
UNCLASSIFIED

AD 296 046

ARMED SERVICES TECHNICAL INFORMATION AGENCY
ARLINGTON HALL STATION
ARLINGTON 12, VIRGINIAw

UNCLASSIFIED

NOTICE: When government or other drawings, speci-
fications or other data are used for any purpose
other than in connection with a definitely related
government procurement operation, the U. S.
Government thereby incurs no responsibility, nor any
obligation whatsoever; and the fact that the Govern-
ment may have formilated, furnished, or in any way
supplied the said drawings, specifications, or other
data is not to be regarded by implication or other-
wise as in any manner licensing the holder or any
other person or corporation, or conveying any rights
or permission to manufacture, use or sell any
patented invention that may in any way be related
thereto.

296 046
MEMORANDUM

RM-3447-PR
JANUARY 1963

PROGRAMMING LANGUAGES
AND STANDARDIZATION IN

COMMAND AND CONTROL

J. P. Haverty and R. L. Patrick

A S Y ,i.
PREPARED FOR:

UNITED STATES AIR FORCE PROJECT RAND i ,.

_____ _____ _ ___ODNIA
SANTA MONICA -CALIFORNIA-- -

MEMORANDUM

RM-3447-PR
JANUARY 1963

PROGRAMMING LANGUAGES
AND STANDARDIZATION IN

COMMAND AND CONTROL
J. P. Haverty and R. L. Patrick

This research is sponsore iv the United States Air Force under Project RAND - Con-
tract No. AF 49 1638) - (K) - monitored by the Directorate of Development Planning,
Deputy Chief of Staff. Research and Technology. Hq USAF. Views or conclusions con-
tained in this Memorandum should not be interpreted as representing the official opinion
or policy of the United States Air Force. Permission to quote from or reproduce portions
of this Memorandum must be obtained from The RAND Corporation.

,7 I 11 _____
Too MA IN S SANTA MONiCA . (AtPOmNI*

iii

PREFACE

This Memorandum is the final report on a study of

programming languages undertaken by The RAND Corporation.

The rapid growth in the design, publication, and use of

programming languages in military computer applications

has raised several issues which affect current and pro-

jected Air Force computer-based systems.

The purpose of the study was to identify and discuss

the two major issues raised by the use of programming

languages: 1) what benefits programming languages offer,

and 2) what gains are to be realized by standardizing

on a programming language.

This Memorandum is addressed to the user of electronic

data processing systems and, in particular, to the Air

Force groups who provide guidance and planning in electronic

data processing, such as the Air Force Directorate of Data

Automation and the Electronic Systems Division.

-V-

SUMMARY

This Memorandum presents the findings of a study of

common programming languages with emphasis on Air Force

applications, particularly in the area of Command and Con-

trol. The objectives of the study were to assess the

state-of-the-art in programming languages and. to discuss

the consequences of standardizing on a programming lan-

guage.

First, the Memorandum emphasizes that the almost com-

plete lack of facts and the absence of a standard glossary

of terms are major obstacles to any study and evaluation

of programming languages. Given these limitations, the

Memorandum examines the pros and cons of current program-

ming languages, management and design considerations,

the urgent need for measures of performare, and some

desired developments in compilers.

Next, the question of standardizing on a programming

language is discussed. The current programming language

area is evaluated in terms of three factors--a sufficient

base of existing lower-level standards, mature technical

development, and extensive user experience. The evaluation

indicates that it is not now appropriate to establish a

standard programming language; however, planning for stand-

ardization should be started immediately. Measures short

of complete standardization--e.g., partial standardization,

standardization on a communication language--may achieve

most of the benefits of full standardization and should be

examined.

The major conclusions of the study are:

1) Much work remains to be done in the computer

field in establishing basic standards (below the

programming language level) before we can achieve

the benefits of a standard programming language.

-vi-

Particularly needed are: a data processing glos-

sary, magnetic tape recording formats, and char-

acter sets.

2) Partial standardization measures should be con-

sidered and evaluated now.

3) A central Air Force agency is needed to establish

measures of performance, to plan for standardization,

and to plan and coordinate computer selection.

4) Programming languages, while offering some important

advantages, are still in a relatively immature

state of technical development. The Air Force

should take the lead in directing and supporting

research efforts to improve the state-of-the-art.

5) An indoctrination program in computers and computer

programming for Air Force officers is required

now, and should be supplemented as soon as is

feasible by courses in the established USAF

schools and colleges. In addition, a training

program is urgently needed to develop a cadre of

skilled programmers in the Air Force. A staff

study should be instituted to formulate a

detailed course of action for establishing these

programs.

vii

CONTENTS

PREFACE ... iii

SUMMARY ... v

Section
I. INTRODUCTION 1

Background of the Study 1
The Problem of Definition 2
The Programming Problem 7

Definitions 7
Programming Languages and the Development

of Large Computer-Based Systems 9

II. PROGRAMMING LANGUAGES.......................... 12
Brief History 12
Pros and Cons of Current POLs 14

Training 14
Reprogramming and Computer Conversion • 15
Program Checkout (Debugging) 17
Programming Costs N
Better Understanding by Higher Management . 19

Programming Language Selection 19
Management Considerations 20
Design Considerations 21

Measures of Performance 29
Deficiencies in the Current Program 29
Measurement Program Outline 30
Performance Parameters 31
Three Measurement Studies 33

Some Desired Compiler Developments 33
Summary 35

III. THE STANDARDIZATION QUESTION...... 37
Background 37
Definitions 30
Requirements for a Standard POL 0

A Sufficient Base 40
Mature Technical Development 40
Extensive User Experience 42

Planning for Standardization 42
Partial Standardization 43Summary 43

IV. CONCLUSIONS 45

Appendix
THREE MEASUREMENT STUDIES 53
B. F. Goodrich Company Study 53

viii

Study of Programming Systems for the IBM 650 ... 55
BUSHIPS COBOL Evaluation 58

BIBLIOGRAPHY... 63

-1-

I. INTRODUCTION

BACKGROUND OF THE STUDY

In January 1962, the Computer Sciences Department of

The RAND Corporation decided to undertake a study of pro-

gramming languages. The debate on the capabilities of

programming languages and how they are related to the issue

of standardization had reached proportions which indicated

that a formal study should be initiated. Furthermore,

discussions engendered by the Institute for Defense Analyses

report, TM 61-12, "Computers in Command and Control," in-

dicated that the time for such a study was at hand.

One of the first objectives of the study was to gather

known facts and to evaluate previous work in an attempt to

clarify the state-of-the-art in programming languages and

to classify languages with regard to their technical charac-

teristics, advantages, and disadvantages. Finally, the

study was to address itself to the question of programming

language standardization; in particular, what is to be

gained or lost if we standardize--either now or later.

Such an undertaking is especially difficult in the

computing field since the number of facts available on

programming languages is quite small. An extensive

literature search* produced volumes of material on feasibility

studies, proposed rather than accomplished work, detailed

narrow implementations and, too often, opinions stated as

facts. The search failed to produce any significant quantity

of controlled experiments or operational measurements.

Particularly lacking was any material concerning the rel-

ative advantage of accomplishing a task through the use of

alternative means. Thus, it should be stressed, we had

to use more than the usual amount of technical opinion in

this study and therefore some of the conclusions and

assertions rely primarily on Judgments made in the absence

of substantive data.

*See Bibliography

-2-

THE PROBLEM OF DEFINITION

One of the most glaring deficiencies in the computing

field came to light early in the study--the lack of a

standard glossary of terms. In reviewing the literature

we were impressed with the confusion that can result be-

cause of the variety of meanings that certain technical

terms apparently have.

To try and reach a common level of understanding with

our readers, we have listed pertinent definitions as ap-

propriate for this section and succeeding ones.

LANGUAGE A set of symbols, together with rules

for their grouping into meaningful com-

binations, used by one participant to

describe a process so that another partici-

pant may understand the process. Natural

languages have several additional group-

ings: symbols into words, words into

sentences, and sentences into paragraphs.

The rules for a natural language cover

syntax, grammar, and composition.

MACHINE LANGUAGE The wired instructions directly in-

terpreted by the computer during execu-

tion time. If the adjective "symbolic"

is used to modify the phrase "machine

language," reference is made to a "human-

ized" version of machine language. This

humanization consists primarily of sub-

stituting a mnemonic combination of stan-

dard characters for the machine language

codes and storage addresses interpreted

by the hardware. In a "symbolic assembly"

this substitution is generally on a one-

for-one basis; i.e., one handwritten

symbolic instruction results in one

machine instruction.

-3-

PROGRAM* Any process, which, when reduced to

machine language, completelr describes

a procedure in a form such that a com-

puter can interpret the procedure and

perform the desired processing.**

ASSEMBLY PROGRAM A computer program which receives in-

put in the form of symbolic language,

translates this in accordance with pre-

determined rules, and produces output

in the form of machine language.

Assembly programs permit a programmer

to assemble with his prograri other symbolic

programs (usually called litlrary routines).

Thus, frequently-used programs (decimal

to binary conversion, sin x, log x, etc.)

need be programmed only once and then

can be placed in a library available to

other programmers.

The use of an assembly program requires

detailed knowledge of the ioner workings

of the computer. In addition, the pro-

grammer must be attuned to the capacity

of the computer being used--both for the

assembly process and the ultimate appli-

cation. The programmer must know the

machine configuration in detail so that

the physical limits of the device are not

exceeded.

SOURCE LANGUAGE The language used in the statement of

a process in machine-readable form as the

input to a computer translator process.

*Care must be taken not to confuse a compluter program

with a plan or schedule for the attainment of mme objective.
**A frequently-used synonym is "computer routine.

-4-

OBJECT LANGUAGE The output of a translation process.

A computer plus a translation program

receives source language as input and

outputs object language. The collection

of output is called, among other things,

the object program. The machine on

which this translation process takes

place is properly described as the source

machine or source computer. Similarly,

the machine for which the program is

being produced is called the object

machine or object computer.

TRANSLATOR The mechanism (program, human effort,

electronic device, etc.) by which the

input or source language is transformed

into the oitput or object language. More

restrictively, the program for converting

symbolic language to machine language.

COMPILER A program for a specific source com-
puter which translates input in the form

of source language into output in the

form of object language. The object

language may be symbolic language for a

subsequent assembly process (sometimes

referred to as an "intermediate language").

A compiler differs markedly from an

assembly program in that the translation

from source language to object language

is usually one to many; i.e., one state-

ment results in many machine language

instructions. In addition, a compiling

program handles most of the normal burden

of primary storage allocation and generally

handles much of the burden of secondary

storage allocation.

-5-

PRIMARY STORAGE The memory system which is most closely

coupled to the arithmetic and logical

element of the computer. In large machine

technology this storage has the character-

istics of uniform access (in time) to

all cells, high cost, and high performance.

It usually takes the form of magnetic

cores.

SECONDARY STORAGE A non-homogeneous grouping used to

denote machine readable storage media

whose characteristics are: access time

(to any particular storage location) not

uniform, access time significantly greater

than primary storage, and considerably

lower cost than primary storage. The

more predominant types are: punched

cards, punched tape, magnetic drums, and

magnetic disks. Files stored on secondary

storage can frequently be physically re-

moved from the computer and stored semi-

permanently in some other place.

