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Preface

This report is a summary of my study of State Space optimization
techniques. My purpose wa; to demonstrate the use of these techniques
by applying them to a typical adaptive control system.

This study was suggested by Capt. F. M. Brown, an Assistant
Professor in the Department of €lectrical Engineering at the Air
Force Institute of Tachnology..The study was further prompted by
ﬁhe growing use of State Space techniques in the field of control
systems analysise.

I would like ‘to acknowledge the support and assistanée given
me by Capt.R. A. Hannen, my thesis advisor and Assistant Frofessor
in the Department of Electrical Engineering at the Institute of
Technology.

Greatful acknowledgement is also give to Mr. P. B. Brentani
of the Minneapolis-Honeywell Regulator Company for the helful ex-
planations and information which he sent me,

Finally, I would like to point out that the mathematical derivations
presented in Chapters III and IV assume a knowledge of matrix algebra
on the part of the reader.

William B. Goggins, Jr.
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Abstract

Interest in the field of time optimization of control systems
has led to the development of a great number of theories concerning
this subject. Many of these have been .found difficult to apply to
a practical system, However, Ho and Brentani have developed a way
to compute the time optimum driving function to be applied to a&
linear controller by the method of Steepest Descent.

The methad of Ho and Brentani was applied to the linear con-
troller of a practical relay servo loop in order to compute the time
optimum driving function for this loop. The reléy servo loop was
also simulated on an analogue computers the results of simulation
were compared with the time optimum driving function. It was found

that’the two results correlated well.

ix
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I. Introduction

One of the most interesting and challenging problems in control
systam engineering is the application of optimization techniques |
to an automatic control system. Throughout the years many optimization
techniques have been employed and optimizations of several different
criteria have Seen attempteds This report will be concerned with
time optimization of a system using State Space techniques. By time
optimization is meant that a system is constructed or operated‘in such
a way és to drive any system error to zero in the least time. The system
to which these optimization techniques will be applied is an adaptive
control system developed by the Minneapolis-Honeywell Regulator
Company. This system is set forth in WADC Technical Report 57=349 (Ref 8:85),
Since the concepts of adaptiye control, of time optimization and of |
State Space techniques are nat easily definable in a sentence or two
a further general discussion‘éf the three will be one of the subjects
‘of this chapter. However, a brief statement of the problem is in order

at this point.

Statement of the Problem and Purpose

The basic problem considered in Fhis study is the determination
of a time optimum driving function to be applied to the linear con-
troller of an aircraft. A comparison of this optimum driving function
to that actually used during control of the same aircraft will then
be made. From this comparison conclusions will be ‘drawn pertainingto

the validity of the optimum solution and to the effectiveness of the

1
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physical system. With this in mind, it might be well to consider,
very generally, the concepts of adaptive control, of time optimi-

zation, and of State.

The Adaptive Concept

First, a brief discussion of the adaptive concept is in orxder.
In a WADC Technical Report an adaptive control system is defined as
one "which has the capability of changing its parameters through an
internal process of measurement, evaluation, and adjustment, to adapt
to a changing environmenf, either external or internal, to the vehicle
under control (Ref §:2)."

One way in which such an adaptive system may be realized is

shown in Figure I.

_QH Model 9‘“

. ] Figure 1
A Hypothetical Adaptive Control System

The command signal 6% is fed into the model, the response of which
is the response desired for the overall system. The rest of the system
is then designed to have a transfer function of unity. For example,

2

W



GE/EE/62-8

an aircraft adaptive autopilot would consist of the following two basic
elements: (1) a model, which would have the desired transfer function

of the autopilot-aircraft combination, and (2) the actual autopilot-
aircraft combination which would be designed to havg a transfer function
of unity at all times. Thus the output of the entire system is that

of the model, and the desired response is obtained. However,

since G includes the aircraft, the dynamics of which are constantly
changing throughout its flight envelope, other parameters of G must

be constantly changed in order to keep G as close to unity as possible.
The changing of these parameters through internal measurement, evaluatidn,

and adjustment is the adaptive process.

Time Optimization and the Adaptive System

Obviously it is impossible to physically realize a G of unitye.
However, if a system could be construcéed which would respond in minimum
time to the output of a model, a G approximating unity would be realized.
A general Eheory covering this problem was developed in a series of

'papers by three Russians, Pontriagin, Boltyanskii, and Gra@krelidze,
and is known as the maximum principal of Pontriagin. (Ref 11:863)
Application of the maximum principal to a line&r system shows that
if the driving function of the system is "bang-bang", that is, at
all times as large, in one direction or the other, as the stops
permit, then the system will be time optimum. Such a driving function
can be obtained from a relay. A further obvious limitation is that

" a proper switching sequence for the relay must be provided.
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An adaptive system based on the maximum principal might therefore

be constructed as in Figure 2.

G,

Servo
Switching N
8, Model Logic 3 Relay Az::raft
Figure 2

A Practical Adaptive Syétem

In this case the output of the model is fed into a loop which consists
of a switching logic, a relay, and a servo and aircraft, all enclosed
by unity feedback. The portion of the:system of Figure 2 enclosed by
the feedback loop will be termed the reléy servo loop and will be
referred to as such throughout the remainder of this report.

The question of when to switch the relay to obtain the opgimum
response for the above system must still be answered. To date, a
practical optimum switching logic has not been synthesizéd. However,
for the linear portion of the system consisting of the servo and
aircraft one can compute relay switching times to drive a given error
to zero in minimum timee. This is done by a method of successive

approximations which will be treated in detail in Chapters III and IV,
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The Concept of State

A third consideration is the concept of State, since techniques
associated with tﬁis concept‘will be used to determine the optimum
switching times for the aforementioned relay (Ref 11:859-860).

Very generally, one might consider that the variables of a systeﬁ
consist of three types of time varying fﬁnction:

1) a contreilable (input) variable,aégwhich can be changed at will
during the control interval ?t>x°;
2) an initially controllable (state) variable X(f)which can be chosen
at =4, but thereafter will act as a function of u(s), the input;
3) an observable (output) variable v(t).
When the first two of these three functions are known the system can
be characterized as a function of both of them. Also, the output can
be uniquely determined as a function of both, This concept may be

expressed in equation form:

X&) = @ [% (ko) (s, £]] )

Yy (#) 73[1(:6);‘,«,(;&)] (2)

In the case of a system of differential equations they assume the fomm
2(#) = fx0), 4 (2)] @

$(2) = gxce), (2] ()
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A particular case of the above is the matrix equations

%=4%+ 0 | (s)

7= 0x : (6)

where A, B, and D are non-singular constant matrices.

Any linear transfer function which can be expressed in differential
equation form can be written in the form of (5) by é suiteble trans-
formation. The resulting equation is’ then the state equation of the
system,

A specific example of a tranformation from a transfer function

to State Space notation is in order. Consider the transfef function

Lo _ 1 (7)
e T Tstiassp

The associated differential equation is

Le .
;(;%+a~‘§§:z + be, = g, e

Let

AT 2 oim (9)

X, = € | | (10)
X2 =% ‘ (11)



GE/EE/62-8

Substituting (9), (10), and (21) into (B8) yields
Xe= ~bx, -~ A%, + e, (12)

In matrix notation the equations are expressed as

.| = + 13
%, - X, | o (13)

Several points of interest of the State Space notation should
now be explained. If, at any instant %, and X, are plotted on mutually
perpendicular axes, the resultant is a two dimensional vector. This
can be extended of course for an N dimensional system into N dimensional
Euclidian space; this fact is £he origin of the terms State -Space and
State Vector.,

As time is allowed to vary, fhe State Vector then describes a path
in the N dimensicnal space. Noffng that the components of the State
Vector are the succesive derivatives of the first component, one sees
that for a second order system this plot in a plane is the familiar
phase plane which is.quite popular for the analy;is of non-linear
systems. It seems reasomable that the phase plane analysis could
somehow be extended to N dimensional phase space.

However, State Space analysis is useful for other reascns.

One of the more dimportant of these of the transformation of- the
system equations into matrix form which facilitates a further trans—
formation from one coordinate syétem to another, that is from N

coordinate space to M coordinate space. The use of matrices also
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facilitates programming of a digital computer. In view of the above
discussion a detailed statement of the scope of investigation and

plan of developement can be made.

Scope of Investigation and Flan of Development

. An adaptive control system employing a model followed by a relay
se?vo loop was designed, built and flight tested in.gn F94C aircraft
by the Minneapolis-Honeywell Regulator Company in 1957 as mentioned
on page 1 of this report, The system was.a pitch axis-contrbllerf This
report will analyze the system by State Space techniques in order to
compute the time optimum driving function for the‘linear portion of
the relay servo loop. A development of these techniques-will first
be presented, however. The results of an analogue computer simulation
of the relay servo loop will then be used as a basis for comparison.

In Chap%er 1T a brief qualitative explanation of the system will
be presented in order to explain the operation of the basic system
and to set the stage for -the analysis of the succeeding chapters.

In Chapter III the mathematical theory concerning the solution for
%he optimhm driving function for the linear portion of the relay
servo loop will be treated in detail. Chapter IV will then describe
the digital computer programs used. Chapter V will present the quan-
titative analysis of the Honeywell controller by the methoda: of
Chapter III. An analogue computer simulation and its results will

be set forth in Chapter VI to form a basis for comparison of the
results of the preceding section. Comparison of these pesults and

8
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conclusions will be left to Chapter VII. Related to .Chapters III and

IV will be three appendices. Appendix A will explain in detail the
various FORTRAN statements of the digital computer programs; in
Appendix B comparative solutions of an example problem simple enough

to be worked out by hand will be iﬁcluded; Appendix C will show the
solution of a typical fourth order problem. The numerical results

of these last two appendices will demonstrate to the reader t“e utility
and validity of the methods presented. Tabular data will be presented

in Appendix D.
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11, Description of the Minneapolis-Honeywell Adaptive System

Before analysis of the Minneapolis-Honeywell Adaptive Control
System by State Space techniques it would be well ‘to consider the
system in a qualitative manner so that the applicatioq'of State Space
analysis will be clear.

It should be noted here that important symbols used throughout
this report are listed and defiqed in the Table of Symbols in the
prefatory part. Figure 3 on the following paée is a block diagram
of the Honeywell pitch rate system which was installed in the F94C,
This block diagrim was taken directly from the WADC report (Ref B8:85).
The transfer functions of the various.components are shown in their
respective blocks. %hese correspond to Flight Condition 13 in the
WADC report (Ref 8:153). Flight Condition 13 refers to the F94C
aircraft operating at an altitude of 35,000 feczt and at a mack number
of .73. Note that © as used in this chapter refers to pitch rate.
The operation of the pitch rate system is discussed in the following

section, .

Operation of the Adaptive System

Ihe basis for operation of the adaptive control system shown in
Figure 3 in the forcing of the aircraft pitch rate response éa to
follow the response of the. model 62" as closely as possiSle. The
model is a simple electrical network with response characteristics

equal to those a pilot would desire over the entire flight envelope

10
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{0

str4s5+/0

MODEL

P

GAIN

CHANGER

(4 2855
{+ .0/55

SWITCHING
LOGIC

—(- ——

LIMITER

-~

0133 (5+50)
(5 +.667)

FILTER

AC
DITHER

$2.8%

S*+ §9s + 62.§*

RATE
GYRO

' Figure 3
Block Diagram of Minneapolis-Honeywell Adapt
Used in F94-C

11
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of the aircraft. A second order function with a damping ratic of
.63 and a natural frequency of 3.17 is used. The desired model response

is fed into the relay servo loop. The term relay servo loop here

refers to that portion of the system enclosed by the rate gyro feedback,
and includes tha rate gyro itself, The model output is summed with
the negative .of the aircraft pitch rate which is fed back by means
of the rate gyro. THe rate gyro's characteristics are such that this
is essentially unity feedback. An error signal £ is thus produced.
The error signal is fed through the switching logic, which, as will
be shown in Chapter V, is approximately a proportional plus derivative
network. The algebraic sum of the error signal and of its derivative
multiplied by .225 controls. the switching of a very sensitive electronic
relay. If the sum is positive the output of the relay will be positive.
A 2000 cycle/second sinusoidal dither signal is applied to the relay
in order to improve its characteristics. The gain changer and the
limiter provide a means for cutting down the relay output voltage
for small error signals., In addition the limiter assures proper
limiting of the output of the electronic relay.

The filter, the servo and actuator, and the aircraft compose
the linear controller portion of the system. Transfer functions shown
for the servo and actuator and for the aircraft were derived experimentally.
The filter is a lég-lead network used to improve the response of
the linear system. The denominator provides a pole)close to the

zero of the servo and actuator thus preventing this zero from greatly

12
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affecting the response of the loop; the numerator assures that
roots due to the servo and actuator poles do not become dominant,

The relay servo loop of the Honeywell adaptive system closely
resembles that of the practical adaptive system depicted in Figure 2
in the introductory chapter. The differences are the added components
of the Honeywell loop; these are the limiter, the dain changer, and
the AC dither. These components provide second order improvements to
the system and their inclusion complicates the analysis unnecessarily.
Thus they will.-not be included in any further analysis of the system.

Also, the response of the model can easily be obtained by the
Laplace transform technique, or any one of several othe;s. Therefore,
only the relay servo loop will be analyzed in this report.

Before going on to Chapter III the reader should note that the
filter, the actuator and servo, and the aircraft comprise the linear
controller for which an optimum driving function is desired. The
next chapter of this report will develop the mathematical theory for

finding this optimum driving function,

13



GE/EE/62-8

III, Mathematical Development of the Solution for the Optimum Driving Function

Since the use of State Space techniques and the solution for
the optimum driving function are both relatively new this portion
of the report will be devoted to a detailed dévelopment of the under-
lying mathematics cove¥ing this problem. Because matrix notation will
be used freely throughout the development it-might be well to define
the symbols to be used. A matrix will b; repiegented by an underlined
upper case letter, i. e., jz « A vector {n x 1 or 1 x n matrix) will
be denoted by an underlined small letter, i. e., p « A transposed
matrix will be denoted by /, asvj3/. The symbol “1 4ill be used to
signify the inverse of a matrix, i. e., eri Successive time derivatives
will be denoted by auccessive dots above the symbol such as a or a'.
The familiar derivative notation £ and the operator D will aiso'
be useds The Laplace operator will be denoted by § « Vector or matrix
elements will often be written in subscripted form for'clarity of
explanation. Lower case letters will always be used in this instance,
The %irst step,toward finding the optimum driving function is
the development of a transformation which will make it possible
to put a general linear transfer function into &tate Space notation,
This transformation will be developed in the ﬁext sectio; of this

éhapter.

Transformation of a General Linear Transfer Function into State Sgace Fo;m

In the introductory cﬁapter a transformation was' introduced ‘to

14
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allow an Nth order differential equation to be written as a series
of linear first order differential equations. However, it often accurs
in control system problems that the right hand side of the differential
equation contains derivatives of the driving function. For instance

the transfer function

g& = ___f__t_&—
ean S*+bs +c (14)
becomes
P ACR 0[ ‘ .
€o - e, . 15
=t b S + C€ = }ikz:izL + ae,, - (13)

Since derivatives of many inputs, for instance step or impulse functions,
are not calculable in the time domain it is necessary to répla;e

the differential system by a first order system containing no derivatives
on the right hand side.

