UNCLASSIFIED

Reproduced by the

ARMED SERVICES TECHNICAL INFORMATION ACENCY ARLINGTON HALL STATION ARLINGTON I2, VIRGINIA

NOTICE: When goverment or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.

Western Management Science Institute
University of California - Los Angeles

UNIVERSITY OF CALIFORNIA, LOS ANGELES
 GRADUATE SCHOOL OF BUSINESS ADMINTSTRATION
 WESTERN MANAGEAGNT SCIENCE INSTITTUTE

Jenuexy 1963

Western Mancgement Science Institute Wozking Paper No. 27
Management Sciences Research Project Resear:ch Report NO, 81
JOBSHOP-LEZE QJEUEENG SYSTEMS
by
James R. Jackcon

Sumary. The equilibriam joint picbability dietribution of queue lengthe is obtained for a broad class of jobshop-like "netwcrks of waiting lines ${ }^{\text {" }}$ where the mean arrival rate oi custoners depends almost arbitrarily upon the number already present; and the mean service rate at each service center depends almost arbitirarily upon the queue length there. This extension of the author's earlier work is motivated by the obseavaition that real production systems are usually subject to influences which make for increased stability by tending, as the amount of work-in-process grows, to reduce the rate at which work is injected or to increase the rate at which processing takes place.

This paper combines and extends upon the content of Western Mänagement Science Iustitute working Papers No. 10 and 19.

Acknowledgements. This work was supported partly by the Office of Naval Research under Task 047-003, and partly by the Western Management Science Institute under a grant from the Ford Foundation, Reproduction in whole cr in part is permitted for any purpose of the United States Government.

1,2
 JOBSHOP-LIKE QUEUEING SYSTEMS

by
James R. Jackson
Western Management Science Institute Graduate School of Business Administration UCLA

Abstract

Summary. The equilibrium joint probability distribution of queue lengths is obtained for a broad class of jobshop-like "networks of waiting lines," where the mean arrival rate of customers depends almost arbitrarily upon the number already present, and the mean service rate at each service center depends almost arbitrarily upon the queue length there. This extension of the author's earlier work is motivated by the observation that real production systems are usually subject to influences which make for increased stability by tending, as the amount of work-in-process grows, to reduce the rate at which new work in injected or to increase the rate at which processing tabes place.

1. Introduction

This paper provides the equilibrium joint probability distribution of queue lengths for a beod class of queueing-theoretical models representing multipurpose production systems composed of special-purpose service centers (e.g, manufacturing jobshops). In the systems modelled, customers arrive from time to time, each with a routing, which is an ordered list of service centers where the customer must be served. An arriving customer joins the queue at the first center on his routing, remains there until his service there is completed, then goes to the second center on his routing (if any) and remains there until served, and so forth, until all his required services are completed, at which time he leaves the system.

[^0]The customer arrivals are modelled as a generalized Poisson process, whose parameter (mean arrival rate) varies almost arbitrarily with the total number of customers already in the system. Service completions at each center are also modelled as generalized Poision processes, the parameter (mean service rate) at each center varying almost arbitrarily with the queue length there (number of customers in the queue, waiting and being served).

The generation of routings is modelled as a random walk among the names of the service centers, which with probability one reaches a terminal state marking the ends of routings. The mechanism for generating routings is sufficiently general to include, for instance, cases where every conceivable routing may occur, the possibility that all customers require services at all centers in the same order, and instances in which each customer requires service at just one of the centers.

The mathematical model does not explicitly reflect any particular rule for deciding which, among several customers at a service center, is to be served "next." The model and its analysis are, in fact, consistent with all rules which do not depend (directly or indirectly) upon the future routing or service time requirements of any customer. Perhaps the most commonly used rule in this category, and the one whose operation is most easily visualized, is the first-come, first-serve rule.

Results. The basic result of this paper is the equilibrium joint probability distribution of the queue lengths at the several centers in the jobshop-like queueing system just outlined. This result is stated as a theorem in Section 4, following the detailed formulation of the basic model and preliminary analysis in Sections 2 and 3. In Section 5, the theorem of Section 4 is generalized to sover cases where the immediate injection of a
new customer is triggered when the total number of customers falls below a specified limit, or where a service is deleted if a queue grows beyond a specified maximum length. Section 5 includes remarks about the theorem and points to some of its implications.

Section 6 is devoted to special cases. Systems with constant customerarrival rate are considered; and it turns out that the main theorem of Section 5 reduces in this case to a statement that the equilibrium joint probability distribution of queue lengths is identical with what would be obtained by pretending that each individual service center is a separate queueing system independent of the others. The constant arrival-rate case is further specialized to the instance where each center is an "ordinary" multi-channel service system. ${ }^{3}$ Next, to clarify the effect of varying arrival rates, attention is directed to a special case of the general model, in which all service rates are the same. Finally, systems are considered in which the total number of customers present is held fixed.

Significance. The generalized customer-arrival process of the present paper allows for the representation of systems whose "potential customers" are generated by a stable Poisson process, but where the probability that a potential customer will actually enter the system for service depends upon how many customers are already there. In addition to the representation of "ordinary" multiserver centers, the generalized service-completion process also permits the treatment of systems at whose centers the number of servers actually functioning deperds almost arbitrarily upon the queue length there, as well as plausible rough approximations to such phenomena as "speedups" and "overtime work." The further generalizations (Section 5) of the customer-

[^1]arrival and service-completion processes make possible crude approximations to such phenomena as the activation of "standby jobs" when a shopload falls off, and "subcontracting" when a service center becomes overloaded.

2. Notations and Restrictions

The first business of this section is to specify and provide notations for the parameters of the generic jobshop-like queueing system. As this is done, these parameters are interpreted and restrictions are stated. The model is mathematically formalized in Section 3.

