UNCLASSIFIED

ap 404 116

DEFENSE DOCUMENTATION CENTER

FOR
SCIENTIFIC AND TECHNICAL INFORMATION

CAMERON STATION, ALEXANDRIA. VIRGINIA

UNCLASSIFIED |



NOTICE: When govermment or other drawings, speci-
fications or other data are used for any purpose
other than in connection with a definitely related
government procurement operation, the U. S.
Government thereby incurs no responsibility, nor any
obligation whatsoever; and the fact that the Govern-
ment may have formlated, furnished, or in any way
supplied the sald drawings, specifications, or other
data is not to be regarded by implication or other-
wise as in any manner licensing the holder or any
other person or corporation, or conveying any rights
or permission to manufacture, use or sell any
patented invention that may in any way be related
thereto.



-

De
=
—_—
TP
L
i»JDE!‘PARTMENT O F ENGINTEERING

v
é&»"

root computing methods

2%
L
e d D. MARTIN
"
™
O
g
s
@ UNIVERSITY OF CALIFORNIA, LOS ANGELES

-

404 716

B i S PR T, e N ki



Report No. 63.18
April 1963

Nk ROOT COMPUTING METHODS

David F. Martin

DEPARTMENT OF ENGINEERING
UNIVERSITY OF CALIFORNIA
LOS ANGELES 24, CALIFORNIA
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dissertation submitted in partial satisfaction of the requirements for the degree Master of Science in
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Number Nonr 233(52).

ii



ABSTRACT

Pive main classes of nth rooting methods are dis-
cussed in this report. An nth rooting method derivable from
the binomial series expansion is developed, and both re-
storing and nonrestoring versions are treated. For the
special caseée of the binary square root, a nonrestoring
version of this method using normalized remaihders is sim-
ulated and a statistical timing distribution obtained.

Other nth

rooting methods discussed are a trunchted
series method, Euler iteration formulaee, extensions of a
square root method given by M. Nadler, Padé approximations
and the log-exponential method, A particular mechanization
of the log and exponential functions developed by Cantor,
Estrin, and Turn is compared timewise with the other nth
rooting methods, Hardware and storage requirements are
considered in all cases.

It is concluded that the log-exponential mechaniza-
tion of Cantor, Estrin, and Turn is the fastest and nost
versatile except for very small values of n. The binomial
scries method is found to be fastest for the binary square

root.
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CHAPTER I

Introduction

Important elementary functions rarely included
in the basic set of operations of most computers are the
integral roots of an operand. In particular, the square
root plays an important role in the solution of quadra-
tic equations, phasor algebra, asymptotic expansions of
Bessel functions, and a host of other applications. Less
frequently required are the higher integral roots. This
report concentrates its attention on integral nﬁh roots,

with particular emphasis on the square root,

Programmed lethods for General Purpose Digital
Computers

The most common methods available to computer
users are progranm library subroutines. The following ex-
amples are IBM oriented, but can be considered represen-
tative. lost of the coded subroutines available through
the SHARE organization are for the square root only, and
apply to floating-point operands. One of the fastest is
SHARE distridbution no. 721, which uses a least-squares
approximation followed by two Newton-Raphson iterations,

with a meximum relative error of 2.5 X 10'8. The routine



requires 30 words of storage, and through clever coding
executes a single-precision square root in 67 IBM 7090
machine cycles (1 cycle = 2,18 microseconds).

In contrast to the intricately coded case above,

there is an nth

root subroutine (n integral) available
(SHARE distribution no. 690) which builds up the root
digit by digit in a trial-and-error fashion, checking
each birary digit by raising the trial root to the nth
power, thus using a great many multiplications,

Lastly, it is interesting to note how the IBU
FORTRAN II compiler sets up the exponentiation operation
X#*P, If P is an integer less than 8, the operation is
executed as a series of P-1 multiplications, If P is an
integer greater than or equal to 8, a log-exponential
sequence is used., Also, if P is not an integer (as in the
case of nth roots), the log-exponential sequence is used.
If the FORTRAN programmer desires the square root he may
use the special routine (SQRT) provided, which uses the
least-squares-two Newton-Raphson iteration secquence,
Objective and Scope

In this recport five main classes of nth rooting

methods are discussed from the standpoint of tinming and

mechanization,



The first method, called the binomial theorem
method, is in the same cless as ordinary long division
and is shown to be a higher-order extersion of the divis-
ion process, Its formulation relies heavily upon the val-
ues of the binomial coefficients for different values of
n. Both restoring and nonrestoring methods are discussed,
and a nonrestoring method using normalized remainders
whose speed depends upon the statistical distribution of
the various remainders during the rooting process is out-
lined, The simplest case, the square root, has been sim-
ulated and the resulting distribution of execution times
obtained, Inherent difficulties in the binomial theorem
method for higher roots are pointed out.

th

A second n'" rooting process considered is one

that relies upon the operand being in a favorable interval

such that its.nth

root can be expressed as a correctable
truncated series having very few terns. The operand is
forced into this favorable interval by using stored const-
ant multipliers obtained by table looimups, The nature of
these constants as well as stored constants to correct

the result obtained from the trurcated series are pre-

sented, and table sizes are given as a function of speed



and accuracy. A related method wvhich forces the operand

into a given interval near unity while another transfor-

mation dependently forms the nth

Another class of nth

root is discussed,
rooting procedures covered
are those derivable from Zuler's formula. A derivation of
mth order nﬁh rooting processes obtainable from Suler's
formula as developed by J., F. Traub in a recent article
is presented and their timing and mechanization are dis-
cussed,

A fourth method considered is the approximation of
the nth root by a rational fractiorn vhich is the ratio of
two polynomials involving the operand. This type of ap-
proximation is called the Padé epproximation, after the
mathematician who formulated it. A special case, the Padé
approximation of order one, is analyzed in some detail
with respect to its precision for different values of n,

Lastly, the familiar logarithm-antilogarithm meth-

od of extracting nth

roots will be treated, using as an
example a configuration developed by Cantor, Zstrin, and
Turn which generates the elenentary functions ln x and &
for any given x.

For clearly conmpetitive methods, conparisons are

nade with thc log-exponential approach to tlre nﬁh



rooting problem, end the points at which mechanization of
the nethods in question become as time consuming as the
log-exponential method are estimated. In all cases para-
meters such as hardware or storage requirements are de-
fined along with the potential parallelism inherent in

the procedure.



CHAPTER II

Application of the Jinomial Theorem to the Extraction
of Roois of Integral Order

A given positive real integer of nk digits may de
represented in the usual positional notation as

- . onk=l nk-2

where D, = 1*® aigtt, 0 £ D, < B, ama

B = base of the number system used.
Both n and k are positive integers, and thus A consists
of an integral multiple of n digits. In addition, let it
be required that
n
2D y” 0, (2)

!
i.e., at least one of the n most significant digits of A

is nonzero, Similarly, let another positive real integer

of k digits and with the same base as A be given in posi-
tional notation as

k-1 B

12 4o+ AB+dy (3)

vhere d, = ith

s digit, 0 £ 4, < B.

i
Let the two integers A and & be related by the reciprocal

relations



a = Int.{a} and (4)

A=al, (5)
where 0= Al/n ' (6)
and the operation Int.( } means the integer part of the
expression in brackets. It is generally true that the pos-
itive real nth root of a positive integer is not expres-
sible exactly as another positive integer, and we shall
recard a as the integer part of « , the exact positive

real nth root of A. The problem is, then, to determine the

digits di of the integer part of the positive real nth

root of A having been given the digits Di of A itself,
Tor convenience in notation, let us introduce the

substitution
X, =d; B (1)
into (3) in order that the expression for a assume a more
convenient nultinomial form. Doing this,
a=x +X 3+ 4 X . (8)
low approxirate & by its integer part, and substitute (8)
into (5) yielding

n
A=(x +X 3 4+ X)) (9)
Let us now attack the problem in reverse fashion by focus-

ing attention on the digits of a., As a first approximation



let a, = x,, i.e.,, let a be approximated by its highest
order componentl. In a like manner, then, a first approx-
imation to A is defined as Al = e-..f = xﬁ. Then let succeedw

ing better approximations to a be defined as

H v

‘l
BJ = g;xk“i s J = 1,2,3,‘000 » (10)
vhere a, = 0. Equation (10) clearly shows that a is being

built up digit by digit toward the desired value, Int.{%}.
The Jth approximation to A is

- "
Aj = ale = {Zxk-i} R (11)

ivo

From equation (10) it is clear that

By =8y + X gy (12)
n
and thus AJ = (a;)-l + xk-j-n.) . (13)
Expan@ing (13) using the binomial theorem,

n n-1 n
Ay=8y, ¢+ [mj-lxk-j-o-l *oeees # "1:-3+1]

n-1 n
By definition, AO'B 0.
Equations (14) and (12) represent an iterative se-

quence that may be used to extract the positive real :11:h

root of a given positive real integer. Since the integer

part of the desired root is built up digit by digit, the

1By a component is meant the digit times
the power of B,



sequence of approximations obeys ad_l'Z aJ, and therefore
the approximations aj approach a monotonically fron below.
Equation (10) ensures that a, = a, and that

1lim

Jreo ad =,
Thus, o - 8y <e¢, €20, i,e., the error & - 83 nay be
nade as small as desired by merely executing more stages
of the iterative process (14). \le may, then, extract the
nth root of A beyond its integer part to as nany placcs as

desired.

Specialization to a Restoring [10] Type Procedure for
Obtaining the Squarc Root of a Real Integer

Let us rewrite (14) by considering the remainder at
each stage of the iterative process. Let R1 = A~ Ai and

make this substitution in equation (14), giving

Ry= Ryy = {.na?j"k-g*l $oeee t xﬁ-jd} » (15)
where Ro== A. Rj is the remainder that results from the
jth stage of the process. The Jth remainder is obtained by
subtracting the terms in brackets from the previous re-
pneinder, thus obtaining a root digit in the process. Be-
cause the components x, are postulated to be the actual
components of the integer part of the exact nth root, it

£ 4
is clear that 0 & RJ -'Rj-l .

10



" Relation to Division

It is instructive to point out the similarity be-
tween the rooting process outlined in (15) and the restor-
ing type division process. Using the notation of (8), we
may write out the division problem U/V = W, where U is the
dividend, V the divisor, and W the quotient.

(up+u

b1t “1)/("q + Vv

gl * v )

('p-q Vg vt W ) (16)

where p and q are positive integers, p > q. In a manner
similar to that of the rooting process, the quotient W may
be built up digit by digit in the following manner:

Wy=Wy ) +w o g0 » W= 0 (17)

Paralleling the rooting process, the jth approximation to
U = VW may be vritten U.1 = V\'IJ. Therefore,

Uy = Uy = VW =Wy 5) = Ve o (18)
Introducing the remainder Ri = U - Ui » the division pro=-

cess (18) becomes

3" R " W qga 0 Bo= U o (19)

which displays its obvious similarity to the rooting pro-

R, = R

cess in (15). In fact, if n=1 in (15), the rooting pro-

cess reduces to the trivial division problem A/1 if the

11



process is carried out an infinite number of stages. It should be
noted that the trial subtrahend va-q-jﬂ in the division process
(19) is functionally independent of the partial quotient Wj-l’
vhereas the trial factor na?:}.xk_hl T x;—;h-l in
the rooting process (15) is functionally dependent on the
partial root a;j-—l' This dependence is linear in the case
of the square root (n=2), quadratic in the case of the
cube root (n=3), and so on. This functional dependence is
inportant in the nonrestoring rooting process discussed
later.

In order to mechrize the rooting process in (15)
on electronic digitel computing machinery, a simple sys-
tematic method for generating the trial factors is desir-

ed, Let us write (15) in the form R

=R, , - EXa
. j J-l J( ) 4
n- n
vhere Ex;(d) = mj-lxk-j-ﬂ + 0+ xl:-;j+l » The argument

d of E?(d) 1s the digit part of X , ., which is to be de-
termined during the Jth stage of the process, Clearly
Eg(o) = 0, 80 we need to know the B-1l trial factors Ex;(l),
E§(2),..., E?(B-l). In the restoring method the trial fac-
tors are generally subtracted from the remainder in a

"differential" fashion, i.e., Rj-l - E?(l) ’ Rj-l - E?(Z)

12



-{E?(2) - E?(l)} , etc., until a negative remainder is
sensed, at which time the process "regresses" one step by
adding on the previously subtracted item, This approach
obviously accomplishes the desired result, i.e., the
snallest Rj-l - E?(d) 2 0 is computed, yielding the desir-
ed root digit d. If at any stage of the process the resul-
ting remainder Rj is zero, the process terminates because
an exact root has been found. The maximum length of & de-
termines the maximum nunber of stages of the rooting pro-
cess, since one root digit is obtained per siage. If the
"differential" subtracting method is used, it is expected
that on the average about %#(B-l) + 1 subtraciions plus one
readdition must be performed per stage of the process. If
fhe binary number systenm is used, the unkmown root compon=-
ent xk—3+l to be deternined on the Jth stege may be assum=-
ed to have a digit part of "1", the triel factor E?(l)
formed and compared with Rj-l’ and the appropriate action
talken.

llechanization of the Binary Testoring Binomial
Rooting Process

Assuming the above procedure,

= 259 (20)

Xiedel =

Substituting (20) into (15) gives

13



Ry -{2]"J na?j FUPS an'nj} . (21)
Because of the restriction placed upon A in (2), i.e.,
that at least one of the n highest order digits of A be
nonzero, the highest order root digit must be nonzero.
That is, 8, = 2¥-1, since als a, < ---*SQJ_IS 8y uur
$ak, then

k-1 X
2" ga, <20 (22)

Let us now examine the mechanization required to
execute each iterated stage of the process, i.e., genera-
tion of the trial factor for particular values of n, and
subtraction from the remainder Bj-l’ In the case of the
square root (n=2),

Ry = Ry_ - {= 250, ) 4 22“‘23} . (23)

Using (22), .

