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SUMMARY

This report presents the derivation of new equations for
determining the changes in the direction of a ray of light as it
passes through the atmosphere from an object to the observer. The
equations are applicable to objects inside or outside the atmosphere.

Equations are also derived for obtaining the topocentric

distance of the object as a function of the object's height and the
observed zenith distance.
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FORMULAS FOR COMPUTING ATMOSPHERIC REFRACTION

FOR OBJECTS INSIDE OR OUTSIDE THE ATMOSPHERE

I, INTRODUCTION

Existing astronomie refraction equations cannot be satisfac-
torily applied to objects at distances up to a few thousands of
miles from the earth because they were developed for a special use
in which the object is at an infinite distance. 1In this paper,
equations are derived that are appiicable to objJects both inside
and outside the atmosphere.

II. INVESTIGATION
1. Fundamental Concepts. Refer to Fig. 1 and let

A = observing station

S = position of the object

h = height of the atmosphere over the station

C = earth's center

A = distance from the satellite to the station

2,= observed zenith distance

AS= curve of the rs;* path

Slz any point on the curve AS ‘

¢ = astronomical r.fraction E

AZ- vertical of the station through C %

R = refraction to be determined é
X,y = rectangular coordinate system ;
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The observed zenith distance Z, is the apparent zenith distance
of the object when the ray reaches the observer. The true zenith
distance is the angle Z, + R, vhich the ray makes with the vertical
of the observer's station before it enters the atmosphere.

The direction in which the observer sees the object is along
the tangent to the curve at A. The origin of the x - y coordinate
system is at A, the y-axis is oriented tangent to the ray path at
A, and the x-aads is oriented 90 to the increasing zenith distances.

Let N be the point where the normal through § intersects the
y-axis. The desired refraction is the angle NAS. It is obtained
by equation

sin R = %N— (1)
We need to find SN, in oxrder to obtain the refraction correction, R.

Because here we consider zenith distances less than 75°, R is
alwvays less than three minutes so it can be expressed as follows:

X

tRem T
in which

X = SN (2)
We find x from

x=jedy (3)
so that

R=—A£-‘T.!‘edy (%)

in vhich ¢ is the angle between the y-axis and the tangent at any
point of the ray path.

Assume & spherical earth with the atmosphere arranged in
spherical layers. If n indicates the index of refraction of ome
layer, n + dn is the refraction of the next layer.

If in the first layer we have a zenith distance Z, the next
layer is Z + dg.
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From the law of refraction we have

sin gz + de) n
8in Z = n+ dn (5)

vhich we can transform as follows
dn :
l+decot Z=1--F i

80 we obtain for de

de = - tn 2 % (6)
Then
d.n H
€ = = Jtn A -ﬁ- (7) }
Insert equation (7) into equation (4) and we obtain:
1 dn
R sinl"JJtnzT’dy (8)

To solve equation (8) we need an expression for tn Z and another for
dn
n

To develop these we must first find expressions for the density
of the atmosphere (on vhich refraction depends) as & function of the
height.

2. Density of the Atmosphere As & Function of Height. The
following symbols are used:

p, the density of the atmosphere at any height

Py the density at the earth's surface where the cbserver
is located

h, altitude above the observer's station
B, index of refraction at the observer's station
n, index of refraction at height h.

In oxder to determine the refraction it is necessary to have
an expression for the density of the air as a function of the height.

e e st —————_— it <



We derive an empirical law of diminution of density from
observations and teke into consideration the fact that the power of
reflecting light ceases at about 60 kilometers,#

From the observed values of the density at different heights,
we find that p decreases expomentially with altitude following the
equation

'
:J'Ib‘

(9)

'olo
fl
o
o

o
in vhich ho is a constant.

The values of density p up to 20 kilometers follow equation
(9) with accuracy. For heights over 20 km the equation is less
accurate, dbut still sufficiently accurate because the refraction
is small and the power of reflected light decreases rapidly at
increasing heights (Fig. 2).

The constant h_, was computed by weighting the observations
proportionately to tge power of reflected light at the height
of observation. The value

ho = 9.240 Xm
and
1l _  0.1082
BT T (10)

Introduce this value into equation (9) and we obtain for the density
p

(1)

#The basic material for this development was obtained from
The Handbook of ics for Air Force Des , Geophysics
Research Directorate, ;Ir Force Cambridge Research Center, Air
Research and Develomment Command, Cambridge, Massachusetts 1957,
and from available balloon observation data.
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From Glandstone and Dale's law the values of the indexes of
refraction, in terms of the atmospheric density, are given by
equation
n;l=c=consta.nt (12)

in vhich
C = 00226

Use for p the value given by equation (11), and the index of
refraction from equation (12) can be expressed as follows:

n=1+0.2% Py e-o.1082 h (13)

in vhich the height h must te expressed in km.

From equation (13) we obtain

an 0.226 ~0.1082 h
. e
—_—= - Po 0.1082 dn (14)
-1082
n l+0,26p e
: o
but from equation (12)
0.226 Po=n -1 (15)
and because
1
0.1082 = o
b,
We can rewrite equation (1) as follows:
.h
dn -1l e h ah
= (m, - 1) ° (16)

n b, (1+ (no ~1) e Eo]




3. ression for tn Z. To find an expression for tn Z we
must coneider:

a. The maximum height of the straetus over vhich the
reflecting power can be assumed zero.

b. The maximum zenith distance zo.