A transformation has been developed by Lanning and Battin (Ref 6:191)
for a general time varying system to eliminate right hand side derivatives.
Since this paper deals only with the time invariant or constant
coefficient case, a formula will be developed inductively considering
‘the coefficients of the differential equation to be constant. Consider

the differential equation
2 z
X péc - Al P (16)
+ a + XX b°aé\t‘/"‘ +b,égé< + b2

The follawing system of first order equations is then to be made

equivalent to equation (16):

X=X, +Gp Lt (17)

15
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%éi%L = 761 + G, «

‘é:";_z_- Uk, - Ay X ¥+ Gy A

Eliminate X; and X, successively in the following manner:

Xt X-6Got

Differentiate (20) with respect to time:

G G-k

Substituting this result in (18) and rearranging

%é%-‘ Xz.*'éhafé% + G,

Now differentiate (22):

fﬁ;%ﬁ :.%é%k + Gy Sé%% + G iét

(18)

(19)

(20)

(21)

(22)

(23)

After rearranging (23) substitute the result for SéS}in (19). Rear-

ranging the resulting expression then yields

L d
¥ 4

16

- ’dbx, ‘Q,xb +GL""

(24)
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Now eliminating X, and X by substituting (20) and (22) one has

L '..
%*Q,%-l—upx = G,%+5-,% .rél,(ra%’-é Grae  (25)

+ ArGpw + @, G ¢

Equating right hand coefficients of (25) with those of (16) yields

b, = Go

bz Gyt & 6o

be = C—,_‘-t— ., Qa
Solving for G,, G,, and G, then yieids
G'"o = b,

G : b -a, Go

G’z = b’_, - a‘ZGo_aIG?
Inductively, the following relation can then be derived:
£-
G“;: 'b"; e 2 a—a(:sé G’é 3 Loz ’)-00 »n
h:o )
Thus the N order system

AL 7x

(26)

(27)

(28)

(29)

(30)

(31)

(32)

»-/
+ a T .
At~ ' e Tt Ayx - b"%m& 4.- b, * (33)
17



GE/EE/62-8

may be transformed into a series of first order differential equations

of the form

Xz X, + Gp A : (3a)
X,z Xot G e (35)
Ky = -Hy X, _a"“"/x:.‘\""""d/ 'x;‘? + Gae (36)

where G (4= 0,):»2,m) is given by formula (32) and » is the order

of the system. -In matrix form this is written as

£(£) - A% ) + 8 wie) | ()

x(0) = ¢ ' | (38)

where X(#)is the state véctor and X')xlv)-.)xmare the state variables. ”
So far a method has been presented for expressing a general
linear transfer function in State Space notation. It is now necessary
to consider this transformed transfer function— in its place as the
linear controller of a relay servo loop. As was pointed out in the -
introduction, it is presently impossible to synthesize a circuit
which would perform the switching logic function in an optimum manner.

What can bé done, however, is the following: given a linear controller

as described mathematically by equations (37) and (38) it is possible to.

compute the driving function,u(j)which will reduce the state vector l{t)
to zero in the shortest possible time. If one -lets the state variables
represent thé error of the system; then one will have computed the

18
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driving function for the linear controller which will reduce the
error to zero in the shortest possible time,

Thus, although an optimum switching logic cannot be synthesized
the output of such a switching logic can bé found. Finding this
optimum driving function is a useful tool of analysis since the output
of the controller when subjected to this driving function can be found.
Comparisons can then be made'between these inputs and outputs and
those of the same linear controller when utilized in a practical

system.

Calculation of the Optimum Driving Function

The problem to be considered in this section is the caiculation
of the optimum driving function g (¢)for the system of equations (37)
and (38). A method developed by Ho and Brentani was followed to solve
this problem (Rgf 5)e First, consider a mathematical statement of the
problem.

Given a linear system

Ex(t)+ 9 «(t)

E%.

"

X(0) = ¢ (40)

where C is an initial error in the system, compute the driving function

A4¢0necessary to minimize the error in an optimum manner. It will

be_necessary to state mathematically the criterion or norm used in

minimizing the error. However, this statement of the criterion function

19
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will be made in a more appropriate part of this discussion. The general
method of solution for the problem must be discussed first,

The Numerical Approximatione Since a closed solution to this
problem is ip the general case présently unavailable, a numerical
approximation will be made and a digital computer will be employed
in the computation. Therefore, it will be necessary to divide the

‘control interval into a number of subintervals ;nd make-the driving

function «(#) piecewise constant. Thus

g (AT)= ¢ (2); ATE £ <(ANT; A=0l00, K- (41)

T-0 :
Ts K (42)

where T is the step length.and:K the number of control .subintervals. One must
specify the control interxrval T to be used for each solution. The
control interval may alsq be referreﬁ to as the terminal time in

this report.

Each‘q‘ now becomes a variable in itself and fhe problem becomes
one of many variableg, and of minimizing a function of these variables.,
To do this, a method of successive approximations known as the Steepest
Descent method is employed.

The Steepest Descent Method, Before entering into a mathematical
discussion of the method of Steepest Descent an intuitive appréach
should prove helpful. Figure 4 on the next page is a map of contour
lines of a three dimensional surface which is shaped like a bowl.

If one were at a point on the rim and wished to get to the lowest

20
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Figure 4
Contour Lines for a Valley

point as fast’ as possible it would be better to go straight down the
slope in the direction of the center arrow than to spiral around
the rim in the direction of one of the other two arrows. This is
assuming that there aren't too many obstacles blocking the path of
descent. It may be deduced even further that even if one cannot see
the bottom of the bowl one could continually pick the steepest slope
and go down this slope until he gets to the bottom, that is until he
starts going up again. The direction taken in this example is the
negative of the gradient.

The problem may now be restated mathematically in a more general

form. Consider a fuhction to be describable in 4 dimensional Eueclidian
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space. Une then computes the gradient of the function at some point
on a hypersurface in that space. Descendir.wg from that point in space
along the negative of the gradient then gives the greatest rate of
decrease of the function. Although this follows from thé previous
discussion, a mathematical proof is in order{Ref 7:2-4), Consider

a function of several variables /(x'.-.x'). Start at some point xi: X, (0)

in m dimensional space and move an infinitesmal distance Je :

AR (ﬁ) ) ‘ - (43)

The total differential of f( xa)is

9 X

,g/_- agé A, + _a_é; #; ,....f_})_ﬁ Ly .. | | (44)

From the above the derivative with respect to 4 can be expressed as

M
- ) : (45)
4 - Z ?)"é; 'LB)%T

de £=]
One desires to find the most negative rate of descent% subject to

the constraint of (43). In order to do this first rewrite (43) as

m .
A% A .
(- "(”“) -2 (46)
£ (2
Then adjoin (46) to (45) by means of a Lagrangian multiplier{Ref 4:120-125):

A s I

-
<
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Take partial derivatives in (47) with respect to ;ézfand set each

equal to zero:

‘%@7 = %- 7‘(9‘%) =0 l:t,m (48)

The following is obtained by rearranging (48):

b pa enm

<

Now form the sum of the squares of each of the equations of (49):
(G- 2
4.) - {

- 2
<z) 4;\ “é:

The left hand side of (50) is seen to be unity from equation (43):

i M v
I= Z,‘l}'"r— z %b) (51)

£zl

(%f; co (s0)

/

Solving (51) for A yields

SR '

This value for A can be substituted into (49) to obtain

hc = + %4;
s I(%ﬁ)’-]"‘;

(53)

L

Recalling that

été & %%’3 % 4s)

23
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Substituting (45) into (53) after solving for%yields the most

—
i’é (%) [2 (9‘,‘)] (54)

L=
The inner summation is performed before the outer summation and is

therefare factbrable:

) ze

Again recalling that

(é%)z =1 | (43)

The second.summation becomes I and thus

% - [ <Jn>7{ S

Examination of (56) reveals that these are respectively the positive
ana rnegative gradients. The maximum rate of descent, which is the
maximum rate of change of the function with respect to distance, is
therefore obtained by making the direction of descent equal to the

negative of the gradient.

Complete Statement of the Lontrol S stem Problems With the above
result in mind it is now possible to consider the problem of &btaining

a solution for the optimum driving function of the linear controller

24




GE/EE/62-8

by the Steepest Descent methode In an actual autopilot system, an
additional constraint must be added toc those already stipulated in

the preceeding sections. This additional constraint limits the maximum
excursion of the driving function to one that will not overdrive the
system, A more complete mathsmatical statement of the problem may

now be made. Consider the dynamic system
(57)
xX(@© = C : (58)

which can be written in subscripted form as

~

X &) - % Fif X))+ 3 e | (59)

Xi(0)= ce (60)

It is now necessary to state the function to be minimized:
Hxmily -85
= x (T = . ) . ,
v ) R g}=,7‘4(7)",(7')/a, s X1 Rx() (1)

wheré'ﬁi~is a positive_ définite symmetrical matrix of weighting -functions.
The functioh (61),will be réferred.to as the parfdrménqe,funcfidn.
or as the terminal norm. Since V is quadratic in form, finding the
minimum V will also find the minimum of X(T)s The choice of the matrix R
will be discussed in detail in:Chapter Iv,

The system will be subject to the maximum inpﬁt constraint

mentioned above:

jme)l = Yy (62)

25
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or for & piecswise constant

l'«/é[ <Y Aézo)//...) K~/ (63)

Determining the Gradient. Now that a complete mathematical statement

of the problem has been made the method of solution may.be considersd.
Briefly stated; the method of solution is to compute the gradient

of \/ with respect to & and then to descend along this path subject
to the con;traint that « may not go bsyond é boundary %onmod by
equation (63).

As before define

acg (k) = £ (%) At < <@r)c (41)
- 122 £<0 .0, K-/ (42)

Thus
Ay

A = _'fv' (64)
1y

It is necessary to find the change in the terminal norm V with respect
to a change in 44 . Racalling that eachiyis a seperate variable

in K dimensional space the following relationship can be formed:

IV . S 3V ag(r o kel (65)
Y é,ancr)j}ﬁ’) A0y Kl .

.This says that for any the change in \f with respect to that
. e

26
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equals the change in V with respect to the change in the terminal
state vector multiplied by the changa in the terpinal state vector

with respect to thes change in, the control A « At this point define

Ix(T)- (66)
_._:._CI.), = A.;f»

dava

as an element of anm x K matrix [« Making this substitution in .

(65) yields

oV oV . |
m = é/ C)‘XJ(T)A‘A A: 0)"‘)K"( (67)

Performing the indicated summation

g—/% 8x¢§j.(r) & +'§>7,_ A’/“"'*ﬁ%}#@’& (68)

‘-: 6‘,)"') K-l
In matrix form this is writtsn as .
¢
oV _ H’bV (69)

DA . - — —_Z_(_r)

Recalling the expression for the terminal noxm

’
V= (MR x(T) (61)
For R symmetrical. the derivative is calculated to be (Ref 3:48)

oV
v = LR X(% (70)
() R x(%)

Substituting (70) into (69) yields

2¥Y - 2H R X(T) - (71)
d =

-

21
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X(T) can be calculated by solving the system equations. Thus it is

only necessary to determine H in order to find gfo"

Calculation of H . An sxemination of ths solution to.tha systam
squations will lead to.a method.for calculating H . The solution to

-—

equations (57) and (58) is (Ref 1:78)

-

X0 = §(0e + [ 8T Dgatp

%ﬁ__ = F §(t) ) Q(D)-TI (73)

whera ] is the identity matrix, To find @@r)which is under the integral

sign the adjoint system may bs utilized, This is defined as

‘.%%_(_T’Q: ——_E_'il(r,o') ; QQ—):I (74)

It . is now necessai:y to consider,the solutions to equation (73) and

to the adjoint squation (74), Equation (73) resembles the scalar form.

é:ay; 4@ =1 | (75)

The solution of the above scalar squation is known from differsntial

equation theory to bse

? = 6a—t (76)
where the sxponential is defined
al & - ym
e’ = S a"x (17)
M0 1

28
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In like manner the solution to equation (73) is

Y = o EXt . -
g_ﬁct) seft g =T | (78)
if £ ¥ is defined as follows -

- o0
£t
et . S E7%™ . E° - T (79)

M0 M{ -

That this series converges and is differentiable term by term is

readily shown (Ref 3:42-45). Term by term differentiation and sub-
stitution into equa'tion (73) shows that equation (79) is indeed a
solution, The matrix § is 'often known as a fundamental matrix for

the sys#sem. Similarly the solution to (74) is found to be

@(T-o’) : QE'("T—r) (80)

Substitution .of these results into (72) yields

X = eETe 4 [Te(TDE 4 iy dy

Equation (B1) is the same as the solution (72) except that it is
written in exponential forme The definitions of the exponentials
may be used to calculate a numerical solution for y‘(). However, this
problem will be tak;n up in Chaptex IVe. Use of the exponential form
will slso clarify the following steps in the development of a method
for the calculation of the matrix H .,

Suppose for a'moment that «(¢)were constant over the entire cont;ol

interval. It then could be factoraed from under the integral thus facilitating
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differentiation with respect to AC .,

. Foad : T - -
x(r) = efTe + /‘f/f' e o ur (82)
The derivative for 4 constant now becomes (
QX1 T r-r)F ' (83)
J An ' L € 7 Ar

The value of making 4« piecewise constant now becomes evident.

The integration can bhe broken .up, with the intetrval of each part
chosen to be the control subinterval T ; and each 4y can be factored
from the integrale. If the exponentials are chosen judiciously the

following result is obtained:

X (T) = ?/fTQ + %Sofecr-t)f e,“"")fg ',e,,—

—

. s f:t e_LT-JrjfélT")f} do (84)

: DT oy
+ MQS‘:.C' eCT (&00C]££‘&+l)t~r]_fjw

Now differentiate X(7) with respect to sach Ay

2LxX(] . BTGB WTE ez -olf oy )
a/Uf@ AT . __9'

The exponential eﬁ'{"’)ﬂﬁ, is a constant and may be brought from

under the integral:

: Wi)T
d(x(r)] . O_CT-G-,H)rJfL—c 6[<u/>r-rjfj Lo (86)
0 Alyg
The integral of (B86) cen be simplified toc a much more maneagable

form. To do this it is first necessary to evaluate the integral,

aa
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To do this perform the integration:

J(AH)C éf@u)c ol F 2’ - __E—’eaﬂ)tf[ o.,_—j](kf-/)r
- 4z (o)

£le-I) ¢

By equating this result with that obtained from evaluation of the
following integral a convenient way of calculating the integral of

equation (87) can be determined:
< | .

