
UNCLASSIFIED

AD *404 716

DEFENSE DOCUMENTATION CENTER
FOR

SCIENTIFIC AND TECHNICAL INFORMATION

CAMERON STATION. ALEXANDRIA. VIRGINIA

UNCLASSIFIED

NOTICE: When goverment or other dzawings, speci-
fications or other data are used for any purpose
other than in connection with a definitely related
government procurement operation, the U. S.
Government thereby incurs no responsibility, nor any
obligation vhatsoever; and the fact that the Govern-
ment may have formauated., furnished, or in any way
supplied the said drawings, specifications, or other
data is not to be regarded by implication or other-
wise as in any manner licensing the holder or any
other person or corporation, or conveying any rights
or permission to manufacture, use or sell any
patented invention that may in any vay be related
thereto.

~3- 3•

IiI
,.4

I UNIERroot computing methods

go . MARTIN SA

U UNIVERSI TY OF CALI FORItNIA, LOS ANHG E LES

ICm

Report No. 63.13
April 1963

Nih ROOT COMPUTING METHODS

David F. Martin

DEPARTMENT OF ENGINEERING
UNIVERSITY OF CALIFORNIA

LOS ANGELES 24, CALIFORNIA

FOREW'OIID

The research described in this repo~rt, Nth Root Computing lethaods, by David F. Martin
was carried out under the technical direction of Al. Aoki, B. B3ussell, G. Estrin and C. T. Leondes
and is part of tile continuing program in Digital Technology Research. This report is based on a
dissertation submitted in partial satisfaction of the requirements for the degree Master of Science in
Engineering at the University of California, Los Angeles.

"This project is conducted under the sponsorship of the Department of the Navy, Office of
Naval Research and the Atomic Energy Commission. Submitted in partial fulfillment of Contract
Number Nonr 233(52).

ii

ABSTRACT

Five main classes of nth rooting methods are die-

cussed in this report. An nth rooting method derivable from

the binomial series expansion is developed, and both re-

storing and nonrestoring versions are treated. For the

special case of the binary square root, a nonrestoring

vcrsion of this method using normalized remainders is sim-

ulated and a statistical timing distribution obtained.

Other nth rooting methods discussed are a trunchted

series miethod, Euler iteration formulae, extensions of a

square root method given by M. Nadler, Pads approximations

and the log-exponential method. A particular mechanization

of the log and exponential functions developed by Cantor,

Estrin, and Turn is compared timewise with the other nth

rooting methods. Hardware and storage requirements are

considered in all cases.

It is concluded that the log-exponential mechaniza-

tion of Cantor, Estrin, and Turn is the fastest and most

versatile except for very small values of n. The binomial

series method is found to be fastest for the binary squaro

root.

iWi

ACKNOWLEDGEMENT

This work was supported, in part, by Contract Num-

ber Nonr-233(52). The author wishes to thank Professors

M. Aoki, G. Vt. Brown, and G. Estrin for serving as his

thesis committee. Special thanks go to Prof. Estrin for

many helpful suggestions and generous discussions.

The author also wishes to thank Numerical Analysis

Research and the Western Data rrocessing Center, Dr. G. W.

Brovn, Director, for use of the IBM 7090 Data Processing

System.

iv

TABLE OP CONTENTS

Chapter Title Pake

I. Introduction

II. Application of the Binomial Theorem
to the Extraction of Roots of
Integral Order 7

III. Design and Simulation of a Binary
Square Root Device Employing the
Binomial Theorem Method 27

IV. Other Nth Rooting Methods 57

V. Comparison of the Nth Rooting
Methods 93

VI. Conclusion 107

Bibl iography 117

Appendix 119

V

CHAPTER I

Introduction

Important elementary functions rarely included

in the basic set of operations of most computers are the

integral roots of an operand. In particular, the square

root plays an important role in the solution of quadra-

tic equations, phasor algebra, asymptotic expansions of

Bessel functions, and a host of other applications. Less

frequently required are the higher integral roots. This

report concentrates its attention on integral nth roots,

with particular emphasis on the square root.

Programmed Methods for General Purpose Digital
Computers

The most common methods available to computer

users are program library subroutines. The following ex-

amples are IBM oriented, but can be considered represen-

tative. IEost of the coded subroutines available through

the SHARE organization are for the square root only, and

apply to floating-point operands. One of the fastest is

SHARE distribution no. 721, which uses a least-squares

approximation followed by two Newton-Raphson iterations,

with a maximum relative error of 2.5 X 108 . The routine

requires 30 words of storage, and through clever coding

executes a single-precision square root in 67 IBIA 7090

machine cycles (1 cycle = 2.18 microseconds).

In contrast to the intricately coded case above,

there is an nth root subroutine (n integral) available

(SHARE distribution no. 690) which builds up the root

digit by digit in a trial-and-error fashion, checldng

each binary digit by raising the trial root to the nth

power, thus using a great many multiplications.

Lastly, it is interesting to note how the IBM

FOLTRAN II compiler sets up the exponentiation operation

X**P. If P is an integer less than 8, the operation is

executed as a series of P-1 multiplications. If P is an

integer greater than or equal to 8, a log-exponential

sequence is used. Also, if P is not an integer (as in the

case of nth roots), the log-exponential sequence is used.

If the FORTPJLN programmer desires the square root he may

use the special routine (SQRT) provided, which uses the

least-squares-two Newton-haphson iteration sequence.

Objective and Scope

In this report five main classes of nth rooting

methods are discussed from the standpoint of timing and

mechanization.

2

The first method, called the binomial theorem

method, is in the same class as ordinary long division

and is shown to be a higher-order extension of the divis-

ion process. Its formulation relies heavily upon the val-

ues of the binomial coefficients for different values of

n. Both restoring and nonrestoring methods are discussed,

and a nonrestoring method using normalized remainders

whose speed depends upon the statistical distribution of

the various remainders during the rooting process is out-

lined. The simplest case, the square root, has been sim-

ulated and the resulting distribution of execution times

obtained. Inherent difficulties in the binomial theorem

method for higher roots are pointed out.

A second nth rooting process considered is one

that relies upon the operand being in a favorable interval

such that its nth root can be expressed as a correctable

truncated series having very few terms. The operand is

forced into this favorable interval by using stored const-

ant multipliers obtained by table lookups, The nature of

these constants as well as stored constants to correct

the result obtained from the truncated series are pre-

sented, and table sizes are given as a function of speed

3

and accuracy. A related method which forces the operand

into a given interval near unity while another transfor-

mation dependently forms the nth root is discussed.

Another class of nth rooting procedures covered

are those derivable from Euler's formula. A derivation of
th th

m order n rooting processes obtainable from Euler's

formula as developed by J. P. Traub in a recent article

is presented and their timing and mechanization are dis-

cussed.

A fourth method considered is the approximation of

the nth root by a rational fraction which is the ratio of

two polynomials involving the operand. This type of ap-

proximation is called the Pade' approximation, after the

mathematician who formulated it. A special case, the Pads

approximation of order one, is analyzed in some detail

with respect to its precision for different values of n.

Lastly, the familiar logarithm-antilogarithm meth-

od of extracting nth roots will be treated, using as an

example a configuration developed by Cantor, Estrin, and

Turn which generates the elem•entary functions ln x and ex

for any given x.

For clearly competitive methods, comparisons are

made with thc log-exponential approach to the nth

4

rooting problem, and the points at which mechanization of

the methods in question become as time consuming as the

log-exponential method are estimated. In all cases para-

meters such as hardware or storage requirements are de-

fined along with the potential parallelism inherent in

the procedure.

CHAPTER II

Application of the 9inomial Theorem to the Extraction
of Roots of Integral Order

A given positive real integer of nk digits may be

represented in the usual positional notation as

A = Dnký,Bnk-l + Dnk_2Bnk-2 + + DB + Do (1)

where Di ± ith digit, 0 S Di < B, and

B = base of the number system used.

Both n and k are positive integers, and thus A consists

of an integral multiple of n digits. In addition, let it

be required that

Z Dk 3 >0 (2)
,)-

i.e., at least one of the n most significant digits of A

is nonzero. Similarly, let another positive real integer

of k digits and with the same base as A be given in posi-

tional notation as

a - dkiB k-i + d.-2B k-2 + + dB + do , (3)

Where diM ith digit, 0 !S d4 B.

Let the two integers A and a be related by the reciprocal

relations

a Int.{ ýOc and (4)

A L •.n P (5)

where A1/n , (6)

and the operation Int.i } means the integer part of the

expression in brackets. It is generally true that the pos-

itive real nth root of a positive integer is not expres-

sible exactly as another positive integer, and we shall

regard a as the integer part of OC , the exact positive

real nth root of A. The problem is, then, to determine the

digits d±i of the integer part of the positive real nth

root of A having been given the digits Di of A itself.

For convenience in notation, let us introduce the

substitution

x I = dl~i- l B(7)

into (3) in order that the expression for a assume a more

convenient multinomial form. Doing this,

a =xk k xkl + + ÷ - (8)

Now approximate o bj its integer part, and substitute (8)

into (5) yielding

A = (xk, + _ + X)n • (9)

Let us now attack the problem in reverse fashion by focus-

ing attention on the digits of a. As a first approximation

8

let a, a xk, i.e., let a be approximated by its highest

order componentI. In a like manner, then, a first approx-

imation to A is defined as A1 = an = xn. Then let succeed-
1. k

ing better approximations to a be defined as

aj t , 3 1,2,3,... , (10)

where a0 a 0. Equation (10) clearly shows that a is being

built up digit by digit toward the desired value, Int.{Oa}.

The jth approximation to A is

3A =a3 X xk-iJ()
A j 1 •: . 0~ .(

From equation (10) it is clear that

a3 = aj-1 + xk 3j4 , (12)

and thus A3 z (a 3_1 + X k_j 1 n (13)

Expanaing (13) using the binomial theorem,

A an + fnn-lx, + + xn3 a-1 LnJlk-3e1 k-j+l

or A A A_ 1 + ka.,1 x e+ +....Xkj+1 . (14)

By definition, A0 0.

Equations (14) and (12) represent an iterative se-

quence that may be used to extract the positive real nth

root of a given positive real integer. Since the integer

part of the desired root is built up digit by digit, the

By a component is meant the digit times

the power of B.

9

sequence of approximations obeys a 3 _l Z a3 , and therefore

the approximations a approach a monotonically from below.

Equation (10) ensures that ak = a, and that

lm• a3 w•

Thus, O - a te. , F-10, i.e., the error 0-a a may be

made as small as desired by merely executing more stages

of the iterative process (14). Vie may, then, extract the

nth root of A beyond its integer part to as many placcs as

desired.

3pecialization to a Restoring [10] Type Procedure for
0btaining the Square Root of a Real Integer

Let us rewrite (14) by considering the remainder at

each stage of the iterative process. Let Ri = A - Ai and

make this substitution in equation (14), giving

1 = R n- 1 + n 4 (15)S= j-1 - naJ-l'k-j~l k ... + 1 1

where R0 = A. Rj is the remainder that results from the

jth stage of the process. The jth remainder is obtained by

subtracting the terms in brackets from the previous re-

mainder, thus obtaining a root digit in the process. Be-

cause the components xi are postulated to be the actual

components of the integer part of the exact nth root, it
is clear that 0 !_ R j_ R J1 •

10

Relation to Division

It is instructive to point out the similarity be-

tween the rooting process outlined in (15) and the restor-

ing type division process. Using the notation of (8), we

may write out the division problem U/V - W, where U is the

dividend, V the divisor, and W the quotient.

(Up + u *_u-)/(Vq + Vqi1 +---+ V1)

(wp-q +w + -.. + wj) (16)

where p and q are positive integers, p > q. In a manner

similar to that of the rooting process, the quotient W may

be built up digit by digit in the follo%.ring manner:

WV =wJ-1 + Wp-q-÷l , WO=a 0. (17)

Paralleling the rooting process, the 3th approximation to

U VWI may be written U W -VI/. Therefore,

Uj - U3.1 - V(W - Vwp_-1) = Vp. .•÷l (18)

Introducing the remainder Ri - U - Uj , the division pro-

cess (18) becomes

R j R~j- 1 - VWp,-q-,+l ' r- U , (19)

which displays its obvious similarity to the rooting pro-

cess in (15). In fact, if n = 1 in (15), the rooting pro-

cess reduces to the trivial division problem A/1 if the

11

process is carried out an infinite number of stages. It should be

noted that the trial subtrahend Vwp-q-j+l in the division process

(19) is functionally independent of the partial quotient Wj-l,
n-in

whereas the trial factor na n1X + i xnj-i k-j~J k-j+l

the rooting process (15) is functionally dependent on the

partial root aj_l. This dependence is linear in the case

of the square root (n=2), quadratic in the case of the

cube root (n--3), and so on. This functional dependence is

important in the nonrestoring rooting process discussed

later.

In order to mechr-lze the rooting process in (15)

on electronic digital computing machinery, a simple sys-

tematic method for generating the trial factors is desir-

ed. Let us write (15) in the formR R _l - E(d)
n-i n•j nan- x

where e,(d) = na k + "'" + x . The argumenta j-l k-a+l 1-~
d of En(d) is the digit part of XkJ~l, which is to be de-

termined during the jth stage of the process. Clearly

eý(O) = 0, so we need to know the B-1 trial factors n(l),

eý(2),..., E(B_-1). In the restoring method the trial fac-

tors are generally subtracted from the remainder in a

"differential" fashion, i.e., R -En(1 , R - E (2)

12

-- n,(l)) , etc., until a negative remainder is

sensed, at which time the process "regresses" one step by

adding on the previously subtracted item. This approach

obviously accomplishes the desired result, i.e., the

smallest R - Eý(d) > 0 is computed, yielding the desir-

ed root digit d. If at any stage of the process the resul-

ting remainder P is zero, the process terminates because

an exact root has been found. The maximum length of a de-

termines the maximum number of stages of the rooting pro-

cess, since one root digit is obtained per stage. If the

"differential" subtracting method is used, it is expected

that on the average about J(B-1) + 1 subtractions plus one

readdition must be performed per stage of the process. If

the binary number system is used, the unknown root compon-

ent XkJ+l to be determined on the jth stage may be assum-

ed to have a digit part of "1", the trial factor E (1)

formed and compared with Rj_1 , and the appropriate action

taken.

I.echanization of the Bina-r .restoring Binomial
Rooting Process

Assuming the above procedure,

~ = 2 .j (20)

Substituting (20) into (15) gives

13

R U R 2+k-j n-i + 2 nk-nj (21)

B3 1 - k na-i I

Because of the restriction placed upon A in (2), i.e.,

that at least one of the n highest order digits of A be

nonzero, the highest order root digit must be nonzero.

That is, a, = 2k-l. Since a 1 5 a 2 a 6... a_ 1 S aj .

a, then

2 k' -Sa _< 2 k . (22)

Let us now examine the mechanization required to

execute each iterated stage of the process, i.e., genera-

tion of the trial factor for particular values of n, and

subtraction from the remainder RJ_ 1 . In the case of the

square root (n=2),

R = R-1 2-2 a 1 + 2 2k-2 (23)

Using (22),

2 2k-J 4 2.21:-JaJ_ < 2 2k-J-1 . (24)

Equation (24) shows that the highest order digit of the

trial factor will always appear in bit position 2k-j at

the beginning of the jth stage of the process, which means

that it moves one position right during execution of each

stage of the iterative process. By noting that 2k-2j <

2k-J, j = 1,2,3,..., a "1" need only be inserted (not add-

ed) into bit position 2k-2j to account for the rest of the

14

trial factor, since a carry cannot occur because of (24).

It is clear that the re.ainder R is decreasing in magni-

tude with each succeeding stage of the process. To econo-

mize on register requirements, let us shift the remainder

left one bit position after the execution of each stage.

This means that after 3 stages the remainder will be mult-

iplied by 2A. Inserting this in (23),

2ARj = 2RJ-1 - { 2k+laj J-1 } 2 (25)

and thus the leading bit of the triaJ. factor remains sta-

tionary throughout the entire square rooting process. A

similar procedure can be applied to the expressions invol-

vcd in the higher rooting processes. In the usual single

precision case, a k-bit root is extracted from a k-bit op-

erand, where k is the number of bits in a single precision

word. If thie is the case, the registers have the formats

shown below: I- k

jPartial =Root

II] RELIAINDER

[]F TRIAL FACTOR

kIntky/4-.k--A- (n-l)k - .

Pigure 2-1: Register Pormats for the Fixed-

r'oint Binomial Theorem nth Root.

15

The remainder register is (n-l)k + Int.(n/2} bits, and

the trial factor register is one bit less, or (n-l)k +

Int.tn/2} - 1 bits, both registers having an additional

sign bit. The partial root register must have attached to

it some provision for building up the root bit by bit

starting at the high order end. A counter with k sequent-

ial states and decoding circuits which select one input

line at each stage of the process could enable this opera-

tion.

As n gets larger, the mechanization complexity in-

creases. The additional terms acquired in the trial factor

might be formed simultaneously in other registers or se-

quentially formed and added. For the case of extreme par-

•allelism the extraction of the nth root could utilize n-2

multipliers, n-2 shifters, and one adder in addition to

the registers already mentioned.

Normalized Remainders

Recalling for the moment the square root algorithm

in (25), we see that the trial factor is at least as large

2kas 2 . It is then clear that if the previous remainder
R _ 2k-I

_ 2 , i.e., it has "leading" zeros, RJI may be

shifted left until a "1" appears in bit position 2k-l. As

a result, additional zero bits are introduced into the

16

partial root, one for each position the remainder is shif-

ted left, The advantage of this procedure is that addition-

al digits of the root are generated using simple shifts,

without having to resort to time consuming comparisons.

The number of normalizing shifts made at any given point

in the iterative process depends upon the statistical

distribution of the remainder magnitude throughout the

rooting process. Following C, V. Preiman [4] , let u.- es-

tablish a "figure of merit" for the restoring algorithm

with normalized remainders by defining an iteration as a

comparison and conditional subtraction, a normalization,

formation of a new trial factor, and conditional altera-

tion of the partial root. Thus it is seen that an itera-

tion may consist of more than one stage of the rooting

process. The figure of merit is the number of root bits

formed during each iteration. Similar remainder normaliza-

tion procedures may be defined for the higher order root-

ing processes.

Nonrestorin [10] Algorithm for nth Rooting

The binary rooting methods previously discussed

were of the restoring type. As is done in division, a non-

restoring modification of the restoring procedure may be

employed to extract the nth root of a binary integer.

17

juppose, on each stage of the process, the digit

part of the desired root component x._ is assumed to be

a "i" as was done in the restoring procedure. Let the

trial factor be formed as usual, but now let negative re-

mainders be allowed. Let us now proceed in such a way as

to decrease the magnitude of the remainder, i.e., when

Rj_I > 0 subtract the trial factor from it; when RJ_1 (0

add the trial factor to the remainder. Provided the root

digits are formed correctlyp using the nonrestoring scheme

ought to offer a time advantage over the restoring method,

because addition or subtraction of the trial factor takes

place without regard to the relative magnitudes of the re-

mainder and trial factor (assuming all normalizing shifts

have taken place), but only with regard to the sign of the

remainder R1J_1

Nonrestorinp nth Rootin Iethod With Normalized Remainders
th

As was the case in the restoring n rooting algor-

ithm, the trial factor has a fixed minimum magnitude.

