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JOBSHOP-LIKE QUEUEING SYSTEMS

by

James R. Jackson

Western Management Science Institute
Graduate School of Business Administration

UCLA

Summary. The equilibrium joint probability distribution of queue lengths is
obtained for a broad class of jobshop-like "networks of waiting lines," where
the mean arrival rate of customers depends almost arbitrarily upon the number
already present, and the mean service rate at each service center depends
almost arbitrarily upon the queue length there. This extension of the
author's earlier work is motivated by the observation that real production
systems are usually subject to influences which make for increased
stability by tending, as the amount of work-in-process grows, to reduce
the rate at which new work is injected or to increase the rate at which
processing taks place.

1. Introduction

This paper provides the equilibrium joint probability distribution of

queue lengths for a bsoad class of queueing-theoretical models representing

multipurpose production systems composed of special-purpose service centers

(e.g, manufacturing jobshops). In the systems modelled, customers arrive

from time to time, each with a routing, which is an ordered list of service

centers where the customer must be served. An arriving customer joins the

queue at the first center on his routing, remains there until his service

there is completed, then goes to the second center on his routing (if any)

and remains there until served, and so forth, until all his required services

are completed, at which time he leaves the system.

1. This work was supported by the Office of Naval Research under Task
047-003 and by the Western Management Science Institute Ford Foundation
grant. Reproduction in whole or in part is permitted for any purpose
of the United States Government.

2. To be presented to the Joint International Meeting of the Institute of
Management Sciences and the Operations Research Society of Japan, Tokyo,

August 21-24, 1963.
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The customer arrivals are modelled as a generalized Poisson process,

whose parameter (mean arrival rate) varies almost arbitrarily with the

total number of customers already in the system. Service completions at

each center are also modelled as generalized Poisson processes, the parameter

(mean service rate) at each center varying almost arbitrarily with the queue

length there (number of customers in the queue, waiting and being served).

The generation of routings is modelled as a random walk among the names

of the service centers, which with probability one reaches a terminal state

marking the ends of routings. The mechanism for generating routings is

sufficiently general to include, for instance, cases where every conceivable

routing may occur, the possibility that all customers require services at

all centers in the same order, and instances in which each customer requires

service at just one of the centers.

The mathematical model does not explicitly reflect any particular rule

for deciding which, among several customers at a service center, is to be

served "next." The model and its analysis are, in fact, consistent with

all rules which do not depend (directly or indirectly) upon the future

routing or service time requirements of any customer. Perhaps the most

commonly used rule in this category, and the one whose operation is most

easily visualized, is the first-come, first-serve rule.

Results. The basic result of this paper is the equilibrium joint

probability distribution of the queue lengths at the several centers in the

jobshop-like queueing system just outlined. This result is stated as a

theorem in Section 4, following the detailed formulation of the basic model

and preliminary analysis in Sections 2 and 3. In Section 5, the theorem of

Section 4 is generalized to ;over cases where the immediate injection of a
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new customer is triggered when the total number of customers falls below

a specified limit, or where a service is deleted if a queue grows beyond

a specified maximum length. Section 5 includes remarks about the theorem

and points to some of its implications.

Section 6 is devoted to special cases. Systems with constant customer-

arrival rate are considered; and it turns out that the main theorem of Section

5 reduces in this case to a statement that the equilibrium joint probability

distribution of queue lengths is identical with what would be obtained by

pretending that each individual service center is a separate queueing

system independent of the others. The constant arrival-rate case is further

specialized to the instance where each center is an "ordinary" multi-channel

3service system. Next, to clarify the effect of varying arrival rates,

attention is directed to a special case of the general model, in which all

Service rates are the same. Finally, systems are considered in which the

total number of customers present is held fixed.

