

CODE IDENT NO. 81205

NUMBER D2-30207-1
TITLE WS-133 Fault Tree Anal-rsis Program Plan (0)
\because

MODEL NO: US -133B CONTRACT NO. AFO4(694)-266 1. \%

ISSUE NO. \qquad ISSUED TO \qquad

SPECIAL LIMITATIONS ON ASIA DISTRIBUTION
ASTiA mar distribute this report so requesting agencies subject to their security egraemente approved fields of interest, and the moving:
E UNLIMITED-To all agencies of the Oapertment of OFfense and their contractors. D LIMITED -To U. S. Military organizations only.
This report may be distributed to nonmilitary agencies not approved above subject to Boeing approval of each request. NOTE: the LIMITED category may be checked only because of actual of potential patent, propietory, ethical, or similar implications.

> Thus documant has beom cuproved for public rolome cand maloi the

REVISIONS

REVISIONS			
SYM	DESCRIPTION	DATE	APFROVED
A	SECTION A Page 6 - Revised to clarify Fault Tree documentation. Page 7 - Revised to identify IA\&T as Integrating Contractor. Page 7.1 - Added to provide for Technical Interchange Meetings Page 8 - Revised to identify the Pault Trees. SECTION B Page 2 and 3 - Revised to correct scheduling to reflect associate contractors commitments \mathbb{A} / \mathbb{N} Letter $63 \mathrm{NT} / \mathrm{Mm} 3820$ dated 11 June 1963, Subject: Fault Tree Analysis Program, and Sylvania Letter MPOL-2-4-860 dated 14 June 1963, Subject: Fault Tree Coordination. Pages 4 and 5 deleted. SECTION C Pages 2 - Revised to clarify definitions	7/16	
B	Pages, 5, through: 6o 2 revised to redefine composition of the -2 and -3 volumes. All pages are revised to reflect change in section identification. Pages 18 through 4%, Section 1 , added to provide additional mathematical methods. Section F "References" is deleted. The references are included in introductory pages of Section 1.	$\begin{aligned} & \pi \\ & 6 \\ & 2 \\ & 2 \\ & 5 \\ & 5 \end{aligned}$	$\text { nux } 511180$

U3 12878025 ORIG. 8/62

D2-30207-1
Section 1 Program Plan
1.0 Introduction
2.0 Purpose
3.0 Organization and Scope
4.0 Contractors' Responsibilities
5.0 Ground Rules
6.0 Fault Tree Construction 7.0 Applicable Matinematics

Section 2 Program Schedules
Section 3 Definition of Terms
1.0 Definition of Terms
2.0 Logic Symbols

Section \%. Method of Inadvertent Ialnch Analysis
1.0 Method of Inadvertent Launch Analysis

Section 5 Discussion of Probabilities and Their Combinaticns 1.0 Discussion of Probabilities and Their Combinations

D2-30207-2
Section 1 General
Section 2 Inadvertent Launch Analyses
Section 3 Faulty Launch Analysis
D2-30207-3
Section 1 General
Section 2 Aerojet General
Section 3 Autonetics
section 4 AVCO
Section 5 Boeing
Section 6 Hercules
Section 7 Sylvania
Section 8 Thiokol
en

U3 42882000 REV. $8 / 62$

REFERENCES

1 Launch Control Safety Study; Vol. I and II; Bell Telephone Laboratories - September 15, 1962

2 D2-14134 Minuteman Electronic Part Failure Rates - WS-133-2
3 D2-1074 Minuteman Reliability Engineering Directives \#5, 6, 7 and 8

4 BAC Standards - D590 - Book No. 30 Section 500
5 Air Force Report A65-E-62-123 WS-133B Weapon System Design Criteria

IETPRODUCTIOX

1.1 Ietter Contract AFO4(694)-266 requires that a Fault Tree Analyses re prepared to deteraine the probabilities of Inadvertent and Fanly Launches in the WS-133B Feapon System. This type of analysis provides a graphic display of fault sequences which can cause an unwanted ovent and a measure of the systen safety.
1.2 The determination of the ability of a complex system to provide safety against an undesirable event is exceedingly involved. An orderiy analysis has been prepared by the Bell Telephone Laboratories, entitled Launch Control Safety Study Peport, dated September 15, 1962 (ref. 1)。 They introduced a concept of Fault Trees which, with equivalent Boolean equations, provides a technique particularly adaptable to this effort. The trees graphically illustrate, in a logical form, the faults which might occur to permit an undesirable evento Boolean equations, which express the fault relationships, offer mathematical simplifications for calculating the Safety Constant.

2 PURPOSE
2.1 The parpose of the Fault Tree Analysis Program is to:
(a) Determine the probabilities of inadvertent and faulty launches.
(b) Identify those failurea which make excessive contribution to (a).
(c) Recommend corrective measures.

3 ORGANIZATION AND SCOPE
3.1.: The WS-133B Fault Tree analysis program is organized into three categoriss, each in a volume of this document as follows:

D2-30207-1 Program PIan
D2-30207-2 Inadvertent and Faulty Launch Summary D2-30207-3 Associate Contractor's Detail Analyses
3.1.1 The scope of the analysis is divided into 5 divisions.

This is the analysis of the probability of I.L. during the system life. It includes the operational system during the Strategic Alert, Strategic Standby, Launch Commanded, and Launch in Process modes, the exercise of preparatory launch commands, and also includes the probabilities of those events which can be caused by commanded programmed tests or calibration of the system, and by maintenance equipment and procedures.
3.1.1.2 The System Under Commanded Tests, Calibration and Interrogations:

This is the detail analysis of the probabilities contributing to I.L. during the periods of commanded tests and calibration. It also includes the interactions of commanded tests and interrogation of a specific if upon the overall system. It excludes the effects of MGE connected to the system, paragraph 3.1.2.4。
3.1.1:3 - Assembly and Checkout Equipment

- This is the analysis of the A\&CO equipment to determine what unsafe residual or post test effects can be left in the system by failures of the test equipment.
3.1.1.4 Maintenance Ground Equipment

This is the analysis of maintenance equipment effects at the LCF, IF and OCCP.

1. . Analyze the maintenance conditions which contribute to those events indicated in the analysis of the alert system paragraph 3.1.2.1.
2. Determine what unsafe residual or post maintenance effects can be left in the system by failure of the maintenance equipment.
3. Determine maintenance equipment failure rates for the modes of failure which are needed for (1) and (2) above.
3.1.1.5 Faulty Launch Analysis - The Alert System

6
It includes equipment wal functions and improper flight instructions under operational and maintenance conditions.
3.2 D2-30207-1 NS -133B Fault Tree Analysis Program Plan

This volume defines the Fault Tree Analysis Program requirements and responsibilities of all contractors and establishes ground rules, formats, definitions and instructions for preparing fault tree analyses.
3.3 D2-30207-2 WS-133B FAULTT TREE ANALISIS - InADVERTENT AND FAULTY LAUNCH SOMMARY

This volume contains the Veapon System Summary Fault Trees and Analyses prepared by rne Analysis Integration Contractor. The contents of this volume are shown below:

SECTION 1。 GENERAL
Title Page
Active Fafo Record Page
Revision Page
Table of Contents
References
Introduction
Summary
SECTION 2. INADVERTENT LAUNCH ANALYSES
1.0 The Alert System
1.1 Functional Flow and Block Diagrams
1.2 Fault Tree
1.3 Mathematical Solution
1.4. Recommendations for Change
2.0 The System Onder Tests, Calibration and Interrogations
2.1 Functional Flow and Block Diagrams
2.2 Fault Tree
2.3 Mathematical Solution
2.4 Recommendations for Change
3.0 Assembly and Checkout Equipment
3.1 Functional Flow and Block Diagrams
3.2 Fault Tree
3.3 Mathematical Solution
3.4 Recommendations for Change
4.0 Maintenance Ground Equipment
4.1 Functional Flow and Block Diagrams
4.2 Fault Tree
4.3 Mathematical Solution
4.4 Recommendations for Change

SECTION 3. FAULTY LAUNCH ANALYSIS
2.0 The Alert System
1.1 Functional Flow and Block Diagrams
1.2 Fault Tree
1.3 Mathematical Solution
1.4 Recommendations for change
\qquad
3.4 D2-30207-3 'NS-133B FAULT TREE ANALYSIS - ASSOCIATE CONTRACTOR'S DETAIL ANALYSES

This volume contains the detailed Fault Tree Analyses of each Associate Contractor as received by the Integration Assembly and Test Contractor in support of preparation of the System Fault Trees contained in volume 2 of this document. The contents of this volume are organized as follows:

SECTION 1. GENERAL

```
    THtle Page
    Active Page Record Page
    Revision Page
    Table of Contents
    References
    Introduction
    Summary
```

SECTION X* ASSOCIATE CONTRACTOR*
- 2.0 Inadvertent Launch Analyses
1.1 The Alert System
1.1.1 Functional Flow and Block Diagrams
1.1.2 Fault Trees
2.1.3 Mathematical Calculatiens
1.2 ane System Under Tests, Calibration and Interrogatidr:
1.2.1 Functional Flow and Block Diagrams
1.2.2 Fault Trees
1.2.3 Mathematica? Calculations
1.3 Assembly and Checkout Equipment
1.3.1 Functional Flow and Block Diagrams
1.3.2 Fault Trees
1.3.3 Mathematical Calculations
1.4 Maintenance Ground Equipment
1.4.1 Functional Flow and Block Diagrams
1.4.2 Fault Trees
1.4.3 Mathematical Calculations
2.0 Faulty Launch Analysis
2.1 The Alert System
2.1.1 Functional Flow and Block Diagrams
2.1.2 Fault Trees
2.1.3 Mathematical Calculations
3.0 Recommendations for Change
4.0 Supporting Data
4.1 Failure Mode Analysis
4.2 Reliability Data
*Associate Contractor section numbers have been assigned as follows:

SECTION 2. AEROJET GENERAL
SECTION 3. AUTONETICS
SECTION 4. AVCO
SECTION 5. BOEING
SECTION 6. HERCULES
SECTION 7. SYLVANIA
SECTION 8. THIOKOL
All Associate Contractors shall submit their inputs on their own stationary ($8 j^{\prime \prime} \times 11^{\prime \prime}$ to $11^{\prime \prime} \times 34 \not 2^{\prime \prime}$). Document, section and page numbers shall be included in the lower right-hand corner of each page in accordance with the following sample:

1 Each Associate Contractor shall use the section number assigned as shown in the organization of contents above.

2 Page numbering shall start with Page No. 2. The Analysis Integration Contractor shall add the Section Title Page to facilitate handling and incorporation of individual sections into D2-30207-3.

Us 42882000 REV. $8 / 62$

4 CONTRACTORS' RESPONSIBILITIES

The responsibilities of the contractors are described as follows:
4.1 The Integrating Contractor
4.1.1 It is the prime responsibility of the Integrating Contractor to prepare and submit the final reapon System Fault Iree Analysis to ArBSD.
4.1.2 Based on the Beapon System Fault Pree Analyses, tine Intetrating Contractor shall provide guidance to otiner cont_{2} aciors and generate requirements for specific inputs from them.
4.1.3 The Integrating Contractor shall evaiuate all jetail Fault Tree inputs from other Contractors for compatibility and coordinai interface probleras in the analyses.
4.1.4 The Integrating Contractor shall develop and maintain
detailed schedules for preparation and subuittal of Weapon Sysiem Fault Tree Analyses.
4.1.5 The Integrating Contractor shall also fulfilil the requirements of paragraph 4.2 below.
4.2.6 The Integrating Contractor shall honor the proprietary rights of the Associate Coniractors' submitted proprietary data and shall delete this material from the published submittals and reports.
4.2 All Associzte Contractors
4.2.1 It is the prime responsibility of each contractor to prepare detailed Fault Tree Analyses of the equipments he provides.
4.2.2 Ail contractors shali submit their detail Fault iree Analyses, together with other substantiating data (failure mode probability, worst case analyses, etc.), to the Integrating Contractor for incorporat: a into the Jeapon System Fault Tree Analyses as outlinea in Section 1 Subsection 3.3 and scheduled in Section 2.
4.2.3 Each Contractor may initiate recommendations for changes, shall coordinate them with other Contractors and prepare submittals to AFBSD for decision.
4.2.4 All contractors shall coordinate their Fault Tree Analysis Schedules with the Integrating Contractor for compatibility with the master ifeapon System Fault Tree Schedules of. Section 2.
\qquad
4.2.5 All contractors sinall submit their inputs to Intecrating Contrartor, in accoriance witis approved sciedules, for incorporation into quarterly subaittals oī the "earon System Eault iree inalysis docurentation.
4.2.6 Haterial of proprietary nature submitted to the Integrating Contractor sinall ie so indicated. Tnis data must be submitted as a sewarate attacisent oミ tine submitial to permit its extraciion witnout rework of tine remaining material.
4.3 Technical Interchange (TI) Heetings
4.3.1 TI Heeting will be held on a monthly basis, the third Tuesday of the month, except as indicated in parazaph 4.3.2. A $:$ dijitional meetinss ray je scheduled on an individual basis at the request of any Associate.
4.3.2 The TI Meetinss, to be held during the montins quarterly submittals are made to 333/STL, are to be scheculed on the day preceding the quarterly subrittal asetins date.
4.3.3 Announcement of the TI Meeting time and place is the responsibility oi the Integrating Contractor with the concurrence of the other issociate Contractors and shall be such that travel is apportioned on an equitable basis.
4.3.4 An action item log riill be maintained by the Integrating Contractor, as an instrument ci coordination, to assure the timely flow of data among the Associated.
4.3.5 Each action item will be prepared by the representative responsible for the provisions of the data and will include a date for the completion of the action item.
4.3.5 Each Associate will be representea by personne? who are knowledseable in the fault tree effort and who are prepared to commit a date for the completion of an action item.
5. GROUND RULES

These ground rules are supplementary to Contractor's Responsirilities and define a common approach for the development of Fault Trees.
5.1 The Safety Constant objectives for the fault trees will be tabulated and the values specified in the appropriate volumes as shown typically below.

