1.33
(v) Py is found from P by (3.61b.1).

Yg = (L + 4y )y,

We have:
Yo = 1.33
and:
L =0.988
§0:
L4
Yq = 3.00
4 J—
(vi) (Simplified in our case) we draw the line PXrrmy
and its intersection with x = XIIIO is Pe'
T - - S
Yo =Yg ——-—x ~1 2.52
IIm 7
The time intervals over the trajectorycan be calculated by using
) equation (4.21), which we repeat here, for convenience, in a slightly different,
g ’ but equivalent form:
_ax , Y
. tb - ta - Ay h’y (6.7)
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Applied to region I ve get:

T =—"imw — =1,4,31

y
TA=-A-'£— 3’—c-=2.55
BII d
AxI Yy
I1 e
T —=== ) = = 3,05
B~ v, Ya
TT = TD + TA + TB = 9,91
Therefore, .
1 = c T =
Ty = Tp 65.1 nsec
[ . =
TA = TA T 38.4 nsec
t - . p—
TB = TB T = 46,0 nsec
T! = TT + T = 149.5 nsec

Similarly we can find the trajectory for the other cases and fill
out Teble XIII.l.

Experimental values for the time durations over the trajectories are
taken from Figs. 29 and 30, which are reproductions of pictures of oscilloscope
images of the actual transitions.

Observe on Table XIV.1l the excellent agreement between experimental
and calculated values of total transition times (TT)' Notice also that in
case 1, the agreement for the partial time durations (TD’ TA’ TB) is also

excellent. But in case 2 the agreement for the partial time durations, although
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fair, is less satisfactory. There is, however, a compensation of errors,

especlally between values of TA and TB' This seems to be a property of this

approximate way of taking the base current into account. When the base current

has negligible effect, as in case 1, this effect does not occur.

An apparently paradoxical fact 1s that we get a better agreement on
partial times, although worse for the total trensition time, if we take £ = O,
i,e., if we completely neglect the effect of the second derivative of the base
current. The graph is shown in Fig. 33, and Tables XIII.2 and XIV.2 present
the ordinates and times for this very simple procedure.

This apparent paradox can be explained if we consider our type of
approximation at the model level. The piecewise linear model has a behavior
that differs in detail from the nonlinear real transistor pair; but the dif-
ference is such that it tends to cancel out over the different phases of a

¢ trajectory, yielding good overall results.

If an approximation at the equation level had been used, no impulses
A would appear.T Clearly, ignoring the impulses brings us "closer" to such a
type of approximation in the sense of yielding a solution differing less from
the exact one. The differences, however, although smeller, do not average out,
and the overall result is, as expected, not so good.

Considering the crudeness of this graphical method B, it is an
additional advantage that the results tend to be conservative, yet fairly close
to the experimental values.

A last comment is necessary here. We pointed out the fact that in

’ case 1, where we had the (in practice) exact values of all the circuit components,

1 This would also be true if the approximetion at the model level had a smooth
characteristic (i.e., continuous with differentiable first derivative), which
is not the case of the piecewise linear function ¢(x).
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including known constant capacitors the agreement is as good as one can
possibly have. So, we infer that part of the error obtained in case 2 should
be blamed on nonconstant capacitances and the necessarily incorrect values

taken for them.

6.4.2 Approximate Graphical Method B

Figure 34 and the description given in subsection 4.4.3 entirely

complement each other.

with a, b, m, n calculated for vu = I1. And

where Ygq = 2.52 is obtained from the graphical construction itself.

kBIl and xBIIIl are given in Table XII. Observe that, in order to
obtain a closer detailed approximation, we have taken £ = O,

The numerical values of the ordinates of the break points are pre-
sented together with the graph in Fig. 34 itself.

Successive application of equation (h.21)'to the five branches a, b,
c, d, e, of the piecewise linear approximate phase plane path ylelds the time
intervals over these five phases of the transition.