) [ (r)ﬁ ol fr TF 4 or (88)
a - v

Integration yields

i

F- Le'f] 4 _F"[e,rf—__gj ' (89)

Equating the results of the two integrations one obtains

I)C .
ch (C&y)T- r]):-g dr = f’carf‘j A (90)

Substituting the results of (90) back into equation (86) then yields

[xm] . - @*MFfr ’F Ar 4.0

) v kel (91) |
oAt |

Reverting back to the notation of the fundamantal matrix one has the

following which is equivalent to (91):

3&@1 = f(ﬂ (&) T) rzg(f)_z- A7 (92)’

3-4Q¢

k=0, K-

31




GE/EE/62-8

In order to simplify the notation let

[t 2@ ¢ A (93)

a

Recalling that

ﬂa‘,‘, = ()M (66)
JALy ‘

Putting (92) intoc matrix notation one has the result

H = [Q(T—’c)g, §(T—2r)g - g,] (94)

Distance to Descends Having determined a means for calculating

the gradient it is now necessary to determine the proper distance

to descend along this gradient in.order to meximize the change in-

* the terminal norm V., Putting the solution to the system equations
in a more maneagable form facilitates the algebra involved in finding

this proper distance to descend. Recall the solution to the system

equations:
x(T) = efTe & j; el-0)f g4 () Ar (81)
Let

p - f:f:Té ; (95)

Then using the result for H , which is equation (94) and the matrix -

version of the driving function 4, which is equation (64L a matrix
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formula for X(T)can be obtained:

96)
X)) = p+ Hu (

Now to continue with the calculation of the proper distance to descend
along the gradient consider the terminal norm formula, which is equation

(61), with equation (95) substituted:
V= (P'+e'H') R (p+ He ) (97)

However, the change in the terminal norm v with a change in the
driving function 4 is of interest. Taking ¢ at any point, say ¢,

and performing the matrix operatinns indicated in (97)

Vez p'Rp + wl/ilRBa, + 2p' RHaxy (98)
Consider a small variation in 4¢:
Ay = L + S . (99)

Substifuting (99) into (98) yields
Veu? P'Rp + (45 + 507) HRH (s + Sae)+ 2 p' RHUgK100)

Then carry out the multiplication called for in (100)

4 i

Vol = p'Rp + s, H'R Haew + 29 RA x; aon)

04 HRH Sy + 2p'RHSs + R’ H'RH §«
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Now define
JV:= Vcw,_ Ve

Then subtracting (98) from (101) leaves

SV= 2 2!

=

—_— -

KHSw + 2p'KH Su

Combining:the first two teams
V= 2(P+au/H'IRHSe + Su

Substituting equation {96) inta (104)

+ 5

§V=ax(T) RHOw + S&/ H RHS«

Recalling equation 371) and taking its transpose one has

22 RY = 2 RUD] = (%{ |

Substituting the above result into (105)

g

5V (34 )'Se + 5o’ H'RHSa

Now define

ﬁ’aﬁ

d 4

Finally

51/: ﬁ'&(, + S__@r’ﬂlg_}:/rz@

(102)

(103)

(104)

. (105)

(106)

(107)

(108)

(109)
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Equation (109) is an expression for the variation in the te_mipal
norm verses a small variation in the driving function 5_,«_, It is now
desirable to maximize the change in the terminal norm&V by determining
a proper distancg to descend along the gradient i o The change in
the driving function Sacis equal to the direction of descent multiplied by

the proper distance to descends

S =N ¢ | (110)

where 7 is: a constant and is the proper distance to descend.

‘Were it possible to descend along the gradient without being
sybject to the constraint on the driving function discussed on page
25, ’*) could be determined in the fdllowing manner. Substitute (110)

into (109):

t ' 2 / !
§v-"g'ey + M'¢ HEHS (111)
Calculus can now be employed to determine the value for 7) which will

maximize §V. Differsntiats equation (111) with respect to 7 and set

the resulting expression equal to zeros

diﬂ7.:%f@ +-1ﬁﬁ%f§ﬂ@u=0 (112)
n . - =

Solving for ¥

= : “&ﬁ'
77 YRR

——

(113)
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However, &w‘.s flimitcd_ since 44 S_unust not go outaid; the boundary
which was determined by the maximum contraint on the driving function <.
Proper use of this Eonstra}nt will aid in computing the proper change
in the driving func&ion suLjsct to the constraint.

The Descent Schemes, Two differant descent schemes may be de-

termined utilizing Fhe constraint on the driving function. These are
the Gradient Projec&ion Descent Scheme and the Corner Aiming Descent
Scheme« Both schem;; use the constraint on the drivirg function to
limit Je but they ?o it in a slightly different way. A geometrical
interpretation of t;c Gradient Projection Descent Schame is shown in
Figure ‘4a which is'8 two d?menaional model used to aid iﬁ the ex—
planation of the do;cent schemss, Figur; 4a is located on the next

. ‘ :
page. Since this is a two dimensional model only two conirol sub-

) i i

intervals are used::Aa befbro, the attempt is;ﬁade to minimize the
l !

terminal norm V byichanglhg the driving functxon‘gy. The negatlve of
the gradient is the#efore drawn from polnt A across tha lines of
constant \V/whzch aLo the same as the contour lines of Flguro 4,

The vector AB thus 'fepresents ’n&ulth ?]sompui{;ed as in equatzon (113),
However, the boundé%y for the driving fﬂnqtion does not allow a

vector of this‘lehg%b. Tﬁe.tip of the v;céor is therﬁfor§ projected
down to the bound?r& to point C. A vect;r’draw6 from point k to

the intersection %f:the projection, C, ;séthen used as the change in

controls It is from:this procedure that the term "gradient projection" -

is derived.
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Notice that a n;w gradient from point C can be dptermined and
the tip of the vector CD projected to the boundary as before. This
time movenient from C to £ .is along the bqundary.'This movement along
the boundary leads one to the conclusion that for the orientation
of the control boundaries oh the contour map of Figure 4a, the driving
function will always.go to the corner of the boundaries. The termination
of thg driving function #& at the corner of the boundaries is ‘in
keeping with the maximum principal of'Pontriaéin which states that
the magnitude of the driving function £ must be the maximum allowed
by the physicél limitations of the systeﬁ in order to achieve time
optimization. A second descent scheme, the Corner Aiming Descent Schems,
can be formulated by taking advantage of this brincipal. Figure 4b

illustratés this second descent scheme geometrically.

Figure 4b .
Geometrical Interpretation of Corner Aiming Descent

36



GE/EE/62-8

After the gradient is determined, instead of projecting the
tip of the vector 770»down to tﬁe boundary, the corner nearest the
vector AB is aimed for. In this way, the assumption that the corner
will eventually be reached is utilized to a;d in the descent. The use
of the maximum principal thus snters ipto the calculations.

All of the statements made about the twoc dimensional models of
Figures 4a and 4b can of courae'be.lxtended to K dimensional hyperspace
for the K number of control subintervals encountered in an actual
problem. The mathematics for computing the change in the driving
function Sggutilizing these two descent schemes is presented belows

The following equations describe the Gradient Projection Descent

Scheme:
2 I Sag 2 Yy -y

Wh= 3 Siy F Yi-Aig € Saeg < Vh-Ag  (114)
)2-AM2Q IF 5AQ‘ < .)2 - Atg
4:0)...) K=/

where )2 is the upper boundary for the driving function and jy, is
the lower boundary for the driving function. A new 7] must now be

determined in the same manner as before:

M,z - W : (115)
2w'H R H W

It is now necessary to assure that 7, does not exceed unity:
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Thersfore

Ny = ek (7)) el

where

<ok (x) = X IF | xt <]

(117)
= 2 / IF l Xl.> [
Finally, the changs in the driving function is expressed as
S = M, W (118)

Conceptually, the above procedure limits w” as shown in Figure 5, below.

Wy
W [T

M4

— = = Ay

Figure 5
Gradient Projection Descent
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The following equations formulate the Corner Aiming Descent Scheme:

Y- 4 IF . ¢g <O

= = 0
Wy o) 'F (6-4

Y- M4 IF g4 >0

"As before it is necessary to determine a-now"ﬂ‘:

/
W, = A4
w’'H RH w

Again 7] must be limited to Onityx
N, = #at (#,)
Finally, as befors

b = M W

In the Corner Aiming.Descent Scheme w ig‘limited in a differsnt
way. Figure 6 on ths next page shpws this conceptuallyy.:

. The new valus of xhp:drix;ng.fungtiqn can. now be computed by

(119)

(120)

(121)

(122)

adding the value for §& computed by either the Gradient Projection

Descent Scheme or theiCprner:Aiming.Descent Schame

to the old value of &, This is expressed mathamatically

Mopnwr = A+ G

41
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vl

‘"%—h

V- Aep

Fiqure 6
Corner Aiming Descent

Completion gf Solution

The process is now repeated with the new value of A and the
solution will hopefully converge to a true minimum. It is necessary,
however, to detemine when the minimum has bsen reachesd. In the
method of Steepest Descent a minimum is reached as soon as the gradient
becomes zero as in Figure 6a on the next page. Hawever, iq this
problem the constraint on the dri;ing function may prevent all the
elements of the gradient vector from reaching zero., Therefore, conditidns
other than a zero gradient will have to be used to determine when

the minimum for the temminal nomm \/hap been reached. The solution
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is cqnsidgred comblete whenever one of the three conditions below

occurs for all M‘:

- mp =0 If fx <O

Ve < 44 <38 Y “6’4 -0 (124)

Y -A =0 IF Hr > O

Equation (124) states that the solution is complete when, for
each control subinterval, 1) the gradient has; reached zero and no
further improvement in the terminal norm V can be made, or 2) that
no further change is possible in the driving function 4gdue to the

constraint imposed. When:one 'of .these conditions is met.for every

Local
miwvimum
Gggpltt\(‘r’o

GLobA L

Minvimom

GRADIENT=z O

Figure 6a
Local and Global Minima
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control subinterval computation is halted and the final driving
function is read out. That the point reached is a minimum is shown
in Reference 5 (Ref 5:A-20toA-23).

It should be noted that any time the method of Steepest Descent
is employed the minimum reached may only be a local minimum. There
may still exist someplace on the hypersurface considered a global
minimum, Figure 6a illustrates this for a two dimengional problem.
This should not detract from the usefulness of this method, however,
since, for the type of problem being considered in this report, the
approximate .solution is already known from the maximum principal.
According to the maximum: principal the solution is expected to be
"bang-bang" and thus an approximate check on the resultsyis available.

This completes the mathematical .development for the solution
for the optimum driving function of a linear controller. The next
chapter of this report will present a description of the computer

programs used and a general discussion of their use.
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1IV. Description of the Computer Programs

The. purpose of this chapter is to extract from Chapter ‘11l
the various equations utilized in the digital computer programs
and present them in a meaningful mannerj in addition, certain here-
tofore unexplained phases of the solution will be treated in détail.
Since the development of the equations of the descent has been set
forth in great detail in the preceding chaptef, the equations extracted
from that chapter will be stated without further justification.
APPéndix'A wili, by reference to the listings of the programs, explain

the purpose of the various FORTRAN statements used.

Comgutation' of f , &, and t‘_]

Although p, @, and H were defined in Chapter III the
details of their computation remain to be discussed. Recalling the

definitions of p» &, and H

p=-efTe = §)¢ 55

@ [ Fuw g dr (53)°

E—

-_—

H = [2 (r-t)a @ (T-J.‘C).g R EC] (94)

The most obvious way to compute these functions is to use the definition

of g?:
é—('é) - ef;t ; Q(a} = I (78)
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Equation (78) can easily be calculated by using the definition of ef"':

2 & FTg 0 (79)
e = 2 = t ) _F = __I_
Mco M/

The successive terms of the series are computed and summed on a

digital computer for a particular value of X . This method was

originally used for computing é and yorked quite well for problems

with a short control intervai and small moduli of the elements in

the matrix £ . Due to the ?fithmetical nature of the digital computex

it is necessary to solve the numerical rather than the algebraic

problem. For instance, for each column of H a seperate Q(T-&t)must
e

be computed.

The number of terms :'an the series for é ﬁecessary for the
required accuracy varies with the moduli of the elements in the
numerator of the terms of the series. (Note that for the actual
computation the matrix F is multiplied through by the scalar *
before the numerator is carried to a power.)"fhe siZe of the ..
numerator moduli depends not only on the elements of the matrix
but also on the value chosen for %, Experience has shown that whenever
it is necessary to carry the series farther thar 100 terms the '
computation time is .excessive and roundoff errors in the compu{:er
arithmetic cause inaccuracies. It 'should be noted, however, that
the series method is a straightforeward and quite practical method
for.computing é provided the moduli of the numerator of the first

term of the series do not exceed 25,
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The accuracy of the result may be assured in either one of two
ways. Each term computed may‘be examined and whenever the absoclute
value of each element of the matrix of that term is less than the
required accuracy computation may be considered complete. A less
difficult method from the standpoint of programming is the use of
a procedure set forth in Section 4=19 of Elementary Matrices (Ref 3:145),
The upper bound for the power of a matrix is first computed by this
procedure. The result is then divided by m!, One thus computes
the upper bound of the matrix ..é%"f‘or each term of the series and
compares it with the accuracy re;uired. When the upper bound falls
below the required accuracy the number of the term just calculated
is read out end employed to terminate the rest of the programs
involving series computations.

Computation of the fundamental matrix for a problem of a practical
nature is usually not feasible by the series solution method because
of the large number of terms necessary for accuracy. However, another
method involving direct numerical integration of the system equations
can be employed.

Computation of £ g &, and ,u by the Method of Runge-Kutta

The matrices p, @, and H can be computed by direct integration

of the system equationse. It is the purpose of this section to ::. v
develop the theory for this method. Consider the solution to the

system equations:

; . T
X)) = (L5 + fa () g wir)dr (2)
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Examination of equation (72) reveals that in the linear system the
solution is constructed by superposition of the response due to the
initial condition X(0): ¢ and the response due to the input 4 (s).

Taking first of all

P= Q(T) [% : (95)

one not'icas that this could be régardad as the solution

P=x(r) = P(r)c + O (125)

Equation (125) is identical to the solution for the unexcited system

with an initial condition

- x(e)= ¢ | (126)

—

The term "unexcited” means that the driving function «c(r)is zero
* in equation (72). Equation (125) is thus the solution %o the homo-

geneous system
x(t) = Fx) ; x(o)=ec ‘ (127)

at £ = T. Direct integration .of squation,(127) will.then determins Pe
The solution for the vector & will be considersd next. Taking

the integral

6=Lr§(r)_golr (93)

—
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and carrying out the integration as before, one has

g dr = E'[eFr) s (126)

Now take the integral |

LC Q(l—a')j Ar = fate“")ff Ar " (129)

and cariy out the integration:

echtle i dr - —f-/eftf [e—r' : ¢ ao)
'r cE

The results of equaticns'.(128) -and. {130) are identical...The original

integrals: may thus be equated:
-(C T
a=f0g dr - [“Grr)g b . G

Referring back to the solution to the system equations, which is

squation (72) one sees that

a= x€) =0+ Pr-a) g (1) dr

(132)

Equation (132) says that the vector & may be calculated by finding
the solution at time £.Tto the system equations which have been
excited with a step input of unity with an initial conditien ‘X(p)-{ﬁ? N

Thus the system
xX(®) = Fx) + a(1) x(d-0 (133)
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may be integrated from Z= O to’T to determine 4 .

