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ABSTRACT

The detection of stochastic processes in noise is considered,

under the assumption that neither the signal nor the noise need be

Gaussian. The detector structure is found in terms of the semi-

invariants of the signal and noise processes. The general detector

structure is extremely complicated, but a threshold form may be

obtained. For symmetric processes with zero mean and independent

sampling, the energy detector is obtained. Error probabilities are

computed for the energy detector with non-Gaussian signal process

and/or non-Gaussian noise. It is shown that large degradations in

sensitivity occur if the noise is highly impulsive in character, but the

non-Gaussian character of the signal process is found to have very

little effect on the detector sensitivity.
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I. INTRODUCTION

The purpose of this study is to examine the detection problem

for stochastic waveforms in noise, under the assumption that

neither the waveform nor the noise need be Gaussian.

The detection of signals having some randomized parameters

is well known, and the detection of Gaussian processes has been

studied extensively1 ' 2. The background noise is almost always

assumed to be Gaussian, although a small amount of work has

been done on detection in other types of noise 3 ' 4 . The detection

of signals which consist of known waveforms with some random

parameters (for example, random amplitude or phase) is important

in radar and in some types of communication systems which use a

small number of fixed waveforms to transmit digital data. The

detection of Gaussian processes is important in radio astronomy

and in radiometry.

The transmitted signals used in most communication systems do

not fit into either model. A communication signal usually has an

extremely complex statistical structure, and in many cases of

practical importance the statistical structure is unknown and cannot

be represented by a convenient mathematical model. Speech is a

case in point.

The assumption of Gaussian background noise is valid in most

applications, since the noise is usually dominated by receiver noise.

In some situations of practical interest, this is not the case. Nort-

Gaussian background noise is found in underwater sound propagation,

in VLF reception, and in reception in the presence of countermeasures

or other man-made interference.

Under these circumstances it is natural to inquire whether a

more complete statistical description of the signal and noise might

be of value. We shall assume only that the signal and noise are



additive and independent of each other, and that certain statistical

quantities (moments or semi-invariants) exist. Due to well known

analytical difficulties, we shall not usually be able to obtain closed-

form solutions. Threshold detectors and series expansions are,

however, possible and indicate the general nature of the optimum

detectors.
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II. STATISTICAL PRELIMINARIES

An arbitrary random process y(t) may be described at a

single time t = t1 by its ensemble statistics of the first order.

The first order distribution is

W 1 (yi, ti)= Prob [y _ y, att t 1 ] , (=)

which gives the distribution of values of y(t) at time t = ti, when a

large ensemble of similar processes are measured simultaneously.

If y(t) is measured at two times t = t 1 and t = t 2 P the two first-

order distributions are not usually independent if t 1 - t2 is

sufficiently small. The second-order distribution is their joint

distribution

W 2(y1, t;y 2 1 t 2 ) = Prob[y s y, at t=t and y _< y at t = tZ].

(2)

The second-order distribution is related to the first-order

distribution by

W 2 (yl'tl;y 2 t 2 ) = Wl(y,'tl) " W 2 (yZ't 2 lyi'tl) , (3)

where the conditional distribution is

W 2 (yZ, tZIyl, t1 ) = Prob [y ! Y2 att= t. given y • y, att=t]

(4)

Similarly, the n-th order distribution Wn(yi, t 0y 2 9 t 2 ;... Yn' tn)

describes the ensemble statistics of measurements taken at n

times: t , t 2 , ... P tn. Conditional distributions are defined by

obvious generalizations of (4).

The n-th order distribution is a distribution in n random

variables and has the usual statistical properties of an n-variable
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distribution. The expected value of any function G(y,. Y Yn)

of the variables is

E(G) = f ... f G(y,.. .yn) dWn(yistl;... ;Yn, tn) (5)

The characteristic function is

4(u 1 , u 2 ,... , un) = E [exp(iu yt + iuy2 2 + ... +iiuY)], (6)

and the moments and semi-invariants may be defined in the usual

way as the coefficients of the expansions of + and log + into power

series.

