
UNCLASSIFIED
II

AD 296 998

ARMED SERVICES TECIFICAL INFORMATION AGENCY
ARLtt]lTGTON HALL STATION
AlUINOGTN 12, VIRGINIA

UNCLASSIFIED,

NOTICE: When government or other drawings, speci-
fications or other data are used for any purpose
other than in connection with a definitely related
government procurement operation, the U. S.
Government thereby incurs no responsibility, nor any
obligation whatsoever; and the fact that the Govern-
ment may have formulated., furnished., or in any way
supplied the said drawings, specifications, or other
data is not to be regarded by implication or other-
wise as in any manner licensing the holder or any
other person or corporation, or conveying any rights
or permission to manufacture, use or sell any
patented invention that may in any way be related
thereto.

TECHNICAL MEMORANDUM

Vi

C73

C=
a, I .

C4 Electronic Systems Laboratory

MASSACHUSETTS INSTITUTE OF TECHNOLOGY, CAMBRIDGE 39, MASSACHUSETT

Department of Electrical Engineering

TECHNICAL MEMORANDUM Copy No. LO

ESL-TM-156

AN ALGORITHMIC THEORY
OF LANGUAGE

by

Douglas T. Ross

November, 1962

Contract No. AF-33(600)-42859

The work reported in this document has been made possible through the
support and sponsorship extended to the Massachusetts Institute of
Technology, Electronic Systems Laboratory, by the Fabrication Branch,
Manufacturing Technology Laboratory, Aeronautical Systems Division,
United States Air Force under Contract No. AF-33(600)-4Z859, M. I. T.
Project No. DSR 8753. It is published for technical information only
and does not necessarily represent recommendations or conclusions of
the sponsoring agency.

Approved by: /
Dougla . Ross, Project Engineer
Head, omputer Applications Group

Electronic Systems Laboratory
Department of Electrical Engineering
Massachusetts Institute of Technology

Cambridge 39, Massachusetts

NOTICES

Requests for additional copies by Agencies of the Department of
Defense, their contractors, and other Government agencies should be
directed to the:

ARMED SERVICES TECHNICAL INFORMATION AGENCY
ARLINGTON HALL STATION
ARLINGTON 12, VIRGINIA

Department of Defense contractors must be established for ASTIA
services or have their "need-to-know" certified by the cognizant
military agency of their project or contract.

ABSTRACT

The Algorithmic Theory of Language takes the view that processing
algorithms define classes of language. A language belongs to a class
depending upon whether or not it is properly processed by the cor-
responding algorithm. Following preliminary statement of n-component
element and plex definitions, several General Principles concerning the
step-by-step growth of large, complex structures are introduced. The
words and symbols of language are then considered to be elements with
attractive and repulsive properties which cause them to link together to
form linguistic structures. The General Principles are applied to suit-
able element definitions to yield derivations of successively more elab-
orate algorithms defining the behavior of these elements, and generating
in one left-to-right pass the First-Pass Structure which explicitly ex-
hibits the syntactic and semantic structure of a statement by showing
syntactic context by a tree structure and semantic context by the
"precedence string". The present development stops with the concepts
of major and minor modifiers and leaves ambiguity resolution and other
topics to future papers.

This document is a preprint of a paper submitted in November to the
Journal of the Association for Computing Machinery for publication
in 1963.

TABLE OF CONTENTS

I. INTRODUCTION page I

A. Summary 2

B. Acknowledgements 6

C. Outline 7

II. DEFINITIONS AND METHODOLOGY 9

A. Components and Elements 9

B. Pointers and Plexes 10

C. Referents 11

D. Algorithms 13

E. Derivation Principles 14

F. Flow Diagrams 15

G. Fringe Cuts 18

III. THE BASIC ALGORITHMIC THEORY 21

A. The Elements of Language 21

B. Likes or Attractions 23

C. The Parsing Algorithm 26

D. The Fight Algorithm 28
E. Normal Precedence 32

IV. SEMANTIC ATTRACTIONS 37

A. Modifiers 37
B. The Plike Algorithm 41

C. Example 43

D. Decoupling 45

E. Minor Modifiers 46

F. Major Modifiers 49

G. Broken Minor Segments 54

H. Preliminary Conclusion 55

APPENDIX ALGOL 60 as an Example 59

BIBLIOGRAPHY 67

List of Figures

Figure 1 Elements of Flow-Diagram Language page 17

Figure 2 The Parsing Algorithm 27

Figure 3 The Like Algorithm, "f like x?" 28

Figure 4 The Fight Algorithm, "p fight n over x" 30

Figure 5 Example of First-Pass Structure 34

Figure 6 Read/Where for Precedence Algorithm 35

Figure 7 The Precedence Xlgorithm 39

Figure 8 The Parse-Precedence Algorithm 39

Figure 9 Modifier Modification 40

Figure 10 Modifiers on Minor Precedence 40

Figure 11 The Plike Algorithm 43

Figure 12 Schematic of Precedence when Atom-Atom Occurs 46

Figure 13 Precedence Controls for Minor Modifiers Only 48

Figure 14 Precedence Controls for Major Modifiers 51

Figure 15 Decoupled Parse-Plike Algorithm with Major and Minor
Modifiers 53

A-i Datatypes and Datalikes for ALGOL 60 61

A-2 Left Wordlike Matrix for ALGOL 60 62

A-3 Right Wordlike Matrix for ALGOL 60 62

A-4 The Like Matrix Setting Algorithm 63

A-5 An Example in ALGOL 60 Language 65

ERRATA SHEET

Please note the following typographical errors which affect

the accuracy of the text:

Page

7 Paragraph 2, line 4 . . . are not covered in detail . . .

17 Line 4 from bottom . . same as A(E).

22 Under Def. 10, line 4 . . . Ivar,

23 Line 5 from top. If i points to a symbol, i --o n

28 Fig. 3 . . the "datatype (x) = X?" yes branch should
enter the "wordlike (f) = wordtype (x)?" box.

34 Top of Fig. 5 should look like

FINI

44 Start A--B , C D (4)

55 Section H, line 3 . . . elaborate behavioral .

Section H, line 4 . . . has been derived. ..

I. INTRODUCTION

In recent years there has been a growing awareness that an important

analytic tool in the field of language theory is the concept of a processor for

a language. (Gorn, (1) , Oettinger, (2) , etc.). At the same time that

language theorists have been using simple processing algorithms to clarify

and rigorize theoretical problems, those most concerned with elaborate

processor construction for artificial languages have suffered from a lack of

theoretical basis. This paper puts forth the thesis that processing algorithms

should be the primary, not a secondary, tool of the language theorist, and

that artificial languages should be defined within a sound theoretical frame-

work, in which case sound and efficient translators are an automatic fringe

benefit.

Actually the theory presented here is the first major foundation

stone of a more general Theory of Plex Processing (Ross, (3)), and, as will

be made clear, the importance of the algorithmic approach to language theory

is riot due to the use of algorithms themselves, but has deeper roots. The

contention is that the many complexities and apparent vagaries of language

are the natural consequences of certain inherent behavioral properties of

words and concepts themselves, and the algorithms which are used are merely

the formal descriptions of these "natural laws" which govern the behavior

of words and concepts. The meta-theoretic philosophy which is followed

here is based on the hypothesis (and it is a hypothesis, open to test) that

these natural laws of words and concepts, like the natural laws of matter and

energy, obey discoverable minimization and conservation principles, and that

the pursuit of these principles, while at the same time applying them to

formulate, test, and modify more and more comprehensive versions of the

behavioral laws, is a valid and promising approach to this most difficult

problem.

2

The theory of language initiated here represents, then, only the first

few small steps toward a complete theory. No claim is made to broad areas

of applicability at this time in natural language, but the impact on artificial

languages of even the present results is considerable, and further inroads

into natural language are clearly indicated. Since the theory is by its very

nature evolutionary, we are not concerned directly with known aspects of

language which do not at present fit the theory, but with those that do fit

the theory, and how well they fit. It is hoped that impartial study will

confirm that in the areas which are covered, this nascent theory provides

elegant clarification of several vexing but simple aspects of language as we

know it, and holds promise of further significant development.

Since the material in this paper relates to language theory, language

translation, compiler construction, etc. , it is impractical to attempt to

sort out and directly reference all of the influences and related work which

have been published in these fields. Instead we reference a few of the more

closely-related efforts in the context of a general preview of the results

which are presented in detail in the body of this paper. Particularly relevant

as general references are the entire issues of references 16, 17 and 18.

Many of the papeis in these special publications speak to problems covered

here, though frequently the emphasis differs.

A. Summary

Language is both form and meaning -- syntax and semantics. Any

effort to artificially consider only form or syntax without at the same time

treating meaning or semantics, or vice versa, decimates the very concept of

language, and can at best be only constructing formalisms of structures which

have language-like properties. The inextricable nature of form and meaning

must be recognized as a prerequisite to considering language as such.

3

We restrict our initial attention to what we call linear sequential

languages, i. e., languages in which words and symbols occur in a sequence,

left to right in an input string. We consider each word to be represented

by an n-component element whose components show left and right syntactic

and semantic context, type, and other features, by means of pointers. In a

single left-to-right scan of the input string, an algorithm transforms the

input string into the first-pass structure in which all pointers are properly

set. The form or syntactic structure of the statement is shown explicitly

by the parsed tree structure which results from setting the left and right

syntactic pointers, and the meaning or semantic structure is shown explicitly

by the linked rings of the precedence string which results from setting the

left and right semantic pointers. The meaning may be evaluated by following

the precedence string, which shows which words precede other words in the

establishment of total meaning, and at each step the proper syntactic context

is known. The present theory is restricted to ordinary words, and major

and minor modifiers, but later extensions will treat ambiguities, non-trivial

context-dependency, and other more elaborate features.

In addition to the algorithms themselves, considerable emphasis

is given to the methodology of the theory. The viewpoint is that large, complex

structures (such as are found in language) never arise all at once, but are

built up step-by-step out of simpler structures. A set of five General

Principles are given, the most important being the Immediacy Principle

and the Stacking Principle, and these are used to derive algorithms which define

the behavioral properties of elements and cause them to link together to form

large structures. While the Immediacy Principle, which says that settings

should be made immediately as soon as conditions are right, has not been

explicitly stated elsewhere, it has been used widely in many of the "one-pass"

processors which have been written. Similarly the role of stacks, which

4

operate on a last-in-first-out basis, has been widely recognized, particularly

by Samelson and Bauer (4), and Oettinger (2), although virtually every recent

processor also uses a stack.

Oettinger introduces the concept of a " Am Theorem" which proves

for a given algorithm using a stack, that a well-formed "middle" of a formula

will leave no residue on the stack. This important concept allows a type of

induction to prove the validity of algorithms. Sherry (5) proves several such

theorems for algorithms based on the "predictive analysis technique" of

Rhodes (6), and many of the proofs of Markov (7) embody the same principles

independently. While all of the algorithms of this paper are subject to analysis

by A M Theorems, the proofs have not actually been carried out because our

present terminology and knowledge of technique precludes elegant proofs.

For simple algorithms as treated by Oettinger and Sherry, the proofs, although

lengthy, are not too unwieldy, but the added complexity of the algorithms of

this paper makes straight-forward proofs impractical.

The role of the stack is also different from most algorithms which

have been described in the literature. Like many other studies, stacking

is triggered by certain relations which apply between "operator pairs". Many

algorithms, (including the early precursors to those of the present paper),

depend upon a heirarchy or binding strength relation between operator pairs,

(Samelson and Bauer (4), Huskey (8), and others). The heirarchy approach

is, however, only of limited (though significant) power, and is rigorously

covered in an elegant fashion by the "precedence grammars" of Floyd (9).

The limitations of the heirarchy approach are apparently overcome, in great

measure by the "predictive" techniques of Rhodes (6), Sherry (5), Irons (10),

etc., but at considerable expense in efficiency.

5

All of these approaches appear to be strongly influenced by the

concepts of "productions" (Chomsky (11), Gorn (1)) and by the use of meta-

linguistic descriptions of grammars using notations such as the Backus

Normal "orm, Naur (12). The view of this paper is that such meta-linguistic

descriptions are tabulations of the natural consequences of basic properties

of the words and concepts of a language, and are more the product of the

analytic approach, than of the language itself. Many of the meta-linguistic

types which are used in these forms of description appear from this view-

point to be names applied to gross structures whose genesis is at a more

fundamental level, and is based upon the "likes" or attractions between words.

The only meta-terms which are acceptable or even needed, according to

this view, are the basic type classes of the words themselves, as modified

according to context by the type computation. At the present stage of

development, the meta information is given in the form of "Like Matrices"

and "datatype" specifications for the words of the language, but later extensions

of the theory will provide further internal structure in this area.

One consequence of the change of emphasis from meta-terms to the

words themselves is that the parsing part of the First-Pass Structure does

not refer to any meta information, but structures the right and left context

of each word directly. Whereas most parsing is done in terms of meta

descriptors such as "noun phrase", "predicate", etc. (see e. g. , Yngve (13)

and others) these terms play no useful role in the present theory. The only

reference known to the author which uses a similar parsing (for Algol, etc.)

is Warshall (14), in which the importance of parsing to determine context

prior to evaluation is also recognized, although not in the form of an

explicit step-by-step precedence string.

