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ABSTRACT

This report discusses the properties of cyclic codes and codes

related to cyclic codes, particularly with respect to the correction

of single and multiple bursts of errors. 'rabies of these codes are

included. Trading relations are developed that relate the number of

bursts simultaneously correctible with a multiple-burst-correcting

code to the length of these bursts. A bound is derived on the minimum

number of check digits required for multiple-burst-correcting codes.

Two new classes of codes, both of them derived from cyclic codes,

are applied in a novel way to problems of multidimensional error

checking and of error location. Error-location codes are basically

codes for error detection that also locate to within a sub-block of the

received message where corrupted digits fall. These codes appear to

be useful in connection with feedback communication systems.

There is also some discussion of reliability questions for terminal

equipment, a description of a versatile encoding and decoding device

for cyclic codes (MAVERIC), and a discussion of quasi-cyclic, pseudo-

cyclic and shortened cyclic codes (in which it is shown that these

concepts are essentially equivalent).
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I INTRODUCTION

A. GENERAL

The present report is a Final Report describing work carried out

from July 1960 through June 1962 under Contract AF 30(602)-2327 with

the Rome Air Development Center of the Air Force Systems Command. An

earlier Interim Technical Report (RADC TR 61-2591" and Supplement 12

thereto) covering the work of the first year, was issued in October 1961.

The results of the first year's efforts will not be repeated in

detail in this Final Report, since the details are available in the

Interim Report. However, specific reference will be made to the early

work, where appropriate, to facilitate the reader's obtaining an over-all

picture. We also include in this section an abstract of the Interim

Report.

B. BACKGROUND OF THE PROBLEM

The objective of the research was the development of coding methods

and instrumentation that will nullify or minimize the effect of circuit

noise, or other disturbances, on the transmission of digital information.

The problem of reliable transmission of digital data over various

kinds of channels is one of long standing. The theoretical capabilities

of communication channels are described by the classical results of

Shannon's theory of information, known since 1948. And since then, much

effort has been devoted toward making real communication systems perform

in a manner that is consistent with Shannon's fundamental theorem for the

noisy channel. 3 According to this theorem, there exists for any channel

a measure, C, of channel capacity, and that for any rate R less than C,
there exists a method of encoding data for the channel such that infor-

mation may be sent over the channel at a rate of R bits per second with
an arbitrarily small probability of error.

References are listed at the end of the report.
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No practical channel has yet been used in a manner consistent with

the expectations this theorem aroused. The catch was that, in order to

operate at rates very near the channel capacity with extremely small

probabilities of error, fantastically complex (and hence expensive)

coding schemes appeared to be needed, even for relatively simple, idealized

channels. The work of Elias 4.5 and Shannon 6 on error probability bounds

indicated this need as long ago as 1955. Hence, even today practical

communication systems achieve a low probability of error (reliability)

only by operating at data rates that are a small fraction of the

theoretical channel capacity.

For a real, continuous channel, a digital data source may be coded

in two (or possibly more) distinct successive operations: redundant

digital coding, followed by modulation of the signal. The first step

has also been called source encoding and the second channel encoding.

The emphasis in this research program has been on digital coding.

In the usual binary case, source encoding takes k-binary-digit

blocks from the source and maps them into n-digit blocks to be processed

by the modulator, where n > k. The bounds of Elias and Shannon indicate

that the message block length, n, must be of the order of hundreds or

even thousands of binary digits in order to obtain error probabilities of,

say, 0-s at rates of around 90 percent of channel capacity with even

moderately noisy channels. The complexity of digital encoding and

decoding equipment is directly related to the size of the data blocks

they process.

This relationship between size of data block and complexity of

equipment is also true for the channel encoding equipment, which modu-

lates the signal on an analog, rather than a digital, basis. There is

a strong feeling that the increasing use of, and inherent ease of mass-

producing, digital components will continue to make digital techniques
more significant than analog modulation techniques. (See also Chapter 1

of Ref. 7 for a discussion of this point.)

Until very recently, there were no known digital coding schemes for
blocks hundreds of binary digits long that were efficient and that could

be instrumented economically. This situation has changed with the advent

of cyclic codes possessing a high degree of algebraic structure. Among

these cyclic codes are the most efficient known multiple-error-correcting

codes (those of Bose and Ray-Chaudhuri8,), as well as the burst-error-

2



correcting codes of Abramson, 10 Fire, 11Melas, 12 El spas, 13 and others. It

is the algebraic structure of these codes that permits economical

instrumentation, and that makes possible precise mathematical statements

about their capabilities.

This break-through in coding theory means that quite efficient

codes with block lengths of hundreds (and in some cases even thousands)

of binary digits can now be instrumented with special-purpose encoding

and decoding equipment costing on the order of ten thousand dollars

or less, instead of with a large-scale high-speed computer, which would

be required for a comparably large code lacking algebraic structure.

Other recent, developments have been made in coding that use statis-

tical decoding techniques (sequential decoding). 7 These techniques

have not been considered in the present study. They are under intensive

investigation, principally at the Lincoln Laboratory of MIT. Future

developments along such statistical lines may become increasingly

important to coding theory.

C. ABSTRACT OF THE INTERIM TECHNICAL REPORT

The interim technical report develops the properties and instrumenta-

tion of cyclic codes, with particular reference to their burst-error

correction capabilities. Necessary and sufficient conditions for

optimum burst-error correcting codes are derived and used to find all

such optimum codes of practical size. These optimum codes and a number

of other (non-optimum) ones are tabulated.

Consideration is given also to the implementation of the encoding

and decoding operations for cyclic codes in terms of logical circuits.

Several types of circuits are exhibited for both encoding and decoding.

Correction of random errors, correction of bursts of errors, and error

detection are all taken into account.

Equations are derived for the performance of burst-error correcting

codes in terms of message error probability (after correction) on a

binary burst-error channel behaving according to the Gilbert, two-state

Markov model. A three-state model is proposed which is a generalization

of the Gilbert model, and in which error bursts are themselves grouped

into clusters. This three-state model is shown to be amenable to the

same mathematical treatment as the two-state model; in particular, the

same performance equations may be used.

3



Finally, two mathematical results are presented which permit the

construction of codes correcting several bursts of errors per message

block. The first result relates the multiple-burst correction

capability of a cyclic binary code of known minimum distance (e.g., the

Bose-Chaudhuri codes) to its random-error correction capability. The

second result is concerned with multiple-symbol-burst-correcting codes

over GF(ph), where for cases of interest p is a prime greater than 2.

D. SUMMARY

1. SINGLE-BURST ERRoR-CORRECTING CODES

Section II of this report is concerned with the extension of the

earlier results (reported in Sec. II of the Interim Report) to longer

and more complex cyclic codes. The earlier work concentrated on finding

all optimum burst-error correcting cyclic codes of reasonable size,

but these turned out to be limited to rather short bursts (four binary

digits or less).

Codes for much longer bursts are tabulated in Table I of this

report; these are, of course, nonoptimum codes, but many of them are not

far from optimum, and they are believed to be quite useful.

2. MULTIPLE-BURST ERaoR-CORRECTING CODES

Some initial results on codes for the correction of several indepen-

dent burstsof errors were reported in Sec. V of the Interim Report.

These early results are restated briefly in Sec. III-B of the present

report.

Considerably more work was done on this problem resulting in four
new approaches, which are also described in detail in Sec. III.

The first of these new approaches depends on the concept of inter-

lacing codes. It leads to multiple-burst correction codes with particu-

larly simple structure, although they are, in general, not very efficient.

The second new approach makes use of the Chinese Remainder Theorem

(from mathematical number theory) in an ingenious way. The resulting
codes are not cyclic, and their implementation poses some difficulties,

but they are, in general, quite efficient.

4



The third approach makes use of codes over a nonbinary symbol

alphabet (q-nary codes, where q is a power of 2) to achieve multiple-

burst error correction. These codes are intimately related also to

the Chinese Remainder Theorem codes.

The fourth approach depends on empirical test procedures (too

tedious for all the simplest codes, except with the aid of a digital

computer). Only 19 codes were subjected to these tests, but the

results are instructive in themselves, and lead in fact to several

useful codes.

All of the above code construction techniques lead to trading

relations between the number of bursts and the lengths of the bursts

that are correctible with the corresponding codes. The trading

relations obtained are similar in general form, although they differ

in detail.

3. MULTIDIMENSIONAL BURST ERROR CORRECTION

Section IV of this report treats a problem which was not considered

in the early project work. Consequently no discussion of this topic

will be found in the Interim ReporL.

Some channels involve the transmission of digital data in a two-

dimensional (or higher-dimensional) format. The serial-parallel trans-

mission of data over multiplexed channels is one example where the

format is conceptually two dimensional. In other cases, for example,

in multi-track magnetic tape recording, the physical format is actually

two dimensional.

It is conceivable that some channels of this sort may be subject
to noise bursts that exhibit strong correlation in both dimensions,

e.g., in time and frequency. For these channels, it is reasonable to

inquire whether some sort of two-dimensional burst-error correction is

possible. Section IV describes the results of an inquiry along these

lines, and gives some definitive results for the "spot" correction

capabilities of a class of codes which are cyclic in two dimensions.

All of these results generalize readily to higher dimensions.

4. ERRoR-LOCATING CODES

The bulk of the work on this project has been concerned with codes

for the correction of errors, as opposed to error detection codes.

5
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Section V, on the other hand, discusses a new concept in error control,

called "error location coding. " The basic idea is to augment the capa-

bility for error detection to permit the (rough) localization of errors

within a received message, at least to within a sub-block of that message.

Thus, this kind of coding is intermediate to error detection and error

correction. It provides an attractive alternative to error detection

in feedback communication systems where detected errors induce a repeat

transmission of the mutilated portion of the message. The advantage of

error location coding (over straight error detection) is that the net

data rate be kept higher-- even with long block lengths-- since the

sub-blocks may be short compared to the over-all block.

Section V describes the structure of several families of error-

locating codes. Mathematical proofs of the properties of these codes

appear in Appendix I.

5. MAVERIC - A VERSATILE ENCODER-DECODER FOR CYCLIC CODES

As part of the work on this contract, there was designed and

constructed a versatile encoder-decoder for cyclic codes. The acronym,

MAVEnIC, applied to it, stands for Magnetic Versatile Information

Corrector. The design of the machine is based largely on the encoding

and decoding instrumentation concepts described in Sec. III of the

Interim Report.

The reduction of these ideas to a piece of laboratory hardware was

accomplished by making heavy use of magnetic circuit techniques, a field

in which this Laboratory has particular competence, and which is par-

ticularly appropriate to this kind of application. The circuit functions

required (principally shift registers and half-adders) are conveniently

realized with multiaperture core techniques, and the speed capabilities

of magnetic cores are well within the requirements of such a device.

Section VI of this report describes in general terms the structure

and operation of MAVERIC, without going into extreme details of logic

or circuitry.

The machine itself was of considerable use in the testing of the

cyclic codes described in Sec. II of this report, and also in the

formulation and study of reliability questions concerning encoding

and decoding equipment.

Suggested by J. K. Wolf (private communication).
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E. PUBLICATIONS RESULTING FROM THE PROJECT

The following journal publications written by project personnel

have resulted from this research effort:

1. J. J. Stone, "Multiple-Burst-Error Correction," Inf. and
Control 4, pp. 324-331, December 1961.

2. B. Elspas and R. A. Short, "A Note on Optimum Burst-Error-
Correcting Codes," IRE Trans. PGIT-8, pp. 39-42, January 1962.

3. J. J. Stone, "Multiple-Burst-Error Correction with the Chinese
Remainder Theorem," J. Soc. for Indust. Appl. Math. (in press).

The following paper, co-authored by the project leader, has been

submitted for publication:

B. Elspas and J. K. Wolf, "Error Location Codes- A New Concept in
Error Control," submitted to IRE Trans. PGIT, Correspondence
section.

In addition to the above publications, the following lectures were

given by project personnel on research results of this work:

B. Elapas and W. K. English, "Error-Correcting Codes and One
Technique for their Implementation," before the San Francisco
Chapter of the IRE Professional Group on Electronic Computers,
May 1962.

B. Elapas, lectures on "Optimum Burst-Error-Correcting Codes"
"Multidimensional Error Correction," and on "Multiple-Burst-
Error Correction," as part of the University of Michigan
Summer Engineering Conferences, June 1962.



II SINGLE.-BURST ERROR-CORRECTING CODES

A. INTRODUCTION

Codes for the correction of a single burst of errors occurring within

a code block were extensively discussed in the Interim Technical Report

under this contract.' The groundwork for the study of the burst-error

correction properties of cyclic codes was laid in that report, particu-

larly in Secs. I and II. Consequently, a knowledge of the pertinent

background material will be assumed in this sequel.

Cyclic codes are a subclass of group codes with particularly useful

properties both in regard to their mathematical structure and in regard

to their ease of implementation. The pertinent parameters of any group

code are:

(1) The block length, n;

(2) The number of information places per block, k; and

(3) The number of redundant (check) places, r = is - k.

The discussion in this section will be limited to binary codes.

The burst-error correction capability of a code can be character-

ized by an integer, b, defined as the length (span) of the longest burst

of errors such that all error patterns of length not exceeding 6 can be

corrected by the code. In general, burst-error correcting codes will also

be capable of correcting some (but not all) error patterns of length

greater than b. Usually, however, such capability is of rather limited

utility; therefore, one is justified in summarizing the burst-correction

capability of a code in terms of the single parameter, b.

In the earlier report cited above, a number of inequalities relating

b to the other code parameters were derived. Perhaps the most important

of these is the upper bound on b:

b < [r/21
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Another important bounding relation is the upper bound on n:

n < 2 r
- b+l - 1

When this bound is met exactly, one speaks of an optimum burst-error

correcting code. In Sec. II of the Interim Report, a tabulation was

given for all optimum burst-error correcting codes of length less than

n = 4096, using up to 16 check digits. These codes are for bursts of

length b = 2, 3, and 4. It was also shown that within the above range,

no optimum b = 5 codes exist. It is now known also that there are no

optimum b = 6 codes within that range.

While the number of optimum burst-error correcting codes is rather

limited, there do exist a large number of codes that are nearly optimum,

and whose parameters n, k, and r fall within the practical range. The

main purpose of this section is to present results on these codes.

These results are presented in Table I, listing the values of the pa-

rameters, n, k, r and b of these codes against the defining polynomial,

g(z). For many of the tabulated codes, the minimum Hamming distance, d,

between code words is also known, and in those cases this parameter is

also tabulated. A code with (odd) distance d = 2t + I is capable of

correcting t random errors per block, while a code with (even) distance

d - 2t + 2 will correct any t random errors, and also detect the occur-

rence of t + 1 errors per block simultaneously.

The results shown in Table I were obtained in some cases by ana-

lytical techniques (see the Interim Report), but are largely the product

of empirical testing techniques carried out with the aid of B.L.R.P.(see

Appendix C of the Interim Report), or the error-correcting encoder-

decoder, MAVERIC, described in Sec. VI of the present report.