2k-3 l=3 2k~3-1
2 £ 2.2, <2 . (24)

Equation (24) shows that the highest order digit of the
trial factor will always appear in bit position 2k-] at
the begianing of the jth stage of the process, which means
that it moves one position right during execution of each
staée of the iterative process. By noting that 2k-2§ <
2k-3, J= 1,243,.0., & "1" need only be inserted (not add-

ed) into bit position 2k-2j to account for the rest of the

14



triel factor, since a carry cannot occur because of (24).
It is clear that the rcaainder Rj is decreasing in magni-
tude with each succeeding stage of the process. To econo-
nize on register requirements, let us shift the remainder
left one bit position after the execution of each stage.
This means that after j stages the remainder will be multe
iplied by 23, Inserting this in (23),

2lR, = 23R, ) '{21“1‘3-1 + 221“3} . (25)

and thus the leading bit of the trial factor remains sta-
tionary throughout the entire square rooting process. A
similar procedure can be applied to the expressions invol~
ved in the higher rooting processes. In the usual single
precision cese, a k-bit root is extracted from a k-bit op-
erand, where k is the number of bits in a single precision

word. If thie is the case, the registers have the formats

shovn below: | k |
[ Partial Root|

8
D REVMAINDER

8

[ | orramacor ]
b Int{z/e)~e— (n-1)k ———+

Figure 2-l1: Register Formats for the Fixed-
Toint Binomial Theorem nth Root.

15



The remainder register is (n-l)k + Int.{n/2} bits, and
the triel factor register is one bit less, or (n-l)k +
Int.{n/2} -~ 1 vits, both registers having an edditional
s8ign bit. The partial root register must have attached to
it some provision for building up the root bit by bit
starting at the high order end, A counter with k sequent-
ial states and decoding circuits which select one input
line at each stage of the process could enable this opera-
tion.

As n gets larger, the mechanization complexity in-
creases. The additional terms acquired in the trial factor
might be formed simultaneously in other registers or se-
quentially formed and added. For the case of extreme par-

“allelism the extraction of the 2B root could utilize n~2
multipliers, n-2 shifters, and one adder in addition to

the registers already mentioned.

Normalized Remainders

Recalling for the moment the square root algorithm
in (25), we see that the trial factor is at least as large
as 22k. It is then clear that if the previous renmainder

Rj-l < y 1.e., it has "leading" zeros, Rj-l may be

shifted left until a "1" appears in bit position 2i-1, As

a result, additional zero bits are introduced into the

16



partial root, one for each position the renainder is shif-
ted left. The advantage of this procedure is that addition-
al digits of the root are gencrated using simple shifts,
without having to resort to time consuming comparisons.
The number of nornalizing shifts made at any given point
in the iterative process depends upon the statistical
distribution of the remainder magnitude throughout the
rooting process, Following C, V. Freiman [}] y let uo es-
tablish a "figure of merit" for the restoring algorithm
with normalized remainders by defining an iteration as a
comparison and conditional subtraction, a normalization,
formation of a new trial factor, and conditional altera-
tion of the partial root. Thus it is seen that an itera-
tion may consist of more than one stage of the rooting
process, The figure of merit is the number of root bits
formed during each iteration. Similar remainder normaliza-
tion procedures may be defined for the higher order root-
ing processes,

Nonrestoring [10] A gorithm for nth Rooting

The binary rooting methods previously discussed
vere of the restoring type. As is done in division, a non-
restoring modification of the restoring procedure may be

employed to extract the nth root of a binary integer,

17



Juppose, on each stage of the process, the digit

part of the desired root conponent X501 is assuned to be

it
a "l" as was done in the restoring procecdure. Let the
trial factor be formed as usual, but now let negative re-
nainders be allowed. Let us now proceed in such & way as
to decresse the magnitude of the remainder, i.e., when
Rj-l > 0 subtract the trial factor fror it; when Rj-l £0
add the trial factor to the remainder. Provided the root
digits are formed correctly, using the nonrestoring scheme
ought to offer a time advantage over the restoring method,
because addition or subtraction of the trial factor takes
place without regard to the relative magnitudes of the re-
mainder and trial factor (assuming all normalizing shifts
have taken place), but only with regard to the sign of the
remainder R

=1 °

th

Nonrestoring n’'~ Rooting llethod Vlith Normalized Remainders

As vas the case in the restoring nth rooting algor-
ithm, the trial factor has & fixed mininum magnitude.
Thus, by noting the magnitude of Rj~1’ nornalizing shifts
can be made to introduce additional digits into the par-
tial root without the necessity of addition or subtrac-
tion. The process is uncomplicated if we consider a signed

nagnitude number representation.

18



Supposé we are in the Jth stage of the rooting pro-
cess, the remainder is positive and normalized, and the
trial factor has been formed, The difference is then form-
ed, and let us suppose that this resulting difference is
negative, Intuitively, by a comparison to the restoring
method we know that the digit part of x

k=-J+1
found to be zero, so let the partial root be augmented

has been

with this zero bit. Now the new (negative) remainder, ad-
Justed 1left one bit position to account for the factor 23,
may or may not have leading zeros with respect to the fix-
ed minimum magnitude of the next trial. factor. If the re-
mainder does not have any leading zeros, the new trial
factor is formed and added to the (negative) remainder. If
the new remaindexr has leading zeros, certain difficulties
arise. The nonrestoring division process parallels its re-
storing counterpart in that the remainders, except for
position relative to an arbitrary fixed reference, are the
same at those points where the remainder changes sign from
negative to positive in the nonrestoring process. However,

the trial factors in the rooting processes are function-

ally dependent upon the partial root, and therefore the
remainders in the restoring and nonrestoring algorithms

will not correspond unless some sort of correction is

18



nade. Such correspondence to the restoring algorithm is
sufficient to guarantee that the correct nth root is ex-
tracted. Thus, when the trial factor is added to a nega-
tive remainder, a correction is also added. The negative
remainder's leading zeros are shifted out in a manner sim-
ilar to that when the remainder is positive, except that
in order to ensure that the remainder changes sign from
negative to positive, it is shifted left until a "1" ap-
pears in the bit position directly to the right of the
highest order bit position of the trial factor. However,
when the remainder is rnegative, 1l's are introduced into
the partiasl root for every bit position that the remainder
is shified left. Again, it is seen that this corresponds
exactly to what would occur given the same remainders at
the beginning of the stages involved in the remainder's
changes of sign and normalization.

To illustrate the mechanics of this process, an ex-
ample of the restoring and nonrestoring methods applied to
a binary square root is given in Figure 2-2. Assume we are
in the interior of a square rooting process, and the re-
painder is 0,101011101, the trial factor is 0.1011101,
and the partial root is 0.10111 . The symbols are R =

recainder, TF = trial factor, and C = correction.

20



R
TF
2R
TF
8R
TF

16R

c

16R

Figure 2-2:

RESTORING

Registers Partial Root
+0.,101011101 0.,10111
-0,1011101
+0.101011101 0.101110
-0,010111001
+0.010100100 0.1011101
~0.00101110101
+0.00100011011 0.10111011
-0.0001011101101
+0.0000101111111 0,101110111

NONRESTORING

Pegisters Partial Root
+0.101011101 0.10111
=0.1011101
-0.00010111 0.101110
-0.Shift
-0.010111 0.10111011
+0.1011101101
+0.101111101
+0,000000010
+0.101111111 0.101110111

Correspondence Between Restoring and
Nonrestoring Square Root Processes,

Corrections to Remeinders in the Binary Nonrestoring

Rooting Process

It is expected that the correction that must de

made to some of the remainders during the nonrestoring

rooting process will depend upon both the partial root

and the number of shifts required to normalize the re-

mainder. To deternine the value of the correction, the re-

21



storing and nonrestoring versions of a given iteration
vill be coxmpared, and the difference in the final remain-
ders will be the desired correction. Let us therefore con-
sider a group of stages of the nonrestoring process which
consists of one subtraction to get a negative remainder, a
normalizing shift of 8 bit positions, and one addition
that again yields a positive remainder, and compare those
factors which are subtracted from the remainder Rj-l with
the corresponding factors in the restoring process. Let us
consider the square root process first.

A. Restoring Method:
_ k-j-1 k=-j-1 2} _ { k-j=2
FS = -{2s, 2 + (2 ) 28,,) 2

. (21:-3-2)2} o {283“ pk-d-s-1 (zk-j-s-l)Z}

(26)
The relation between successive partial roots is
S=i
k-J=1-1
8448 = 84 + .E 2" y 0¢ 8¢ k-1,
\ve0
Then
PR = 2% {253(1-2'3'1) + 253 (1-2'°+2'2°'2)} (21)

B. lonrestoring llethod:
R_ X~3 X~ 2} _ K=-j-8=1
= -q2a 270 ¢ (27 28,4 2

+ (ak-J-B-l ) 2

Since aj-1 = aj ,

22



PR = 2k {2a3(1-2‘5'1) - 2 2K"3(1.278) o~s-1

+ 2k'3(1-2'28-2 ) } (28)

Taking the difference between (27) and (28),

an - Fl: = _22k-23 2-25-1 . (29)

As vwas expected, equation (29) indicates that too much was
subiracted from the remainder Rj-l' and thus the indicated
correction must be added to the normalized negative re-
mainder along with the new trial factor in ordex to
achieve the desired relation FER - Fg = 0. In order to
transform the correction in (29) to‘a value applicable to
the modified algorithm of equation (25), it must be multi-~

plied by 23*3*2, because the process has advanced J+s+2

stages since its beginning. Thus,

8 _ ,i+se2 = o2k=J-841 _
c5 = -2 (FAR - Fo) = 2 , 0£¢8¢k 1,(30)

where C; is the correction that must be added to the norm-
alized negative remainder along with the new trial factor
after a normalizing shift of length s, for the nonrestor-

ing binary square root (n=2) process with normalized re-

mainders.
It has turned out that the remainder correction

for the square root process is dependent only upon a

23



single bit position, and not upon the partial root. How=
ever, a short examination reveals that the correction is
nore complex for the higher rooting processes., For the
square root the correction is a zerceth order polynomial
in the partial root, for the cube root a first order poly-
nomial in aj-l’ and 80 on.

Extensions of the Method to Floating-Point Operands

The binomial theorem method developed so far has
been used for extracting the integral roots of binary in-
tegers, and is naturally extendable to fixed-point numbers
of finite but variabtle precision, since the only differ-
ence between the two is the arbitrary placement of the
binary point., The method may be easily extended to compute
the roots of floating-point operands, i.e., a mantissa
part multiplied by a power of the radix, by altering the
nantissa (or fraction) according to the radix exponent,
Specifically, let us consider binary floating-point oper-
ands of the form A = f-2b, where 1/2 £ £< 1, i.e., the
operand A has a normalized fractional part f. Let us now

th

exanine the exponent b. Vhen taking the n ™ root of f-2b,

we nust form b/n, desiring this division to have a zero
remainder. Suppose b/n = Int.{b/n} + r/n. Then if ve take
bl

A= 27(0r) £50 o el
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vhere b' = b+n-r, 0 £ r < n, the desired rooting can bve
done. Since 271 & £ < 1, the altered fraction will lie in
the range 2-F"T1) ¢ £1 ¢ 27(0-T)  hion et411 satisties
equation (2).

Additional l‘echanization Requirements for the
Monrestoring lethod

In general, scientific-type computations make ex-
tensive use of the floating-point representation. There=-
fore, because there is the possibility of shifting the op-
erand fraction as many as n-1 positions to the right be-
fore performing the nth root, this number of positions
must be added onto the low order end of the remainder and
trial factor registers, in order to retain a precision of
1 part in 2k when extracting a k-bit root.

An additional set of registers must be provided for
the formation of the remainder correction, vwhich is a pol=
ynomial of order n-2 in the partial root aJ-l’ If extreme

parallelism is used, the extraction of the nﬁh

root could
utilize the partial root, remainder, trial factor, and
correction registers, and 2n-3 multipliers, 2n-4 shifters,

and 2 adders.

25



CHAPTER III

Design and Simulation of a Binary Square Root

Device Employing the Binomial Theorem liethod

The fixed-point nonrestoring binary square root ale-
gorithm given in equations (2-25) and (2-30) nay be mech-
anized as a digital macro-operation in much the same man-
ner as division., For the sake of reference, the algorithm
equations are reproduced below for the remainder at the

3B 1teration:

2333 = 2JR;|-1 - 2k{2aj_l + 2“"3} y 3=1,2,.00,k, (1)
vhere Ro'= A, and the post-normalizing correction is
R S E LRI (2)

Let us consider the binary operands as being in the form
aA=25¢, (3)
vhere 1/2 £ £ < 1, and E has positive or negative values,
As a particular example, let the floating-point binary op-
erand in (3) be of the form used in the IBM 7090, nanmely,
a 27-bit fractional part, an 8-bit characteristic, and a
sign bit, making up a 36-bit binary word. In the IBU
floating-point format, the characteristic is formed by
adding 128 to the exponent E, thus disallowing negative

characteristics and restricting the exponent range to
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(<127, 127). Yegative exponents, then, are represented
symbolically by characteristics in the range (1, 127). Ex-

traction of the square root of such an operand will be

S1 89 35
1l s | 21 1
/! \

sign characteristic Iraction

Figure 3-1: IBN 7090 Floating-Point Binary
Format,

achieved by performing a fixed~point binary square root
upon the fraction part, and halving the characteristic.
However, there are two cases which nmust be considered.