6

Finally, the close interconnection of semantics with syntax does not

appear to have received wide emphasis in the literature, although every

machine translation project has of course considered both aspects to some

extent at least. Special attention should be called to the work of Ceccato (15),

as being the closest in viewpoint to the present paper, although specific

techniques are quite different. By attacking the translation of meaning rather

than form, Ceccato's ideas correspond quite closely to those of this paper.

A (recursive) perusal of the references will disclose a great many

similarities between aspects of this paper and the work of many others,

including some which should, perhaps, have been mentioned here. It is

hoped that these omissions will be excused, and that disputatious claims to

priority will not becloud the acceptability of the theory presented in the

following sections.

B. Acknowledgements

A preliminary and very rough presentation of the ideas of this paper

was given in an internal memorandum in July 1962, and was distributed to

the ASA X3. 4. 1 and X3. 4. 2 Standards Committees, the U. S. members of

the IFIP Algol Working Group, and other selected individuals. The helpful

comments, criticisms, and suggestions of many of these people have been

incorporated into the present paper, which is considerably different in

organization and presentation.

Particularly fond and substantive acknowledgement is due to Mr.

Jorge E. Rodriguez of the Computer Applications Group, Electronic Systems

Laboratory for his invaluable contribution to this work. His timely and

well-modulated balance of criticism and enthusiasm, coupled with a sensitive

insight and understanding, has in many hours of discussion throughout the

evolution of this theory been instrumental in its successful development.

His many contributions are most gratefully acknowledged.

7

C. Outline

The presentation of the Algorithmic Theory of Language separates

naturally into several parts. We begin with several sections in which the

basic concepts of plex processing are rigorously defined. These definitions

and the viewpoint which they engender enable precision of terminology in the

theory itself, and in the presentation of algorithms in a simple flow diagram

language, which is also informally presented. The concept that complex

structures are built up step-by-step out of simpler structures is made con-

crete in the form of five General Principles which are used as axioms in the

derivation of algorithms and as guides in the establishment of appropriate

element definitions. The use of these principles in a derivational context

compensates somewhat for the omission of complete lemmas, theorems and

proofs concerning the validity of the algorithms and the behavior of the classes

of language which they define. Finally the concept of fringe cutting, which is

a very useful methodological concept for solving complex problems in gradual

stages is introduced.

The careful preparation of definitions and methodology then permits

the language theory itself to be unfolded in a straightforward manner.

Following an informal description of those aspects of language which under-

lie but are not dovered in detail in the present theory, which take the form of

datatype specifications and Like Matrices, and provide the basic mechanism

for attractions between words, the principles are applied to derive the first

algorithm, the Parsing Algorithm. The Parsing Algorithm is concerned

solely with form or syntax, and the basic level of theory is completed by

the introduction of-normal precedence via the Precedence Algorithm. The

syntactic and semantic features of these algorithms are then combined by

merging the algorithms into a single Parse-Precedence Algorithm which

defines the simplest complete class of languages of the theory.

8

The semantic question is then considered in more detail by the

introduction of the concept of modifiers. Then semantic attraction between

words is introduced in the form of precedence likes, or "plikes", which are

then applied to both major and minor modifiers to derive the final algorithm

of the present paper.

Although the appendix contains a description of the Algol 60 Language

in terms of the theory, extensive discussion of the implications of its

present state of development are not included, since such discussions can

much more profitably be undertaken in the next paper, which will treat the

problem of ambiguities.

II. DEFINITIONS AND METHODOLOGY

A. Components and Elements

We accept as primitive certain English words and constructions; and

mathematical set theory, logic, and analysis, etc. We also accept certain

.basic primitives:

Basic object primitive is t .

Basic structure primitive is has (or with).

Basic action primitive is contain.

Basic reference primitive is name.

The first defined object is a component.

Def. 1 "A generic component has a unique name and a place-holder

which may or may not contain contents. "

In this definition sentence, the words has, name, and contain are used

with the English words A, unique, which, may, or, not, and., which along with

similar words are accepted as primitive (including the word primitive itself!),

to show that the concept generic component involves two sub-parts called

name and place-holder, and that place-holder is the kind of thing that can

contain something. Furthermore, contents is the thing contained in the place-

holder of the generic component referred to by name.

Def. 2 "A specific component is an instance of a generic component,

but its place-holder may contain different contents. We say

the specific component is of the same kind as the generic

component. "

There may be any number of specific instances of a generic component, and

no restrictions are. placed on their contents. We refer to generic and specific

components by the collective word component when the distinction does not

9

10

apply. Thus, in brief, "a component is a named place-holder containing

contents". Note that all components with the same name are of the same kind.

Def. 3 "A generic element is a generic component whose contents

is a set of components, no two of which are of the same kind.

The components in the contents are referred to as the com-

ponents of the element, and the place-holder (i. e. , the thing

that contains the components of the element) is called the

guts of the element. "

Def. 4 "A specific element is an instance of a generic element, i. e.

it has the same name, and components with the same names,

but the contents of the components may be different."

We shall restrict our considerations to elements with a finite number, n, of

components and shall sometimes speak of n-component elements. In view of

this restriction, however, we frequently will use the shorter word element

for n-component element without confusion.

We refer to the place-holder of a component A of the element B using

the notation BA. A generic component is considered to be an element of one

component whose component name, A, is the same as the element name, A.

The place-holder of a generic component is then referred to by AA. A specific

component must be contained in some element.

B. Pointers and Plexes

With the concept of element well-defined, we now introduce as another

basic primitive, an existence space which will be considered to underlie the

entire conceptual framework we are building. Consider the set of all guts of

elements, and a set of "sites", of the same cardinality. The existence space

is a unique set of ordered pairs associating with each guts a site. We

11

consider the guts to exist at the sites, and the associated member of the

site set is called the site of the guts. Both sites and guts are things, and

therefore may be contained in components.

Existence space = {(site, guts)}

Def. 5 "If a component contains a site, we say the component con-

tains a pointer to the element whose guts are associated with

the site in the existence space, i. e., the contents is a pointer."

We assume that letters, the real and complex numbers, the Boolean primi-

tives True and False, and similar things are pre-defined as elements (whose

names are themselves) , and also that they are included in the site set, and

that in the existence space, they constitute their own sites as well. Thus

any metric (i. e. , measuring) process may be viewed as pointing to an

appropriate existing measuring scale.

Def. 6 "A plex is an element containing only elements or pointers.

A pure plex contains only pointers. "

I. e. , a plex cannot properly contain an un-named thing -- it must have an

internal, named structure. A pure plex may loosely be interpreted as "an

interconnected set of n-component elements".

C. Referents

For notational consistency we now make the referencing of contents

of components more specific. The notation A(B), read "A of B" is inter-

preted as follows:

Def. 7 "If BA properly contains an element C, or contains a pointer

to C, then A(B) is a pointer to C. If K is a pointer to B, then

12

A(K) is the same as A(B). If B A contains a non-element

primitive thing, then A(B) is the thing itself. "

For generic components considered as elements we write A instead of A(A).

We now can make more general, and at the same time more specific, the

concept of naming parts of plexes by the following definition:

Def. 8 "A thing x is internal to a plex p if there exists a sequence

N i , l_<i:k, where N 1 is the name of a component of p, N 2 is

the name of a component of N 1 (p) ,.... and where x is con-

tained in or pointed to by Nk(... (N 2 (N 1 (p))) ...). The

equence NJ,... , Nk is called the reference chain of x with

respect to p, and Nk(.. . (N 2 (N 1 (p))). ..) is called the referent

of x with respect to p. 1

Thus anything which is contained in a plex has a (not necessarily unique)

referent.

Note that the concept of plex so far is primarily one of structure, i. e.,

containment either directly or by pointer, but on the other hand, every

aspect of that structure is named as well, either directly or by a more or

less elaborate referent. As the basic object-primitive thing indicates,

literally anything can be considered a plex, providing only that in the process

of considering, the structure is exhibited in detail, and named. Concrete

things, such as table, chair, etc. , must be expressed in plex structure

which mirrors their known properties, but even so abstract a thing as an

as yet unconceived concept can be concretely represented if it is merely

given a name.

The reason for the emphasis on naming, and the reason that names

cannot be taken away from the structural side of plexes is that, except for a

13

basic primitive level, all plexes must be referenced to other plexes to be

meaningful. I. e., our "world-view" allows only a limited number of un-

definables, (the non-plex primitive things in components which are not plexes),

and all "interesting" things are in fact plexes built up out of other plexes. In

order to build large plexes out of smaller plexes, there must be a way of

referencing any point in their structures. The names and referents provide

the means.

D. Algorithms

We now proceed to the consideration of the machinery required to

manipulate plexes. Our view will be, in fact, that the actual "meaning" of

plexes, and what makes them "interesting" is solely a result of how they are

manipulated. These manipulations will be carried out by algorithms which

transform plexes from one form to another. It is very profitable to take a

quasi-anthropomorphic view of this procedure, and to ascribe the results of

the algorithmic manipulations to the plexes themselves. I. e. , an algorithm

which uses the referents to things in a plex and causes various things to

happen defines properties of the plex itself. In other words we think of the

plex as having behavioral properties as well as named structure, and the

algorithms linked to the plex through referents are the means of definition of

these behavioral properties.

Thus we see that the full concept of plex actually consists not only of

structure and naming, but algorithms as well. The full interpretation of any

component of a plex involves every algorithm which makes any reference,

however slight, to that component. Conversely, a non-trivial algorithm

without referents is downright inconceivable. Thus the two concepts are in-

extricable. The full concept of plex may loosely be considered to be a

structure of things contained in named components, the meaning of the names

14

(and thereby of the things and structure) being made implicitly explicit by

associated algorithms. The idea that every reference by any algorithm

influences a plex corresponds quite closely to the philosophical view of

modern physics which is expressed in the uncertainty principle.

E. Derivation Principles

We have now laid all the mechanical ground work for deriving the

algorithms of the language theory. In order to provide motivation for the

algorithms of the theory, however, and to show that they are not arrived at

whimsically, we state some General Principles of deriving algorithms which

will be followed throughout this presentation. These principles may be

considered, along with the definitions, to constitute a type of axiom set, and

in the derivation of the algorithms we shall call upon these principles as

concise statements of the methodology employed.

Princ. 1 The Simplicity Principle: "In solving a problem, the simplest

set of assumptions should be employed along with a minimum

of mechanism. "

Princ. 2 ,The Efficiency Principle: "Every operation should be considered

to have an associated cost, and the total problem includes due

consideration of this cost. In general, if the addition of some

simple static mechanism, such as a pointer, can be used to

provide an immediate result which otherwise would be

obtained by a dynamic recursive procedure of unlimited extent,

the use of such a pointer is considered simplest and most

efficient. "

The Simplicity and Efficiency Principles are complemented by the

Immediacy Principle which is in a sense dependent upon them.

15

Princ. 3 The Immediacy Principle: "Whenever sufficient information

is available for a component to be set, the setting should be

performed immediately."

Multiple application of the Immediacy Principle in turn leads to the

Stacking Principle.

Princ. 4 The Stacking Principle: "Whenever two components of the

same kind require setting, the element containing the older

component should be set aside on a stack, (operating on the

last-in-first-out principle). "

Finally, the basic methodology is completed by the Minimum

Limitation Principle.

Princ. 5 The Minimum Limitation Principle: "Whenever there is a

choice between two ways of accomplishing the same task,

that way shall be chosen which imposes the least stringent

requirements on the pieces of the problem. "

These principles mirror not only the behavior which we expect and

desire of a language, but also are in harmony with the more general view

that large and complex structures do not arise instantly, but are built up

step-by-step out of smaller structures. They apply to any process in which

the new material is supplied one unit at a time, as in the input string. In

subsequent sections we will take this view of many problems which are not

directly linguistic in nature, and, will apply the principles in the derivation of

algorithms and element definitions.

F. Flow Diagrams

We now give an informal definition of a flow-diagram language which

is most natural for plex manipulations. We suspect strongly that algorithms

16

written in this way span the same "space" as, and are in fact equivalent to,

the Normal Algorithms of A. A. Markov, the various algorithm theories based

on recursive functions, and Turing machines. In any case, since it is fairly

clear that any short-comings of the method of stating algorithms can either

be repaired, or the algorithms can be rephrased, (with no inconsiderable

effort, however), we proceed to the mode of expression which seems best

suited to the plex concept.

We begin by adding to our previous definitions the following assumptions:

Assumption 1: "Every element contains a unique component named type,

whose contents is a code (i. e. , a pointer to a reference

scale) which specifies what kind of thing the element is.

The concept of a unique type for every element is very basic, but is

introduced here in this form as a temporary assumption, rather than as a

definition, because its proper treatment is very deep and requires much more

machinery than we have at present. The present expedient allows us to refer

precisely to type, and will suffice for the moment.

Assumption 2: "We will consider only pure plexes.

This assumption means that we need only be concerned with the

manipulation of pointers. Note that there is absolutely no restriction here,

since any plex which properly contains a sub-plex (and therefore is not pure)

is trivially equivalent to (i. e., may be replaced by) a pure plex which contains

a pointer to the sub-plex in its corresponding component.

To save space we introduce the elements of the flow-diagram language

graphically and informally as shown in Fig. 1.

17

Notation Conventions
entry

box exi Only one entry and exit per box.

entry Only one entry per question.

exits Flow follows arrows, crosses ignored.

arrow - Message STOP ! must occur at least

once in an algorithm.

joint L Question may contain only one query.