Finally, one can compute the matrix L‘_f by noting that
hiv = Cu; (T-41)a, £:0,-, K-/ (134)
This can be expressed alternately as

By = X (T-ht) = K(mT) = P (T2 + 0 (s
M= (K-1-4) k=0, K

Thus the columns of the H matrix can be calculated by computing

the state vector of the unexcited system at the control subintervals

starting with an initial ‘conditit.:n '5(0) zae One then must evaluate

the following system at . A = 0, then'integrate from#4:0+t0 T, 7 .- o ,

from £= T to 2T,, etc..:
x(2) = F x(%) ) x(0) = a (136)

Now that formulaé which can be directly integrated to fihd~f;.gwdand=!j
have been developed,a practical method of integration must be considered.
Again, the only practical mesthod of integration is an approximate
numerical solution. Of the many methods available, the method of Runge-
Kutta is quite suitable for this type of problem since it affords
accurate results and since the computation procedures are recurrent.
Also; it may bs extended quite easily from the scalar form to the
matrix %orm. Consider one equation of a Staté Space system in sub—

scripted form:

%’, = &,’X, + &LXz t e + &""‘XM ,+;‘ (137)
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Replace £ by a small interval A ZLand apply the following

formulae(Ref 103 123 ):
it %) = £x,2),;, x0)=c

then

dr, = {(c)o)At

do s flerde, a2) e

drs = fleide, oF) o2

pé% - f(c.;.p@c‘,/dt)di

(138)

Ax .= K, + 2, + 2K, + o6c¢)

The formulae may in like manner be applied to the successive State
equations to compute AX'- «» A%y In matrix form this is more com-

pactly expressed for the particular problem of calculating & &

3 - F X+ 4 L) +?,At (139)
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The value of Oxjust calculated is then added to X(o)and the new
value of_z is used as an initial condition for another round of
computations, The com;:zutation thus proceeds in an iterative fashion
until £he particular valus of £ is reached. The value of Z,.‘a't this
point is then read out as the desired solution. |

It is possible, Qsing the method of Runga-Kufta‘ just described,
to compute P, &, and H by direct integration of the systém
equations. Tha. utiiity of this method is obvious in that it does not
depend on a series solution and hence the accuracy is not limited
by the number of terms involved. Thus, a problem for which the moduli
of. thé matrix F are large may be handled as sasily as any other. Also,
whén computing ﬂ , it is only necessary to read out the solution
at the end of each successive control subinterval rather than to
start from the bng-'.nning for each column as with the .series saolution,
One must only be careful to choose a proper value for Af, Too sma}l
a A4 will result in a roundoff error when using a digital computqr
because the &Xromputed will be quite small. Conversely, when & %
is too large the accuracy will suffer because the slope of the
function will not remain constant over the iptefval of Ad,

Calculation of Py @ and H represents precomputation which
is accomplished before the main program, which is the descent, .is
entex:ed.. This not only breaksAup the computation time, but .also'
allows ane to check for reasonable results of the precomputation

before employing the descent program,
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The Descent

Ndw-that'ihc.ﬁfecomﬁhtétion has been ‘expléined, it is only mecessary
to list the equations of the de;cent in the order in which they are
programmed. It should be noted that an initial value for the driving
function 4¢ must be guessed at and a control interval 7T selected,
It goes without saying that a good initial guess for ¢ will greatly
speed the solution. The choice of the control interval will of course
depend on the linear transfer function itself, on the limits of the
driving function,.on the initial conditions, and on the R matrix,
‘Choice of the g;matrix, which is a matrix of weighting constants,
depends on the amount of direct control it is desired to exert on each
state variable: Further discussion of the choice of the matrix R will
be postpﬁned until the end of this chapter.,

Usiﬁg the -precomputed values for P and H, and a selected R

——

the following equations compriée the descent portion of the solution:

{96)
25(7) = l? + fﬂ<$g
vV = xU1) R x(r) (61)
§ = H'RX(T) ~ (140)

=3 (141)

b = Ny (110)
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The operator must now choose between the two descent schemes., The

equations for the Gradient Projection Descent Scheme are pfesentéd

first:
%~ A (F Sug 2 (v -44)
We = '(114)
Y-k P g & (Y- o)
A new value of 77 must now be computed:
M s -~ (142)
“w HRHwW
The above is then limited to unity:
Ny = aat (%)) : (116)
The change in the driving function is calculated next:
Su = M, wr ¢118)
Finally
onsr = st + Sa (123)

J -
If the operator desires, the Corner Aiming Descent Scheme may be used:

R IF g4 <0

“*E& cl o IF Q= O
o (119)

Ve - 4 IF %4 >0
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Again a new value for Mmust be calculated:

M, = :w&f_lg;ﬂw (143)
and |

7, = =aZ (7, (121)
Fzom which

b = M. W (122)
Finally

Mo = ] + S (123)

The computation is repeated with the new value of A¢. The
process is iterative until the following conditions are fulfilled
for all control subintervals, whereupon it is stopped and the final

control is read out:

Ivg- | <8 FOR G < - E
Yo < #g < Y2 FOoR 19| < € (144)
(Ve-al 2 § FoR  Gg >&

The terms S and £ must be used in a digital computer solution
since the control converges toward a boundary, but never quite
reaches it., Also, the gradient never quite becomes zero, although

it approaches it so closely that no noticeable improvement can be’
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made in the terminal norm. Thus, further computation would be wasted

effort.

The Matrix

A brief discussion of the choice of the matrix R is now in

6rder. The func£ion
V= x(1) R %(T) | (61)

is termed a "duadratic" if B is symmetrical. When this is expanded

one has

] |
V= 7 KT) 4 A XelT) 0 0F Nm X (T) + 275 %,0) %8 145)

The g terms are called mutual dependance terms, while the << terms

are called self dependance terms. When formulating the criterion V ,

it is desirable to keep only the self dependance terms, since one
is usually not.interested in controlling the product of two state
variabless Thus, thet#@;arg made zero. The /z¢ then bzcome weigh*ing
constants which reflect the "utility" of controlling dire;tly each
state variable.The term "directly” means that an attempt is made

to drive that particular state variable to zero during fhe control
interval. This becomes more clear when one notes that for any ~zi
chosen to be zero the corresponding X will not be driven to zero

but will follow according to the equation

xXi = ’i’;’—:_’ = Boy A | | (146)
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With these points in mind the engineer may choose the elements of
the matrix R in order to solve the particular problem he is confronted
withe

As in all minimization or maximization problems the choice af
the critgrion used influences the answer a great deal, Since the
matrix 5 is a part of the criterion used for the particular method
discussed in this report it will certainly influence the answer a

great deal, as will be seen in the next chapter.

Determining the Optimum Control Interval

After the iteration process has been completed and the optimum
driving function has been calculated for a particular control interval,
the computed value for the terminal norm V is read out. The process
is then repeated for a new control intérval; After this is done several
times, the values -of V are plotted against the respective control
intervals used for the computations. The result is. that shown in
Figure 7 on the next page. The end of the solid parf of the curve
represents the last value of V plotted. A tangent to the curve is then
projectea from this point to the T axis as shown. The value of T at
the intercept of the tangent with the T axis can then be used as
an estimate for a new control interval for the next computation.

The process may then be repeated successively. Note that the dashed
portion of the V curve is assymtotic to the T axis. Since the curve
never reaches zero, a small percentage of the initial value for V

is picked. This value is plotted on the V axis and a horizontal line
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—

.Fm { -rf.

Figure 7
Determination of'New Control Interval

T

fFigure B
Terminal Norm vs. Control Interval
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is drawn as shown in Figure 8, When the value of V just falls below
this line the corresponding T is the optimum control interval and
the driving function computea at this value of T is the optimum
driviné function.

This completes the description of the computer programs. The
next cﬁapter of this report will be devoted to the anaiysis of the

Minneabolis-Honéywell relay servo’ loop.
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V. State Space Analysis of the Minneagolis-aneygell Relay Servo Loop

In this part of the repqrf the numerical solutions for the optimum
driving function of the linear controller portion of the Minn.apoiia-
Honeywéll ﬁdaptive Control System will be discussed. In Chapter, II
it was staéed that only the relay servo lcop of the Honeywell system
would be analyzed in this report, since the model could easily be
analyzed seperately. A block diagram of the relay servo loop is
presented on the next page in Figure 9.

,A meaningful method of analysis for any servo system is to
find the response to a unit step input; this method will be employed
in this report. In Chapter IIl a method for finding ihe optimum driving
function to drive an initial ‘error to zero in minimum time was
developed for a linear controller. ff the relay servo ioopvof Figure
9 is excited by a unit step input, it will appsar at the output of
the summer as a unit step error, pgovided the system was in equilibrium
to start withe The switching logic and the relay will then generate
a driving function for‘the linear controller to drive the error back
to zero. Equivalent to a unit step input with an initial eutput
error of zero would be a zero input with an initial output error
of a unit step. The output of the summer would be the same in both
cases disregarding the signs. Since the two are equivalent, the
problem that will be considered in this chapter is that of computing
the optimum driving fdhctioﬂ-for the linear controller portion of .

the'Hpneyuell relay servo loop when-the system has an initial error
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of a unit st;p.

The purpose of the analysis of this chapter is twofold: first, -
to obtain an optimum driving function for the linear portion of the
controller which can.be cdﬁpared to the relay outpuf of the Honeywell
‘relay servo loop aé observed during the analogue computer simulation; ‘
Asecond, to démonstééte the capabilities and limitations of the S#ate
.Space techniques a&d the. method of Stéepesf'Desbent.

Solutions uer; gttempted to five problems, Two of these problems
-involved a foﬁrth order approximation of fhe sixth order linear
.controlier. The fija solutions sought were: 1) a solution for direct
control of all six ;tate variables of the.sikth.order s&stem, 2)

_a solution for dir;ct control of the firc£ four state va¥iables

of the sixth.ozder ;yste;, 3) a solution to gontrol dirbctly all
four state variablés of tHe fourth order ;pproximation, 4) a solution
to control directly only the first two state variables of the sixth
order system, and 5) a solution to control directly only theAfirst
two state variables' of the fourth order approximation. The fourth
order approximation- was eﬁﬁlayed pfter numerical aaalysis of the
sixth order sysfem indi;aépd that the descent ;oula probably be

slow to converge, a fear that was later borne out.

The Fourth Order Aégroximéfion

The transfer function for the sixth order linear.controller is

. s- .
g_i - 195 (5+50)(3+4.15)(5+. 5 (147)

$(5+4.667) (S%+ ga5 «37%) (s%41.215 +3.0)
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Examination of equation (147) indicates that a good approximation
to the system could be made by eliminating the high frequency poles

and zero. The result is the transfer function

e 7. (s+.75) (3+.5) (148)
Cwm S(S5+-667)(5%+ (.2/s +3.0)

Also, compars Figure 10 with Figure 11. The former is the Log Magnitude
and Pﬁase Angle Diagram of the sixth order transfer funcfion, while

the latter is the Log Magnitude and-}hasc-hngle Diagram for the

fourth order transfer function., Note that the phase margin of 45°
occurs at about the same frequency on both diagrams as does the

gain crossover. The fourth order transfer function thus represents

a reasonable approximation of the Honeywell linear controller at

the frequencies which will be pertinent to this analysis.

The Minneapolis—-Honeywell Switching lLogic

In this section the Honeywell switching legic will be analyzed
in order to determine a set of weighting constants to be used in the

matrix lg « The transfer function of the switching logic is

€, _ I+:225 S .
E T+ oi5s (149)

If this transfer function is excited by a unit ramp input -é; the

output is essentially proportional plus derivative. For

£(9

i

< ' (150)
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the output in the time domain becomes approximately
e(t)x X +.2as5 (151)

When the tranafer function for the linear con‘t;oller portion
of the Honeywell relay servo loop is expressed in State Space notation
K= % where X, is the system error. The switching logic then
forms the sum X+ 2285 X Wwhen Xk, a'].one is applied to the switching
logic. Note that when:driving the controller using the Honeywell
switching logic only the first two state variables are measured and
used as a basis fo; direct. control. The other four state variables

are not directly controlled, but follow according to the equation
Xe = ié:_"_/_ -+ G -1 A (146)

Finally, viewing the switching logic from the standpoint of formu-

lating a terminal morm, one could say that weights assigned to A,

and Xpfor direct control are 1 and 225 respectively.

Choice of the Matrix &

) In Chapter IV it was stated that the choice of the matrix R
depended on the "utility" of controlling the various state variébles
directly. Admittedly the Honeywell switching logic did not employ
the quadratic criterion function, but ‘it rather summed. algebraicly

the two weighted state variables. Nevertheless, to form a basis

for comparison, the 27}, and the /3, of the B matrix were chosen
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to be 5 and 1.12 respectively. The rest of the fg matrix was chosen
to be zero. Two problems were solved using this matrix for 8_ : one
for the sixth order transfer function, and one for the fourth order
approximation.

‘Ih order to demonstrate the limitations and capabilities of the
methods used, three other problems were formulated. Two solutiocns
to the sixth‘arder problem with fl diagonal were attempted. In the

first case the diagonal elements were 6, 5, 4, 3, 2, and 1 starting

with /Ty ; in the second case they were 4, 3, 2, 1, 0, and 0. Another

sclution which was attempted was one to the fourth oxder approximation

with fi:diagonal; the diagonal elements were 4, 3, 2, and 1.

Data for the Solution

Th; sixth and fourth order transfer functions were put into
State Space form by means of the linear transformations developed
in Chapter III. Tables I and II on the following two pages show the
data used in the computer solutions for the sixth and fourth order
problems respectivelys The number of control subintervals, and hence
the lenéths.of the control intervals used were varied.

Note the magnitude of the last two elements of the.jz vector in
the sixth order problem, This is due to the nature of the recurrence

formula

P

Ge = be -—% -4 Gy , (32)

=0
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Taﬁle 1

Data for Sixth Order Problem

0o _ 195 (53+51 355"+ 428155 + I8 75)
€im  S(S* +53.977s5% + (4204187 + 2769.8s* 1 5320 S +2738)

K { o 0 o o
. o 0 ! 0 o o
F = o) o 0 ( o o
- o o o o / o
o 0 0 o o - . !

| 0 2738 -5370  -2760.9 -/970.4 - 53.577

o
. |t
2" -2:627
-la¢4.0
| 69,2040 TAV. =023
. VH/ : 195.0
= vLe = ~195.0
!
o DELTA = 3.25
x(9) = g ' . EPSlc =  .000000]
> 0
| 9]
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Table Il

Data for Fourth Order Problem

€o

t~n

I

X0 -

A\

$3+ Lass +.315

lo c')“c) Qo |
(@)

- O

| 2260

5(s3 + 15175+ 3§8/5 +2.0)

- 3.0

|
J

-.67

1000

0] 0
! ()
O /
-3 82 -—1&7
TAV
VHI
veLo
EPsiIL

DELTA

10

",

n

.08
7.1
-7
.0000 00/

.02
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when applied to eliminate right hand side derivatives. For the sixth
order transfer function the ccefficients of the denominator were
quite large which led to a rapid buildup in magnitude of the elements

'

of 9’ . Note that the 2 vector for the fourth order problem does not -
exhibit this characteristic. Examinatio‘r? of the H matrix for the
sixth order problem (Table DII, Ap-pendix D) shows thét the large
values of the last two elements of _a- lead to large values for part

of the last two columns of H’. Experience with computation shows

that these large variations. in the elements of H cause a rather

slow descent, The reason for this can be seen from the formula

Vd

"Y]:__& - (141)
¥H R Hg

-

The large values of H relative to i cause 7 to become quite small
and thus the change in control §4 becomes very small. This last

fact also holds for other calculations of 7).

Results of thgz Computation

In this section the ;esults of the computation will be discussed.
All .of the figures ‘referred to in this section are located at the
end of this chapter,

Figure 12 is a plot of the optimum dzf:iving function for the
fourth order approximation with all four state variables directly
controlled. Figure 13 prt;sents a plot of the state variablé trajec-
tories which' result when the control of Figure 12 is applied. A

plot of the texminal nom V for the different control intervals ‘used
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is presented in Figure 14, The optimum controcl interQal for a
terminal norm V of .082 is 1.85 secondse Three results should be
pointed out., Fi?st, the control is essentially "bang-bang". Secondly,
the state variables are not zll derivatives of one another. This can

be immediately explained.by noting that

e ¢ Ay (152)
but that
xe = —-—'z"" - Ge-1 " (146)

Thirdly, note that.the negative excursion of ¥, is slightly greater
in mégn;tude than the original error.

A solution for the sixth order system with weighting constants
of 6, 5, 4, 3, 2, and 1 was not completed. The descent was attempted
gut after 30,000 iterations data showed that convergence was going
to be quite slow. There is some question as to whether control is
possible at all for this cases The reasons for this will become
more clear after fhe data from two of the othcr problems is reviewed.