Significance. The generalized customer-arrival process of the present

paper allows for the representation of systems whose "potential customers"

are generated by a stable Poisson process, but where the probability that a

potential customer will actually enter the system for service depends upon

how many customers are already there. In addition to the representation of

"ordinary" multiserver centers, the generalized service-completion process

also permits the treatment of systems at whose centers the number of servers

actually functioning depends almost arbitrarily upon the queue length there,

as well as plausible rough approximations to such phenomena as "speedups" and

"overtime work." The further generalizations (Section 5) of the customer-

3. Which was analyzed previously in the author's paper, "Networks of Waiting
Lines," Operations Research, vol. 5, no. 4 (Aug., 1957).
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arrival and service-completion processes make possible crude approximations

to such phenomena as the activation of "standby jobs" when a shopload falls

off, and "subcontracting" when a service center becomes overloaded.

2. Notations and Restrictions

The first business of this section is to specify and provide notations

for the parameters of the generic jobshop-like queueing system. As this

is done, these parameters are interpreted and restrictions are stated. The

model is mathematically formalized in Section 3.

States of the system. The number of service centers in the system will

be denoted by N , a positive integer; and the centers will be referred to

as Center 1, Center 2, etc. The states of the system are N-dimensional

vectors with non-negative integer components, the n-th component representing

the queue length at Center n. Such vectors will be called state vectors.

If k = (kl,k2, . * • , 2) is a state vector, then S(k) = k, + k2 + + k N

the total number of customers in the system when its state is k.

4
Customer-arrival and service-completion processes. The customer-arrival

process is specified by a set of parameters,

L = (X(X) I K E [O,-)) .

The interpretation is that if the system Is in state k at time t , then

the probability that a customer will arrive between then and time t+h

is h \(S(k)) + o(h) . Similarly, the service-completion processes are

specified by a set of parameters,

M = (p(n,h) I n E [0, o) ;

with the interpretation that if k customers are present at Center n
n

4. If a and b are integers with a < b,, then [a,w) denotes the
set of integers not smaller than a ,-and [a,b] denotes the set of
integers between a and b inclusive. The expresston o(h) denotes
unspecified quantities such that as h tends to the limit zero, so
does o(h)/h .
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at time t , then the probability that the service of one of these

customers will be completed by time t+h is h p(n,k ) + o(h) . The

probability of two or more events (arrivals or completions) in a time

interval of length h is o(h) .

From their interpretations, the X(K) and the p(n,k) must be

non-negative, and also each p(n,O) = 0 . However, it is convenient, and

seems to result in no loss of interesting generality, to make somewhat

stronger assumptions, as follows:

ASSUMPTION (2.1). Either the I(K) are all positive; or for sono

non-negative K , X(K) > 0 if K < K but '(K)-= 0 if K > K ,

ASSUMPTION (2.2). The i(n,k) are all positive, except that

each p(n,O) = 0 .

(These assumptions may seem to exclude the possibly interesting case

where a service center is "shut down" if the queue length there falls to

some speoified lower limit. This case can, however, easily be biought into

this paper's analytical framework, by redefining the n-th component of the

state vector as the number of customers at Center n in excess of the lower

limit there, and appropriately translating the arguments of X(K) and

4(n,k) )

Generation of routings. The routing-generation process is specified

by a set of parameters,

R = (r(mpn) I m E[O,N] ; n E [1,11A.11)

The interpretation is that, for m and n Ell,N] : (i) the probability is

r(O,n) that Center n will be first on a routing; (ii) the probability is

r(m,N+l) that if Center m is i-th on a routing, then this i-th element is

the last one; (iii) the probability is r(m,n) that if Center m is i-th

on a routing, then there is an (i+l)-st element and it is Center n; and,
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for completeness, (iv) the probability is r(O,N+l) that a routing will be

empty. It is easily seen that the probability of routing (nl, n2, . . ) , i)

is the product,

r(O,n I1) r(nl,n2, ) . . . r(nil,n i ) r(ni,,N+l)

Two assumptions are made:

ASSUMPTION (2.3). For each m E[O,N] , the set

( r(m,n) I n E[l,N+I]) is a probability distribution.