Box may contain any number of statements,
cross + executed from top down.

Any precise language may be used for

break - ® (statements and queries if it doesn't

IL violate rules of flow.

duck Referents are the "nouns" of the language

T of statements and queries.

message - Word

Fig. 1 Elements of Flow-Diagram Language

Clearly more precision and rigor are called for, but we assume these

conventions will make the algorithms to follow sufficiently understandable.

The only additional remark that is necessary is to point out that we

will make full use of Assumptions 1 and 2.

E. g., Let A, B, be component names

E, F, be element names

a be a matherratical function or operator.

Then A(E)--B(F) Means make the contents of B(F) the

same as F(E). A(E) is unchanged.

F"-A(E) Implies that F itself is a component,

i. e., contains only a pointer, and that

pointer is placed in A(E).

18

a(A(F)) < 3? Implies that A(F) contains a suitable

argument for the real valued function a.

With these remarks as guides, the meaning and interpretation of algorithms

will be self-evident. In the future the full plex concept of this form of

algorithm will be made explicit by defining the elements as plexes and giving

algorithms for their complete processing. Note that at that time, the con-

cept algorithm will itself be a plex.

In order to elaborate significantly on the plex and algorithm concepts

we must have a better understanding of language. If language can be formalized

and made rigorous, it will provide a much more powerful mechanism for

further progress than the sterile formalisms of the limited formation rules

allowed in existing symbolic notation. An alternate view is, of course,

that rigor in language extends the realm of mathematical formalisms. In

either case we now proceed to apply the rudimentary plex and algorithm

concepts introduced thus far, to the consideration of language.

G. Fringe Cuts

We take 9ne final slight detour to introduce the methodological

technical term fringe cutting, since its use will simplify several future dis-

cussions. It has been brought out that every problem, viewed in plex form,

has many layers of problem within problem within problem... . We may

view this structure as a many branched tree, where each generation of

branches has more and more members, the outermost generation giving,

because of its density, the impression of a fringe. In solving a problem

it may be expedient to ignore the detail of one or more of the finest layers,

even though we know some of the characteristics of those layers and could

penetrate deeper into the problem. When we do this we "cut off the fringe"

and stop our solution at a coarser level. Note that this cannot be a brutal

19

amputation -- the coarser view of the problem still must yield a solution.

But if a fringe is cut it must be possible to take the finest level and penetrate

still further into detail.

Since almost every solution is a fringe cut, (if all possible levels

are considered) we will use the term only where it clarifies discussion.

We also will attempt to look deep enough in each case to ensure that we only

cut a fringe, and do not "cut corners". Cutting corners distorts a problem

and usually leads to trouble. Fringe cutting merely postpones deeper

penetrations to another day. Normally we only fringe cut when it is clear

that future, more powerful machinery or understanding is needed to handle

the deeper level elegantly.

III. THE BASIC ALGORITHMIC THEORY

A. The Elements of Language

We begin our consideration of language with a fringe cut by

postulating the existence of two plex structures called the vocabulary table

and the symbol table. We have said we would restrict our attention to pure

plexes, containing only pointers, but the vocabulary and symbol tables,

being unspecified in detail, are not pure, but are the actual places of exis-

tence of the entities with which we will be concerned. Whenever we refer

to a word we actually mean we have a pointer to the vocabulary table entry,

which is an element containing all of the needed properties of that word.

Similarly when we refer to a symbol we actually have a pointer to an element

contained in the symbol table. (A later paper will prescribe the actual table

mechanisms in the context of a computer-based system embodying the entire

theory being developed here.)

For the present, we ignore all morphological considerations and

assume that a speaker of the language, (or a message generator if you

prefer), utters a statement in the language by assembling a string of

uniquely recognizable and uniquely deconcatenable entities which an un-

specified pre-processor uses as names to locate the corresponding words

and symbols in the vocabulary and symbol tables. The pre-processor then

transforms the statement into the input string, which will be our starting

point.

Def. 9 "An input string is a sequence of pointers to words or

symbols. Each pointer has a unique predecessor and a

unique successor in the sequence, except for the boundary

pointers INIF and FINI. The successor to INIF is the

first pointer and the predecessor of FINI is the last pointer

in the input siring. "

21

22

Note that the input string is a trivial kind of plex, and that, since the

pointers can be triggered by anything at all (there is no restriction placed

on the names in the tables) the language theory to be developed is a meta-

mathematical theory which can be superimposed on anything that takes place

in time, as long as the pre-processor can be defined.

The input string by itself is every bit as uninteresting as any state-

ment in a completely foreign language. It may be possible to observe

patterns in it, but no meaning or message can be gotten from it. It is our

objective to construct algorithms which will transform the input string into

a more elaborate plex structure, called the first-pass structure, which

will explicitly exhibit the syntactic and semantic structure of a statement.

We start with virtually no linguistic properties ascribed to the things pointed to

by the input string, and in successive stages we provide more and more pro-

perties in the table entries, and thereby derive richer and richer linguistic

interpretations of the input string.

The first-pass structure is constructed from first-pass beads.

Def. 10 "A first-pass bead, x, is an element with the following

components (in addition to type).

word, w(x), containing a pointer to a vocabulary table entry.

Ivai, I(x), containing nil, or a pointer to a symbol table

entry, or a pointer to a first-pass bead.

rvar, r(x), containing same as I(x).

minor precedence, 11(x), containing nil, or a pointer to

a first-pass bead.

major precedence, rl(x), containing same as 11(x)

A number of stack connectors, s(x), sl(x), s2(x),... for

stacking the element, as required.

23

Such an element is diagrammed as follows:"

w r 1
rl

We postulate the existence of a "Read/Where Routine" which scans

the input string, one pointer at a time, detects whether the pointer, i, points

to a word or a symbol table entry, and sets a pointer, n, as follows:

If i points to a symbol, i n

If i points to a word, a first-pass bead, b, is created and

i---(b)

nil---I (b)--- r (b) -- 1 (b) -rl1 (b)

b ---en

Thus in either case, n is a pointer to the "new" thing on the input string.

The Read/Where Routine then transfers control to the word or symbol exit.

B. Likes or Attractions

With the input string, the vocabulary and symbol tables, the first-

pass bead, and the Read/Where Routine defined, we are now in a position

where we can consider the subject of language itself. At this point the only

difference between words and symbols is that words have structural properties,

(represented by the components of the first-pass bead), whereas symbols do

not. As will be developed, I var and rvar have to do with the syntactic

structures which can be made by words, whereas the minor and major

precedence components are concerned with semantic structure. For the

moment we will be concerned only with syntax, and therefore will omit the

precedence components from consideration.

It was pointed out that we view elements as having behavioral properties

which are described by algorithms which make use of their components. On the

basis of these behavioral properties, a given class of elements will construct

a particular kind of plex structure in a natural way if they are placed in a

24

suitable reaction environment, in much the same way that chemical elements

combine to form compounds in a chemical process.

The reason that chemical elements will react to form compounds is

that certain configurations of atomic nuclei and electrons exert attractive

forces on each other, and other configurations repel. Under the proper cir-

cumstances, by the making and breaking of chemical bonds, complex molecular

structures are built up out of atomic units.

We take this same view of words in a language, (and in fact of all

plexes). I. e., every word and symbol is considered to have an underlying

structure which causes it to be attracted or repelled, by other words in its

environment. Under the proper circumstances words that are attracted to

each other will combine to form larger units which in turn have certain

attractive properties. Thus the growth of a large syntactic structure out

of the Atomic units of words and symbols is a natural consequence of the

behavioral properties of those words and symbols.

We will not delve into the internal structuring of words and symbols

to discover the features which make them attract or repel, but instead will

apply a fringe cut and assume that the proper information is available in

components of the vocabulary and symbol table entries. Each word and

symbol is assumed to have a known datatype. Furthermore, every word is

considered to be a binary operator connecting things on its left with things

on its right. (In linguistic terms the lvar component will show the left

context of the word and the rvar component will show the right context.)

The information concerning the attractive and repulsive properties of the

word is condensed into the form of a datalike for both lvar and rvar, i. e.,

the datalike left specifies the datatype of thing which the word likes to have

in its Ivar, and the datalike right specifies the datatype which the word likes

to have in its rvar.

25

The provision of datatypes and datalikes is not quite adequate to

represent the attraction between words without becoming inelegantly

cumbersome. Recall that we are cutting off a fringe which undoubtedly

contains a great deal of structure to cause words to behave the way they do

in a natural fashion, so that it is not surprising that simply specifying

datalikes is not sufficient. We wish datatypes and datalikes to be broad and

general, so that it is necessary to provide an additional mechanism for

accommodating the special cases which do not succumb to broad generalities.

We do this by assigning to certain words and symbols the datatype undefined,

and then take the perhaps crude (but nonetheless efficient) expedient of

listing by case which words like to go with other words, in the form of a

binary wordlike matrix.

We assume that the vocabulary entry for each word contains in its

wordlike left component a row from the left wordlike matrix, in which each

word in the vocabulary table has a column position. A binary one in the i, j

entry indicates that word i likes to have word j in its Ivar. Similarly for

every word in the vocabulary table the wordlike right component indicates

those words which the given word likes to have in its rvar. Since the word-

like matrices are exhaustive, the combination of datatypes and datalikes with

wordlikes is an adequate mechanism for the fringe cut. More elaborate and

elegant mechanisms are undoubtedly possible, but, since we merely require

some mechanism for saying whether or not a given word likes what is on its

left or what is on its right in order to know how to fill its I var and rvar

components, the mechanism described is adequate for our purposes.

We restridt our attention to input strings in which symbol pointers

are always separated by at least one word pointer. This corresponds to the

assumption that all words are at most binary connectors and simplifies the

26

derivation. There is no essential restriction in this assumption since any

word which should, in fact, act as a multi-argument connector may trivially

be replaced by a set of words each of which is a binary connector. For

example, a word with three arguments, w(x, y, z), may be considered to be

xwlyw2 z. The present restriction to binary operators can be removed in a

future minor elaboration of the theory, if desired.

C. The Parsing Algorithm

We may now consider the Parsing Algorithm which concerns the

setting of the I var and rvar components in the First-Pass Structure. Since

the input string is read from left to right, and Ivar is to show the left con-

text of a word and rvar its right context, by the Immediacy Principle Ivar

must be set before rvar. Furthermore the left-to-right scan of the Read-

Where Routine plus the Immediacy Principle says that it always must be

possible to set the final setting of Ivar immediately. Since rvar depends

upon things which have not yet been processed through the Read/Where Routine

it may not always be possible to set rvar immediately, so that the Stacking

Principle says that there should be a stack of elements whose rvar's are

as yet unfilled.

Consider now the input string APBQC where A, B, C are symbols

and P, Q are words. As the Read/Where Routine scans the input string

from left to right, the word P obtains A as its Ivar and becomes the top-

most thing on the stack. The Read/Where Routine continues, reading the

symbol B, but since B is a symbol and has no associated first-pass bead the

Read/Where Routine will next read the word Q. Now the application of the

Immediacy Principle s.Ts that if B is the proper rvar setting for P, that

setting should be made immediately, or if B is the proper I var setting for 0,

then that setting should be made immediately. In other words the Immediacy

Principle applies simultaneously to both P and 0 -- we say that P and Q "fight"

over B.

27

We will assume for the moment the existence of an arbitrator which

will decide the winner of the fight on the basis of the datalikes and wordlikes

of P and Q. If 0 wins, then the Stacking Principle says that 0 goes on the top

of the stack covering the word P, since both of them require rvar settings.

On the other hand if P wins the fight, then Q must fight with the next thing on

the stack, and this fighting continues until, (by the Immediacy Principle),

ultimately 0 gets its Ivar set. Then the Read/Where Routine can continue

the scan of the input string.

I 7- I nil-nr n
.. yesl!o

(ReadWhere smbol -x= nill
yes 2 ea Aortxm

(n =nil ?. no wa

n g t p fight. ari t e c H e lp l i

t p frm e STOP! b no (Ambiguous)

x -- 1(n) Help! x--- r(p)
p - s(n) p -- x

n s p s(p) - n pnil--- n -"x ,compute type (x)

compute type (p)

Fig. 2 The Parsing Algorithm

Figure 2 shows the above derivation of the Parsing Algorithm in

flow -diagram language. Note that the fight arbitrator calls for help if neither

the next word from the input string, (pointed to by n), nor the word on the

top of the stack, (pointed to by p), is a winner. The stack and unstack

operations are shown by trivial pointer manipulations, and the compute type

function sets the appropriate type information into the type component of

the first-pass bead. Some words have what is known as dynamic type and

28

change type value depending upon the type of thing in their lvar or rvar

components. The compute type function is a fringe cut representation of this

operation. Note that since the setting of the type component is viewed as

setting a pointer to the appropriate measuring scale, the entire algorithm

consists of manipulations of pointers.

D. The Fight Algorithm

Before leaving the subject parsing, we consider the fight question

in detail. The arbitration of a fight is based upon the likes and dislikes of

the words involved. The Like Algorithm, based upon datalikes and wordlikes

is shown in Figure 3. Note that the wordlike information is used only when

there is insufficient information for the more general datalikes to resolve the

question.