For (a) we find

h < 64 ¥ (a7)
and for (b) we adopt

z, < 15° (18)
With these values for h and Z,; the maximum value of Z should be:

2=2 -6 (19)
in vhich

£ < 2%

Ve can then express tn Z as follows:
taZ=tnz, + A (20)

A= £(x) (2)

Expand £(x) using the Mclaurin's series. Then, we have

2
A= £(0) + x £°(0) +§ £' (0) + §3 £”(0) +..(22)

Difrerentiating equation (20), we have

2 az '
1+ wm®z) 2= t'(x) (23)
After the second differentiation

2
2% (l+tn22)+2(%) wz(lstm®g=r(x) (W)

ax



and from the third differentiation

9-3-2-[1“;:1""‘2.]+6tmz(14,1;1122)‘-1--299IE
dx3 d.x2 dx
3 (25)
+ 2 4z (l+tn22.)2(l+3tn22)=f"(x)
2 a%z a3
To find the 32, 42 42 ' o yge Snell's law
dx 2 ax
nr sinZ=n° ro sin z°= constant
Because we can express r as follows:
1+2 2%
r=r1, ( +r) (26)
o
apd for n
h
n=1+(n°-1)e Ko
Snell's law can be rewritten in the form
in 2
8in 2 = - \n°'n° + (a1
h -2
\1+;°}[(n°-1)e h°+1:|.
Place
h - 2 h
X = e -1 sh _)_ %
ot (R )["o o(1+3)-1]mma (28)
we obtain
-1
8in Z = sin 2, (1 + x) (29)

[ O
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It follows from equation (26) when h = 0

then, from equation (28)

and from equation (29)

frrm which £/ (0) = ©

From equation (29) we obtain for x = O

(8
[¢]

/\
AN

2 tn z, + tod 2,

To

n

(o]

(30)

(31)

~3tnzy (1+tn22zy) (2+tnC2) +2t32z, (32)

For x = 0, equations (23),(2k), and (25) become

£(0) = (1 + tn° z,) (%)o

a%z . :
£ (0) =(;2—é(1+tnaz°)+g(g‘x§{‘

e v e en g e e s i s s 1

10

2
tnZo (1 +tw?2)  (33)



-3
az
+ 2(‘&;/'0 (1+3tn220)

Insert the values of equations (30), (31), and (32) in the groups
of equations (33) and we obtain finally

£/(0) = -tn Z, (1 + to? 2,)
£7(0) = (2 tn 2, + 3 to° 2o) (1 + tn? 2) (34)
£(0) = - 3 tn Z, (1 + ta® 2.) La+tn220 (7 + Stnazo)]

Now, introduce the values of equation (34) into equation (22) and
equation (20) becomes

2
X
th=th°-xth°(1+tnazo)+-2--tnzo(l+tn220) (2+3tn?2)

-?253 tnz (L+tnfz) 2+ P2 (T+5w°2) |+ ... (33)
If we introduce
A=tnz, (1+tad2)
B=3A(2+3t?2) (36)
c=Ai:1+%tn2zo(7+5tn2z°)J
equation (35) can then be rewritten as follows:

thz = thZ -xA+xX°B-x3C+... (37

1
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This equation (37) and the equation (16) which can also be written
in the fom

-h .3
B e (g - 1) ¢ B [1- (20 - 1) ¢ B ] B (38)
are the two expressions vhich must be inserted into equation #(8).

dy remains unknown but can be obtained from

d.b
cos Z

ay =
Its value is found later. Let us first solve equation (7)

4. S8olution for Jtn z 9'2. Introduce into equation (7) the

values given by equations (37) and (38), and we have

"-tnzj——-(no-l)A xe [1-(%-1),'-?;0 ;‘3
2]

- -B -B
+(n°-l)BJt2e ho‘:l-(no-l)e ho]%% (39)

- h h
-(no-l)CJx'?’e'i'o[l-(no-l) e-ho]%l';'

The solution of the first integral is
el J:;n%-na "
n, n 2 n2 > n2 n2 ( )
o}

The indexes of refraction differ from unity by a small quantity

n < 1.0003
Indicate the small quantity .0003, by y and we have
n=1+Y (4)

12




in vhich y has the values given by equation (26)

h
y=(n,-1) ¢ n, (42)

so we can revrite equation (40) as follows:

2 2
n® -n° - -
o _ L eva*t Y |1

ho n 2

Neglect terms of the second power and we have

2 2
Bo - 1 T3
-2—%-;'2'=(Y°-Y)L1-5(Y°+Y)] (43)

Y, i8 the value for h = 0. From equation (1)
Y =n -1 (1)

Introduce the values of y given by equations (4b) and (L2), and
equation (43) becomes

2 _ 2 h h
n.-n - - - o

o (-1 (1= By [1-3(my-1) (e Bo) | (b5)
2n°n

With this value the first integral of equation (39) is
h
dn -
-tnzf—,;=(no-1) tnz (1-e h) [1-%(:;0-1) (1+e‘i)] (46)
Solve the second integreal

11=Ixe'§°[1-(n°-1)e‘%o}%§ (b7)
[+

13
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in vhich x is determined by equation (28)

(no - l)

x=-(no-l)+

BoTo

Introduce the value of x into this integral (47) and we have

II=-(n°-l)Je-§o[l-(%-l) e-%o]

§|E

. h -
ﬂ’_'_l.)_.]e-aho\_l_(no_l)e'

| N

h
b, i—:-
(48)

SR S -h
L Jhe hy L1 - (n, -1) e ho]%
)
h

o L1 - (ng - 1) e Bo |

=2 1-3

+ no-lj'he-
Doro

& B

After rearrangement and because (no - 1) is less than 0.0003,

1l
no+(n°+1)=m+(n°-1)=l

and
1
;°=l-(no-l)
we obtain
(o -1) th _1 (o, -1) B 22
II = - °h° J e B, an+ °h° JoePhom

h h
- = h h -
o ¢ Bo* hers * (B - 1) e Bo

S S S s e e

ps ARG 15, o el b e
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2 n h
- l - -
(no ) Jo . 3

Integrate to obtain

h - »h
II=-(n,-1)L1-e ho]+_(_n_°_2_'_ﬂ (1-e2£o)
2 h -
ho - h ! (no‘l) r -3 =
——(l-e b, (7T + - -
+ g l-e Bo (g + 1) o e ho | (u9)
(n°-1)2b°" 3 h
STy b-ePh, (1e33) ]
vhich is the solution of the integral of equation (47)
Solve the third integral of equation (39)
"5 _h T -8 lan
R W k= (50)

