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ABSTRACT

The Algorithmic Theory of Language takes the view that processing
algorithms define classes of language. A language belongs to a class
depending upon whether or not it is properly processed by the cor-
responding algorithm. Following preliminary statement of n-component
element and plex definitions, several General Principles concerning the
step-by-step growth of large, complex structures are introduced. The
words and symbols of language are then considered to be elements with
attractive and repulsive properties which cause them to link together to
form linguistic structures. The General Principles are applied to suit-
able element definitions to yield derivations of successively more elab-
orate algorithms defining the behavior of these elements, and generating
in one left-to-right pass the First-Pass Structure which explicitly ex-
hibits the syntactic and semantic structure of a statement by showing
syntactic context by a tree structure and semantic context by the
'"precedence string''. The present development stops with the concepts
of major and minor modifiers and leaves ambiguity resolution and other
topics to future papers.

This document is a preprint of a paper submitted in November to the
Journal of the Association for Computing Machinery for publication
in 1963,
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L INTRODUCTION

In recent years there has been a growing awareness that an important
analytic tool in the field of language theory is the concept of a processor for
a language. (Gorn, (1), Oettinger, (2), etc.). At the same time that
language theorists have been using simple processing algorithms to clarify
and rigorize theoretical problems, those most concerned with elaborate
processor construction for artificial languages have suffered from a lack of
theoretical basis. This paper puts forth the thesis that processing algorithms
should be the primary, not a secondary, tool of the language theorist, and
that artificial languages should be defined within a sound theoretical frame-
work, in which case sound and efficient translators are an automatic fringe
benefit.

Actually the theory presented here is the first major foundation
stone of a more general Theory of Plex Processing ( Ross, (3)), and, as will
be made clear, the importance of the algorithmic approach to language theory
is riot due to the use of algorithms themselves, but has deeper roots. The
contention is that the many complexities and apparent vagaries of language
are the natural consequences of certain inherent behavioral properties of
words and concepts themselves, and the algorithms which are used are merely
the formal descriptions of these ''natural laws'' which govern the behavior
of words and concepts. The meta-theoretic philosophy which is followed
here is based on the hypothesis (and it is a hypothesis, open to test) that
these natural laws of words and concepts, like the natural laws of matter and
energy, obey discoverable minimization and conservation principles, and that
the pursuit of these principles, while at the same time applying them to
formulate, test, and modify more and more comprehensive versions of the
behavioral laws, is a valid and promising approach to this most difficult

problem.



The theory of language initiated here represents, then, only the first
few small steps toward a complete theory. No claim is made to broad areas
of applicability at this time in natural language, but the impact on artificial
languages of even the present results is considerable, and further inroads
into natural language are clearly indicated. Since the theory is by its very
nature evolutionary, we are not concerned directly with known aspects of
language which do not at present {it the theory, but with those that do fit
the theory, and how well they fit. It is hoped that impartial study will
confirm that in the areas which are covered, this nascent theory provides
elegant clarification of several vexing but simple aspects of language as we
know it, and holds promise of further significant development.

Since the material in this paper relates to language theory, language
translation, compiler construction, etc., it is impractical to attempt to
sort out and directly reference all of the influences and related work which
have been published in these fields. Instead we reference a few of the more
closely-related efforts in the context of a general preview of the results
which are presented in detail in the body of this paper. Particularly relevant
as general references are the entire issues of references 16, 17 and 18,
Many of the papefs in these special publications speak to problems covered

here, though frequently the emphasis differs.

A. Summary
Language is both form and meaning -- syntax and semantics. Any

effort to artificially consider only form or syntax without at the same time
treating meaning or semantics, or vice versa, decimates the very concept of
language, and can at best be only constructing formalisms of structures which
have language-like properties. The inextricable nature of form and meaning

must be recognized as a prerequisite to considering language as such.
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We restrict our initial attention to what we call linear sequential

languages, i.e., languages in which words and symbols occur in a sequence,
left to right in an input string. We consider each word to be represented

by an n-component element whose components show left and right syntactic
and semantic context, type, and other features, by means of pointers. Ina
single left-to-right scan of the input string, an algorithm transforms the

input string into the first-pass structure in which all pointers are properly

set, The form or syntactic structure of the statement is shown explicitly
by the parsed tree structure which results from setting the left and right
syntactic pointers, and the meaning or semantic structure is shown explicitly

by the linked rings of the precedence string which results from setting the

left and right semantic pointers. The meaning may be evaluated by following
the precedence string, which shows which words precede other words in the
establishment of total meaning, and at each step the proper syntactic context
is known. The present theory is restricted to ordinary words, and major
and minor modifiers, but later extensions will treat ambiguities, non-trivial
context-dependency, and other more elaborate features.

In addition to the algorithms themselves, considerable emphasis
is given to the methodology of the theory. The viewpoint is that large, complex
structures (such as are found in language) never arise all at once, but are
built up step-by-step out of simpler structures. A set of five General
Principles are given, the most important being the Immediacy Principle
and the Stacking Principle, and these are used to derive algorithms which define
the behavioral properties of elements and cause them to link together to form
large structures. While the Immediacy Principle, which says that settings
should be made immmediately as soon as conditions are right, has not been
explicitly stated elsewhere, it has been used widely in many of the '"one-pass"

processors which have been written. Similarly the role of stacks, which
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operate on a last-in-first-out basis, has been widely recognized, particularly
by Samelson and Bauer (4), and Oettinger (2), although virtually every recent
processor also uses a stack.

Oettinger introduces the concept of a " AM Theorem' which proves
for a given algorithm using a stack, that a well-formed '"middle' of a formula
will leave no residue on the stack. This important concept allows a type of
induction to prove the validity of algorithms. Sherry (5) proves several such
theorems for algorithms based on the "'predictive analysis technique' of
Rhodes (6), and many of the proofs of Markov (7) embody the same principles
independently. While all of the algorithms of this paper are subject to analysis
by A M Theorems, the proofs have not actually been carried out because our
present terminology and knowledge of technique precludes elegant proofs.
For simple algorithms as treated by Oettinger and Sherry, the proofs, although
lengthy, are not too unwieldy, but the added complexity of the algorithms of
this paper makes straight-forward proofs impractical.

The role of the stack is also different from most algorithms which
have been described in the literature. Like many other studies, stacking
is triggered by certain relations which apply between '"operator pairs''. Many
algorithms, (including the early precursors to those of the present paper),
depend upon a heirarchy or binding strength relation between operator pairs,
(Samelson and Bauer (4), Huskey (8), and others), The heirarchy approach
is, however, only of limited (though significant) power, and is rigorously
covered in an elegant fashion by the "precedence grarnmars' of Floyd (9).
The limitations of the heirarchy approach are apparently overcome, in great
measure by the ''predictive' techniques of Rhodes (6), Sherry (5), Irons (10),

etc., but at considerable expense in efficiency.
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All of these approaches appear to be strongly influenced by the
concepts of '"productions' (Chomsky (11), Gorn (1)) and by the use of meta-
linguistic descriptions of grammars using notations such as the Backus
Normal "orm, Naur (12). The view of this paper is that such meta-linguistic
descriptions are tabulations of the natural consequences of basic properties
of the words and concepts of a language, and are more the product of the
analytic approach, than of the language itself. Many of the meta-linguistic
types which are used in these forms of description appear from this view-
point to be names applied to gross structures whose genesis is at a more
fundamental level, and is based upon the "'likes' or attractions between words.
The only meta-terms which are acceptable or even needed, according to
this view, are the basic type classes of the words themselves, as modified
according to context by the type computation. At the present stage of
development, the meta information is given in the form of ""Like Matrices"
and '""datatype' specifications for the words of the language, but later extensions
of the theory will provide further internal structure in this area.

One consequence of the change of emphasis from meta-terms to the
words themselves is that the parsing part of the First-Pass Structure does
not refer to any meta information, but structures the right and left context
of each word directly, Whereas most parsing is done in terms of meta
descriptors such as '"'noun phrase', ''predicate', etc. (see e.g., Yngve (13)
and others) these terms play no useful role in the present theory. The only
reference known to the author which uses a similar parsing (for Algol, etc.)
is Warshall (14), in which the importance of parsing to determine context
prior to evaluation is also recognized, although not in the form of an

explicit step-by-step precedence string.
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Finally, the close interconnection of semantics with syntax does not
appear to have received wide emphasis in the literature, although every
machine translation project has of course considered both aspects to some
extent at least. Special attention should be called to the work of Ceccato (15),
as being the closest in viewpoint to the present paper, although specific
techniques are quite different, By attacking the translation of meaning rather
than form, Ceccato's ideas correspond quite closely to those of this paper.

A (recursive) perusal of the references will disclose a great many
similarities between aspects of this paper and the work of many others,
inéluding some which should, perhaps, have been mentioned here. It is
hoped that these omissions will be excused, and that disputatious claims to
priority will not becloud the acceptability of the theory presented in the
following sections.

B. Acknowledgments

A preliminary and very rough presentation of the ideas of this paper
was given in an internal memorandum in July 1962, and was distributed to
the ASA X3.4.1 and X3. 4.2 Standards Committees, the U, S. members of
the IFIF Algol Working Group, and other selected individuals. The helpful
comments, criticisms, and suggestions of many of these people have been
incorporated into the present paper, which is considerably different in
organization and presentation,

Particularly fond and substantive acknowledgement is due to Mr.
Jorge E. Rodriguez of the Computer Applications Group, Electronic Systems
Laboratory for his invaluable contribution to this work. His timely and
well-modulated balance of criticism and enthusiasm, coupled with a sensitive
insight and understanding, has in many hours of discussion throughout the
evolution of this theory been instrumental in its successful development.