COMMUNICATION A language structure complete with con-
LANGUAGE ventions, syntax, and character set, used

primarily for conveying knowledge of pro-

cesses between two participants. A trans-

lation program which processes this

source language and outputs machine

language does not necessarily exist.

PROCEDURE ORIENTED Denotes any source language which
LANGUAGE (POL) was derived with a particular restricted

class of problems in mind.* The

*Not to be confused with Problem Oriented Language,
a term sometimes used synonymously and sometimes used
(confusingly) to describe yet another type of higher-
level language.

-6-

resulting source language is then compiled

and the final object program will, when

checked out, instruct a general purpose

digital computer so that it generates

the solution to the problem at hand. The

most widely used example of this is

FORTRAN, used for scientific and engineer-

ing applications (formula evaluation).

Some other examples are COBOL, business

data processing (file processing and

handling); JOVIAL, Command and Control

(extensive data manipulation, many

individual subprograms integrated into

one large program); and IPL-V, heuristic

programming (list structure processing).

COMMON LANGUAGE A programming language which is used

for the solution of like problems in

more than one physical installation. A

common language does not necessarily

apply to more than one problem area. A

common language generally is used on

several machine types of the same

manufacturer but is not necessarily

used on machines of different manufactur-

ers even though they are in use in the

same problem area. The most prevalent

common language from recent history is

the SAP language for the IBM 704. The

most prevalent present common language

is the SPS assembly language for the IBM

1401. The most prevalent common language

that is used on many types of computers

is FORTRAN.

-7-

A language becomes common through con-

vention. Sometimes a language is volun-

tarily adopted as a common language be-

fore it sees service, but normally, a

language retains its common status only

through performance. Any time the factors

indicating a change outweigh the ad-

vantages of commonness, the language

loses its precarious status. Common

languages almost always exist in dialects.

The dialects are usually a function of

the configuration of the machine on

which the translator is implemented, and

the particular requirements of an in-

dividual user.

REAL-TIME PROCESS A process where the computer exists

on-line in an environment which is not

and cannot be made subservient to com-

puter control. Usually a continuous

(on-going) physical process is involved.

If the time available for solution is

only slightly larger than the time re-

quired for computation, the environment

is said to be real-time.

THE PROGRAMMING PROBLEM

In order to examine the programming problem and the

role of programming languages, it is essential to discuss

the major features of the programming process by defining

its component sub-processes.

Definitions

PROBLEM The process by which the problem
FORMULATION solution is clarified, detailed, and

then expressed in precise form. The

-8-

output of this process is the "design

blueprint" which may take the form of

program specifications, flow charts,

and coding specifications. Currently,

this is a human-to-human process. (POLs

will not materially affect the elapsed

time, cost, etc., of this process. They

may help indirectly in formalizing a

"design or specification language.")

CODING The process of translating fr&m the

"design blueprint" to the source language

used. In some cases the difference

between the two is small (e.g., the

difference between a SAGE Coding Specifica-

tion and JOVIAL) and hence the elapsed

time for this translation phase is small.

In other cases, the difference is great

(e.g., a verbal flow chart and symbolic

assembly language). This is the part

of the programming process that POLs

were designed to speed and improve.

CHECKOUT The process of establishing that the

program (or procedure) in the computer is

accurately performing the desired pro-

cessing. The opportunities for differences

or errors abound because of: transmission

error (I meant to write "<" and wrote
">"); interpretive errors (I thought the
number of aircraft would never exceed

1000); performance errors (I should have

cleared this field to zero first); tran-

scription errors (the key punch operator

punched a "$" instead of "*"); etc.

POLs may help here because they are closer

to the design or specification language.

-9-

However, they still offer the same oppor-

tunity for these types of errors.

DOCUMENTATION A process that should properly cut

across the above three processes, des-

cribing what has transpired for the

edification of the author, his supervisor,

or his replacement. POLs hope to reduce

the number of forms of the documentation

and thereby keep it current.

SOFTWARE One definition: "A colloquial term

for any program or method of use which

can perform hardware functions."*

Current definition: The package of pro-

gramming support or utility routines

which is provided (or is available with)

a given computer.** The package gener-

ally includes: an assembler, a compiler,

an operating system (or monitor), de-

bugging aids, and a library of subroutines.

Programming Languages and the Development of Large

Computer-Based Systems
Much of the sound and fury over programming languages

is the result of zealous proponents touting them as the

solution to the "programming problem." This "problem" arose

when it became apparent that programming had become the

pacing factor in the development of large military data

processing systems, such as SAGE. The claim for a solution

is, of course, nonsense but because it is a persistent one,

we must clarify and discuss "the programming problem."

The development of large computer-based Command and

*Reference Manual Glossary for Information Processing,

International Business Machines, 1962.
**Apocryphally, "The package which attempts to make up

for all the deficiencies and omissions in the hardware design."

-10-

Control systems* represents a significant break with the

traditional development cycle of weapon systems. The most

significant difference is that in weapon systems develop-

ment the design problems of minimizing costs and elapsed

time and of maximizing performance were centered on the

prime hardware. Support requirements were (and probably

rightly so) considered to be less critical than the develop-

ment and procurement of the prime equipnent. This approach

was totally inappropriate to the development of Command and

Control systems. The development of SAGE (and subsequently,

other large systems) revealed the folloving markedly

different characteristics.

a. Hardware was no longer the sole significant lead-

time item.

b. Programming--especially the problem formulation

and testing phases--was a long lead-time item.

c. Support requirements were recognized as significant

factors in costs and performance.

d. An evolutionary, rather than concurrent, approach

to development and installation was desired.

Thus, the "programming problem" wan the recognition of

a new and critical lead-time item. Unfortunately, there

were no substantial across-the-board improvements available

to reduce lead-time. However, in one phase of the program-

ming process--the coding phase--efforts were underway to

achieve greater efficiency. Coding represents roughly

30 per cent of the elapsed time in large programming tasks

and hence gains here, while not exciting, would be worth-

while. Nevertheless, it must be recognized that POLa are

at best only a partial attack on the total "programming

problem."

*For a more complete discussion, see the article, "Pit-
falls and Safeguards in Real-Time Digital Systems with EM-
phasis on Programming," W. A. Hosier, IRE Transactions on
Engineering Management, June 1961.

-11-

The selection of evolutionary development was an admis-

sion of our limited understanding of the principles for

system design and development in the Command and Control

area. Moreover, this stepwise (evolutionary) approach

forced a new requirement on the development of the computer

programs; namely, adaptability to continuous change and

upgrading. Currently, it is hoped that POLs will offer

reduced lead-times in incorporating system improvements

and additions. There is no concrete evidence of this to date,

since no Command and Control system using a POL has reached

this phase.

In summary, POLs offer hope of making some headway on

the programming problem but in no sense mark a solution or

spectacular advance.

-12-

II. PROGRAMMING LANGUAGES

BRIEF HISTORY

The history of programming languages is a short one.

The first widely known efforts in this area date from

about 1954--the cooperative Project for the Advancement of

Coding Techniques (PACT) on the West Coast, IBM's FORTRAN,

and Univac's A-2. These were attempts to attain a new

level of capability over symbolic assembly techniques and

coincided with the realization that the limited supply of

trained programmers was unable to meet the sharply in-

creased demand created by the new IBM 700 series and Univac

1100 series machines. Hence, a substantial effort appeared

necessary to increase programmer productivity. This, in-

cidentally, was a recognition of the fact that programmer

time was becoming the scarce resource--a reversal from

earlier days when machine time was the scarce commodity.*

From about 1955 until early 1958, these first program-

ming languages were subjected to varying degrees of usage.

FORTRAN particularly received extensive use and its success

encouraged additional efforts across the country. In May

1958, a joint ACM-GAMM group met in Zurich to define an

algebraic programming language. The formal effort to de-

vise a "standard" algorithmic language culminated in the

publication of ALGOL 58 and gave strong impetus to the

development of several new programming languages. In rather

quick succession came ALGOL derivatives: NELIAC, JOVIAL,

MAD, and others. Most of these languages were developed by

users with specific needs and requirements: NELIAC--Naval

Tactical Data System, JOVIAL--Strategic Air Command System,

MAD--University of Michigan Computer Center, etc. The fact

that these languages were being developed for computer

applications with differing constraints was masked from the

*Typically a programmer's work was rigorously desk-

checked to reduce the number of machine runs.

-13-

uninitiated. To many observers it appeared that this was

senseless proliferation.

About the same time, however, a further complicating

factor arose--the designing of programming languages became

fashionable. Now the proliferation of languages increased

rapidly as almost every user who developed a minor variant

on one of the early languages rushed into publication, with

the resultant sharp increase in acronyms. In addition, some

languages were designed practically in vacuo. They did not

grow out of the needs of a particular user, but were de-

signed as someone's "best guess" as to what the user needed

(in some cases they appeared to be designed for the sake of

designing).

These languages were aimed at a particular portion of

the broad spectrum of computing applications--and frankly,

not a very large portion (perhaps 30-40%). However, human

nature--and salesmanship--decreed that many of the developers

of these languages lay claim to more and more of the spec-

trum--in effect, saying "it can be used in other parts of the

spectrum."* To the casual observer (and naive believer of

claims) it appeared that there was a growing proliferation

of overlapping POLs and that standardization was the only

answer to avoid what was frequently called "The Babel of

Languages."

In summary, the effort to develop programming languages

to increase programmer productivity is barely eight years

old. Several of the more prominent languages have been in

full use only during the last few years. Advances have been

made, but the solid achievements have been far outdistanced

by the wild claims of the marketing departments and those

suffering from the "publish or perish" syndrome. We pay

a penalty in disappointment when the claims prove vacuous,

and we experience increased difficulty in identifying a

*That is, I can haul hay in my new Ford (but I would

consider this a last resort).

-14-

solid advance in capability. There have been too few

individuals abstracting from experience, generalizing, and

setting down the fundamentals of programming. Each design,

however trivial, appears to be a new and unique stroke of

original work on the part of the experimenter. We have been

unable to locate a single text on the fundamentals of pro-

gramming (not coding for a particular machine) or a cogent

series of documentary examples depicting the solution of

even the standard problems of programming. Perhaps these,

too, await a glossary.

PROS AND CONS OF CURRENT POLS

The claims for POLs are many and varied, but the most

important fall into five general areas: training, repro-

gramming, debugging, programming costs, and increased manage-

ment understanding.

Training

The genesis of POLe lies in the shortage of trained

people. The claim is often made that by using POLe the

training requirements are eased and, since the POL is a

language close to the user's language, the user "gets on

the air" quicker. However, it should be recognized that

the user's depth of understanding of the programming pro-

cess is often exceedingly shallow. Many of the important

principles of programming are initially shielded from

him and must be discovered (often painfully) over time.