Thus, by noting the magnitude of RHilt normalizing shifts

can be made to introduce additional digits into the par-

tial root without the necessity of addition or subtrac-

tion. The process is uncomplicated if we consider a signed

magnitude number representation.

18

Suppose we are in the jth stage of the rooting pro-

cess, the remainder is positive and normalized, and the

trial factor has been formed. The difference is then form-

ed, and let us suppose that this resulting difference is

negative. Intuitively, by a comparison to the restoring

method we know that the digit part of Xk_j+l has been

found to be zero, so let the partial root be augmented

with this zero bit. Now the new (negative) remainder, ad-

justed left one bit position to account for the factor 2J9

may or may not have leading zeros with respect to the fix-

ed minimum magnitude of the next trial factor. If the re-

mainder does not have any leading zeros, the new trial

factor is formed and added to the (negative) remainder. If

the new remainder has leading zeros, certain difficulties

arise. The nonrestoring division process parallels its re-

storing counterpart in that the remainders, except for

position relative to an arbitrary fixed reference, are the

same at those points where the remainder changes sign from

negative to positive in the nonrestoring process. However,

the trial factors in the rooting processes are function-

ally dependent upon the partial root, and therefore the

remainders in the restoring and nonrestoring algorithms

will not correspond unless some sort of correction is

19

made. Such correspondence to the restoring algorithm is

sufficient to guarantee that the correct nth root is ex-

tracted. Thus, when the trial factor is added to a nega-

tive remainder, a correction is also added. The negative

remainder's leading zeros are shifted out in a manner sim-

ilar to that when the remainder is positive, except that

in order to ensure that the remainder changes sign from

negative to positive, it is shifted left until a "1" ap-

pears in the bit position directly to the right of the

highest order bit position of the trial factor. However,

when the remainder is negative, l's are introduced into

the partial root for every bit position that the remainder

is shifLed left. Again, it is seen that this corresponds

exactly to what would occur given the same remainders at

the beginning of the stages involved in the remainder's

changes of sign and normalization.

To illustrate the mechanics of this process, an ex-

ample of the restoring and nonrestoring methods applied to

a binary square root is given in Figure 2-2. Assume we are

in the interior of a square rooting process, and the re-

mainder is 0.101011101, the trial factor is 0.1011101,

and the partial root is 0.10111 . The symbols are R m

remainder, TP = trial factor, and C = correction.

20

RESTORING

Registers Partial Root

R +0.101011101 0.10111
TF -0.1011101
R +0.101011101 0.101110

TP -0.010111001
R +0.010100100 0.1011101
TF -0.00101110101
R +0.00100011011 0.10111011

TF -0.0001011101101
R +0.0000101111111 0.101110111

NOMESTOPING

Registers Partial Root

R +0.10101U01 0.10111
TP -0.1011101
2R -0.00010111 0.101110
TF -0.Shift
8R -0.010111 0.10111011
TF +0.1011f01101

16R +0.101111101
C +0.000000010

16R +0.1011O1311 0.101110111

Figure 2-2: Correspondence Between Restoring and
Nonrestoring Square Root Processes.

Corrections to Remainders in the Binary Nonrestoring
Rooting Process

It is expected that the correction that must be

made to some of the remainders during the nonrestoring

rooting process will depend upon both the partial root

and the number of shifts required to normalize the re-

mainder. To determine the value of the correction, the re-

21

storing and nonrestoring versions of a given iteration

will be compared, and the difference in the final remain-

ders will be the desired correction. Let us therefore con-

sider a group of stages of the nonrestoring process which

consists of one subtraction to get a negative remainder, a

normalizing shift of a bit positions, and one addition

that again yields a positive remainder, and compare those

factors which are subtracted from the remainder RJ-1 with

the corresponding factors in the restoring process. Let us

consider the square root process first.

A. Reatoring Method:

1a - {2a 1 2 k-J-l + (2 k-J-1) 21 - 12a,.,, 2k-J-2

*(2 k-)-2) 2 .. (2a 3.. 2 k-jsl + (2 k351)-21

(26)

The relation between successive partial roots is
S-1

a,+, = a3 + i 2 k-j-i-1 t 0 _s k-l.

too

Then

F" =k-j ý2a (1-25l + 2 k-J (1-2s.22s2 (27)

B. Ionrestoring Method:
PNF =-2a,_ 2 k'; + (2 k'•) 2)• _ 2ajl+e2 k-•l--1

+ (2 k'3'51') }

3ince aj-1 aj ,

22

s = -2k-j {2a (1-2-s-l) - 2 2k' (1-2-s) 2-s-l

2k-j(1-2-2s-2) 4 (28)

Taking the difference between (27) and (28),

S;-22k-2 2-2s-2 l (29)

As was expected, equation (29) indicates that too much was

subtracted from the remainder R_l, and thus the indicated

correction must be added to the normalized negative re-

mainder along with the new trial factor in order to

achieve the desired relation - 0s = O. In order to

transform the correction in (29) to a value applicable to

the modified algorithm of equation (25), it must be multi-

plied by 2 J+s+2, because the process has advanced J+s÷2

stages since its beginning. Thus,

C - , 22k-3-sl 0- st_-la
C2 a (30)

where C2s is the correction that must be added to the norm-

alized negative remainder along with the new trial factor

after a normalizing shift of length s, for the nonrestor-

ing binary square root (n= 2) process with normalized re-

mainders.

It has turned out that the remainder correction

for the square root process is dependent only upon a

23

single bit position, and not upon the partial root. How-

ever, a short examination reveals that the correction is

more complex for the higher rooting processes. For the

square root the correction is a zeroeth order polynomial

in the partial root, for the cube root a first order poly-

nomial in aj_l. and so on.

Extensions of the Method to Floating-Point Operands

The binomial theorem method developed so far has

been used for extracting the integral roots of binary in-

tegers, and is naturally extendable to fixed-point numbers

of finite but variable precision, since the only differ-

ence between the two is the arbitrary placement of the

binary point. The method may be easily extended to compute

the roots of floating-point operands, i.e., a mantissa

part multiplied by a power of the radix, by altering the

mantissa (or fraction) according to the radix exponent.

Specifically, let us consider binary floating-point oper-

ands of the form A = f.2 b, where 1/2 ý- f 4 1, i.e., the

operand A has a normalized fractional part f. Let us now

examine the exponent b. When taking the nth root of f.2 b,

we must form b/nt desiring this division to have a zero

remainder. Suppose b/n v Intojb/nj + r/n. Then if we take

A - 2 -(n-r) f-2b= f.2bt ,

24

where b' - b+n-r, 0 !S r < n, the desired rooting can be

done. Since 2-1 4 f < 1, the altered fraction will lie il

the range 2 -(n-r+l) V f' < 2 -(n-r). which still satisfies

equation (2).

Additional iechanization Requirements for the
Yona-estorin• Method

In general, scientific-type computations make ex-

tensive use of the floating-point representation. There-

fore, because there is the possibility of shifting the op.-

erand fraction as many as n-l positions to the right be-
th

fore performing the n root, this number of positions

must be added onto the low order end of the remainder and

trial factor registers, in order to retain a precision of

1 part in 2k when extracting a k-bit root.

An additional set of registers must be provided for

the formation of the remainder correction, which is a pol-

ynomial of order n-2 in the partial root a J 1 . If extreme

parallelism is used, the extraction of the n h root could

utilize the partial root, remainder, trial factor, and

correction registers, and 2n-3 multipliers, 2n-4 shifters,

and 2 adders.

25

CHAPTER III

Design and Simulation of a Binary Square Root
Device Employing the Binomial Theorem !1ethod

The fixed-point nonrestoring binary square root al-

gorithm given in equations (2-25) and (2-30) may be mech-

anized as a digital macro-operation in much the same man-

ner as division. For the sake of reference, the algorithm

equations are reproduced below for the remainder at the

3th iteration:

2JR 2R J 1 -2 k{2a _1 + 2 , J-1,2,.**,k, ((1)

where R0 A, and the post-normalizing correction is

C2s = 2 2k-j-sl , 0 s k-1 . (2)

Let us consider the binary operands as being in the form
A A 2Ef 9 (3)

where 1/2 S f < 1, and E has positive or negative values.

As a particular example, let the floating-point binary op-

erand in (3) be of the form used in the IBM 7090, namely,

a 27-bit fractional part, an 8-bit characteristic, and a

siGrn bit, making up a 36-bit binary word. In the IBM

floating-point format, the characteristic is formed by

adding 128 to the exponent E, thus disallowing negative

characteristics and restricting the exponent range to

27

(-127, 127). Negative exponents, then, are represented

symbolically by characteristics in the rangc (1, 127). Ex-

traction of the square root of such an operand will be

Sl 89 35

8 27

sign characteristic fraction

Figure 3-1: IBM 7090 Floating-Point Binary
Format.

achieved by performing a fixed-point binary square root

upon the fraction part, and halving the characteristic.

However, there are two cases which must be considered.

Case 1: E Odd

If the exponent E and therefore the characteristic

of the operand is odd, the fraction part f must be multi-

plied by 1/2 (shifted right one bit position) and the fix-

ed-point square rooting process initiated. The character-

istic of the resulting floating-point square root is form-

ed by halving the operand characteristic, adding one to

the units position (bit 8), and then adding 64 to the re-

sult to form the correct value. The above method is form-

ulated as

(2E.f)1/2 = 2 1nt.{iE)+l.(*f)l/2 • (4)

Since 1/2 _S f 4 1, then 1/4 t5 if 4 1/2, and so

28

1/2 :_ (jf)i< l/J; thus the fraction part of the square

root is normalized. The characteristic of the square root

is formed according to

Int.(J(E + 128)) + 1 + 64 = (Int.jjE, + 1) + 128. (5)

Case 2: E even

If the operand characteristic is even, i.e., it has

a zero in its units. position, then the characteristic is

simply halved and 64 added to it, and the fixed-point bin-

ary square rooting process is applied to the unmodified

fraction part, f. Symbolically,

(2k:)1/2 = 2A".j-/2 , and (6)

J(Z + 128) + 64- =JE + 128 ((7)

A straightforward magnitude analysis of the remain-

ders in the rooting algorithm (1) shows that if the ini-

tial remainder R0 (which is the fractional part of the op-

erand itself) is inserted into a 27-bit register, an extra

bit position to the right of the 27 bits is needed in or-

der to save the lowest-order bit of the operand. This will

make the remainder register a total of 29 bits plus sign,

and the trial factor register has one less bit, or a total

of 28 bits plus sign. Now let us combine the remainder and

trial factor registers into a binary accumulator, the re-

mainder register being the accumulator register, and the

29

trial factor register being the addend or subtrahend reg-

ister, depending upon whether the accumulator is the add-

ing or subtracting type. An examination of the additive/

subtractive processes during the square rooting procedure

reveals that only three cases are allowed:

1). Re - TP+ ? 0 R- positive remainder

2). e' - TP+ < 0 - negative remainder

3). R" + T? > 0 TF - positive trial factor

If the accumulator is made a binary subtracting accumula-

tor (with an accumulator and subtrahend register), then

C(AC) a C(AC) - C(SU) represents its operation symbolical-

ly. Further, let negative numbers be represented in l's

complement form, and let the sign bit be 0 for positive, 1

for negative. In this case the three cases become

Case end-around

borrow?

1). R* - TF !ý 0 no

2). - TP < 0 yes

3). R-- -TF)> 0 no

For each case 2 that occurs it is expected that a case 3

will subsequently occur, unless the rooting process is

terminated during the normalizing shift or before the nor-

malizing shift takes place. In case 3 the term -TF is

30

represented as a l's complement. In the l's complement

representation of negative nurmbers, the complement digits

are just the inverse of the digits in the true representa-

tion, and thus leading zeros in the true representation

are leading ones in the complement representation. There-

fore normalization of the remainder takes place either

with a zero (+) sign bit and leading zeros, or a "1" (-)

sign bit and leading l's, zeros augmenting the partial

root in the former case, and l's in the latter. A charac-

teristic of the 1'8 complement representation is the oc-

currence of an end-around borrow (or carry) as in case 2.

Using suitable borrow look-ahead circuitry (such as in the

IBM 7090), the end-around borrow may be reckoned along

with the normal borrows that occur. Thus, subtraction

takes a fixed minimum time, whether the end-around borrow

occurs or not. Note that there is no ambiguity in the rep-

resentation of the quantity "zero", since only -0 occurs

(case 1).

Let us assume that our accumulator automatically

adjusts the final difference left one bit position upon

the execution of each subtraction to account for the fac-

tor 21 in the algorithm (1). The accumulator register must

be equipped to shift left or right one bit position upon

31

the reception of left shift or right shift signals, zeros

being introduced into the positions vacated. V\lben the nor-

malized remainder is negative, both the l's complement of

the new trial factor and the l's complement of the correc-

tion must be subtracted from it. The only other operations

to be considered in the fixed-point square root are the

augmenting of the partial root, foimation of the new trial

factor from the partial root, and the formation of the re-

mainder correction bit. Because of the simple relationship

between the trial factor and the partial root (eqn.(l)),

there is no necessity to carry the partial root in a sep-

arate register, since it can be clearly identified as an

extractable part of the trial factor, and extracted from

the trial factor register at the end of the rooting pro-

cess. The organization of the fixed-point square rooter is

given in Figure 3-2. The logical equations for the various

control signals emanating from the local control are given

later in this chapter. The local control directs the root-

ing process according to the various decisions that have

to be made. A flow chart describing the square rooting se-

quence and the inherent decisions involved is given in

Figure 3-3. In the flow chart, the following symbols are

used:

32

DGLINE z digit line selector;

TPR - trial factor register;

RVAR = remainder register.

IAIII1 Reaindr •- LEFT SHIFT

4 tRIGHT SHIFT --

•ubtrotorSUBTRACT

STrial: Factor

Digit Line Selector
Local
Control

Figure 3-2: Organization of the Fixed-Point
Square Rooter.

It has been shown that when the remainder becomes

negative in the nonrestoring rooting process, a correction

must be added to the remainder along with the next trial

factor. Specifically, the post-normalizing correction for

the square root is given in equation (2) as 0 ,,22k-j-o~l

0 - s _< k-i, where s is the number of normalizing shifts

made during the iteration in question. An examination of

the above expression reveals that it is exactly the bit

position corresponding to the digit line that is enabled

at the time that the addition of the trial factor and the

33

ooOt

+ >

Fm RE~m~ - TFR REIX- = REIMR+TFR+DGLINE

liefut

ilatdvano Partt

34

(negative) remainder takes place. Therefore it is possible

to consider mechanization of the subtraction and correc-

tion functions in parallel, with the addition of the digit

lines being suppressed when the remainder is positive,

i.e., when its sign bit is a zero.

Internal States and Control Logic for the Fixed-Point
Square Rooter

The operation of the binary square rooter may be

given in a state table which describes the sequential com-

putation in terms of the states of a counter. The state

table is given in Table 3-1. The three basic operations in

the fixed-point part of the binary square root are sub-

traction of the trial factor from the remainder, augment-

ing the partial root after the subtraction, and simultan-

eously shifting out leading zeros and further augmenting

the partial root. The basic decisions made during the pro-

cess depend upon the disposition of the remainder, trial

factor, digit line selector, and the state counter. The

state counter counts in the sequence given in Table 3-1.

There is another counter, the digit line counter, that

changes state every time a different digit line is to be

enabled. This counter has 27 states, and thus requires 5

memory elements. We shall let the counter be 26 (11010)2

35

State
Counter Operation

T1 T2

00 Examine REIMA S,A,1,2 and po-
sition 1 of IDLINE selector.

(S)(A)(1)(DGLINEl) Shift REIR A, 1-29 left one

+ (S)(A)(1)(2)(t(L14E1) position. Simultaneously
present AUG"ENT signal.
Advance to state 10.

(S)((A)(l)) rerform subtraction. If S= 0
REUR = RE- - TFR. If S=1,

+ (S){(A)(1)(2)) RLEIR = REIR - comp.(TFR) -
comp. (IeLINE).
Advance to state 11.

1 1 Form AUGLINT signal.
Advance to state 10.

1 0 Advance digit line selector.
Advance to state 01.

0 1 Examine digit line counter:
*0: Advance to state 00;
=0: End operation.

Table 3-1: Table of Basic States for the Execution of
the Fixed-Point eart of the Binary Square
Root.

36

to enable DGLINE 1, and zero (00000) to enable DGLINE 27,

the intervening states being assigned in descending order.

When DGLINE 1 = 1, the possible shifting out of a leading

zero is suppressed (state 00). The important register bit

positions are the remainder S, A, 1, 2, as shov.m in Figure

W-2. The remainder left shift one bit-position signals are

derived as follows:

1). Remainder Positive (S =O):

LEFT SHIFT - (S)(A)(1)(DGLINE 1)(Tl)(T2)

SUBTRACT = (S){(A)(1)} + (DGLINE 1)(Tl)(T2)

2). Remainder Negative (S- 1):

LEFT SHIFT = (S)(A)(1)(2)(DGLINE 1)(Tl)(T2)

SUBTRACT = (S){(A)(l)(2)) + (DGLINE 1)kTl)(T2)

The AUGMENT signal is generated during states 00

and 11, and is derived from the following:

AUGUENT = (DGLINE 1) {(S)(A)(1) + (S)(A)(1)(2))(TI)(T2)

+ (.l)(T2)

The digit line counter may be counted down one step upon

the reception of the AUGMIENT signal, provided that there

is a delay in the change of state so that the original

state of the counter may be interrogated.

Recalling that the trial factor is given by

37

2k(2a-_1 + 2 k-J) in equation (1), its format at a given

staj3e is .XX.-.X•Og where the X's (J-1 of them at the jth

stage) represent 2 ki2al, the "0" represents the current

root bit which is to be determined, and the "1" is the

term Ak-j . During the next stage, i.e., the (3 +l)st, the

trial factor has j X's followed by a zero and a one. Thus,

augmenting the partial root and forming the next trial fa-

ctor may be done at the same time in a single logical op-

eration, as illustrated in Figure 3-4. The logical opera-

tions of augmenting the partial root (contained in TPR)

and forming the new trial factor are given by the follow-

ing equations:

3 TFR1i - (AUGMNT)k((S) (DGLINE)i(T2) - (S)(DGLIMB)i(T2)

(DGLINE)i-2

9RT M (AUGIM- NT) (DGL INE)i

Timin, Study of the Square Moot Device

Since the execution time of the square rooting de-

vice depends upon the statistically distributed magnitudes

of the intermediate remainders in the square rooting pro-

cess, it is expected that the execution time itself will

possess some sort of statistical distribution. This dist-

ribution is very difficult to obtain by any method other

38

U

- .4
4b

�.4

.3

Sj 0

I..

a p.4
S
S
(#3

9- .4

4h�

A'
S
0

4*

.1
I'

.4g3 __ ii
0

.4 .4.4
.4 4, -� v-

pm'
.3

.-
4

.- �

.3

39

than direct experimental simulation, since the distribu-

tion of the remainder magnitudes depends upon the previous

remainders and the partial root during the square rooting

process. A computer program for the IMLI 7090 was written

to simulate the operation of the square rooter, thereby

enabling certain characteristics of the method to be de-

termined. The basic format of the numerical experiments

performed is shown below:

Generate Pseudo- Simulate Tabulate
SRandom Number Sq. Root Properties

Figure 3-5: Basic Format of Numerical Experiments.