ASSUMPTION (2.4). The set of equations,

N
(2.5) e(n) = r(O,n) + Z e(m) r(m,n) , n E [1,N] ,

-W 1

has a unique solution,.( e(n) I n E[l,N]) ; and the e(n) are all non-

negative.

Assumption (2.3) is necessary in view of the interpretation of the

r(m,n) . In the presence of (2.3), Assumption (2.4) can be shown to be

equivalent to the requirement that a routing terminate with probability one.

It is intuitively obvious (and can easily be proved) that e(n) is the

expected value of the number of appearances of Center n on a routing.

3. Mathematical Model

The informal interpretations of Section 2 are now given mathematical

substance by stating the conditional probabilities that the generic jobshop-

like queueing system will be in various states J = (Vlp.2 ,  iN)

at time t+h , given that it is in state k = (kl1 k2  . . . , k) at

time t . These probabilities are as follows:
N N

1 - h \(S(k)) t r(O,n) - h E p(n,k ) (l-r(n,n)) + o(h) , if j = k
n=l n=l n

h X(S(k)) r(Ox) + o(h) , if j = k except Jx = kX + 1

h p(x,k) r(x,N+l) + o(h) , if j=k except Jx =k - l;

h p(x,k ) r(x,y) + o(h) , if 3j=k except jx = k - IJ = k + ;

o(h - l ) , for 3 with IS(3) - S(i)I =.s > 1 ;
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where x ii the second and third expressions runs through [1,N] ; and

x and y in the fourth expression run through [1,N] , omitting pairs

with x =y.

The first four of the above expressions reflect, respectively, the

ipossibility of no "events" occuring in the interval between times t and

t+h (except perhaps the completion of a service for a customer who then

requires another service at the same center), a customer arrival, the

completion of the last service on a customer's routing, and the completion

of one service for a customer who then requires another service at a different

center. The fifth expression reflects the need for at least IS(D) - S(0)

events to intervene between the appearances of states J and k .

The process defined by the procedin, oxprossions, with the notations

and subject to the assumptions of Section 2, will be referred to as

Jobshop-like queueing system (N,L,M,R), or more briefly as System (N,L,M,R).

Time-dependent state probabilities. Let P(k,t) be the probability

that System (NL,M,R) is in state k at time t ; and let P(k,t'Ij,t)

be the conditional probability of state R at time t' , given state J

at time t . From elementary probability theory,

P(k,t+h) = EP(j,t) P(i,t+hlj,t)

the sum extending over all state vectors J ; for each state vector k

If the conditional probabilities given previously are substituted in this

equation; and then P(k,t) is subtracted from both sides; and then both

sides are divided by h ; and thei,, finally, the limit is taken as h tends

to zero; the final result is the following differential-difference equation:

(3.1) aP(kt) = -[X(S(k)) + Zi-(n,k ) (1 - r (n,n))] P(k,t)
dt n n

+ 0(S(k)-i) r(O,n) P(h(n),t)

+ !1(n,1; +1) r(n,+l) P(I(n),t)
n n

+ =P(n,ik +1) r(n,m) P(3(m,n),t)ma n
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where the. sums extend over (1,N] , except that pairs with m = n are

omitted from the double sum, and terms are omitted for which the vector

argument of P has a negative component; h(n) = k , except that its

n-th component is k - J. 1(n) = k , except that its n-th component

is kn + I ; and R(m,n) =k , except that its m-th component is km - 1

and its n-th component is k + 1.

4. Equilibrium for Jobshop-Like Queueing System (N,L,M,R)

By definition, an equilibrium state probability distribution for

System (N,L,M,R) is a probability distribution, (p(k)) , over state

Vectors k , such that P(k,t)np(k) specifies a (constant) solution

to equations (3.1). If such a distribution exists, it is unique, and

for each state vector k

lim P(k,t) = p(k)

the limits being independent of the "initial" state of the system.5 Thus,

the equilibrium state probability distribution provides a rather complete

description of the long-run-average behavior of the state of the system.

The theorem of this section gives a condition under which such a

distribution exists, and specifies the distribution.

