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EFFECT OF JOULE HE.ING ON HBFAT TRANSMISSIA AT THI: CRITICAL POINT

by

V. A. Polyanskly

(Moscow)

The possibility of reducing the heat transmission to the surface of a

body moving with hypersonic speed with the aid of a magnetic field created

in it was investigated by I. Neuringer and W. McIlroy L7]_-, V. Rossow L_2j,

and R. Meyer L73J. It was shown that it is posible to reduce the heat

flows to a body by 20 to 25-1, but to accomplish this there are necessary pow-

erful marnetic fields (of the order of 3,000 gAuss). However, in these in-

w-s -. inns in calculating the heat flow the Joule heat was not taken into

conc', . ration. This work was conducted for the purpose of bringing out the

influence of the Joule heating on the heat transmission.

We will consider all the physical characteristics of a fluid (viscosity,

thermal and electrical conductivity, etc.) as being constant. We will write

the equation of the magnetic hydrodynamics of an incompressible liquid
div V*= 0

(V" V) V.. VP- + .- rot 1 X 1" + vAV"

div 1 -- (1)

rotV x I" -X vmrot (rot HU) 0

I(V" V) 7" = xAT' + --.-p-- - 4 + - (rot '*f)

HEre 2 is the dissipative function, V Z is the magnetic viscosity. and k

is the coefficient of heat conductivity IA

/ ' (la) "
v k

Besides, we will use Ohm's generalized II I
l'w £ 3 (E-+ )--. x H') (2) Fig. 1

Key: (a) lines of f11u

q-:!1 2 ~



We will consider the plane flow of a 11u14 in the vicinity of the

critical point. The outer constant magnetic field Ho we will direct per-

pendicularly to the surface of the body, and this surface we will assume to

be nonconducting (Fig. 1). In the system of equations (1) we will make the

usual simpnlifications of the theory of the boundary layer. For evaluating

the magnitude of the magnetic terms one may make use of the simplest single.-

dimension flow of a fluid along a nonconducting wall in a transverse magnet-

ic field. The integration of the equations of induction

"o dw+ Vm 0 (2a)

with the boundary conditions on the wall Hx* : 0; dHx*/dy = 0 gives

L "V . V. (2b)"",------ .-J"I -d• , ' )( •

0

Here 6 is t--,? thickness of the boundary layer, L is some linear dimen-eion,

and Rm is Reynold's magnetic number. In limiting ourselves to Rm <l we get

H; 6 (:3)

J10 - L(3

From the equation div H* = o, taking into account the evaluation for

Hx there follows (4)

We will introduce the dimensionless magnitudes

Mz n' = y ( ,. u = u'(av) =, v= v*(aov)

H =pL, p= (poav)-, T =T'c, (a Vr-
110

Here ao is the .varameter with the dimension sec--. Let us introduce

the designations .- V- 0-
.4n~paOv,, x (6)

The system of equations (1) we will set up in the following fashion:

au H, _z - .(- I/" + AU

a--o, a (uH,-) - • =0

)7a 1- T' anat al
a ,u o. £, + O± . a l

all 0- L -S,/ •U T 8. a2
.U6 ~-r all at P~+~ + ~ o ,

Y7 D- (



Boundary conditionst

at the wall u'-v'=0. T'-=Tm. H;'= Ho. Hx--, p(O.0)=p: (7a)

at the edge of the boundary layer u = ax, v" -ay, 7 = Tm (7b)

In the dimensionless magnitudes the boundary conditions have the form:

at the wall u = v = 0. T=T, c.(a.v)-', p(OO) = p.;(pao) (8)

HI =O. H'=1

at the edge of the boundary layer

a.
u=-.• v= a" T =T. c, (aev)-l Sa

Let us introduce the function of the flow 4f for the fluid and

o = 9g(y) for the magnetic field. Then

u = V (ri), v = -/(TI). Hr, = tg'("j), Hx = -g(i.) (9)