Case 1: E 0dd

If the exponent E and therefore the characteristic
of the operand is odd, the fraction part f nust be multi-
plied by 1/2 (shifted right one bit position) and the fix-
ed-point square rooting process initiated. The character-
istic of the resulting floating-point square root is form-
ed by halving the operand characteristic, adding one to
the units position (bit 8), and then adding 64 to the re-
sult to form the correct value. The above nmethod is form-
ulated as

(2B )M/2 = pImt{dE)e1 (4172 (4)

Since 1/2 £ £< 1, then1/4 £ $f < 1/2, and so
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1/2 £ (if)i< 1/V2 ; thus the fraction part of the square
root is normalized. The characteristic of the square root
is formed according to

Int.{$(E + 128)} + 1 + 64 = (Iat.{4E} + 1) + 128. (5)

Case 2: E even

If the operand characteristic is even, i.e., it has
a zero in its units. position, then the characteristic is
simply halved and 64 added to it, and the fixed-point bin-

ary square rooting process is applied to the unmodified
fraction part, f. Symbolically,
(2B 5)l/2 2 AB A2 oy (6)

#(E +128) + 64 = 4E + 128 , (M

A straightforward magnitude analysis of the remain-
ders in the rooting algorithm (1) shows that if the ini-
tial remainder Ro (which is the fractional part of the op-
erand itself) is inserted into a 27-bit register, an extra
bit position to the right of the 27 bits is needed in or-
der to save the loweét-order bit of the operand., This will
make the remainder register a total of 29 bits plus sign,
and the trial factor register has one less bit, or a total
of 28 bits plus sign. liow let us combvine the remainder and
trial factor registers into a binary accumulator, the re=-

mainder register being the accumulator register, and the
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trial factorlregister being the addend or subtrahend reg-
ister, depending upon whether the accumulator is the add-
ing or subtrecting type. An examination of the additive/
subtractive processes during the square rooting procedure
reveals that only three cases are allowed:

1) ‘¥ = 1* 20 R = positive remainder

2), ’* - m*<o R = negative remainder

3. ¢ TF > 0 TF = positive trial factor
If the accumulator is made a binary subtracting accumula;
tor (with an accumulator and subtrahend register), then
C(AC) = C(AC) ~ C(SU) represents its operation symbolical-
ly. Further, let negative numbers be represented in 1l's
complement form, and let the sign bit be O for positive, 1

for negative. In this case the three cases become

epd-erund
1), R* - 1F* 2 0 no
2), ‘*-17*<¢ 0 yes
3)e B~ (-TF) > 0 1o

For each case 2 that occurs it is expected that a case 3
will subsequently occur, unless the rooting process 1is
terminated during the normalizing shift or before the nor-

malizing shift takes place. In case 3 the term ~TF' is
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represented as a 1's complenent. In the 1's complement
representation of negative nunbers, the complenent digits
are just the inverse of the digits in the true representa-
tion, and thus leading zeros in the true representation
are leading ones in the complement representation. There-
fore normalization of the remainder takes place either
with a zero (+) sign bit and leading zeros, or a "1" (-)
sign bit and leading 1l's, zeros augmenting the partial
root in the former case, and 1's in the latter. A charec-
teristic of theil's complement representation is the oc~-
currence of an end-around borrow (or carry) as in case 2,
Using suitable borrow look-ahead circuitry (such as in the
IBM 7090), the end-around borrow may be reckoned along
with the normal borrows that occur. Thus, subtraction
takes a fixed mininum time, whether the end-around borrow
oceurs or not. Note that there is no ambiguity in the rep-
resentation of the quantity "zero", since only -0 occurs
(case 1).

Let us assume that our accumulator automatically
adjusts the final difference left one bit position upon
the execution of each subtraction to account for the fac-
tor 2J in the algorithm (1). The accumulator register must

be equipped to shift left or right one bit position upon
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the reception of left shift or right shif¢ signals, zeros
being introduced into the positions vacated. Vhen the nor-
malized remainder is negative, both the 1's complement of
the new trial factor and the 1's complement of the correc-
tion must be subtracted from it. The only other operations
to be considered in the fixed-point square root are the
augnenting of the partial root, formation of the new trial
factor from the partial root, and the formation of the re-
mainder correction bit. Because of the simple relationship
between the trial factor and the partial root (eqn.(l)),
there is no necessity to carry the partial root in a sep-
erate register, since it can be cléarly identified as an
extractable part of the trial factor, and extracted from
the trial factor register at the end of the rooting pro-
cess. The organization of the fixed-point square rooter is
given in Figure 3-2. The logical equations for the various
control signals emanating from the local control are given
later in this chapter. The local control directs the root-
ing process according to the various decisions that have
to be made. A flow chart describing the square rooting se-
quence and the inherent decisions involved is given in
Figure 3-3. In the flow chart, the following symbols are

used:
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DGLINE = digit line selector;
TFR = trial factor register;

REMR = remainder register,

[w LEFT SHIFT -1
Al 2 Remainder RIGHT SW -—-:

15 !
Subtractor I"——sm-m—- ~=-d

1t
Trial: Factor

|
[}
1
|
T !

Digit Line Selector AUGHMENT -
Local
Control

Figure 3-2: Organization of the Fixed-Point
Square Rooter,

It has been shown that when the remainder becomes
negative in the nonrestoring rooting process, a correction
must be added to the remainder along with the next trial
factor. Specifically, the post-normalizing correction for
the square root is given in equation (2) as C;_'22k-3-s+1’
0 £ 8<% k-1, where 8 is the number of normalizing shifts
made during the iteration in question. An examination of
the above expression reveals that it is exactly the bit
position corresponding to the digit line that is enabled

at the time that the addition of the trial factor and the
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Initialize REMR

TFR, DGLINE
}
Yes REMR
‘\\ngffllzed
No
] , 1 |
(RE}R sign)— jth Shift Form new j
dig%t of partial REMR trial factor
+ REMR =
sign
| REMR = REMR - TFR | [REMR = REVR+TFR+DGLINE | |
:.r —
[ 4
SREMR si i Form new
151t of part trial factor
root
| - —

Advance digit
line selector

Dizit

line oount- NO

er zero?

Fige 3-3t Binary Square Root Micro Flow Chart
Mantissa Fart,
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(negative) remﬁinder takes place. Therefore it is possible
to consider mechanization of the subtraction and correc-
tion functions in parallel, with the additioa of the digit
lines being suppressed when the remainder is positive,
i.e., when its sign bit is a zero.

Internal States and Control Logic for the Fixed-Point
Square Rooter

The operation of the binary square rootexr may be
given in a state table which describes the sequential com-
putation in terms of the states of a counter. The state
table is given in Table 3~1. The three basic operations in
the fixed-point part of the binary square root are sub=-
traction of the trial factor froﬁ the remainder, augment-
ing the partial root after the subtraction, and simul tan-
eously shifting out leading zeros and further augmenting
the partial root. The basic decisions made during the pro-
cess depend upon the disposition of the remainder, trial
factor, digit line selector, and the state counter. The
state counter counts in the sequence given in Table 3-1,
There is another counter, the digit line counter, that
changes state every time a different digit line is to be
enabled. This counter has 27 states, and thus requires 5

memory elements. \e shall let the counter be 26 (11010)2



State

Counter Operation
T T2
00 Examine REIMR S,A,1,2 and po-

sition 1 of DGLINE selector.

(8)(1) (1) (DGLINEL) Shift REUR A, 1-29 left one
——Twayy position. Simultaneously
+ (5)(4)(1)(2) (DGLINEL ) present AUGIENT signal.
Advance to state 10.

(s){(A)(1)} Perform subtraction. If S=0
w—r——  REMR = REMR - TFR. If S=1,
+ (5){(A)(1)(2)} REMR = REMR -~ comp.(TFR) -
comp. (IGLINE).
Advance to state 11,

11 Form AUGMENT signal.
Advance to state 10.

10 Advance digit line selector.
Advance to state Ol.

01 Exanine digit line counter:
#0: Advance to state 00;
=0: End operation.

Table 3-1: Table of Basic States for the Execution of
the Fixed-Point Tart of the Binary Square
Root.
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to enable IGLINE 1, and zero (00000) to enable DGLINE 27,
the intervening states being assigned in descending order.
When DGLINE 1 = 1, the possible shifting out of a leading
zero is suppressed (state 00). The important register bit
positions are the remainder S, A, 1, 2, as showvn in Figure
2-2. The reuainder left shift one bit-position signals are
derived as follows:

1). Remainder Positive (S=0):

— —— —— —— e, —

SUBTRACT = (S){(A)(1)} + (DGLINE 1)(T1)(T2)
2). Remainder Negative (S=1):
LEFT SHIFT = (S)(A)(1)(2) (DGLINE 1)(TL)(T2)

SUBTRACT = (5){(A)(1)(2)} + (DGLINE 1),T1)(T2)

The AUGMENT signal is generated during states 00
and 11, and is derived from the following:

AUGENT = (DGLINE 1) {(S)(M) (1) + (S)(A)(1)(2)}(TL)(T2)
+ (M)(12) .

The digit line counter may be counted dovn one step upon
the reception of the AUGMENT signal, provided that there
is a delay in the change of state so that the original
state of the counter may be interrogated.

Recalling that the trial factor is given by
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ak(zaj_l + Zk'j) in equation (1), its format at a given
stage is .XX+-+XXOl, where the X's (-l of them at the j'B
stage) represent 2k2ad_1, the "0" represents the ocurrent
root bit which is to be determined, and the "1" is the
term 252K, During the next stage, i.e., the (J+1)°t, the
trial factor has j X's followed by a zero and a one, Thus,
augnmenting the partial root and forming the next trial fa-
ctor may be done at the same time in a single logical op=-
eration, as illustrated in Figure 3-4. The logical opera-
tions of augmenting the partial root (contained in TFR)
and forming the new trial factor are given by the follow-
ing equations:

gTFR, = (AUGUENT){(S)(DGLINE), (T2) - (8)(DoLINE), (T2)

- (oLINE)y , )
gIFR; = (AUGHMENT)(DGLINE), o

Timing Study of the Square Root Device

Since the execution time of the square rooting de-
vice depends upon the statistically distriduted magnitudes
of the intermediate remainders in the square rooting pro-
cess, it is expected that the execution time itself will
possess some sort of statistical distribution. This dist-
ribution is very aifficult to obtain by any method other
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than direct experimental simulation, since the distribu-
tion of the remainder magnitudes depends upon the previous
repainders and the partial root during the square rooting
process. A computer program for the IBM 7090 was written
to simulate the operation of the square rooter, thereby
enabling certain characteristics of the method to be de-
termined, The basic format of the numerical experiments

performed is shown below:

Generate Pseudo- | |Simulate | | Tabulate
Random Number Sq. Root Properties _]

Figure 3-5: Basic Format of Numerical Experiments.

The simulation experiments were performed upon the frac-
tion part of an IBM floating-point operand, since this is
the part of the process which is of mejor interest, and in
fact is the dominant factor in the execution time. The
fraction parts of the floating-point words were in the in-
terval (1/4, 1), but were generated in the interval (1/2,
1) by a pseudo-random number generator. A flow chart of
the binary square root simulation program is given in Fig-
ure 3-6. The symbolic locations given in the flow chart
correspond to the locations in the program listing (see

Appendix) at which the indicated operations occur.
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Loc. RT(2)+3
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I
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REMR sign
Loc., LZ+1

0 -=FR

Change DGLINE
TFR

Loe,L2)P, )P,UFD
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Change DGLINE
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- ]

I

REMR sign '+‘
Loec, LZB

Correctiont

REMR REMR =
DGLINE

Loc. 1.ZB=1

S, No

End
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Check result
Loc, CHECK

Fig, 3=6t Flow Chart
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Psgudo-Random Nunmber Generator

The pseudo-random number generator used in the
nunmcrical experiments was a multiplicative cqngruential
type as described by Rotenberg [11] « The multiplicative
congruence algorithm is

X" (2 + 1)x; + C, Uod. 27, (8)
where a is a real integer. Rotenberg applied several em-
pirical tests to the above algorithm with a=7, C=1, and
p = 35. He found that the resultiing numbers were uniformly
distributed and that there was no detectable serial corre-
lation in the sequefice. The cycle structure of the multi-
plicative congruence method has been determined analyti-
cally, and it is known that algorithm (8) can generate the
full period of 2P numbers if a= 2 and C is odd [11]. The
serial correlation between two consecutive numbers in the
sequence has been shown by Coveyou [3] to be

1 - 6¢:2"P(1 - c:27P)
%41

Plxgy x5 40 = (9)

The 27-bit pseudo-random numbers used were generated in
the interval (1/2, 1) by first generating a 26-bit pseudo-
randon number, and then putting a "1" in front of it, mak-
ing a 27-bit number. The algorithm paraneters used in (8)

were a=1l, C=1, and p=26, and the resulting serial cor-
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relation between two successive numbers is, from (9),

1 - 6.2726(1 _ 2=26)

(I,x )5"' —
PIxy0 X0 A1,

2 0.0005 .

