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ABSTRACT

The development of ship hull forms of decrecased wave-making
resiscance by mathematical methods has received some investigation {n
the past few years but little application. However, it appears that
much more application can be obtained by use of improved mathematical
methods recently developed. The theory and effectiveness of work done
by other authors is reviewed. In addition, the mathematical machinery
necessary to calculate hull forms by a method of steep descent is
developed and applied to a simplc example. The necessary resistance
equations are formulated. A closed form solution is obtained for the
smoothly varying portion of the wave-making resistance of an assemblage
of sources and sinks traveling near the surface of the water. An
integral for the interference terms which comprise the fluctuating
portion of the wave~making resistance is also presented in the shape of
a Laplace transform. It is concluded that much more extensive use may
be made of mathematical methods to improve hull forms than has been the

case heretofore.
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I. Iantroduction

The purpose of this paper is to examine what can be done to calculate |
the shapes of ghip hulls which will have less wave-making resistance than
those developed by ordinary drafting techniques. The work done in this
field will be reviewed and it will be shown to contain evidence that the
mathematical approach has a large potential for making improvements. This
has not, however, been exploited for two reasons. First, the mathematical
techniques used so far are not flexible enough to be anplied to many
practical cases. Second, the wave-making resistance formula on which these
techniques are based has not produced precise predictions of experimental
results, and this has cast doubt on the validity of computations derived
’from it. It will be pointed out in this paper that a way of bringing theory
and experiment into agreement which has been worked out by Inui for certain
special cases can probably be extended for more general application. 1In
addition, a mathematical method of more general applicability than those
used until now will be discussed ~- the method of steep descent -- and the
nmathematical wachinery and reformulation of the wave-making resistance equations
necessary to permit its use will be outlined. At this point it will be conclu-
ded that the way is now open to more extensive use of mathematical cechniqués
for the calculation of practical ship forms of decreased wave-making resistance.
A few words onlthe history of the wave~making resistance problem may
serve to explain these comments, and show how the stage has been set for au
advance. In the past, although there has been a great deal of experimental
measurement of the wave-making resistance of ships, there has been little use
.of mathematical methods to find ways to decrease this resistance. Since
William Froude demonstrated by his experiments the general correctness of the

modeling law for wave-making resistance in the 1870's, it has been possible



for naval architects to predict from model tests the wave-making resistance of
the ships corresponding to the particular models. This prediction added to an
estimate of the "frictional resistance" has been accurate enough to establish’
the horsepower required to drive the full-gized ships. Many thqusands of
models have been towed and good predictions made. N{val architects have also
understood the relationship between the overall dimensions of a ship and its
wave-making resistance, 1t has been recognized, for example, that if a given
amount of displac.ment is placed in a long ship, this ship will probably have
less wave-making resistance than a shorter ship of the same displacement. Until
r?cently, however, there has been little application of detailed understanding
of the theory of wave production by ships' hulls to the improvement of tnose
hulls. So little systematic improvement was made over many years that a
certain set of hull designs developed early in the twentieth century, Taylor's
Standard Series, was long taken as a stanfard of goodness. If a hull design
had as little wave resistance as Taylor's models, it was considered a very
good design. Most designs had more,

| Desgpite the lack of progress in application of theory to improving hull
designs, a considerable amount of theoretical understanding of wave resistance
was developed by a few investigators, starting with J. Michell, who published
a classic paper on the subject in 1898. BJ. Michell derived an expression for
the wave-making resistance of a thin‘hull moving on the surface of an ideal
fluid. Sir Thomas Havelock followed with a long series of papers in which
this basic theory was applied, expanded, and reformulated in a more tractable
form, which has been shown [2] to be equivaleat to the otiiinal theory of
Michell., He considered the hull to be the set of closed streamlines generated
‘by a set of moving sources and sinks. Unfortunately, two factors caused naval

architects to disregard the Michell-Havelock theory. First, the vesults of



experiment, although qualitatively the same as the predictions of the theory,

never agrzed with it exactly. Second, the application of the theory to
practical hull forms required a great deal of calculation. )

Several developments in the past ten years appear likely to permit far
more use of theoretical analysis in the development of hull forms of less w;ve
resistance, Not the least important is the general availability of high speed
computers. In addition to this, however, Takao Inui in Japan has laid the
groundwork for a more accurate calculation of the actual wave resistunce.
First, he has found that by describing the hull by the streamlines generated
by the set of sources and sinks employed in Havelock's theory rather than
using a simpler approximation to the hull, he can get much better agreement
with experiment than before. Second, by using a small number of semi~empirical
.parameters to account for the sheltering effect of the hull, the motion of the
wake, and the effect of linearizing approximations, he can get precise agree-
ment between experiment and theory [3] . In addition, he has demonstrated
theoretically and experimentally that it is possible in the case of certain
hull shapes to add a spherical appendage at bow and stern im such a locatiom
as nearly to cancel the bow waves and stern waves produced by the hull [4] .
In this country Weinblum developed tables which have permitted the ugse of
Ritz's method to find improvements in hulls which can be described by a limited
set of polynomials (5] . Even though the calculated resistance does not agree
exactly with the experimental resistance, several hulls developed in this way
have been found experimentally to be considerably better than those of the
same dimensions developed in the ordinary way.

Using a different approach, Karp, Kotik, and Lurye have succeeded in
‘applying the classical calculus of variations to the problem of finding the
strut of minimum wave-making resistance [6] + The particular strut is one whicl

can be described by a distribution of dipoles along a plane of finite length



but infinite depth, the distribution being independent of the depth and
degcribed between the ends of the plane by functions integrable when multi-
plied by a certain Green's function. While the results are of limited practigal
tmportance, they do demonstrate that a solution does exist in this case =-- &
matter concerning which there had been some question.

Despite these encouraging developments there has not yet been developed
a general approach which will permit the systematic improvement of prac;ical
hull forms. It is not always possible, for example, to adopt a form which
can be expressed as a polynomial, or to install a sphere beneath the bow.
In any case most of the shape of the ship will be dictated by what it has to
carry, stability, and other considerations, so that features to reduce wave
resistance wmust be made compatible. There seems to be no reason why an approach
‘cnnnot be developed which will do this. This paper will first review the work
which has been done toward finding ways to reduce the wave-making resistance
of hulls, and will then suggest how a more general approach, using a method
of steep descent, may be applied to improve any hull form whose major

characteristics have alrcady been set.



I1., Derivation and Discussion of Wave Resistance Equations

Both theory and experiment show wave-making resistance of a ship results
from the system of waves which the ship leaves behind as it travels over the ,
surface of the water. Although at a constant ship speed the waves made by
the ship form a pattern which appears to move with the ship, this pattern
actually extends farther and farther aft with time.

The energy required to increase its size is provided by the ship. Since
the equations which describe both the pattern and the energy required to pro-
duce it have been developed by others, and the development is quite difficult,

only as much of the derivation will be included here as to make clear the

limitations in their use.

1. ASSUMPTIONS AND EQUATIONS OF MOTION

The assumptions in the first part of the following discussion are thoae(:7]
employed by Lunde. They will be modified later in certain cases to account
for some semji-empirical corrections made by Inui. The notation is similar to
that used by Lunde, although not exactly the same, It will be used through-
out this paper for the sake of consistency, even though it differs consider-
ably from that of many of the authors referred to. The assumptions are these:
a. The fluid is incompressible, homogeneous, and of zero viscosity.
b. The motion is irrotational. It can therefore be described by a velocity
potential @ such that the fluid velocity vector is given by
? = -« @, Hence if : -T u + -j"v +I w, where ?, -j", and-l: are unit vectors
parallel to the cartesian coordinates x, y, z, the fluid velocity has the
components .

um-@, ve-fy,w=-90.
.c. The wave height is small in comparison with the wave length, so that the

wave slope is a small quanuity,

wr



d. The ship has been moving in a straight line on calm, infinitely deep water

for an infinitely long time,

e. The motion set up by the ship can be approximated by the motion produced ,
by a set of sources and sinks or doublets.

f. The wave-making resistance is independent of the frictional and eddy
resistance of the ship and can be calculated separately.

The notation will employ cartesian coordinates throughout. The following
conventions will be employed:

The axis of x will be in the mean surface of the water, and it will be
oriented so that x is positive in the direction in which the ship is moving,
y is positive to starboard, and z is positive upward. The origin of the
x-coordinates is taken in the ship and the x-axis moves with the ship.

The steady speed of the ship in the x direction will be c.

The acceleration of gravity will be g.

The parameter K, = gle.

The elevation of the surface of the water will be S, and this will be
positive in the up direction. It will take the value zero at z = 0 (the mean
position of the surface).

For differential equations we have the following:

25 320 + 22¢ = .
A A - A D)

This is the equation of continuity.

g;g + K°§! =0 onz=0.
az

0.-(2.2)
This provides the equation of wave motion on the surface.
In addition, it is possible to relate the elevation of the surface to the

velocity potential by the following equation:

G = - (clp) g_g.

«e+(2.3)



2. THE VELOCITY POTENTIAL OF A MOVING SOURCE

Using the assumptions discussed above, an expression for the velocity
potential has been derived both by Peters and Stoker and by Lunde, using
different approaches. In this section their results will be shown to be
equivalent. |

It 1is necessary that the expression for ¢ be a solution of both (2.1)
and (2.2), that it approach cx at infinity, that it give a pattern which in
the vicinity of the ship moves with the ship, and that the water be undisturbed
at a relatively small distance ahead of the ship. All these requirements are
met by solving (2.1) and (2.2) as an initial value problem and then letting
the time go to infinity. Peters and Stoker used this device of letting the time
go to infinity rather than the technique of adding an artificial frictionmal
resistance used by Lunde. In this way Peters and Stoker obtained a Green's
function which can be interpreted as the velocity potential of an isolated
moving source [8]. Let m be the strength of the source, and let (h, k, -f) be
its location in cartesian coordinates. Then if we convert the Green's function

into Lunde's notation we get the following expression for the velocity potential:

@ =

m - m +
Jx-h)2 + (y-k)2 + (2+£)2 (x=t)2 + (y-k)2 + (z-£)2
2
+ 4mg Re 5 SeK(z-f) elK(x-h)cos8 cos[k(y-k)sin@] dKk do -
L ° 1 g ~ K ¢2 cos@
= m - m -
x-h y= o+ J(x-h)% + (y-k)¢ + (z=£)¢

2
- 4mK, Re ﬂg 3 eK(z=£) o-iK(x-h)cos® cos [K(y-k)sin@] sec20 dK do
L o I K - Kysec20

ees(2.4)



The contour L goes from the origin to infinity along the real axis but is
deformed above the real axis in the vicihity of K = K sec?0.

In the case of a ship there will always be symmetry about the x~z plane,’
gso that for each source m at (h, k, -f) there will ﬁe another at (h, -k, ~f).
It follows that the velocity potential will also be symmetrical in the x-z
plane so that

éﬂ (x,O’z) - o —000(205)
Y

From this it follows that if we describe a ship by a set of sources distri-
buted symmetrically with respect to the x-z plane we will get a velocity
potential corresponding to any cymmetrical pair vhich is the sum of two

velocity potentials. This is simply

g* = #(x,y,z; h,k,-f) + @(x,y,z; h,-k,-f) es.(2.6)
If we perform the addition indicated in equation (2.6) we obtain the

velocity potential explicitly.

gk =
m - m o +
v (x=h)2 + (y-k)Z + (2+£)? J (x-h)2 4+ (y-k)Z + (2-£)2
+ : m - m ) -
J (x=h)2 + (y+k)2 + (z+£)2 J (x-h)2 + (y+k)2 +(z-£)2
n/2 )
- 4mK, Re ‘5 J eK(z-f) e'lx(x‘h)c°5°(2)cos(Kysin@)cos(ﬁkqng) sec?0 dK d@
" o L K-Kysec2f
eeal(2.7)

The contour integration of (2.7) gives for the last term the value 2™ Res(KosecZO)_
Hence 1f we call the denominators of the first four terms of (2.7) Tys Fpy T3,

and r;, w2 have the following results:

e



# =m(l-1+1-1) -
¥l T2 T3 T,

2 2.
- 16mK, ﬂs eKo(z-f)sec ositt[&,(x-h)uu:ﬂ] coo[KgysinOsecZO] x )
3 .

x cos [Kok sinOeecZO] sec29 do . cee(2.8)
This is the wave pattern produced by a symmetrical pair of sources, one to
port and one to starboard of the centerline of a ship. We observe that at
g = 0 the terms in r; through r, cancel out and leave us with the integral
term only.
We may compare this with Lunde's expression for the elevation of the

surface at a great distance aft of the ship. To do this we take

Ko(z-f)sec20

2
‘S- -(c/s)g{f_ =16 m l(oz(c/z) ”g e cos[Ko(x-h)aec9~] x

. X cos [KoysinOseCZOJ cos[ Kok 8in0® sec29} sec30 do
ves(2.9)

For k = 0 this is equivalent to his expression (7.10):

‘S- 4Ky ,15; zn:'lmacos[l(o(x-h‘) sec 0] cos [l(o(y-k,)seczﬁ sinO] x
c -T2 3=

x exp(-Kof sec?9) sec9 deo
vee(2.9a)

The depth -z will be zero in both equations. The change in range of integra-
tion from ~7/2 to 7/2 down to O to 7/2 together with the fact that equation
(2.9) assumes two sources -- one port and one starboard -- each of strength m,
while Lunde's equation refers to only one source, explains the difference of a
factor of 4 between the equations. The identity

K,2(c/g) = Ko(a/c2)(c/g) = Ko/e

complctes the demons tration.,



Since Peters and Stoker obtained their result without recourse to artificial
friction laws, the fact that their equation is the same as Lunde's shows
that Lunde's later counclusions following this equation do not depend om the )

existence of such friction in water¥,

3. THE RESISTANCE INTEGRAL

1f a ship travels into quiet water it will cause an increase in the wave
energy im the region into which it advaaces. By calculating the rate of change
of the wave energy in a large region containing the ship together with the
smount of wave energy which crosses the boundary of the region it is pessible
t.o calculate the amount of energy which the ship converts into waves. Since
we know the motion of the water everywhere once we have the velocity potential,
‘4t is certainly possible to calculate the emergy put int§ the water ‘by the
ship im this manmer.

Let there be a fixed large area of the water surface into which the
ship is advancing. It is sufficient to bound this by two infinite planes,
one well forward of the ship and one well aft of it, each at right angles to
the direction of the ship's motion. We will call these respectively plane
A and plane B, If we let E(A) and E(B) be the rate at which wave energy crosses
into the area across boundaries A and B, W(A) and W(B) be the rate at which .
vork is done on the fluid within these boundaries at the boundaries, R the
wave resistance and ¢ the speed of the ship, then we can write the enexgy

balance on the large region:

*In discussing such comparisons as thege, it is worth remembering that the
definitions of m used by som= authors (Inui, for example) differ from the ome
used by Lunde by a factor 47/c. This results in a corresponding factor c]k‘lr

in the coefficient of the expression for the wave elevation ‘S

10



Rc -E(A) - E(B) + W(A) + W(B) = 0 | v++(2.10)
Since the plane far ahead of the ship is undisturbed by the ship's motionm,
we can set E(A) = W(A) = 0. We then can write the wave resistance of the \
ship as
ne /e [2®) -vm] cee(2.11)
By substituting for E(B) and W(B) their equivalent in terms of the velocity
potential and going through some extensive manipulation, Lunde obtains giully

an expression for the wave resistance [ 7].

(2
R= 161r,px°2 g (@2 + Poz + Qg2 + Qy2) sec30 do «e+(2.12)
d
-Kofuczo 7]
P S6e cos(R h secO) cos (K k sin® sec20) ds
e .
~Kofsec® . .. U : :
R SSe sin(K hsecO)sin (K ksin® sec20) ds > @ 13.)
-Kofueczo e
Qe S6e sin(K hsec@)cos (K ksind sec?Q) ds
s
=K,Esec20
Q" SGe cos (K hsecO)sin(K ksin® sec20) ds

o

Here 6 is the source density at any point (h, k, ~f) on the hull or within
its boundary and s indicates integration over the volume of the hull, The l
quantity 4 is the density of water. _

It is possible to simplify this expression even further in the case that
the hull is symmetrical about the centerline plane. Then the following result

can be used:

2
o
P s
;- S o [xo(hcoao + kninO)oec%] exp(-lofuczﬂ) ds eee(2.18)
Q s sin

11



It should be emphasized that in this case it is necessary to carry out the
integration over both halves of the ship, since the simplification has made
the result correct only when the two halves are added. This should be
apparent from an examination of equation (2.15), vhich is not ea even
function of k.

Another relationship which makes the interactions more obvious can be
derived from equations (2.12) and (2.13). Here we will substitute a finite

sum for the integral.

n
6()~—> L

r=]
1f we substitute this in equations (2.12) and (2.13), combine terms and

simplify, we finally get the following expression:

n 2 2
R=16mk2 § ¥m? ng e~2Kofy8ec™® 4o 39 a0 4+

Y=l o
n- 72
+2 E T mm, }e’xo(ff*fl)'e“z“ coa[xo(ht-h,)aew] x
s=r+]l r=l
x cos[xo(kt;k,) sinanczﬁ] sec3@ dog eee(2.16)

Equation (2.16) may be put in the form of a Laplace transform., We will

let t+l = sec2Q. Then equation (2.16 can be written in the following form:

n [ )
R = 161r/,x°2 Zlmr 29°Prr§ Pyt ast)}/2 ¢=1/24 '
p= 2 o

n n-1 “Pra 2° =p..t
+ 28 5 mame ) e unyt/?e12 cos[q"(ln)”z}cool;;.cllz(lﬂ)”z]dt
s=r+l r=l 2 o
vee(2.17)

Here we have set

Prr = 2Kofpi Prg = Ko(E+£.);  qpg = Ko(hp-hy); and qp, = K (k,~k,).