The simulation experiments were performed upon the frac-

tion part of an IBM floating-point operand, since this is

the part of the process which is of major interest, and in

fact is the dominant factor in the execution time. The

fraction parts of the floating-point words were in the in-

terval (1/4, 1), but were generated in the interval (1/2,

1) by a pseudo-random number generator. A flow chart of

the binary square root simulation program is given in Fig-

ure 3-6. The symbolic locations given in the flow chart

correspond to the locations in the program listing (see

Appendix) at which the indicated operations occur.

40

Loa.dR(2n 3

Loa. ~ ~ oe R12SRJIE

+L

Loc 1 2E 4"0

I- PR O41

2

+ MIR sign
T.7:tR

TT Loa LZ+l

0 -PR 1- PR
Change DGLINE Change DGLINE

TFR TFR
Loo.LZ)P,)PUPD Loo.LZ)N,)NUPD

L

< RE34R sign
+

!Loc. LE'

Correctiont
REM REMR
DGLINE

Loa. LZB-1

raid NO

YMS
T
Check result

Loc. CHEGKI

Fig, 3-6: Flow Chart for Binary Square Root
Simulation Pro3ramv. Mantissa Parti,
PP* 123-129 a. 143-148

42

Pseudo-Random Number Generator

The pseudo-random number generator used in the

numorical experiments was a multiplicative oongruential

type as described by Rotenberg [13]. The multiplicative

congruence algorithm in

x+ 14 1 = (2 a + 1)xi + C , od. 2P , (8)

where a is a real integer. Rotenberg applied several e-..

pirical tests to the above algorithm with a -7, C- l and

p a 35. lie found that the resulting numbers were uniformly

distributed and that there was no detectable serial corre-

lation in the sequenzce. The cycle structure of the multi-

plicative congruence method has been determined analyti-

cally, and it is known that algorithm (8) can generate the

full period of 2P numbers if a-- 2 and C is odd [ll). The

serial correlation between two consecutive numbers in the

sequence has been shown by Coveyou [3] to be

i1 - 6 0 . 2 -P(l - C.2-P) (9)S(x'IP xil) : 2 a + 1

The 27-bit pseudo-random numbers used were generated in

the interval (1/2, 1) by first generating a 26-bit pseudo-

random number, and then putting a "1" in front of it, mak-

ing a 27-bit number. The al~orithm parameters used in (8)

were aull, CaI, and p.26, and the resulting serial cor-

43

relation between two successive numbers is, from (9),

.- 6"2-26(1 - 2-26) 0.0005
(xi'Xi~) =21 + I

The initial random number Xo, in octal form, was 232544614,

but other runs of the experiment showed, as should be the

case, that the results were insensitive to x0 after a

reasonable sequence length in (8).

Experiment I: Property Distribution

To reveal in a general way the efficiency of the

nonrestoring square root method with normalized remainders,

the previously defined figure of merit "root bits per it-

eration" was obtained as a function of the magnitude of

the operand characteristic. No knowledge was assumed con-

cerning the nature of the operands, other than that they

belonged to the class of all properly normalized binary

floating-point operands of the IBM format. Therefore it

was assumed that the operand fractions were uniformly dis-

tributed over the interval (V/4# 1). If something more

were known about the nature of the operands, it might be

possible to restrict the interval of interest, and in gen-

eral entirely different conclusions concerning the meth-

od's computational efficiency relative to the subinterval

of interest could be drawn. As an additional point of int-

44

erest, the average number of corrections per operand (27-

bit fraction) was also determined, and plotted versus the

fraction part. For the experiment, the interval (1/4, 1)

was subdivided into 48 parts, making the class interval

equal to 1/64. The results were averaged within each inter-

val, since only the trend of the properties in question

was desired.

The results are shown in Figure 3-7. It is apparent

that there is a general decrease in efficiency and hence

an increase in execution time as the magnitude of the op-

erand fraction increases, since there is a decreasing num-

ber of root bits per iteration being obtained, as shown in

Figure 3-7A. The irregularities in the curve are due to

the dependence of the method's speed upon the patterns of

ones and zeros in the root itself, and thus are difficult

to trace back to the bit arrangements in the operand. How-

ever, there is a definite trend shovw, and the minimum av-

erage root bits per iteration obtained was 1.38 in the

subinterval (63/64, 1), the maximum was 2.70 in the subin-

terval (5/16, 21/64), and the mean value was 1.91 root

bits per iteration in the entire interval. The minimum and

maximum given, of course, are not absolute, since averaS-

inS the results in each class interval "blunted" these

45

r Figure 3-7A: Average Root Bite Per
S* Iteration.

29

0 L

'A4 1/2

Magnitude of Operand Fraction

6 Figure 376-11 Average Correctionse
Per Operand.i - o Kr-• 9 /

2 14
"4~

00 0 t111F.II T P y C

Magnitude of Operand Fraction

Figure 3-7i Properties of the Nonrestoring Square Root
Method Using Normalized Remainders.

46

values. Thus, in takring the square root of the fraction

part of a normalized floating-point binary number drawn at

random from the population of all numbers of this type,

the expeoted figure of merit is about 1.91 root bit per

iteration, i.e., it is expected that an average of 0.91

root bits will be obtained by normalizing the remainder

each iteration.

In the development of the nonrestoring binomial

theorem method it was shown that the remainder must be

corrected each time it becomes negative. To get an idea of

how many times this occurs on the average per operand, the

average number of corrections per operand was measured in

the same way as the number of root bits per iteration was.

The results are given in Figure 3-7B. The measured average

minimum was about 0.05 corrections per operand, the maxi-

mum about 6.03, and the mean about 3.85o

Experiment II: Timing Distribution

In order to evaluate the performance of the binomi-

al theorem square rooting method with respect to execution

time, another numerical experiment was performed, and this

time the total execution time taken to operate upon a

floating-point binary operand vas measured in terms of a

defined time unit. The previously discussed device using

47

the l's complement representation for negative numbers was

investigated as a particular example. Throughout the

square root process there are certain time costs which

must be "paid" in order to accomplish the various func-

tions involved. These time costs represent different phas-

es of the process, and were chosen as modifiable paramet-

ers which influenced the total execution time of the pro-

cess in varying degrees. The following parameters were

chosen:

1). Tadd = time taken to execute the subtraction of

the trial factor from the remainder;

2). Ta - time taken to augment the partial root and

form the new trial factor; and

3). T5 a time taken to shift the remainder one bit-

position during the normalizing shift, all

being given in time units.

Thus a complete iteration will take Tadd + Ta + eTa time

units, g being the number of one bit-position normalizing

shifts made during the iteration. Only the fixed-point

portion of the square rooting process was simulated, with

the operands in the range (1/4, 1). Since floating-point

operands are being considered, there is an additional fix-

ed amount of time associated with determining whether the

48

exponent is odd or even. This would merely shift the tim-

ing distributions without altering their essential charac-

ter. It was assumed that sensing whether the exponent was

odd or even and conditionally shifting the operand frac-

tion one bit-position to the right could be done in the

time taken to perform a one bit-position shift, and this

time cost was accrued whether the right shift occurred or

not. In performing the experiment another assumption Yas

made, namely that in the course of examining the floating-

point exponents, even and odd exponents occur with equal

frequency. Accordingly, then, of the total sample of frac-

tion parts processed, half were taken in the range (1/4,1)

and half in (1/2, 1).

In order that a meaningful distribution be obtain-

ed, it was important that sensible or typical values be

assigned to the parameters Tadd, Ta, and Ts. The square

rooting process consists of a series of subtractions, log-

ical operations, and one bit-position shifts, and there-

fore if a proper relation between these parameters is

used, the problem will be resolved. As a typical example,

the execution times of the relevant operations in the IBM

7090 arithmetic unit were used [6]. The fixed-point addi-

tion takes 3 clock times, whether the operands possessed

49

like or unlike signs. Since we are using the l's comple-

ment representation for negative numbers internal to the

process, no additional recomplementation time is required

to obtain a signed magnitude form as is done in the IBM

7090. It may be desirable in certain instances, however,

to recomplement the final remainder and present it as out-

put information in a register at the conclusion of the

square root operation, but this was not done in the exper-

iment. One single bit-position shift in the IBU 7090 ar-

ithmetic unit is performed in one clock time, and thus the

add-to-shift ratio is obtained. Since in our equipment it

was postulated that the logical operations of augmenting

the partial root and forming the new trial factor could be

accomplished simultaneously in the time required to per-

form a one bit-position shift, the problem can now be ful-

ly specified. Therefore, if Tadd m 3 and Ta Ta- 1 time

unit, the parameters (3,1,1) will describe a meaningful

problem.

The probability density and cumulative distribution

functions for this problem were obtained from a simulation

program for the IBM 7090 (see Appendix), and are displayed

in Figure 3-8. 214 operands were processed, and with the

parameters used no operand took less than 42 time units to

50

W4 I I

o I 0

_

I_ A_ w _ 8

* 8

-4 4

U1OTuU Al.suTO• g *! g ATIVTno

pez~l~umiox

Figure 3-81 Statistical Timing Distributions for the Binary

Square Root, Binomial Theorem Method 18
Complement Negative Number8q Paramet:rX800191).

51

execute, and none more than 108. It is seen that the dist-

ribution of execution time is skewed to the right, and for

the purposes of graphical analysis, i.e., to determine the

mean and variance, it is convenient to make a transforma-

tion of variables such that a function #6(t) of the execu-

tion time t becomes normally distributed. Such a transfor-

mation is E51
g(t) - g

M(t) ,t (10)

where g(t) includes no unknown parameters. The cumulative

distribution function for execution time, when plotted as

in Figure 3-8, gives the probability that a randomly-chos-

en operand of the type considered will take more than (or

less than) a specified number of time units to have its

square root extracted by the binomial theorem method. The

cumulative distribution is plotted on a normal probability

scale in Figure 3-9, and is plainly skew. If, however, the

cumulative distribution of loglot is plotted as in Figure

3-10, it is found that this distribution may be approxima-

ted by a straight line, and thus the variable (logl 0 t -

logloJt)/Art is approximately normally distributed, where

4t is the median of t and Tt is the standard deviation of

loglOt. Prom Pigure 3-10, the median is about 66 time

52

50 __0 70 _ so _ 90_

-.~u o Tie timuit

54 5

u 0_ _ _ __ _ _ _ - _ _

q4 .//

50 60 70 80 90

!xew•tion Time, time units

Figure 3-9' Cumulative Distribution Function tow
Binary Square Root.

53

a%

4a

_ ~0'

d
0 .4
CY546

4'

_ 0i

ealluf saul 'su;, uoa~nooxg

54

"o 02/ 2 Munits. The mean is given by ,At =)t 10 t/ where M

lOgloe = 0.4343. To compute the standard deviation of

lOglot, note the values of t where the cumulative distri-

bution is equal to 0.159 and 0.841; these values are 57

and 77 time units. Taking the average value, Ct = (logi0 77

- 1og,0 57), or about 0.065. The meaner is then about 67

time units. The average standard deviation of t is J(77 -

57), or about 10 time units. A direct computation using

the experimental data yielded a sample mean of 68.8 time

units and a standard deviation of 10.6 time units, both

values being verified by their graphical estimates.

It then can be concluded that a randomly-chosen

floating-point binary operand of the format chosen has an

expected execution time of about 69 t%:ie units with stand-

ard deviation 10.6, when processed by a square rooter of

the type described, a time unit being the time necessary

to perform a one bit-position shift. The minimum execution

time is 42 time units, and the maximum 108, on the order

of 3.5 and 9 IBM 7090 machine cycles, respectively. This

compares rather favorably with the 67 cycles needed by the

SHARE program described in Chapter I.

55

CHAPTER IV

Other Nth Rooting Methods

The binomial theorem method obvio•u3ly lent itself

to direct mechanization of the square root operation. In

this chapter the properties of other nth rooting proced-

ures will be considered, to provide a foundation for com-

parison with respect to mechanization parameters.

4-1: The Euler Iteration Formulae

In a recent article [13] , J. P. Traub has outlined

a method for generating iteration formulae of arbitrary

order, along with an error estimate. The following devel-

opment is essentially his as given in his paper.

Let us start by desiring a real root of the func-

tion y =f(x) = 0 and denote this root as 04 , so that f(0) -

0. The only assumption that is made is that Oc be a root of

multiplicity one. Given the inverse relations

y=f(x) , x =g(y) , (1)

then S(0) = Yi- y) (2)

Zxpanding (2) in a Taylor series gives

Do k
CC = Z - Y£ k g(k) , (3)

k-a ko

where the parenthized superscript denotes a higher deriva-

57

tive. Since g(yi) = xj, (3) reduces to

O •u +~4. • -L ykk (k)
Skai k! Yi 9

Defining u - fCxi)/f•'(xi) and (5)

Yk: ý {f'(x)k÷1 9 (k*1) ,(6)

(4) takes the more compact form

00

OC -X i _uZEUk Y (7)
k-o

If we then take only the first m+l terms of the series in

(7), and denote the right side of (7) as a better approxi-

mation to 0M than xi (assuming that the sequence of approx-

imations converges), the following iteration formula is a

natural consequence:

x i xi - u Uk -ukk (8)

Defining the Euler polynomial as

Y(u) = Z uk Yk (9)
ko

transforms (8) into

x,+ X i - uY(u) . (10)

Defining

D= f(k) L 5 I

58

Traub shows that Y.is a polynomial in D, D2 *set

where

5= i , (12)

such that
Y 0 -1

Y (1/2) BF - (1/6)D3 , etc.Y22

The error of the iteration formula (10) may be estimated

by considerin6 the error Ei+l= Ot - Xial the remainder of

the truncated series in (8):

00

Ei+ W u uk Yk (14)

If f(x) is a smooth curve in the neighborhood of x ,,O., vwe

may write f (cc÷+)• 0 f(() + 6 f,•

where f is a small error. On the ith iteration, xz-+Gi

and since f(oo) 0, f(xi) - -iIf'(0c). Since f(x) is smooth,

f'(xi) 1'(w.), and thus the error may be estimated as

4i'i f (xi)/t'(xi) U . (15)
Thus u k , an so

00i+1 __ Yk i"
q,,1.+ I

Expanding Yk in a power series about DC , and assuming

that 1L <K ,

59

Ei+• ~Y (•)Em2 ,(m0,1,2,... (16)

Thus, for a given value of m, an iteration formula of ord-

er m+2 may be obtained from (8), with error estimate (16).

In an earlier paper [12] Traub compared various it-

erative methods for the calculation of nth roots, and in-

troduced an iterative formula which he called "multiterm"

iteration, an iteration formula which may be derived from

the Euler formula. Miultiterm iteration considers the spec-

ial equation f(x) = xn - A, where f(OC) = 0, with

SAl/n = x(i - f/xn)l/n . (17)

Letting v = -f/xf', 0(- x(l + nv)I/n, or

/n)nk (18)

kui
Noting that v -u/x,

00

0C = x + (xI)kk (i/n) uk j-k. (19)
kei

Using f(x) as given above,

Dk - f(k)/f, _ (n-1)(n-2) (n-k+l)x-k+l . (20)

Comparing (19) with (7), using (20) gives

Yk = (n-l)(2n-l).... (kn - l)xk/(k+l).l, k- 0,I,2,...
(21)

for this special case. Multite.ým iteration may be made any

order by considering only part of the infinite series in

60

(18). Specifically, the iteration formula of order m is

x' u-

a+: , (22)

where

ak,\ -k ,'k-1 , k -1,2,3,... (23)

The upper bound on the error is

Si+{14 M.C , m=2,3,4,... (24)

Traub points out that the multiterm iteration formula may

be applied in a sequence such that the order of each suc-

coeding application may or may not be changed, until the

root has been computed to the desired precision.

Rational Approximations to the Euler Polynomial

In his paper, Traub also considers rational approx.

imations to the Euler polynomial of a form due to Pads.

Written this way,

Y(u) : P(u)/Q(u) , (25)
where

P(u) = uk pk", and (26)
0

Q(u) - :L k Uý " (27)

0

Equation (10) may be written

-.,1 xi - uP(u)/Q(u) . (28)

Writing (7) as C - xi uY(u) - E , (29)

61

m+2
where E Y M+l Fi , and subtracting (28) from (29) gives

x i+l= _i--i - u P(u)/Q(u) - Y(u)} + E

or - uH(u)/Q(u) + E , where

H(u)= P(u) - Y(u)Q(u) uk. (30)

Referring to (30), if the leading term of H(u)/Q(u) is

proportional to u ml, then analogous to (16), the itera-

tion formula (28) is of order m+2. Thus Traub chooses the

p+q+l parameters PkP Qk so that Hk= 0, k=O,1,2,..., p+q,

vrith p+qa m. To do this, equate like powers of u in (30),

using the series in (26) and (27). Traub gives the result-

ing, equation
S

rrp - >L QkYrk•-0 , (31)

where I rp
Wrp 0 r > p (32)

and s = min.(r, q) (33)

Thus (31) can be used to find the Pk and Qk recursively,

since the Yk are known (eqn. (13)), and PO 1 1. Traub then

Gives the corresponding error formula

6i+l m (YM+l - Hm+l) - (34)

which indicates an iterative formula of order m+2, where

Hm+l - km-k+l (35)

62

The iterative formula (27) may then be '.Titten in the com-

pact form
Xl , Ipq(Xj) , (36)

where I pq(xi) is defined as

P(U) p - O,1,2,..., m

Ipq(Xi) 3 xi - Uu q; Ol,2,...,m (37)
p+q o m .

Equation (36) then defines m+l iterative formulae, a few

of which are summarized below:

1). M 0:

100 +x-1u Lil uYI. (38)

2). m 1•
Ilo x -u(l + Ylu) ; 4Ei÷ = Y23 (39)

1 x u ±.,.= (Y 2 -•)e3 (40)Iol i-Ylu i~l 2 1

3). m=-2 :

120 = x - u(1 + Ylu + Y u2) i+l Y (41)

• i = x - u Y1 ; r 1 + 2=
Ill u Y - Y2u ' i~l). ±

(42)
Z02 2

10 X U !

1 - y u (y+ - Y2)u

- (Y3 - 2Y1Y2 1 +

In the above formulae, x-xi, and in the error estimates

the Yk are evaluated at the n root DC . The formulae Imo

63

are those which result from equation (10), the iteration

formula before the Pade approximation was applied. Por the

particular example f(x) -xn _ A, Traub indicates that the

formulae of the form Inmm are preferable from the stand-

point of error estimate. A remark by Kogbetliantz 191 also

states that rational approximations of this form are the

most useful.