The initial random number X in octal form, was 232544614,
but other runs of the experiment showed, as should be the
case, that the results were insensitive to X after a
reasonable sequence length in (8).
Experiment I: Property Distribution

To reveal in a general way the efficiency of the
nonrestoring square root method with normalized Iremainders.
the previously defined figure of merit "root bits per it-
eration" was obtained as a function of the magnitude of
the operand characteristic. No knowledge was assumed con-
cerning the nature of the operands, other than that they
belonged to the class of all properly normalized binary
floating-point operands of the IBM format. Therefore it
waa assumed that the operand fractions were uniformly dis-
triduted ovér the interval (1/4, 1). If something more
were known about the nature of the operands, it might be
possible to restrict the interval of interest, and in gen-
eral entirely different conclusions concerning the meth-

od's computational efficiency relative to the subinterval

of interest could be drawn. As an additional point of int-
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erest, the average number of corrections per operand (27-
bit fraction) was also determined, and plotted versus the
fraction part. For the experiment, the interval (1/4, 1)
was subdivided into 48 parts, making the class interval
equal to 1/64. The results were averaged within each inter-
val, since only the trend of the properties in question
was desired.

The results are shown in Figure 3-7. It is apparent
that there is a general decrease in efficiency and hence
an increase in execution time as the magnitude of the op-
erand fraction increases, since there is a decreasing num-
ber of root bits per iteration being obtained, as shown in
Figure 3-7A. The irregularities in the curve are due to
the dependence of the method's speed upon the patterns of
ones and zeros in the root itself, and thus are difficult
to trace back to the bit arrangements in the operand, How-
ever, there is a definite trend shovn, and the mininum av-
erage root bits per iteration obtained was 1.38 in the
subinterval (63/64, 1), the maximum was 2.70 in the subin-
terval (5/16, 21/64), and the mean value was 1.91 root
bits per iteration in the entire interval. The minimum and

maxinum given, of course, are not absolute, since average

ing the results in each class interval "blunted” these
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Figure 3-TA: Averagé Root Bits Per

Iteration.

P -
Pl
- -
i -—
B w‘l«llxll Plvany
1 o
P e 1-
: - -
1
b
i o
L"r > —_
|n1 [ e sl Sl
|
(I
b
“vuloi B S
’II. ——— - -
—

-—
go
o
I'l
v
1/2
Magnitude of Operand Fraction

®- e -— e e
[ 4 ——
\ * - - . _—
' P L et
- . et —h— ———
T = e
. o —— 4+ - — e
f » . e e R
i o-—1 e~
: — i —— |AW|I|IHA\I||||‘
i . - o e ———— =
! .- -4
! H - -
1
¥ 'Y P —
.
! .  —4 - —_—
. — -
S oI ~
-
o~
" ~ - o

uopjeIeyy lod s33g 300y

- - b o~
| R S U S,
&> -4 - -
St P,
- —— —=
L e e matan —_—— 3
—— —— - - [ S
T e—] - =t ——
] et =
- .-t — pas
TI\”v .o..l_v.l.i‘l'n
! *r— ——— e ]
[ ] ~ > - U SO W,
T O e e e o
muu LA S = - T
i ” _ '»lﬂl'-l. — J!\a.lw'l «v' —_—
| b o } i 'S RN SO S
ﬂﬂ&‘.q [ ~Sovanmpy o —
S8 ! ~—r— —
: " _ | M w - ~
881 T B
. e ﬂ H _ | o= =
© b ! 1
> 0 . re -
-< P 1 ”~——4 —— — -
AT m —
-ﬁ i i — r-
. i Gt e
4 | ! >
: ! ; -—i
"w 3 e |
Ll 1
i <
S S A T A
.
“ =
o 33 L 4 [ o~ - o

pueladg Jed sUOTIONLIO0)

Magnitude of Operand Fraction

Figure 3-7: Properties of the Nonrestoring Square Root

Method Using Normalized Remainders,

46



values., Thus, in taking the square root of the fraction
part of a normalized floating-point binary number drawn at
random from the population of all numbers of this type,
the expected figure of merit is about 1.91 root bit per
iteration, i.e., it is expected that an average of 0.91
root bits will be obtained by normalizing the remainder
each iteration.

In the development of the nonrestoring binomial
theorem method it was shown that the rem#inder must be
corrected each time it becomes negative. To get an idea of
how many times this occurs on the average per operand, the
average nunber of corrections per operand was measured in
the same way as the number of root bits per iteration was.
The results are given in Figure 3-7B. The measured average
minimum was about 0.05 corrections per operand, the maxi-
mum about 6.03, and the mean about 3.85.

Experiment II: Tining Distribution

In order to evaluate the performance of the binomi-
al theorem square rooting method with respect to execution
time, another numerical experiment was performed, and this
time the total execution time taken to operate upon a
floating-point binary operand vas measured in terms of a
defined time unit. The previously discussed device using
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the 1's complement representation for negative numdbers was
investigated as a particular example, Throughout the
square root process there are certain time costs which
must be "paid" in order to accomplish the various func-
tions involved. These time costs represent different phas-
es of the process, and were chosen as modifiable paramet-
ers which influenced the total execution time of the pro-
cess in varying degrees, The following parameters were
chosen:
1). Toda = time taken to execute the subtraction of
the trial factor from the remainder;
2). T, = time taken to augment the partial root and
form the new trial factor; and
3). T, = time taken to shift the remainder one bit-
position during the normalizing shift, all
being given in time units.
Thus a complete iteration will take Tadd + Ta + aTB time
units, 8 being the number of one bit-position normelizing
shifts made during the iteration. Only the fixed-point
portion of the square rooting process was simulated, with
the operands in the range (1/4, 1). Since floating-point
operands are being considered, there is an additional fix-

ed anount of time assoclated with determining whether the

48



exponent is odd or even. This would nmerely shift the tim-
ing distributions without altering their essential charac-
ter. It was assumed that sensing whether the exponent was
odd or even and conditionally shifting the operand frac-
tion one bit-position to the right could be done in the
time taken to perform a one bit-position shift, and this
time cost was accrued whether the right shift occurred or
not, In performing the experiment another assumption vas
nade, namely that in the course of examining the floating-
point exponents, even and odd exponents occur with equal
frequency. Accordingly, then, of the total sample of frac-
tion parts processed, half were taken in the range (1/4,1)
and half in (1/2, 1).

In order that a meaningful distribution be obtaine
ed, it was important that sensible or typical values be
assigned to the parameters T,4q* Tar 804 T,. The square
rooting process consists of a series of subtractions, log-
ical operations, and one bit-position shifts, and there-
fore if a proper relation between these parameters is
used, the problem will be resolved. As a typical example,
the execution times of the relevant operations in the IBM
7090 arithmetic unit were used [6]. The fixed-point addi-

tion takes J clock times, whether the operands possessed
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like or unlike signs. Since we are using the 1l's comple-
ment representation for negative numbers internal to the
process, no additional recomplementation time is required
to obtain a signed magnitude form as is done in the IBM
T7090. It may be desirable in certain instances, however,
to recomplement the final remainder and present it as out-
put information in a register at tlie conclusion of the
square root operation, but this was not done in the exper-
iment, One single bit-position shift in the IBM 7090 ar-
ithmetic unit is performed in one clock time, and thus the
add-to-shift ratio is obtained. Since in our equipment it
was postulated that the logical operations of augmenting
the partial root and forming the new trial factor could be
accomplished simultaneously in the time required to per-
form a one bit-position shift, the problem can now be ful=-
1y specified. Therefore, if Tadd = 3 and Taﬂ Tsﬁ 1 tinme
unit, the parameters (3,1,1) will describe a meaningful
problen.

The probability density and cumulative distiibution
functions for this problem were obtained from a simulation
program for the IBM 7090 (see Appendix), and are displayed

14

in Figure 3-8, 27 ' operands were processed, and with the

parameters used no operand took less than 42 time units to
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execute, and none more than 108, It is seen that the dist-
ribution of execution time is sikewed to the right, and for
the purposes of graphical analysis, i.e., to detcrmine the
rnean and variance, it is convenient to make a transforma-

tion of variables such that a function ¢ (t) of the execu-
tion time t becomes normally distributed. Such a transfor-

mation is [5]

g(t) - gluy)
Ty ’

¢ (t) = (10)

vhere g(t) includes no unknown parameters. The cumulative
distribution function for execution time, when plotted as
in Figure 3-8, gives the probabllity that a randomly-chos-
en operand of the type considered will take more than (or
less than) a specified number of time units to have its
square root extracted by the binomial theorem method. The
cunulative distribution is plotted on a normal probability
scale in Figure 3-9, and is plainly skew., If, however, the
cunulative distridution of loglot is plotted as in Figure
3-10, it is found that this distribution may be approxima-
ted by a straight line, and thus the variable (loglot -
1051QF;)/0% is approximately normally distributed, where
)4: is the median of t and ¢_ is the standard deviation of

t
log; gte From Figure 3-10, the median is about 66 time
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Figure 3-9: Cumulative Distribtution Function for
Binary Square Root.
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units, The mean is given by /At= }L: ].0"%/2M

s Vhere M =
logloe S 0.4343. To compute the standard deviation of
loglot, note the values of t where the cumulative distri-
bution is equal to 0.159 and 0.841; these values are 57
and 77 time units. Taking the average value, 0't=§(1051077
- log1057), or about 0,065. The mean J 18 then about 67
time units. The average standard deviation of t is #(77 -
57), or about 10 time units. A direct computation using
the experimental data yielded a sample mean of 68.8 time
units and a standard deviation of 10,6 time units, both
values being verified by their graphical estimates.

It then can be concluded that a randomly-chosen
floating-point binary operand of the format chosen has an
expected execution time of about 69 time units with stand-
ard deviation 10,6, when processed by a square rooter of
the type describved, a time unit being the time necessary
to perforn a one bit-position shift. The minimum .execution
time is 42 time units, and the maximum 108, on the order
of 3.5 and 9 IBM 7090 machine cycles, respectively. This
compares rather favorably with the 67 cycles neceded by the

SHARE program described in Chapter I,
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CHAPTER IV

Other Nth Rooting Methods

The binomial theorem method obviously lent itself
to direct mechanization of- the square root operation., In
this chapter the properties of other nth rooting proced-
ures will be considered, to provide a foundation for conm-
parison with respect to mechanization parameters.

4-1: The Euler Iteration Fornmulae

In a recent article [13] y Jo F. Traub has outlined
a nethod for generating iteraticn formulae of arbitrary
order, along with an error estimate, The following devel-
opuent is essentially his as given in his paper.

Let us start by deairirng a real root of the func~
tion y=£(x) =0 and denote this root as & , so that f(ot) =
0. The only assumption that is made is that @ be a root of

multiplicity one. Given the inverse relations

y=£(x) , x=gly) , (1)
then g(0) = gly; - ¥y) . (2)
Zxpanding (2) in a Taylor series gives
s k
= - k (k)
« kz-o‘ LTc):_ Yy & ’ (3)

where the parenthized superscript denotes a higher deriva-
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tive. Since g(yi) = x4, (3) reduces to
00

o = x, ¢+ Z{ Li'gf Y‘; E(k) . (4)
Defining u = £(x,)/f'(x,) and (5)
Y, = _(%{_kﬁ {f.(xi)}xm 8(k+1) . (6)
(4) takes the more compact form
00
ocsxi-ukzsukrk . 1)

If we then take only the first m+l terms of the series in
(7), and denote the right side of (7) as a better approxi-
mation to & than x, (assuming that the sequence of approx-
imations converges), the following iteration formula is a

natural consequence:

m
k
xi+l‘xi'uzau‘}k . (8)
Defining the Euler polynomial as
m
Y(u) = > uF Y (9)
k=0
transforms (8) into
Xj 0= % - uY(u) . (10)

Defining

n= S @)
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Traub shows that Yk is a polynomial in DJ.’ Dz’ cevy nk-l’

where
d
D= Dpley ¢ a5 Doy 0 KO,
ne1, (12)
such that |
Yo = ]
Y, = (1/2)n (13)

Y, = (1/2) ng - (1/6)D5 , ete.