PROEFNE ${ }^{\text {NO. }}$ D2-302.07-1
sect. I Page 8
5.8 The time during which a failure contributes to inadvertent launch is evaluated as follows,
5.8.1 Failures which are detected and repaired by the normal system maintenance shall be considered to be effective for forty-eight (48) hours.
5.8.2 Failures which upon detection cause a subsystem shutdome shall be considered to be effective until shutdown.
5.8.3 Failures which are detectable by the system periodic testing shall be considered to be effective for the period between these tests plus either the period to shut down or 48 hours, whichever applies.
5.8.4 Failures which are not subject to monitored system detection shall be considered to be effective for ${ }^{\text {k }}$: the maintenance period:- specified in the Forms C and $C l$,

COCAINE	NO. D2-30207-1	
SECT. 1	PAGE 8.1	

6 FAULT TREE CONSTRUCTION

6.1 The purpose of a Fault Tree Analysis is to identify events leading to a hazardous condition and organize these events in a logical form which lends itself to a clear determination of sequence and order of events leading to a hazard and to simple mathematical analysis.
6.2 The basic principles for setting up and preparing Fault Tree Analyses are given in Section VII of the BTL Report: Minuteman Launch Control System Safety Study Report, Vol. I,:included as Sact. 4 of this document.
6.3 A Fault Tree Analysis shall be divided into three distinct parts,

1. Functional Flow Diagram,
2. Fault Tree,
3. Mathematical Analysis,
which are finally summed up in the Safety Constant. This safety constant is a numerical evaluation of Safety for a given Fault Tree Analysis.
6.4 The following sequence of steps may be used as a guideline in accomplishing Fanlt Tree Analyses:
4. Determine methods of operation
5. Prepare functional flow diagrams
6. Develop appropriate Fault Trees
7. Determine circuit and equipment reliability
8. Perform other mathematical analyses as necessary and calculate Safety Constant.
9. Analyze and investigate phenomena that would affect the sensitive elements and show effect on Safety Constant.

U3 42882000 REV. $8 / 62$

6.3 EXAMPLS OF FAULT TRES

6.3.1 Inadvertent launch, defined for this example as at least silo cover removal and first stage ignition, can be considered to be caused by three separate branches of a fault tree as shown in Figure 1. Improper initiation of the proper terminal launch sequence (1) can be caused by faults at almost any point in the command flow; the terminal sequence, once initiated, is irreversible and will certainly result in inadvertent launch (sequence cancelling faults being ground ruled out). Inadvertent launch can also result from random critical failures (3); that is, launch events occur not as ordered by an improperly initiated. sequence, but as caused by random failures (the command flow apstream from the DCU is not involved in this branch). Finally, improper entry into the terminal launch sequence at other than its initial point could cause an inadverient launch if random failures have effectively completed the necessary steps in skipped portion of the sequence (2) - i.e., inadrertent launch due to interaction of (1) and (2).
6.3.2 1 breakdown of the (1) branch of the sample fault tree is shown in Figure 2. Since the DCO controls (or is involved in) all events that must precede terminal sequence initiation as well as controlling the terminal sequence itself, it is advantageous to separate (by branches) faults upstream from the DCO (II) from DCO faults (13), either of which can cause an inadvertent launch. The third (12) branch is needed to account for interaction between the (1i) and (13) branches.
6.3.3 The branching philosopiky shown in Figures 1 and 2 is obviously not the only philosophy that could be used; however, it appears useful from a bookkeeping point of view in that it permits complete, independent investigation of portions of the total prior to tangling with the maze of total interactions.
6.3.4 A breakdown of the (115) branch is shown in Figure 3. This subbranch is based on the sample functional flow shown in Figure 4. Note that DCO faults do not appear in Figure 3 since the (115) branch deals only with non-DCU faults. again, the system is apportioned by branch, with a "combination" branch to handle interactions. At this pcint in the fault tree it is possible to associate faults with specific equipuents. Status system or remedial action failure, shown generally in Figure 3, is brought in at this point of the tree since it is at this level that specific fault status items will usually be defined.
6.3.5 The Boolean equation describing each tree branch is shown on the ilgures depicting each sample branch.

nOTE
OUCH FAILLE EVENT ETHER MUST BE
HOOTED BY ACES OR INADVERTENT
LUNCH MUST OCCUR BEFORE CORRECTIVE (PREvEnTIVE Action CAN BE TAXEA De
corrective action must fail

PG-17 (1) PagE-19

RCP

(2.)

PAgE20

IESA- LAUNCH ENAPIE SWITCHiNG MATRI
LES- Laduch eadgle stsill

CSE- CABLE SPLITIAGEXUMMM
CRE- CABLE RECLIVING EENIF「「T
Leso mainch easte sicial ditios
Clo3A- SIGAL CDNETVIM
DCU DIGITAL COMC. EL ('Vir
SCS SAFETI CUNTSA SH1TC4

Pafa

7.

APPLICABLE MATHEMATICS

Fault Tree analysis requires careful mathematical treatment. Logic gates for combining faults, Boolean simplification to properly compute the effects of interacting branches, and the calculation of probability of failure in a periodically tested system have been developed by the Bell Telephone Laboratories. In addition to the preceding, the development of failure rate expression in the constantly monitored system with allowance for repair periods has been added by Boeing.

Also included in this section are some approximations which are useful to reduce undue complications in the Boolean simplification; qualification applying to failure rate jata; the method for periorming the final squadron calculations; and some notes on the appiication of probability to the nonrepairable system or short time system modes.

7 APPLICABLE MATHEMATICS - Contd.
7.1 General

The quantitative conclusion of a feult tree analysis is numerically expressed as the safety constant. The calculations neceseary to obtain it require:
(a) The development of the Boolean equations (Paragraph 7.2)
(b) Reliability and failure rate data (Paragraph 7.3)
(c) Determination of failure rates and effective duration +ives at logic gate outputs. (Paragraph 7.4)
(d) Erfect of irteracting branches (Paragraph 7.5)
(e) Konrepairable and short-time system mode analysis (Paragraph 7.6)
(f) Squadron and final calculations (Paragraph 7.7)

7.2 : Boolean Equations

Section VII of Vol. I and Section II of Vol. 2 of the Bell Telephone Iaboratory inadvertent launch study describe the generation and simplification of Boolean equations applicable \because; the fault trees. These sections are included as part of :his document in Sections 6 and 7.
7.3 Failure Rates

In determining failure rates for parts and circuits, certain assumptions have been defined. They are as follows:
7.3.1 Assumption 1

For electronic parts, assume a constant three (3) year failure rate to apply for the ten (10) year period except in the cases where information to the contrary is available.

\$.3.2 Assumption 2

For parts and components whose fallure distribution is Gaussian. convert to the appropriate constant fallure rate distribution and specify ass mea maintenance intervals. The steps involved in converting a Gaussian distribution to an approximate equiralent constant failure rate distribution are as follows:
(s) retermine, by prediction or estimation, the mean, (\bar{X}), and standard deviation, (s) of the Gaussian (normal) failure distribution.
(b) Determine the number of standard deviations between $t=0$ (where t is time) and the mean.
(c) If \bar{F} is large as related to s, the shape of the normal curve from $t=0$ to $t=x-38$ is relatively flat. The failure rate over the range $t=0$ to $t=\bar{X}-3 \mathrm{~s}$ can be
$=$ calculated by dividing the probability of failure (area under normal. curve) over this range by the time interval of the range. Since the curve is essentially flat, the failure rate is approximately constant.
(d) The approximation to a constant failure rate is approx priate for only the duration of the interval used in the calculation. However, if an equipment can be restored to its original operating condition by performing maintenance at intervals equal to, or less than, the ones used in calculating a constant failure rate, this failure rate can be applied to extended periods of time.
7.3.3 Assumption 3

The density function of inadvertent launch is napiform with time when Assumptions I and II above are utilized in calculaions.

7.4 Logic Gate Formulas

These Logic Gate formulas are applicable to the inadvertent launch calculations because they account for failure duration times. They will not apply, except for rose instances, in the faulty launch calculations.
7.4.1 Coexistence of Failures at AND Gates.

Given n repairable items. Let event 1, represent the failure of item $I_{\text {, event }} A_{2}$ the failure of item 2 , and in general $A_{\text {, }}$ the failure item i. Suppose each item i fails randomly with constant failure rate λ_{i} and duration time τ_{i} for $i=1,2$, . . ${ }^{n}$ where $\lambda_{i}^{\frac{1}{M}}$ and τ_{i} are in consistent units. Duration time is defined as the time from the occurrence of a failure to the time at which it is rendered ineffective. The expression $1-e^{-} \lambda^{T}$ is the probability that an item, with constant failure rate λ, will fail in an interval of time T, given that the item was working at the beginning of the interval.

Consider an interval of time 0 to I as shown in Figs i.4.1-1.

Fig。7.4.1-1
If T_{i} and $\lambda_{i} \tau_{i}$ are small for $i=1,2$, . . n, then
the probability that A_{1}, A_{2}, . . A A_{n} coexist in the interval ($t, i+d t$) given that they have not ${ }^{n}$ coexisted up to time t is given by the following expression.

$$
\begin{aligned}
& \lambda_{1} \text { vt }\left(1-e^{-\lambda} \tau_{2}\right)\left(1 \ldots-\lambda_{3} T_{3} \ldots \ldots\left(1 \ldots e^{-\lambda_{n} T_{n}}\right.\right. \\
& * \lambda_{2} \text { db }\left(1-0^{-\lambda_{1}} T_{1}\right)\left(1-\lambda_{3} \tau_{3}\right) \ldots\left(1-e_{n} \lambda_{n}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \bullet \\
& +\lambda_{n} d t\left(1-e^{-\lambda_{1} T_{1}}\right)\left(1-e^{-\lambda_{2} \tau_{2}}\right) \ldots\left(1-e^{-\lambda_{n-1} T_{n-1}}\right) \\
& =\mathrm{B} \mathrm{dt}
\end{aligned}
$$

24

This expression is obtained by adding together the probabilities of each way in which n events can coexist. for the first time in the di interval. For example: A_{1} can happen in the dt interval with a probability of λ_{1} dto If A_{2} is to coexist with A in the dt interval, it must occur some time in a τ_{2} time period prior to t; the probability of this is ($1-2-\lambda 2$ T2) o If A_{2} occurs before $t-T_{2}$, it will be repaired before it can coexist with A in the dt interval. If A_{2} occurs after t, it will not coexist with A_{1} in the particular dt interval under consideration. Similarly, A_{3} must occur in a ? interval before t with a probability of $\left(1-e^{-} \lambda_{3} \tau_{3}\right)^{3}$ in order to coexist mith 4 for the first time in the dt interval, etc. The product of thesa probabilities expresses their joint occurrence and gives the first tere of the above expression.

Now let $I(t)$ be the probability that A_{1}, A_{2}, ... A have not coexisted up to time.to Then $f(t+d t)$ is the probability that A_{1}, A_{2}, \circ. A have not coexisted during the tims period from δ to $t+d \frac{\eta}{t}$; this can also be expressed as
$f(t+d t)=f(t)(I-E d t)$
where (1 - H dt) is the probability that $\mathbf{A}_{1}, \mathrm{~A}_{2}, \cdot \circ \mathrm{~A}_{\mathrm{n}}$ do not coexist in the dt interval。

How by definition, the differential of $f(t)$ is $f(t+d t)-f(t)$; therefore, $d f(t)=f(t)(1-H d t)-f(t)$

$$
\cdots \quad d f(t)=f(t)(-H d t)
$$

and
$\frac{d f(t)}{f(t)}=-H d t$
Solving this differential equation by integratien we have $\ln \mathrm{f}(\mathrm{t})=-\mathrm{H} t+\mathrm{c}$ 。

But when $t=0, f(t)=1, \ln f(t)=0$ and therefore $c=0$ eo that
$f(t)=e^{-H t}$
The probability $\left(P_{A}\right)$ that A_{1}, A_{2}. . A coexist at some time during the interval T is then given by the following:
$P(A)=1-f(T)=1 * e^{-E T}$
By comparing this equation with the standard quation for probability of failure ($I-e^{-\lambda I}$) one can easily see that Fis the failure rate for the coexistence of n events or, in other words, it is the failure rate appearing at the output of an AND gate. From this point on, therefore, H will bo replaced.by λ_{n} (i.e., the failure rate for the intersection of n failures.) If $\lambda_{f} \tau_{f}$ is small for all ifrom 1 to n then H reduces to the fotlowing expression.

$$
\lambda_{n}=\lambda_{1} \lambda_{2} \cdots \lambda_{n}\left(\tau_{2} \tau_{3} \cdots \tau_{n}+\tau_{1} \tau_{3} \cdots \tau_{n}+\cdots+\tau_{3} \tau_{2} \cdots \tau_{n-1}\right)
$$

If duration times are all equal. λ_{n} reduces to

$$
\lambda_{n}=a \lambda_{1} \lambda_{2} \cdots \lambda_{n} \tau^{n-1}
$$

7.4.2 Effective Duration Time (T_{n}) at the Output of an AND Gate

Consider the logic configuration shown in Fig. 7.4.2-1.

Fig. 7.4.2-I
By Boolean algebra it is evident that the output of gate (1) is $A_{1} A_{2}$. . . A_{n+1}. According to the general expression obtained in paragraph 704.1, the failure rate at the output of gate (I) is, therefore,

$$
\lambda_{1} \lambda_{2} \ldots \lambda_{n+1}\left(\tau_{2} \tau_{3} \ldots \tau_{n+1}+\tau_{I} \tau_{3} \ldots \tau_{n+1}+\tau_{1} \tau_{2} \ldots \tau_{n}\right)
$$

This must be equal to the failure rate obtained by combining the output of gate (2), having failure rate λ_{n} and duration time T_{n}, with the failure rate and duration: time of event $\mathbf{A}_{\mathrm{n}+1}$. This is expressed as follows:

$$
\begin{aligned}
& \lambda_{n} \lambda_{n+1}\left(\tau_{n}+\tau_{n+1}\right) \\
& =\lambda_{1} \lambda_{2} \cdots \lambda_{n+1}\left(\tau_{2} \tau_{3} \cdots \tau_{n+1}+\tau_{2} \tau_{3} \ldots \tau_{n+1}+\cdots+\tau_{1} \tau_{2} \ldots \tau_{n}\right)
\end{aligned}
$$

Substituting in the general expression for λ_{n} we get $\lambda_{1} \lambda_{2} \cdots \lambda_{n}\left(\tau_{2} \tau_{3} \cdots \tau_{n}+\tau_{1} \tau_{3} \cdots \tau_{n}+\cdots=:\right.$

$$
\left.+\tau_{1} \tau_{2} \cdots \tau_{n-1}\right) \lambda_{n+1}\left(\tau_{n}+\tau_{n+1}\right)
$$

$$
=\lambda_{1} \lambda_{2} \cdots \lambda_{n+1}\left(\tau_{2} \tau_{3} \cdots \tau_{n+1}+\tau_{1} \tau_{3} \ldots \tau_{n+1} \cdots \infty\right.
$$

$$
\left.+\tau_{1} \tau_{2} \ldots T_{n}\right)
$$

\qquad

Therefore;

$\tau_{r_{1}}=\frac{1}{\frac{1}{\tau_{1}}+\frac{1}{\tau_{2}}+\cdots+\frac{1}{T_{n}}}$
If $\tau_{1}=\tau_{2}=\ldots=\tau_{n}=T$ then T_{n} reduces to $\tau_{m}=\frac{\tau}{n} \quad \therefore \therefore \therefore \quad \therefore \quad \begin{gathered}i^{2} \\ 0\end{gathered}$
\therefore ":
It can be observed that \mathcal{T}_{n} is an essential factor which enables the transfer of failure rates through succeeding logic gates.,
7.4.3 Failure Rate (λU) at the Output of an OR Gate

