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NATTONAL AERONAUTICS AND SPACE ADMINI STRATION

TECHNICAL MEMORANDUM X-673

TRANSONIC DYNAMIC LONGITUDINAL STABILITY CHARACTERISTICS
OF SIX BALLISTIC REENTRY CONFIGURATIONS DESIGNED
FOR SUPERSONIC IMPACT®

By Ernest R. Hillje and Robert A. Kilgore
SUMMARY

An investigation has been made in the Langley 8-foot transonic
pressure tunnel to determine the damping-in-pitch and the oscillatory
longitudinal stability characteristics of six blunt-nose cylinder-flare
reentry configurations that were designed for supersonic impact. Tests
were made at Mach numbers from 0.80 to 1.15 and at mean angles of attack
from 0° to 14°. Reynolds numbers, based on 0.333 foot, varied from
0.62 x 106 to 0.69 x 106. The amplitude of the forced oscillation was 2°
with reduced frequencies from 0.012 to 0.036. Some of the effects of
flare angle, nose shape, and fins are noted.

INTRODUCTION

The Langley Research Center is conducting a research program to
determine the static and dynamic stability characteristics of several
ballistic reentry configurations designed for supersonic impact. Since,
for certaln short or intermediate range missions, a particular reentry
configuration might be subjected to transonic or high subsonic speeds
before impact, it was considered necessary to determine the stability
characteristics of the several shapes at transonic speeds.

The static stability characteristics for several of the configura-
tions at transonic speeds are presented in reference 1 and for supersonic
speeds in references 2, 3, and 4. The dynamic stability characteristics
at supersonic speeds are presented in references 5, 6, and 7.

Presented herein are the results of tests to determine the damping-
in-pitch and the oseillatory longitudinal stability characteristics of

*Pitle, Unclassified.
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2 CONFIDENTT AL

six reentry configurations at Mach numbers from 0.80 to 1.15 and at
mean angles of attack from 0° to 14°.

SYMBOLS

All aerodynamic data in this report are presented in the body
system of axes with moments referred to the model oscillation axis as
shown in figure 1.

A reference area, =d</4, 0.0871 sq ft
Cm pitching-moment coefficient, Pitchi%gi moment

V< Ad

2
d reference length, model diameter at nose-body Jjuncture,
0.333 ft
M free-stream Mach number
qQ angular velocity in pitch, radians/sec
R Reynolds number based on d
v free-stream velocity, ft/sec
a instantaneous angle of attack, radians
Qm mean angle of attack, deg
-gec?

p free-stream mass density,
o 2n(Frequency of oscillation), radians/sec
% reduced-frequency parameter, radians

Cma = %, per radian
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Cm& = B?m , per radian

ad
o4
Oy
Cmq = , per radian
o)
v
0
Cmd = ——SEE—, per radian
> arL)
ve
ad\2
Cmm - (37) Cmi oscillatory longitudinal stability parameter,
per radian
Cmq + Cm& damping-in-pitch parameter, per radian

A dot sbove a symbol denotes a derivative with respect to time.
MODELS AND APPARATUS

Sketches of the six mcdels used for the investigation are shown
in figure 1. Configurations 1, 2, and 3 have the same short, truncated-
cone nose geometry but differ in flare angle and flare length. Config-
urations 3, 4, and 5 have the same afterbody shapes but differ in nose
shape. The six flared fins of configuration 6 are symmetrically dis-
posed about a cylindrical afterbody; this configuration has the same
maximim projected plan area as that of configuration 1. All the models
were oscillated about a point 11.12 inches forward of the base with the
exception of the model of configuration 5, for which the oscillation
axls was 10.62 inches forward of the base.

The models were machined from steel, except for the fins of the
model of configuration 6 which were constructed of plastic. All models
were tested in the aerodynamically smooth condition except for the
round-nose model (configuration 5) which had a 0.12-inch-wide strip of
0.0l11-inch nominal-diameter carborundum grains at the intersection of
the spherical and conical sections of the nose, as can be seen in fig-
ure 1. Calculations based on the method presented in reference 8 indi-
cate that roughness of this size should be sufficlent to cause transi-
tion from a laminar to a turbulent boundary layer. Each model had a
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flat base with an opening of approximately 3 inches in dlameter to
accommodate the supporting sting.

The models were mounted on a strain-gage balance which was rigidly
forced to perform a pitching oscillation. The oscillation-balance
mechanism used for these tests is described in detall in reference 9.

The tests were conducted in the Langley 8-foot transonic pressure tunnel.