The distribution W may be discrete, continuous, or of mixedn

type. It is continuous if the distribution function W is continuousn

and if the density function

anw
nW n(Yj' ti;" "" ;Yn# tn) a .n ... a - (7)

yj Y2  Yn

exists and is continuous everywhere except possibly on a set of

probability zero.

The random process defined by this ensemble of random

waveforms y(t) is stationary (in the strict sense) if the hierarchy of

distributions Wn is independent of the time of measurement. The

first-order distribution W is entirely independent of the time of
measurement, and the higher-order distributions depend only on

the time differences t2 - ti, t 3 - t, . tn - t1

In practice, measurements of statistical quantities cannot be

made on an ensemble of random waveforms because only a single

source of the random process in question is available. We must

then measure the time statistics, that is, the statistics of a single

member y(t) of the ensemble. Let t = to be an epoch, and
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consider measurements made at times t = ti, t 2 , ... , t. Let

Yk = Y(to + tk) and let G(y, ... - yn) be an arbitrary function of the

measured quantities. Then the time average of G is

T/2

(G(yj, y 2 . = im G(yl 8, yn) dt . (8)
T - co -T/Z

This average exists if G is a bounded function. It can easily be

shown that the time average is independent of the epoch t and

depends only on the time differences t 2 - ti, t 3 - ti, ... tn - t

This average can therefore be expected to be equal to the ensemble

average E(G) defined by (5) only for stationary processes. It is

not sufficient for the process to be stationary, since, if it consists

of two subprocesses with different statistics, the time average (8)

will depend on which subprocess the waveform y(t) belongs to.

If, however, the process is stationary and has no stationary

subprocess whose probability is different from one or zero, then

the process is ergodic and the time average (8) is equal with

probability one to the ensemble average (5).

In this case, we may determine the statistical properties of

the n-th order distribution Wn(Yj, t1;... ;yn' tn ) by measurement of

the corresponding time averages of the single random waveform

y(t) which is at our disposal. The average value of y(t) is

1 T/2

(y = lim T j y(to+ t) dt , (9)
T - co 0T/

and its mean-square intensity or average power is

2 1i T/2 2
<yZ= lir - Y(to+t)] dt 0 (10)

T -. o -T/2

Similarly, moments of all orders are defined by
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( 4 T/2 v1
( Y2 = I 1 0

T1 - cOD -T/2 o

v v

y(t 0 + t 2 )A ... [ Y(to + tn) dtO (0i,

These time averages are equal with probabilit one to the
2 1 " n ) o f t e

corresponding moments E(y), E(y ), E(y1  Y2 ... ) of the

distribution Wn
The average (yly 2 ) is the autocorrelation function of y(t).

The various higher-order moments are similarly equal to higher-

order correlation functions of y(t). Knowledge of these higher order

correlation functions is equivalent to knowledgc. of some of the

higher-order moments of the ensemble distributions.

We need not assume in the following that the processes

considered are ergodic or even stationary, since we shall usually

assume that we know the n-th order ensemble distribution. Our

results will be obtained in terms of the moments of the ensemble

distribution, and these moments are equal to the corresponding

higher-order correlation functions when the process is ergodic.

Higher-order moments and higher-order correlation functions are

merely different descriptions of the same statistical quantities.
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III. THE STATIONARY POISSON PROCESS

A very general class of random processes can be constructed

from sums of the form
00

y(t) = 7- am u(t-tM)
m m(o

where u(t) is a known waveform, and a and t are randomly

distributed amplitudes and epochs. If we assume that the epochs

t are uniformly and independently distributed in time, then them

probability that exactly N impulses u(t) will appear in an observation

interval Fto, to + TI is given by the Poisson distribution

PT(N) T)N(exp RT 13)

where n is the average number of impulses per unit time.