"f like x"

does f have a datalike? no

yes

(is datatype (x) defined yet? n wordlike (f) = wordtype (x)?
es yeses no(datatype n(x) = X ? " ' y

(dat'alike (f) = datotype (x)7 n

yes no

Fig. 3 The Like Algorithm, "f like x?"

29

In a fight between p and n over x, if neither I (n) nor r(p) likes x,

then the Fight Algorithm must ask for help since there is no way of disposing

of the unruly x. If either I (n) or r(p) alone likes x, then clearly it is the

winner. If both I(n) and r(p) like x, then we examine the consequences of

letting either n or p win the fight, by checking the likes of n and p with respect

to each other.

If both 1(n) likes p and r(p) likes n, then the Fight Algorithm declares

a tie, since it has detected an apparently ambiguous situation. The ambiguity

problem will be treated in a later paper. In the other three cases of likes

between n and p, we tabulate the consequences of letting n or p win, and then

call upon the Minimum Limitation Principle to derive the final form of the

Fight Algorithm.

Case I. 1(n) does like p, but r(p) does not like n.

If n wins then it is required that some other n in the future

must like n, since the element beneath it on the p stack does

not like it. If p wins then there is no additional requirement,

since if the next thing on the p stack loses the fight, n will

accept the result.

Case II. I (n) does not like p, but r(p) does like n.

If n wins there are no additional requirements, since even if

no future n likes n, the element beneath it on the p stack does

like it. If p wins then there is a requirement that some p

beneath the present p must like the result, since n does not.

Case III. 1(n) does not like p and r(p) does not like n.

If n wins then there is a requirement that some future n must

like the present n. If p wins then there is a requirement that

some element beneath it on the p stack must like it.

30

Thus, applying the Principle of Minimum Limitation, Cases I and II

give unambiguous results -- in Case I, p should win, and in Case II, n should

win. In Case III, the requirement that if p wins some element already beneath

it on the stack must like it is more stringent than the condition on n winning,

and furthermore, if it is not true for the element immediately beneath p on

the stack, the algorithm will break down immediately asking for help.

Therefore, in Case III as well, we select n as the winner. Since Cases II

and III then give the same result, it is not necessary that the Fight Algorithm

check whether r(p) likes n in the case when I(n) does not like p. The final

form of the algorithm is shown in Figure 4.

F[' p fight n over x" II

2(n) like x? no r(p) like x? "a NO
yes n yes (Ungrammatical)

n r(p) like x ?

1(n) like p? r(p) like n? Tie
nono (Ambiguous)

n wins -R wins

Fig. 4 The Fight Algorithm, "p fight n over xN

The Parsing Algorithm (with the Fight Algorithm inserted) may be

considered to be the precise specification of a purely syntactic theory of

language in the following sense. The algorithm defines a class of languages

in which a given language is a member of the class if, given the vocabulary,

the datalike and wordlike matrices can be constructed in such a manner that

the Parsing Algorithm correctly parses any statement in the language. Any

31

language for which these matrices cannot be set up to provide proper parsing

for every well-formed statement in the language is not a member of the class.

In order to be completely rigorous, we should at this point state and prove a

number of lemmas and theorems concerning the status of the various pointers

in the algorithm under various conditions, but since this paper is already very

long, we will not at this time take the space to present lemmas and theorems

whose proofs are trivial if the algorithm is merely followed in detail. In fact

it is to be hoped that such theorems can be proved by mechanical proof pro-

cedures in the not too distant future and there are indications that this can be

done.

It is perhaps worthwhile to introduce at this time yet another viewpoint

of the algorithms of this paper which will prove useful in future discussions.

The Parsing Algorithm itself can be written as a plex if the flow diagram

language elements are defined as n-component elements, and then the entire

algorithm may itself be considered an element whose components are the

literal pointers which explicitly show in the algorithm, such as x, p and n.

It is then very illuminating to think of the algorithm element as being in

essence a particle (a la modern physics) and to treat these pointers as state

variables so that the various conditions of the algorithm are described by

unique states (i. e. , sets of values of the state variables). This viewpoint

also corresponds of course to that of Turing machines. It is this viewpoint

which should be taken in any statement of lemmas and theorems whether they

are to be proved manually or mechanically, but again since the Parsing

Algorithm is so simple we merely introduce this viewpoint at this time and

in future sections will merely describe verbally the requisite facts

about the states of the algorithm as they are needed (leaving proofs as an

exercise to the reader). Note also that facts about the states of the algorithm

32

induce similar facts on the statements of any language belonging to the class

defined by the algorithm, and may, therefore, be useful for categorizing or

understanding languages in terms other than the algorithm itself.

E. Normal Precedence

A language with syntax but no semantics, can hardly be considered a

language at all. We now take the first small step into the vast realm of

semantics by considering the problem of normal precedence. In order to

obtain meaning from a statement it is necessary to evaluate or consider the

meanings of the words and symbols used in the statement and the meanings

of the structures which they form. Applying the Efficiency Principle, we wish

to superimpose on the parsed structure which results from the Ivar and rvar

settings of the Parsing Algorithm, an additional structure called the normal

precedence string, which will be constructed from pointers showing what

words are to precede which other words in the evaluation procedure. I. e.,

rather than having any scanning procedure to determine meaning we wish to

have a direct step-by-step procedure to control the sequence of evaluations.

By the Immediacy Principle, when the input string is scanned from

left to right, as soon as any word or subunit can be evaluated it should be

evaluated. (Note that here we are applying the General Principles to the

specification of a data structure rather than to the derivation of an algorithm,

since they are equally applicable.) Since all of the information concerning a

symbol is already contained in the symbol table, symbols may be evaluated

as soon as they occur, but this trivial evaluation we discard with a fringe cut.

Words, on the other hand, are treated as binary operators in parsing, and

their meanings depend upon the arguments which are placed in their Ivar and

rvar components, i. e., words depend on left and right context. Since a word

cannot be evaluated until the meanings of its arguments are known, the

33

Immediacy Principle says that the arguments of a word must precede it

on the precedence string. Since there always must exist at least one word

with atomic symbols in both its Ivar and rvar, (this is one of the trivial

theorems to be proved), the evaluation process can always be started, and

in fact the Immediacy Principle says that it should start with the first such

atom-atom word.

The major precedence component, r-lvar, of a word points to the next

word to be evaluated, and we consider that there will be a Precedence

String Follower Algorithm which will transfer evaluation control from one

word to the next by following the precedence string pointers. If a word

has one argument atomic, then as soon as its single non-atomic argument

is evaluated it may be evaluated, but if a word has both arguments non-

atomic, then (again using the Immediacy Principle) after its I var has been

evaluated and has sent control to the word itself, the minor precedence

component, I lvar, of the word points to the start of its non-atomic rvar,

and only after the entire rvar structure has been evaluated will another

major precedence conponent bring control back to the word, at which time

it may actually be evaluated.

Note that the minor precedence component, I lvar, and the major

precedence component, rlvar, show the left and right semantic context of a word,

just as Ivar and rvar show the left and right syntactic context of a word.

The precedence string is not actually a linear string at all, (although

when it is evaluated by the Precedence String Follower the result is the same),

but instead has the form of linked rings, each ring containing one 11

component and any number of rl components. Thus it is a complex structure

which, (following our viewpoint that complex structures never occur

instantaneously but must be assembled step by step), can yield to an input-

string-and-algorithm analysis.

34

Consider the example of a completed first-pass structure shown

in Figure 5. The fact that syntax and semantics cannot be separated in a

language is shown by the fact that the syntactic parsing structure and the

semantic precedence structure are integral components of the complete

first-pass structure and cannot be separated. Similarly we wish to derive

a single algorithm on the basis of the General Principles, which will construct

the entire first-pass structure step by step. Such a combined algorithm itself

is a complex structure so that we arrive at it step by step. The completed

Parsing Algorithm is the first step, and we now will derive the Precedence

Algorithm independently as a second step, and then merge the two algorithms

into a single algorithm as a third step. Note that if we consider the writing

of the separate algorithms as atomic, and the merging of the algorithms as

a "word" binary operator, we are in fact applying the theory which we are

developing to its own development -- an entertaining concept which is in fact

of considerable significance.

The input string problem for the Parsing Algorithm was handled by

a fringe cut which assumed the existence of a suitable preprocessor. In

the case of the Precedence Algorithm, however, we can make use of known

facts about the Parsing Algorithm (exercises for the reader) to arrive at

a suitable input string generator. These facts show (see Figure 5) that
FINI

Start

Fig. 5 Example of First-Pass Structure

35

a major precedence component is to be set whenever a non-atomic Ivar or

rvar is set in the Parsing Algorithm. Similarly, considering the timing of

the generation of the parsing structure by the Parsing Algorithm, a minor

precedence component is to be set whenever atom-atom occurs, and this can

in turn be interpreted to happen whenever an atomic rvar is set into a word

whose Ivar is also atomic. Thus the input string for the Precedence Algorithm

consists of the Ivar and rvar settings of the Parsing Algorithm. These facts

give rise to an appropriate Read/Where Routine for the Precedence Algorithm

as shown in Figure 6, which obtains its inputs from the Parsing Algorithm.

A

Null es I(t(p) atom?
noye

p-ni x-.-nl (I(x) atom ?-n Null

,~

yes

Major Minor

Fig. 6 Read/Where for Precedence Algorithm

The setting of the minor and major precedence components for

normal precedence is virtually trivial once the new Read/Where Routine has

decided whether a major or a minor component is to be set: The component

is set, and then the new "word" becomes the next element whose components

are to be set. The process is so simple that we have not even formally

called upon the General Principles in this derivation, although they have been

applied nonetheless. The Precedence Algorithm is shown in Figure 7, and the

Parse-Precedence Algorithm which results from merger of Figures 2, 6 and

7 is shown in Figure 8. Note that in the merger process the Simplicity

Principle has been applied to eliminate some steps, but that the separate

36

functioning of the two algorithms which have been merged can be seen in

the combined algorithm. In particular if all symbols with ones are ignored,

1he algorithm reduces to the Parsing Algorithm.

I V. SEMANTIC ATTRACTIONS

A. Modifiers

It was mentioned that the normal precedence is only the first small

step into the realm of semantics. In fact since the normal precedence

mirrors so exactly the parsing structure, only the simplest of languages are

of the Parse-Precedence class. The class is not empty, however, for it

includes standard algebraic notation and many artificial programming

languages. Our objective, however, is to go beyond the simple languages

into ones of richer expression, and as usual we proceed step-by-step. It

was mentioned that the normal precedence string structure has the form of

linked rings where the beginning of each ring is shown by a single minor

precedence component, but there may be any number of major precedence

components in the ring. The asymmetry of the restriction to a single minor

precedence component disappears in a natural fashion with the introduction of

the concept of minor modifiers. In a later section we will also define a

major modifier, but since the distinction between minor and major modifiers

can only be made at that time, we now will describe the inclusive general

concept of modifier, and our specific remarks will apply to minor modifiers.

We assume that the vocabulary table entry for each word contains

two types of information concerning the evaluation of that word, called the

minor evaluation and the major evaluation. The minor evaluation information

concerns the determination of the meaning of the word when its Ivar has been

completed (i. e. , when the left context of the word is known), and the major

evaluation concerns the determination of the meaning of the word when its total

context (both left and right) is known. The normal precedence string discussed

above has been concerned only with the major evaluation of the word meanings,

and nothing has been said thus far about the minor evaluations.

37

38

Consider a word with non-atomic Ivar and rvar and with normal

precedence inserted. There will be a major precedence component from Ivar

to the word, and also a major precedence component from rvar to the word,

and the minor and major evaluations are to take place when the Precedence

String Follower transfers control along these arrows respectively. Although

for many words the minor evaluation is the identity function, some words

may take on a certain preliminary meaning based upon their left context,

and this minor evaluation may influence the treatment of things in its rvar.

Such words are called modifiers because they modify the meaning of words

which follow them in the input string. Usually a modifier actually modifies

only as much of the input string to its right as is parsed into its rvar, but in

any case its minor evaluation function is performed early on the precedence

string, before the rvar is complete, and since there is no restriction placed

upon the functions performed during this minor evaluation, the modifying power

has no essential limitation.

Modifier words with non-atorric I vars, ("left context dependent

modifiers"), are handled properly by the algorithm of Figure 8, but since

the normal precedence string does not visit words with atomic Ivars, if the

minor evaluation function of the modifier is to occur at its proper place in the

precedence string, a slight modification to the algorithm of Figure 7 is

required. In fact all that is required is to check to see whether a word is a

modifier when its Ivar is atomic, and if so to splice it onto the end of the

current 11 var which starts the precedence ring. This is accomplished by

splicing between the points labelled C and D, in Figure 8, the trivial algorithmic

step shown in Figure 9.

39

null minor f I (A)

Read/Where nI

major

nI - rI (A)
EN 7

nl - A
nil - nl

Fig. 7 The Precedence Algorithm

null.. -N symbol es n x
(R e a d/W h ! re l Ill''''I'll''''I'll'- ,illill n i I?es =n0 1YC3 no nil n

word
n nil? Help!

no
STO0 I(n) li e x? r(p) like x?)-22--b-Helpl

;n o P yes yes

p= FINI? 0 X')
yes r(p) lik

yes

R(n) like ? es r(p) like n? es Help!
no If no

x -I(n) x - r(p)
p -s(n) p-x-nI
n p-nl S(p) - p
nil - n -x compute type (nI)
compute type (n1)

C
yes f (p) atom?

n * no r(x) atom?

n I - rl (x 1)---x'q no yes

I(x) atom ?