On the other hand, if the user is taught a symbolic

assembly language, he takes longer to make his first run

because he must learn many of the characteristics of the

machine and machine language coding. But, with this machine

language base, learning a POL is usually easier and the
depth of understanding far greater. Probably the amount of

training and experience required to become a proficient

professional programmer is independent of whether a compiler

or an assembler is being used.

-15-

We recognize that one or the other of these modes of

training may be more suitable for any given user--we simply

wish to point out that POLs, in and of themselves, do not

reduce the training requirements for professional programmers.

Lest the training in a POL should appear to be too easy,

it should be noted that the Commercial Translator (COMTRAN)

manual runs to over 300 pages with much of the content de-

voted to rules and conventions.

Reprogramming and Computer Conversion

The claim that intrigues the experienced user is per-

haps best summarized by the following excerpt from the 1961

Eastern Joint Computer Conference Panel Discussion.*

...a computer user, who has invested a million
dollars in programming, is shocked to find himself
almost trapped to stay with the same computer or
transistorized computer of the same logical de-
sign as his old one because his problem has been
written in the language of that computer, then
patched and repatched, while his personnel has
changed in such a way that nobody on his staff
can say precisely what the data processing Job
is that his machine is now doing with sufficient
clarity to make it easy to rewrite the application
in the language of another machine.

This is probably an overstatement, but the problems of re-

programming and computer conversion have always been a

source of worry to installation managers. Any reprogramming

is viewed with alarm because of the generally poor record

of programmers as documenters and the thought of attempting

to reprogram a routine in the absence of the original pro-

grammer is horrifying. The "poor documentation" syndrome

carries over into the problem of computer conversion--a

problem which some facility managers aggravate by ordering

totally different machine types on subsequent replacement

orders.

*Clippinger, R. F., "International Standards," Pro-
ceedings of the 1961 EJCC, Unpublished, December 1961.

-16-

The problems of reprogramming and computer conversion

can be minimized by good documentation and sensible machine

selection. But the more basic issue is: Will POLs encour-

age good documentation? The pro arguments hinge on the

following points: 1) POLs are "readable" and hence the

documentation is "built-in"; and, 2) the documentation

will be consolidated at the POL language level, thus

eliminating intermediate forms of documentation and making

it easier to keep the documentation up to date.

c3nfortunately the proponents don't discuss all the

documentation. Any well-documented production jbb consists

of:

1) Narrative description of problem

2) Flow charts

3) Annotated code

4) Users' input instructions (keypunch instructions,

etc.)

5) Output format and description for user

6) Operators' instructions (including restart and

recovery procedures)

7) Tape status log and associated proof of file

validity

8) A narrative functional description for the user.

For a long-lived production Job of significance, all

of the above are required. A POL can only assist in de-

creasing the effort expended on obtaining annotated code,

but even this is dependent on management enforcement. To

keep the POL statements "readable" will require discipline

and training of programmers--with, as usual, the more ex-

perienced programmer being the prime offender because of

his desire to use shorthand descriptions and narratives for

the sake of his own efficiency and that of the compiler.

Documentation will be consolidated at the POL level only

if this is the most efficient form for the programmer. If

he discovers that some intermediate form is more efficient

-17-

because of long compile times, difficulty in debugging at

POL level, etc., then the advantage will disappear.

Program Checkout (Debugging)

Since one of the major items in the programming process

is program checkout, it was natural that almost immediately

claims would be made that POLs result in great improvements

in debugging computer programs. The arguments supporting

this claim went this way: Since a programmer has to write

down substantially fewer symbols when writing in a POL

(and there is probably a relationship between the number of

errors and the number of symbols written), there should be

fewer errors in the routine. However, there is a counter-

balancing factor to this claim. Most POLs existing today

have at best marginal debugging aids, and even worse, al-

most all of them require debugging at the machine language

or symbolic language level--complicating both finding the

errors and fixing them.

To avoid excessive cost in machine time, present prac-

tice dictates that an object deck be taken as output from

the compiling process. System checkout is performed using

this object deck. Thus, the problem statement exists in

two forms: the source deck and the object deck. Debugging

is done in the object language, which is patched several

times between compilations. Frequent compilations are

still necessary to clean up the object code. The require-

ments for bookkeeping are still doubled, since both the

source deck and the object deck must be maintained during

checkout.

At the present stage of development, a higher level

language and its associated compiler offer no great ad-

vantages in reducing either the elapsed time or the total

effort in checking out a program of significance. It

should also be noted that trainees or junior programmers

may have more difficulty in debugging and will often have

-18-

to depend on a senior programmer for consultation. It is

likely, however, that POLs can reduce somewhat the number

of debugging runs for senior programmers.

Programming Costs

Another consistent claim for POLs is that they will

reduce programming costs. This is at best an ethereal

claim since cost data in terms of elapsed time, man-hours,

dollars, or any other metric is a major unknown in the

computing field. There is reason to believe that POLs

used in an established computing group may indeed reduce

programming costs or perhaps more correctly, they may

shift major portions of the cost of programming to the

machine. Since hardware costs are dropping, this may be

a reasonable tradeoff. However, when POLs are used by

groups which are composed largely of either inexperienced

programmers or "open shoppers," then experience indicates

that total programming costs will probably rise. This is

largely due to the fact that inexperienced programmers

using complicated POLs consume huge quantities of machine

time--the catastrophic goof, which results in many compila-

tions, debug runs, and generally (the most common symptom)

excessive printed output, is quite common.

Since programming cost is the least understood area

in computing, it is probably unwise to attempt to justify

or reject a POL on these grounds. The only approach at

the present time seems to be the "scarce resource" approach,

as summarized from a seminar held during this study:

The manager's prime objective is to achieve
the most efficient use of his resources, the
prime two being programmers and machines.
Since software essentially enables one to
control the tradeoffs between the two, the
manager should attempt to adjust the tradeoff
in favor of the scarce resource.

-19-

Better Understanding by Higher Management

Perhaps the most flagrantly overstated claim made

for POLs is that they result in better understanding of

the programming operation by higher-level management.

It is barely true for the experienced computer facility

manager who, because of a POL, attempts to establish

more accurately factors such as job mix, resource allo-

cation, programming costs, documentation procedures and

costs, etc. In any case, the probability that any level

of management above the facility manager will understand

programming is independent of the introduction of a POL.

The fact that some of the POLs have a narrative quality

and program listings which can almost be "read" has only

the smallest possible effect on higher management. Built-

in documentation will help if it is indeed built-in,

but the probability of higher management being concerned

with annotated code is indeed slight.

In summary, then, it can be seen that most of the

claims for POLs represent not clear gains but tradeoffs

made between various resources. The development of higher-

level languages is another step (and perhaps as we gain

experience, a very significant one) in the evolution of

the programming field but it does not seem to constitute

a breakthrough.

PROGRAMMING LANGUAGE SELECTION

The problem of selecting an appropriate programming

language is a complex one, involving closely-coupled

management and design considerations. Management's evaluation

of the basic nature of its task should strongly influence

the design characteristics of the POL and, by the same

token, fundamental design limitations should influence

the mode and range of application of the POL.

-20-

Management Considerations

The manager of a computing group must consider the

basic characteristics of his task before he chooses a POL.

Whether his task is to manage a computing facility--job

shop operation--or a large-scale application--developing

a Command and Control system--will influence the emphasis

and importance given these characteristics.* Characteristics

common to both types of efforts are:

1) Prime function of the computing group--Is it

providing computing services for an R and D

group? For company administration? Or is it

a major part of a Command and Control design,

development, and production team?

2) Resource mix and available tradeoffs--What is

the scarce resource--programmer time or machine

time?** The manager must consider the type of

programmers who use the machine and the amount

of control he has over this; e.g., quantity vs.

quality, experience level, etc. Is one more

concerned with ease of modifying programs or

with "tight" object code? Should one minimize

elapsed time or machine time? A faster, cheaper

machine may require less-efficient software.

.
The following lists of characteristics do not pretend

to be complete or exhaustive--only indicative.
**

Most early compilers justify their existence on
this basis: successful compilers probably achieve as a
guess (unfortunately no statistics) a tradeoff of tripling
or quadrupling the instructions per man-hour at the cost
of doubling the machine time used. This tradeoff is
reasonable under a number of conditions: 1) to increase
throughput for constant number of people or, 2) to permit
inexperienced users to utilize the computer (open shop).

-21-

Facility Manager. Characteristics of concern to

the facility manager are:

1) The range of problems; i.e., business or scientific,

mathematical or data processing.

2) Open vs. closed shop.

3) Problem turnaround time; i.e., many short problems

(short-lived) or a few large problems (long-

lived, many changes).

4) The allocation of programmers' time; i.e., a

code checking environment or a highly production-

oriented shop; do programmers spend more time

in formulation and analysis or in coding and

debugging?

Application Manager. Characteristics of concern to

the application manager are:

1) Environmental constraints--military operational

system, real-time system, peacetime logistic

system, etc.

2) Design and implementation approach--integrated

system, automation of a single function, a new

automated function, etc.

3) Resource constraints--tight budget, crash dead-

line, existing hardware, etc.

In summary, all of these characteristics bear on

the decision to use or not use a POL, and how to select

the "best" POL for a particular application or computing

installation. The proper choice of software essentially

enables one to emphasize desired functions and to select

tradeoffs between resources. Additional considerations

revolve around the design limitations of current POLs.

Design Considerations

The prospective POL user should be extremely careful

when claims are made for a universal compiling system.

-22-

Languages and compilers for narrow application areas are

now indeed feasible and economically practical, even

when machines of several manufacturers are involved,

providing the machines are of the same basic capability.

On the other hand, the design of a language and compiling

system which will be all things to all men, in all applica-

tion areas, and on all machines of all manufacturers is,

at this time, a totally unfeasible economic action.

Design Limitations. When a language is designed,

the design team must have some application in mind. As

a POL is implemented, the programming staff makes use of

its accumulated knowledge and the particular character-

istics of the source computer. Every POL is a compromise

venture--in particular, the compiler portion of a POL is

subject to even more compromises. Naturally any well-

designed compiler exploits the characteristics of the

object machine. The net result is that all POLs have

design points, but it is the compiler portion of the POL

that sharply defines the design point. For example, one

might standardize on the communication language portion of

a POL (which seems to cover a broad spectrum of applica-

tions) only to discover that no one can design a single

compiler that efficiently covers this spectrum. Thus

each "language-source computer-compiler-object computer"

combination has a design point. Even if a hardware/soft-

ware combination is used at its design point, there

are good and bad designs. Intuitively, one would guess

that a hardware/software combination must suffer materially

if used for applications very far from the design point

application. The most simple of exercises proved that

this was indeed true. The JOVIAL compiler was used to

produce code for simple algebraic manipulation. In pro-

ducing this code, its compile times were materially longer

than those for FORTRAN and the object code was significantly

-23-

less efficient.* Thus, when the JOVIAL compiler was

given applications which were precisely on the design

point of the FORTRAN system, serious deficiencies resulted.

On the other hand, the JOVIAL compiler will handily treat

partial-word, scaled arithmetic, using packed fields--

something the FORTRAN system will not tolerate at all.