The n-th order distribution of y(t) is
CO

W n(Y 1, t I;... ;Yn, t n)= F, PT (N) Wn(Yl. t I;... ;yn, t n IN), (14)

N= o

where Wn(y 1 , tt;. ;ynt thIN) is the n-th order distribution assuming

that exactly N impulses are present. The characteristic function

of this conditional distribution is
n

IUN) = E[exp( X iunYN~t1 ))] ( (15)
1=1

where YN(t) is a waveform of the form (12) with exactly N impulses

with the observation interval. If the amplitudes am have the

distribution w(a), then

+ OD1t +T

4(u.'''"unIN)= -daw(a)" 4 jt exp ia uIultI-tldtj"

(16)
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Then the n-th order distribution (14) has the characteristic function

OD (WT)N
u,.n)• . exp

N=OT(l u) N=o[-T

[1 +00t +T n N
•+ w(a) i exp {ia U UlU(tI-t))] (17)

-OD t 0
+ OD t +Tn

exp E + cc w(a) j t {exp (ia F uJu(tI-t))-l}dt].

-Oc t 0=10

As T -• co, the limits of integration become (-co, + co).

The semi-invariants of this process are the most convenient

means of description. Expanding log + (uI,..., un) in a power

series. we find that the semi-invariants of order II + 12 + ... +In =L

are

•+cc •+0o 11 ['1nt)I t
x(L) j- aLw(a) da [u(t1 -t)] "... n nd
I IZ ... Inn -Co -cO

(18)

The first-order semi-invariant (mean value) of the process is
+÷co

1t + OD u(t) dt (19)
-cO

and the second-order semi-invariants are

= (tj-tk) = u + (t)u(t+t-tkdt (20)

-cc

with similar expressions for the higher-order semi-invariants.

The limiting case as 'R -coo of the Poisson process is the

Gaussian process. All semi-invariants (18) become infinite as

W -co, but we may normalize the process so that its mean is zero
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and its second-order semi-invariants are independent of W by using

the normalized variable y *(t) = y(t) - Xl/v/n. The semi-invariants

of the normalized process are

(L) a .. tt)] dt
12 n (-n) O

(ZM)

for L t 2, with X*(I) = 0. As W -co, all semi-invariants of order

L > 3 vanish, and we obtain a Gaussian process with second-order

semi -invariants

()q) -7Z f+11
=k a a u(t) u(t+ti-tk) dt . (22)

The Poisson processes can be used to construct a random

process having given higher-order correlation functions, if a

deterministic waveform u(t) can be found with the required higher-

order correlation functions.

The Poisson process is a representation of the output of a

linear device which is driven by a series of impulses with random

amplitude and time of arrival, since the waveform u(t) may be

taken to be the impulse response of the linear device. It may be

used to represent shot noise in receivers, atmospheric static in

VLF reception, or swept-frequency jamming in a narrow-band

receiver.
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IV. DETECTOR STRUCTURE WITH INDEPENDENT SAMPLES

The likelihood ratio for a known signal S in noise whose

distribution is F(V) is

A(V;S)= F(V-S) (23)FTV)

is we assume that the noise is additive. If a class of possible signals
with prior distribution ar(S) is to be detected, we use the averaged

likelihood ratio

ju >•SI)F(V-S)dS
A(V) = l r(S) A(V;S) dS = , (24)

d F(V)

where 0 is the class of possible signals. We wish to examine the

characteristics of this likelihood ratio for arbitrary signal statistics

ar(S) and noise statistics F(V). The optimum detector is a threshold

on the likelihood ratio. Our purpose is to determine its structure

and then to find error probabilities.

In order to reduce the distributions ar(S) and F(V) to finite-order

distributions, we consider only sample values of the time-functions

S and V at times t = ti, t2 .... tn and call these sample values

Sit Sze .''' Snand V , V 2 V..., V. The distributions cr(S) and F(V)

are then n-th order distributions of the kind discussed in Section II.

We now further assume that the samples taken at different times

are independent in both signal and noise. This assumption will be

removed in Section V. With independent sampling, the likelihood

ratio is 4co
n n +' -c(S. )F(V.-Sj)dS.

