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CHAPTER I
INTRODUCTION

Engineers and scientists are constantly seeking the best ap-
proach to accomplish & takk or to solve a problem. The "best way"
is usually nothing more than the easiest way to attain the goal,
Vibration problems that are encountered in every day conditions are
gigantic 1f all the ramifications are applied to the situation. How-
ever a number of sssumptions can reasonably be made such as assuming
the beam or shaft under consideration hes constant cross sectional
area; the materisl is homogeneous; or the mass of the beam or shaft
can be neglected,

Even after the problem has been "simplified" with reasonable
assumptions, it sometimes remains a difficult problem to solve. For
example, to increase the natural frequency, which part of the system
should be changed to effect the desired increase? What corrections
must be made if the cross sectional area is not constant along the
beam? What are all the dampening factors and which can be reasonably
neglected?

In meny vibrat problems an approximste solution must be accepted
because &n exact solution is very difficult if not impossible to attain,
This paper will dovclop__tvo approximate frequency-determining .thod:;
which to the following problems;

pr
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(p)\/DGGQrmining the optimum dynamic shape of a cantilever beam
with a mass load at the free end7(QA¢l/
(b) /ﬂétermining the necessary approach to accurately optimize
the dynamic shape of a simply supported beam with a center mass load.
The dynamic shape of a beam is the actual physical form (rectangu-
lar, triangular, parebolic, etc.) of a beam(Pigure 1). The gptimum dynami
shape is the physical form of & beam, with or without & mass load,

that will produ.e the highest natural frequency (Figure 2).

NAMLNLNNNN R

Figure 1.
Dynamic Shaped Cantilever Beam
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Figure 2.
Dynamic Shaped Cantilever Beam
With a Maas Load Equal to the Beam Mass
The two methods that will be developed are the Rayleigh prin-

ciple and the Rayleigh-Ritz procedure, Esch of these methods will be
applied to the cantilever beam and the results will show that the
Rayleigh principle is relatively easy to apply to & problem as compared
to the Rayleigh-Ritz procedure. However, the frequency determined by

the Rayleigh-Ritz procedure is more accurate and to accurately optimize

the simply supported beam the Rayleigh-Ritz procedure will be applied.

lcururi, John R., Vibration Fixture Design, Copyright MB Electronics;
1961, Printed in the United States of Americe:; p. 88.



CHAPTER Il

RAYLEIGH PRINCIPLE

The Rayleigh method is a generalization of the "energy method"2

which states that the potential energy at the extreme position (maxi-
mem amplitude of a vibrating body) is equal to the kinetic energy of
the vibrating body in the neutral position. (The system is assumed to
be conservative.) '"Briefly, a shape is assumed for the first normal
elagtic curve; with this assumption the (maximum) potential and kinetic
energies are calculated and are equated, Of course, if the exact shape
had been taken as a basis for the calculation, the calculated frequency
would be exactly ocorrect also; for a shape differing somewhat from the
exact curve a very useful and close approximation for the frequency is
obtained."3 In applying Rayleigh's method to any beam the change in

potential energy of bending is given by

d(PB) = ﬂégﬂ Q. 2.1

for any bending moment moving through a differential angular change.
Bquation 2.1 can be derived simply by considering an element dx under
the influence of a bending moment M (Figure 3). The element 1s origin-

ally straight and is bent through an angle of d@ by the moment M, If

2Den Hartog, J.P., Mechenical Vibratiops, McGraw-Hill Book Co., Inc.,
New York, N.Y., 1956, p. 33.

3bid., p. 141,




the left end of the slement is assumed to be fixed, the moment M at
the right end turns through the angle d§. The work done by M on the
beam is therefore § Md#, vhere the factor ¥ appears because both M

snd d0 sre increasing from zero togethcr.a

Vs

— —

\{m

Figure 3.
Beam Element Under Influence of Bending Moment

The slope is given by tan § = %i,ﬁ’ﬂ (for small angles) and the

2
bending moment is M = EI g;§ .