As further extension of this reasoning, the FORTRAN

compiler, designed with a large magnetic tape oriented

machine in mind, is so unwieldy and has such excessive

compile times when used on a smaller machine (such as an

IBM paper tape 1620) that its usefulness is indeed ques-

tionable. What is at stake in POLs is not just feasibility

("Can I do it at all?") but also efficiency ("Can I do

it at reasonable or lower cost?').

Even when compilers are used to produce programs

which are at or near the design point combination of

application, hardware, and software, the object code pro-

duced is still usually less efficient than a code tailored

to the particular conditions by an "expert" programmer.

This lack of efficiency is apparent both in the execution

time of the object code and in the storage required to

accommodate that code. One point of encouragement here:

many applications do not require the services of an expert

programmer. (This is indeed fortunate since expert pro-

grammers are in short supply and inadequate efforts are

being expended to increase the supply.) Therefore, in

the case where an application does not press the limits

of the installed hardware, the inefficiencies in the

object code are more than outweighed by the advantages

of allowing a junior programmer to produce useful results.

On the other hand, in the case when the application does

indeed challenge the capacity of the installed hardware,

SSee Table 1.

OP~H(~) 0 0
Z' co 4. Cxi

HR

0
0 0 0

o o n

co o l Cj ~

o/ c
0 2

0

NHI

H LI H 4 H~ H

H4 0 4H0

-25-

the inefficiencies in object code produced by present-

day compilers may be intolerable.

In the former case, the services of the Junior pro-

grammer are augmented by the use of a higher-level lan-

guage, a compiler, and a machine on which to compile.

His efforts are amplified and he is able to accomplish

an otherwise unmanageable task. No claim is made for the

economic justification of this type of operation. The

only notice which is given is that this is a way to

accomplish the work with the resources at hand.

In the latter case, a staff of senior programmers

will be required because they must know the language, the

compiler, the source machine, the object machine, the

problem to be solved, and, additionally must have an

adequate debugging technique on the object computer. This

combination of skills is rare and shows all signs of be-

coming even more rare unless steps are taken to reverse

the trend. Under the conditions indicated above (where

the application taxes the installed computer capacity)

these specialists will, of necessity, resort to hand

polishing the compiled code in order to achieve the requisite

efficiency. The operational program for a real-time

Command and Control system almost always falls into this

latter category.

Design Tradeoffs. It is important to discuss in

detail some of the significant design tradeoffs in order

to sharply describe the current state-of-the-art. These

tradeoffs are:

1) Efficient human communication language vs. efficient

compiler source language.

In a larger context this tradeoff is the result of

the man-machine communication problem. The way humans use,

process, and transmit information is sufficiently different

from the way we use computers to manipulate information

-26-

that a communication language design which is optimized

for humans is generally inappropriate (or at best, very

inefficient) for use as a source language to compilers.

Currently POL's are forced to push this tradeoff in the

direction of efficient source languages and hence they

are "readable" to humans only in the most narrow sense.

2) Expressive or 'rich" source language vs. compile time.

The logical extension of the above tradeoff is re-

flected in the tradeoff between expressive or sophisticated

source languages and compile time. In general, the narrower

the range of the source language, the shorter the compile

time. This is the trap that awaits the developers of a

communication language such as ALGOL. In attempting to

incorporate every possible suggested feature, they are im-

posing increasingly severe design requirements on potential

ALGOL compilers. This inevitably leads to "restricted"

compilers, such as "basic ALGOL," "SMALGOL," etc., which

delete features in the source language to acheive reason-

ably efficient compilers.

A similar tradeoff exists between sophisticated source

language and effort in debugging. The more sophisticated

the language, the more likely it is that one will make

mistakes or use a feature of the language improperly.

This "results in more debugging runs to discover these errors,

or complicated "scanners" in the compiler to discover

language usage errors. Since sophisticated source lan-

guages require sophisticated compilers, it becomes in-

creasingly difficult to determine why the compiler generates

certain segments of object code in a particular fashion.

This aspect is further complicated by the fact that most

debugging today is done in object language rather than

source language, which makes the debugging process that

much more difficult and involved because two different

levels of language are being used.

-27-

3) Compile time vs. object code efficiency.

Finally, one of the most important tradeoffs in

compiler design is between compile time and object code

efficiency. Object code efficiency generally is propor-

tional to the length of compile time. So-called "load

and go" compilers achieve this capability at the expense

of object code efficiency (or by severely limiting the

richness of the source language). The opposite approach

is to utilize compilers with elaborate optimizing routines

to reach more acceptable object code efficiency. This,

of course, results in long--and to many users totally

unacceptable--compile times.

Cost of Compilers. Present-day compilers are expensive

to produce and expensive to maintain. The cost of producing

a modern compiler, checking it out, documenting it, and

seeing it through initial field use, easily exceeds

$500,000. Once the compiler is delivered to the field

installation, its costs continue in the form of maintenance

and improvement. These continuing costs are at least two

man-years (40,000) and approximately an equivalent amount

of machine time costs for the use of the compiler maintain-

ers.* This additional cost continues for the entire life of

the compiling system. These costs are usually not openly

discussed when the praises of a higher level language are

being sung.

*From time to time, competent programmers question
the above figures and cite examples of the development of
low-cost compilers. Invariably, these are cases where the
compiler was developed for in-house use only. As soon as
the effort involves several outside users in diverse geo-
graphic locations, costs begin to rise rapidly as the
increased need for documentation (e.g., training manuals,
narratives, and descriptions for the user), maintenance
and revision procedures, user training, additional special
user requirements, etc., become apparent.

-28-

If the compiler is being written for a computer

which does not yet exist, and which does not have a basic

set of checked-out software, and if elapsed time is an

absolute premium, the cost can be double or triple the

above amount.

Compilers, and the shortage of senior programmers,

amplify a growing difficulty in the area of hardware

maintenance. While computers have become more reliable

in the past several years, maintenance personnel have

become less qualified. The hardware maintenance area is

suffering from the same shortage of senior men as the

programming area, and the situation will get materially

worse unless steps are taken to arrest this undesirable

trend. In the past, occasional serious difficulties would

occur which would not show up when the standard hardware

diagnostic programs were run. To solve this dilemma,

the most hardware-oriented programmer and the most soft-

ware-oriented maintenance engineer would sit down, discuss

their mutual problem, and proceed to map out a series of

experiments which would confirm or deny their suspicions.

This usually required carefully written diagnostics to

be produced on the spot to the specifications agreed upon.

Unfortunately, higher level languages and their compliers

divorce the inexperienced programmer from the computer

hardware. Thus, there is a smaller population from which

to glean senior hardware-oriented programmers. Simultaneously,

the accelerated production of computers has increased the

requirement for personnel in this unique category.

This team effort is rapidly vanishing in the field

simply because the competence is not there. In a civilian

environment, a deficient piece of hardware merely raises

the number of reruns and the associated costs until it

is located and repaired. However, in a military environ-

ment, backup machines (or excess machine time) may not

be conveniently available. Furthermore, should such a

-29-

malfunction occur during an emergency situation, the en-

tire computer-based system could break down at precisely

the time when it is needed most.

MEASURES OF PERFORMANCE

In a young rapidly growing field major advances come

so quickly or are so obvious that instituting a measurement

program is probably a waste of time. At some point, how-

ever, as a field matures, the costs of a major advance

become significant. The problem of choice appears since

now several (or many) alternatives are feasible, and we

become more sharply aware of the tradeoffs required to

achieve a gain in performance. When the POL arrived on

the scene it seemed to offer gains in several areas--built-

in documentation, reduced training, etc., and more efficient

use of programmers' time. However, the magnitude of the

gains is questionable, the total costs (in the larger sense)

are unclear, and comparative studies of POLs are rare and

equivocal. Thus, a measurement program is needed now to

more accurately assess the gains; develop costs in machine

time, direct, and indirect support; and to institute a

sound program of comparative studies of POLs.

Deficiencies in the Current Program

In measuring POLs, several performance criteria are

likely to be relevant. For a few users a single criterion

will suffice; for most users, some intuitive mix of criteria

will be required. As is often the case, choosing these

criteria is difficult because the requirements and opera-

ting procedures which are appropriate for one criterion

often conflict with those of another criterion. For

example, one may wish to "maximize throughput/dollar"

(this implies batch processing; i.e., stacking jobs in a

queue) and minimize "turnaround time" (this implies quick

access to the machine; i.e., short or non-existent queues).

-30-

In the development of a large data processing system, a

manager may wish to minimize a project's elapsed time,

which will conflict with criteria such as "minimum cost"

and "maximum throughput/dollar." Thus, any measurement

program will require: 1) the definition of relevant

criteria, 2) the appropriate selection of criteria, and

3) the development of measurable parameters which

relate to these criteria. The ftrst two are management

decisions. The third sets a firm requirement for a

broad measurement program to develop these parameters.

Measurement Program Outline

A sound measurement program always requires an

extensive data collection effort to establish accurately

the variegated costs, to establish bases for comparisons,

and to determine the tradeoffs involved. A measurement

program should include at least the following factors:

1) Machine Time--The allocation of machine time

into the following categories:

a. Overhead--Machine time spent in compiling or

assembling routines (plus a breakout of the

duty cycle of the component programs in the

compiler or assembler); the amoun" of time

spent on compiler or assembler maintenance

and improvement; and finally, the amount of

time spent in the non-execute phase of pro-

grams--loading the program, system moves and

transfers, idle time, etc.

b. Checkout and Shakedown--Breakout of time

spent running the program non-productively;

i.e., checking it out, running test cases, etc.

c. Production--Time spent on production runs.

It is also important to know the percentage

of time spent in the input-output phases and

-31-

in the computing phase. This should be a

strong factor in software design and hardware

configuration selection.

d. Maintenance--Time spent in either preventive

maintenance or fault-locating on the machine.

2) Programmer Time--The allocation of programmers'

time in the previously defined phases of programming

is a basic requirement. The man-hours spent in

problem formulation, coding, checkout, final

documentation, and overhead (training, reading

manuals, etc.) would constitute a minimum list

of factors.

3) Dollar Costs--A diligent effort to establish

dollar costs of all phases of the operation of

the computing installation is essential. Such

factors as machine rental costs (including off-

line equipment), support equipment (key punches,

verifiers, etc.), programmer costs, support

personnel (operators, etc.), software system costs

(initial plus on-going), are essentials to any

measurement program.

Performance Parameters

The most glaring deficiency in the software area is

in performance parameters. This deficiency will remain

until we develop the cost and data collection endeavor

outlined above and rigorously define each process and

subprocess in the programming area. In the absence of

these definitions, already complicated interrelationships

become indescribable. We must be able, at some point,

to analyze multiple criteria and complex performance

tradeoffs. For instance, since POL compilers cost substantial

sums (initial investment plus continuing cost) their cost

must be factored into the dollar costs of machine and

-32-

programmer time which in turn must be factored even

further (see listing above). Even if an existing compiler

is used, the continuing cost of modification and "mothering"

of the compiler cannot be neglected. The cost (in machine

time) of a compilation is significantly more than of an

assembly. Factors of four to ten are not unusual; hence

they represent a significant cost factor.