It ... #Vn) = J= ( = j=1 F(Vj)

(25)

and we need only consider one factor of the product. The

detector structure is most conveniently obtained in terms of the

logarithm



n
X(V, ... • V n) = ' X(V) log A (VI,... Vn)

j=i
n +OD

{log f ((Sj) F(V.-Sj) dSj-log F(V)} (26)
pit -00

The expression (26) may be transformed by introducing the

characteristic functions of the first-order distributions of signal

and noise. which are

4S j (u) f O exp Bius ] w(S ) dS j (27)
3 -co

and

+V.j(u) f 0 expliuv .]F(V .'dV (28)

It is easily shown that the characteristic function of the distribution

F(Vi-Sj) is exp [ ýiuVj v.(u) and that the characteristic function of

the distribution

f 0 (S.) F(Vj-Sj) dS. , (29)

which has the form of a convolution, is Js.(u) +V.(U). Since these

quantities are characteristic functions, thiat is, tourier transforms

of the distributions, we may write the distributions as inverse

Fourier transforms in the form

D= dS 1 exp [-iuVj] +s.(u)ýV.(u) du

OD -c c j j 2 C _ i
(30)

and
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F(V) J=O exp [-iuV] 4V.(u) du .(31)

0- 3

Then each term in the summation (26) may be written

X( V)= log _ r(Sj) F(Vj-Sj) dS. - log F(Vjl

S+cn
=log + exp L-iuvj] 4S.(u) +Vl(u) du (32)

-OD3

+OD~
- log j' exp[-iuv ] +V(u) du

-co

This transformed expression for the likelihood ratio has two

advantages over the form (26). It is easy to obtain power series

expansions in the observed data V., since we need only expand the

exponential factor in a power series and integrate term-by-term.

The observed data V here appear only in the exponential factor.

The second advantage is the possibility of expanding the characteristic

functions in terms of moments or semi-invariants of the signal

and noise distributions and thus obtaining a description of the

detector in terms of these moments or semi-invariants.

Expanding the integrals in (32) into power series in V, we have

S exp [-iuV.7 sUv.(U)du = F akVk (33). cODu J J k = 0

and k

exp[-iuVjA4Vj(u) du= r bkV. (34)
-OD k=O

where
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a % (u) +V (u) du (35)k = +00 u
CO

b = (-0 k +00 k+V

Tr- U (u) duk e j OD

The coefficients a k and b k are "moments" of the characteristic

functions. It is easy to show that these coefficients may be

expressed in the form

(-i) k d n F(O) (36)bk dV n

with a similar expression for a k in terms of the distribution (29).

These coefficients could have been obtained by expanding (26)

directly.

The logarithms may be expanded in power series in Vie with

the r e: sult

CO k
X(V ) = E d k V (37)

i k=O

The first few coefficients are

d 0 log a 0 - log b 0
a b

d =- 1 (38)1 a b0 0

Za a - a 2 2b b - b 2

d o 2 1 0 2 1
2 Za z 2b z

0 0

If the random processes are assumed to be stationary, then the

coefficients ak and b k will be the same for each component of the

sampled signal, and the detector structure is
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2 2 2

d(V) do dI(V1 +V +.. n n)+ d 2 (VI+V2 +. .. +V )

3 3 3n
+ d3(V3+V3+...+V ) + ... (39)

We must now evaluate the coefficients dk from (35) and (38),

which does not seem to be possible in closed form in any very use-

ful way. We may, however, obtain series expansions in terms of

the semi-invariants of the processes. These semi-invariants are

defined by

O X m(iu)m
log 4s.(u) = F2 (40)

i m=1

wO K (iu)m
log +v.(u) T mj m m.

The semi-invariants of the distribution (Z9) are the sums Xm+Km

of the semi-invariants for signal and noise whenever the noise is

additive. For a Gaussian distribution, only the first two semi-

invariants are non-zero.

The coefficients are then found to be

• k +0 cO (Xm+Km)(iu)mr

a 0 k! exp m mdu (41)a•= -00 m=1

But we may write

O[ (Km +Xm)(iu)
m  (K 3 +X3 )(iu)3

exp, Y' -m' + 31

m= 3

(K4 +X 4 )(u)4 (X5 +K 5 )(iu)5  [X6 +K 6 +i0(k 3 +K 3 )2 ] (iu) 6

+ 4! + - - + 6!