B. USE OF THE TABLE OF SINGLE-BURST ERROR-CORRECTING CODES

The codes in Table I are listed in increasing order of block length

n from n = 3 to n = 635, and within each section (of constant n) in in-

creasing order of redundancy, r. Thus the codes with highest information

rate, k/n, appear at the beginning of each section. Since all of the

codes listed are cyclic, they are specified by giving the generating

polynomial, g(z). The convention used in listing these polynomials is

to express the (binary) coefficients of the polynomials (listed in de-

scending powers of z) as an octal number. Thus, the octal code., "473,"

10



Table I

SINGLE-BURST ERROR-CORRECTING CODES

[ k r POLYNOMIAL* d COMMENTS

3 1 2 1 7 3 Cyclic Haming

5 1 4 2 37 5

7 4 3 1 13 3 Cyclic Hamming

7 3 4 2 27 4 Abramson

7 1 6 3 177 7

9 3 6 3 111 3 Interlace
9 1 8 4 777 9

15 10 5 2 65 4 Abramson
15 9 6 3 171 4 Melas
15 7 8 4 721 5 Bose-Chaudhuri
15 6 9 4 1163 6

15 5 10 5 2467 7 Green-San Soucie
(also corrects all double
errors + 6 = 5)

15 5 10 5 2041 3 Interlace
15 4 11 5 7531 8

15 3 12 6 11111 5 Interlace

17 9 8 3 471 5

17 8 9 3 1513 6

21 16 5 1 61 3

21 15 6 2 123 4
21 15 6 2 127 3
21 14 7 3 171 4
21 13 8 3 645 3
21 13 8 2 575 4

21 12 9 4 1663 5 Also corrects double
errors + 6 = 3

21 12 9 4 1357 4

21 12 9 2 1607 4
21 12 9 4 1101 3

21 11 10 4 3303 4

21 11 10 4 2325 6
21 10 11 5 7707 4
21 10 11 4 5031 5
21 9 12 5 15533 3

21 9 12 6 10111 4 Interlace
21 9 12 5 17053 8
21 9 12 6 14515 6

21 8 13 6 25727 6 Fire
21 8 13 5 26755 6
21 7 14 7 47343 8

Octal form: thus "473" 100111011 stands for s+ + X4 + x + + 1

11



Table I Continued

n k r b POLYNOMIA. d COMMENTS

21 7 14 7 40201 3 Interlace

21 6 15 7 140603 6

21 6 15 7 173465 7

21 6 15 7 151445 8

21 5 16 8 214537 10

21 4 17 7 542613 9

21 3 18 9 1647235 12

21 3 18 9 1111111 7 Interlace (a = 3, b = 3)

21 2 19 Q 3333333 14

21 1 20 10 7777777 21

23 12 11 5 5343 7 Golay-Prange (perfect)

23 11 12 5 17445 8

27 9 18 9 1001001 3 Interlace

31 25 6 2 157 4 Abranon

31 21 10 4 3551 5 Bose-Chaudhuri

31 20 11 5 4673 6 Kasai (W me-Chaudhuri with
all-check)

33 23 10 3 2251 >3 1

33 23 10 3 3043 > 3 I

35 27 8 3 553 4 Fire

35 23 12 5 13627 > 3 1

39 27 12 5 13617 > 3

41 21 20 9 6647133 Q I Mattson
41 21 20 8 5747175 9 il (d)

42 20 22 10 25250025 4 Interlace

42 18 24 12 100010101 4 Interlace

42 14 28 14 2025052005 8 Interlace (a = 3, b = 2)

42 10 32 16 40120210525 10 Interlace (a = 4, b = 2)

42 6 36 18 (x - x6 in 177) 7 Interlace (a = 6, b = 3)

43 29 14 5 52225 >3 1

43 29 14 5 64213 >3 1

43 29 14 3 47771 >3 1

43 28 15 5 134635 > 4

45 33 12 3 10011 3 Interlace

45 27 18 9 1001111 4 Interlace

46 24 22 10 11052005 7 Interlace (a = 3, b = 2)

47 24 23 > 7 43073357 11 Mattson (d); Stone (b)
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Table 1 Continued

n k r b POLYNOM I At. d COMMENTS

51 43 8 3 433 >3 I

51 42 9 3 1455 > 4

51 41 10 4 3501

51 40 11 4 4703

51 40 11 4 6547

51 35 16 7 304251

55 35 20 4 7164555 > 3 1

57 39 18 7 1735357 > 3 1

57 39 18 8 1341035 > 3 I

57 38 19 8 3443047 > 4

63 56 7 2 305 4 Abramaon

63 55 8 3 711 4 Melas

63 54 9 3 1133 4

63 54 9 3 1537 4

63 54 9 3 1621 >3

63 53 10 4 2263 4

63 52 11 4 6023 >3

63 51 12 5 16447 4

63 51 12 4 12471 5 Boae-Chaudhuri

63 50 13 6 22377 > 4

63 50 13 5 37513 6 LBose-Chaudhuri with all-check

63 49 14 6 61303 > 3

63 48 15 7 105437 > 5

63 47 16 7 220425 > 6

63 46 17 8 730535 > 5

63 45 18 8 1371261 > 5

63 44 19 9 2002353 > 8 Others known

63 43 20 9 6145045 Others known

65 53 12 3 12345 5 Bose-Chaudhuri

69 36 33 15 101011100011 7 Interlace (a = b = 3)

73 64 9 3 1027 > 3 I

73 63 10 4 2343 > 4

75 55 20 5 4000041 3 Interlace

85 77 8 2 613 3 I

85 76 9 3 1501 4

85 73 12 5 10131

89 78 11 4 4303 > 3 1

91 79 12 4 10571 > 3 I

92 48 44 20 (x x4 in Golay code) 7 Interlace (m = 3, b = 4)

1.3



Table I Concluded

k r & POLYNOMIAL d COMMENTS

93 83 10 3 2065 > 3 1

93 82 11 4 6137 > 4

105 94 11 4 5267 4 Fire

105 93 12 5 10555 >3 1

105 91 14 6 70521 > 4 Kasami

117 105 12 4 13413 > 3 1

129 115 14 3 42721 > 3 1

133 115 18 7 1254355 > 3 1

133 115 18 7 1532007 > 3 1

133 115 18 6 1302357 > 3 1

151 136 15 6 114371 > 3 1

155 145 10 3 2205 4 Fire

195 182 13 5 22475 > 4 Kasemi

195 183 12 4 15347 > 3 1

217 205 12 4 11245 4 Fire

217 202 15 6 120247 > 3 I

255 246 9 2 1455 4 Abramson

255 245 10 3 3523 > 3

255 244 11 3 4765 > 4

255 243 12 4 17667 > 3

255 242 13 4 26531 >4

255 241 14 5 76305 > 3

255 240 15 5 112471 > 4

255 239 16 6 301565 > 3

257 241 16 3 214461 5 1, others known

273 261 12 4 10743 > 3 1

279 265 14 5 45045 4 Fire

315 304 11 3 4043 4 Fire

465 454 11 3 7275 4 Keasmi

511 499 12 4 10451 4 Optimum b = 4

595 581 14 5 64655 4 Kasami (maximum n for given
r, b in cyclic code.)

635 623 12 3 10343 4 Fire

14



stands for the coefficients, 100111011 (grouped in threes), and thus this

octal number represents the polynomial, xI + x5 + x 4 + x3 + x + 1. The

standard octal representation:

0 = 000 4 = 100

1 = 001 5 = 101

2 = 010 6 = 110

3 = 011 7 = 111

has been employed, with leading zeros suppressed.

In some cases, various "Comments" have been supplied in the extreme

right-hand column of the table. These take the form either of naming the

originator of the code (e.g., Abramson, Melas, Green - San Soucie, etc.)

or of designating to which general class of cyclic codes it belongs, (e.g.,

irreducible polynomial - I, Bose-Chaudhuri, interlace code, etc.), or of

providing other pertinent information. In those cases where the codes are

not attributed to a definite researcher (and also in many of the others),

the burst-correction parameter, b, was determined by the author and his

co-workers. The Bose-Chaudhuri codes, for example, were studied by their

inventors for their distance (random error correction) properties rather

than for burst-error correction. It should be noted, too, that all the

codes derived from irreducible polynomials are members of the class of

Bose-Chaudhuri codes, although this has not been explicitly indicated in

the table.

The codes of Abramson (b = 2) and Melas (b - 3) are optimum burst-

error correcting codes, as is the (511, 499) code shown for 6 - 4. Longer

optimum b - 4 codes given in the Interim Report (Table II, p. 30), are not

repeated here.

The codes marked "interlace" have generating polynomials of the form,

g(x) = f(x) for some integer a. By virtue of the interlace theorem (see

Sec. III-C), such codes will correct bursts of length b' - ab, over a block

length n' - an, if f(x) generates a burst-b code of length n.

15



III MULTIPLE-BURST ERROR-CORRECTING CODES

A. INTRODUCTION

Burst-error correcting codes are useful in connection with communi-

cation channels where noise (and hence digit errors) tend to occur in

bursts. If the mean period between noise bursts is considerably longer

than the code block length, and most of the bursts are shorter than the

burst-correction capability, b, of the code, then one may expect that the

code will correct the most probable error patterns. On the other hand,

in order to find a reasonably efficient code, one may be forced to use a

block length comparable to (or even in excess of) the mean period between

noise bursts. In such cases, several "bursts" of errors may occur within

the same code block, and the code may be incapable of correcting these

errors. This will occur whenever the over-all span of the errors exceeds

the capability, b, of the code.

The above state of affairs suggests that one might investigate

whether codes can be designed to correct several independent bursts of

errors occurring within the same code block. Such codes, called multiple-

burst error-correcting codes, are discussed in this section. They may be

characterized by two parameters: a, the multiplicity of bursts to be cor-

rected, and 6, the length of the individual bursts. One thus speaks of an

(m,b) multiple-burst correcting code.

Several approaches to this kind of code have been found, among them

the approach of Stone, the use of interlacing, Chinese Remainder Theorem

codes, and Reed-Solomon codes.

B. CODES BASED ON STONE'S THEOREM

The following theorem (due to J. J. Stone) provides one approach to

the study of multiple-burst codes. The original statement and proof of

this theorem appear in Sec. V-B of the Interim Report. The theorem is

restated here (without proof) for the sake of completeness.

Theorem I-If C is a cyclic binary code of length n and minimum
distance d - 2mt + 1, where n > 3mt, then C corrects all error
patterns made up of up to a bursts of width up to 6,

17



where

b = t + Ut - 2)/2 + 3/4m]

For n = 1, this gives

b = t + [(2t -1)/41 = [(6t - )/4]

while for m > 1, one has

b = t + [(t - 2)/2] = [(3t - 1)/2]

The above theorem provides a means whereby the random error cor-

rection capability of a cyclic code (such as the Bose-Chaudhuri codes)

can be "converted" into a capability for correction of multiple bursts

of errors. In particular, the case m = 1 corresponds to single burst

error correction, while the opposite extreme, b = 1, corresponds to the

correction of random isolated errors (bursts of width one).

A central point, which must not be overlooked here, is that the same

code can be used for the correction of more or fewer bursts depending on

their length. For example, any cyclic code of weight 25 (a 12-error cor-

recting code) and length n > 36 can be exploited to correct up to a bursts

of length b (or less) for the parameter combinations shown below.

M b t

1 17 12

2 8 6

3 5 4

4 3 3

6 2 2

12 1 1

The relation of a vs. b stated in Theorem 1 thus provides a trade-off

relation between burst length and number of bursts to be corrected. We

shall see that other schemes for the construction of multiple-burst codes

also possess similar trading relations.

It should be noted that the assertion contained in Stone's theorem is

of the nature of a (lower) bound on performance of a given code. In spe-

cific cases, one finds that the performance (in terms of m and b) actually

exceeds the stated capability. However, the stated capability is all that

one can guarantee.

18



C. INTERLACED CODES

1. THE INTERLACE THEOREM

The concept of interlacing codes for the provision of multiple-burst

correction capability is dependent on the following interesting theorem

(due in part to F. Corr1 4).

Theorem 2 (Interlace theorem)--Let Clbe a cyclic (n, k) code
generated by the polynomial f(x) of degree r = n - k over
GF(2). If C is capable of correcting t random errors, or,
alternatively is capable of correcting single bursts of length
up to b, then for any integer a, the polynomial g(x) - f(x')
generates a cyclic code C4 of length na with ha information
places, and the code C. can correct:

(a) Up to t bursts of errors, each of width up to
a; oLr

(b) Any sitgle burst of leaagth up to ba.

Proof: Since f(z) generates a cyclic code of length n, we have that f(x)

divides x" + 1. Consequently, g(x) = f(x*) divides (x')" + 1 x zna + 1,

so that C is a code of length na. Since the degree of g(x) is

a(n - k) - ar, the code Ca has ra check digits per block.

The code C. may be interpreted in the following interesting fashion:

Imagine an array of a independently chosen n-digit words from the original

code, C1. Now suppose that one transmits these na digits serially, by first

transmitting the first digits of each of the n-digit words (in turn), then

the second digits of each word, and so forth. We have in effect interlaced

these a words. It is now asserted that the set of all na-digit messages

obtained in this way is precisely the code C.. For if u i'(x); i ...

a are each code words of Cl, so that f(x) divides each u( '(x), then it is

easily seen that the na-digit interlaced word is given by the polynomial,

u(x) - u(t 1 (z* ) + zU 2 )(xa) + ... + x(a-1 )U(x*). But this polynomial is

evidently divisible by f(x*) = g(x), and hence defines a code word in C.

In order to prove assertion (a), examine the interlace structure

shown below for the case a = 3, n = 7. The same proof holds for arbitrary

a and n.

0 3 6 9 12 15 18

1 4 7 10 13 16 19

2 5 8 11 14 17 20
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It is clear that any t or fewer bursts each of length a (=3) or less can

alter at most t digits in any row of this array. But by assumption, the

code C1 (from which the rows are chosen) can correct up to t independent

errors per block of n. Hence the code C will correct t bursts ofa

width a each.

Assertion (b) follows in similar fashion, since any burst of length

ab or less will alter at most b consecutive digits in any one row. Since

the code C1 corrects bursts of width b, the assertion follows. This

completes the proof of Theorem 2.

The following corollary to Theorem 2 is also pertinent to the con-

struction of multiple-burst codes.

Corollary: If the code Clin Theorem 2 is capable of correcting

up to t bursts of errors each of width b or less, then the
interlaced code C. will correct up to t bursts of errors, each
of width ab or less.

The proof of this corollary is exactly parallel to the proofs of

assertions (a) and (b) in Theorem 2.

The above corollary Lhus gives us a technique for constructing

multiple-burst codes for longer bursts in terms of multiple-burst codes

for short bursts.

2. EXAMPLES OF INTERLACE CODES

We give here several examples of interlace codes derived from short,

efficient cyclic codes of known distance and known burst-correction

capability.

Example (a)- Starting from the cyclic (17, 9) code with

g(x) - 1 + x 3 + x 4 + x5 + x8, which has d = 5 and b - 3, one obtains a

family of (17a, 9a) codes tabulated below for a - 1, 2, 3.

a #I k r m b r*

1 17 9 8 1 3 6
2 1 8

2 34 18 16 1 6 12
2 2 12

3 51 27 24 1 9 18
2 3 15
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The column headed "r*" shows the theoretical minimum number of

check digits required for the indicated correction capability. (See

Appendix III).

Example (b)- Starting from the (Golay) code with parameters, n =23,

k = 12, and generating polynomial, g(x) = 1 + x + x S + x 6 + x7 + x 9 + xl,

where d = 7 and b = 5, one obtains the family:

a n k r m b r*

1 23 12 11 1 5 10

3 1 11

2 46 24 22 1 10 20

3 2 17

3 69 36 33 1 15 30

3 3 22

4 92 48 44 1 20 40

3 4 26

Other examples of interlaced multiple-burst correction codes are

listed in Table I.