The temnerature and nressure we will seek in the form of an analysis

by degress of t (limiting ourselves in this to members of the second order)

P = Po+GV' (C = const), T = T. + (T. -- TO) 01 (TI) + L, (iq) (0

Here TI is tVe dimensionless temperature of the wall, and po and To are

the dimensionless parameters of the retardation. The magnitude E in the

first degree does not enter here because of the symmetry of the flow. BY

substituting (9) and (10) in the system (7) we will get a system of ordinary

differential equations J," - r,- ' --r +Sgg = - 2C

ýg".1 -- g -- /IV = 0, w g=0 0" + Pi/', = 0
0;" + P /0; -- 2P/'02 = -- 2CP/" -- P (In + 429g") (1

The constant C we will determine by integrating Rlong the wall the equa-

tion of the amount of motion of the nonviscous fluid for the commonent of

velocity u, and we will get

p = a 0 - v(a,0)

(1.2)
So [" H 0)f$]1d, = cnst "1 +s)

since in a nonviscous flow at the wall
U . V=0 (12a)

The influence of the magnetic field on the distribution of the pressure

at the wall near the critical point ma be disregarded. Actually. we will

7-f39/ 4 23



consider the expression for the Lorentz force. From 4Jzwellp oqua:-tion

P" - rot HO (12b)

and Obm's law (2) it Is seen that the Intensity of the electrical field Z

has a component only along the axis a (since ?* and Be 11* in the plAne my).
eqato Ear -' •_(u)1•- v)I) - Coflit. 1

The equation ro 0 shows that BHA O- 1

By making use of the boundary condition at the wall for V and N we got

I,, const Z 0

In this way the Lorentz for,:e has the form 6 (V I R*) x 30.

But close to the critical point the directions of the velocity of the

flow ftad the intensity of the magnetic field coincide. Therefore. the mae-

nitude of the Lcrectz force here is emall differing little from zero. Now

by comparing th, expression obtained for the distribution at the wall (12)

withthe analogous expression in the case of nonnagnetic flow

P - PonA• - •• (13))

we get the connection

The third equation of the system (11) proven to be an integral of the

second equation. Therefore we will not consider one of then,

The validity of the accepted evaluations (3) and (J) is confirmed by the

integration of the equations of induction and motion without simplifications

(seeo the equations (25) and (20) of the report LJ.-7).
The final form of the system of equations

/I, -- I -/" + spot, - 1
Pg ' - 01 . ' o." + P/ o1 . 0 1

0,"' + P/o - 2Pro% - Pr" - Pl* - sPP's"
The boundarl conoiAaons zor ne functions f, , 61 4nd *2 will be

at the wall g,' 0, "--I, 0...!, 0.-, (g a)

at the edge of the boundary layer (16)
rru - , e, o o, 0,--L

V.': ,.• r(3. 2•/ ,a



The conditions for 91 Lnd 02 are obtained from Bernoulli's integral.

Fig. 2 pig.~

The system of equations (15) with the boundary conditions (16) was inte-

grated numerically by the Tange-lutta method on the electronle compatatloxL

mcchine *Setunt" for different values of the parameter S and the valuaes

8: •0 6  • P- 0.71.

"-..:•ngent stress on the vall wVa conpLted by the formula

#)- i'-;r~v/'(0) -AI =O~P 1 :i~ (16&)

Consequently
II M S": I(1?)

Nore zero in the subscript points to the figure for the magnitude In the

absence of a field. In Fig. 2 It Is seen that with the change in the pazreas

eter S from 0 to 1.5 there occurs a considerable lessening of the tangentul

friction on the wall (up to 547, see curve 1). This is the consequenoe of

the lessening of the tangetba component of the velocity under the Influence

of the magnetic field, as a resalt there to a diminution in the gredien)Ct

the velocity on the well. From FPis. 3 and 4 there tioseen the ceane& ai

the profiles of the components of the velocity u and Y on the change Is, te

parameter S.