The error of the iteration formula (10) may be estimated
by considering the error €i+1= o - X the remainder of

the truncated series in (8):

-]

k
€a=u E u- Y, . (14)

M
If f(x) is a smooth curve in the neighborhcod of x =&, wve
nay write o

fxee)> f(x) + € £2(x¢)

th

where € is a small error. On the i iteration, xinui-e ’

1
and since f(x) = O, .f.(xi) - eif'(ot). Since f(x) is smooth,

r'(xi) = f'(x), and thus the error may be estimated as

€, = f(xi)/f'(xi) =n . (15)
Thus uk'.:-'. 61;.. and so
= k-l
€n = 2. Y €8 y

me

Expanding Yk in a power series about X , and assuning
that ef*l el ,
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€u” m+l(c:c).g"“'2 , m=0,1,2,... (16)

Thus, for a given value of m, an iteration formula of ord-
er m+2 may be obtained from (8), with error estimate (16).
In an earlier paper [12_] Traub compared various it-

erative methods for the calculation of nth

roots, and in-
troduced an iterative formula which he called "multiterm"
iteration, an iteration formula which may be derived from
the Euler fornula. hultiterm iteration considers the spec-

ial equation f(x) = x® ~ A, where f(x) = 0, with

%= A8 o z1 - g/ B)/E 17)
Letting v = -f/xf', X=x(1 + nv)l/n, or
00
X =x+4+X Z(lén ok (18)
ke

Hoting that v = -u/x,

=x+12() (1/n L. 9

ke
Using f(x) as given above,

Dk., f(k)/f' = (n.l)(n-a)-m(n—k-o-l)x'k*l . (20)

Comparing (19) with (7), using (20) gives

Y, = (n-1)(20-1)-- (i - 1)xE/(ke1)2, k=0,1,2,...
(21)

for this special case. Multite.m iteration may be made any

order by considering only part of the infinite series in
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(18). Specifically, the iteration formula of order m is

"=
xi+1'x1+"‘1z,°k"k ’ (22)
where

n+l ; 8‘0'1
% *\x - n} -1 ' k=1,2,3,... (23)

The upper bound on the error is

1 a1 %L _n
€1+1<E{'&} €1 » B=23,4,...  (24)

Traub points out that the multiterm iteration formula mnay
be applied in a sequence such that the order of each suc-
ceeding application may or may not be changed, until the
root has been computed to the desired precision.

Rational Approximations to the Euler Polynomial

In his paper, Traub also considers rational approx-
inations to the Euler polynomial of a forn due to Padé.

Wiritten this way,

Y(u) = P(w)/Q(u) , (25)
where
‘P(u) = i u¥ PL» and (26)
°
Q(u) = iu“ q - (27)
o
Equation (10) may be written
X3 0" X3 - uP(u)/Q(u) . (28)
Writing (7) as A = X; - uf(u) - B, (29)

61



where B & lee:?ﬂ, and subtracting (28) from (29) gives

K - xy = €% - u{PW/AM) -1} 45

or €i+lz ~ uH(u)/Q(u) + E , where

H(u) = R(u) - Y(we) = X . (50)

Referring to (30), 1if the leading term of H(u)/Q(u) is

proportional to um"'1

, then analogous to (16), the itera-
tion formula (28) is of order m+2. Thus Traub chooses the
p+q+l parameters Pk’ Qk so that Hk= 0, k=0,1,2,‘..., P+q,
with p+qem, To do this, equate like powers of u in (30),
using the series in (26) and (27). Traub gives the result-~

ing equation

5
Ptp - 2 ek =0 (3)
vhere 1 r<p
er" 0 > p ’ (32)
and s = min.(r, q) . (33)
Thus (31) can be used to find the Pk and Qk recursively,
since the Y, are known (eqn. (13)), and Py = 1. Traub then
gives the corresponding error formula
2
€= (g ~Hpa)eg™ (34)

vhich indicates ai iterative formula of order m+2, where

HBH-]. T - iQk Ym-k+l . (35)
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The iterative formula (27) nmay then be vritten in the con-

pact form

xi+l = Ipq(xi) » (36)

vhere Ipq(xi) is defined as

Plu p=0,1,2,...,n
Ipq(xi) =X -0 Qlu i 4=0,1,2,...,m (37)
P+q = m ,
Equation (36) then defines m+l iterative formuleae, a few

of which are summarized below:

l)em=0:
Ig=X=-uji €&,*= Yléi (38)

2), m=1 :
Lo=x=-ul+Yu); €,=1, ei (39)

= ———L—- = - 3
o= *-rTrm ¢ €un = L-R)el (0

3)0 m=2 H
I, =x-ull +Yu+Yu); € .=7Y.et (41)
20 = 1 U5 €y = Yg€y
2 >
_ T, +uly -Y,) ¢ =Y:Y1'Y§e4
Iy=x-1u T - Y,u i &ia T i
(42)
u
I..= X - }
02 3 3
€, .= (Y, - 21.Y. + Y)e!t (43)
iedl 3 172 1l i

In the above formulae, X=X,y and in the error estimates

the Yy are evaluated at the nth root X . The formulae Ipy

63



are those which result from ecquation (10), the iteration
formula before the Pade approximation was applied. For the
particular example f(x) = O - A, Traudb indicates that the
formulae of the form Imm are preferable from the stand-
point of error estimate. A remark by Kogbetliantz [9] also
states that rational approximations of this form are the

most useful.

Specialization to the Extraction of n‘® Roots

In order to apply the above methods to the extrac-
tion of integral roots, the particular equation f(x) = xn
~ A must be considered, The Yk for any particular n are

given in equation (21), and the first few are

YO =1
2 2 (44)
Y, = (20" - 3n + 1)/6x
Y3 = (6n3 - 11n° + 6n - 1)/243:3 , ete.
Also -n+l
T OR St oy DR (45)

Using (44) and (45) to write out the first few iteration

fornulae gives

1 - A 6
1v=1% {(n—l)x a3 (46)

e Bl 2 2 (47)
eid 5 6.1...(n1)€i
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2
1 A =1 A
noms-i0-g) 205w

on -
€ == 6;-2-’.1-*'—- ezs%(mz - 6n+2)ez (49)
n
1, = x{(n'l)"n = (n-1)A (50)
(n-1)x" = (n~1)A
2 '
-1 3 <12 3
€, =L =2 el<z(n-1)e (51)
12 173 1
2 3
- 2n” -~ 3n + 1 A
I0= Lo - "{ P ( xn) } (52)
€ 6II.3 - lln2 + 6n -1 64 (611 - 11n + 6n
141 2400 ?

-1ed  (53)

1 A\(In=1)x" - (n-1)4
I Y Y (54)
11 "{ n( x“) (2n - 2)x" - (40 - 2)-&}

3 2
2n n" - 2n +1 4 2
€401 - €13 9(2n -n -on
+ 1)e1 (55)
(Sn + 5n +1) 2 n 242
1 + x +(8n-5n-2lx + (1 - n°)A
027 %\ 552 4 6m + 1)x2® 4 (802 - 6n - 2)x® ¢ (1 - n2)A°
(56)
€ —P—)’——‘—"-t—"'-e" 1w’ +n+2)et (57)
i41 © 2“} i-3 i

As is expected, the iterative formulae becone more compli-
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cated as their order increases, and higher order formulae

may be derived from an extension of (44) and from (45).

4-2: The Padé Table of Rational Approximations [9]

This method enables a general pover series, whether
convergent or divergent, to be approximated by a rational

function of the form R = Pr(x)/Qe(x) , where

n
Px) = D ax (58)
(o}

S
Q) =14+ > wa (59)
|

V'e desire the approximation

(-]
£(x) = D e n R_(x) = B () (x) , (60)
o

and if the definition

o0

©0
Q(x) > xS - B (x) = AT va" (61)

-]

is imposed, the coefficients a, and bk nay be found from
the resulting linear system of r+s+l equations. In gener-

al, the accuracy of the approximation Rra(x) increases as

the degree of Pr(x) and Qa(x) increases. According to E.
G. Kogbetliantz [9] , the entries in the r by s table
which are the most useful are those for which r=s or ra=

s+l. If r=8, then 8g = Cg » and
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S

Zbrca-ul =0 (62)

h=o

i :
ai = Zbrci-r ’ 131’2.3'00.' 8 . (63)
heo |

S
Tk: Zbr°2a+k+1-r y k=0,1,2,... (64)
heo

and

The ‘(k decrease extremely rapidly, and thus
o0
2r+l Y 2Tl
X Z ﬁ(kxk o=

Therefore as a rough estimate (r=s),

(o) 2r+l
P_(x) Y AX
Er(x) = ch:} - £ x 2 . (65)
° Q.(x) Q,.(x)
Furthermore, Qr(x) = 1, and thus
~ 2r+l
E (x) = Yo x . (66)

Since the range of x and the order r are presumed to be
knovn, a rough estimate of the error may be obtained by
computing Yo. If0<$x¢ X 0

ERPIVARC S )
YO is obtained by solving the system of r+l equations
(62) and (64) with r=s, k=0 :

S
E brcs-r*i = 0 ] 1‘1’2’3’000
heo
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S

=
Y 0 vy %2841 *

This yields Y, = sz/Ar , where

cl 02 LA ] ch C£ Cz. - o cr
2 C3 " Cn2 2 3 °°° Cra

Ar = . E : H 8r= E . : (68)
cr~o-1 cr+2 oe- °2r+1 Cr °r+l s+ Cop

Sr being the principal minor of Ar « The approximation
Rrr(x) e Pr(x)/Qr(x) pay be written as a continued frac-

tion

P (x) n
—(-y Ay + Z ’ (69)

k=1 X + Bk +
and the coefficients Ak’ Bk may be found by combining and
cross-multiplying (69). An examination of (69) shows that
parallel computation enables R_.(Xx) to be formed in r div-
isions and r+l additions.

th

Specialization te n_ Root

Kogbetliantz treats this problem by considering the
approximation in a general interval (b, c¢) using the sub-
stitution x = a(l + z), where b < a < ¢. Then xl/n =

al/n(l + :'.)]'/n is expanded into a binomial series
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'zo:(lﬁn> al/n ¥ » |z] £ 1, and a Padé approximation for-

med. To further restrict the range of z, let b = a(l - rl)
and ¢ = a(l ¢ r2), 0 <r1< 1, 0< r2< 1, so that -rls

z &r, , vhich still satisfies |z| £ 1. Let

2
00

Y (2) =kazk : (70)
o

As k gets large, the ratio Yk+l/Yk approaches -1, and
thus the series may be approximated by an alternating geo-

netric series which has a known sum. Therefore

Y(z) = Yo/(l +2) . (1)

Then the error formula (65) may be written
¥ z2r+1
E (2) % 72 .
r @+ 2) Q(2)

) xl/n, is

The relative error, Er(z

Yo 22 r+l
‘ (72)

A
Er(Z) alfn(l N z)(n-vl)/n Qr(z)

Letting E_(z) = K¢ (z) where K = constant, it has been

found that the extrema of the relative error lie at 2 = -1y

and z = Ty . Equating the absolute value of the relative
A A

error at these values of z gives |Er('rl)l = |Er(r2)| .

“ritten out,
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2r+l 2r+l
3 T2

- r) BB () @ )™ (1)

The ratio ¢/b gives a second equation involving Ty and Tos

¢/b = (1 +1,)/(L -x) (74)
vhere ¢/b is a known constant since the interval (b,c) has
been specified. Solving (73) and (74) yields the desired
values ry and T,y 80 that the maximum relative error and
the constant a may be computed. The constants 8y 8y 8y
+sey Which are functions of a, are then computed, and then

a continued fraction representation may be obtained of the

form n

Ao + z ;——:;;ET' . (75)

s

Substituting z = (x - a)/a into (75) gives the desired ap-
proximation to xl/ B In his article Kogbetliantz gives se-
cond order (r=2) results for the square root, n=2 :

1/2,, 5470 _ 50Y 70/49 4/49
R V' x+47/14 + ' X + 3/14

A -5
0,254 x < 0.5, [El4107° ,

1/2 _ 5435 2001;5249 _1_6.&3.
TR ST /7 ' x + 3/1

2 -5
0.,5¢x<1, |E]l%10 .

The accuracy of this type of approxination can be improved
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either by using higher order rational approximations or by
decreasing the size of the interval in which the approxima-
tion is valid, From the standpoint of computing time the
latter is preferable, although it results in more storage
space being réquired.

The simplest, though not the most accurate rational

approximation which is a function of the operand is
a, +az
~ o * &
I(x) ¥ Ry (2) = Bz *° x(z) , (76)
which can be computed in one multiplication, one addition,
and one division. In order to use this approach to extract

integral roots, let us consider the function f£(x) = xl/n,

n=2,3,4,..., vhere x = a(l + z), |2| £ 1. As bvefore,
o

A/ chzk , o e /0 (l/kn) '
-

0 00
(1 + blz) chzk - (ao + alz) 2° ZYkzk = Y(z) .
0 ° (1M

and

Solving (77),

hl= ’g%;‘];, n=2’3,4.000 [ (78)

ck*3 + blck+2 = Yk ’ k‘0’1'2’000 (79)
With k=0, Yo =Cy ¢+ b, , or
2
Yy = a1/:1{:1 - 1}, n=2,3,4,... (80)

o 12n3
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Considering the approximation in the interval (b, ¢) es
before, with b = a(l = rl), ¢c=a(l + r2), equating the

absolute value of the relative error at z = -rl and z = r2

gives, since Y (z) = Yo/(l +2z),

3 3
T2

b o
1 - [
Q- ™0 Cer e )0 )

(81)

Solving simultaneously with (74) yields r, and r,. If (81)

is written K(rl) = G(r2), the maximum relative error of

the first order approximation is

n2-1

K(xy) & (82
12n3 1 )

A Y
IE (2)] £ :1-9,-1 K(rp) =

Solution for the other constants ylelds

1
ao=a/n ,

n+l i/n (e3)
2n ’

where a may be computed once r, is known.

Choice of Interval

Since the order of the rational approximation has
been fixed, the only way that its precision can be varied
is by varying the end points of the intervel of approxima-
tion (b, ¢). In general it is true that the precision of

the approximation increases if the interval length ¢ - b
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decreasea., Let us deal with fixed-voint binary operands in
the range (2™, 1), and partition this range into 2P(2"-1)
subintervals of equal length so that these subintervals
may be easily identified by logical eircuitry. A computa-
tion was made using the interval (2;2, 1), subdivided into
24 subintervals., It was found that the greatest relative
error occurred in the lowest subinterval, for which ¢/b
9/8. This is not surprising, since in the lowest subinter-
val xl/n has its greatest curvature, thus causing the
greatest inaccuracy. A calculation of the worst relative
error in the subinterval (272, 277 + 2™"P) has been made
for the square, cube, and fourth roots (n=2,3,4, respect-
ively), for varying numbers of subintervals. The results
are summarized in Table 4-2.