(42)

+ t (

and then (41) becomes
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k j +oo (X 2+K 2)
a= • f+o ukexp [(X÷+K1 )(iu) U ( u 2 ] du (43)

-00

(-)k co C (i)n, O ~ (X 2 +K2 ) u2 d
F__ k- expX K)u)-- u d

m=3  -OD

where C is the m-th coefficient in the series (42). The integrals

in (43) can be readily evaluated in terms of X1+K1 and X 2 +K 2 from

the known moments of the Gaussian distribution. The coefficients

bk are obtained from (43) by putting km = 0 for all m.

Although the evaluation can easily be carried out generally,

we shall be interested primarily in the detection of processes with

zero mean in noise of zero mean. If we set X = K1 = 0, a considerable

simplification results and we obtain:

3(X_••___ + 3(X4 +K 4 ) 1 2 15(X+K 6 +Ki0( 3 +K 3 ) 3) 3
a0 - K - 6! 77-R+K

2 2 2 2

a / =V=, 2+K (X (X3 +K 3 ) 1 ) 2 15(k 5 +K 5 ) ( I )3+
-K-- TxiT'

1Zi r (5(k 6 +K 6+to(% 3 +K 3 )2 ) 1 3

2 2 2 2 2 2

Similar expressions for bk are obtained by putting Xrm = 0. From-

these, by (38), the leading terms of dI and d2 are found to be:

I K3+X3 K3 i5 K5 +X 5 K5

1(K +X ) Z K27 5T (K +X2 ) K 2
d1=

d2  F I2 K I K I

15 )`6+K 6+10(X 3+K +3() 4 +K 4 ) K6 +IOK2+3K 4

+D. I (X2+K2 )KZ 1+'''
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For Gaussian distributions of both signal and noise the exact

result is given by the first term of d2 , with all other coefficients

zero.

The detector structure may now be found in a threshold form.

If V is small enough, only the first few terms of the power series

(39) need be considered. Generally, a detector which is optimized

for small input signals will be useful for large signals as well.

We may therefore consider a threshold detector of the form

X(V)= d(Vi +... + Vn)+ d2 (V + .. + Vn) . (44)

It is difficult to determine the validity of this approximation, other

than to state that it is certainly valid for sufficiently small input

signals. It is also difficult to determine the coefficients dI and d.,

since the series for them do not seem to converge very rapidly.

The threshold form (44) of the optimum detector indicates

the general character of the detector structure. It is found that the

optimum threshold detector is of approximately the same form as

the optimum detector for a Gaussian process. The weighting co-

efficients are functions of all the moments (or semi-invariants) of

both the signal process and the noise process. The first-order

term ts not zero unless both signal and noise processes are

symmetric, zero means not being sufficient. The exact optimum

detector is a function of all powers of the input data.

The principal conclusion of this section is that the energy

detector, which is optimum for Gaussian processes in Gaussian

noise, is an optimum threshold detector for signal and noise

processes which are both symmetric with zero means. In this

case the higher-order statistics of the processes are irrelevant
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to the detector structure, if one is satisfied with a threshold

detector, although the higher-order statistics have a significant

effect on the error probabilities. If the processes are unsymmetric

or have non-zero means, then the linear term may not be neglected

and the detector structure is more complicated. The general thres-

hold detector is dependent on all orders of signal and noise

statistics, since d 1 and d 2 will appear implicitly and not as an

inessential factor.
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V. DETECTOR STRUCTURE WITH DEPENDENT SAMPLES

Extension of the results of Section IV to dependent samples can

be carried out by the same methods. The likelihood ratio (24) may

be expressed in terms of the n-th order characteristic functions

+c0 +CX

ýv(Ul'*' ''un) = o ... "' -' exp [iu1V1+...+iunVn] (45)