His many contributions are most gratefully acknowledged.



C. Outline

The presentation of the Algorithmic Theory of Language separates
naturally into several parts. We begin with several sections in which the
basic concepts of plex processing are rigorously defined. These definitions
and the viewpoint which they engender enable precision of terminology in the
theory itself, and in the presentation of algorithms in a simple flow diagram
language, which is also informally presented. The concept that complex
structures are built up step-by-step out of simpler structures is made con-
crete in the form of five General Principles which are used as axioms in the
derivation of algorithms and as guides in the establishment of appropriate
element definitions. The use of these principles in a derivational context
compensates somewhat for the omission of complete lemmas, theorems and
proofs concerning the validity of the algorithms and the behavior of the classes
of language which they define, Finally the concept of fringe cutting, which is
a very useful methodological concept for solving complex problems in gradual
stages is introduced.

The careful preparation of definitions and methodology then permits
the language theory itself to be unfolded in a straightforward manner.
Following an informal description of those aspects of language which under-
lie but are not dovered in detail in the present theory, which take the form of
datatype specifications and Like Matrices, and provide the basic mechanism
for attractions between words, the principles are applied to derive the first
algorithm, the Parsing Algorithm. The Parsing Algorithm is concerned
solely with form or syntax, and the basic level of theory is completed by
the introduction ofinormal precedence via the Precedence Algorithm. The
syntactic and semantic features of these algorithms are then combined by
merging the algorithms into a single Parse-Precedence Algorithm which

defines the simplest complete class of languages of the theory.



The semantic question is then considered in more detail by the
introduction of the concept of modifiers. Then semantic attraction between
words is introduced in the form of precedence likes, or ''plikes'', which are
then applied to both major and minor modifiers to derive the final algorithm
of the present paper.

Alithough the appendix contains a description of the Algol 60 Language
in terms of the theory, extensive discussion of the implications of its
present state of development are not included, since such discussions can
much more profitably be undertaken in the next paper, which will treat the

problem of ambiguities.



II. DEFINITIONS AND METHODOLOGY

A. Components and Elements

We accept as primitive certain English words and constructions; and
mathematical set theory, logic, and analysis, etc. We also accept certain
. basic primitives:
Basic object primitive is thing.
Basic structure primitive is has (or with).
Basic action primitive is contain.
Basic reference primitive is name.

The first defined object is a component.

Def. 1 ""A generic component has a unique name and a place-holder

which may or may not contain contents. "

In this definition sentence, the words has, name, and contain are used

with the English words _é, unique, which, may, or, not, and ., which along with

similar words are accepted as primitive (including the word primitive itself!),

to show that the concept generic component involves two sub-parts called

name and place-holder, and that place-holder is the kind of thing that can

contain something. Furthermore, contents is the thing contained in the place-

holder of the generic component referred to by name.

Def. 2 ""A specific component is an instance of a generic component,

but its place-holder may contain different contents. We say
the specific component is of the same kind as the generic

component. "

There may be any number of specific instances of a generic component, and
no restrictions are placed on their contents. We refer to generic and specific

components by the collective word component when the distinction does not

9
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apply. Thus, in brief, ""a component is a named place-holder containing

contents'', Note that all components with the same name are of the same kind.
Def. 3 ""A generic element is a generic component whose contents

is a set of components, no two of which are of the same kind,
The components in the contents are referred to as the com-

ponents of the element, and the place-holder (i.e., the thing

that contains the components of the element) is called the

guts of the element. "

Def. 4 "A specific element is an instance of a generic element, i.e.,

it has the sarme name, and components with the same names,

but the contents of the components may be different."

We shall restrict our considerations to elements with a finite number, n, of

components and shall sometimes speak of n-component elements. In view of

this restriction, however, we frequently will use the shorter word element

for n-component element without confusion.

We refer to the place-holder of a component A of the element B using
the notation BA' A generic component is considered to be an element of one
component whose component name, A, is the same as the element name, A.
The place-holder of a generic component is then referred to by AA. A specific
component must be contained in some element.

B. Pointers and Plexes

With the concept of element well-defined, we now introduce as another

basic primitive, an existence space which will be considered to underlie the

entire conceptual framework we are building. Consider the set of all guts of

elements, and a set of ''sites', of the same cardinality. The existence space

is a unique set of ordered pairs associating with each guts a site. We



11

consider the guts to exist at the sites, and the associated member of the
site set is called the site of the guts. Both sites and guts are things, and

therefore may be contained in components.
Existence space = {(site, guts)}

Def. 5 "If a component contains a site, we say the component con-

tains a pointer to the element whose guts are associated with

the site in the existence space, i.e., the contents is a pointer."

We assume that letters, the real and complex numbers, the Boolean primi-
tives True and False, and similar things are pre-defined as elements (whose
names are themselves), and also that they are included in the site set, and
that in the existence space, they constitute their own sites as well. Thus
any metric (i.e., measuring) process may be viewed as pointing to an

appropriate existing measuring scale.

Def. 6 "A plex is an element containing only elements or pointers.

A pure plex contains only pointers."

I.e., a plex cannot properly contain an un-named thing -- it must have an
internal, named structure. A pure plex may loosely be interpreted as ''an
interconnected set of n-component elements'’.

C. Referents

For notational consistency we now make the referencing of contents
of components more specific. The notation A(B), read "A of B'" is inter-

preted as follows:

Def. 7 "If B A properly contains an element C, or contains a pointer

to C, then A(B) is a pointer to C. If K is a pointer to B, then
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A(K) is the same as A(B). If BA contains a non-element

primitive thing, then A(B) is the thing itself."

For generic components considered as elements we write A instead of A(A).
We now can make more general, and at the same time more specific, the

concept of naming parts of plexes by the following definition:

Def. 8 "A thing x is internal to a plex p if there exists a sequence

Ni’ 1<i<k, where N1 is the name of a component of p, NZ is
the name of a component of Nl( P)y..., and where x is con-

tained in or pointed to by Nk(. .. (NZ( Nl(p))) ...). The

sequence Nl’ e Nk is called the reference chain of x with
respect to p, and k(. .. (NZ(Nl(p) ))...) is called the referent

of x with respect to p. "

Thus anything which is contained in a plex has a (not necessarily unique)
referent.

Note that the concept of P_le_x so far is primarily one of structure, i.e.,
containment either directly or by pointer, but on the other hand, every
aspect of that structure is named as well, either directly or by a more or
less elaborate referent. As the basic object-primitive thing indicates,
literally anything can be considered a plex, providing only that in the process
of considering, the structure is exhibited in detail, and named. Concrete
things, such as table, chair, etc., must be expressed in plex structure
which mirrors their known properties, but even so abstract a thing as an
as yet unconceived concept can be concretely represented if it is merely
given a name.

The reason for the emphasis on naming, and the reason that names

cannot be taken away from the structural side of plexes is that, except for a
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basic primitive level, all plexes must be referenced to other plexes to be
meaningful. I.e., our "world-view' allows only a limited number of un-
definables, (the non-plex primitive things in components which are not plexes),
and all "“interesting' things are in fact plexes built up out of other plexes. In
order to build large plexes out of smaller plexes, there must be a way of
referencing any point in their structures. The names and referents provide
the means.

D. Algorithms

We now proceed to the consideration of the machinery required to
manipulate plexes. Our view will be, in fact, that the actual ""meaning" of
Plexes, and what makes them ''interesting'' is solely a result of how they are
manipulated. These manipulations will be carried out by algorithms which
transform plexes from one form to another. It is very profitable to take a
quasi-anthropomorphic view of this procedure, and to ascribe the results of
the algorithmic manipulations to the plexes themselves. I.e., an algorithm
which uses the referents to things in a plex and causes various things to

happen defines properties of the plex itself. In other words we think of the

plex as having behavioral properties as well as named structure, and the

algorithms linked to the plex through referents are the means of definition of
these behavioral properties.

Thus we see that the full concept of plex actually consists not only of
structure and naming, but algorithms as well. The full interpretation of any
component of a plex involves every algorithm which makes any reference,
however slight, to that component. Conversely, a non-trivial algorithm
without referents is downright inconceivable. Thus the two concepts are in-
extricable. The full concept of plex may loosely be considered to be a

structure of things contained in named components, the meaning of the names
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(and thereby of the things and structure) being made implicitly explicit by
associated algorithms. The idea that every reference by any algorithm
influences a plex corresponds quite closely to the philosophical view of
modern physics which is expressed in the uncertainty principle.

E. Derivation Principles

We have now laid all the mechanical ground work for deriving the
algorithms of the language theory. In order to provide motivation for the
algorithms of the theory, however, and to show that they are not arrived at
whimsically, we state some General Principles of deriving a.igorithms which
will be followed throughout this presentation. These principles may be
considered, along with the definitions, to constitute a type of axiom set, and
in the derivation of the algorithms we shall call upon these principles as

concise statements of the methodology employed.

Princ. 1 The Simplicity Principle: 'In solving a problem, the simplest

set of assumptions should be employed along with a minimum

of mechanism."

Princ. 2 .The Efficiency Principle: "Every operation should be considered

to have an associated cost, and the total problem includes due
consideration of this cost. In general, if the addition of some
simple static mechanism, such as a pointer, can be used to
provide an immediate result which otherwise would be
obtained by a dynamic recursive procedure of unlimited extent,
the use of such a pointer is considered simplest and most
efficient, "

The Simplicity and Efficiency Principles are complemented by the

Immediacy Principle which is in a sense dependent upon them.
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Princ., 3 The Immediacy Principle: '"Whenever sufficient information

is available for a component to be set, the setting should be

performed immediately. "

Multiple application of the Immediacy Principle in turn leads to the

Stacking Principle.