From equation (36), for the maximum zenith distance Z = 75, tn Z =
3.7, 80 taking tn Z = b, we have from equation (36)

2
A=tnZ, (1+¢tn z,) = 68
B=-§-A(2+3tnazo)=1630
but because

(no - 1) < 0.0003

15
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all terms containing (n, - 1)3 can be neglected, and we have for the
maximum value

B (n, - 1)3 < 0%003

(np - 11 he

X2 = -2 nor * ngrg (51)
Substitute equation (51) into (50) and we obtain
III = Mj.he-%odh+ -g—rl J.hze-gd.h
) Dy To by ng r§ ho Bo
(no"l) n _2_h_
- 2 In% e Boan (52)
Do ro ho
The solution of these integrals is
h  _h -h
rohe hodh=h§[1-eho(%o-l)] (53)
h
-2 r h .2
°h2e hodh=h<3,L2-eh(2 2-+2)] (5%)
b, b,
& 3 2oh
J‘:hae hodh=!'-ﬁ-[1-'= %(2;2*«2- +1)] (55)

o

Introduce equations (53), (54) and (55) into equation (52), and we
have

. _h
Ins-M [l-e io(‘:;o+l)]

Dg ¥o

16



2
, L b T
2 2
(no'l)hgr -gﬁ_
- ——— ] . ho
hnorg

BBk L g]
;_2-e + 2+ + 2 :
e Bo

ne n ]
2 + 2= +1
( ;f he ) !

(56)

The last term equation of (56) has no influence in the refraction
correction. By introducing this term into equation (39) its influence

is given by

2
dR3=—-B—-(-n—o-:—-;]—.)—— '_1-

ohol &

hno

The maximum value corresponds to & maximum value of h = h,.

It follows that

- 2
[l-e E;(?.‘E-g-q- 2%0
Fortn 2 = 6 (z = 8095)
B = 4218
Retaining
ho
EOT; = 0.01
(n, - 1) < 0.0003
we obtain

dR3 < 0”001

17
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Similar computations for the second term give

for 2 = 75° dRp < 006
v (58)
for 2 = 8195 dRy < 3“8
For the third integral we make
3
%3 = T—h 3 (59)
By Yo
', BT -37an
IV=Jx3e ho L1 - (ng -1) e ho]i:
h
v- i [P (60)
nO hO rg
neglecting the second term. The solution is
h3 - E hg - .13 h2 h
Iv=-—5°eho+3-—-32-e ho (3 + 25 +2)] (61)
DoTo DoTo hg °

Multiply equation (61) by -C(n, - 1), equation (49) by -A(ng - 1),
the first two terms of equation (56) by B(n, - 1), and add to equa-
tion (46). Then, equation (39) can be writfen as follows:

.

-b -h 1
c=(mo-1)taz, (1-e ho)ll-3(ng-1) Q+e p) |

r .h - 1) Py
+(n°-l)2A;_1-e 5o]- 'S'n—o—g'}')— A(l-eeho)

(no - 1) Ay T B o ) ]+A(n°'l)3 A -3k ]

- -e By (=
DoTo - o(ho 3n, Po .

18




3 .

+h°;n°'l) '1+—][1-e'3h(1+3h)]
- h

- a(z:rol) hola[l-e o(K°+1)]

+ (n- [2-8-— 2+2h42>]
no

. (n-l)Chg '%
norg

Mo -Dem [, -3 (B b )
norg 2 -e o\hg 2ho 2 ]

Collect the constant terms in A, and we have

ng -1
CA‘-'(no-l)[no - 2 “n

Iet CB be the constant terms of B. We then find

r e
. h
Cy = 2(ng - 1) 20 - (n,-1) Mo ]
n§ r5 Bo To
(0o - 1) n3
=6 —
Ce n, ;g
_h
Let E;, be the sumation of terms in e Eo; Ep of the e
3

be of the e hg, We then obtain

19
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E} = -(np-1) tnz, +A [(no - 1) 32%; -
6C (n, - 1) b3
no 13
+ - e hO - (no'l)hg
23 [ (n, - 1) o 2 |
2
-1
E2=-(i2——)- A4% (n - 1)2 tn 7,
hy (n, - 1)3 1
E3 = A —9""n°""" (1+}-°)
h

(210'1)2]
foo 1"

(65)

(66)

(67)

h -=
IetMlbetheamnoftemsoone hoandM3thesmoftemsof

3k
h e h,. We then have
h,
M = (n - 1) 33;5 A+2B [(n° - 1)2 Es%; +

2
M3=-;-A2n'—(%-—']i (l+%°)

and letting N be

E-D% ] g

25 73
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3mo-nh3c (o - 1) ho B o)
n, T3 I !

N =

Substitute equations (63) to (70) in (62)

c=(n°-l)tnzo[1--g-(no-1)]A0A+BCB-CCC

_h pR -3b
+E e hy+Eye 1;o-E3e h,

o ()
+ My 'ﬁoe ho-M3-£°e ho

¥ _h
+N;ge ho

This equation (71) gives ¢ &8 a function of the height h, vhich we
must introduce in equation (3) to find x. Then

x={(n’.°-1)tnzb[1-%(:10-1)]+A.CA+B.GB-C.CC}Jidy

2h

b ay - B3|

y -2 ¥ 3B
+E1I°e hody-rEaI:e o © h, dy
(12)

h
v -= y -3b
+H1.l° %oe hb dy -M3J‘°%°e hody

o
e

+N“'y ay

o

cF’o' 5

21




The first integral is
Iy dy = y
o]

To solve the other integrals we need an expression for dy. We find

To find cop 7 Ve use equations (37) and (29).

tnZ=tnZ, -xA+Bx°-Cx3

in Z = sin Z, (1 + x)'1

By division we obtain

1__ 1+x  xQexA, 02928

co8 Z  “cos Zg  sin Z, 8in 2

h
=} -
Because in all the integrals the exponential e ho (m = 1,2,3)
decreases with increasing h we consider only terms containing

x2 and neglect the other terms containing x3 and so on.