5. That the P(k,t) approach limits follows from Theorem 2.9,
p. 102, A.T. Barucha-Reid, Elements of the Theory of Markov

Processes and their Applications (blcGraw-Eill, 1960). It
can be argued, using Assumptions (2.1) and (2.2) that every
non-transient state of System (N,L,M,R) communicates with
every other, and hence tinat if a limiting probability
distribution exists, it is unique. Th4 assertions then
follow from the observation that the equilibrium state
probability distribution is one possible "initial"
distribution over state vectors.
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The following notations will be used in stating the theorem, and

subsequently:
K-1

(4.1) W(K) = T X(i) , for K = 0, 1, 2, .

i=O
N k

(4.2) w(k) = TTn[e(n)/P(n,i)] , for k = (kl, k2, . . . , kN )
n=l i=l

a state vector;

(4.3) T(K) = Ew(k) , summed over state vectors k with S(k) = K

gor K = 0, 1, 2, . . .

(4.4) Wl, if the sum converges,

= 0 , otherwise.

It is easy to verify that the sum in (4.4) converges to a positive number

or diverges to plus infinity.

The proof of the following theorem (after the preceding development)

is a straightforward matter of verifying that (4.6) does define a

probability distribution ("obvious"), and that equations (3.1) are

satisfied by this distribution (by direct substitution and a moderately

tedious, but routine, algebraic reduction):

THEOREM (4.5). If TT > 0, then a unique equilibrium state probability

distribution exists for Jobshop-like queueing system (N,L,M,R), and is

given by

(4.6) p(i) = TWOK) vl(S(0)

for k a state vector.

An example. The above theorem is extended in Section 5, and the

etatement of remarks and derivative conclusions will be deferred until this i.:

done. As a preliminary illustration of the theorem, consider a

6. Empty products are assigned the conventional value, +1 .
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two-service-center jobshop-like queueing system for which the parameters

are as follows:
7

(4.7) X(K) = a/(K + 1)
x , where a > 0 and x 0

(4.8) P(1,k) = b k where b > 0 and y > 0

(4.9) P(2,k) = ck , where c > 0 and z 0

(4.10) r(0,1) = r(1,2) = r(2,3) = 1 ; the other r(m,n) = 0

The specification of R implies that each customer requires exactly two

services, the first at Center 1 and the second at Center 2; and it follows

that e(1) = e(2) = 1 .

After substituting in (4.1) through (4.4), it is not difficult to

verify that TT > 0 unless both (i) x = 0 and (ii) either y = 0 and

a/b > 1 or z = 0 and a/c - 1 . If rn> 0 , then Theorem (4.5) provides

the joint equilibrium probability distribution of queue lengths at the two

centers, as follows:

rr(a/b~ i (a/c) J

(4.11) p(i,J) - ,ja4 )x (ai/ )Y

The numerical value of rr can be obtained for specific values of the

parameters by using the fact that the p(i,j) must sum to one.

Variations upon this example will be used again in subsequent

sections.

5. Triggered Arrivals and Service Deletions

In this section, the concept of System (N,L,M,R) is generalized

to include cases where the immediate inje-:tion of a new customer is

7. The particular example used here was suggested by R. IV. Conway
and 17. L. Maxwell, "A Queueing Model with State Dependent Service
Rates," Journal of Industrial Engineering, vol. XII, no. 2 (1962);

which treats a queueing system equivalent to a single one of the
example's two interacting service centers.
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triggered whenever the total number of customers falls below a specified

limit, or whore a service is deleted if a queue grows beyond a specified

maximum lenoh. The generalized model, to be referred to subsequently as

Jobihop-like queueing system (N,LM,R)*, or as System (NL,MR)*, is

identical with System (N,L,M,R), except for the following:

(1) There is some non-negative integer, K* ; such that the initial

state k satisfies S(k) > K* ; and if the last service on some customer's

routing is completed when the system is in a state k with S6) - K* I

then the arrival of a new customer occurs automatically at that instant.