Princ. 4 The Stacking Principle: '""Whenever two components of the

same kind require setting, the element containing the older
component should be set aside on a stack, (operating on the

last-in-first-out principle)."

Finally, the basic methodology is completed by the Minimum

Limitation Principle.

Princ. 5 The Minimum Limitation Principle: '""Whenever there is a

choice between two ways of accomplishing the same task,
that way shall be chosen which imposes the least stringent

requirements on the pieces of the problem."

These principles mirror not only the behavior which we expect and
desire of a language, but also are in harmony with the more general view
that large and complex structures do not arise instantly, but are built up
step-by-step out of smaller structures. They apply to any process in which
the new material is supplied one unit at a time, as in the input string. In
subsequent sections we will take this view of many problems which are not
directly linguistic in nature, and, will apply the principles in the derivation of
algorithms and element definitions.

F. Flow Dig&rams

We now give an informal definition of a flow-diagram language which

is most natural for plex manipulations. We suspect strongly that algorithms



16

written in this way span the same '"space' as, and are in fact equivalent to,

the Normal Algorithms of A, A. Markov, the various algorithm theories based
on recursive functions, and Turing machines. In any case, since it is fairly
clear that any short-comings of the method of stating algorithms can either

be repaired, or the algorithms can be rephrased, (with no inconsiderable
effort, however), we proceed to the mode of expression which seems best
suited to the plex concept.

We begin by adding to our previous definitions the following assumptions:

Assumption I: "Every element contains a unique component named type,

whose contents is a code (i.e., a pointer to a reference

scale) which specifies what kind of thing the element is. "

The concept of a unique type for every element is very basic, but is
introduced here in this form as a temporary assumption, rather than as a
definition, because its proper treatment is very deep and requires much more
machinery than we have at present. The present expedient allows us to refer

precisely to type, and will suffice for the moment,

Assumption 2: '""We will consider only pure plexes. '

This assumption means that we need only be concerned with the
manipulation of pointers. Note that there is absolutely no restriction here,
since any plex which properly contains a sub-plex (and therefore is not pure)
is trivially equivalent to (i. e., may be replaced by) a pure plex which contains
a pointer to the sub-plex in its corresponding component.

To save space we introduce the elements of the flow~diagram language

graphically and informally as shown in Fig. 1.
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Conventions

Only one entry and exit per box.
Only one entry per question.
Flow follows arrows, crosses ignored.

Message STOP ! must occur at least
once in an algorithm.

Question may contain only one query.

Box may contain any number of statements,
executed from top down.

Any precise language may be used for
statements and queries if it doesn't
violate rules of flow.

Referents are the "nouns® of the language
of statements and queries.

Elements of Flow-Diagram Language

Clearly more precision and rigor are called for, but we assume these

conventions will make the algorithms to follow sufficiently understandable.

The only additional remark that is necessary is to point out that we

will make full use of Assumptions 1 and 2,

E.g., Let A, B, be component names

E,F, be element names

a be a mathematical function or operator.

Then A(E)—=B(F)

F—A(E)

Means make the contents of B( F) the

same as F(E). A(E) is unchanged,

Implies that F itself is a component,
i. e., contains only a pointer, and that

pointer is placed in A(E).
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a(A(F)) <37 Implies that A(F) contains a suitable

argument for the real valued function a.

With these remarks as guides, the meaning and interpretation of algorithms
will be self-evident. In the future the full plex concept of this form of
algorithm will be made explicit by defining the elements as plexes and giving
algorithms for their complete processing. Note that at that time, the con-
cept algorithm will itself be a plex.

In order to elaborate significantly on the plex and algorithm concepts
we must have a better understanding of language. If language can be formalized
and made rigorous, it will provide a much more powerful mechanism for
further progress than the sterile formalisms of the limited formation rules
allowed in existing symbolic notation. An alternate view is, of course,
that rigor in language extends the realm of mathematical formalisms. In
either case we now proceed to apply the rudimentary plex and algorithm
concepts introduced thus far, to the consideration of language.

G. Fringe Cuts

We take one final slight detour to introduce the methodological

technical term fringe cutting, since its use will simplify several future dis-

cussions. It has been brought out that every problem, viewed in plex form,
has many layers of problem within problem within problem... . We may
view this structure as a many branched tree, where each generation of
branches has more and more members, the outermost generation giving,
because of its density, the impression of a fringe. In solving a problem

it may be expedient to ignore the detail of one or more of the finest layers,
even though we know some of the characteristics of those layers and could
penetrate deeper into the problem. When we do this we '"cut off the fringe"

and stop our solution at a coarser level. Note that this cannot be a brutal
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amputation -- the coarser view of the problem still must yield a solution.
But if a fringe is cut it must be possible to take the finest level and penetrate
still further into detail.

Since almost every solution is a fringe cut, (if all possible levels
are considered) we will use the term only where it clarifies discussion.
We also will attempt to look deep enough in each case to ensure that we only
cut a fringe, and do not '""cut corners''. Cutting corners distorts a problem
and usually leads to trouble. Fringe cutting merely postpones deeper
penetrations to another day. Normally we only fringe cut when it is clear
that future, more powerful machinery or understanding is needed to handle

the deeper level elegantly.



III. THE BASIC ALGORITHMIC THEORY

A. The Elements of Language

We begin our consideration of language with a fringe cut by

postulating the existence of two plex structures called the vocabulary table

and the symbol table, We have said we would restrict our attention to pure
plexes, containing only pointers, but the vocabulary and symbol tables,

being unspecified in detail, are not pure, but are the actual places of exis-
tence of the entities with which we will be concerned. Whenever we refer

to a word we actually mean we have a pointer to the vocabulary table entry,
which is an element containing all of the needed properties of that word.
Similarly when we refer to a symbol we actually have a pointer to an element
contained in the symbol table. (A later paper will prescribe the actual table
mechanisms in the context of a computer-based system embodying the entire
theory being developed here.)

For the present, we ignore all morphological considerations and
assume that a speaker of the language, (or a message generator if you
prefer), utters a statement in the language by assembling a string of
uniquely recognizable and uniquely deconcatenable entities which an un-
specified pre-processor uses as names to locate the corresponding words
and symbols in the vocabulary and symbol tables. The pre-processor then

transforms the statement into the input string, which will be our starting

point.
Def. 9 "An input string is a sequence of pointers to words or

symbols. Each pointer has a unique predecessor and a
unique successor in the sequence, except for the boundary
pointers INIF and FINI. The successor to INIF is the

first pointer and the predecessor of FINI is the last pointer
in the input string."

21
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Note that the input string is a trivial kind of plex, and that, since the
pointers can be triggered by anything at all (there is no restriction placed
on the names in the tables) the language theory to be developed is a meta-
mathematical theory which can be superimposed on anything that takes place
in time, as long as the pre-processor can be defined.

The input string by itself is every bit as uninteresting as any state-
ment in a completely foreign language. It may be possible to observe
patterns in it, but no meaning or message can be gotten from it. It is our
objective to construct algorithms which will transform the input string into

a more elaborate plex structure, called the first-pass structure, which

will explicitly exhibit the syntactic and semantic structure of a statement,

We start with virtually no linguistic properties ascribed to the things pointed to
by the input string, and in successive stages we provide more and more pro-
perties in the table entries, and thereby derive richer and richer linguistic
interpretations of the input string.

The first-pass structure is constructed from first-pass beads.

Def. 10 "A first-pass bead, x, is an element with the following

components (in addition to type).

word, w(x), containing a pointer to a vocabulary table entry.

tvar, £(x), containing nil, or a pointer to a symbol table
entry, or a pointer to a first-pass bead.

rvar, r(x), containing same as £(x).

minor precedence, £1(x), containing nil, or a pointer to

a first-pass bead.

major precedence, rl(x), containing same as £1(x)

A number of stack connectors, s(x), sl(x), s2(x),... for

stacking the element, as required.
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Such an element is diagrammed as follows:"

rl
w/
!/ \\r

h¥ B!

We postulate the existence of a '"Read/ Where Routine" which scans
the input string, one pointer at a time, detects whether the pointer, i, points
to a word or a symbol table entry, and sets a pointer, n, as follows:

If i points to a symbol, i n
If i points to a word, a first-pass bead, b, is created and
i—==(b)
nil—e{(b)~—er(b) —=£1(b)—er1(b)
b —en
Thus in either case, n is a pointer to the ''new'' thing on the input string.

The Read/Where Routine then transfers control to the word or symbol exit.

B. Likes or Attractions

With the input string, the vocabulary and symbol tables, the first-
pass bead, and the Read/ Where Routine defined, we are now in a position
where we can consider the subject of language itself. At this point the only
difference between words and symbols is that words have structural properties,
(represented by the components of the first-pass bead), whereas symbols do
not, As will be developed, fvar and rvar have to do with the syntactic
structures which can be made by words, whereas the minor and major
precedence components are concerned with semantic structure. For the
moment we will be concerned only with syntax, and therefore will omit the
precedence components from consideration.

It was pointed out that we view elements as having behavioral properties
which are described by algorithms which make use of their components. On the
basis of these behavioral properties, a given class of elements will construct

a particular kind of plex structure in a natural way if they are placed in a
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suitable reaction environment, in much the same way that chemical elements
combine to form compounds in a chemical process.