2
Substituting df (df = %;*- dx) and M in Equation 2.1 yields

d(PE) -s}(n{?}) {%3 dx)
".; %(‘3;2.5) ? ax KQ. 2.2

Ibid., p. 152
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The change in kinetic energy is given by

dXE) = k (W) V2 K. 2.3

V(Velocity) = ¥ (Deflection) * & (Frequency)

dm (mass cheange slong beam) = p‘(%u‘:th)' dx

2,
KE = ﬁ“%— v ax . KQ. 2.4

If the beam has a mass load the kinetic energy is

’ 2
KE = jf(ﬂi‘”—-) yzdx +1/2 L) (Mass Load) szmz IQ. 2.5

whete Y is the beam deflection at the mass load.

Equating kinetic energy and potential energy the frequency becomes
R
2 2
L!. dx
o = [ K1 (dx )
X .
M yzdx + ML y-2 EQ. 2.6
/‘o

Equation 2.6 i{s known as Rayleigh's equation and is reidtively easy

to apply 1if the shape of the deflection curve or normdl function 1s
knofn or approximated. If the normal function is not known the fre-
quency obtained will be higher than the exact frequency for any ons
beam. If the area and inertia of the beam are not constant the porul
function will be difficult to approximste with a single term as opposed

to & series of terms.
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CHAPTER 111
RAYLEIGH-RITZ PROCEDURE

The Rayleigh-Ritz procedure is an extension of the Rayleigh
principle and its application is very satisfactory for a beam whose
area and inertia mey not be constant along the beam. In the latter
case the dynamic deflection curve is complicated and the normsl func-
tion can best be described by a series of terms rather than a single
term as used in the Rayleigh principle. Ritz defined the normal

function by an infinite series of terms such as

y= alal(x) + lzﬂéx) + 1303()() + ‘[‘ol‘(x) e o 0 o o ©

vhere every Ci(x) satisfies the boundary conditions of the beam.

From Equation 2.6 the frequency is

/ "(5)°

u y dx +M Y Y EQ. 2.6

o
The best coefficients (01, 8y, 85, 8,5 . .. .. .au) in the normal

function, can be evaluated by minimizing the frequency & w? .0

uyh+%?
[uyzdx+HLy ).L_ [ H(+) dx
/[u(ﬁ dx.i__([‘ydx+ﬂly >-. KQ. 3.2

i
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Then gubstituting 2
| 2 2 2
f:‘gy P A ﬂ mey ) e . 2.6

into Equation 3.2.

b u () g L o)
"'f“({é{) 2ax.gn— fu yzdx+HLyl2)-O . 3.3
> {f’(ﬁé)z‘”‘ - ”;'az“’z"”m.’j}-o- n. 3.4

and let

o .j:eI (—3-3-) 2 _-“3:—({&“ y2dx + W ynz) Q. 3.5

The differential of "s" (Equetion 3.5) with respect to each co-
efficient (fl’ Oys 845 8, o 0 o .an) will provide & set of homo-
geneous equations from which the frequency can be calculated. The
accuracy of the Rayleigh-Ritz method depends on the number of terms
used in the normal function. If all the terms were used the solution
would converge to the exact frequency for any beam. Satisfactory
results can be obtained, however, by using the first two terms for

the systems under comsideration.

A s



CHAPTER 1V

OPTIMIZING THE DYNANIC SHAPE OF CANTILEVER BEAM

\ o g e v s

applied

WITH MASS LOAD AT FREE END

The mass load on the cantilever beam will be considered a point

load (FPigure 4).

MASS
A QRD
2 {
P
7 Ra
V4
¢
¥
A X — i
=i p ] P~
Pigure 4.