Specialization to the Extraction of nth Roots

In order to apply the above methods to the extrac-

tion of integral roots, the particular equation f(x) = xn

- A must be considered. The Yk for any particular n are

given in equation (21), and the first few are

YO = 1

Y, = (n - 1)/2z

Y2 = (2n2 - 3n + l)/6x2
(44)

Y3 = (6n 3 - lln 2 + 6n - 1)/24x3 , etc.

Also, U = f --£-(x " - A) (45)

Using (44) and (45) to write out the first few iteration

formulae gives

I (n-1)x - A (46)

00 n 1 xn- 2
n-1 2 4 (n-1) 62 (47)l+l= 2-0- i- i

64

___ (1 L (4 8)

2n2 ý 3n + 1 3 (49)
6 x2 (3)

101-X'(n-l)xn _ (n-l)A (50)

(n-l)xn - (n-l)A

6 n2_1 6 <(_1)6 (51)

I20 10 - xf2n 2 + 1 3l +_I L (52)206n3 , -(l)

6n3 - lln 2 + 6n - 1 E <_ (6n 3 - 1n 2 + 6n
24CL3) E) 4 (53)

i

Ill X L) (7 1) _(- -) (54)
""nx n (2n - 2)xn _ (4n - 2)A

2n3-n 2 - 2n + 1 E4 1 1(2n3 n2 2n

•i+l 720C3 _ _) 4(5
+ 1) • 4 (55)

02=x(5n 2 5n+ 5n + 1+ (82 nn)2

I (5e + 6n + I)x2n + (8n2 6n 2)xn + (1 - n2)A2

(56)(.3

.n3 + n + 2 6 4 4(n 3 + n + 2) (57)
24003 -3

As is expected, the iterative formulae become more compli-

65

cated as their order increases, and higher order formulae

may be derived from an extension of (44) and from (45).

4-2: The Pad5 Table of Rational Approximations [9J

This method enables a general power series, whether

convergent or divergent, to be approximated by a rational

function of the form Rrs = P r(x)/Q (x), where

Pr(x) =• a xk , (58)
0

Qa(X)- 1+ Z b k-, k (59)

We desire the approximation

Do
f(x) Z ckk rs(x) - Pr(x)/Q.(x) (60)

0

and if the definition

Qs(X) Zck k- Pr(x)- xr+s+l k (61)

o 0

is imposed, the coefficients ak and b k may be found from

the resulting linear system of r+s+l equations. In gener-

al, the accuracy of the approximation Rrs(x) increases as

the degree of Pr (x) and Q (x) increases. According to B.

G. Kogbetliantz [9] , the entries in the r by 8 table

which are the most useful are those for which ru s or ru

s+l. If rxe, then aO-e0 , and

66

S

L brsrI 0 (62)

aI_ =L'br0±r , iil,2,3,..., a . (63)

hto
and S

k br2s+k+).r I kuO,l,2,... (64)
h-o

The Yk decrease extremely rapidly, and thus

00

x2r÷1 F,-Z xk z y x2r+l

Therefore as a rough estimate (rus),

(Z k• P r(X) yO O2r+l

Ex = E k _ _ Ie- 0 (65)
0 Qr(x) Qr(X)

Furthermore, Q (x) 1, and thus
r

E(x) Y y 2r+l * 66
r 0 O (66)

Since the range of x and the order r are presumed to be

known, a rough estimate of the error may be obtained by

computing 'to If 0- : X_ x0 ,

IErLIy*o ~2r+1 (67)

YO is obtained by solving the system of r+l equations

(62) and (64) with r-s, kXO

L bres_r~i 0 , ii,2,39...

he7

67

and

hi 0 Z b a r °2s+l-r

This yields S'0 I Ar I where

C1 C2 .- Cr4.1 CI CL Or

02 c3 cr+2 C2 C 3*.'

Ar = ; 6 (68)

c rl Cr+2 . 2r+1 ar Cr+1 C2r

Sr being the principal minor of A . The approximationr 1'

Rrr(x) = Pr(x)/Qr(x) may be written as a continued frac-

tion

P r(x) A&QrC -0 (69)

k- x+Bk+

and the coefficients A , Bk may be found by combining and

cross-multiplying (69). An exam•ination of (69) shows that

parallel computation enables R (x) to be formed in r div-rr

isions and r+1 additions.

Specialization to nth Root

Kogbetliantz treats this problem by considering the

approximation in a general interval (b, c) using the sub-

stitution x - a(l + z), where b < a < C. Then xI/n

a'/n(1 z)I/n is expanded into a binomial series

68

(al/n 5k ,IzI! 1, and a Pads approximation for--

med. To further restrict the range of z, let b - a(1 - r 1)

and c a(l + r2), 0 < r< 1, 0 < r 2< 1, so that -rl_

z S r 2 , which still satisfies Izi z 1. Let

"Y (z) = Y /Ykzk (70)

As k gets large, the ratio Yk+l/ Yk approaches -1, and

thus the series may be approximated by an alternating geo-

metric series which has a known sum. Therefore

Yr(z)~ Yo/(1 + z) . (71)

Then the error formula (65) may be written

YO z2r+1

Er(z) (i ÷ z) Qr(z)

The relative error, E r(z)/xl/n, is

YO z 2r+1

E (Z) 0 (72)
r al/n(l + z)(n+l)/n Qr(z) "

Letting Er(z) = K+(z) where K = constant, it has been

found that the extrema of the relative error lie at z a-r1

and z = r 2 . Equating the absolute value of the relative
,A

IA

error at these values of z gives IEr(-rl)l- rIr(r2)1

W.7ritten out,

69

2r+l 2r+l
r1 _ r 2

(1- rl)(n+l)/n Qr(-rl) (1 + r 2)(n~l)/n Qr(r 2)

The ratio c/b gives a second equation involving r 1 and r2,

c/b (1 + r 2)/(l - , (74)

where c/b is a known constant since the interval (bgo) has

been specified. Solving (73) and (74) yields the desired

values r 1 and r 2 , so that the maximum relative error and

the constant a may be computed. The constants a 0 , al, a2 ,

... , which are functions of a, are then computed, and then

a continued fraction representation may be obtained of the

form (75)
AO Z ~ z + ÷ (75)

Substituting z - (x - a)/a into (75)-gives the desired ap-

proximation to xl/n. In his article Kogbetliantz gives se-

cond order (r-2) results for the square root, n-2 :

1/2 5 _50 C70 4/4914 - x+47/14 + 9 X + 3/14
0.25_ x <o..5 , IE^21• S1O-5 ,

X1/2 5 200 r3"5/49 '16/42-

7 x+47/7 + ' x + 3/17
o..5 x <Z I J 2 1_0-.

The accuracy of this type of approximation can be improved

70

either by using higher order rational approximations or by

decreasing the size of the interval in which the approxima-

tion is valid. From the standpoint of computing time the

latter is preferable, although it results in more storage

space being required.

The simplest, though not the most accurate rational

approximation which is a function of the operand is

f~x)• •I•)=a° + az=
-W÷o4.az x= X(z) , (76)

which can be computed in one multiplication, one addition,

and one division. In order to use this approach to extract

integral roots, let us consider the function f(x) - xI/n

n=2,3,4,..., where x = a(l + z), jzj _ 1. As before,

CO

and Co

(1 + blz) -ckz k- _ao + a•z) z3 y zk k= Y(•)
0 0 (77)

Solving (77),
b,=n-l 9n234, (78)

ck+3 + bicCk+2 ' Yk ' k-Ol,2,... (79)

7Aith knO, Y 0 = C 3 +b1 C 2 , or

YV al'n n_ -1}, na 2,3,4,... (80)

71

Considering the approximation in the interval (b, o) as

before, with b - a(l - rl), c = a(l + r 2), equating the

absolute value of the relative error at z = -rI and z = r2

gives, since r(z) • YO/(I + z),

(1 - rl) (n~l)/n(1 - blrI) (1 + F2)(n~l)/n(1 + -0r2)

r2)(nl)(en)
(81)

Solving simultaneously with (74) yields rI and r 2 . If (81)

is written K(rl) = G(r 2), the maximum relative error of

the first order approximation is

YO 2n_ K(r1) (82)^Il(Z) I _s al•n K(rl)- 123 K)(2

Solution for the other constants yields

ao = 1/n

n+l 1/n (83)

where a may be computed once r 1 is known.

Choice of Interval

Since the order of the rational approximation has

been fixed, the only way that its precision can be varied

is by varying the end points of the interval of approxima-

tion (b, o). In general it is true that the precision of

the approximation increases if the interval length c - b

72

decreases. Let us deal with fixed-point binary operands in

the range (2 "n, 1), and partition this rance into 2 P(2 nf-l)

subintervals of equal length so that these subintervals

may be easily identified by logical circuitry. A computa-

tion was made using the interval (2-2, 1), subdivided into

24 subintervals. It was found that the greatest relative

error occurred in the lowest subinterval, for which c/b

9/8. This is not surprising, since in the lowest subinter-

val x1/n has its greatest curvature, thus causing the

greatest inaccuracy. A calculation of the worst relative

error in the subinterval (2 -n, 2 -n + 2 -n-P) has been made

for the square, cube, and fourth roots (n=2,3,4, respect-

ively), for varjing numbers of subintervals. The results

are summarized in Table 4-2.

Although the operand is partitioned into 2 P(2 n - 1)

logically identifiable subintervals (listed as "maximum

number of intervals" in Table 4-2), it is apparent that

all of these need nc t be distinguished from one another.

For example, consider the square root being taken in the

range (1/4, 1) using 3 subintervals (1/4, 1/2), (1/2,3/4),

and (3/4, 1). The maximum relative error is a monotonical-

ly decreasing function of the lowest subinterval's end

point ratio c/b, and thus the above 3 subintervals can be

73

I 1 0 a 0 000 P
or % %D

48 =0

o: * ýo 'o gag 0

4A - 0* 4

0 v0

0

* 0 5,- I if% %a N %a'~'

P4S

.4 0o4 644 v j

0 0000000

.460 cm"tt 9 0 o a

04~4 10 4o0 0 0 0%

14. 0z
04~

0 A

14374

reduced to 2, (1/4, 1/2) and (1/2, 1), without exceeding

the maximum relative error in the lowest subinterval (1/4,

1/2). Similar reductions can be made concerning the other

entries in Table 4-2, and these appear as "minimum number

of intervals" in Table 4-2. For first order Pade approxi-

mations three stored constants are required for each in-

terval, whether the ratio of polynomials or continued

fraction representation is used.

If the problem in question is the computation of

the nth root of a 27-bit binary integer to an absolute

precision of 1 part in 227 (fraction part of IBIS 7090

floating-point word), then since the nth root lies in the

range (1/2, 1), the maximum relative error is 2-26 or ap-

proximately 1.49 - 10-8. For the square root this corre-

sponds to the entry 65/64 in Table 4-2. For this relative

error, then, the size of the table of stored constants re-

quired for each order root may be determined. These table

sizes are given in Table 4-3.

75

No. of Maximum
n Stored Relative

Constants Error

2 354 1.47. 10-8

3 498 1.16.10-8

4 639 O.92- 10-8

5 774 0.75- 10-8

6 915 0.61 10-8

7 1050 0.55*10-8

Table 4-3: Size of Stored Constant Tables for the
Square Through Seventh Roots, First
Order Pads Approximation.

4-3: Extensions of Nadler's Method

11. Nadler [7, 8] has outlined an iterative method

published by Flower in 1771, which was first used to com-

pute high precision logarithms, but which is also useful

in computing the reciprocal or the integral roots of a

given number. If we are given the number A, we may find

its reciprocal by multiplying it by a series of constants

such that

A1rci - 1 . (84)
i

Dividing (84) by A yields the equation that is necessary

to compute the reciprocal of A,

T•oi- A7 . (85)

76

Thus (84) and (85), computed separately, form a pair of

iterative equations that yield the reciprocal of a given

number. These equations may be used to find the quotient

B/A by using the pair of equations

ST 0(86)

BTTc-BA0!

A modification of this algorithm has been used for divis-

ion in the Harvard Mark IV computer, and is given by Rich-

ards .io) as

N i÷I (2 - Dj)Ni
Di÷1 (2 - D) (87)

where No is the dividend and Do the divisor. The iterative

method in (87) will converge if 0 / Do < 1, thus making

Di < Di_l< 1, IW0,1,2,...

The iterative method described in (84) and (85) may

be extended to the computatiok, of nth roots by employing

the following extension, developed by Nadler E8] to ex-

tract the square root of a number. Let the following pro-

duct be formed in a given register:

A1To' -.1 . (88)

iiRaising (88) to the power (n-l)in gives

A~-1/nl-c•"-i77(9

15ultiplying (89) by Al/n2 then gives

ATTo--- Al/ ,(90

and thus the pair of equations (88) and (90), computed

separately, form an iterative algorithm which may be em-

ployed to extract the nth root of a given number.

Computational Considerations

Nadler points out that the constants ci may be of

the convenient (in the binary number system) form 1 * 2-P,

ps 1,2,3,..., so that multiplication may be carried out

using a shift and an addition. Richards discusses the Har-

vard Mark IV division algorithm in the decimal system

where the same sort of approximation is used, i.e., 2 - Di

S1 + di, where di is the highest order nonzero digit of

1 - Di. Suppose that A Tci-T-i 1 monotonically from below,

and thus ci is of the form 1 + 2"P. After a few iterations

the process will reach a point where Arc. will be of the

form 0.1111--p, such that each succeeding iteration will

merely add another "1" to the string already obtained.

Thus if k significant digits of the quotient are desired,

nearly that many shift-addition operations will be requir-

ed.

Let us examine the precision of these iterative

78

methods:

1). Division

ATToi- 1
lTo1-'A l- _Q

Let ATo 1 - A

then

7~c= Q(1 -•) , (91)

and therefore the relative error of the reciprocal (or

quotient) is the same as that of the operation which caus-

es the reciprocal to be formed.

2). nth Roots

A IT on _', 1

AlTon-1"- A'/n - 0C

Let ATrot n 1 - A

Raise to the power (n-l)/n,

A(n-l)/n TT cn- (1 - 4)(n-!)/n

Since A•.(1,
A n-)/T~ n-i 1 n-1

L~ultiply by Al/nf 0C, ,

A TT- I n-1nC1 B-1 (92)

79

and thus the relative error of the nth root is less than

the relative error of the forcing expression. Therefore if

the desired precision of the nth root is specified, the

precision to which the forcing expression must be carried

out can be determined.

In the case of the nth rooting algorithms given in

equations (88) and (90), the form a = 1 + 2-P poses some

problems. The relation between on and must be exact

or to within the waximum tolerance of the rooting proced-

ure in order that the n h root thus extracted be correct

to the specified precision. Richards states that it is de-

sirable to ma:e the capacity of the registers holding the

factors in question one or two digits greater than the

word length of the reciprocal (or root) in order to mini-

mize the effect of round-off errors. In the case of the

square root (n=2), the problem may be handled in the fol-

lowing manner:

Let a partial result be given as A ITci, and let

this result be used to determine the next multiplying con-

stant c2= 1 + 2-p, p '? 1. Vow if p is large enough,

M - (1+ 2 P)1/2 - 1 + 2 -p-1 ,

2 2p-
thus giving am - 1 + 2-p + 2-2p2. Therefore the factor

80

2

A Tc2 could be used to determine the squares of the mult-

iplying constants, and thus the constants themselves, both

in an exact manner. There is one complication that might

arise in the application of the above method, however,

namely that ATC'2 > 1. This may be remedied by taking

2= i 2P 2-2p-2 -- 1 * 2P, using - 2-Pm m
when A To2 >1 and c 1+ 2-P when A1 c2 < 1. lyhen

A-c 2 = 1, the process terminates because an exact root

to within the process tolerance has been found. The con-

stants c2 and c, imply shift-addition operations, and maym
be utilized in the same manner as in the division process.

If k sig•nificant digits are to be computed in the square

root and 8 additional digits are carried along in the

computation to counter round-off error, then the effect of

2-2p-2 vanishes when 2p+2 > k+ S, or p > j(k'+ 8 - 2), ap-

proximately the midpoint of the iterative process, and the

simpler approximation c2 M 1 2 nay be used thereafter.

For the cube root (na 3), the approximation to the

cube of the constant may be written c3 = (1 * 2-Pl)3

1 1 (2-P + 2 -IPl) + (2 -2p-1 + 2-2p-2) + 2-3p-3. but this

approach is rather impractical, since the approximation ci

must be obtained from A TT c3 -. 1, and then an exact corre-

spondence between cJ and c2 must be established in order

81

that the iterative process be valid. It is easily seen

that for n-4,5,6,... this type of approximation defies

simple mechanization, since an exact correspondence must

be established between c and cn-1 after first obtaining

an approximation of the form ci = 1 * 2-P-1 from the fac-

tor ATfon-e 1.

Stored Tables of Constants

Instead of forming the constants ca at each stage

of the iterative procedure, we could examine the magnitude

of ATT n, and upon the results of this examination, so-

lect the appropriate constants cU and c- from stored ta-

bles. The determination of the magnitude of A IToC could

be made by direct logical access to its bit positions, and

thus the appropriate table entries could be selected ac-

cording to the bit configuration sensed. If k bits of ao-

curacy are desired in the nth root, i.e.,

then according to (92),

ATron A 2.- ~2- (93)

For example, let us consider extracting the nth root of a

k-bit binary integer in the range (2 -n, 1) with absolute

error less than or equal to 1 part in 2k. If it in desired

to force Af loan into the desired range, i.e.,

82

1 - R-- -2 -k - A Trcon. + n1- k(4

using just one multiplication, then 2 k-I + 2k-2 +...+ ' 2k-n

entries cach are required in the c and ca-I tables, mak-

ing a total of 2k+2 - 2k-n+l stored constants required.

However, since A1Tc will be in the desired range after

ionemuliplcatonthe citable does not have to be stor-

ed in this special case since the desired root CC^ . Acn-l

may be obtained directly from the on-I table. If this is

the case, about 235 million stored constants would be re-

quired to extract the square root of a 27-bit binary inte-

ger (such as the fraction part of an IBM floating-point

word) in one multiplication, about 252 million to extract

the cube root, and even more for the higher roots. These

figures are of course entirely out of the question. The

number of stored constants required to force A TT c into

the desired range may be reduced by expending more multi-

plications, but the cn will have to be stored, and it will

require the expenditure of many multiplications in order

to reduce the stored tables to a reasonable size.

4-4: Truncated Series Method

Suppose it is desired to compute the value of a

function that has a convergent power series representation

83

f(x) - b0 + b1x + b2 x 2 + , and suppose further that it

is possible to make a transformation on f(x) so that it

may be approximated by a severely truncated series, say,

f(x) = b0 + b1 x. It is this type of transformation which

will be considered in the computation of the real nth

root of a real number.