A further penalty paid because of the lack of

defined performance parameters is the inability to compare

two POL systems on any basis except a subjective, quali-

tative one. As one author of a current comparative evaluation

put it:

Language design is still as much an art as it
is a science. The evaluation of programming
languages is therefore much akin to art criticism--
and as questionable.

Finally, since the definition of what constitutes

the makeup of any given language (and compiler) is

constantly changing, it is impossible to repeat any

given test or evaluation without obtaining markedly different

results. This naturally adversely affects both language

design evaluation and comparability.

There are three areas of POL work in which the measures

of performance would materially advance and clarify the

efforts invested. First is the area of design of POLs--

the ability to use and manipulate performance parameters

in new and proposed designs would prove invaluable.

Second, measures of performance would assist in estimating

efforts to produce a new POL. Currently our estimating

ability is pure crystal ball--we lack sufficient parameters

to require even the back of an envelope. Finally, decision-

making regarding proposed modifications or revisions could

be put on a quantitative basis. The current approach

ranges from qualitative assessment to sheer guesswork.

-33-

Three Measurement Studies

Listed in the Appendix are the results and conclusions

of three studies which support much of the discussion

in this Memorandum. These three studies suffer from:

1) limited range of the tests; 2) terms, ground rules,

and test problems that are poorly or totally undefined;

and 3) lack of cost data in comparable terms. Nevertheless,

the reader is urged to peruse these studies since the

results do convey some knowledge and the identification

of the deficiencies in each study is instructive. Further,

they indicate clearly the problems of test design and evalua-

tion which any measurement program faces. It should also

be stressed that in spite of the fact that these results

must be treated gingerly, efforts of this type must be

encouraged (and their limitations understood) rather than

attempting to discover what constitutes optimum test

design. Incidentally, these three studies represent about

a third of the known studies.

SOME DESIRED COMPILER DEVELOPMENTS

There are several compiler developments which should

be encouraged and supported. From successful developments

of the type indicated below, it would be possible to

obtain compiling systems which have broader applicability,

lower costs (both first time and continuing), and increased

efficiency (any definition).

1) Modularity - Some development efforts are pro-

ceeding whereby truly modular compilers can be

realized. If this can be accomplished, the user

may have the option of adding or removing editors,

debugging routines, code-polishing routines, or

partial-word arithmetic. Thus, major sections of

code can be deleted from the compiler. The re-

sultant operational compiler will be better

-34-

suited to the purpose and, since it does not

carry as large an overhead burden, will be faster

and cheaper to operate.

2) Adaptability - Compilers with flexible internal

structures are also just appearing. If these

developments can be followed to their logical

conclusions, it may be possible to have compilers

which, for example, generate either fast object

code or compact object code. Thus, a programmer

may choose the tradeoff suitable for his appli-

cation.

3) Debugging - In the past, the area of debugging

has been almost completely ignored. Most

compiler writers assumed some utopian individual

who did not make mistakes when writing source

language. Those designers who did not adhere

to that contention believed there was no cost

associated with machine time, and lengthy compile

times could be tolerated. Finally, other compiler

designers believed that they could determine

all of the errors in object code if only they

had adequate source language editing. Unfor-

tunately, all three of these contentions have

proved to be false. The debugging area must be

attacked in its own right to achieve the oft-

advertised but elusive benefits of one language

level. Until one language level is achieved

both for describing the process and debugging

the code, training requirements will be increased

and costs will be excessive.

4) Range of Application - Some efforts are now under

way to broaden the range of application of com-

pilers. Several compiling systems will allow

the intermixing of one or more source languages

-35-

in a single program. Unfortunately this is

usually accomplished not by merging the languages

but by allowing mechanical intermixture, a

technique which yields tougher debugging and

more errors. On the other hand, there are one

or two splinter efforts aimed at trying to find

one basic language which will be adequate for

formula evaluation, data processing, and real-

time control. Although this may not be possible

in the immediate future, such efforts should be

encouraged.

5) Integrated Design - Some manufacturers are organ-

ized internally so that hardware is the result

of one design group and software is the result of

a second independent design group. If performance

measures such as compile speed, expansion ratio,

and object efficiency (all three now undefined)

are adopted, these two design groups will be

forced to merge their design efforts in order to

produce an integrated and balanced package.

Thus, hopefully, the phenomenon of the compiler

which is designed to overcome deficiencies in

the hardware design will gradually fade from view.

SUMMARY

There are several key points about POLs which should

be summarized:

1) Tough programming jobs still require top-flight

people (use any intuitive notion of what is

meant by "tough"--tight real-time constraints,

big jobs, short deadlines, etc.).

2) POIA make a contribution in only part of the pro-

gramming process. Equally important facets that

need significant contributions are:

-36-

a. System design and problem formulation--the

development of data processing system parameters,

and of methods and techniques for describing

data processing functions.

b. Data organization and mapping--the establish-

ment, care, and feeding of a data base;

the problems of defining, formatting and

error-checking data.

c. Compatibility--POLs are only a partial answer

at best.

3) No single current POL can efficiently cover any

substantial portion of the computer applications

spectrum. This may change over time--but slowly.

Therefore, only count on a POL to cover a limited

set of applications.

4) There are alternatives other than embracing a

POL:

a. Communication language--a communication or

specification language will often bring most

of the benefits of a POL without the large

investment.

b. Macro-oriented languages--these offer many

of the POL advances and are appropriate where

inefficient use of the computer cannot be

tolerated.

-37-

III. THE STANDARDIZATION QUESTION

BACKGROUND

In examining the question of standardizing on a POL,

it is appropriate to discuss the broad question of stand-

ardization. DOD Manual M-200 lists as the purpose of

standardization:

1) to improve efficiency and effectiveness of
a function and,

2) conserve money, manpower, time, production
facilities and natural resources.

Usual objectives of a standardization plan are to

minimize the number of items; optimize interchangeability;

standardize terminology, codes, and drawings; etc. Further,

the implied uniformity of a standard allows easier and

more accurate estimation of both capabilities and costs,

improved communication among users, better and more ac-

curate statistics, and more readily achieved compatibility.

In addition, a standard will allow all affected agencies

to concentrate their energies and resources on using and/

or improving the standard.

The advantages and needs for standardization are well

recognized in the United States. Interestingly enough,

most of the standards in the U.S. are set by various tech-

nical societies. There are over 350 organizations in the

U.S. involved in standardization activities. In Stand-

ardization Activities in the U.S., Sherman Booth says:

The national technical societies of the U.S.A.
are the very backbone of its standardization
achievements. This fact sets our country apart
from others wherein the results of standardi-
zation stem from a mandatory rather than a
voluntary basis.

Given the advantages of standardization, how do we

know when to standardize? There are certain precursors

which indicate a readiness for standardization: a sufficient

-38-

base of consistent (or standard) terminology and accepted

lower-level standards on which to build; a relatively

mature state-of-the-art; and extensive user experience.

However, one should not fall into the trap of believing

that the rate of progress must approach zero before a

standard can be instituted. Booth points out:

Standards are not static. As the rudiments
of technological aspects of problems become
commonplace, as greater knowledge of the
chemical and physical characteristics of
products are more widely known and accepted,
a committee may again be activated to recon-
sider and modernize or improve a previously
issued standard. Such improvements are
regular, frequent, almost routine. There
are relatively few documented standards that
have never been revised. Thus, standardization
agencies find themselves engrossed in the
problems of revising standards as well as de-
veloping new standards, and to about the same
degree. Standardization is dynamic. It must
necessarily follow closely upon the heels of
science, research, invention, and creation if
it is to serve its intended purpose.

We will attempt, in the following discussion, to

indicate our views of the level of standardization in the

programming field that is achievable in the next few years.

DEFINITIONS

Before beginning our discussion, a few definitions

will ensure a common basis of understanding.

STANDARD (Noun) That which is established by

authority as a rule for the measure of quan-

tity, weight, quality, etc. That which is

established as a model or criterion to measure

against.

STANDARDIZE Applying political and/or economic sanc-

tions to enforce usage of a standard.

Standardization is appropriate when, in the

-39-

eyes of an authority, the benefits of further

experimentation are exceeded by the benefits

of standardization. In standardizing, the

authority must define (or describe) the

standard and how to verify it. By stand-

ardizing, all efforts are brought into line

and further progress and experimentation

can proceed from a uniform base.

STANDARD (Adjective) Used in conjunction with

phrases such as "programming language."

The resulting phrase implies a language that

has been subjected to heavy use and experi-

mentation and found to be the most suitable

for its field of application either by a

central authority's evaluation or by wide-

spread usage.

CHARACTER SET That collection of basic symbols and

signs which is used to depict meanings.

English speaking countries usually have, as

a minimum, the ten symbols 0 through 9, and

the twenty-six symbols A through Z. A

heated debate is now raging regarding the

total number of characters in the set used

in the computing field (choices frequently

mentioned are 48, 64, and 128); and what

additional symbols will be added to the

set to make up the total (special characters

such as >, <, $, %, etc.).

COLLATING Given any character set, a design de-
SEQUENCE cision must be made on how to order these

symbols within the computer. Modern com-

puters contain a collating sequence implied

in the internal wiring of the device. The

compare order, the sorting function, the

printer circuitry, and the card read circuitry

-40-

are all severely affected by the arrange-

ment of the chosen characters into an

ordered sequence. The discussion centers

around the placement of the aforementioned

special characters and whether numbers take

precedence over the alphabet or conversely.

REQUIREMENTS FOR A STANDARD POL

As we have indicated earlier, there are at least three

requirements that a candidate for standardization should

fulfill: 1) a sufficient base of lower-level standards,

2) a mature technical development, and 3) extensive

user experience.

A Sufficient Base

The base on which a standard POL rests should con-

sist of key basic standards and standard terminology. An

essential requirement is standardization at lower levels,

such as collating sequences, card and tape formats, char-

acter sets, etc. Unless we first standardize at these

lower levels, any higher standard will be apparent rather

than real. That is, if all incompatibilities must be re-

solved at the POL level, the impact of this requirement

will necessitate numerous versions of the standard POL

and the single standard will be a fiction. Moreover,

without a standard terminology, we cannot even describe

and discuss a standard POL. Much basic work must be ac-

complished--work which even if attacked vigorously will

probably require a minimum of two years. The pace of

standardization in programming languages will be set by

our progress in attaining this base.

Mature Technical Development

A second requirement is for mature technical develop-

ment. An important indicator of this development will be

the emergence of POLs with sufficient scope to efficiently

-41-

cover large and significant application areas and a wide

class of machines. Progress is being made, but much

improvement in performance is still required.

Another indicator of progress in technical develop-

ment will be the establishment of standardized measures

of performance. It is encouraging to note that in the

last few months, more and more attempts at quantitative

measures of POL performance have appeared. This is a most

healthy trend. However, all of the studies to date re-

quire extensive interpretation; significant conclusions

can be drawn only at some substantial risk. Measurement

efforts should be accelerated and encouraged but will

bring real clarification and guidance to the field only if

standardized performance parameters are defined and de-

veloped. We must, over the short haul, factor out those

aspects of the programming problem which we cannot cur-

rently measure and concentrate on those we can. Advances

in this area are absolutely essential to the selection of

a standard POL. Any sensible standardization plan must

provide for standard acceptance tests and a method of

evaluating, and ranking in priority order proposed re-

visions to the standard. Most of the value of a standard

resides in its slowly changing nature and the guarantee

that it performs as specified.