D yes
(xj).

Enl -VII(XI) - A

Fig. 8 The Parse- Precedence Algorithm

40

p mod? y " 'no
Fig. 9 Modifier Modification

With Figure 9 merged with the algorithm of Figure 8, the resulting

First-Pass Structure is now modified so that every minor modifier in an rvar

is visited in order by the minor precedence chain, which is terminated by the

usual atom-atom start of the normal precedence, at which point the major

precedence chain completes the ring, as is shown schematically in Figure 10.

Notice that the asymmetry in an individual ring is now eliminated, for it is

now possible to have any number of minor precedence components (associated

with modifiers) followed by any number of major precedence components.

Start FINI

Fig. 10 Modifiers on Minor Precedence

41

B. The Plike Algorithm

Once again the combined algorithms of Figures 8 and 9 may be

interpreted as defining a broader class of languages, and there are many

known languages of simple types w 1 'ich are members of that class. Still,

however, even with modifiers, we have penetrated only minutely into the

realm of semantics, and we now take a more sizeable step. In the preceding

sections we have blindly assumed that it was legitimate to let to the precedence

components of a first-pass bead point to any other first-pass bead

regardless of its type. This is an extremely restrictive assumption and

does real violence to our viewpoint of things operating as a chemistry under

the influence of attractive and repulsive forces. So we now remove it, and

thereby open a veritable cornucopia of further rich linguistic features.

With the Parsing Algorithm as background showing how the General

Principles apply in the derivation of algorithms, we experience no difficulty

in taking this step. For simplicity of exposition we consider the major and

minor segments of an individual precedence ring separately and consider the

general problem of linking one-component elements together to make a string,

taking cognizance of the fact that each element has a precedence type and

each component has a precedence like. We shorten the term precedence-like

to the single word pike, and consider the problem of assembling a precedence

string segment under the influence of plikes, i. e., whether or not words like

to be connected by a precedence component. Just as datatypes and datalikes

can be considered to specify whether words like to go together on the basis

of syntax or structure, plikes say whether or not words like to go together on

the basis of meaning or semantics. , i. e. , do their meanings match.

As before we approach the problem of capturing the concept of plikes

in an algorithm by first deriving from the General Principles the Plike

42

Algorithm separately, and then we will merge this algorithm with other

algorithms, again applying the Principles for simplification.

Since this time we are talking about the setting of only a single

component (say rlvar to be explicit) there is no question concerning the

applicability of the Stacking Principle -- the Plike Algorithm must include

a stack. We call the head ci the stack pl. The things to be stacked are

precedence string segments, which are "held" by a pointer, xl, pointing

to the head of the chain of pointers. With such a segment on the stack, pl,

it will fight with the current segment xl, over the new word pointed to by nl.

The same Fight Algorithm as was used in the Parsing Algorithm may be used

here, using plikes rather than likes, only in this case stacking takes place

whenever neither pl nor xl plikes nl. In this case xl is stacked on top of pl,

and nl becomes xl, starting a new segment which will fight over the next nl

coming in from the input string.

Whenever pl wins the fight, its precedence component is set to point

to nl and it is unstacked. The beginning of the resulting segment is then

treated as nl and the new pl which is uncovered by the unstacking operation

fights with xl over that new nl. As long as pl continues to win, the unstacking

continues, and the process terminates when either xl wins, in which case

the entire segment becomes xl, or until neither xl nor pl like the nl, in which

case the current xl is stacked, and the nl becomes xl, as before.

Since the beginning as well as the end of a segment are of importance

here, the Efficiency Algorithm applies and says that rather than searching

for the beginning of a segment, a pointer from the head of the segment to

the tail should be established so that the segment is made into a loop. We

call this operation "wrapping up the segment" so that the things which are

stacked are actually wrapped segments. The unstacking operation is then

followed by unwrapping the segment and establishing a pointer to the beginning

of the segment.

43

C. Example

The Plike Algorithm is shown in Figure 11, but the way in which a string

is re-ordered on the basis of plikes is best illustrated by a simple example.

t r ARead/Where

I yIJ

A rl(x) plike n(?2) rl(pl)plike nl? y

yes no

Asumno rl (pl) pe m od Help

yes f te yes
no /rl(xl) plike pl ok.)e rl (p]) plike xI ?)

noq

In] (x) lstat -l(xl) -6 rl I(pl) - z

Pl .. P11xl nl - rl (pl)

Sltart z -(3nlyl--- lI nl startsl (pl) -- pl

Fig. 11 The Plike Algorithm

Consider an input string of operators from the major precedence setting of

the Precedence Algorithm.

A B C D E (2)

Assume that A plikes B. Then the major precedence component A is set to

point B and A.B is an established segment of the precedence string.

Start --- wA -- B (3)

When C is read in, if B does not plike C, then we set the segment ending at

B aside on the stack. To do this we "wrap up" the segment by setting the

major precedence component of B to point to A temporarily, and set aside the

44

wrapped-up segment on the stack. C then is made the beginning of a new

current segment. When D is read in the configuration is as follows:

Start ZZB C-D (4)

Now B and C fight over D on the basis of plikes, since either B or C could

precede D. Assume that C wins the fight on the basis of the Plike Matrix,

then when E is read in the situation is as follows:

Start A-_B C--D E (5)

Then B fights Dover E. Assume that in this case B wins, and is taken off

the stack and unwrapped to show that A B E is an established segment of the

precedence string now.

Start A_____ -- D E (6)

Then the empty stack fights D over the beginning of the segment, which is

now A. Since empty cannot win, if D plikes A, we have the final precedence

string, re-ordered on the basis of plikes, as follows:

Start A -B C-D E (7)

The important thing to notice about this example is that the start of

the segment can not absolutely be determined until the entire segment is

complete. Notice how the start pointer moves from A to C when the segment

AB is stacked. If the segment had been longer and the fights were resolved

differently, it would be perfectly possible for the start of the segment to

switch back to A, or even switch to some other word farther down the string.

This fact has important consequences with respect to the use of the Plike

Algorithm for major and minor precedence segments.

45

D. Decoupling

A precedence ring begins with a minor segment, consisting of at least

the minor precedence component of normal precedence, but which may have

any number of modifier minor precedences. With the occurrence of an atom-

atom the major precedence segment, consisting of any number of major

precedence components, begins, and the ring closes when the end of a major

precedence component coincides with the beginning of the initial minor

precedence component. Thus a precedence ring has a beginning, an atom-

atom in the middle, and an end. The minor and major segments of the

precedence ring may be reordered independently on the basis of plikes, and

at any time in the major segment, the occurrence of a minor precedence

component may initiate another precedence ring.

Whenever a new precedence ring is initiated, a new start pointer

becomes active and is trying to be set. As the preceding section shows, the

start of a precedence segment can not be set until the segment is complete,

and since the old precedence ring was interrupted by the initiation of the new

precedence ring, its start is also still active. Therefore, the Stacking

Principle applies and says that since there are two active start components,

the "element" containing the older start component must be set aside on a

stack. We call this "decoupling" the precedence rings.

The element which must be stacked is the entire precedence ring itself,

and consists of the "state variable" pointers of the Plike Algorithm, namely

nl, xl, pl, and start. The current settings of these state variables must be

saved or wrapped up in a suitable manner on the stack, so that when the new

precedence ring is completed, the generation of the old may continue. We do

this wrapping and stacking operation not by constructing an actual n-component

element for the ring itself, but by taking the more efficient constructive

46

approach of using the components of the existing first-pass beads to perform

the stacking function. Figure 12 shows the situation schematically.

Stack 1 stack 3

lI(x2) r](pl) Major 11(xl) I I(p3) Minor x2
x2 1$ - 1 3 J L atom-atom

p1

sl(p 2) xl

stack 2 s2 (p2)

Old Ring - p2 , New Ring

Fig. 12 Schematic of Precedence when Atom-Atom Occurs

Figure 12 shows the interrupted major segment of the old ring

including the top-most wrapped-up segment on the pl stack, and the current

major segment whose start is indicated by the minor precedence component

of x2, which is the last element in its minor segment. The figure also

indicates the minor segment of the new ring, including the top-most wrapped-

up segment on its stack, the p3 stack, and the current minor segment whose

start is indicated by the minor precedence component of the last element, xl,

in the major segment of the old ring. In nl is the atom-atom element which

signifies unequivocally that a new ring is being generated. Notice that since

the minor segment of the new ring might consist only of the single minor

precedence component of normal precedence, which is triggered by the

occurrence of atom-atom itself, the use of the occurrence of atom-atom is

required to indicate all rings whether or not they contain modifiers.

E. Minor Modifiers

When modifiers were introduced it was pointed out that our initial

remarks would refer to only minor modifiers, and at this time we can now be

47

explicit about the adjective "minor". A minor modifier is one which enters

into the competition in the minor segment of a precedence ring, but if it is

unsuccessful in the fights and ends up on the p3 stack, then once the minor

segment is terminated by the occurrence of atom-atom, the stacked minor

modifier is discarded and not considered further. In other words the minor

evaluation function of a minor modifier is taken into account only if it is

used in suitable context -- the occurrence of a suitable context being indicated

by the fact that the words with which it is associated plike properly so that it

becomes incorporated into an active minor precedence segment. If the con-

text of the minor modifier word consists of words which do not plike to be

connected to it, then once the minor segment is terminated by the occurrence

of atom-atom, the minor evaluation function of the modifier is ignored

completely and never carried out, and only the major evaluation function for

that modifier word will be carried out when it is reached on the major pre-

cedence segment. As we shall see in the next section, majo modifiers do not

suffer from this drastic treatment.

With the role of minor modifiers clarified, we now may proceed to

the consideration of the stacking of the old precedence ring when the new ring

is triggered by the occurrence of atom-atom. As shown in Figure 12, the

"state variable" pointers pl, xl, and nl are saved in sl(p2), pl, xl respectively.

The previous ring is stacked in s2(pZ), and the current old ring which is on

the top of stack 2 is pointed to by p2. These operations are shown in the

first three lines of the Atom-Atom portion of Figure 13. The fourth line

shows in addition that the start of the major segment of the new ring is set

into the minor precedence component of yl, and the reason is made clear

by consideration of Figure 12. Recall that the minor segment of the new ring

may not exist, in which case the start of the major segment of the new ring

would come from xl of the old ring rather than x2 of the new ring. As will

48

be seen when we finally collect all of the sub-algorithms which we are now

describing into one merged algorithm, yl will have the value of either the

old xl or the new x2, so that it alone indicates the universally correct element

whose minor precedence component can be used as the start pointer for the

major precedence segment of the new ring.

Pl- sl(xl) ---- yx =x? p x] 2? p ? Help'
p2 -s2(xl)
Xl - pl p2

nl -ilYI) - A [nl -lI(x)--y] -x21s(2-p

Atom-Atom Modifier End of Ring

Fig. 13 Precedence Controls for Minor Modifiers Only

The Modifier portion of Figure 13 shows in flow diagram language

the initiation of the minor segment of the new ring. Whenever a modifier is

detected (see Figure 9) the question "yl = xl ?" tells whether or not this is

the first minor modifier in the minor segment. Because the same pointer,

yl, is used in both instances of the Plike Algorithm as applied to both the

major and minor precedence segments, if yl is equal to xl (the current end

of the major precedence segment) then that means that the immediately

preceding element had its major precedence component set, so that the

current element is the first modifier to occur in the new ring. As Figure 13

shows, in this case the new element nl is set to be the start of the minor

segment, indicated by 1l(xl), and also the current end of the minor segment,

indicated by x2, and yl is brought up to date.

49

Our consideration of the precedence controls for ring stacking

finishes by the consideration of the End of Ring portion of Figure 13. The

closure of a precedence ring is indicated by the fact that the end of the

current major precedence segment coincides with the beginning of the ring.

Consideration of Figure 12 shows that the beginning of the ring has been

saved in p2 when the ring was detected by the occurrence of atom-atom, so

that the question "p2 = xl ?" indicates ring closure. As Figure 13 shows

we then check to see whether anything is left on the pl stack, which contains

the wrapped-up unsuccessful major precedence segments. If p2 is not equal

to pl, then there are indeed segments on the stack, and the algorithm then

calls for help because this indicates that a meaningless statement has occurred.

In other words, the checking of plikes in the competition in the major pre-

cedence segment shows whether or not the words which are used in a statement

go together meaningfully. It is perfectly possible for a statement to be

parsed correctly and still be meaningless. This is what is detected at this

point in the algorithm.

If on the other hand, p2 is equal to pl, indicating that there are no

dregs left on the pl stack, then the processing of the old ring is enabled by

destacking pl and p2 so that processing can continue. Note that at this point

xl already has the proper value, and the third state variable, nl, will be

set by the next operation of the Parsing Algorithm. Recall also that since

we are at present considering only minor modifiers, the p3 stack has no role

whatsoever in the end of ring operations.

F. Major Modifiers

At this point in the discussion, if space were not at a premium, we

would take time out to merge the algorithms of Figures 8, 9, 11 and 13, and

present some discussion of the newly defined class of languages covered by

that algorithm. Instead, with due apologies to the reader for the confusion

50

which may result, we now press on to the consideration of major modifiers

before the final merger of all algorithms necessary for the complete treat-

ment of that portion of semantics which is covered by precedence and plikes.