States of the system. The number of service centers in the system will be denoted by N, a positive integer; and the centers will be referred to as Center 1, Center 2, etc. The states of the system are N-dimensional vectors with non-negative integer components, the n-th component representing the queue length at Center n. Such vectors will be called state vectors. If $\bar{k}=\left(k_{1}, k_{2}, \ldots, k_{N}\right)$ is a state vector, then $B(\bar{k})=k_{1}+k_{2}+\ldots+k_{N}$, the total number of customers in the system when its state is $\overline{\mathrm{k}}$.

Customer-arrival and service-completion processes. ${ }^{4}$ The customer-arrival
process is specified by a set of parameters,

$$
\mathrm{L}=\{\lambda(\mathrm{K}) \mid \mathrm{K} \in[0, \infty)\}
$$

The interpretation is that if the system is in state \bar{k} at time t, then the probability that a customer will arrive between then and time $t+h$ is $h \lambda(S(\bar{k}))+o(h)$. Similarly, the service-completion processes are specified by a set of parameters,

$$
M=\{\mu(n, k) \quad \mid n \in[0, \infty)\} ;
$$

with the interpretation that if k_{n} customers are present at center n
4. If a and b are integers with $a \leq b$: then $[a, \infty)$ denotes the set of integers not smaller than a, and [a, b] denotes the set of integers between a and b inclusive. The expression $o(h)$ denotes unspecified quantities such that as h tends to the limit zero, so does $o(h) / h$.
at time t, then the probability that the service of one of these customers will be completed by time $t+h$ is $h \mu\left(n, k_{n}\right)+o(h)$. The probability of two or more events (arrivals or completions) in a time Interval of length h is $o(h)$.

From their interpretations, the $\lambda(K)$ and the $\mu(n, k)$ must be non-negative, and also each $\mu(n, 0)=0$. However, it is convenient, and seems to result in no loss of interesting generality, to make somewhat stronger assumptions, as follows:

ASSUMPTION (2.1). Either the $\lambda(K)$ are all positive; or for some non-negative $K_{0}, \lambda(K)>0$ if $K \leq K_{0}$ but $\lambda(K)=0$ if $K>K_{0}$.

ASSUMPTION (2.2). The $\mu(n, k)$ are all positive, except that each $\mu(n, 0)=0$.
(These assumptions may seem to exclude the possibly interesting case where a service center is "shut down" if the queue length there falls to some specified lower limit. This case can, however, easily be brought into this paper's analytical framework, by redefining the n-th component of the state vector as the number of customers at Center n in excess of the lower limit there, and appropriately translating the arguments of $\lambda(K)$ and $\mu(n, k)$.

Generation of routings. The routing-generation process is specified by a set of parameters,

$$
R=\{r(m, n) \mid m \in[0, N] ; n \in[1, N+1]\} .
$$

The interpretation is that, for m and $n \in[1, N]$: (i) the probability is $r(0, n)$ that Center n will be first on a routing; (ii) the probability is $r(m, N+1)$ that if Center m is i-th on a routing, then this i-th element is the last one; (iii) the probability is $r(m, n)$ thac if Center m is i-th on a routing, then there is an (i+1)-st element and it is Center n; and,
for completeness, (iv) the probability is $r(0, N+1)$. that a routing will be empty. It is easily seen that the probability of routing ($n_{1}, n_{2}, \ldots, n_{1}$) is the product,

$$
r\left(0, n_{1}\right) r\left(n_{1}, n_{2}\right) \cdots r\left(n_{1-1}, n_{1}\right) r\left(n_{1}, N+1\right)
$$

Two assumptions are made:
ASSUMPTION (2.3). For each $m \in[0, N]$, the set
$(r(m, n) \mid n \in[1, N+1]\}$ is a probability distribution.
ASSUMPTION (2.4). The set of equations,

$$
\begin{equation*}
e(n)=r(0, n)+\sum_{m=1}^{N} \theta(m) r(m, n), n \in[1, N], \tag{2.5}
\end{equation*}
$$

has a unique solution, $(e(n) \mid n \in[1, N]\}$; and the $e(n)$ are all nonnegative.

Assumption (2.3) is necessary in view of the interpretation of the $r(m, n)$. In the presence of (2.3), Assumption (2.4) can be shown to be equivalent to the requirement that a routing terminate with probability one. It is intuitively obvious (and can easily be proved) that $e(n)$ is the expected value of the number of appearances of Center n on a routing.

3. Mathematical Model

The informal interpretations of Section 2 are now given mathematical substance by stating the conditional probabilities that the generic jobshoplike queuelng system will be in various states $\bar{j}=\left(j_{1}, j_{2}, \ldots, j_{N}\right)$ at time $t+h$, given that it is in state $\bar{k}=\left(k_{1}, k_{2}, \ldots, k_{N}\right)$ at time t. These probabilities are as follows:
$1-h \lambda(S(\bar{k})) \sum_{n=1}^{N} r(0, n)-h \sum_{n=1}^{N} \mu\left(n, k_{n}\right)(1-r(n, n))+o(h) \quad$ if $\bar{j}=\bar{k}$;
$h \lambda(s(\bar{k})) r(0, x)+o(h)$, if $\bar{j}=\bar{k}$ except $j_{x}=k_{x} \div 1$;
$h \mu\left(x, k_{x}\right) r(x, N+1)+o(h)$, if $\bar{j}=\bar{k}$ except $j_{x}=k_{x}-1$;
$b \mu\left(x, k_{x}\right) r(x, y)+o(h)$, if $\bar{j}=\bar{k}$ except $j_{x}=k_{x}-1, j_{y}=k_{y}+1$; $o\left(h^{s-1}\right)$, for \bar{j} with $|S(\bar{j})-S(\bar{k})|=s>1$;
where x in the second and third expressions runs through $[1, N]$; and x and y in the fourth expression run through $[1, N]$, omitting pairs with $x=y$.