A third indicator of technical maturity will be the

development of an adaptable and modular compiler for the

standard POL. Even if a communication language can be

developed for a wide application area and its associated

compiler can cover a large class of machines, it should be

recognized that each computing application and facility

has unique requirements and constraints. The capability

to "tailor" the compiler to the particular needs of each

major application and facility is a key technical require-

ment for POL standardization. Important advances in the

development of modular compilers and the development of

compiler design criteria will be required.

-42 -

Extensive User Experience

Extensive user experience and wide acceptance are

simply healthy indications that the POL has been subjected

to a free market and is fulfilling the needs of a wide

spectrum of users. In reviewing the state-of-the-art in
Sec. II, we saw that most current POLs fail to meet this

necessary condition.

PLANNING FOR STANDARDIZATION

Much of the preceding discussion has emphasized the

problem of assessing the need for standardization and the

problem of selecting a standard. Equally important are

the problems of maintaining and improving a standard.

These are primarily problems of efficient organization and

resource management--new organizations will be required,

new procedures, quality people of a type already in short

supply, and, of course, money. Due to the magnitude of

the investment, it is mandatory that considerable advance

planning precede any serious step toward large scale

standardization. Since the Air Force is one of the largest
users of computers in the U.S., a central Air Force agency

responsible for the p'.anning and implementation of a

standards program is absolutely essential. The Air Force
Directorate of Data Automation would seem to be the ap-

propriate agency.

In addition to the management side of the standard-

ization effort, the maintenance and improvement effort

will require significant technical efforts to examine such
fundamental questions as the tradeoff between maintaining

a relatively static standard and incorporating improvements

in the standard. In this tradeoff, the rate of innovation

will slow over the present rate but at the same time we

should develop sharper and clearer ideas of what are high

payoff improvements. For example, this should result in

-43-

improved specifications for the Air Force applied research

program in computer techniques.

PARTIAL STANDARDIZATION

There are several possible alternatives short of com-

plete standardization. One alternative is to adopt a

local standard which centers on a single application area

and a single machine type. The application area must be

carefully and narrowly defined to keep it within an ef-

ficient design range of current POLs. Command and Control

is clearly far too broad an application area. More typical

applications might be headquarters level intelligence, base

level logistics, etc.

A second alternative is to standardize on one com-

ponent of the POL--the communication language component.

This would allow a broader application spread (since a

compiler is not involved), but would have to be tempered

by the number of compilers required to cover the appli-

cation area.

Both of these approaches offer modest but important

advances and retain flexibility for full standardization

when the art permits. They are conservative approaches

and are well within the current state-of-the-art.

SUMMARY

On the basis of this study the answer to the question

of programming language standardization is: not now.

Key and significant requirements for standardization are

unfulfilled. However, the prognosis for standardization in

the relatively near future (2-4 years) is good if the

following tasks are carried out:

1. Work on basic standards is required as

a prerequisite to POL standardization.

Standard terminology and measures of

-44-

performance are prerequisites to

standardization. A standard can be

declared by fiat, but without these

factors its value is at best question-

able.

2. Programming languages with increased range

of application need to be developed. The

current POL state-of-the-art is still not

up to the requirements of complete stand-

ardization.

3. Planning should be initiated now on the

organizational, resource, and technical

requirements for standardization--pre-

ferably under a central Air Force agency

such as the Air Force Directorate of

Data Automation.

4. Partial standardization options should be

considered:

a. Local standardization.

b. Communication language standardization.

-45-

IV. CONCLUSIONS

The foregoing discussions have defined some terms,

stated some facts, and discussed both sides of topics con-

cerned with programming problems, the current state of the

programming language art, and the standardization question.

The following conclusions are set down in a convenient

order, with no ranking or implied importance to be inferred

by the order of presentation.

1. Standardization

In specific answer to the question, "When should the

Air Force standardize on a common programming language for

Command and Control?" the study indicates: NOT NOW. This

is the only conclusion that could be reached since: a) so

many important facts remain unknown (not necessarily unknow-

able), b) the state-of-the-art in programming languages

exhibits considerable immaturity, and c) much basic work

in standardization remains to be done.

2. Basic Standards

The Air Force should lay the ground work and prepare

to take a stand on some basic standards in the computer

field. Efforts are now under way in the American Standards

Association (ASA) to draw up a number of representative

standards and submit them for review. Certain basic stan-

dards are long overdue. Action is recommended for stand-

ardizing on:

a) A data processing glossary.

b) 80-column cards.

c) Magnetic tape recording formats.

d) Flow chart symbols.

e) Character sets and collating sequences.

A glossary is long overdue in the computer field.

This lack of a glossary is impeding progress and placing

an additional burden on military officers who must become

-46-

conversant with the field in a minimum period of time.

To further complicate matters, the several manufacturers

make overt attempts to avoid using the same word to describe

the same hardware feature.* It is recommended that the

Air Force let it be known that it will accept the ASA

glossary when it is published. Furthermore, the Air Force

should allow some reasonable grace period, 24 months for

example, after which it will buy and accept only computer

equipment whose manuals and specifications are written

using the terms as defined in the published ASA glossary.

The 90-column punched card has been declining in usage

for some time. Its demise was sealed when its principal

proponent elected not to offer 90-column equipment as

standard input/output for part of his new product line.

Recognizing that a clear trend has been established, the

Air Force should curtail the installation of any additional

90-column card equipment unless extenuating circumstances

so dictate. Furthermore, the Air Force should have a

workable plan for replacing 90-column card equipment with

80-column card equipment on a gradual phase-out basis.

A similar opportunity for establishing a basic standard

exists with magnetic tape drives. A distinct trend is

already evident among manufacturers toward half-inch tapes,

recorded with seven tracks at either 200 or 556 bits per

inch, with a three-quarter inch gap between records. This

is the level at which standardization is feasible and

practical in the immediate future. It is typical of the

level of standardization which must precede standardization

at the programming language level and has the added benefit

of immediate payoff. A standard tape format would greatly

benefit the exchange of data files between installations.

*These attempts have gone so far that two manufacturers
cannot even agree upon the spelling of disk or disc.

- 47-

If this standard were adopted for communication purposes

between machines, there wouLd yet be many avenues open

whereby additional tape perrormance could be obtained.

Thus the development of neower and better equipment would

not suffer materially.

There are several excellent sets of flow chart symbols

and conventions available at the present time. A basic

set could be chosen and would result in increased efficiency

and decreased costs to ala concerned.

The subject of charaLter sets and collating sequences

is also long overdue for standardization. The Department

of Defense exhibits one Wf the principal instances of an

in-house incompatibility. rhe Fieldata character set which

has been adopted in the conurunications area is incompatible

with most of the electronic data processing equipment the

government has presently installed. Until the Department

of Defense takes positive action and reports its stand

to industry, the confusicon Is likely to continue. Again,

the ASA is working in this area. Should the Department

of Defense accept what the ASA recommends, a large forward

step would again be taken, The standard should not be

adopted overnight, but only after a period, such as four

years, to allow the replaerrient (through attrition) of

print drums and code wheels on input/output devices.

If tape formats, chaLracter sets, and collating

sequences were commonly aLceepted, the military would have

come a long way towards being able to interchange files

of data between interested installations. This area, while

not as romantic as higher-level languages and compiler

programs, would begin to return dividends immediately and

requires no further resea-rh or development.

3. Partial Standardizati on

The study indicated that the Air Force should go slow

in the adoption of compiLers to be applied to a broad

-48-

spectrum of problems. There appear to be no dangers

(other than the costs indicated in the previous sections)

in the adoption of languages and compilers where a single

application area and a single machine class are involved.

This might be considered adopting a language on a local

scale. On the other hand, there appear to be grave

inefficiencies if present-day compilers are adopted on a

global scale.

Another alternative to complete standardization is to

standardize on the communication language component of a

programming language--letting each user select the type

of processor (compiler, assembler, etc.) appropriate to

his particular requirements.

4. Central Agency

As indicated in this Memorandum, the Air Force

urgently needs some central agency charged with responsi-

bility for:

a) Measures of Performance--An effort is needed to

gather, keep, and organize statistical studies

on an unclassified, objective basis. The lack

of facts, performance parameters, and adequate

measuring techniques must be overcome if we wish

to quantify our decisions. This effort probably

must go hand in hand with the establishment of

a glossary, for, in the interim, word meanings

cannot be established with sufficient rigor.

b) Planning for Standardization--The Air Force's

large investment in computers and supporting

data processing equipment requires that a careful

and continuing planning effort be permanently

established. Good (and bad) decisions on

standardization in the Air Force can produce

significant changes in the costs of Air Force

data processing systems.

-49-

In addition, many of the problems of incom-

patibility between systems and the problems of

data, file, and computer program exchange can be

resolved as part of an overall standardization

and equipment selection plan.

c) Computer Selection--The Air Force needs to use

more central planning and deliberation in choosing

new computers. Much of the problem of incom-

patibility (which a machine-independent higher-

level language must solve) is often due to the

decentralized way computers are purchased by the

Air Force. For instance, the purchase of two

computers from different manufacturers which are

to be applied to precisely the same problem area,

though geographically removed, can be avoided by

centralized computer selection.

In addition, if elapsed time is a critical

factor, the Defense Department is well advised

to avoid "paper" or "one-of-a-kind" computers

and instead to pick an established computer with

checked-out software.

5. Assessing Programming Languages
Programming languages represent an attack on the

"programming problem," but only on a portion of it--and

not a very substantial portion. Much of the "programming

problem" centers on the lack of well-trained experienced

people--a lack not overcome by the use of a POL. The
problem of training and acquiring top-flight people is not
alleviated by the introduction of POLs.

The current state of technical development of POLs

is relatively immature. No single POL can efficiently
cover any substantial portion of the computer application

spectrum. The restricted range of current POLs is primarily

due to limitations in compilers. No design parameters have

-50-

been isolated, nor have the techniques to use such parameters

been developed. Several compiler developments would

materially assist in widening the design range, increasing

productivity, and achieving a resource tradeoff which is

under the facility manager's control. Developments in the

area of modularity, adaptability, debugging, and integrated

design could significantly improve the current picture.

The Air Force should take the lead in directing and

supporting research efforts in this critical area.

6. Indoctrination and Training Program

Computers and computer programming have developed

since most military officers received their basic education.

To acquire an awareness and understanding of computer-

based systems requires a significant investment in training.

It is unfair to expect an officer to acquire the requisite

training on his own and hold down a full time assignment.

Several other alternatives are available. A short course

could be set up to provide the necessary training. Pro-

gressive self-study courses could be made available.

Roving lecturers could be scheduled for installations

where the officer population warrants. These periodic

lectures could be supplemented by lists of recommended

reading. Audio visual aids could be obtained in quantity.