The reason that chemical elements will react to form compounds is
that certain configurations of atomic nuclei and electrons exert attractive
forces on each other, and other configurations repel. Under the proper cir-
cumstances, by the making and breaking of chemical bonds, complex molecular
structures are built up out of atomic units.

We take this same view of words in a language, (and in fact of all
plexes). I.e., every word and symbol is considered to have an underlying
structure which causes it to be attracted or repelled, by other words in its
environment. Under the proper circumstances words that are attracted to
each other will combine to form larger units which in turn have certain
attractive properties. Thus the growth of a large syntactic structure out
of the atomic units of words and symbols is a natural consequence of the
behavioral properties of those words and symbols.

We will not delve into the internal structuring of words and symbols
to discover the features which make them attract or repel, but instead will
apply a fringe cut and assurne that the proper information is available in
components of the vocabulary and symbol table entries. Each word and
symbol is assumed to have a known datatype. Furthermore, every word is
considered to be a binary operator connecting things on its left with things
on its right. (In linguistic terms the {var component will show the left
context of the word and the rvar component will show the right context.)

The information concerning the attractive and repulsive properties of the
word is condensed into the form of a datalike for both £var and rvar, i.e.,
the datalike left specifies the datatype of thing which the word likes to have
in its fvar, and the datalike right specifies the datatype which the word likes

to have in its rvar.
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The provision of datatypes and datalikes is not quite adequate to
represent the attraction between words without becoming inelegantly
cumbersome. Recall that we are cutting off a fringe which undoubtedly
contains a great deal of structure to cause words to behave the way they do
in a natural fashion, so that it is not surprising that simply specifying
datalikes is not sufficient. We wish datatypes and datalikes to be broad and
general, so that it is necessary to provide an additional mechanism for
accommodating the special cases which do not succumb to broad generalities.
We do this by assigning to certain words and symbols the datatype undefined,
and then take the perhaps crude (but nonetheless efficient) expedient of
listing by case which words like to go with other words, in the form of a
binary wordlike matrix.

We assume that the vocabulary entry for each word contains in its

wordlike left component a row from the left wordlike matrix, in which each

word in the vocabulary table has a column position. A binary one in the i, j
entry indicates that word i likes to have word j in its £var, Similarly for
every word in the vocabulary table the wordlike right component indicates
those words which the given word likes to have in its rvar., Since the word-
like matrices are exhaustive, the combination of datatypes and datalikes with
wordlikes is an adequate mechanism for the fringe cut. More elaborate and
elegant mechanisms are undoubtedly possible, but, since we merely require
some mechanism for saying whether or not a given word likes what is on its
left or what is on its right in order to know how to fill its £ var and rvar
components, the mechanism described is adequate for our purposes,

We restrict our attention to input strings in which symbol pointers
are always separated by at least one word pointer., This corresponds to the

assumption that all words are at most binary connectors and simplifies the
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derivation. There is no essential restriction in this assumption since any
word which should, in fact, act as a multi-argument connector may trivially
be replaced by a set of words each of which is a binary connector. For
example, a word with three arguments, w(x, vy, z), may be considered to be
XW, YW, Z. The present restriction to binary operators can be removed in a
future minor elaboration of the theory, if desired.

C. The Parsing Algorithm

We may now consider the Parsing Algorithm which concerns the
setting of the £ var and rvar components in the First-Pass Structure. Since
the input string is read from left to right, and £ var is to show the left con-
text of a word and rvar its right context, by the Immediacy Principle £var
must be set before rvar. Furthermore the left-to-right scan of the Read-
Where Routine plus the Immediacy Principle says that it always must be
possible to set the final setting of £var immediately. Since rvar depends
upon things which have not yet been processed through the Read/ Where Routine
it may not always be possible to set rvar immediately, so that the Stacking
Principle says that there should be a stack of elements whose rvar's are
as yet unfilled.

Consider now the input string APBQC where A, B, C are symbols
and P, Q are words. As the Read/Where Routine scans the input string
from left to right, the word P obtains A as its fvar and becomes the top-
most thing on the stack. The Read/ Where Routine continues, reading the
symbol B, but since B is a symbol and has no associated first-pass bead the
Read/Where Routine will next read the word Q. Now the application of the
Immediacy Principle s2vs that if B is the proper rvar setting for P, that
setting should be made immediately, or if B is the proper fvar setting for Q,
then that setting should be made immediately. In other words the Immediacy
Principle applies simultaneously to both P and Q -- we say that P and Q "fight'"

over B.
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We will assume for the moment the existence of an arbitrator which
will decide the winner of the fight on the basis of the datalikes and wordlikes
of Pand Q. If O wins, then the Stacking Principle says that O goes on the top
of the stack covering the word P, since both of them require rvar settings.
On the other hand if P wins the fight, then Q must fight with the next thing on
the stack, and this fighting continues until, (by the Immediacy Principle),
ultimately Q gets its {var set. Then the Read/Where Routine can continue

the scan of the input string.

(p fight n over x)ﬁ—e—b Help!
n

STOP! no p (Ambiguous)
x — f(n) Help! | x— r(p)
p —s(n) p—x
n—p s(p) —p
nil = n —x compute type (x)
compute type (p)
£ i
@

Fig. 2 The Parsing Algorithm

Figure 2 shows the above derivation of the Parsing Algorithm in
flow -diagram language. Note that the fight arbitrator calls for help if neither
the next word from the input string, (pointed to by n), nor the word on the
top of the stack, (pointed to by B)' is a winner. The stack and unstack

operations are shown by trivial pointer manipulations, and the compute type

function sets the appropriate type information into the type component of

the first-pass bead. Some words have what is known as dynamic type and
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change type value depending upon the type of thing in their fvar or rvar
components. The compute type function is a fringe cut representation of this
operation. Note that since the setting of the type component is viewed as
setting a pointer to the appropriate measuring scale, the entire algorithm
consists of manipulations of pointers.

D. The Fight Algorithm

Before leaving the subject parsing, we consider the fight question
in detail. The arbitration of a fight is based upon the likes and dislikes of
the words involved. The Like Algorithm, based upon datalikes and wordlikes
is shown in Figure 3. Note that the wordlike information is used only when
there is insufficient information for the more general datalikes to resolve the

question.

( does f have a datalike ?} no

‘ yes

Cis datatype (x) defined yet? = @ordlike () = wordtype (x) ?)

yes yes no
((datatype (x) = X? yes 4
‘no
(datalike (f) = datatype (x)? == -y
es ¢

Fig. 3 The Like Algorithm, "f like x?"
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In a fight between p and n over x, if neither £(n) nor r(p) likes x,
then the Fight Algorithm must ask for help since there is no way of disposing
of the unruly x. If either £(n) or r(p) alone likes x, then clearly it is the
winner. If both £(n) and r(p) like x, then we examine the consequcnces of
letting either n or p win the fight, by checking the likes of n and p with respect
to each other.

If both £(n) likes p and r(p) likes n, then the Fight Algorithm declares
a tie, since it has detected an apparently ambiguous situation., The ambiguity
problem will be treated in a later paper. In the other three cases of likes
between n and p, we tabulate the consequences of letting n or p win, and then
call upon the Minimum Limitation Principle to derive the final form of the

Fight Algorithm.

Case I, £(n) does like p, but r(p) does not like n.
If n wins then it is required that some other n in the future
must like n, since the element beneath it on the p stack does
not like it. If p wins then there is no additional requirement,
since if the next thing on the p stack loses the fight, n will

accept the result.

Case II. £(n) does not like p, but r(p) does like n.
If n wins there are no additional requirements, since even if
no future n likes n, the element beneath it on the p stack does
like it. If p wins then there is a requirement that some p

beneath the present p must like the result, since n does not,

Case III. 2(n) does not like p and r(p) does not like n.
If n wins then there is a requirement that some future n must
like the present n. If p wins then there is a requirement that

some element beneath it on the p stack must like it.
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Thus, applying the Principle of Minimum Limitation, Cases I and II
give unambiguous results ~-- in Case I, p should win, and in Case II, n should
win., In Case III, the requirement that if p wins some element already beneath
it on the stack must like it is8 more stringent than the condition on n winning,
and furthermore, if it is not true for the element immediately beneath p on
the stack, the algorithm will break down immediately asking for help.
Therefore, in Case IIl as well, we select n as the winner. Since Cases II
and III then give the same result, it is not necessary that the Fight Algorithm
check whether r(p) likes n in the case when £(n) does not like p. The final

form of the algorithm is shown in Figure 4.

lE fight n over x"

NO
(Ungrammatical)
no

r(p) like x?

£(n) like p?

no (Ambiguous)

n wins P wins

Fig. 4 The Fight Aigorithm, “p fight n over x"

The Parsing Algorithm (with the Fight Algorithm inserted) may be
considered to be the precise specification of a purely syntactic theory of
language in the following sense. The algorithm defines a class of languages
in which a given language is a member of the class if, given the vocabulary,
the datalike and wordlike matrices can be constructed in such a manner that

the Parsing Algorithm correctly parses any statement in the language. Any
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language for which these matrices cannot be set up to provide proper parsing
for every well-formed statement in the language is not a member of the class.
In order to be completely rigorous, we should at this point state and prove a
number of lemmas and theorems concerning the status of the various pointers
in the algorithm under various conditions, but since this paper is already very
long, we will not at this time take the space to present lemmas and theorems
whose proofs are trivial if the algorithm is merely followed in detail. In fact
it is to be hoped that such theorems can be proved by mechanical proof pro-
cedures in the not too distant future and there are indications that this can be
done.