12



It should be observed that the expression is an even function of k, snd there-
fors it provides the .same valus for the interaction between a source on the
centarline and either of two 'oy—ettic sources off-center on either side.
Equations (2.14) and (2.15) provide a different value for the interaction
term between a source on the centerline and a source on the pbrg side than
they do for the interaction term between the source on the centerline and

the lyintrical source on the starboard side, and provide a correct result
only when all the interaction terms are summed. This complicates interpreta-
tion., On the other hand, equations (2.16) and (2.17), which are actually more
genexal, provide terms which can be interpreted directly as interactions
between the sources n and m.. In consequence, equation (2.17) will be used
in much of the discussion later.

The first integral of equation (2.17) can be evaluatad in closed form.
Let us call the resistance corresponding to this first term R(n, and that
corresponding to the second term R(z). and let R be their sum:

R = R 4+ () ...(2.18)

We may now write R(1) in closed form. We will let R(1) be described by a sum.

n
1
AG A R, .ee(2.19)
=]
2. L o2.p p -
Rrr = ltnszo Prt Illr e £y kl(ptr/Z) ‘ 000(2020)

The function kl(prrlz) is Bateman's function. Derivation of equation (2.20)
is outlined in agppendix 1. For very small K,» which corresponds to very large
¢, the value of R, 1is small. As K, increases, R . increases, reaches a
maximum, and then decreases. The temm R(n, wvhich is the smoothly varying
part of the wave-making resistance, is a function only of the depth of the
pourﬁn, not of their position along the hull or their distance outboard of the

centerline,
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There seems to be no closed form value for the terms which comprise

l(z). On the other hand, they are closely related in form to the terms which

co-priu.k(l). Let us vrite R(z) as a sum. )
n n-l
RD w2 & Ry vee(2.21)
s=r+l r=l

Then we can write
- “ t
R ™ 15"0102111_.!!4._;_ Prs 05 e Prs (1+t)1/ 2p=1/2¢04 [ q"(l-l-t)ll 2] x
x cos [‘léa tl’zuﬂ)l/z] dt e o(2.22)

it is possible to show if q;. = 0 that if the integral is taken over a finite
interval from the origin to any zero of cos [qr.(lﬂ)l/ 2 ], the error will

be ler? than the value of the integral from that zero to the next one. The

same can be shown if Qg ™ 0, q;. ¥ 0, except that the zeros referred to are

those of cos [q{..tll 2(1+t)1/ 2] « The demonstration of this is shown in

appendix 1, When both 9%, and q;_. differ from zero, the estimation of the

error incurred by terminating the integration is less simple but it is possible

to get an upper limit by observing that for all t>e,, 1<(1-0-t:)1/2:'1/2 <(1+l/t°)1l2.

Consequently the error will be leas than
“Prgt 1/2 - “Prsto 1/2
‘ :S e Prs (1+1/t°) dt' '(llp") e (1+1/t°) .

Also it is apparent from examination of equations (2.17) through (2,22) that
the magnitude of the interaction term between any pair of sources m, and L
must be less than or equal to the magnitude of the sum of the resistance of

m,. and m  taken separately.

, 211"1 S R, *+R, cee(2.23)
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The equality sign cam hold only if the two sources are superposed. It is,
of course, possible to have a negative value for R.g. The inequality shows
that no pair of sources can interact with each other in such fashion as to

produce a negative total resistance.

4., EMPIRICAL CORRECTIONS

Comparison of the wave-making resistance as calculated by equation (2.14)
with the resistance as measured in model basins has produced good qualitative
agreement , but in general has not produced exact quantitative agreement. In
particular {t has been found that the humps and hollows of the curve of resist-
;nce vs. speed, although of approximately the right separation in speed are
somewhat displaced from their proper position, and the calculated humps and
‘hollows appear exaggerated when compared with the experiﬁental ones, In addi-
tion, there have been some systematic differences in the magnitude of the
resistance. In view of the approximations which have been made in deriving
the resistance equations (no viscosity, squares of velocities other than
ship speed negligible, small alppe of waves, and go forth) these differences
are not altogether surprising. Fortunately, an explanation of the major
differences has been produced by Takao Inui. In the case of a number of
models whose source distributions could be described by simple continuous
functions he has found it possible to correct for these differences with a
relatively small number of semi-empirical parameters [SJ. It appears possible
to extend these techniques to other distributions.

Inui's first discovery was that the agreement between theory and experi~
ment could be significantly improved if the hull form were found by plotting
the closed streamlines produced by the set of sources and sinks employed to
ae.ctibe the hull, rather than using the approximation employed previously. The

approximation used by earlier investigators was this:
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6 = -

o
»

s
@
-4

0ee(2.26)
Here 6 is the source density.n and h and k are the x and y coordinates of the
hull boundary. This approximation is only satisfactory for very thin ships, \
but Inui showed [3} that it is unsatisfactory where t& beam is as great as-
one~=twentieth the length -~ a ship still thinner than any used in practice,

An example of extreme differences in results between using approximation (2.24)
and the actual plotting of the streamlines can be obtained by an illustration

of the results for a two-dimensional source forward of a two-dimensional sink.
In the approximation (2.24) this amounts to an infinitely deep rectangular

barge; however, if the streamlines are traced a somewhat longer, more fair

shape i3 produced ~- atill, of course, in the form of an infinitely deep strut.

Source
motion
Sink (-ml, : -_—
[ “~ Source (+m)

Two~dimensional source and sink by Michell's approximation (2.24).

Source

motion
, Sink (-m) Source (+m)¥ —>

—

Two-dimensional source and sink by tracing streamlines.
His next discovery [3] was that in the case of hulls which have both a
well-defined bow wave and a well-defined stern wave, with no waves originating
between bow and stern, he could bring the calculated and observed humps in

- the resistance curve together. For purposes of calculation of the fluctuating part
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of the resistance he assumed that the stern wave originated a small distance
aft of its originally calculated position. That this should apply to the
fluctuating part of the resistance is obvious from equation (2.20), which
shows that the smoothly varying part of the resistance is a function of
depth, but not of horizontal position. The extension of Inui's result to
the resistance equations discussed above would require that for purposes of
calculating the interference terms the pouitiona'of the negative sources
(sinks) at the after end of the hull would be shifted further aft by a small
amount. This would affect the coefficient 9., in equation (2.22). while
this has not been demonstrated by experiment, it appears to be a reasonable
extrapolation from Inui's findings.

In addition, to correct the scale of the resistance (slightly in error
because of the finite height of the waves), Inui muliiplied all wave heights
as computed by a correction factor yv<1l. This would franslate in the case
of our equations to a multiplication of each m, and m, by the factor v . He
found further that the wave height of the stern waves was reduced by an
additional factor p', and this would require that all sources and sinks at
the after end of the ship be multiplied by a factor B' < 1. Finally, for
purposes of calculating the interference terms only he reduced the amplitude
of the bow wave by another factor a' <<1. This would be equivalent to multi-
plying the amplitudes of sources and sinks at the forward end of the ship by
the factor a' in the calculation of the interference terms by equation (2.22).
This is to account for the fact that the resistance equations were derived
on the assumption that the waves could propagate over the entire surface of
the water, but they are actually prevented from moving aft from the bow through
the water occupied by the ship. Therefore some part of the bow wave is less

efficient than theory would predict in interfering with the stern wave.
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While the theoretical derivation of the four pnraﬁatoro discussed here
is sketchy, they have worked when applied to bdv wave and stern wave smpli-
tudes. Since any ship can be described by sources placed toward the bow and
sinks placed towvard the stern, it appears reasonable to try to transfer the-
results obtained with wave amplitudes to the formulation using sources.
Certainly the case of a hull described by a single source placed forward and
a single sink placed aft should provide a satisfactory candidate for the
transfer: the bow wave starts at the source, and is proportional to its
intensity; the stern wave starts at the sink, and is also proportional to
its intensity. Application of the correction factors Inui derived for the
bow and stern wave amplitudes would therefore apply directly to the strength
of the source and sink respectively, and the correction for the location of
the stern wave would apply to the location of the sink, and the correspondence
would be one-to-one,

Since the calculated curve of wave resistance vs. speed can be made
identical with the observed curve over the entire range of speed by the
introduction of only four parameters (three if we consider that er only
provides a proportionality correction between the curves and does not affect
the shape), it seems reasonable to use these parameters in investigating the
results of small changes in the shape of a known ship. That is, if wa can
correct the theoretical curve for a known set of sourxces and sinks by the
use of these parameters so that it is identical with the experimental curve,
then it is probable that the change in wave resistance we calculate for small

changes in the magnitudes of these sources and sinks will be correct.
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S. RESISTANCE OF A SEMI-INFINITE STRUT DESCRIBED BY A
DISTRIBUTION OF DIPOLES ON THE CENTERLINE PLANE

One form which has been given & great deal of investigation is the semi- N
infinite strut which can be described by a' diotribution »f dipoles over the
centerline plane of the hull. This form has a particularly simple wave-
making resistance formula, and therefore is attractive for investigatiom.
In addition, a plot of the density of dipole moment along the axis of the
ship looks like a plan view of one side of a ship and so permits easy vfnuliu-
tion of the meaning of a particular distribution. The dipole distribution is
usually a reasonable equivalent to the hull ghape. However, there are excep-
tions; for example, Karp, Kotik andLurye found a case where the dipole density
became infinite at the end of a hull, but the actual vid;h of the hull remained
ﬂnite and the shape smooth [ 6]. ‘

1f we start with equations (2.14) and (2.15) and substitute sec?Q = couhzu..

we get the following expressions for the case k = 0 with discrete sources m.:

R =16 n'fxoz‘E(Iz + J2) cosh?u du eee(2.25)

n
I = Xm cos(Kh, cosh u) e-Kofrcoahzu

r=1 aee(2.26)
n 2
J = L m, sin(Koh, cosh u) e~Kofcosh‘u

=]
We may now take any source and an equal sink (i.e. & source of negative sign),
the sink aft of the source by a distance Ah, and combine them to provide a
dipole moment m, Ah. The value of this product we can call M, 1f the hull
is described by a large number of such sources and sinks, it is possible to

combine all the sources and sinks at any one depth into a set of dipoles with

axes oriented in the direction of motion, that is in the x-direction.
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To make this explicit, let us asaume that we have a saet of n discrete
sources at a depth f beneath the surface, positioned along the centerline
plane of the ship. Since the x~direction is oriented so that it is positive .
in the direction of motion of the ship, we will assign the index r so that
the value r=1 corresponds to the most forward source, that is, the one vith‘
the largest value of h for its x-coordinate. The index will increase by
one unit as we come to each source aft of this one. Since the set of sources
must describe a clesed body, it is necessary that the sum of their strengths
be zero.

n

Lm =0, e (2.27)
r=]

th gource and the r+13t source so

We will define the distance between the r
that this distance will always be positive:
Ahr - hr - hr+1 000(2028)

It is now possible to arrange the n sources mt, r=l,...,n, into n-l dipoles

M_ = N(h!), r = 1,...,0-1.

T

Hl -H(hl') - EIA hl ’ hl. - hl 'Ahllz

Hz = H(hz') - (ml"ﬂz)A hz R hz' - hz - 4h2/2

My = H(hs') -(ml-i-nz-!ﬂg)Ah:’ . h3' = hy -Ah3/2 0ee(2.29)

Mp.l = H(h'n_l)-(mr.'...ﬂn-l) a hn-l s hl:'l - hn-i-dhn_llz

The term M _, terminates the sequence, since the next term would contain the
sum (2.27), equal to zero, as a factor. The coordinate ht' is the x-coordinate
of the rth dipole of strength M(ht'). The arrangement just made depends on

taking the source m) as the forward member of the first dipole, and then
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replacing the source m, by the sum ["1"' (-1 + -z)] . The portion -
becowes the after member of the first dipole, and the sum (ln1 + -2) becomes
the forward member of the second dipole. Observe that the dipole "n-l is N
actually determined by the strength of the last source (which will have negative
strength), LI This is clear since '
(nl +my+ . o, ,) = - LR
as a consequence of the require-

ment (2.27) that the set of sources describe a closed body. From this it
also follows that the set of dipoles Lur} is the same whichever end of the
distribution one starts with in making up the source-sink pairs which define
the dipoles.

We may now investigate the special case where instead of discrete sources
.-. we have source density 6 along the x-axis, and the function 6(h) is integrable.
The variable h is the x-coordinate of a point on the centerline plane of the }
hull, We will let the number n in equation (2 29) become infinite in such a
fashion that maxd h,~> 0. Then we can define a new quantity, p(h), which

we will call the dipole density.

pch) = 1dm _M(h') . ... (2.30)
4h>0 Ph

In the limit of large n the quantity h' will coincide with the quantity h. .

Then we obtain the following formula:

p(h) -jh §dn ‘ .00 (2.31)
The lower limit of the integral in (2.31) is the forward end of the source
distribution.
In order to find the wave resistance of such a distribution we must return
.to the definitions (2.25) through (2.29). These give us the following expres-

sions in place of equations (2.26):
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n-1

1= M {cou[xo(h",uh;.n) cosh u] - cot[lo(h; -4h}/2) cosh 9) e-lof,cuhzu -

=) ¥
¥ ah]
a-1 hz )
-5 _m_!un(xoh; cosh u) -u[onh;/z) cosh u] o~Kofrcosh®™n A~
t'lAho
3
n-1 <K, £-cosh2u
% <K,coshuZ M. sin(K,h: cosh u) e Kofr ,» for Ah llull.dh; =4h,.
‘ el
u-1 Ko f cosh?u
= X _#iun[xo(h;uh;/z) cosh u] - stnfk (h -BhL/2) cosh ulfa”o' -
r=14 hy
-1 <K, f.coshZu
- a4, coa(l(oh;. cosh u) sin [(KOAh;IZ)colh u] e Kofr ~
. rwl AR
Ahy
a-1 K, £.cosh?
:/’ K, coshu X M, coa(l(oh;. cosh u) e Kofy u, Ah; small.
r-l . 0.0(2.32) :

We now assume that there are many layers of dipoles of identical distribution
but different depths, so that we can separate the index of the variable f, |
the vertical position on the centerline plane, from the variable h, the fore-
and-aft position on the centerline plane. Then we can rewrite equation (2.32)
as a double sum., We agsume that the depth of the hull is infinite.
n=l oo 2
1 X-K, cosh u & & M, sin(Kh; cosh u) e ~Kofrcosh®u

s=1 r=l
vee(2.33)

n-1 oo 2
XK, cosh uE I M, cos(Kh! cosh u) e Kof coshu
=] =]

We now replace the M, with u(h,f)dh df = p(h) dh df and replace the sums with

integrals. Then we get the following expressions for I and J:
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1 =-K, cosh u S Tp (h) sin(Kh cosh u) e ~Fof cosh?y dh df =
. L o

= «(cosh u)~1 jp (h) sia(K.h cosh u) dh )
L > 000(2-3‘)

o
J =K, coshu § §n ) cosxh cosh u) eFof cosh?u 4 ¢
Lo

=  (cosh n)'1 j p (h) cos(K;h cosh u) dh
L

o

The prime has been dropped from the variable h because in passing to the limit
of infinitely small 4 h,, h and h' become coincident. The range L for the
integral is over the distribution in length from the extreme forward source
to the extreme after sink. In the limit of continuous dipole moment distribu-
tion the range of source positions and dipole moment positions is the same.
| It is now possible to calculate the resistance of this dipole distribution.

We square the two expressions.

12 = (cosh u)'2 S Sp(h) p(h') sin (K h cosh u) sin(K h' cosh u) dh dh'
LL )
.-o(2n35)
32 - (cosh u)'z_S jp(h) pch') cos (Koh cosh u) cos(l(oh' coah u) dh dh'
LL

1f we now add and simplify the trigonometric functions we get the following

result:

2,42 -2 ' ' ' ‘

144J¢ = (cosh u) p) ph') cos l(o(h-h ) cosh u} dh dh ves(2.36)
LL

This result may now be substituted in equation (2.25) to obtain the resistance.

R = 16)!’;1(02 3 Els"p(h) p(h') cos [Ko(h-h') cosh u{ dh dh' du eee(2.37)
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We may eliminate one integration by use of the identity

Scoa[ﬁo(h-h')cosh uldu = -(7/2) Yo ( ‘lb(h-h')‘ ) = «(#/2) Yo(Ko‘h-h" )
) )

X 0(2-38)
Then we get

R =-8n2 P Ko2 é l§p(h) ph') Yo(l(o\h-h" ) dh dn', .0+ (2.39)

The function Y,(x) is Bessel's function of the second kind. Although the
function Y, has a singularity at the origin, its integral is a bounded funétton.
Por positive argument Yo is bounded and oscillates from positive to negative,
gradually diminishing in amplitude with increasing argument, The dipole density

p(h) must be integrable but not necessarily continuous.

6. RELATIONSHIP BETWEEN HULL SHAPE AND SOURCE bISTRIBUTION

Since the resistance equations discussed in the preceding paragraphs are
all based on calculating the resistance of a collection of sources and sinks
whose closed streamlines outline a hull, it is necessary to find how to relate
the hull shape to the source distribution. In principle it is a simple matter
to find the hull shape correspoﬁding to a given source distribution, but it is
significantly more difficult to find the source distribution for a given hull shape.

