UNCLASSIFIED AD 410117 ## DEFENSE DOCUMENTATION CENTER **FOR** SCIENTIFIC AND TECHNICAL INFORMATION CAMERON STATION, ALEXANDRIA, VIRGINIA UNCLASSIFIED NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto. # CATALOGED BY DDC AS AD No. 410117 ### OFFICE OF NAVAL RESEARCH Contract Nonr 1834(13) Task No. NR 051-215 TECHNICAL REPORT NO. 64 NMR Studies of Hydrogen Bonding in Hindered Phenols Ъу B. G. Somers and H. S. Gutowsky Prepared for Publication in the Journal of the American Chemical Society University of Illinois Department of Chemistry and Chemical Engineering Urbana, Illinois May 13, 1963 Reproduction in whole or in part is permitted for any purpose of the United States Government 410117 ### NMR STUDIES OF HYDROGEN BONDING IN HINDERED PHENOLS1 By B. G. Somers² and H. S. Gutowsky (1) This paper has been taken in main from the Ph.D. thesis of B. G. Somers, University of Illinois, 1961. The work was supported in part by the Office of Naval Research. Also, acknowledgment is made to the donors of the Petroleum Research Fund, administered by the American Chemical Society, for partial support of this research. (2) Present address: Phys. Lab. CIBA A.G., Basel, Switzerland Hydrogen bonding of the hindered phenols, 2-isopropylphenol, 2,6-diisopropylphenol, 2-t-butylphenol, 2-methyl-6-t-butylphenol, and 2,6-di-tbutylphenol, has been studied by observing the chemical shifts of -OH group protons. Room temperature dilution shifts in carbon tetrachloride of the phenolic -OH gives dimerization constants K of 1.7, 1.3, 1.0, \leq 0.05, and \leq 0.05, respectively, for the five phenols. Association constants K for phenoldioxane complexes were obtained from the phenolic -OH dilution shifts in 1,4dioxane, employing general algebraic expressions derived for the purpose. The Kats are in the same sequence as the Kts but about ten-fold larger, consistent with the greater ease with which a smaller molecule approaches the phenolic -OH. Observations of both the ethanolic and the phenolic -OH dilution shifts in ethanol-phenol solutions gave similar results, which were limited to a qualitative interpretation by the relatively strong polymerization of the ethanol. Several lines of evidence, including the temperature dependence of the -OH shifts in a 1:1 equimolecular phenol-ethanol mixture and the dilution shifts of the 1:1 mixture in carbontetrachloride, indicate that the stabler form of the complex has the phenolic hydrogen bonded to the ethanolic oxygen. NMR dilution shifts for equimolecular mixtures in an inert solvent have useful features in the study of 1:1 complexes. The isopropyl C-H proton line exhibits relatively large downfield shifts, up to 30 c.p.s. at 60 Mc./sec., depending upon the other substituents. ### Introduction The main concern of this paper is hydrogen bonding in hindered phenols. The unusual properties of these hindered or "krypto" phenols were noted in 1945 by Stillson, Sawyer, and Hunt³ who pointed out that bulky ortho substituents (3) G. H. Stillson, D. W. Sawyer, and C. K. Hunt, J. Am. Chem. Soc., <u>67</u>, 303 (1945) prevent the molecules from undergoing many of the characteristic reactions exhibited by simple phenols. The restricted access to the -OH group in such molecules should limit the degree of association through hydrogen bond formation and cause the equilibrium constants for polymer formation to exhibit a dependence upon the size of the ortho substituents. In fact, such a dependence has been inferred from the infrared and ultraviolet spectra of several phenols by Coggeshall, Lang, and Saier. 4,5,8 It seems clear that the hindered and parti- ally hindered phenols are not likely to form species larger than dimers, and this circumstance should in principle facilitate the analysis of their association behavior. ⁽⁴⁾ N. D. Coggeshall, J. Am. Chem. Soc., 69, 1620 (1947). ⁽⁵⁾ N. D. Coggeshall and E. M. Lang, J. Am. Chem. Soc., 70, 3283 (1948). ⁽⁶⁾ N. D. Coggeshall and E. L. Saier, J. Am. Chem. Soc., 73, 5414 (1951). A comprehensive discussion of hydrogen bonding and of methods employed in its investigation is available, 7 as is a general treatment 8 of the nuclear mag- - (7) G. C. Pimentel and A. L. McClellan, "The Hydrogen Bond", W. H. Freeman and Co., San Francisco, 1960. - (8) J. A. Pople, W. G. Schneider, and H. J. Bernstein, "High-Resolution Nuclear Magnetic Resonance," McGraw-Hill Book Co., Inc., New York, 1959. netic resonance methods employed in our studies. It is well known that the formation of hydrogen bonds displaces the magnetic resonance of the protons involved toward lower magnetic field, except in certain cases involving aromatic molecules. When a molecule XH forms a hydrogen bond to a donor atom Y, the electronic structure, and consequently the magnetic susceptibility of the XH bond, are altered leading to a change in the nuclear magnetic shielding. If the primary function of the Y atom is to produce a strong electric field in the vicinity of the XH bond, then a shift toward lower field upon hydrogen bond formation is quite reasonable. The electric field deforms the electron dis- (9) H. S. Gutowsky, Annals N. Y. Acad. Sci., 70, 786 (1958); P. J. Frank and H. S. Gutowsky, Archives des Sciences, 11, 216 (1958). tribution about the proton in the hydrogen bond, decreasing the electron density in its vicinity, and increasing its asymmetry. Both effects decrease the proton shielding. Another possible contribution to the chemical shift produced by association is the quenching of the intramolecular paramagnetic effects of neighboring atom magnetic anisotropy, which gives a down-field shift upon the formation of non-linear hydrogen bonds, due to the loss of axial electric symmetry. The magnitude of proton shifts attending hydrogen bond formation, expressed in terms of the difference between the shifts for a pure substance in the liquid and in the gaseous state, usually amounts to less than 2.5 to 3 parts per million, although water and hydrogen fluoride which are, of course, very highly associated, have hydrogen bond shifts of 4.58 and 6.65 parts per million, respectively. In nuclear magnetic resonance experiments, chemical exchange usually prevents observation of separate resonances for both hydrogen bonded and non-hydrogen bonded states in the same medium, 10 although it is often possible to (10) H. S. Gutowsky and A. Saika, J. Chem. Phys., 21, 1688 (1953). detects separate infrared frequencies for individual polymeric species. This reflects the different time scales of 10⁻¹³ sec. and 10⁻² sec. required to average out differences in vibrational frequencies and differences in magnetic resonance frequencies, respectively. However, in the hindered