This is certainly not true, and is actuelly a somewhat crude approxi-
mation, consistent with good results for two reasons: region II is relatively
narrow, so this assumption affects little the value of TA' and the error

propagates only to region III, yielding poor values of TB’ but still good values

of TT'
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The following variation of method B 1s less subject to this

restriction:

o SR 50
.

a) Instead of assuming the path to be a line of slope kBIIl inside region II,
we draw the lines of slope NzIIl and KBIIl through point xIIl’ and we draw,
through Pa’ an approximate hyperbolic arc consistent with the two asymptotes.
This arc shall be taken as an approximation to the trajectory inside region
IT, and its intersection with the line x = + % determines the ordinate Ya
of Py (we teake £ = 0).

b) We proceed in region III as for the regular method B.

The results are presented in Table XVI, alony with corresponding
experimental values. Notice that this method allows us to distinguish more
distinct phases of the path, i.e., one phase for each value of %g (over this
approximate broken line path).
® We can see that the agreement is exceedingly good for region I and II,
even for the detailed shape of the curve, but it is not so good in region III.

i The difficulty is mostly due to the calculation of the branch in the
active region. Any smell error in the calculation of point Yg is magnified
tkroughout region III, so, even with & numerical method we should expect larger
errors in region III. Even the variations of temperature would cause errors

by changing the transistor-pair characteristic through ﬁ% affecting especially

the boundaries of region II.

So far we have assumed that the trajectory is a straight line of
slope KBIIl throughout region II.

‘ ¢) Guided by the straight lines in region I and III, and by the points P_and

Pd’ we draw the parabolic arcs in region I and III, and Join them smoothly

by a suitable arc inside region II, so that these three arcs form a curve

which shall be taken to be an approximation to the real trajectory.

.

WIS
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TARLE XV. COMPARISON OF TIME INTERVALS OBTAINED BY METHOD B
WITH EXPERIMENTAL RESULTS

Time Interval (in nsec)
Over Branch
Theoretical
(by Methcd B) Experimental
32.6 30 N
56.1 52 o and b, i.e.,
region I
19.0 0o . e
region I1
18.1 o6 2
30.2 38 e
48.3 Gk d and e, 1i.e.,
region III
124.3 138 Total Transition
Time
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TABLE XVI. COMPARISON OF TIME INTERVALS OBTAINED BY A VARIANT

. OF METHOD B WITH EXPERIMENTAL RESULTS
Time Interval (in nsec)
'y
Theoretical Over Branch
(by a Variant Experimental
of Method B)
20.1 22 a
35.2 30 b
55.3 52 ‘a end b, i.e.,
. region I
12.0 + 8.9 c and 4, i.e.,
= 20.9 22 region II
23.3 26 e
30.6 38 f
.\
53.9 64 e and f, i.e.,
region III
A 130.1 138 Total Transition




T e

-194-

d) Now we draw a convenient pilecewise linear approximation to this curve and,
by repeated applications of equation (4.21) to its linear branches, we can
calculate the corresponding time intervals.1

Note, in Teble XVI, that the tendency persists for longer theoretical
time intervals in region I, and shorter in region III, but results are somewhat
better than those for plain method B. Note also that, since this method meakes
use of a degree of arbitrariness, results are bound to vary a little with the

operator's judgment. .

6.4.3 Iterative Numerical Method

The iterative numerical method offers no special difficulty. It is

clear that equation (4.4b) converges in every region.H The values of M, Q.,

MB' QB as well as the computed ordinates Yor Ygr Yao and ¥y, are shown in

Table XVII. We have again taken £ = O, "
A direct application of equation (3.58) for each region yields the

respective time durations, which are presented in Table XVIII. I
Notice that the results are somewhat better than for the other methods,

but they are not perfect. It is even worse for region II. However, this

numerical method is the exact solution of the differential equation, so we

conclude that an error is due:

l We might be tempted to use equation (3.58) but this could be disastrous.
This equation is valid only for points exactly on a true trajectory, and is
very critical. If the points are only approximately on a trajectory, the
results obtained by use of (3.58) will probably be meaningless.

A
Tf A rule of thumb is to work always with the large magnitude exponent Xg .
B

‘
!