The magnitude of the beat flow onto the wall ts coy3mted In the ftellw-
•Ii

wg Le kWI,' -e - r(T.- 0 (0) - tv (i)

%)-T" -63-93 /3 t 25



The curve 2 In 1Ig. 2 shows the change in the heat transmission esto

the wall with the Increase in the parameter 5. The Joule beat Is this c

is not taken into consideration. 'he ratio q/qo ia this case has the foIr
q 0,' (i)}

Curve 2 agrees with the results of the reports L7, 2J. curve shws

the change in the heat flow taking the Joule heat into account. The ratle

q/qo in this case is exmressed by the formula
q. 01 ((1) - 69 (0) |0

9 0' ( T 4 1 (0 )

For simT•,lcity in the computations it is assumed that

As seen f-o= the grarTh in FIg. 2 the liberation of Joule heat leads to

an increase in .teat emission onto the wall ns compared with the cise vkeoe

the Joule heating is disregurded. However, this increase is Insigniflcant

(of the order of 5). The greantest reduction in heat flov attalade %4th tbe

value of the parameter S = 1.5 amounts to 20$. To this correepoeA, for

pie, the followivz vflues of the r-rmuPters of flow and maeaetic ftle.l

a- -----

ig. 4 S

In this way th. reductionin the heat tansmisstoe vith the aIt, a &

netic field forthoste parameters of gas which arise In the sovneat qt a % Vt

hyp.rsonic speed in the lower layers of the atmosphere to at otteitive.

In Fi. 5 there are construoted the protiles Rt the apoer%ý? 6 a

(T - TO) / (T?-- ?O) for different values ot 8 andA t

vat *"a *.qk1



a,-~~~~~~ -.Oca' p-.6tOr/w 3300Jro /.m.11 --7 3800 apcmei*e

r...'16 .
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DETERMINING THE BASE PRESSUJRE AND BASE TOU'A"TURE ON THE SUD-

DEN EXPANSION OF A SONIC OR SUP.ZRSONIz nLow

by

R. K. Tagirov

The article discusses the method of determining the base pressure

and base temoerature on the eudden e .ranslon of a plane or axially sym-

metrical flow. The method is based on the known method by Korst L_]. but

in contrast to his method there is takan into account the non-isothermic

qualit, of the mixing. hnd it is extended to cases of sudden expansion of an

axially syrz;etxrl ,', :low to-dirQ the axis of symmetry.

There Is .(,-- ted a comuirison of the results of the computation with

the data of other authors.

Sec. 1. Determining the Base PreEsure There is assumed the following

system of flow with four characteristic regions (Fig. 1):

region of flow to the region of sudden expansion (1);

region of exoansion of the flow in the Prandtl-Meyer wave (2);

region of mixing of the flow bordering on the stagnant zone (3);

region of increase In pr-ssure in the end of the stagnant zone (4).

/112 In solving the problem one makes

the following assumptions.

1) The static pressure is constant

'. /in the region (3) and equal to the

pressure of the undisturbed core of

the flow, i. e., pO = P~o" Here and
Fig. l, (Ck19e• = ump) further on the superscript 0 desig-

nates the base pressure and temperature, and the subscript o indicates



the parameters of the core of the flow.

2) The base temperature TO Is constant in the whole stagnant zone with

the exception of a thin hot boundary layer at the walls.

3) In the zone of mixing TO'-TO ( B-e om

ture of retardation ;,nd % is the factor of velocity representing the ratio of

the velocity in the zone of mixing to the velocity of the core of the flow.

4) After the turn in the wave of erpansion the profile of velocities of

the boundary lyer is described by an exponential law

Here • is the dimen!ionless ordinate and i2 18 the thi2kness of the

bo',-U.ry layer behind the wave of expansion. It can be determined anproxi-

mately lr-= the equation of continuity.