Recall that a minor modifier was discarded if it was unsuccessful in the

competition during the construction of the minor segment of a precedence ring.

Major modifiers exhibit more stamina and stay on to fight future battles, as

we now discuss.

If a major modifier is frustrated in its attempt to find a suitable

semantic context during the generation of the minor precedence segment, so

that it ends up on the p3 stack, it then seeks to find a suitable context in any

plike fight in the future, whether it is based on either major or minor

precedence components, and this aggressive behavior continues through all

nestings of precedence rings within precedence rings until finally the major

segment generation returns to the modifier. Only when this closure takes

place does the activity of the major modifier cease, and if it has been un-

successful through all battles up to that point, it is summarily discarded just

as ignominiously as a minor modifier, so that only its major evaluation has

any semantic effect.

As usual, the behavior of major modifier word elements is the result

of algorithms which refer to their components. In this case it is necessary

merely to provide a mechanism for the p3 stack to be carried along instead

of being discarded as in the case where we were concerned only with minor

modifiers. We do this by splicing the p3 stack onto the head of a new stack,

the p4 stack, whenever atom-atom occurs. We must use a new stack since

the major modifiers onthe p4 stack are to join in both major and minor

precedence fights, and a minor fight will generate its own local p3 stack.

The p4 stack then will be a single stack which results from the concatanation

of all leftover p3 stacks. Figure 14 shows how this is accomplished.

51

(s3(p2) = p3?" yes2 p4- p3- s(xl l

p4 s3 (p2) p3 I n

j Js3(p2)=p4? es2

- p4 -0 (s3(p!

s3(xl) Sp3 - p4 -- 3xl

Schematic Atom-Atom

Fig. 14 Precedence Controls for Major Modifiers

The component s 3 (p2) shows the beginning .of the current p3 stack, so that

if s3(p2) is not equal to p3, then the current p3 stack contains wrapped-up

unsuccessful minor segments which are to be transferred to the p4 stack.

Since s3(p2) also indicates the head of the p4 stack at the previous atom-atom,

if s3(pZ) is not equal to p4, then that means that some unknown number of

modifiers have been destacked fTom p 4 so that in order to add the segments

on the current p3 stack to p4 it is necessary to make the s3 component 1

s3(pZ) point to the present p4. With this accomplished, the p4 and p3 stacks

now constitute a single stack connected by s3 components, so that the p4

pointer may now be moved to the head of the new p3 stack to make the new

setting of p4. The new p4 is also placed in s3(xl), since the next step is

to make xl become the new p2, and thus this properly sets the new s3(pZ) to

coincide with the new p3 and p4. This completes the description of the atom-

atom situation when there is something on the p3 stack.

In the other case, when the p3 stack is empty, as is indicated by the

fact that s 3 (p2) does equal p3, then it is necessary merely to set both p3

and s3(xl) to be the same as the current p4, since if p4 has not changed no

harm is done, whereas if p4 has changed, this will provide the proper updating.

52

Thus in either case, when atom-atom is encountered, anything on the p3

stack is added to the head of the p4 stack, so that any major modifiers are

saved for future battles.

For the completion of the major modifier discussion we turn to

Figure 15, which is the result of merging the algorithms of Figures 8, 9, 11,

13, and 14, with some additional small changes relating to major modifiers

and minor segments. Examination of Figure 15 shows that the major and

minor precedence settings of Figure 8 for normal precedence have been

blown up to include a complete Plike Algorithm in each case. Detectors to

test whether the pl and p3 stacks are in use have also been added, so that

the elaborate fight is omitted when the stacks are not in use. In each case,

between the box which transfers nl to yl and the test for the status of the

stack in question, a small algorithm consisting of several questions- and boxes

has been added. Those on the right-hand side, in the minor precedence

portion, consist of a test to see whether or not the p4 stack is in use, and if

it is, then if the element currently on the head of the stack is not a major

modifier, it is destacked, whereas if it is a major modifier, then if it plikes

nl it immediately wins nl and is destacked. This shows how the major

modifiers on the p4 stack obtain highest priority in the plike fight as they

should.

The similar section for major modifiers on the left of Figure 15

contains a question and a box concerned with x2, and also one additional

question, following "INIF = p4?", asking whether nl is equal to p 4 , when p4

is a major modifier. If nl does equal p4, then this indicates that the major

precedence segment has reached the still unsuccessful major modifier, and

it is at this time that it is summarily discarded by being destacked from p4.

Otherwise the treatment of the major modifiers on the p4 stack is the same

for the major precedence segment as for the minor, i. e. , major modifiers

have top priority.

53

o - x

~~
C,C4 -- IC >-Ca.

M0 0' q -c I U- -0 4 c
IC -0 .

0.
0,

0'~

N u1
4'i 0

0.-4 x
C4C

C, -X

0 R

9 c - 0 att tE

C I C

-. 0-0 Xt0-

x C CL- v

C -S0 . C2 (1

54

The only further addition to Figure 1 5 related to major modifiers

concerns the place where the closure of a precedence ring is detected and the

pl and p2 stacks are re-established. One line has been addedto update p3

and s3(p2) to coincide with the current value of p4 so that the p3 and p4 stacks

are also kept up to date when precedence rings are completed.

G. Broken Minor Segments

The changes concerning the minor segment are somewhat more

subtle. Up to this point we have described the precedence ring as having any

number of minor components, an atom-atom, and then any number of major

components. This mode of description provides proper motivation for plikes

in the minor segment, but actually is correct only during the growing phase

of the construction of precedence rings. Examination of Figure 10 shows that

a precedence ring with many components in its minor segment can equally well

be considered to be several trivial rings linked together. Each time a major

component reaches a modifier with a minor component, another ring is

closed off and serves the same role as an atom-atom for the next higher ring.

When a ring is closed off, it makes a complete unit, and since it

serves as the atom-atom for the next higher ring, initiating the major segment,

if there is any plike reordering, it may be pl stacked like an atom-atom

whenever a new start is called for. In other words, happenings in the con-

struction of the major segment may cause the minor segment to be broken up

and distributed along the major segment as separate sub-rings. In order for

this to happen, whenever a ring is closed off, the minor component pointing

to it must become the new start pointer for the major segment.

Several small changes have been made in the minor version of the

Plike Algorithm of Figure 15 to enable the changing of start as successive

rings close off. Whenever a minor precedence component, 11, is set, the

corresponding major component, rl, is set in the opposite direction, so that

55

in effect the minor segment as originally laid down is made of two-way

pointers. Then, in the major version of the Plike Algorithm of Figure 15,

the question "yl = x2?" detects when a ring closes, and if it does, the

component rl(x2) provides the new setting for x2, whose minor component,

1l(xZ), then serves as the new start.

With major modifiers and broken minor segments, we see that the

final precedence string consists of any combination of minor and major

precedence components, the precise sequence being determined entirely

by plikes. The Precedence String Follower Algorithm will always take the

minor component if there is one, unless it arrived at the word from its rvar,

in which case it takes the major component. The "p2 = pl ?" check that the

pl stack is always emptied guarantees that any word with non-atomic rvar

will be so entered.

H. Preliminary Conclusion

Even a cursory examination of Figure 15 shows that the algorithm

has now grown to be extremely complex -- a consequence of the rather

elaborage behavioral properties of the class of languages which it defines.

Were it not for the fact that it has been deriged step-by-step by merging

simple algorithms, it would be virtually impossible to give a coherent des-

cription of its operation. In view of this complexity it is no longer legitimate

to leave the proving of facts about the algorithm as exercises for the reader,

but since the present paper is already so long, we defer detailed discussion

of the algorithm to a future paper, and instead close with a few general remarks

and indications of future developments.

A major deterent to delving deeply into the machinations of the

algorithm of Figure 15 at this time is the fact that there are no simple

languages known which exercise all of its features. In the Appendix is presented

56

a brief description of the Algol 60 Language showing the Like Matrices and

types, but even that language contains only the most trivial examples of the

features which have been discussed. Although an exhaustive examination has

not been made, it appears that all other existing programming languages are

even simpler (from the point of view of this theory) than Algol 60, but this

does not mean that the class of languages defined by the algorithm of Figure 15

is empty. All of the features of the algorithm can be found in suitable

selections from natural language, but since well-defined sub-segments of

natural language (i. e. , English) have not already been defined, elaborate

discussions at this time would be out of place.

The very thing that makes natural English too variable to provide a

good discussing medium at this time does show explicitly in the present

algorithm and will be the subject of the next paper in this series. There

are five places in the algorithm of Figure 15 which say help -- one for syn-

tactic ambiguity, two for semantic ambiguity, and one each for ungrammaticalness

and meaninglessness. The general principles which have been applied in

deriving the present algorithms can also be applied to the derivation of further,

still more elaborate algorithms which will tie onto these places so that apparent

syntactic and semantic ambiguities are resolved temporarily in a manner which

satisfies well-defined minimization properties, and then if on the basis of

those resolutions the algorithm runs into ungrammatical or meaninglessness

difficulties, then alternate choices of the ambiguous portions are constructed.

In the more elaborate algorithms which resolve ambiguities, the algorithm

will call for help only when all possibilities arising from all ambiguous

situations have been determined unsatisfactory.

Major portions of this extension of the theory have already been derived

and await only formal presentation. Once the algorithm has reached that stage,

then it will accommodate quite easily a sizeable portion of natural English,

57

and at the time deeper discussion of the implications of the theory can be

made in a natural setting.

APPENDIX: ALGOL 60 as an Example

We show the Algorithmic Theory of Language in action by considering

the Algol 60 Language exactly as it is defined in the definitive report of

Naur, et al, (12) with the following trivial exceptions:

1. Identifiers, strings, number forms, etc. are assumed handled

by the preprocessor and the Read/Where Routine.

2. Square brackets are omitted since parentheses suffice.

3. Since the word procedure is used in two distinct ways:

(a) the alternate form

"define (x) ... where ... to be ...

is used for

"(y) procedure .

where x is real, boolean, integer, procedure

and y is real, boolean, integer, empty

(b) the word procedure is used only as a declarator.

4. Since : is used in three distinct ways:

(a) the form

"array (A to B)" is used for "array [A : B]"

(b) the form

L:(... ' is omitted for the moment.

(c) the character : always signifies labelling.

5. Since "if ... then ... ; ... 1" seems only to add confusion

and inconsistency, else must always be used.

59

60

Figure Al shows the datatype and datalike information for the full

vocabulary. The types dr and di take on the value of whatever is actually

parsed into the rvar and Ivar, respectively. The modifier column shows a

fringe cut treatment of context dependency in that the occurrence of a for

causes := to be a major modifier. We use the notation for (:=) to indicate

in the context of for.

Whenever the undefined type, x, appears, then the Left or Right

Wordlike Matrices, shown in Figures AZ and A3, must be checked. A one

in the intersection of row i with column i shows that word i does like word*

in its lvar or rvar; a zero indicates i does not like j; and a blank shows a

don't care case which cannot arise.

A highly useful adjunct to the basic algorithms of the Theory is the

algorithm of Figure A4, which is used to set the proper entries into the Word-

like Matrices. Consideration of the Like and Fight Algorithms, (Figs. 3.and 4),

allows Figure A4 to be derived to separate out those word-pairs which are not

uniquely determined by the type specifications (e. g., Figure Al, for Algol 60),

and which may whimsically be selected by the human. With this algorithm

it is an easy matter to set up a selected language according to the theory.

Even though the datatypes and datalikes of Figure Al have purposely

been restricted over what would seem most natural, in order to correspond

as closely as possible to the official Algol 60 Report, it is interesting to

note that certain generalizations (which actually correspond to minor incon-

sistencies in the official description) result from application of the theory.

One example will suffice to illustrate the point: In order to permit

"A := B := C := . . . ", the := includes the datatype dr, but once this is done,

then expressions such as "A := B + C := D * E", which are excluded from

the Official Report, are both grammatical and meaningful. They could only

be excluded by artificial means. A later paper will give full natural datatypes

61

WodData Data like MdfeWord Type Lef t Right Mdfe

unary +- R E R

+-- R RyE R

R R R

R R R

><B R R

B E B

A B B B

V B B B

D B B B KEY:.
B B B X undefined

Svdr AA(RvBvW) dlI M if for R real or integer

if - B boolean

then dr X SvRvBvL A undeclared atom

else dr SvRvBvL dl L label

go to S E L S statement

for X E X r m-M(:=) E empty

step X R R m Wsic

until I xX R m minor modifier

while X R B m M major modifier

do S X SvE dr dynamic right

begin X E SvDvE mdlynmcef

end S X X

(dr X X
dl x E

S A SvE m
to X R R

boa, real, int D E X m

procedure D E X m

array D E X m

switch D E X m

own D E X m
value D E X m

label D E X m
define X E X m

where X X X

to be S X SvE

dr SvDvE SvDvE

x x x
comment X E x

A-1 Datatypes and Datolikes for ALGOL 60

62

I0 00 0 000 00- 010

0 00 -O0 -
0

-1-10 0
0~00 0 0-0 0 00 001000 - 0

-~ -0 00 00000000 00
0 0- 00-00000 -00

_IA 0 00 0 0 0 0 T0 0 0 - 00
qTAS0 -0101 00000000- 00

0- 0 00 ---- 000000 10101

0 .00 00000 -
00 00 0 000000 - 1 00 *

0uoo~w 0 00 0000000 1010
0- 40- 0 0 0 0010010100 0

0- 00 00 0 0 0 0 0
0-0-0- 00 00 0 00
1~ 0 0 00000000 -0

10 00 000000001 00

-!"10 1 00 000000 00

OP 0 0 00 00000000 0

O 0 0-1 000000001 00
00 0- 00000000 1-0

dais 00 0 oooo 0o 000000000 00 7!
OjOOO0OOO 00O020O00 000000000 00 0

$u~aooqo0000 0000000 00,0000.00 00 0
-C

00 0 000 0 1 o00 0100000000 00 .

pu0000000000000000 00 0000000~0 00

-'.0 0 00000-RRR 0 0 0- 00000000000 -

op 00 0 00000 0 0-0 000000000 00

aI 00I 0000000- - 000 000 0 00

000000- 0 0-00 0 0000 00 5

63

St
Start e

esno n done?

next n

yes eo

tt))t(r(p)) x?,)2

no uman ecio

A-4 ;v TeUk Mar SetngAgoi

64

and matrices for the existing Algol 60 vocabulary to show what a complete

and natural language formed from those words should be.