phenols proton exchange is decreased as well as the extent of association. Thus, it is possible to observe separate -OH proton resonances in solutions containing another hydrogen bonding species besides a hindered phenol, and to learn something about the relative degree of involvement in the hydrogen bonding of the different -OH groups. Furthermore, the very low probability of other than bimolecular complexes involving the hindered phenols makes it easier to estimate the chemical shift characteristic of the dimer proton and the equilibrium constant for dimer formation. In the work reported here, the latter approach was used with success to derive the equilibrium constants for dimer formation from concentration dependence measurements of the phenolic -OH proton shifts in solutions of several hindered phenols in carbon tetrachloride. The association of the hindered phenols with smaller molecules such as ethanol and dioxane is also affected by the bulky ortho substituents of the phenols, although one expects the effect to differ from that for association of like hindered molecules. For example, a small molecule of the right shape could hydrogen bond more readily with the -OH in the hindered phenol than could another molecule of the hindered phenol. This is borne out by the -OH proton shifts observed in solutions of the hindered phenols in ethanol and in dioxane. In addition, consideration of the direction, magnitude, and concentration dependence of the shifts of both the phenolic and ethanolic -OH protons indicates that a bimolecular complex is formed between ethanol and a hindered phenol. Moreover, the complex involves association of the phenolic -OH proton with the ethanol oxygen atom rather than the reverse. Finally, the results suggest that dilution of equimolecular hindered phenol-ethanol mixtures with carbon tetrachloride may yield information regarding the bimolecular complexes, their hydrogen bond strength, and the shifts characteristic of their -OH protons. Similarly, the temperature dependence of the -OH shifts in these systems provides evidence bearing upon the relative stabilities of the phenol-ethanol complex and of the two types of dimer. ### Experimental The proton magnetic resonance spectra were measured with a Varian Associates Model V4300-2, 60 Mc./sec. high resolution n.m.r. spectrometer with a 12-inch electromagnet, regulated power supply, and superstabilizer. Spinning sample tubes of nominal 5 m.m. o.d. were used to improve resolution. Sweep rates were calibrated by means of audiofrequency sidebands of the internal reference tetramethylsilane (TMS), the use of which avoids bulk magnetic susceptibility corrections. Because the sweep rate
varied considerably and rapidly, two audio oscillators were employed in order to place sidebands on either side of the line whose position was to be measured and in reasonable proximity to it. The audiofrequencies were monitored by a Hewlett-Packard Model 521C electronic counter. This calibration was usually satisfactory but three or more measurements were averaged for most of the samples. The apparent shifts were not corrected for the intermolecular effects of high concentrations of aromatics on the resonance position of the TMS internal reference. These effects¹¹ (11) E. D. Becker, J. Phys. Chem., 63, 1379 (1959). are small compared with the shifts observed in the systems studied here. For the measurements at elevated temperatures, the Varian Associates variable temperature accessories with a dewar probe insert were employed. Because of the necessity for spinning the sample, its temperature was not measured directly. Instead, each time the apparatus was assembled, a calibration curve was constructed by measuring the temperature of the air entering the dewar insert, with a copper-constantan thermocouple, and also the temperature of a liquid in a non-spinning sample tube located in the probe. The temperatures of the samples whose spectra were recorded were then inferred from this calibration data and the continuously monitored temperature of the air entering the insert. Reagent grade ethanol and carbon tetrachloride were used without purification but the carbon tetrachloride was stored in the dark and in brown bottles in order to minimize HCl formation. Measurements at several concentrations of ethanol in carbon tetrachloride agreed with those of Berker, Liddel, and Shoolery. ¹² Eastman "white label" 1,4-dioxane was passed through an alumina column (12) E. D. Becker, U. Liddel, and J. N. Shoolery, J. Mol. Spectr., 2, 1 (1958). in order to remove peroxile and water. Eastman "white label" t-butylbenzene which had been distilled from calcium hydride was used. The hindered phenols 2-isopropylphenol, 2,6-di-isopropylphenol, 2-t-butylphenol, 2-methyl-6-t-butylphenol and 2,6-di-t-butylphenol, which were supplied by the Ethyl Corporation, were distilled in order to remove some colored material, presumably peroxide, present in small amounts, but the distillation was negligible in its influence upon the measured chemical shifts. The components of the solutions were transferred between rubber-stoppered serum bottles by means of a syringe in order to minimize the introduction of water and the solutions were weighed after the addition of each component in order to determine the concentrations. ### Results and Discussion Spectra and Their Interpretation.— Typical proton spectra are reproduced in Figs. 1 and 2 for equimolecular solutions of 2,6-di-isopropylphenol and of 2-methyl-6-t-butylphenol, respectively, in ethanol at room temperature. The spectra are for a magnetic field sweep, increasing from left to right. Negative shifts in c.p.s. from TMS correspond to downfield shifts. Assignment of the lines in the spectra is generally straightforward. In particular, the -OH lines are readily apparent from their concentration dependent shifts, and in the mixed solutions with two -OH lines the assignments are based on the relative intensities and the composition of the solution. The lines of Fig. 1 are assigned as follows, reading from left to right: the phenyl proton lines (-415 cps), the phenolic hydroxyl line, the ethanolic hydroxyl line, a superposition of the methylene group lines of ethanol upon the septet due to the lone proton of the isopropyl group (-200 cps), the methyl group of ethanol, and the reference line of the internal TMS. The lines of Fig. 2 are, again reading from left to right: the phenyl proton lines, the phenolic hydroxyl line, the ethanolic hydroxyl line, the methylene lines of ethanol, the 2-methyl group line of the phenol, the methyl group line of the phenol followed closely by the methyl triplet of