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Preface

This report is a summary of my study of State Space optimization

techniques. My purpose was to demonstrate the use of these techniques

by applying them to a typical adaptive control system.

This study was suggested by Capt. F. M. Brown, an Assistant

Professor in the Department of Electrical Engineering at the Air

Force Institute of Technology. The study was further prompted by

the growing use of State Space techniques in the field of control

systems analysis.

I would like-to acknowledge the support and assistance given

me by Capt. R. A. Hannen, my thesis advisor and Assistant Professor

in the Department of Electrical Engineering at the Institute of

Technology.

Greatful acknowledgement is also give to Mr. P. H. Brentani

of the Minneapolis-Honeywell Regulator Comoany for the helful ex-

planations and information which he sent me.

Finally, I would like to point out that the mathematical derivations

presented in Chapters III and IV assume a knowledge of matrix algebra

on the part of the reader.

William B. Goggins, Jr.
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Abstract

Interest in the field of time optimization of control systems

has led to the development of a great number of theories concerning

this subject. Many of these have been found difficult to apply to

a. practical system. However, Ho and Brentani have developed a way

to compute the time optimum driving function to be applied to a

linear controller by the method of Steepest Descent.

The method of Ho and Brentani was applied to the linear con-

troller of a practical relay servo loop in order to compute the time

optimum driving function for this loop. The relay servo loop was

also simulated on an analogue computer; the results of simulation

were compared with the time optimum driving function. It was found

that'the two results correlated well.

ix
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I. Introduction

One of the most interesting and challenging problems in control

system engineering is the application of optimization techniques

to an automatic control system. Throughout the years many optimization

techniques have been employed and optimizations of several different

criteria have been attempted. This report will be concerned with

time optimization of a system using State Space techniques. By time

optimization is meant that a system is constructed or operated in such

a way as to drive any system error to zero in the least time. The system

to which these optimization techniques will be applied is an adaptive

control system developed by the Minneapolis-Honeywell Regulator

Company. This system is set forth in WADC Technical Report 57-349 (Ref 8:B5).

Since the concepts of adaptive control, of time optimization and of

State Space techniques are not easily definable in a sentence or two

a further general discussion of the three will be one of the subjects

of this chapter. However, a brief statement of the problem is in order

at this point.

Statement of the Problem and Purpose

The basic problem considered in this study is the determination

of a time optimum driving function to be applied to the linear con-

troller of an aircraft. A comparison of this optimum driving function

to that actually used during contrbl of the same aircraft will then

be made. From this comparison conclusions will be drawn pertaihing!;to

the validity of the optimum solution and to the effectiveness of the

I.
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physical system. With this in mind, it might be well to consider,

very generally, the concepts of adaptive control, of time optimi-

ration, and of State,

The Adaptive Concept

First, a brief discussion of the adaptive concept is in order.

In a WADC Technical Report an adaptive control system is defined as

one "which has the capability of changing its parameters through an

internal process of measurement, evaluation, and adjustment, to adapt

to a changing environment, either external or internal, to the vehicle

under control (Ref 0:2)."

One way in which such an adaptive system may be realized is

shown in Figure 1.

ev Model G,=,1 90

Figure 1

A Hypothetical Adaptive Control System

The command signal ec is fed into the model, the response of which

is the response desired for the overall system. The rest of the system

is then designed to have a transfer function of unity. For example,

2
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an aircraft adaptive autopilot would consist of the following two basic

elements; (1) a model, which would have the desired transfer function

of the autopilot-aircraft combination, and (2) the actual autopilot-

aircraft combination which would be designed to have a transfer function

of unity at all times. Thus the output of the entire system is that

of the model, and the desired response is obtained. However,

since G includes the aircraft, the dynamics of which are constantly

changing throughout its flight envelope, other parameters of G must

be constantly changed in order to keep G as close to unity as possible.

Tho changing of these parameters through internal measurement, evaluation,

and adjustment is the adaptive process.

Time Optimization and the Adaptive System

Obviously it is impossible to physically realize a G of unity.

However, if a system could be constructed which would respond i minimum

time to the output of a model, a G approximating unity would be realized.

A general theory covering this problem was developed in a series of

papers by three Russians, Pontriagin, Boltyanskii, and Gramkrelidze,

and is known as the maximum principal of Pontriagin. (Ref 11:863)

Application of the maximum principal to a linear system shows that

if the driving function of the system is "bang-bang", that is, at

all times as large, in one direction or the other, as the stops

permit, then the system will be time optimum. Such a driving function

can be obtained from a relay. A further obvious limitation is that

a proper switching sequence for the relay must be provided.

3
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An adaptive system based on the maximum principal might therefore

be constructed as in Figure 2.

Servo

Model Switching Relay and
Logic Aircraft

Figure 2

A Practical Adaptive System

In this case the output of the model is fed into a loop which consists

of a switching logic, a relay, and a servo and aircraft, all enclosed

by unity feedback. The portion of the'system of Figure 2 enclosed by

the feedback loop will be termed the relay §ervo loop and will be

referred to as such throughout the remainder of this report.

The question of when to switch the relay to obtain the optimum

response for the above system must still be answered. To date, a

practical optimum switching logic has not been synthesized. However,

for the linear portion of the system consisting of the servo and

aircraft one can compute relay switching times to drive a given error

to zero in minimum time. This is done by a method of successive

approximations which will be treated in detail in Chapters III and IV.

4
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The Concept of State

A third consideration is the concept of State, since techniques

associated with this concept will be used to determine the optimum

switching times for the aforementioned relay (Ref 11:859-860).

Very generally, one might consider that the variables of a system

consist of three types of time varying function:

1) a controllable (input). variablets)which can be changed at will

during the control interval t>to;

2) an initially controllable (state) variable X(.)which can be chosen

at t=to but thereafter will act as a function of Av(*), the input;

3) an observable (output) variable Y(t).

When the first two of these three functions are known the system can

be characterized as a function of both of them. Also, the output can

be uniquely determined as a function of both. This concept may be

expressed in equation form:

-x (A) E-(t~o); At, t, t) D1

In the case of a system of differential equations they assume the form

5(4)
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A particular case of the above is the matrix equations

(6)

where A, 3, and 0 are non-singular constant matrices.

Any linear transfer function which can be expressed in differential

equation form can be written in the form of (5) by a suitable trans-

formation. The resulting equation im" then the state equation of the

system.

A specific example of a tranformation from a transfer function

to State Space notation is in order. Consider the transfef function

o 1 (7)

The associated differential equation is

+ b e ,, ,.

Let

.- : (9)

+ e0 (10)
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Substituting (9), (10), and (ii) into (6) yields

In matrix notation the equations are expressed as

Several points of interest of the State Space notation should

now be explained. If, at any instant It and X2 are plotted on mutually

perpendicular axes, the resultant is a two dimensional vector. This

can be extended of course for an N dimensional system into N dimensional

Euclidian space; this fact is the origin of the terms State Space and

State Vector.

As time is allowed to vary, the State Vector then describes a path

in the N dimensional space. Noting that the components of the State

Vector are the succesive derivatives of the first component, one sees

that for a second order system this plot in a plane is the familiar

phase plane which is quite popular for the analysis of non-linear

systems. It seems reasonable'that the phase plane analysis could

somehow be extended to N dimensional phase space.

However, State Space analysis is useful for other reasons.

One of the more important of these of the. transformatipn ~of the

system equations into matrix form which facilitates a further trans-

formation from one coordinate system to another, that is frpm N

coordinate space to M coordinate space. The use of matrices also

T
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facilitates programming of a digital computer. In view of the above

discussion a detailed statement of the scope of investigation and

plan of developement can be made.

Scope of Investigation and Plan of Development

An adaptive control system employing a model followed by a relay

servo loop was designed, built and flight tested in an F94C aircraft

by the Minneapolis-Honeywell Regulator Company in 1957 as mentioned

on page 1 of this report. The system ias.. itch axis contrbller. This

report will analyze the system by State Space techniques in order to

compute the time optimum driving function for the linear portion of

the relay servo loop. A development of these techniques'will first

be presented, however. The results of an analogue computer simulation

of the relay servo loop will then be used as a basis for comparison.

In Chapter II a brief qualitative explanation of the system will

be presented in order to explain the operation of the basic system

and to set the stage for the analysis of the succeeding chapters.

In Chapter III the mathematical theory concerning the solution for

the optimum driving function for the linear portion of the relay

servo loop will be-treated in detail. Chapter IV will then describe

the digital computer programs used. Chapter V will present the quan-

titative analysis of the Honeywell controller by the methoda:of

Chapter III. An analogue computer simulation and its results will

be set forth in Chapter VI to form a basis for comparison of the

results of the preceding section. Comparison of these pesults and

8
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conclusions will be left to Chapter VII. Related to.Chapters III and

IV will be three appendices. Appendix A will explain in detail the

various FORTRAN statements of the digital computer programs; in

Appendix B comparative solutions of an example problem simple enough

to be worked out by hand will be included; Appendix C will show the

solution of a typical fourth order problem. The numerical results

of these last two appendices will demonstrate to the reader tie utility

and validity of the methods presented. Tabular data will be presented

in Appendix D.