The binomial expansion

(1+ n)l + 141 + 11) 2 + .-. (95)
n 1 1n (n~

is an alternating power series convergent for IAI 4 1. Let

us suppose that I&I << 1 so that

+ , (96)

the error being less than the next term, i.e.,

Il1 n-i A 2 , n,,2,3,4,... (97)
2W

Let it be stipulated that our operands are binary integers

and that we wish to compute their nth root to an accuracy

of at least 1 part in 2 k, i.e., I1I< 2 -k. Thus

2-k C n-1 2

2n

or

A S n -2R} 2"k/2 (98)

84

For example, if our operands are IBM 7090 floating-point

words with 27-bit fractional parts, then k a 27 and the

maximum A is given in the table below.

A M.aximum t:aximum n LaximumnA nA nA

2 1.00.2-12 6 1.34.2"12 10 1.66-2-12

3 1.06"2-12 7 1.432-12 11 1.74-212

4 1.15"212 8 1.51.2-12 12 1.81.2"12

5 1.25'2"12 9 1.59"2"12 13 1.87.212

Table 4-4: Maximum Value of t• in the Truncated
Series, k *27.

For the values of n shown, & 2-12 is a satisfactory

value to use. If we then force our operand into the range

(1, 1 + 2-12), the series given in (96) may be used to

compute the nth root of x to within the maximum allowable

error.

Transformation of the Operand

Considering that we are operating upon the 27-bit

fractional part of IBM 7090 floating-point words, it is

Given that the operand will be in the ranee 2-n - x < 1,

n"2,0,49... It is required to execute some sort of

85

transformation upon the operand x in order to force it

into the interval (1, 1 * 2-12).

Let us consider a transfornation used by Bener [i]

and by Cantor, Estrin, and Turn [2] in the computation of

the logarithm of a real number. Let

z - xTc (99)

define a transformation upon x. Then

*A 4"

in z w In xTfc, i n x + In cI It

and thus

in x - In z - Iln a (100)

The series expansion for In z about the point z 1 is

in z (z•-) - I(z_-) 2 + 1(z_-) 3 - ... , (101)

2 3

convergent for 0 (z S 2. If z - 1 +. A , where A« 1,

then

ln(l + A) A A + 0(A 2) , (102)

with error

kII- A 2 . (103)

Thus if Iz-1I S IAI by applying the transformation given

in (99), In x may be computed using (100), which employs

the severely truncated series in (102). The additional re-

quirement is, of course, that a suitable table of con-

86

stants in 0£ be available, as well as the means for ex-

tracting the correct entries from this stored table. Can-

tor, Estrin, and Turn specified an error bound of 2-27,

and thus A <_ 2-13. They operated upon a normalized

(1/2 :_ x < 1) 27-bit binary operand with the transforma-

tion (99) using two multiplications and two stored tables

of constants to force the operand into the range 1 - 2"13

< z < 1 + 2"13. The transformation was defined as z -

akc3 x, where

ak =2" Int. I T ,

k Int.(2 7 x)

and

c 2-13 nt. 2226 (1 2- 13) }
j Int.(2 1 3 akx)

Int.() denotes the inteCer part of the quantity in brack-

ets. Therefore 26 <_ k < 27, i.e., k = 64,65,...,127, and

213 - 27 - 26 < j < 213, i.e., J - 8000,...,8191. Thus

there are 64 constants ak and 192 constants 03 required to

transform 1/2 S x < 1 into 1 - 2"13 < z + 2-139 where

Z = a kojxe

In a similar manner, then, let us define a trans-

87

formation that will force 2-n x < 1 into 1 - < z

1 + A , where A=2- 1 2 and z - Cie Let

Z = X %ci 2 -n_ -4 l ,T (104)

then
t 1/nW xl/n--C1/n

Therefore 1/n/1
XI/n. zI/no -/ , (105)

where 1 - 2-12 -z < 1 + 2-2 zI/nwhre 2 z(+ , and thusz may be com-

puted using the series in (96), with 2 2-27. Consider

effecting the transformation (104) in a single multiplica-

tion, z = xak. In order to bring z into the desired range,

the first 13 bits of x must be examined. Let k = Int(21 3 x)

where 2-n . x < 1, and thus 21 3 -n 1< k < 3 n 2,3,4

For each of the ak we need an ak1/n to correct z1/n thus

necessitating two tables, ak and--•/n . Table 4-5 gives

the total number of stored constants required in the sin-

gle multiplication scheme.

Total no. Total no. Total no.n of const. n of const. n of const.

2 12288 4 15360 6 16128

3 14336 5 15872 7 16256

Table 4-5: Number of Stored Constants Required for
nth Root, Single I.ultiplication Scheme.

88

Vote that the constants ak have a small number of nonzero

bits, and thus if ak is considered as the multiplier, the

computation of z - xak is a "short" imultiplication. If

n > 13, either more leading bits of x will have to be ex-

amined, necessitating expansion of the stored tables, or

an additional multiplication will have to be executed, al-

so introducing additional constants. The present discus-

sion will be limited to the cases where n is not large

enough to require such changes.

In order to reduce the number of stored constants

required, let us consider forcing z into the desired range

using two multiplications, i.e., z = xakcj. Following Can-

tor, Estrin, and Turn, let the transformation sequence be
(2 "n, 1)-- (1 - 2-5, 1 + 2-5)-,-(1 - 212, 1 + 2 -12), the

respective ranges of x, xak, xakc3. Define

a 2-5 Int. ý , (106)

k Int.(2 6x) , (107)

and

S2-12 Int. 224 (1 2-12) (108)

3 • Int.(21 2 xak) .(109)

The ranges of k wid 3 are 2 6-n- k < 2 6, n-2,3,4,5, and

89

212 - 26 - 2_ 3 < 212. Thus there are no more than 62

constants ak for n < 6, and 96 constants aj. In addition

to these constants, there must be tables of a--/n and

c-1/n stored. Table 4-6 gives the total number of con-

stants required in the two uultiplication scheme for

values of n between 2 and 5. If n > 5 the ak and al/n

Total no. Total no.
of const. of const.

2 288 4 312

3 304 5 316

Table 4-6: Total 1'umber of Constants Required for
nth Root, Two flultiplication Scheme.

tables will have to be expanded, with a resultant reduc-

tion in the size of the c and cj'/ tables. The multipli-
i -1/n

cations xak and xakc are "short" and za" and

Zk/n ji/n are regular length.

It should be noted that this "sequential table

lookup", abbreviated STL, method as Cantor, Estrin, and

Turn call it, is quite similar to Yadler's method for com-

puting roots, in that they both force the operand into a

predetermined range. However, the difference between the

two methods is the width of this range. In Nadler's method

the operand has to be forced into such a narrow range that

90

either too large a table of stored constants or an unsat-

isfactory number of multiplications is required.

4-5: Logarithm-Antilorarithm Anproach to nth Rooting

If it is required to extract the nth root of a giv-

en real number, the following sequence of operations may

be performed:

l xin x k x e1/n., ein

Figure 4-1: Computational Sequence for the LOg-
Antilog Mlethod.

The operation ex is, of course, the antilog operation cor-

responding to in x.

Let us examine a variable structure computer devel-

oped by Cantor, Estrin, and Turn [2] that computes the el-

ementary functions in x and e . The essential character of

their sequential table lookup (STL) algorithm has been

given in the section (4-4) dealing with the truncated ser-

ies method for computing nth roots. Cantor, Estrin, and

Turn developed a combined structure that handles both in x

and ex as well as separate structures, and it is this com-

bined structure whose characteristics will be given.

The constants necessary to compute in x and eX

91

are stored in a table of 1037 words of minimum length 31

bits and maximum length 44 bits. In addition, a 36-bit

accumulator, a 35-bit adder, a 36-bit multiplicand regis-

ter, and a 14-bit LQ register are computational registers

required. Besides the necessary memory access hardware re-

quired to select the desired constants from memory, there

is also the usual control and decoding circuitry that is

necessary to make the process function.

92

C"-APTER V

Comparison of the nth Rooting Methods

5-1: Timizvt Measures

Each nth rooting method considered is made up of a

number of elementary arithmetic and logical operations.

However, each method does not necessarily consist of the

same operations, and the operations occur in varying pro-

portions according to the method. Therefore, as a first

step, the timing evaluations will be made in terms of the

elementary operations. The operations used are defined

as fixed-point binary, with a fixed word length. Let the

following symbols be introduced::

S- one bit-position shift;

A= addition or subtraction;

M = full word-length multiplication;

D a division;

I.A- memory access;

M = short multiplication, where a short multipli-

cation is one whose multiplier is substant-

ially shorter than the full word length.

5-2: Dealing with the Floatin-PoLint Exponent

It was previously pointed out that the fractional

part of a floating-point operand may be shifted as many

as n-1 bit positions to tha r1;!t before execution of a

fixed point rooting process, dependin3 upon how nearly

93

the exponent was a multiple of n. For a general value of

n, the only way to determine this property is to perform

the division b/n, where b is the exponent, examine the

remainder r (b/n Int. ýbjn) + r/n), and shift the frac-

tion part n-r places to the right if r is nonzero. The

root exponent is Int. (b/n) + 1 if r> 0 and b/n if r-0.

For an IBM floating point word, the division b/n is a

maximum of 8 bits long, and thus the maximum time taken

to deal with the exponent is this 8-bit division plus n-I

one bit position shifts. Therefore, this time must be

added onto the maximum expected execution times of those

methods which employ operations on just the fractional

parts of a floating-point word. These methods are the

binomial theorem method, the Euler iteration formulae,

the truncated series method, and the Pads approximation.

5-3: The Binomial Theorem Method

A sub-unit of the binomial theorem nth rooting

process, an iteration, has been previously defined as:

1). formation of the trial factor;

2). formation of the correction if the remainder is

negative;

3). addition/subtraction of the trial factor and correc-

tion to the remainder;

4). shiftin3 out leadinG zeros from the new remainder;

and

94

5). augmenting the partial root with the appropriate

bits according to the results of steps 3 and 4.

An iteration is represented schematically in Figure 5-1.

The most time-consuming part of the iteration occurs in

forming the trial factor and the correction at the begin-

ning of the iteration. For the nth root, the trial fact-

or is a polynomial of degree n-l in the partial root

ajl, and the correction is a polynomial of degree n-2

in aj3 1 , the coefficients being the binomial coefficients

multiplied by a power of 2 in the case of the trial fact-

or and integers of approximately the same magnitude as

the binomial coefficients multiplied by a power of 2 in

the case of the correction. Since the trial factor is a

higher degree polynomial than the correction, the forma-

tion of the trial factor is the longer operation of the

two. What is required, then, is to form successively the

powers of aj3 l, from the square to the (n-l)st, and form

the trial factor and correction polynomials using the

appropriate coefficients.

A highly parallel method of doing this is shown

in figure 5-2. The trial factor is represented symbol-

ically as o00 +olaj 1 ÷... a, n-l and the correction
+ ,' .. c n-2 wee c . nl

as c0 ca. 1 n4 9-1 where co, all .O' n-,
, I I

a0 �, ." cn2 are short integers times a power of 2.

Assuming the positionings #an be accomplished in one or a

95

Start Iteration

Form Form Correction
Trial if Remainder is
Factor Negative

r i

Eadd/.gubtract trial factor
and orection to remain-

der.

Shift Out Augment Partial
Leading Root
Zeros

E ex~t Iteration

Figure 5-1: Schematic Representation of an Iteration.

96

N,- 0

.44 a

42
-v A

.4 4 + +

00 0-

W 4 a.

U)

II.

Yi. a a
4A. we a- x. . V

.0 4 f4 (I 4D)

04

0
tU

CVC

r~48
to z .i - 9-- 0

o 0.- 1 0 V4

aa I S

04 A0 d

W P44

14 N d V

4 _~ 0 ON a~ o
do U P4U 0 9440

31 N.- A
0i %4 0 -

a 0' 0 N 0 9- 0 PL
IaU ., U4 .

r V.97

few one bit-position shift times, the entire process of

forming the trial factor and correction can be done in

the time it takes to form the n-2 powers of aj.l, plus

the time taken to form the last term of the trial factor.

Done in this way, the arithmetic units which might be

used for the formation of the trial factor and the correo

tion are 3 multipliers, 2 multiple place shifting ma-

trices, and 2 adders. During the early stages of the

rooting process the partial root aj_1 consists of only a

few digits, and near the end consists of nearly the full

word length. Thus, the n-2 multiplications used to form

the powers of aj_1 have multipliers with an expected

length of one-half the full word length, and therefore

are, on the average, short multiplications.

If more conservatively, a sin.le arithmetic unit

is used, assuming also that one shifting matrix is avail-

able to execute the various variable length shifts re-

quired, the computation of the trial factor and correct-

ion polynomials takes 3n-5 short multiplicationst 2n-3

additions, and 2n-3 variable length shifts, for n = 3,

4, 5, To obtain a maximumtime estimate, the mini-

mum fi3ure of merit of 1.00 root bits per iteration

could be assumed, and thus nth rootin3 process could

take as many as k iterations (k bein3 the number of bits

in the friction part of the floatinS-point word), each

98

iteration consisting of 3n-5 short multiplications, 2n-3

variable length shifts, 1 bit-position shift time to aug-

ment the partial root, and 2n-2 additions. To extract the

nth root of a floating-point binary operand, then it will

take a maximum of 1c3n-5)M. + (2n-3)s* + S + (2n-2)A4 +

(n-l)S + D(8), where S* is a variable length shift exe-

cuted by a shifting matrix and D(8) is an 8-bit division,

for n-3, 4, 5, If a shifting matrix is not

employed, the rooting process for n>2 becomes extremely

time consumin3 due to the large number of sequential one

bit-position shifts needed to position the terms of the

trial factor and correction. The square root (nz2) has

been treated as a special case in Chapter III.

5-4: The Euler Iteration Formulae

The computational speeds of the Euler iteration

formulae depend upon their order (and thus complexity),

and upon the number of times they must be applied. Since

the number of applications (or iterations) depends upon

the precision desired and the order of the root desired,

timing ev:'luations will be made on a "per iteration"

basis aný iterations may be cascaded to meet the computa-

tional needs of particular problems.

The first six Euler iteration formulae, i.e.,

those described earlier, will be considered. Table 5-1

gives the execution time of one iteration, xi., - Ipq,

99

using sequential computation with a sin3le arithmetic

unit. All operations are fixed-point binary, and "red

tape" and data transfer operations are neglected. Also,

the time taken to desl with the floating-point exponent

is not included in the timinG table. Table 5-1 was com-

piled for a fixed n, i.e., all the expressions containing

n were precomputed and assumed available at the time they

were required.

Approx. A M me D PT
_______ ____ Table 5-1:

100 1 n-I 0 1 n-2 Computational
Properties of the

II0 3 n+3 0 1 n-I First Six Euler
Formulae, Sequen-

101 2 2n-l 4 1 2n-2 tial Computation
Using One Arith-

120 4 n÷6 0 1 n-I metic Unit, n
Fixed.

Ili 4 n~i 4 2 n-i 1*PNo. of mult.
102 4 2n+3 6 1 2n-2 used to form

powers of x.

If n becomes substantially large, the computation

of xn takes the major portion of the iteration computa-

tion time. Therefore, there is a point at which the com-

putation of a sin3le Euler iteration becomes more time

consuming than using another method to compute the nth

root, and thus the comrutation of xn enters as a limiting

factor in the usefulness of the Euler iteration formulae.

5-5: The Pade Arnroximation Yethod

100

The first-order rational aprroximations considered

could take two equivalent forms, either

xl/n ao alX or
1 blx

xl/n A0 + Al
x + B1

However, even though the two representations yield equal

results to the desired precision, they are not computa-

tional equals. Sequential computation of the first rep-

resentation (ratio of polynomials) takes 2M + 2A + ID

+ 3MA + (n-l)S + D(8), and the second (continued frac-

tion) 2A + 1D + 3MA + (n-l)S + D(8). Clearly the con-

tinued fraction representation is preferable timewise,

the execution times given being those for a floating-

point operand.

5-6: Relection of Nadler's Method

Although they are theoretically sound, the hi.Sher

order extensions of Nadler's method for calculating nth

roots preaent unreasonable demands in storage (such as

severil million stored constants being required in a

sequential table lookup scheme), or are grossly incon-

venient or Imnossible to mechanize as in the case of the

bit-by-bit method of forcin3 the factor A 1Toa to unity,

because of the exact relationship demanded between an

and c•"1

101

The similarity between Nadler's method and the

truncated series method points up the superiority of the

latter as far as the number of stored constants required,

since in the truncated series method the quantity being

forced to unity does not have to approach this value as

closely as in Nadler's method, and although more arith-

metic operations are expended, the number of stored con-

stants required for the sequential table lookup approach

in the truncated series method is for less.

Therefore, Nadler's method is regarded as grossly

undesirable in view of the much simpler and more effic-

ient nth rooting methods available, and will be elimi-

natod from further consideration.

5-7: The Truncated Series Method

By applying the transformation z = xTTOI to the

operand x in order to force z into the range

(1 - I1AI, 1 + IAI), it was shown that zI/n could be corn-

outed using the severely truncated series zl/n 1 + &/n,

where ILI was chosen to satisfy an error criterion. The

transformation wos sccomrlished in essentially the number

of short multiplicstions neccssary to force z into the

desired rnn3e, and an equal number of "correcting" full

wcrJ-1ength multiolications were aprplied to zl/n in

order to obtain xl/n.

The comnutational sequence is 5iven in Fi3ure 5-2.

The two previously discussed transformations were the

102

single- and two-multiplicntion types, applied in the case

where IAI4 2-12 to satisfy ItE. S 2-27. Since zl/n has 28

significont bits in the case of an IBM floatinG-point

binary word, 27 of them to the right of the binary point,

and since IA(_< 2-12, the division A/n need only be

carried out 14 places at the most, depending upon the

value of n.

z . X•C ZI/n., 1 +1/ n -n

Figure 5-2: Computational Sequence of the
Truncated Series Method, Mantissa Part.

Thus A/n is a "short" division, and for the sake of ar3-

ument will be considered as one-half a full word-length

division. Another point arises, namely, whether & is

positive or ne3ative. If A> 0, we need only consider

that part of zl/n which lies to the right of the binary

point in the division &/n. If A< 0, however, the

division IAI/n must be performed and the sum I - I/n

formed. This implies two subtraction ooeraticns, and it

will be assumed that these must have token place in order

to create a worst-case example.

1). Single multiplication, z - xak :

maximum execution time = IMs + 114 + 2A + (1/2)D +21'A

2). Two multiplications, z = kaj :

maximum execution time =21s + _2M + 2A +(1/2)D + 4YA.

103

5-8: The Log-Exponential Method

The In x and ex functions mechanized in the vari-

able structure computer of Cantor, Estrin, and Turn

operate upon IBM 7096 floating-point words (8-bit expon-

ent, 27-bit fraction, and sign) and it is for such oper-

ands that the execution times will be given. Two timings

are given, one for maximum parallelism and the other for

a sequential computation.