(ii) For each Center n, there is a k n  which may be a positive

integer or + o ;such that the initial state, k = (kl, I2, . * . , kX)
satisfies kn < ka * for n E [1,N] ; and if a customer arrives at center n

when the queue length there is k n  then the imainent service required

by that customer at Center n is deleted from his routing, and he proceeds

from there immediately, as if he had been served.
0

It is implicit in the above statemei, ts that K* < k * + k2 * + . .4 .

If K* > 0 , then the X(K) for K < K* are obviously meaningless; ane.

if kn * < + ; , then the P(nk) for k - k n* are obviously meaningless.

System (N,L,M,R) is the special case of System (N,L,M,R)* with

K* = 0 and each k n* = -Fm . To formalize System (N,L,M,R)* would involve

rewriting the conditional probabilities (beginning of Section 3) for cases

where 8(k) = K* and/or one or more k n = * n and rewriting equations (3.1)

correspondingly. This will not be done here, because the modified equations

are of insufficient interest to justify the development of (necessarily

0. Or, more generally, some customer is emitted from the center;
with the restriction that the choi.ce of the customer to be
emitted must not depend upon the future routing or service
requirements of any customer.
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rather formidable) appropriate notations. But it is necessary to

give generalizations of equations (4.1) through (4.4) to prepare for

the generalization of Theorem (4.5):

(5.1) W*(K) = 0 , for K < K*

K-i

= n X(i) , for K > I*
i=K*

N k
(5.2) w*(i) = TY rn [e(n)/.(n,i)], if k < k * for n E [1,N]

n=1 i=1 n -1

= 0 , otherwise;

(5.3) T*(K) = Zw*(k) , summed over k with S(k) = K;

(5.4) 0* = ox*(K) T*(K)} -  , if the sum converges,

= 0 , otherwise

If K* = 0 and each of the k n = +m , then equations (5.1) throughn

(5.4) specialize to equations (4.1) through (4.4), upon removal of

the asterisks.

The following theorem, which can be proved by substitution in the

modified version of equations (3.1), differs from Theorem (4.5) only in

the presence of the asterisks:

THEOREM (5.5). If Tr* > 0 , then a unique equilibrium state

probability distribution exists for Jobshop-like queueing system

(N,L,M,R)*, and is given by

(5.6) p(k) = 11* w*() l*(S(k),

for k a state vector.

Remarks. It is natural to conjecture that if r* = 0 , then no

equilibrium state probability distribution exists for System (N,LM,R)*,

but I have been unable to prove this except in special cases. If either

(M) there is some (finite) K such that ?(K) = 0 iorI X I{° , or



(ii) all of the k * are finite; then only finitely many terms in then

sum of (5.4) can be positive, so it is assured that rr* > 0, and the

theorem applies.

The "discovery" of Theorem (4.5) resulted from making a sequence

of "guesses's concerning more and more general jobshop-lihe queueing

systems, and proving successively more general versions of the theorem.

The way in which this took place may be suggested by the discussion of

certain special cases in Section 6.

Some corollary results. Suppose tnat System (N,L,M,R)* satisfies

the condition, Tr* > 0, so that Theorem (5.5) applies. Write p(S=K)

for the equilibrium probability that the total number of customers in the

system is K ; i.e., that the state x satisfies S(R) = K . If

p(S = K) > 0 , and k is a state vector, write p(kjK) for the

equilibrium conditional probability of state k , given that the total

number of customers in the system is K ; i.e., p(klIQ= p(k)/p(S=K)

if S(k) = K , but otherwise p (kiK) = 0 . It follows directly from the

theorem that:

(5.7) p(S = K) = r* T*(K) W*(K)

(5.8) p(kijS(k)) = w*(k)/T*(S(k)) , if p(S = S(k)) > 0

The probabilities (5.7) are of interest in themselves, because there

are instances where the total number of customers in the system is of

primary concern. They also lead to the overall mean arrival rate of

customers under equilibrium, E(X)

(5.9) E(X) =KO 7,(K) p(S = K)

= 1* ^ 1 lW*(K+l) T*(K)
&MO0
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Equation (5.9) is potentially of special interest, because it allows

the determination of "loss rates" when the variation in the (K) is

due to the failure of "potential customers" to enter the system for

service when too many customers are already present.