The data from.the solution for direct control of the first two
state variables for both the fourth order and the sixth order systems
is to be considered next. The various plots of the optimum control,
of the state variables, and of the terminal norm are shown in Figures
15 through 24. Note the differences in scale which were neceséary

for the plots of the sixth order problem. The control interval
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for the V of the fourtﬁ order approximation to reach a value of .;6
is «65 seconds. Inv.675 seconds the terminal norm of'the sixth order
system reached a value of .13. The relay switching.uccgrs {or both
systems at about the same time. Note also the close resemblances of
the trajectories éf X, and X,for both systems; These resemblances
suggest that the fourth order system was a good approximation of
.the sixth order system. Of special interest, houever,.afe the fra-
jectotes of the higher order state variables. Reﬁember that direct
control was not attempted for the state variables X g through K6
The plots of the state variable trajectories for the sixth order
system illustrate quite well what has happened. The State Space
equations for the sixth order system show that

X3 * '_"‘_E (153)

At
but more especially that

2

K¢ < - A (154)
At
Py '
X5 Z — + R.2604 155
s Y ' (155)
Xe = _;/f:,’. + (26%.0 4 o (156)

The trajectories of the state variableé show these relationships
graphicallye. Note especially how the trajectories of 1§’, X5 aﬁd
X are governed byj*u/. It is now.quite apparent Why direct control
of all the state variables is so difficult to obtain in this problems

T2
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.The control is fighting itself in this case. It should be pointed
out again that the presence and size of the 3; s is a result of
the numerator dynamics of the entire system and the high natural
" frequency of the servo and actuator.

The trajectories of Xs and % for the fourth order example
cannaot be compared with those of x3and Xg for the sixth order system,
again because Df'the,different way in which the numerator dynamics
influence the soluticon,

A solution for direct control of the first four state variables
of the si#th,order system was also attempted. Convergence of the
solution was quite slow and therefore a complete solution was not
obtainéd. However, it appears that convergence would be possible
if enough iterations were tried.

A term which seems épplicabla to a problem_of this nature is
"controllability". A definition of "controllability" is not easily
stated, but it is possible to think of it in terms of the number
of iterations in the descent necessary to compute the optimum control.
The more iterations necessary the less controllable is the system.
Of course it is immediately evident that the controllability depends
on which of the state variables one wishes to control directly and
to what degree, For example, controlling directly"all six state
variables of the sixth order system to the same degree would be
almost impossible. Conversely, the descent for direct control of the

first two state variables of the sixth order system was completed

13
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quite rapidly. See Tables D~III through D=V ingAppeﬁAix D for a
comparison of the number of iterations necessary for the different
problems,

The results of this section have demonstrated the.usd of ths
State Space techniques and the Steaspest Descent method in soliing
a practical problem of computing an optimum driving functiﬁn. An
éttempt was made to demonstrate the limitations oé thg methods as
well as the capabilities. Data which can be correlated with‘the
.analogue computer simulation of the pxoblem was presented, Attempts
at five solutions to the problem were made; three of these were
SPCCBSSfUl-

The.next part of this report will be concerned with the analogue

computer simulation of the Minneapolis-Honeywell relay servo loops
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V1. Analogue Computer Simulation of the Minnaagolis-Honen' ell
Relay Servo Lobg

In order to form a basis for comparison of the results of
Chapter V an analogue computer simulation of the Minneapolis-Honey=
well relay servo loop was performed. Figurq 9, which is a block
diagram of the relay servo loop is presented at the end of this
chapter for the reader's convenience.

In keeping with the analysis of Chapter V, the model was eliminated
from the original Honeywsll Adaptive Control System, as were the
gain changer and limiter and the AC dithere. The response of the
relay servo loop with a stsp input applied is that which is desired.
The relay output and the system output can then be compared with
optimum driving function and the state variable trajectories obtained

by the calculations of Chapter V.

Description of the Simulation

The simulation of the relay servo loop is quite straightforeward
and will not be discussed in detail.The procedures outline; in
Chapter 19 of Automatic Control Systems Analysis and Synthepis -
were followed.(Ref 2:453-475),

The followiné points ;oncerning the simulation shouid be noted
howevers 1) due to the high natural frequencies of the servo and
acutator and the rate gyro it was necessary to time scalaiths problem

by slowing the solution by a factgr of tang 2)the electronic relay
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used in the Honeywell loop was replaced by a high gain amplifier
in cascade with a differential relay. Figure 26 at the end of this
chapter is a diagram of the simulation.

A describing function analysis assuming an ideal relay with
an output of 1.5 volts was Qsed to determine stability and the
approxiﬁate frequency of the limit cycle to be expected. A Log
Magnitude Phase Angle Diagram. for: the describing function analysis

is shown in Figure 27 at the end of the chapter.

Results of the Simulation

Step inputs of one volt were applied to the system after a
steady state limit ciycle had been established. The one volt corresponds
to the one unit of initial error used in the computétion of the
optimum driving function in Chapter V. Figure 25 at the end of this
chapter is a typical analogue computer recording for the response
to the unit step input. The traces are, beginning at the top, error
signal, input to the high gain amplifier, relay output, and system
output, -in that order. Upon application of the step input, initial
switching of the relay took place, if the polarity wasn't already
sﬁch,és.to drive the error to zero. As the relay input crossed’ the
aero axis the relay switched polarity. Finally, when the error
approached zero limit cycle operation was resumed.

Results of high speed recorder runs show that the error is

reduced to zero in about .75 seconds. The limit cycle is resumed
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after about .65 seconds. The average time from the detection of the
initial error until rélay polarity reversal is bout .4 seconds.
Exact times are difficult to determine becausze they depend upon

the state of the system in the limit cycle to some extent.

It should again be pointed out that thz input to the high gain
amplifier is ths error signal plus .225 of its derivative. The trace
of the error signal shows that for a negative srror the slope is
positive; thus, when the error decreases hslow .225 of its derivative
at that point, 'the relay reverses polarity. This reversal prevents
avershoot. Finally, note that the shape of the trace of.the system
error resembles the shape of the trajectory of "X, in Figure 16 which
is located in the preceding chapter.

The data just presented leaves little more to be said concerning
the analogue computer simulation. The readex should, however, keep
the results in mind since they will be compared in the next chapter
nf this report with the results of the computations for optimum

control,.
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VII. Conclusions and Recommendations

In this last chapter of this report the data compiled in the
previous sections will be summarized and conclusions will be drawn
from it. Recommendations for further study of certain phases of
this report will then be made.

It is not the purpose of this chaptez, or of this report, to
attempt to determine the quality of the Minneapolis-Honeywell Adaptive
Control System just discussed. Rather it is to demonstrate the ap-
plication of State Space and optimization techniques by analyzing

a practical problem.

Summary of Data

In this section data from the previous chapters will be summarized.
Also, from time to time, the figures of Chapters V and VI will be
referred to without stating their location,

It is possible to compare only part of the data frum the computations
for the optimum driving functions to that from the analogué computer
simulation, The data that may be compared are the results of the
optimum solution to the fourth and sixth order problems for direct
control of the first two state variables, A glance at Figures 15
and 22 shows that the driving function calculated compares very well
with .the output of the relay as recorded during analogue simdlation.

The first relay polarity reversal for both computational solutions
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occured at about .4 seconds, as did the first polarity reversal
during analogue simulation. The simulation also showed the error
driven to essentially zero in about .7 seconds. This corresponds
quite well to a terminal norm of ,13 with a control interval of

- o675 seconds. Of course it is impossible to state that a qirect
correlation exists because thé criterion formed by the switching
logic of the Hoﬁeywell relay servo loop and that formed by the
terminal nomm function are different. However, the simularity of
the two results does indicate that for this particular problem the
criterion function used for the computation of the optimum driving
function is meaningful.

Note the shape of the trajectory of ‘X, which is plotted in
Figure 16, It is about the same as that of the trace of the error
signal which was recorded during the analogue simulation,

Another point of interest in the results of the digital com-
putation is the shapes of the trajectories of the various state
variables. Comparisbn of Figure 13 with Figure 23 shows that when
an attempt was made to directly control X; and Xgin the fourth
order approximation their ‘excursions were greater during the control
interval than when they were allowed to follow without direct eontrol.
Of course Xgand-Xgwere not driven to:zero 4n. the latter case.

Another point of interest is that a longer control interval
was necessary to control directly four state variables than to

control two; thus, the expenditure of energy by the system had to

‘98



GE/EE/62-8

be greater for the longer control interval. Also, one sees from
Figure 13 that the maximum'negative excursion of'j(,was greater
than the initial error in the system.

A brief glance at the tabular data in Appendix D shows the
number of itggations necessary to attain convergence varies over
a wide range for the different problems considered. Generally, but
not in all cases, the number‘qf iterations necessary increases as
the optimum control interval is approached. Also, the more difficult
it is to control certain state variables, the greater is the number
of iterations necessary for cohvergence. In general, then, the rate
of convergence is a mmasure of the "controllability" of the system. -
The rate of convergence may be measured by the number of iterations

necessary to attain convergence,

Conclusions

On the basis*of the data presented in the preceding section
and that presented in discussions elsewhere in this report several
interesting conclusicns may be drawn. Probably'the‘most important
and far reaching of these is that each solution fo¥ the optimum
driving function is in reality a sub-optimization. The results of
Chapter V showed hoy much the optimum control interval and the
trajéctories of the state variables depended on the matrix B . It
goes without saying that a different function for the -terminal nomm
would also have influenced the results a great deal. It should be
understood, however, that the computed.driving function is optimum
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for the terminal nomm chosen. The question remains of whether the
terminal norm used is the beat criterion..Thus the problem Af
picking a crifeiian to minimize still'remaiﬁs a matter of judgement.
For example, consider the particular system analyzed in this paper.
Compare the solution for the fourth order system with the diagonal
of Bequal 5, 1l.12; 0, 0, and that for the same system with the
diagohal of _R_ equal 4, 3, 2, 1, If one is interested in reducing
the error, which in this case is the first state variable, .to zero,
it appears better ta attempt to control directly only the er;or

and its derivative than to attempt to control direct;y all the
state variableas. Certainly the optimum control interval is less for
the former,

It should again be emphasized that the criterion function chosen
is reasonable, although some of the values used for the R matrix
might have been a yit unrealistic, A fqrther point along these
lines is that attempts to control state variables which are dominated
py *;gwill probably meet with very slow conv;rgence or even lack of
convergence.

The question of "controllability" and the rela#ed computation time,
is, for this report, somewhat academic, except in cas;s where it is
impossible to obtain convergence without many thousands of iterations.
However, one problem for which computation time would be important
islthat of an adaptive state vector control system. Basically, a

system of this type would operate in the following way. The state
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variables would continuously be measured. Ceonsider that they represent
the e;ror'of the systeme. The necessary input to a lipea? controller
to drive these Yariables to zero would then be continuously computed
in real time ana applied to ths controller. For a lineéar contfoller
with good controllability such computation in real time seems feasible
by the Steépest Dascent method provided a very high speed computer
is employed. |

Finally, the fact that all the solutions for the optimum driving
function for the examples investigated in this report were "bang-
bang" is of interest. The same results were obtained whether the
Gradient Projection Descent Scheme or the Corner Aiming Descent
Scheme was employed. This result is in direct support of the maximum
principal of Pontriaging in addition, it should be pointed out that
{he "bangsbané" solutions were arrived at by an entirely different

méthematical approach than was the proof of the maximum principal.

Recommendations

.Unfortunately, there were many interesting phases of the problem
left yntouched in this investigation due to the element of time.

Also it should be pointed out at this time that the computex
programs used and a brief explanation of each are presented in
Appendix A, Hopefully enough information has been provided for the
interested reader to utilize the programs with little added study.

-Une.of the phases of éhe analysis whiéh remains unexplored is
fUr_the,r experimentation with the matrix B . Along this same line

is the testing of.different criterion functions used in the descent.
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One criterion function of particular interest’ would be

&t

Toom -~ .
Miv £ Vi = & mx0tr) : (157)

The computation of the optimum driving function to be applied
to a non-linear controller is also possible by the method .of GStezpest
Descent. The interested reader is rgferred to Part V of Refzrence S

In the field of digital_computer programming it would be quite
useful to modify‘the existing descent program to seek out the'optimum
control interval automatically. Of course due.to the. computation.times
involved the use of.such a program would have to be confined to systems
with a reasonable amount of controllability;

finally, a study to detexmine the feasibility of using the
Steepést Descent method in an adaptive state vector control’system
could be investigated.

The above list of possible topics in connection with this report
is by no means complete. However, it is hoped that some stimulating
ideas were presented.

In this report State Space techniques and the Steepest Descent
method were employed to obtain the optimum driving function for a
practical linear controller in avrelay servo loqp. It is fel£ that

the results obtained demonstrate the limitations and capabilities

of this type of analysis quite clearly.
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Appendix A
Listing and Explanation of the Digitsl Computor Progrems

The purpose of this sppendix is to present listings o'f the digital
computer programs used for the computation of the optimum control to-
gether with a brief sxplanation of sach program. It is assumed that
the resader has a knowledge of the FORTRAN Vprogr‘uui,ng‘ system. In writing
the progrin. several chuﬁgu in notation were nacsssary. Table A-I on
the next pags is a list of each important symbol used in the programming
together with the corresponding symbol used in Part IV. The rsader may

wish to refer to this table from time to time in case of confusion.

T =K

In the first program which is listed on pages 184 :and 103 @& is
calculated by the method of Runge~Kutta. This method is developed in
Part IV of this report. The program is written in 1620 AFIT FORTRAN.
The following explanation refers to the li.ting. of the program.

The valuas for at, for the order of the system, and for the codtrol
subinterval ars first read in as DELT, N, and TAU respectively. The F
and f 4 matrices are then read in by columns. Statements 5 through 14
perform the Runge-Kutta calculation for &% A_ test is then made to
see if the control subinterval TAU hu' been resched. If it has not,
control is returned to statement S where the calculatiom is performed
ag_ain with the new valus of %. When TA.U is finally rsached g is read

out and punched on cards.
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Table A-I

Meanings for Computer Symbols

Computer Symbol

N

DELT

TAU

F

G

DX

A (Descent Program

A (Program for M)

ETA or £TA2
v

Symbol in Text

M
A X

}}M m o

P or P(RT)
a ~ %(0)

N Rz B

CIK M 0 ™
3
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CALCULATION OF ATUTT "BY RUNGE™ KUTTA )
READJDELTsNsTAU
DIMENSION F(6+6)3sG(6)9sXNO(6)sDX(6s4)
DO 1 K=1sN g A O e
DO 1-1=1,N
1 READF(19K)
00 2 K=1sN . e e eensan stim s e
2 XNO(K)=0e
DO 3 K=1N
3 READGI(K)
P=O.
5 DO 7 I=14N
720, L e ‘ . e e eeemta omeriemmrm e
DO 4 K=14N
4 2=24F (14K )EXNO(K)*DELT
K=l i Rt
7 DX(Ksl)mZ+G(K)RDELT
DO 9 I=1N 4
Gal, T T e
DO 8 K=14N
8 Z=Z+F(1sK)®(XNO(K)+DX(Ks1)/2¢)*DELT
K=1
9 DX(Ks2)=Z+G(K)®DELT
DO 11 I=1yN
2x0, e+ e et e
DO 10 K=14N
10 Z=2+F (1 9K)R{XNO(K)+DX(Ks2)/2¢)2DELT
T K=1 : k nneller . e e
11 DX(Ks+3)=Z+G(K)®DELT
DO 13 I=lyN
gmQy st e e — —
DO 12 K=1,N
12 Z=Z24F(TsK)R(XNO(K)+DX(Ks3) ) #DELT
K=1 WARITEN 77 e
13 DX(Ke4)=Z+G{K)*DELT '
DO 14 K=1 N
14 XNO(K)=XNO{K)Y¥ [ (DX (KT T2 e ¥DX Ry 2T+ 2 FOXTRIVFOXTK W4T V76%)
P=l.+P :
IF(TAU~PEDELT) 1541545

15- TYPE 16 ° . P PO
16 FORMAT (/18H FOLLOWING IS ALIT)
DO 17 K=1sN

7T TPUNCH 45 9 XRO(KT o - -
17 TYPE 44+9XNO(K)
44 FORMAT (/E14.8)
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45 FORMAT (2XsE14,.8)
STOP

END
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C ation of L A snd H by Runge~Kut

The program for the calculation of p and H by the Runge-Kutta
method is listed beginning on ths next page. Thers are two forwms of
the program included, one written in 1620 AFIT FORTRAN and the other
written in 7090 FdRTRAN. The only differences in the two are the input
and output statemeqts and the method of controlling the use of the
optigns. Hhen'it ii dqs;rsd‘to use a‘lnrge number of contro; subintervals
‘and the order of the problem is large it is advantageous to uaa‘the
7090 version since conpuéation time is substantially less. The 7090
version will be discussed in this appendix.