1). In x :

Parallel = 111A * 2M + lA + IN N8

Sequential - 2A + 2M + 3A + iN ;

2). ex :-

Parallel -10 + DIA + 2Ms + 3A + IN ;

Sequential = 1C +- 31A + 2Ma + 4A + IN,

where N - normalization and C = conversion. The normal-

ization and conversion consist of a controlled

sequence of one bit-position shifts. The normalization

takes a minimum of 0 and a maximum of 27 shifts, and the

conversion a minimum of 0 and a maximum of 26 shifts. It

is seen that the difference between the parallel and

sequential computations for in x is DUA + 2A, and for

ex , 21- + IA. In order to determine the total time

needed to compute xl/n the individual computations must

be cascaded into the sequence shown in Figure 4-1. Since

the difference in computation time between the

log-exponential em-loyin% parallel and sequential In x

104

and ex is only 3MA + 3A, the soquential methods will be

considered. These are the algorithms executed by the

variable structure computer designed by Cantor, Estrin,

and Turn. The total computation time for the log-expo-

nential nth root is a maximum of 5MA + 4Me8 + 7A + 803.

This time is for the combined ln x-ex structure [2]

employing 1037 stored constants.

105

CHAPTER VI

Oonclusion

The component terms in the maximum expected execu-

tion times, in terms of the basic arithmetic and logical

operations previousl7 set forth, are given in Table 6-1

for the workable nth rooting methods.