ethanol, and the TMS reference line. MOLE FRACTION 2,6-DI-ISOPROPYLPHENOL = .50 Fig. 1. The proton magnetic resonance spectrum of an equimolecular mixture of 2,6-di-isopropylphenol and ethanol, observed at room temperature with a 60 Mc./sec. spectrometer. MOLE FRACTION 2-METHYL-6-1-BUTYLPHENOL = .50 Fig. 2. The proton magnetic resonance spectrum of an equimolecular mixture of 2-methyl-6-t-butylphenol and ethanol, observed at room temperature with a 60 Mc./sec. spectrometer. At high ethanol concentration the triplet structure of the ethanolic -OH line is clearly discernible. Upon dilution or heating of the solution, the triplet structure is lost and, simultaneously, the methylene group multiplet is reduced to the four-line spectrum characteristic of a methylene group whose interaction with the -OH proton is averaged to zero owing to rapid exchange of the -OH proton. At elevated temperatures, both the ethanolic and phenolic -OH proton lines are broadened but they do not coalesce at the maximum temperature attained in these experiments (ca. 180°C.). However, some of the samples, which were heated to approximately 230°C. in order to test the strength of the sample tubes, did exhibit coalesced lines. Phenolic -OH Shifts upon Dilution. The chemical shifts at room temperature of the phenolic -OH proton in 2-isopropylphenol, 2,6-di-isopropylphenol, 2-t-butylphenol, 2-methyl-6-t-butylphenol, and 2,6-di-t-butylphenol are shown in Figs. 3-7, respectively, as a function of their concentration in carbon tetrachloride, ethanol, and dioxane. Upon dilution of the phenols with carbon tetrachloride, all of the -OH proton shifts are either upfield or negligible. An opposite effect is observed upon dilution with ethanol or with 1,4-dioxane; then the phenolic-OH exhibits a downfield shift. The largest difference, between the line position in the pure phenol and that in an infinitely dilute solution of the phenol, in ethanol or in 1,4-dioxane, occurs in the case of 2-t-butylphenol, the smallest in the case of 2,6-di-t-butylphenol. Furthermore, the shifts in ethanol solution are significantly greater than those in 1,4-dioxane solution. 13 Fig. 3. The proton shift of the phenolic -OH in 2-isopropylphenol, upon dilution, 13 observed at room temperature with a 60 Mc./sec. spectrometer. Fig. 4. The proton shift of the phenolic -OH in 2,6-di-isopropylphenol, upon dilution, 13 observed at room temperature with a 60 Mc./sec. spectrometer. Fig. 5. The proton shift of the phenolic -OH in 2-t-butylphenol, upon dilution, on, observed at room temperature with a 60 Mc./sec. spectrometer. Fig. 6. The proton shift of the phenolic -OH in 2-methyl-6-<u>t</u>-butylphenol, upon dilution, 13 observed at room temperature with a 60 Mc./sec. spectrometer. -250 H -300 B -350 CARBON TETRACHLORIDE O ETHANOL Fig. 7. The proton shift of the phenolic -OH in 2,6-di-t-butylphenol, upon dilution, 13 observed at room temperature with a 60 Mc./sec. spectrometer. Dilution shifts of the phenolic -OH proton have been investigated by Batdorf, 14 by Gränacher and Diehl, 15,16 by Huggins, Pimentel, and Shoolery, 17 and - (14) R. L. Batdorf, Ph.D. thesis, University of Minnesota, 1955; quoted by J. A. Pople, W. G. Schneider, and H. J. Bernstein, loc. cit., p. 412. - (15) I. Gränacher and P. Diehl, Archives des Sciences, 12, Fasc. Special, Colloque Ampere, 238 (1959). - (16) I. Granacher, Helv. Phys. Acta, 31, 734 (1958). - (17) C. M. Huggins, G. C. Pimentel, and J. N. Shoolery, J. Phys. Chem., <u>60</u>, 1311 (1956). by Davis, Pitzer, and Rao. 18 Granacher 16 distinguishes three groups of sol- (18) J. C. Davis, K. S. Pitzer, and C.N.R. Rao, J. Phys. Chem., <u>64</u>, 1744 (1960). wents. A solvent of the first group is a good proton acceptor which forms stronger hydrogen bonds with phenol than with itself, thereby leading to significant, phenolic -OH downfield shifts. Examples are dioxane, ethyl ether, ethyl acetate, and to a lesser degree, acetone. Solvents of the second group do not form hydrogen bonds and the phenolic -OH proton line is shifted very little upon initial dilution with these solvents. As dilution is continued, a pronounced upfield shift is observed due to the decrease in the interphenolic hydrogen bonding. Solvents of this type are cyclohexane, carbon tetrachloride, and carbon disulfide. The solvents of the third group are chiefly aromatic compounds or others with whose x-electrons the phenol -OH proton can form a hydrogen bond. The x-electron ring currents produce upfield shifts in such cases. Pure phenols with ortho substituents forming at most weak intramolecular hydrogen bonds with the -OH group, e.g. o-cresol and o-bromophenol, 19 exhibit ⁽¹⁹⁾ E. A. Allan and L. W. Reeves, J. Phys. Chem., <u>66</u>, 613 (1962). much larger upfield shifts than does phenol itself. Moreover, the -OH resonances undergo much larger downfield shifts upon dilution with acetone than does that of phenol. This behavior has been attributed to steric hindrance of hydrogen bonding in the substituted phenol, relative to phenol itself. Such hindrance should have less effect on the strength of the hydrogen bond formed between a phenol and the small acetone molecule than upon that formed with another phenol molecule. Our results are in general agreement with this conception, in that the -OH group resonances of the five hindered phenols studied are shifted upfield very extensively from that of phenol itself. Detailed analysis of the dilution shifts gives association constants which are qualitatively in keeping with the size, shape, and number of ortho substituents. Equilibrium constants for Dimer Formation. The dilution shifts for the carbon tetrachloride solutions are the easiest to analyze, as they should result very largely, if not entirely, from changes in the hydrogen bonding among the phenol molecules themselves. Furthermore, as noted previously, it is unlikely that association of the hindered phenols extends beyond dimer formation. With these assumptions, the equilibrium
