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ABSTRACT 

A short proof is given of the convergence (in a finite number of 

steps) of an algorithm for adjusting weights in a single-threshold 

device.  The algorithm in question can be interpreted as the error- 

correction procedure introduced by Rosenblatt for his "a-Perceptron. " 

The proof presented extends the basic idea to continuous as well as 

discrete cases, and is interpreted geometrically. 
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I INTRODUCTION 

The purpose of this report is to exhibit an extremely short and, 

more notably, transparent proof of a theorem concerning perceptrons. 

The theorem itself must now be considered one of the most basic theorems 

about perceptrons, and indeed, is among the first theorems proved by 

Rosenblatt and his collaborators.  It also enjoys the peculiar distinc- 

tion of being one of the most often re-proved results in the field. The 

succession of proofs now available progresses from somewhat cloudy 

statements (which at one time caused doubt among "reasonable men" that 

the theorem was true) to comparatively crisp statements of a purely 

mathematical nature which nonetheless use more print than is strictly 

necessary. 

More to the point, latter-day proofs fail to enunciate a simple 

principle involved.  This principle permits one to modify the hypotheses 

in a variety of ways and secure similar results; it may well be useful 

in establishing genuinely new theorems of like character.  We therefore 

present our proof in its entirety, in part to verify our claim that it 

is as short a line as can be drawn from hypotheses to conclusion, and 

also with the hope of terminating an already lengthy process of suc- 

cessive refinements.  In addition, we prove a related theorem which is 

the continuous analogue of the perceptron theorem, and we indicate that 

various other theorems may be obtained by appropriately modifying the 

hypotheses.  We also discuss a geometrical interpretation of the per- 

ceptron theorem in terms of a convex cone and its dual. 



II STATEMENT OF THE THEOREM 

Whereas previous proofs of the theorem appealed to a structure, 

called by Rosenblatt and his co-workers an a-perceptron, the present 

theorem, proof, and discussion apply without modification to a struc- 

ture consisting of a single threshold element acting on a weighted set 
of inputs. 

Theorem'.    Let wl,...,wll  be a set of vectors in a Euclidean space of 

fixed finite dimension, satisfying the hypothesis that there exists a 

vector y  such that 

(»i.y) > Ö > 0 1 N (1) 

Consider the infinite sequence w.   ,»' ,w.     1 < i. < ^V for every k, 
1  ' 2   3        —  » — '  » 

such that each vector », »H  occurs infinitely often.  Recursively 

construct a sequence of vectors »»,V,,...,v   ,... as follows: 

v0 is arbitrary 

Vn      '     < 
n 

(2) 

The sequence {v  )   is convergent—i.e., for some inde x  m,   v     m  v ■ + l 
'.♦2 v. 

Remarks 

(1)  In particular, the theorem insures that (w.v) > ö for i ■ 1, 

....N,   since each wi  occurs arbitrarily far out in the sequence {w. }. 

It ia only to obtain this consequence that we impose the restriction 

that each wi   occurs infinitely often in the training sequence. 



(2) Theoretically, we may take Ö • 0 without loss of generality. 

However, this often has the effect of smuggling in numbers of large mag- 

nitude.  For this reason, we retain the general 0, but in the concluding 

section we do consider the relation between the general case and the 

case 0 ■ 0. 

(3) In the private language of perceptron workers, the theorem 

reads as follows:  A set of incoming signals is divided into two adjacent 

classes.  A "satisfactory" assignment of weights from the associator 

units is defined as an assignment resulting in a response +1 for signals 

of Class I, and "1 for signals of Class II.  The theorem asserts that 

no matter what assignment of weights we begin with, the process of re- 

cursively readjusting the weights by the method known as "error correc- 

tion" will terminate after a finite number of corrections in a satisfactory 

assignment, provided such a satisfactory assignment exists.  More briefly, 

a finite number of corrections will teach the perceptron to perform any 

given dichotomy of signals, if the dichotomy is within the capacity of the 

perceptron at all. 

The definition of «-perceptron and the precise correspondence between 

the theorem's original verbal description and the purely mathematical 

assertion of the above theorem are provided by Block.l    A brief glossary 

indicating the correspondence follows:  the vector wi   represents the 

activity of the associators, including class information, when stimulus 

5. is presented.  The vector y, which we assume to exist, represents a 

"satisfactory" assignment of associator weights; y  has as many components 

as there are associators.  The sequence {wi   } represents the "training 
..,11 

sequence," and the rule for defining {vn}  describes the error-correction 

procedure.  The positive number 0 is a threshold which must be exceeded 

for the response of the perceptron to be correct; a vector v  such that 

(»pv) > 0 is an assignment of associator outputs which successfully 

classifies the ith signal.  [If (v^v)  < 0, then either the ith signal 

has been classified as belonging to the incorrect class or the perceptron 

has refrained from commitment, depending on whether or not the inequality 

is strict.] 