L g

Elmre o
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TABLE XVII. PARAMETERS AND TRAJECTORY KEY ORDINATES

s FOR THE ITERATIVE NUMERICAL METHOD
% :
&
% R Region I Region II Region III
M, 20.68 -11.82 2k, 32
Q, 26.32 - yy = 2k.13| -7.65 - y_ = -9.T716| 29.45 - y, = 28.24
My 2.105 1.15 2.4y
% 2.68 - y, = 0.b9 [ 0.7h4 - Yo = -1.322]2.955 - y4 = 1.741
Vo *2.19| =y, = 2.066 >y, = 1.21k =y, = 2.294

TABLE XVIII. COMPARISON OF TIME INTERVALS OBTAINED BY THE ITERATIVE
NUMERICAL METHOD WITH EXPERIMENTAL RESULTS

q
Time Interval (in nsec)
Region
Theoretical Experimental
58.4 50 I
31.3 22 II
61.6 64 III
151.3 138 Total
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8) +o the piecewise linear approximation use for the most exact nonlinear
differential equation.

b) to aésumptions of lumped parameters, constant in each region.

¢) to the measurement of circuit parsmeters and transistor constants.

d) possible departure of the transistor characteristics from the ideal one
we have assumed.

e) the imperfection of the rectangular trigger used in the experiments.

Under the above considerations the error of about ten per cent in
total transition times, along with the good agreement in waveform (in the case

of method B, for example) is a satisfactory result.
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T. CONCLUDING REMARKS

T.1 Summary
The purpose of this investigation was to describe in detail the

operation of flipflops from & mathematical point of view, and to devise, based
on this mathematical description, practical methods of analysis, design and
optimization of both flipflop and triggering circuits.

The mathematical description has been accomplished with the establish-
ment of equations (2.87), (2.88) and (2.90) in Chapter 2, and with those
qualitative aspects of their piecewise linear approximations--equations (2.99),
(2.100), (2.102)--which clearly apply to the original system. ’

Methods of analysis and design were devised by means of a detailed
study on the phase plane of the piecewise linear equations, taken as approxima-
tions to the originel nonlinear equations. The singularities of the system,
the conditions for their existence and the dependence of their nature upon
the system parameters, have been thoroughly described. The phase plane portrait
of the system was described with some emphasis on separatrices, trajectories,
and the influence of the singularity corresponding to a given reglon, whether
this singularity exists in its proper region or has a virtual image in another
region.

Based on this study some engineering methods of analysis and design
have been described in Chapter 4, and some simplified formulae for the rapid
estimate of flipflop behavior have been presented in Chapter 5.

The experimental example presented in Chapter 6 illustrates the use
of some of these methods, and also, by compa-ing theoretical with practical
results, some feeling is obtained for the adequacy of the various methods and

for the type of approximations (piecewise linear at the model level) used in the

theory.

.]_97-
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T.2 Conclusions

It is apparent that we have obtained a useful and, for most practical
purposes; adequate theory.

We feel, however, that there are some questions to which we do not
have even unsatisfactory answers. A first question is: why is it that the
best of all methods when applied to the active region yields a path which
obviously differs considersbly from the true path? Even the crude device of
assuming the path, in region I1I, to be a constant equal to Yo would produce &
result closer to the true one in that region:

Anoth;r question is: why is it that results are worse if the impulses
(second derivatives of ®(x)) are considered than the results we get when they
are ignored?

We feel that the answer lies in a more detailed study of the relation-
ship between a nonlinear differential equation (especially of the second order!)
and another equation which formally is a piecewise linear epproximation to the
nonlinear one. Specifically, what are the effécts‘of

a) the break points (error in derivatives!')

b) the error itself

c¢) the constancy of coefficients
on the solution of the approximate equation with respect to the original one?
The present investigation gives the impression that this type of approximation

should be studied in detail and formalized.

7.3 Purther Investigations

There are three directionsfor further investigation:
a) The study of approximate solutions to nonlinear differential equations by

use of solvable formally approximate equations to the original one, such as
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plecewise linear equations or other standard typesof equations with known
solutions.
The polishing of the present theory by considering other types of approxi-
mation, such as, for example, approximetion at the equation level.
¢) Application of the ideas we have described to more éomplex situations, for
example,
(1) considering the nonlinearity of parasitic capacitances,
(11) teking the collector-base Jjunction capacitances into
account,
(1i1) considering inductances in the passive circuit,
(iv) considering the distributed nature of some of the

parasitic capacitances.

Advences in one, some, or all of these directions would certainly improve the

present-day techniques of switching circuit design for digital computers.
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