Slight modifications of the Matrix Setting Algorithm can be made to

check for inconsistencies in the human responses or to permit ambiguous

languages to be defined. The version of Figure A4 accepts the most recent

human decision unquestioningly, and also guarantees that the help which

detects ambiguities in the Parsing Algorithm will never be reached.

For Algol 60 we handle the entire question of precedence types

and plikes in a cavalier fashion with the following fringe cut, in order to

save space. The plike question here is so trivial that Plike Matrices and

elaborate discussion of precedence types seem out of place. Using the

notation A(B) to show B in the A context we have:

Il(:=) plikes only until, while, for (,)

rl(step) plikes only for (,),

rl(until) plikes only step

rl(while) plikes only for (,), for (:)

In Algol 60, everything else plikes everything else.

Finally, Figure A5 shows a non-trivial (but nonsensical) grammatical

Algol 60 program in input string and first-pass structure form as generated

by the algorithm of Figure 15.

65

Start FINI b!!f egine re al f(x,y)
nr, , where realI x, y; intege n, k;bool a, b

40, **- to be bei re2al array A(1 to 20);

be ~~~for n:=2stpf aA b then k lso+)untl 2,
2*k while b,

7 237
/ N do A(n): = (y*.I(A(n-.1)))t x;

defie IN indf: = A(n);
Iend end f FI

'-real

a b

fl

2lo 23>7N ~

-0 b

4K \ -- Cn(I

A- AtxaeIn ALOI6nanug

BIBLIOGRAPHY

1. Gorn, S., Reports on the Common Programming Language Task,
The Moore School of Electrical Engineering, University of
Pennsylvania, 1960.

2. Oettinger, A. G., Automatic Syntactic Analysis and the Pushdown Store,
Proc. Symposia in Applied Mathematics, AMS, 1961,
pp 104-128.

3. Ross, D. T., A Generalized Technique for Symbol Manipulation and
Numerical Calculation, Comm. ACM, Vol. 4, No. 3.,
March 1961, pp 147-150.

4. Samelson, K. and Bauer, F. L., Sequential Formula Translation,
Comm. ACM, Vol. 3, No. 2, February 1960, pp 76-83.

5. Sherry, M. E., Syntactic Analysis in Automatic Translation, Ph. D.
Thesis, Harvard University, January 1961, 346 pp.

6. Rhodes, I. , The NBS Method of Syntactic Integration, Proc. National
Symposium on Machine Translation, Los Angeles, February 1960.

7. Markov, A. A., Theory of Algorithms, Academy of Sciences, USSR,
1954. (Trans. by Jacques J. Schorr-Kon, et al, Offices of
Technical Services, Washington), 444 pp.

8. Huskey, H. D. and Wattenburg, W. H., A Basic Compiler for
Arithmetic Expressions, Comm. ACM, Vol. 4, No. 1,
January 1961, pp 3-9.

9. Floyd, R. W. , On Syntactic Analysis and Operator Precedence,
CA-62-2, Computer Associates, Inc. , August 1962, 31 pp.

10. Irons, E. T., A Syntax Directed Compiler for ALGOL 60, Comm. ACM,
Vol. 4, No. 1, January 1961, pp. 51-55.

11. Chomsky, N., On the Notion "Rule of Grammar", Proc. Symposia in
Applied Mathematics, AMS, 1960, pp 6-24.

12. Naur, P. (Ed.), Report on the Algorithmic Language ALGOL 60,
Comm. ACM, Vol. 3, No. 5, May 1960, pp 299-314.

13. Yngve, V. H. , The Depth Hypothesis, Proc. Symposia in Applied
Mathematics, AMS, 1960, pp 130-138.

14. Warshall, S., A Syntax Directed Generator, Proc. 1961 EJCC, AFIPS
Vol. 20, December 1961, pp 295-305.

15. Ceccato, S. , et al, Entire Issue, Methodos, Vol. 12, Nos. 45, 46, 47,
1960.

67

68

BIBLIOGRAPHY (Continued)

16. Symposium on the Structure of Language and its Mathematical Aspects

Entire Issue, AMS, 1961.

17. Comm. ACM, Vol. 4, No. 3, 1961, Entire Issue.

18. Proc. of National Symposium on Machine Translation, Los Angeles,
1960.

INITIAL DISTRIBUTION LIST FOR
CNTRACT AF-33(600)-42859

DSR 8753 2/63

Aero Morwfacturing Corporation AVCO Cororation

Engineering Deprten Atn: Dr. Hans Klein

GOVERNMENT AND MILITARY Mideon hoChief, Gas Turbine
Middltov~n OhioCompu~ting Drtnt

Stratford, Connecticut

Air Force Moin. Prod. Equipment Aeronutronic Battelle Memorial Institute

Attn: Mr. Robert W. PMi lips Division Ford Motor Company 505 King Avenue

Redistribution Group Ubrary Atan: Mr. Charles E. Day

Roam 2D823 Pentagon Ford Roo eprt Ulrory

Washington 25, D.C. Newport Beach, California Cot= I, Ohio

AMC Ballistic Missiies Center Aerospace iodustries Association Beech Aircraft Company

Attn: LBPR (Mr. F. Docker) Attn: Library Ais RL H. Owen

Air Force Unit Poet Office 1725 DeSales Street, NW Mgr. Manufacturing Engineering

Uas Angeles 45, California Washington 6, D.C. Wichito, Kansas

Array Materiel Conmrand Board Aerospace Industries Association Bell Aircraft Corporation

Attnr Col. D. MacFeetem Technical Service Library Aimsr .. C. Millikin

Aberdeen Proving Grounds Attn: J.A. Maurice Manager Production Engineering

Maryland 7660 Beverly Boulevard internal Zone C-53
Las Angeles, California Buffalo 5, New York

ASTIA (10) Airborne Instruments Laborator Bendi Cosporation

Arlington Hall Station Attn: Miss Nancy Pannier Altar Central Library

Arlington 12, Virginia walt Whitman Road Department 75
Melville, LI., NewYork BOX 1159

Kansas City 41, Missouri

Comnmaoder Allison Division GMC The Benlox Corporation

Aeronautical Systenm Division Atar: Engineering Library, Plant B Industrial Controls Section

Attn: Mr. W.M. Webeter ASRCTF P.O. Baox 894 Atn: Technical Library

Wright-Patterson Air Force Base ninapolis 6, Indiana 21820 WyoIng

Ohio (2 aod letter) Detroit 37,Michigan

Commnander Aluminum Company of America The Badix Corporation

U.S.N.O.T.S. Atmn: D.I. Aikira, Project Engineer Afn: Mr. G.S. Knopf
Pasadena Annex 2210 Harvard Aven"ue20Womn

AttMt ..H. Jlennison Cleveland 5, Ohio Detrit17 , Mchigan
3202 E. Foothill Boulevard
Pasadena, Callfornia

Comnanding Officer Aemerican Machine aod Founadry The Bensdlo Corporation

ordnance Materials Res. Office Reeporch and Development Division Alrter Reports Library

Watertown Arsenal Altn: Librasy Research Laboratories Divisian

Attn: N.L Road, Amer. Director 689 Hope Street Southfield, Michigan
Watertown 72, Massachusetts Stamford, Connecticut

Director A.0. Smith Corporation BMetn Airplane Company

Naval Research Laboratories Altn: Technical Uibrary TechisiniclUrra

Atn: Code 2021 P.O. Bsox 584AtnTehiaLbrin
Washington 25, D.C. Milwaukee 1, Wisconsin Morton, Pennsylvania

U.S. Atomtic Energy Comsslion Armousr Research Foundation The Boeing Company
Tecnicl ifoneton ervceAltn: Dr. S. Hort MASD-WIchita Branch

Techica Inormtio SeviceSon Rseach ngieerAtter 7100-Ubrasy-11
P.O. ban 62 Seio W esearcth Enieer 3801 Sooth Oliver

Oa igTChicago 16, Illinois Wichita, Kansas

Arthur D. Uittle, Incorporated Basing Airplane Campany
Artn: Miss Dorathy E. Hart Aims H.E. Laughlin
Uibrary (I. to David N. Smith) Isn. 2-3930 M.S. 45-33
Acorn Park P.O. Boa 3985

INDUSTRIAL AND UNIVERSITY Cambridge 40, Massachusetts Seatle 24, Washington

Aerolet-Geaneral Corporation Amutonotics The Ben opn

Ater: Myra Gamiler, Librarian Division of North Amnerican Aviation, Inc. Alan: 'G.M. Fai1r, &wg. 2-3010

1100W. Nalyvale 9150 E. Imrperial Highway,3041-i3, BlIdg. 60 Nsumerical Control Repreentative

A..s., Callfomia Altn- E.L. Panek, Technical Library P.O. B.a 3707 M.S. 12-61
Downey, California Seattle 24, Washington

Aeralet-General Corporatian AVCO CoroaIon The Boeing Company
Atnr Technical Library 2410-.2015A LYCasnIng Division Alins E.F. Cesrhesg

P.O. Box 1947 Atar H. Meeshi ovg..2-5321

Sscraonta 9, California Supe1ntd entk Manufecturing Engineering l4~iedMothMALL 59-Si

Straefttl, Ca, ecttorsi

Solt Beranek and Newman Incorporated Curtiss-Wright Corporation General Motors Research Labe
Attnt Library Wright Aeronautical Division Data Procesing Department

50 Moulton Street Attn: H. H. Downs Attns Librarian
Cambridge 38, Mausachusetts Engineering Library 12 Mile and Mound Roads

Wood-Ridge, New Jersey Warren, Michigan

Burroughs Corporation Douglas Aircraft Company, Incorporated Gidding and Lewis Machine Tool Company
Electro-Data M. and E. Division Aircraft Division Attn: Mr. H. E. Ankeney
Attn: Library Attn: Technical Library Fond Du Lac, Wisconsin
460 Sierra Madre Villa 3855 Lakewood Boulevard
Pasadena, California Long Beach, California

Carnegie Institute of Technology Douglas Aircraft Company, Incorporated Goodyear

Attni Professor Allen Newell Atn, N.H. Shappell, Manager Mfg. Eng. Z o. and Planning
System and Communications Sciences Missiles and Space Division Attn: Librarian
Schenley Park Santa Monca, California 1210 Massillon Rood
Pittsburgh 13, Pennsylvania Akron 15, Ohio

Carnegie Institute of Technology Douglas Aircraft Company, Incorporated Grumman Aircraft Eng. Corporation
Attn: Technical Library Mi.le and Space System Library Engineering Library, Plant 5
Schenley Park Dept. A2-260 Bthpage, L.I., Now York
Pittsburgh 13, Pennsylvania Santa Monica, California

CEIR Incorporated Ex-Cel1-O Corporation Grumman Aircraft Engineering Corporation
Attn: R. L. Trexler Attn: John F. Garon AtItn G. D. Fogel
621 Farmington Avenue Numera-Trol Sales Automatic Computing Group
Hartford, Connecticut P.O. Box 386 Plant 5

Detroit 32, Michigan Bethpage, L. I., New York

CEIR Incorporated Farrand Optical Company, Incorporated Grumman Aircraft Engineering Corporation
Attn: Library Attn: Library Attn: Angelo Galgano
1200 Jefferson-Devis Highway 4401 kronx Boulevard Manufacturing Engineering, Plant 3
Arlington 2, Virginia New York 70, New York Bethpage, New York

Cmsna Aircraft Company Fenranti Electric incorporated Hiller Aircraft Corporation
5800 East Pewnee Attn: Mr. R.H. Davies Engineering and Research Library
Attn: Engineering Library Plainview, L.I., New York 1350 Willow Road
Wichita, Kansas Palo Alto, California

Chance Vought Library Ford Motor Company Hughes Aircraft Company
Unit 1-63101 Attn: L. Ording, Mgr. Mfg. Plant P.O. Box 11337, Emery Park Station
Rt.-Campbell, Schuyler, Schwind Eng. Dept. Trans. and Chassis Division Attn: Plant Library, Bldg. 1
P.O. Box 5907 36200 Plymouth Road Tucson, Arizona
Dallas 22, Texas Livonia, Michigan