9



GE/EE/62-8

II. Description of the Minneapolis-Honeywell Adaptive System

Before analysis of the Minneapolis-Honeywell Adaptive Control

System by State Space techniques it would be well to consider the

system in a qualitative manner so that the application of State Space

analysis will be clear.

It should be' noted here that important symbols used throughout

this report are listed and defined in the Table of Symbols in the

prefatory part. Figure 3 on the following page is a block diagram

of the Honeywell pitch rate system which was installed in the F94C.

This block diagram was' taken directly from the WADC report (Ref 8:85).

The transfer functions of the various components are shown in their

respective blocks. These correspond to Flight Condition 13 in the

WADC report (Ref 8:153). Flight Condition 13 refers to the F94C

aircraft operating at an altitude of 35,000 feet and at a mack number

of .73. Note that G as used in this chapter refers to pitch rate.

The operation of the pitch rate system is discussed in the following

section.

Operation of the Adaptive System

1he basis for operation of the adaptive control system shown in

Figure 3 in the forcing of the aircraft pitch rate response 0 to

follow the response of the model 9 as 6losely as possible. The

model is a simple electrical network with response characteristics

equal to those a pilot would desire over the entire flight envelope

10
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of the aircraft. A second order function with a damping ratio of

.63 and a natural frequency of 3.17 is used. The desired model response

is fed into the relay servo loop. The term relay servo loop here

refers to that portion of the system enclosed by the rate gyro feedback,

and includes the rate gyro itself. The model output is summed with

the negative .of the aircraft pitch rate which is fed back by means

of the rate gyro. The rate gyro's characteristics are such that this

is essentially unity feedback. An error signal F. is thus produced.

The error signal is fed through the switching logic, which, as will

be shown in Chapter V, is approximately a proportional plus derivative

network. The algebraic sum of the error signal and of its derivative

multiplied by .225 controls the switching of a very sensitive electronic

relay. If the sum is positive the output of the relay will be positive.

A 2000 cycle/second sinusoidal dither signal is applied to the relay

in order to improve its characteristics. The gain changer and the

limiter provide a means for cutting down the relay output voltage

for small error signals. In addition the limiter assurea proper

limiting of the output of the electronic relay.

The filter, the servo and actuator, and the aircraft compose

the linear controller portion of the system. Transfer functions shown

for the servo and actuator and for the aircraft were derived experimentally.

The filter is a lag-lead network used to improve the response of

the linear system. The denominator provides a pole close to the

zero of the servo and actuator thus preventing this zero from greatly

12
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affecting the response of the loop; the numerator assures that

roots due to the servo and actuator poles do not become dominant.

The relay servo loop of the Honeywell adaptive system closely

resembles that of the practical adaptive system depicted in Figure 2

in the introductory chapter. The differences are the added components

of the Honeywell loop; these are the limiter, the gain changer, and

the AC dither. These components provide second order improvements to

the system and their inclusion complicates the analysis unnecessarily.

Thus they will-not be included in any further analysis of the system.

Also, the response of the model can easily be obtained by the

Laplace transform technique, or any one of several others. Therefore,

only the relay servo loop will be analyzed in this report.

Before going on to Chapter III the reader should note that the

filter, the actuator and servo, and the aircraft comprise the linear

controller for which an optimum driving function is desired. The

next chapter of this report will develop the mathematical theory for

finding this optimum driving function.

13
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III. Mathematical Development of the Solution for the Optimum Driving Function

Since the use of State Space techniques and the solution for

the optimum driving function are both rcJatively new this portion

of the report will be devoted to' a detailed development of the under-

lying mathematics covering this problem. Because matrix notation will

be used freely throughout the development it'might be well to define

the symbols to be used. A matrix will be repiesented by an underlined

upper case letter, i. e., * A vector (n x 1 or 1 x n matrix) will

be denoted by an underlined small letter, i. e., k . A transposed

matrix will be denoted by / as, D * The symbol -1 will be used-to

signify the inverse of a matrix, i. e., .! Successive time derivatives

will be denoted by successive dots 'above the symbol such as - or L.

The familiar derivative notation and the operator D will also'

be used. The Laplace operator will be denoted by S • Vector or matrix

elements will often be written in subscripted form for clarity of

explanation. Lower case letters will always be used in this instance.

The first step toward finding the optimum driving function is

the development of a transformation which will make' it possible

to put a general linear transfer function into State Space notation.

This transformation will be developed in the next section of this

chapter.

Transformation of a General Linear Transfer Function into State Space Form

In the introductory chapter transformation was introduced 'to

14
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allow an Nth order differential equation to be written as a series

of linear first order differential equations. However, it often occurs

in control system problems that the right hand side of the differential

equation contains derivatives of the driving function. For instance

the transfer function

e. C b, (14)

becomes

e+ + C4 ze (15)

Since derivatives of many inputs, for instance step or impulse functions,

are not calculable in the time domain it is necessary to replace

the differential system by a first order system containing no derivatives

on the right hand side.

A transformation has been developed by Lanning and Battin (Ref 6:191)

for a general time varying system to eliminate right hand side derivatives.

Since this paper deals only with the time invariant or constant

coefficient case, a formula will be developed inductively considering

the coefficients of the differential equation to be constant.'Consider

the differential equation

2L~ t--44C b4~ b" (16)

The following system of first order equations is then to be made

equivalent to equation (16):

? X, + Co7s" (17)

15
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a(18)

Eliminate X, and X I successively in the following manner:

X - X- & (20)

Differentiate (20) with respect to time:

(21)

Substituting this result in (18) and rearranging,

A = (22)

Now differentiate (22)t

't X (23)

After rearranging (23) substitute the result for in (19). Rear-

ranging the resulting expression then yields

16
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Now eliminating X( and by substituting (20) and (22) one has

f- C, 'Lc C' 4 &,",(25)

Equating right hand coefficients of (25) with those of (16) yields

o 0 -- C'O (26)

" zl a.,- 0  (27)

r C-2' t . o (28)

Solving for r, , and &Z then yields

be (29)

,- a - ., Go (30)

Z =- 14,- & a- '1(31)

Inductively, the following relation can then be derived:

C- (32)

Thus the N order system

e i . . (33)

17
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may be transformed into a series of first order differential equations

of the form

X -( +~~ (34)"

X - I a .x -- -", + "' t. "X 7 + C- " -  (36)

where G, (o(4 ,- n) is given by formula (32) and*/) is the order

of the system. In matrix form this is written as

66 A x= A + t) 07)(t

( c (38)

where 2()is the state vector and XI;xj.,e7)are the state variables.

So far a method has been presented for expressing a general

linear transfer function in State Space notation. It is now necessary

to consider this transformed transfer function in its place as the

linear controller of a relay servo loop. As was pointed out in the

introduction, it is presently impossible to synthesize a circuit

which would perform the switching logic function in an optimum manner.

What can be done, however, is the following: given a linear controller

as described mathematically by equations (37) and (38) it is possible to.

compute the, driving function,Iwhich will reduce the state vector (;t)

to zero in the shortest possible time. If onelets the state variables

represent the error of the system, then one will have computed the

18
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driving function for the linear controller which will reduce the

.error to zero in the shortest possible time.

Thus, although an optimum switching logic cannot be synthesized

the output of such a switching logic can be found. Finding this

optimum driving function is a useful tool of analysis since the output

of the controller when subjected to this driving function can be found.

Comparisons can then be made between these inputs'and outputs and

those of the same linear controller when utilized in a practical

system.

Calculation of the Optimum Driving Function

The problem to be considered in this section is the calculation

of the optimum driving function~tSt)for the system of .equations (37)

and (38). A method developed by Ho and Brentani was followed to solve

this problem (Ref 5)e First, consider a mathematical statement of the

problem.

Given a linear system

x =) 1x(t) (319

xO (40)

where C is an initial error in the system, compute the driving function

,{4 necessary to minimize the error in an optimum manner. It will

be necegsary to state mathematically the criterion or norm used in

minimizing the error. However, this statement of the criterion function

19
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will be made in a more appropriate part of this discussion. The general

method of solution for the problem must be discussed first.

The-Numerical Approximation. Since a closed solution to this

problem is in the general case presently unavailable, a numerical

approximation will be made and a digital computer will be employed

in the computation. Therefore, it will be necessary to divide the

control interval into a number of subintervals and make the driving

function mt) piecewise constant. Thus

L-_0 (42)K

where C is the step length.and'J the'number of control subintervals. One must

specify the control interval T to be used for each solution. the

control interval may also be referred to as the terminal time in

this report.

Each 4now becomes a variable in itself and the problem becomes

one of many variables, and of minimizing a function of these variables.

To do this, a method of successive approximations known as the Steepest

Descent method is employed.

The .Steepest Descent Method. Before entering into a mathematical

discussion of the method of Steepest Descent an intuitive approach

should prove helpful. Figure 4 on the next page is a map of contour

lines of a three dimensional surface which is shaped like a bowl.