The first four of the above expressions reflect, respectively, the possibility of no "events" occuring in the interval between times t and $\mathrm{t}+\mathrm{h}$ (except perhaps the completion of a service for a customer who then requires arother service at the same center), a customer arrival, the completion of the last service on a customer's routing, and the completion of one service for a customer who then requires another service at a different center. The fifth expression reflects the need for at least $|S(\bar{j})-S(\bar{k})|$ events to intervene between the appearances of states \bar{j} and $\overline{\mathbf{k}}$.

The process defined by the procodins cxprossions, with the notations and subject to the assumptions of Section 2 , will be referred to as Jobshop-like queueing system (N, L, M, R), or more briefly as system (N, L, M, R).

Time-dependent state probabilities. Let $P(\bar{k}, t)$ be the probability that System (N, L, M, R) is in state \bar{k} at time t; and let $P\left(\bar{k}, t^{\prime} \mid \bar{j}, t\right)$ be the conditional probability of state $\overline{\mathrm{K}}$ at time t , given atate \bar{j} at time t. From elementary probability theory,

$$
P(\bar{k}, t+h)=\Sigma P(\bar{j}, t) P(\bar{k}, t+h \mid \bar{j}, t),
$$

the sum extending over all state vectors $\overline{\mathbf{j}}$; for each state vector $\overline{\mathrm{k}}$. If the conditional probabilities given previously are substituted in this equation; and then $P(\bar{k}, t)$ is subtracted from both sides; and then both sides are divided by h; and then, iinally, the limit is taken as h tends to zero; the final result is the following differential-difference equation:

$$
\text { (3.1) } \begin{aligned}
\frac{d P(\bar{k}, t)}{d t} & =-\left[\lambda(S(\bar{k}))+\sum_{n}\left(n, k_{n}\right)(1-r(n, n))\right] P(\bar{k}, t) \\
& +\frac{2}{n} \lambda(S(\bar{k})-i) r(0, n) P(\bar{h}(n), t) \\
& +\sum_{n}^{2}, \ldots\left(n, i_{n}+1\right) r(n, N+1) P(\bar{i}(n), t) \\
& +\sum_{m n} \mu\left(n, i_{n}+1\right) r(n, m) P(\bar{j}(m, n), t) ;
\end{aligned}
$$

where the sums extend over $[1, N]$, except that pairs with $m=n$ are omitted from the double sum, and terins are omitted for which the vector argument of p has a negative component; $\bar{h}(n)=\bar{k}$, except that its $n-t h$ component is $k_{n}-1 ; \bar{i}(n)=\bar{k}$, except that its n-ith component is $l_{n}+1$; and $\bar{J}(m, n)=\bar{k}$, except that its m-th component is $k_{m}-1$ and its n-th component is $k_{n}+1$.

4. Equilibrium ior Jobshop-Like Queueing System (N, L, M, R)

By definition, an equilibrium state probability distribution for System (N, L, M, M) is a probability distribution, $\operatorname{lp}(\bar{k})]$, over state vectors \bar{k}, such that $p(\bar{k}, t)=p(\bar{k})$ specifies a (constant) solution to equations (3.1). If such a distribution exists, $\ddagger t$ is unique, and for each state vector \bar{k},

$$
\lim _{t=\infty} p(\bar{k}, t)=p(\bar{k})
$$

the limits being indepencent of the "initial" state of the system. 5 Thus, the equilibrium state probability distribution provides a rather complete description of the long-rua-average behavior of the state of the systen. The theorem of this secicion gives a condition under which such a distribution exists, and specizies the disiribution.
5. That the $P(\bar{k}, \mathrm{t})$ approach limits follows fiom Theorem 2.9, $\overline{\mathbf{p}}$. 102, A.T. Earucha-Reid, Eiements oi the Theory of Markov Processes and their Applications (NicGraw-[iil1, 1960). It can be argued, using Assumptions (2.1) and (2.2) that every non-transient state of System (N, L, N, R) communicates with every other, and hence taat if a limiting probability distribution exists, it is unique. The assertions then follow from the observation that tise equiliurium staice probability distribution is one possible "initial" distribution over state rectors.

The following notations will be used in stating the theorem, and subsequently ${ }^{6}$

```
        K-1
(4.1) \(W(K)=\prod_{i=0} \lambda(1)\), for \(K=0,1,2, \ldots\);
(4.2) \(\quad w(\bar{k})=\prod_{n=1}^{n} \prod_{i=1}^{k}[e(n) / \mu(n, i)]\), for \(\bar{k}=\left(k_{1}, k_{2}, \ldots, k_{N}\right)\)
                                a state vector;
(4.3) \(T(K)=\Sigma_{w}(\bar{k})\), summed over state vectors \(\bar{k}\) with \(S(\bar{k})=K\),
                                    for \(K=0,1,2, \ldots\);
(4.4) \(\quad \pi=\left\{\sum_{K=0}^{\infty} W(K) T(K)\right\}^{-1}\), if the sum converges,
    \(=0\), otherwise.
```

It is easy to verify that the sum in (4.4) converges to a positive number or diverges to plus infinity.