constant for dimer formation can be estimated from the limiting slope of the dilution shift and the total dilution shift, $^{17} \Delta \nu = \nu_{\rm d} - \nu_{\rm m}$, where the subscripts ${\rm d}$ and ${\rm m}$ refer to dimer and monomer, respectively. For an open dimer, only one of the two -OH protons in it is involved directly in hydrogen bonding, although there may be an indirect effect upon the shift of the other. In such a system, with exchange averaging of the various shifts, $\nu_{\rm d}$ is the average shift of the dimer protons and the observed frequency ν of the -OH protons is given by $$y' = y'_{d} - (m/x)\Delta y' \qquad , \qquad (1)$$ where m is the number of moles of phenol monomer, at equilibrium, and x is the total moles of phenol in all forms. Introduction into Eq. (1) of the equilibrium constant $K = X_{\rm d}/X_{\rm m}^2$ in terms of the mole fractions X, and differentiation, leads us to $$\left(\frac{\mathrm{d}v}{\mathrm{d}x}\right)_{x=0} = 2K\Delta v \qquad . \tag{2}$$ The quantity $(d\nu/dX_p)_{x=0}$ is the limiting rate of change, at infinite dilution, of the -OH proton shift with phenol mole fraction. Values for it are obtained readily from the curves plotted in Figs. 3, 4, and 5, and are listed in Table I. However, these values and Eq. (2) give us only the product $K\Delta\nu$ and an independent value of $\Delta\nu$ is needed for the evaluation of K. As a first approximation we can assume complete dimerization of the pure phenol, which gives $$\Delta \mathcal{V} \cong \Delta \mathcal{V}_{p} \equiv \mathcal{V}_{1} - \mathcal{V}_{0} \qquad , \qquad (3)$$ where ν_1 and ν_0 are pure and infinitely dilute phenol, respectively. The K's obtained in this way from the data in Table I show that corrections should be applied for the incomplete dimerization of the pure phenol. Successive approximations lead to the values of K and $\Delta \nu$ given in Table I for 2-isopropylphenol; 2,6-di-isopropylphenol; and 2-t-butylphenol. For the latter two compounds, dilution shifts calculated with these values of K and $\Delta \nu$ fit the observed concentration dependence in Figs. 4 and 5 within the experimental error. But for 2-isopropylphenol, the model is somewhat in error as the same computation predicts greater downfield shifts than are observed. This compound has the largest K, and the implication is that the deviations result from polymer formation. For 2-methyl-6-t-butylphenol and 2,6-di-t-butylphenol, the dilution shifts are too small to serve as a basis for estimating accurate values of K and $\Delta \nu$; in fact, the 4 c.p.s. dilution shift for 2,6-di-t-butylphenol is downfield rather than upfield, which indicates the presence of some shift-producing factor other than hydrogen bonding. Still, for these two compounds, an upper bound of 0.05 is set for K from the absence of any apparent, real dilution shifts. Table I Dilution Shifts and Dimerization Constants for Hindered Phenols in Carbon Tetrachloride at Room Temperature | Phenol | $(d\nu/dX)_0$ | $\nu_{\rm o}$ | 1/1 | $\Delta v_{ m p}$ | Δν | K | |--------------------|---------------|---------------|------------------|-------------------|-----------------|---------------| | 2-Isopropyl | - 568 | - 259 | - 366 | -107 | - 135 | 1.7 | | 2,6-Di-isopropyl | - 92 | -270 | - 294 | - 24 | - 36 | 1.3 | | 2-i-Butyl | -47 | - 269 | -284 | - 15 | -24 | 1.0 | | 2-Methyl-6-t-butyl | ~0 | -270 | - 270 | ~0 | er = | € 0.05 | | 2,6-Di-t-butyl | 4 | - 298 | - 294 | 4 | | ≤0.0 5 | ^aThe (negative) -OH proton shifts ν are in c.p.s. downfield from the internal reference TMS at 60 Mc./sec. The equilibrium constants for dimerization obtained in this study are summarized in Table II along with results published on related systems for comparison. As expected, the association constants of the hindered phenols are significantly smaller than for the other phenols, the difference being about an order of magnitude for the mono-hindered phenols. And, of course, the dihindered phenols are associated even less, the decrease in K ranging from a factor of about 1/2 for the isopropyl phenols to 1/10 for the t-butyl. It is of interest that 2,6-di-isopropylphenol has a larger K than the mono-hindered t-butylphenol, which agrees with our observation from molecular models that there is relatively little hindrance of the -OH group in the 2-isopropylphenol. The most hindered phenols are the 2-methyl-6-t-butyl and the 2,6-di-t-butyl, for which the association constants are comparable with or less than the value of 0.02 found by Allan and Reeves¹⁹ in their careful n.m.r. study of the weak intramolecular hydrogen bonding in 2-chlorophenol. Hydrogen Bonding of Hindered Phenols with Dioxane and with Ethanol.— Ethanol and 1,4-dioxane are good proton acceptors and because of their small size should be capable of forming strong hydrogen bonds with hindered phenolic—OH protons, even though the interphenol hydrogen bonding is relatively weak. In accord with this are the downfield, phenolic—OH shifts, given in Figs. 3-7, found upon dilution of the hindered phenols with ethanol and dioxane and summarized in Table III. For ethanol, further evidence as to the nature of the bonding is given by the ethanolic—OH shifts in the same solutions. These shifts, for solutions in the five hindered phenols, are shown in Fig. 8 except for solutions with a mole fraction of 2-isopropylphenol greater than 0.5, where the ethanolic—OH line is obscured by the isopropyl—C-H multiplet. In all cases, the dilution shift of the ethanolic—OH is strongly upfield, indicating a decrease in the extent of hydrogen bonding. In fact, for all but the more dilute ethanol solutions, these upfield shifts are larger upon dilution with Table II Equilibrium Constants for Dimer Formation for Several Phenols at Room Temperature | Phenol | K | Phenol | K | |---------------------------------|--------------|--------------------------------------|------------------| | p-Chloro ^a | 9 <u>+</u> 4 | 2,6-Di-isopropylb | 1.3 <u>+</u> 0.5 | | m-Chloro ^a | 9 <u>+</u> 4 | 2- <u>t</u> -Butyl ^b | 1.0 ± 0.5 | | o-Cresola | 8 <u>+</u> 4 | 2,4-Di-t-butyl ^c | 0.96 | | Unsubstituted ^a | 13 ± 7 | 2-Methyl-6-t-butylb | €0.05 | | 2-Isopropyl ^b | 1.7 ± 0.5 | 2,6-Di- <u>t</u> -butyl ^b | ≤0.0 5 | | 2-t-Butyl-4-methyl ^c | 1.37 | 2-Chloro ^d | 0.02 | aReference 17. bThis research; the errors given are estimates. Reference 6. $^{^{}m d}$ Reference 19; this is the equilibrium constant for intramolecular hydrogen bonding in a dilute solution of the phenol in CS2. Differences in the -OH Dilution Shifts a for Solutions of Hindered Phenols in 1,4-Dioxane and in Ethanol at Room Temperature Table III | | Phenolic -OH | | | Ethanolic -OH | | |-------------------------|--------------------------------|------|-----------------------|---------------|-------------------------------| | Phenol | Δν (diox) ^b | Kc | Δν(Etoh) ^b | 1/0 | △ ⊅(ø oh) ^Ъ | | 2-Isopropyl | -1 95 | 14 | - 273 | | | | 2,6-Di-isopropyl | -120 | 7.1 | -188 | -142 | - 99 | | 2-t-Butyl | -191 | 6.7 | - 259 | -114 | -71 | | 2-Methyl-6-t-butyl | -1 25 | 5.6 | - 192 | -142 | - 99 | | 2,6-Di- <u>t</u> -butyl | - 52 | €0.7 | - 65 | -1.33 | - 90 | ^aThe (negative) -OH proton shifts $\nu_{\rm O}$, at infinite dilution, are in c.p.s. downfield from the internal reference TMS at 60 Mc./sec. ^bThe quantity $\Delta