If one were at a point on the rim and wished to get to the lowest
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Figure 4
Contour Lines for a Valley

point as fast'as possible it would be better to go straight down the

slope in the direction of the center arrow than to spiral around

the rim in the direction of one of the other two arrows. This is

assuming that there aren't too many obstacles blocking the path of

descent. It may be deduced even further that even if one cannot see

the bottom of the bowl one could continually pick the steepest slope

and go down this slope until he gets to the bottom, that is until he

starts going up again. The direction taken in this example is the

negative of the gradient.

The problem may now be restated mathematically in a more general

form. Consider a fuhction to be describable inA dimensional Euclidian
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space. One then computes the gradient of the function at some point

on a hypersurface in that space. Descending from that point in space

along the negative of the gradient then gives the greatest rate of

decrease of the function. Although this follows from the previous

discussion, a mathematical proof is in ordez(Ref 7:2-4), Consider

a function df several variables Sx,... 4 Start at some point X..: X,(o)

in / dimensional space and move an infinitesmal distance 4 :

The total differential of((,... x.)is

From the above the derivative with respect to 4 can be expressed as

_ (45)

4-'

One desires to find the most negative rate of descent 1 subject to

the constraint of (43). In order to do this first rewrite (43) as

n 1 i ( = a (46)

Then adjoin (46) to (45) by means of a Lagrangian multiplier(Ref 4:120-125):

(47)
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Take partial derivatives in (47) with respect to Aand set each

equal to zero:

V -0 - (48)

The following is obtained by rearranging (48):

z (49)

Now form the sum of the squares of each of the equations of (49):

-fl (50)

The left hand side of (50) is seen to be unity from equation (43):

Solving (51) for ? yields

+  (52)

This value for X can be substituted into (49) to obtain

ea n 4- that(53)

Recalling that X

(45)
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Substituting (45) into (53) after solving forZ yields the most

negative

+ (54)

The inner summation is performed before the outer summation and is

therefore factorable:

Again recalling that

The second.summation becomes I and thus

# (56)

Examination of (56) reveals that these are respectively the positive

and negative gradients. The maximum rate of descent, which is the

maximum rate of change of the function with respect to distance, is

therefore obtained by making the direction of descent equal to the

negative of the gradient.

Complete Statement of the Control System Problem. With the above

result in mind it is now possible to consider the problem of obtaining

a solution for the optimum driving function of the linear controller
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by the Steepest Descent method. In an actual autopilot system, an

additional constraint must be added to those already stipulated in

the preceeding sections. This additional constraint limits the maximum

excursion of the driving function to one that will not overdrive the

system. A more complete mathematical statement of the problem may

now be made. Consider the dynamic system

X~o) :C .(58)

which can be written in subscripted form as

XN(0) =(60)

It is now necessary to state the function to be minimized:

Where -i a. p~sitive:definite symmetricpl matrix of weighting .functions.

The functioh (61. ill-be referred-t6 as the performance function

or as the terminal norm. Since V is quadratic in form, finding the

minimum V will also find the minimum of X(T). The choice of the matrix R

will be discussed in detail in'Chapter IV.

The system will be subject to the maximum input constraint

mentioned above.:

JA44)/ y (62)
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or for ,4 piecewise constant

) - , . K- (63)

Determining the Gradient. Now that a complete mathematical statement

of the problem has been made the method of solution may-be considered.

Briefly stated, the method of solution is to compute the gradient

of V with respect to 14 and then to descend along this path subject

to the constraint that At may not go beyond a boundary fommd by

equation (63)o

As before define

(A z:)_ < -. - (41 )

K(41)

Thus

It is necessary to find the change in the terminal norm V with respect

to'a change inkk. Rbcalling that each Atis a separate variable

in Kdimertsional space the following relationship can be formed:

.Ti sV ang in ot /(p1 (65)

This says that for anyd,% the change in (.with respect to that .44
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equals the change in V with respect to the change in the terminal

state vector multiplied by the change in the terminal state vector

with respect to the change in. the control •j* At this point define

4) X (T). =(66)

as an element of an/" x K, matrix I Making this substitution in

(65) yields

V , T)-o (67)

Performing the indicated summation

(~T) 
(68)

4b op..)K-1

In matrix form this is written as

C) = H V (69)

_ CT)

Recalling the expression for the terninal norm

V = '(r) x(T) (61)

For R symmetrical, the derivative is calculated to be (Ref 3:48)

__ ZR XCt) (70)

Substituting (70) into (69) yields

T) (71)
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X(Tr) can be calculated by solving the system equations. Thus it is

only necessary to determine in order to find il

Calculation of 8 . An exmination of the solution tothe syttem

equations will lead to, amethod.foi calculating L . The solution to

equations (57) and (58) is (Ref l=78)

where

where L is the identity matrix' To find ftr)which is under the integral

sign. the adjoint system may be utilized, This is defined a s

It .is now necessary to considerthe solutions. to equation (73) and

to the adjoint equation (74). Equation (73) resembles the scalar form.

at (o) (75)

The solution of the above scalar equation is known from differential

equation theory to be

ea ~ t (76)

where the exponential is defined

77)
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In likemanner the solution to equation (73) is

(78)

if is'defined as follows

46Z ~ 00 ( 9= S .L ,' E. (79)

That this series converges and is differentiable term by term is

readily shown (Ref 3:42-45). Term by term differentiation and sub-

stitution into equation (73) shows that equation ('79) is indeed a

solution. The matrix ! is often known as a fundamental matrix for

the system. Similarly the solution to (74) is found to be

T- 7) (80)

Substitution-of these results into (72) yields

Equation (81) is the same as the solution (72) except that it is

written in exponential form* The definitions of the exponentials

may be used to calculate a numerical solution for &*. However, this

problem will be taken up in Chapter IV. Use of the exponential form

will also clarify the following steps in the development of a method

for the calculation of the matrix H a

Suppose for a moment thatSqt)were constant over the entire control

interval. It then could be factored from under the integral thus facilitating
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differentiation with respect to 14-o

X-± (T)TC +8ee 2)

The derivative for Ac constant' now becomes

T () (T(To f -J)- (83)

The value of making.4.- piecewise constant now becomes evident.

The integration can be broken up,, with the intetval of each part

chosen to be the control subinterval r ; and each U * can be factored

from the integral. If the exponentials are chosen judiciously the

following result is obtained:

Now differentiate x(1) with respect to each

The xpoentil ~is a constant and may be brought from

under the integral:

The integral of (86) can b. simplified to a much more maneagable

form. To do this it is first necessary to evaluate The integral.
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To do this perform the integration:

p. " ()O"T)

By equating this result with that obtained from evaluation of the

following integral a convenient way of calculating the integral of

equation (87) can be determined:

f eirF (88)

Integration yields

F-1. I~~j e- = 'CEI (89)

Equating the results of the two integrations one obtains.

Substituting the results of (90) back into equation (86) then yields

F-,
*4 LLT)J eEt- *+f)T]f CI k k, (9 1)

Reverting back to the notation of the fundamental matrix one has the

following which is equi*alent to (91):

S ,..., -3
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In order to simplify the notation let

az (93)

Recalling that

-T (66)

Putting (92) into matrix notation one has the result

Distance to Descend. Having determined a means for calculating

the gradient it is now necessary to determine the proper distance

to descend along this gradient in.order to maximize the change in,

the terminal norm V . Putting the solution to the system equations

in a more maneagable form facilitates the algebra involved in finding

this proper distance to descend. Recall the solution to the system

equations:

X T-) fefr ± e(r)F 4 .- ) /O- (61)

Let

FT (95)

Then using the result for ) , which is equation (94) and the matrix

version of the driving function :i, which is equation (64), a matrix
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formula for %_LT)can be obtained:

(T) ? t 4 f&(96)

Now to continue with the calculation of the proper distance to descend

along the gradient consider the terminal norm formula, which is equation

(61), with equation (.95) substituted:

V= _P+ '. + (p (97)

However, the change in the terminal norm V with a change in the

driving function -. is of interest. Taking -jfat any point, say

and performing the matrix operations indicated in (97)

Vi P R H + -ZP ? 4a (98)

Consider a small variation in A,-:

&#+ : + _ (99)

Substituting (99) into (98) yields

Then carry out the multiplication called for in (100)
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Now define

S V = V- K (102)

Then subtracting (98) from (101) leaves

$Vz a_' K, ,) H $ + K 'H' SH (103)

Combining the'first twb tems

+1/ cc H±~~b' (104)

Substituting equation (96) into (104)

4- 25'T))14' R k1 (105)

Recalling equation (71) and taking its transpose one has

.2- )XHT-)-H (106)

Substituting the above result into (105)

v -v sw, + S SA, 14 -k H (107)C )'
Now define

V =(106)

Finally

Z. (109)
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Equation (109) is an expression for the variation in the terminal

norm verses a small variation in the driving function Skc It is now

desirable to maximize the change in the terminal normSV by determining

a proper distance to descend along the gradient T. The change in

the driving function &1is equal to the direction of descent multiplied by

the proper distance to descends

where is; a constant and is the proper distance to descend.

Were it possible to descend along the gradient without being

sybjact to the constraint on the driving function discussed on page

25, 1 could be determined in the following manner. Substitute (110)

into (109):

Calculus can now be employed to determine the value for 71which will

maximize V. Differentiate equation (Ill) with respect to 77and set

the resulting expression equal to zeros

CL_ L ) tD 4-(112)

Solving for 17

(113)
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However, U4s limited since &p 94inust not go outside the boundary

which was determined by the maximum contraint on the driving function ..