Cincinnati Milling Machine Company Franklin Institute Hughes Tool Company
Attn: Mrs. Hamilton Attn: Miss Marian Johnson Attn: William W. Lanpkin
Engineering Library Technical Report Library V.P. Mfg. Aircraft Division
Oakley Cincinnati 9, Ohio 20th and Parkway Florence Avenue and Tsole Street

Philadelphia 3, Pennsylvania Culver City, California

Cincinnati Milling Machine Company General Dynamics-Astronautics Hydo-Mill Company
Attn: Dr. Eugene Merchant Digital Computing Laboratory Attn, Mr. Harry Emrich V.P.
4701 Marburg Avenue Attn: H. W. Buckner 1707 Cloverfleld Boulevard
Cincinnati 9, Ohio Mail Zone 101-70 Santa Monica, California

P.O. Box 1128
San Diego 12, California

Cleveland Pneumatic Tool Company General Dynamics -Fort Worth Division IBM
Attn: Engineering Library Attn: B. J. McWhorter Attn: S. Matso
3761 E. 77th Street Dept. 6, Box 011 Math and Applications Dept.
Cleveland 5, Ohio Aeraysterm Computation Laboratory 1271 Avenue of Americas

P.O. Box 748 New York 20, New York
Fart Worth, Texas

Concord Control incorporated General Electric Company IBM Liaison Office
Attnt Mr. J.O. McDonough, Pres. Manager-Advanced Manufacturing Eng. Room 26-147
Boston 35, Massachusetts LJED-Manufacturing Op., Mail Code E-122 77 Massachusetts Avenue

Building 700, Evendale Plant Cambridge 39, Massachusetts
Cincinnati 15, Ohio

Continental Aviation and Engineering Corp. General Electric Company IBM Data Processing Division
Attn: Technical Library Attn: W. W. Spencer, Manager Attn: Mr. F. E. Chopplesr
12700 Kercheval Avenue Process Control Engineering P.O. Box 4014
Detroit 15, Michigan 570 Lexington Avenue Beverly Hills, California

New York 22, New York

Control Engineering General Electric Company Itek Corporation
At2n: nd tret Specialty Control Department Attn, Mr. Norman H. Taylor, V.P.
330 West 42nd Street Lia t.-Manoger-Prgram Control Sole) 10 Maguire Rood
New York 36, New York Waynesboro, Virginia Lexington 73, Massachusetts

Convair Plant I General Machine Company Jones and Lameon Machine Company
Division of General Dynamics Corporation Attn: Thomas Hebei n Anns N. R. Heald, Mpr. Development
Atm: Mr. M.D. Welsinger Technical Library Springfield, Vermont
Chief of Applied Mfg. Re. and Product Den. 3628 West Pierce Streer
Pacific Higway Milwaukee 15, Wiscosin
Son Diego 12, Collfomla

Kaiser Aircraft Electric Corporation North American Aviation, Incorparated Sanders Associates, Incorporated
Attn: J.B. Olson Attn: Technical Library Attn: Technical Library
Chief Engineer International Airport 95 Canal Street
P.O. Box 11275 Station A Los Angole 9, California Nashua, Now Hampshire
Palo Alto, California

Keorney and Trecker Corporation North American Aviation, Incorporatedion
Attn: Engineering Technical Library Atn: Whitson C. Walter D/187-030 Livermore Laboratory11000 Theodore Tracker Way International Airport Atn: Technical Lirary
Milwaukee 14, Wisconsin Los Angele 9, California P.O. Box 969

Livermore, California

KPT Manufacturing Company North American Aviation, Incor ated The Service Bureau Corporation
Engineering Library Attn: 0. Dole Smith, D/187-0 Technical Library
Locust Avenue International Airport 635 Mdison Avon"
Roseland, New Jersey Las Angela 9, California New York 22, New York

Ladish Company North American Aviation, Incorporated Sikorsky Aircraft Division
Ann: Metallurgical Library Attn: Mr. Robert G. Heckathorne United Aircraft Corporation
5481 S. Packord Avenue Numerical Sciences Group 282 -072 Attn: Library
Cudahy, Wisconsin International Airport North Main Street

Las Angele 9, California Stratford, Connecticut

Lockheed Aircraft Company North American Aviation, Incorporated Solar Aircraft CompanyAttn: Dr. L.H. Ferrish Att: Technical Inforntion Center Atn: J.A. Logan
Org. 7901, Building 103 4300 E. Fifth Avenue Mfg. Factory Divislon
Sunnyvale, California Columbus 16, Ohio San Diego 12, California

Lockheed-Callfornia Company Northrop Corporation Sperry Gyroscope Company
Attn: Central Library Nurair Division Attn: Engineering Library
Dept. 72-25, Building 63 Attn: Technical Information, 3924-31 Mail Station IA38
P.O. Box 551 1001 E. Broadway Great Neck, New York
Burbank, California Hawthorne, California

Lockheed Aircraft Corporation Nartronics-Systems Support Sperry Rand UnivacAttn: Robert Vaughn Attn: Gordon Wilcox, Librarian Numerical Control
Produclbility Methods Eng. 500 E. Orangethorpe Avenue Attn: Gastone Chingarl
2555 N. Hollywood Way Anaheim, California 2520 West Sixth Street
Burbank, California Los Angele 57, California

Lockheed Aircraft Corporation Onud Machine Works, Incorporated Stanford Reeorch lastitute
Science-Technilogy Information Center Attn: Mr. Earle Pnkonln Attn: Engineering Library
Dept. 72-34, Zone 26 V.P. Director of Engineering Menlo Pork
Marietta, Georgia 7700 North Lehigh Avenue California

Chicago 31, Illinois

McDonnell Aircraft Corporation Philco Corporation Stanford Research Institute
McDonnell Automation Center C and E Division Attn: Mr. P.D. TiltonDept. 73 Attn: Mrs. C. Ferguson, Librarian Industrial Reearch Engineer
P.O. Box 516 4700 Wissahickon Avenue 820 Minion Street
St. Louis 66, Missouri Philadelphia 44, Pennsylvania South Pasadena, California

McDonnell Aircraft Corporation Republic Aviation Corporation Studebaker CorporationAttn: Engineering Library Attn: Engineering Library Atn: Mr. C.E. Glerke
Department 218 Mr. R.E. Fldoten/Schnelder Manager-Manufacturing Engineering
P.O. Box 516 Farmingdale, Li., New York 635 South Main Street
St. Louis 66, Missouri South Bend 27, Indiana

The Marquardt Corporation Robert A. Keyes Association Sundstrond Machine ToolAttn: W.E. Otto, Program Manager Atn: Mr. Robert A. Keye Attn: Gordon Nordstrom
Box 670 821 Franklin Avenue Director of Engineering
Ogden, Utah Garden City, L.i., New York Belvidere, Illinois

The Marquardt Corporation Rocketdyne Systems Development Corporation
Attn: Engineering Library A Division of North American Aviation, Inc. Technical Library Services
16555 Soticoy Street Att: Library, Department 586-306 Rt. to A. Rosenberg, C. Keilog
Van Nays, California 6633 Canoga Avenue 2500 Colorado Avenue

Canoga Park, California Santa Monica, California

The Marquardt Corporation Rocketdyne Temco Electronics
Attn: E. C. Krueske A Division of North American Aviation, Inc. Attn: Library, Dept. 403Mali Zone 21-24 Solid Rocket Division P.O. Box 611816555 Saticoy Street Altn: Library Dallas 22, Texas
Van Nuys, California McGregor, Texas

The Martin Company (2) Rohr Corporation Thompson I o WoldrldgeResearch Library, A-52 Antn: D.L.S. McCoy Attn: Librarian
P.O. BoX 179 5t. to F.L. Blassingame) P.O. Box 878 8433 Fallbrook Avenue
Denver 1, Colorado Chua Vista, California Conoga Park, California

National Machine Tool Bid. Assn. Ryan Aeronautical Company Thompson Roa Woldridge
Attn: Thomas E. Lloydy Attn: Robert L. Clark Industrial Control System
2139 Wisconsin Avenue Vice President Manufacturing Attn: J. J. Childs, Mgr. of ICS Soles
Washington 7, D.C. 2701 Harbor Drive 455 Sheridan Avenue

San Diego 12, California Michigan City, indiana

Thomson Ramo Wooldridge Incorporated
Attn: K.C. White
Staff Director-lndustyial Engineering
23555 Euclid Avenue
Cleveland 17 Ohio

Lilon Carbide Nuclear Company
ORGDP Central Library
Attn: J.L. Gabbard, Jr.
P.O. Box P
Oak Ridge, Tennessee

United Aircraft Corporation
Research Labratarle Library
East Hartford 8, Connecticut

United Aircraft Corporation
Research Laboratories
Attn: C. Robinson
East Hartford, Connecticut

United States Rubber Company
Research and Dev. Dept., Library
Alps Road
Wayne, New Jersey

inilvac Division Remington Rand
Attn: Mr. W.R. Lonergan
Systems Programming

351 Park Avenue South
New York 10, New York

Univac, Division Sperry Rand Carporatian
Attn: Mr. R.W. Berner
351 Park Avenue South
New York 10, New York

University of California
Department of Engineering
Attn: Dr. Allan B. Rosenstein
405 Hilgard Avenue
Las Angeles 24, California

The Warner and Swasey Research Center
Attn: Mr. S.F. Winchell,
Director of Research and Development
28999 Aurora Road
Cleveland 39, Ohio

The Warner and Swasy Company
Attn: Technical Library
5701 Carnegie Avenue
Cleveland 3, Ohio

Westinghouse Electric Corporation
Division Engineering Library
Steam Division
Lester, Pennsylvania

Westinghouse Electric Corporation
Technical Information Center
P.O. Rox 1693
Baltimre 3, Maryland

Wymn-Gardon Company
Grafton Plant
Technical Information Center
Worcester I, Massachusetts

0. 4h0.

0a o 4 I 4 -

*! Z 0 *!k
bc It 0 t .d;m g P

z'0 a~ -u0W 3

-. o to :
E .1 - 0vi' 0 -k L

'U Cd 0 0 uE- 2 0 5 0 o

x hI
0'.00 O>Q O -v~v j,,v -0'E~g~ H

0. U t
E r o . a. wot J 0..

N 0
0r.;. % r

. .- .4

U1 tu r4 N u 0

o 0 ,! - 0 0 " v

znI 1h.-0 . . 0.

1) U's

'u A . 'aI - P

A -**.*
123 l

* U T

-0 .~ 0. 0 a

u 5.~-
0.

i-.
be ' b'

04 * a 0CL g

0'.

AAA

> 0

0 0 z : .

v ; U

* to d ~f
* ~ 'a~ ~ lb~ tog

4...

~. 4)t-zto 0 k 'd

. .a .k0

- . I .. '.-v0

0 4 oq o6

"O 0. A,

4 u. toa. . . 0
.100$1 00 g. -0 w.

A . Os.0 . v -,--' 0 I
NH . 04 0 oMtg

0d *g
F,.u

0.

ff cd 4) U. . - .

1. 1. c:X.

Ic 10 8 . 4. 4.! 0.4N ,,,t

2u 0

0
to :1 v~ 4 0 k 0

0 5 uC
0

um 0

0 9 jj Mo2 oE

0~. 4 0 . - 0

C.00

.;~~ 0 0

0. k 0~ 0 0 a
bo s bu 0 C, v 0.0

0.9 .- 4 V 0~

.. a

be 4
u U u S.)w1

0-0. --

*o 0) so u

0 aS '0 >,0
Z 0.

.00. -- 0so0~ s

ml- 0- P0. u :

00 Eo~~ 0 Ol -0 0C

Ok. .8 0

REPORTS PUBLISHED

"Papers on the APT Language, " Douglas T. Ross and Clarence G. Feldmann,
Technical Memorandum 8436-TM-i, Electronic Systems Laboratory,
June 1960.

"Method for Computer Visualization, " Albert F. Smith, Technical Memo-
randum 8436-TM-2, Electronic Systems Laboratory, September 1960.

"A Digital Computer Representation of the Linear, Constant-Parameter
Electric Network, " Charles S. Meyer, Technical Memorandum 8436-TM-3,
Electronic Systems Laboratory, August 1960.

"Computer-Aided Design: A Statement of Objectives, " Douglas T. Ross,
Technical Memorandum 8436-TM-4, Electronic Systems Laboratory,
September 1960.

"Computer-Aided Design Related to the Engineering Design Process,
S. A. Coons and R. S. Mann, Technical Memorandum 8436-TM-5, Elec-
tronic Systems Laboratory, October 1960.

"Investigations in Computer-Aided Design, Interim Report No. 1'
Project Staff, Report 8436-IR-1 for period December 1, 1959 to
May 30, 1960.

"Automatic Feedrate Setting in Numerically Controlled Contour Milling, "
J. D. Welch, Report 8436-R-1, Electronic Systems Laboratory, December
1960.

"Investigations in Computer-Aided Design, Interim Report No. 2,"
Douglas T. Ross, Steven A. Coons, et al, Report 8436-IR-2 for period
June 1, 1960 to February 28, 1961.

"Design of a Remote Display Console", Glenn C. Randa, Report ESL-R-132,
Electronic Systems Laboratory, February 1962.

"Investigations in Computer-Aided Design for Numerically Controlled Pro-
duction, Interim Report No. 3 and 4, " Douglas T. Ross, Steven A. Coons,
et al, Report ESL-IR-138 , for period March 1, 1961 to February 28, 1962.