Fram equetions (36) we obtain

A 1+l
sin 2, cos 2,
(75)
B (1 + tn® 2,)
1 \- 7 % S 2
sin Z, i} 2 cos 2, (2+3 tn zo)

22



By introducing (75) into (74) we have -

2
tn~ Z, x° 2 2
2 e - 3 tn“ 2 6
cos Z  cos Z, X Cos Zg * 5 To8 g otn Zo (1 + tn® 2Z,) + (76)

Multiply this equation (76) by dh, and equation (73) can be written
ag follows:

tn 7, tn® 7, (1 + tn® 2,)
- ¥ ©os Z, dh + -Z- x2 zocos 7 Zo dh (77)

dy =

cos Zo

Because all the corrections are small ones and decrease with in-
creasing height, it is sufficiently accurate to retain

h
N

-(np - 1)

G (78)

Substitute equation (78) into (77) and we have

tn? z, tn? 2,
de""co::.hzo*'(n‘?":") coezc,‘m'cosZ;'nt,.'t'o“'h
(79)
2
+%tnaz° 1+ to z°). n? dh

co8 Zo Do Yo

Introduce equation (79) into each integral of equation (72) and we
have for the second one

23
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y -2
By JZe b, dy = [14(%-1)'@ zoj_[he hod.h

cos

Ey t0 2, h (80)
= ngT, COB Zy I he

Ey tnf 2y (1+tn22) th , _B
n§r§ cos 7 J.he dh

nlw

Integrate and we have

Elj e hody-coszo[1+(n°-1)tn2 ][1-e'%°]

By t 2- _h
afsdligo @

2 2 -b 2
 Frwt (1t z°)n§[1-e ho(fg'g Eho+1)]

ng 15 cos Z,

For the third integral we have

B, [ e‘g‘w E, Ll*(no-l)tnazo]re'% ab
(*]

cos Z°
w2z, 1 (b 2% 4
E, T, T o ¢ by h an (82)

‘ 1+tn220) _2.1.1.
v 3 By tof 7y o _l;gj‘h n’e hy dn

the solution of which is

2k
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h + - 2
E2 JZ “R Bo ay = Ep Ll (n:os%z = ZOJ ‘:'9' ['e-a %u 1]

coBZO hrno (83)
(1 + to®2) 3 -2 h®
+§Ezt2z° =55 % __’b._a [1- ho(@ Tp + 22 + 1) |
BoTo
Solve for the fourth integral and we have
h h
-3 = E . h -3-
e hocw=.€6_z_zol.l+(n°-1)tn2z°]]°e
Eytn?z, . _3
3 -
+n°r°mzbjoe hg . hdh (84)
2 h
.3 o (1 + € z,) 1 j-b -3= 2
E3tn 2, o5 I, ngrg oe hy 1™ dn
the solution of which is:
y -31 2
-E3J'°e h, dy = 3cosZ°[1+(n° 1) tn z.,,][ -1]
2 2
Eq tn i
3t 20 3 p
"‘mol_l e h°(3h°+1)] (85)
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For the fifth integrel we have

e Yppiia :

y -k [1+(n°-l)tnaz° -h
leoie h.(,dy=Ml-r — ]J.:%oe hy dh “
a
2 _h
e Bl Tl PR, (86)

ngY, cos Z, Yo Do z

2 2 -h
, 3 My tnf 2 (1 v tn ZO)fh B3 e By an
2 n212 cos 2z © hy

the solution of which is:

h - h
Yh_ "h Myho [ 2, -z A
leogoe hodh=cosZ°Ll-r(n°-l)th,°]Ll-e ho(h°+1)]
M ol 2, -2 2y
e [2-eh°(;°g+2h°+2)] (87)

- M, tn? Z, (1440 2,) b3 [6
2 ng rg cos Z,

h. 2

- 32 h3 h h

-e hy(=x+3=2+6=+6)
h§ hy by ]
For the sixth integral we have

h
Y n -3 = M
-M3 [0 e Boans -3
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2 h
M2 tn€ 2 h .2 -3-
3 0 h
|~——-—-—-n°ro So8 Zy 4o 1, e Dhyan (88)

2 2 h
3 M, tn® Z2,(1 + tn° 2, -3 =
3 0 )j*h w3 3%
2 n2 xS cos Z, o hy

the solution of which is:

Y - My T 2 32 on
My B e hoay-toM Tuy (-1 wlz][eBRGE -1]

‘o Do 9 cos Z, -
M tn° % . b5 -3k w2 n ]
¥ 27 nyry co8 2, 2-e B (9 ;g -6 T"<:z+ 21 (89)

M., tn?Z, (1 + tn°Z,) 3B 13 2
3 0 0 n3 [e ho(27 T3t h
(o]

+
162 n2 r2 cos 2, hg
h
+18= +6) -6
6 -
and finally, for the last integral we have
. 2 -h 2 _E
Y h N_ T 2 J‘hh
NJOIIEG hody=-m°Ll+(n°‘l)tnz°] o;.?e hodh
2 h
N tn™ Z, J‘h n3 -z
T DTy C0B Zg Jo .3 © % (%0)

n3
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3N tn? Zg(L « tn® 2Zy) m 4 - B
[o 3 =
+2 2.2 o;geho

ng To COB Z,

the solution of which is:

h r h
Nj —e hcdy=c};zl;°[l+(n°-l)tnzzo-]l_2-e ho('? 2{;°+2)]