• F(VI,...,Vn) dV 1 ... dVn

and +co+c
an 5(ul...Un)S+0 ... +0 exp riu IS +..iU nSn] (46)

-00 0

•1(Sl, .... S 1 - dSn

The characteristic function of the distribution
+oC +00

'', -Sju.00V(S . n ) F(V S-SI• V n-Sn)dS .I' dS n

(47)

is
ývlul, o...,Un) ýSusu,..u n)

The distributions F(Vi, ... , V ) and (47) may be written as

inverse Fourier transforms, in the forms

F(V 1 .. o,,Vn)=(1 ) 0 +00 expF-iu V +.., -iunVn]

f -00 f -0, nn

+vlul,.un)dul.., dun (48)

and
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n +oD O
(47) = (r) ... J -O exp -iuIV +... -iUnVn

. ýs(Ul,...,un) +v(nl,...,I un) du 1. dun . (49)

Series expansions are obtained as before by expanding the

exponentials, giving for (48) the series

F(V1 ... IV.. b(J) . VJ I V

jt=0 j 2 =0 in=0  •...in

(50)

where J = jl+j2 +. +Jn is the degree of the term in V 1 ,... Vn.

The coefficients are

b(J) = (.•. ) ii
JlJ ...'Jn J Zn. .. n' ( 1 ) 1 (u) ... .(iu

. 4v(Ut, UzI...Un)dua duz ... dun (51)

Similar expressions are obtained for the distribution (47).

If the process is stationary, then all coefficients of order J = i

are equal, and all coefficients of order J = 2 depend only on the time

differences of the times of measurement of the corresponding

samples V. and Vk*

The series (50) must now be transformed into a series for the

logarithm of the distribution F(V , V2 , ... , Vn). The first few

terms of this series are readily obtained, and the detector is found

to have the form

X(Vit...Vn) do+ di (Vi + ... + Vn)

n n
+ F E dkL ViV k +... (52)

Jzt kat



Explicit expressions for the coefficients in the series (52) may be

obtained in terms of the coefficients of the series (50) and the

analogous series for the distribution (47). It is found that

do =log a(0) - log b(0)

a(2) b( 2)d : - M - '

Jk -'k if j; k (53)
jka b

a(.) La()] b(2 ) Lb(1)]

d i j A 2[b(0 )]4

Expressions for these quantities may be found as before in terms

of the semi-invariants of the signal and noise processes.

The detector structure for dependent samples is seen to be

quite analogous to that for independent samples. Threshold

detectors may be defined in the same manner.
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VI. ERROR PROBABILITIES

The approximate computation of error probabilities is simple

when a large number of independent samples are available or when

the observation time is long compared to the reciprocal band-width

of the noise and the signal process. In this case, the distribution

of the detector output is approximately Gaussian, and we need

only compute its first and second order moments.

To simplify the calculations, we shall compute error

probabilities only for independent samples. Extension to dependent

samples is obvious, and the results should be similar when the

observation time is long. We shall also consider only the

quadratic threshold detector with symmetrical signal and noise

distributions, which has the form

2 2 V2
>T(V) = Vi+Vz + .. +Vn 2 (54)

In this case, the mean and variance of the detector output are

easily calculated and well-known. The mean is

n
a1 = 7 = n V55)

k= I

and the second moment is

n n n
a2= V Vk+ 7 Vk=I j=I k=1 i k

j- k

n V + n(n-•I)(V ) (56)

where V m represents the m-th moment of any one sample of the

waveform V. The variance is then

2 2 7 52
Cr =a 2 - aI nV - n(V) (57)
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These quantities may be conveniently expressed in terms of the

semi-invariants of the signal and noise processes. When both

signal and noise are present, we have

a I = n(K 2 + V2 )

2 n(K4 + X4 ) + 2n(K 2 + X2 ) 2 (58)

When only noise is present the mean and variance are given by the

same expressions with X4 = X2 = 0.