One of the assumptions on which the resistance equations are based is that
the wave height is small. This implies that the flow about the hull is not
significantly affected by the existence of the waves. In such a case the hull
shape can be described by the closed streamlines on either side of the plane
of symmetry between a set of sources and their mirror image in the free surface,
the double hull so described moving through the water far below the free surface.
Inui (3] found that such an approximation worked for his models up to a Froude

number of about 0.7, We can therefore write the velocity potential:
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n
§=Z mg (1 +1 ) .e . (2.40)
s=1 Tis  f2s

1/2
1, = [(x-h)2 + (y-)2 + (z+f)2]

1/2 .o (2.61)
Tog = [:(x-h)2 + (-2 + (z-f)ZJ :

It is clear that this velocity potential will provide symmetry in the
plane £=0, so this plane may be considered to be a dividing boundary across
which there is no flow. This also follows because d¢ =0. To find the
hull form corresponding to a given source distribut?inzzg need only calculate
! from equations (2.40) and (2.41) and then calculate the velocity components

from ¢,

u=-90 ; v=-00; w=-3¢.
dy

X z
We may now find the streamlines by a numerical integration of the following
differential equation:

dx = dy = dz . vee(2.42)
u v w

Since the coordinacés move with the ship, this equation will give the shape
of the hull,

Source distribution for a given hull form

The calculation of the source distribution corresponding to a given hull
form is a much more difficult matter. John L. liess and A.M.0, Smith have
worked out a way of doing this if the sources are distributed on the surface
of the hull [9]. With such a technique it should be simple to provide a good
estimate of the wave-making resistance with the formulas worked out earlier
in this paper. Unfortunately, an attempt to vary the strength of a sct of

~sources on the surface of the hull to find a hull of improved wave-naking
resistance will probably run into difficulty if any decreaces in hull voluoe

are permitted. This §5 batause it will net he pozsible to drfin~ a hull vhnge



surface runs inside of that defined by these sources without decreasing their
strength to zero. Otherwise we will calculate a hull with sources outside
its surface -~ a possible arrangement of sources, certainly, but one which |
will generate isolated sppendages outside the main hull,
Notwithstanding these difficulties, the method of Hess and Smith ueu'

important enough to require its description here. We may assume that the
given hull form, described as a double hull in an infinite fluid, is knowm
and given by the following equation:

F(x,y,z) = 0. . e(2.43)
We can further assume that the velocity of the ship is ¢ and that we can
write the velocity potential as the sum of a term cx and a term §' which

2+y2+z2-——>->.

vanishes at x
' Pe@ +ex . eee(2.44)

We may also describe the unit normal vector directed outward from the hull

by .
R = 4 srad F . ...(2.‘05)
- -‘grad l"' P=0

Now the normal velocity to the hull surface, described in coordinates which

move with the ship, must be zero at the hull surface.

.gl - -7 grad ¢| = 0, .0+ (2.46)
on s F=0

We may substitute the relation (2.44) in (2.46).

[- o (9 + cx)] - -[-t"l grad(ﬂ'-bcx)] =0
3 s F=0

op ' -[n-grad 9'] =-nic . eee(2.47)
on 8 F=0 \

Ne may now assume that the surface of the double hull is covered by a surface
source density distribution 6. Then we can write the velocity potential as
f>llows:
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' (x,y,2) =~ §3§ 6 ds ves(2.48)
S r(P,q

where r(P,q) is the distance from the integration point q on the surface to
the field point P with coordinates (x,y,z) where the potential §' is being
evaluated. Kellogg [10] has shown that the normal derivative of §' at the

point p oun the surface of the distribution can be written in the following way:

2

We can substitute this into (2.47) to obtain an integral equation for the

r(p,q

= =217 6(p) +Qa [ 1 } 6(q) ds 00+ (2.49)
S

distribution 6.
2mé) -3y 3 [__1___} 6(q) d5 =n* 1 ve+(2.50)
' S on | r(p,q) .
Observe that':kp) is the unit normal vector at F = 0 and the variable r(p,q)
is the straight line distance between two points p and q on the surface of
the hull.

Equation (2.50) has been integrated numerically to provide not a source
density but the source strengths at a finite number of points on a double
hull. This set of sources provides a close approximation to the flow about
that hull. With this result it is possible to calculate the wave-making
resistance directly from equations (2.18) to (2.22) -~ using, of course, only
those sources which are on the half of the double hull which is submerged

vhen it operates as a surface ship.

27



I11. Methods Which Have Been Used To Find Forus Of Decreascd Wave
| Resistance

It is possible to draw a number of conclusions from the form of the )
resistance equations and from the integrals which describe forms produced
by a ship. Beyond this, Karp, Kotik, and Lurye (6] found the solution to
the problem of the form of that semi-infinite strut of minjmum wave-making
resistance which, between the ends of its distribution of sources and s#nks,
can be described by an integrable distribution of dipole moment. The first
step toward a method of steep descent was made by Hogner [11] in 1936, but
never carried through to completion. Several successful attempts to find
the best form among a family which can be described by certain polynomials
sub jected to various constraints have been made -- all of these using some
variation of the Ritz method, and all based on some integrals calculated by
Weinblum (5] ’ [12] , [13]. A more striking result has been obtained by
Takao Inui [4] by determining the form of the waves produced by a ship and
then adding to the hull appendages which will produce roughly similar waves
of opposite phase. Finally, certain conclusions have been drawn by Inui as
to the effect of discontinuities in the source distribution or any of its
derivatives on the waves produced by a semi-infinite strut. Some further
conclugsions can be drawn from these as to what kind of forms cannot have vet;y
small wave-making resistance without being very small themselves. All of these

matters will be treated in turn in this section.

1. CONCLUSIONS WHICH CAN BE DRAWN FROM THE FORM OF THE RESISTANCE
EQUATIONS AND OF THE INTEGRALS DESCRIBING THE WAVE FORMS

Effect of Depth on Resistance

One of the more obvious conclusions which may be drawn from the form of

the equations is that if the sources describing a hull can be submerged deeply
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enough the.wave-making registance can be made as small as we please, This
follows from equation (2.13) which contaiﬁa the tem exp(-beseczO), where
Ko-g/cz and £ i3 the depth. On the other hand, the resistance is certainly °
non-negative, since equation (2.12) i{s the integral of a sum of squares

times a positive definite trigonometric function.

A further comclusion of the same sort can be drawn by examining equations
(2.19) and (2.20). These equations show that the amoothly varying portion of
the wave-making resistance is small for very low K,» increases to a maximum,
and then decreases again. For a proof see appendix 1. Since Ko-glcz, it is
clear that the largest value of the resistance occurs at lower speeds for
small f (small depth) and at higher speeds for large f(large depth). This
means that for high enough speceds the contribution to the smoothly varying
part R(l) of the wave-making resistance from parts of the hull corresponding
to sources very close to the surface will approach zero. The interaction
term r(2) displays a similar behavior, although {t is clear that the inter-
action between a shallow source and a deep one will reach its maximum absolute
value at a spced which 18 intermediate between the spced for the maximum of
the smoothly varying term for the shallow source and that for the deep source.
The general conclusion which can be drawn from these facts is that the part
of the hull near the waterline can be designed for relatively low resistancé
at low speeds, and the part of the hull deep in the water for relatively low
resistance at high speeds, and the interaction terms bstween shallow and deep
sources can be used to improve the behavior at high speeds.

Effect of Symmetry Fore and Aft

Another conclusion, this an old and frequently misstated one, is that

‘which relates to the effects of fore-and-aft syvmetry. Suppose that we have

a dipole moment density distribution such that the after half of the
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distribution is a reflection of the forward half (i.e., if the origin of x
is at the midships section, p(x) is even). Then tha function I in equation

(2.34) 1s zero and the resistance of (2.25) reduces to

R = IGNPKOZ ‘30.!2 coshzu du er.(3.1)

Now if we add to p(x), which :e have assumed to be even, any odd function of
x there will be no change in J but I will become different from zero. Then
we will have to add to J% in (3.1) a positive definite quantity 12. and ‘so
will increase the resistance. Since the odd fumction added to p(x) will not
change the total dipole moment (which is roughly proportional to volume), it
followa that the hull described by an even function u(x) has less resistance
than the hull of roughly the same volume described by that even function plua
.an odd function of x. This 1is not the same thing as a statement that a hull
symmetrical fore-and-aft has legs resistance than one which is asymmetrical --
it is extremely easy to devise a symmetrical hull with more resistance than
any given asymmetrical hull of the same volume, The demonstration of this
paragraph can be generalized to hulls described by an arbitrary symmetrical
fore~and-aft distribution of diﬁoles plus an arbitrary antisymmetxrical
distribution. We need only use equation (2.32) instead of equation (2.34).

It is possible to argue that the experience of practical ship designers
does not bear out the conclusion that the hull of least resistance is
symmetrical fore-and-aft. This can also be demonstrated by appealing to the
semi-empirical parameters used by Inui to correct his theoretical resistance
curves to coincide with those found from experiment. For example, he found
that he had to reduce the effect of the sources at the extreme after end of
the ghip by a factor p' <1 in order to bring the calculations into accord
with observation. This is because the after end of the ship is relatively

less effective in making waves than the bow. We can do this in our formulation
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by multiplying each source at the after end of the ship by p‘ and then repcat-
ing the derivation of equatioﬁ (2.32). Then the source distribution which
makes 12 = 0 will be symmetrical fore and aft in the moments derived from
sources multiplied (at the after end) by B'; and this will certainly not be -
symmetrical fore-and-aft in the actual dipole moments M .
Effect of Length

It has long been known empirically that the resistance per unit of
volume tends to decrease as the ship is made longer. This is not true for
all small changes in length: for example, if the length ia such that the
tfnnavarle bow and stern waves tend to cancel each other, increasing the
length & small amount may cause them to reinforce and increase the resistance.
On the other hand, for large changes in length the gener&l tendency will be
determined by the smoothly varying portion of the resistance expression.
But we showed in equation (2.20) that the smoothly varying portion of the
resistance is a function only of the strength of the sources and of their
depth, not of their horizontal position. On the other hand, if we have a
single source forward of an equal sink moving through the water at a constant
speed, the set of closed streamlines which they generate will increase in
volume monotonically as they are moved farther and farther apart. It follows
from this that the longer is a hull described by a single source and a single

sink of constant intensity, the smaller will be the resistance per unit volume

if we consider only the part of the resistance which varies smoothly with
speed. The same result can be obtained if any assembly of sources and sinks
vhich produces a closed set of streamlines is woved farther apart in the

x-dirvection.
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Effect of Breadth
Por a very thin hull it has been accepted that the source density can
be approximated by equation (2.24):

6 L '_c_ét 000(2-26)
2w oh

It follows that if we multiply the source density 6 by the pacameter a we
nultiply the dbreadth of the hull by a:
h
k--zzagsdh e (3.2)
c bdw i
The minus sign results from the fact that the axis of x is positive forward.
Now if we substitute ab' for 6 in equation (2.15), we get
P(ab') = aP(6')
2 /2 ) 3
R(a6') = IG'PKO S [? (a6') + Qz(aG')] s¢c”9 d0 =

0,
= 16mpK, 2 ":52 a? [P2(6') + Q2(6')) sec30 do = a%R(6'). .0 (3.3)

From (3.2) and (3.3) it is clear that the resistance of very thin hulls is
proportional to the square of the breadth. Inui[3] and Hess and Smith [9]
have shown, however, that for hulls of finite breadth this relationship is
incorrect. No general relationship has been worked out for such hulls, and
it is clear from the plots that have been obtained that any such relationship
would be very complicated.

Effect of Bow Shape on Resistance

If the source distribution describing the hull consists of a distribution
over the centerline plane of the ship in such a fashfon that it is not a
function of depth but is a continuous fuanction of length and has continuous
§er1vat1vea of all orders, it is possible to calculate the effect of the
shape of the bow on resistance. Let us consider equation (2.9a) and substitute

for the asscmblage of discrete sources a source distribution 6(h,0,-f) = 6(h)
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on the centerline plane. Then we may integrate with respect to f and take f
to infinity (infinite depth).

/2 hw-]l, oe

’3- 4K, 5 S S 6(h) cos [Ko(x-h) sec 0] cos [Koyseczﬁ stnOJ x
C.y/2 h-0 ¢£=0

x exp(-l(ofseezﬂ) sec30 do dh df =

=4 73‘2 h-jL 6(h) coo[l(o(x-h) seco] cos [Koysecze einO] secO do (ih
© Mz b= e (3.8)

It is now possible to integrate by parts with reaspect to h so that we obtain

a series in 6(h) and its successive derivatives, evaluated at h = 0 (the bow)

and h = -L (the stern).

h=eL h=-L
j 6(h) cos [Ko(x-h) seco] secO® dh = ~1 } 6(h) cin[l(o(x-h) aecO] +
h=0 KO h=0
h=-L

+1 §em sin[l(o(x-h) sec g] dh =

Ko h=0
=1 6(0) aln(xox secd) =~ 1 6(-L) sln[l(o(l.-m) secOJ +

Ko Ko

p hw=-], h"s-L

+ 1 '(h) cos|K_(x~h)secO - 1 6"(h) co [l( (x-h)secO] dh =

KozsecO{ [° ]} h=0 Kg2secd h=0 "Le }

=1 J6(0) - _6"(0) + 61v(0) - ...0 sin(k x seco) -
K, K Zsec?® K hsecho °

-1 ). 6'(0) -~ _6''(0) + .... cos(K x sec®) -
Ko{l(oseco K, 7sec’0 } °

-1 6(-L) - 6"§-L2 + 61"5-1.2 - eee sinE( (L+ )secO] +
{ Ko<sec<0 Kytsec™ } o

. Ko

+1 6'(-L) - 6'''(-L) + .... cos}K,_ (L+x)secd -
Ko Koacco Ko sec’@ } [o J

= 8(0,0) sin (K,x sec 0) + C(0,0) cos (Kyx sccO)

-{3(-1.,9) sin[l(o(x-i-l.)secO] + C(~L,0)cos [Ko(xﬂ.)sccﬂ]} ees(3.9)
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vhere

h,0) =1 J 6(h) - 6 ;2 vy -...

3.9 { ¢ sec20 - * Ky tseco } «e:(3.6)
,0 - '1 6"‘\2 - 1ot ‘h! see ‘

o0 io I(otecO Ky7sec ] ¥ }

We can now write equation (3.4) in terms of S and C:
/2
"')- 4 § s(0,0) sin(K,x leczecow)cos(xoy sec20sin0) do0 +
c -%/2 .
72

+4 S c(0,9) col(l(ox ceczocoBO)col(KoyuczO 2in@) 460 -
c =¥/2

m2
-4 13 s$(-L,0) sinﬁ(o(x-o-l.)aeczkow] cos(KoychO sing@) dO -
c =n2 '

m/2 ‘
S ¢(-L,0) cos[_l(o(xﬂ.)lecz%ow] cos(xoyceczo sin@) dO
-7/2

4
¢ vesl3.7)

It is now possible to write the wave-making resistance corresponding to this
wave form. For this purpose we will examine only the first two terms of the
expression (3.7), which are the waves generated at the bow of the ship. If
we disregard the interference between bow and stern wave, the resistance

produced by the bow waves can be written as follows [3]

R = const [{3(0 o)}2 {c(o 0)} ] cos30 40 ..t (3.8)

For very low velocities l(o is very large, and so the dominant term in (3.8)
is the first term in the expression for §(0,0) in (3.6) -- that is, the
source density at the bow. Therefore the smaller this source density the
smaller the resistance for very low speeds. The source density at the bow
is proportional to the angle of eantrance at all points except at the extreme
bow, so it is clear that for very small speeds the wave-resistance produced

by the bow waves is determined by the entrance angle of the bow -- the larger
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0 [oo

0 i

the sngle, the larger the resistance. However, as the speed fncreascs K,
becomes smaller and the later terms in the expansion for § and C become import~
ant, and when K, 18 of the order of unity they become of nearly the same order
of importance as the source density itsalf. For K, small enough, for cxample,
it i{s possible to have the first and sccond terms of S(0,0) become of equal
magnitude and opposite sign so that they cancal fo. zaoma values of 0. Then

if all other derivatives G(k)(0.0), k=1,3,4,... are zero or small in magni-
tude we may find that a ship of small resistance will have a large source
density at the bow and a small density farther aft. This implies a bluff

bow with large entrance angle.

Non-Zero Resistance of a Continuous Symmetric Source Distribution

One further conclusion may be drawn from equations (3.4) to (3.8). Ve
may take advantage of the fact ihat S(-L,0) = -5(0,8) and C(-L,0) = c(0,0)
for a hull which f{s symmetrical about its midship scction (i.e., fore and
aft). Then we have the following expression for the wave height \S :

/2 -
J( 5(0,8) sin(KoxscCZQcosg) + sin[%o(x+L)acc20cosfy cos(KoyscczgsinO) d0 +
-7/2 -

x/2
J' c(0,9) cos(Koxsec29c039) - cos[ko(x+L)sec20cos€] cos(KoyseczgsinG) de =
-7/2

™2
j. $(0,9) sin[%o(x+L/2)scc29cosd] cos [ko(LIZ)ucczecosé] cos(KoyscCZOsinO)dQ
-n/2 ‘

+ . ..(3.9)

2
J c(o,9 sin[Fo(x+L/2)scc29cosé] sin [KO(L/Z)seCZGcos?] cos(KoyscCZOsinO)dO
-T2

We may combine the factors 1n[FO(L/2)sec29cosq] with S(0,8) in the first term
and with C(0,0) in the second term. We can write then
$;(-L,6) = C(0,0)aln[Fo(L/Z)ﬁeczgcosé]
2

S (-L’9> = S‘O.Q,COS,K ‘L 2’5(:6“9(:050’
AN 0 /

o
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It follows that the resistance of the ship is given by the following expression:
m(2 2 3
R = const E.l(-_xz:.on sz(-_xf;oa cos30 40 .o (3.11)
0 )

8ince cos @ is real and non-negative for the entire range of {integration,
and the squared sum in the integrand is also real and non-negative, 31# -82
for sl.szfo, R can be made zero only if §,(L;0) and $,6L,0) are separately
zero for all 0 in the range 0 < 0 < m2. BJi this can ;i true only if 6(0),
6'(0), 6"(0),... are separately zero, since the series in (3.6) cannot other-
wise be zero for all O in this ramge. It follows that the wave-making
resistance of an infinitely deep strut which is symmetrical fore-and-aft,
which 18 described by a continuous distribution of source density on the
centerline plane, which is not a function of depth, and which has continuous
derivatives of all orders cannot be zero. Further, it follows from a previous
result that if a continuous fore-and-aft anti-symmetrical distribution of
dipole moment density is added so that the hull loses its fore-and-aft
symmetry, the resistance can only be increased. This result says nothing
concerning the resistance of an assemblage of discrete sources and sinks.