The proof of the following theorem (after the preceding development) is a straightforward matter of verifying that (1.6) does define a probability distribution ("obvious"), and that equations (3.1) are satisfied by this distribution (by direct substitution and a moderately tedious, but routine, algebraic reduction):

THEOREM (4.5). If $\pi>0$, then a unique equilibrium state probability distribution exists for Jobshop-like queueing aystem (N, L, M, R), and is given by (4.6) $\quad \mathrm{p}(\overline{\mathrm{k}})=\operatorname{Tw}_{\mathrm{w}}(\overline{\mathrm{k}}) \mathrm{W}(\mathrm{S}(\overline{\mathrm{k}}))$,
for \bar{k} a state vector.
An example. The above theorem is extended in Section 5, and the efatement of remarks and derivative conclustons will be deferred until this is done. As a preliminary illustration of the theorem, consider a
6. Empty products are assigned the conventional value, +l.
two-service-center Jobshop-like queueing system for winicin tine parameters are as follows: ${ }^{7}$
(4.7) $\quad \lambda(K)=a /(K+1)^{x}$, where $a>0$ and $x \geq 0$;
(4.8) $\mu(1, k)=\mathrm{bk}^{y}$, where $\mathrm{b}>0$ and $\mathrm{y} \geq 0$;
(4.9) $H(2, k)=c k^{z}$, where $c>0$ and $z \geq 0$;
(4.10) $r(0,1)=r(1,2)=r(2,3)=1$; the other $r(m, n)=0$.

The specification of π implies that each customer requires exactly two services, the first at Center 1 and the second at Center 2; and it follows that $e(1)=e(2)=1$.

After substituting in (4.1) through (4.4), it is not difficult to verify that $\pi>0$ uniess both (i) $x=0$ and (ii) either $y=0$ and
 the joint equilibrium pxobability distribution of queue lengths at the two centers, as follows:

$$
\begin{equation*}
p(i, j)=\frac{\pi(a / b)^{i}(a / c)^{j}}{(i+j)!)^{x}(i!)^{y}} \frac{(j!)^{2}}{(i+} \tag{4.11}
\end{equation*}
$$

The numerical value of π can be obtained for specific values of the parameters by using the fact that the $p(i, j)$ must sum to one.

Variations upon this example will be used again in subsequent sections.

5. Triggered Arrivais and Service Deletions

In tnis section, the concept of System (N, L, M, R) is generalized to include cases where the inmediate injestion of a new customer is
7. The particular example used here was suggested by R. W. Conway and W. L. Maxweil, "A Queueing Model with State Dependent Service Rates," Journai of Industrial Engineering, vol. XII, no. 2 (1962); which treats a queueing system equivalent to a single one of the example's two interacting service centers.
triggered whenever the total number of customers falls below a specified limit, or where a service is deleted if a queue grows beyond a specified maximum leagh. The generalized model, to be referred to subsequently as Jobshop-1ike queueing system (N, L, M, R)*, or as System (N, L, M, R)*, is Identical with System (N, L, M, R), except for the following:
(i) There is some non-negative integer, K^{*}; such that the initial state \bar{k} satisfies $S(\bar{\Sigma}) \geq K^{*}$; and if the last service on some customer's routing is completed when the system is in a state \bar{k} with $S(\bar{k})=\left[\mathbb{K}^{*}\right.$, then the arrival of a new customer occurs automatically at that instant.
(ii) For each Center n, there is a $k_{n} *$, which may be a positive integer or $+\infty$; such that the initial state, $\bar{k}=\left(k_{1}, k_{2}, \ldots, k_{N}\right)$, satisfies $k_{n} \leq k_{n} *$ for $n \in[1, N]$; and if a customer arrives at center n when the queue length there is $k_{n}{ }^{*}$, then the imidinent service required by that customer at Center n is deleted from his routing, and he proceeds from there immediately, as if he had been served. ${ }^{8}$

It is implicit in the above statements that $K^{*} \leq k_{1} *+k_{2}^{*}+\ldots$. $+k_{n} *$. If $K^{*}>0$, then the $\lambda(K)$ for $K<K^{*}$ are obviously meaningless; anc. if $k_{n}{ }^{*}<+\infty$, then the $\mu(n, k)$ for $k>k_{n} *$ are obviously meaningless. System (N, I, M, R) is the special case of System (N, L, M, R)* with $K^{*}=0$ and each $k_{n}^{*}=+\infty$. To formalize $\operatorname{System}(N, L, M, R)$ * would involve rewriting the conditional probabilities (beginning of Section 3) for cases where $S(\bar{k})=K^{*}$ and/or one or more $k_{n}=k_{n}$, and rewriting equations (3.1) correspondingly. This will not be done here, because the modified equations are of insufficient interest to justify the development of (necessarily

[^2]rather formidable) appropriate notations. But it is necessary to give generalizations of equations (4.1) through (4.4) to prepare for the generalization of Theorem (4.5):
(5.1) $W *(I N)=0$, for $K<K *$, K-1 $=\prod_{i=I K^{*}} \lambda(i)$, for $K \geq \mathbb{I}$; ;
(5.2) $\quad w^{*}(\bar{k})=\prod_{n=1}^{N} \underset{i=1}{k_{n}}[e(n) / \mu(n, i)]$, if $k_{n} \leq k_{n}^{*}$ for $n \in[1, N]$, $=0$, otherwise;
(5.3) $T^{*}(K)=\Sigma_{W} *(\bar{k})$, summed over \bar{k} with $S(\bar{k})=K$;
(5.4) $T^{*}=\left\{\sum_{K=0}^{\infty} W^{*}(K) T^{*}(K)\right\}^{-1}$, if the sum converges, $=0$, otherwise

If $K^{*}=0$ and each of the $k_{n} *=+^{\infty}$, then equations (5.1) tiarough (5.4) specialize to equations (4.1) through (4.4), upon removal of the asterisks.