The fourth-order moments (or semi-invariants) play an important

role in the error probabilities. If two processes with the same

power (equal X2 ) are to be detected, the probabilities of detection

will differ significantly when the fourth-order statistics are

different.
3

probabilities for more general detector structures may

be treated similarly. If a polynomial of order K is used to represent

a threshold detector, then the input statistics of all orders up to

2K will be needed to determine the error probabilities. If the

samples are dependent the cross-moments will appear, again up to

order 2K.

Computations of error probabilities are given in Figures 1, 2,

and 3. In each case, n = 100 independent samples have been used.

The effects of the fourth-order statistics have been represented by

the coefficient of skewness

K 4  X4
YZ or .7 (59)

K 2  X

of the noise or signal distributions. A Gaussian distribution has

2= 0. Calculations have been made for y, = 0, i, 5, 10, and 20. If

the non-Gaussian distributions are considered to be Poisson

processes (Section III), then increasing coefficients of skewness

represent increasing impulsive character of the noise.
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Each curve represents the probability of detection Pd of the

signal process with a Neyman-Pearson detector whose false alarm

probability is 10"2. For convenience, the noise variance K 2 is

taken to be unity. The probability of detection Pd is plotted against

the signal variance X2 , which when normalized may be considered

to be the signal-to-noise power ratio.

Figure 1 shows the effects of non-Gaussian background noise.

The signal process is Gaussian for all curves shown. The

increasingly impulsive character of the noise, as y 2 increases,

degrades the probability of detection of the signal process. With

highly impulsive noise a substantial increase in the signal power

may be needed to obtain the same probability of detection.

Figure 2 shows the effects of non-Gaussian signals received

in Gaussian background noise. Some degradation of the probability

of detection occurs, but the degradation is much smaller than that

observed with non-Gaussian background noise.

Figure 3 shows the probability of detection of a non-Gaussian

process in non-Gaussian no se when both processes have the same

coefficient of skewness. The degradation in Pd is only slightly

larger than that observed when the noise alone is non-Gaussian.
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VII. CONCLUSIONS

The optimum detector for a non-Gaussian stochastic signal

in non-Gaussian noise can be obtained as a power series in the observed

data. Explicit formulas for the coefficients of this power series

in terms of the characteristic functions of the signal and noise

distributions have been calculated. Series expansions may be

found for the coefficients in terms of the semi-invariants of the

signal and noise distributions, but the convergence of these formal

expansions is questionable.

For weak signals, the case of principal interest, threshold

detectors, which are optimum for sufficiently small input signals,

may be obtained by truncating the power series at some convenient

number of terms. If the power series is truncated after quadratic

terms, a detector is obtained which is exactly optimum for Gaussian

signal and noise distributions and which is optimum as a threshold

detector for non-Gaussian signal and noise.

If the signal and noise distributions are both symmetric with

zero mean, the linear terms are zero and the quadratic terms alone

appear. If the distributions are not symmetric, the threshold

detector is a combination of linear and quadratic terms. The

coefficients of these terms usually involve all moments of both

signal and noise distributions, but in some cases the coefficients

may be removed as inessential factors.

The error probabilities for the quadratic detector are strongly

influenced by the fourth-order statistics of the signal and noise
3, 4processes, as is well-known , Computations of sensitivity

for various coefficients of skewness of the signal and noise
distributions have been made for the quadratic detector with

independent samples. A Neyman-Pearson detector with a false-
alarm probability of 10" has been used. A considerable loss of
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sensitivity is observed with non-Gaussian background noise. With

a skewness coefficient of 20, as much as 5 db more signal power

may be needed to obtain the probability of detection found with

Gaussian noise background. Arbitrarily large losses of sensitivity

may be obtained with very large skewness coefficients, which

correspond to highly impulsive noise.

The detection of a non-Gaussian process on the same basis

shows that losses of sensitivity are relatively small. The

probabilities of detection are only slightly less than those obtained

with a Gaussian signal of the same power.

When a non-Gaussian signal is detected in non-Gaussian noise,

the probability of detection is degraded by about the same amount

as if only the noise were non-Gaussian. It appears that the highel -

order statistics of the signal process are relatively unimportant,

while those of the noise process are quite significant.
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