Effect of a Discontinuity in Source Distribution or Any Derivative

Let us assume in the derivation of equation (3.5) that the kP darivative

has a discontinuity at h-hk. This will give rise to a term of the form

6®wme - 6w
Kok seck @

so that in addition to the wave
pattern described by equation (3.7) we have a wave described by the following

equation:

T L 600 (nga)-600)
- 1 6 hy+)-6 hy.-
“S : % -552 X ( k:) () [?i: Ko(x+hk)sec20cose} cos(Koyseczosan) do
° Ko© secke

...(3012)
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where the sine or cosine is taken depending on whether the integer k is even
or odd, and the sign is positive for k = 4n, k = 4n-1, n = 0,1,2,..., and
negative otherwise. This explains the existence otlthc so-called shoulder )
wvaves of a hull, vhich start at such discontinuities as the connection between
the fair bow section and the parallel wmiddle body. GSince theseladdttional .
waves occur at a point where they cannot in general be fully canceled by

vaves originating at the bow and stern, they will add to the wave resistance.

2. APPLICATION OF THE CALCULUS OF VARIATIONS TO FINDING
HULL FORMS OF MINIMUM RESISTANCE

An apparently reasonable approach to the problem of finding a ship of
minimum wave resistance is to apply the classical calculus ofvvariations.
‘Unfortunately, the failure to distinguish between the hull form and the
dipole density which generates it together with the general difficulty of
the problem prevented a solution being obtained for many years. Sretenski]
[}é] published a paper in 1935 in which he demonstrated that in certain
cases, at least, there was no sclution. Even today the problem has only been
solved for the case of a strut of infinite depth.

Karp, Kotik, and Lurye [}5] solved the problem in 1959. They first con-
sidered a dipole moment distribution uniform in depth on an infinitely deep.
centerline pline of length L, and assumed that the dipole moment density
vanished gt the bow and stern and had an integrable first derivative with
respect to x. They then were able to prove that if an additional requirement
were imposed that the dipole moment per unit depth be held constant, the
integral equation resulting from the application of the clgssical calculus
of variations had no solution. They reasoned that the cause was that the‘

class of functions chosen for the dipole moment density was too restrictive,
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and then tried a more general set of functiona. This choice of functions
required that the velocity potential not become infinite at finite points

of the (x,y) plane other than the centerline plane on which the dipoles are ‘

distributed and that the integral of the dipole moment over the length L
remain constant per unit depth. With this extended choice of functions they
were able to find a solution for the dipole moment distribution which pro-
vided a form of minimum wave-making resistance,

In order to sketch the method employed by Karp, Kotik, and Lurye their
notation will be converted to that used elsewhere in this paper. We will
start by assuming that the velocity potential, as before, can be written as
the sum of a term corresponding to the flow in the absence of the ghip and
.a second term, which vanishes at infinity, corresponding to the disturbance
caused by the distribution of dipoles along the centerline plame of the hull,
The axis of x will be positive in the direction of ship motion,

=60 + cx 00 (2.44)
The dipole distribution will be taken along a strip of infinite depth and
length L. We will lose no generality if we assume that the length L of
the distribution i8 unity. We can always correct to other lengths by Froude's
law of similitude. Since we have already demonstrated that if a form
symnetrical fore-and-aft can be found whose resistance is wminimized any
addition of an anti-symmetrical form to it will only increase the resistance,
we may also assume that the hull form is symmetrical about the midships section.
We will write the dipole moment distribution in terms of a new variable
}-h+ 1/2 ...(3.13)

Then we will choose a value for the integral of the dipole moment over the

.length of the distribution. If this is held constant, then the volume per
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unit depth, which is approximately proportional to the dipole moment, will
be held constant to first order. We will let this integral be

1/2
S p(Hat =a>o. e (3.16)
-1/2 p }
The quantity p(}) is the dipole moment per unit depth and unit length, The
other restriction to be placed on ).\(g) is that the following integral for

the velocity potential be well-behaved:

oS-’ 1/2 , g ,
" = const ( . M!x.!.zi g'o'-fl d df 000(3015
o -1312 r4 2%

The function G(x,y.z;E,O,-f) is the velocity potential of a unit source and
can be derived from the first term of equation (2.4) by lettingm = 1 and
substituting equation (3.13). .
c(x.y.z;f )0,-f) = 1 .+« (3.16)
‘/(x+_;_ - E)z +y2 &+ (z+£)2

The partial derivative with respect to E converts G into the Green's function
for a dipole with axis oriented along the x-axis. The restriction placed on
p(}) in addition to (3.14) is that @' be finite everywhere except on the
plane on which the dipoles are distributed, and that it go to zero as
x2 + yz + 22 —>®%, The quantity x i3 still reckoned from the forward end
of the dipole distribution.

In part 11 of this paper we proved that the resistance of an assemblage

of dipoles can be written in the following way (see equation (2.39)):

1/2 1/2
R = -8 7oK 2 -32 -32 p(})p(;') Yo(xo,f-'g") d g dg' . vee(3.17)

We may regard the coafficient outside the integral as a constant and combine

this equation with (3.14) to write the variational equation:
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e f S b bgo g g

:Z [M})J”;(;)] } | | ... (3.18)

We may now find the Euler equation by taking BI and letting e —»0,

e
1/2
1T SR WY N 5 401 2
de -1/2 -1/2
«e—0 12
+h Y B(En e -0 vee(3.18)
-1/2
‘From this we can write
‘5(}) 2c p(}’) Y, (K ’}' "5’ ') d{ +)\f d =0 . ¢s+(3.18b)

-1/2 -1/2

But the function S(g') is arbitrary, so it follows that the quantity in
braces is zero for all g '. This is the Euler equation for the problem. The
linear nature of the equation in braces makes it possible to solve the eguation
for arbitrary A and then normalize the solution by multiplying by the proper
factor to satisfy equation (3.14), which we regain from (3.18a) by taking

52] = 0, Hence, we may write without loss of generality,

p(z) Y (xl§ ¥ ,)dg A | e (3.19)

and solve for A' = 1 and then normalize the-aolutton to (3.14). Equation

(3.19) has been shown [15] to have solutions of the form

p(f) = s(}’) SN S ve(3.20)
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vhere g(}) is regular in the range -=1/2 < ; < 1/2, and not zero at the
endpoints. 1In consequence the density of the dipole moment goes to ianfinity
at each end of the distribution. It turns out, however, that this does not
result in the velocity potential becoming infinite. We may show this by
substituting (3.20) in (3.15). Then we may examine the portion of the
velocity potential which results from the singularity at 3 = 1/2. We will
call this A ',

1/2

A9 Neonse Jar | a(¥) % __ _aFf -
°  1f2-e z % VO 57

oo 1
2 const ) df g(1/2- «0)3G(1/2-e0) § _af' -
o ag 1-2:"/:‘?7-

= const s 8(1/2-¢0)3G(1/2-¢6,0,-£) sin’l1 - -m"(l-zi):, df
o )

5

But lin'l(l) - sin'l(l-h) - cos'l(l-Zc) ~ 2/e ; and so
A 9'const GS. g(l/Z-cO)%_G_(l /2-¢0,0,-£) (2/e)df, 0<O<1. eee(3.21)
P .

Equation (3.21) is still bounded after integration with respect to f; and
so the contribution of the singularity to 9' is also bounded and the condi-
tion on ,.I(}) is met.

Karp, Kotik, and Lurye have solved equation (3.19) numerically for
numerous cases and have plotted the results as streamlines [6]. The closed
streamlines which define the boundary of the strut extend farther forward
and farther aft than the source distribution. For large values of the speed
they have found that the strut of minimum resistance has u cross~-section
shaped rather like a dumbbell -- rounded at the leading edge, then narrow,
then expanded and rounded at the trailing edge. PFor very large speeds (rrou;le
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numbers greater than about 0.65) the function g (;f) in equation (3.20)
becomes a constant. For small speeds the function g(;') is a minimum at the

3

end points and a maximum at the midships section.

There is a simple interpretation which will mske the infinities at the
ends of the dipole distribution appear more recasonable than they might seem
at first. I1f, for example, we started at the forward end of the digtribution
with an isolated dipole of strength M, and a source of strength m, while at
the after end of the distribution we had another isolated dipole of strength
M and a sink of strength -m, we would have a set of singularities which are
well known to generate 2 reasonable set of stresmlines in two-dimensional
flow. If, further, we identified the isolated dipole with a delta-function
multiplied by a strength M, then we would have a condition where the dipole
density became infinite within the bounds of the delta-functionm, but‘the
total moment remained finite and equal to M. The distribution obtained by
Karp, Kotik, and Lurye for very high speeds is not too different from the

condition just described.

3. USE OF THE RITZ METHOD FOR FINDING HULL FORMS OF
REDUCED WAVE~-MAKING RESISTANCE

The bilinear nature of the resistance integral leads in a natural way
to the usc of the Ritz method for finding ways to develop improved hull forms.
It has been used successfully for this purpose, although its success has been
limited both by the restricted set of functions employed for the description
of the ship and by the (to date) consistent failure to distinguish between
the distribution of dipole moment and the actual shape of the hull. One of
the more striking successes was the design of a hull which, when towed at a

Froude nurber of 0.5, had about 13 per cent less wave-making resistance than
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a degtroyer of similar dimensions, and which, even after the other components

of resistance were included, had about 8 per cent less total resistance than

the destroyer [12). ‘
In order to see the problem in simple terms, we will start with equations

(2.14) and (2.15). Here we have a source density 6 which generates the hull

form., 1f we add to this source density another distribution aé', then we

have a resistance formula which is a quadratic in the parameter a.

n/2
R~ 16mKk 2 | [p(o)z + 2aP(6)P(6') + a2P(6')2 + Q(6)2 + 2aQ(6)Q(6') + aZQ(6')2]sec30 ¢
[+]

.00 (3.22)
This can be rewritten as follows:
R = R(6,6) + 2aR(6,6") + a’R(6',6") e (3.23)
vhere the functional R(6,6') is defined by |
R(6,6') = 161!PK°2 '!/;2 [P(b)P(G‘) + Q(6)Q(6')] sec30 do ...(3.24)

It is now a simple matter to take the derivative of R in equation (3.23) with
respect to the parameter a and find the optimum amount of the distribution 6°'

to add to the given distribution € by setting the derivative dR = O,
da

To generalize this result, we need only follow the same pattern but give
each of arbitrarily meny linearly independent source distributions 61 6. ,....Kn

a coefficient al ,az.. .o ,an and write

R Zﬂ:- 2 n n~-1
r-la c R(6,,6;) + 2‘ 3; . :Ela'a’k(‘r'6°) eee(3.25)

If cthe set of functions {61 ,62....} is also a complete set, then its wembers
may be used to describe an arbitrary dipole moment distribution on the interval
‘on which they are defined. It is a simple matter also to add constraints. We

merely write them in the form
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f‘»(‘j’ .kl") - o oo.(3.26)
and then apply the method of Lagrange multipliers to find a stationary value
of R subject to these constraints. To do this we write )

[ IR LY /AR L RS e (3.27)
1 {

where R is defined in equation (3.25), and then take the partial derivative

of Ivtth respect to each a and >\t in turn and set it equal to zero.

a; w 28 R(6.,6,) + 2% a R(6,,65) +Z N, ¥ =0, r=1,2,...,n
ay o lft. ree i 18.:
vee(3.28)

%{ = fi.(‘j"k"") =0,1=1,...
i

The functions 6: which are admissible are not completely arbitrary, but
it 1s clear from the experience of Karp, Kotik, and Lurye that certain singu-
larities may be permitted. The analogy to the requirement which they found
necessary, vhen translated from a dipole distribution to a source distribution,
is the requirement that the potential §' remain bounded when it is deacribed
by

¢' = const fvﬂ-GrG(x,y.z; h,k,-f) dv ves(3.29)

where
§=@ +ecx. .eo(2.44)

The integration V is over the volume in v;hich the source distribution is
non-zero and @' must be bounded only outside this volume.

Exactly the same treatment as outlined above may be applied to distri-
butions of dipole moment density p(h,k,-f) rather than source density. This
requires only that we substitute equation (2.33) or its equivalent in terms
of an integral into equation (2.25) to get the resistance in terms of dipole
density rather than source density. Then we get a result equivalent to
'(3.28) except that the resistance components must be written R(pr,’n ') rather

than R(6r.6.). In such a case the restrictions on the singularities in P
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are probably given by equation (3.15) extended to include the case k ¥ 0. It
is also possible to use assemblages of discrete sources or discrete dipoles
in place of the densities discussed above.

The treatments using this concept, despite their siwplicity, have been .
limited mainly to work which was started by G. P. Weinblum at the David
Taylor Model Basin, and carried further at the towing tank at Stevens 1nqt1tute :
of Technology and at the University of California. Weinblum described his
dipole distribution (which he did not initially distinguish from the offsets
of the hull) by the product of a polynomial in the variable f describing the
distance below the surface and ; polynomial in the variable h describing the
longitudinal position. After converting these to non~dimensional form he

could write the offset "7 in the form

pe=xprad) = a -z k" -Ebm;")(l -5 v+ (3.30)

where the half-length of the hull is 1 so that -1 ﬁ;ﬁ 1 and the draft of

the hull is 1 so that 0§ \}ﬁ 1. The signs of the a, are so arranged as

to make them describe functions -aymnetric fore-and-aft, while the b are for
anti-symmetric functions. The quantity e < 1 is a positive paremeter which

is used to permit the hull to have a flat bottom (if e < 1). 1In his first

report [SJ Weinblum used r = 4 and limited the calculations ton = 2,3,4,6,8,
10,12, He then calculated the resistance terms which enter into a sum of

the form (3.25), explicitly differentiating the dimension (or dipole moment dll;ri-
bution) to convert‘lt to the form 6 which enters into that equation. He also

used another distribution in the direction of depth which gave him the

equivalent of a V-bottom.
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In Weinblum's initial paper the integrals corresponding to the values
of n and r mentioned above are given. Later the calculation is carried
through to the point where optimum forms are obtained by s technique similar '
to that described earlier {}Q]. These forms are restricted in that the dipole
moment density is made zero at the ends of the ship, although Karp, Kotik
and Lurye [6] later found that it should be permitted to become infinite to
minimize resistance. The separability of the functions x(;) and 2(3) severely
limits the forms which can be investigated., Nevertheless, even these forms
show the possibility of significant improvemant over conventional forms.
for example, Martin and White [12] in 1961 selected only the exponents
n=2,3,4, and 6, added the constraint that the value of>? be zero at bow
.and stern, constrained the integral 5' > (;) d ; = cohltant, and then
found the form of minimum resistance :tthin the very limited family of shapes
which resulted. Since the result they obtained is properly interpreted as
a dipole density but was used as the hull offsets in building a model, it
is clear that the model towed was probably not as good as it might have been
had the streamlines been calculated directly from the dipole density. None-
theless, the model, which was optimized for a Froude number of 0.5, had a
wave-making resistance about 13 per cent less than that of the model of a
good destroyer hull of similar dimensions intended to run at a comparable
speed. The success of this limited effort shows that there {s much to be
gained by a mathematical approach even within the confined of conventional
hull shapes.

In an effort to see what could be done by recognizing khat th; form of
the afterbody of a ship is largely determined by the requiremeats for good
.flov of water to the propellers, J. Richard Gauthey published in 1961 the

results of some calculations using a similar method specifying the afterbody

46



of the ship completely and permitting only the forward half to vary [13].
His results bring out two major points: (1) the form which resulted was
quite different from the forebody which had been designed by conventional
methods to go with the particular afterbody; and (2) small changes in shape.
can have large effects. Gauthey's results, vhile limited in much the game
fashion as those of Weinblum and of Martin and White, add to the confidence
that much can be done to find fmproved hulls of conventional form by

mathematical methods.