The main interest of the conditional probabilities (5.0) perhaps

stems from the observation that they do not depend upon the customer-arrival

process -- except for its role in determining whether 17* > 0 , and poswibly

in determining the values of C for which p(S = K) , 0 . In a sense, the

effect of particular customer-arrival-process parameters is concentrated upon

the determination of the p(S = K) .

Note also that the parameters of the routing-generation process

influence the equilibrium state probability distribution only by way of

the e(n) . It was remarked previously that e(n) is the expected number

of appearances of Center n on a routing.

Example. Consider a system identical with the example given at the

end of Section 4, except that for some K*, k1*, and k2* : Ci) if the

total number of customers in the system falls below K*, then a new

customer is instantly "created"; (ii) if a (k * + 1)-st customer joins the

queue at Center 1, he immediately moves on to Center 2, without being

served at Center 1; and (iii) if a (k * + 1)-st customer joins the queue

at Center 2, he immediately leaves the system without being served there.

Equation (4.11) is still valid for the p(i,j) such that i + j - K* ,

i < kI* , and j1< k2  ; but all other p(i,j) = 0 . There is a change,

of course, in the numerical value of IT (which might be replaced by TT*

for consistency with the notation of the present section).
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6. Special Cases

The first part of this section is restricted to the special case

of System (N,L,M,R)* in which X(K) X(O) , to be referred to as the

constant-arrival-rate case of System (N,L,M,R)*. For this case, it is

convenient to define the following notations, for nE [1,N]

k
(6.1) w(k) = l [X(O) e(n)/P(n,i)] , for k < k n

=0 , for k > kn

(6.2) pn(k) = wn(k)/f Wn(i) , if the sum converges,
i=0

= 0 , otherwise,-for k = O, 1, 2,....

The following theorem is the direct specialization of Theorem (5.5) to

the constant-arrival-rate case:

THEOREM (6.3). If, in the constant-arrival-rate case of System

(N,LM,R)*, pn(0) > 0 for nE[i,N] ; then a unique equilibrium

state probability distribution exists for the system and is given by

the product,

(6.4) p(k1 , k 2 , . . . , kN ) = pl(kl) p2 (k 2 ) . . . PN(kN)

for (k,, k2, . . . , I- a state vector.

Interpretation. When Theorem (6.3) applies, it is immediate from

(6.2) that the p n(k) for fixed n form a probability distribution

over k = 0, 1, 2, . . . This distribution is, in fact, the equilibrium

distribution of queue length for the one-service-center queueing system

where customer arrivals form a Poisson process with mean rate N(0) e(n)

and whose service-completion process is identical to that of Center n

(which is well known, and also follows from the one-service-center case

of the theorem).



But e(n) is the mean number of appearances of Center n on a

routing in the generic system to which Theorem (6.3) refers, whence

X(O) e(n) is in fact the mean rate of customer arrivals at Center n

in this system. Thus, Theorem (6.3) can be interpreted as stating that

for the constant-arrival-rate case of System (NL,M,R)*, the equilibrium

probability distributions of queue lengths at the individual centers are

independent; and also each of these distributions is identical with that

for a one-service-center queuein3 system "similar" to the center concerned.

Further specializations. To represent an "ordinary" M(n)-channel

Center n, with exponentially distributed holding times whose mean is

1/1n , set P(n,k) = Pn min(k,M(n)) . If all centers are thus specialized

in Theorem (6.3), the result is the theorem of the paper cited in footnote 3.

In this instance, the sum of the w (i) can easily be expressed in closedn

form. Under this specialization, the one-service-center case of

Theorem (6.3) gives the well-known equilibrium distribution of queue lengtht

for an "ordinary" multi-channel service center with Poisson customer-

arrival process and exponentially distributed holding times.