Cantilever Beam with a Mass Load
at the Free End

The greatest deflection of a cantilever beam is contributed by
the freae end quarter of the_bum. This can be simply proven with
Dunkerley's fm.-lmlc.s Dunkerley's formula spplies to systems with

mass loads distributed along the system. Dunkerley's formula (as

to a cantilever beam (Figure 5) states:

3¢

urreri, op. cit., p. 48,

i e e
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vhere £ = approximate combined system frequency

L]

natural frequency of beam alone

(2]
]

1 natural frequency of weight 1 alone on massless beam

"
[ ]

2 natursl frequency of weight 2 slone on massless beam

L]
.

natural frequency of weight n alone on magsless beam

7>

c=ing

1

A

A
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Figure S.

Cantilever Baam Divided into Four Sections

Since the natural frequency of a single degree of fresdom system

can be written in terms of ite static deflection ( f=3,12 #— ),
st

Bquation 4.1 may be written as follows

l.l+
y‘t-y°+yl+y2+y3+ Yn ° EQ. 4.2
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For the beam in Figure 3, Yo * 7 + Y4 + Vs + Yy and Vq ®
3
W oa . L o

i
W 3 3 3 3
Ve _3:1(‘ +3+3 +1)

Ve = 2
s SRI( 1+27+125+434). Q. 4.3

Equation 4.3 shows that the end quarter (y7) of the beam con-
tributes to the greatest static deflection of the beam and is also the
location of the least bending moment. PFrom this it can be deduced
that the removal of material at the end of the beam might reduce the
mass effect more than the stiffness effect. This would increase the
natural frequency because the static deflection (EBquation 4.3) would

be reduced with a resulting increase in frequency (f = 3.12¢F ).
st

The next step is to find the optimum dynamic shape for the beam
which will give the highest fundamental frequency for any ratio of
free end mass load to beam mass. As an example let the beam width
be unity and the depth vary along the length of the beam (Figure 6).
The half height of the beem will be given by

b - () - n. 6.6

vhere "n" defines the shape paramster as shown in Pigure 6.

€1b1d., p. 86.

A R R ul .
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n=0 (rectangle) —;
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Figure 6.
Shape Parameters for a Cantilever Beam

The cross sectional area is given by
A= %) x" EQ. 4.5
and the moment of inertia is '

ny\ 3
= % (“75-) Q. 4.6

With the above characteristics the potential energy (Equation 2.2) {is

given by o _[ﬂg (%;_) 3 (%3_)2 dx £Q. 8.7

and the kinetic energy is

'L 2 2
KE = pw” ydx + ML ol y 2
o 2 3 m K. 4.5

vhere . = mass/length = Q (density) - A (area).

Bet R = mass load/besn mass = _H_L_

¥y
R
tmn_}:%wzeAyzdx+%R“sz,-z. Q. 4.8

Since Beam mass = beam volume . density,

ARty oy eah e e
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and Beam volume -IA'idx .
L
1 2 (A 2, .1 rRpddy?
thonn'i we Aydx+ e m o A dx o EQ. 4.9

Substituting Equation 4.5 in Equation 4.9 the final form for the

kinetic energy is

2 £
KE = o? H /’qxny2 dx + R Ym j x" dx EQ. 4.10
zi; () [

Equating the potentisl energy (BEquation 4.7) and the kinetic

energy (Equation 4.10) the frequency equation for a dynamic shaped

beam is s %-?(-HZH) [(x) (_d_x_!)

nzd +Ry2/ EQ. 4.11

Equation 4,11 could be considered Rayleigh's frequency equation for a

dynamic shaped beam.
RAYLEIGH APPLICATION

In applying the Rayleigh method to shaping a beam, a deflection
curve must be assumed because the exact curve is not known for the
shaped beam.3y assumingthe deflection curve to be y = Yo (1-8in lzt-’i- ),
wvhere Yo is the deflection at the end of the beam the frequency
(Bquation 4.11) can be found for any combination of the shape para-
meter ''n'' and the ratio '"R" (mass load to beam msss). Results of a

number of calculations appear in Table I.
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Shape Parameter n
y 1 2 3

L r VIR SR R

I TET

Larg g E 20 B R

. 343
10 y

g g [ 8 o 3

Table 1
Prequency (Rayleigh Method) Versus Shape Parsmeter 'n'

and Mass Ratio "R"
The above approach for determining the fundamental frequency is
only an approximation because the deflection curve (normel function)
1s not very accurate when the area and inertia are functions of "x"

(length along the beam). The frequency from Table I for a rectangulsr
besm (n=0) and no mass load (R=0) is % as compared to

2 1 3‘ vhich is the exact fundamental frequency for a rectangular
A P

besm with no msss load. This is a satisfactory solution for the speci-
fic case vhere the ares and inertia are constant for the rectangular
besm. As the shape paramster n" inceeases, the assumed deflection

curve becomes less sccurate and therefore the calculated frequency

has a larger error.