4. CANCELING WAVES BY ADDING APPENDAGES WHICH PRODUCE
SIMILAR WAVES OF OPPOSITE PHASE
In a series of important papers starting in the summer of 1960, Takao
.Inui. and his collaborators at the University of Tokyo described the results
of intentionally adding large bulbs to hulls in such a position and of such
a size as to produce waves about of the same form but of opposite phase to
those produced by tll\e bow and stern of the ship [17], [3} The ability to
do this might be inferred from equations (3.5) to (3.8)., Those equations
show that a hull form whose equivalent source distributiom is a continuous
function of position along the hull and which has continuous derivatives of
all orders produces two well-defined wave systems, one starting at the bow ’
and the other at the stern. Each system has a so-called "sine component"
and a "cosine component”. To see this, we may write the firltl term of (3.7).
2
\Sbw.une =4 '} 8(0,8) sin(K,x seclo cos@) cos(K,y sec?o sinQ) 40 vee(3.31)
c -¥/2
It is possible to assume that S(0,0) is an even function of @ for a ship
.which is symmetrical on the ceaterline plane, as nearly all ships are. Then

since ain(xoyuczO 8in0) 1s an odd function of @, it follows that
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L/

/2 '
4 J’ 8(0,0) cos(K x sec20 cos9) un(xoy sec20 sind) do = 0, .00 (3.32)
c -y/2

We may now add equations (3.31) and (3.32) and get
72 2 . .
3 bow,sine = & 9 5(0,0) sin [Ko(xcoso + ysinQ) sec 0] de .s0(3.33)
c =72 .
A similar manipulation can be made with the other terms to provide a term in
cos [Ko(xcosm-ysinO) aeczo_] and a pair of terms with x—» x+L.
Lunde [7_" has shown, that quite generally the waves produced by a ship which
is symmetrical on its ceaterline can be described at points a long way from

Ehe ship by a sum of a sine component and a cosine component as follows:

72
thip =4 ) ’.;2 S(h,,0) nin{ Kof(x-ho)couo + ycinO] seczo} do +

c

7/2
+ 4 J c(ho,O) cos {Ko[Sx-ho)cosO + yni.nO] eecze} 40 es(3.34)
c 2

Where the functions s(ho,O) and c(ho,O) are the results of combining a well-
defined bow wave and a well-defined stern wave, they are not likely to be a
form which {s easily canceled by an added appendage such as a bulb. On the
other hand, Inui has found that for ships of certain forms moving at relatively
low speeds, the wave originating at the bow and the wave originating at the
stern may each be described by a sine component whose amplitude function
8(h,0) is positive and does not chanﬁe rapidly with increasing ©. That this

is likely can be seen from equation (3.6), which clearly has as its dominant

term for large xo (small speed) the value

S(h,O) —9 l 6(h) ...(3.35)

Kolarge K, |
and it follows that the cosine term goes to zervo:

c(h,0) —> O,

Kolaxge
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the suocess of tnui's technique is based bn this observation. He uses the
vell-huowti result that the waves produced by a doublet can be described
entirely by a sine-wave component. The dmplitude function of that component,
$(0), is not really very close in form to that of s ship's bow wave, but it
is opposite in sign. By matching amplitudes at @ = O, and counting on the
factor cos% in equation (3.8) to minimize the effects of the differences
for large O, he gets virtually complete canceling of the transverse wav;
system and sbme dezteaae in strength of the diverging system of waves. Since
most of the energy in a ship wave system for slow and intermediate gpeed
ships is in the transverse waves, this results in a striking decrease in
wave-making resistance for such ships whose bow waves can be described by a
‘sine wave system. The resistance of the combination of the sine wave bow
waves and the spherical bulb can be written in the following fashion for any
given speed:
/2 2 3

R = const § {AF(hF,O) -B (hF,O§ cos 9 do .++(3.36)
Here we have let the sine wave component of the amplitude function for the
bow be written Ar(hF,O). where hl? is the longitudinal position at which thg
bow waves originate, The function -B(hF,O) is the amplitude function of the
waves produced by the bulb, and hP the longitudinal position of its center,
which has been made coincident with the longitudinal position where the bow

waves originate. The amplitude function for the bulb can be written [4]
-B(hp,0) = -const M sec*Gexp(-K,fsec?0) .0+ (3.37)

‘The magnitude of the constaant depends on the couvention used in writing source

strength. M is the dipole moment of the apherical bulb. If we compare (3.37)
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wvith (3.35) vhere we have for a very deep hull at low speed, §(6) = A,(h,.O) -
’cono;. we see that to minimize R in (3.36) we must not only make the buld
such a size that the quantities Ar and B have roughly the same absolute value '
at O = 0, but we must make the product sechQ exp(-lofncczO) as nearly constant
as possible over the range of 0 for which c0330 has a significant value. The
only way this can be done is to adjust the value of f, the depth of immersion
of the center of the bulb, assuming the speed and so Ko to be fixed. If. we
set Kof".SS, for example, the value of B will be about the gsame for 0 = 35°
as for @ = 0, and for 0 > 35° the magnitude of B will fall off repidly. 1In
such a case a deep ship traveling at a speed of 32 ft/sec (slightly less
than 19 knots) would have to have the bulb immersed .55 x 322/g = 17.5 £t to
its center.

Although Inui has only used spheres to provide cancellation of the
"sine wave" bow waves and stern waves, it is easy to show that a source-sink
pair, the source forward of the sink, separated by a little less than a ha}f
wave-length, will provide a wave which is much like that produced by a
spherical bulb. To see this consider a source=-sink pair, the source forward
of the sink a distance § and at the same depth below the surface. The wave
pattern far aft of this source which is produced by a traveling source is

described by the following equation:

7/2 2
‘S ~ j C(9) cos (K p sec 0) deo .++(3.38)
-n/2
C(0) = const m sec30 exp(-Kof seczO) .0 (3.39)
vhere
P=xcos @+ysin ees(3.40)

1f we use (3.38) to write the wave~-pattern produced by the source-sink pair,

we get
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2 nl2
‘S ~ T’;, C(Q) cos (l(op1 lec20) 40 - f c(o) eos(!opzchO) d0

...(3.01)
-7/2 : -T/2
vhere )
P «p+8cos @ and P, *p = & cos 0 00+ (3.42)
1 2 2 2
We way simplify equation (3.41) by using (3.42) and we get
2 2
\S’V-Z IC(O) sin(llop sec“Q) cin(xoé sec Q) do e+ (3.43)
-2 2
We may now combine the portions of the amplitude function and write
m 2
\.(),._/ j cl(O) sin(K_p sec Q) do oo e (3.44)
-7/2
vhere
cl(O) = =2 const m sec30 lin(l(o é sec 0) exp(-K, £ chO) ees(3.45)
2

We may compare the amplitude function for the source-sink pair with the

smplitude function for a sphere, that is, equation (3.45) with (3.37).

It

is clear that they are of the same form except that in place of one of the

terms sec O for the sphere there is the temm cin(l(o§ sec 0) for the source-
2

sink pair. This ia one sense is an advantage, since it gives us the quantity

§ to manipulate in order to improve the match between the amplitude function

for the bulb and the amplitude function for the ship's bow wave or stern

wave. On the other hand, it makes the bulb's performance more sensitive to

speed, since it also contains the factor Ko. The '"'buld’" described by the

source-sink pair in this instance is an elongated body of revolution, rather

like a blimp. If this kind of bulb can be used for a propailet shaft housing
or faired into the hull it may be an improvement over a sphere. On the other

hand, if it merely sticks out forward like a ram, it is no improvement at all.
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So far sll the applications of Inui's method have consisted of adding
bulbs to cancel the "sine wave" component of the bow waves and stern waves
of rclntivnly slov ships. Because the sphere, which is the form generated
by a concentrated dipole, produces a wave form which is of form lintlar to
these "sine wave" components of the bow and stern waves, but of opposite
phase, it is natural to exploit its use. However, the cosine wave component
becomes important in ships of higher speed than cargo liners -- destroyers,
for example. Since these ships combine high speed with shallow draft, a
spherical bulb is an inappropriate appendage to add in any case. (At high
obeed it would have to be deep -- see discussion following equation (3.31L)
Therefore further investigation with a view to finding some other way of
canceling the waves of co;ine form 1is in order.

A first observation on this matter is that the waves produced by an
isolated source or sink are waves which have the phase of a cosine component.
The waves produced by a liﬁk are opposite in phase to those of a sou ce.
Hence if a ship produces waves of cosine form, the proper appendage to add,
in theory, is an isolated sink. Unfortunately an isolated sink is no more
a real entity than an isolated magnetic pole; it must always have associated
with it a source. However, it is easy to see that if the hull can reasonably
be described by an isolated source forward and an isolated sink aft, its
wave-making resistance can be greatly decreased in the following way: add
a sink of strength equal to hsglf the forward source at the location of that
source and add another source of strength equal to the source at a distance
about a half wave-length forward of it. This is equivalent to splitting the
source in two and moving half of it a half wave-length forward of its initial
ﬁonicton. Then the resistance of the forward system (disregarding its inter-

action with the stern wave) will certainly be reduced to less than half of
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what it was. This follows from equation (2.17). Suppose we let m be the
strength of the original source and f its depth. Then its resistance will )

be

-2k ft 1/2 t-1/2 de

o
R = 16mpk 2 m? ¢ Fof [ ¢ (1+t) . ve e (3.46)
b ™ 3 ; .

I1f we cut the source in two, and place half of it a distance (htnh.) forward
of the original source such that Ko(hr'hs) = T, then the resistance of the

combination will be

R = 167,,:02 2 2ot [ g"Zoft ) )12 (-1/2 {1 ‘ co-Er(l +t)1/2]1 de
2 2 ° e (3.67)

The quantity in brackets for 0< t<5/4 is less than unity, and since for
any reasonable value of Kof very nearly all the value of the first integral
will be attained in this range, R will be much less than half its original
value, The same result follows from equation (2.23) without calculationm,
since the interference part of the resistance will certainly be negative in
this case,

Unfortunately, the technique outlined here is not practical for small,
high speed ships for the reason that a half wave-length at 35 knots is
several hundred feet, and it is not reasonable to add so much length to a
small ship. It therefore appears that Inui's method or any obvious variation
is not likely to provide the answer to finding very high-speed hull forms of

low resistance.

5. USE OF THE GRADIENT OF THE WAVE RESISTANCE FORMULA TO FIND
LOCATIONS WHERE CHANGES IN HULL FORM CAN BRING IMPROVEMENT
In 1936 Hogner made use of the bilinear character of the wave resistance
formula to determine where changes might be made in the sectional area of a

ship to decrease the wave-making resistance [}{]. In his one publighed
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article on the subject, he derived the function which may be raegarded as the
gradient of the functional describing the resistance and promised further
development of the idea in & second article which unfortunately was never
published. This concept leads in a natural way to the method of steep
degcent for the calculation of improved hull forms. It is therefore possible
that failure to follow up on Hogner's paper has ruul‘ted in a twenty-five
year delay in using this simple method to find forms of decrc.ued wvave-making
resistance.

To understand Hogner's method, we may consider a quadratic functional
with a symmetric kernel K(h,h'):

R@) = [[p®KM,h ') dh '

If we now add a small quantity ¢ times a delta-function to ,n(h) at the point

hl’ we can write

RQs + <6(h)) = [ [pew) + .J(hﬂ K(h,h') fh') + ea(hiil dh ' =
- j) ,.(h) K(h,h') p(h') dh dh' +

+ .jp(h)x(h,hi) dh +
+ ¢ SR K )ph’) dn +
+ o2 Kby .ee(3.48)

Because of the symmetry of K(h,h'), and the fact that ¢ is a small number,

we can write

R(p + «6()) - R(p) = 2¢  p(h) K(h,hy) ah + 2 Rea b)) .0+ (3.49)

But the difference in the two values of R i{s just the change which reaults
from the addition of a small increment ¢6(h1) to the given function ’x(h); and
1f we divide by ¢ we have what may reasonably be described as the gradient

‘of the functional R if we let ¢—>0.

§(h)) = grad R = 2 Su(n)K(h,h)) dh cee(3.30)



This may be related to the problem of finding an improved strut of infinite
depth by identifying the kernel K(h,h') with the kernel Yo(Ko'h-h" ), which
A}

is clearly symmetrical, and identifying the function p(h) with the dipole

moment distributed on the centerline plane. It follows that the function I

gives the effect of a change in dipole moment density on resistance as a
function of the coordinate h, the longitudinal position on the hull. To make
a change to the hull form which will decrease the resistance while holding
the total dipole moment constant (thereby holding the volume per unit depth
nearly constant), we may make a small change i{n the dipole moment density

by adding a quantity € { and then subtracting a quantity € (1/L) j i dh:
* L

1) (0) ,
h) = (h) +e @9 (h) -¢ dh -..(3.51)
P P fr-e { )

It is evident that

j,u“)(h) dh = [ p@ @w) an + ej[f(h) - ;ji(h')dh] ah o= (pOam) an .

L L t L b vea(3.52)
Heunce we have found the condition for an iteration to find an fmproved hull

form while holding the volume.conata;ut. It is clear that no further improve-~
ment can be made when the condition is reached that i(h) = congtant. But

this is just the condition for minimum resistance which was found by use of |

the calculus of variations in the problem as solved by Karp, Kotik, and Lurye,
namely equation (3.19) in differeat notation:

J pady, ez, I h-h'l) ah =\ v (3.53)
L

From this it is evident that the end

result is equivalent in the two approaches.
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In his paper Hogner proceeded as far as deriving the function } (h) for
several infinitely deep hull forms which could be described by elementary \
functions, but failed to carry the calculation further. In a later portion
of this paper the calculation of an infinitely deep strut of reduced wave- .
making resistance will be carried through by this method, and will be shown
to be roughly equivalent to the result of using the calculus of variations
on the same problem. An extension of the method to more complicated problems,

with hull forms varying in three dimensions, will also be outlined,
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IV. A Method of Steep Descent for Developing Improved Hull Forms

1t appears reasonable to conclude from the work done to date in finding |
hull forms of decreased wave-making resistance by mathematical methods that
significant improvements can be made over conventional hull forms. However;
all the applications so far have been limited in their scope. The classical
calculus of variations has only been applied to the case of infinitely dgep
struts., Moreover it seems too difficult for shapes of hull which vary in
three dimensions. The Ritz method has been applied only in finding the best
of a very limited family of polynomials, but it does produce improvement.
The method of Inui, which consists of canceling the ship waves with roughly
similar waves of opposite phase prod;ced by a submerged sphere, has consider-
able potential for intermediate speed ships which can handle the addition of
a large sphere, but it does not seem suitable for very high speed ships like
destroyers. Further, it has the appearance of "fixing" a poor hull design
rather than calculating a good one. It is clear from the limitations of the
work already done that there {8 room for a methed which can work improvements
in hull forms which are partly constrained in their shape (for example, by
the shape of what they must carry) but which can still be varigd in some

respects so as to decrease their wave-making resistance.

1; REASONS FOR CHOICE OF A METHOD OF STEEP DESCENT,
AND A DESCRIPTION OF THE METHOD
The choice of a method should not be determined by the fact that there
is no proof that the form found by it will have an absolute.minimum of resist-
ance. The problem appears to be that any hull shape with a stationary value
of wave-making resistance will only be optimum compared with other shapes of
a restricted set. Other sets may contain shapes which cause even less
resistance than the stationary value already found, Techniques for identifying
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such other sets are therefore most desirable., 1Tt follows that any method
whiéh not only finds improved forms in a given set but points to other sets
which nny be better i{s worth investigating. In this respect the so-called
direct methods of the calculus of variations seem to have an advantage over.
the classical indirect methods. They are attractive for hull form calcula-
tions for several other reasons as well:

(1) The description of a ship's hull is limited in practice to the defini-
tion of its coordinates at a finite number of points. Since the direct methods
of the calculus of variations deal in general with a finite number of variables
initially (although they may allow the number ultimately to become infinite),
there is a natural relationship between the normal description of a ship and
the language of the direct methods,

(2) 1f 1t is not possible to permit the number of variables to become
infinite in the limit, then there is still much to be gained by dealing with
a finite number. With only a finite number the question of convergence is
greatly simplified. If the result obtained with a finite number of variables
i8 as accurate as the description of a ship can be in practice, then the
practical limit of success has been reached anyway.

(3) The mathematics of the direct methods are relatively simple.

(4) The direct methods are susceptible to simple applications of
constraints.

Although the direct methods used so far (by Weinblum and others) do not
have all these advantages, there are other methods available by no means as
limited as thoge already applied. Further, the mathematical difficulties
involved in the classical calculus of variations, when applied to any but the
iimplest ship shapes, make some alternative essential for the more complicated

problems of practical ship forma. The choice therefore should be made among
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the available direct methods.

The direct methods are not in fact so far removed in concept from the
classical indirect ones. Richard Courant has pointed out [15] that there {is
a close relationship between the Euler differential expression of the class-
ical calculus of variations and the gradient of a function in a finite-
dimensional vector space. In fact, Euler's differential expression may be
considered the gradient of a functional in function space. In view of this,
a reasonable approach to the ship resistance problem is to write the resist-
ance as a function of a finite number of variables, which we will consider
as the elements of a vector in a finite-dimensional vector space, and then
examine the behavior of the gradient of the resistance in that vector space.
If we start with the variables so valued as to represent a ship and vary them
along a trajectory opposite to the gradient of the resistance (or as closely
to that direction as the applied constraints permit), then we should produce
an improvement in the hull form if one can be produced by continuous varia-
tion of its defining variables. If, in addition, we follow the trajectory
far enough, we may abproach a stationary value of the resistance functional.

A Theorem on the Method of Steep Descent

This discussion leads us to the employrent of a method of steep descent
for the calculation of improved hull forms. In oxder to justify this for
the particular application, we must prove the following theorem:
Theorem: 1f C {8 a non-negative continuous functional of the elements of a
finite~dimensional vector space W, and the elements m = (ml,mz,...,mn) of the
space are differentiable functions of a parameter t, then if n is unrestricted
or i{f m is only restricted in that certain elements L TEEEN are not functions
of t or that m must be orthogonal to some given vector a, then the vector

m(t) will, within the constraints imposed, have some direction which it can
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follow which will provide the most rapid decrease or least rapid increase in
the functional C. This b will be a function of m, If the direction provides
a decrease and the vector m follows the trajectory ﬁ(t), then C will reach
or will approach asymptotically a stationary value, and this stationary value
will be a relative minimum value.