The following theorem, which can be proved by substitution in the modified version of equations (3.1), differs from Theorem (4.5) only in the presence of the asterislss:

THEOREM (5.5), If $\pi^{*}=0$, then a unique equilibrium state probability distribution exists for Jobshop-lize queueing system
(N, L, M, R)*, and is given by

$$
\begin{equation*}
p(\bar{k})=\pi * w^{*}(\bar{k}) w^{*}(S(\bar{k})) \tag{5.6}
\end{equation*}
$$

for \bar{k} a state vector.
Remarks. It is natural to conjecture that if $\pi^{*}=0$, then no equilibrium state probability distribution exists for System (N, L_{1}, M, R)*, but I have been unable to prove this except in special cases. If eithe: (j) there is some (finite) K_{0} such that $h(K)=0$ fon $X_{\gamma}=K_{0}$, or
(ii) all of the k_{n}^{*} are finite; then only finitely many terms in the sum of (5.4) can be positive, so it is assured that $\pi^{*}>0$, and the theorem applies.

The "discovery" of Theorem (4.5) resulted from making a sequence of "guesses" concerning more and more general jobshop-like queueing systems, and proving successively more general versions of the theorem. The way in which this took piace may be suggested by the discussion of certain special cases in Section 6.

Some corollary results. Suppose tnat System (N,L,M,R)* satisfies the condition, $\pi^{*}>0$, so that Theorem (5.5) applies. Write $p(S=K)$ for the equilibrium probability that the total number of customers in the system is K; i.e., tinat the state \bar{K} satisfies $S(\bar{K})=K$. If $p(S=K)>0$, and \bar{k} is a state vector, write $p(\bar{k} \mid K)$ for the equilibrium conditional probability of state \bar{k}, given that the total number of customers in the system is K; i.e., $p(\bar{k} \mid K)=p(\bar{k}) / p(S=K)$ if $S(\bar{k})=K$, but otherwise $p(\bar{k} \mid K)=0$. It follows directly from the theorem that:

$$
\begin{equation*}
p(S=K)=\pi * T *(K) W *(K) ; \tag{5.7}
\end{equation*}
$$

$$
\begin{equation*}
p(\bar{k} \mid S(\bar{k}))=w^{*}(\bar{k}) / T^{*}(S(\bar{k})), \text { if } p(S=S(\bar{k}))>0 \text {. } \tag{5,8}
\end{equation*}
$$

The probabilities (5.7) are of interest in themselves, because there are instances where the total number of customers in the system is of primary concern. They also lead to the overall mean arrival rate of customers under equilibrium, $E(\lambda)$:

$$
\begin{align*}
& E(\lambda)=\sum_{K=0}^{\infty} \lambda(K) \quad p(S=K) \tag{5.9}\\
& =\pi * \sum_{R=0}^{N} W *(K+1) T *(K) \quad .
\end{align*}
$$

Equation (5.9) is potentially of special interest, because it allows the determination of "loss rates" when the variation in the λ (K) is due to the failure of "potential customers" to enter the system for service when too many custoners are already present.

The main interest of the conditional probabilities (5,0) perhaps stems from the observation that they do not depend upon the customer-arrival process -- except for its role in determining whether $\pi^{*}>0$, and possibly in determining the values of K for which $p(S=K)=0$. In a sense, the effect of particular customer-arrival-process parameters is concentrated upon the determination of the $p(S=K)$.

Note also that the parameters of the routing-generation process influence the equilibrium state probability distribution only by way of the $e(n)$. It was remarked previously that $e(n)$ is the expected number of appearances of Center n on a routing.

Example. Consider a system identical with the example given at the end of Section 4, except that for some $K *, k_{1} *$, and $k_{2} *$: (i) if the total number of customers in the system falls below $K *$, then a new customer is instantiy "created"; (i1) if a ($k_{1} *+1$)-st customer joins the queue at Center 1, he immediately moves on to Center 2, without being served at Center 1 ; and (iii) if a $\left(k_{2} *+1\right)$-st customer joins the queue at Center 2, he immediately leaves the system without being served there. Equation (4.11) is still valid for the $p(i, j)$ such that $i+j \geq K$, $i \leq k_{1} *$, and $j \leq k_{2}{ }^{*}$; but all otier $p(i, j)=0$. There is a change, of course, in the numerical value of π (which might be replaced by $\pi *$ for consistency with the notation of the present section).

G. Special Cases

The first part of this section is restricted to the special case of System $(N, L, M, R) *$ in which $\lambda(K) \equiv \lambda(0)$, to be referred to as the constant-arrival-rate case of System (N, L, M, R)*. For this case, it is convenient to define the following notations, for $n \in[1, N]$:

$$
\begin{align*}
w_{n}(k) & ={\underset{1}{\underline{u}}}_{\substack{=1}}[\lambda(0) e(n) / \mu(n, i)], \text { for } k \leq k_{n}^{*}, \tag{6.1}\\
& =0, \text { for } k>k_{n}^{*} ;
\end{align*}
$$

$$
\begin{align*}
p_{n}(k) & =w_{n}(k) / \sum_{i=0}^{\infty} w_{n}(i), \text { if the sum converges, } \tag{6.2}\\
& =0, \text { otherwise, for } k=0,1,2, \ldots .
\end{align*}
$$

The following theorem is the direct specialization of Theorem (5.5) to the constant-arrival-rate case:

THEOREM (6.3). If, in the constant-arrival-rate case of System $(N, L, M, R) *, p_{n}(0)>0$ for $n \in[1, N]$; then a unique equilibrium state probability distribution exists for tine system and $1 s$ given by the product,
(6.4) $p\left(k_{1}, k_{2}, \cdots, k_{N}\right)=p_{1}\left(k_{1}\right) p_{2}\left(k_{2}\right) \cdot \ldots p_{N}\left(k_{N}\right)$, for $\left(k_{1}, k_{2}, \ldots, k_{N}\right)$ a state vector.