Given an interval of time T, the probability (\bar{P}_{0}) that none of the events $A_{1}, A_{2}, \ldots A_{n}$ occur in the interval of time is

$$
\begin{aligned}
\bar{P}_{0} & =e^{-\lambda_{1}} e^{-\lambda_{2} T} \ldots e^{-\lambda_{n}^{T}} \\
& =-\left(\lambda_{1}+\lambda_{2}+\ldots+\lambda_{n}\right)^{T}
\end{aligned}
$$

The probability (P_{0}) that any one of the events $A_{1}, A_{2}, \ldots A_{n}$ occurs is
$P_{0}=1-\bar{P}_{0}=1-e^{-\left(\lambda_{1}+\lambda_{2}+\ldots+\lambda_{n}\right) I_{0}}$
This shows that the failure rate at the output of an $O R$ gate (ices, the failure rate for the union of failures) is the sum of the input failure rates or

$$
\lambda_{u}=\lambda_{1}+\lambda_{2}+\cdots+\lambda_{n}
$$

ֵيد
7.4.4 Effective Duration Time (T_{U}) at the Output of an OR Gate: Consider the logic configuration shown in Fig. 7.4.4-1.

$$
\therefore \quad \therefore \quad .
$$

Fig. 7.4.4-1
By Boolean algebra the output of gate (1) is

$$
A_{1} A_{n+1}+A_{2} A_{n+1}+\cdots+A_{n} A_{n+1}
$$

The failure rate for the output gate (I) is, therefore,

$$
\begin{array}{r}
\lambda_{1} \lambda_{n+1}\left(T_{1}+\tau_{n+1}\right)+\lambda_{2} \lambda_{n+1}\left(\tau_{2}+\tau_{n+1}\right) \rightarrow \cdots \\
+\lambda_{n} \lambda_{n+1}\left(\tau_{n}+\tau_{n+1}\right)
\end{array}
$$

This must be equal to the failure rate obtained by combining the output of gate (2), having failure rate λu and effectcity time T_{u} with the failure rate and effectivity time oi event A_{n+1}. This is expressed as follows:

$$
\begin{aligned}
& \lambda_{u} \lambda_{n+1}\left(\tau_{u}+\tau_{n+1}\right)= \\
& \lambda_{1} \lambda_{n+1}\left(\tau_{1}+\tau_{n+1}\right)+\lambda_{2} \lambda_{n+1}\left(\tau_{2}+\tau_{n+1}\right)+\cdots \\
&+\lambda_{n} \lambda_{n+1}\left(\tau_{n}+\tau_{n+1}\right)
\end{aligned}
$$

substituting in the expression for $\lambda \cup$ we get
$\left(\lambda_{1}+\lambda_{2}+\cdots+\lambda_{n}^{j} \lambda_{n+1}\left(\tau_{0}+\tau_{n+1}\right)\right.$

$$
+\lambda_{n} \lambda_{n+1}\left(\tau_{n}+\tau_{n+1}\right)
$$

Therefore, $\tau_{u}=\frac{\lambda_{1} \tau_{1}+\lambda_{2} \tau_{2}+\cdots+\lambda_{n} \tau_{n}}{\lambda_{1}+\lambda_{2}+\cdots+\lambda_{n}}$

If $\tau_{1}=\tau_{2}=\ldots=\tau_{n}=\tau_{\text {then }} T_{U}{ }^{\prime}$ reduces to
$T_{u}=T$

ts with Th. Tu is an essential factor which enables the transfer of failure rates through succeeding logic gates.
7.4.5 The foregoing results are summarized in Table 1. 4 general proof of the validity of these results is given in paragraph 7.4.7. The logic gate formulas are directly applicable to Boolean expressions as well as to logic gates.

7.4.6.1.3 Derivation:

Consider the interval of time shown in Fig. 7.4.6.1.3-1.

By reasoning similar to that given in Paragraph 704.1, the probability $\left(P_{c}\right)$ that A_{I} and A_{2} coexist with a time slot in which a valid ELC is generated is

$$
\begin{aligned}
& p_{0}=\lambda_{1} d t \int_{0}^{T} \frac{p s}{c} \lambda_{2} d s+\lambda_{2} d t\left[\int_{0}^{T_{2}} \frac{p s}{c} \lambda_{I} d s+\right. \\
&\left.+\frac{\mathrm{q} \tau_{2}}{c} \lambda_{1}\left(\tau_{1}-\tau_{2}\right)\right]
\end{aligned}
$$

Where $\frac{S}{C}$ is the number of slots available for ELC generaion as a function of position s. $^{\text {. }}$

From this it can be shown that the failure rate is

$$
\lambda_{E L C}=\frac{p \lambda_{1} \lambda_{2} \tau_{1} \tau_{2}}{C}
$$

$$
\dot{x}_{-}:
$$

US 42882000 REV. $8 / 62$

7.4.7 Proof of Logic Gate Formulas

Suppose we are given a fault tree where only coexistance of events is of concern at each AND gate (i.e., the order In which events occur in time is not important). Suppose further the bottom elements of the fault tree consist of items which can be assigned constant failure rates and fixed duration times from the advent of the failure to the correction of the failure (ie., fixed repair times). We proceed un the fault tree obtaining new λ is and T's. by use of the following formulas. Suppose we have n events, A_{1}, A_{2}. - A_{n} to be AiDed and suppose we have associated with them the failure rates λ_{1}, λ_{2}. . λ_{n} and "effectire duration times" $T_{1}, \tau_{2} \cdot \cdots, \gamma_{n}$. The λ_{1}, output of the gate is given by

$$
\begin{equation*}
\lambda_{1} \cdots \lambda_{n}\left(T_{1} T_{2} \ldots T_{n-1}+T_{1} \tau_{2} \ldots T_{n-2} T_{n}+\cdots 0\right. \tag{1}
\end{equation*}
$$

$$
\left.+T_{2} \ldots T_{n}\right)_{0}
$$

The Toutput (effective duration time output) is given by
$\frac{1}{T_{i}+\frac{1}{T_{2}}+\cdots+{\frac{1}{T_{a}}}^{\circ}}$
$\overline{\mathbf{x}} \hat{\mathbf{\Sigma}}$ the n events are to bo ORe, the λ output is

$$
\begin{equation*}
\lambda_{2}+\lambda_{2}+\cdots+\lambda_{n} \tag{3}
\end{equation*}
$$

and the T output is

$$
\begin{equation*}
\frac{\lambda_{1} \tau_{1}+\cdots+\lambda_{n} \tau_{n t}}{\lambda_{1}+\cdots+\lambda_{n}} \tag{4}
\end{equation*}
$$

we will prove that the failure rate output at any gate In the fault tree is correct when the above formulas are used. Write the output from any logic gate as the union of n chains, E_{1}, E_{2}, . . En, (A chain is a series of sANDed events.) whore

$$
\begin{aligned}
& E_{I}=F_{I}^{I} \cap F_{2}^{1} \cap \ldots \cap P_{k_{I}}^{1} \\
& E_{n}=F_{I}^{n} \cap F_{2}^{n} \cap
\end{aligned}
$$

We will prove that in every case the τ output of any logic gate will be of the form

$+\lambda_{F_{1}}^{n} \cdots \lambda_{F_{k n}^{n}}^{n}\left(\tau_{F_{1}}^{n} \cdots \tau_{F_{k=1}^{n}}^{n}+\cdots+\tau_{F_{2}^{n}}^{n} \cdots T_{F_{k n}^{n}}^{n}\right)$
and the output will be of the forms keri ${ }_{2} \mathrm{~F}_{\mathrm{n}}$
$\lambda_{F_{1}}^{\prime} \cdots \lambda_{F_{1}}^{\prime}\left(\tau_{F_{1}^{\prime}} \ldots \tau_{F_{k_{1}-i}^{\prime}}+\cdots+\tau_{F_{2}^{\prime}}^{\prime} . . \tau_{F_{k_{1}}^{\prime}}\right)+\cdots$
$+\lambda_{F_{1}}^{n} \cdots \lambda_{F_{k}}^{n}\left(\tau_{F_{1}}^{n} \cdots \tau_{F_{k}-1}^{r}+\cdots+\tau_{F_{2}}^{n} \ldots \tau_{F_{k_{n}}^{n}}\right)$
We proceed by induction. Fie will assume that the above is true for two inputs into an AND or an OR gate 。 This wifi later of generalized for any number of inputs into an LiND or an $O P$ gate.

7.4.7.1 Proof of OR Gate Formulas

Suppose at step n we take the union of two branches, branch I $\left(\beta_{1}\right)$ and branch $2\left(\beta_{2}\right)$.

Suppose branch I is the union of n chains, C_{1}, C_{2}, C_{n} where

$$
\begin{aligned}
C_{1} & =A_{1}^{1} \cap A_{2}^{1} \cap \cdots \cap A_{k_{1}}^{1} \\
& \cdots A_{1}^{n} \cap_{1}^{-} A_{2}^{n} \cap \ldots \cap A_{k_{n}}^{n}
\end{aligned}
$$

Suppose branch 2 is the union of m chains

$$
\begin{aligned}
& D_{1}=B_{1}^{\prime} \cap B_{2}^{\prime} \cap \cdots \cap B \hat{l}_{1}^{\prime} \\
& \quad \cdots \\
& D_{m}=B_{1}^{m} \cap \cdots \cap E_{l_{k}}^{m} \\
& \text { then by the induction assumption (Equations } 5 \text { and } 6 \text {) the } \\
& T T_{B} \text { we have at this point are }
\end{aligned}
$$

$$
\begin{aligned}
& +\lambda_{B_{1}^{m}}^{m} \cdots \lambda_{B_{l_{m}}^{m}}\left(\tau_{B_{1}}^{m} \ldots \tau_{B_{l_{m}-1}^{m}}^{m}+\cdots+\tau_{B_{2}^{m}}^{m} \ldots \tau_{B_{l_{m}}^{m}}\right)
\end{aligned}
$$

mas $\lambda_{1 s}$ are
$\beta_{1} \cup \beta_{2}$ consists of the $\mathrm{a}+\mathrm{n}$ chains $C_{1}, \cdots C_{n}, D_{1} \cdots D_{m}$.
From paragraph 7.4.3, $\lambda_{\beta_{1} \cup \beta_{2}}=\lambda_{\beta_{1}}+\lambda \beta_{2}$
write $\tau_{\beta_{1}}=\frac{A}{\lambda \beta_{1}}$
where ${ }^{-} A=\lambda_{A_{1}} \cdots \lambda_{A_{k_{1}}^{\prime}} \tau_{A_{1}^{\prime}} \cdots \tau_{A_{k_{1}}^{\prime}}+\cdots+\lambda_{A_{1}}^{n} \cdots \lambda_{A_{k_{n}}^{n}}^{n} \tau_{A_{1}^{n}} \cdots \tau_{A_{k_{n}}}$
similarly, write $\tau_{\beta_{2}}=\frac{B}{\lambda \beta_{2}}$
where $\quad B=\lambda_{B_{1}} \cdots \cdots \lambda_{B_{1}^{\prime}}^{\prime} T_{B_{1}^{\prime}} \cdots \tau_{\mathcal{C}_{1}^{\prime}}+\cdots+\lambda_{B_{1}^{m}}^{m} \cdots \lambda_{B_{l_{m}}^{m}} \tau_{B_{1}^{m}} \cdots \tau_{B_{m}}^{m}$
How the τ output should be $\frac{A+B}{\lambda_{\beta_{1}}+\lambda \beta_{2}}$. This is seen by
by examining Equation 5 where the chains are $C_{1}, \cdots C_{n}, D_{1}, \ldots D_{\text {m }}$.
By equation 4,

$$
\begin{aligned}
\tau_{\beta_{1} \cup \beta_{2}} & =\frac{\lambda \beta_{1} \tau_{\beta_{1}}+\lambda \beta_{2} \tau_{\beta_{2}}}{\lambda \beta_{1}+\lambda \beta_{2}}=\frac{\lambda_{\beta_{1}} \frac{A}{\lambda \beta_{1}}+\lambda \beta_{2} \frac{\beta}{\lambda \beta_{2}}}{}=\frac{A+B}{\lambda \beta_{1}+\lambda \beta_{2}} .
\end{aligned}
$$

$$
=\frac{A+B}{\lambda_{B_{1}}+\lambda_{B_{2}}}
$$

This proves the T output of an OR gate maintains the correct form (as given by Equation 5) when Equation 4 is applied.
7.4.7.2 Proof of AND Gate Formulas

It will now be shown that the Toutput of an AND gate is of the correct form and that the output of the AND gate is correct given (by induction). that the λ inputs are correct and the T's are of the form indicated by Equation 5. We are now interested in $T_{Q_{1} \cap \beta_{2}}$.