V(S)$ is defined as $V_0(S) - V_0(CCl_4)$, where $V_0(S)$ is the proton shift of the -OH group in question at infinite dilution in the solvent S. The $V_0(CCl_4)$ values for the phenolic -OH shifts are given in Table I. Fig. 8. The proton shift of the ethanolic -OH upon dilution in solutions of the hindered phenols, observed at room temperature with a 60 Mc./sec. spectrometer. the phenols than with non-hydrogen bonding solvents such as carbon tetrachlor-ide. OH However, the limiting shifts at infinite dilution of the ethanol (20) See reference 12. In addition, we checked the ethanolic -OH shifts in carbon tetrachloride at several concentrations, and also in t-butyl-benzene. The upfield dilution shifts in the latter are somewhat larger than those in carbon tetrachloride over the entire concentration range, probably because of ring current effects from the aromatic ring. Similar effects upon the ethanolic -OH shift would be expected in the phenol solutions; and, therefore, the ΔV(pOH) values in Table III should be reduced in magnitude by about 30 c.p.s. protons in solutions of the hindered phenols are all about -130 c.p.s., as summarized in Table III. Upon comparing this with the ethanolic -OH limiting shifts of about -30 c.p.s. in non-hydrogen bonding solvents, 20 we conclude that the ethanolic -OH groups are in materially different limiting states in the two cases. The simplest interpretation of this result is that the phenol-ethanol complex involves bonding of the phenolic -OH proton to the oxygen atom of an ethanol molecule. The upfield shift of the ethanolic -OH is attributed to the breaking of the intermolecular ethanol-ethanol hydrogen bonds upon dilution. In support of this model, the curves shown in Figs. 3-7 for the concentration dependence of the phenolic -OH shift in the 1,4-dioxane solutions are very similar to those in the ethanol solutions; and in the dioxane solutions the phenol -OH must be bonded to an oxygen atom in the solvent. It is to be expected that size and shape effects should alter the relative stabilities of the two different complexes. I and II, formed by hydrogen bonding between two different mole- $$\phi - OH : \stackrel{H}{0} - R$$ $\phi - \stackrel{H}{0} : HO - R$ (II) cules, each having an -OH group. Our results indicate circumstances under which the relative stabilities differ appreciably and the usual assumption of equal stability may
lead to erroneous conclusions. The phenolic -OH shifts in the dioxane solutions are smaller than those in the ethanol solutions by a quite uniform factor of about 2/3, indicating that the hydrogen bonding is systematically weaker with dioxane¹³ than with ethanol. The hydrogen bond shift, $\Delta V(S)$, which we define as the difference $V_0(S) - V_0(CCl_4)$ between the infinite dilution shift V_0 in the solvent S and that in the inert solvent carbon tetrachloride, is given in Table III for the dioxane and ethanol solutions. It has been suggested that these shifts can be correlated qualitatively with the relative hydrogen bond strengths of the complexes. $S_0(S) = S_0(S)$ If this is so, then it appears that the hydrogen bonds in the ### (21) G. Korinek and W. G. Schneider, Can. J. Chem., 35, 1157 (1957). bimolecular complexes of dioxane with 2-isopropylphenol and with 2-t-butylphenol are the strongest and of approximately the same strength. Next come. 2,6-di-isopropylphenol and 2-methyl-6-t-butylphenol, followed by the most severely hindered phenol, 2,6-di-t-butylphenol, which forms only very weak bydrogen bonds. The larger, phenolic -OH hydrogen bond shifts in ethanol solution increase in the same order as do those in dioxane solution. However, in the ethanol solutions, the phenolic -OH is probably not characteristic of a one-toone phenol-ethanol complex. This complex is capable certainly of association with other ethanol molecules, and such association may be an important cause of the larger phenolic -OH shifts in ethanol compared with those in dioxane. It is of interest to compare the dimerization constants in Table II for the hindered phenols with their hydrogen bond shifts in Table III. The main differences are for the 2-t-butyl and the 2-methyl-6-t-butyl phenols, which dimerize relatively less readily than they associate with dioxane or ethanol. Such differences are quite plausible in that the steric hindrance of dimer formation will differ from that of association of the phenol with the relatively small dioxane or ethanol molecules. A similar difference between the access to the -OH group of a hindered phenol afforded an ethanol molecule and that afforded another phenol molecule, has been observed by Coggeshall and Lang⁵ in connection with their investigations of the ultraviolet spectra of several hindered phenols in ethanol solution. Neither the dioxane molecule nor the ethanol molecule has ready access to the -OH group of 2,6-di-t-butylphenol, and the hydrogen band shifts for this phenol are quite small in both dioxane and ethanol solutions. In this type of association, the 2,6-di-isopropylphenol and the 2-methyl-6-t-butylphenol molecules allow essentially equal access to the -OH group, which is considerably greater than that for the di-t-butylphenol. The monoalkyl phenols, 2-isopropylphenol and 2-t-butylphenol, which exhibit relatively the same hydrogen band shifts in dioxane or in ethanol solution, allow considerably freer access to the -OH group than do the other three phenol molecules. The dioxane molecule is considerably bulkier than the ethanol molecule, which no doubt is a major cause of the systematic differences between the phenolic -OH shifts in their solutions. Phenol-Solvent Association Constants. In principle, equilibrium constants for the solute-solvent association can be obtained readily from the dilution shifts if only simple 1:1 complexes are involved. For dilute solutions of a phenol in a proton accepting solvent, this equilibrium may be written as $$\phi_{OH} + : X \longleftrightarrow \phi_{OH} : X , \qquad (4)$$ where m, a, and c refer to the monomeric phenol, the uncomplexed acceptor, and the hydrogen bonded complex. In terms of mole fractions, the equilibrium constant for the association may be written as $$K_{c} = X_{c}/X_{m}X_{a} \qquad , \qquad (5)$$ and the shift ν of the phenolic -OH proton as 10 $$V = (X_{m}/X_{p})V_{m} + (X_{e}/X_{p})V_{c} = V_{m} + (X_{e}/X_{p})\Delta V , \qquad (6)$$ where $X_p = X_m + X_c$ is the mole fraction of phenol in both forms; ν_m and ν_c are the phenolic -OH shifts in the monomer and complex, respectively; and $\Delta \nu = \nu_c - \nu_m$. Upon eliminating X_c from Eq. (6) by introducing the definition of K_c , and rearranging the