Al though the operand is partitioned into 2p(2n - 1)
logically identifiable subintervals (listed as "maximum
number of intervals" in Table 4-2), it is apparent that
gll of these need nct be distinguished from one another.
For example, consider the square root being taken in the
range (1/4, 1) using 3 subintervals (1/4, 1/2), (1/2,3/4),
and (3/4, 1). The maximum relative error is a monotonical-

1y decreasing furction of the lowest subinterval's end

point ratio c/b, and thus the above 3 subintervals can be
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reduced to 2, (1/4, 1/2) and (1/2, 1), without excceding
the maximum relative error in the lowest subinterval (1/4,
1/2). Similar reductions can be made concerning the other
entries in Table 4-2, and these appear as "minimum number
of intervals" in Table 4-2, For first order Pade approxi-
mations three stored constants are required for each in-
terval, whether the ratio of polynomials or continued
fraction representation is used.

If the problem in question is the computatibn of
the n'B root of a 27-bit binary integer to an absolute
precision of 1 part in 227 (fraction part of IBM 7090

th

floating~-point word), then since the n' root lies in the

range (1/2, 1), the maximum relative error is 2726 o ap-

proxinmately 1.49 . 1078

. For the square root this corre-
sponds to the entry 65/64 in Table 4-2, For this relative
error, then, the size of the table of stored constants re-
quired for each order root may be determined. These table

sizes are given in Table 4-3.
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No. of faximum
n Stored Relative
Constants Error
2 354 1.47+ 1078
3 498 1.16- 1078
4 639 0.92+1078
5 174 0.75-107°
6 915 0.61-10°8
7 1050 0.55-107°

Table 4-3: Size of Stored Constant Tables for the
Square Th.t;ough Seventh Roots, First
Order Pade Approximation,

4-3: Extensions of Nadler's Method

M. Nadler [7, 8] has outlined an iterative method
published by Flower in 1771, which was first used to com-
pute high precision logarithms, but which is also useful
in computing the reciprocal or the integral roots of a
given number. If we are given the number A, we may find
its reciprocal by multiplying it by a series of constants
such that

A T;Tc1 -1 . (84)
Dividing (84) by A yields the equation that is necessary

to compute the reciprocal of A,
TMeyg=at (85)
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Thus (84) and (85), computed separately, form a pair of
iterative equations that yield the reciprocal of a given
nunber. These equations may be used to find the quotient
B/A by using the pair of equations

A'rroi-* 1l

B‘rrci-q AL .

(86)

A nodification of this algorithm has been used for divis-
ion in the Harvard Mark IV computer, and is given by Riche
ards {10] as

N (2 -« D,)N
141 i/74
= o= (87)
D1+1 (@ - Di)Di ’

whefe No is the dividend and D0 the divisor. The iterative
method in (87) will converge if 0 £ Db«< 1, thus making

D

1 4D 1< 1, 120,1,2,...

The iterative method described in (84) and (85) may

th

be extended to the computatiom of n™ roots by employing

the following extension, developed by Nadler EB] to ex-
tract the square root of a numdber, Let the following pro-

duct be formed in a given register:
ATl ef=1 . (88)
Raising (88) to the power (n-l)/n gives

A(ﬂ-l)/n TTc;l-l_. 1 . (89)
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Multiplying (89) by Al/n then gives
n-1 1l
Afrroi - jl/n , (90)

and thus the pair of equations (88) and (90), computed

separately, form an iterative algorithm which may be em-

th

ployed to extract the n™ root.of a given number.

Computational Considerations

Nadler points out that the constants cy may be of
the convenient (in the binary number system) form 1 % 2-p'
P=1,2,3,+.., 80 that multiplication may be carried out
using a shift and an eddition. Richards discusses the Har-
vard Mark IV division algorithm in the decimal systen
where the same sort of approximation is used, i.e., 2 -~ D1
14+ di’ where d1 is the highest order nonzero digit of
l - Di' Suppose that A'rfci-b 1 monotonically from below,
and thus ¢y is of the form 1 + 2°P, After a few iterations
the process will reach a point where AT[ ¢, will be of the
form 0,1111-:--, such that each succeeding iteration will
nerely add another "1" to the string alrcady obtained.
Thus if k significant digits of the quotient are desired,
nearly that many shift-addition operations will be requir-
ed.

Let us examine the precision of these iterative
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methods:

1). Division

ATTci- l
Tle, =~ ~lag
Let ATrci- 1 - A [}
then

Tley =1 -A) , (91)
and therefore the relative error of the reciprocal (or
quotient) is the same as that of the operation which caus-
es the reciprocal to be formed.

2). o*® Roots
A T]’ci1 -1

ATTc?'l-» Al/n - 0L

Let ATrc:al-A .

Baise to the power (n-l)/n,

A(n—l)/n T c:xll—l - (l-A )(n—.l)/n

Since A. &K 1,

(n=1)/n n-1 ._ n-l .
A TT 01 1l - a A

kltiply by AYP = o,

ATTc'f'lzoc {1 -P-glA} R (92)
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th

and thus the relative error of the n root is less than

the relative error of the forcing expression. Therefore 1f
the desired precision of the nﬂ1 root is specified, the
precision to which the forcing expression must be carried
out can be determined.

th

In the case of the n'" rooting algorithms given in

equations (88) and (90), the form c?= 14 2P poses some
problems. The relation between c? and c?’l must be exact
or to within the meximum tolerance of the rooting proced-
ure in order that the nth root thus extracted be correct
to the specified precision. Richards states that it is de-
sirable to malie the capacity of the registers holding the
factors in question one or two digits greater than the
word length of the reciprocal (or root) in order to mini-
nize the effect of round-off errors. In the case of the
square root (n=2), the problem may be handled in the fol-
lowing manner:
"=t 5

Let a partial result be given as A U"i' and let

this result be used to determine the next x:zultiplying con-

stant ci =1+2P, p21. Now if p is large enough,
o= (1 ¢ Py/2 . 4 P

~2p=2

thus giving oi =14+2P 42 . Therefore the factor
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ATTci could be used to deteraine the squares of the mult-
iplying constants, and thus the constants thenselves, both
in an exact manner. There is one complication that might
arise in the application of the above method, however,

namely that ATTéi ? 1. This may be remedied by taking

ci= 14 2P, 2=2p-2

2 - 2
when ATl ¢f > 1 and e¢; = 1+ 27 when ATT ¢ < 1. When

vo =14 2"P, using e,=1- 2"P

ATTci = 1, the process terminates because an exact root

to within the process tolerance has been found. The con-

2
m

stants ¢ and o imply shift-addition operations, and may

be utilized in the same manner as in the division process,
If k significant digits are to be computed in the square
root and § additional digits are carried along in the
computation to counter round-off error, then the effect of

~2p=2

2 vanishes when 2p+2 > k+§, or p > #(k + § - 2), ap-

proximately the midpoint of the iterative process, and the

simpler approximation ci =1 & 2-P nay be used thereafter,
For the cube root (n=3), the approximation to the

cube of the constant may be written ci = (1% 2-1)"]')3 =

1 £ (27P 4 27PLy , (27271 | 272P-2) | 5=3P=3 ) put this

approach is rather impractical, since the approximation ¢y

must be obtained from A'ITcz - 1, and then an exact corre-

spondence between ci and ci must be estabtlished in oxder
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that the iterative process be valid. It is easily seen
that for n=4,5,6,... this type of approximation defies

simple mechanization, since an exact correspondence must

be established between cj and i © after first obtalning

an approximation of the form ¢, = 1= 27P~ 1 from the fac-

i
tor ATrc:-— 1.

Stored Tables of Constants

Instead of forming the constants ey at each stage
of the iterative procedure, we could examine the magnitude
of ATToil, and upon the results of this examination, se-

lect the appropriate constants c? and c?’l

from stored ta-
bles. The determinstion of the magnitude of ATrc: could
be made by direct logical access to its bit positions, and
thus the appropriate table entries could be selected ac-
cording to the bit configuration sensed. If k bits of ac-
curacy are desired in the nth root, i.e., Al/n So((l-Z'k),

then according to (92),

ATTol %1 - "—‘i—l--a“‘ . (93)

For exanple, let us consider extracting the nth

root of a
k-bit binary integer in the range (2%, 1) with absolute
error less than or equal to 1 part in Zk. If it is desired

to force AT c? into the desired range, i.e.,
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n-l .-k

1 =Bk ATTo g1« Bk, (94)

using just one nmultiplication, then okl , k-2 S
entries cach are required in the c: and c:’l tables, mak-
ing & total of 2¥*2 o 2K-M*l 540004 constants required.
However, since ATT'c? will be in the desired range after
one multiplication, the c? table does not have to be stor-
ed in this special case since the desired root o = At
may be obtained directly from the ¢™ ! table. If this is
the case, about 235 million stored constants would be re-
quired to extract fﬁe square root of a 27-bit binary inte-
ger (such as the fraction part of an IBM floating-point
word) in one multiplication, about 252 million to extract
the cube root, and even more for the higher roots. These
figures are of course entirely out of the question, The
number of stored constants required to force A'Trc: into
the desired range may be reduced by expending more multi-
plications, but the c? will have to be stored, and it will
require the expenditure of many multipiications in order

to reduce the stored tables to a reasonable size,

4=4: Truncated Series lMethod

Suppose it is desired to compute the value of a

function that has a convergent power series representation
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f(x) = bo + blx + b2x2 4+ «--» , and suppose further that it
is possible to make & transformation on f(x) so that it
may be approximated by a severely truncated series, say,
f(x) = bo + blx. It is this type of transformation which
will be considered in the computation of the real nth
root of a real number,

The binomial expansion

1/n 1

L+a)/ e +;A,+-12-;§(%-1>A2+--- (95)

is an alternating power series convergent for [A|< 1. Let
us suppose that |A| & 1 so that
A

( +A)1/“z1+;1 ' (96)
the error being less than the next term, i.e.,
Iel<§-‘-§A2 , m=2,3,4,... (97)
n

Let it be stipulated that our operands are binary integers

and that we wish to compute their nth

root to an accuracy
of at least 1 part in 2k, i.e., |€1< 27K, Thus

-k n-1 2
27< — A
2n

or

n-1

A< {2,,2}1/2. k2 (98)
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For exanmple, if our operands are IBH 7090 floating-point
vords with 27-bit fractional parts, then k=27 and the

maxinum A is given in the table bLelow.

Maximum llaximum Laximum
A n A n N
1,002 2 | 6 | 1.34-2722 | 10 | 1.66-2712
1.06:2712 | 7 | 1.43-272% f 11 | 1.74-2722
152722 | 8 | 1.50.2722 | 12 | 1.2-2722
1.25.2712 H 9 | 1.59-2712 § 13 | 1.87-2712

Table 4~4: laximum Value of A in the Truncated
Series, k=27,

For the values of n shown, A = 2712 i @ satisfactory

value to use. If we then force our operand into the range

=12

(1, 1 ® 277°), the series given in (96) may be used to

compute the nth

root of x to within the maxinum allowable
error.

Transformation of the Operand

Considering that we are opereting upon the 27-bit
fractional part of IBM 7090 floating-point words, it is
given that the operand will be in the range 2 Mg x< 1,

n=2,3,4,... It i8 required to execute some Bort of
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transformation upon the operand x in order to force it
into the interval (1, 1 % 2712y,

Let us consider a transformation used by Bener [1]
and by Cantor, Estrin, and Turn [2] in the conputation of

the logarithn of a real number. Let
"
z - xT:Tci (99)

define a transformation upon x. Then

" "
lnz=1n xJ[e; = lnx+ zlnci '
1
]
and thus ™
1nx-=1nz-21nc:L . (100)
|
The series expansion for ln z about the point z = 1 is
ln z = (2-1) - %(2-1)2 + %(2-1)3 - e, (101)

convergent for 0 < 2z £ 2, If z=1 + A , wherc AK1,

then
In(1 +A)=x A +o0(a%), (102)

with error

le)gt a2 . (103)
Thus if |z-ll < lAt by applying the transformation given
in (99), 1n x nmay be computed using (100}, which employs
the severely trurcated series in (102). The additional re-

quirement is, of course, that a suitable tadle of con-
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stants 1ln cy be available, as well as the means for ex-
tracting the correct entries from this stored tadle. Can-~
tor, Estrin, and Turn specified an error bound of 2'27,
and thus A < 2713, They operated upon a normalized

(1/2 £ x < 1) 27-bit binary operand with the transforma-
tion (99) using two multiplications and two stored tables
-13

of constants to force the operand into the range 1 - 2

<z<£1 ¢ 2713, fhe transformation vas defined as 2z =

13
-6 2
a.k-—-2 Int.{ﬁ} ’

k = Int.(27x)

a,c jJu:. vhere

and

c

J
J = Int.(213akx) .