N tn2Z° ho - E h3 h2

s cosz°°"°‘;',f*3h§*6h°*6"6] (91)
3 b tn2y (L+tn2,) b

+ 24 - ho('1;+h

2n§r§ cos Z, 2 © Q

2
+l2%+2’+%°+ 211»)]

Use the abbreviation
t=t%tn ZO

end add the equations (81), (83), (85), (87), (89), and (51). Then
equation (72) becomes:

x={¢dy= {(no-l)t[l-g(n,-1)]+A.cA+B.cB+c.cc}y

+ B ——70[1 + (ng- 1)t ][1 -e ho] ___.:'i._ re ho(%on.)-l]

n,Tr,cos Z°

28

o G R R 5 20




E;£5(1+t7) hg .h 1 ® h
- —_ 4+ = + 1
ng rg cos Z, [ ¢ Pl 3 hg h, )]
r 2] h
. Ll + - 1)t%2 r-
+ é E, h, ((22: Zo) (1 - 2 °)+ E2 = ___roco_.!s y Le ho(% -l)]

2.2
lg, M rl-eh_o'(3— +1)]
9 ner, Cos Z -

20y , 42 3 n2
+:_-1-_8E3t£l.67':) n:l:‘a Le ho(9h§+6-ﬁo+2)-2]

h
+M15°—292; [l+(n°-l)t2][1-e-so i+1)] (92)

“1"2115 e

e o(—+29-+2)-2]

By

4

2 2) p3 -2 w3 e
+-3 t(1+t)h°r6-e E!3(""-'-3-13-+6B+6
2M1n§r§coszo - ng h§ Bo ]
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PR

h
3 B 7 2]" 3% .. n
Y9 E?s_Z;'Ll*(no'l)t]i.e ho(3ﬁo+1)-1]

2 2 h
M3 ot r -3+ 2 n
3 B, [2-e ho(g-:—é+6go+2)]
)

+

27 nyry cO8 Z,

3 t (1+t) h
% T [ h°(27—3+277§+185n+6)-6]
N h DU RS S

+cos;. L1+(n°-l)t_-_l[_2-e hO(;g+2£°+2)_.

Nt hy r-= h’ he h
+noro°°3ZoLeh°(h§+3hg 'ﬁo*6)-6"
342 (1 + 2 h 3 2
+%Nh° ( + ) 2h-e-ﬁo(9;+h1—1§+12h—242hi+2h]
»2 2 cos 2, he ha nZ |

To obtain the refraction correction we divide the value of x
by the distance A , as was indicated in equation (4).

In order to comsider the terms necessary for Z - 75° we must
campute the values of Ey, Ep, E3, My, M3, and N. We find for Z = 75°

El = 233’
E, = 0.6
E3=0

lﬁ. = 5.0




1.0

w
i

N = -0.05

The term in the right hand of equation (65) can be neglected because

its maximum value reaches
3
6C (ng - 1) % < 0403
RyXy

and each coefficient of E, is less than unity.

Since we hold as maximum zenith distance Z, = 75°,
not reach more than 3 minutes which permits us to retain

A=Y

does

with an error less than 0.1 meter for the maximum value of A (vhen

the object is at the limit of the atmosphere).

Then, the final formula for computing the refraction for an

object inside the atmospherc is as follows:

R=4, (n, - 1) th°+Al(n°-l)tn3Z°+A2(n°-l) tnszo

E, by -
+—l'a;-io[(l+(n°-l) tnezo) (1-e ho)]

B hgtn 2, , _h .
€ ho(-l-; +1)-l_"

0

<

lnorol\coszf,"



Ll _ DBy T -84
2 A(.\cosz‘,"1 ¢ Bo_
(93)
M) hy .h
' Acosz[l'e ho('£°+1)]
3 h
M h° r-3— h + -
S heenZ, S M D) 1]
r .h 2
+N/~‘2252o‘-1+(°°'1)“22o][2-e ho(-:?+2%°+2)]
in vhich
A, = +0.99827
A, = -0.00130

A2 = +0.000006
If we express A in kilometers, and holding
hy= 9.24 Jm

2
B - 0.0134% ¥m

BoTo

1
§h° = 4,62 Jm

—;-h°=1.02‘7km '

3




e

The height of the station hy, does not affect the results except for
extreme heights. If this is so, we replace h and r, as follows:

h =hg - he

noro = 6372 - ha
vhere

hg = height of the object

hg = height of the station
both hg and h, are expressed in kilometers.

Equation (93) can be rewritten as follows:

R=Ay (g - 1) tnZg + A (b - 2) tn3 2, + Ay (ny - 1) to? 2,

9.24 E, o T
+Acoszo[l+(n°-1)tn Zo_ L1 -ce ho-‘

E ‘l’.naz° _h
o013 2 b,y -2l

Acos Z, [e ho(ho ) -
4.620 E -h |
201 L e ) (94)
A cos Z,
9.2k M " .k 9
Acoszo“l+(n°-1)tnaz°‘][l-e ho(%o+l).4
1.026 -3h
+Ac°sz°[1+(n°-1)tn2z°][e %(3%:1)-1}
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9.2k N T N2 T -= ' hn? _n -
—.-—A——Eas——z-ol.l-i-(no-.l.)tn Zo_jL2-e h°(—h§72-ﬂ°+2)-j
A, = +0.99827
A, = -0.00130
A2=+0.000006

5. Refraction Viewed from an Object Inside the Atmosphere.

The refraction viewed from the object is the angle
o = NSA
of Figure 1. We see that
o =¢~-R
The angle ¢ can be computed by using equation (71).
Then the refraction ¢ can be computed as follows:

9.2h0Elr
O=Ele B ———————

-h
A cos Z, L+ (ng = 1) ta® Zo] [l € ho]

CF‘I:J‘

+

2 h
E, tn” Z, - = h 1
0.0134 A*cos [1 -e n, (-};o +1) |

22 44 r
+E26 -—.——2-0-—-—— E2Ll-eh°
b o8 7,

3k

(95)