It is perhaps worthwhile to introduce at this time yet another viewpoint
of the algorithms of this paper which will prove useful in future discussions.
The Parsing Algorithm itself can be written as a plex if the flow diagram
language elements are defined as n-component elements, and then the entire
algorithm may itself be considered an element whose components are the
literal pointers which explicitly show in the algorithm, such as x, p and n.

It is then very illuminating to think of the algorithm element as being in
essence a particle (a la modern physics) and to treat these pointers as state
variables so that the various conditions of the algorithm are described by
unique states (i.e., sets of values of the state variables). This viewpoint
also corresponds of course to that of Turing machines. It is this viewpoint
which should be taken in any statement of lemmas and theorems whether they
are to be proved manually or mechanically, but again since the Parsing
Algorithm is so simple we merely introduce this viewpoint at this time and
in future sections will merely describe verbally the requisite facts

about the states of the algorithm as they are needed (leaving proofs as an

exercise to the reader). Note also that facts about the states of the algorithm
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induce similar facts on the statements of any language belonging to the class
defined by the algorithm, and may, therefore, be useful for categorizing or
understanding languages in termsa other than the algorithm itself.

E. Normal Precedence

A language with syntax but no semantics, can hardly be considered a
language at all. We now take the first small step into the vast realm of

semantics by considering the problem of normal precedence. In order to

obtain meaning from a statement it is necessary to evaluate or consider the
meanings of the words and symbols used in the statement and the meanings

of the structures which they form. Applying the Efficiency Principle, we wish
to superimpose on the parsed structure which results from the fvar and rvar
settings of the Parsing Algorithm, an additional structure called the normal

precedence string, which will be constructed from pointers showing what

words are to precede which other words in the evaluation procedure. I e.,
rather than having any scanning procedure to determine meaning we wish to
have a direct step-by-step procedure to control the sequence of evaluations.
By the Immediacy Principle, when the input string is scanned from
left to right, as soon as any word or subunit can be evaluated it should be
evaluated. (Note that here we are applying the General Principles to the
specification of a data structure rather than to the derivation of an algorithm,
since they are equally applicable.) Since all of the information concerning a
symbol is already contained in the symbol table, symbols may be evaluated
as soon as they occur, but this trivial evaluation we discard with a fringe cut,
Words, on the other hand, are treated as binary operators in parsing, and
their meanings depend upon the arguments which are placed in their ftvar and
rvar components, i.e., words depend on left and right context. Since a word

cannot be evaluated until the meanings of its arguments are known, the
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Immediacy Principle says that the arguments of a word must precede it

on the precedence string. Since there always must exist at least one word
with atomic symbols in both its £var and rvar, (this is one of the trivial
theorems to be proved), the evaluation process can always be started, and
in fact the Immediacy Principle says that it should start with the first such
atom-atom word.

The major precedence component, rlvar, of a word points to the next

word to be evaluated, and we consider that there will be a Precedence
String Follower Algorithm which will transfer evaluation control from one
word to the next by following the precedence string pointers. If a word
has one argument atomic, then as soon as its single non-atomic argument
is evaluated it may be evaluated, but if a word has both arguments non-
atomic, then (again using the Immediacy Principle) after its fvar has been

evaluated and has sent control to the word itself, the minor precedence

component, flvar, of the word points to the start of its non-atomic rvar,
and only after the entire rvar structure has been evaluated will another
major precedence component bring control back to the word, at which time
it may actually be evaluated.

Note that the minor precedence component, flvar, and the major

precedence component, rivar, show the left and right semantic context of a word,

just as Lvar and rvar show the left and right syntactic context of a word.

The precedence string is not actually a linear string at all, (although
when it is evaluated by the Precedence String Follower the result is the same),
but instead has the form of linked rings, each ring containing one 11
component and any number of rl components. Thus it is a complex structure
which, (following our viewpoint that complex structures never occur
instantaneously but must be assembled step by step), can yield to an input-

string-and-algorithm analysis.
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Consider the example of a completed first-pass structure shown
in Figure 5. The fact that syntax and semantics cannot be separated in a
language is shown by the fact that the syntactic parsing structure and the
semantic precedence structure are integral components of the complete
first-pass structure and cannot be separated. Similarly we wish to derive
a single algorithm on the basis of the General Principles, which will construct
the entire first-pass structure step by step. Such a combined algorithm itself
is a complex structure so that we arrive at it step by step. The completed
Parsing Algorithm is the first step, and we now will derive the Precedence
Algorithm independently as a second step, and then merge the two algorithms
into a single algorithm as a third step. Note that if we consider the writing
of the separate algorithms as atomic, and the merging of the algorithms as
a "'word' binary operator, we are in fact applying the theory which we are
developing to its own development -- an entertaining concept which is in fact
of considerable significance.

The input string problem for the Parsing Algorithm was handled by
a fringe cut which assumed the existence of a suitable preprocessor. In
the case of the Precedence Algorithm, however, we can make use of known
facts about the Parsing Algorithm (exercises for the reader) to arrive at

a suitable input string generator. These facts show (see Figure 5) that

FINI

Start

Fig. 5 Exomple of First-Pass Structure
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a major precedence component is to be set whenever a non-atomic fvar or
rvar is set in the Parsing Algorithm., Similarly, considering the timing of

the generation of the parsing structure by the Parsing Algorithm, a minor
precedence component is to be set whenever atom-atom occurs, and this can
in turn be interpreted to happen whenever an atomic rvar is set into a word
whose £ var is also atomic. Thus the input string for the Precedence Algorithm
consists of the £var and rvar settings of the Parsing Algorithm. These facts
give rise to an appropriate Read/ Where Routine for the Precedence Algorithm

as shown in Figure 6, which obtains its inputs from the Parsing Algorithm.

yes

no
yes

Null

Major Minor

Fig. 6 Read/Where for Precedence Algorithm

The setting of the minor and major precedence components for
normal precedence is virtually trivial once the new Read/Where Routine has
decided whether a major or a minor component is to be set: The component
is set, and then the new ''word' becomes the next element whose components
are to be set. The process is so simple that we have not even formally
called upon the General Principles in this derivation, although they have been
applied nonetheless. The Precedence Algorithm is shown in Figure 7, and the
Parse-Precedence Algorithm which results from merger of Figures 2, 6 and
7 is shown in Figure 8. Note that in the merger process the Simplicity

Principle has been applied to eliminate some steps, but that the separate



36

functioning of the two algorithms which have been merged can be seen in
the combined algorithm. In particular if all symbols with ones are ignored,

the algorithm reduces to the Parsing Algorithm,



Iv. SEMANTIC ATTRACTIONS

A. Modifiers

It was mentioned that the normal precedence is only the first small
step into the realm of semantics. In fact since the normal precedence
mirrors so exactly the parsing structure, only the simplest of languages are
of the Parse-Precedence class. The class is not empty, however, for it
includes standard algebraic notation and many artificial programming
languages. Our objective, however, is to go beyond the simple languages
into ones of richer expression, and as usual we proceed step-by-step. It
was mentioned that the normal precedence string structure has the form of
linked rings where the beginning of each ring is shown by a single minor
precedence component, but there may be any number of major precedence
components in the ring. The asymmetry of the restriction to a single minor
precedence component disappears in a natural fashion with the introduction of

the concept of minor modifiers. In a later section we will also define a

major modifier, but since the distinction between minor and major modifiers
can only be made at that time, we now will describe the inclusive general
concept of modifier, and our specific remarks will apply to minor modifiers.
We assume that the vocabulary table entry for each word contains
two types of information concerning the evaluation of that word, called the

minor evaluation and the major evaluation. The minor evaluation information

concerns the determination of the meaning of the word when its £var has been
completed (i. e., when the left context of the word is known), and the M
evaluation concerns the determination of the meaning of the word when its total
context (both left and right) is known. The normal precedence string discussed
above has been concerned only with the major evaluation of the word meanings,

and nothing has been said thus far about the minor evaluations.

37
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Consider a word with non-atomic fvar and rvar and with normal
precedence inserted. There will be a major precedence component from {var
to the word, and also a major precedence component from rvar to the word,
and the minor and major evaluations are to take place when the Precedence
String Follower transfers control along these arrows respectively. Although
for many words the minor evaluation is the identity function, some words
may take on a certain preliminary meaning based upon their left context,
and this minor evaluation may influence the treatment of things in its rvar.
Such words are called modifiers because they modify the meaning of words
which follow them in the input string. Usually a modifier actually modifies
only as much of the input string to its right as is parsed into its rvar, but in
any case its minor evaluation function is performed early on the precedence
string, before the rvar is complete, and since there is no restriction placed
upon the functions performed during this minor evaluation, the modifying power
has no essential limitation.