D. CHINESE REMAINDER THEOREM CODES'

1. SUMMARY

The Chinese Remainder Theorem of number theory describes conditions

under which a number may be recaptured by the knowledge of the residues

to which it gives rise when divided by certain moduli. Thus, under con-

ditions that allow recapture, a number might be communicated from sender

to receiver by the transmission of its residues. If additional residues

were sent, the number might be communicated, despite some disruption of

the transmission. By using these ideas and a generalization of the

Chinese Remainder Theorem, which deals with polynomials over the Galois

fields GF(p') instead of numbers, a method is given for transmitting

information which seems suitable for multiple-burst-error correction.

The Reed-Solomon Polynomial Codes are shown to be a special case of these

codes.

The material in this section was eaveloped and prepared by J. J. Stane.
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2. DEFINITIONS AND BACKGROUND

If a, b, and m are integers, define a to be congruent to b modulo n,

denoted a - b (mod m), if and only if ml(b - a). Two integers m, and m 2

are said to be relatively prime if dim I and dim 2 implies d = ±l. The

relevant part of the Chinese Remainder Theorem in number theory follows:

Theorem 3 (Chinese Remainder Theorem)--Let i, m 2 . . ... . m be

integers that are relatively prime in pairs. Let

r

M = 11 m.
i=l

denote their product. If a1, a2 .2. , a, are any given

integers, then there exists one and only one number f such
that 0 < f < Mf and

f - a. (mod mi) ; i 1, 2, ... ,.r (1)

Proof: (See Uspensky and Heaslet.)1S In particular, if one knows that for

some moduli m. an unknown number f satisfies
go

0<f< n
m=1

and if one knows the residues a i, 0 < a. < a,, which result when f is

divided by a i, then by Theorem 3, f can be recaptured. In fact a formula

for f may be given. Let ti be an integer satisfying

i0
M

- t. is I (rood mi0 (2)
at. to0i
to

(The existence of such integers is assured by the assumed relative prime-

ness property of the a..) Then f is the only common solution of the

following two conditions:

M M M
f t ,t a I  + _-- t2 a2  + ... + ta [3(a)]

M1 2  m

0 < f < M [3(b)]
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In other words if the m,, ti and Al are thought of as given constants,

to find f from a given set of residues a, one need only substitute the

a in the right hand side of Eq. [3(a)] and divide the result by M.

The residue after this division satisfies Eqs. [3(a) and 3(b)] and is f.

We proceed to state a generalization of this theorem that is well

known. Let GF(q) be the Galois Field with q = pf elements. Let

GF(q)[x] be the ring of polynomials over GF(q). Two polynomials ml(X) and

a 2(x) will be called relatively prime if g(x)Im.(x) i = 1, 2, and g(x)

in GF(q)[x] implies g(x) is a constant polynomial. If a(x), b(x) and

m(x) are in GF(q)[x] then we define a(x) is congruent to b(x) modulo

m(x), denoted a(x) _ b(z) mod e(x) if and only if m(x)I [b(x) - a(x)].

The following theorem can now be stated.

Theorem 4-Let m,(x), 2 (x)...... m(x) be in GF(q)[x] and
relatively prime in pairs. Let

r

Af(x) = 11 M.(x)
i=1

denote their product. If al(x), a 2 (x), ..., a r(x) are any

given members of GF(q)[x], then there exists one and only
one member f(x) of GF(q)[x] such that the degree of f(x)

is less than the degree of Af(x) and

f(X) =- a.(xi) mod m.(x) (4)

Proof: The proof uses the fact that GF(2)[x] is a Gaussian domain,

(see Jscobson6 ) and it is analogous to the proof of Theorem 1.

The discussion that follows Theorem 3 on the recapturing of f can

be applied to this case if f, M, ml ti' a i are all thought of as poly-

nomials over GF(q) and if the inequality between f and M is reinterpreted

as an inequality between their degrees.

If x is a number, [x] denotes the greatest integer less than or

equal to x. V fGF(q)] denotes the n-dimensional vector space over GF(q).

3. NUmERICAL ENCODING OvER GF(q)

Associate with each element of GF(q) (in a one-to-one fashion) an

integer 1(u), 0 < I(u) < q. If a member of V [GF(q)I,

u - (u0, u1, u2 . . . . .  u _1) is to be sent, associate with this vector the

number f defined by
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k-1
= F I(u.)q

i=O

Let i , N2j ... , mr be a set of relatively prime integers such that

M = m. > qk

Let a. be the residue of f when divided by m Denote [log 2 #t] by d, - 1.

This represents the highest power of two necessary to represent a. in

binary form. Let a, be represented in binary notation,

d..-

a. 7- b .2'
j=O iji

In place of the original block u, we send the binary representation in

order as follows:

V = (blo ilb b 12' ... b 'l, 1 b20' b l' b 22'

(5)

b 2. , ... , b 0 , b ,l, ..., b r, d

The decoding of v, assuming the block has been transmitted without error,

is done by a receiver who knows the ui being used, the length n of the

blocks being sent, and the function I. Theorem 3 allows the receiver to

recapture f and after expanding f in the number system with base q;

knowledge of I allows him to recapture u.

4. POLYNOMIAL ENCODING AND DECODING OVER GF(2)

To simplify the discussion, this section assumes that the symbols

to be sent are drawn initially from GF(2). If this were not so, a suitable

encoding of the symbols could be made. Alternatively, if a method of

transmitting q symbols were available, GF(q) might be substituted for

GF(2) everywhere to get the appropriate analogy.
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Let u - (u0* U..... , u_ l ) be in Vk[GF(2)]. We denote by fQ(x)

the polynomial

b-I
£ ux'.

i=O I

Let ni(x), i - 1,2, ... , r be in GF(2)[x], relatively prime in pairs and

such that the sum of their degrees is greater than k - 1. Denote the

degrees of ma(z) by d i - 1. Let a.(x) be the polynomial residue of f(x)

when divided by ni(x). Then

di.-!
diI

a.(Z) - b .. zj
j=O 'J

for some b,, in GF(2). In place of the original block u, we send the

a,(x) in order, by sending their coefficients as follows:

v a (bl0, bill .... b , b2,d2- ...b..

(6)
b rO, b r p . ... I b rdr- 1 )

The decoding of v, if no error in transmission has occurred, uses

Theorem 4 to recapture f., assuming knowledge of k and the a(x), and u

is formed simply from the coefficients of f.

S. EaRRo CORRECTION AND DETECTION By VOTING

The procedure outlined here is very natural and is similar to that

used for decoding of Reed-Solomon polynomial codes.17 We restrict our-

selves for simplicity to discussing only the polynomial case. The

numerical situation is similar.

Assume now that errors in transmission are expected. Some simpli-

fying assumptions regarding the code parameters are shown in Table II.

These are introduced purely to simplify the exposition.

Consider a code with the simplified parameters. By Theorem 4, if

the residues a1 (x) of any h moduli n,(x) are selected, then they determine

a unique polynomial of degree less then dh - k. If these residues have
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Table II

NOTATION FOR CHINESE REMAINDER THEOREM CODES

QUANTITY NOTATION SIMPLIFIED SITUATION

degree of moduli mi(z) di - I di . d

number of residues a.(z) r r

length of given block (u) h k assum di and
define h = k/d

maximum number of residues c c
presumed changed in
transmission

length of block
transmitted () d. dr

been correctly transmitted, then this unique polynomial must be the correct

one. In any case we refer to it as a test polynomial g. There are evi-

dently (') different ways of determining a test polynomial.

If, at most, c residues a1 (x) have been changed by errors, (r h c)

teat functions will agree and turn out to be the correct one, f.. Thus

the transmitted block may be thought of as voting at least (r - c) times

for the correct test function. We wish to compute the maximum number of

votes that could be cast for an incorrect test function. It is possible

that c - I incorrect residues have been changed so as to be the residues

(for the appropriate moduli) of the incorrect test function determined by

h - I correct residues and one incorrect residue. In this case all the

ways of choosing h residues from this conspiracy of h + c - I residues,

that is, (h + c - 1) ways, will give the same incorrect answer. If, how-

ever, test functions that involve between them h or more correct residues

agree, then it is clear that they must be the correct answer. Hence, all

sets of agreeing test functions come from no more than h + c - I residues

and the maximum number of votes cast for the wrong function must be

exactly (h + - l). Fixing this election amounts to ensuring

(r - c) (h + C - 1) (7)
h h

or

r - c > h + c - 1 (8)
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Substituting for h and rearranging gives

rd - k > d(2c - 1) (9)

Notice that R = rd - k is the number of added (redundant) bits. Consider

now the number of errors that can happen without ever changing more than

c residues. If single errors are considered, the answer is clearly c.

If a single burst of width b is considered, the answer is

b= (c - 1)d + 1 (10)

For multiple bursts of errors, it is easy to check that [c/2] bursts of

width b = d + 1 could be handled. Other combinations of b and c are also

possible. Substituting Eq. (10) into Eq. (9) shows that for single

bursts of width b = (c l)d + 1,

1 = rd - k > 2(b - 1) + d (11)

Hence when b is large compared to d, R is not much bigger than 2(b - 1),

[if b is chosen, as in Eq. (10), to be as large as is possible without

ever disturbing c + 1 residues]. The above facts are summarized in

Theorem 5- If mu(x), i = 1, 2, ... , r are relatively prime

moduli of degree d over GF(2) and if members of Vi [GF(2)] are
to be encoded where k/d is an integer, then a Chinese re-
mainder code exists, which will correct [c/2] bursts of width
d + 1 or one burst of width (c - 1)d + 1 if

(r + 1)d - k

2d

and detect either of these sets of errors if

(r + 1)d - k

d

with redundancy B = rd - k.
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An example follows:

Example 1-Let k 7. Let the m.(x) be in GF(2)[x] and defined by

m (x) = x 4 + x + 1

m 2 (x) = x4 + x
3 +1

m 3 (x) = x4 + x 3 + x 2 + x +l

m 4(x) = x 4 + x 2 + 1 = (x2 + x + 1)
2

ms(x) = x4 + X2 + x + 1 = (x + 1)(X 3 + x 2 + 1)

so that d, = d = 4, r = 5. For i = 1, 2, 3, mi(x) is irreducible and

the last two moduli are shown factored into irreducible factors to aid

in establishing the relative primeness of the mi(z). Note that

R - rd - k - 20 - 7 - 13; hence using Eq. (9), errors which disrupt at most

c residues where 13 > 4(2c - 1) can be corrected. Hence c - 2 and

Eq. (10) gives b = 5 for a single burst. u = (1, 0, 1, 0, 1, 1, 0)

would be sent by considering the polynomial f, = 1 + x 2 + X4 + X5 over

GF(2) and constructing the residues:

a1 (x) - 0

a2 (x) = 1 + x + x
2

a3 (x) = 1 + x + x
3

a 4 (x) = x + x3

as(X) = x 2 + X3

and sending

v = (0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1)
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u could be recaptured from v if a burst of width 5 or less occurred.

The parameters of two somewhat more interesting examples are given below.

Example 2- Let k = 84. Let the mi(x) be the 18 7th degree polynomials

irreducible over GF(2), so that r = 18, d = 7. The redundancy is

R = rd - k = 126 - 84 = 42. c = 3 is the largest number of residues that

can be safely changed; this allows a single burst of width 15.

Example 3- Let k = 306. Let the mn (x) be 54 of the 9th degree polynomials

irreducible over GF(2), so that r = 54, d = 9. The redundancy is

R = rd - k = 486 - 306 = 180. c = 10 is the largest number of residues

that can be safely changed. This allows protection against a single burst

of width 82 or 5 bursts of width at most 10.

For error detection, it is not necessary that the right polynomial

receive a plurality of votes but that a wrong polynomial not receive a

unanimous vote. This leads to requiring

h h- (12)

or in analogy to Eqs. (7), (8), and (9), to requiring

R = rd - k > d(c - 1) (13)

Thus Example 2 would detect a single burst of width 36. Example 3

would detect a single burst of width 172 or 10 bursts of width at most 10.

6. CARRYING OUT THE VOTING

In Part D-2 a formula is discussed for the retrieval of f. This

formula (in the polynomial case), depends on certain fixed polynomials

zt(), which in turn depend on the set of moduli under consideration.

Since these sets of moduli vary with each vote, it is important to dis-

cuss in more detail the construction of the t.(x).

Let ti,(z) be the solution of least degree (which exists because the

m i(X) are relatively prime in pairs) of

mj(x)tii(x) a 1 mod m.(z) (14)
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Then, keeping m.(x) fixed and multiplying congruencies Eq, (14) for

J = j2' j3 . . gives

h [(x)
M1 I f t (xt 1 mod mix) (15)k=-2 jk~x  k k-2 [k ~ ) h--

whe re
h

K(x) - m (x) i mn (x)
k=2 'k

Hence for the set of moduli mi, . .2, ... , m,,, comparison with Eq. (2)

reveals that

h
ti(x) = H t (x) (16)

k=2 k

Thus, if r moduli are used, there are r(r - 1) fixed polynomials t to

be stored. With these polynomials at hand, each vote requires, as in

Part D-2, simply multiplications, additions, and reduction modulo M(x).

In general, the voting procedure might be varied in certain ways.

Rather than to go to great lengths to ensure correction with probability 1

in the (somewhat less probable) case that at most c errors occur, one might

introduce, for efficiency, some uncertainty in the decoding process, as in

sequential decoding. 7 Without going into details, we might "predict the

election" in advance without waiting for the plurality as soon as certain

votes, using representative moduli, showed some pre-arranged lead. Another

possibility, which involves introducing uncertainties in the decoding pro-

cedure, would be to "fix" the election in a slightly weaker way than was

done in Eq. (12). This approach leads to allowing a small probability that

the wrong test function could win, but chooses more favorable parameters

than would otherwise be possible.

7. RELATIONSHIP To REED-SOLOMON POLYNOMIAL CODES

The Reed-Solomon Polynomial Codes17 can be looked upon as a special

case of these Chinese Remainder codes. The former codes would transmit

u = (u0, u....., uk-.), in V [GF(2m)] 2" > k, by letting

P(x) = u0 + uIX + ... + U _- t-I and sending (in a binary encoded form)

[P(O), P(B), P(B2 ), ... , P(B 2 -2 ), P(l)] (17)
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where 0, B, B2 . . ... B2'-2, 1, are the elements of CF( 2 "). Decoding is

done by recapturing P from its values (after transmission) by an inter-

polation formula that produces a k - lth-degree polynomial "vote" from

any k received values. If P'(y) is the received value of P(Y), thus the

interpolation approach can be looked upon as the simultaneous solution of

sets of k polynomial congruencies drawn from

f(x) P'(O) mod x

f(x) P'(B) mod x - B

(18)

f(x) P'(B2 n -2) mod x - B2 n -2

f(x) a P'() mod x - 1

where f(x) is a polynomial over GF(2") of degree less than k, (the degree

of the product of any k moduli). Such a polynomial will clearly have the

required values. Thus, these codes take as their m1 (x) very simple types

of moduli, namely the first degree moduli shown in Eq. (18). The residues

a1 (x) have simply become values of P.

We note that an important part of Reed and Solomon's results concern

the encoding of elements in GF(2") as binary sequences while we have here

considered in detail only those applications of the Chinese Remainder

Theorem where the information enters as a vector over GF(2).

E. MULTIPLE-BURST ERROR CORRECTION WITH REED-SOLOMON CODES

An approach to multiple-burst error correction that is closely re-

lated to Chinese remainder coding is obtained by use of the Reed-Solomon

codes, or indeed, any codes of predictable Hamming distance over higher

order Galois fields of characteristic two.