(96)

(PN

S

|t v b e S0 ¢ 2B oA N S 3 R




-2 9.240 M h

.13 1 F' n
+Mlh°eho m 1 (no-l)tn Z:][l-e hy ( +1)]

n -38 1.026M5r ) b o]
M3h<>e o~ A cos Z, L +(ng- 1) tn® ZOJ[ h°(3h° ) - 1!

h

e -2 9.2 o T -

FNZC M hcos g, Y (Rm DT Z (2 - e h°(h§+23041)]

As always A must be expressed in kilometers. The refraction o is
always less than R, consequently

€
6>R>Z

6. Computation of the Distance A of an object inside the
Atmogphere. When the distance A is unknown it can be obtained as
follows:

dy cos Z
From
i tn 2
cos Z 8in 2
we have found
1.1 - x tnz 3 .2 tn° 2,
cos Z  cos Z, cos Z, 2 cos %
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4

2
3,2 tn. 3w 3% . 2
+2x‘—=—°—97;+x3c0820(14tn Zo) + aeee
vhere
(g -1) e By (1+2)
X = + - e 0 L
NyTy fo To
/L -
xm=-\n°r°> m=2,3....

After these values are replaced and integrated we find

2 2
_h 1 p® tnZ, tn° 2,
L= To8 Z, 2 ngr, ©o8 Z, +(ng - 1) h cos Z,
2 2
(mg =) tnazo_(no_l)ho tn” z,
To cos Z, n,r, o8 Z,
2
T Tl L (1 + tn® 2,)
2  nyr, cos 2,
-1 2
.3 (ng )hftn Z°(1+tn2z°)
Dy To cos Z,
3 2 (97)
1 _h? "% .2
‘222 e V%)
h, tn2Z° .h
+ (o - 1) icosz° e b

e oot oK it Do T WSS S AL e o T




T BMRETREE T e o -

H?(no-l) tnazge--g

h
- +1
nyT, cos Z, o ( h, )

3
. 2
2

2
(ny - 1) 2-.}.1. tn” 2 2

-3 noTy hy e hy ( + 1) ;;;‘gf (1 + tn” 2,)

d"flb‘

7. Working Equations to Obtain Coefficients E,, E,, E3, M,

M3, and N. These coefficients can be computed from the following
Working equations:

E =-(n-1)tnz + (010680 - 0700010 tn? 2, ] tn 7, (1 + to? Z,)
E, = + 07033 tn 2, + 00081 tn3 Z, )
E3 = + 07000005 tn Z, (1 + to° 2,)

(98)
M =+ Fo10849 + 07000k €2 %o tn Z, (1 + to° 2,)
My = + 0"0168 tn Zy (1 + tn° Z,)

N = - 0000006 tn Z, (1 + to® 2Z,) (2 + 3 tn? 2,)

8. Computation of (n, - 1). The refractive index (n) of

standard air at optical frequencies can be obtained from that given
by Barrel and Sears

16.288 0.
(ng- 1) 107 = 2876.0b + I Q-igé (99)
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where

A = the light group wavelength in microns. This equation agrees to
1 in 10° over the vigible spectrum.

ng -1 P 0.000000055 e

(B = 2) = B o - Sl vhere (200)
n, = refractive index under ambient conditions
n, = refractive index in dry air with 0.03 % CO, at NTP (0° C, 760 mm

Hg) for light of the group wavelength employed, as calculated here

t = temperature in centigrade
P = atmospheric pressure in mm Hg
a = coefficient of expansion of air (o = 0.00367)
e = partial vapor pressure in mm Hg

Table I gives the vapor pressure corresponding to saturation at
various temperatures

Table I. Pressure of Saturated Water Vapor

Temp.in 0° C mn of Hg|
-5 3.02
0 4.58
5 6.54
10 9.21
15 12.79
20 17.55
25 23.78
30 31.86
35 k2,23
4o 55,40
"38
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let us compute an example

The following conditions are chosen &s being in effect at the
observing site:

¢ = latitude 360

P = atmosphere pressure 760 mm Hg

t = temperature +10° ¢

RH = relative humidity = 60%

A = effective wave length 0.578

hs = height of the object = 13.96 km

%, = observed zenith distance = 70°

hg = height of the station above 0.1 km
sea level

Computation of the Refractive ex

(ng - 1) 107 = 2876.04 + 16;288 + 0'?6 ‘

(ng-1) p 0.00000055 e
(no-l):1+ -
at 760 l+at

\ = 0.578 16;588..........2;9.26&
A2%= 0.330625 Qil‘ﬁ 1.2k
A
L 7 _ 2876.0%
A= 0.109313 ( - 1) 10° =
2 & 292655

n, - 1 = 0.000292655
a = 0.00367

From Table I, for 60 % R. H. and temperature = 10°
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no-l
(no-l)”

Computation of the Distance A

5.53

0.00028180
- 58”1254

13.86
0.001k50
0.002176

1.5
Lo.5239
-0.3328
+0.0862
-0.0575
-0.0001

-0.0024

e tea



tn2
) n"= Zg 2
+ 3 8ghy (ny - 1) oo Z, (1L : tn” 2,) +0,0022 km
tn2 7
1 2 0 2 . “
v 3 h 8% o= Ze (1 + tn" 24) +0.0062
tn27 -B
+ (ng - 1) by 2220 e hy +0.0128 "
cos Zo
2 h
tn -= h
* % (ny - 1) hys, % e hy (= +1) +0.0001 "
cos Z,_, ho
2 h 2 tn® z,
iy n
- -1) hs, e h -+1) (1 + tn“ 2 2  -0.0012 "
3 (ng ) hys, °(ho ) ( °)cosz,,