-13
= 2710 s, {226 L-27) =~ }

Int.( ) denotes the integer part of the quantity in brack-
ets. Therefore 28 ¢ k < 27, i.e., k = 64,65,...,127, and
23 227 _ 28 <3¢ 213, 1,e., § = 8000,...,819L, Thus
there are 64 constants 8y and 192 constants cJ required to
transform 1/2 £ x <1 into 1 =~ 213 ¢ 2 ¢ + 2"13, where
z= akoJx.

In a similar manner, then, let us define a trans-

87



formation that will force 2" < x <1 intol - A < z £

1 + A , where A=2712 gng z = x T o4+ Let
hda -n
z=xT[e, , 27 %£x<1 , (104)
|
then -m
e d/Trds
|
Therefore

xl/n= z1/11 ﬁ °I1/n , (105)
]

where 1 - 2324 2 < 1 4 2'12, and thus zl/n may be com-
puted using the series in (96), with l€l4 2727, consider
effecting the transformation (104) in a single multiplica-~
tion, 2z = Xey . In order to bring z into the desired range,
the first 13 bits of x must be examined. Let k = Int(213x)

13-n £k < 213’ n=2’3'4.ocoo

For each of the &, we need an a;]’/ D o correct zl/ n

where 2" ¢ x < 1, and thus 2
, thus
necessitating two tables, a and a.;]’/n. Table 4-5 gives

the total number of stored constants required in the sin-

gle multiplication scheme,

n Total no. a Total no. n Total no.
of const. of const. of const.

2 12288 4 15360 o 16128

3 14336 5 15872 7 16256

Table 4-5: Nunber of Stored Constants Required for
nth Root, Single liultiplication Scheme.

88



(<3

Note that the constants 8 have & spall number of nonzero
bits, and thus if &, is considered as the multiplier, the
computation of z = xa, is a "short" nmultiplication., If

n > 13, either more leading bits of x will have to be ex-
amined, necessitating expansion of the stored tables, or
an additional multiplication will have to be executed, al-
80 introducing additional constants. The present discus-
sion will be limited to the cases where n is not large
enough to require such changes.

In order to reduce the number of stored constants
required, let us consider forcing z into the desired range
using two multiplications, i.e., z = xakcj. Following Can-
tor, Estrin, and Turn, let the transformation sequence be
(278, 1)~ (1 -22,1+22)=Q - 272,14+ 22, the

respective ranges of x, xa, .y xakcj. Define

12
o = 2™ Int.{-lz-c-_—l} , (106)

k = Int.(26x) , (107)

c

212
. =12 Int.{224 il—gti———l} , (108)

j = Int.(212xak) . (109)

The ranges of k and j are 26-n$ k £ 26, n=2,3,4,5, and

89



12 _ 6 _ 55 <5< 212, “hus there are no more than 62

2
constants & for n < 6, and 96 constants °J’ In addition
to these constants, there must be tables of ail/n and
csl/n stored. Table 4-6 ;ives the total number of con-
stants required in the two nultiplication scheme for

values of n between 2 and 5. If n » 5 the 8, and ail/n

n Total no. n Total no.
of const. of const.

2 288 4 312

3 304 5 316

Table 4=6: Total l'umber of Constants Required for
nth Root, Two l'ultiplication Scheme.

tables will have to be expanded, with a resultant reduc-
tion in the size of the ¢, and c;l/n tables. The multipli-
cations xa, and xeycy are "short" and zail/n and
zail/ncsl/n are regular length.

It should be noted that this "sequential table
lookup", abbreviated STL, nmethod as Cantor, Estrin, and
Turn call it, is quite similar to Nadler's method for com-
puting roots, in that they both force the operand into a
predcternined range. However, the difference between the

two methods is the width of this range. In Nadler's method

the operand has to be forced into such a narrow range that

90



elther too large a table of stored constants or an unsat-

isfactory number of multiplications is required.

4~5: Logarithm-Antilogarithm Approach to n'® Rooting

If it is required to extract the n#h root of a glv-
cn real nunber, the following sequence of operations may

be performed:

1n x =1lnx > xl/n=exp.{lnlnx}

Figure 4-1: Computational Sequence for the Log-
Antilog Nethod.

The operation e is, of course, the antilog operation cor-
responding to ln x.

Let us examine a variable structure computer devel-
oped by Cantor, Estrin, and Turn [2] that computes the el-
encntary functions 1n x and e*. The essential character of
their sequential table lookup (STL) algorithm has been
given in the section (4-4) dealing with the trurcated ser-

ies method for computing nth

roots, Cantor, Estrin, and
Turn developed & combined structure that hand}es both 1n x
and ¢< as well as separate structures, and it is this com-
bined structure whose characteristics will be given.

The constants necessary to compute 1ln x and e*
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are stored in a table of 1037 words of minimum length 31
bits and maximum length 44 bits. In addition, a 36-bit
accurulator, a 35-bit adder, a 36-bit multiplicand regis-
ter, and a 14-bit MQ register are computational registers
required. Besides the necessary menory access hardware re-
quired to select the desired constants from memory, there
is also the usual control and decoding circuitry that is

necessary to make the process function.
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C-APTER V
Comparison of the nth Rooting Methods

65-1: Timinz Measures

Each nth rooting method consildered 1s made up of a
number of elementary arithmetic and logical operations,
However, each method does not necessarily consist of the
same operatlons, and tha operations occur in varying pro-
portions according to the method, Therefore, as a first
step, the timing evaluations will be made in termes of the
elementary operations, The operations used are defined
as fixed-point binary, with a fixed word length. Let the
following symbols be introduceds:

S = one bit-position shift;

A = addition or subtraction;

M = full word-length multiplication;
D=divisior;

VA = memory access;

Mg = short multiplication, where a short multipli-
cation is one vhose multiplier is substant-
lally shorter than the full word length.

5-2: Dealing with the Floatinz-Point Exponent

It was vpreviously pointed out that the fractional
part of a floatinz-point operand may be shifted as many
as n-1 bit positions to the rizht before exscution of a

fixed roint rooting process, dependinz upon how nearly
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the exponent was a multiple of n. For a general value of
n, the only way to determine this property is to perform
the division b/h, where b is the exponent, examine the
remainder r (b/n=1Int, {b/n} 4+ r/n), and shift the frac-
tion part n-r places to the right if r is nonzero. The
root exponent 1s Int, {b/n} 4+ 1 if r>0 and b/n 1f r=0,
For an IEM floating polnt word, the division b/n 1s a
maximum of 8 bits longz, and thus the meximum time tsoken
to deal with the exponent is this 8-bit division plus n=1
one bit position shifts. Therefore, this time must be
added onto the maximum expected executlon times of those
methods which employ operations on just the fractional
parts of a floating-point word, These methods are the
binomlal theorem method, the Euler iteration formulae,
the truncated series method, and the Padé approximation,

5=3¢ The Binomial Theorem Method

A sub-unit of the binomisl thecorem nth rooting
nrocess, an Aiteration, has been previously defined as:
1), formation of the 4rial factor;

2)., formation of the correction if the remainder is
negative;

3). addition/subtraction of the triesl factor and correc-
tlon to the remainder;

4), shifting out leading zeros from the new remainder;

and
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5). augmenting the partial root with the appropriate
bits according to the results of steps 3 and 4,

An iteration 1s represented schematically in Figure 5-1,
The most time-consuming part of the iteration occurs in
forming the trial factor end the correction at the begin-
ning of the iteration., For the nth root, the trial fact-
or is a polynomial of degree n-l in the partial root
84010 and the correction is a polynomial of degree n-2
in aj-l’ the coefflicients being the binomlal coefficlents
multiplied by a power of 2 in the case of the trial fact-
or and integers of approximately the same magnitude as
the binomial coefficients multiplied by a power of 2 in
the case of the correction, Since the trial factor is a
higher degree polynomial than the correction, the forma=-
tlon of the trial factor i1s the longer operetion of the
two, What 1s required, then, is to form successively the
powers of 8,.1, from the square to the (n-l)st, and form
the trial factor and correction polynomials using the
appropriate coefficients,

A highly parallel method of doing this is shown
in figure 5-2, The trial factor is represented symbol-
loally a8 65 +0j8y g +--- ¢ on_la?:i, and the correction
as 06 + ciaJ_l RTR" c;_aagjﬁ, where 6y, 0y,.eey Oy,
06, 0,1..--. °;-2 are short integers times a power of 2,

Assuming the positionings ¢an be accomplished in one or a
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Start Iteration

f 1
Form Forn Correction
Trial if Remainder is
Factor Negative

L . I

add/subtract trial factor
and correction to remain-

der.

1 i
Shift Out Augment Partial
Leading Root
Zeros

T « 1

Next Iteration

Figure 5-1: Schematic Representation of an Iteration.
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few one bit-position shift times, the entlire process of
forming the trial factor and correction can be done in
the time 1t takes to form the n-2 powers of aj.1» plus
the time taken to form the last term of the trial factor.
Done in this way, the arithmetic units which might be
used for the formation of the trial factor and the correo-
tion are 3 multipliers, 2 multiple place shifting ma-
trices, and 2 adders. During the early stages of the
rooting process the partial root aj-l consists of only a
few digits, and near the end consists of nearly the full
word length, Thus, the n-2 multiplications used to form
the powers of 240 have multipliers with an expected
length of one-half the full word length, and therefore
are, on the average, short multiplications,

If more conservatively, a sinzle arithmetic unit
18 used, assuming also that one shifting matrix is avail-
able to execute the various veriable length shifts re=-
quired, the computation of the trial factor and correct-
lon polynomlals takes 3n-5 short multiplications, 2n-3
additions, and 2n-3 variable length shifts, forn = 3,
4, 5,.+. . To obtain a2 maximumtime estimete, the mini-
mum fizure of merit of 1.00 root bits per iteration
could be essumed, and thus nth rootinz process could
take as many as k iterations (k beinz the number of bits

in the fraction part of the floating-point word), each
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iteraticn conslsting of 3n-5 short multiplications, 2n3
variable length shifts, 1 bit-position shift time to aug-
ment the partial root, and 2n-2 additions. To extract the
nth root of a floating-point birery operand, then it will
take a rmaximum of k{(}n-S)MB + (2n=3)S% + 8 + (2n-2)A} +
(n-1)S + D(8), where S* is a variable length shift exe-
cuted by a shifting matrix and D(8) 1s an 8-bit divislon,
forn=3, 4, 5, ... , If a shifting matrix is not
employed, the rooting process for n>2 becomes extremely
time consuming due to the larige number of sequential one
bit-position shifts needed to position the terms of the
trial fector and correction, The square root (n=2) has
been treaited as a speclal case in Chapter III,

€-4: The Euler Iteration Formulae

The computational speeds of the Euler iteration
formulae depend upon their order (and thus compléxity),
and uron the number of times they must be applied., Since
the number of applications (or iterations) depends upon
the precision desired end the order of the root desired,
timing evroluations will be made on a "per iteration"
basis an2 iterations may be cascaded to meet the computa-
tional needs of warticular problems,

The first six Euler 1teration formulae, 1i,e.,
those described earlier, will be consldered., Table 5-1

zives the execution tire of one iteration, X4.1 = Ipq.
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using sequential comrutation with 2 single arithmetic
unit, All operations are fixed-point binary, and "red
tape" and data transfer operations are neglected, Also,
the time taken to deal with the floating-point exponent
is not included in the timing table, Table 5-1 was con=-
plled for a fixed n, 1.e., 2ll the expressions containing
n were precomputed and assumed avalilable at the time they

were required.

Avprox, A M Ms D P
Table 5-1¢
Iso 1] n=1 0 1l | n=2 Computational
Froperties of the
I10 3 n+3 0 l1|n-1 First Six Euler
Formulae, Sequen-
Im 2 | 2n=1 | & 1l | 2n-2 tial Computation
Using One Arith-
I50 4 | neb 0 l|n-l metic Unit, n
Fixed.
I, 4 | nel 4 2 | n=1
#P=No, of mult,
Ioo 4 1 2ne3 | 6 11} 2n=2 used to form
powers of X,

If n becomes substantially large, the computatlion
of xI takes the major portion of the itersation computa-
tion time. Therefore, there i1s a point at which the com-
putation of a sinzle Euler ilteration becomes more time
consuming than using another method to compute the nth
root, and thus the comrutation of xB enters as a limiting
factor in the usefulness of the Euler iteration formulae.