Juit as in the report 1_] the problem is solved from a joint considera-

tion of the flows of an elastic gas and an ideal gas. whereby by the latter

one understands a fictitious flow which has the same values Nl and po/p 1

as the flow of the viscous gas with unchanged geometry of the channel or

the body around which the flow occurs.

On the boundar7 of this nonviscous flow there is introduced in the general

case an orthogonal curvilinear system of coordinates Xr, while the axis I is

directed along the boundary line of flow. In the zone of mixing of the vis-

cous gas there is introduced an analogous orthogonal curvilinear movable sys-

tem of coordinates x. y. which according to the assumption (see LlJ) is

somewhat shifted in the direction of the axis Y, so that X Qsx, T-= y - yetx)

where yr(0) = 0.

The approximation solution of the simplified equation of motion in the

tone of mixing obtained in the report f-1_7 is written, taking into consider&.-

the assumption 4) made above, in the form:



g P_ -2)

Hare the dimensionless coordinates

~,•,=(2SI(/<)n)+) ,'- '•" *",1, " -j- U)

On the basis of experimental data in Korlt's work it is assumed

1 12- + 2.578 M, I(f.) +I +ae- .. b - coast .O.17 t5a)

The value a is determined in accordance with the experimental dependence

which can be approximated in the following form:

a -1.334 T 0.3 3 4 , T I- N()/I N

Here 62* *nd 62e" are the thickaeus of the dislodgment and the thickness

of the lont of the impuLse in the boundary layer behind the wave of expansion.

We wili th r, a that these empirical rcl1,tionships and the profile of ve-

locities are . Xfor the non-isothermic and the lsothermic plane mad axial-

ly symmetrical floay.

The position of the coordinate system X, Y can be determined if one knows

the value po. since the boundary of the ideal flow can be constructed by the

method of the characteristics or some other approximation process.

The position of the coordinate system x. T with relation to 1, Y can 'be

determined by one coordinate y3 with the aid of the equation of the amount

of motion.

If one introduces Crocco's number C and the plus sign for the parameters

determinable on the boundAry line of the flow of the sOas of mixing, which

borders on the core of the flow., then for the plane flow the unknown relatiem-

ship will have the form

.ol I + -- o

•. TO/IOO to the dimensionloss bottom teorroature, •% M k IS tU *a*&



batic curve.

The valuen is determined from the condition

I-- nPq . q,.) (~7)

where tE is a small magnitude.

Here and from here on the integrals J will have a double subscript--

the first will inaicate the number of the integral, and the secohd will Indi-

cate to what line of the flow the integral refers. For the axially symmet-

rical flow the magnitude In is set up in the form

Y- B2 ± -',- (8)

Here
Bj = (1 -- (;:)J 2 ,4 : T~

Cos TO - T (2 T, :F cos V, ) 2j' C

2T- T ,, (I , C1 ,-) j, .

Cu , __ 0 ¶ C302) ill A'C±I K' - Lf! (I -- C3'2 '• K 2
PCo)s V, Cos 4%

K, J, 1-d

ByY1 and Yz there are Indicated the angles of Inclination of the vec-

tors of velocity on the boundary of the Ideal flow, reuiDectively, for the sec-

tion which is immediately behind the wave of expansion. and for the section

where the Jump in density occurs. It Is assumed that in the zone of mixing

of t-he viscous flow the angles of Inclination of the vectors of velocity In

the reenective section will be the same'rl ri/6 2 and T2 =r 2/62, resriective-

ly, the dimensionless radii of the boundary of the ideal flow for the two sec-

tions indicated above. It is easy to establish that if jp = 0, then the cor-.

responding ex-oressions for Band A, are obtained by the replacing In the

above-written equations of the values jpI62 by fi/x. such a transition will

be valid also for all the relationships following below. Let us note that

here and further on the upp~er signs are real for the case of expansion of



the axially symmetricail flow from the axis. and the lower ones toward the

axis. 7Urther. as in the report f-1 there are introduced into the con-

sideration two characteristic lines of flow in the zone of mixing: the line

of constant mass j and the demarcation line of flow d.