result, we obtain $$1/(\mathcal{V}-\mathcal{V}_{m}) = (1/\Delta \mathcal{V}) + (1/K_{c}\Delta \mathcal{V}X_{a}) \qquad (7)$$ However, $X_a \approx 1 - X_p - X_c$ and for small X_p virtually all of the phenol exists as complex, so $X_c \cong X_p$. Thus, the final result is the following limiting expression for $X_p \to 0$: $$1/(\nu - \nu_{\rm m}) = (1/\Delta \nu) + 1/K_{\rm e} \Delta \nu (1-2X_{\rm p}) \qquad . \tag{8}$$ The -OH shift $\nu_{\rm m}$ for the monomeric phenol is at least approximately that found at infinite dilution in carbon tetrachloride solution ($\nu_{\rm o}$ in Table I). Therefore, by taking the experimental values of ν and $\rm X_p$, and plotting $1/(\nu-\nu_{\rm m})$ versus $1/(1-2\rm X_p)$ one can evaluate K_c and Δ from the intercept and slope at $\rm X_p=0$ of the resultant curve. An internal consistency check and/or iterative calculation can be made by comparing the value obtained for $\Delta\nu$ via Eq. (8) with that employed in constructing the curve, i.e. $\nu/(\rm X_p\rightarrow 0)-\nu_{\rm m}$. Application of this analysis to the data for the dioxane solutions gave the association constants listed in Table III. Comparison of these K_c 's with the dimerization constants K in Table I reveals that they fall in the same sequence but that the former are about ten-fold larger. The K_c 's parallel the dilution shifts $\Delta \mathcal{V}(\text{diox})$ reasonably well except that $K_c \cong 6.7$ for 2-t-butyl-phenol, which is about the same as the values for 2,6-di-isopropyl and 2-methyl-6-t-butylphenol, even though the dilution shifts for the latter are a good bit smaller. In the case of 2,6-di-t-butylphenol, very inconsistent $\Delta \mathcal{V}$'s were obtained, probably because the data, shown in Fig. 7, do not extend to low enough phenol concentrations to give a very good limiting slope. For the other solutions, the $\Delta \mathcal{V}$'s calculated via Eq. (8) are within 0 to 15 c.p.s. of the $\Delta \mathcal{V}$ (diox) value assumed initially. At high phenol concentrations, the dimerization of the phenol competes with the phenol-solvent association. Indeed, the concentration dependence observed for the phenolic -OH shifts can be fitted reasonably well in terms of equilibrium constants K_c and K for the two reactions. However, there are too many adjustable parameters for a detailed analysis of this kind to be very meaningful here, especially as the measurements are not sufficiently accurate for the purpose nor extend to dilute enough solutions. The phenol-ethanol solutions differ from the phenol-dioxane in that the solvent is itself strongly hydrogen bonded. Furthermore, as remarked in the preceding section, at low phenol concentrations the phenol molecules probably are hydrogen bonded to more than one ethanol molecule. Thus, it is not unexpected that the application of Eq. (8) to the phenolic -OH dilution shifts in ethanol leads to generally unsatisfactory results. Similar problems arise in connection with the ethanolic -OH dilution shifts given in Fig. 8. Dilution Shifts of 1:1 Phenol-Ethanol in Carbon Tetrachloride.— Some further, qualitative evidence concerning the nature of the hydrogen bonding in the phenol-ethanol complex is obtained from the -OH dilution shifts of an equimolar phenol-ethanol mixture. Such data are given in Fig. 9 for both the ethanolic and phenolic -OH resonances in 1:1 mixtures of ethanol with 2,6-di-t-butylphenol and with 2-isopropylphenol, diluted with carbon tetrachloride. At infinite dilution of the mixtures, the shift of the ethanolic -OH proton approaches that for solutions of ethanol alone in carbon tetrachloride. The infinite-dilution shift of the phenolic -OH proton in the mixture of 2,6-di-t-butylphenol with ethanol also approaches the limiting shift for an infinitely Fig. 9. The proton shifts of the ethanolic and phenolic -OH upon dilution of 1:1 hindered phenol-ethanol mixtures in carbon tetrachloride, observed at room temperature with a 60 Mc./sec. spectrometer. dilute solution of 2,6-di-t-butylphenol alone in carbon tetrachloride. On the other hand, the shift of the phenolic -OH proton in the mixture of 2-isopropylphenol with ethanol does not seem to approach that for infinite dilution of the phenol itself in carbon tetrachloride; instead the limit appears shifted downfield by about 100 c.p.s. No doubt this difference results in part from the fact that the phenolic -OH shifts are not available to low enough dilution. Also, it indicates that the phenol-ethanol complex is more stable than the phenol dimer. In the \$0H-CCl4 and EtOH-CCl4 systems, the -OH dilution shifts are governed by the dimerization equilibria $$2\phi OH \rightarrow (\phi OH)_2$$ (9) and $$2EtOH \longrightarrow (EtOH)_2$$. (10) However, for the 1:1 ØOH:EtOH in CCl4 system, there is also the competing association reaction $$\phi$$ OH + EtOH \Rightarrow (ϕ OHEtOH) . (11) Expressions similar to Eqs. (1)-(3) can be obtained relating the chemical shifts and their concentration dependences in the 1:1 equimolecular system to the K's for reactions (9)-(11). The data do not warrant a quantitative analysis. But, qualitatively, the apparent downfield displacement of the 2-iso-propylphenol -OH shift, at infinite dilution of the 1:1 mixture, while the ethanolic -OH is relatively unaffected, requires that the phenol-ethanol complex be more stable than the phenol dimer and about as stable as the ethanol dimer. On the other hand, the data in Fig. 9 for the 2,6-di-t-butylphenol:ethanol system indicates at most a very weak phenol-ethanol complex. Similar conclusions can be reached by comparing dilution shifts for the phenol-CCl4, ethanol-CCl4, and
phenol-ethanol systems. However, for the latter the results are complicated by polymer formation, the effects of which are reduced in our experiments where the 1:1 mixture is diluted with an inert solvent. Indeed this approach has general utility in determining the relative stabilities of complexes by MMR experiments. Temperature Dependence of -OH Shifts in 1:1 Phenol-Ethanol Mixtures. the temperature range 25° up to 190° the lines of both the ethanolic and phenolic -OH protons in equimclscular mixtures of the several hindered phenols with ethanol exhibit upfield shifts with increasing temperature. These shifts are approximately linear functions of the temperature with the exception that the phenolic -OH shift in 2,6-di-t-butylphenol starts leveling off at temperatures greater than 100° and approaches a limiting value at 150°. This limiting value is the same within experimental error as the infinite-dilution shift of the phenol alone in carbon tetrachloride, -298 c.p.s., which is presumably characteristic