The problem ultimately can be solved by proper academic

curricula and appropriate additional courses at the

established USAF schools and colleges.

In addition to the problem of indoctrinating the Air

Force officer who is a user of computer systems, there

is the problem of developing a cadre of skilled, professional

programmers in the Air Force. An intensive and well

planned training program is required to meet the growing

Air Force need, in both quality and quantity, for computer

programmers.

A staff study on this critical indoctrination and

training program, and how it fits in with Air Force long

-51-

range objectives in computer-based systems, would materially

assist in laying out a course of action and. determining

how to proceed.

-53-

Appendix

THREE MEASUREMENT STUDIES

B. F. GOODRICH COMPANY STUDY

Background - A test designed to compare compiling

time, object program running time, COBOL diagnostics,

and to prove the operability of the COBOL programming

systems. A COBOL source program in RCA 501 format

was to be converted to two other computers and com-

parisons made. The comparison involved three machines:

the RCA 501, GE 225, and IBM 1410.

A news release announcing the completion of the

study appeared in Electronic News. February 19, 1962.

On June 6, B. F. Goodrich Company sent a summary re-

port of the test to those who had requested more de-

tails.

Test Problem and Results - The program involved the

updating of an inventory file and the printing of a

complex inventory shortage report. The COBOL program

consisted of 220 data division and 394 procedure

division statements. The data available to the pro-

grammer consisted of:

1) The COBOL source program in RCA
501 format

2) A flow chart detailing only the COBOL
steps

)A magnetic tape listing of all inputs
A sample listing of six pages of the
desired output report

5) A brief description of the program.
With regard to the detailed results, we quote from

the report: "All of these objectives were achieved in

the test; however, it is the decision of the B. F.

Goodrich Company not to release the comparative results."
The exact reason for this decision is not known. We

can suggest however, that perhaps the two losing manu-

facturers may have taken serious issue with the
comparative results and the interpretation of those

results.

-54-

Major Findings and Conclusions

I) "In one case, a relatively experi-
enced programmer wrote his first
COBOL program writing from the
COBOL manual and the above data.
Two inquiries to the original RCA
501 programmer were made by telephone.
Practically no difficulty was en-
countered that could not be traced to
the characteristics of the COBOL
compiler under test. About three
weeks of part-time work were estimated
with much effort being spent in
learning and interpreting the two
COBOL languages and in creating the
extensive test data required. The
programmer key punched this data
himself. Some key punching errors
were made resulting in the only
difference between the two operating
object programs.

2) "In the second case, a relatively in-
experienced programmer who had written
COBOL programs before on another
computer system attempted the conver-
sion. This person had considerable
difficulty in converting the RCA 501
program and, in fact, the services
of other programmers were required.
The difficulties involved misunder-
standing of the RCA 501 source pro-
gram, mis-use of certain sophisticated
features of the COBOL system under
test, plus basic misunderstanding of
the machine language of the computer
under test. In addition, the three
magnetic tape input records were
created from COBOL programs which
"fanned" out the test input data to
the desired test size. Thus, a re-
latively inexperienced programmer was
attempting to compile and run four
programs on a computer he had never
encountered before. Approximately
two weeks were required to write the
programs. However, a series of
compiler or object program difficulties
delayed completion of the program for
four more weeks.

-55-

3) "In addition to two phone contacts
with the original RCA 501 programmer,
BFG gave some assistance. This assis-
tance was basically "how to program and
debug" rather than specific help on the
test program. It is important to note
that both manufacturers felt that much
less time would be required if their
programmers had been more familiar
with COBOL and the computer under test.
In other words, the documentation was
adequate, at least for a programmer
experienced in how things are done on
computers.

4) "Although an inexperienced programmer can
write in COBOL, probably COBOL
requires significantly higher quality
programmers to make use of the full
sophistication of the system.

5) "A firm training in the machine language
as well as how all peripherals operate
is required to produce efficient pro-
grams and to facilitate debugging."

STUDY OF PROGRAMMING SYSTEMS FOR THE IBM 650

Background - A test designed to compare several of the
programming systems for the IBM 650. The programming

systems examined were GAT (General Algebraic Translator),

FORTRAN, and SOAF (Symbolic Optimizing Assembly Pro-
gram), plus "machine language."* In the study, the

author rates these languages in order of ease of program

preparation:
1) "Writing FORTRAN programs is almoe t

like writing down algebraic expressions.

2) "GAT is similar, but it places more
restrictions on the use of symbols.

3) "SOAP is closest to actual 650 machine
language, but still a great deal less
tedious to produce.

*We chose to ignore the two interpretative systems
which were included in this study. "Machine language" in
this case is probably a symbolic version of machine language.

-56-

4) "Machine language is relatively more
difficult to learn and extremely
tedious to write."

The study was published in The Behavioral Science

Journal, February 1962, entitled, "The Use of Simpli-

fied Programming Systems in IBM 650 Data Processing"

by Linton C. Freeman, Syracuse University Computing

Center.
Test Problem and Results

"The problem selected for study is typical
of those confronted in statistical data
analysis. It involves the computation of
chi-square as a test of significance in a
2X2 contingency table. Such a problem
involves a relatively large amount of input
and output and employs a straightforward
series of arithmetic operations. The logic
is simple, and there is no need for any
extensive iterative processes."

The results of the study are summarized in Table 2.

Main Findings and Conclusions

1) "The order of the assembly times is
roughly the inverse of their programming
difficulty."

2) GAT, which had a shorter compile time
than FORTRAN, yielded less efficient
(in number of solutions/minute) object
code.

3) Program read-in time was significantly
greater for the two compilers than for
SOAP and machine language because FORTRAN
and GAT require that standard subroutines
be read in along with the program.

4) "Since they require less computer time both
for assembly and program running, the
machine language systems seem to be called
for whenever machine time is at a high
premium. Then, too, if a program is to
be used over an extended period of time,
the greater speed of machine language
programs makes them desirable. In other
cases, the simplified systems seem satis-
factory.

-57-

0 0

Cd $4 A
:j) 0 i z

"-1

0 ~-1 (

co2 04-34-) *

0 0

00. 2- 0d

:3 0 0
.t* LC' H H

0) 01
H- LPn 0 0 -

0 0 $I,) 0

o 0

0, 04.

H C)
Cd 4-) Z

-H S4

0>

H) 0 +:3

0.0V2 &4 Q0~
00 .9 0

0 4

z 0 C 4

04 co

00 CUCU

-58-

5) "If we compare the machine language
systems with SOAP, which is considerably
easier to use, it becomes apparent that
unless the program is going to be used
almost all day every day, SOAP will
be satisfactory. In a situation where
machine time is relatively unavailable,
or when a program is to be run quite
often, SOAP seems to be the choice
among the simplified systems. This is
particularly true when there is a great
deal of input and output. In such a
case SOAP, with its relatively greater
read and punch speed, would provide
more output.

6) "FORTRAN would be a good choice only
when a great number of runs could be
anticipated. Its excessive assembly
time precludes its use for one-shot
programs. Furthermore, its slow rate
of input and output suggest that it
might best be employed on problems
which have little input and output but
a relatively large amount of internal
computation.

7) "In contrast, GAT assembles and accepts
input and produces output relatively
quickly, but its rate of computation is
slower. This suggests that the
appropriate application of GAT is for
problems involving a small amount of
internal computation, when only one or
few runs are anticipated."

BUSHIPS COBOL EVALUATION

Background - The Bureau of Ships, in conjunction with

the David Taylor Model Basin, is in the process of

evaluating COBOL for shipyard applications. The

stated objectives of the project are:

1) "to analyze COBOL capability for
handling complex shipyard problems;

2) "to determine the type and utility of
the diagnostics;

-59-

3) "to determine the extent to which programs
can be debugged in the source language;

4) "to evaluate the effectiveness of COBOL
for describing business problems;

5) "to obtain information on the use of COBOL
to document programs;

6) "to determine the extent to which COBOL
must be changed in going from one computer
to another."

This was the first of a series of studies to

assess various existent COBOL systems. It called

for the programming of a Bureau of Ships problem by

computer manufacturers who had announced an operative

COBOL system. The manufacturers could solve the pro-

blem without restraint as to hardware or COBOL con-

figurations if they were available and operative.

It is expected that experience gleaned from this

initial test will guide the planning of further

studies.

The participating manufacturers were Remington

Rand, RCA, IBM, GE, and NCR. The first report of the

study was published in the Communications of the ACM,

May 1962, entitled, "Interim Report on Bureau of

Ships COBOL Evaluation Program," by Milton Siegel

and Albert E. Smith.

Test Problem and Results - The test problem entailed

the development of a "Statement of Operations" Report

which depicts the overall financial condition of the

eight major activities (cost centers) of the David

Taylor Model Basin. The key steps include:

1) A breakdown of current month's expendi-

tures by transaction and expense category.

2) Updating master file to obtain expendi-

tures for fiscal year to date for each

-60-

cost center.

3) Printing the "Statement of Operations"

Report.

The results of the test are summarized in Table 3.

Major Findings and Conclusions

1) "For this study, no attempt was made to
compare the relative effectiveness of
the various COBOL compilers because
compiling times and running times are
strongly dependent upon the method of
handling the problem and the ability of
the particular programmer assigned to
the task.

2) "Gratifying progress has been made by the
participating manufacturers in develop-
ing COBOL compilers for complex data
processing applications.

3) "Standard flow charting procedures are
required in order to accrue the full
benefits of COBOL.

4) "Continued effort should be made by all
manufacturers to reduce compiling time.

5) "Although many programming errors can be
found at COBOL source language or inter-
mediate language level, it is almost
always necessary to analyze the machine
code to completely debug the program.

6) "The object programs produced in the test
problem appear to be highly efficient."*

*Personal conversation with one of the authors indicated
that this statement was based on Univac II being "rated" twice
as fast as Univac I, and since the routines ran about twice
as fast,this statement was inferred. It is a purely qualitative
judgment.

00 z

I'D 04 _-

'd$ 0 10 0 04
Q) (L) 'd

0) c 0 4.) 4)
4.) co

Cd 4-

,10 0 %.o 0 0) 4-3
o 4 H- -4 H Hc

E- ~c4) 0 C

0 4 -

0~~ bU C'. W-4)~.
4) 0. :5- P+4 H0 43-- ~

F4 q- 04), o

,4- 0 t) do4. 0 COD - 4) 4 0
co~~ ~ ~ ~ 0 Y)0 c - r

0 0 0 r* 0 CU 0 01 2 .U

0 4- 0 Cv4) .
0~~r 4-H H U * OU

04-) P 43 0.
H4c4 :3 -

000

C4 0)4%4) 4
0 4) -i 0 -t4

O 0 0 ~ ~c~ H4) -4 H
(Y) H- CUj $4 Udz10C

0 a 4) r4)H0

a m) 4) :54-)
__ __ _ __C_ 4) W4) V 0

4-) 02 V 4) 4-4)
0 04)0 0U)

H 0 ~ 4)qj

0U'\O U~ - Y) -)H 4) 1

H z r
~ 0 ~ 0 ~ .0b 0.