In some instances it may be advantageous to com-

bine two of the previously described methods in a sequen-

tial fashion to obtain an advanta3e in speed. One such

examcle is the use of the Euler iteration formulae plus

an initial approximation. When apclying the Euler itera-

tion formulae it is common practice in programminz, and

indeed desirable, to lead into the iterations with a good

approximation to the desired root, thus minimizin3 the

number of time-consumin• iterations required for full

precision. The only iteration formula worthy of consid-

eration in view of the STL loS-ex':onential nmethod is the

Kewton - Faphson formula, Io0. This is a second-order

formula, i.e., if a reasonably close approxim:;ation is ob-

tained, the error is approximately squared with each suc-

coedinS iteration. For exnmnle, if we use a Pade approx-

imation to an error I1I 4 2-14 (relative error-=2-13),

and apply one Newton - Raphson iteration to this initial

value, the result will be within the error bound

2-27. The computation time will be 3MA+2A+ID for the

107

00 0 000 00 0 0 0

'0 4

+ 4 4

0 0- 0v %D 0

r 14

~~~~~o 0 0 0 ' , N04

00 0 ONC

*4 P34

A 64
60

r .14 8 00.

6. 0.h2.

V4 .4 54

10 4) r4 0
'0 00 4 N 0

.0 0 4& 0 wJ~
8 1 9 (.

04 a

108



Pade approximation, plus 1A +(n-l)M +ID for the Newton-

Raphson iteration, plus (n-1)S +D(8) to reckon the expo-

nent, making a total of 3!MA+3A+(n-l)M+ 1D+D(8)+(n-1)S.

The Pad 6 approximation and truncated series mech-

anizations are or3anizationally similar to that of the

STL log - exponential method, and are Siven in Figures

6-1 and 6-2. The micro flow charts for these methods

(mantissa part) are given in Figures 6-3 and 6-4. Both

the mechanization and micro flow charts for the STL log-

exponential method are 7iven in the report by Cantor,

Estrin and Turn [2].

The timing evaluations of the various methods

were given as sums of multiples of the basic arithmetic

and lo;ical operations. In order to directly compare

one method with another, a more common time base must be

specified. One way of doing this is to designate one of

the basic operations as a unit time, and then express

the remaining operations as multiples of this time unit,

giving all execution times in terms of the time unit.

As an example, if we were to choose the IBM 7090

operation timin3s, usin3 the one bit-position shift as

our time unit, we would obtain the ratios given in Table

6-2. A ono bit position shift in the IBM 7090 takes

1/12 of a 2.18 microsecond machine cycle, or 0.183

microsecondb.

109



S torage A 0 A1I B1I

Selection Table Table TableI , .I III -
EStorage Register

Local P Arithmetic Unit
Control • I 1n+6 [ Accumu-

lator
Operand Fraction

Figure 6-1: Pade Approximation; Organization.

Storage c Te a;e 1k/n10Selebleo ITable Table Table~l/

I Storage Register

Loa Arithmetic Unit

Control "Accumu-
- I , tlatorS1 4 6 12

Operand Fraction

Figure 6-2: Truncated Series; Organization.

110



Highest order n+6 bits
of operand fraction
determine address of B1;

store address for fu-
ture reference; extract
B1.

Using address of B1,

determine the address
of A,; extract A,.

A,I.,,
Using address of B1,
determine the address
of AO0 extract Ao.

xl/n AO + B,

Figure 6-3: MAicro Flow Chart for Pad6 Approximation,
n Fixed, "aximum Relative Error
1.5., 10.

111



Examine bits 1 - 6 of
operand fraction, ob-
tain address k;
Extract ak

xak

I
Examine bits 4 - 12 of
operand fraction, ob-
tain address J3
Extraot 0

.I1/n 1 + A/n

Using 
addrls 

k,

Extract ak n

Izi/na-1/n
k41

Using adr. J.,

Extract o7

xl/n zl/na-1/nol/nk 3

Figure 6-4: •1icro Flow Chart for Truncated Series
Method, Two Xultiplication Scheme,
n Fixed.

112



Op. Vin. Avg. Max.

S. 1 1 1

I:A 6 6 6

A 6 6 6

M 0 86 108

M0 0 29-43 36-54

D 0 108 108

Table 6-2: Operation Ratios for Fixed-Point
Arithmetic and Logic in the IBM
7090 Arithmetic Unit.

In the above table, all operations are fixed-

point binary, with a full-word length of 27 bits. Oper-

and fetch and operation decoding were not included in the

above timings. The short multiplication, Me, may be any-

where from 1/3 to 1/2 the length of a full-word multipli-

cation, depending upon the method in which it is used.

If the maximum operation ratios are substituted into the

timin3 expressions in Table 6-1, the value of n at which

each method becomes as time-consuming as the STL loa-

exponential method may be estimated. The key to Table

6-3 is: (W) No crossover; takes lon.er than ln-exp.

(-);k No crossover for reasonable size n; Takes

less than ln-exp. k=approx. fraction of

In-exp. time.

* Per iteration

113



Timing Cross-
over with STL

Yethod 1og-eOxp.
method.

Binomial Theorem: n - 2 (-) ; O.a
n>2 n>2

Euler Formulae: A I00 n>4
I10+
,01 1+

102

Pade Approximation (-); 0.3

Truncated Series: 1 mult. 0.5
2 mult. 0.9

Pad6 - one I00 n>2

Table 6-3: Timing Crossover Points for the
nth Rooting Methods.

The stored table requirements of those methods

which require stored constants are summarized in Table

6-4.
Approx. Table Table Size

Method Size for small Crossover
values of n with STL ln-

exp. method

STL In-exp. 1037*

Truncated Series: I mult. 12,OCO-16 000 (÷) 12-16
(n--2,3, 4 ,5) 2 mult. 288-16 (-3 ;0.3

Pads Approximation 354-1050 n >6
(n -2,3,4,5,6,7)

Table 6-4: Stored Constant table Size Crossover Points
for the nth Rooting Methods.

Key: (j. k no crossover; ireater than ln-exp. koratloe
;k no crossover; less than ln-exp. k= ratio.

* independent of n.

114



Conclusions

Of all the nth rooting methods examined, the STL

log-exponential method has been found to be the most

versatile, and in most cases the fastest. Traub reports

a similar conclusion in his comparison of programmed it-

erative methods for the nth roots [12] versus use of

ln x and ex subroutines.

For the special case of the square root the bino-

mial theorem method is desirable from both the timing

and mechanization viewpoints. In fact, the square root

could be incorporated in a conventional arithmetic unit

with the addition of some logical circuitry because of

its close relationship to the division operation. The

nonrestoring square rooting method has been found to have

a time adventage over the related restoring method, as

was borne out by the simulation.

For the hiSher roots, the Pads approximation and

the truncated series methods are faster than the 10o-

exponential method. 3oth methods require tables of

stored constants correspondin$ to each value of n, the

truncated series method requiring a lesser number of con-

stants. However, the truncated series method encounters

difficulties when the operand is near the Intorval end-

point 2-n when n 3ets larse, whereas the Pads approxima-

tion has no such difficulties, and thus the latter is

115



preferable when n is large.

The Euler iteration formulae are entirely too

time consuming to be mechanized because of the superior-

ity of other available methods. Extensions of Nadler's

method defy reasonable mechanization, and thus are not

useful.

It is recommended that the nonrestoring version of

the binomial theorem method be used for the square root.

For higher roots, the Padel approximation or the truncated

series methods should be used if the problem in question

is sufficiently specialized to require a large number of

nth roots for fixed n. Otherwise, for the sake of maxi-

mum versatility per unit equipment expenditure, it is

reoommended that the STL log-exponential method be used.

Among other procedures which mi3ht well be consid-

ered in further study of this problem are those making

use of unconventional number representations.

116



BIBLIOGRAPHY

1. Bemer, R., "A Subroutine Method For Calculating
Logarithms", Comm. ACM 1: 5-7, fay, 1956.

2. Cantor, D., Estrin, G., and Turn, R., "Computation of

Elementary Functions, in x and ex, in a Variable
Structure Computer", University of California, Los
Angeles, Dept. of Engineering, Tech. Report no. 61-16,
1961.

3. Coveyou, R. R., "Serial Correlation in the Generation
of Pseudo-Random l'umbers", Joi.r. ACIA 7: 72-74,
January, 1960.

4. Freiman, C. V., "Statistical Analysis of Certain Binary
Division Algorithms", Proc. IRE 49: 91-103, January,
1961.

5. Hald, A., Statistical Theor With Ergineerinr
Applications, Wiley, New York, 1952, Chapter 7.

6. International Business Machines Corporation, IBM
Customer En~ineering Manual For the 7090 Data
Processin• y _te, Vol. 1, Form 2-3686O-1, 1959.

7. Eadler, IA., "Division By the Method of Radixes in
Computing lMachines", Str_ j na zpracov informaci
(Praha) 4: 79-102, 1956 (in Czech).

8. Nadler, M., "Division and Square Root in the Quater-
Imaginary Lumber System", Comm. ACM 4: 192-193,
April, 1961.

9. Ralston, A., and 'Iilf, 11., Ed., Hathematical Methods
For Digital Computers, Van Nostrand, ITew York, 1960,
Chapter 1.

117



10. Richards, R. K., Arithmetic Operations in Digital
Cogmpters, Van Nostrand, Lew York, 1955, pp. 279-282.

11. Rotenberg, A., "A New Pseudo-Random Number Generator",
Jour. ACM 7: 75-77, January, 1960.

12. Traub, J. F., "Comparison of Iterative Methods Por the
Calculation of Nth Roots", Comm. ACM 4: 143-145,
Uaroh, 1961.

13. Traub, J. F., "On a Class of Iteration Pormulas and
Some Historical Notes", Comm. ACM 4: 276-278,
June, 1961.

118



APPENDIX

Programs for the Property Distribution

MAIN: Calls the input and initialization routine, Sener-

ates the pseudo-random operands, and takes their

square root one at a time, calls the subtotaling

and output routines every 1024 operands. Flow dia-

6ram given in Fig. A-1.

INPUT: Essential duty is to set to zero all the data

areas before performinS the experiment.

RT(2): Binary square root simulation program. Contains

counters that count up number of iterations, normal-

izing shifts, and corrections for each operand.

Flow diagram given in Fig. 3-6 .

PFXSRT: Identifies the range of each operand by compar-

ing it against a table (PFXTBL), placin5 an address

modifier in index resister 1 so that the results may

be determined versus operand magnitude.

SU3TOT: Takes the tally of the fixed-point counters,

converts them to floating point, and computes the

output information.

RBIT = root bits per iteration;

PSHMT shifts per operand;

PXITER = iterations per operand;

PCORR = corrections per operand;

PFREQ = relative frequency of operands.

OUTPUT: Contains the output formats. Prints out the

119



quantities Oomputed by SUBTOT every 1024 operands.

120



zC

m r z zZ VJ) LL) LAJ
X wj - Ix0 - I--

2 V/) 4 wO0 0 w1:- ~D
>-- I.- in LJz~ 00

x c z z I- -- :) u
0 1- Lit-) w~ < < V)zO0c
0 z :1- (x Ix1 : W uJUJ
z Li - $-- LLi- w .0 1.- ir --

n- 0- D Z - -- 0
-j 0ZZZ4 0 1-Z 0 0. c <

1- V $W--. - <. - 04 LL W
a .4 zf z 1- Dx zCC L0.

2W4 LL CL 00 4c~L~ (X le
-- itLn- LL C.2 u-wa 0

10 D WD w 0. l x C.- 1-J 0.. . I xA

4 wxmC3w0 a: uJOa. LU W LLJ W LLiW U
xOOWnwmi-- F-- 0 421 z~ J-J.. -J 4.J - .

Li w. LJ

0 . OX

CL
Li LiJ <

=i) 0 4 4.-4
x tL z + + + & Xýd0 a.r- z- 0 0~1 D w 1--+ c.0-40v D

.4~ 'D %.D X0- 0 0N1 4.4U.C.C~uh *C.Li040

kCN r4 T0, IC4Lj a.4~2O -C 0 z 100 1 W 32

M-4C.~C 4 Li 0 0 X. M 4 0 N -.J 1'- 2' 0. 1 1'- N N N N X N N 4C 0 0
m. a. 7 a Q f 1.- 1- LiJ C i I-- I.- A X Li 0 Wi X 1- -1 --- 1 0 -

m .mx %-) 1- V

121



2

0
a

zz
0 ED 0

D - w. w

01) z I- Z
0o - Z M D I.-
C. ULJ 0 0 D 0 Z -C

A- n w 0 1- CK
0 z 2 w Q 4 u)

LL 0 w 44 -CC 0 2
0 C.w) U . * U 0 w

>- U. _j. 2 U -

W D. I.-2 4 > 2z C.0

D. w :)J I- W - 0- W 0 N U)
U) 0 Ix kn I- -. I 24 0 aI 2

on U) MjJ0 z w- LL -Z D IL

z- 20. w~ z U) 0 00

< -L' 41 m4S-x 0.)C ( . 0 -j
DtJ I. 4t ý 0.U > 3 OOVD.C.1 W4

V) z b- 03 - - Z< V10C.0 m 10 >U
-U LL ( x D n 0 X0 4- w 0OV 0 0 4C0
>~ w~ 0 0 -- vzmU)13 IL x 41n C

I.- U)

:) 0
00. I

.U)

-JO S.t- -0:) OC.
LL .NV-a N -- >. N4--w CCI- x4. VVV V u V

ryc ýj _j 4u u t
4WO&O44-W4C.C.4040-mmmm .&0 0&

V1 C. 4 -i V I- V -i 1. d '- V 4 0. C x V 4 0I U) 44 4 V 4 z ) 4

V) 0
2
1-. 01.- V
Ix of z 06
0 3

122



*.
14

I-- -
-AJ 0 00 I

4 i0 0 64
03 ZL < LL LU W)

4.- < 1- C O ui..
L0 45-- Z ý- :)CI V

3c aU vi 7 0 -

1-- 3U 0 u0z - Di i- Q z 0

*O xC > x Zco 0 it.
0. D 1.-0 0 j LA~WO V -4

0- z 0 z tflCl 0 5- i Z LL.
0 1.- M - - 4 - -luO~

*Dw~> o L' ý 00Q400M5I- m

0L 0 w a-i 0 w a Li.li.40 14
*0Z-Z 40 w Q 0 a 0C

-0

40
410

An~ 0
I-- (NO

Li -4400
+- 000 NN(N N 0yr

Z-ý(* -00 - 414- 0

000000000
x 7 7 x 2. 2 I x

< 4 0> <I. 1- 39 0t5 XX X YX V

x(LiD 0 0LiL.mmLU
LJU-J 0 m~WIwcmD

<Z*WV--X

123



[Generate Pseudo- 1
Random No.

i
Call RT(2);
Extract sq. rt.

SFill in Property]

tr tDistribution

ProgamPp.o1es-121

24 as

C all SUBTOT

NO I Ia the

Fl.A-1: Flow chart for 7roperty Distribution Main
Pro!;ram, pp. 119-121

124



b.-0

ixJ 0 o

o U 0 1.L I- u
-r '- U) - Zj

(Y. 1. z0I- V
UJ U)0 z ~ L.0I z ' D

w 0J 0 (x~~U LAJ-1
0. 1.- I- '-0 Q UM - .J U.- U)

0 x i I-w )- Z I4 :D- )-A -

o0. U. z 0 )O u 0. LI)
0) aU Lj.. O W A kg, n 0

2r - N DJ0 0 . - -CL L.Lz
0r :D a4 4 -ULJ4 V) 0 cc--C

0- '3 I.-< -. x- 4 0.Z..J 9z
4eL L w U.t .- I.- w-w~ 0~ CL -

-J N N2 N 0Z.N J V) w 40.

0) 4) 0 - J - a

0.

0 N0-4 4
0 ryit -0

& *j LA. 0. '
I ~ ry+4 Z- I- I.-O + 0+

W zD Cie b- it aZLiJ 0ULj4L .w-

4- OC U) 0 0 0 x 4 m0IU)0N N.- 1--001 0 . .
D -- WMC)OL 0( 0. WL J JJ. Jj 1 1 - Z-.. 0 W~ LL Z. W w- Z. ..

N Ix XXX-ofMX1- 0 -

125



0

w
N

a: 4

0 a w r iw -.
OLw L&J W 0

0 z 0 D .~i. - 0
z~ -W LL) 0 0- I-~*

L&-. - 4-j - m a 0 0 w z

4w LLJ Ix u a Oy wL LuJ AZ CA:
uJ- W4 C V/) WLij(z 0 0 OLIJ .J ) -
>(X 3>u. 3t0 0 1-Z cc j ww wu 4J

-- W - 3 W -tia Z 4- 0 Cr 0O-wwL .-
I.- WZB-.4Lu.j02 -04C I 3CD ý-Mo3e
-'-2z <<ZMO <<XLL.ZX WU Q- ( WI-
,I)v W4- -MW xnwLj.jI 2Z% +4 0

(LI: 0 u 01()4I jQ40 n0 >Z 0w
CU Lu 44 <Do,-OnxA/).-.B-. I- Z LL

LL Cy I L, :

oow w A
(3 v -( w A(3I.

x 4 4 -3 0 U. L

(3W 4~ x 2 V) " L 1zu L t- AV

0U1) 0W 1. 1
I-W1 0 U,. v4 w&>N 0 0.i ~ LJ

0Lu UL Lu

2-

126



L~J

WL 0 0

t~r0 hN N -

z 0 z 0 L

cu, 0 c - - LWIXI--
Ln 0 0) U 0 0 00 0 CK%

(Z .- U)CL U- WC. .- £o- < cr- 4 C
cr u Q -0 1- 0 Z 4. A LAaUJ 0 WA U. .1 0

w 0 4 0 0- NW w JN-4W _j - v
0 MI.. 0 .0 0 .1 0.- 1.- w I

or a m o m0 4C0 -C z 0co
0 1 .1. W wI. U.1 ý-w Z I.- Z 1- zD

134 04 NL. N LL 0 .- - -- 1, W L)
390- - - z a00D co DW'-4)

0 -1 %D OX 4 1 04 1 00
..j I.- 4 ZU) z 6)4 '.J ' .UJV U5L .

3c 1 I - 1,- - _j :r I-- -X -
0wj31 Lit w 00U) Lu. LA -C. %D L O- x
-j ZWLI 0: WL 4- W . L 4- 1. - -r J c:- - x- V)o z S.- LJz I.- L&J Z 0+ 1 01 XW..J 2

0.- WO _j- CoJ LL - 0 LA. - ) 0 OW L
L UW u . I- No 44 U. I.-

< )W 0. 00. 1.-. 'JO -- X 3WU)24~x4 V) - >Z~

orz I.- z W I ýeDI ve~ DW WWJ w 4w - u )0.
LL&J- ) VU) -N~r. V) c t-~ ixis oý r4o ) II.-~ D ~sl

0

U. 0

+ U2 4 + + c 4 It Go 1-4
..Ja: WI-.L *NNc * 4KI a~ Omc 2 IN .

kDUnU.NIWJNl- &...JNO. *NNWZI- ONO.1.- .4" W+ -

W 4 34 I- 4- U W 4 1.-.444 (W4 ~ .4 0 Z 4

06

N N Ix 0 2 0

127



- I.-

m 0- cr < 0
c ixIn 4

1- W- ~0 V)a(3
w f 0 2~ -Cz D l 0 LO - 0 0

of I.- jjujV).- Ix1- 0 +'f0 - K I

0 - P4t~hL - I-. 0W ixUJ
MoLha-MUrLZ WOu W 2 D ~

o 0-1 L 4~e -C 0ck 1 .J u-0 tD $.- 62
Ix 0~~ I WOWLM 1W94 z Z<

o i W 1-J U. 0- ix1-

o OLA.J.J 0 DJ 0- -0 I- v-
Ir 4c - 41 MLLJQ4c4.4 I.- 4 x-I 0 uO
0 X u - 3c WZ <~f V hJ w ( 0i a
I XDOi * *03cmow~cz... (ZA 2i 2z ix
'x AJVZ'-. W-.42W" - W~ ix O
o Z LU I+ oz 0 2cW1-. w-

.4) - I.- Ox - Ia (z w ~ fui
tiaQ WUW 0UW4u 1.- 0 0 1- I.-

W MýMI-M0W~x WC 1-4 < w U.4 -

o w I2WU-WI-0owZl-WO0 W ix W CO 0.O

LL 2 Id z2 a x c 0 0 u
- V- - m$- - ým-W ww

1/0 0.a cr W .4-O CX40.4Ixu K-v Kxxm-1-w
6') 4.) 0 L DL Ln UU . NUW-)W W ZZ- WU WZW VJ )
x K x) 0u01-4u0 0 x Z 0 MZ- Z M 2 - - - w-

1- C~.44.4 ~m - .44 M M~ .4 w 0. 1- M. .0a I.- M I.- M_ .0 1- M _j
0 v 4 0u0 04 1-0Qw0 0 1- 1--4 40 1-u<W . 01-u< 1- v

CK0 u
co 0 1.-N (K u
N u x. i Ix

128



LUJ
u

of U.

U) 0 1

%A LUJ -
'-zo 0- I

oCK . 0. z 0
xJ 0 LU
0w u - z

0OU)0-W4 00 3
0 L W-e- 0D 01- w x4 .

w V) 4C41 Z)L w- 0 4 - 0
U LAJ M UU W 0~Z cf z l L I.-
Z V0- - i L) W -O -- W)
4c xU i -j - LL : Z-L

0 3 w 0O. .LL) i Z U. LAJ4- c)
S0 W --. XtL 04-u-Vr

_j .. J ) _j_ 0 0 - 0w0.4
V) 40 -1n Dw -0Z w 03 - -

D ~ ?~ U)v-3-L 0 0 0
I-. WLu , 4 0 U. w.U)I- I.-

< 3-400000 W 0 M X -I x

xLU zww0 1-. ) V

39

0.- C4 4 ~ * N
le le + I.- + .+*

-4w 3- u31- 0 W-MWW LIU.LM0M>>>
3-b-AJ~ 0 0 oix IZWL3-WIU)Z0V0U)U)

zVuoIU.U 0 0 3O O -3U-~-~
CC~ ~ ~ U -x I O o:0-* Zu.-----------------------

004 4 U 0 xU0 UP~J40 w00400000 j .-- I--ja x
v L 4Z V, x Z4 jZ 4- 03- j

.()-V4 UX I~UU4-V4 ) 4 ) E ).-

U)

129



v

1- z0 ix
w -C U

I 0 w n V)

-I v - W
I- W I.-4 I-. -

W tU- ix. ~ WW - *.0 - a
0M 0 00 0' 0 3 1. 0U w M

V~) 0 < U I.- mer U)U)I 0: I- M k 6-
a l4I.- Lu 4c c 0 W0 Z -~ Cc0W W W z
0wu< -J VO 1.-0 -CO no own

WI - a-"v 0- 4 ZWL W~ M a4 L&j1- 0

-. ZO 0 Z 0 -41<0 I-LU OOIr2- I

Dox X a z uj W4<-wiN %eLa
0zW0 0- W -JO 0 "Oco00oZOWU

Z M" X - I ) m:cet I.-2 z z M j W <
IZ D 0 0:0 <4J-04MxW(1-

SWaI.- a I--- I.i U~4- WW W < I 1 1-LUU.

WJLaJ<<4W 2 LWw 44Owm.-.0OOZ0ZZ

-o 00
0L 0

J 0

> > I
>*IW 4 WI- > . I'

+L -0I- ++ W .

>U a Z I-O--4>U.

0 LU

130



ix - 0 Ix
WiZ IL L Uj )z

I- :Dix00

z 00jZ

ID 1~~ fl0'0 0

wo 0~w M-4 W)

oz z .)ZU--U.5w
0 <MZ-iZ 0-LUJ 484

Z- Cr LJ : z:3Z-0 0.
01.- 004001.- 0

<0 -i m v wV 4:
W(z -C 0 cZ

0 ix e 0. -C -C.

cr 0 W ccb.-4
w -O= -UJ0

000000000

0a~0 00000000UK

1.-0 0 wLUZLU0D
v 2 1.U~- V WZ

-- 4Z V X

C1C



0

00

ze z
2o u u

L-j 0 00-00 0 O 0 w ~
L. Z" 0 L) 00 0 0 0 00 0 0 V

-Z - wi 000 0 0 0 0 0

0 x w 0 000000000)00000 a

LjJwir ý-- 000000000000000 Z
-0 x .- 03 000000000000000 >

<(0. 4c W wL 404040404040404 4C
AAU) cr (x r'J..4 U) o 0 4
0 U) 4 -4 -4 -4 4 1-4 4444-4 14 .4 .4 1-4

Ix : 00000000000000000
0 _.J00000000000000000

o In ~ Woooooooooooo0o000
z 4 ol <00000000000000000

1--41-00 00 0 0000 0000 00
,- I + 00000000000000000

a. P- ui _j X0COOOOOOOOOOOOCOO
-IC uW M -s0c0o'0000o000000000

0-ti CCJ VI 1- Le) Wa00000000000000000

00. U.4~0 m Na- 444-4 .- 4-4 -4 4.-4 -4 -4 .4-4 r

.4

K

4jJ I-. Q - - I.- x -C4 7 V. .1 - I- .- I-- I.- I.- I.- I.- I.- 1.- 0. - 0 0

0- -
ae co 0

V) 1.-0
K x z
U. U.
91a a.

132



0 0

w 0I

J u 0
cc 0 I- IL

in 00 %
4U 2; 0 0 0 00 0 0 0

"or u .- z- -00 0 0 0 0 0 0 V

WEI. I .000000000000000 U)
-000000000000000 2j

-w 000000000000000 W.,
"-zO 2 L 000000000000000 U

4 4 w000000000000000 a
w O(ZQ .0 0 000 000 00 000 000 0

z x w I.- v. 000000000000000 >

ixl lz WO)00000000O0000000O00
a~ J o -00000000000000000

0-U aU M-. l)U00000000000000000 4

00.+ ro 000N0000000NN NNN00'0

zx
W L o II U.I

W ~ 0 1 . 1- I K-4 I-~-I-I-I I I-I-I-I- .- 1.- I 1 I t-- )

Of co %A
0U)-

x x z
Wa II.
M a. .

133



LLC
LL4

u14

0

LL

x w
n~ w

- A1J Z0 :L

Z N'- Z xt~n 0 45 - u

0 1.-~ 0zo o o

vwuu

13



N

* 0

U.C - 4D

MN (x &

U0 0
Nuj 0 0 O

0U 1O LU

cc -~ LL S.

t:~ 0 .

- &J0 0~- I-xx 0

co ( 0 LL I. w L 0

Z - Z N Z 0-04VNL - V0