of the monomer. The rates of change with temperature of the proton shifts of both -OH groups in each of the phenol-ethanol systems are given in Table IV, together with the temperature range over which they were measured. The upper limit of this range is not fixed by the limitations of the apparatus except in the case of 2,6-di-t-butylphenol. In all the other cases the lines were broadened and weak or were lost under the alkyl group signals before the instrumental limit of approximately 185°C was reached. The measurements at higher temperatures are subject to considerable error not only because the temperature is difficult to measure accurately, but also because the small amount of oxygen present even in thoroughly de-gassed solutions causes oxidation of the ethanol at higher temperatures. The small amount of acid produced accelerates the proton exchange process and leads to broadened -OH proton lines. Some samples which had been heated above 250° in Table IV Temperature Dependence of the Phenolic and Ethanolic -OH Shifts in Equimolecular Phenol-Ethanol Mixtures | Phenol | Phenolic -OH | | Ethanolic | OH | |-------------------------|-------------------|--------|--------------|--------| | | e.p.s./deg. | max. T | c.p.s./deg. | max. T | | 2-Isopropyl | 0. 86 | 940 | 0. 69 | 940 | | 2,6-Di-isopropyl | 0. 68 | 130 | 0.82 | 110 | | 2- <u>t</u> -Butyl | 0.67 | 125 | 1.06 | 125 | | 2-Methyl-6-t-butyl | 0.70 | 128 | 0. 68 | 93 | | 2,6-Di- <u>t</u> -butyl | 0.14 ^b | 192 | 1.38 | 154 | $^{^{\}mathrm{a}}$ The measurements extended from 25° to the maximum temperature given. $^{^{\}mathrm{b}}\mathrm{This}$ coefficient is not constant above 1000. crder to test the strength of the glass sample tubes, subsequently contained sufficient acid to cause coalescence of the separate ethanolic and phenolic -OH proton lines to a single line at room temperature whose position was the mean of those of the individual lines observed in a sample which had not previously been heated. The temperature dependences observed/upon ΔH for the association and complex formation and also upon the ΔP 's involved. We have noted that for the phenolic $-OH^{\bullet}$ s there is a correlation between the ΔP 's and the equilibrium constants. In accord with this are the temperature dependences of the phenolic -OH shifts, summarized in Table IV, which parallel the dimerization constants in Table II and the constants K_{c} in Table III for phenol-ethanol complex formation. Thus, the temperature dependence is largest for the 2-isopropylphenol and smallest, by a 6-fold factor, for 2,6-di-t-butylphenol. For the ethanolic -OH, the temperature dependences in the 1:1 mixtures are in reverse order to those for the phenolic -OH. At first, this may seem anomalous. However, it is a natural consequence of the competing reactions (9)-(11). In the 2,6-di-t-butylphenol system where the phenol molecules are essentially inert, the ethanolic -OH temperature dependence results from the thermal dissociation of ethanol dimers (and polymers) per reaction 10. But, in the 2-isopropylphenol system the phenol-ethanol complex is present in high concentration. Moreover, in this complex the ethanolic -OH shift is less than in the ethanol dimer (and polymer) because of the asymmetric nature of the hydrogen bonding in form I of the complex. Thus, the effect upon the ethanolic -OH shift of thermal dissociation of the complex, reaction (11), is cancelled in part by dimerization of the liberated ethanol, reaction 10. Shift of the > C-H Proton in Isopropylphenols. In the course of the experiments it was noted that there are appreciable shifts (up to nearly 30 c.p.s.) in the isopropyl C-H proton line depending upon the other substituents. These shifts were measured in the pure liquids at room temperature to be -172, -199, and -184 c.p.s., respectively, at 60 Mc./sec., for isopropylbenzene, 2-isopropylphenol, and 2,6-di-isopropylphenol, the shifts being downfield with respect to the internal, TMS reference. The fact that the shift in 2,6-di-isopropylphenol is virtually the average of those for isopropylbenzene and 2-isopropylphenol indicates that more than a simple, direct substituent effect is involved. A likely explanation is that the downfield shifts result from electrostatic interactions between the -CH and -CH(CH₃)₂ groups, which also affect the average rotational conformation of the isopropyl group with respect to the plane of the benzene ring. Thus, the stable form of the 2-isopropylphenol probably is that in which the C-H of the isopropyl group is in the plane of the ring and cis to the phenol oxygen. In the 2,6-di-isopropylphenol one of the isopropyl groups could have this configuration but the other would be rotated so that the C-H was trans to the oxygen. The latter C-H has an environment similar to that in the two equivalent rotational forms of isopropylbenzene, which accounts for the intermediate shift.²² (22) This model is similar to that proposed to explain the CF3 shifts and the F-CF3 coupling constants in substituted 2-fluorobenzotrifluorides; see H. S. Gutowsky and V. D. Mochel, J. Chem. Phys. 40, --- (1963). ### Acknowledgment We wish to thank the Ethyl Corporation for providing the samples of hindered phenols and to acknowledge many helpful discussions with G. R. Miller. ### TECHNICAL REPORT DISTRIBUTION LIST ### University of Illinois Contract Nonr 1834(13) NR 051-215 | No | . Copies | No | Copies | |---|-------------|---------------------------------------|------------------| | Commanding Officer | | Air Force | | | Office of Naval Research Branch Office | | Office of Scientific Research (SRC-E) | | | The John Crerar Library Building | | Washington 25, D.C. | (1) | | 86 East Randolph Street | | J ,, | , , | | Chicago 1, Illinois | (1) | Commanding Officer | | | , | ` , | Diamond Ordnance Fuze Laboratories | | | Commanding Officer | | Washington 25, D.C. | | | Office of Naval Research Branch Office | | Attn: Technical Information Office | | | 346 Broadway | | Branch 012 | (1) | | New York 13, New York | (1) | Diamon Old | (-) | | 1000 1011 1000 1000 | (1) | Office, Chief of Research and | | | Commanding Officer | | Development | | | Office of Naval Research Branch Office | | Department of the Army | | | 1030 East Green Street | | | | | • | (1) | Washington 25, D.C. | (1) | | Pasadena 1, California | (1) | Attn: Physical Sciences Division | (1) | | Commanding Officer | | Chief, Bureau of Ships | | | Office of Naval Research Branch Office | | Department of the Navy | | | | | | | | Box 39 Navy No. 100 Fleet Post Office | (7) | Washington 25, D.C. | (0) | | New York, New York | (7) | Attn: Code 342C | (2) | | Director, Naval Research Laboratory | | Chief, Bureau of Naval Weapons | | | Washington 25, D.C. | | , | | | | 161 | Department of the Navy | | | Attn: Technical Information Officer | (6) | Washington 25, D.C. | (-) | | Chemistry Division | (2) | Attn: Technical Library | (3)