IZ4 0,H

-63-

BIBLI OGRAPHY

Arden, B., B. Galler, and R. Graham, Michigan Algorithm
Decoder, University of Michigan, February 1961.

Armed Forces Supply Support Center, Standardization Division,
Standardization Policies, Procedures, and Instructions,
Defense Standardization Manual--M200, Washington, D.C.,
January 1, 1960.

Association for Computing Machinery, "Papers Presented at
the ACM Storage Allocation Symposium, June 23-24, 1961,"
Communications of the ACM, Vol. 4, No. 10, October 1961,
p. 416.

Bemer, R. W., "Survey of Coded Character Representation,"
Communications of the ACM, Vol. 3, No. 12, December 1960,
p. 639.

Booth, Sherman, Standardization Activities in the U.S.,
Government Printing Office, Washington, D.C., 1960.

Bromberg, Howard, "COBOL and Compatibility," Datamation,
Vol. 7, No. 2, February 1961, p. 30.

"What COBOL Isn't," Datamation, Vol. 7, No. 9,
September 1961, p. 27.

Burroughs Corporation, The Descriptor--A Definition of the
B5000 Information Processing System, Bulletin 5000-20002-
P, The Burroughs Corporation, February 1961.

Cheatham, T. E., Jr., CL-II: Notes in Implementation of the
CL-II Programming, SM 61-7, The Tech/Ops Series On Pro-
gramming Systems, Technical Operations, Inc., Burlington,
Mass., July 1961.

..... ,Preliminary Design Specifications for CL-II Pro-
gramming System: Sec. 2--Syntactic and Semantic Summaryof Longs L ,L , Report No. TO-B-60-23, Technical

Operations, Inc., Burlington, Mass., June 1960.

Cheatham, T. E., Jr., G. 0. Collins, Jr., G. F. Leonard,
J. W. Smith, and S. Warshall, Introduction to the CL-I
Programming System, TR 59-6, Technical Operations, Inc.,
Burlington, Mass., January 1960.

Clippinger, R. F., "FACT - A Business Compiler Description
and Comparison with COBOL and Commercial Translator,"
Annual Review in Automatic Programming, Pergamon Press,
Jaunary 1961.

, "International Standards," Proceedings of the 1961
EJCC, Unpublished, December 1961.

"CODASYL O.K.'s Publication of COBOL-61--Executive Committee
Resolves Not to Abdicate Maintenance," Datamation, Vol.
7, No. 7, July 1961.

-64-

Collins, G. 0., Jr., and S. Warshall, CL-II: A General
Purpose Syntax Directed Compiler, SM 61-5, The Tech/Ops
Series on Programming Systems, Technical Operations, Inc.,
Burlington, Mass., July 1961.

Devonald, C. H., and J. A. Fotheringham, "The Atlas Computer,"
Datamation, Vol. 7, No. 5, May 1961, p. 23.

Department of Defense, Report to Conference on Data Systems
Languages--(COBOL), A-2270-DOD, April 1960.

Eastern Joint Computer Conference, "The Current Status of
Programming Language Standardization," Proceedings of the
1961 EJCC, Panel Discussion, Unpublished, December 1961.

Electronic News, No. 303, February 19, 1962, "Data Items,"
p. 3U.

Erdwinn, J. D., D. M. Dahm, and G. W. Logemann, Burroughs
Algebraic Compiler, Preliminary Working Paper, Burroughs
Corporation, October 1959.

Evans, Orren Y., Advanced Analysis Method for Integrated
Electronic Data Processing JIEDPL, North American Aviation,October 1959.

Freeman, Linton C., "The Use of Simplified Programming
Systems in IBM 650 Data Processing." The Behavioral
Science Journal, February 1962.

General Electric, GE-225 Programming Conventions, CPB 178
(5M-9-61), General Electric Corp., Computer Department,
September 1961.

-----, GE-225 Tabsol Application Manual: Introduction to
Tabsol, CPB 147A(5M-6-61), General Electric Corp., Com-
puter Department, June 1961.

----, GECOM--The General Compiler, CPB 144(1OM-4-61),
General Electric Corporation, Computer Department, April
1961.

Gorn, Saul, Some Basic Terminology Connected with Mechanical
Languages and Their Processors, Office of Computer Research
and Education, University of Pennsylvania, August 1961.

-, The Treatment of Ambiguity and Paradox in Mechanical
Languages, Office of Computer Research and Education,
University of Pennsylvania, April 1961.

Grad, Burton, "Tabular Form in Decision Logic," Datamation,
Vol. 7, No. 7, July 1961, p. 22.

Halstead, M. H., Machine Independent Programming, Spartan
Books, 1962.

Haverty, J. P., The Role of Programming Languages in Command
and Control: An Interim Report, The RAND Corporation,
RM-3293, September 1962.

-65-

Holt, Anatol, W., Chairman, "Proceedings, ACM Storage
Allocation Symposium," Princeton, New Jersey, June 23-
24, 1961, Unpublished.

Holt, A., W. Turanski, and D. L. Meginnity, Common rogram-
ming Language Task-Automatic Code Translation System tACT),
Final Report No. AD 59 URI, Institute for Cooperative
Research, University of Pennsylvania, July 13, 1959.

Honeywell, FACT - A New Business Language, DSI-27A, Minne-
apolis-Honeywell, 1960.

Hosier, W. A., "Pitfalls and Safeguards in Real-Time Digital
Systems with Emphasis on Programming," IRE Transactions
on Engineering Management, June 1961.

Information Processing, Proceedings of Intemational Confer-
ence on Information Processing, UNESCO, Butterworths,
London, June 1959.

Ingerman, P. Z., "Dynamic Declarations," Communications of
the ACM, January 1961, pp. 59-60.

Ingerman, P., and E. Irons, THUNKS - A Way of Compiling Pro-
cedure Statements with Some Comments on Procedure Declara-
tions, Office of Computer Research and Education, Univer-
sT-of Pennsylvania, November 1960.

Institute of Defense Analyses, Computers in Command and
Control, Technical Report No. 61-12, November 1961.

International Business Machines, General Information Manual--
IBM Commercial Translator, Form F 28-803, International
Business Machines Corp., 1960.

..... ,General Information Manual--COBOL, Form 28-8052-1,
International Business Machines Corp., 1960-61.

, "Multiprogramming--A Candid View," Unpublished
Working Paper, International Business Machines Corp.

----- , Reference Manual Glossay for Information Processing,
International Business Machines Corporation, 1962.

Irons, E. T., and W. Feurzeig, Comments on the Implementation
of Procedures and Blocks in ALGOL-60, Office of Computer
Research and Education, University of Pennsylvania,
November 1960.

Jones, Graham, "Trends in Computer Hardware," Datamation,
Vol. 7, No. 1, January 1961, p. 11.

Lautzenheiser, Marvin, Stage Executive Control, Technical
Operations, Inc., Burlington, Mass., Septefiber 7, 1961.

Leonard, Gene F., The CL-I Programming System User's Manual,
Technical Operations, Inc., Burlington, Mass., January
1961.

Lonergan. William, and Paul King, "Design of the B5000
System, Datamation, Vol. 7, No. 5, May 1961, p. 28.

-66 -

Manelowitz, Howard, ANCHOR--An Algorithm for Analysis of
Algebraic and Logical Expressions, SP-127, System Develop-
ment Corporation, Santa Monica, Calif., November 1, 1959.

McCracken, Daniel D., A Guide to FORTRAN Programming, John
Wiley and Sons, New York, 1961.

Mock, 0. R., Procedures Manual for MICA, North American
Aviation, February 23, 1962.

Naur, Peter, Ed., "Report on the Algorithmic Language ALGOL-
60," Communications of the ACMJ Vol. 3, No. 5, May 1960,
p. 299.

Opler, Ascher, "Trends in Programming Concepts," Datamation,
Vol. 7, No. 1, January 1961, p. 13.

Patrick, R. L., "Compiler Thoughts as of August 3, 1959,"
Unpublished Working Paper.

"Documentation--Key to Promotion," Datamation, Vol.
7, No. 8, August 1961, p. 24.

----- 2"The Gap in Programming Support," Datamation, Vol. 7,
No. 5, May 1961, p. 37.

-----, "An Introduction to Automatic Programming for Business,
Part 2," Data Processing, Proceedings of 1960 Convention
of National Machine Accountants Association.

Porter, R. E., "The RW-400--A New Polymorphic Data System,"
Datamation, Vol. 6, No. 1, February 1960, p. 8.

Sammet, J. E., "More Comments on COBOL," Datamation, Vol. 7,
No. 3, March 1961, p. 33.

Sattley, K., and P. Z. Ingerman, The Allocation of Storage
for Arrays in ALGOL-60, Office of Computer Research and
Education, University of Pennsylvania, November 1960.

SHARE, A Data Processing Compiler for the IBM 704, North

American Aviation, Columbus, Ohio, July 1959.

Shaw, C. J., "JOVIAL," Datamation, Vol. 7, No. 6, June 1961,
p. 29.

-, The JOVIAL Manual Part 1: Computer Programming
Languages and JOVIAL, TM-555-1, System Development Corpora-
tion, Santa Monica, Calif., December 20, 1960.

-----, The JOVIAL Manual, Part 2: The JOVIAL Grammar and
Lexicon, Rev. 1, TM-555-2, System Development Corporation,
Santa Monica, Calif., June 9, 1961.

-----, The JOVIAL Manual, Part 3: The JOVIAL Primer, TM-555-
3, System Development Corporation, Santa Monica, Calif.,
December 26, 1961.

-... "A Programmer's Look at JOVIAL in an ALGOL Perspec-
tive," Datamation, Vol. 7, No. 10, October 1961.

-67-

Siegel, Milton, and Albert E. Smith, "Interim Report on
Bureau of Ships COBOL Evaluation Program," Communications
of the ACM, Vol. 5, No. 5, May 1962.

System Development Corporation, Computer Programming Stan-
dards in Command and Control, TM-6dd, System Development
Corporation, Santa Monica, California, February 15, 1962.

Taylor, W., L. Turner, and R. Waychoff, "ALGOL-60--Syntactical
Chart for the B-5000," Communications of the ACM, September
1961, p. 393.

Voorhees, E., G. L. Carter, J. Hudgins, C. Kazek. and K.
Balke, "ALGAE I* - A Compiler for the IBM 704, ' Working
Paper, May 26, 1958.

Wegstein, J. H., "ALGOL-60--A Status Report," Datamation,
Vol. 7, No. 9, September 1961, p. 24.

Willey, E. L., M. Tribe, A. d'Agapeyeff, B. J. Givvens,
and M. Clark, Some Commercial Autocodes: A Comparative
Study, Automatic Programming Information Center, Academic
Press, 1961.

Yngve, Victor H., "An Introduction to COMIT Programming,"
SHARE Distribution Paper, First Draft, June 12, 1961.

Young, J. W., Jr., and H. K. Kent, "Abstract Formulation
of Data Processing Problems," J. of Ind. Eng., November
1958.