Interpretation. When Theorem (6.3) applies, it is immediate from (6.2) that the $p_{n}(k)$ for fixed n form a probability distribution over $k=0,1,2$, . . . This distribution is, in fact, the equilibrimm distribution of queue length for the one-service-center queueing system where customer arrivals form a Poisson process with mean rate $\lambda(0)$ e(n), and whose service-completion process is identical to that of Center n (which is well known, and also follows from the one-service-center case of the theorem).

But $e(n)$ is the mean number of appearances of Center in on a routing in the generic system to which Theorem (6.3) refers, whence $\lambda(0) e(n)$ is in fact the mean rate of customer arrivals at Center a in this system. Thus, Theorem (6.3) can be interpreted as stating that for the constant-arrival-rate case of System (N, L, M, R)*, the equilibrium probability distributions of queue lengths at the individual centers are independent; and also each of these distributions is identical with that for a one-service-center queueing system "similar" to the center concerned.

Further specializations. To represent an "ordinary" $M(n)$-channel Center n, with exponentially distributed holding times whose mean is $1 / \mu_{n}$, set $\mu(n, k)=\mu_{n} \min (k, M(n))$. If all centers are thus specialized in Theorem (6.3), the result is the theorem of the paper cited in footnote 3. In this instance, the sum of the $w_{n}(i)$ can easily be expressed in closed form. Under this specialization, the one-service-center case of Theorem (6.3) gives the well-known equilibrium distribution of queue lengt: for an "Ordinary" multi-channel service center sith Poisson customerarrival process and exponentially distributed holding times.

Example. Suppose that in the example at the end of Section $4, x=0$; and, to assure the existence of equilibrium, assume it is false that either $y=0$ and $a / b \geq 1$ or $z=0$ and $a / c \geq 1$. Then $p(i, j)=p_{1}(i) p_{2}(j)$;
where $p_{1}(i)=p_{1}(0)(a / b)^{i} /(i!)^{x}$ and $p_{2}(j)=p_{2}(0)(a / c)^{j} /(j!)^{y}$; the $p_{n}(0)$ being determined by the conditions that $\widetilde{z}_{i} p_{n}(1)=1$, for $n=1,2$.

Varying arrival rate, uniform service rates. To focus on the effect of varying arrival rates, consider the special case of System (N, L, M, R)* in which $e(n) / \mu(n, i)=1$ for all $i>0$. Then $w^{*}(\bar{z})=1$ for every state vector \bar{F}. It is easy to sin\% that

$$
T^{*}(K)=\binom{N-1+K}{N-1}, \text { for } K=0,1,2, \ldots
$$

It then follows that a sufficient (but not necessary) condition that $\pi^{*}>0$ is that $\lim \sup \lambda(K)<1$. Suppose that $\pi^{*} \geqslant 0$. If E and \bar{j} are two states, with $S(\bar{k})=K \geq J=S(\bar{j})$, where $p(S=K)$ and $p(S=J)$ are positive; then, from Theorem (5.5):

$$
\begin{aligned}
& p(\bar{k}) / p(\bar{j})=\mathbb{K}_{i=J}^{K-1} \lambda(i) ; ; \\
& \frac{p(S=K)}{p(S=J)}=\int_{i=J}^{K-1} \frac{(1+N) \lambda(i)}{1+1} ; \\
& p(\bar{k} \mid K)=\binom{N-1+K}{N-1}^{-1} \quad
\end{aligned}
$$

The interested reader can improve his "feel" for the effect of varying arrival rates by working out more specialized examples, including ones in which $p(S=K)>0$ for only finitely many different values of K. Total number of customers hela fixed. Consider, finaily, the specia? case of System (N, L, M, R)* in which $\lambda(K)=0$ for $K \geq K *$. In this system, customer arrivals occur when and only when other customers leave the system; so tie total number present will eventually remain fixed at $K *$. It follows from Theoren (5.5) that $p(\bar{k})=w *(\bar{k}) / T *(S(\bar{k}))$ if $S(\bar{k})=K^{*}$, and otherwise $p(\bar{k})=0$.

In this instance, the model can also be interpreted as representing a closed system through which the saine customers circulate eternally. In this interpretation, the prokability that a customer served at Center m will next require service at Center n is $r(m, n)+r(m, N+1) r(0, i)$, In the notation of the present paper. If the "givens" of such a system include probabilities $s(m, n)$ that a customer served at Center m will next require service at Center n, for m and $n \in[1, N]$; these
probabilities can be appropriately converted for the application of Theorem (5.5) by setting $r(m, n)=s(m, n)$ for $m \in[1, N-1]$ and $n \in[1, N], r(N, N+1)=1$, and $r(0, n)=s(N, n)$ for $n \in[1, N]$.

As a numerical example, consider a closed system made up of one "machine operator" and two "repairmen," in wiAch there are two "machines." The machine operator functions like a service center of the kind treated in the present paper; but the "service" he renders is to cause the machine to "fail." The time to failure is exponentially distributed with mean 10. When a machine fails it must be worked on first by one repairman, then by the other, in a specified order. Each repairman functions like a service center, with mean service rate $1 / 3$ when he has one machine to work on, but with mean service rate $1 / 2$ whea he has two. Designating the machine operator as Center 1 , and the repairmen as Centers 2 and 3 , what has been described is an instance of System (N, L, N, R)*, with: $N=3 ; K *=2$ and $\lambda(k)=0$ for $K \geq 2$; $\mu(1,1)=\mu(1,2)=1 / 10, \mu(2,1)=\mu(3,1)=1 / 3$, and $\mu(2,2)=\mu(3,2)=1 / 2$; and $r(0,1)=r(1,2)=r(2,3)=r(3,4)=1$, whence $e(1)=e(2)=e(3)=1$. Using (5.2), (5.3), and the fact that $p(\bar{k})=w^{*}(\bar{k}) / T *(2)$ for $S(\bar{k})=2$; it turns out that the equilibrium state probabilities are as follows: $p(0,0,2)=p(0,2,0)=6 / 181 ; p(0,1,1)=9 / 181 ; p(1,0,1)=p(1,1,0)=$ $30 / 131 ; p(2,0,0)=100 / 101$. It can be concluded, for instance, that the long-run-average proportion of time during which the machine operator will actually have a machine to operate is $160 / 181$, or about 08.4 pe:sent.