Proper use of this constraint will aid in computing the proper change

in the driving function subject to the constraint.

The Descent Scblaes. Two different: descant schemes may be de-

termined utilizing ;the constraint on the driving function. These are

the Gradient Projec'tion Descent Scheme and the Corner Aiming Descent

Scheme. Both schemes use the constraint on the driving function to

limit J__. but they jo it in a slightly different way. A geometrical

interpretation of the Gradient Projection Descent Scheme is shown in

Figure 4a which iso two dwnensional model used to aid in the ex-

planation of the deecent schemes. Figure 4a is located on the next

page. Since this is a two dimensional model only two con rol sub-

intervals are used." As befbre, the attempt is, made to mihimize the

terminal norm V by changing the driving function . The negative of

the gradient is theefore drawn from point A across the lines of

constant V which a e the same as the contour lines of Figure 4.

The vector AB thus epresents !7Jwith €7computed Qs in equation (113).

However, the boundary for the driving finction does not allow a

vector of this lehgh. The, tip of the vector is therefore projected

down to the bound0r4 to point C. A vector drawn from point A to

the intersection 'ofthe projection, C, is then used as the change in

control. It is from this procedure'that the term "gradient projection"

is derived.
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Notice that a new gradient from point C can be determined and

the tip of the vector CD projected to the boundary as before. This

time movement from C to E is along the boundary. This movement along

the boundary leads one to the conclusion that for the orientation

of the control boundaries on the contour map of Figure 4a, the driving

function will always-go to the corner of the boundaries. The termination

of the driving function -4' at ths corner of the boundaries is in

keeping with the maximum principal of'Pontriagin which states that

the magnitude of the driving function _.,must be the maximum allowed

by the physical limitations of the system in order to achieve time

optimization. A second descent scheme, the Corner Aiming Descent Scheme,

can be formulated by taking advantage of this principal, Figure 4b

illustrates this second descent scheme geometrically.

Pigure 4b

Geometrical Interpretation of Corner Aiming Descent
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After the gradient is determined, instead of projecting the

tip of the vector ? down to the boundary, the corner nearest the

vector AB is aimed for. In this way, the assumption that the corner

will eventually be reached in utilized to aid in the descent. The use

of the maximum principal thus gnters into the calculations.

All of the statements made about the two dimensional models of

Figures 4a and 4b can of course be extended to K dimensional hyperspace

for the K number of control subintervals encountered in an actual

problem. The mathematics for computing the change in the driving

function Sd.utilizing these two descent schemes is presented below.

The following equations describe the Gradient Projection Descent

Scheme:

IF- YA
I F ' a t f <- 1 e A ( 1 1 4 )

IF 5x'-~ ~q ~ 4

where is the upper boundary for the driving function and yj is

the lower boundary for the driving function. A new must now be

determined in the same manner as before:

S(115)

It is now necessary to assure that )7 does not exceed'uniLy;
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Therefore

~ 1 L 4 4 ('7,)(116)

where

% IF (17

Finally, the change in the driving function is expressed as

Conceptually, the above procedure limits as m shown in Figure 5, below.

Figure 5
Gradient Projection Descent
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The following equations formulate the Corner Aiming Descent Scheme:

o z 0 (119)

4

As before it is necessary to determine a new

kh 2 (120)

Again 1, must be limited to unityt

)7=Aat.(11,) (121)

Finally, as before

zL'f (122)

In, the Corner Aiming. Descent Sphe.me W is.'limited, in a diffe rent'

iay*. Figure 6 on.. the next .page: shpw@, this. conceptu4ly#,:

Th. now value of the. dri. ng function c;n. now be computedby.,

adding the value for Socomputed by either the Gradient Projection

Descent Scheme or thet';CmrnerAiming..Descent Scheme

to the old value of 4, This is expressed mathematically

4t + (123)
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Fiqure 6

Corner Aiming Descent

Completion Qf Solution

The process is now repeated with the new value of -and the

solution will hopefully converge to a true minimum. It is necessary,

however, to determine when the minimum has been reached. In the

method of Steepest Descent a minimum is reached as soon as the gradient

becomes zero as in Figure 6a on the next page. However, in this

problem the constraint on the driving function may prevent all the

elements of the gradient vector from reachingzero. Therefore, conditidns

other than a zero gradient will have to be used to determine when

the minimum for the terminal norm V has been reached. The solution
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is considered complete whenever one of the three conditions below

occurs for all AIA-

~'Y 0 t

< ,) (124)

Equation (124) states that the solution is complete when, for

each control subinterval, 1) the gradient has reached zero and no

further improvement in the terminal norm V can be made, or 2) that

no further change is possible in the driving function Acidue to the

constraint'imposed. Whem,one 'of .these conditions"is metfor every

Loc i9

Wt iy I rrU Mi

Rjq O r'r- 0Y
GLobAt L

IYRD/4ftT: 0

Figure 6a
Local and Global Minima
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control Subinterval computation is halted and the final driving

function is read out. That the point reached is a minimum is shown

in Reference 5 (Ref S:A-20toA-23)*

It should be noted that any time the method of Steepest Descent

is employed the minimum reached may only be a local minimum. There

may still exist someplace on the hypersurface considered a global

minimum. Figure 6a illustrates this for a two dimensional problem.

This should not detract from the usefulness of this method, however,

since, for the type of problem being considered in this report, the

approximate.solution is already known from the maximum principal.

According to the maximum-principal the solution is expected to be

"bang-bang" and thus an approximate check on the results is available.

This completes the mathematical-development for the solution

for the optimum driving function of a linear controller. The next

chapter of this report will present a description of the computer

programs used and a general discussion of their use.
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IV. Description of the Computer Programs

The. purpose of this chapter is to extract,from Chapter.II

the various equations utilized in the digital computer programs

and present them in a meaningful manner; in addition, certain here-

tofore unexplained phases of the solution will be treated in detail.

Since the development of the equations of the descent has been set

forth in great detail in the preceding chapter, the equations extracted

from that chapter will be stated without further justification.

Appendix A will, by reference to the listings of the programs, explain

the purpose of the various FORTRAN statements used.

Computation of . * . and H

Although p, a, and H were defined in Chapter III the

details of their computation remain to be discussed. Recalling the

definitions of p , , and H

H ~ ( [e - T_ (7 &r-az). -' (94)

The most obvious way to compute these functions is to use the definition

of
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Equation (78) can easily be calculated by using-the definition of

10
o " (79)

The successive terms of the series are computed and summed on a

digital computer for a particular value of t. This method was

originally used for computing and worked quite well for problems

with a short control interval and small moduli of the elements in

the matrix E . Due to the arithmetical nature of the digital computer

it is necessary to solve the numerical rather than the algebraic

problem. For instance, for each column of 9 a seperate P-AT&)must

be computed.

The number of terms in the series for necessary for the

required accuracy varies with the moduli of the elements in the

numerator of the terms of the series. (Note that for the actual

computation the matrix F is multiplied through by the scalar

before the numerator is carried to a power.)'The size of the.,

numerator moduli depends not only on the elements of the matrix

but also on the value chosen for t. Experience has shown that whenever

it is necessary to carry the series farther than 100 terms the

computation time is excessive and roundoff errors in the computer

arithmetic cause inaccuracies. It should be noted, howeve;, that

the series method is a straightforeward and quite practical method

for computing provided the moduli of the numerator of the first

term of the series do not exceed 25.
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The accuracy of the result may be assured in either one of two

ways. Each term computed may be examined apd whenever the absolute

value of each element of the matrix of that term is less than the

required accuracy computation may be considered complete.' A less

difficult method from the standpoint of programming is the use of

a procedure set forth in Section 4-19 of Elementary Matrices (Ref 3:145)o

The upper bound for the power of a matrix is first computed by this

procedure. The result is then divided by M !. One thus computes

the upper bound of the matrix:12tfor each term of the series and-W/

compares it with the accuracy required. When the upper bound falls

below the required accuracy the number of the term just calculated

is read out and employed to terminate the rest of the programs

involving series computations.

Computation of the fundamental matrix for a problem of a practical

nature is usually not feasible by the series solution method because

of the large number of terms necessary for accuracy. However, another

method involving direct numerical integration of the system equations

can be employed.

Computation of 9 . . and d by the Method of Runge-Kutt

The matrices, a., and tL can be computed by direct integration

of the system equations. It is the purpose of this section to :;;-i,

develop the theory for this method. Consider the solution to the

system equations:

cX'(T) r~ 04 (72)
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Examination of equation (72) reveals that in the linear system the

solution is constructed by superposition of the response due to the

initial condition X(e): C and the response due to the inputS(r).