Modifier words with non-atonric £vars, ('left context dependent
modifiers''), are handled properly by the algorithm of Figure 8, but since
the normal precedence string does not visit words with atomic fvars, if the
minor evaluation function of the modifier is to occur at its proper place in the
precedence string, a slight modification to the algorithm of Figure 7 is
required. In fact all that is required is to check to see whether a word is a
modifier when its fvar is atomic, and if so to splice it onto the end of the
current f1lvar which starts the precedence ring. This is accomplished by
splicing between the points labelled C and D, in Figure 8, the trivial algorithmic

step shown in Figure 9.
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null Read/Where minor nl— £1(x1)
major
nl — r1(x1)

nl — x1
nil = nl

Fig. 7 The Precedence Algorithm

f 1
yes null Read/Where )= mbol <= nilo)Xes :”—;xn
no )
n= m word Help!
STOP! £(n) like x 2 —2-8(r(p) like x ? )28 Help!
no * yes yes
p= FINI? 0 o) i
p) like x?
yes v
2(n) like p? =2 r(p) like n?)Lp-Help!
no no
x —{(n) x— r(p)
p —s(n) p—x—=nl
n—p—nl s(p)—~p
nil —n —=x compute type (nl)
compute type (n1)
C
At Y= £(p) atom?
no o r(x) atom?
A‘——{nl-— r1(x1) — x1 yes
=
Dgyes
e

nl — 41 (x1) —= x1|

Fig. 8 The Parse-Precedence Algorithm
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Fig. 9 Modifier Modification

With Figure 9 merged with the algorithm of Figure 8, the resulting
First-Pass Structure is now modified so that every minor modifier in an rvar
is visited in order by the minor precedence chain, which is terminated by the
usual atom-atom start of the normal precedence, at which point the major
precedence chain completes the ring, as is shown schematically in Figure 10,
Notice that the asymmetry in an individual ring is now eliminated, for it is
now possible to have any number of minor precedence components ( associated

with modifiers) followed by any number of major precedence components.

Fig. 10  Modifiers on Minor Precedence
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B. The Plike Algorithm

Once again the combined algorithms of Figures 8 and 9 may be
interpreted as defining a broader class of languages, and there are many
known languages of simple types which are members of that class. Still,
however, even with modifiers, we have penetrated only minutely into the
realm of semantics, and we now take a more sizeable step. In the preceding
sections we have blindly assumed that it was legitimate to let to the precedence
components of a first-pass bead point to any other first-pass bead
regardless of its type. This is an extremely restrictive assumption and
does real violence to our viewpoint of things operating as a chemistry under
the influence of attractive and repulsive forces. So we now remove it, and
thereby open a veritable cornucopia of further rich linguistic features.

With the Parsing Algorithm as background showing how the General
Principles apply in the derivation of algorithms, we experience no difficulty
in taking this step. For simplicity of exposition we consider the major and
minor segments of an individual precedence ring separately and consider the
general problem of linking one-component elements together to make a string,

taking cognizance of the fact that each element has a precedence type and

each component has a precedence like. We shorten the term precedence-like

to the single word plike, and consider the problem of assembling a precedence
string segment under the influence of plikes, i.e., whether or not words like
to be connected by a precedence component. Just as datatypes and datalikes
can be considered to specify whether words like to go together on the basis
of syntax or structure, plikes say whether or not words like to go together on
the basis of meaning or semantics., i.e.,, do their meanings match.

As before we approach the problem of capturing the concept of plikes

in an algorithm by first deriving from the General Principles the Plike
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Algorithm separately, and then we will merge this algorithm with other
algorithms, again applying the Principles for simplification.

Since this time we are talking about the setting of only a single
component (say rlvar to be explicit) there is no question concerning the
applicability of the Stacking Principle -- the Plike Algorithm must include
a stack. We call the head o the stack pl. The things to be stacked are
precedence string segments, which are ""held" by a pointer, x1, pointing
to the head of the chain of pointers. With such a segment on the stack, pl,
it will fight with the current segment x1, over the new word pointed to by nl.
The same Fight Algorithm as was used in the Parsing Algorithm may be used
here, using plikes rather than likes, only in this case stacking takes place
whenever neither pl nor x1 plikes nl. In this case x1 is stacked on top of pl,
and nl becomes x1, starting a new segment which will fight over the next nl
coming in from the input string.

Whenever pl wins the fight, its precedence component is set to point
to nl and it is unstacked. The beginning of the resulting segment is then
treated as nl and the new pl which is uncovered by the unstacking operation
fights with x1 over that new nl. As long as pl continues to win, the unstacking
continues, and the process terminates when either x1 wins, in which case
the entire segment becomes x1, or until neither x1 nor pl like the nl, in which
case the current x! is stacked, and the nl becomes x1, as before.

Since the beginning as well as the end of a segment are of importance
here, the Efficiency Algorithm applies and says that rather than searching
for the beginning of a segment, a pointer from the head of the segment to
the tail should be established so that the segment is made into a loop. We
call this operation "wrapping up the segment' so that the things which are

stacked are actually wrapped segments. The unstacking operation is then

followed by unwrapping the segment and establishing a pointer to the beginning

of the segment.
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C. Example
The Plike Algorithm is shown in Figure 11, but the way in which a string

is re-ordered on the basis of plikes is best illustrated by a simple example.

Read/Where

[

(1) plike n1?2 )22—( 71 (pl) plike n17 }mm
yes no

r1(p1) plike nl ‘D Y Help!
‘YGS fyes

11(x1) plike p1? F——to(r1(p1) plike x1? )
no

start — r1(x1)
—. rl{pl) =z
AR — [T,
yl —x1 n]——spturt z —nl
s1(p1) — pl

Fig. 11 The Plike Algorithm

Consider an input string of operators from the major precedence setting of

the Precedence Algorithm,
ABCDE (2)

Assume that A plikes B. Then the major precedence component A is set to

point B and AB is an established segment of the precedence string.
Start — A —=B (3)

When C is read in, if B does not plike C, then we set the segment ending at
B aside on the stack. To do this we ""wrap up' the segment by setting the

major precedence component of B to point to A temporarily, and set aside the
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wrapped-up segment on the stack. C then is made the beginning of a new

current segment. When D is read in the configuration is as follows:
Start \{\—:Q/C-—-D (4)

Now B and C fight over D on the basis of plikes, since either B or C could
precede D. Assume that C wins the fight on the basis of the Plike Matrix,

then when E is read in the situation is as follows:
~
Start @C—-D E {5)

Then Bfights Dover E. Assume that in this case B wins, and is taken off
the stack and unwrapped to show that A B E is an established segment of the
precedence string now.

—_—
Start A—=B —D E (6)

Then the empty stack fights D over the beginning of the segment, which is
now A, Since empty cannot win, if D plikes A, we have the final precedence

string, re-ordered on the basis of plikes, as follows:
Start A—=B C—=D E (7)

The important thing to notice about this example is that the start of
the segment can not absolutely be determined until the entire segment is
complete. Notice how the start pointer moves from A to C when the segment
AB is stacked. If the segment had been longer and the fights were resolved
differently, it would be perfectly possible for the start of the segment to
switch back to A, or even switch to some other word farther down the string.
This fact has important consequences with respect to the use of the Plike

Algorithm for major and minor precedence segments.
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D. Decoupling

A precedence ring begins with a minor segment, consisting of at least
the minor precedence component of normal precedence, but which may have
any number of modifier minor precedences. With the occurrence of an atom-
atom the major precedence segment, consisting of any number of major
precedence components, begins, and the ring closes when the end of a major
precedence component coincides with the beginning of the initial minor
precedence component. Thus a precedence ring has a beginning, an atom-
atom in the middle, and an end. The minor and major segments of the
precedence ring may be reordered independently on the basis of plikes, and
at any time in the major segment, the occurrence of a minor precedence
component may initiate another precedence ring,

Whenever a new precedence ring is initiated, a new start pointer
becomes active and is trying to be set. As the preceding section shows, the
start of a precedence segment can not be set until the segment is complete,
and since the old precedence ring was interrupted by the initiation of the new
precedence ring, its start is also still active. Therefore, the Stacking
Principle applies and says that since there are two active start components,
the ""element'' containing the older start component must be set aside on a
stack. We call this '"decoupling'' the precedence rings,

The element which must be stacked is the entire precedence ring itself,
and consists of the ''state variable' pointers of the Plike Algorithm, namely
nl, x1, pl, andﬂ. The current settings of these state variables must be
saved or wrapped up in a suitable manner on the stack, so that when the new
precedence ring is completed, the generation of the old may continue. We do
this wrapping and stacking operation not by constructing an actual n-component

element for the ring itself, but by taking the more efficient constructive
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approach of using the components of the existing first-pass beads to perform

the stacking function. Figure 12 shows the situation schematically.

Stack 1 stack 3
s1(p1) " s3(p3) £1(x2) = nl

21 (x22) r1(p1) Major X]) 214 p3) Minor x2 ‘
X 1 '
* _.‘p ——— _. ql __’ —— _.$ ¢ atom-atom
)

sl( 2) x1
stack 2 52(p2)
P Skt

Old Ring = p2 New Ring —

Fig. 12 Schematic of Precedence when Atom-Atom Occurs

Figure 12 shows the interrupted major segment of the old ring
including the top-most wrapped-up segment on the pl stack, and the current
major segment whose start is indicated by the minor precedence component
of x2, which is the last element in its minor segment. The figure also
indicates the minor segment of the new ring, including the top-most wrapped-
up segment on its stack, the p3 stack, and the current minor segment whose
start is indicated by the minor precedence component of the last element, x1,
in the major segment of the old ring. In nl is the atom-atom element which
signifies unequivocally that a new ring is being generated. Notice that since
the minor segment of the new ring might consist only of the single minor
precedence component of normal precedence, which is triggered by the
occurrence of atom-atom itself, the use of the occurrence of atom-atom is
required to indicate all rings whether or not they contain modifiers.