Lemma 1: Let W be a finite~dimensional vector space, and let C(W) be a
finite non-negative continuous real functional of the elements of W. Then
if we write grad C as the gradient of the functional C with respect to the

elements of W, and if all the elements m_, mz,...,mn of the vector space W

1
are differentisble functions of a parameter t, then c(ml, mz,...,mn) goes

over into a function of t, and we can write

n
G(t) =X ﬂ'licm = (dm, grad C), where dm = (:il, ﬁ:é,...,ﬁn) ees(b.1)
i dt dt

Now if we choose dm such that its absolute value is fixed and that its direc-
de

tion is subject to certain constraints, but within these constraints is such

as to give C(t) as small a real value as possible, then as t increases C(t)

will ultimately reach or asymptotically approach a stationary value.

t
C(t) = f(dm, grad C)dt
0 dt

Proof: If the smallest value of é(t:) which we can obtain subject to the >
constraints of the problem is positive, then C(t) is a (minimum) stationary
value and the condition of the lemma is satisfied. 1If, on the other hand,

é(t) is negative, then C(t) will decrease as t increases until é(t) has increased
to zero or until C(t) has decreased to zero, whichever occur:'l firat; and in
either case, since both C and C are continuous functions of t, a stationary
(minimum) value of C will have been reached. If C = 0, this is a statiomary

value because of Ehe continuity of C together with the fact that C is non-
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negative, If, instead, ¢ asymptotically approaches zexo, then C will approach
a stationary value as closely as we please; and although it will not reach

a true lfutionary value, 1t will be such for all engineering purposes. Notic;
that this proof is independent of whether the functional C(W) is a bilinear.
functional of the elements of W. It is enough that it be non-negative. Of
course the functional C(W) is, to first order, a quadratic functional of a
vector P € W; but although this is a necessary condition if, for example, a
method such aoWbinblunﬂsmethod is used, it is not necessary here. It is
evident from the phyaicll conditions of the problem that C(W) cannot become
ﬁegative: this would be equivalent to a negative wave-making resistance,

and in turn would imply the addition of enmergy to our ship hull from a pre-
viously undisturbed ocean. It is also clear from the eqhacions themselves.

Hence a stationary value of the resistance can be reached by allowing C to

vary as a function of increasing t, and our lemma is proved.

Lemma 2: If certain of the onl,mz,...,mn), say mh,...mk are not functions
of t, then Lemma 1 holds except that the definitions of ¢ and dm are altered
to eliminate terms with these subscripts. a*

Proof: This follows from the fact that ﬁh,...,ﬁk =0,

The interpretation of this Lemma is that if, for example, it is desired to
hold constant, to first order, certain dimensions of a ship (that is, to hold
constant the values of certain sources and sinks) then this can be done and
the trajectory will provide a stationafy value of C(t) subject to these con-
straints. It also follows that if we write m in terms of a basis in which
mh,...,mk are orthogonal to the remainder, then we may find é(t) in terms of

.the derivatives of the rémaining basis vectors and so find a trajectory which

is orthogonal to the vector components mh,...,mk.
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Lezma 3: The direction of m(t) which for a given magnitude of m(t) will pro-
duce the most rapid change in C(t) is that m(t) which is parallel to grad C. ,

Proof: é(t) = (m(t), grad C). If we set m(t) = léj£%|‘i(t) l, then
m(t

leol] = sl Jezad cf ‘L,ii(z)ll.'gs::g gig AR JJerad cf ...(A.Z?'

the equal sign holding only if m(t) is parallel or anti-parallel to grad C.

Lemma 4: The direction of m(t) which for a given maganitude of m(t) will pro-
duce the most rapid change in C(t) if m(t) is constrained to be orthogonal to
iome vector, say grad V, is that direction which lies in the plane (two-
dimensional vector space) which is spanned by grad C and grad V, and is
orthogonal to grad V.

Proof: By the Gram~-Schmidt orthogonalization process we may construct an
orthogonal basis for the two-dimensional subspace spanned by grad V and grad
C. We take grad V as the first of our basis vectors. Then we obtain a
second basis vector orthogonal to grad V by writing

q = grad C - (grad C, grad V) grad V eed(l.3)
(grad v, grad V)

We can show that 4 is orthogonal to grad V simply by writing out (a, grad V).

In addition we can show that 4 is not orthogonal to grad C by writing

(a, grad C) = (grad C, grad C) - (grad C, grad V!z ool .b)
(grad Vv, grad V)

If grad C # 0, which we showed in lemma 3 must be the case if we have not

already found a stationary value of C, then

(4, grad &) =1 - (grad ¢, grad v)2
(grad C, grad C) (grad C, grad C) (grad V, grad V) eoo(b.5)

But the second term of this expression is always non-negative and less than

unity unless grad C is parallel to grad V, in which case d,will be orthogonal
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both to grad V (which it is by definition) and to grad C. But this means
that unless grad C and grad V coincide in direction, a,will not be orthogonal
to grad C. Now, since a is both in the two-dimensional subspace spanned by ‘
grad C and grad V, and is also orthogonal to grad V, it must be parallel to-
that vector m which is orthogonal to grad V and which we have stated will,
of all vectors of that magnitude orthogonal to grad V, produce the largest
value of ‘é'. ’
That this is the case can be shown as follows:

' grad C = a(grad V) + b

but since é\ is parallel to a, we can write, with a = cm,
grad C = a(grad V) + b(em). |

But

C = (grad C, m) = a(grad V, m) + bc(n,m) = be(m,m) .
Now let us assume that thcre is some other vector m' of the same magnitude
as m 80 that (@',m') = (m,n) but such that | (grad C, 6'), >kgrad c,ﬁ)' .

Then .
m' =b'a+p,

vhere (grad V,p) = 0 and (B,a) = O
so that (p,l.l) = 0, It follows that if ¢' is the value of C corresponding tol
this vector m', then
C' = (grad C, m') = (a grad V + bem, b'cm + p) = bb'cz(ﬁ,ﬁ).

But . . 22
@'a') =b' % (mm) + (B, p) = (m,m) by hypothesis; so

ble= J1 - (B,P/@,n) < 1, Then since

C' = (b'c)be(q,m) = (b'c) C ,
. . it follows that
|ef <[] .
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But this is contrary to hypothesis, so the Lemma is proved.

Proof of theorem: By Lemma 1 we showed that so long as C(W) is a finite, !

non-negative continuous real functional of the elements of W, there will be

a stationary relative minimum value of C(W). We alro showed that this value
can be found or approached asymptotically by allowing each of the elements

of W to become a function of some parameter t, and then varying the elements
as a function of t so that C decreases as rapidly as possible for a given
absolute value of dm. By Lemma 2 we showed that if certain elements of W
were held constnnt?tthe theorem still -held subject to this condition. By
Lemma 3 we showed that the direction in whlch the function dm should be varied
to produce the required most rapid possible decrease in C a:;ject to the
restriction of Lemma 2 could be found. By Lemma 4 we showed that even if the
restriction were imposed that the trajectory of m(t) be such that some other
functional of the elements of the vector space be held constant, a direction

of dm could be found so that for a given absolute valuei‘gg [ the most rapid

dt de
possible decrease would result in C(W). But since this is so, our Theorem

is proved.
It 1is possible to derive the direction which dm must take in terms of
the given basis vectors if two constraints of the gzrt described in Lemma 4
are applied. However, it results in complicated algebra. In consequence it
is simpler to rotate coordinates so that the basis for the vector space includes
the gradient of each of the functionals to be held constant. Then the rest
of the basis vectors are made orthogonal to each of these gradients, and the
gradient vectors of the functionals to be held constant are disregarded in

the calculation of the gradient of C(W). This follows because in the expres-

sion é = (grad C, m) there is no contribution from any of the elements of
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grad C which are parallel to the basis vectors grad Vi grad Vor seey where
the grad V; are the gradients of the functionals V; which are to be held
constant. Observe that if the V, are linear functionals of the m; then their’
gradients will be independent of the value of m and so constant in direction

throughout the vector space W.

2. PRINCIPLES OF APPLICATION OF THE METHOD OF STEEP DESCENT
TO THE SHIP WAVE PROBLEM

We may now identify the variables of the theorem of the preceding sec=
tion with the variables of the problem of reducing wave-making resistance.

The variable C may be identified either with the drag coefficient ¢, °r
the wave-making resistance R of a ship, since either is a non-negative func-
tional of the elements of the finite-dimensional vector space in which the
hull is defined. We will choose to identify C with R, the wave-making
regsigstance. The elements of W we may identify with the sources which are
used to generate a set of closed streamlines which outline the hull. The
ship itself then is described by a vector in the vector space W. Since any
n orthonormal linear combinations of the sources also comprise an orthonormal
basis for our vector space W, the elements of such a basis may also be
identified with the m, of the preceding section. It will be showm later that
linearly independent combinations of the sources(with certain restrictions)
may also be used instead of orthonormal combinations, since they too comprise
a basis for the vector space W. One such linearly independent basis is just

the summation

3
« ¥ n veo(4.6)
= |

for the case of a set of sources and sinks evenly spaced along the axis of

the hull. Notice here that the my in equation (4.6) are just the sources
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themselves, and the "'71 are to be identified with the m, of the preceding

i
section. The "? 3 may be interpreted as the first-order approximation to the

)
offsets of the hull. The vector defining the ship may then be written as
7} » (71,7 23 cee On). As Inui has shown, this {s & poor approximation’
to the hull form, but it is just the approximation which is obtained by a
literal interpretation of Michell's classic paper [l].

Another combination is a lincar combination of linear combinations, and

this can be written

n J
’\)-Z'_a Zm

ee(8.7)
b pal k om

ik °
Equation (4.7) can be interpreted as describing (still to first order) the
shape of the ship's hull as the sum of a set of n other first order approxi-
mations to ship's hulls. Each of these other hulls is taken as a basis vector
for our vector space W, and the hull described by the '\)j is then a vector
described in terms of these other ghips as basis vectors. The method used
by Weinblum can also be interpreted in the same manner, except that in his
work he used the terms of a polynomial as the basis vectors for the descrip-
tion of his hull.

The fact that the wave-making resistance R is non-negative follows from
the physical considerations of the problem, For the case of an ideal fluid

it is also obvious from one form of the equation for the wave-making resistance

of a continuous distribution of x~directed dipoles in a half-strip.

2

oe
R = 16mk 2 [ a? + 3% cosh? u au .0 (2.25)
o

Here the functions I and J are real so the integrand and the integral are

clearly non-negative.
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The functionals Vi may be identified with any of the quantities which
must be constrained to be constant in order to make the statement of the
wave-resistance problem meaningful, For example, it is necessary that the

sum of the source strengths be zero, and we may identify V. with the sum of

1
the source strengths. A possible constraint is that the volume of the hull
be constant, and we may identify the functional V2 with the volume., (In
practice it will probably be simpler to identify it instead with the sum of
the first moments of the source strengths in the direction of ship motion,
which 1s a first approximation to the hull volume., This sum is linear in
tﬁe source strengths and so has a gradient which is constant everywhere.)

In addition to the constraints discussed above, there is one other set
which is inherent in the way the problem is set up. This is the location of
the sources, They are located as part of the initial information in the
definition of the problem, and the number of linearly independent vectors in
our finite-dimensional vector space W must always be less than the r ‘mber of
source locations. This follows from the fact that the sum of the source
strengths must be zero if the sources are to generate a closed hull form.
There is, however, no limitation on where we place the sources. For example,
if we wish to find the effect of extending & hull beyond its original length
we may postulate a source of zero strength at some point forward of the bow.
Then we may calculate the effect on the ship resistance of increasing the
strength of this source by an infinitesimal amount. If this resulis in a
decrease in the resistance, we may conclude that a bow extending out to this
point may be of some value, It is this ability to test the effect of sources
placed arbitrarily which pexmits the method of steep descent to be used to

éxplore changes to the hull beyond the original framework of its definition.
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Approach to the Minimizing Problem

The outline of the method to be followed now becomes clear. First we )

choose a hull form as the starting point for the varfation. Then we describe
it in terms of a set of sources and sinks. Next, we add in further uourcel;
but of zero itrength, at all locations where we think it might be reasonable
to have them in the final ship design. In our next step we select those
sources, or functionals of source strength, which are to be held constant in
intensity. Then we calculate the gradient of the wave-making resistance.
Then we find that vector direction which, subject to the applied constraints,
is most nearly parallel to the negative of the gradient. Following this
direction will produce the most rapid decrease in the value of the wave-making
.reaistance. Then we vary the sources and sinks in strength in this vector
direction, recalculating the direction to be followed at such short intervals
that the direction changes only a small amount between calculations. In
this manner we follow a trajectory in the n-dimensional vector space in which
the ship's hull is defined until we reach or make an asymptotic approach to

a stationary value of the wave-making resistance.

This simple concept need not be confined to the minimization of wave-
making resistance. There is no reason why it cannot be extended to minimiz;
ing the sum of the wave-making resistance together with the other components
of resistance, subject only to the proviso that the total resistance be
written as a non-negative functional of the source strengths. There is also
no reason why we cannot use any formulation of the resistance, whether it
provides precisely correct total resistance or not, so long as it furnishes
-a correct or nearly ccrrect description of the direction of the gradient of
the resistance in the n-dimensional space in which the hull shape is defined.

This means that it may be feasible to use a partially theoretical, partially
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empirical fornmulation of the resistance -- and even change it as the vector
defining the hull form follows its trajectory through its n-dimensional

vector space -- so long as the direction of the gradient is correctly describéd.

Demonstration that the Resulting Ship Shape Will be Smooth’

One requirement of any method for finding hull forms of decreased wave-
making resistance is that it not introduce unwanted discontinuities into the
hull surface. This is necessary to prevent increase in other components of
the resistance than the wave-making resistance. The description of a ship
in terms of the streamlines of the potential flow arising from a distribution
of sources and sinks inside the closed streamlines insures that the ship
shape will be fair and continuous. This follows from the fact that the poten~
tial arising from each source or sink is a solution of Lﬁplace's equation,
and the potential corresponding to the entire array of sources and sinks which
describes the flow around the ship is simply the sum of the potentials of
the individual sources and sinks. Rut since we have restricted the distribu-
tion of sources to Qithin the streamline which defines the ship's hull
surface and the medium outside the hull has a constant density, the solutions
of Laplace's equation outside the hull are everywhere continuous. From this
it foliows that the sum of the potentials arising from a finite number of
sources and sinks within the hull boundary is also continuous, and since
Laplace's equation is linear, the sum is also a solution of Laplace's equation.
But if this is so, then each of its derivatives ie also a solution of Laplace's
equation and is also continuous, since, for example,

v? [@2] -2p%e] - o
9x ox
and so on for all higher

derivatives. Since the direction of any streamline is defined by
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> -> >
Vg=103¢ + 353 +k gs
x dy
+> > -
vhere 1, J, and k are unit vectors in
the directions of the x,y,z axes respectively, and since %!, gs. and 3§ are
x (.1

continuous, it is clear that there can be no sudden changes in divection of"
streamlines vhich result from the flow from a finite number of sources and
sinks located away from the streamlines.

With this assurance that the ship forms defined by a finite number of
sources and sinks distributed inside the streamline which bounds the hull
will be continuous and fair, we may proceed with confidence to use the distri-
bution of a finite number of sources and sinks to define our ship forms.

They will at least be reasonable forms, and not the polygonal approxirations

which would result from applying the same procedure to the offsets of the

hull.

Change of Basis
It was pointed out earlier that if the quantities to be held constant

are linear functionals of the elements of W, it may be desirable to change
the basis of the vector space W go that it includes among its elements the
gradients of these quantities. Then all the other basis elements are made
orthogonal to these gradients, and the trajectory through W of the vector
describing the hull is calculated disregarding the basis elements which are
parallel to gradients of the quantities to be held constant. That is, any
linear combinaticn whatever of the rew basis elements other than those
parallel to these gradients may be added to a given vector without changing
the quantities to be held constant. This will continue to work along the
entire trajectory if the directions of the gradients of the functionals to

be held constant are i{ndependent of position in the vector space. That
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independence is assured by the requirement that these functionals be linear.

The process of changing the basis may sound like a complicated one. 1In
fact it is not, since the only use to be made of the new basis vectors is to
find vhat relation must exist between the quantities added to the several
sources and sinks which define the hull, All calculations involving the
resistance equations themselves are made in terms of the original set of
sources and sinks, changed in magnitude but not in position. This means.that
the calculations of the resistance integrals need be done only once, and may
even be entered into the problem as part of the initial information.