- s AR Mgt e o T
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RAYLEIGH-RITZ PROCEDURE

The Rayleigh-Ritz procedure is well suited for a beam whose area
and inertia may not be constant along the beam and therefore the normal
function could best be described by a series of terms. The normal

function for this system is
2 2 2 2
X
pem@ ) en J(1-0) ¢ (F) (- 3)
x n-l 2
W(f)04)
which satisfies the boundary conditions for the cantilever beam.

Applying the "shaping' equation (Equation 4.5 end 4.6 to Equation

3.5) "s" is given by

L) (E) 3 L1

letting R = mass load/besm mass = i and My | Q(demity) . AA-dx(vol.) %
£ 2 :
then n\3 /.2 \2 Z.n
a-[%(%)(%;{) dx 3“-'-7@-@ xydx+Ry2[xdx)
and fimlly EQ. 4.12

--/() (L) o -2 (2 (/‘x,dm,/ 4,}

Applying the first two terms of the normal function
2 2
x X
(y-al (1.£ ) +‘2(3K1-1)
to Equation 4.12 and performing the necessary operations as developed
on page 8 the frequencies in Table II are calculated for bombinations

of the shape parameter "n" and the mass ratio "R’".

T1bi4., p. 88.
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Table II

Prequency (Rayleigh-Ritz Method) Versus Shape Papameter "n"

and Mass Ratio "K'

16

Pigure 7 shows a plot of frequency coefficient versus shape para-

peter using the Rayleigh Principle and Rayleigh-Ritz procedure. The

calculations by the Rayleigh-Ritz procedure are considered more accurate

because the normal function (series of terms) 18 a closer approxima-

tion to the actual deflection curve for the shaped beam (area and in-

estis not constent).

ke RN DD 3
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CHAPTER V
OPTIMIZING THE DYNAMIC SHAPE OF A SIMPLY SUPPORTED BEAM
WITH A MASS LOAD AT THER CENTER OF THE DEAM

This Chapter will present the necessary approach to optimize the

dynamic shape of a simply supported beam with a mass load (Figurs 8).
MAsSS

e {

S Th

Figure 8.
Simply Supported Beam With a Center Mass Load

Based ~n the conclusions of the last chapter, the Rayleigh-Ritz
procedure is best suited for determining the shape of this beam. The
width of the beam in Figure 8 is again assumed to be unity and the

depth {s waried along the length of the beam. The half height of the

beam is given by

h=1 ,!-x) n 0 € x éig
2 N° 2 IQ. 5.1A
and (2) n £ - &
heR_ (,f) %~ A Q. 5.18
@

T R RN ¢ o -
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vhere "n" defines the shape parameter as shown in Figure 9

The cross sectional ares is

"f"n‘ (‘g"‘)n oeté'i EQ. 5.24

o (z B (s ) Y. %, 5.2

VMHSS LoRD

r.=0 (rectangle)-—

T

Figure 9.
Shape Parameter for Simply Supported Beam

The moment of {inertia is

I‘%‘(n .x)n)s ofxtf £Q. 5.3A
(Z)n 2

™ 1= (“"' l) {“x",e Q. 5.38
‘he frequency equation (4.11) when applied to the simply supported
i) L fe
2 ﬂz(l -x ydx+ﬁ( !) y dx
O’ (1) “”ﬁ/z " 2. 5.4
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Applying the Reyleigh-Ritz procedure to Equation 5.4 the 's"

term as developed (Equation 3.5) is given by
[’(2 (L;) o ﬁ ( -4)‘3(5;) ax
—2.2323. ﬁz(!-xnydx+}[. ‘
({-x dx+£( -,_ze) da) . E. 5.5