The use of the equation of continuity enables one to determine the co-

ordinate of the line of flow 3.

For the plane flow this relationship has the form

J1, - ,- J., - (K, - A'K)•l, (0)

where

q' 0;d -- K) --- 2C

If i't the utani t zone there enter a supplementary mass of fluid

then this ma- ý.hbcd be renoved between the lines of flow j and d. since

in the stagnant zone there ahouild be maintained a constancy of mass

Gd -i- Gb =0 0.I)

where Gb is the mass of the gas entering into the stagnant zone. The ex-

pression for the mass of gas removed between the lines J and d has the form

Gd- pkM, C,.' (l.la)

where R is the gas constant: e(M 3 0 ) is the gas-dynamic function.

Analogous eqaations can be written for the case of axially symmetrical

flow.

The equation for determining j

(1.1lb)(TAP ± i, , ,€) (1,, - hj) :F ,os ,, (.4, _o) = J N,1
where N, T- Ii 'K, p c so1 ' ,K, + (T2% ± • cos Jt)l,÷

T COS -J ;lp'K,± + 2cos ,(K,P 4
J --- 0+ ,( --0) - q)2C;ý K, • t - )-qt •

The expression for the mass removed between the lines j and d

× p k , -- J (1) l - C• ' J)

X (J,3 A d) T COS V2I (J4, - 14



In the end of the stagnant zone there occurs an increase in pressure in

an oblique Jump in density. It Is, assumed that the intensity of this Jump

is determined by the parameters of an ideal flow p4/pO = f(N30,Vj.

If the boundary of theideal flow is established then the magnitudde h

will be determined if one knows the section where the Juan in density occurs.

i. e., if one knows x or~D ,q) which characterize the distance from the be-

gin-ir.g "f the coordinates to the Jump.

For the case of the plane flow the angleIV2 will be equal to the angle

of deviation of the flow in the wave of exransion in zone (2).

For the case of sudden exTiansion of the axially syrmetrical flow from

the axis the position of the Jump is determined from the intersection of the

boundary of the idetl flow with the wall of the channel L l-.

If, however, the sudden exmansion of the axially symmetrical flow occurs

towards the axis, then the foregoing condition proves to be inapplicable, and

the position of the jump is aunroximately determined from the intersection

of the zero line of the flow (lower boundAry of the zone of mixing) with the

axis of symmetry.

This conditi on can be written in the form

'I- - (1.1.)Ti T11,- - +Im: • Cos

wherelmin is the coordinate of the zero line of the flow, which is deter-

mined from the condition (42 , V min)< tE. Let us note that with such

an assumption the thickness of the zone of mixing can be easily determined

('1 - 81mn) COS (h - DACOT.i yCTyua) (h = height of offset) (1.1f)

If, however, around the plane or ring-shaped offset there flow to dif-

fereni currents, then the magnitude of the pressure behind the Jump in den-

sity is determined from the condition of equality of pressures of the inner

and outer flows p ]-' = PP -

1J..T..63.?l/ ~&



Here and from here on the pupr#crt + refers to the inner flow and the

suptrscript - to the outer.

As has already been rentinned above in the stagnant zone there should be

fulfilled the condition of preservation of the mass. This condition, which

enables one to obtain a solution .f the problem. was proposed and successfully

bpplied in the report f-l1.
If one assumes that on the line of flow d the level of meChanical en-

ergy is deterrined by the pressure of retardation p1D. then one may say that

with a full :onvt~rslon of the kinetic energy as a result of the ret&rdation

of the r,-rtilrles in the region (4) there is obtained the static pressure

P4. i. e. p(,.) P

This also "•_ fto be the closing condition for the case of sudden ex-

pansion of one flow.