A=U40.2374 xm

Computation of the Coefficients E,, Ep, M, M} and N

Equation (98)
2. 7ThT4TT 2 + 3 tn%z, = 24.65
7.5486 tn Z, (1 + tn%%,) = 23.49
20.74

g g
&g

&

(o - 1) tn 2, + [070680 - 0"00010 tn°Zy1 tn Z, (1+tn®Z,)

t
[
il

Ey = -157% 118

= 40”033 tn Z, + 070081 tn> 7,

=
n
|

Ep = 07259

L1




g 2 2
M, = +[0”0168 + 0"000kk tn” Z4] tn Z, (1 + tn” Z,)
M, = + 27072
My = +0°0168 tn Z, (1 + tn? Z,)
M3 = + 0”395
" 2 2
N = -0"00006 tn (1 + tn® Z,) (2 + 3 tn"~ Z,;)
N_= -0%035
Computation of Refraction R
Equation (94)
A, = +0.99827 cos Z,
A, = -0.00130 tn 2,
Ay = +0.000006 tn3 z,
h = 13.86 tn’ Z,
- E
hy = 9.2 e h,
-3
A = bo0.237h e~ h

A cos Z, = 13.7620

0

1+(ny- 1)tn2Z°

L2

]

1l

0.34202

2. 7uThTT7

20.74

156.6

0.2231

0.0111

1.0021



E; = -157.118
Ep = +0.259
Ml = +2.072
M3 = +0.395
N = -0.035
_h
1 -e hy = 0.7769
-h
e /% ( % +1) =1 = -0.hh22
(o]
-3 h/h
3B 3B gy - -0.93%
h,
-h 42
2 -~ e ho(-h-oé+2—12) =+0.3825

(n, - 1) Ay tn Z,

+ (ng - 1) Ay tndz,

4+ (ng - 1) Ap tnSZO

9.24 E; T
" A cos Z, ©

tn2
i 0.0134 E;

A co

4.620 E2 '-.
Tewr,

1+ (ng- 1) tn

Zg T

e
[
8 Z,

e B

2

h
hO

h
r - -
zoj il -e hoj

h q
( -ﬁ'°+ l) - l.j

43
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-1.568

+0.055

+0.511

+0.068




ey, (o) i) (1 B ()
1.026 Mg - n

R = 77002

Computation of the Refraction €

Equation (71)

-
h s o
- -2h

e hO

-3h

e h,

(ng- 1) Ay tn Z,

: 3

+ (ng- 1) Ap tn’Z,

.h
+ El e ho

oh
" E2 e

LL

+0.616

+0.028

0.2231
= 0.050
= 0.0L1
159.422
- 1.568

+ 0.065

-350053

+ 0.013

g FON l

o s




-E3e o 0.000
h "13 6
+ 2 e h + 0.693
" b
e
-Mg 2 e B - 0.007
by
, .Bb
+N(-1-1-) e Ny - 0.018
'
1231537
e =2’ 03754
Conmputation of the Refraction o
b
E, e hy - 35.053
9:240 1+ (ng- 1) to° 1 '27 82.126
-Acoov[ P~ %][-eh".j * o
2
nufhr B og
1013&A°°' [ e by ( by 1)] - o.51n
28
+Eye h, + 0.013
h.620 B, .2
-Aco-zo[l'eh“] - 0.068
.h
h
+ - e h° + °o®3
&

L5




.2k0
- Zioa:j[l + (ny- 1) tnazc] [l -e

h
-32
-Mlhe h,

h
- 1_22_6_&1 [l + (ng- 1) tn2 Zo] [e-3 rl.o (3 %;- 1)- 1]

A cos Z,

N

~ Acos Z,

9.2k [1+ (ng~ 1) 151127‘3][2""-%° (3?4-2%04—1)] =0.009

c=¢~-R
o = 46”52

Astronomical Refraction

5o
h°(§°+1)]

-0.616

=0.007

-0.028

-0.018

k6452

eg = (0o - 1) Ay tn 2y + (ng- 1) Ay tn3 Zy+(ny- 1)A21'.nsz°

¢g = 157"91
The set of values obtained are as follows:

¢p = 2/37"91

¢ =2'03"54

L6

o by 0 g, AR il Bt mmq‘l



R =117.02
c = LU6.52
le¢

R>2

117402 > 1’0148

9. Refraction Viewed from an Object Outside the Atmosphere.

The foregoing equations are correctly applied to an object inside
the atmosphere for zenith distances less than 75° and with the
height of the atmosphere of 65 kilcmeters, which may be regarded

as the limit
refraction.

beyond vhich the air does not produce any appreciable
For such conditions we have expanded tn Z in series.

An object outside the atmosphere can be treated as follows:

In Figure 3 let 8 be the object. There is & point 8, at

which the ray coming from S reaches the upper layer of the atmosphere

after vhich following the curve S,A, it reaches the point A.

The x and y coordinates have the same meaning as before.

At the

limit of the atmosphere, formula (94) gives R,.

¢g = TS is only the astronomic refraction.

The refraction we are looking for is Ry = TAS.

From Figure 3 it follows that

sin R. = -:-!
’ (101)

sina°=;::

b7

B A e

O

-—p——



Fig. 3. Fundamental concepts in relation to Fig. 1.
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but

xg = NT tn €g

NT = NP + PT
and

X

NP = 0 eq
80

x'=x°+P1‘tnc‘
then

I T <
8in Rg A, +A’tn¢a (102)

Because Rg or R, is & small angle of about 3 minutes for Z, = 75°

PT=Ag- 4,
80
A_- A
einRg =2 + -2 "% tne, (103)
8 A
The refraction R, can be obtained from equation (94) without considering
_h .ah
the terms vhich contain e § a.ndesEo, because at the height of
8y, they become extremely . 8ince we can write

¢g = (ny- 1) tn [1 - 2 (g~ 1)] + A.Cy + B.Cy + C.Co
We can write equation (93) as follows:

2
B[ B 2 tn
R°g¢‘+.A_;[;-;-i°(1+(n°-l)tn z,-b;;?:n)]

kg

et s




but

x'=l|'1'tn€g
NT = NP + PT
and
Xy
WP = fme,
80
x!=x°+1’1‘tnca
then
. N <4
sin Ry As + A'tn“ (102)

Because Ry or R, is & small angle of about 3 minutes for Z, = T5°

PT = A, - A,
80
A.- A
einRg =2 + % % taeg (203)
Al A.