The Reed-Solomon codes are most easily described as cyclic codes of

a special type over GF(2'). Thus, each symbol (digit) of the code may be

regarded as an s-place vector with binary (zero or one) entries. Let a

be an element of order n in GF(2'). Thus a, a2 , a3, .. , an - are assumed

to be distinct, while a" = 1. If one constructs the minimal polynomial
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over GF(2') possessing a, a 2 , a ... , a- as roots, then this is seen

to be the polynomial

g(x) = (x - - a 2 )(x - a3 ) .. (x - ad - )

The polynomial g(x) is clearly of period n, and thus it generates

a cyclic code of block length n over GF(2').* Since the degree of g is

r = d - 1, this code is an (n, n - d + 1) code. Its Hamming distance is

obtained by means of the Bose-Chaudhuri bound (since this code may be

viewed as a Bose-Chaudhuri code over GF(2a) with the result, d = r + 1.

If one puts t = [(d - 1)/2], this Reed-Solomon code is capable of

correcting any t symbol errors. Stated in terms of blocks of binary

digits (s bits per block) the code will correct any pattern of bit errors

affecting at most t blocks. As with the Chinese remainder theorem codes,

this capability implies that

(1) Any single burst of width (t - 1)s + I bits; or

(2) Any two bursts each of width ([t/2] - l)s + 1 bits, or

(3) Any three bursts each of width ([t/3] - l)s + 1 bits;
and so forth.

In summary, a independent bursts are correctible if each of them is

of width not in excess of ([t/m] - l)s + 1 bits, since then each burst

affects no more than t/m blocks of s bits. We thus have the trading

relation,

b (s- • + I

for (m,b) correction with a Reed-Solomon code [more generally, with any

symbol-correcting code over GF(2') that is capable of correcting any t

symbols].

A slight generalization of this result is obtained if one considers

also the correction of bursts of varying lengths at the same time. In

fact, let the binary error pattern consist of m bursts of width

The above construction requires that i he a divisor of q - I - 2 - 1.
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b i = as + 1, for i = 1 ... 1. Then this error configuration will be

correctible if

m (a. + 1) < t
i=!

It is instructive to consider some examples of multiple-burst codes

obtained from q-nary Reed-Solomon codes.

Example 1-q = 2' = 16, i.e., s = 4; n = q - 1 = 15

The block length in bits is nas = 60 and the available range for the

Hamming distance is d = 1, ... , 15. Only odd distances d = 2t + 1 are

considered for convenience and we tabulate

number of binary check digits = r' = rs

number of binary information digits = k' = ks

b = maximum correctible burst length if m independent
bursts are to be corrected.

d t r' k' b i  b 2 b3 b4  b b 6

3 1 8 52 1 0 0 0 0 0

5 2 16 44 5 1 0 0 0 0

7 3 24 36 9 1 1 0 0 0

9 4 32 28 13 5 1 1 0 0

11 5 40 20 17 5 1 1 1 0

13 6 48 12 21 9 5 1 1 1

15 7 56 4 25 9 5 1 1 1

Observe that these codes do not afford any appreciable degree of

multiple-burst correction capability until about 80 percent redundancy

is introduced. In fact, only single bursts of any length exceeding one

bit are correctible until the information rate, k/n falls below 50 percent.

The situation is improved by going to longer codes, as illustrated by the

next example.

Example 2-Let s = 6, q = 26 = 64, n = 21. Then n' = ns = 126,

and the available range for d is d 1 .... 21.
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d t r' k' bI  b 2 b3  b4  b b 6

3 1 12 114 1 0 0 0 0 0

5 2 24 102 7 1 0 0 0 0

7 3 36 90 13 1 1 0 0 0

9 4 48 78 19 7 1 1 0 0

11 5 60 66 25 7 1 1 1 0

13 6 72 54 31 13 7 1 1 1

15 7 84 42 37 13 7 1 1 1

17 8 96 30 43 19 7 7 1 1

19 9 108 18 49 19 13 7 1 1

21 10 120 6 55 25 13 7 7 1

Note that with an information rate k/n of about 25 percent, these

codes manage to achieve correction of four bursts of length 7, two bursts

of length 19, or a single burst of length 43. Even for k/n greater than

50 percent, it is possible to obtain correction for two bursts of length

7, or of a single burst of length 25. Obviously, this is much more

respectable than the codes of Example 1.

F. SPECIAL MULTIPLE-BURST CODES OBTAINED EMPIRICALLY

A number of special cyclic codes have been investigated empirically

in order to determine their multiple-burst correction properties precisely.

The codes in question belong to one or another of the following types:

(1) Simplex codes-that is, codes all of whose nonzero code
words have the same weight.

(2) Balanced simplex codes- obtained from simplex codes by

adjoining the complements of all words in the simplex
code (generalized Green-San Soucie codes).

(3) Interlace codes (see Sec. II1-C).

The techniques used to determine the results for these codes were

principally detailed exhaustion techniques, although in some cases MAVEBIC

was found to be useful.

The following exhaustion method is particularly appropriate to the

simplex and balanced simplex codes. For each value of m, it is desired

to determine the largest integer b such that no (nonzero) code word con-

sists of 2a (or fewer) bursts of width b (or less). The simplex code

words are (except for the all-zero word) all cyclic permutations of a
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single prototype word (given by a maximum-length shift register sequence).

Hence, only one (cyclic) code word need be tested in the case of simplex

codes.

The balanced simplex codes are only slightly more troublesome. Here

there are two prototype words--a maximum-length shift register sequence

and its complementary sequence-that need be tested for any such code.

The first few codes in these categories were tested manually, then a

simple ALGOL program was developed for this purpose and applied to the

remaining simplex and balanced simplex codes.

The m vs. b trade-off curves for these codes are shown plotted in

Figs. 1 through 6. The codes are identified by means of the check poly-

nomial h(x) (instead of the more usual generating polynomial), since h(z)

is of lower degree for the codes tested. It is worth noting that the

correctible burst width, b , falls off more slowly with increasing M than

ene is led to expect from the trade-off relations described in Secs. III-B,

D and E. This is probably so because the relations derived earlier are

essentially bounds, rather than exact performance figures.
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IV MULTIDIMENSIONAL BURST ERROR CORRECTION

A. INTRODUCTION

Ordinary (one-dimensional)cyclic codes are useful for the correc-

tion of clustered errors, i.e., bursts of errors. One might guess

then that some sort of two-dimensional analog of cyclic codes would

be useful for the correction of two-dimensional bursts of errors, i.e.
"spots." This section indicates that such is indeed the case, and

moreover provides a precise result for the size of a (rectangular)

spot that can be corrected.

Possible applications of such codes are:

(1) Serial-parallel transmission of data over multiplexed
channels subject to correlated noise bursts

(2) Multi-track magnetic tape recording

(3) High-density optical (photographic) recording of digital
data

(4) Component failures in microelectronic planar arrays, etc.

The subsequent discussion will be given in terms of two-dimensional

codes, but all of the results obtained are valid in the general, multi-

dimensional case with only the obvious changes.

B. PRODUCT OF TWO CODES

Let C1 be a block code with k1 data bits and ri check bits, and

with word length n1 . kI + r1. Let code C2 have corresponding parameters,

k2, r2, and n 2 a k2 + r2. We define the product code C1 X C2 to be the

(nin 2, k 1k2 ) code described by Fig. 7.

The rows of the k1 x k2 block, D, are data words of code C1. Each

row has appended to it r, redundant digits in accordance with the check

rules of code C1. These k2r, check bits form the row checks, fII.

Likewise, the columns o1 u are regarded as data words of code C2 , and

each column has appended to it r2 check bits according to code C2.

These klr 2 check bits form the column checks, B 2. The block labeled

1,2of size r, × r2 in the lower right-hand corner consists of checks on

checks. Its digits may be formed either by taking C1 -type checks on the
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FIG. 7 PRODUCT OF TWO CODES

rows of R 2 , or by taking C 2-type checks on the columns of R1. The

results are easily shown to be the same in either case.

This way of combining two codes was originally introduced by Elias
1

and called the iteration of codes. Slepian1 91ater discussed it in a

somewhat different framework as the tensor product of codes, showing

that it is related to the idea of a Lensor producL of the individual

code generator matrices. (See also Peterson 20 . The most important

single fact about code products is the theorem (Elias, 1 Slepian, '9

Kautzal

Theorem 1-If code C. has minimum Hamming distance d, then

the product code ITC. has minimum distance - ad,.

Proof: See Peterson, 20Theorem 5.3.

Other papers on multidimensional codes that have appeared are by

Calingaert
2 2 and Bubinoff. 23

C. PRODUCT OF TWO 'CYCLIC CODES

As stated at the beginning, our interest is in the product of

cyclic codes, and their burst-correction capability. If C1 and C2 are

the cyclic codes generated by polynomials gl(x) and g 2 (y) respectively,

one would guess that their product code, CI x C2 would be somehow related

to the product polynomial, gW(x)g 2(y). This conjecture is substantiated

by the following:
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Theorem 2-Let gl(x) and g2 (y) belong to periods nj and n 2

respectively, and let CI be the (n1 , k 1 ) cyclic code generated
by g, and C 2 be the (n , k2) cyclic code generated by 92'

For any n 2 x n i array ol binary digits, (f~j), let

i = 0, .... n1 -1
f(x, y) fi.x'yl

i j 0, 2.... "2 1

Then (f, .) is a code word in C1 x C 2 if and only if g1 (x)g2 (y)

divides J(x, y).

Proof: Suppose first that (J j) is a code word in C I x C 2. By defini-

tion of C 1 x C 2 this means that each row (say the j0 -th row) of (fij),

{(f.0):i = 0 ... , n l-1) ; j 0  = 0, ... , n2-I

is a code word in C, and that each column (say the i0-th column) of

(fi.),

(f, O):j = 0 .... j n21 i 0  = 0, .... nj- 1

is a code word in C 2 . Hence the polynomials,

2 f Z' = u.(x); 0 = 0, ... , n 2 -1
• iiO J

are all divisible by gl(x), and the polynomials,

t" Jy . v (y) ; i 0  . 0 ..... n I - I
i ji

are all divisible by g2 (y). It follows that

f(x, y) = X (x) = x' (y)
j J

ia divisible by gl(x)and also by g2 (y). This in turn requires that

f(x, y) is divisible by the product gl(X)g 2 (y).

Conversely, suppose that f(x, y)is divisible by 9 1(X)g2 (y),

f(x, y) = A(x, y)g 1 (x)g 2 (y) = ) yu(x)

Putting y - 0 in this identity,

f(x, 0) = A(x, 0)9 2(0)g1(x) = Uo(X)

45



Hence u0 (x) = i x is divisible by gl(x). Thus the first row of

(fiJ.) is in code C,. Next take partial derivatives with respect to y

and put y = 0,

f (x , y ) '
'a = - A(x, y)g 2 (y)]Y= (x) = U1 (z)

y1=0 0

Hence, ul(x)is divisible by-g1 (x). Continuing this process of taking

partial derivatives with respect to y and putting y = 0, one sees that

each row polynomial, ui(x), is divisible by g,(x). That is, each row

of (fij) is in code C1. The same reasoning with rows and columns,

x and y, i and j, etc., interchanged shows that each column is in code C2.

This is clearly the same as saying that (fL is in the code C1 x C2.

This completes the demonstration.

D. SPOT CORRECTION PROPERTIES

We first prove some easy lemmas.

Lemma 1-If code C1 has burst-correction capability b1 , then any
spot (two-dimensional burst) of errors involving at most b
adjacent columns, is correctible in C1 x C2.

Proof: Simply use the 6i-burst correction capability separately for

each of the rows of the received code block, (fi ).

Comments: Lemma 1 says that any spot, not more than b1 bits wide, and

of arbitrary height, is correctible. No use is made of the properties

of code C2 ; it may in fact be irredundant, g2(y) - 1. By symmetry, if

code C 2 is capable of correcting any burst up to b2 bits wide, then

(regardless of C,), the product code C1 X C2 is capable of correcting

any rectangular burst not more than b2 bits in height, and of any width.

Lemma 2- If C1 and C2 are respectively, burst-bi and burst-b2
correcting, then C1 x C2 is capable of correcting any rectangular
error spot from the set consisting of all rectangles up to b
bits wide, and all rectangles up to b2 bit high, inclusive.

Proof: If the error spot consists of up to b, columns, use C 1 on each

row; if the spot consists of up to b2 rows, use C2 on each column. The

problem is to identify which type (vertical or horizontal) spot actually

obtains in a received message. Since one or the other must obtain (by hy-

pothesis), we may use both row checks and column checks first merely for

error detection purposes to see if more than b i columns (or more than b2

rows) contain errors, and act accordingly.
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Lemma 3- (Erasure-burst correction with cyclic code in one
dimension). A cyclic code using r check bits in a block of
length n can correct any erasure burst not more than r bits
wide. Some erasure bursts of width r + 1 will not be correctible.

Proof: By cyclicity, the r erased bits may be assumed to be located in

the check digit positions. But the correct digits in these locations

are uniquely determined by parity checks on the remaining (data) digits,

none of which have been erased. Thus the erased digits may be filled

in uniquely. On the other hand, a burst of r + 1 consecutive erasures

must involve one data digit. Thus two valid code words will agree with

the received word on the unerased positions, and correction is not

possible.

Lemma 3 will now be used to establish the following theorem on spot-

correction capability, the principal result of this section.

Theorem 3- If C1 and C 2 are cyclic codes using r i and r2 check
digits respectively, with r i > 0, r2 > 0, then the product code
C1 x C 2 is capable of correcting any rectangular spot of dimensions
r, bits wide by r 2 bits high, or smaller. Some spot of size
r 1 +1 by r 2 (or of size r, by r 2  1 1) is uncorrectible.

Proof: The method of proof involves showing first that the spot rectangle

can be located within the over-all block of n I by n 2 digits. Next

Lemma 3 is used to determine the actual pattern of errors within that

rectangle. Thus the method of proof itself outlines the correction

process.

First, apply all r I row checks to each of the n 2 rows of the received

code block, purely for error detection, and note which rows contain

errors. Do the same for each column, and note which columns contain

errors. On the assumption that all errors are within some r I by r 2

block, this process will certainly locate all rows and all columns

containing errors, since undetectable error patterns in a row must be

more titan r I wide, and likewise for columns. This locates a rectangle

at most r I bits wide and at most r 2 bits high, within which all erroneous

bits lie. We may now disregard completely all the received digits within

this block, that is, assume they were erased. Next make use of the

horizontal (or row) checks of C I to reconstruct the missing digits

(at most r ) in each erroneous row. This reconstitutes the correct

message on the assumption that the error spot was no larger than r I

by r2 . Alternatively, the last step could be accomplished by using the
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column checks of C2 on each erroneous column. The results should be the

same, again on the same assumption. In practice, both checks may be

carried out; a disagreement between the results indicates the occurrence

of an error spot larger than rI by r 2.

To show that some error spot of size r I "t 1 by r 2 is uncorrectible,

consider a spot formed of r 2 identical rows, each row having errors

where the polynomial gl(x) has unity coefficients. 'he row checks will

all be satisfied in each row. The column checks will indicate errors

in the appropriate columns, but we will have no information as to the

rows where errors lie. Thus the actual spot is defined by the polynomial,

g 1 (x)(1 + y + y2 ... +y 2 1), while the spot defined by g 1 (x)[g 2 (y) +
r -

+ y + ... + y 2 ] is also not more than 1 + r1 by r2 digits in size,

and it is easily seen to yield the same vertical check patterns and the

same horizontal check patterns as the actual one. Thus these two spots

are indistinguishable in the code CX X C 2" Hence, not all such spots

are correctible. Identical reasoning applies to spots of size r I by

r 2+ 1.