Taking first of all

Cp C (95)

one notices that this could be regarded as the solution

T) = (T)_ + .0 (125)

Equation (125) is identical to the solution for the unexcited system

with an initial Condition

__) (126)

The term "unexcited" means that the driving functionAz(O)is zero

in equation (72). Equation (125) is thus the solution to the homo-

geneous system

2, (t) = -F t 3 (o)) (127)

at L:T. Direct* integration.of equation, (127) ill Ahen "deteriine .e
The solution for the vsctdr A will be consideaid next. Taking

the integral
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and carrying out the integration as before, one has

(r£ [et xji (128)

Now take the integral

Y r(tf -)e r (129)

and carry out the integration:

e- F CFl

The results, of equatidns',(128)r.and..130) are identical.. The original

integrals: may thus be equated:

f. f- t (131)

Referring back to the solution to the system equations, which is

equation (72) one sees that

'~c~c W'~(1~ (132)

Equation L132) says that the vector - may be calculated by finding

the solution at time 4%rto the system equations which have been

excited with a step input of unity with an initial condition 'X(CO) _0

Thus the system
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may be integrated from t- 0 to T to determine 4.

Finally, one can compute the matrix _ by noting that

This can be expressed alternately as

'(T-hr) !5 + .. r~ - 0 (15

Thus the columns of the H matrix can be calculated by computing

the state vector of the unexcited system at the control subintervals

starting with an initial condition X ()=go One then must ikvalute

the following sybtem" at . , "then! intgrati from .'Oto ., ',

from t-- to 2r,, etc..:

00 F z t) _(136)

Now that formulae *hikWcan be directly integrated to find p,a, .,and:

have been developed,a practical method of integration must be considered.

Again, the only practical method of integration is an approximate

numerical solution. Of the many methods available, the method of Runge-

Kutta is quite suitable for this type of problem since it affords

accurate results and since the computation procedures are recurrent.

Also, it may be extended quite easily from the scalar form to the

matrix form. Consider one equation of a Stat4 Space system in sub-

scripted form:

+ - +  - (137)
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Replace oLtby a small interval 1and apply the following

formulae(Ref 10: 123 ):

then

4:: ~ 1(c3  %6~t(138)

The formulas may in like manner be applied to the successive State

equations to compute c t " In matrix form this is more com-

pactly expressed for the particular problem of calculating

4 (139)
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The value of iXjust calculated is then added to ato)and the new

value of X is used as an initial condition for another round of

computations. The computation thus proceeds in an iterative fashion

until the particular value of .' is reached. The value of '_.at this

point is then read out as the desired solution.

It is possible, using the method of Runge-Kutta just described,

to compute P, et and H by direct integration of the system

equations. The utility of this method is obvious in that it does not

depend on s series solution and hence the accuracy is not limited

by the number .of terms involved. Thus, a problem for which the moduli

of the matrix F are large may be handled as easily as any other. Also,

when computing , it is only necessary to read out the solution

at the end of each successive control subinterval. rather than to

start from the beginning for each column as with the series solution.

One must only be careful to choose a proper value for &;t Too small

a 6* will result in a roundoff error when using a digital computer

because the 4acomputed will be quite small. Conversely, when

is too large the accuracy Will suffer because the slope of the

function will not remain constant over the interval of 46-

Calculation of p, g, and 14 represents precomputation which

is accomplished before the main program, which is the descent, .is

entered. This not only breaks up the computation time, butalso

allows one to check for reasonpble results of the precomputation

before employing the descent program..
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The Descent

Now that the -.iecom~utation has been 'expla'ined,: it isonly necessary

to list the equations of the descent in the order in which they are

programmed. It should be noted that an initial value for the driving

-function A4. must be guessed at and a control interval T selected.

It goes without saying that a good initial guess for d -4-will greatly

speed the solution. The choice of the control interval will of course

depend on the linear transfer function itself, on the limits of the

driving function,.on the initial conditions., and on the R matrix.

Choice of the &._matrix, which is a matrix of weighting constants,

depends on the amount of direct control it is desired to exert on each

state variable. Further discussion of the choice of the matrix R will

be postponed until the end of this chapter.

Using the-precomputed values for p and If, and a selected R

the following equations comprise the descent portion of the solution:

(96)

V X X'(T) 7- (r) (61)

__t__I __IT (141)

t (110)
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The operator must now choose between the two descent schemes. The

equations for the Gradient Projection Descent Scheme are presented

first:

('-IFA

A new value of 1 must now be computed:

'1:. -(142)

The above is then limited to unity:

1% - t(",) (116)

The change in the driving function is calculated next:

Finally

If the operator desires, the Corner Aiming,Descent Scheme may be used:

Wr 0y(119)
t I4 A>0
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Again a new value for ~1must be calculated:

(143)"/' uW' H' _ k

and

From which

zS x 1 ?_' (122)

Finally

ezw - e5" (123)

The computation is repeated with the new value of -4. The

process is lteraUtvm until the following conditions are fulfilled

for all control subintervals, whereupon it is stopped and the final

control is read out:

FOR

(144)

)'e~A< 'Yx FO At .I

The terms S and f must be used in a digital computer solution

since the control converges toward a boundary, but never quite

reaches it. Also, the gradient never quite becomes zero, although

it approaches it so closely that no noticeable improvement can be'
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made in the terminal norm. Thus, further computation would be wasted

effort.

The Matrix R

A brief discussion of the choice of the matrix R is now in

order. The function

V= (T) C T-) (61).

is termed a "quadratic" if R is symmetrical. When this is expanded

one has

Theij terms are called mutual dependance terms, while the & Z terms

are called self dependance terms. When formulating the criterion 'I

it is desirable to keep only the self dependance terms, since one

is usually not interested in controlling the product of two state

variables* Thus, the njare made zero. The,44then become weighting

constants which reflect the "utility" of controlling directly each

state variable.The term "directlyP means that an attmpt is made

to drive that particular state variable to zero during the control

interval. This becomes more clear when one notes that for any ,vn

chosen to be zero the corresponding ,Kzwill not be driven to zero

but will follow according to the equation

(146)
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With these points in mind the engineer may choose the elements of

the matrix B in order to solve the particular problem he is confronted

with.

As in all minimization or maximization problems the choice of

the criterion used influences the answer a great deal. Since the

matrix R is a part of the criterion used for the particular method

discussed in this report it will certainly influence the answer a

great deal, as will be seen in the next chapter.

Determining the Optimum Control Interval

After the iteration process has been completed and the optimum

driving function has been calculated fok a particular control interval,

the computed value for the terminal norm V is read out. The process

is then repeated for a new control interval. After this ip done several

times, the values of V are plotted against the respective control

intervals used for the computations. The result is that shown in

Figure 7 on the next page. The end of the solid part of the curve

represents the last value of V plotted. A tangent to the curve is then

projected from this point to the T axis as shown. The value of T at

the intercept of the tangent with the T axis can then be used as

an estimate for a new control interval for the next computation.

The process may then be repeated successively. Note that the dashed

portion of the V curve is assymtotic to the T axis. Since the curve

never reaches zero, a small percentage of the initial value for V

is picked. This value is plotted on the V axis and a horizontal line
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Figure 7
Determination of New Control Interval

V

a -T

Figure 8
Terminal Norm vs. Control Interval
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is drawn as shown in Figure 8. When the value of V just falls below

this line the corresponding T is the optimum control interval and

the driving function computed at this value of T is the optimum

driving function.

This completes the description of the computer programs. The

next chapter of this report will be devoted to the analysis of the

Minneapolis-Honeywell relay servo loop.
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V. State Space Analysis of the Minneapolis-Honsywell Relay Servo Loop

In this part of the report the numerical solutions for the optimum

driving function o the linear controller portion of the Minneapolis-

Honeywell Adaptive Control System will be discussed. In ChapteroII

it was stated that only therelay servo loop of the Honeywell system

would be analyzed in this report, since the model could easily be

analyzed separately. A block diagram of the relay servo loop is

presented on the next page in Figure 9.

A meaningful method of analysis for any servo system is to

find the response to a unit step input; this method will be employed

in this report. In Chapter III a method for finding the optimum driving

function to drive an initial error to zero in minimum time was

developed for a linear controller. If the relay servo loop of Figure

9 is excited by a unit step input, it will appear at the output of

the summer as a unit step error, provided the system was i6 equilibrium

to start with. The switching logic and the relay will then generate

a driving function for the linear controller to drive the error back

to zero. Equivalent to a unit step input with an initial eutput

error of zero would be a zero input with an initial output error

of a unit step. The output of the summer would be the same in both

cases disregarding the signs. Since the two are equivalent, the

problem that will be considered in this chapter is that of computing

the optimum driving functiod for the linear controller portion of

the Honeywell relay servo loop wheit-the system has an initial error

60



GE/EE/62-8

+ -E
**Chit

ClC

P; CK

in *.4 0

61



GE/EE/62-8

of a unit step*

The purpose of the analysis of this chapter is twofold: first,.

to obtain an optimum driving function for the linear portion of the

controller which can-be compared to the relay output of the Honeywell

relay servo loop as observed during the analogue computer simulation;

second, to demonstrate the capabilities and limitations of the State

Space techniques and tkoa method of Steepest Descent.

Solutions were! attempted to five problems. Two of these problems

.involved a fourth order approximation of the sixth order linear

controller. The five solutions sought were: 1) a solution for direct

control of all six state variables of the. sixth order system, 2)

a solution for direct control of the first four state variables

of the sixth order system, 3) a solution to control directly all

four state variables of the fourth order approximation, 4) a solution

to control directly only the first two state variables of the sixth

order system, and 5) a solution to control directly only the first

two state variables of the fourth order approximation. The fourth

order approximation, was employed after numerical analysis of the

sixth order system indicated that the descent would probably be

slow to converge, a fear that was later borne out.