(1) | | | | Code RRMA-3 | (1) | | Chief of Naval Research | | | | | Department of the Navy | | ASTIA | | | Washington 25, D.C. | | Document Service Center | | | Attn: Code 425 | (2) | Arlington Hall Station | | | Code 421 | (2)
(1) | Arlington 12, Virginia | (10) | | | | | | | DDRandE | | Director of Research | | | Technical Library | | U. S. Army Signal Research and | | | Room 3C-128, The Pentagon | | Development Laboratory | | | Washington 25, D.C. | (1) | Fort Monmouth, New Jersey | (1) | | | | | | | Technical Director | | Naval Radiological Defense Laboratory | | | Research and Engineering Division | | San Francisco 24, California | | | Office of the Quartermaster General | | Attn: Technical Library | (1) | | Department of the Army | | | | | Washington 25, D.C. | (1) | Naval Ordnance Test Station | | | | \- <i>\</i> | China Lake, California | | | Research Director | | Attn: Head, Chemistry Division | (1) | | Clothing and Organic Materials Division | n | January Caraman Vall Distriction | (- / | | Quartermaster Research and Engineering | | Commanding Officer | | | Command | | • | | | * * *********************************** | | Army Research Office | | | U. S. Army | /a\ | Box CM, Duke Station | | | Natick, Massachusetts | (1) | Durham, North Carolina | / - \ | | | | Attn: Scientific Synthesis Office | (1) | ### TECHNICAL REPORT DISTRIBUTION LIST ### Page 2 | | - | | | |--|-------------|---|-----| | Brookhaven National Iaboratory
Chemistry Department | (2) | Dr. H. E. Torrey Department of Physics | | | Upton, New York | (1) | Rutgers University New Brunswick, New Jersey | (1) | | Atomic Energy Commission | | , | , , | | Division of Research | | Dr. F. Bitter | | | Chemistry Programs | | Department of Physics | | | Washington 25, D.C. | (1) | Massachusetts
Institute of Technology | | | | | Cambridge 39, Massachusetts | (1) | | Atomic Energy Commission | | | | | Division of Technical Information | | ONR Resident Representative | | | Extension | | University of Illinois | | | Post Office Box 62 | | 605 S. Goodwin | | | Oak Ridge, Tennessee | (1) | Urbana, Illinois | | | II C Ammy Chamical Descends and | | Dr. M. S. Newman | | | U. S. Army Chemical Research and | | | | | Development Laboratories | | Department of Chemistry Ohio State University | | | Technical Library | (2) | • | (1) | | Army Chemical Center, Maryland | (1) | Columbus, Ohio | (1) | | Office of Technical Scrvices | | Dr. Paul Bartlett | | | Department of Commerce | | Department of Chemistry | | | Washington 25, D.C. | (1) | Harvard University | | | Habiting voir Ly, D.O. | (+) | Cambridge 38, Massachusetts | (1) | | Dr. S. Young Tyree, Jr. | | 31, 111 | • , | | Department of Chemistry | | Dr. Saul Winstein | | | University of North Carolina | | Department of Chemistry | | | Chapel Hill, North Carolina | (1) | University of California | | | - | | Los Angeles, California | (1) | | Dr. G. B. Kistiakowsky | | | | | Department of Chemistry | | Dr. L. P. Hammett | | | Harvard University | | Department of Chemistry | | | Cambridge 38, Massachusetts | (1) | Columbia University | (-) | | | | New York 27, New York | (1) | | Dr. G. E. Pake | | De II (I Drown | | | Department of Physics | | Dr. H. C. Brown | | | Stanford University | (1) | Department of Chemistry Purdue University Research Foundation | | | Palo Alto, California | (1) | Lafayette, Indiana | (1) | | Dr. E. M. Purcell | | Haraye ooe, Hiteratia | (-) | | Department of Physics | | Dr. J. D. Roberts | | | Harvard University | | Department of Chemistry | | | Cambridge 38, Massachusetts | (1) | California Institute of Technology | | | 39 a a a g c g c y a a a a a a a a a a a a a a a a a a | \- / | Pasadena, California | (1) | | Dr. F. Block | | | | | Department of Physics | | Dr. R. W. Taft, Jr. | | | Stanford University | | Department of Chemistry | | | Palo Alto, California | (1) | Pennsylvania State University | (| | _ | | University Park, Pennsylvania | (1) | | Dr. C. P. Slichter | | 0 | | | Department of Physics | | Commanding Officer | | | University of Illinois | (-) | ONR Branch Office | | | Urbana, Illinois | (1) | 495 Summer Street | | | | - | Boston 10, Massachusetts | (1) | | | | Attn: Dr. A. L. Powell | (1) | ### TECHNICAL REPORT DISTURBUTION LIST ### Page 3 | Dr. G. Barth-Wehrenalp, Director
Inorganic Research Department
Pennsalt Chemicals Corporation | | pr.T.L. Heying Olin Mathieson Chemical Corporation 2 75 Winchester Avenue | | |---|-----|---|-------| | Post Office Box 4388 | | New Haven, Connecticut | (1) | | Philadelphia 18, Pennsylvania | (2) | , | (-) | | imitado i prita 10, i emisyivania | (2) | pr. Henry Freiser | | | Dr. Dudley Williams | | pepartment of Chemistry | | | Department of Physics | | miversity of Arizona | | | Ohio State University | | Tucson, Arizona | (1) | | Columbus, Ohio | (2) | | () | | ooranous, onro | (1) | ⊳r. W. O. Milligan | | | Dr. M. J. S. Dewar | | Rice Institute | | | Department of Chemistry | | Post Office Box 189 | | | University of Chicago | | Figureton 1, Texas | (1) | | Chicago 37, Illinois | (-) | 12000001 23 10000 | (-) | | onicago 31, illimois | (1) | Dr. Roald Hoffman | | | Dr. M. G. Gohan Wind | | Department of Chemistry | | | Dr. M. S. Cohen, Chief | | E-larvard University | | | Propellants Synthesis Section | | Cambridge 38, Massachusetts | (1) | | Reaction Motors Division | 7-1 | Complete Jo, Habbachabeoop | (-) | | Denville, New Jersey | (1) | E-leadquarters | | | Dog D A December | | U.S. Army Missile Command | | | Dr. D. A. Brown | | Redstone Arsenal, Alabama | | | Department of Chemistry | | Attn: AMSMI-RRD (Alfred C. Daniel) | (1) | | University College | | Attied C. Dantel) | (1) | | Dublin, Ireland | (1) | | | | Dr. Joyce J. Kaufman
RIAS | | | | | 7212 Bellona Avenue | | | | | Baltimore 12, Maryland | (1) | | | | bearing of the printing | (1) | | | | Monsanto Research Corporation
Everett Station | | | | | Boston 49, Massachusetts | | | | | Attn: Mr. K. Warren Easley | (1) | | | | V | (-/ | | | | Dr. B. B. Anex | | | | | Department of Chemistry | | | | | Yale University | | | | | New Haven, Connecticut | (1) | | | | • | (-) | | | | Dr. A. M. Zwickel | | | | | Department of Chemistry | | | | | Clark University | | | | | Worcester, Massachusetts | (1) | | | | • | ` ' | | | | Dr. T. P. Onak | | | | | Department of Chemistry | | | | | Los Angeles State College | | | | | Los Angeles, California | (1) | | | | , | \-/ | | |