JJ 42382000 REV. $8 / 62$

$$
\begin{aligned}
& \lambda \beta_{1}=\lambda_{A_{1}^{\prime}} \cdots \lambda_{A_{k_{1}}^{\prime}}\left(\tau_{A_{1}^{\prime}} \cdots \tau_{A_{k_{1}-1}^{\prime}}+\cdots+\tau_{A_{2}^{\prime}} \cdots \tau_{A_{k_{1}}^{\prime}}\right)+\cdots \\
& \cdots \quad+\lambda_{A_{1}} \cdots \lambda_{A_{k_{n}}^{n}}\left(\tau_{A_{1}^{n}} \ldots \tau_{A_{k_{n}}-1}^{n}+\cdots+\tau_{A_{2}^{n}}^{n} \tau_{A_{k_{n}}^{n}}\right) \\
& \lambda_{B_{2}}=\lambda_{B_{1}^{\prime}} \cdots \lambda_{B_{1}^{\prime}}\left(\tau_{B_{1}^{\prime}} \ldots \tau_{B_{1}-1}^{\prime}+\cdots+\tau_{B_{2}^{\prime}} \cdots \tau_{B_{\ell}^{\prime}}\right)+\ldots
\end{aligned}
$$

We first ascertain what the correct T is.

$$
\begin{aligned}
& \beta_{1} \cap \beta_{2}=\left(C_{1} \cup C_{2} \cup \cdots \cup C_{n}\right) \cap\left(D_{1} \cup D_{2} \cup \cdots \cup D_{m}\right) \\
&= C_{1} \cap D_{1} \cup C_{1} \cap D_{2} \cup \cdots \cup C_{1} \cap D_{m} \cup C_{2} \cap D_{m} \cup \cdots \\
& \because \cup C_{n} \cap D_{1} \cup \cdots \cup C_{n} \cap D_{m} \\
&= A_{1}^{\prime} \cap A_{2}^{\prime} \cap \cdots \cap A_{k_{1} \cap B_{1}^{\prime} \cap B_{2}^{\prime} \cap \cdots \cap B_{L_{1}}^{\prime} \cup A_{1}^{\prime} \cap \cdots} \\
& \cap A_{k_{1}}^{\prime} \cap B_{1}^{2} \cap \cdots \cap B_{l_{2}}^{2} \cup \cdots \cup A_{1}^{n} \cap \cdots \\
& \cap A_{k_{n}}^{n} \cap B_{1}^{m} \cap \cdots \cap B_{l_{m}}^{m}
\end{aligned}
$$

The correct T by Equation 5 is seen to be

$$
\begin{aligned}
& \lambda_{A_{1}^{\prime} \cdots \lambda_{A_{1}}^{\prime}} \lambda_{E_{1}^{\prime}} \cdots \lambda_{B_{1_{1}}^{\prime}} T_{A_{1}^{\prime}} \cdots T_{A_{k_{1}}^{\prime}} T_{B_{1}^{\prime}} \cdots T_{B_{\ell_{1}}^{\prime}}+\cdots \cdot
\end{aligned}
$$

$$
\begin{aligned}
& \text { where }
\end{aligned}
$$

$$
\begin{aligned}
& C=\lambda_{\beta, \cap B_{2}} \\
& =\lambda_{A_{1}^{\prime}} \cdots \lambda_{A_{k_{1}}^{\prime}} \lambda_{B_{1}^{\prime}} \cdots \lambda_{B_{2_{1}}^{\prime}}^{*}\left(\tau_{A_{1}^{\prime}} \cdots \tau_{A_{k_{1}}^{\prime}} \tau_{B_{1}^{\prime}} \cdots \tau_{B_{Q_{1}-1}^{\prime}}+\cdots\right. \\
& \left.+\tau_{A_{2}^{\prime}} \cdots \tau_{A_{k_{1}}^{\prime}} \tau_{B_{1}^{\prime}} \cdots \tau_{B_{l_{1}}^{\prime}}\right)+\cdots+\lambda_{A_{1}}^{n} \cdots \lambda_{A_{k_{n}}} \lambda_{B_{1}}^{m} \cdots
\end{aligned}
$$

$$
\begin{aligned}
& \text { We have }
\end{aligned}
$$

$$
\frac{1}{\frac{1}{\tau_{\beta_{1}}}+\frac{1}{\tau_{\beta_{2}}}}=\frac{\tau_{\beta_{1}} \tau_{\beta_{2}}}{\tau_{\beta_{1}}+T_{\beta_{2}}}
$$

$$
\begin{aligned}
& =\frac{\frac{A B}{\lambda_{\beta_{1}} \lambda_{\beta_{2}}}}{\frac{A}{\lambda_{\beta_{1}}}+\frac{B}{\lambda_{\beta_{2}}}} \\
& =\frac{A B}{A \lambda_{\beta_{2}}+B \lambda_{\beta_{1}}}
\end{aligned}
$$

US 42882000 REV. $8 / 62$
REV SYM B

$$
\begin{aligned}
A B= & \lambda_{A_{1}^{\prime}}^{\prime} \cdots \lambda_{A_{k_{1}}^{\prime}} \lambda_{B_{1}}^{\prime} \cdots \lambda_{B_{l_{1}}}^{\prime} \tau_{A_{1}^{\prime}} \cdots \tau_{A_{k_{1}}^{\prime}} \tau_{B_{1}^{\prime}} \ldots \tau_{B_{C_{1}}^{\prime}}+\cdots \\
& +\lambda_{A_{1}^{\prime}}^{n} \cdots \lambda_{A_{k}}^{n} \lambda_{B_{1}}^{m} \ldots \lambda_{B_{\hat{l}_{m}}^{m}} \tau_{A_{1}} \ldots \tau_{B_{k_{m}}^{m}}
\end{aligned}
$$

$\angle B$ is therefore identical with the numerator of Equation To It follows that we must now only show that $A \lambda_{B_{2}}+B \lambda_{e_{1}}=C$, $A \lambda_{\beta_{2}}+B \lambda_{\beta_{1}}$
$=\lambda_{A_{1}^{\prime}} \cdots \lambda_{A_{R_{1}}^{\prime}} \lambda_{B_{1}} \cdots \lambda_{B_{l}}^{\prime}\left(\tau_{A_{1}^{\prime}} \cdots \tau_{A_{R_{1}}^{\prime}} T_{B_{1}^{\prime}} \cdots T_{B_{l_{1}-1}^{\prime}}^{\prime}+\cdots+\tau_{A_{1}^{\prime}} \cdots T_{A_{R_{1}}^{\prime}} \tau_{R_{2}^{\prime}} \cdots \tau_{L_{L_{1}}}\right.$ $+\cdots+\lambda_{A_{1}}^{n} \cdots \lambda_{A_{k_{n}}^{n}} \lambda_{B_{1}^{m}}^{m} \cdots \lambda_{B_{l_{m}}^{m}}\left(\tau_{A_{1}^{n}} \ldots \tau_{A_{k_{n}}^{n}} \tau_{B_{1}^{m}} \cdots \tau_{B_{l_{m-1}}^{m}}+\cdots+\tau_{A_{1}^{n}} \cdots \tau_{A_{k_{n}}^{n}} \tau_{\mathbb{B}_{2}^{m}} \ldots T_{p_{B}}\right)$
$+\lambda_{B_{1}^{\prime}} \cdots \lambda_{B_{1}^{\prime}}^{\prime} \lambda_{A_{1}^{\prime}} \cdots \lambda A_{k_{1}^{\prime}}^{\prime}\left(T_{B_{1}^{\prime}} \cdots T_{B_{l_{1}}^{\prime}} T_{A_{1}^{\prime}} \cdots T_{A_{k_{1}-1}^{\prime}}+\cdots+T_{B_{1}^{\prime}} \cdots T_{B_{k_{1}}^{\prime}} T_{A_{2}^{\prime}} \cdots T_{A_{k_{1}}^{\prime}}\right)$

Regrouping the above by adding line one of the above to line 3 and line 2 to line 4 (In general line y would be added to line $m+n+y$ for $y=1,2 \cdots m+n$), it is easily seen that the result is C. It remains to show that the failure rate from the output of the AND gate is correct. This means we must show that

$$
\lambda_{B_{1}} \lambda_{B_{2}}\left(\tau_{B_{1}}+\tau_{B_{2}}\right)=C
$$

But

$$
=\lambda_{\beta_{1} \cap \beta_{2}}
$$

$$
\lambda_{\beta_{1}} \lambda_{\beta_{2}}\left(\frac{A}{\lambda \beta_{1}}+\frac{B}{+\lambda \beta_{2}}\right)=A \lambda_{\beta_{2}}+B \lambda_{\beta_{1}}
$$

by what we just proved 。 $=C$
7.4.7.3 Generalization

We have shown that $\frac{1}{\frac{1}{\tau_{1}}+\frac{1}{\tau_{2}}}$ is the correct T formula.

$\therefore \frac{1}{T_{1}}+\cdots+\frac{1}{T_{n}}$
is the correct \uparrow formula for $n+1$ items ANDed together.
But

$\frac{1}{T_{1}}+\cdots+\frac{1}{T_{n}}$
This proves they T formula for n items ADDed together. A similar argument proves the OR formula for n items and the λ formula for n items ADDed together.

7.5 Interacting Branches

Then two or more branches interact or, in other words, when a failure is common to tao or more branches of a fault tree, error is induced into the final probability number unless the Boolean expression is simplified. This fact is noted in Section 5 Page 6. iuhen combining failure rates through AND and OR gates from the bottom of the fault tree to the top, careful inspection must be employed to insure that no unconservative error is induced into the probability calculation. 4 conservative error is defined as an error which makes the final probability number larger than it should be. A discussion of errors and remedies follows.

7.5.1 OB Gate Interaction Error

If two or more branches with common terms unite at an OR gate, the induced error is conservative and often insignificant. The general proof of this is found in paragraph -7.5.4.2. The conservative error induced by common branches at an OR gate is not a serious condition; however, if further refinement is desirable, the Boolean expression may be obtained and simplified up to the point at which the branches unite

7.5.1.1 Examples:

In both cases shown below, the probability expression on the left of the inequality sign (the probability which would be obtained by combining probabilities directly through logic gates) is seen to be conservative.
(a)

Unsimplified - Simplified

$$
A+B+A C=A \pm B
$$

$$
P(A)+P(B)+P(A) P(C)>P(A)+P(B)-
$$

$$
-P(A) P(B)
$$

$$
\begin{aligned}
& \text { Unsimplified }- \text { Simplified } \\
& A B+A C=A(B+C) \\
& \begin{aligned}
P(B)+P(A) P(C) & >P(A)[P(B)
\end{aligned} \quad+P(C)- \\
& \text { or }
\end{aligned}
$$

7.5.2 AND Gate Interaction Error

If two or more branches with common terms unite at an AND gate, an unconservative error is always induced. This is proved in general in paragraph 7.5.4.3.

ARCANE $|$| NO. | D2-30207-1 |
| :--- | :--- |
| SECT. 1 | PAGE 34 |

7.5.2.1 Examples:

Iu both cases shown below, the probability expression on the left of the inequality sign (the probability which would be obtained by combining probabilities directly through logic gates) is seen to be unconservative.

Since this condition results in a final probability number which is smaller than it should be, e remedy must be appiied to eliminate its effect.

7.5.2.2 Remedies:

7.5.2.2.1 The AND gate interaction error can be removed entirely by expressing the terms of the interacting branches in Eoolean form and by simplifying the expression. The logic gate formulas can then be applied directly to the expression without restoring it to fault tree form. The Boolean expression need only be obtained up to the logic gate at which the interacting branches unite.
7.5.2.2.2 A conservative estimate of the final probability number may be obtained by substituting a probability of unity into all but one of the common terms. The unity probability should bo assigned first to common terms at OR gates when a choice existso If this remedy is applied to the probability expression of Example (a) of Paragraph 7.5.2.1, the following resulta are obtained.
$[P(A) * P(B)] P(A) P(C)<P(A) P(C)$
$[1+P(B)] P(A) P(C)>P(A) P(C)$
$P(A) P(C)+P(A) P(B) P(C)>P(A) P(C)$

Similarly, applying this remedy to Emample (b) of Paragraph 7.5.2.1, we obtain the following.

$$
\begin{aligned}
& {[P(A)+P(B)][P(A)+P(C)]<P(A)+P(B) P(C)-P(A) P(B) P(C)} \\
& {[I+P(B)][P(A)+P(C)]>P(A)+P(B) P(C)-P(A) P(B) P(C)} \\
& P(A)+P(C)+P(A) P(B)+P(B) P(C)>P(A)+P(B) P(C)-P(A) P(B P(C)
\end{aligned}
$$

7.5.3 Even thougn the probability of a common term may be negligible with respect to other probacilities at an OR gate, its eiffect as an interacting branch cannot be ignored. for example, suppose $P(A)$ is negligible compared to $P(B)$ in Exanples (a) and (b) oi Paragraph 7.5.2.1. It can readily be observed that an unconservative error is induced if the A tera at the affected $O R$ gate (gate 2) is dropped.
7.5.4 The foregoing results apply when combining failure rates through logic gates as weil as when combining probabilities. If the methods of Paragraph 7.5.2.2.2 are used, the following rules govern in the combination of failure rates with unity probability:
7.5.4.1 If failure rates are to be combined aith unity probability at an OR gate, the output of the OR gate has a probability of unity。
7.5.4.2 If failure rates are to be combined with unity probability at an AND gate, the input with unity probability is ignored since it has no effect at this gate.
7.5.5 Proci of the Effect of Interacting Branches at a Logic Gate。
7.5.5.1 Prelininary Information

Any oranch of a fault tree may be represented as a union of chains. A chain is defined as an intersection of one or more events. For example, suppuse a branch of the fault tree has the following Boolean equation.

$$
[(I+S) T][\mathbb{N}+V(T+X Y)]+\mathbb{Z}
$$

This equation can be reduced to
RTN + RTVK + RTVXY $+S T N+S T V W+. S T V X Y+2$,
which is gunion of seven chains. In the discussion to Pollow, the Boolean symbols U and \cap will be used in the place of + and x respectively for the sake of clarity. The above equation can then be expressed in the following form.
$K_{1} \cup K_{2} \cup K_{3} \cup K_{4} \cup K_{5} \cup R_{6} \cup K_{7}=\bigcup_{i=1}^{7} K_{5}$
Where $K_{1}=R T N, K_{2}=$ RTVM， $\bar{n}_{3}=$ RTUXI：etc。
How suppose we mish to factor the comon event R from each of the terms of the above expression。 Ele can write it as follows：
$\bigcup_{i=1}^{7} E_{i}=\bigcup_{E=4}^{7} K_{i} \cup R \cap \bigcup_{j=1}^{3} L_{j}$
Ghere $I_{1}=T N, I_{2}=T V$ and $I_{3}=T V X Y$ 。

7．5．5．2 Interacting Branches Unite at an OR Gate

Let A represent an event which is common to more than one branch of a fault tree．Consider the logic gate at which wo or more interacting branches unite．Since ail inputs of a logic gate can ive combined two at a time，the case of two branches into a logic eate need only be con－ aicered．Let the two input branches be labeled events B and C 。

Representing B and C as unions of chains as above，we get the following：

$$
\begin{aligned}
& B=\bigcup_{g=1}^{m} D_{g} \cup A \cap \bigcup_{i=1}^{n} E_{i} \\
& C=\bigcup_{j=1}^{p} F_{j} \cup A \cap \bigcup_{k=1}^{I} G_{k}
\end{aligned}
$$

These equations express the fact that the common term A is contained in some chains and not in others．

If the two interacting branches unite at an OR gate，the Boolean expression is

U3 42882000 REV． $8 / 62$
\qquad
GBATEANET ${ }^{\text {NO．}} \quad$ D2－30207－1 Tsect．1 $\left.\right|_{\text {page }} 37$

Applying probability as if the terms vere mutually exciusive (a good conservative approximation wen probabilities are small) we get
$P(B \cup C)=\sum_{g=1}^{m} P\left(D_{g}^{\prime}\right)+\sum_{j=1}^{p} P\left(P_{j}\right)+P(A)\left[\sum_{i=1}^{n} P\left(E_{i}\right)+{ }_{k=1}^{x} P\left(G_{k}\right)\right]=$
Phis is equal to the probability $[P(C)+P(D)]$ winch mould be obtained by combining probabilities through logic gates.