Since the natural description of the hull is in terms of the intensities
of sources at predetermined lo;ations, the change in basis will in general
make the new basis elements linear combinations of the natural ones. We may

degignate the old basis elements as « ""*“{" each corresponding to unit

1
values of sources with strength ml,.. . .mn. Then we may write the vector
which defines the hull in terms of this basis as m = mlc.1+ cee tmoa. We
may write the new basis elements as pl"“’pn' Then each one must be multi-
plied by an appropriate scalar '77 seee ’"7:\’ so that the vector which defines
the hull will become '71p1+ +eo +7) B Then it follows that the new basis

is related to the old by equations of the form
Pi -zk, k% oee(4.8)

Since in the original basis it was possible to write the gradient of the
functional C as

grad C| = 3C o, +3C @ + ... +8C
@ Bmp dm, 2 3o ©

we may define a gradient in

the nesr basis as

2



grad C| =3C B, +dC B, + ... +3C B_ .
Paby  3m,? am, "

1f the basis vectors pl,...,p o are orthonormal like the basis vectors dl"“’cil ’

)

then it follows from the results of ordinary vector calculus that the direc-
tion of the gradiemt vector is constant regardless of what orthonormal basis
is used to write it. On the other hand, if the basis vectors pl.....pn are
not orthonormal it is not necessarily the case that the gradient vector

grad C| 1is in the same direction as grad cl . In particular, if the basis
@

)

vectors Pl""’Pn are not orthogonal but only linearly independent, then it

is easy to find examples where grad c,p is not parallel to grad c‘ <« Never=-

e 4 Z
ltheleu, for a given magnitude of JA?1 +4"72 + ...+4‘7n a vector
motion parallel to grad C| will provide the largest change in C.
To find a relation between the gradients in.the two bases we can examine

the effect of making a small change d'z in the coefficient of Pi'

P1dh) = (’E“ik"k) s '{"k(“ik"%)'
' This shows that a small

change d in the coefficient of corresponds to a change c . d in the
i i ik- A1

coefficient of each of the %. But then we can write

dc -f_g_g (cikd'?i) = (5‘;‘ %:.kcik) 671,

k where dC is the small change
in the functional C resulting from the small change d% in the coefficient
of % But by definition,

dc = 3¢ dy ,

D'Vi 1
and by equating coefficients of d% in this

and the preceding equation we have
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!Q -3 cik ac . .o.(‘o9)

owpy k7 omy
We make use of the new basis in the following fashion: We write
the gradient grad C'P by use of equation (4.9) and then write the motion .

vector

S, = e + o see A + 0 +ooet 0

M/ 74 1P1 72’2 + + V?n- jpnvj pn- j+H P n
vhere the last j basis vectors are given zero coefficients because they are
parallel with the gradients of the functionals to be held constant. For the

non-gero coefficients we substitute the corresponding coefficients of grad C ,P

and then we are able to write

A= RS Aat)p + RC_ AL, + ... + QC_ A t)pn_j. vee(4.10)
) % o,

n-}

The At is a negative real number chosen to make the step size in the steep
descent correct. It must be negative, of course, to provide a decre¢ se in
C. We now have a vector Avin a subspace V C W which is orthogonal to the
gradients of the functionals which are to be held constant. This vector

AYV1s parallel to that portion of the gradient grad C P which is included

in V. But for a given magnitude of A"ythia is the direction which will

produce the greatest change in C, since

AC = (grad C P.A"?)
for A" small enough.
Hence we have found the direction of steepest deacent within the given
constraints.
We now use equation (4.9) to apply the atep change d”yto the source

strengths Mysecer Moo We write
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(ac At:)p1 = (dC At)thkdi z_ Q_ dte )¢ﬁ

ik
™ %_1 k o3

Then wa sum the coefficients for all i of each qﬁ and add the result to the

ff’. f i th i - + o0 ese + .
coefficient o ui n the expression m nloi -hkoﬂ -n‘n

(1) (0) (0) '
- v ey . vee(4.11)
LI~ R

This iteration continues with
192, 2-93,.,. until a minimum is reached or the calculation {s terminated
for some other reason.
It is easy to show that the direction of grad c( is different from that
of grad C ' for a particular case. Suppose that all the basis vectors

pl ’Pz’""”n are identical with 01,02,....% except that Pk+1 + ‘°i+1,

0 <e¢ <1. Then suppose 3C = dC = 1, all other 3C = 0. Then from equa-
om

k a‘“k-’-l. bmj

tion (4.9) we have 3C = 1, 3C = 1 + ¢. But from equation (4.8) the
o
N L W)

component of grad C| in the direction of “f<+1 will be (l+e)e = ¢ + 02. which

will be much less than 1 for ¢ small enough. But for any ¢ ¥ 0 the basis
pl,...,pn spans the vector space and is admissible, so it is clear that we

may have grad C

not parallel to grad C o

It is clear that if we have a basis P such as the one just described and
make ¢ small enough, the path of steep descent calculated by the method
described above will be essentially orthogonal to the direction dft+1 until
a stationary value of C with respect to all other allowable directions in
the vector space is approached, Then the path will acquire a significant
component in the direction °k+1 and proceed more directly toward a true

stationary value with respect to all motions. It is therefore evident that
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the path of steep descent is not independent of the basis vectors which we
use to describe the hull. Nonetheless, it does not appear that the ultimate
destination of the path is necessarily affected. On.the other hand, since
there is no proof available that the solution to be ébtained 1l.un1quo except
in the case where the resistance functional is bilinear, it may well be that
two different paths will result in two separate stationary values, just as a
traveler going down a hill may end up in any of several separate valleys. in
tﬁe bottom,

It 18 possible to select a set of linearly independent basis vectors
for the description of the hull in many different ways. It should be observed
first that if we use n sources to describe a hull there are really only n-1
degrees of freedom in the choice of their values, since their sum must be
zero. If, further, we wish to hold constant the hull volume to firat order,
then we must hold constant the first moment of the source strength in the
x~direction. This provides another constraint, leaving only n-2 degrees of
freedom. If we choose n-2 basis vectors which are orthogonai both to the
gradient of the total source strength and to the gradient of the first moment
of the sources in the x-direction, and linearly independent of each other, we
will have a ﬁaais for a subspace V included in W in which every vector is
orthogonal to these gradients. It will, moreover, contain every such vector.
It follows that any trajectory through this subspace will leave the volume
of the hull unchanged, at least to first order. We may find the best such
trajectory of C(W) through the subspace V by taking the gradient of C with
respect to the basis elements of the subspace V and following a trajectory
parallel to this gradient.

It may sound as if it 18 a difficult problem to specify a basis which

is orthogonal to the gradient of the sum of the source strengths and to the
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gradient of the first moment of the source strengths in the x-direction. 1In
practice it turns out to be quite simple. A few examples will make this clcnf.

Suppose we have a hull which we have described by eight sources, equally
spaced along its centerline plane. We may describe their strength by multiples
of eight unit sources (ci.....a.8 ) vwhich comprise a basis for the description
of any ship which can be described in terms of sources placed at these loca-
tions. We may have, for example, |

2, 4o, 20. o =0 =200 ~ba <~206 .
1 2 3 4 5 6 7 8

Since the sum of the source strengths is zero, this get generates a closed
set of streamlines which could be a ship, The anti-symmetrical form makes
.this generate a set of streamlines which are symmetrical fore-and-aft.

We may provide a basis (Pl"“’P6)' such that any vector described in
terms of its elements can be added to our given hull without changing either
the sum of its elements (which is zero) or its first moment, which is roughly
proportional to the volume of the hull. The basis might be the following:
pl-cilz-02+05/2+0m4+0o5+0%+‘0¢.’+008
p2-0°1+°i/2'05"’%/2"‘00-5*'0064'007*'008
p3-001+0m2+c-3/2-oz.+o§/2+0¢»6+0c.i+00§
Pa-°‘i+°°'z+°°§+°5/2-°3+°3/2+0‘7+°°§
ps-Ooi+oai+0c$+0oa+o5/2-.-o3+o,7/2+0q§
P6-Oui+00§+003+0¢z+00§+oa/2-o,’+o§/2
The six vectors pl,..., P6 are linearly independent of each other. When any
‘multiple of any of them is added to the set of vectors which describe the

ship, neither the sum of the source strengths nor their first moment is changed,



Hence these six vectors meet the requirements we have set.

We may also define vectors which hold constant other fututeo.: for
example, we may require that an appendage which can only be produced by a !
set of three sources in a particular magnitude relation to one ancther retain
its shape although not its size. To do this we may make one of our basis
vectors, or one term of a basis vector, the sum of the three sources each
multiplied by its appropriate magnitude.

We can generalize our basis vectors which maintain the volume of a ship
constant (to first order) to the case where the ship is described by a number
of rows of sources distributed over the centerline plane of the ship. A
single basis vector might be described by the following array of numbers
(the multiplied basis vectors in terms of which the hull is described are
omitted),

1 -1 0 0 0 0 0 0 O ., . .

Pl-o 0 0-1 1 0 0 0 0 . . .,

0 o 0 0 0 0o o 0 O . . .

We provide n-2 vectors of this sort. To do this easily we may hold the pair

of numbers in the upper left-hand corner constant and associate with it in

turn n-2 pairs like the one shown in the second row, each with its axis parallel
to the direction of motion of the ship and with the order of signs reversed
from the order of the reference pair in the upper left-hand corner. Observe .
that some of the additfonal pairs will have one member in each of two rows.

Also we must include one vector which looks like this (we will call it pz):

- 1 <1 1 0 0 0 0 . . . 1 -2 1 0 0 0 . . .

-]l =
o 0 0 0 O 0 . . . o 0 o 0 0o O . . .
o o 0 o o o ., . . o o 0 o0 o o0 . . .

L] . . . . . . . . . . . . L] . . . . .
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If we wish to hold the sectional area curve constant we may uce.a set of

basis vectors like thesa:

1 -1 0 0 0 0 . 1 -1 0 0 0 0 . )
- - 0 O 0 . - 0 . .
p=-1 1 0 P, =0 0 0 0 O
0o 0 0 0 0 O . .1 1.0 0 0 0 .
P;= 0 1 -1 0 0 0 . P,=0 1 -1 0 0 o0 .
0 -1 1 0 0 o0 . o 0 1 0 0 O .,
o 0 0 0 ¢ O . 0 -1 0 0 0 0 .

Observe that if there are m columns in the last array that there will
be a total of n-m-1 linearly independent basis vectors. Hence if the sec-
tional area curve is kept constant there will be fewer degrees of freedom
than if only the hull volume is held constant. It is, of course, possible
to ptovidg sets of vectors which hold the volume constant oﬁ each waterline

or which observe other constraints.

Iteration Sequence

Once we have described the ship's hull in terms of sources and sinks we
may =ow calculate the resistance by one of the formulae developed in section

IX. Then we determine what is to be held constant and develop a set of basis

vectors for the description of changes in the ship's hﬁll with this in mind,
as described in the preceding paragraphs. Then, assuming we have decided to
identify the wave-making resistance with the variable C, we calculate the
. partial derivatives DR. Then we calculate the partial derivatives of R with

respect to the magngihde hji of the new vectors q; (except those identified

1Py
with gradients of vectors to be held constant) using equation (4.9),
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substituting R for C. If there are 2 constraints we will have n-2 such

partial derivatives. Finally we can write

)

¥O) “=At =B, R =« At =5, .00 R, Ar<o. ee(8.12)
A'v 1P1 3-71 1%’ ﬂ:o’t&;k |

',7(j+1) - 7(5) + 4S9 vee(4.13)

This expresses in vector form the same result as is given in equation (4.11).
The simple iterative formula (4.13) serves to lead us to the desired forh of
relative minimum resistance by a path of steep descent down from 7 (0). It
is necessary to insure in the iteration that the steps are kept short enough
so that the minimum point is not overshot; or that the change in direction
of the actual gradient over the length of the step is not 8o great that a
step which makes for a decrease in resistance in its initial portion results
finally in an increase., The simplest solution to such difficulties is to
proceed until such are found, and then return to the preceding step and try
again with the step length At cut in half. The magnitude of succes.ive
values of the double sum in (4.12) can be used as an indication of whether
progregs is being made toward a stationary value of R, If, for example, the
direction of the vector 4f7(j) changes but its magnitude does mot ultimately
decrease, then it is conceivable that the iteration is reaulE}ng in a circular
path instead of following the path of steepest descent; buéfif this occurs,
then the size of the steps may be cut in half in order to make the actual
path followed stay closer to the path of steepest descent.

For the case where all derivatives higher than the second are zero it
is possible to calculate a value of At which will provide the largest possible
decrease in the functional C. Since the resistance functional is bilinear
this will be the case in the wave-making resistance problem. Suppose that

we can write AC in the form of a Taylor Series of only two terms:

79



n n n .
AC= X 3 (At 3¢ +1 z 3z % At 3C_ \fac dc_ \.
r=l awpr( ) 2 ssl 1130 Bp\ BIW S'»‘y

Since At <0, we may differentiate with respect to At and set the result

equal to zero as follows:

d(At) =l a% s=1 r=1 3n7r5% 'ﬁ?; 5'?:

and go we have for the optimum size of the step 4 t

o

n 2 n n 2
d(4c) = = (3¢ -z'ldt s £ _3% . B = 0
2!

by 2
- b2 .1+
optimum =l e

I = _ % a2
s=l 1=l W a% 1174

A short discussion of the computational techniques involved can be found
in a chapter by Charles B, Tompkins in "Modern Mathematics for the Engineer"
[19].

It is also possible to use instead of the rotation of coordinates the
constraint of equation (4.3) to provide a trajectory which is orthogonal to
the gradient of a function which is to be held constant. This has the dis-
advantage that it is really simple only if there is a single constraint -«
not a common situation.

It may be asked, "Why not just differentiate the resistance with respect
to each of the source strengths in turn and set each to zero, then solve the
set of resulting linear equations?”" The answer is that it may be undesirable
to permit the hull shape to change all the way to the point of minimum
resistance. Since the gradient will decrease as the relative minimum of
resistance is approached, a larger and larger change in hull shape will be

required to obtain a given decrease in resistance as the iteration proceeds.
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Presumably the iteration will start with a conventional hull form and show
how it may be changed to decrease its resistance. There will probably be
some hull form found whose wave-making resistance is less than that of the '
original and acceptable from other standpoints, and it may welllbé that iteration
beyond that point will produce a form which ia unacceptable. It is also

true that the path of steep descent used is not required to be the path of
steepast descent. That is, certain of the basis vectors may be varied less

than required by equation (4.12), or not varied at all, so long as the

result of the variation is a decrease in total resistance, This may well

produce an acceptable form in cases where the strict method of steepest

descent produces an unacceptable one.

3. THE RESULTS OF A SIMPLE APPLICATION OF THE METHOD OF STEEP DESCENT TO THE
PROBLEM OF IMPROVING AN INFINITELY DEEP PRISMATIC HULL

In order to try out the method of steep descent, a sample calculation
was made using a slide rule. This calculation started with a hull which
could be described by a uniform distribution of dipoles with axes oriented
in the direction of motion over a centerline plane of unit length and infinite
depth, This is equivalent to a two-dimensional source near the forward end
of a hull and a two-dimensional sink near the after end. A Frouda number of
0.316 was assumed for the calculation, The calculation was constrained to
hold the total dipole moment constant. After six iteraticns the shape of
the dipole distribution approached that which Karp, Kotik; and Lurye|:6]
calculated for the same problem with Froude number 0.38 using the classical
calculus of variations, and differed from it in the direction to be expected
from extrapolation from their results for higher Froude numbers,

This problem has only one constraint, so the method of equation (4.3)

can be used to handle it. That is, with the resistance R and the sum of the
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dipole moment V, a vector a parallel to the desired directiom of changs m(t)

could be calculated by \

a=grad R - (grad R, grad V) grad V ees(b.30)
(grad Vv, grad V) _

The equation used for the resistance was equation (3.17),

22 1/
R=-gm?px? 1]/: _i)/': pCEY pCEY) ’o“a'} -% 'I) a¥alr ...ean

A form symmetrical fore-and-aft was assumed at the start, and since this
provided symmetrical changes the symmetry persisted through the calculation.
‘fhil nearly halved the amount of calculation required over what an asymwetrical
distribution would have required, The length of the dipole distribution was
.divided into ten intervals, and with one exception the dipole moment over
the whole interval and the value of Yo was assumed to be that for the argument
at the mid-point of the interval. The exception was the case where this pro-
duced the result Yo(O) = =ao), Here it was necessary toc use a more rvecise
calculation, since the function Yo(x) has & singularity at x = 0 but the
integral f Yo(x)dx remains bounded for all x>0. The expression for the

]

integral is available in terms of other tabulated functions as follows:

f Yo(x)dx = x Yo(x) + lzr x {Yl(x) llo(x) - Yo(x) ﬂl(x)} ...(4.14)
Here Yl(x) is a Bessel's function of the second kind, and llo(x) and ul(x) are
Hankel functions.

The length of each interval of the distribution was taken as A';j and the
intervals were numbered from 1 to 10 with midpoints § j.j =1,2,...,10. The
dipole density at midpoint was written M ¥ Then the approximation to the

.ruilunce was written as
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eart e[ s e hbeynt S ey,

veo(4J13)
Then by differentiation, and changing the limits on the iategral,

g --uﬂfxz[r_ﬁ (g,; ;‘)A}“.m 535 v.(l,' |)dx]4)j

3

veeb.16)
It was then feasible to write
gtldl-‘ 9! ,2& ® 0-0,_33. 0-0(4017)
M M oM,

8ince a in equation (4.3a) is linear in grad R, and we are 1ntetute¢i énly

in its direction, we may disregard the wmagnitude of the constants in equation
. (4.16) in calculating a. PFurther, since grad V enters both denominator and
‘numerator to the same pover in (4.3a) we may multiply gr.ad V by any convenient
sultiplier. If we take Aﬁj = constant for all j, then we may write (grad V) ]
= 1 for all j. Here (grad V) 3 is the jth component of grad V. With this

set of simplifications we can now write the equation for o,

Observe that (grad V, grad V) « Z (grad v) 2, n, and
3=

n
(grad R, grad V) = Z 3R 1-2: 3R .
j=1 @, ' ogel W
J 3
It follows that
n
b
=]

eee(4.18)

(&7

where

o - {a , a,,...,q,} e (4.19)
1 2 n

‘and by disregarding the multiplicative constants in (4.16) we get
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n
1 r = ve(6.20)
Eij n 4=l mj _

where cj' and R' are the results obtained by .
dropping the constants.

The procedure used is to calculate the d3R' from equation (4.16), then
oM
3

the cj ' from (4.20), and then find a new value for the -j by taking

1) _, 1 (0)
MJ "j + A4t c:‘ eeefl.21)

Since the multiplicative constants were negative fn (4.16), we require

At> 0 for this iteration. It continues, of course, with 03k, 1-»k+l i{n (4.21),
The limitation on selecting the value of 4t was to make sure that it was not
so big as to make any of the -j become negative., Otherwise, the size was an
estimate by the calculator that it might produce rapid convergence of the
calculation. As a measure of the progress, it is possible to use the magnitude
of ‘“’B" J(T.‘,—u.ry . In the test calculation the values of lc." went in the
ratio .82: 3.74: 2.02: 1.04: .69: .41: .24. The initial increase was the
result of the firat step being too large, Later decreases recsulted from using
smaller steps -~ from a little experience on the part of the calculator., The
last value in the sequence is the value of lq," computed from the values of
MJ(Q. (These are the final values of the calculation.) This means that the
dipole density distribution reached in the particular calculation was not an
actual stationary value, but was certainly a much better shape than the one
with which the calculation was started. In order to see how it compares with
others developed by the calculus of variations, it is plotted together with

two distributions for higher values of the Froude number calculated by Karp,

Kotik, and Lurye [6].
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Figure IV-1. Dipole Density for a Strut.