BASIC DISTRIBUTION LIST FOR UNCLASSIFIED TECHNICAL REPORTS PREPARED UNDER RESEARCH TASK NR 047-003
 Management Sciences Research Project-Contract Nonr 233(73)
 Studies in Decision Making-Contract Nonr 233(75)

```
Head, Logistics and Mathematical
    Statistics Branch
Office of Naval Research
Washington 25, D.C. 3 copies
Commanding Officer
Office of Naval Research Branch Office
Navy No. }100\mathrm{ Fleet Post Office
New York, New York 2 copies
ASTIA Document Service Center
Arlington Hall Station
Arlington 12, Virginia 10 copies
Technical Information Officer
Naval Research Laboratory
irashington 25, D. C.
copies
Commanding Officer
Office of Naval Research Branch Office
346 Broadway
New York 13, New York
Attn: J. Laderman
Commanding Officer
Office of Naval Research Branch Office
1030 East Green Street
Pasadena 1, California
Attn: Dr. A. R. Laufer
Institute for Defense Analyses
Communications Research Division
Von Neumann Hall
Princeton, New Jersey
```


University of Wisconsin	Havard University
Department of Statistics	Department of Statistics
Madison, Wisconsin	Cambridge, Massachusetts
Attn: Prof. G. E. P. Box	Attn: Prof. W. G. Cochran
The Florida State University	University of Maryland
Department of Statistics	Mathematics Department
Tallahassee, Florida	College Park, Maryland
Attn: Dr. Ralph A. Bradley	Attn: Prof. L. W. Cohen
The George Washington University	Commanding Officer
Dept, of Statistics	U. S. Naval Ammunition Depot Earle
Washington, D. C.	Red Bank, New Jersey
Attn: Prof. Harold Bright	
	Department of Industrial and Engineering Adminigtration
Headquarters USAF	Cornell University
Washington 25, D. C.	Ithaca, New York
Attn: Mr. Edward G. Bunaway Chief, AFASC-6F	Attn: Professor R. W. Conway
Bureau of Supplies and Accounts	Dunlap and Associates, Inc. 429 Atlantic Street
Code OW	Stamford, Conneticut
Department of the Navy Washington 25, D. C.	Attn: Mr. Gershon Cooper, V. P.
Case Institute of Technology Cleveland 6, Ohio	University of California Institute of Engineering Research Berkeley 4, Californta
Attn: Professor Glen Camp	Attn: Prof. G. B. Dantzig
Northwestern University	
Department of Mathematics	Columbia University
Evanston, Illinois	Department of Industrial Engineering New York 27, New York
Attn: Dr. A. Charnes	Attn: Prof. Cyrus Derman
Chief, Bureau of Ships Code 732 (A. E. Smith) Navy Department Washington 25, D. C.	Cornell Aeronautical Laboratory, Inc. 4455 Genessee Street Buffalo 21, New York
	Attn: Joseph P. Desmond, Librarian

Brown University
Department of Mathematics
Providence, Rbode Island
Attn: Prof. David Gale

General Electric Company
FPD Technical Information Center Building 100
Cincinnati 15, Ohio

Section 12.05
National Bureau of Standards
Washington 25, D. C.

Attn: Mr. Ezra G1aser

International Business Machines Corp. P. O. Box 218, Lamb Estate Yorktown Heights, New York

Attn: Dr. Ralph Gomory, Research Center

Cornell University
Industrial \& Engineering Administration
Ithaca, New York
Attn: Prof. Henry P. Goode

Institute of Mathematical Statistics
University of Copenhagen
Copenhagen, Denmark
Attn: Prof. Anders Hald

Arthur D. Little, Inc.
30 Memorial Drive
Cambridge 42, Massachusetts
Attn: Mr. J. C. Hetrick
New York University
Institute of Mathematical Sciences
New York 3, New York
Attn: Prof. W. M. Hirsch
General Electric Company
Management Consultation Services
570 Lexington Avenue
New York 22, New York
Attn: Alan J. Hoffman
School of Industrial Administration
Carnegie Institute of Technology
Pittsburgh l3, Pennsylvania
Attn: Professor C. C. Holt
Massachusetts Institute of Technology
Cambridge, Massachusetts
Attn: Dr. R. A. Howard
Industrial Engineering Department
Stanford University
Stanford, California
Atrof. W. Grant Ireson
Cornell University
Department of Industrial and
Engineering Administration
Ithaca, New York
School of Business Administration
Minneapolis I4, Minnesota
Attn: Prof. Leonid Hurwicz,
Department of Economics
Aty

University of California Management Sciences Research Project Los Angeles 24, California

Attn: Dr.J. R. Jackson

The John Hopkins University Library
Acquisitions Department
Baltimore 18, Maryland

Stanford University
Department of Mathematics
Stanford, California
Attn: Prof. S. Karlin

Mauchly Āssociates Inc. Fort Washington, Pennsylvania

Attn: Mr. J. E. Kelley, Jr.