(4) It is clear that because of Eq. (2), as n varies, the sequence 

t; changes, if at all, only by the addition of one or another of the set 

».,...,»„.  For this reason "convergence" implies "convergence in a finite 

number of steps." The word "stabiliies" has been suggested to describe 

this kind of convergence. 



We 

III PROOF OF THEOREM 

may omit from the training sequence all terms w       for which 

"» " "a-l' a8 the8e »(  «re clearly inessential.  The new training se- 

quence is such that correction takes place at every step.  Adjusting 

our notation, we may assume that 

vn-l  * *i       and  (»i .»»-l) - *  for each n (3) 

We observe that n is the number of corrections made up to the nth step. 

The assertion of the theorem after this change of notation is that n 

can range only through a finite set of integers-that is. conditions (1) 

and (3) cannot continue to hold simultaneously for all n • 1,2,3  

First we show that inequality (1) alone implies the inequality 

llv II2 > Cn2 (4) 

for suitable choice of the positive constant C, and n sufficiently large. 

Since v, - v0 + w.^ + ... + t| , inequality (1) implies that v, satisfies 

(v,.y) > {t;0,y) + nd.     Using the Cauchy-Schwartz inequality, 

I»,I" >  >   

llyll2 llyir llyir 
n + 

("o-y) 

If {v0,y) > 0, we may choose C - Ö2/||y||2, and inequality (4) is satis- 

fied for all n.  If (v^.y)  <  0, we may choose C - (1/4) (ö2/||y||2), and 

inequality (4) is satisfied for n >  -2[(t>o,y)/0] . 

On the other hand, we show that inequalities (3) alone imply the 
inequality 

wh ere 

l«nll2 1 \\v0\\2 +  (20 + M)n 

M   ■    max    II». II2 

i = l N       ' 

(5) 



Using inequality  (3),   the  integer-argument  function  llw4ll2 satisfies  for 

each k the difference  inequality 

IV2 -  llWi-l"2 2(v..1,».   ) +  lit»,   II2 < 20 + W 

Adding the inequalities for k  ■ 1,2 n, we obtain inequality (5). 

Clearly, inequalities (4) and (5) are incompatible for n sufficiently 

lar ge. 



IV AN ANALOGOUS THEOREM 

The theorem of Section II is the discrete analogue of the following 

theorem, which may seem more intuitive:  Let v(t)  be a curve in Euclidean 

■-space described by a smooth vector function of the continuous variable 

t,   such that there exists a vector y  such that 

(£-) > C > 0 (1)' 

and 

1 ^ 
- — iiv(t)r 
2 dt 

dv 
—  ,   vit) 
dt 

<e,    o < t < 6 (3)' 

There exists  an upper bound  for 6;   in particular,   inequalities   (1)'  and 

(3)    are compatible  only over  a  finite domain on  the  t-axis. 

The proof  is virtually  identical with that  of the  discrete case. 

Integrating  inequality  (1)'   from 0 to  (,   we obtain 

[v{t),y]  >   [v(0),y]   + Ct (6) 

Integrating inequality (3)' from 0 to t,  we obtain 

llvU)||2 < 20t + MO)!)2 (7) 

Using the Cauchy-Schwartz inequality and inequality (6), we obtain 

, v 2 > tvUM2 . {[v(0),y3 ♦ Ct) \v(t)\r 1  >   (8) 
Hyir 

Inequalities   (7)  and   (8)  together  show that  t  cannot  exceed the  larger 
root of the quadratic 

{[v(0),y]   + Ct}2    -     ||y||2{2öt  +  lM0)||}2 



Remarks: 

(1) Inequality (1)' means that the tangent vector to the curve lies 

on one side of a hyperplane.  Inequality (3)' means that the rate of growth 

of llvll2 is bounded. 

(2) We may compare the above argument for the continuous case with 

the extremely familiar phenomenon that 

v(t) , -- 
dt (9) 

implies 

lv(t)l! is constant (10) 

i.e., a curve whose tangent vector is always perpendicular to its posi- 

tion vector is constrained to lie on a sphere.  Replacing the orthogonality 

condition (9) with the inequality (3)' results in an inequality (7) on 

the rate of growth of the function fit)  - \\v(t)\\2.  which is clearly a 

weakening of the condition (10) that /(f) be constant. 

(3) The principle involved in the theorem is the following: The 

condition of (3)', that the tangent vector have bounded scalar product 

with the position vector, clearly results in an upper bound for the in- 

stantaneous position of the curve as a function of time.  On the other 

hand, if the tangent vectors dv/dt  to the curve remain sufficiently large 

and do not depart too badly from colinearity, as prescribed, for example, 

by (1)', then a lower bound on the cumulative growth results, as in (8). 

This is intuitively clear:  If dv/dt  does not get too small, the total 

arclength will increase with at least a certain rate.  If, on the other 

hand, the dv/dt  are sufficiently "nearly colinear" then the serpentine 

path swept out by vit)  cannot reverse its direction enough to prevent 

its over-all migration away from its starting point.  The opposition of 

these two influences implies the termination of one of the two relations 

(1)' or (3)'. 