Suppose nemi that 3 has the following form:
$B=\bigcup_{g=1}^{\text {In }} D_{g} U A$

Then all A $\cap G_{k}$ terms drop out of C and
$B \cup C=\bigcup_{B=1}^{W I T} D_{g} \cup A \cup \bigcup_{j=1}^{p} F_{j}$
Applying probability as above $\begin{aligned} \text { fet } \\ \text { set }\end{aligned}$
$\dot{P}(B \cup C)=\sum_{g=1}^{m} P\left(D_{8}\right)+P(A)+\sum_{j=1}^{p} P\left(F_{j}\right)_{0}$

The probability which would be obiained by combining probabilities through logic gates $[P(B)+P(C)]$ is
$P(B)+P(C)=\sum_{g=1}^{m} P\left(D_{g}\right)+P(A)+\sum_{j=1}^{p} P\left(F_{j}\right)+P(B) \sum_{k=1}^{r} P\left(G_{k}\right)$
$P(B)+P(C)=P(B \cup C)+P(A) \sum_{E=1}^{T} P\left(G_{E}\right)$
therefore,
$P(B)+P(C) \geq P(B \cup C)$
Hence, the probability obtained by combining probabilities through legic gates is either correct or conservative for interacting branches which unite at an $O R$ gateo
7.5.5.3 Interacting Branches Unite at an 2 ND Gate

If
$E=\bigcup_{g=1}^{m} D_{8} \cup$ U $\cap \bigcup_{i=1}^{2} E_{i}$
$G=\bigcup_{j=1}^{P} F_{j}$ UAr $\cap \bigcup_{k=1}^{P} G_{k}$
then

$+1 \cap \bigcup_{i=1}^{n} E_{i} \cap \bigcup_{j=1}^{p} E_{j} \cup A \cap \bigcup_{k=1}^{T} G_{k} \cap \bigcup_{i=1}^{n} E_{i}$
Applying probability assuming mutually exclusive events, We get.

$$
\begin{aligned}
& P(B \cap C)=\sum_{g=1}^{m} P\left(D_{g}\right) \sum_{j=1}^{P_{j}} P\left(F_{j}\right)+P(A) \sum_{k=1}^{T} P\left(G_{k}\right) \sum_{B=1}^{m} P\left(D_{g}\right) \\
& \quad \therefore P(A) \sum_{i=1}^{m} P\left(E_{i}\right) \sum_{j=1}^{p} P\left(F_{j}\right)+P(A) \sum_{k=1}^{m} P\left(G_{k}\right) \sum_{i=1}^{n} P\left(E_{i}\right)
\end{aligned}
$$

By combining probabilities through logic gates we would get
$P(B) P(C)=\left[\sum_{g=1}^{m} P\left(D_{g}\right)+P(A) \sum_{i=1}^{n} P\left(E_{i}\right)\right]\left[\sum_{j=1}^{p} P\left(F_{j}\right)+P(A) \sum_{k=1}^{r} P\left(G_{k}\right)\right]$
$=\sum_{g=1}^{\text {II }} P\left(D_{g}\right) \sum_{j=1}^{p} P\left(F_{j}\right)+P(A) \sum_{k=1}^{P} P\left(G_{k}\right) \sum_{g=1}^{m} P\left(D_{g}\right)$
$+P(A) \sum_{i=1}^{n} P\left(E_{i}\right) \sum_{j=1}^{p} P\left(F_{j}\right)+[P(a)]^{2} \sum_{i=1}^{n} P\left(E_{i}\right) \sum_{k=1}^{r} P\left(a_{k}\right)$
$P(B) P(C)$ and $P(B \cap C)$ are equivalent except for the last terms.

1

REV SYM \qquad B

7.6 .5

Continued
in terms of failures per cycle, then λ multiplied by the number of cycles in the mode is the probability of failure.

For the inadvertent launch tree where calculation is done on a (λ, τ) basis, data which is acquired as a probability of failure per cycle or per hour must be incorporated in the mathematical treatment of the tree. there the cyclical probability of failure for an event is given, an estimated λ in failures per hour may be derived by multiplying the cyclical probability by the estimated number of cycles per hour. τ is determined as the duration time of the failure. Where one event characterized by a probability acts as a moderator (at an "and" gate) orin an event characterized by a
λ and a τ, the output of the gate may be represented by the product of the input probability and the input failure rate which is interpreted as the output failure rate, and τ output $=\tau$ input.

7.7.1 System Safety Constants

The system fault trees may be separated into two categories: a system tree (s) dealing with faulty launch and a system tree (s) dealing with inadvertert launch. For in weapon system there is a probability of inadvertent launch during the system life (inadvertent launch safety constant) and a probabiinty of faulty launch during the system use (faulty launch safety constant.) The determination of these constants is the goal of the mathematical treatment of the fault trees.
7.7.2 Squadron Calculations

All calculations in a fault tree should be based upon failures which affect a specific launch facility. For the inadvertent launch tree, the final failure rate (or provability of failure) should then be multiplied by 50 to obtain the applicable failure rate (or probability of failure) for a squadron. For the faulty launch tire, the final failure rate (or probability of failure' is expressed on a "per launch" basis. (Reference)
7.7.3 Inadvertent Launch Safety Constant

The inadvertent launch safety constant, (S.C.) T, is composed of contributions both from lone-term operating events (characterized by a failure rate λ and duration 'ime \mathcal{T}) and from short time test events represented by a probability figure.

Use of the logic gate formulas provides a single failure rate (λ) for inadvertent launch at the top of those tree branches derived from long-term events. To determine the contribution of such a branch to the overall inadvertent launch safety constant for a squadron over any period of time (T), the following formula is used: $-50 \lambda T$

$$
(s . c .)=1-e
$$

which reduces to

$$
(\text { s.c. })=50 \lambda T
$$

when $50 \lambda T$ is small.
Those branches of the tree representing short-time test events provide a single probability of failure for inadvertent launch Fer branch. Such a probability may be determined either on an event basis or on a time basis. Probabilities on a "per event" basis, when multiplied by the number of events in time T, yield the contribution to inadvertent launch by such branches. If the test event contribution is determined on a time basis rather

7.7.3 Continued

than an event basis, then the probability per hour for a squadron is converted to the squadron probability contribution to inadvertent launch for such branches for time T by the following formula:

$$
\begin{aligned}
& \text { formula: } \\
& (s . c .)_{T}=1-\left\{1-(s . c .)_{1 h r}\right\}^{T}
\end{aligned}
$$

which reduces to:

$$
(s . c .)_{T}=T(s c .)_{1 \mathrm{hr}}
$$

when $T(s . c .)_{1}$ mi s small.
The resultant probabilities from the short-time event branches oi the tree added to the λ-derived portions of the inadvertent launch safety constant yields -the overall (S.C.) I.I. per squadron .- for the system life.
7.7.4 Faulty Launch Safety Constant

The faulty launch safety constant (S.C.) I $_{\text {I }}$ is composed of probability contributions from both pre-illisht and flight events.

Use of the probability formulas for the flight events of the missile results in a probability of faulty launch per missile which is the faulty launch safety constant contribu: ion due to the flight analysis. Short time events which contrioute to faulty launch prior to flight initiation yield a probability contribution to (J.C.) on a "per event" or "per unit time" basis. Probabilities on ${ }^{L} \dot{a}$ "per event" basis, when multiplied by the number of events prior to launch, form the contribution of such branches to (S.C.) F.L.

For test event contributions to (S.C.) T_{r} determined on a time basis rather than an event basis, the probability per hour for a missile is converted to the missile probability. for any time T by the following formula:

$$
(\text { S.C. })_{T}=1-\left\{1-(\text { s.c. })_{1 h r .}\right\}^{T}
$$

which reduces tc

$$
(\text { sic. })_{T}=T(\text { sc. })_{1 \mathrm{hr}}
$$

when $T(S . C .)_{1}$ hr is small.
The resultant probabilities from the preflight events. added to the flight event contribution form the overall (S.C.) F.L. per missile for the missile life.

CORSAGE	NO. $\operatorname{DP-30207-1~}$
Sect. 1	PAGE 44

THE BOEING COMPANY

NUMBER _D2-30207-1 MODEL NO. WS-133B

TITLE \qquad Program Schedule

THE BOEING COMPANY

.

$\stackrel{\underset{\sim}{2}}{\stackrel{y}{n}}$

SECTION DOCOMEXTI（D2－30207－1）

DEFINITIONS OF TERMS

$\therefore \because$ The following in a list of terms and symbols defined for use In this document（D2－30207）．It does not necessarily apply \therefore ：to the Bell Telephone Laboratories material reprinted ia Sections 4 and 5.

An＂Inadvertent Launch＂is defined as an unwanted launch （first stage ignition）of a missile at the tactical site caused by one or more faults The silo cover is operated to OPEN．The destination or successful firing of succeed－ ing stages is not relevant．

2．．A Faulty Launch＂is an authorized launch which malfunctions to result in impact of an armed warhead outside of the area specified in AF BSD．62－123。
＂Safety＂is defined as freedom from the potential or actual occurrence of undesired．unscheduled or out of sequence events which jeopardize life，health or property．
40．\therefore A＂Safety Item＂is a deficiency in the design，procedures or operations which will generate a Hazard．
5.

A＂Hazard＂is a condition which will lead to a potential or actual occurrence of undesired or out of sequence events
动；：which jeopardize life，health，property，and the interne－ tional relations of the United States

6＊－The＂Safety Constant＂is the probability for a specified period of time of the occurrence of a defined undesired， unscheduled or out of sequence event which jeopardizes life， $\because \because$ health or property．

7．．A＂Fault？is a malfunction within the systems It includes the ${ }^{4}$ Failure ${ }^{\prime \prime}$ of circuits and equipment to perform due to any cause，excluding human interventions．
．\because＂．Fin 绝fective Duration Period＂of a failure is the time Prom the occurrence of a failure to its correction，to shutdown，or to safing of the affected launch facilities of missiles．
\qquad

LOGIC BYMBOLS
A logical AND relation.
\square

11

\qquad A probebiltty of fallure whic: , hough a numertcal ralue can be
asulgned, is sufliciently small to be neglected in the coniexi shown.

A probabillty of tallure which cannct be ascigned a numericai value but is considered to be excecdinfly small and la assumed to be zero.

Ko.
Sin: 3

THE BOEING COMPANY

$\frac{\text { NUMBER } \frac{\text { D2-30207-I }}{\text { TITLE }} \frac{\text { Method of Inadvertent Leunch Analysis. (Section }}{\text { NO. }} \frac{\text { WS-I33B }}{\text { VII, Vol. I of Bell Telephone Laboratories }}}{\text { Launch Control Safety Study - 9-15-62) }}$

CHARGE NUMBER
y. r
CHARGE NUMBER

6

$$
B
$$

1 INTRODUCTION

1.1 The following pages of this seccion are a reprint of Section VII of the Bell Telephone Latoidiories Launch Control Safety Study dated Septemoer 15, 1902. This reprint describes the fault tree concept and methods for development and constriction. Although it was prepared for the WS-133A sysien, the methods are arplicable to the WS-133P system. Its references are to other Sections of $\therefore \quad \therefore$ the Safety Study whicis are not included in this document.
1.2 'Boefing document page numbers are aciled to ficicilitate the randing ... rand release of this section.

KO. D2-30207-1
800.4 PaEe 4

is trese If A and (B or C nr D) aro true. Note that the fault troo .usumes that the remaindor of the aystem functions properly so that the check valve and the hoi-water facei do not permir flow ω_{i} of the tank. The malfunction of alther to an open condithon would negato ovent F. The fault tree can be developed further for evencs A through D in terme of the parts mating up the device referred to in each event. If filure rates for the parts were known, the probability of event F occurring in 2 given period of time could be caiculated The calculation would have to account for the fact that, as a practical matter, event Fis more likely to occur if event A has occurred prior to event B, C, or D. If B, C, or D occurs and the relle! valve works properly, flooding of the basement would provide warning of the maliunction in the 32 control loop, which presumably would lead to manual shutdown and repais
3. EXPLANATION OP LAUNCH CONI ROL SYSTEM EAUIIT TREE

Fie fault tree for the Minuteman LCS is the same in principle as that for the aimple aystem just described, though it la, of course, far more complex. Figure T-2 sumzarizes the symbols used in the varlous lault trees. (Fiswise 7-2 through 7- © sppear at the end of this section.) The top of the LCS fault tree ls shown in Figure 7-3. The fault tree serves, llist of all, to Identlfy the events, usuaily $u_{i}-$ doafred, that contribute : 0 an IL. The fault tree then relates these events logically, using distinctive shape symbols for "AND" and "OR" In relating events. It should bo noted that in order for an IL to take place, it is necessary that the required eventa or malconditions coexist. It Is not necessary that the occurrence of these events be simultaneous.

The development of tho relation of events proceeds trom those describable in functional terms to those that pertain to a specific basic eircult of component or to a epecific code group. For Instance, in the Launch Enable System (LES) branch, the functional event of having the Satety Control Switch (SCS) armed is the result of any ore of three subevents. Two of these are again functional statementa that require further tree development, and the other is an event that pertains to s particular component, namely, the fallure of a specific relay to the ARM condition. Eventu of a functional nature are noted in a rectangular box, or, in special cases discussed below, in a hexagon, while eventa that concern specific circulta or components are ahown to a circlo.

The fault tree for IL has three major branches. The Programmor Group (P/G) branch includes, as well as the P/Gequipment itaelf, the arm ordnance and Ignlifan efrcults to their terminal squibe th or near the missils, and anything else acting diractly upon the miselle propellant charges, but it excludes the SCS. The second brarsch of the tree is for the Data Processing Equipment (DPE), the top event of this tree beling the operation of the Command Signals Decoder (CSD) ewltch. The
10. 12-30207-1
thind major branch is for the LES, with the top event bore boing the arming of the ECS.

In addition to the aboro, faut trees havo been devoloped for several of the crilleal electromectanical devices that are used in the LCS, for the formation of code grospz, and for the Status Keporting System and power subeysteme. Though malAunctiona in the Status Reporting System do n contribute directly to 't, they can prevent the detection of malconditions in the in-line equipment, thus permiting than to persiat for extended periods of tine.
4. DEFINTITON OF DNADVERTENT LAUNCA

For purposes of the study, IL is defined as an ovent chasacenrized by ignition of the tlrat atage of the missile. Phis event may be divided into classes, according to what occurs or does not occur whithin the Launch Factity (LF) and miesite in soblition to first-stage ignition. If is useful to define three classes, as follows:
2. In-Slo Exploalon

This conslsts of first-stage lgnition and not launcher closure remoral.
b. Short Launch

This conslsts of first-atage ignition and launcher closure removal and not one or more of the other actions essential to a proper bunch sequence.
e. Crittical Launch

This conslsts of first-atage tgnltton and launcher closure removal and ell of the other actions essental to a prope: LAUNCH sequeace.