The program gontainl two options which are controlled by entering
a value of 1 or O for KSENS., These options are the computation of H
or the computation of !(11L It is necessary to calculate the latter
fo; sach control subinterval for use in a latei ptodrln which calculates
the trajectories of the state varisbles.In cese the first column of [ |
is zero, which corresponds to an integration in thes linear controller, f
will remain conotant'th:oughout the control intsrval; thus its calculation
is unnecessary. for this rsason the calculation of p was included in
this program only as an option,

fhe problem, but not the program, is also restartable. 1t is only
necessary to'enter the last computed column of H ss A(K) and start
the program. As many more columns of H as are desired will then be
computed, Finslly, when using the Runge-Kutta method one usually starts
at tz O; thus the computation of the columns of H starts at the right

and proceeds to the left.
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C CALCULATTION OF LARGE A AND H'BY RUNGE XUTTA
READ INPUT TAPE 2399 sNsJEsKAsTAUSDELT T
READ INPUT TAPE 24,1224KSENS

122 FORMAT(18)
99 FORMAT(31443F840)
DIMENSION H(6999)9sF (646)9A(6)sDX(604)
TAUl=TAU '
DO 1 K=1N
DO 1 I=1sN
1 READ INPUT TAPE 25112sF(1sK)
111 FORMAT(E16.8)
112 FORMAT(F11,0}
DO 2 K=1,N L
2 READ INPUT TAPE 2451114A(K)
P=0s )
IF(KSENS)61+62
61 pE’Oo
63 FORMAT(21H FOLLOWING IS LARGE A}
WRITE OUTPUT TAPE 3,63
GO TO 31
62 PE=1l,
WRITE OUTPUT TAPE 3,64 o
64 FORMAT(25H FOLLOWING IS H TRANSPOSE)
31 DO 3 K=1sN
I=K
"3 H(lsJE)=A(K)
4 DO 6 I=1N
2=0e
DO 5 K=1sN
5 Z2=2+F (1K) RA(K)*DELT
K=1
6 DX(Ksl)=2Z
DO 8 I=14N
7204 J,
DO 7 K=1sN
T Z=22+F (1 oK) ®(A(K)+DX(Kel)/24)%DELT
K=1 ’
8 DX(Ks2)=2Z
DO 10 I=]sN
Z2=0,
DO 9 K=1,sN
9 2=2+F(TsK)#(A(K)+DX(Ks2)/2¢)#DELT
K=1 - -
10 DX(Ks3)=Z
DO 12 I=1sN
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2=0,
DO 11 K=1sN

11 2224F(ToK)R(A(KI+DX(Ko3))#DELT

K=l . i halbt

12 DX(Ke#h)=Z
DO 13 K=1N

13 A(KYSA(K)+((DX(Ks 1) 420 ¥DXTK 92T+ 2o ¥DX Ao 3 THOXTK 94TV 764
P=1le+P

131 IF(TAU~PXDELT) 149144

14 JE=JE-1 S
PE=1le¢+PE
TAU=PE#TAU1 )
DO 15 K=1sN R . e et e £ e e et e i
1=K - '

15 H(lsJE)=A(K)
IF(T~TAU) 16’169#

16 DO 18 JE=1sKA

18 WRITE OUTPUT TAPE 3’199(H(10JE)¢I=10N)
DO 121 JE=1sKA
DO 121 I=1sN

121 WRITE OUTPUT TAPE 14,111sH(T9sJE)

19 FORMAT(6E1645) - o
CALL EXIT
END
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The order of the system, the control aubintewd, Aty the number
of control subintervals, the control interval, and‘again the number
of control subintervals are read in as N, TAU, DELT, JE, T, and KA
respectively., £ is then read in by statement 1. If I_-j is bsing calculated
@ is read in by statement 2; however, if P is being calculated, 2(_(0)
is read in by statement 2, Statements 61 and 62 select the index
to be used for the columns of' }_-I_ or p . Statement 3 then begins the
Runge~Kutta calculation Ac.:f A_x; Axis n&ded to x(o) by statement 13,
Statement 131 then tests to determine whether the value .for TAU has
bean reached. If it has not, control .'n_.s returned to statement 4 and
the calculation of a new valus forAQ)x commences; if TAU has been reached,
the X just calculated is stored as a column of H after which the value
of TAU is incressed. A check is then made to determine if the nsw value
of TAU is the same as T. If it is not‘ controi is returned to statement
4; however, if TAU equals T, the matrix H is punched on cards by columns
one element to each card. H is also -typed out as H’ Exactly the sama

computation is performed for p except that different indexing and dif-

ferent initial conditions sre used.

c f U
The computation of the optimum control is accomplished by the
program which is listed beginning on page 110,The program which is

written in 7090 FORTRAN contains two options. These two are the uss

of the Corner Aiming Descent Scheme or the Gradient Projection Descent

Scheme. Refer now to the program listing.
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c CALCULATION OF U
READ INPUT TAPE 2+3sNsKAsMAX sUHI sULOsEPSILsDELTA
READ INPUT TAPE 2+5,KSENS
DIMENSION XT(6)sP(696)9Y(6)sDMI6)sA(6)

DIMENSION U(99) sH(6+99)9sC(99)sDELU(99)9sW(99)sABSC(99)
DO 2 I=1,N

2 READ INPUT TAPE 247,A(1)
DO 13 JE=1,4KA

13 READ INPUT TAPE 297»U(JE) S

7 FORMAT(E1648) ‘ o
3 FORMAT (14914917 9FBelsFBeloFl0e79F7e2)
DO 16 JE=1y9KA
D0 16 I=1sN _
16 READ INPUT TAPE 2s79H(1sJE)
DO 18 1=1,4N
DO 18 12=1sN
18 READ INPUT TAPE 2+49P(12s1)
4 FORMAT(F8¢4)
ITER=0
20 DO 24 1=1,N
..2=0, R e
DO 23 JE=1+KA
23 23Z+H(I2JE)#U(JE)
24 XT(I)=24A(1)
IV'OO
DO 35 12=1sN
_. L=0e
DO 32 I=1yN
32 2=Z+P(12+1)%XT(1)
I=12
Y(1)=2Z
35 VaV+XT(1)%*2

DO 41 JE=]1+KA
2=0.
DO 40 I=]lsN

40 Z=Z2+H(19JEI®Y(])
41 C(JUE)=Z
 IF(KSENS)199s199s42
42 DO 46 JE=14KA
IF(C(JE)) 43944945
43 W(JE)sUHI=-U(JE)
GO TO 46
44 W(JE)=0,
GO TO 46
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45 W(JE)=ULO=UI(JE)
46 D=D~C{JE)*W(JE).
47 DO 51 I=1yN

220,

DO 50 JE=1sKA
50 Z=Z+HI1sJEI#W(YE)
- 51 DM(I1)=2Z

23=0,

DO 58 12=1sN

22=0,

DO 55 I=1,sN
55 72=22+P(12,1)%DM(1)

I=12
58 23323+22%DM{(1)
ETA=D/23 .

TT63 IF(1.~ETA) 66+64964
64 ETA2=ETA
GO TO 69

66 ETA2=1,
69 DO 72 JE=19KA
T2 UJE)=U(JE)+ETA2*W(JE)
GO TO 250
199 Z=0..
200 DO 201 JE=1sKA

201 Z2=2-C(JE)*C(JE)
ETAN=Z

DO 203 I=1sN.
2=0.

D0 202 JE=1sKA
202 2=Z+H(I1+JE)*C(JE)

203 DM(1)=2
ETAD=0.
_..DO 205 12=1sN

2z0,
DO 204 I=1sN
204 2=Z+4P (12, 1)%DM(1)

1512
205 ETAD=ETAD+Z*DM(1)
ETA=ETAN/ETAD

53 DO 206 JE=1sKA
DELU(JE)=ETA*C(JE)
W(JE)=UHI=-U(JE)

T TIFIDELUTIEN+UTIET-UHT) 2079206206

207 W(JE)=ULO=UI(JE)

.. IF(DELU(JE)+U(JE)=ULO) 2062206208
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208
206

209

W{JE)=DELU(JE)

CONTINUE

ETAN=Qe e
DO 209 JE=1sKA
ETAN=ETAN-W(JE)*C(JE)

DO 211 I=19N

210

2=0,
DO 210 JE=19KA
22Z+H{ 1y JE) #W(JE)

211

DM(1)=Z
ETAD=0.
DO 213 I2=1sN.

212

2=0,
DO 212 I=1yN
2=24P (12 1)%#DM(1)

213

I=12
ETAD=ETAD+Z#DM(1)
ETA=ETAN/ETAD

214
216

IF(1le=ETA) 21442169216
ETA=1.
DO 217 JE=1sKA

217
250
73

UGJE)=U(JE)+ETARW(JE)
ITER=1+ITER
IF(MAX=TTER)9T71,971,77

77
81

DO 97 JE=1sKA
IF(C(JE)) 819802982
ABSC({JE)==C(JE)

GO TO 802
ABSC(JE)=C(JE)
IF(U(JE)=-UHI) B6186+84

WRITE OUTPUT TAPE 3,85

FORMAT{20H UH OUTSIDE BOUNDARY)

IF(ULO-U(JE)) 91+91,88

WRITE OUTPUT TAPE 3,89
FORMAT(20H UL OUTSIDE BOUNDARY)
IF(ABSC(JE)-EPSIL) 97997993

TF(CIJE)) 9425795
IF(UHI-U(JE)=DELTA) 97+97,96
IF (ULO-U(JE)+DELTA) 96997497

GO T0 20
CONTINUE
GO TO 98

WRITE OUTPUT TAPE 3,972
FORMAT(21H ITERATIONS EQUAL MAX)
WRITE OUTPUT TAPE 3,99
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99 FORMAT(35H ITERATIONS COMPLETE FOLLOWING IS U)
100 DO 101 JE=1sKA
WRITE. OUTPUT_ TAPE 1457,U{ JE),,... rim e ot e
101 WRITE OUTPUT TAPE 357sU(JE)
WRITE OUTPUT TAPE 3s5+ITER
5 FORMAT(1T) .

WRITE OUTPUT TAPE 3979V
CALL EXIT
END
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The first READ statement accepts the‘ogdcx: of the system, the number of
control subintsrvals, the meximut number of iterations, the uppsr boundury
for control, the lower bow'\dary for control,and the values for ¢ and S
Thess are N, KA, MAX, UHI, ULO, EPSIL, and DELTA respectively, KSENS
is read in by the next statement. A KSENS of O selects the gradient
projection descent scheme while a KSENS .of 1 'nlocﬁ the "bang-bang"

* .
descent schems. P is next resd in by statement 2 as A. Statsment 13

accepts U which is the initial gusss for the contral. The matrices H
snd R are read in by statements 16 and 18. The DO loop ending with
statement 24 calculates X(T)s The terminal norm V is calculated b,;l
the DO loop ending with statement 35, The gradient is caltulated next
by ‘the DO loop with statement 41. The next statement sslects the option
of using the Gradient Projection Schems Or the Corner AimingSchems.
Consider the Lorner:Aiming=Schemd first. ‘Fhe'D0" 100p-beginning with ‘atate-
ment 42 and ending with 46 examines ssch component of the gradient
vector and determines the proper Uy sccording to the Corner Aiming.Desosnt
Scheme. Statement 46 then perforwms thg matrix vector multiplication
of ¢‘we The DO loops ;pding with statement 58 then form the product
" wi' R Hwe The next statsment ealculates the valus 7), which is slways
positive. The next four statements determine .gat?], Statement 72 then
calculates the new valus of U, Control is then transferred to statement
250, |

If the Gradieant Prcjsction Descent Scheme had besn selected control
would have been tswmeferrsd from statement: 4l to statement 199. The DO
00ps beginning with 200 and ending with the statement after 205 cal-
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'Y
culate N FTEFy

selects the proper values for Wjin accordance with the Gradient Pro-

e The DO loop beginning with statement 53 then

jection Scheme. A new value for % is then calculated by the next
sixtesn statements. Statement 214 and the one precading it compute aef(7h
The DO loop ending with 217 them computas the new value for U. Statement
250 adds 1 to ITER, which is the number of iterations completed. The
value for ITER is then tested to detemine if it equals MAX, If it

does the valus of U just computed is resed out. If ITER does not equal
MAX the DO lc;op beginning with statement 77 is entexred. This DO loop
determines if the conditions of squatiom (144) for the termination

of the descent have been met. If not, control is transferred to statement
20 and another iteration begins. If the conditions of equation (144)

have been met, the next few statements read out U, ITER,. and V. The

values for U are also punched on cards fo_r later use.

Calculation of V
The final program, which is labeled CALCULATION OF V calculates
the trajectories of the state variables. This program which is listed
on the next two pages is written in 7090 FORTRAN. It requires the !Ck*)
matrix, the 4 matrix and the B matrix for a particular problemg it
then will accept as many different solutions for the control 4 as
are desired and from these bcompute the trajectories for the the state
variables for each 4 provided. The trajectories are calculated by solving

for the values of

xX(2) = Ha + p(AtT) . (158)
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"CALCULATION OF v= = o oo
WRITE OUTPUT TAPE 3,20
20 FORMAT(15H FOLLOWING IS V)

READ INPUT TAPE‘29999N0KA6KC""'””_”"””“"“'""”"

99 FORMAT(316)
DIMENSION XT(6o80)9H(6’83)oU(80)oP(606)oA(6.80)

D01 ME=14KC -
DO 1 I=]1,N
1 READ INPUT TAPE 29180A(10ME)

DO 2 JE=19KA
DO 2 I=1sN
2 READ INPUT TAPE 2918sH(14JE)

DO 6 1%14N
DO 6 I2=1 N
6 READ INPUT TAPE 29979P(I291)

97 FORMAT(FI0.0) -
31 READ INPUT TAPE 2+98sNBsKSENS
K=1

TM=0’
DO 3 JB-l'NB
READ INPUT TAPE 2,18,U(JB)

0 W

ME=M+1 - o
KB8=NB-M
IF(KC'ME)51052'52

B1 "ME®KC ¢ —
52 DO 5 I=14N
2=z0,

DTG JBET PR T e
JE=JUB+M+KA~NB
4 Z=2+H( 1+ JE)®U(UB)

TTETXTUIsKTEZFATTHIME) T
IF(1=K) 7172972
72 V=0,

DO T TZ'I3N
2=0,
DO 8 I=1,N

T8 ZEZAXTUTISIT#PTI25 1T
I=12 ’
7 V=V+Z*XT(I¢1) .