5-5: The Pade Acrroximation Method
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The first-order rational aprcroximetions considerad

could take two equivalent forms, elther

1). x1/n _ 80 + 81X , or
1l + bix
xl/n = Ag + A ]
x+51

However, even though the two representations yield equal
results to the desired precision, they are not computa-
tional equals, Sequentlial computation of the first rep-
resentation (ratio of polynomials) takes 2M + 2A" + 1D

+ 3MA 4+ (n-1)S + D(8), and the second (continued frac-
tion) 2A 4+ 1D + 3MA ¢+ (n~1)S « D(8)., Clearly the con-
tinued frectlion representation 1s preferable timevise,
the executlon times given being those for a floatinge
point overand,

5-6: Rejection of Nadler's Method

Although they are theoretically sound, the higher
order extensions of Nadler's method for calculating nth
roots present unreasonable demends in storage (such as
seversl million stored constants helnz required in a
sequential table lookup scheme), or are grossly incon-
venient or imrossible to mechanize as in the case of the
bit-by~bit method of forcing the factor A TTo? to unity,
because of the exact relationship demanded between c?

and c§-1 ,
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The similarity between Nadler's method and the
truncated series method points up the superiority of the
latter as far as the number of stored constants required,
since 1n the truncated series method the quantity belng
forced to unity does not have to approach this value as
closely as in Nadler's method, and although more arithe-
metlc operations are expended, the number of stored con-
stants required for the sequential table lookup approach
in the truncated serles method is far less,

Therefore, Nadler's method is regarded as grossly
undesirable in view of the much simpler and more effice
ient nth rooting methods avallable, and will be elimi-
nated from further consideration,

5-7: The Truncatsd Series Method

By applying the transformation z = xJ[¢,; to the
operand x in order to force 2z into the range '
(1 -1Al, 1 +]|A]), 1t was shown that 21/D ¢ould ve com-
nuted using the severely truncated series 21/Mx1 4 A/n,
where IAJ was chosen to satisfy an error ¢riterion. The
transTormation wes accomrlished in essentially the number
of short multiplicetions neccssary to force z into the
desired range, and an equal number of "correcting” full
werd-length multionlicatlions were apnlied to zl/n in
order to obtain x1/7,

The comrutationzl sequence is given in Figure 5-2,

The twc oreviously discussed transformations were the
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single- and two-multi:licztlion tyres, eprlied in the case
where |&]€ 2722 o satisfy |€] € 2=27, since 21/n nag 28
elgnificent bits in the case of an I2M floating-point
binary word, 27 of them to the right of the birnary noint,
and since |A]g 2712 the division &/n need only be
carried out 14 places at the most, depending upon the

value of n,

z=xTle; 2 =1+ /M zl/!“'ﬂ'c;l/n

Flgure 5-2: Computational Sequence of the
Truncated Series Method, Mantiscsa Fart,

Thus &/n is a "short" division, and for the szke of arz-
ument will be considered as one-half & full word-length
division., Another point arises, namely, whether & 1is
positive or nezative, If A> 0, we need only consider
that part of z3/® which 1ies to the right of the binary
point in the division &/n. If A< 0, however, the
division |A|/n must be prerformed and the sum 1 - |Al/n
formed, This implies two subtraction overaticns, end it
will be essumed that these must hzve taken place in order
to create a worst-case example,
1). Single multiplication, z = X8y 3

maximum execution time = 1M, + 1M + 2A + (1/2)D 42MA
2). Two multiplications, z = xaey ¢

maximum executlon time=2M, 4 2M 4+ 2A +(1/2)D + 4¥A,
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5-8: The Loz~Exponential Method

The 1n x and eX functions mechanized in the vari-
able structure computer of Cantor, Estrin, and Turn
operate upon IBM 7090 floating-point words (8-bit expon-
ent, 27-bit fraction, and sign) and it is for such oper=-
ands that the execution times will be given., Two timings
are given, one for maximum parallelism and the other for
a sequential computation,

1), 1n x 3

Farallel = 1VA + ZEB + 1A ¢ 1IN 3

Sequential = 2MA ¢ 2Ms + 3A + 1N ;
2), o ¢

Parallel = 1C 4 1MA + 2M, + 3A + 1IN ;

Sequential = 1C ¢ 3lMA + 2M8 + 4A + 1N,
where N = normalization and C = conversion, The normal=~
izatlon and conversion conslst of a controlled
sequence of one bit-position shifts, The normalization
takes a minimum of O and a meximum of 27 shifts, and the
conversion & minimum of O and a maximum of 26 shifts, It
is seen that the difference between the parallel and
sequentiel computations for ln x is IMA + 2A, and for
e* , 2A' ¢+ 1A, In order to determine the total time
needed to compute xl/n, the individuel computations must
be cascaded lnto the seguence shown in Figure 4-1. Since

the difference in computation time between the

log-exponential em-loying parallel and sequential 1ln x
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and e* is only 3MA + 3A, tne scquential methods will be
considered, These are the algorithma executed by the
variable structure computer designed by Cantor, Estrin,
and Turn, The total computation time for the log-expo-
nential n®M root is a maximum of SMA + 4M8 + TA + 808,
This time is for the combined 1n x-e* structure [2]

employing 1037 stored constants,

106



CHAFTER VI

Sonclusion

The c-mponent terms in the maximum expected execu-
tion tices, in terms of the basic arithmetic and logical
operations prevlously set forth, are given in Table 6-1
for the workable n'h rooting methods,

In some 1nstances it may be advantageous to com-
bine two of the previously described methods in a sequen-
tlal fashion to obtain an advantage in speed, One such
examrle 1s the use of tre Zuler iteration formulae plus
an initlal aprroximation. When ap-lying the Zuler itera-
tion formulae it is common practice in rrozgrammin<, and
indeed desirable, to lead into the lteratlions with a good
approximation to the desired root, thus minimizinz the
number of time-consuminz iterations required for full
precision, The only iter-tion formule worthy of consid-
eration 1n view of the STL log=-ex:onentliel method 1s the
Newton - Raphson formula, Ipg. This is a second-order
formula, i.e., 1f a reasonably c¢lose avnroximation is obe
talned, tne error 1s apnhroximately sguared with each suce
ceediny lteration, For ex~mnle, if we usc a Pade approx-
iretion to an error €] £ 2=1% (relative error=2-13),
and apply one Newton - Raphson iteration to this initilal
value, the result will be within the error bound

2=27, The comrutatlon time will be 3MA+2A+1D for the
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Fade approximetion, plus 1A+ (n-1)M +1D for the Newton-
Raphson iteration, plus (n-1)S +D(8) to reckon the expo=
nent, making a total of 3MA +3A +(n-1)M+1D+D(8) + (n-1)S,

The Padé aporoximation and truncated serles mech-
anizations are orzanizationally similar to that of the
STL log - exponential method, and are glven in Figures
6-1 and 6-2, The micro flow charts for these methods
(mantissa part) are given in Figures 6-3 and 6-4, Both
the mechanization and micro flow charts for the STL loge
exponentlial method are ziven in the report by Cantor,
Estrin and Turn [?].

The timing evaluations of the various methods
were glven as sums of multiples of the basic arithmetic
and logical operations., In order to directly compare
one method with another, a more common time base must be
specified. One way of doling this is to designate one of
the basic operations as a unit time, and then express
the remaining operations as multiples of this time unit,
giving all execution times in terms of the time unit,

As an example, if we were to choose the IBM 7090
operation timings, usinz the one bit-position shift as
our time unlt, we would obtain the ratios given in Table
6-2, A ono bit position shift in the IBM 7090 takes
1/12 of a 2,18 microsecond machine cycle, or 0,183

microseconds,
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llighest order n+6 bits
of operand fraction
determine address of Blg

store address for fu-
ture reference; extract

B .

T
x + B,
Using address of B,

determine the address
of AI; extract Al.

)

N
X ¢+ Bl
I
Using address of Bl'

determine the address
of AO; extract A..

0
1/n A
X = Ayt TR

B

Figure 6-3: l'ioro Flow Chart for Padé Approximation,
n Fixed, liaximum Relative Errorx

1.5+107°,
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Extract a,
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X2y

1
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Method, Two Multiplicetion Scheme,
n Fixed,
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—
Op. Kin, Avg, Max,

S. 1l 1 1

VA 6 6 6

A 6 6 6

M (o] 86 108
Mg 0 29-43 36-54
D o] 108 108

Table 6-2: Operation Ratios for Fixed-Point
Arithmetic and Logic in the IDM
7090 Arithmetic Unit,

In the above table, all opveratione are fixed=-
point binary, with a full-word length of 27 blts, Oper-
and fetch and operation decoding were not included in the
above timings. The short multiplication, Mg, may be any-
vhere from 1/3 to 1/2 the length of a full-word multipli-
cation, depending upon the method in which 1t 1s used,

If the maximum operation ratios are substituted into the

timing expressions in Table 6-1, the value of n at which

each method becomes as time-consuming as the STL loz-

exponential method may be estimated, The key to Table

6-3 18: (4) No crossover; takes lonzer than ln-exp,

(-=);x No crossover for reasonable size n; Takes

less than ln-exp, ks=approx. fraction of
In-exp. time,

* Per iteration
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Timing Crosse
over with STL

Padé Approxiration

Padé - one I

Truncated Serles: 1 mult,
2 mult,

Method log-exp.
method,
Binomial Theorem: n=2 (=);02
n>2 ny2a
Euler Formulae: $ Ipg n>4
Ilo $+
1o *
120 (+
. Ill i#
102 +

(‘)3 003

(35 9:3

n>2

Table €-3:

nth  Rooting Methods,

Timing Crossover Points for the

The stored table requirements of those methods

which require stored constants are summarized in Table

6-4.
/' |Approx, Table | Table Size
Method Size for small | Crossover
values of n with STL 1ln-
exp, method
STL ln-exp. 1037 ——
Truncated Series: 1 mult.,| 12,000-16,000 | (+¢);12=16
(n=2,3,4,5) 2 nult, 288-314 (=)30.3
Padé Avoroximation 354-1050 n>6
(n=2,3,4,5,6,7)
Table €-4: Stored Constant table Size Crossover Points

for tthe n
$} kX no crossover;

Key: {+
~)3k no crossover;

th Rooting Methods,
§reater than ln-exp,

k=ratio o

ess than ln-exp., k= ratlo.,

# indeprendent of n,
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Conclusions

Of all the n'h rooting methods examined, the STL
log=-exronential method has been found to be the most
versatlile, and 1n most cases the fastest., Traub reports
a similar concluslon in his comparison of programmed it
erative methods for the n'P roots [ié] versus use of
1n x and eX gubroutines,

For the sreclal case of the square root the bino-
mial theorem method is desirable from both the timing
and mechanization viewpolnts, In fact, the squarse root
could be incorporated in a conventional arithmetic unit
with the additlon of some logical circuitry because of
its close relationship to the division operation. The
nonrestoring square rooting method has been found to have
a tine adventage over the related restoring method, as
vas borne out by the simulation,

For the higher roots, the Padé aporoximation and
the truncated series methods are fester than the log-
exponential method, 2oth methods require tables of
stored constants correspondinz to each value of n, the
truncated series method rcquiring a lesser number of con=-
stants. However, the truncated seriea method encounters
difficulties when the operand is near the intorval end-
point 2-D when n zets large, whereas the Pade approxima-

tion has no such difficulties, and thus the latter is
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preferable when n 1s large,

The Euler iteration formulae are entirely too
time consuming to be mechanized because of the superior-
ity of other available methods. Extensions of Nadler's
method defy reascnable mechanization, and thus are not
useful,

It 18 recommended that the nonrestoring version of
the blinomlial theorem method be used for the square root,
For higher roots, the Padé approxiration or the truncated
series methods should bse used if the problem in question
1s sufficlently speclalized to require a large number of
nth roots for fixed n. Otherwlise, for the sake of maxi-
mum versatllity per unit equipment expenditure, it 1is
recommended that the STL log-exponential method be used,

Among other procedures which mizht well be consid-
ered in further study of this croblem are those making

use of unconventional number representations.
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APPENDIX

Programs for the Property Distribution

MAIN: Calls the input and initlalization routine, gener-
ates the pseudo-randcm opersznds, and takes their
square root one at a time, calls the subtotaling
and output routines every 1024 operands, Flow dia-
gram given in Fig, A-l,

INPUT: Essential duty is to set to zero all the data
areas before performing the experiment,

RT(2): Binary square root simulation program. Contains
counters that count up number of iterations, normal-
izing shifts, and corrections for each operand,

Flow diagram given in Fig. 3-6 .

PFXSRT: Identifies the range of each operand by compar-
ing it ageinst a table (FFXTBL), placing an address
modifier in index register 1 so that the results may
be determined versus operand magnitude,

SU3BTOT: Takes the tally of the fixed-polnt counters,
converts them to floating point, and computes the
output information,

RBIT = root bits per iteration;
PSHFT = shifts per operand;
PXITER = iterations per operandj;
PCORR = corrections per operesndj
FFREQ = relative frequency of operands.
OUTFUT: Contains the output formats, Prints out the
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quantitlies computed by SUSTOT every 1024 operands.
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CaTT INFUT ]
!

e

Generate Pseudo=
Random No.

!

Call RT(2);
Extract sq. rt.

1

Fill in Property
Dlstrlbution

Have 1024
Operands Been
Processed?

Call SUBTOT

Call OUTPUT

Is theé
Experiment
inished

End.,

Pig, A=1: Flow Chart for Troperty Distribution lain
Program, pp. 119-120 ,
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Frozrans for the Timing Distribution

MAIN: Calls the input routine, zererates the pseudo-
random operands takes thelr square root one at a
time, fills in the timing distribution, and calls
the output routine at the end of the experiment.
Flow dlagram given in Fig, A=-2,

INPUT2: Reads in the number of operands tc be processed,

RT(2) s+ Binary square root simulation program. Uses
index register 2 to count up number of time units
required to execute each square root, Flow dlagram
given in Fig. 3-6A.

OUTFT2: The timing dlstribution, IQ or JQ, is the tim-
ing density function. The normallized cumulative
distribution function 1s computed and placed in
XQ. All nonzero entries of JQ are printed out, and

all entrlies of XQ are printed out,
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Call INPUT2

First half
t experiment?

Generate pseudo-
random No,,
0,5 $x<1

1

NO

Generate pseudo-
randon No,,

0.25 £ x € 0,5
)

1

Fill in Tining
Distribution

Finished?

YES

Call OUTPTZ

END

NoO

Flg, A=2: Flow chart for Timing Distribution

Maln Program, pp. 139-141
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