Corollary 1--Let V b and If62 be the sets of rectangles, up

to bI bits wide and up to b2 bits high, respectively, that
were the subject of Lemma 2. Let R(r1 , r2 ) be the set of all
rectangles of height < r 2 and width < r discussed in Theorem 3.
We assert that C x Cx2 is capable of correcting any spot error
from the union of these classes, V, U Hb U R(r 1 , r 2 ).

Proof: As in the proof of Theorem 3, use the row- and column-burst-

detection capabilities to determine which class the error spot belongs

to. Then apply the appropriate correction procedure.

According to the corollary we can correct some error rectangles

wider than r, (or higher than r2 ) provided the orthogonal dimension is

restricted to be at most b . This does not exhaust the list of

correctible error classes, as shown below.

E. EXCESS ERROR-CORRECTION CAPABILITY

It is not difficult to see that an erasure burst is correctible

with a (one.-dimensional) cyclic code C if and only if no polynomial

E(x) having zero coefficients on the "sure" (unerased) digit positions

is a multiple of g(x), except the all-zeros polynomial. This statement

may be formalized as follows:

48



For a given erasure pattern, let F(x) be the polynomial with unity

coefficients on the erased positions, and zero coefficients on the "sure"

positions. Another polynomial, E(x), with coefficients zero or one, will

be said to be a sub-polynomial of F(x) if f, - 0 implies ej = 0; we then

write E(x) < F(x). Thus

(a) E(x) < F(x)

(b) f1 = 0 implies e1 = 0

(c) e. = 1 implies f= 1

are all equivalent.

Lemma 4-The erasure burst represented by F(x) is correctible

by means of the cyclic code generated by g(x) if and only if:

E(x) < F(x) and g(x)IE(x)= E(x) = 0

We note, in particular, that if F(z) - x' times a polynomial of

degree less than r = deg (g), then F meets the conditions of Lemma 4,

and is therefore correctible. However, there will in general exist

other F's representing erasure bursts wider than r bits that are also

correctible. Their existence may be exploited to broaden the class of

spot error bursts correctible with a product code C1 X C 2.

Theore 6-Let F(x, y) z' .xJyJ be the received error
polynomial under the product code generated by g1 (x)g92 (y).
Also let F ' ) (x) = f x', and F(2 ) (y) = y be the
row and column vectors of the matrix fi. Define

S (x) - k.JF 1 )(x)

S2 (y) . F(2)(y)
2i

to be the row- and column-logical-sum vectors, respectively.
If Si(z) and S 2 (y) satisfy the conditions:

(1) E(x) < S1 (x) and g,(z)IE(x)ffiE = 0, and

(2) E(y) < S 2 (y) and g2(y)IE(y)E - 0

then the error F(x, y) is correctible.

Proof: Under the hypothesis of the theorem, each row vector, F ')(x) <
i

S (z) ; hence either FW1 )(x) is the zero polynomial, or it is not

divisible by g1 (x). In either event, the row error vector F(1)(x) is
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detectable in Code C, (the row code). Similarly, each column error vector,

F0)(y) must represent a detectable error in . We conclude that each row

or column containing an error will be detected as such by the row- and column

parity checks. Thus (x) will have a unity coefficient for each column con-

taining any errors, and S2 (Y) will have a unity coefficient for each row

containing any errors. We may now imagine the received digit, V., to be

erased if the term xiyj appears (with unity coefficient) inS(x)S2(y). This

will result in erasure of every conceivably erroneous digit (as well as some

correct ones). By virtue of the conditions (1) and (2) on S1 and S2 and

Lemma 4, the erasure patterns thus created are correctible, either row-wise

(by CI), or column-wise (by C2). Thus the error pattern F(z, y) is correctible. Q.E.D.

One notes that, in particular, the correctibility of all rectangular

bursts r, x r2 in size (Theorem 3) follows from Theorem 4, since if

F(x, y) represents a pattern of size r, x r2 (or less), then S,(x) is a

polynomial of degree less than r1 (times some power of x), and S 2(y) is

a polynomial of degree less than r2 (times a power of y). Consequently,

g1 (x)(whose degree is r) cannot divide any nonzero sub-polynomial E(z)

of S1 (x), and g2(y) cannot divide any nonzero sub-polynomial E(y) of

S2(y).

Another set of special cases which come under Theorem 4 is described

in the

Corollary 2- If an error burst F(x, y) occurs which is either
(a) at most r2 bits high, and is such that computation

of the vertical parity checks indicates detected errors
in a set of columns defined by polynomial D (W) satis-
fying Condition (1) of Theorem 4, with D1 (Xj replacing
Si(x), or

(b) at most r1 bits wide, and is such that computation of
the horizontal parity checks indicates detected errors
in a set of rows defined by polynomial D2(y) satisfying
Condition (2) of Theorem 4, with D (y) replacing S2(y),

then F(x, y) is correctible with the code C, X C2.

The set of errors covered by this Corollary is of special interest

in that it is defined in part by a test on the outcome of the receiver's

parity testing, i.e.,, by an implicit condition.

F. CORRECTION OF ERASURE BURSTS

We imagine that information encoded in C 1 X C2 is transmitted over

a binary erasure channel. Thus the received word, (vii ), is a matrix of
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O's, l's, and X's (erased digits), where the O's and l's are assumed to

be free of errors. As usual in the erasure situation, we have the

advantage of knowing precisely which digits were erased. Thus no error

location is involved--only a filling-in of the blanks (X's).

For a received message, (V1 i), we define

f. = 0 , when v.. = 0 or 1

fI. I , when v.. = X

Th oyoilFx ) f i)

The polynomial F(x, y) = .x'y j will be called the erasure polynomial.

F(x, y) thus gives the locations of the erased digits of the message.

Theorem 5 below gives a necessary and sufficient condition on

F(x, y) for correctibility of an erasure pattern with code C 1 IX C 2

generated by gl(x)g 2(y).

Theorem 5--If F(x, y) is such that no nonzero subpolynomial of
F is a multiple of gl(x)g 2 (y), then the code C1 X C2 generated
by 1g92 will correct erasure burst F(x, y) uniquely. Conversely,
if there does exist a nonzero polynomial E(x, y) < F(x, y)
with E(x, y) - a(x, y)g,(x)g (y), then there are at least two
distinct code words of C1 x 12 that agree with the received
word on the nonerased positions, and hence the received word
is not correctible in this code.

Proof: Take the second half first--if 0 $ E(x, y) < F(x, y) and
E(x, y) - a(x, y)g1 (x)g2(y), let U(x, y) be the transmitted word. Then

U and V differ only on the erased digit positions [i.e., on F(x, y)].

Hence U and U + E differ only on the erased digit positions. But
U(z, y) = b(x, y)g ()g 2(y) since U is in the code C x C . Hence

U + E = (a + b)gg 2, so that U + E is also in the code. Thus U and

U+E are two valid code words differing only on the erased digit

positions. The received word is then not uniquely correctible. Con-

versely, suppose that no nonzero subpolynomial of F is a multiple of

g1g 2. If there were two distinct code words, say, U = bglg 2 and

U' - b'gg 2 such that U + U' is nonzero only on the erased digit

positions, then U + U' = (b + b')glg 2 is a nonzero multiple of g1g2
and is also a subpolynomial of F, i.e., U + U' < F contrary to hypothesis.

Corollary 3--Code C l x C2 is capable of correcting any erasure
burst that leaves a rectangular block of k X k 2 unerased digits,

51



where k1 M n, - ri W number of information digits in the
row code, and k 2 a n2 - r2 a number of information digits
in the column code.

This result also follows directly from the observation that any

k, consecutive digits in a cyclic (n1, k,) code determine the remaining

r1 digits uniquely. Hence, all the erased digits may be filled in

uniquely.
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V ERROR--LOCATING CODES

A. INTRODUCTION

By way of introduction to the concept of error location, let us

consider how error-detecting codes and error-correcting codes, respec-

tively, are used in communication systems. Error-correcting codes

may be employed on one-way communication systems, since the crucial

operations of detecting the presence of errors, locating the specific

symbols in error, and finally correcting these erroneous symbols may

all be carried out at the receiver. With error-detecting codes, the

situation is quite different. Here the amount of code redundancy is
sufficient only to permit the receiver to determine that errors have

occurred, but not, in general, to locate or correct these errors.

Consequently, if the receiver wishes to determine the correct message,

a request for repeat transmission must be sent back to the transmitter.

Thus, a return link must be provided.

Such two-way systems with error detection at the receiver and

"decision feedback" to the transmitter have many attractive features

and have come in for considerable study in recent years. They are

particularly efficient in situations where the channel fails
"catastrophically," that is, where channel disturbances are usually

slight, but occasionally become extremely severe. The reason for

this is that error-detecting codes require relatively little redundancy.

A single over-all parity check digit will detect one half of the possible

failure patterns, two parity checks will detect all but one-quarter

of the possible failure patterns, and in general, r suitably chosen

parity checks will detect all but a fraction 2-r of the possible failure

patterns, regardless of the block length involved. Thus, if the block

length is reasonably great, the actual information rate will be very

nearly the channel digit rate during periods of good transmission.

When the channel becomes very noisy, on the other hand, we may suppose

that its instantaneous capacity falls nearly to zero. Under such condi-

tions, the best one can do is to give up trying until conditions improve,

and this is essentially what the decision feedback system does. By

way of contrast, a one-way error-correcting code system would have to

employ very large amounts of redundancy to combat the noise during
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the poor transmission periods. The decision feedback system automati-

cally adjusts its data rate to match (roughly) the conditions on the

channel.

There is, however, a fairly crucial choice of parameters that

must be made in designing a decision feedback system. In particular,

the block length must be made neither too large nor too small. If

the block length is small, the fractional redundancy required to

detect most of the likely error patterns will be large, leading to a

low data rate, even under good transmission conditions. If the block

length is chosen too large, it becomes increasingly likely that nearly

every received block will contain some detected errors. Since every

block detected to be in error must be repeated, the data rate again
falls to zero. Incidentally, this argument also shows why decision

feedback with error detection at the receiver is not a good scheme

for channels where the error rate is fairly high all the time. For

such channels, one may be caught on the horns of a dilemma in trying

to choose a suitable value of block length.

Fortunately, there appears to be at least one solution$ to this

difficulty, which preserves the other attractive features of the

decision feedback system. A wasteful aspect of the error-detection

system described thus far is that the presence of even a single

erroneous digit in a received message requires the repeat of a whole

block of data, and we would like to make this block long for reasons

of code efficiency. Might it not be possible to employ a long code

block with relatively low redundancy, but with the redundancy so

arranged that when errors (of some restricted class) occur we can

determine roughly which portions of the over-all block are erroneous?

The remainder of this section discusses several techniques for the

construction of such error-locating codes, that is, codes that permit

the receiver to determine which portion or portions of the over-all

code block are in error. The feedback message in such a system then

signals the transmitter to repeat only the erroneous portions of the

code block. The additional flexibility thus afforded in system design

may then be exploited to soften the compromise between short and long

block lengths.

Suggested by J. Wolf, (private communication).
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From a certain point of view, these error-locating codes may be

regarded as lying between error-detecting codes and error-correcting

codes both in their capabilities and in the amount of redundancy

required. Whereas error detection answers only the question, "Have

any errors occurred?", and error correction answers the question,

"Precisely which digits are in error, if any?", error location answers
the question, "Which portions of the received message are in error?".

We shall refer to such error-locating codes as EL codes.

B. A SIMPLE EXAMPLE OF AN EL CODE

We give here a simple example of an EL code to illustrate the basic

ideas involved. The parameters (length, redundancy, etc.) for this

particular code are not the most attractive ones that can be exhibited

for such codes, since in the interests of clarity of exposition, they

have deliberately been chosen to be rather small. In later paragraphs

of this section, we shall give examples of more useful codes, as well

as several classes of construction techniques for these codes.

Let A be the check matrix (of size 2 x 3) for the ordinary Hamming
single-error-correcting (SEC) code of length 3 binary digits.

This matrix has the property that the modulo-two sum of any two (or
fewer) columns is nonzero, that is, the (3, 1) code defined by A

is a two-error-detecting code. In fact, the sum of all three columns

is zero; hence the sum of any two columns is itself the remaining

column of A.

Now let us use A as a basic structural unit to build up a larger

matrix, B, which will be the check matrix for the desired EL code.

Let H be the partitioned matrix,

H AO0A Al ,
A A A' A

A ' [ and A" [
0 1
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Thus

[101 000 101 101 1011
011 000 011 011 011i

" 000 101 101 110 O1 /
L000 Ol Ol 101 11o

This matrix H defines a binary group code of len ;th n = 15, employing

4 check digits. The 15 places of the code are considered as consisting

of 5 sub-blocks, each having 3 places. Note that the matrices A' and

A" are obtained from A by column permutation; hence, they have the same

basic property as A, given above.

Now let us consider what properties are possesed by the (15, 11)

code defined by H. First of all, the 15 columns of H are exactly the

15 distinct binary vectors of length 4. Hence, this code is in one

sense simply a peculiar version of the Hamming (15, 11) SEC code.

However, the particular way in which the columns are grouped into

sub-blocks of length 3 makes the following properties hold.

(1) The (modulo-two) sum of any two (or fewer) columns of H
located in the same sub-block is nonzero.

(2) The (modulo-two) sum of any two (or fewer) columns of H
drawn from the same sub-block is distinct from any such
sum formed from a different sub-block.

Property (1) follows directly from the stated property for matrix A.

Property (2) is a little more difficult to justify, but note first that

sub-blocks 1 and 2 are uniquely characterized by the fact that one-fold

or two-fold column sums drawn from them have the forms,

[ and [

respectively. Column sums (of one or two columns) drawn from sub-block3

have the form,
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where a and b are not both zero. On the other hand, the corresponding

forms derived from sub-blocks 4 and 5 are, respectively:

+ and
a +

It is clear that 4-place vectors of these forms can agree only if

a - b - 0, which is ruled out by the property of A.

Now the syndrome* resulting from the occurrence of one or two digit

errors within a given sub-block of the code is precisely the sum of the

columns of the check matrix H corresponding to these erroneous digit

positions. It follows [by Property (2)], that the syndrome resulting

from any such error pattern will uniquely determine the particular

sub-block (1, 2, 3, 4 or 5) in which the error(s) occurred. And,of

course, this syndrome will be nonzero [by Property (1)] thus distin-

guishing it from the syndrome for the case of no errors. The (15, 11)

code defined by H is therefore capable of locating a single sub-block

containing one or two digit errors. We shall refer to it as a 2-EL

code.

Note, on the other hand, that the occurrence of three errors in

any given sub-block is undetectable, since it leads to the all-zeros

syndrome. In general, the occurrence of errors in more than one sub-block

will lead to incorrect decoding (that is, the code will not locate more

than one erroneous sub-block).

As mentioned earlier, this illustrative example of an EL code is

not a particularly attractive code. The same code could be used to

correct any single digit error, or alternatively, to detect the presence

of any two digit errors anywhere in the full block of fiteen digits.

Further, using it as an EL code, we can also locate the offending sub-block

of three digits, provided that all errors occurred in a single sub-block.

We shall see that more striking comparisons can be made for longer codes

where EL codes show up in a more favorable light.

See Reference 20, p. 36.
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C. GENERAL EL CODES

1. TERMINOLOGY AND NOTATION

We shall employ the symbols, n, r and k in their customary senses.