The refraction R, can be obtained from equation (94) without considering
_h 2h

the terms vhich contain e h a.nde35°, because at the height of

8o, they become extremely . 8ince we can write

€y = (no- 1) tn [1 -2 (no- 1)] + A.CA + B.CB + C.CC
We can write equation (93) as follows:

BB 0 t?g o Bt
R, = ¢a z-o-;.—z-o(l (ng- 1) @ 2z, kno_r:g)]

k9

B T

SN




(104)

Because
x°=A°.sinR°=A.R°

it follows that

ma
ety h Loy 00 @ 0wt g 2]
(205)
+1p, B B . %
2E2cosZ° k! cos Z, M39cosz°

Indicate by = all the terms of the right hand free of Ao and we
have
x°=C.A°+2 (106)

Now, introduce this value x, into equation (103) and we obtain

Rg=ta—+3,  * g % (207)

R' = €a 4% (108)
because
€= ¢,

50



Equation (108) shows that the refraction outside the atmosphere is
obtained by introducing & correction to the astronomical refractiom,

by an amount givenby—g— .
Ag

Since A, can be any distance, for an object at infinity
2~ -0
Ag

consequently,

Rg = €4
vhich is the astronomical refraction.

10. C tation of the Distance A of an Object Outside the
Atmosphere. Equeation (97) is not good now for computing the distance
ol an object outside tne atmosphere because it was developed to be
used inside the atmosphere. For a height over 65 kilcmeters the
following equation must be used:

A=3° 7 cos 36 cos (y - o)
where
hs
l=}-

€q = astronomical refraction

Z - arc sin (ST sin %)

¢a = (ng= 1) A tn 2y + (ng- DAyt0zy+(ny-1)Agtn’s,

y= & (2 + cq + 2)
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e

o always is a small angle (a few seconds) 8o we can assume ¢ = O for
camputing the distance A , with sufficient accuracy for obtaining R
or g. To obtain an error dR = 001 the error §A in A reaches the
following values for a zenith distance Z, = T0°: ‘

H = 100 km is 64 = 200 meters

H=1000 km 18 54 = 10,000 meters

If it is required to obtain A with higher accuracy, in equation (109)
the value of ¢ computed from equation (111) must be introduced.

Then, the refraction R can be obtained by using the following
equation:

R= (8- 1) Ay tn 2, + (ng- 1) A tn3 2, + (ng- 1) Ay to’ %,

9.24 -
+-A_3?8f%° L1+(n° -1) tn"’z‘,]

B, tn® 2 . h.62 B,

- 0.0134 ez reez (110)
+9.2“‘"1 [1+ (no _1) tn2z°]
A cos Z, r
M3 L1+ (ng- 1) tnzzo] 18.48 N
- 1.026 A cos Z° + A cos zo

n. C tation of the Refraction Angle g of an Object outside
the Atmosphere. s refraction is the angle g. It can be obtained
by using the following equation:

9.24 B, 0 B, to°
g = -AcO§Z°[1+ (no-l)tn %]4-0.013“7—;.——%
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k.62 £, M L1+ (Bg - 1) tn? Zo]

- 9.24
A cos Z, .

A cos Z,

tna Zo] 18.48 N

+ 1.026
A cos Z,

" Acos Z,

Example of Computation

We assume the same data as used for computing R and ¢ for an
object inside the atmosphere, and change h, to:

a8 before

and assuming

the constants used are:

-2
n

100 kilometers

hg = 1,000 kilometers

Zo = T0°

b = 0

El = « 1577118
Ey = + 0.259
Ml =+ 2.072
M3 = + 0.395
N =- 0.035

Y, = 6370.06 km

23




Camputation of the Distance

N,

sin Z,

sin 2

® 2

j—
o]

l+ co8 9

COB v

A .cos Z,

Yy-a

cos (v - o)

A cos Z,

sinz=1+s)sinz°
H = 100 ku H = 1,000 km
0.0156984 0.1569840
0.9396926
1.0002818
0.9254296 0.8124204
67° 43’ 5916 54 19’ 59.0
T0° T0°
2’ 37.9 2 37.9
68 53 18.7 62 11 18.k4
2 18 38.3 15 42 38.9
1 09 19.2 7 51 19.4
1.999 1868 1.962 6407
0.36018 36 0.k466 5650
277.579 2123,206
9%.938
58° 53036 620 1116”3
0.360 2519 0.466 5Th1
277. 5264 2123.1698
9k.920 726.167
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Computation of the Refraction o

H = 100 H= 1,000
2
BE [1 - 1)tn
- 9.24 L2t (o 2 Z°J +15.422 +2.016
A cos Z,
+ 0.0134 —— ~0.267 -0-022
A cos Z,
) L4.62 E, -0.013 -0.002
A cos Z,
[ 2 g,
9.24 My L1 + (ng- 1) tn© 2, -0.202 -0.026
A cos Z,
M3 Ll + (ny- 1) tn® Z°
+ 1.026 +0.043 +0.001
A cos Z,
_18.48 N +0.006 +0.001
A cos Z,
g = +15”083 1-%

Now, introduce these values of 5, and the new values of A are:

H=2100 km:A = 277.5264 xm

H = 1000 km: A= 2123.1698 Im

These new values do not alter the preceding value.

Then, the results are as follows:

H = 100 km H = 1000 km

55
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®
W

o = 2'37"9

1571

Q
"

R =2'22'8

R e P
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®
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H]

Q
[}

w
I

23749

270

= 2’3579
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