Tho different branches of the faull tree are blased in tavor oi one or another of the classes of IL as deflned above. The P/G branch is heavily blased in tavor of an In-Silo Exploaion, with the probibility beling less for a Short launch and much leas for a Critical Launch. The DRE branch is blased atinost completely in tavor of a Critical Launch, aince the P / G would be expected to function rormally once the CSD switch has operated, assuming the SCSarmed. and the normal LACNCY sequance would occur. The LFS tranch tr, not blased one way or the other, SCS APMED being a necessary condition tor any Lunsh except those generated by the Nozele Control Jnlts (NCU's) or withiri the explosive train ltscls
8. programmer group fault tree

Bection $[1$ of Volume 2 presents lie complete development of the fault tree for P / Q. This includes, as woll as the P / C iteris, the ordnance and arming circuita to their torminal squiba in or near the missile, pusi exsludes the ECB. Further, it iscludee any matconditions that act directly upan the exploalye traln and propellant of the misalle downatream from the IEnition mulbs. For Instance, as shown in

06

$$
\begin{aligned}
& 50.02-30007-1 \\
& 800.58 \text { Fago } 6
\end{aligned}
$$

e. In the right-hand branch: an SPS-5 firing signal can be achieved only if both Squib Driver (SD) power is on and the SPS-5 triggered (AND gate D). The SPS-5 is an SD circuit using a Silicon Controlled Rectifier (SCR) as a ewitch. The SPS-5 driver circuit cannot fall in such a way as to provide squib firing current without driver power being applied. The Driver Power On branch will not be developed here.
\&. The SPS-5 either may be self-triggered or may be triggered by receiving a driving signal from the preceding stage ($O R$ gate E).
g. The Power Buffer Amplifier - Type 1 (SA-1) will provide a driving signal to the $S D$ if either it fails so as to produce an output or it recelves a driving signal from the preceding stage (OR gate F).
4. Magnetic gate type M-3 (M-3) will produce an output if either the gate malfunctions so as to produce an output or if the correct input conditions are achieved (OR gate G).
3. Both a gate malfunction such as to produse a logical " 1 " or "twe" output from the magnetic core and an INTERLOCK signal to turn on the transistor output amplifier, which is a part of the $\mathrm{M}-3$ module, are required to obtain an output from the circuit module if the correct input conditions are not met (AND gate H). The INTERLOCK signal seneration will not be developed here.
j. The input conditions required to yield an output (AND gate I), assuming proper operation of the M-3 module, are:

1. The presence of an Ll signal (a P/G generated LAUNCH signal) and
2. The absence of a First-Stage Engine Timer inhibit signal, which is equivalent to saying that a First-Stage Engine Timer signal appears to have been generated, and
3. The absence of an Ordnance Armed inhiblt signal, which is equivalent to saying that the ordnance devices appear to be armed, and
4. The presence of an INTERLOCK signal to turn on the transistor output amplifier.

The INTERLOCK PRESENT condition is the output of an Of gate, cince either a CSD INTERLOCK signal or a TESTINTERLOCK bignal will turn on the transistor output amplifier. This is not shown in Figure 7-5 nor is the generation of the other input signals. The complete development. will-te found in Section III of Volume 2.

6. DATA PROCESSING EQUIPMENT FAULT TREE

The fault tree for the DPE was developed in" manner similar to that described for the P / G. The logic diagrams for the.DPE were'studiedin orde: to identify and relate in tault-tree form those events that contribute ta IL. As shown in Figure 7-3, the top event of the tree is the operation of the CSD switch. This may be caused by

No. D2-30207-1 Sec. 4 Page 8
efther x two erints, operation by latlures internal to the CSD Itself, or operation by baring the proper code read into the CSD. The latter in turn reouires that all of three condlilazs coexist. First, the proper code must be th the Fire Code (FC) store of LEU No. 2. Second, the FC gate muat be enableo, and third, FC shit palses muxt be received. Each of these eve-ts requires further lawit :res develogsesot, rhich is presented fuily in Section IV of Volume 2.

The DFE facti tred shows a number of hexagon symbols, indicating that these events are developed further in additional fault trees. One case is in the operation of the CSD by a fallure within the device itself. The sey-n other cases concern the Lormation of particular code groupa; namely, the 18-bit FC, the "sync" group, aric the tive Launch Control Center (LCC) addresoor cortas. Eacis buch event is identitled by the aymbal $2 \cdots$ ith a numerical subscript.
7. LNUNCH ENABLE SYSTEM FAULT TREE

The LES was added to the LCS as a part of Block Change No. 1. The purpose was to inc rease protection against IL and to proilde selective control af the firing of individual missiles. It was designed to be a rAiL-ARM system in order not to fincreade the vilnerabllity to enemv action of the Minuteman equadron. As a consequence there are many malconditions, any one of which xccurring will result in the kiming of the SCS, which is the top event of the fault tree for the LES This circumstance is reflected in the predominance of OR gates in the tree.

As ahown in Figure T-3, elther of three conditions may cause the top event arming of the SCS - to occur. These are a falture internal to the SCS, a fallure of relay K-2 in the Sule and Arm Module of the Main Jinction Sox to the open siate, or the condition where the outpu: relay in the 5400 -cpe detector 10 not closed. The late condition requires further fault-tree development, which is presented fully in Eection V of Volume 2. Arming of the SCS by internal fallure, shown in a hexagon symbol, ie considered in Section XII of Volume 2.
a. GUPPLEMENTARY FAULT TREES

In addition to the three major fault trees deacribed above, there have been fault unean doreloged in savoral oher arose of special intoreat an discuasod below.
2. Slatus Syatom Fault Troe. Section VI of Volume 2 develops the fault treo for ibe satus Syatem. This system is relevant to the IL problem because it fiforms the operator of the existence of faulty conditions in the DPE and P/G equipment at the LF'a. W the Statua System falls to provide such Indications, the taulty condition, once having occurred, will be allowed to persist for a prolonged perlod of time.

(1) Simplification. The first factor is that the fault tree can be simplified immediately to some extent by disregarding two types of malconditions. The first is a malcondition that has a probability of occurrence which, though a numerical vaue can be assigned, is sufficiently small to be neglected ln the context in which it appears. The symbol δ denotes this value of probability. For example, if there are three inputs to an OR gate and the probability oi one of these inputs being true is very small compared to the probabilities of the other two inputs being true, then it is a valid simplification to ignore the first input. The second type of malcondition that permits simplification of the fauli tree is one that has a probability of fallure which cannot be assigned an exact value but which is judged to be exceedingly small so that it can be assumed to be zero. The symitul ϵ is used to denote this value of probability. For instance, if there are three inputs to a given AND gate, one of which has a probability of ϵ of becoming true, then the outpu! of this gate can be considered as having a probability of ϵ of becoming true, and the enture branch up to and including the AND can be ignored:
(2) Interconnections. The second factor that must be considered is that there are interconnections that appear in intermediate areas of some of the fault trees. An example of this appears in Figure 7-6, which shows a simplified fault tree for the P/G in the STRATEGIC ALERT mode. The basic events in this tree have been desigmated with the letters A through H in order to permit a description here of the principles involved in manipulating fault trees. In the left branch of this tree there are two intermediate events developed, Y_{1} and $Y_{2} . Y_{1}$ is the input to the top gate from the left branch, bui it appears as well at three places in the middle branch of the tree and at one place in the right branch; Y_{2} appears once in the middle branch and once in the right branch.) Given the probabilities of the basic events A through H occurring, the problem is to calculate the probability of the output of Gate No. 1 being true, taking into account the cross-connections represented by Y_{1} and Y_{2}.
(3) Fault-Detection Features of LCS. The third factor that must be considered is the effect of the various fault-detection features within the LCS. Such features include the status indications, the Alarm and No-Go indications, and the automatic shutdown provisions, for the various modes of operation such as STRATEGIC ALERT, TEST, and CALIBRATE. The fault-detectior featires riust be taken into account in estimating the probabilities of IL because of their effe ts on the expected duration of the in-line malconditions that they sense.

The chazacteristics of the fault-detection features that arc of particular interest are:
(a) Frequency of Operation. Some fault-detection features, such as the ARMED status Indication and the Critical Error (CE) circuitry of the DPE, operate
continuoualy. A fautt ahould be noted immediatoly upon occurrence. Other faultdetection teatures operatis oniy at discrete times, auch as during a Senaitivo Comgeand Network Teot (SCNT) or a TEST.
(b) Effect of Detocting a Fault. Information on some faults !o displayed on the LCC, While Information on others is registered with the Volce Reporting Signal Asacmbly (VRSA), with only a gross FAULT Indicution showing at the LCC. Selected frulta, such as CE'e in the DPE, have an additional effect in producing a No-Go condition at the 2 .
(c) Pellablity of Fault Detection Path. If a tallure should occur to the fault sefection path, then the duration of the in-lune malfunction will be extended, perhaps undefinitely.

b. Boolean Expressions

In order to accommodate the factors usted above, it is very useful to develop a Boolean expression that describes the \&zull tree. Through proper algebratc manipulation, multiple connections drop out and the tault-tree output can be expressed to terms cit the bazic melconditions. Moreover, the terms of the final expression can be grouped in whatever manner is most convenfent to allow for fault-detection features.

Before proceeding turther it may be useful to discusa Boolean algebra briefly This algebra was first concelied by George Boole and presented in his book entitled, "An lnvestigation of the Laws of Thought." publisted in London in 1854. (Boolean algebra is related to symbolic logic, algebra of classes, calculus of propositions, algeben of log'c, and switching algebra.) Unlike ordinary algebra, Boolean algebra deale with varlables that are permitted to assume only two duferent values bepending on the type of problem heing treated, a Boolean variable might have the ralues: on or oll, good or bad, something or nothing, true or false, yes or no, open or closed, present or absent, etc. For a generalized mathematical approach, It in conventent to assign 0 and 1 as the two possible values of the variable and, in turn, to let the 0 and 1 represent the two possibillties of a particular problem. In the case of the fault tree, 0 represents false and 1 represents true, with respect to a Eiven malcondition that appeara in the tault tree.

The baste operatione most commonly ueed in Boolean algobra aro a apecta' form of aegation, a spectal form of addilion, and a apoctal form of multiplication. The epectal form of negation used is aymbolized with an overime, as 自, or with a prime, as a ", and may be read an "not a " or as "a prime." Functionally, the operation may to vritten as NOT (a) = a'. Since only two varlable values are permisaible, $!2=$ 1, then $a^{\prime}=0$, sind $k a=0$, then $a^{\prime}=1$.

The special form of addition employed is symbolized by a plus sign, as $a+b$, and may be read as "a plus b." The expression signifies a "miring" or "inclusive OR" process and is also read as "a OR b." Functionally, OR (a, b) $=a+b$.

The special form of multiplication used is symbolized like a prociuct in ordinary algebra, as $a \cdot b, a(b), a \times b$, or simply $a b$. It may be read as "a times b " or just "ab." The product indicates a "colncidence" or "ANDing" process, and it is also read as "a AND b." Functionally, AND $(a, b)=a b$. Unlike a product in ordinary algebra, $a b=1$ if, and only if, both $a=1$ and $b=1$.

Table 7-1 shows some of the fundamental identities of Boolean algebra that are relevant to the remainder of this discussion.

A typical example of the development of a Bowlean expression for a fault tree will now be described. Figure 7-6 shows the simplified fault tree for a part of the P/G in the STRATEGIC ALERT mode. The numbers within the logic gates denote the output variable of that gate in the Boolean expressions. The letters A through H denote basic events, usually malconditions describable in terms of a specific circuit or component. The symbols Y_{1} and Y_{2} are intermediate events that appear at more

Table 7-1
FUNUAMENTAL IDENTITIES OF BOOLEAN ALGEBRA

that one phec in the fault tros. The outputs α Cates Nos. 1, 2, 4, ard 10 havo been bescribed th torms af sybtom functions in order to indicate brienty the reiation of the fait tree to the physical system. An expression for the cutput of Cate No. in in serme of thi basic events A through H will now be devoloped.
Etarting at the bottom of the left branch

$$
(14)=C+D
$$

For coavenjenca lot

$$
(11)=Y_{2}=C+D
$$

$$
(13)=Y_{2}+E=C+D+E
$$

$$
(12)=B+C
$$

$$
(11)=(12) \cdot(13)
$$

Qubstituting

$$
(11)=(B+C)(C+D+E)
$$

Distributing

$$
\text { (11) }=\mathrm{BC}+\mathrm{BD}+\mathrm{BE}+\mathrm{CC}+\mathrm{CD}+\mathrm{CE}
$$

From the elementary propositions of Boolean algebra

$$
c \cdot c=C=C \cdot 1
$$

Groughing, commutating, and distribulling

$$
C \cdot i+C B+C D+C E=C(B+B+D+E)=C
$$

Bubetifuting and distributing

$$
(11)=C+B(D+E)
$$

$$
(10)=A+(11)-A+C+B(D+E)
$$

Far convenience let

$$
(10)=Y_{1}=A+C+B(D+E)
$$

Colog to the middle branch

$$
(9)=Y_{1}+Y_{2}
$$

$$
(\theta)=O \cdot(\theta)-G\left(Y_{1}+Y_{2}\right)
$$

$$
(7)=P \cdot(9)=P\left(Y_{1}+Y_{2}\right)
$$

$$
(0)=Y_{1} \cdot(8)-Y_{1} G\left(Y_{1}+Y_{2}\right)
$$

Commutating and dintributing

$$
\langle\delta\rangle=G Y_{1} Y_{1}+G Y_{1} Y_{2}
$$

As bolory

$$
Y_{1} \cdot Y_{1}=Y_{1}=X_{1} \cdot 1
$$

Nubatituting and diotributing
$(0)=O Y_{1} \cdot 1+O Y_{1} Y_{2}$
$-\sigma r_{1}\left(1+r_{3}\right)$

- OP_{1}
No. D2-30207-1

Betaging the three brancbeo together

$$
\begin{aligned}
(1) & =(10) \cdot(4) \cdot(2) \\
& =F_{1} Y_{2}(E+G) E\left(Y_{1}+Y_{2}\right)
\end{aligned}
$$

Producing in the same manner as for function (6) above

$$
(A)=H(P+G) Y_{1}
$$

Eubsututing

$$
(1)=B\{F+G]\{A+C+B(D+E)\}
$$

Thas, the output of the aimplified fault tree used in this example can be axpreseed entireiy as a function of the basic events. All basic events appear in tho expression, and each appeara only once. This permits a quanlliative estimate of the probabillty of occurreace of the top event in the fault tree (. e., the output of Gate No. 1 in Yigure $7-6$), If the probabilities of occurrence of the basic evente are known. The sext section will discuss these probabilitles for significant elements in the IL fault trees.