We will not dwell upon the matter of how assorted variations of this 

theme will continue to produce assertions'that t,   or, in the discrete 

case, n, must remain bounded.  Whether each of these deserves to be dig- 

nified with the name theorem  is a moot point. 



V GEOMETRICAL INTERPRETATION 

We conclude with a few words about the geometrical interpretation 

of the assumption (1).  We assume familiarity with the theory of convex 

sets in Euclidean vector spaces.  For the most part, we state these 

remarks without proof.  For a general introduction to this theory, see 

Blackwell and Girshick,9 and (Jale. ^ 

The polyhedral  cone, C.   with generators, *, ^, is defined as 

all vectors of the form KlWl  + ... + /y^, where ^ > 0, i - 1,2 N. 

The cone C  is called proper if for all 9 j 0,  C  never contains both v 

and -»; or equivalently. if C, apart from its vertex, lies in the interior 

of a half space.  The condition that there exists a vector y  satisfying 

(1) is precisely equivalent to the condition that C is a proper cone. 

We remark that requiring the existence of a vector y  which satis- 

fies (1) with 6 >  0, is neither stronger nor weaker than requiring the 

existence of a vector y  which satisfies (1) with 6  - 0—i.e., which 
satisfies 

(•(.y) > o , 1 N (1)' 

Indeed, y itself can serve for yj conversely, given ö and y satisfying 

(1)", any sufficiently large positive multiple y  ' $ of y  with 

K > 
e 

min {v.,y) 
i"l JV 

~\   > 

will satisfy (1).  Condition (1)" is the customary way of specifying 

that the cone C be proper. 

For the continuous analogue, requiring that infinitely many vectors 

dvldt   satisfy (])' with c > 0 is actually stronger than requiring only 

that dvjdt  satisfy 

(;M ~ - y) > 0 ,  o < t < t (i)' 



In fact, the left-hand side, though positive for each t,   need not be 

bounded away from zero.  If we assume (1)'" to hold for 0 < t £ 6 

(equality permitted at 6) and dv/dt  to be continuous, then, as in the 

discrete case, it is true that (1)'" and (1)' are precisely equivalent. 

The cone C* of all vectors v  such that (w,v)  >  0 for all w  in C, 

or equivalently such that 

(w^v)  > 0 ,   i-l N (10) 

where C is the polyhedral cone generated by u>. w   , is called the 

dual cone of C.  Its interior consists of all v  for which every in- 

equality in (10) is strict.  The bigger C is the smaller C* is, and 

vice versa; for example, when C is a half-space, C* is a half-line. In 

general, for n > 2 neither need include the other.  On the other hand, 

it is not possible to weakly separate C  and C*—i.e., there is no 2 / 0 

such that both (»,z) > 0 for all w in C, and (v.z)  <  0 for all v  in C*. 

If such a z  did exist, then by the first inequality, 2 is in C*; then 

choosing t; to be 2 in the second inequality implies that (2,2) < 0 — 

i.e., that 2*0, contrary to the assumption that 2^0. 

When C is proper, C* has an interior; indeed, the y  of (1)" is in 

the interior of C*.  If C*  has an interior, C and the interior of C* 

overlap; if not, then a consequence would be that C  and C* could be 

weakly separated by a classic result on the separation of convex sets. 

This we have seen to be impossible. 

As previously observed, if y is in the interior of C*, then a suit- 

able positive multiple of y  will satisfy (1).  Let the set of vectors 

satisfying (1) be denoted by D.    D is a subset of the interior of C*. 

The relation between (1) and the dual cone defined by (10) may be sum- 

marized as follows:  (1) has a solution (i.e., D  is non-empty) if and 

only if C* has an interior. 

The error-correction procedure is a recursive construction of a 

vector in D  of the form 

*1*1 + ••• + kN*H 

where ki   is the number of times w.   occurred in the irredundant training 



sequence before the termination of the correction process.  The mere 

existence of such a vector (without a construction algorithm) is assured 

by the fact that C  and D  overlap, which is a consequence of the above- 

mentioned overlap between C and the interior of C*. 

In general, if condition (1) is fulfilled, so that », w„ 

generate a proper cone, it will happen that some subset of the »'s will 

generate the same cone (which then has the same dual C*), and it suffices 

to restrict attention to this subset in constructing the training sequence. 

To accelerate the termination of the correction process one should use 

for correction those w's which themselves are nearest the interior of C*, 

and which are as long as possible.  If, for example, i»3 » »1 + »2, the 

single addition of »j will accomplish as much as the successive additions 

of », and i»2.  The question of whether a dichotomy is within the com- 

binatorial capacity of an a-type perceptron reduces to whether or not C* 

has an interior, or equivalently, whether or not C is proper.  This 

question is discussed in a somewhat different context by Joseph and Hay,7 

and Keller.8 

After the work was completed it was pointed out that S. Agmon had 

previously considered11 a variety of similar correction procedures (none, 

however, identical with the above) and showed their convergence in general 

to be at a geometric rate. 

10 
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