Example. Suppose that in the example at the end of Section 4, x = 0

and, to assure the existence of equilibrium, assume it is false that

either y m 0 and a/b > 1 or z = 0 and a/c > I . Then

p(i,j) = pl(i) p2() ;

where pl(I) = p1 (0) (a/b) i/(i!)
x  and p2 () = P2 (O) (a/c) /(J:)y

the Pn(O) being determined by the conditions that Z , () 1

for n = 1, 2 .

Varying arrival rate, uniform service rates. To focus on the

effect of varying arrival rates, consider the special case of

System (N,L,M,R)* in which e(n)/P(n,i) = 1 for all i > 0 . Then

w*() = 1 for every state vector k . It is easy to sh-,4 that
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T*(K) = N-l+K , for K = 0, 1, 2,....
N - 1

It then follows that a sufficient (but not necessary) condition that

TT* > 0 is that lim sup X(K) < 1 . Suppose that TT* > 0 . If K

and j are two states, with S(k) = K > J = S(J) , where p(S = K)

and p(S = J) are positive; then, from Theorem (5.5):

K-i
p(k)/p(j) = Li X(i) ;;

i=J

P(S = K) -1 (i + N) X(i)
p(S =J) i i + 1

p(ijK) = (N -1"

The interested reader can improve his "feel" for the effect of varying

arrival rates by working out more specialized examples, including ones

in which p(S = X) > 0 for only finitely many different values of K

Total number of customers held fixed. Consider, finally, the special

case of System (N,L,M,R)* in which %(K) = 0 for K > K* . In this

system, customer arrivals occur when and only when other customers leave

the system; so the total number present will eventually remain fixed

at K*. It follows from Theorem (5.5) that p(k) = w*(k)/T*(S(k)) if

S(k) = K* , and otherwise p(k) = 0

In this instance, the model can also be interpreted as representing

a closed system through which the same customers circulate eternally.. In

this interpretation, the probability that a customer served at Center m

will next require service at Center n is r(m,n) + r(m,N+l) r(O,) ,

in the notation of the present paper. If the "givens" of such a system

include probabilities s(m,n) that a customer served at Center m will

next require service at Center n, for m and n Etl,N]; these
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probabilities can be appropriately converted for the application of

Theorem (5.5) by setting r(m,n) = s(m,n) for mE [I,N-1] and

n E [1,N] , r(NN+I) = 1 , and r(O,n) = s(N,n) for n E [1,N]

As a numerical example, consider a closed system made up of one

"machine operator" and two "repairmen," in which there are two

"machines." The machine operator functions like a service center of

the kind treated in the present paper; but the "service" he renders

is to cause the machine to "fail." The time to failure is exponentially

distributed with mean 10. When a machine fails it must be worked on

first by one repairman, then by the other, in a specified order. Each

repairman functions like a service center, with mean service rate 1/3

when he has one machine to work on, but with mean service rate 1/2 whea

he has two. Designating the machine operator as Center 1, and the

repairmen as Centers 2 and 3, what has been described is an instance

of System (N,L,M,R)*, with: N = 3 ; K* = 2 and %(k) = 0 for K> 2

P(1,1) = P(1,2) = 1/10 , P(2,1) = P(3,1) = 1/3 , and 1(2,2) = P(3,2) 1/2;

and r(0,l) = r(1,2) = r(2,3) = r(3,4) = 1 , whence e(l) = e(2) = e() = 1.

Using (5.2), (5.3), and the fact that p(k) = w*(k)/T*(2) for S(k) = 2

it turns out that the equilibrium state probabilities are as follows:

p(0,0,2) = p(0,2,0) = 6/131 ; p(0,l,l) = 9/181 ; p(l,0,l) = p(ll,O) =

30/131 ; p2,0,O) = 100/181 . It can be concluded, for instance, that

the long-run-average proportion of time during which the machine operator

will actually have a machine to operate is 16O/181 , or about 08.4 percent.
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