71 K=14K - - et e e et i e e
M=M+]
13 IF(NB-M)11s11+9

"1IT"WRITE OUTPUT TAPE 35155V
41 WRITE OUTPUT TAPE 3,21
21 FORMAT(BOH FOLLOHING IS XT STARTING AT T)

'8
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16

15
18

19’

98
30

DO 16 K=1sNB ~

WRITE OUTPUT TAPE 35195 (XT(1sK)sIx1sN)

IF(KSENS)31931,430
FORMAT(E1044)
FORMAT(E1648)
FORMAT{6E1244)
FORMAT(18s14)
CALL EXIT

END
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&t each control subinterval. In order to compute these trajectories
a rather involved system of indéxing was necéssary.

The first READ statement of the program requires the order of
the system, the number of columns of é’ and the number of columns of tfkk
In case _f(kf).s constant throughout the entire control interval it is
only necessary to .supply one columl; of _P(W; for this reason, the program
was des‘i‘gned to use a different ‘number\of columns of phtlthen of ﬁ o
The READ statements down to statsment 6 accept the matricss!(.‘ﬂ, _/;{ ’
and E « Statement 31 requites a value for the number of cards to
be read by statement 3, which accepts the matrix 4. Al or a Q is
also required by statement 31 for KSENS. The next ten statements
down to statement 5 calculate. z(t)‘each elem?nt cff which is a point
in the rajectory of a state variable, The next statement tests to see
whether or not Xfy)for the ‘entires control interval was just. computed;
if it was, Vis calculated by the DO loop ending with statement T;
if Z(T) was not just calculated, control is transferred to statement 71,
In either cases, ho'wever, new indigea are determined by 71 and the
following statement. It should be pointed out that the trajectories:
are calculate.d beginning at 2: T and working back to ®*=0, This was done
to p;:event further indexing complications. Statgment 13 tests to see
if all the points in the trajectory have been computed. If they have
not, control is transferred to statement 9 for further computation,
If the trajectories are complete they are read out by statement 16.

At this point the value for KSENS is tested. If it was zero there will
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be another set of trajectories to be calculated for a different control
interval; thus, control will be transferred to 31 where new values

for the number of control subintervals and for KSENS will be read in,
The new control will also be read in by statement 3 and the computations
then repeated, If the last value of KSENS was 1, however, exit will

be called.

Use of the Programs

The use of the programs is straightforeward and should present
no difficulty if the following points are kept in mind:
1) all matrices are read in by columns; each element of a matrix
must be on a seperate card;
2) FORMAT for the input statements, if specified, must be followed;
3) all data to be used in another program is punched in the proper
FORMAT and in the proper order;
4) DIMENSION statements may have to be changed.
Finally, the programs may be modified for use on other computers.
However, since thé descent program contains a large number of statements

memory limitations of the computer should be kept in mind,
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Appendix B

Sample Problem #1

In order to check out the computer programs a sample problem
which could be worked out gy hand was necessary. It was felt that
if an interested reader wished to duplicate the results of this
report a statement of this .example problem and its solution miéht
be helpfule. Following th;ough the solution will also give a better
understanding of the calculations of the solutions for a more complex
problem.

The problem which was selected is a very simple (from the
standpoint of calculation) fourth order pro?lem. The following are

the system equations.in State Space fomm:

X, =
x, = ~Xz

A T +
’X.,. s "xJ +

A control interval of T« 3] and a subinterval 01"'!.342‘r were chosen.
The & and H matrices can be calculated by direct integration of
the syatem equations as was developed in Chapter IV. To find the

vector @ the system equations may be integr.ated with an initial .

condition of Z[o): ©. The system must be excited by a unit step
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input. Thus, to find & integrate from £: O to gthe system

e TN %, (0) =0
Xy = X4l X (o) ©
X3 = Xe 5 Xy le) =9
Xg = ~XzHl; X (o) =7
The integration yields for &l

'x, T 2 ‘ = /e

X, = ~TT(e"h-1) = 69%

X < -Coat 4 = 293

% = aom X = 707

Using the above result

(160)

{161)

as an initial condition the following system

can be integrated from zero to each control subinterval in order

to calculate the matrix- H :

)&/ = 0, - x(0): Ve
X, = -2 xz(0) = -69%
X3 T Ug *3(0) = 273
—*’- - "X3 yq.‘a) = 707
The result of this integration is H,: —

785 045 -3 ~ .70

185 0568 . 707 -.293

-77): 0727 . 7207 . 293

185 0935 .23 . 207

15 Ly <.aps 707

H’: 785 WKE ~. 707 2?3

= 185 198 ~.207 -. 273

85 .255 -.a293  ~-107

73 . 327 .27 3 ~. 202

L7853 . 420 - 207 -.293

785 546 -797 293
785 .67#  .293 .709_|
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Since this problem is used to chec’k. results of the computation of
the optimum driviﬁg‘ function, an optimum driving function ig chosen
using the maximum principsl and then the initial error calculated
by using this drivingA function, and setting the solution to thé

system equations to zero. Figure B-1 shows the driving function chosen.

Lo
o X n 249 27
-lo
Figure B-1
Optimum Driving Function

This correspond to a ,_go' of
,

77203 N R T B R RS Ry Ry B B BN B $T::Y
Forming the product _H.g, gives the vector
i
.5 70
L—)A_k =le (164)
o .

The matrixMust now be calculated. Again the system equations
may be integrated directly by hand to compute I(l’).The following

is the matrix equation which is integrated after first putting

it into scalar notation. The matrix F is given Table B-I:

—

é_% = F @ ) _Q(o) =TI (165)
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The following is obtained for 5(371)

(-0 o O o
0 .08 © o
é(:n): 0 0 -lo o (166)

—

O. o 0 -[D

Now set the solution to the syétem equal to zero

@(371)5 + Hae =0 - (167)

Numerically this is

’

lo o o0 o7 [g T
o ’05 Q (¢ Cz‘ - | {, 5?0
o -1

A o) 0 _z [ Ce o

The initial condition € is readily determined to be

=77
C= - 30.611 (169)
- 6
O ——d

Thus, by working backward from a known solution a problem has been
formulated which can be used to test the digital computer programs.
The data of Table B-I was used for the computer solutions.

The .pertinent results of the computations are shown in Tables
B-1I and B-III on the last page of this appendix. A slight change
had to be made in the control interval and subinterval in order to

make subinterval divide into the control' interval an integral number
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of times. This ch;nge accounts for the slight discrepancy in the
third decimal blace of the ti'mat:ix. The.descent was terminated
after 135 iteratioris when it was evident that the driving function
would converge to @hat calculated above.

Another coneclusion may be drawn from the results of this problem
in addition to the fact that the computer programs were COr;ect.
The same "baﬁg—bang"-sblufion whi?ﬁ:wa; used to determiﬁe the initial
condition was'arriyed at by an entirely ‘different method when the
computer programs were used to find the‘driving fqnction. The maximum
'principal was used'to formplate the cont;ol in the first case. The
optimization technique of Steepest Descent was usad in the second

case., This result again supports the maximum principal of Pontriagin,.
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Table B-I

Data for Computer Solution

¢.
11

D
1]

5]

QR O O

N

@ o ©°

0 o
-.31% (@) | 0
o 0 !
o -1 0

~3 1416 7]

cs |30
6.0

| 0.0 h
0 ) O]

1/ 0
0 2 o
g o /]

TAV
VHI
VLo
EPSIL
DELTA

0w " M

L T]

g.94

766

[o
~lLo

002

035
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Table B-II

H ~ Computed by Runge-Kutta

FUR H SW (NE ¢FF ENTER ALIT-AS A

FUR LG A SW GNE @N WNTER XNGT AS A
FELLOWING IS H TRANSP@SE

2 786000E+00  L4L853E-01  2B8202E+00 —3709631E+00
L 786000F+00 “571173E-01 2 705754E+00 =-,297570E+00
+786000E+00  ,733363E-01  ,709283E+00  -289056E+00
»786000E+00 - 941607E~01  ,296720E+00  ,706112E+00
w766000E+00.  120898E+00 -7 289909E+00 +708935E4+-00
»/86000E+00 | 155228E+00 -,706L65E+00 - 295870E+00
. 766000E+-00 +199306E+00 -.708586E+00 ~—,290762E+00
. 786000E+00  ,255901E+00 -,295020E+00 —:70682hE+00
.786000E+00  -328567E+00 2291615E+00 ~,708235E+00
+786000E+00. - L21866E+00  ,707178E+00 ~—729L4169E+00
+786000E+00  ,541658E+00  ,7078BLE+00 . -292L67E+00
+%géoooaoo .695467E+00  ,293318E+00  ,707531E+00
5 ‘
Table B-I111I

Computed Briving Function

1TER EQUALS - 135
. 99187806E+00
'."9187806E'+OO
2 99187806E+00 .
'09187006F400
- =3 98661603 F4+00
. .9918 7606E+00
99187()00 =00
—;963988625+OO
2 99187806E+00
2 99167806E+00
*$9187806F4-00
.99187806E+00
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Appendix C
Computer Solution of a Fourth Order Test Problem

In order to further test the computer programs:.and to.gain.
experience in their use a more realistic problém than the one presented
in Appendix B was .used. The example problem solved by Ho and Brentani
in their paper (Ref 5:A-37) was chosen because an answer was read;ly
availablm, The reasults are of interest in that a "bang-bang" solution
was again obtained.

The data for the programs is set forth in Table C-I.The salution
of the optimum driving functidn'for.a control interval of 2.5 seconds
is presented in Table C~II, These results agree with thosé -obtained

by Ho and Brentani. . !
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Table C-1

Data for Computer Pidgrgma

t
W

==
T

Gisy =

S+.5

(S+I)(StR) (SE+ 2B + 2)

O

o
o

{
N

&~9Q O

'
n

e o o #

I~
n

S O WO

0 o |
4 (7
o 1|
-0 =S
-

0

(/]
| 2]

—

0 Y,
o 0
2 o
0 '(__J

S veo

4]

.
TAV <
Uk

ErsiL <

- DELTA =

29
.05

.0
-0

602
.025
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Table C-I1

Optimum Driving Function

ITER EQUALS
~.10000000E+01
~-.10000000E+01
-.10000000E+01

-+.10000000E+01-
~.10000000E+01
-+ 10000000E+01

~.10000000E+01
-.10000000E+01
~.10000000E+01

'=+10000000E+01
=+ 10000000E+01

-.10000000E+01

-+ 10000000E+01
~.10000000E+01
=~. 10000000E+N1
-.10000000E+01

-.10000000E+01
-.10000000E+01
-, 10000000E+01
-.1000D0000E+01
-.10000000E+01
-.10000000E+01
-.10000000E+01-

~.10000000E+01"
-.10000000E+01"
~.31932941E+00
69166 105E+00
. 10000000E+01
. 10000000E+0T:

. 10000000E+01
. 10000000E+01
.10000000E+01
. «1000000QE+01,
. 10000000E+07!

«35212415E+00
-.10000000E+01’
~.10000000E+01-
- +10000000E+01

~-.10000000E+01

-+ 10000000E+01 -
=+ 10000000E+01 -

~+10000000E+01 -
-.10000000E+01

~.10000000E+01 .

-.10000000E+01-

50

~.100000C0E+01

-+ 10000000E+01
~.10000000E+01

-.10000000E+01 -

. +«10000000E+0T -

129




GE/EE/62-8
Appendix D
Tebular Daté
Tabular data from the computations descrived in Chapt?r'v is
presented in this appendix. The first two tables are the matrices
for the fourth order approximation and the sixth order system res-

pectively., The rest of the tables are optimum driving functions -

for various solution and various values of the control interval T .

In all the tables of the optimum driving functions the last two
numbers from the b&ttom are the number of itsrations used to :compite
the driving function shown and the value of tie terminal nom V,

respectively.
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Table D-I

H)Fourth Order Approximation

s 119739E-01
e 127419E-01
1 +151695E-01
.168392£-01
. +176717E-01
+192985E-01
.200784E-01
.208261E-01

' +22193 1E-01
«227963 E-01
.238013E-01
T «241867E-01
24568 LE=O1
.24683 LE-01

. 247793 E-01
T .247637E-01
.239825E-01
«227940E-01
«219864E-01
.210326E~01
«199311E-01
. 186810E-01
« 1573 84E-01
. 140503 E~01
- «122228E-01
+102615E-01
.817317E-02
F +365010£-02
. 12363 6E-02
5 THR

' .215337E-0¢Y

- /
[ S S SO N T AR AN S R T A RN

"FULLPWING 1S H TRANSP(SE

=.150925E-01
~-.156121E-01

100773 E-01
-.8543 k6 E=02
-.684763E-02
-, 499290£=02
.390307E-02
«911590E=02
. 118720E-01
. 147079E-01
«205492E~-01
.23 5159E-01
.323376E-01
.351715E-01
03790895‘0‘
+405225E-01
- 429843 E~01
+452655E-01
+473373E-01
+ 491703 E~-01

J112162E~-01
953 558E-02
.767584E=02
.343375E~02
.106267E~02
- Hi6isBLE-02
- 413893 E=02
-.987866E-U2
=.129157E-01
=+160423 E~01

© = 192397E~01

-.224876E-01
-,257638E=01
-.290446E-01
=~.323049E~01
-.355181E-01
= . 386562E~0t
-.416902E-01
-, 445900E-01
-.498625E-01
-.521717E-01
-.542200E-01
-+559749E-01
-.574047€-01
-, 584778E-01
"0591635E-01
-. 5943 24E-01
=.592562E~01
~.586084E~01
-.574645E-01
-.558024k~01
-.536026£E-01
~.436276E-01
1391453 E-01

31808 1E-C1
«389662E~01
+490159E-01
. 54873 1E-01
«597311E-01
«633056E-01
. 64523 6E~01
«653 166E~01
+656518E-01
.654980E-01
.636079E-01
+61819B8E-01
+564486E-01
.381391E-01
.319533E-01
«251322E-01
.964257E-02
.101757E-02
~.815514E=02
~.178386E~01
-.607204E-01 .
-.721826E-01
-.838016E-01
=.954970E-01
-.107182E+00
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GE/EE/62-8

Table D-III

Optimum Control for Sixth Order System

Dirsct Control of First Two State Varisbles

‘T = 675 sec,

ITERATIONS COMPLETE FOLLOWING

-0.19500000F
-0.195060000¢
-0.19500000E
-0.19500000E
-0.195C0000F
-0.19500000E
-0.19500000E
-0.19500000€E
-C.19500000F
-0.19500000F
-0.19500000&
-0.19500000F
-0.19500000E
~0.19500000¢
-0.19500000C
-0.19500000F
-G.1U524182F
0.19500000¢€
0.19500000€
0.19500000C
G+ 195G0UGO0OE
G.19500000€
0.19500000€E
0.19500000E
U«19500000E
0.19500000F
0.19500000C
129

C.12030042F~

03
03
03

03
03

03
03
03
03
03
03
03
03
03
03
03

03

03
03
03
03
03
03
03
03
03
03

00

IS U-
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Table D-111
(cont, ).