Figure 7-2. Fralt-Tree Bymbols

$$
-46
$$

No. D2-30207-1 Sec. 4 Page. 16

(OND ARMEOKO(IMTERLOCK)
Tifure 7-4. Typical Example of Logic Block Diagram, P/O

40
No. D2-30207:-
Soc. 1 Pninl.

Figure 7-6. A Bmplifiod P/O Fault Treo (ETpATrGICALERT Mode)
-

No. D2-30207-1
Soc. $\frac{18}{}$ Pagn 20

THE BOEING COMPANY

8

NUMBER \qquad D2-30207-1 MODEL NO. WS-133B TITLE Discussion of Probabilities and their Combination Section II, Vol, II of Bell Telephone Laboratories Launch Control Safety Study - 9-15-62)

PREPARED BY CNectating $3 / 8 / 63$
SUPERVISED BY
APPROVED By

APPROVAL

CONTRACT NO,

Section II

DISCUSSION OF PROBABILITIES AND THEIR COMBINATION

The theory of probability forms the basis for the quantitative aspects of this study, and this section documents the manner in wish probability theory was applied. It is intended to be neither a philosophical treatise nor a rigorous mathematical treatment, but rather a self-contained account of the basic probability rules and procedures employed in the program.

Before giving consideration to the development of these rules, some cautionary remarks are in order regarding the application of probability theory to a real problem, and the interpretation of the numbers resulting therefrom. Like all matemetical disciplines, the theory of probability is developed in relation to specific, abstract, conceptual models, and the formulas derived apply with exactness only to those models. In applying the theory to the real world, even a most carefully formelated model may not be a wholly adequate representation of the real situation. The degree of confidence in the results must then be tempered by objective estimation of the disparity between model and reality. Because, however, the formulas may be applied mechanically, and the results of a probability analysis, even a poor one, are usually expressed as definite numbers, there is a strong tendency to place implicit saith in the numbers once they are generated, forgetting their shaky foundations. Thus, for example, the simple exponential failure model is used for component failurea almost universally in the study. While this model is believed to be a good description of device failure behavior, it is surely not complete one. Burn-in and wear-out failures are not included, this simplifying omission being justified by the inception time and duration of the operation period. In other parts of the analysis, probabilities may be combined in a manner that is valid only for events that are "exhaustive and exclusive." While attempts are made to insure that the proper conditions apply to the problem at hand, in the actual combinations some overlapping may be present that will impair somewhat the validity of results. Moreover, matinematical approximations are made for convenience throughout the work. This should not affect the more significant figures in the computations, but it will have a minor impact on the resits. It must be emphasized that the probability figures generated in this study are not sacred (they are not necessarily accurate to the two significant figures in which they are expressed). At the same time, one must recognize their utility in pinpointing critical areas. It should also be emphasized that meticulcus
care must be taken in stating a probabilistic problem and in formulating the mathematical model so as to minimize errors in the derived results.

1. AN INTERPRETATION OF PROBABILITY FIGURES

In connection with the problem of interpreting proivability figures, it may be useful to discuss an implicit meaning of a given numertical prabability value. To thlustrate, consider the operation of the random code model discussed in paragraph 2 of
 an artificial invention developed to help estimate a lower iound of system performance. It assumes that an arbitrary sequence of $1^{\prime} s$ and $0^{\prime} s$ is continuousis being generated at the bit rate. The probability that a bit is a 0 is 0.5 . Under this condition, and assuming each new bit initiates an independent message, the model generates a 56 -bit code with probability of 5.6×10^{-5} for a Flight of ten Launch Facilities (LF's) in ten years.

It is difficuit to comprehend the magnitude of this number, let alone its significance in context. To make both aspects more meaningfuj, the following proposition in probability theory is used: "If an event A has probability p of orcurring in a single trial, the most likely number of occurrences of A in n trials is np." Using this proposition, the illustrative probability figure can be translated to other terms as follows:

Let a trial for code generation corstitute exposure of ten LF's to the random model environment for ten years. Then, for example, ten trials would mean any one of the following exposures: 100 LF 's for 10 years, or 10 LF 's for 100 years, or 25 LF's for 40 years, or any other ten-fold scalling of the product of LF-years.

Now it can be seen that the above proposition applied to the probability in the example implies that the most liekly number of occurrences of code generation will be one launch code when

$$
n \mathrm{p}=1 \mathrm{n}: \mathrm{n}=\frac{1}{\mathrm{p}} \cong 2 \times 10^{4} \text { trials }
$$

Thus, the probability is equivalent to stating that the most probable time to a single coda generation for a Flight of ten LF's will be 2×10^{5} years; or, alternatively, the expected number of codes will be one. in 2×10^{5} years. (If it is assumed that a Poisson probability model applies, the probability asscciated with this single code gereration in 2×10^{5} years can be shown to ke $1 / \mathrm{e}=0.37$, but it drops off quickly to near-zero values in the realistic future, diminishing to 5.6×10^{-5} in ten years.)

The above is one of several pessible interpretations which may help give a probability valde some s!gnificance related to experience.

$$
\begin{aligned}
& \text { No. D2-30207-1 } \\
& \text { Sec. } 5 \text { Pace } 4
\end{aligned}
$$

2. BACKGROUND PREPARATORY TO COMBIAING PROBABILITIES IN FAULT TREES

a. Basic Considerations.

This section is devoted to developing the background required for deriving the relations expressing overall probabilities, given the probabilities of component events and the manner in which they are related logiccilly as prescribed by the fault tree. The basic mathematical doctrine drawn upon here is the set of rules governing combinations of inaependent events. (Independent events are those for which the occurrence of one does not influence the occurrence of anoiher.) The qualification "independent" is imposed not only because of the resulting simplification but also because the Boolean version of the fault tree contalns only events that may be regarded as independent, as will be shown below.

For combining probabilities of two independent events A and B, the basic rules as given by probability theory are:

1. The probability of the occurrence of both A and B, written in set symbology $P(A \cap B)$, is

$$
P(A \cap B)=P(A) \cdot P(B)
$$

2. The probability of the occurrence oi either A or B or both, written $D(A \cup B)$, is

$$
P(A \cup B)=P(A)+P(B)-P(A \cap B)
$$

In this case, since A and B are independent, rule 1 is used to obtain

$$
P(A \cup B)=P(A)+P(B)-P(A) \cdot P(B)
$$

and note that if both $P(A)$ and $P(B)$ are small,

$$
P(A \cup B) \cong P(A)+P(B)
$$

This approximate result is used throughout the sibsequent development and in all computations.
b. Composite Probablity from Fault Tree and Boolean Expression

Turn now briefly to the format of the fault tree for an illustration of the application of the probability rules thereto and the reason for introducing the Boolean concept. Figure 2-1 shows a typical portion of a tree. The labels on the tree are Boolean functions which take on the value 1 when the faliores or malfunctions exist and the value 0 otherwise. The tree shows that the joint occurrence of events A and $B(A \cap B)$ constitutes event C which together with D either singly or jointly ($C \cup D$) produces the event E. Thus

$$
E=(C \cup D)=(A \cap B) \cup D
$$

11- $\begin{aligned} & \text { No. D2-30207-1 } \\ & \text { Sec. } 5 \text { Page } 5\end{aligned}$

Figure 2-1. Portion of Typical Fault Tree
(Strictly speaking, E is not identical to the event $[(A \cap B) \cup D]$, but rather E is implied by, or always occurs with, the indicaled composite event.)

Another way to express E is in Boolean terms:

$$
E=A \cdot B+D
$$

The probability of E may be found from either of the above relationships. Using the first, together with rules 1 and 2,

$$
\begin{aligned}
P(E) & =P[(A \cap B) \cup D] \\
& =P(A \cap B)+P(D) \\
& =P(A) \cdot P(B)+P(D)
\end{aligned}
$$

$P(E)$ also follows directly from the Boolean expression and suggesic that a simple, unifying approach to fault probability determination may be to write the Boolean expression for the occurrence of an event and then convert it to a probability relation. This approach also has the virtue ui aivoting possible errors due to common events (a form of qependency), as illustrated by the following example:

In Figure 2-2a, B is an event which renders D and E mutually dependent. Ignoring this fact and mechanically appiying the rules yields

$$
P(F)=P(D)+P(E)=P(A) \cdot P(B)+P(B)+P(C)
$$

fi, however, the Boolean representation is used,

Figure 2-2a. Porition of Fault Tree with Depandent Eventa

$$
\begin{aligned}
F & =A \cdot B+(B+C) \\
& =A B+B+C \\
& =B(A+1)+C \\
& =B+C
\end{aligned}
$$

thus

$$
P(F)=P(B)+F(C)
$$

This differs markedly from the first expression. The latter is the correct result, and it is pertrayed in the Boolean tree of Figure 2-2b. In this form, all events are independent. (Note that the use of set relationships could also yield a correct result, but this approach is more unwieldy and difficult to apply io complex cases. i It is now evident that the Boolean approach is a simple technique which handles the problem of dependent events (of the type caused by a common elisment) by yielding an equivalent format wherein all eventa are independent.

c. Reiiabllity Function

Before proceeding to the development of actual composite event probabilities, it is necessary to introduce get another fundamental relationship - the reliability function used extensively throughout the fault-tree computations. Because of its importance and the degree to which it is called upon in the subsequent development, an extended if nonrigorous discussion of the reliability function, its complement, aid its associated density functions is presented.

Figure 2-2b. Boolean Equivalent of Figure 2-2a
(1) Device Reliability. Suppose a large set of N_{0} identical (with respect to manufacture) devices is subjected to life test, after having eliminated "burn-in" or earlyHife fallures of the substandard members. At time $t, N_{F}(t)$ devices have ialled and $N_{S}(t)$ survive. Then the reliability of the device, $R(t)$, may be defined as the probability of a member's survival to time t and would be given empiricaily by the ratio of surviving to original members as a function of time, averaged over many such Hfe tests.

$$
\begin{aligned}
R(t) & =\frac{N_{S}(t)}{N_{0}} \\
& =\frac{N_{0}-N_{F}(t)}{N_{0}} \\
& =1-\frac{N_{F}(t)}{N_{0}}
\end{aligned}
$$

Although $N_{F}(t)$, and consequently $R(t)$, take on oniy discrete values, it may be assumed that continuous functions approximate them, and then

$$
\frac{d R(t)}{d t}=-\frac{1}{N_{0}} \cdot \frac{d N_{F}(t)}{d t}
$$

or

$$
\frac{d N_{F}(t) \Gamma^{2}}{d t}=-N_{0} \frac{d R(t)}{d t}
$$

Now $d N_{F}(t) / d t$ is the failure rate at time t, while $\left[d N_{F}(t) / d t\right] d t$ is the number of fallures in the interval $(t, t+d t)$. On dividing $d N_{F}(t) / d t$ by $N_{S}(t)$, the failure rate per surviving member is obtained, which is called the hazard function, $h(t)$.

$$
h(t)=\frac{1}{N_{S}(t)} \frac{d N_{F}(t)}{d t}
$$

18

REV SMM B
No. D2-3C2C7-1
Sec. 5 Page 7

The hazard function $h(t)$ is in the nature of a conditional probability density of time-to-failure, because

$$
h(t) d t=\frac{d N_{F}(t)}{N_{S}(t)}
$$

is the fraction of surviving members at the start of an interval (time t) which fail in the interval $(t, t+d t)$.
(2) Failure Density \boldsymbol{F} unction. If $\mathrm{d}_{\mathrm{F}}(\mathrm{t}) / \mathrm{dt}$ is divided by N_{0} instead of by $N_{S}(t)$, the failure rate per original member, designated $f(t)$, is obtained as

$$
I(t)=\frac{1}{N_{0}} \cdot \frac{d N_{F}(t)}{d t}
$$

This failure rate $f(\mathrm{r})$ is also a probability density function of time-to-failure, since

$$
f(t) d t=\frac{d N_{F}(t)}{N_{0}}
$$

represents the fraction of original members that fail in the interval ($t, t+d t$).
Some useful reliability relationships can be derived from these definitions. Starting with $h(t)$:

$$
\begin{aligned}
h(t) & =\frac{1}{N_{S}(t)} \cdot \frac{d N_{F}(t)}{d t} \\
& =-\frac{N_{0}}{N_{S}(t)} \cdot \frac{d R(t)}{d t} \\
& =-\frac{1}{\bar{K}(i)} \cdot \frac{d R(t)}{d t}
\end{aligned}
$$

or

$$
h(t) d t=-\frac{d R(t)}{R(t)}
$$

Integrating,

$$
\int_{0}^{t} h(t) d t=-\ln R(t)+k
$$

Since

$$
R(0)=\frac{N_{S}(0)}{N_{0}}=1
$$

4
-it
\$0. D2-30207-1
REV SIM B
Sec. 5 Page 8
then $k=0$, and

$$
R(t)=e^{-\int_{0}^{t} h(t) d t}
$$

If $h(t)$ is assumed to be constant, a condition ciosely mealized in life testing experience, and $h(t)=\lambda$ is called simply the fallure rate, the $R(t)=e^{-\lambda t}$ is the reliability function giving the probability of member survival to time t. (It is assumed that the device is not operated lorg enough to exceed the constant λ range.)

The probability that the device will have falled by time t is the complementary functior $Q(t)$, where

$$
\begin{aligned}
Q(t) & =1-R(t) \\
& =1-e^{-\lambda t}
\end{aligned}
$$

This is the expression used to evaluate the fault-tree "circles" (basic circuit fallures). To illustrate its use, suppose that a device fallure rate $\lambda=250$ fallures per 10^{9} hours, and $t=30,000$ hours. Then

$$
\begin{aligned}
Q & =1-e^{-\lambda t} \\
& =1-1+\lambda t-\frac{1}{2} \lambda^{2} t^{2}+\ldots \\
& \cong \lambda t
\end{aligned}
$$

If higher order terms may be neglected (the usual situation in this study).

$$
\therefore Q=\frac{250}{10^{9}} \times 30,000=0.0075
$$

An interpretation of this result (as indicated in paragraph 1) is that if 10,000 such circuits were run for 30,000 hours each, about 75 fallures could be expected among them.

Returning now to (f),

$$
\begin{aligned}
f(t) & =\frac{1}{N_{0}} \frac{d N_{F}(t)}{d t} \\
\therefore f(t) & =-\frac{d R(t)}{d t} \\
& =-\frac{d}{d t} e^{-\lambda t} \\
& =\lambda e^{-\lambda t}
\end{aligned}
$$

为

On Integrating $\mathfrak{i}(t)$,

$$
\begin{aligned}
\int_{0}^{\infty} f(t) d t & =\int_{0}^{t} f(t) d t+\int_{t}^{\infty} f(t) d t \\
& =-\left.e^{-\lambda t}\right|_{0} ^{t}+\left.\left[-e^{-\lambda t}\right]\right|_{t} ^{\infty} \\
& =\left(1-e^{-\lambda t}\right)+e^{-\lambda t} \\
& =Q(t)+R(t) \\
& =1
\end{aligned}
$$

The preceding states that $Q(t)$, the probability of fallure by time t, may be found by integrating the density function from 0 to t; the graphical significance is shown in Figure 2-3a.