From the condition of ndiabatic retardation in a given point it is easy

to find Pld Epd'MI 1
P.- I [--0-[ -- 0 ](1.2a)

If the stagnant zone is open, I. e., if there flows into it (or from it)

a given masE of fluid Gb, then the coordinate of the demarcation line of the

flowvld c;tn be determined from the condition (1.1). If the stagnant zone is

open, i. e., Gb = 0, Gd = 0, then nd

Let us now consider briefly what form the problem closing condition will

have in the case of two different currents flowing around a plane or ring-

shaped offset. In this ckse clearly one should consider the model of an

open stagnant. zone L72_7. The coordinate "d of each flow is determined

from the condition (1.2).

The closing condition here will be the condition of constant mass In

the stagnant zone G;l G;+ G= 0

.2!lf.



The expressions for Gd were given above.

In this waj one solves the problem of determining po If one knows the

magnitude T°.

Sec. 2. Determininz the B as* Temperature TO We will consicer, as

usual, that all the assumptions are valid which are made above in Sec. 1. In-

itiFlly let us determine the specific heat flow q.

By assuming that the mechanism of the turbulent exchange for the Impulses

and the heat are identical (see LD3 ) one may write at once

qcpope (1.2c)

"7pre c. is the heat canacity, i is the density, and g is the accelera-

tion of the force of gravity.

The coefficient of turbulent viscosity E is determined from the exrression

which was used in the report L 71_ in determining the profile of the veloc-

ities q(

With the use of the relationskins of Sec. 1 after some transformatIons,

we get the expression for the specific heat flow through a single area of the

surface the generatrix of which is the zero line of the flow (Q= 0)
(I (1 + ae-'") in J(,) p 0 kgl T*(M 34) \0 , a (1.2e)

For the line of flow where (O,--0 the dimensionless coordinate will have

a determined value •,imin, which was discussed above. The magnitude of

the unknown TO can be established from the equation of the heat balance.

For the case of sudden expansion of the axially symmetrical or plane flow

this equation can be written in the form
N T'" 7-- F=ATO+BD

(1.2f)

(2tr W P * p 0M VkWg1r;T~(.4fM)

F + C--) TI d*(1.2g)

+ 2 15



whereby for the plane flow I = 0. and for the axially symmetrical flow I Z 1,

The average radius of the zero line of flow is Indicited by r,.

In the fr& tmework of this study it is cotsidered that A and B are known

magnitudes determinable by the relationship Q1 + CC a ATc + B where q' Is

the heat passed with te blown gas, and q" is the heat passing through the

wall into the stagnant zone.

J It is necesEary to stipulate

931 •that. although in principle the mag-

nitudes A and B can be determined,

S-to find them practically can involve

-0 92 900 some difficulty, for example, such as

Fig. 2. 1. 4, N- 2.025.,= 1.
is connected with the establishing of

0 is the ex-e:'irent L 5J/, *is the
coefficients of heat emissicn on the

computation, and Q]is the comvutation
wall in the stagnant zone. They

Cli.
may, however, be anoroximately deter-

mined with the aid of the report L/j. But these questions go beyond the

limit of the present study, and therefore they are not being considered. here.

In the case of flowing around a flat or ring-shaped offset of two dif-

ferent streams the problem of the heat balance can be written in the form

I T N'-7 + AT+B (l.2h)
_T_

For the case of n = 0 the magnitude TO in case of sudden of one flow

is determined from the relationship

n ATT + B (l.AT)

Here
11 --- int) = -1/ ex (- M.,a •o'k~gRT;T (M,).fl(2rmiC~(~l~)M~V~M (l.2j)

If np = 0 and two different streams are flowing around an offset the

magLitude TO is determined from the equation

-7. +AT+ B (I.k)



If one considers

A ,O, B O, rm'- rz (1.21 0)

and disregards the difference in the physical characteristics of the two

streams it is possible to obtain a very simple formula for determining the

bottom temrerature ~ T" f~i~/7f\

Here • and ýBo- are the coefficient. of the velocity for the undia-

turbed core of the respective flows.