Thus,

n = over-all block length (code word length)

r - number of redundant digits (check digits) per word

k - n - r = number of information digits per word.

The symbols, t, s and e will be used as follows:

t - length of a sub-block

s - number of sub-blocks per word

e - maximum number of digits that may be in error within
a given sub-block.

It will be assumed that all sub-blocks have the same length, t.

Hence n - st. A code with the above parameters will be referred to as an

e-EL (n, n-r) code of sub-block length t. Only codes for the location

of a single erroneous sub-block will be considered here. (It is still

an open question as to whether there exist efficient codes for the

location of more than one erroneous sub-block.)

2. BASIC PROPERTIES

We formalize here the two basic properties (already discussed for

the illustrative code in Sec. V-B) in the general case. Let H be the

check matrix for an e-EL (n, n-r) code of sub-block length t (see

Fig. 8). H is a matrix of r rows and n columns, the columns being

grouped into s sub-blocks, each of length t.

Let C' stand for the j-th column within sub-block a of the matrix

H. Then we may represent an arbitrary sum of e or fewer columns of H,

all drawn from sub-block a, by the expression:

<4

i
m
I ce

where the integers, j1, j2, ..... j. represent an arbitrary set of e

column positions.

So



SUB-BLOCK

T

l : m

A- Use-il

FIG. 8 CHECK MATRIX STRUCTURE FOR ERROR-LOCATING CODES

The two necessary and sufficient conditions for H to define an

e-EL code may then be written:

(a) C ! 0, for any (non-empty) set {j 1 }.
i=i 'S

(b) If a b, then Y C! Cb for any (non-empty)
i=1 I j=1 I i

sets {j 1 } and {k} .

The summation signs here refer, of course, to digit-wise modulo-

two summation of the r-place column vectors of H. The two expressions

appearing in Conditions (a) and (b) therefore represent syndromes

resulting from e (or fewer) errors in sub-block a and sub-block b

respectively. These syndromes must be distinct and nonzero if the code

in to be e-error locating, and conversely.

It is not difficult to show that the following bounding relation

holds for any EL code:

2
l + a X () < 2' (1)

=9
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Proof: We count the distinct syndromes. Since, within a given sub-block

all f-fold sums of columns (f < e) are nonzero by Condition (a), it

follows that within a given sub-block all h-fold sums of columns

(h < [e/2)*) must be distinct. Moreover, f-fold sums of columns from

different sub-blocks are distinct by Condition (b) (f .< a). hence,

all h-fold sums of columns are distinct when up to [e/2] columns at a time

are chosen from any one of the s sub-blocks. There are

[-/21

ways of making such choices, including the zeros syndrome. But there

are only 2r distinct r-place binary vectors. Hence the result.

Any EL code meeting this bound with equality will be said to be an

optimum EL code. The particular code described in Sec. V-B was an

optimum EL code.

3. A FAMILY OF OPTIMUM 2-EL CODES

A family of 2-EL codes generalizing the code of Sec. V-B is

readily described. All the codes of this family are optimum EL codes.

Let A be the check matrix of p rows and t columns for the Hamming

SEC code of length t - 2P - 1. Let A', A", .... A"'") be the matrices

formed by cyclically permuting the columns of A. The check matrix H2
for the 2-EL code of size n - 22P - I is formed according to the

following scheme:

[H 0 .4 A A ... AH i
2 A A A' A" ... A (  

.

We have s - t + 2 = 2P + I , n = st - (2P + 1 )(2P - 1) = 2 2p - 1, and

r - 2p.

The proof that this code is indeed capable of locating any single

sub-block containing up to 2 errors is given in Appendix I (Theorem 1).

The code obviously meets the bound, Eq. (1).

A further generalization is obtained by using the scheme:

*[xi - the largest integer < X.
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A 0 0 A A ... A A A A ... A

H3 = A 0 A A' ... AU - ) 0 0 0 ... 0

0 A 0 0 ... 0 A A' A" .. A.

0 0 0 ... 0 A A A ... A

A A A ... A A' A' A' ... A'

A A' A" ... A ('-' A A' A" ... A ('- )

A A ... A

....... A -  A t- I . A( -I

A A' A('- '

which contains 3 + 3t + t2 - [(t + 1)3 - 11/t sub-blocks each of width

t. Thus for this family of codes, r = 3p and t - 2P - 1, and n 23P 
- 1.

The proof that such codes are two-error locating is given in Appendix I,

Theorem 2.

The obvious generalization of schemes H2 and H3 to the case H

(a > 2) yields 2-EL codes of length n - 2* 0 - 1, r - ap, and containing

sub-blocks of length t - 2P - 1. The check matrix H consists of a sets h

of rows, each of p rows. The sub-blocks fall into groups, the i-th

group containing those sub-blocks where i of the row sets (i - 1, ... n)

are nonzero, whilea -i of the row sets are zeros. Within each group all

(i) choices of a-i zero row sets are used, and for each such choice all

t0- permutations of the lower i-I row matrices, AO ) , relative to the

uppermost nonzero row set are employed.

This procedure thus yields a total of+(2)t + a++ ... +

to-' = [(1 + ) - 11/t sub-blocks, that is, a total of (1 + ) - 1

n digits per code word. See also Appendix I. Again these codes are

optimum 2-EL codes.

4. A FAMILY OF (t-1)-EL CODES

The (15, 11) 2-EL code of Sec. V-B can also be generalized in the

direction of providing detection of a larger number of errors per

sub-block. In fact, the codes of this family will locate any sub-block

(length t) that contains up to t - 1 errors. Thus, these codes will detect

almost all the possible errors in a single sub-block. Surprisingly,

the cost in redundacy of providing this error location ability is

not high.
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The parameters of this family are:

t = any prime > 3

e p = t - 1

r - up, where m any integer > 2,

n - (t + 1)2 - 1.

For example, using m = 2 one has the codes with

t 5 5, e = 4, r = 8, n - 35

t - 7, e - 6, r = 12, n = 63, etc.

The second of the above codes, with t = 7, stands up very well

in comparison with the n = 63, r . 12 Bose-Chaudhuri code, which is

capable of detecting any 4 digits in error out of a block of 63. The

EL code, having the same redundancy and same block length is capable

of locating any sub-block containing up to 6 errors.

The basic check matrix, A, for the construction of EL codes of

the e - t - 1 family is:

1I000.. 1-

0 10 0 ... 1

A = 010 ... 1

0001.. 1

0000 11

In order to form the check matrix H for these codes, one uses the basic

matrix A in the schemes, HI2H II31 or generally, H., which have already been

discussed above. For example,

10001 00000 10001 10001 10001 10001 10001
01001 00000 01001 01001 01001 01001 01001
00101 00000 00101 00101 00101 00101 00101
00011 00000 00011 00011 00011 00011 00011

H1=

00000 10001 10001 00011 00110 01100 11000
00000 01001 01001 10010 00101 01010 10100
00000 00101 00101 01010 10100 01001 10010
00000 00011 00011 00110 01100 11000 10001
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is the over-all check matrix for the 4-EL code with t 5, m - 2, c

t - 1 - 4, n - t2  + 2t - 35, s - 7.

Unfortunately, the codes of this family, e - t - 1, are not optimum

EL codes for e > 2. For example, application of the bound inequality for the

case t - 5 given above, yields that s,,t= (2 - 1)/(5 + 10) = 255/15 -

17, instead of 7, and that correspondingly, n. . (5)(17) * 85 instead

of merely 35.

The proof that the codes of this family are indeed e-EL codes, with

e - t - 1 depends on a somewhat more general theorem which we state here,

and whose proof is given in Appendix I.

Theorem 1-Let g(x) - g 1 (x)g 2 (x).., g.(x) be a product of v
distinct, irreducible polynomials over GF(2), where each
irreducible factor g1 (x) belongs to the same period, t. That
is, t is the smallest integer such that g(x) divides xt + 1
(mod 2). Let A be an p-row-by-t-column check matrix for the cyclic
(t, t - p) code C., then the check matrix formed by substituting
A into the scheme H. yields an c-EL code of size n - (t + 1)' - 1,
with r - mp check digits, where e + 1 - d is the Hamming distance
of the code Cg, and p= deg(g) is the number of check digit
positions in code Cs.

The codes of the family e - t - 1 are obtained from Theorem 1

when one choosesg(x) - x t-  x t  +... + x + 1 * (x t + 1)/(Z + 1),

where t is an odd prime. The oddness of t guarantees that g(x) will

have no repeated factors, and the primeness of t guarantees that all

the irreducible factors of g(x) have the same period. Thus one may

choose t - 3, 5, 7, 11, 13, 17, ... for this family of codes.

S. OTHEi EL CODES

One may also use Theorem 1 with polynomials g(x) other than the

all-ones polynomial which gave rise to the e - t - 1 family. For example,

choosing g(x) to be a primitive, irreducible polynomial of degree p,

and period t - 2P -1 will yield the EL codes of the family e - 2

described in Sec. V-C-3. If g() is chosen to be an irreducible, but

not primitive polynomial, e.g., X8 + z 5 + X 4 + x 3 + 1, with t - 17,

then one still obtains an EL code. In this case, d - 5, hence the code

is capable of locating a sub-block (width t - 17) containing up to

4 errors and (using a - 2) the block length n - 323, there are r - 16

check digits, and s - 19 sub-blocks.

63



The Golay code polynomial may be used in similar fashion. Her-

g(x) - x11 + X 9 + x7 + X6 + XS 1, generating a cyclic code

of length t - 23 and distance 7. (This happens to be a perfect code.)

Again usinga- 2 in the construction, the resulting EL code has

n - (23)(25) = 575, r - 22 and permits the location of a sub-block

containing up to 6 errors.
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VI MAVERIC--A VERSATILE ENCODER-DECODER FOP, CYCLIC CODES

A. GENERAL DESCRIPTION

The name MAVEBIC stands for MAgnetic VERsatile Information

Corrector. This device, which was developed as part of the present

study, is an extremely versatile encoder-decoder for cyclic error-

detecting and error-correcting codes. The adjective "magnetic" is

used because all of the storage functions and practically all of the

logic in the machine are provided by multiaperture magnetic cores.

MAVERIC is completely self-contained; the only external connection

required is to an ac power source, 105-130 volts at 60 cycles per

second. Its power consumption varies from about 34 watts (standby) to

130 watts (maximum). The clock rate is set internally to about 500 bits

per second.

The major subassemblies of MAVERIC are:

(1) 63-stage message register

(2) 16-stage feedback shift register

(3) Twelve 16-stage binary sequence sensors

(4) Cycle counter

(5) Prime driver and pulse amplifier unit

(6) Pulse driver

(7) Control unit

(8) Power Supply

(9) Associated switches and indicators

(10) Plugboard for programming codes.

These subassemblies are interconnected through the plugboard and

switch wiring so as to provide maximum versatility in use. More than

65,000 different codes may be set up. A mode selector switch

reconfigures the circuit to operate either as an encoder or s an error-

correcting decoder, or simply as a feedback shift register with

provision for stopping the clock at an arbitrarily preselected state
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(or states). This last mode (called the SPECIAL mode) is useful in con-

nection with the study of the properties of feedback shift register

sequences that have application to spread-spectrum communication tech-

niques, and to radar, as well as to error-correcting codes.

B. ENCODE MODE OPERATION

In the ENCODE mode of operation, MAVERIC is configured to operate

as an encoder for cyclic codes. The code generating polynomial is

selected by means of a bank of 16 toggle switches that control the

feedback taps on a 16-stage feedback shift register. The code word

length, n, the number of information digits, k, and the number of

check digits, r - n - k, are selected by plugboard programming.

The last n stages of the message resister (where n < 63) function

in this mode as a circulating register to hold the information digits

and check digits of a code word. Arbitrary information digits may be

entered into the last k stages of this register by means of individual

toggle switches for each stage. The data is set into the corresponding

cores when the ENTER DATA button is pressed. When the ADVANCE button

is pushed, the information digits are circulated back through the n-stage

register, and are simultaneously applied to the r-stage feedback shift

register. After exactly k clock pulses, the output of this feedback

shift register is applied to the input of the n-stage register and

appropriate check digits follow the circulated information digits into

the n-stage register. The whole operation consumes n clock times,

at the end of which time a valid encoded word appears in the n-stage

register.

C. DECODE MODE OPERATION

Decoding of a received code word occupies two full word times
(i.e., 2n clock times). The first n clock times are used to perform r

parity check calculations, which in effect compare the r received digits

in the check digit positions with recomputed check digits obtained from

the received information digits. The result is an r-place binary

number, which appears in the syndrome register (r-stage feedback shift

register). A binary zero here represents agreement, a binary one

represents disagreement. This r-place binary number is usually called
a syndrome (or check word).
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During the next n clock times, this syndrome is converted to a

signal that performs the actual correction of the received word. Only

the syndrome calculation (first n clock times) is performed during

DECODE mode operation. The actual correction operation is carried out

with the selector switch in COIIRECTION mode position. (This operation

is described below.)

In DECODE mode the machine is configured so as to circulate the

entire n-bit word in the message register, and also so as to apply

this whole word to the r-bit syndrome register. The resulting syndrome

appears as the contents of the syndrome register at the end of this

(n-bit) cycle. If the syndrome register contains all zeros at this

time, this is an indication that the word in the message register is

a valid code word, and no corrections are necessary. Thus the

execution of the DECODE mode constitutes an error detection check on

the received word.

Errors may be deliberately introduced into a received word by

means of separate ERROR SWITCHES associated with the message register.

It is convenient to use these instead of the ENTER DATA toggles since

the error switches may then burve ds a mechanical register, which

remembers the error locations. The indicator lights associated with

the message register may be used to indicate either actual data or

disagreements between actual data and the ENTER DATA SWITCH positions

by means of a two-position register switch with NORMAL and ERROR

positions.

D. CORRECTION MODE OPERATION

This mode executes the second half of the decoding cycle, wherein

the syndrome is converted to a correction signal applied to the

received message.

The message stored in the n-stage register is circulated, one bit

at a time, while the syndrome register is advanced, one clock at a

time, in the absence of inputs from the message register. Meanwhile,

a bank of sequence sensors are monitoring the output of the feedback

bus, which drives the syndrome register input. Whenever an r-bit

sequence occurs that has been set up for detection by a sequence sensor,

a correction signal is given to alter the bit that happens to be

circulating around the end of the message register. In principle, a
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separate sequence sensor is required for each error pattern to be

corrected (e.g., a single error, x, or a double-adjacent error, xx,

or the error pattern xox, etc.). However, in the case of burst-error

correcting codes, which correct all error patterns up to a given width

6, a single sequence sensor making use of "don't care" conditions will

suffice. In that case, the sequence sensor looks for r-b consecutive

binary zeros.

Since a maximum of twelve separate sequence sensors is available

on MAVERIC, it is clear that the programming of multiple-error-correcting

codes (other than burst error correction codes) will be somewhat limited.

The number of sequence sensors required for double-error correction in

code words of length n is given by:

n-1 n+lS2 " 1+
2 2

since there are (n - 1)/2 cyclically distinct configurations of two

errors out of n, in general. (Obviously, only one sequence sensor is

required for single-error correction, i.e., Si . 1.) Similarly, the

number of sequence sensors required for triple-error correction is

n - 1 (n - 1)(n - 2) n 2 + 5

2 6 6

Similar expressions are readily obtained for higher-order codes.

The above expressions indicate that MAVERIC is limited to two-error-

correcting codes with n < 23, and to three-error-correcting codes with

n < 8. There do exist a variety of two-error correcting codes of this

size (including the famous (23, 12) code of Golay, used as a two-error-

correcting code). Moreover, it turns out that a number of the three-

error-correcting codes, when they are used only for the correction of

two random errors, are also capable of correcting a sizeable number

of longer burst patterns.