TESTS

Tests were conducted at Mach numbers from 0.80 to 1.15 and at mean
angles of attack from 0° to 14°. Reynolds numbers, based on a reference

diameter 4 of 0.333 foot, varied from 0.62 X 10 to 0.69 X 10. No
date were taken for Mach numbers at which wall-reflected shock disturb-
ances would intersect the model. Tunnel stagnation temperature was
sutomatically held at 122° F and humidity was maintained at a level such
that the air flow was free of condensation shocks.

Aerodynamic date were measured at frequencles near the natural fre-
quency of the oscillating model system to insure the most accurate deter-
mination of the damping parameter. (See ref. 10.) The amplitude of
oscillation was 2° and the reduced-frequency parameter «d/V varied
from 0.012 to 0.03%6.

RESULTS AND DISCUSSION

Effects of Flare Angle

For configurations 1, 2, and 3, which have the same nose geometry
and flare-base diameter but have different longitudinal locations of
the body-flare juncture (fig. 1), the oscillatory stability parameter

2
Cma - (%?) Cm(.1 generally becomes more negative (indicating increasing

positive stability) as the body-flare juncture is moved rearward. (See
fig. 2.) This trend is in agreement with the static results of refer-
ence 1. Configuration 1, which has the smallest flare angle of 3.87°,
is marginally stable or unstable for all test conditions and, as pointed
out in reference 1, may be unsuitable aerodynamically for use as a
ballistic reentry configuration. Negative values of the damping-in-
pitch parameter Cmq + Cmg, (indicating positive damping) were measured

for these three configurations. At the subsonic Mach numbers the level
of damping increases with increased flare angle.
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Effects of Nose Shape

The effects of nose shape on the dynamic longlitudinal stability
characteristics are presented in figure 3 for configurations 3, h,
and 5, all of which have the same body-flare combination. The negative

2
values of the osclllatory stability parameter Cma - (%?) Cm(.1 show

all three configurations to be stable. The large increase in stability
at M =0.90 and ap = 0° for configuration 5, the model with the

round nose, was 8lso obtained in the statlc investigation of reference 1.

All three configurations had positive pitch damping at all test
conditions with one notable exception. For configuration 5, there
appears a negative damping peak at M = 1.00 and ap = 8°; thls nega-
tive value indicates an energy input to the model system. At this con-
dition, the measurements were not very repeatable, as can be seen by
the spread in the data. References 11 and 12 and unpublished data at
the Langley Research Center for some similar flare-stabilized bodies
show negative damping peaks for test conditions where a sharp break
occurs in the variation of pltching moment with angle of attack. The
negative damping is attributed to the fact that the oscillating model
is subjected to altermately attached and separated flow during each

2
cycle of oscillation. Although the stability parameter Cma - (%%) Cmi

of the present tests does not define a sharp break at the test conditions
where the negative damping peak occurs, the static stability data of ref-
erence 1 do show nonlinearities for this round-nose configuration at
these test conditions; these nonlinearities indicate a region of changing
flow conditions. The data of reference 1 also show nonlinearities at

M =0.95 near a =4° and at M = 0.90 near o =2°. Had dynamic
stability tests of the present investigation included these ranges of
angle of attack and Mach number, it is probable that negative damping
peaks would also have been measured at these test conditionms.

Effect of Fins

In figure 4, comparison of the data for configuration 6, which has
six fins flared 3.870, with the data for configuration 1, which has a
conical flare of 3.87°, shows greater stability for the finned config-
uration, particularly at the high angles of attack. As previously men-
tioned in the section "Models and Apparatus," these two configurations
have the same projected plan area. The pronounced differences in the
stability parameters contrast sharply with the similarities in the
damping parameters.
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SUMMARY OF RESULTS

The transonic longitudinal damping and oscillatory stability of
six blunt-nose cylinder-flare reentry configurations have been deter-
mined and the principal results are summarized as follows:

1. All configurations showed positive damping except for the round-
nose configuration at a Mach number of 1.00 and at a mean angle of
attack of 8° where a negative damping peak occurred.

2. Except for the configuration with a flare angle of 3.870, all
configurations had positive oscillatory stability.

5. For the configurations with the short truncated-cone nose, the
oscillatory stability increased at all Mach numbers and the damping
increased at the subsonic Mach numbers with increasing flere angle.

. The round-nose configuration with the 10° flare had about twice
the oscillatory stability at a Mach number of 0.90 and at mean angle of
attack of 0° as did the body~-flare configurations with the truncated-

cone noses.

5. The configuration with fins flared 3.87° had greater stability
than the configuration with conical flare of 3.870, particularly at the
high angles of attack. Both configurations had the same level of

damping.

Langley Research Center,
National Aeronautics and Space Administration,
Langley Air Force Base, Va., January 25, 1962.
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Figure 2.- Effect of change of flare angle and flare length on damping-in-
pitch parameter and oscillatory longitudinal stability parameter for
various Mach numbers.
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