-- V - - -- -- - - -

no- o o z z ZO.M --- --- M- -
NNN- (A.UOOIO- W W O -- Uw

w U wi w ~ w

~*-A-A ~135



0
9 0 0 0 0

o -4 -4 r-4
14 0 0 0 0
L. 0 --4 0 .4

N0 0 -4 1-4
CW 0 .4 .4- 4

a - V)

ZLI 0 0 0 0
0. 0 0 0 0 0

0 c 0 .4 0 .

- Z_ 0 0 4.
N 0 .

.. ~ 0 0 0 00
0 Ub. 0 0 0 0

X ~ j) 0-0-0-0- 0
0. -1 0 4-4-4 0 .4.4.-4

0 fLWJ 0 0.-4.-4.4.4.r4 N N
r-4 -414 1-4.-4 4.4 0 0

--I 4 0 r4 (7 0% 0~I
00 0 0 14 4 U. LL.

- -~/ 4 .4 .4 -4 Go c

I-- U.-0 z
0. Ocr:z ox0o(0xo0o (x
& << -. 4 -. 4- - L&i.

0. ex Z i L 4 . LL -4 LL-- I 0.. a IIX c LL) Cr L)0 W4W0Wcr U. 0 L-4M ua Lii
0 cc C wmowormc-4 cr.4w i. i) (z

C" . U 0 01) (x OU&.a0j
*o U. LnZ Lii z 2

Of 0 -00 OCi-W c41
U. Wi/ - r- -4 . .- - i 4 > M U.

-'0. W )Of x D- 0o .-.- MMMWI.-400
o 0 xI ( 0 X 0 -4 0 W W - 0 J Ix
N~j- LI aL lOD -4 .4 4 -0 1-1-0- MxW W U-a

I- cmI - M I- CZ 0U)OOMM0W
D~~~ TM *

I. .- cr 0 ?
=)LJ~r 0 = 'J x 00 0 0

ý-CcrCU.yl--40 C0 0 -4 0 -40 0 000 0

-wcCC.0cmrx444NO' 0' 0, 0' .4 N NN4NNNM

ccZ ~ 0 0 I- LA LAJ 7 7-x-x x-x-2-b:

W 1.- 7 y 7 I7 1 r x a r&m0 m 0 crc cr m cr a: cx m crr w u
D=--CC. 000000000 0000-C 00000000
0 0Oa a V V U VU W LLU- LL 0OU.0 LLa.4LL 4 LL W U. W U. W WU.UW

OýNvC- 10 r- Uwoo0-4Nm4ifM'O
OOOCO 00 0 0O.4.4'-,r-4P.4

136



49

w

w

0
0z

-4

00coo -a .
x -

D * 0
-4 - 4 z0

x 4

0z - - c- Go -0 -4 -

m~ aL OD -~
%D 0 ~ a - . ~ I - U

01 - 0 - -01

4i 0. 0 00 -m4 4 00 . A4 I.-q..at 4L
(M ..4 M44 --- 4 -4 x.. .4 M4. . 4. -4 -44-

U- .5. *) w x ** U. *S 0 *

"" 1 -Z -(Z X I - * -II-II- --- - I- -- I*- - I- -
O - I- & -& - a- a- a- a- a- &- I- a-I -I -I -I.I-I -I--

I z

0f 1. I - 1.- 1.- P- - I.- 1.- 6- 1.- 1.- 1- - 1.- lo .- b.. 1.- 0- 1- 0. - 1-.- 1.- 1.-

.44 WWWWWWWWWWUJWWWWUJWWWWWWJAJ&WW

MM0: ------------------------------------ --- - .---

LL. W0-3939 9 9 4 i3 3C 91tNýtXý 3 3: : X3C39 A 313CV3939
-4

137



10 4 N 4 -N N N

1- ig r4 1-4 r- N If N IN LIN

-r I.- -L -L r I.- - &- -cl:
0- aX 1 - ix =

Q co LL x 0 u o- x an u c

: '0 : -. -. - - -. - -. -. -

- - - ý1 0 Li A- -4 0 4 -iJ -4 -4 " --

-4 4- 44- -4 r- 0 -4- 4- - 1 -4 I4 -- -0 -4- 4

41. a a 0. a. a 0 . a0. a.a 0. 0mM~ . am am mm

a .0 a aamCLaaa0 a a 0 a a a a a. a a 0 .C .0 a.l
l' b- I.- N. P~.0 4- 0- 0' l-4 N l- #- P- . I.- 00 N- 1'. P. 4- 1.- 1- l '- N- I.~- I.- 1.4 1'. 0.

04000000000000000004-.---000

-- - ---4- -- -4--4---~4 -, 4.4-4-4-4-4--4-4-4- -

* 3c :R - . aC X a6 A aX 3C a4 a: "A a 3a aC aK -C a9 -t a 39 a 3K 3.

'00..00..00..0'00'..00.'00' O.'138O' '



0
114

4&

.4

LU U 0

'0.0

w w -

4-

00
z

LL u-' o

139



Pro!ra.ms for the TiminA Distribution

IAIN: Calls the input routine, generates the pseudo-

random operands takes their square root one at a

time, fills in the timing distribution, and calls

the output routine at the end of the experiment.

Flow diagram given in Fig. A-2.

INPUT2: Reads in the number of operands to be processed.

RT(2): Binary square root simulation program. Unes

index register 2 to count up number of time units

required to execute each square root. Flow diagram

given in Fig. 3-6A.

OUTFT2: The timing distribution, IQ or JQ, is the tim-

ing density function. The normalized cumulative

distribution function is computed and placed in

XQ. All nonzero entries of JQ are printed out, and

all entries of XQ are printed out.

140



z
:3
0

00

LU

Z j I.-4 ý- D
)- !4 0D 0-~ D

1- 0 0--
o 1.- ujQ AJ4 0 cnzf
o Z X ý- xWW- C I0
Z Lu - -- i rt - -C0 V)
4C 0 QL OJ. 4C ~D- ix t0 -~~ zn. 41 -1 1..J/ m~. ia

-- 0. - 0
-1 -0 w04I < 440 0 o wL

4 - V) 1I--.- 0 - LL. U i IL
- QzZ4 z0 z I 4 0 j W-

I.- -LL1- -o i n:
"- .-1/ 0 z1- 0 Q - w - 0a0
Zw4 1 C -0 3 r 0.X V

0. D "wMx- 0-. w
2z z- w I.- I- .- z uj V.-- I.-I.--

W<<<O4n LU- D Z
OZZO' QO40a:L c I-Ln 0 j- m~lIJ -C uLj
Zu. z v M 444 < q )- > ta ix
< W~31MAO a:w'iu 0. Z 6(Z z - 0
S0 0 wDu- w I- 0 -1 j..J. Z w0 0 LUJ)(D

w x

a. w
7U- Ir mc

I-. . 3 0- c.0L. 1- * 0U.4 N4-

x N r4 10C4 0.4LCIL) c 0 zuwz X Z m.i- 0Z

W V M 4 WU 00 X a. 4 o N Q : 1-- NJX:bý .9 Vi. 0 J= X o
c 3t cr a. Z a. u 0-4 1.- 1.- LA 0 -J ý.- I. U. )(J I- < 4j -j or. I.- x' IA 4 .J 0

q z a.
I.- x

ki 1.1

141



0*

*y
*L

LLJ m
x

w00

.0 z 0 L

0 -4L 0

o IU 1. 4-

4 CA 0 z a-.J -i aiz rz
cc )I- u 0 U < C.- 4c

cr z z x - 0 01-
viJ -j w w < - V)

1- >U L 0 w CO ý- Fu~ 0 D zI
.J - 10 x V0 ii -j JL 0. -

LUZLU J 0N -- cr n. t*LU 0 ..u

(X- 0 LA-u.J LU ~Z- * Ix> ')Z
z u4~0~ 0.D o 0 u.-L *0 ZO-Z

U'-4 '..j0 IX c 0 >),6 *L ti.Zu0s( z4 X
D 04- 0 0 -j 0- t wi M u40.

0 Z (10 V) U. U.

4 %00
V 40

v N 40

" a& c I-- I- '0- x _jN

+%C- N 4-.I -1 U ukt u vuN -4400
0 +I- X 0.0.0.0-Q..0 'CC. 0.4+ + .00

-* .4 V)L.. w P.4 N x c Nx x* -x* '40

I.-

v 0. V~

142



UJ w
D D0 -

Wj x

- - :5 1-0z

Z - 0 w0w
0: D *-Ou-CL

0 24roo

z 00

000000

uJ u

14



[ Call INPUT2

Firsthalf NO

Generate pseudo-. Generate pseudo-
random No... random No.,
0.5 S x < 1 0.25 S x < 0.5

T

Fill in Timing
Distribution

+ 

NO

Call OUTPT2j

Fi6. A-2: Flow chart for Timing Distribution
'sain Program, pp. 139-141 .

144



141ý- 0

1-D I..- 4
0) C3 cy - dI

u 1e- 31-Z 0
<D 0 - x- 4
U- N0 41 0 1 :

z 01 -1 u 0 Z - Z U

1- C3I 't - 0 < X 140

uI-- <4 c ~ 041)4x0.- 4izz

o0 0~ 0. if) x c
ix -VL) uJ4 14j A0 0 WI - (x 139
0. w1-N0F-4N PN4 ONN WL 1- 1

z D W - U. it~e -1-

0 02 Li 44 (Z I.0-Z 4

X w-41 Q t-ý-- Z~ t- z~ < "LI
-r 013- 1J - - - - aw 0 w I-

a D~ x2 z z 0 z Dz j4( w 4~~~~~ W4U U- M. a--L~ i

0 Wi

0
1-J 14 Z 2

0 t14 1
0 - 4

cci _jLi
-N4 14 (x Q 131

14 9+- 0 V LUi
(x N > U0 M u ix z

N30 14. % -C L Z ow4 X W 11XU..

Vi)

z I.- D D 0. a Cox Xc~U n34 ) .- 1 ?.2 - 2? U)
- 0 0 C 0 X( x( w -j44444441 I- m I.- 40 'c 1w C.) 14 -j 14 w n

U)WW 4WZ~144 4U) U)U 44~Z LJ1~ U)

wU

145



0

w u.J

I-J I- l'W- DJ w
z xc )xL V) 0 oz

on LUJW 0 </ w)
vJZ 0oJ Z 0 Z) LAo~ I-Z 0W04

- z -w Q. 0 a- -I-0cu
-4i l'- ~ . - Vd) ac OO~LLzuWe I

X- 0- < L 0 .- 0- U.j <0 1J-1
zLJ l- X.z W - a (x Il-IxaU-wU :-
Dc X )MUwLLJD ceIe. ZU z- -Ce 3 ~0 -

LLJL)w j 3: >w j.. :i -Z ( jM0 -
XUJ- 3cywý-wO.z<- 0 ceO-LiJU.J -

-Zi',JL, J-~JOZ -CZ4 I X=L)3e0U~
<-<4Zl-a20 4<<mxL.Z~ LhJ k-Jcc WI-(XuJ

LUJOD n.~ w -LJjJ0 z +< D0 z 0 Z
LiZ L~i-LJ Z.J J CL~I) V - . ý- >. I.- w

*uWIL LLJU UL*WU ý-
4< Cx~ ~UJ *X U. u J Iei- L.I- t -ý i wJ r

(z LL

0 z 0
4 4 4 314
I- Z -

I,; *L W z w ~ "i w
w 0v Q t- v JU- -

W4 W <-~4 M 0-JZJ 0 0..-J V,00X-J<<3
X M w0 -1. +X Nw rw I.-LJ M t _j _j m- _j <a Muj.4N

ILD ~
vL w

I x' 39
wJ w w

146



w
W+

w 0 0-
W Wr of

0 W 0
u cr 0

I- - - WZ X a
V) ) 0 0 00 aa 0 w4U IA <
W 0 . 0JC.- j- <~I m < - I- I

1-o ! u ul wJU WLJ.V) w U.4 -- -C
0 0 -NW 4iNW 4 j a W43

0 - 04 -1 I- a 0-

W WJI.- u.1- 2- 21- 02z 0
0 P4 LL N U.0 - - I .- - ix c IJ 1--4300
2 93 -O c 3 D0 C : DW-4 4U.1 39z- I-

- <3 4- 1 0 dc1 00 0 OW .JI
4 VU) Z Ur) -C WN W I z La 2I W (Kc -4

U)W La 0 0U 0 0 no UL A.* -C 0-1- 39D V)*
0 I W < I- W 4c- I. -Ix (Z -W "x- 31 WIJU -
Ix I.- W 71.- W z 0+ X01I IW.JZO Z WJI

ND -C - 4L WUW

- 0. C.- IX0.00 1-- 01- c LL)InZ W trW 0- I

2 W I leD I 1&D Lg.JW WWU; A C : 4WD 1.- zWW

W

0
U.0

* W

u lz 4 +4I ++ CA 4 GO C -

W X- *NN4J atDE< x CC0INc xr 0 01 at
SW N 1- *4t.J N - NJN W Z *N0. % NJ W + 0) Vd)4 0
M jo4 0 Z 4 LD 04 _j j - 0 0 _4 DI ý 4 ..J 4 ir X -4 4 ) 0.-41--

1-.1II-0 I.- u I.- I- a1 I.-1a 10-4 U)1 0u)4 U) VU)0

- - 49 0
N4 N- N NJ M 2 IL
4j 4i 4i 4

147



wc
4U Cr U

0'- .4 LJJ V

1LjJ Cie 0
zI m 0 ) 0 z VI -0 0 cekW ul- rrý- D 0 +- -X c

crz OwDoj u.j 4t <k i. -
D~ 4O. - -1-0MW N- U- '-X 0x0o.%

>-,r 390- -W h- u 0r JWU

4 x-> x ><xU-Oi
X. w ~ Z <!ulu " Q4.1 0 3t a.IOL

*ti' l20 3c - Z.J -1 0 r z ( D 0 W -h
IL -. jZ w I--- - uJ Uw N~ I. .l -I.-~oz C Z -Cuj I-- x~ X j

W- Q) I- X.~~ - Z ~Lj V) ui If) 40 J-
LJLAwuwI-40u 0 0 i- :3 - 4

m -0 W x < cy I. U. 40 4 w
1"ýOzý o uJ W w 0. o.-a. <---40 00

LLJ W * ccWx N
v z ~ z Y rz 0 0 vJ vi iU Y M I-c 4Cr ( 1 L iI-

w- .J4 m~ m~ .J x m a a- ty I--C -C 0 1- mr w -J z -j I- V
4 I-OI)U b. ColI 1-- tn4U - -U ý4U - U-4 U) 1- r Iu4t .4 it, )(

co C I.-tNJ m W W)

148



LL)

U.

LL

LU
%J

LU X- cr- Ix

I.z h x ) 1- C . xl

0. LLJZ4 -zc . i A<0
w 0 c 0 0 uUC i v0 1.-

LL. XU- Z Z Z C4- a: ý- Owz
LU 0z 2 OwrJ U. w Cu 0 0 0 8-

U. ~~~~0 42XaDZw o x z
LU 2ýL X 4 0 0 -z 0 0 L 2L)0 .- I

I-U -oz~2 oz1 Z x-i - a. L0 2W
w0 0- OWO OZW I- WLU IrM-i 0

LU La- U.0 2 w~b O U) Cka.
I.- U) -W - >L>U 0 0 400>

00 w 0 m x- w i q I-j LUA I-i z 1I WUJ -

00 a wLLU000lI- I--4wL V2 0L ccV 41crý 1 u

U)~~ ~U.0t/)0I- ~ ~ ')U. ~ ) OlI I 8W,~J

Il -t -

0Y 4j 4 . >0V

)- A n0 Cc -V)N70,0 > -C U X U 91.-Z- -- c- )>

0~ I.-~ V) IUUI 4 -4 ~ )

-U6) I- I-

149



z Li
-w 1

uJ 00 (x 9

cwLj- ILA.

li ýJ~-I-Z
WW M 0 i 0 0 n.- 0

Cr LW UJ - C~ WI. 0A D
40 0-U 00 rZ 42i tU0 L&

W4Z-LN M 4 LW u ex 00 00

)dix0:I.0 U) 0 : ýL kn UJ.I-- a:

com 0 0XX VL
Z0 Z .c I t tx - L

_j. 0.0ax tI 0 0

toa

0000

Wn -40

2 I-O--4> O z

w0~ 7 t

z w- - >

150



ow0
IL z C IL D

Z LL -. I.
x &4

uj a -1- 1-

!Znz Ar.n
0 0 Z d IL I

z 4.

z z I-P ozcooA Ci

M-OOOOOWI-

- 151



0
0

ixJ

m0

0 L

D -

-' a
00

I. cr - A-e

2 0 -C -C

o z -
<OUJ I- leJ

cz z 0 u- 0
-01 U) : z U.aU.
V 0 CI ore LL >I -1

00 U V z

o V)UL .4- 4c .LLL Y
4 0 0 %t0&

* U I.-J C ZLLD0:3 00
x V)~-0 z2 " UJz W LiJ W 0% UJ
v- CL 0. 0. 4. 0.

CL 0 < L4 4 41 -

x., *z z . n -- 00 a- 0

COCO z $. 0n 0--- A 1.- 0 +

cc * ZIO U Z 0 X CL 0. .- 4 0. 0
z 4 w0z4 N aN N wOG0'Oa i-- 1ý- Ii - Z I- N -

-0'~ ')Z'NDnD-NN 'ZDWN 0
--- ---- 0000 - X D-

:D0000o'o ocot o:C Cz a0 0L to a ooi' CU 000

0 0~ 0 0



0 U)

0 0
0 Z I. I.- .- I-

x D D 04

0 000

N 153



DISTRIBUTION LIST

COPIES AGENCY COPIES AGENCY

2 Assistant Sec. of Dei. for Res. and Eng. 1 David Taylor Model Vasin

Information Office L;brary Branch Washington 7, D.C.
Pentagon Building Attn: Technical Library
Washington 25, D.CJ.

n Naval Electronics Laboratory

10 Armed Services Technical Information Agency San Diego 52, Californii
Arlington Hal, Station Attn: Technical Library
Arlington 12, Virginia

University of Illinois

2 Chief of Naval Research Control Systems Laboratory
Department of the Npvy Urbana, Illinois
Washington 25, D.C. Attn: D. Alpert
Attn: Code 437, Information Systemas Branch

University of Illinois
I Chief of Naval Operations Digital Computer Laboratory

OP-07T-l 2 Urbana, Illinois
Navy Department Attn: Dr. J.E. Robertson
Washington 25, D.C. g 2Air Force Cambridge Research Laboratories

6 Director, Naval Research Laboratory Laurence C. Hanscom Field
Technical Information Officer Bedford, Massachusetts
Code 2000 Attn: Research Library, CRX2-R
Waahington 25, D.C.

g 2Technical Information Officer

10 Commanding Officer, Office of Naval Research US Army Signal Research & Dev. Lab.

Navy #100, Fleet Post Office Fort Monmouth, New Jersey

New York, New York Attu: Data Equipment Branch

Commanding Officer, ON R Branch Office 1 National Security Agency
346 Broadway Fort George C. Meade, Maryland
New York 13, New York Attn: B-4. Howard Campaigne

Commanding Officer. O N R Branch Office 1 US Naval Weapons Laboratory
495 Summer Street Dahlgren, Virginia
Boston 10, Massachuzetts Attn: Head Compution Div., G.H. Gleissner

Bureau of Ships 1 National Bureau of Standards
Department of the Navy Data Processing System- Division
Washington 25, D.C. Room 239, Bldg. 10
Attu: Code 607A NTDS Attn: A.K. Smilow, Washington 25, D.C.

Bureau of Naval Weapons Aberdeen Proving Ground, BRL

Department of the Navy Aberdeen Proving Ground, Maryland
Washington 25, D.C. Attn: J.H. Giese, Chief Conapution Lab.
Attn: RAAV Avionics Division

Commanding Officer
Bureau of Naval Weapons ON R Branch Office
Department of the Naoy John Crerar Library Bldg.

Washington 25, D.C. 86 East Randolph Street
Attn: RMWC Missile Weapons Control Div. Chicego 1, Illinois

Bureau of Naval Weapons Commanding Officer
Department of the Navy 0 N R Branch Office
Washington 25, D.C. 1030 E. Green Street
Attn: RUDC ASW Detection & Control Div. Pasadena, California

Bureau of Ships Commanding Officer
Department of the Navy ON R Branch Office
Washington 25, D.C. 1000 Geary Street
Attn: Communications Branch, Code 686 San Francisco 9, California

Naval Ordnance Laboratory I National Bureau of Standards
White Oaks Washington 25, D.C.

Silver Spring 19, Maryland Attn; Mr. R.I). "liouri,
Attn: Technical Library

Digital Technology



COPIES AGENCY COPIES AGENCY

Naval Ordnance Laboratory I Wright Air Development l)ivisicai
Corona, California Electronic Technology Laboratory
Attn: iI.H. Welder Wright-Patterson AFB, Ohio

Attn: Lt. Col. L.M. Butsch, Jr.
George Washington University ASRUEB
Washington, D.C.
Attn: Prof. N. Grisamore Laboratory for Elcctronics, Inc.

1079 Commonwealth Ave.
Dynamic Analysis and Control Laboratory Boston 15i, Massachusetts
Massachusetts Institute of Technology Attn: Dr. H. Fuller
Cambridge, Massachusetts
Attn: D.W. Baumann 1 Stanford Research Institute

Computer Laboratory
New York University Menlo Park, California
Washington Square Attn: H.D. Crane
New York 3, New York
Attn: Dr. H. Kallmann 1 General Electric Co.

Schnectady 5, N.Y.
Univ. of Michigan Attn: Library, L.M.E. Dept., Bldg. 28-501
Ann Arbor, Michigan
Attn: Dept. of Philosophy, I The Rand Corp.
Prof. A. W. Burks 1700 Main St.

Santa Monica, California
Census Bureau Attn: Numerical Analysis Dept.
Washingto:n 25, D.C. Willis H. Ware
Attn: Office of Asst. Director for
Statistical Services, Mr. J.L. McPherson 1 General Electric Research Laboratory

P 0. Box 1088
University of Maryland Schenectady, Ncw York
Physics Department Attn: Information Studies Section
College Park, Maryland R. L. Shuey, Manager
Attn: Professor R.E. Glover

Stanford Research Institute
Columbia University Menlo Park, California
New York 27, New York Attn: Dr. Charles Rosen
Attn: Dept. of Physics, Prof. L. Brillouin Applied Physics Laboratory

Hebrew University I New York University
Jerusalem, Israel New York, New York
Attn: Prof. Y. Bar-Hillel Attn: Dr. J.H. Mulligan, Jr.

Chairman of E.E. Dept.

Massachusetts Institute of Technology

Research Laboratory of Electronics 1 Marquardt Aircraft Company
Attn: Prof. W. McCulloch 16555 Saticoy Street

P.O. Boox 2013 - South Annex
University of Illinois Van Nuys, California
Urbana, Illinois Attn: Dr. Basun Chang, Research Scientist
Attn: John R. Pasta

1 Texas Technological College
Naval Research Laboratory Lubbock, Texas
Washington 25, D.C. Attn: Paul G. Griffith
Attn: Security Systems Department of Electrical Engineering
Code 5266, Mr. f. Abraham

1 L. G. Hanscom Field
National Physical Laboratory AF-CRL-CRRB
Teddington, Middlesex Bedford, Mass.
England Attn: Dr. H.l. Zschirnt
Attn. Dr. A.M. Uttley, Superintendent,
Autonomics Division 1 Department of the Army

Office of the Chief of Research & Development
Diamond Ordnance Fuze Laboratory Pentagon, Room 3D442
Connecticut Ave. & Van Ness St. Washington 25, D.C.
Washington 25, D.C. Attn: Mr. L.H. Geiger
ORDTL-012, E.W. Channel

1 Bell Telephone Laboratories
Harvard University Murray Hill Laboratory
Cambridge, Massachusetts Murray Hill, New Jersey
Attn: School of Applied Science, Attn: Dr. Edward F. Moore
Dean Harvey Brook

1 Gprrnl Klectric Research Lab.
P.O, Box 1088
Schonectedy, New York
Attn: V.1.. Newhouse
Applied Physics Section

Digital Technology



COPIES AGENCY COPIES AGENCY

National Biomedical Research Foundation Inc. I)r. Tsute Yang

8600 16th St., Suite 310 Digital Systems Group

Silver Spring, Maryland Radio Corporation of America

Attn: Dr. R.S. Ledley Moorestown, New Jersey

1 Professor C. L. Pekeri-, Head
University of Pennsylvania Department of Applio'd Mathematics
Moore School of Electrical Engineering Weizmann Institute of Science

200 South 33rd Street flehovoth, Israel

Philadelphia 4, Pennsylvania
Attn: Miss Anna Louise Campion 1 Mr. Julian 11. Bigelow

Institute for Advanced Study

Army Research Office OCR & 1) Princeton, New Jersey
Department of Army
Washington 2, D.C. 1 Mr. Raoul Sajeva
Attn: Mr. Gregg McClurg Uiale Legioni Romane 22/7

Mr. Paul W. Howerton 
Milano, Italy

Room 1053 M. Bldg. I Electronics Researrh Laboratory
Code 163 CIA University of California
Washington, D.C. Berkeley 4, California

Attn: Director

University of Pennsylvania 1 Mr. Gordon Stanley

Mechanical Languages Projects 7685 South Sheridan Ct.
Moore School of Electrical Engineering Littleton, Colorado
Philadelphia 4, Pennsylvania Martin, Denver
Attn: Dr. Saul Gorn, Di:ector

I R. Turyn

Applied Physics Laboratory Applied Research Lab.
Johns Hopkins University Sylvania El. Pd. Inc.

8621 Georgia Avenue 40 Sylvan Road

Silver Spring, Maryland Waltham 54, Mass.
Attn: Document Library

1 P. Braffort
Bureau of Supplies and Accounts, Chief CETIS Euratonr

Navy Department C.C.R. Ispra

Washington, D.C. (Varese), Italy
Attn: Code W3 e1 Information Processing Directorate

Prof. E. L. Hahn Attn: C. J. Shaw

Dept. of Physics System Development Corporation

University of California 2500 Colorado Avenue

Berkeley 4, California Santa Monica, California

Auerbach Electronics Corporation 1 Director
1634 Arch St. Courant lnst. of Mathematical Sciences

Philadelphia 3, Pa. New York University
4 Washington Square

National Security Agency New York 3, New York

Fort George G. Meade, Maryland
Attn: R. -42, R. Wiggington 1 Dr. Alston S. Householder

Oak Ridge National Laboratory
Federal Aviation Agency Oak Ridge, Tennessee

Bureau of Research and Deveiopment
Washington 25, D.C. I Dr. Milton E. Rose

Attn: RD-375 M; Harry Hayman Lawrence Radiation Laboratory
University of California

Federal Aviation Agency Berkeley, California
Bureau of Research & Development Center
Atlantic City, New Jersey 1 Professor Maria C. Mayer

Attn: SiMOn Justaian University of California
San Diego, California

Chief. Bureau of Ships
Code 671A2 I Martin Graham

Washington, D).C. Rice University
Attn- I.CDII. E. B. Mahinske, USN Houston, Texas

Lincoln Laboratory
Massachusettes Institute of Tvchnoluhy
Iex ington 73, Massachusetts
Attn: Library

Digital Technology



COPIES AGENCY

I Institute for Defense Analysis
Communications Research Division
Von Neumann Hall
Princeton, New Jersey

I Major Win. H. Harris
Hdqrs. AFESD ESRDD
LG. Hansrom Field
Bedford, Massachusetts

1 Dr. H. Goldstine, Director
IBM, Thomas J. Watson Res. Ctr.
P.O. Box 218
Yorktown Heights, New York

1 Fred Dion
Rome Air Development Center
Data Processing Branch
Intelligence Processing Lab., RAWID
Griffiss AFB, New York

1 Professor Ivan Flores
South Huckleberry Drive
Norwalk, Conn.

1 J. C. Murtha, Research Associate
490 West End Ave.
New York 24, New York

I Dr. J. Pomerene
IBM Product Dee. Lab. Dept. 271
Poughkeepsie, New York

I L. Freinkel
U.S. Naval Ordnance Test Station
Pasadena Annex
3202 E. Foothill Blvd.
Pasadena 8, California

W. H. Rein
C/O Institut Cur Praktische Mathematik
Professor Dr. A. Walther
Technische Hochschule
Darmstadt, Germany

2 Atomic Energy Commission
Research Division
Germantown, Maryland
Attn: Dr. C.V.L. Smith

Digital Technology