E. SPECIAL MODE OPERATION

The fourth position of the mode selector switch provides a mode

of operation of MAVERIC, which is not directly related to encoding
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or decoding operations with error-correcting codes. This SPECIAL mode

permits the feedback shift register to be operated independently of

the message register, and moreover makes provision for the automatic

stopping of the master clock under control of the output of sequence

sensors Nos. 1-4.

This mode may be used for the following purposes:

(1) To determine the cycle length (period) of a given
generating polynomial (up to degree 16),

(2) To determine the length of a given cycle in the cycle
set of a given generating polynomial,

(3) To determine whether two feedback shift register

states are on the same or different cycles,

(4) To generate continuously a pseudo-noise sequence.

In counting cycle lengths (as in I and 2 above), it is necessary

to connect a pulse counter (scaler) to the clock output jack on MAVERIC.

The longest cycle of any given generating polynomial is obtained by

starting the feedback register in the state, (1000... 0), and setting

up a sequence sensor to look for the sequence, 000.. .01.

In order to determine whether two register states belong to the

same or different cycles, one starts the register in one of these

two states and sets up a sequence sensor (from among Nos. 1-4) to

stop the clock when the other state is reached. An attached pulse

counter gives the relative displacement of the two states, assuming

that they fall on the same cycle.

The pseudo-noise sequence corresponding to any given generating

polynomial up to degree 16, and to any given initial state, may be

sampled at the feedback bus output jack.

F. LOGIC CIRCUIT AND COMPONENTS

As mentioned above, all of the storage and logic functions per-

formed in MAVERIC are accomplished through the use of multiaperture

magnetic cores (using the so-called MAD-B technique24 ). In this

category are:
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(1) The 63-bit message register,

(2) The 16-bit feedback register,

(3) The twelve 16-bit sequence sensors, and

(4) The cycle counter.

These components are interconnected by means of the plugboard and

magnetic gating circuits (under control of the program switches). In

some instances, transistors and silicon-controlled rectifiers are used

to amplify signals to the magnetic logic where large fan-out is required.

A simplified equivalent logic diagram for MAVERIC is shown in

Fig. 9. The control inputs marked "Encode", "Decode" and "Correct" are

energized by means of the selector switch, depending on the function

desired. The logical gate circuits, energized by one or another of

these three control inputs, determine the mode of interconnection of

the registers, cycle counter and sequence sensors.

It is of interest to compare the numbers of basic circuit components

(diodes, resistors, capacitors, MADs, etc.) used in MAVERIC with the

numbers which would be required in an equivalent transistor machine

LOGIC BLOCK DIAGRAM

STA TR REI TE R In BTS) TFS1 IBITS

o, * 1
COODTER D E kOC

START..- 
" 41  "

~CIRCUITS
ENCOE DCODECORECTEXCLUSIVE O

A-864-86

FIG. 9 LOGIC BLOCK DIAGRAM FOR MAVERIC
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(not using MAD logic). A rough--but realistic- estimate has been

made for such a transistor version, more with reliability considerations

in mind than comparative cost. 'Fine results are shown in Table III.

Table III
COMPONENT COUNT OF MAVERIC

Equiva.

Message FSR Sequence Prime Pulse Mag- lent
Megster and Dete Counter Prive Gener. Control netics Total Tran-Reit Logic Detectors Drivers stor Driver siator

Machine

Transistors

and SCHS .. .. .. .. 4 5 4 4 17 220

Diodes .. .. .. .. .. .. . 4 4 458

Resistors .. .. .. .. 8 15 11 15 49 848

Capacitors .. .. .. .. 5 7 4 4 20 384

MADs 126 36 388 37 .. .. .. .. 587 -

Toroide -- 16 4 6 1 1 2 10 40

Solder
Joints 395 75 1600 75 50 74 57 74 2400 4300

Note: Indicator circuits and dc power supply not included. Solder joints at patch
board and front panel not included.

It should be noted that the indicator circuits and dc power

supply have not been included in this comparison (for either version)

since the numbers and types of components would be closely comparable

for the two versions. Moreover, the solder joints at the patch

board and at the front panel have also been ommitted from the table

for the same reason.

Solder joints have been included as a basic circuit component

because with the increasing reliability of electronic components,

the solder joint has become a significant factor in determining over-

all reliability. It will be observed that the actual (magnetic logic)

MAVERIC contains far fewer solder joints (2400 as compared to 4300)

than would an equivalent transistor machine. Comparison of the numbers

of diodes, resistors, and capacitors are even more striking, as a

glance at Table III will show.

The total number of magnetic components (MADa and simple ferrite

toroids) in MAVERIC is 627 as compared to about 220 three-terminal

semiconductor devices (transistors and SCRs) in the transistor version.
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However, the basic reliability of magnetic components has been estimated

to be from 10 to 100 times better (in terms of mean failure rate under

normal use) than the reliability of semiconductors. Thus the magnetic

components in MAVERIC still have a considerable edge in over-all

reliability over the semiconductors in a transistor machine. For some

environments- radiation environments, for example -the advantage of

magnetic components would be still more pronounced.

The above conclusions must, of course be tempered with the reali-

zation that the operating speeds of magnetic components and semicon-

ductors are not comparable. Magnetic components of the type used in

MAVERIC are limited to bit rates of several kilocycles at best, while

transistors readily operate in the megacycle range. Nevertheless, for

applications where high operating speeds are not required, the higher

reliabilities attained with magnetic components make them much more

desirable than conventional semiconductor components.

It may be noted that our experience with MAVERIC during the

debugging stages and early operating stages definitely tended to

confirm the above conclusions. All of the troubles encountered were

traced to failure of transistors or silicon controlled rectifiers,

principally in the indicator and power supply circuits. In no case,

was failure attributable to faulty cores or core wiring.
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A1I'EA'I]X I

PPOOFS OF TIEOREMS ON EI1ROR-LOCATING CODES

1. EL CODES GENERATED lY A SINGLE IIBEI)UCIIILE POLYNOMIAL

The following theorem covers the family of 2-Il codes described

in Sec. V-C-3.

Theorem 1--Let g(x) be a primitive irreducible polynomial

of degree u over CT(2), and let, a be a root of g(x) = 0 in
the field GF(2 p ) Form the matrix A,

A = [1, a, t2 . . . . . . t ] t = P(-1)

where each entry Vs is to be thought of as a vector
(p-tuple) in V I';F(2)]. The matrix P12

HI = [A 0 A A AA(1-2)
2 0 A 2 4 I A]t -'A]

is then the check matrix for an (n, n-r) code capable of
locating any single sub-block of length t that contains up
to two digit errors (a 2-El. code) where n = t(t + 2) and
r = 2p.

Proof: As defined, A is the check matrix for a cyclic !lamming code of

distance 3 and length t = 2P -1. Hence the sum of any two (or fewer)

columns of A, t' + ts, is nonzero. Therefore the sum of any two (or

fewer) columns from the same sub-block of Of2 is likewise nonzero. This

proves Condition (a) (see Sec. V-C-2) for the FL code, with e = 2.

It remains to show that sums of two (or fewer) columns of 1I2 drawn

from sub-block a cannot be equal to any sum of two (or fewer) columns of

/12  drawu from a different sub-block b. (See Condition (b), Sec. V-C-2].

The first two sub-blocks are clearly distinguishable both from each other

and any other sub-blocks by virtue of the weight property of A already

used. Column sums drawn from sub-blocks a and 6 of the form A and

J A may be written as

75



Uand

respectively. If these sums are to be equal, then

1  k-- i 0 (1-3)

i I

and

a + (1-4)

By dividing the Eq. (1-4) of these relations by Eq. (1-3), we obtain

a' = a
b

a- = 1 where 0 < a, b < t = 2P - 1

Hence

a = b

That is, the sub-blocks a and b are the same sub-block.

Since A has p rows and t columns, If2 will have, in all, 2p rows

and t(t + 2) columns.

The proof of Theorem 1 actually demonstrates more than has been

asserted, since if g(x) is an irreducible, but not necessarily a

primitive polynomial, which generates a cyclic code C of length t

[= period of g(z)] and distance d,. then 1 "2 will define an EL code

detecting up to e = d-I errors within one sub-block. We thus have the

Corollary- If g(x) is an irreducible polynomial of degree p
over GF(2), and a is a root of g(x) = 0, then the matrix

A = (1, a, a 2  
, a t -  ]

(where at' = 1, and the a' are all distinct for

j - 0, 1, .... , t - 1), is the check matrix for a Bose-Chaudhuri

code of some distance d. The El. code defined by
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FA 0A A A A -ItI

[ A A aA a - A]

is then capable of locating a single sub-block which contains
up to e = d-I errors. The block length n = t (t + 2) and the
number of check digits is 2p.

It Sec. V-C-3, there was described also a family of 2-EL codes

involving a parameter m = 2, 3, .., where r = mp and n = (t + J)" - 1.
A slight extension to Theorem 1 (and its corollary) suffices to demon-

strate the capabilities of these codes. We give the details here for

the case m = 3, and where g(x) is not necessarily primitive. Tile appro-

priate modifications for the case of arbitrary m will then be obvious.

Theorem 2--Let g(x) be an irreducible polynomial over GF(2)
of degree p and period t. Let A be the check matrix for the
cyclic (t, t -p) code of distance d generated by g(x). Let
It be the check matrix formed from A by the method of
Sec. V-C-3. Then II defines an e-EL code of length

n = (t + 1)' - 1, with r = mp, and e = d - 1.

Proof: (for the case m = 3). The check matrix A has the form,

A =[1, a, a2, . . . , a t-11 The check matrix If3 is obtained by multiplying

by A each of the entries of the matrix:

S00 11 1 11 .. 1 11 .1 1111
0 1 0 1 1 Ott- , 0 0 0 1 1 . 1 a at . .

0 0 1 0 0 . . . 0 1 , - It ~ 1 . . a t  I I a . . t ~

2  at 2  
. . . a 2  

.t t I a t t -I . . . tt

The resulting matrix clearly has t2 + 3t + 3 = [(t + ) - 1]/t

columns and 3 rows (3p rows after the quantities a' are expanded into

binary form). By virtue of the assumed distance, d, for the code gener-

ated by A, it follows that no sum of fewer than d columns chosen from

any one sub-block of P 3 can be zero. It remains to be shown that such

sums determine uniquely the sub-block from which they are chosen. This

is immediately obvious for those sub-blocks of 113 containing one or more
rows of zeros. The remaining sub-blocks have columns of the form:
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a 6 +

Any identity of column sums chosen from different sub-blocks will then

imply a relation of the form:

< -I i k+k

ati a+I-5)+j

1 i d+

From this relation one concludes immediately that

I a ,  = a ' 0 (1-6)

a0 1 a6 = ac C ( (1-7)

at  ah = Id a (I-8)

By dividing Eq. (1-7) and Eq. (I-8) by Eq. (1-6), one has

and

at = sd

Since 1, . , a0-1 are all distinct and since 0 < a, b, c, d < t, it

follows that a = c and b - d; hence the two sub-blocks from which identical

column sums were formed are in fact the same sub-block. Consequently, the

EL code defined by H, will locate up to d - 1 errors in one sub-block.

2. EL COIES GENEBATED BY A PRODUCT OF IRREDUCIBLE POLYNOMIALS

We outline here the proof of Theorem I of Sec. V-C-4.

Let g(z) = g 1 (X)g 2 (x) ... g,(z) be a product of v

78



distinct irreducible polynomials over GF(2), where each factor g, belongs

to the same period :.. Let A be the check matrix for the cyclic

(t, t - p) code, C., generated by g(x). Then the check matrix formed by

substituting A into the scheme R. (see Sec. V-C-3) defines an e-EL code

of size n = (t + ) - 1, with r = mp check digits, where e + 1 = d is

the Hamming distance of the code C , and p = deg(g) is the number of

check digit positions in code C .

Proof: The assumed distance property of code C. guarantees that no sum

of fewer than d columns of H chosen from the same sub-block can vanish.

For the same reason, such column sums chosen from sub-blocks with one or

more vanishing rows will be characteristic of those sub-blocks. The only

difficult portion of the proof concerns those sub-blocks all of whose

rows are nonzero. Let

[1 a I aonero..La

A - I a 2- 9
la 2 a . . . a1 2 I19

be the check matrix for C , where a, is a root of gi(x) = 0 for

= 1, ... , v. (Observe that A is a Vandermonde matrix.)

Substitution of A into the scheme H must here be understood in

terms of cyclic permutation of the columns of A (rather than multi-

plication by powers of a) since g(x) contains more than one irreducible

factor. The assumption of an identity between column sums (of fewer

than d columns) from distinct sub-blocks of H implies the relations:

< d < '

a = £ a. (1-10)

< i + j + d

Ia. = 1 a. (1-11)

h-I- I<d <4
E a.* -=.( -2
11I ' h-I '

etc.
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The distance property of C implies that Eq. (1-10) is nonzero for at£
least one value of i = 1, ..... v. Using this value of i, divide

Eqs. (I-11, 12) by Eq. (1-10). The result for this value of i is then

ta = a

and

t = ad

Since 1, a i a2  ..... a'' are all distinct it follows that a - c and
i i

b = d (and similar relations for m > 3). But this means that the two

sub-blocks chosen were in fact the same one. Hence the code locates up

to d errors in one sub-block, as asserted.
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APPENDIX II

MAXIMAL SETS OF RELATIVELY PRIME POLYNOMIALS

In constructing multiple-burst error correcting codes by means of

the Chinese IHemainder Theorem, as in Sec. III-D, it is usually convenient

to use as moduli, polynomials of the same degree, d. These polynomials

need not be irreducible--only relatively prime (in pairs) -and they must

not, of course, be divisible by x.

It is therefore of interest to determine the largest set of relatively

prime polynomials, of given degree d and with nonzero constant term, over

the field GF(2). In this appendix we determine the size, P(d), of such a

maximal set, S {ami(x)}, in terms of known arithmetic functions, and also

give an algorithm for constructing maximal sets.

Let I(d) = number of irreducible polynomials of degree d. It is well

known* that

£ dI(d) = 2' (I-1)
dl

and

1
I(n) I p(d)2" / d  (11-2)

Moreover, I(d) is a monotone increasing function of d for d > 2. For

convenience, we redefine I(1) - 1 (thus excluding the polynomial x, and

making the function monotone non-decreasing everywhere). Of course,

Eqs. (I-1) and (11-2) then require minor modifications; but we shall

have no further need of these equations here.

Clearly

P(d) > 1(d) (11-3)

The Mabius function ,(d) 0 if d contains a perfect square factor; otherwise
Pr) = (1) , where the P. are distinct primes.
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since the set of dth degree irreducibles is certainly a suitable (but

probably non-maximal) set.