Optimum. Control for Sixth Order System
Direct Control of First Two State Varisbles

T = ,625 sec,

ITERATIONS COMPLETE FOLLOWINGL IS U
.—0.19500000E 03 .
- =0+19500000F 03
-0.19500000E 03
~-0.19500000E U3
-0.19500000€ 03
-0.19500000€ 03
-0.19500000€ 03
-0.19500000E 03
-0.19500000E 03
-0.19500000E 03
-0.19500000€ 03
-0.19500000t 03
-0.19500000E 03
-=0419500000E 03
-0.19500000E 03
-0.12865712E 02
0.19500000€ 03
0.19500000€ 03"
Q.19500000£ 03
0.19500000€ 03
0.19500000t 03
0.19500000E 03
0.19500000E 03 .
0.19500000E 03
Q.19500000E 03
60
0.35551506E-00
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GE/EE/62-8

Table D= 111
(cont.)

Optimum Control for Sixth Order System
Disect Control of First Two Stéfe Varisbles

Tw 0575 98C,

ITERATIONS COMPLETE FOLLOWING IS U
=04 19500000E. 03
-0.19500000E 03
~0.19500000E 03
~G.19500000E 03
. -0.19500000E 03
-U. 19500000k 03
=0« 19500000E 03
-+ 19500000E 03
~-0.19500000E 0%
-U.19500000E 03
-0+ 19500000 03
-0.19500000E 03
.~0..19500000E 03
-0+ 19500000E 03
0.95030949E 02
0.19500000F 03
0.19500000€ 03
.0+ 19500000E 03
. G«19500000E 03
0.19500000E 03
0.19500000E 03
L« 19500000 03
G.19500000E 03

65

0.69346071E 00
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Table D= II1’
{cont.)

Optimum Control for Sixth Order Systes
Direet Control of First Two Stete Varisbles :

T = .500 sec.

ITCRATIUNS COMPLETE FOLLOWING IS U
~G4195C0000E 03 - :
-0.19500000E 03
-+ 19500000E 03
~0.19500000€ 03
-0.19500000E 03
~0.19500000€ 03
.~G.19500000E Q3
~0.195G0000E 03
.-0.19500000E 03
-0.19500000€ 03
. -0419500000E 03
-0.19500000E 03
—0.54806840E 02
0.19500000E 03
— 0.19500000E 03
0.19500000€ 03
--.0.19500000€ 03
0.19500000E 03
~{219500000E Q3
0.19500000E 03
e 44
0.13508035E 91
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GE/EE/62-8

Table D-111
{cont.)

Optimum Control for Sixth Order System
Direct Control of First Two State Varisbles

T = .75 sec,

{TERATIONS CUMPLETE FOLLOWING ISJG

.~0«19500000E 03

~G.19500000E 03
-0.19500000E 03
-0.19500000E 03
~0.19500000E 03
-G. 19500000 03
-G+19500000E 03
-0.19500000€ 03
-G.19500000E 03
0.18410978E 03
0.19500000E 03
0.19500000E 03
U.19500000E 03
G.19500000F 03
0.19500000E 03
© 33
0.26502431E Ol
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GE/EE/62-8
Table D= IV
Optimum Control for Fourth Order Approximation
Direct Control of First Two State Varisbles
T = 650 soc. |

ITERATIONS CUMPLETE FOLLOWING 1S U
-0,7U999999E (1
-0.70999999E 01 .
-0.70999999E 01
—=0.70999999E 01
-0Q.70999999€ 01
-0.70999999E 01
=0,70999999E. 01
-0.70999999F (01
0.23082887E 01
0.70999999E 01
0.70999999E 01
0.70999999F 0]}
_0.70999999€’0L
62
0.16079205€E-00

+ et -

T = 800 sec.

ITERATIONS COMPLETE FOLLOWING IS U
=0,70999999E 0L ' o
-0.70999999E 01 ;
=0,70999999E 01 ———
-0.T0999999€ 01

-0.70999999€ 01 .

~0.70999999E 01

—=0.70999999E 01.
-0.35306581E 01

| O
0.70999999E 01
0.70999999E 01
0.70999999E 01
21 :
0.41684502E-00
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GE/EE/62-8

Teble D=1V
Optimum Control for Fourth Uxder Approximation
Direct Control of First Two Stats Varisbles

T - .Sm 88C.

ITERATIONS COMPLETE FOLLOWING IS U
-0.70999999E 01
-0.7099999SE C1
-0.7099599SE 01
-0.70999999¢ 01
 -0.7099939%E 01
~0.70999995¢ 01
' 0.82834515E GC
0.7€999999¢ 01
0.70999999E Cl
0.7099996GE C1
32.
0.12158052€ 01
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GE/EE/62-8
| Teble D=V
Optimm Control for Fourth Order Aép:oxmua? ‘
Direct Csntrol of All Four State Varisbles

T-lﬂs..c.

qI?ERATKONS CCMPLETE FOLLONING 18, u
} <0.70999595€ 01
" =0e76999999E 01
'-0.7C999999E 01 - CE
-0.7C9999%9€ 01 , ; I I
~0.7€999995¢ 01 = ) SRR |
-0.7C999999E 01
_=0,70999999E 01
-0.7099999GE 01-
~0.70599999E 01
"=0.70999999E€ 01
-0.7C999949€ 01
"=0.70999999E 01
-0.709999995 01
“=0.70999999E 01
=0+70999999E 01
-0.65408815& o1
,0.709999995 o1
0. 70999999E 01
..0470999999E 01
0.7C999999E 01
o.7c999999c 01
o , 7C99999SE 01
0. 109999995 o1
0. 70999999E C1
_0.70999599E° 01
TT0.7€999999¢ 01
0,709999995.01
0.70999999€ 01
-0.34156581t Cl1
-0.7C999999€ 01
=0,7099999GE 01
~0.T7C99999SE C1l
-0.7C999998E 01
-0.7C999999¢ 01
-0.7C999999E 01
1 -0.7099999s€ C1
=0.7C999999¢ 01
1350
0.81695723E-01
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Table D- V
{cont.)

Optimm Control for Fourth Order Approximation
Direct Control of All Four State Varisbles

T = 1.75 sec.

ITERATIONS CUMPLFTE FOLLUWING, IS U
~0.T0999999E OF
~0.7C999999E 01
~0.70999999F 01
~0eTUS99999E (]
~0.70999999¢ 01
~0sT7CG999999F (1
~0.70999999F 01
~0.TU999999E 01
~0.70999999€ 01
~0.7G999999F 01
=0.70999999F 0]
~0.TU999999E 01
~0«7C999999€ 01
~0.7C999999E 01
-0.18881381E 01
0.70999999E 01
0« T0999999E 0]
0.70999999€ 01
0.70999999€ 01
0:70999999E 01
0.7G999999F 01
0.70999999E 01
0.70999999E 01
U.T0999999E 01
.02 70999999F 01 .
0.70999999E 01
0.34043817€E 01
-0.70999999F 01
-0.70999999E 01
-0.70999999€ 01}
-0,70999999E 01
~0.70999999EF 01
-0.70999999E ‘01
~0.70999999E 01
~0.70999999€ 01
695
0.24872325E-00
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GE/EE/62~8

Table D-V
(conto’

"Optimum Control for Fourth Order Approximation
Direct Control of All Four Stats Varisbles

‘ T = 1,50 sec,

ITERATIONS COMPLETE FOLLOWING IS U
-0.70999999E 01
-0.70999999L 01
-0.70999999E 01
-0.70999999E 01
-0.70999999¢ 01
.=0e70999999E 01
-0.70999999E 01
-0.70999999E 01
-0.70999999E 01l
-0.70999999E Ol
-0.70999999E 01
-0.22782274E 01
0.70999999E 01
0.70999999E 01
. 0.70999999E 01
0.70999999E 01
0.70999999E 01
0.70999999E 01
0.T0999999E 0}
0.70999999E 01
0. 70999999E 01
0.70999999E 01
0.67485256€E 01
~0.70999999€ 01
=0,70999999E Q] .
-0.70999999€ 01
-0.70999999E 0]
-0.70999999€ 01
-00 70999999E 01
-0.70999999¢ 01
oL 355 .
0.9002364%44€ 00
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GE/EE/62-8

Table D-V
(Cmto )

Optimum Control for Fourth Order Approximation
Direct Control of All Four State Variables

T =1,25 asec.

ITERATIONS COMPLETE FOLLOWING IS U
-0.70999999€ 01
-0.70999999¢ 01
~0.70999999€ 01
-0.70999999E 01
~0.70999999E 01
. =0.70999999E 01
~0.70999999E 01
-0.70999999E 01
-0.70999999¢ 01
0.55472609E 01
0.70999999E Ol
0.70999999¢ 01
0.70999999E Ol
0.70999999E 01
0.70999999E 01
0.70999999E 01
0.70999999t 01
0.70999999E Ol
0.70999999t 01
~0.39656283C 01
-0.70999999€ 01
-0.70999999E 01
-0.70999999¢t 01
~0.70999999E 01
-0.70999999E 01
290
| 0.16630284E 01
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GE/EE/62-8

Table DV
(cont.)

Optimum Control for Fourth Ordey Approximation
Direct Control of All Four States Varisbles

T = 1.00 sec.

FYERATIONS COMPLETE FOLLOWING IS U
~0.70999999E 01 [
~0.70999999€ 01
-0.70999999¢ 01
-0.70999999¢ 01
-0.70999999E 01
-0.70999999E 01
-0.68830354E 01
0.70999999E 01
0.70999999€ 01
0.70999999E 01
0.70999999E 01
0.70999999E 01
0.70999999€ 01
0.70999999E 01
0.70999999E 01
0.16569404E-00
-0.70999999t 01
-0.70999999E 01
~0.70999999E 01}
~0.70999999€ 01
460
0.23394992E 01
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‘GE/EE/62-8

Tabls D=y
(cont.)

Optimum Control for Fourth Order Approximation
Direct Cont161 of All Four State Variables

T = .75 sec.

ITERATIONS COMPLETE FOLLOWING IS U
-0.70999999¢ 01
-0.70999999€ 01
-0.70999999€ 01
-0.70999999¢ 01
-0.70999999E 01
0.36115248E 01
0.70999999¢ 01
0.70999999E 01
0.70999999¢ 01
0.70999999E 01
0.70999999¢ 01
0.53904514E 01
-0.70999999¢ 01
-0.70999999E 01
-0.70999999¢ 01
337
0.28406490E 01

T - .50 S8Ce

ITERATIONS COMPLETE FOLLOWING IS U -
~0.70999999E 01
-0.70999999E: 01
-0.70999999¢ 01
-0.52056129€ 01
0.70999999t 01
0.70999999E 01
0.70999999E 01
0.70999999€ 01
-0.19497150E 01
-0.70999999E 01
754
0.31596032€ 01
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GE/EE/62-8
Table D-VII
State Varisble Trajectories
Fourth Order Approximation

Direct Control of Two State Varisbles

FOLLCWING IS XT STARTING AT T
"0.1582E-CC -0.178CE~-CGC  0.1994F Cl =C.1880¢ O1
0.1786€-00 —0.64C2E 00 0.2285t 01 -0.8368E 00
T0J2224E-0C -C.1116E 01 0.2521E 01 C.3123E-00
0.2903E-CC ~0.16C1E 01 0.2698E 01 C.1566E 01
T0.38276E-C€ ~0.2054E 061 0.2808t C1 '0.2920E 01
_0.493BE-0C -0.2348t Ul 0.2712& Ol 0.3802¢ Ol
0.6055E 0C -C.2118E 01 0.2305€ 01 C.3603f 01
0.7053€E CC -C.1869F Cl 0.1SC9E 01 C.3329E 0Ol
"047521E CC -0.1566E 01 0.1528F 01 0.2978E 01
0.6€49E CC -C.1312E Ul 0.1167€ 01 0.2547¢ Ol
0.9229€ CC =C.1GC7E 01 0.8296E 00 C.2C34E 0i
0.9¢53€E CC -0.,6852F OC. 0.5199F 00 C.1439¢ 01

70,9912 €O -0.3491E-0C 0.2420E-00 0.7610E 00
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GE/EE/62-8

Tabls

Fourth Order

D-VI1l

' mto Varisble Trejectoriss

Approximation

Direct Control of Four Stats Verisbles

FOLLOWING IS XT STAKTING AT T

0.1221E~00 ~0.70348E=U3  (.8481E-01 ~0.87556-01
_0.1133C-00 0.3552E-00 -0.1129E-00 -0.9223E 00
0.8645E~01 0.T199€ 0U —0.2668E-00 -0.1837E 01
_ 0.4120E=01 0.1091E 01 -0.3731E-00 -0.2429€ 01
~0.2272E~01 0.1466F 01 -0.4278E-00 -0.3896E 01
~0.1055E-00  0¢1843E 01 -0.4275E-00" -0.5G33E Ol
-0.2070E=00 0.2218E Ol -0.3686E-00 -0.06238E 01
=0.3272E-00 _ 0,2589E 0l -0.24THE-00 -0.7504E 01
—0.4657E-00 0Q.2952E Ol -G.6238E-01 -0.8826E 01
"=0.6175E_ 00 0,3117€ 01 0.2951E-00 -0.9759F 0l
-0.7638E 00 0.2730E 0l 0.9983E.00 -0.9442E 01
=0.8899€ 00 _0,2307E 01 _0.1682E 01 -0.8998E 01
-0.994CE 00 0.1852E 01 . 0.2341E 01 -0.8421E O!
~0.1075€E 01 O0.1364FE 01 0.2967E 0L -0.7708E 0l
-0.113CE 01 0.8456E 00 0.3555E 0l -0.6856E 0Ol
=041159E. 0.2992E-00 0.4096E 01 -0.5863F Ol
|-=0.1159€¢ 01 “042731E-00 0.4584E 01 -0.4727E 0Ol
=0.1131E Q1 =0,8682E 00 _0,5011€ 0l =0.3449E Q1
‘-0.1072E 01 -0.1483E 01 0.5371FE Ol -0.2030F 01
=0.9824E 00 ~0.2114E 01 0.5657E 01 -0.4713E-Q0
-0.8606E 00 -0.2P57E 01 0.5862E Gl 0.1223E 01
=0.7065E_00 -0,3409E Ol (.5978E 0l 0.3049E Ol
~0.5369E 00 -0.3372E Ol 0.5612E 0L 0.3379E 0l
=03704E£-00 ~0,3287E_O1 0.5215E 01 0.3606E QI
-0.2085E-00 =0.3183E Ul 0.4807E Gl 0.3785E 0l
-0.5241E-01. -0.3058E 01 0.4392€ 01 0.3910E 01
0.9692E-01 -0.2912E 01 0.3972E Ol 0.3979F O1 -
_0.2384E-00 ~0,2745E 01 0.3550E 01 0.3986E Ol
0.3711E-00 -0.2557E Ol 0.3129E 01 0.3928F 01
~0.4938E£-00 ~0.2348E 01 0.2713E Ol 0.3802F 0l
0.6G55E 06 -0.2118E 01 0.2305€ 01 d.3603E 01
.0.7053E 00 -0.1869E 01 0.1909E 01 0.3329€ O1
0.7921E 00 -0.1599E 01 0.1528E Ol 0.2978E 01
0.8649E -00 ~0.1312E 01 0.1167E Ol 0.2547E 01
0.9229E OU -0.1007E Ol 0.8296E 00 0.2034E 01
0.9653E 00 -0.6852E 00 U.S5199E 00 0.1439F 01
..0<9912E 00 -0.3491E-00 0.2420E-00

'0.7610E 00
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