Sec. 3. Results of Cotmutations and Comparison with Data of Other

Authors The reFults of 'he computation of the base pressure po in the

case of an cffset arcund which is flowing a horizontal stream, having NJ =

2.025 .d k = 1.4, with different values for 61/h. are oresented in Fig. 2.

Their ccvarleon with the experimental d&ta of the report L 5.J shows ttat

_, 1 computation by the method expounded as

well as the method of the work L71_7 gives

somewhat higher results, but from the

0-Oi viewpoint of practical application. the

OI " agreement can be considered ar satlsfac-

tory.
Fig. 3

In Fig. 3 there are presented the re-

sults of the computation of the dependence of pc/.1l on l9where aroune %n off-

set there is flowing a horizontal stream having Ml = 2.025, k 1.4, and

So.

In the comrutation there was used a constant approximated value for the

coefficient of heat emission through the wall In the stagnant zone. The

result obtained corresponds qualitatively with the experimental data of the

report L76_ and with the computed date of the report L7J.

The commitations of po presented for the case of the sudden exranscam



of the axially syrmmetrical flow from the axis showed that In the first place

they find themselves in agreement with the erperimental and ccmputation data

of other authors, and in the second place the computations can be wide with

the use of the formulas obtained for the horizontal flow.

Let us dwell now a little more in detail on the results of the computa-

tion of o0 in the case of sudden expansion of the axially symmetrical flow

towards the axis.

1-1
__h 

0hh

"• --- ZO • Jas -• -2.2 ~ -122. 6 ,C.X -7 1

Fig. 4/. k r .ep etOi is the em-er- Fig. 5. k 1.4. Is the ex-per-

Iment /_J, 0is the comoutation, Iment, is the computatioA,

=0. •9Y= 1. =0'• 1.

In Fig. 4t there arp presented the results of the compxutation of the mag-

nitude t/h representing the thickness of the zone of mixing in the section

where the Jump occurs, and for comparison there are presented the experiment-

al data of the report L 8_/, obtained with the flow around a missile. In

Fig. 5 there are presented the computation point t/h and the experimental

data of the author of this work, obtained by the processing of shadow pic-

tures of a flow in a channel as depends on the Mgeom number determined by

ratio of the area of the channel cross section 1ý/72.

Comparison shows that both in the case of external flow-around, and in

the case of sudden expansion in the channel towards the axis. the agreement

between the computation and experimental magnitudes of t/h can be considered

as quite satisfactory. This points to the fact that ap-arently the method



proposed above for determining the location of the jump in density for the

case of sudden eipansion of the axially symmetrical flow towards the axis,

proves to te sufficiently acceptable, at least for making engineering calca-

lat ions.

-he results of the computations of pO for these same cases considered

above are given in Figs. 6 and 7. Comparison with the corresponding experi-

mental data shows their agreement is fully satisfactory.

Here one should note that the computations made with the tie of the

F 0/g po . cIT Pl
006 I0

/f

Fig. 6. P'O (Do 1) Fig. 7. k 1.~4. , N o.Q0is

1.4. Q Is the experiment -817. the exmeriment. Computation of n

Com•utation of 0, I= 1. * is 0. 9- 1. 0 is with the use of the

with the use of the for-ula of the of the horizontal flow, a is with

horizontal flow, 1 is .ithtke use of the use of the formula of the axially

formula of the axially symmetrical flovg symmetrical flow.

formulas for the horizontal flow F~nd for the axially symmetrical flow give

notice~tbly different ie~ults, and therefore in such cases where the expo.r.nlon

of the axially symmctrical flow proceeds to the axis of symmetry., the compu-

tations, in all probability, must be made with the use of the formulas ob-

tained for the axially symmetrical flow.

In conclasion let us note that all the computations were made with the

assumotion that n = 7 and 9min = - 2 with the use of the tables of the auxil-

iary integrals J, KS F, and ( obtained by computation on the electron can-



putilng machine.

Entered April 11. 1961
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