We now determine how many additional polynomials of degree d can be

constructed, all prime to each other and prime to the irreducibles. Any

polynomial in such a set is either irreducible (of degree d, and hence

already counted), or it contains at least one irreducible factor of

degree < [d/2]. But for each integer i, 1 < i < [d/21, we may use each

irreducible of degree i no more than once in constructing products for

the set. Our set can therefore contain no more additional polynomials

than there are irreducibles of degrees i < [d/2]. Hence,

P(d) < I(d) + Y I(i) (11-4)

Next we exhibit an algorithm for constructing a set meeting this

upper bound exactly. First, suppose that d = odd integer. For each

partition of d = i + (d - i) into two parts, i I, ..... (d - 1)/2, we

use the I(i) irreducibles of degree i, each one once in association with

a suitable irreducible of degree d - i > i. There are always enough ir-

reducibles of degree d - i available, since 1(d - i) > I(i). These

products together with the 1(d) irreducibles of degree d, form a set of

the required size. Next, if d is even, the same procedure is followed,

except that the case i = d/2 must be considered as well. For i = d/2,

form the squares of the I(d/2) irreducibles of degree d/2. These are

clearly prime to each other and to the previously formed products. Again

the total number of polynomials formed is given by Eq. (11-4). Hence,

P(d) = I(d) + I I(i) (I1-5)
iml

gives the exact size of a maximal set of relatively prime polynomials of

degree d (none of which are divisible by x),

The following table is readily constructed.
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n I(n) PCN)

2 1 2
3 2 3
4 3 5
5 6 8

6 9 13
7 18 22
8 30 37
9 56 63

10 99 112
11 186 199
12 335 357
13 630 652
14 1161 1201
15 2182 2222
16 4080 4150

Observe that the excess, P(n) -I(n), becomes small compared to

1(n) as n increases beyond about n = 10. Thus one does not gain much

for very long codes by using the additional (reducible) polynomials.

As redefimd; strictly speakiag 1(1) 
= 

2, iscluding the poiymomial a.
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APPENDIX III

PERFORMANCE BOUND FOR MULTIPLE-BURST

ERROR-CORRECTING CODES

It is possible to derive a lower bound to the number of check digits,

r, required for a code that corrects up to m bursts of errors, each of

width not exceeding b digits. This bound is obtained by counting the

number of distinct error configurations, g(n,m,b) over a block of n

binary digits.

Two cases must be distinguished, depending on whether only open-loop

bursts or also closed-loop bursts are to be made correctible. The closed-

loop case has proven to be completely intractable in analytic terms, so

that only the open-loop formula is given here.

Once the formula for g(n,n,b) has been found, one may assert that

the minimum number, r, of check digits required satisfies:

2" > g(n,m,b)

Several different methods* have been found for determining the

function g(n,u,b) explicitly. The simplest of these methods follows.

An error pattern correctible in an (open-loop) m,b code can be re-

garded as an n-place binary vector with the following property: It is

possible to "cover" all the binary ones of the vector by using no more

than a masks, each of width b places. The problem then is to determine

the number of distinct vectors (out of a total of 2n) that possess this

property. Such vectors will be called (mb) coverable.

Any n-place, (a,b) coverable vector must contain at least n - mb zeros.

These are the digits not covered by any mask. In addition there may be as

many as a(b - 1) other zero digits that are covered by masks. For sake of

C

The method used here is due to M. W. Green of the Computer Techniques Laboratory. Another,
more compliceted, enumeration scheme wes developed by J. J. Stone earlier in the project.
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definiteness, we assume that the masks are placed so that the leftmost

digit under any mask is a one. Thus, any given vector can be tested

for (mb) coverability by laying down masks according to the above con-

vention, working from left to right. The vector is coverable if and

only if no more than m masks are needed to cover all the ones.

The number of distinct mask placements (using j masks) possible is

clearly the binomial coefficient,

C.-=( b-I)

Since there are n - m(b - 1) possible locations for the j masks. For

any one mask placement, there are exactly 2n('-') distinct error vectors

coverable by this placement, since the b - 1 places (other than the left-

most position under each mask) may contain either zeros or ones. Summing

over the possible values of j = 0, 1, ... m one obtains:

g(n,a,b) = 2C(-I) CR - (b-l)
j=0

Note that therefore,

g(n,nb) - 24(6-1)g[n - (b - 1), a, 11

so that the fractional number (out of 2n vectors) that are (m,b) cover-

able is a function only of the parameters, n' = n - x(b - 1) and a, and

not explicitly of the burst width, b.

Fraction coverable = 2-"g(n,nb) = 2-n'g(n', n, 1)

The resulting bound on the number of check digits required is,

therefore:

> log, cfM(6 + M(6 1)
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It is not difficult to show that an asymptotic expression for
g(n,x,b) valid when n >> n and n >> b is given by:

g(n,u,b) -2~-)n

Hence, asymptotically

r > m (b - 1) + M log2 n - log2 (M!)
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APPENDIX IV

QUASI-CYCLIC, SHORTENED CYCLIC AND PSEUDO-CYCLIC CODES

1. QUASI-CYCLIC CODES

Much of the great utility of cyclic codes stems from the property

that all of the r parity check relations satisfied by a cyclic code are

of the same form, extending over the preceding k - 1 digits. This fact

suggests that a generalization of cyclic codes preserving only this

property might be useful.

Let us call any code defined by a parity check matrix of the form:

ho hi h 2 ... hh 1  1 0 0 . .. 0

0 ho . . h k-2 hh_ 1  1 0 . 0
14 - 0 0 h . . h3 h k2 hh1 1 0 (IV-l)

.................. . . . ..
-0 0 0 . . . . . . . . . . . . . 1j

a quasi-cyclic code.

Such codes may be encoded by using a suitable nonlinear feedback

shift register to generate the sequence of binary digits,

h o, h1, h 2  --... hh- t,  hh . 1

for use as a gating signal employed against the incoming data digits in

order to generate the check digits.

Cyclic codes constitute the special case of quasi-cyclic codes for

which the block length n is such that the polynomial

h(z) - h o +h + hX 2 + ... +hxk

divides x" + I without remainder.
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2. SHORTENED CYCLIC CODES

If C is a cyclic (nk) code, let C' be the (n - i, k - i) code

obtained by setting i of the information places of C identically equal
$

to zero. That is, C' is that subspace of C for which
£ £

X I  = X 2  . X i  = 0

in every code word. These i digits may, of course, be dropped; the re-

sulting code C' may be viewed then as a linear subspace of the n - ia
dimensional space, V.-i(2) over GF(2).

The check matrix for C' may be written as:

-0 0 0 0 ho h', 1 0 0 . o

000 ol 0 h' . . . . 0
' . . . (IV-2)

L0 00. .. 010 0..... .. .. .. ...

where the first i columns of the matrix are identically zero and may

therefore be dropped.

Obviously, one obtains in this manner exactly those check matrices

of the form (IV-1) used to define quasi-cyclic codes. Hence, quasi-

cyclic and shortened cyclic codes are the same thing.

3. ANOTHER CHARACTERIZATION OF QUASI-CYCLIC CODES

Quasi-cyclic codes may also be regarded in another light.* Consider

the set of all polynomials,

f(x) = f0 + flx + f2 X2 + ".. + f R- x n-l (IV-3)

such that for a fixed polynomial, g(z), one has f(x) = m(x)g(x). That

is, we consider the set C of all polynomial multiples of g whose

degree is less then n.

This vieWpoiat Was, in fect. used by J. J. Stone ae a definition of quasi-cyclic in the
Interim Technical Report, Sec. V-C.
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C = {set of all f(x): gif and deg(f) < n}u~n

Clearly, if n happens to be the period of g(x), then C will be a
ar~"

cyclic code. If not, then C is quasi-cyclic, as will now be
u.n

demonstrated.

If g(x) has period n' (assumed > n),* i.e., if g(x)lx"' + 1, then
C ,n is cyclic and it has the generators:

g(x), xg(x), x2 g(x), .... x k-lg(x)

where k' = n' - deg(g) = n' - r. We now inquire as to the code with the

generators:

g(x), xg(x), x2g(x) ..... xl-g(x)

where

k = n - r

which are a subset of the generators for C , . Clearly this new code is

the shortened code obtained from C,., by setting zeros into the last
i = k' - k = n' - n places. But this shortened code is precisely C,

since the above k generators span C . As already observed, shortenedLn

codes are quasi-cyclic; hence C is a quasi-cyclic code, and all three

characterizations given thus far coincide.

4. PSEUDO-CYCLIC CODES

Still another viewpoint has been provided by Peterson.2D Pseudo-

cyclic codes are defined as ideals in the algebra of polynomials taken

modulo an arbitrary polynomial, K(x). When K(x) = x" - 1, one obtains

cyclic codes as a special case.

It was shown by Peterson that:

(a) Every shortened cyclic code is a pseudo-cyclic code

for some choice of K(x), and

(b) Every pseudo-cyclic code of weight greater titan two

is a shortened cyclic code.

For we may always replace n' by 2n
, 3n', .... etc.
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Consequently one concludes that the concepts, quasi-cyclic, pseudo-

cyclic, shortened cyclic are all substantially equivalent.

5. APPLICATIONS

There are good indications2 that in many cases it is possible to

find shortened cyclic codes for (single) burst error correction which

are better than any cyclic codes. In particular Kasami4 has found such

codes for the correction of error bursts of certain lengths achieving a

longer block length, n, than any cyclic codes found thus far with the

same values of b and r. However, the improvement is slight.

Such codes probably deserve additional study. They may be regarded

from any of the viewpoints described above (quasi-cyclic, pseudo-cyclic

or shortened cyclic); however, they are best implemented by regarding

them as shortened cyclic codes.
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APPENDIX V

RELIABILITY CONSIDERATIONS

1. INTRODUCTION

A question that is often asked in regard to error-correction

techniques -is the following:

"When one inserts redundancy into a message for the purpose of

error control, more digits have to be sent to convey the same amount

of information to the receiver. If, as is often the case, the

actual data rate is fixed (by real-time considerations), the

transmission bandwidth has to be widened to carry the increased

channel bit rate. But this tends to degrade the signal-noise ratio

and worsen the bit error probability (before error correction). How

does one then know that there will be an over-all improvement after

error correction is carried out?"

One answer to this question has been provided by Klein2 , who
shows that the message reliability for coded messages will exceed

that for uncoded transmission under broad assumptions regarding the

functional dependence of the bit reliability q - I - p on the normalized

channel bit rate, R.

A comparable question may be asked from an equipment reliability

viewpoint. The addition of redundancy to a message requires extra

terminal equipment, the amount depending on the complexity and

sophistication of the coding scheme used. An over-all view of the

problem of reliable digital data transmission demands that the

reliability of the terminal equipment be considered as well as errors

introduced in the transmission channel proper. In view of this, it is

reasonable to inquire whether the addition of extra terminal equipment

(which may contribute errors of its own) can actually result in an

over-all degradation of performance, and if so, under what circumstances.

Some thought was given to this question during the course of the

project reported on here. It is the purpose of this appendix to describe

the results and conclusions arrived at regarding this question.
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2. FACTORS ENTERING INTO EQUIPMENT RELIABILITY

It is almost immediately apparent that any realistic discussion

of equipment reliability factors will be considerably more complex

than answering the channel error question posed in the preceding

paragraph. Sources of channel errors, and their statistics, are

fairly well understood for a wide variety of real channels. In other,

less well-understood situations, one can always obtain some degree

of guidance by resorting to simplifying assumptions (independent errors,

gaussian noise, or Rayleigh fading, for example). However, when

equipment failures and malfunctions are involved in addition to the

above factors, it must be recognized that one has to deal with a

tremendous variety of electronic components--tubes, transistors, resistors,

capacitors, relays, teletype machines, paper tape punches, readers and

transports -each with its own peculiar failure modes. Moreover, it

becomes necessary to distinguish intermittent malfunctions of these

components and devices from catastrophic, permanent failures. Not

only are the effects on system performance of intermittent and

permanent failures quite different, but when considered over the whole

range of component types and conditions of use, these two types of

statistics appear to be quite uncorrelated.

A second set of considerations will be described next that although

they are less apparent than those described above, are probably even

more significant in relation to the problem at hand. It must be

realized that equipment malfunctions (whether temporary or permanent)

can have widely disparate effects on the structure of the the trans-

mitted (or received message). It is customary in discussing channel

errors to consider either a symmetric crossover situation (probability

of a zero being received as a one - probability of a one being

received as a zero), or the erasure situation (zeros or ones being

received an blanks). Both situations are pertinent as well to the

equipment malfunction problem- fortunately these are innately tractable

mathematically. But the problem does not end there. Equipment mal-

functions can also result in a complicated variety of synchronization

errors which possess very widely different effects on message reliability.

Basically, all of these types involve incorrect interpretations by the

receiver, or the transmitter, or both the receiver and transmitter,

as to the structure of the message.
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It is of course necessary when receiving data in a block code,

that the receiver know:

(1) Where a code word begins and ends, and

(2) Which digits are information digits and which are
the check digits.

In systems employing variable coding (for the purpose of matching time-

varying channel statistics), it is also necessary that the receiver

and transmitter be kept continually in agreement as to the actual code

in use at any one time.

The achievement of this kind of agreement in timing (synchronization

of transmitter and receiver) is generally obtained by means of stable

clocks and periodic synchronization signals between transmitter and

receiver. However, when equipment malfunctions are taken into account

then one must also consider the possibility that the receiver will

misinterpret the information it needs for items (1) and/or (2) above,

even though it is receiving completely valid data. For example, the

timing counter in the receiver, which separates information digits and

check digits in a code word, may commit an error and cause a corre-

sponding misinterpretation of these digits.. Or, the receiver's block

length counter may malfunction with the result that part of a received

message may be ignored, or even that digits belonging to the next block

will be misinterpreted as belonging to the present block. The details

of such effects will depend very strongly on the precise logical

structure used in the receiver's decoding equipment.

As if this were not bad enough, similar things can go wrong in the

encoding process at the transmitter. Again, we have to deal with

timing counters that determine the structure of the transmitted message.

Let us assume that the transmitter encoder accepts blocks of k digits

at a time, and encodes these blocks into (longer) blocks of n digits,

including redundancy (for error control and perhaps for synchronization).

Encoder malfunctions can then cause the transmitter to ignore portions

of an uncoded k-digit block during the encoding process. Or, check

digits may be dropped from the transmitted message, resulting in the

transmission of a block of fewer than the required n digits, The action

taken by the receiver on receipt of such a. short block will depend on

what consideration has been given to this eventuality in the design
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of the decoder. At best, one can only hope that a repeat transmission

(in a decision feedback communication system) will be requested by the

receiver. In a one-way link, the received block is vitually certain

to be entirely unusable.

3. CONCLUSIONS

Reflection regarding the factors discussed above, and also

experience attained with error-correction systems, seems to indicate

quite strongly that the most important causes of errors in such systems

lies in loss of synchronization at some point in the system. Thisis

particularly true when the basic block length of the message is long,

since a single "dropped" or "added" digit can then result in the incorrect

decoding of a large number of message digits.

Synchronization questions have been largely ignored in most

discussions of coding until very recently.. In relation to the problem

of over-all system reliability, they cannot validly be ignored, since

it is completely unrealistic to assume that the timing and counting

equipment at the terminals will be inherently much more reliable than

the information-processing components themselves.

A close enough look has been taken at this problem to suggest that

no generally applicable technique exists that will permit one to decide

how over-all transmission reliability is going to be affected by the

addition of error-correction terminal equipment. Such conclusions can

only be arrived at by very detailed study of the failure modes and statis-

tics of all the components employed in this equipment, with detailed

consideration of how each type of failure will affect the transmitted

information, the received information, and especially the message

structure. Conclusions reached for one particular set of equipment

are likely to be completely invalid for equipment that differs only

slightly from the original. This is so mainly because of the over-

whelming importance of providing protection against synchronization

errors. Relatively minor changes in the design of timing counters and

shift registers, for example, can result in large improvements in their

reliability.

For the same reason, it is possible to recommend that increased

consideration be given to the study of techniques of coding, modulation

and equipment design for the purpose of providing extremely accurate and

reliable transmitter-receiver synchronization.
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