E. Minor Modifiers

When modifiers were introduced it was pointed out that our initial

remarks would refer to only minor modifiers, and at this time we can now be
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explicit about the adjective "minor'". A minor modifier is one which enters
into the competition in the minor segment of a preécedence ring, but if it is
unsuccessful in the fights and ends up on the p3 stack, then once the minor
‘segment is terminated by the occurrence of atom-atom, the stacked minor
modifier is discarded and not considered further. In other words the minor
evaluation function of a minor modifier is taken into account only if it is
used in suitable context -- the occurrence of a suitable context being indicated
by the fact that the words with which it is associated plike properly so that it
becomes incorporated into an active minor precedence segment. If the con-
text of the minor modifier word consists of words which do not plike to be
connected to it, then once the minor segment is terminated by the occurrence
of atom-atom, the minor evaluation function of the modifier is ignored
completely and never carried out, and only the major evaluation function for
that modifier word will be carried out when it is reached on the major pre-
cedence segment. As we shall see in the next section, major modifiers do not
suffer from this drastic treatment.

With the role of minor modifiers clarified, we now may proceed to
the consideration of the stacking of the old precedence ring when the new ring
is triggered by the occurrence of atom-atom. As shown in Figure 12, the
""gtate variable' pointers pl, x1, and nl are saved in sl(p2), pl, xl respectively.
The previous ring is stacked in s2(p2), and the current old ring which is on
the top of stack 2 is pointed to by p2. These operations are shown in the
first three lines of the Atomn-Atom portion of Figure 13. The fourth line
shows in addition that the start of the major segment of the new ring is set
into the minor precedence component of yl, and the reason is made clear
by consideration of Figure 12, Recall that the minor segment of the new ring
may not exist, in which case the start of the major segment of the new ring

would come from x1 of the old ring rather than x2 of the new ring. As will
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be seen when we finally collect all of the sub-algorithms which we are now
describing into one merged algorithm, yl will have the value of either the

old x1 or the new x2, so that it alone indicates the universally correct element
whose minor precedence component can be used as the start pointer for the

major precedence segment of the new ring.

A

no

yes no

pl — s1(x1) (p2=x17? p2=pl? Help!
p2 — s2(x1) ) yes
x1 — pl — p2 v
nl— 21(y1) —x1 [t = 1(x1)—= y1 —x2| s1(p2) — p!

‘ s2(p2) — p2

v
Atom-Atom Modifier End of Ring

Fig. 13  Precedence Controls for Minor Modifiers Only

The Modifier portion of Figure 13 shows in flow diagram language
the initiation of the minor segment of the new ring. Whenever a modifier is
detected ( see Figure 9) the question 'yl = x1?'" tells whether or not this is
the first minor modifier in the minor segment. Because the same pointer,
yl, is used in both instances of the Plike Algorithm as applied to both the
major and minor precedence segments, if yl is equal to x1 (the current end
of the major precedence segment) then that means that the immediately
preceding element had its major precedence component set, so that the
current element is the first modifier to occur in the new ring. As Figure 13
shows, in this case the new element nl is set to be the start of the minor
segment, indicated by £1(x1), and also the current end of the minor segment,

indicated by x2, and yl is brought up to date.
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Our consideration of the precedence controls for ring stacking
finishes by the consideration of the End of Ring portion of Figure 13, The
closure of a precedence ring is indicated by the fact that the end of the
current major precedence segment coincides with the beginning of the ring.
Consideration of Figure 12 shows that the beginning of the ring has been
saved in p2 when the ring was detected by the occurrence of atom-atom, so
that the question '""p2 = x1? ' indicates ring closure. As Figure 13 shows
we then check to see whether anything is left on the pl stack, which contains
the wrapped-up unsuccessful major precedence segments. If p2 is not equal
to pl, then there are indeed segments on the stack, and the algorithm then
calls for help because this indicates that a meaningless statement has occurred.
In other words, the checking of plikes in the competition in the major pre-
cedence segment shows whether or not the words which are used in a statement
go together meaningfully. It is perfectly possible for a statement to be
parsed correctly and still be meaningless. This is what is detected at this
point in the algorithm.

If on the other hand, p2 is equal to pl, indicating that there are no
dregs left on the pl stack, then the processing of the old ring is enabled by
destacking pl and p2 so that processing can continue. Note that at this point
xl already has the proper value, and the third state variable, nl, will be
set by the next operation of the Parsing Algorithm. Recall also that since
we are at present considering only minor modifiers, the p3 stack has no role
whatsoever in the end of ring operations.

F. Major Modifiers

At this point in the discussion, if space were not at a premium, we
would take time out to merge the algorithms of Figures 8, 9, 11 and 13, and
present some discussion of the newly defined class of languages covered by

that algorithm. Instead, with due apologies to the reader for the confusion
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which may result, we now press on to the consideration of_rr_l_%lc_)}- modifiers
before the final merger of all algorithms necessary for the complete treat-
ment of that portion of semantics which is covered by precedence and plikes.
Recall that a minor modifier was discarded if it was unsuccessful in the
competition during the construction of the minor segment of a precedence ring.
Major modifiers exhibit more stamina and stay on to fight future battles, as
we now discuss,

If a major modifier is frustrated in its attempt to find a suitable
semantic context during the generation of the minor precedence segment, so
that it ends up on the p3 stack, it then seeks to find a suitable context in any
plike fight in the future, whether it is based on either major or minor
precedence components, and this aggressive behavior continues through all
nestings of precedence rings within precedence rings until finally the major
segment generation returns to the modifier, Only when this closure takes
place does the activity of the major modifier cease, and if it has been un-
successful through all battles up to that point, it is summarily discarded just
as ignominiously as a minor modifier, so that only its major evaluation has
any semantic effect.

As usual, the behavior of major modifier word elements is the result
of algorithms which refer to their components, In this case it is necessary
merely to provide a mechanism for the p3 stack to be carried along instead
nf being discarded as in the case where we were concerned only with minor
modifiers. We do this by splicing the p3 stack onto the head of a new stack,
the p4 stack, whenever atom-atom occurs. We must use a new stack since
the major modifiers onthe p4 stack are to join in both major and minor
precedence fights, and a minor fight will generate its own local p3 stack.
The p4 stack then will be a single stack which results from the concatanation

of all leftover p3 stacks. Figure 14 shows how this is accomplished.
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p4 — p3 —= s3(x1) |

$3(p2) = p37?

no

no

pd 362  p3

S

e e A A A G s e W A=

[P =332 |
p4
s3(x1)
|p3 — p4 —s3(x1)|
_y
Schematic Atom-Atom

Fig. 14  Precedence Controls for Major Modifiers

The component 83(p2) shows the beginning of the current p3 stack, so that
if 83(p2) is not equal to p3, then the current p3 stack contains wrapped-up
unsuccessful minor segments which are to be transferred to the p4 stack.
Since 83(p2) also indicates the head of the p4 stack at the previous atom-atom,
if 83(p2) is not equal to p4, then that means that some unknown number of
modifiers have been destacked from p4 so that in order to add the segments
on the current p3 stack to p4 it is necessary to make the 83 component o
83(p2) point to the present p4. With this accomplished, the p4 and p3 stacks
now constitute a single stack connected by 83 components, so that the p4
pointer may now be moved to the head of the new p3 stack to make the new
setting of p4. The new p4 is also placed in s3(x1), since the next step is
to make x1 become the new p2, and thus this properly sets the new s83(p2) to
coincide with the new p3 and p4. This completes the description of the atom-
atom situation when there is something on the p3 stack.

In the other case, when the p3 stack is empty, as is indicated by the
fact that s3(p2) does equal p3, then it is necessary merely to set both p3
and s83(xl) to be the same as the current p4, since if p4 has not changed no

harm is done, whereas if p4 has changed, this will provide the proper updating.
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Thus in either case, when atom-atom is encountered, anything on the p3
stack is added to the head of the p4 stack, so that any major modifiers are
saved for future battles.

For the completion of the major modifier discussion we turn to
Figure 15, which is the result of merging the algorithms of Figures 8, 9, 11,
13, and 14, with some additional small changes relating to major modifiers
and minor segments, Examination of Figure 15 shows that the major and
minor precedence settings of Figure 8 for normal precedence have been
blown up to include a complete Plike Algorithm in each case. Detectors to
test whether the pl and p3 stacks are in use have also been added, so that
the elaborate fight is omitted when the stacks are not in use. In each case,
between the box which transfers nl to yl and the test for the status of the
stack in question, a small algorithm consisting of several questions and boxes
has been added. Those on the right-hand side, in the minor precedence
portion, consist of a test to see whether or not the p4 stack is in use, and if
it is, then if the element currently on the head of the stack is not a major
modifier, it is destacked, whereas if it is a major modifier, then if it plikes
nl it immediately wins nl and is destacked. This shows how the major
modifiers on the p4 stack obtain highest priority in the plike fight as they
should.

The similar section for major modifiers on the left of Figure 15
contains a question and a box concerned with x2, and also one additional
question, following "INIF = p4?', asking whether nl is equal to p4, when p4
is a major modifier. If nl does equal p4, then this indicates that the major
precedence segment has reached the still unsuccessful major modifier, and
it is at this time that it is summarily discarded by being destacked from p4.
Otherwise the treatment of the major modifiers on the p4 stack is the same
for the major precedence segment as for the minor, i.e., major modifiers

have top priority.
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The only further addition to Figure 15 related to major modifiers
concerns the place where the closure of a precedence ring is detected and the
pl and p2 stacks are re-established. One line has been addedto update p3
and s3(p2) to coincide with the current value of p4 so that the p3 and p4 stacks
are also kept up to date when precedence rings are completed.