The Fourth Order Approximition

The transfer function for the sixth order linear, controller is

42, s o(+)( 3- s)}(S. (14T)

eS. s(s.67) (sa + S 5 37(+( zs f+3.o)
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Examination of equation (147) indicates that a good approximation

to the system could be made by eliminating the high frequency poles

and zero. The result is the transfer function

a, " 4- (s+.Ts) t.s) (148)

Also, compare Figure 10 with Figure 11. The former is the Log Magnitude

and Phase Angle Diagram of the sixth order transfer function, while

the latter is the Log Magnitude and Phase Angle Diagram for the

fourth order transfer function. Note that the phase margin of 450

occurs at about the same frequency on both diagrams as does the

gain crossover. The fourth order transfer function thus represents

a reasonable approximation of the Honeywell linear controller at

the frequencies which will be pertinent to this analysis.

The Minneapolis-Honeywell Switching Logic

In this section the Honeywell switching logic will be analyzed

in order to determine a set of weighting constants to be used in the

matrix R * The transfer function of the switching logic is

eI l+ .2 23' Se+ =2(149)

If this transfer function is excited by a unit ramp input the

output is essentially proportional plus derivative. For

S(s) (150)
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the output in the time domain becomes approximately

e, ) +. j (11)

When the transfer function for the linear controller portion

of the Honeywell relay servo loop is expressed in State Space notation

A where X, is the system error. The switching logic then

forms the sum ,.t .:-z., when X, a lone is applied to the switching

logic. Note that when.driving the controller using the Honeywell

switching logic only the first two state variables are measured and

used as a basis for direct, control. The other four state variables

are not directly controlled, but follow according to the equation

_~ ,'-/~ (146)

Finally, viewing the switching logic from the standpoint of formu-

lating a terminal norm, one could say that weights assigned to X.,

and Xzfor direct control are 1 and .225 respectively.

Choice of the Matrix R.

In Chapter IV it was stated that the choice of the matrix

depended on the "utility" of controlling the various state variables

directly. Admittedly the Honeywell switching logic did not employ

the quadratic criterion function, but it rather summed algebraicly

the two weighted state variables. Nevertheless, to form a basis

for comparison, the or' and the Ir, 2 of the imatrix were chosen
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to be 5 and 1.12 respectively. The rest of the matrix was chosen

to be zero. Two problems were solved using this matrix for R : one

for the sixth order transfer function, and one for the fourth order

approximation.

in order to demonstrate the limitations and capabilities of the

methods used, three other problems were formulated. Two solutions

to the sixth order problem with R diagonal were attempted. In the

first case the diagonal elements were 6, 5, 4, 3, 2, and 1 starting

with A1, ; in the second case they were 4, 3, 2, 1, 0, and 0. Another

solution which was attempted was one to the fourth order approximation

with .9 diagonal; the diagonal elements were 4, 3, 2, and 1.

Data for the Solution

Thp sixth and fourth order transfer functions were put into

State Space form by means of the linear transformations developed

in Chapter III. Tables I and II on the following two pages show the

data used in the computer solutions for the sixth and fourth order

problems respectively. The number of control subintervals, and hence

the lengths of the control intervals used were varied.

Note the magnitude of the last two elements of the I vector in

the sixth order problem. This is due to the nature of the recurrence

formula

-3
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Table I

Data for Sixth Order Problem
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Table II

Data for Fourth Order Problem
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when applied to eliminate right hand side derivatives. For the sixth

order transfer function the coefficients of the denominator were

quite large which led to a rapid buildup in magnitude of the elements

of . Note that the vector for the fourth order problem does not

exhibit this characteristic. Examination of the a matrix for the

sixth order problem (Table'Mi, Appendix D) shows that the. large

values of the last two elements of f lead to large values for part

of the last two columns of fl. Experience with'computation shows

that these large variations in the elements of L4 cause a rather

slow descent. The reason for this can be seen from the formula

~~U (41)

The large values of H relative to I cause I) to become quite small

and thus the change in control $.&becomes very small. This last

fact also holds for other calculations of .

Results of the Computation

In this section the results of the computation will be discussed.

All of the figures referred to in this section are located at the

end of this chapter*

Figure 12 is a plot of the optimum driving function for the

fourth order approximation with all four state variables directly

controlled. Figure 13 presents a plot of the state variable trajec-

tories which result when the control of Figure 12 is applied. A

plot of the terminal norm V for the different control intervals used
I 79
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is presented in Figure 14. The optimum control interval for a

terminal norm V of .082 is 1.85 seconds* Three results should be

pointed out. First, the control is essentially "bang-bang". Secondly,

the state variables are not all derivatives of one another. This can

be immediately explained by noting that

*~ ~ (152)

but that

(146)

Thirdly, note that the negative excursion of -Xiis slightly greater

in magnitude than the original error.

A solution for the sixth order system with weighting constants

of 6, 5, 4, 3, 2, and 1 was not completed. The descent was attempted

but after 30,000 iterations data showed that convergence was going

to be quite slow. There is some question as to whether control is

possible at all for this case. The reasons for this will become

more clear after the data from two of the other problems is reviewed.

The data from the solution for direct control of the first two

state variables for both the fourth order and the sixth order systems

is to be considered next. The various plots of the optimum control,

of the state variables, and of the terminal norm are shown in Figures

15 through 24. Note the differences in scale which were necessary

for the plots of the sixth order problem. The control interval
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for the V of the fourth order approximation to reach a value of .16

is .65 seconds. In .675 seconds the terminal norm of the sixth order

system reached a value of .13. The relay switching occurs For both

systems at about the same time. Note also the close resemblance of

the trajectories of ;X and CLfor both systems. These resemblances

suggest that the fourth order system was a good approximation of

the sixth order system. Of special interest, however, are the tra-

jectoies of the higher order state variables. Remember that direct

control was not attempted for the state variables XJthrough €.

The plots of the state variable trajectories for the sixth order

system illustrate quite well what has happened. The State Space

equations for the sixth order system show that

3 L (153)

but more especially that

.n -. 10 (154)

'Y 5- +(155)

4 + (156)

The trajectories of the state variables show these relationships

graphically. Note easpecially how the trajectories of and

X, are governed byeJcsA. It is now quite apparent why direct control

of all the state variables is so difficult to obtain in this problem*
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The control is fighting itself in this case. It should be pointed

out again that the presence and size of the P s is a result of

the numerator dynamics of the entire system and the high natural

frequency of the servo and actuator.

The trajectories of X and 4for the fourth order example

cannot be compared with those of *jand X.for the sixth order system,

again because of the different way in which the numerator dynamics

influence the solution.

A solution for direct control of the first four state variables

of the sixth order system was also attempted. Convergence of the

solution was quite slow and therefore a complete solution was not

obtained. However, it appears that convergence would be possible

if enough iterations were tried.-

A term which seems applicable to a problem of this nature is

"controllability". A definition of "controllability" is not easily

stated, but it is possible to think of it in terms of the number

of iterations in the descent necessary to compute the optimum control.

The more iterations necessary the less controllable is the system.

Of course it is immediately evident that the controllability depends

on which of the state variables one wishes to control directly and

to what degree. For example, controlling directly all six state

variables of the sixth order system to the same degree would be

almost impossible. Conversely, the descent for direct control of the

first two state variables of the sixth order system was completed
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quite rapidly. See Tables D-IIIthrou~h D-V in. Appendix D for a

comparison of the number of iterations necessary for the different

problems.

The results of this section have demonstrated the use of the

State Space techniques and the Steepest Descent method in soluing

a practical problem of computing an optimum driving function. An

attempt was made to demonstrate the limitations of the methods a&

well as the capabilities. Data which can be correlated with the

.analogue computer simulation of the problem was presented. Attempts

at five solutions to the problem were made; three of these were

successful.

The next part of this report will be concerned with the analogue

computer simulation of the Minneapolis-Honeywell relay servo loop.
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V1. Analogue Computer Simulation of the Minneapolis-Hone-well

Relay Servo Loop

In order to form a basis for comparison of the results of

Chapter V an analogue computer simulation of the Minneapolis-Honey-

well relay servo loop was performed. Figure 9, which is a block

diagram of the relay servo loop is presented at the end of this

chapter for the reader's convenience.

In keeping with the analysis of Chapter V, the model was eliminated

from the original Honeywell Adaptive Control System, as were the

gain changer and limiter and the AC dither. The response of the

relay servo loop with a stop input applied is that which is desired.

The relay output and the system output can then be compared with

optimum driving function and the state variable trajectories obtained

by the calculations of Chapter V.

Description of the Simulation

The simulation of the relay servo loop is quite straightforeward

and will not be discussed in detail.The procedures outlined in

Chapter 19 of Automatic Contxol , UslemsAnalvsis gnd Svntheis -. '

were followed.(Ref 2:453-475).