Assuning the normal function to be

y-alain X +a3 linﬁ; +|5 sin ‘ﬁir_x + o '+°n.1nfi!-

and using only the first two terms. The frequency for a rectangular

beam (n=0) with no load (R=0) is given by

A
"[{ﬁi})zd*°ix€}§2 [X yzdxa EQ. 5.6

Upon substituting the first two terms of the normal function into

Equation 5.6
‘Qo 507

.. (1 sin? ‘ -la.-una_ un%\z +81a, '“‘ )dx
9-3-7 {( otn Iy sngen i + a,t un‘_?) 6’9
"‘%‘-i—,— “'}]ﬂ_ 2_@_71 ( +.32) . 5.8

g:_.(/( G_’;’j) EQ. 5.9

B
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%}3 - (ji_;“_) . -(}-Px—;’”z——) 5,=0 , Q. 5.10

Solving Bquation 5.9 for frequency results in

W o ﬂzﬂ .4

'5-.'% EQ. 5.11
which is an exact answer. The solution to Equation 5.10 is the fre-
quency of the third harmonic and it is also an exact answer.

By using Equation 5.5 in the same manner except using values
other than n = 0 and R = 0 the frequencies can be found for any
shape parameter ''n" and any mass load ratio "R”. By plotting the
frequency coefficient versus the gshape parameter the best shape
(highest fundamental frequency) of the beam can be determined for
s particular ratio of mass load to beam mass.

As mentioned in the introduction the exact answers to many
vibration problems are difficult to obtain and approximate solution
must be accepted rather than performing numerous numerical sets of
calculations. For example; to find the frequency of the simply
supporied beam with & mass ratio "R' of 1 and a shape parameter "n"
of 1, Equation 5.5 must be solved, then differentiated and the re-
sulting homogeneous equations solved to determine the frequency.
The solution will be very close to the exact solution provided mo
mistakes are made. Reviewing Equation 5.5 and gubstituting n=1 and

R=1"g" bacomss

Fopd B ot

R S op XT3
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@) e e V)
-;_#U"(e.,,m[‘(.g),u

([’/2(4 cx) e +/ (x-2) dx) ®. 5.12

performing the necessary multiplication and substituting the first

two terms of the normal function,”s" equals

) f/z(gs S L )é .mzi; $18aya,-
- B AL stn? 3?) ,('< ﬁ,z( -3 0%+ 204
-4 )(52 g 4100, 1, .mf o 3+ 81 0y wur'sg )dx

z_g_?l_{ *z(g . .1,.2? * 20, 2y waggatn 25

e ’)I(?- T
(1 YAyt Y ('. Q. 5.13

The solution to Equation 5.12 is very long and will only give the
frequency for a besm whose shape parameter is 1 and mass ratioc is also
1. Sufficient combinations of '"n" and "R" must be taken in the calcu-
lations so the frequency coefficient versus the shape parameter can be

plotted. From this plot the optimm dynemic shape can be approximated.

PR




CHAPTER VI
CONCLUBION

It -has—been—shownr that to accurately determine the optimm
dynamic shape of a simply supported beam the process is very long and
complicated. However it could be simplified by using the Rayleigh

= principle 1f a good deflection curve could be obtained. The accuracy
of the Rayleigh principle depends on the normsl function (shape of
the deflection curve). It is difficult to approximate the normal

" function of a beam whose ares and inertis are not constant with a
single term. The normal function can best be approximated by a

series of terms as was shown in the Rayleigh-Ritsz procedure.

It was pointed out in the introduction that the accuracy of a

solution required by an engineer might depend upon how much effort \

the engineer wants to expend in solving the problem. The accuracy

TN At Keas e

required in shaping a simply supported beam is also a function of how

much manpower can be applied to the problem,

o g i