To obtain the probability of fallure in some crucial interval subsequent to C, say $\left(t_{1}, t_{2}\right), f(t)$ must be integrated over that interval:

$$
\begin{aligned}
Q\left(t_{1} ; t_{2}\right) & =\int_{t_{1}}^{t_{2}} f(t) d t \\
& =\int_{t_{1}}^{t_{2}} \lambda e^{-\lambda t} d t \\
& =-e^{-\lambda t} \left\lvert\, \begin{array}{l}
t_{2} \\
t_{1}
\end{array}\right. \\
& =e^{-\lambda t_{1}}-e^{-\lambda t_{2}} \\
& =e^{-\lambda t_{1}}-e^{-\lambda\left(t_{1}+\tau\right)} \\
& =e^{-\lambda t_{1}}\left[1-e^{-\lambda \tau]}\right. \\
Q\left(t_{1}, t_{2}\right) & =R\left(t_{1}\right) \cdot Q(\tau)
\end{aligned}
$$

where

$$
T=t_{2}-t_{1}
$$

This result states that the fallure probability in an interval of length τ starting at t_{1} is equal to the probability that the device has survived to time t_{1}, multiplied by the probability of fallure in an interval of length r which starts at 0 . The grauhical interpretation of $Q\left(t_{1}, t_{2}\right)$ is shown in Flgure 2-3b.

Figure 2-3a. Graphical Significance of $\mathcal{Q}(t)$ and $R(t)$

(b)

Figure 2-9b. Graphical Significance of $Q\left(t_{1}, t_{2}\right)$

One additional fact is drawn from $f(t)$. Since $f(t)$ is a propability density of time-to-fallure (which is to say that there is a time distribution of failure probability densities), it is in order to inquire which value of t is the mean of this distribution. The answer is found by "weighting" each value of t with its associated density and integrating over all t:

$$
\begin{aligned}
m_{i} & =\int_{0}^{\infty} t \cdot f(t) d t \\
& =\int_{0}^{\infty} t \lambda e^{-\lambda t} d t \\
& =\left.e^{-\lambda t}\left(t+\frac{1}{\lambda}\right)\right|_{0} ^{\infty}=\frac{1}{\lambda}
\end{aligned}
$$

No. D2-30207-1
REV SIM B

$$
\text { Sec. } 5 \text { Page } 11
$$

CASE II. Condition A triggers a detection alarm and is corrected immediately on occurrence. B is not subject to detection.

Solution: Under the given hypothesis, the only way for F to occur is to have B precede A, since if A precedes B, A is always corrected and the two events can never coexist (neglecting precisely simultaneous failures). An implicit order condition is thus imposed by the detection feature.

First express the probability that B occurs in the differential interval dit which starts at t and is followed by the occurrence of A in the interval (t, T_{0}), given that A has not occurred up to t :

$$
\left.P[B(d t)] \cdot P\left[A_{(}^{\left(I_{1}\right.}-t\right)\right]=\frac{1}{m_{B}} e^{-t / m_{B}} d t\left[1-e^{-\left(T_{0}-t\right) / m_{A}}\right]
$$

Since F will result if the above compound event occurs for any $t \ln \left(0, T_{0}\right), P(F)$ is obtained by integrating over t in the overall interval:

$$
\begin{aligned}
& P(F)=\int_{0}^{T_{0}} \frac{1}{m_{B}} e^{-t / m_{B}}\left[1-e^{-\left(T_{0}-t\right) / m_{A}}\right] d t \\
&= \frac{-1}{m_{B}} \int_{0}^{T_{0}} e^{-t / m_{B}} d t-\frac{1}{m_{B}} \int_{0}^{T_{0}} e^{-T_{0} / m_{A}+t / m_{A}-t / m_{B}} d t \\
& \text { If }=m_{B}=m, \\
& P(F)=-\left.\left.\left.e^{-t / m}\right|_{0} ^{-\frac{e^{-T}}{m} / m}\right|_{0} ^{T_{0}}\right|_{0} ^{T_{0}} \\
&=1-e^{T_{0} / m}-\frac{T_{0}}{m} e^{-T_{0} / m} \\
&=1-\left(1+\frac{T_{0}}{m}\right) e^{-T_{0} / m}
\end{aligned}
$$

Preserving only first and second order exponential terms,

$$
P(F) \cong \frac{T_{0}^{2}}{2 m^{2}}
$$

$\sin \alpha$

$$
\begin{aligned}
& u m_{A}{ }^{\wedge m_{B}} \\
& P(F)=1 \cdot e^{-T_{0} / m_{B}}-\left.\frac{e^{-T_{0} / m_{A}}}{m_{B}} \cdot \frac{m_{A} m_{B}}{m_{B}-m_{A}} e^{\left[\left(m_{B}-m_{A}\right) /\left(m_{A} m_{B}\right)\right]_{1}}\right|_{0} ^{T_{0}} \\
&
\end{aligned}
$$

This is the exact expression tor the general case. On expanding the exponentials to secont order terms,

$$
P(F)=\frac{T_{0}^{2}}{2: n_{A} m_{B}}
$$

Comparing thls result with the approximation in Case I, one notes that the instantantous detection feature has decreased the lallure probability to half the unchecked value. This aspect is discussed more tully later.

In addition to the alarm detection sltuation specifted in the hypothesis, Case II also appltes to the following. Suppose B ta the fallore of an enable Input to a gate. A is a sporadic pulse whose rise (or (all) in confunition with B results in F. Before the occurrence of B (the persistent change of state) the appearance of A (a sporadic pulse) has no eflect and ts equ:valent ic fatlure and inmediate correction But once B has occurred, the reappeat anc e of A glves F

CASE ILA. F resuits only if B occura befure A in $\left(0, T_{0}\right)$, but netther is subject to detection.

Solution: This case ts atmitar to (axe il in hat an order ondition is inposed. (Here It is explicit) It differs from Case 11 in that absence of fallure detection requires $P(F)$ to include an addilional lactor for the probability that A inas not occuried up to the tane E occurs. (In Case A, thas lactor in unliy by virtue of the linstantane. ous detection and correction condition.) Ther. iare, the expression wanted is for the probability of the event, " B oceurs in the dilferential Interval dt starum; $2 t$: A has net occurred up to t, A occurs in (t, T, $)^{\prime \prime}$
$\left.P[B(d t)] \cdot r[\bar{A}(t)] \cdot P\left[A i I_{0}-1\right)\right] \frac{1}{m_{B}} e^{-1 / n_{n}} d t \cdot 0^{-t m_{A}}\left[1 \cdot e^{-\left(T_{0}-t\right) / m A} A\right.$

As before, F will rosult if this compound ovint occure for any t in $\left(0, T_{0}\right) . P(F)$ is obtalned by iniegration:

$$
\begin{aligned}
& Y(F)=\int_{0}^{T_{0}} \frac{1}{m_{B}} e^{-t / m_{B}} e^{-t / m_{A}}\left[1-e^{-\left(T_{0}-t\right) / m_{A}}\right] d t \\
& =\frac{1}{m_{B}} \int_{0}^{T_{0}} e^{-t / m_{B}}\left[e^{-t / m_{A}}-e^{-T_{0} / m_{A}}\right] d t \\
& =\left.\frac{m_{A}}{m_{A}+m_{B}} e^{-\left[\left(m_{A}+m_{B}\right) / 1 n_{A} m_{B}\right] t}\right|_{0} ^{m_{D}}+\left.e^{-T_{0} / m_{A}} e^{-t / m_{B}}\right|_{0} ^{T_{0}} \\
& =\frac{m_{A}}{m_{A}+m_{B}}\left[1-e^{-\left[\left(m_{A}+m_{B}\right) / m_{A} m_{B}\right] T_{0}}\right]-0^{-T_{0} / m_{A}}\left[1-\theta^{-T_{0} / m_{B}}\right] \\
& =\frac{m_{A}}{m_{A}+m_{B}}+\frac{m_{B}}{m_{A}+m_{B}} e^{-\left[\left(m_{A}+m_{B}\right) / m_{A} m_{B}\right] T_{0}}-0^{-T_{0} / m_{A}}
\end{aligned}
$$

Thas is the exact expression in the general case. in $m_{\Lambda}=m_{B}=m$,

$$
P(F)=\frac{1}{?}+\frac{1}{2} e^{-2 T_{0} / m}-0^{-T_{0} / m}
$$

Again neglecting exponentadi terms above the second degree,

$$
P(F) \approx \frac{T_{0}^{2}}{2 m^{2}}
$$

This roault Is the same as in Case II.
II and now approximates $P(F)$ when $m_{A} m_{B}$ by presorving lorms onyy up to the econd order, one again obtalne

$$
P(Y)=\frac{T_{0}^{2}}{\lambda_{A_{A}}^{m_{1}}}
$$

us in Case II. Apperently the ordor condition atione has rectuced the probability α indlure by one halis.

CABE DI. The aystem to examined for the eccurronce of a at diocrate timea $T_{1}, 2 T_{1}, \ldots, n T_{1}-T_{0}$. If A has occurred, corroctive action ia taken to replact
-4
10. $102-30207-1$
800. 3 Page 15
the tailure at the and α the Interval in which ic occurred. B'a securrence is not wablect to detection throughout ($0, \mathrm{~T}_{0}$).

Solutico: This case introfuces the effoct of perlode testing of one critical element in the logical AND gate. In the actual syatem, \boldsymbol{T}_{1} could correspond to the Gally 8ensitive Command Network Test (SCNT) or the monthly TEST.

F will occur if both A and B coexint $2 t$ any tume. Because B 's fallure io persistant, while A's lasts only for the balance of the interval in which it occurs, P te the ovent " B falla in an interval, and A falls in the same or a subsequent interval."

$$
\begin{aligned}
\mathrm{P}\left[\mathrm{P}\left(0, T_{0}\right)\right]= & \mathrm{P}\left[\mathrm{~B}\left(0, \mathrm{~T}_{1}\right)\right] \cdot \mathrm{P}\left[A\left(0, T_{0}\right)\right] \\
& +P\left[B\left(T_{1}, 2 T_{1}\right)\right] \cdot \mathrm{P}\left[A\left(T_{1}, T_{0}\right)\right] \\
& +P\left[B\left(2 T_{1}, 3 T_{1}\right)\right] \cdot \mathrm{P}\left[A\left(2 T_{1}, T_{0}\right)\right] \\
& +\ldots+P\left\{\mathrm{~B}\left[(\mathrm{n}-1) \mathrm{T}_{1}, n T_{2}\right] \cdot \mathrm{P}\left\{\Lambda\left[(\mathrm{n}-1) \mathrm{T}_{1}, n T_{1}\right]\right\}\right.
\end{aligned}
$$

But

$$
p\left[A\left(1 T_{1}, n T_{1}\right)\right]=1-\left\{p\left[\bar{A}\left(0, T_{1}\right)\right]\right\}^{n-1}
$$

The probabluty that A occurs in at teast one of ($n-!$) Interfals is the complement of the probability that it falle to accur in all of them.
$\therefore P\left[F\left(0, T_{0}\right)\right]=P\left[B\left(0, T_{1}\right)\right]\left\{1-P^{n}[\bar{A}(i)]\right\}+P\left[B\left(T_{1}, 2 T_{1}\right)\right\}\left\{1-P^{n-1}[\bar{A}(n)]\right\}$

where

$$
P(\bar{A}(D))=P\left[\bar{A}\left(0, T_{1}\right)\right]
$$

Now
and

$$
\begin{gathered}
\left\{1-P^{n-t}[\bar{A}(D)\}=1-e^{-\lambda_{A}(n-1) T_{1}}\right. \\
\therefore P\left[F\left(0, X_{0}\right]\right]=\left[1-e^{-\lambda_{B} T_{1}}\right] \sum_{i=0}^{n-1} e^{-\lambda_{B}\left(T_{1}\right.}\left[1-e^{-\lambda_{A}(n-1) T_{1}}\right]
\end{gathered}
$$

Ho. 02-3020;-1
Seo. 5 Page 16
$N_{A}=\lambda_{B}=\lambda_{1}$

$$
\begin{aligned}
& Q\left[\because\left(0, T_{0}\right]\right]=\left[1, e^{-\lambda T_{1}}\right] \sum_{i=0}^{\pi-1} e^{-\lambda \Sigma T_{1}}\left[1 \ldots e^{-\lambda(n-1) T_{1}}\right] \\
& -\left[1-e^{-\lambda T_{1}}\right] \sum_{i=0}^{n-1}\left[a^{-\lambda \lambda T_{1}} \ldots 0^{-\lambda n T_{1}}\right] \\
& -\left[1-e^{-\lambda T_{1}}\right]\left[\frac{1-e^{-\lambda n T_{1}}}{1-e^{-\lambda T_{1}}}-e^{-\lambda n T_{1}}\right] \\
& -\lambda n T_{1}-0^{-\lambda n T_{1}}+n e^{-\lambda(n+1) T_{1}} \\
& \text { - } 1-(n+1) e^{-\lambda n T_{1}}+n e^{-\lambda(a+1) T_{1}} \\
& \text { Preserving only tirst and aecond order terms, } \\
& P\left[P\left(0, T_{0}\right)^{2}\right]=\frac{{\frac{2}{2} T_{1}^{2}}_{2}^{2} n(n+1)}{}
\end{aligned}
$$

Agaln tho almilarity to Case II la noted.
If $\lambda_{A} * \lambda_{B}$

$$
F\left[F\left(0, T_{d}\right)\right] \cdot\left[1-e^{-\lambda_{B} T_{1}}\right] \sum_{1=0}^{n-1} e^{-\lambda_{B} I T_{1}}\left[1-e^{-\lambda_{A}(n-1) T_{1}}\right]
$$

Lot

$$
\begin{aligned}
& r=e^{-\lambda} B^{T_{1}} \\
& =-e^{-\lambda} \lambda^{T_{1}}
\end{aligned}
$$

Tben

$$
\begin{aligned}
& P\left[r\left(0, T_{0}\right)\right]=(1-s) \sum_{i=0}^{n-1} r^{1}-(1-r) \sum_{i=0}^{n-i} r^{1} e^{n-1} \\
& -(a-r)\left[\frac{1-r^{n}}{1-r}\right]-(1-r) \cdot\left[\frac{\frac{3}{n}^{n}-r^{n}}{s-r}\right] \\
& -1-x^{n}-\frac{(1-5) E}{8-5}\left(0^{n}-r^{n}\right) \\
& \text { - } 1-\mathrm{r}^{2}-\frac{(1-r) s}{s-r}\left[\left(1-r^{n}\right)-\left(1-a^{n}\right)\right]
\end{aligned}
$$

-98-