The following points concerning the simulation should be noted

howevers 1) due to the high natural'frequencies of the servo and

acutator and the rate gyro it was necessary to time scalsLthe problem

by slowing the solution by a factor of tan; 2)thi electronic relay
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used in the Honeywell loop was replaced by a high gain amplifier

in cascade with a differential relay. Figure 26 at the end of this

chapter is a diagram of the simulation.

A describing function analysis assuming an ideal relay with

an output of 1.5 volts was used to determine stability and the

approximate frequency of the limit cycle to be expected. A Log

Magnitude Phase Angle Diagram for. the discribing function analysis

is shown in Figure 27 at the end of the chapter.

Results of the Simulation

Step inputs of one volt were applied to the system after a

steady state limit cycle had been established. The one volt corresponds

to the one unit of initial error used in the computation of the

optimum driving function in Chapter V. Figure 25 at the end of this

chapter is a typical analogue computer recording for the response

to the unit step input. The traces are, beginning at the top, error

signal, input to the high gain amplifier, relay output, and system

output, in that order. Upon application of the step input, initial

switching of the relay took place, if the polarity wasn't already

such as to drive the error to zero. As the relay input crossed the

aero axis the relay switched polarity. Finally, when the error

approached zero limit cycle operation was resumed.

Results of high speed recorder runs show that the error is

reduced to zero in about .75 seconds. The limit cycle is resumed

B9
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after about .65 seconds. The average time from the detection of the

initial error until relay polarity reversal is bout .4 seconds.

Exact times are difficult to determine because they depend upon

the state of the system in the limit cycle to some extent.

It should again be pointed out that the input to the high gain

amplifier is the error signal plus .225 of its derivative. The trace

of the error signal shows that for a negative error the slope is

positive; thus, when the error decreases helow .225 of its derivative

at that point, the relay reverses polarity. This reversal prevents

overshoot. Finally, note that the shape of the trace of the system

error resembles the shape of the trajectory of X, in Figure 16 which

is located in the preceding chapter.

The data just presented leaves little more to be said concerning

the analogue computer simulation. The reader should, however, keep

the results in mind since they will be compared in the next chapter

of this report with the results of the coputations for optimum

control.
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VII. Conclusions and Recommendations

In this last chapter of this report the data compiled in the

previous sections will be summarized and conclusions will be drawn

from it. Recommendations for further study of certain phases of

this report will then be made.

It is not the purpose of this chapter, or of this report, to

attempt to determine the quality of the Minneapolis-Honeywell Adaptive

Control System just discussed. Rather it is to demonstrate the ap-

plication of State Space and optimization techniques by analyzing

a practical problem.

Summary of Data

In this section data from the previous chapters will be summarized.

Also, from time to time, the figures of Chapters V and VI will be

referred to without stating their location.

It is possible to compare only part of the data from the computations

for the optimum driving functions to that from the analogu6 computer

simulation. The data that may be compared are the results of the

optimum solution to the fourth and sixth order problems for direct

control of the first two state variables. A glance at Figures 15

and 22 shows that the driving function calculated compares very well

with the output of the relay as recorded during analogue simlation.

The first relay polarity reversal for both computational solutions

t95
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occured at about .4 seconds, as did the first polarity reversal

during analogue simulation. The simulation also showed the error

driven to essentially zero in about .7 seconds. This corresponds

quite well to a terminal norm of .13 with a control interval of

.675 seconds. Of course it is impossible to state that a direct

correlation exists because the criterion formed by the switching

logic of the Honeywell relay servo loop and that formed by the

terminal norm function are different. However, the simularity of

the two results does indicate that for this particular problem the

criterion function used for the computation of the optimum driving

function is meaningful.

Note the shape of the trajectory of 1 I which is plotted in

Figure 16. It is about the same as that of the trace of the error

signal which was recorded during the analogue simulation.

Another point of interest in the results of the digital com-

putation is the shapes of the trajectories of the various state

variables. Comparison of Figure 13 with Figure 23 shows that when

an attempt was made to directly control ?,and pin the fourth

order approximation their excursions were greater during the control

interval than when they were allowed to follow without direct control.

Of course Xand.) were not driven -to.zeLo in. the latter, case.

Another point of interest is that a longer control interval

was necessary to control directly four state variables than to

control two; thus, the expenditure of energy by the system had to

96
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be greater for the longer control interval. Also, one sees from

Figure 13 that the maximum negative excursion of -Xf was greater

than the initial error in the system.

A brief glance at the tabular data in Appendix D shows the

number of iterations necessary to attain convergence varies over

a wide range for the different problems considered. Generally, but

not in all cases, the number of iterations necessary increases as

the optimum control interval is approached. Also, the more difficult

it is to control certain state variables, the greater is the number

of iterations necessary for convergence. In general, then, the rate

of convergence is a measure of the "controllability" of the system.

The rate of convergence may be measured by the number of iterations

necessar, to attain convergence.

Conclusions

On the basis= of the data presented in the preceding section

and that presented in discussions elsewhere in this report several

interesting conclusions may be drawn. Probably the most important

and far reaching of these is that each solution for the optimum

driving function is in reality a sub-optimization. The results of

chapter V showed how much the optimum control interval and the

trajectories of the state variables depended on the matrix R • It

goes without saying that a different function for the terminal norm

would also have influenced the results a great deal. It should be

understood, however, that the computed driving function is optimum

19
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for the terminal norm chosen. The question remains of whether the

terminal norm used is the best criterion..Thus the problem of

picking a criterion to minimize still remains a matter of judgement.

For example, consider the particular system analyzed in this paper.

Compare the solution for the fourth order system with the diagonal

of R equal 5, 1.12, 0, 0, and that for the same system with the

diagonal of P equal 4, 3, 2, 1. If one is interested in reducing
the error, which in this case is the first state variable, oto zero,

it appears better to attempt to control directly only the error

and its derivative than to attempt to control directly all the

state variables. Certainly the optimum control interval is less for

the former.

It should again be emphasized that the criterion function chosen

Xs reasonable, although some of the values used for the E matrix

might have been a bit unrealistic. A further point along these

lines is that attempts to control state variables which are dominated

by &Agwill probably meet with very slow convergence or even lack of

convergence.

The question of "controllability" and the related computation time,

is, for this report, somewhat academicp except in cases where it is

impossible to obtain convergence without many thousands of iterations.

However, one problem'for which computation time would be important

is that of an adaptive state vector control system. Basically, a

system of this type would operate in the following way. The state
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variables would continuously be measured. Consider that they represent

the error of the system. The necessary input to a linear controller

to drive these variables to zero would then be continuously computed

in real time and applied to the controller. For a linear controller

with good controllability such computation in real time seems feasible

by the Steepest Descent method provided a very high speed computer

is employed.

Finally, the fact that all the solutions for the optimum driving

function for the examples investigated in this report were "bang-

bang" is of interest. The same results were obtained whether the

Gradient Projection Descent Scheme or the Corner Aiming Descent

Scheme was employed. This result is in direct support of the maximum

principal of Pontriagin; in addition, it should be pointed out that

the "hang-bang" solutions were arrived at by an entirely different

mathematical approach than was the proof of the maximum principal.

Recommendations

Unfortunately, there were many interesting phases of the problem

left Qntouched in this investigation due to the element of time.

Also it should be pointed out at this time that the computer

programs used and a brief explanation of each are presented in

Appendix A. Hopefully enough information has been provided for the

interested reader to utilize the programs with little added study.

O0ne of the phases of the analysis which remains unexplored is

further experimentation with the matrix R . Along this same line

is the testing of different criterion functions used in the descent.1 99
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One criterion function of particular interest'would be

M r (157)

The computation of the optimum driving function to be applied

to a non-linear controller is also possible by the method of Steepest

Descent. The interested reader is referred to Part V of Refrence 5.

In the field of digital computer programming it would be quite

useful to modify the existing descent program to seek out the optimum

control interval automatically. Of course due'.to thet omputation-times

involved the use of.such a program would have to be confined to systems

with a reasonable amount of controllability.

Finally, a study to determine the feasibility of using the

Steepest Descent method in an adaptive state vector control system

could'be investigated.

The above list of possible topics in connection with this report

is by no means complete. However, it is hoped that some stimulating

ideas were presented.

In this report State Space techniques and the Steepest Descent

method were employed to obtain the optimum driving function for a

practical linear controller in a relay servo loop. It is felt that

the results obtained demonstrate the.limitations and capabilities

of thi; type of analysis quite clearly.
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Appendix A

Listing and Explanation of the Dioital Camuter Proarams

The purpose of this appendix is to present listings of the digital

computer programs used for the computation of the optimum control to-

gather with a brief explanation of each program. It is assumed that

the reader has a knowledge of the FORTRAN programming system. In writing

the programs several changes in notation were necessary. Table A-I on

the next page is a list of each important symbol used in the progrnmming

together with the corresponding symbol used in Part IV. The reader may

wish to refer to this table from time to time in case of confusion.

kalculation of ALIT by Runos-Kutts

In the first program which is listed on pages 104 :irid 105 .a is

calculated by the method of Runge-Kutte. This method is developed in

Part IV of this report. The progrem is written in 1620 AFIT FORTRAN.

The following explanation refers to the listing of the program.