Cowles Commission for Research in Economics
Yale University
New Haven, Connecticut
Attn: Prof. T. C. Koopmans

The Research Triangle Institute Statistics Research Division 505 West Chapel Hill Street Durham, North Carolina

Attn: Dr. Malcolm R. Leadbetter

Department of Industrial Engineering
The Technological Institute
Northwestern University
Evanston, Illinois
Attn: Mr. R. N. Jehrer Professor \& Chairman

Mason Laboratory
Department of Mathematics
Renssalaer Polytechnic Institute
Troy, New York
Dr. C. E. Lemke
Stanford University
Applied Mathematics \& Statistics Lab.
Stanford, California
Attn: Prof. Gerlad J. Lieberman
Columbia University
Department of Industrial Engineering
New York 27, New York
Attn: Prof. S. B. Littauer
Mr. H. D. McLoughlin
7709 Beland Avenue
Los Angeles 45, California
U. S. Army Chemical Corps Biological Laboratories
Fort Detrick
Frederick, Maryland
Attn: Dr. Clifford J. Maloney
Logistics Research Project
The George Washington University
707 22nd Street, N. W.
Washington 7, D. C.
Attn: Dr. W. H. Marlow
C. H. Masland \& Sons
Carlisle, Pennsylvania
Attn: Assistant Controller

U. S. Naval Training Device Center Port Washington, L. I., New York

Attn: Mr. Joseph Mehr, Assistant Planning Officer

University of Chicago
Statistical Research Center
Chicago, Illinois
Attn: Professor Paul Meir
E. I. DuPont DeNemours \& Company, Inc. Engineering Department Wilmington 98, Delaware

Attn: Mr. F. F. Middleswart

Code 250A
San Francisco Naval Shipyard San Francisco, California

Attn: Mr. Marvin O. Miller

Dr. Richard A. Miller
4071 West Seventh Street
Fort Worth 7, Texas

Kaiser Steel Corporation 300 Lakeside Drive Oakland 12, California

Attn: Mr. Michael Montalbano

Princeton University
Dept. of Economics and Sociology Princeton, New Jersey

Attn: Prof. O. Morgenstern

Corp. for Economic \& Industrial Res. 1200 Jefferson Davis Highway Arlington 2, Virginia

Attn: Dr. Jack Moshman
Department of Industrial Engineoring
Washington University
St. Louls, Missouri
Attn: Mr. G. Nadler
Case Institute of Technology
Systems Research Center
Cleveland, Ohio
Attn: Dr. Raymond Nelson,
Acting Director
University of California
Department of Statistics
Berkeley 4, California
Attn: Prof. J. Neyman
Manufacturing Controls Hdqts. Dept.
Westinghouse Electric Corporation
3 Gateway Center 17-E
Pittsburgh 22, Pennsylvania
Attn: Mr. P. D. O'Donnell,
Manager
University of Minnesota
Department of Statistics
Minneapolis, Minnesota
Attn: Prof. Ingram Olkin
University of California
Department of Engineering
Los Angeles 24, California
Attn: R. R. O'Neill
President College
Naval War Coole
Newport, Rhode Island
Attn: Mahan Library

Attn: Mahan Library
University of California
Department of Economics
Berkeley, California
Attn: Dr. Roy Radner
Purdue University
Department of Economics
Lafayette, Indiana
Attn: Dr. Stanley Reiter
Columbia University
Department of Mathematics
New York 27, New York
Attn: Prof. H. Robbins

Vulnerability Analysis Division OASD (I\&L) Rm. 3D831, Pentagon Washington, D. C.

Attn: Mr. Joseph Romm, Staff Director

Michigan State University Department of Statistics East Lansing, Michigan

Attn: Prof. Herman Rubin

Brown University
Division of Applied Mathematics
Providence 12, Rhode Island
Attn: Prof. M. Rosenblatt

Department of Philosophy
Michigain State University
East Lansing, Michigan
Attn: Prof. Richard S. Rudner

University of California Division of Electrical Engineering Berkeley 4, California

Attn: Dr. Otto J. M. Smith

University of North Carolina
Statistics Department
Chapel Hill, North Carolina
Attn: Prof. Walter L. Smith

Applied Mathematics \& Statistics Lab
Department of Statistics
Stanford University
Stanford, California
Attn: Prof. H. Solomon

The John Hopkins University Department of Mathematical Statistics
34th \& Charles Streets
Baltimore 18, Maryland
Attn: Professor C. Stein

Mr. Thomas P. Stysinger
Senior Staff Industrial Engineer 525 William Penn Place
Room 1824
Pittsburgh 30, Pennsylvania

Mechanical Development Department
Research Laboratories Division
Bendix Corporation
10 1/2 Northwestern Highway
Southfield (Detroit), Michigan
Attn: Mr. C. B. Sung

Superintendent
U. S. Naval Postgraduate School

Monterey, California
Attn: Library

Rutgers - The State University Statistics Center
New Brunswick, New Jersey
Attn: Prof. Martin B. Wilk

Princeton University
Department of Mathematics Princeton, New Jersey

Attn: Professor S. S. Wilks

Department of Mathematics Lincoln Hall
Cornell University
Ithaca 1., New York
Attn: Professor J. Wolfowitz

[^0]: 1. This work was supported by the Office of Naval Research under Task 047-003 and by the Western Management Science Institute Ford Foundation grant. Reproduction in whole or in part is permitted for any purpose of the United States Government.
 2. To be presented to the Joint International Meeting of the Inatitute of Management Sciences and the Operations Research Society of Japan, Tokyo, August 21-24, 1963.
[^1]: 3. Which was analyzed previously in the author's paper, "Networks of Waiting Lines," Operations Rescarch, vol. 5, no. 4 (Aug., 1957).
[^2]: 0. Or, more generally, some customer is emitted from the center; with the restriction that the chotce of the cugtomer to be enitted must not depend upon the future routing or service requirements of any customer.