4. USE OF THE SOURCE DISTRIBUTION CALCULATED BY THE METHOD

OF HESS AND SMITH TO FIND IMPROVED HULL FORMS

It was pointed out in part 1I of this paper that one of the more difficult

parts of the calculation of hull forms of reduced wave-making resistance is
to find a source distribution equal to a given hull. The most useful such
distribution is one in which the sources are placed on the centerline plane
of the hull. However, there is no simple genexal method for calculating a
centerline plane distribution corresponding to a given hull, ilthough there
are many special cases available. On the other hand, there is a gemeral
method available for describing an arbitrary hull form by sources placed on
its surface, and this method will provide a basis (both figuratively and
literally) for exploring in a general fashion the desirability of appendages
to add to a given hull., Such appendages are not limited to spheres, but can
be virtually any shape which can be described by sources and sinks.

The method of Hess and Smith [9], which 18 described in part II of this

paper, provides a description of an arbitrary hull in terms of the strengths
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of sourﬁel and sinks distributed in a regular network over the surface of a
hull. It is possible to describe the theoretical wave-making resistance of
such a set of sources and sinks by equation (2.17), (1f a model of the ship
has been towed, it is probable that the theoretical resistance curves can

be brought into precise conformance with the experimental curves by use of
Inui's semi-empirical parameters.) With such a description it is possible

to find the effect of additions to the hull, whether incorporated into the
hull shape or installed as exterior appendages.

To explore the effect of appendages, all that need be done is to add to
the set of sources describing the hull a set of sources of zero strength
distributed in the locations in which it is desirxed to explore the effect of
additions. A spherical appendage can be described by a source-sink pair,
the source a very short distance forward of the sink. Other appendages may
be described either by sets of simple, independent sources placed in the proper
locations, or sets of sources linked by definite amplitude relationship,
depending on the restrictions to be placed on the form of the appendage. 1In

either case, the method of steep descent is then applied, permitting only the

sources being investigated to vary. If the sources are linked by a definite

amplitude relationship, then it will be necessary to apply equations (4.9) ‘
and (4.10) to find the particular basis vector for the change; otherwise they
are handled without rotation of coordinates, which corresponds to cik =1

for k = {, Sk " 0 for k # 1 in equation (4.9). In any case, we proceed to
find the values of 3R using (2.17), (4.9) and (4.10) and then use the
method of steepest ::Eient in which we vary only the sources and sinks which
are added, It will, of course, be necessary to constrain these added sources
‘and sinks to have a total source strength of zero in order to retain closure

of the hull form, It will also be necessary to insure that the variation is
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such that at no point is a net negative change made in the first moment of
the sources in the direction of motion. This would probably result in the
envelope of the main hull moving inside the set of sources originally used )
to describe it, and leave them to describe an isolated appendage instead.
Also, an isolated source-sink pair with the sink ahead of the lodrce is a
meaningless result, and it will be necessary to constr;in the calculation to
prevent it. With these restrictions, however, the procedure outlined permits
us to use the source distributions provided by the method of Hess and Smith
to explore the effect of additions to given hulls of any shape.

1t will also be péallble to calculate the effect of additions to the
volume in a somewhat different fashion. This is by distributing source-sink
paira arranged as dipoles of zero strength along the centerline plane, and
then using the method of steep descent, permitting them to increase but not
to decrease in strength. This is equivalent to permitting increases in volume,
but no decreases. Since no designer has been known to decrease the volume
of his hull after first laying it out, this is probably an eminently practical

technique.

5. USE OF A METHOD OF STEEP DESCENT TO FIT A SOURCE DISTRIBUTION TG A HULL FORM
As pointed out earlier, it i{s difficult to find a source distribution on

a centerline plane which describes accurately a givem hull form. However, it

is certainly possible to do so by the method of steep descent, although it

may not be an economical method of calculation. Suppose we have a hull that

is described by a set of n "offsets', that is, by n values of the coordinate

y where the hull is described by the equation y = t y(x,z). Suppose further

that we have a total of N sources placed on the centerline plane which are

assigned strengths o, and we use these to provide an approximation to the
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shape of the hull. If we can write the y-coordinate of the closed stresm-
line corresponding to this approximation as Y., and the corresponding value
for the actual hull as y.. ve may define a function
a 2 '
3 b Z (Y."y.) ...(4.22)
=]
The function S is a measure of the deviation of the approximation from the

actual hull, 1f we can find the relationship gg., k=1,...,N for each of

the Y_, we can write

.’
ls; - Z.Z(Y"y') _a_Y'. » k'l,.f-.ﬂ. ...(lo.23)

oy

We may now follow the method of steep dascent to find the set of values of
‘the my, which will minimize S and so make the approximation best fit the actual
hull i{n the sense of least squares., It is necessary, of course, that ZN. mk = 0
in order to insure closure of the streamlines., Therefore the descent lkn:it be
in a direction orthogonal to the gradient of ;: m. When we have mninimized
8 we have found the.best. fit for the set of a:::ces chosen. It is always
possible to add more sources if the fit is not good enough, or to provide
weights to the terms in (4.22) and (4.23) if it is felt that certain places
on the hull are more important than others in getting a good fit.

The method as outlined sounds simple, Unfortunately the relationship

between Y and n implied by 3Y_ is not an easy one to write down, since the
s e

k
streamlines are frequently found by integrating along a streamline, However,

the method is possible in principle and may be worth using if nothing else

can be found. A rough approximation to st may be found by using a variation

of Michell's formula -- i.e. assume that the addition of width to the hull is

correctly expressed by equation (3.2) if the addition is small enough.
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V. Summary and Conclusions

Although some knowledge of the theory of wave-making resistance of ships
has been available for about eighty years and thousands of tests have been ‘
made to measure this resistance, there has been little application of this
theoretical knowledge to decreasing the resistance of ships. The main advances
in application of the theory have come in the past ten years, and all of these
have been limited in their usefulness, The principal contributions to this
advance have been these:

1. The observation by Inui that the agreement between theoretical and
n;asured resistance could be greatly improved if the hull form were defined
by the closed streamlines generated by its definition in terms of sources
and sinks, rather than by the simpler approximation used.earliet.

2, A diacovery'by Inui that the waves of some ship forms could be
largely canceled by installation of a large sphere beneath the bow and another
beneath the stern. Wigley investigated this problem and narrowly missed the
discovery some twenty-five years earlier [20].

3. A series of applications of the Ritz method by Weinblum and others,
and an employment of the calculus of variations by Karp, Kotik, and Lurye
to find hull forms of decreased wave-making resistance. These applications .
have served principally to dispel the belief that nothing could be done.

In addition, there have been several advances in related fields which
have not yet been fully exploited, but which appear to have the potential
to make a decisive contribution to the ability to calculate hull forms of
decreased wave-making resistance. Perhaps the most importan.t is the general
availability of high-speed computers, which make possible the employment of
ﬁathematical methods which would be impractical without them. There has

also been developed the mathematical method of steep descent, which appears
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to be ideally suited for finding hull forms of decreased wave-making
resistance. An example is calculated in part IV and compared with earlier
results by the calculus of variations. The method of steep descent can be
used in a hand calculation in simple cases, as in the example cited in part -
1V, but a high-speed computer is needed in more complicated problems of ships
of a practical shape. In addition the ability to describe an arbitrary hull
form in terms of sources and sinks has been developed by Smith and Hess in
the past three years, and the conversion of the wave-making resistance
equations into a form which will permit exploitation of this ability with
tﬁe method of steep descent is shown in part 11 of this paper. In consequence,
it appears that the mathematical machinery necessary to obtain much more
improvement than has been possible heretofore is now available. The only
obstacle to a completely general method of finding improved hull forms is
the lack of a simple way to find a source distribution within the confines
of the hull, rather than on its surface, which generates an arbitrar, hull
form. However, the method of Smith and Hess for finding a source distxibu-
tion on the surface of the hull equivalent to an arbitrary hull permits the
easy calculation of any change which adds to a hull volume, and in view of
the normal method used for designing ships, this should nearly always be
sufficient., A method for carrying out such a calculation is outlined in
part 1IV.

In summary, it appears that although little practical application has
yet been made of mathematical methods for finding hull forms of decreased
wave-makihg resistance, the techniques are now available which will permit

this to be generally done.
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Appendix 1.

Integration 5f the Resistance Equations.

In this section estimates will be made of the value of the smoothly
varying portion of the wave-making resistance of an assemblage of sources
and sinks, and then a closed form solution will be obtained for this portion
of the resistance. After this a limit will be derived for the error incurred
by tevminating the numerical integration of the expression for the fluctuat-
ing part of the resistance at some zero of the integrand.

The discussion here will be based on equations (2.17), (2.18), (2.1%},

(2.21), and (2.22). For cenvenience they are reproduced here:

o0
n
R = 16NPKOZ{;: m 2ePrr j n Prrt(1+t)1/2t-1/2dt +

r=1 r 2 )
L
n n -1 “Pes (  ~Prgt 1/2,.-1/2. [ 1/2 1/2 1/
+2 S T mm, e Prs S e Prst(14r) t cos[?rs(l+t) cos[."st (+t) dt
s=r+l 1=l 2 o -
J
eee(2.17)
Here we have sct
Pr = ZKofr; Prg = Ko(fr+fs);qrs = Ko(hr'hs); and q;s = Ko(kr'ks)'
g =R 4 r(2 v e(2.18)
n
A ... (2.19)
r=]
where
R, = 167fx02mt25"’rr je"’rr"(uc)”zc-l/zd: . e.(2.19a)
2 o
n n-1
R .2 s & R, .e.(2.21)
sor+l r=1 ‘
o= 1/2 1/2
- - -1
Reg = 161rFK02 m m.e Prs j e pr"‘t(l+t:)1/2 t ’/zcos [qu(1+t:)1/2] t:os[q{.‘,)t (1+t) ]dt
2 o
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The expression R 1s the smoothly varying part of the resistance, while
R(Z) is the fluctuating part. Each term R“ of the fluctuating part will
become al.tgrnar.ely positive and negative as K, increases monotonically. ,
Each term R“ of the smoothly varying part R(l) vul‘lurt small for small Ko.
increase monotonically to a maximum, and then decrease as Ko becomes still

larger.

We can estimate the behavior of th as follows:

12,4102,

o oD
“Prrt 1/2 -1/2 3 -1/2 -
. I. Prrt ee) / t v de] < j(1+c)1/2: 1 dt +S e prr':(l-u:) <
o "l o 3 -
3 «1/2 ¢ p..t -3
<l2§¢ de+ 5 e AT3 at) - Wi + a5 e T
° 3 p
Y
It follows that
B ¢ 16mi Tl Pee WE 4 VTS P
2 Pir
2 - ’6K f
bd 16".PK zm e 2K°ft l‘ﬁ- + J4;3 e o'r '..(A.l)
o r = L vvaamy—and
2 2K o

For any fr > 0, this function is small for small K,» increases smoothly to

a' maximum, and then decreases to zero as K, becomes infinite. Since our
derivation of the velocity potential has assumed that fr > 0 so that the flow
can be described by a source and its mirror image in the surface, the reltric-
tion on f r adds no restriction not already implicit in the formulas for the
resistance, The relation Ko = g/t:2 means that zero speed corresponds to

infinite Ko and vice versa. The maximum value of R, as estimated in equation

T

(A.l) 1is reached between the values
4 < 2K £r< 6 .
° This corresponds to

Lfi" > > 8 4 . .OQ(AQz)
2 3
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However, this approximate result raally spplies to the coefficiert
of resistance defined by C., = Rrrc'z, rather than the resistance itself.
This is because the definition of sourde strength -used hére includes a
factor ¢ 8o that for .a given hull source strength increases with increas-’

ing speed. See-footnote to page 10.

Equations (2.19) and (2.19a) show that R(l), the smoothly varying por-
tion of the resistance, is for a given speed and strength of a source a
function only of the depth of the source. On the other hand, equations (2.21)
and (2.22) show that the fluctuating part of the wave-making resistance is
a function not only of the sum of the depths of each pair of interacting
sources, but also of their fore-and~aft and athwartships displacement from
each other, This arises through the quantity 9, which 1s a function of
'hr-h. ', and the quantity q.4 which is a function of ‘kr-ks ‘, the fore-
and-aft and athwartships separations respectively. These results provide a
simple explanation of a phenomenon apparently first noticed by Inui.* He
found that to bring the calculated wave resistance of a ship into conformity
with the observed wave resistance he had to adjust the position of the waves
originating at the stern of the ship aft of their actual position in the
fluctuating term of his formula for wave resistance, but he needed to make
no such adjustment in the smoothly varying portion. It appears that the
smoothly varying portion is not a function of horizontal position, so it is

insensitive to corrections made in that positionm.

*Inui, Takao, "Study on Wave-Making Resistance of Ships', The Society of
Naval Architects of Japan, 60th Anniversary Series, Vol, 2, pp. 172-355. The
discussion starts on page 207.
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The integral of equation (2.19a2) may be evaluated in closed form as a

Léplace transform, From Tables of Integral Transforms, Vol I, Bateman

Manuscript Project, p. 139, Section 4,3, transform (17), we may find its
value, The transform as tabulated is this:
1f £(t) = O, 0<t<2b
- (l:+2a)\\ (c-2b)"“ , t>2b,
and
arg(a+b) <, ReV < 1,
then the Laplace transform is
e} =s@) = yrfee (wm] 27 @0 [@nn]
We can put the integral of equation (2.19a) in this form if we set v =1/2,
a =1/2, b=0, arg(a+b) = 0. Then, since csc(+/2) = 1, it follows that
[Pt ol 2 2w o (pmyp P 6 ). )
[+

1f we put this result into equation (2.19a) we get

1 n 2 e'3Prr/2

. Ky (Ppe/2) .++(2.20)

2 2 -
Rep = bm fxo Prr

The function kl(Ptr/Z) is Bateman's function. It is a composite of known
hypergeometric functions and the gamma function, and can certainly be tabula-
ted without difficulty.

There does not appear to be a tabulated Laplace transform for the fluc-
tuating terms of the wave-resistance Rrs' However, we can integrate the
function numerically, and it is possible to show that if q;. = 0 and we
integrate up to any zero of the factor cos qthT:E except the first one the
error is less than the value of the integral between that zero and the next

one, To see this, let l+t = v2 in equation (2.22). Then we have for the integral
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ra -
R__ = const 5 eV Prs (y2.1) 172 cos(q__v) dv. oo s (ALB)
s 1 s

We may write this as an alternattng series:

-y?
Rpg = const ‘ § ‘ - j ‘ ‘ + .o be pr'(vzol)-llzcon(qr.v) dv
1 \ '
1

eos(ALS5)

The limiis Vi» V2s V35 se. are the successive zeros of cos(qtsv). If we can
show that the terms after some point become progréaaively smaller and tend to
zero, then we will have shown not only that the integral of equation (A.4)

snd hence of (2.22) converges but that the error made by dropping all terms
beyond some point is less than the magnitude of the first term dropped. This
requires that the first term dropped be smaller in magnitude than the previous
one, We observe that if we break up two successive terms in (A.5) into small
intervals of equal argument of the cosine, then not only will the intervals

A t of the later term be no greater for equal argument than the corresponding
intervals of the earlier term, but the absolute value of the integrand will
be smaller in every case for a small interval in the later term than for

the corresponding interval in the earlier term. From this it follows that
every term of (A.5) except perhaps the first one is certainly followed by a
term which is smaller in absolute value. But if this is so, then we may
terminate the integration of (2.22) when q;s = 0 at any zero of the cosiune,
except perhaps the first one, with the knowledge that the error is less than
the value of the integral between that zero and the next one,

1f we set ., - 0, q;s ¢ 0, then

-k - 2 - )
R = const Je V Prs (vz-l) 1/2 cos(q;_sv W1 ) dv oo e (A.6)

s 1

and the identical argument holds as for q;’ =0 # 0. For the casc where

' Ay

neither q,, nor q;. is zero, the estimate of the error to the precision
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obtained above is not easy to obtain, but a somewhat less precise upper limit
of the error is worked out in the text,

It is possible to draw from equations (2.19a) to (2.22) some simple N
deductions which show that they provide known results in limiting cases.
For example, if we let 9, - q;‘ = 0, wvhich means two sources superposed,
we see that for = = -m, we get

R=R_ _+2R__+ R __ = const x (mrz -thz

2
rr s ss +m ) x integral = 0.

Similarly 1f we have two positive equal sources superposed we get a

resistance four times as great as for a single one -- which would follow

from the fact that superposing two equal sources is the same as doubling the
strength of a single source, and the gmootinly varying portion of the resistance
varies as the square of the source stremgth.

It is also posgssible to derive from.these equations the effect of placing
a source and an equal sink near to and below a given source., With proper
separation and gufficient depth below the surface of both the given source
and the added source-sink pair, we can get as good cancellation as we please
of the given source'’s wave pattern. This follows because with large pt',
which results from large depth fr of the given source and f' of the added
sources, very nearly all the value of integrals in equations (2.19a) and
(2.22) is obtained for very small t. We need only choose qrs such that
cos q ., = 1 and adjust the value of m, to get virtually complete cancellation
if and £, are large enough,

It may be desirable in some cages to use dipole moments rather than
sources and sinks to describe the ship, If this is done, then the resistance
equation and all that follows from it can be placed in a form which 1is parallel
to that used for sources and ginks in equation (2.17). If the dipole moment

is Mr’ then the resistance becomes
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n . .- ] N
R= 161",1(06 s Hrz e Prr j e Pttt(1+t)3/2: 1/2 at  +
=] 2 o
n -1 oo ‘
- - t -
+2 X z MM, e Pys Ie Prs (1+t)3/2t 1/2 cos |q (l+t)1/2 coslq! tllz(l-‘l-t)l/ de
sur+l =l 2 o rs rs

e (ALT)
The argument concerning the error incurred by terminating the integral is a
little more complicated than for the case ¢f zources and sinks, but siqilar
in nature: it is clear that there is some value of t beyond which the error
incurred by terminating the {ntegral (for q;s = 33 ac any zero of
°°’[érs(1+t)1/z] is less than the value of the integral between that zero

and the next onec.
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