G. Broken Minor Segments

The changes concerning the minor segment are somewhat more
subtle. Up to this point we have described the precedence ring as having any
number of minor components, an atom-atom, and then any number of major
components. This mode of description provides proper motivation for plikes
in the minor segment, but actually is correct only during the growing phase
of the construction of precedence rings, Examination of Figure 10 shows that
a precedence ring with many components in its minor segment can equally well
be considered to be several trivial rings linked together. Each time a major
component reaches a modifier with a minor component, another ring is
closed off and serves the same role as an atom-atom for the next higher ring.

When a ring is closed off, it makes a complete unit, and since it
serves as the atom-atom for the next higher ring, initiating the major segment,
if there is any plike reordering, it may be pl stacked like an atom-atom
whenever a new start is called for. In other words, happenings in the con-
struction of the major segment may cause the minor segment to be broken up
and distributed along the major segment as separate sub-rings. In order for
this to happen, whenever a ring is closed off, the minor component pointing
to it must become the new start pointer for the major segment.

Several small changes have been made in the minor version of the
Plike Algorithm of Figure 15 to enable the changing of start as successive
rings close off. Whenever a minor precedence component, £1, is set, the

corresponding major component, rl, is set in the opposite direction, so that
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in effect the minor segment as originally laid down is made of two-way
pointers. Then, in the major version of the Plike Algorithm of Figure 15,
the question ''yl = x2? " detects when a ring closes, and if it does, the
component rl(x2) provides the new setting for x2, whose minor component,
£1(x2), then serves as the new start,

With major modifiers and broken minor segments, we see that the
final precedence string consists of any combination of minor and major
precedence components, the precise sequence being determined entirely
by plikes. The Precedence String Follower Algorithm will always take the
minor component if there is one, unless it arrived at the word from its rvar,
in which case it takes the major component. The '"p2 = pl?'" check that the
pl stack is always emptied guarantees that any word with non-atomic rvar
will be so entered.

H. Preliminary Conclusion

Even a cursory examination of Figure 15 shows that the algorithm
has now grown to be extremely complex -~ a consequence of the rather
elaborage behavioral properties of the class of languages which it defines.
Were it not for the fact that it has been deriged step-by-step by merging
simple algorithms, it would be virtually impossible to give a coherent des-
cription of its operation. In view of this complexity it is no longer legitimate
to leave the proving of facts about the algorithm as exercises for the reader,
but since the present paper is already so long, we defer detailed discussion
of the algorithm to a future paper, and instead close with a few general remarks
and indications of future developments.

A major deterent to delving deeply into the machinations of the
algorithm of Figure 15 at this time is the fact that there are no simple

languages known which exercise all of its features. In the Appendix is presented
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a brief description of the Algol 60 Language showing the Like Matrices and
types, but even that language contains only the most trivial examples of the
features which have been discussed. Although an exhausfive examination has
not been made, it appears that all other existing programming languages are
even simpler (from the point of view of this theory) than Algol 60, but this
does not mean that the class of languages defined by the algorithm of Figure 15
is empty. All of the features of the algorithm can be found in suitable
selections from natural language, but since well-defined sub-segments of
natural language (i.e., English) have not already been defined, elaborate
discussions at this time would be out of place.

The very thing that makes natural English too variable to provide a
good discussing medium at this time does show explicitly in the present
algorithm and will be the subject of the next paper in this series. There
are five places in the algorithm of Figure 15 which say help -- one for syn-
tactic ambiguity, two for semantic ambiguity, and one each for ungrammaticalness
and meaninglessness. The general principles which have been applied in
deriving the present algorithms can also be applied to the derivation of further,
still more elaborate algorithms which will tie onto these places so that apparent
syntactic and semantic ambiguities are resolved temporarily in a manner which
satisfies well-defined minimization properties, and then if on the basis of
those resolutions the algorithm runs into ungrammatical or meaninglessness
difficulties, then alternate choices of the ambiguous portions are constructed.
In the more elaborate algorithms which resolve ambiguities, the algorithm
will call for help only when all possibilities arising from all ambiguous
situations have been determined unsatisfactory.

Major portions of this extension of the theory have already been derived
and await only formal presentation. Once the algorithm has reached that stage,

then it will accommodate quite easily a sizeable portion of natural English,
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and at the time deeper discussion of the implications of the theory can be

made in a natural setting.



APPENDIX: ALGOL 60 as an Example

We show the Algorithmic Theory of Language in action by considering

the Algol 60 Language exactly as it is defined in the definitive report of

Naur, et al, (12) with the following trivial exceptions:

1.

Identifiers, strings, number forms, etc. are assumed handled
by the preprocessor and the Read/Where Routine.

Square brackets are omitted since parentheses suffice.

Since the word procedure is used in two distinct ways:

(a) the alternate form

""define (x) ... where ... tobe ... '

is used for

"(y) procedure ... ; ... ; ...

where x is real, boolean, integer, procedure

and y is real, boolean, integer, empty

(b) the word procedure is used only as a declarator.
Since : is used in three distinct ways:
(a) the form
"array (A to B)" is used for "array [A: B]"
(b) the form
" . )YL:(..." is omitted for the moment.
(c) the character : always signifies labelling.
Since "if ... then ... ; ...'" seems only to add confusion

and inconsistency, else must always be used.

59
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Figure Al shows the datatype and datalike information for the full
vocabulary. The types dr and d{ take on the value of whatever is actually
parsed into the rvar and £var, respectively., The modifier column shows a
fringe cut treatment of context dependency in that the occurrence of a for
causes := to be a major modifier. We use the notation for (:_=_) to indicate
:= in the context of for.

Whenever the undefined type, x, appears, then the Left or Right
Wordlike Matrices, shown in Figures A2 and A3, must be checked. A one
in the intersection of row i with column j shows that word i does like word j
in its fvar or rvar; a zero indicates_i_ does not like Js and a M shows a
don't care case which cannot arise.

A highly useful adjunct to the basic algorithms of the Theory is the
algorithm of Figure A4, which is used to set the proper entries into the Word-
like Matrices. Consideration of the Like and Fight Algorithms, (Figs. 3-and 4),
allows Figure A4 to be derived to separate out those word-pairs which are not
uniquely determined by the type specifications (e.g., Figure Al, for Algol 60),
and which may whimsically be selected by the human. With this algorithm
it is an easy matter to set up a selected language according to the theory.

Even though the datatypes and datalikes of Figure Al have purposely
been restricted over what would seem most natural, in order to correspond
as closely as possible to the official Algol 60 Report, it is interesting to
note that certain generalizations ( which actually correspond to minor incon-
sistencies in the official description) result from application of the theory.
One example will suffice to illustrate the point: In order to permit
"A:=B:=C:=...", the := includes the datatype dr, but once this is done,
then expressions such as "A := B+ C_:= D * E", which are excluded from

the Official Report, are both grammatical and meaningful. They could only

be excluded by artificial means. A later paper will give full natural datatypes
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Word ?;::’e LeﬂDofo like Right Modifier
unary + - R E R
. R RVE R
*/ R R R
¢ R R R
233 S
— B E B
A B B B
v B B B
o] B B B
= B 8 B
°= Svdr AARVBYW) dl M if for (:=)
if X X B
then dr X SvRvBvL
else dr SvRvBvL di
go to S E L
for X E X m — M(3=)
step X R R m
until X X R
while X R B m
do S X SvE
begin X E SvDvE m
end S X X
{ dr X X m
) di X E
. S A SvE m
to X R R
bool, real, int D E X m
procedure D E X m
array D E X m
switch b E X m
own D E X m
value D E X m
label D E X m
define X E X m
where X X X
to be S X SvE
: dr SvDvE SvDvE
’ X X X
comment X E X
A-1 Datatypes and Datalikes for ALGOL 60

T 3 £smMmur- > oo x]|x

a o
—_ =

EY:

undefined

real or integer
boolean
undeclared atom
label
statement
empty

switch

minor modifier
major modifier
dynamic right

dynamic left
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no

[1—=r(p) vs n | [0—;r(p)vsn|

(HL0)) 0 t(r(p)) = nil 2)=—(t(£(n) V t(r(p)) = x? ==

yes

‘ yes

() 0 e = x?)
oy no

Yy

t(£(n)) = x?

yes

r{p) like n?

[1—=r(p) vsn

L(n) like p? — no
yes =1 M
T—=2n) vsp
{O—r(p) vs n|
v N K1 —
t() = type () An) vs p = row n col p of 2 matrix

9+ = human decision
yes

A-4 The Like Matrix Setting Algorithm
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and matrices for the existing Algol 60 vocabulary to show what a complete
and natural language formed from those words should be.

Slight modifications of the Matrix Setting Algorithm can be made to
check for inconsistencies in the human responses or to permit ambiguous
languages to be defined. The version of Figure A4 accepts the most recent
human decision unquestioningly, and also guarantees that the help which
detects ambiguities in the Parsing Algorithm will never be reached.

For Algol 60 we handle the entire question of precedence types
and plikes in a cavalier fashion with the following fringe cut, in order to
save space. The plike question here is so trivial that Plike Matrices and
elaborate discussion of precedence types seem out of place. Using the
notation A(B) to show B in the A context we have:

£1(:=) plikes only until, while, for (,)

ri(step) plikes only for (,), ;_
rl(until) plikes only step

rl(while) plikes only for (,), for (:=)

In Algol 60, everything else plikes everything else.
Finally, Figure A5 shows a non-trivial ( but nonsensical) grammatical
Algol 60 program in input string and first-pass structure form as generated

by the algorithm of Figure 15,
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do A(n):= (y* (A(-1)) x;

A(n);

end endf

fi=

EINI

An Example in ALGOL &0 Language

A-5
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