The values for -& for the order of the system, and for the control

subinterval are first read in as DELT, N, and TAU respectively. The

and matrices are then read in by columns. Statement@ 5 through 14

perform the Runge-Kutta calculation for d A test is then made to

see if the control subinterval TAU has been reached. If it has not,

control is returned to statement 5 where the calculatior is performed

again with the new value of Z. Wen TAU is finally reached S is read

out and punched on cards.
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Table A-I

Meanings, for Computer Symbols.

Computer Symbol Symbol in Text

N /

DELT

TAU t

F F

DX

A (Descent Program P gr P(AC)
A (Program for H) X (o)

JE

KA

H H

U

UHI

ULO

EPSIL

DELTA

PR

XT (r)
w

ETA or ETA2 "'";/ O 'I
v V
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C CALCULATION OF ALTIT--Br'RUNGE ,
READDELT .NoTAU
DIMENSION F(696) *6(6) ,XNO(6) .DX(6#4)
DO 1 Kml*N
DO 11a1,9N

1 READ#F(IK)
DO 2 K=19N '......

2 XNO(K)=0.
DO 3 K-19N

3 READ#G(K)
P=01

5 DO 7 I11N

DO 4 Ku1,N
4 Z=Z+F(IK)*XNO(K)*DELT________

- KzI .- - - . ....... _ __ __

7 DX(Ktl)=Z+G(K)*DELT
DO 9 1=19N___ ___

DO 8 K1.9N
8 Z-Z+F( TK)*(XNO(K)+DX(Kol)/2.)*DELT

KmI
9 DX(K#2)=Z+G(K)*DELT

DO 11 I=1,N__________

DO 10 KaloN
10 ZzZ+F( IK)*(XN(O(K)+DX(K,2)/2.)*DELT

11 DX(K*3)=Z+G(K)*DELT
DO 13 Is1,N

DO 12 K*19N
12 ZzZ+F(IK)*(XNO('K)+DX(K,3))*DELT ____ _

K= _ __ _

13 DX(K94)=Z+GfK)*DELT
DO 14 KuloN

14 X NO MK) zX N'OI Kl+ VX(VVKi T 1 4 - X -nC,- T D T -9n XT~ 41 Ti
Pu1.+P
IFITAU-P*DELT) 15915#5'

15-TYPE 16'..-..----...--.- ~ . . .

16 -FORMAT (/18H FOLLOWING 1S ALIT)
DO 17 K=19N

17 TYPE 44.#XNO(K)
44 FORMAT (/E14*8)__
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45 FORMAT (2XPE14.8)
S TO P
END
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Calculation of LMrce A and H by Runo-Kutta

The program for the calculation of £ and j by the Runge-Kutti

method is listed beginning on the next page. There are two form. of

the program included, one written in 1620 AFIT FORTRAN and the other

written in 7090 FORTRAN. The only differences in the two are the input

and output statements and the method of controlling the use of the

options. When it is desired to use a large number of control subintervals

and the order of the problem is large it is advantageous to use the

7090 version since computation time is substantially less. The 7090

version will be discussed in this appendix.

The progra contains two options which are controlled by entering

a value of I or 0 for KSENS. These options are the computation of ti

or the computation of p (AT). It is necessary to calculate the latter

for each control subintervil for use in a later program which calculates

the trajectories of the state variablesoIn case the first column of F

is zero, which corresponds to an integration. in the linear controller, p

will remain constant throughout the control interval; thus its calculation

is unnecessary. For this reason the calculation off was included in

this program only as an option.

The problem, but not the program, is also restartable. It is only

necessary to enter the last computed column of H as A(K) and start

the program. As many more columns of H as are desired will then be

computed. Finally, when using the Runge-Kutta method one usually starts

at tr 0 ; thus the computation of the columns of H starts at the right

and proceeds to the left.

106



GE/EE/62-8

c CALCU LA~Irom -r tnot~ 'A ANDr W BY RUNGE 'UTTA
READ INPUT TAPE 29999NJ-FKA#TA(U.DFLT#T
READ INPUT TAPE 29122,K.oFNS

12 2 FORMAT(18)
99 FORMAT(3I4#3F8*0)

DIMENSION H(6#99) ,F(696) ,A(6) .DX(6o4)
TAU1-TAU
DO 1 Ks19N
DO 1 1=19N

1 READ INPUT TAPE 29112oF(I#K)
111 FORMAT(E16.8)
112 FORMAT(F11O'1

DO 2 K-lN
2 READ INPUT TAPE 291119A(K)

P=00
IF(KSENS)61 .62

61 PE-O.
63 FORMAT(21H FOLLOWING IS LARGE A)

WRITE OUTPUT TAPE 3.63
GO TO 31

62 PE-i.
WRITE OUTPUT TAPE 3,64

64 FORMAT(25H FOLLOWING IS H TRANSPOSE)
31 DO 3 KaloN

I K
3 H(IJE)=A(K)
4 DO 6 1=19N

z=00
DO 5 Ka1,N

5 Z=Z+F(IoK)*A(K)*DELT
K=I

6 DX(Kg1)=Z
DO 8 I=1.-N
Z=00
DO 7 K-19N

7 ZZZ+F(1I K)*(A(K)+DX(K,1 )/2. )*DELT
Kul

8 DX(Kt2)=Z
DO 10 I-19N
Z=00
DO 9 Ku1#N

9 Z=Z+F( IK)*(A(K)+DX(K,2)/2. )*DELT
K1l

10 DX(K#3)=Z
DO 12 I=1#N
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DO 11 K=l.N
11 Z=Z+F( I*K)*(A(K)+DX(K.3l )*DELT

.Kul

12 DA(K*4)nZ
DO 13 Kul.P4

131 IF(TAU-P*DELT) 14#1494
14 JEmJE-1

PEul*+PE
TAU-PE*TAJ1
DO 15 KaliN -.-.--.

15 H( I JE)-A (K)
IF(T-TAU) 16916'94--

16 DO 18 JE=19KA
18 WRITE OUTPUT TAPE 3,19#(H(IsJE)9I-1vN)

DO 121 jE-i,9KA
DO 121 I17N

121 WRITE OUTPUT TAPE 14,1l,9H(I#JE)
19 FORMAT (6E 16.5)

CALL EXIT
END
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The order of the system, the control subinterval, At# the number

of control subintervals, the control interval, and again the number

of control subintervals are read in as N, TAU, DELT, JE, T, and KA

respectively. F is then read in by statement 1. If H is being calculated

CL is read in by statement 2; however, if p is being calculated, ) (o)

is read in by statement 2. Statements 61 and 62 select the index

to be used for the columns of H or p * Statement 3 then begins the

Runge-Kutta calculation of &X; ._ is added to W by statement 13.

Statement 131 then tests to determine whether the value for TAU has

been reached. If it has not, control is returned to statement 4 and

the calculation of a new value for4 commences; if TAU has been reached,

the c just calculated is stored as a column of t- after which the value

of TAU is increased. A check is then made to determine if the new value

of TAU is the same as T. If it is not control is returned to statement

4; however,. if TAU equals T, the matrix L is punched on cards by columns

one element to each card, H is also typed out as H * Exactly the sama

computation is performed for p except that different indexing and dif-

ferent initial conditions are used.

Calculation of U

The computation of the optimum control is accomplished by the

program which is listed beginning on page 11.The progrem which is

written in 7090 FORTRAN contains two options. These two are the use

Of the CQrner Aiming Descent Scheme o the 5radient Projection Descent

Scheme. Refer now to the program lsting.
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C C ALCUL-ATIO6.N ._OF U
READ INPUT TAPE 2,3,NKAMAX.UHI.ULOEPSILDELTA
READ INPUT TAPE 2959KSENS
DIMENSION 9'A.(66 (Y6 .D( A6)
DIMENSION U(99) .H(6999) .C(99) .DELU(99) .W(99) ,ABSC(99)
DO 2 I11N_______

2 REA NPT TA PE 2 97 9A (I) .- ,.

DO 11 JE=1,KA
-13 R EAD INPUT TAPE 2979U(JE) _

7 FORMAT(JE16.8)_''-_
3 FORMAT (l4,14,17,F8.1,F8.1.FlO.7.F7.2)

___DO 16 JE-1,KA __

DO 16 Iu1,N
16 READ INPUT TAPE 297,H(loJE)

DO 18 Is1.N ________ _____

DO18 12-19N
18 READ INPUT TAPE 2949P( 1291)

4 FORATI(F8 .4)___
ITER-0

20 DO 24 I11N
Z=00 _

DO 23 JE-19KA
23 ZuZ+H(ItJE)*U(JE)
24 XT(1)=Z+A(I) __

DO 35 12=19N

32 ZzZ+P(129I)*XT(I)

YfI)i=z
35 VuV+XT(I)*Z
34 D=09

DO 40 I11N ____

41 C(JE)wZ
IF(KSENS) 1999199.42

4fD0 6 Ja.
IF(C(JE)) 43,44.45

43 W(JE)=UHI-U(JE)
GO TO 46

44 W(JE)0.o
GO TO 46 ______
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45 W(JE)=ULO-U(JE)
46 D=D-CfJE)*W(JE).
47 DO 51 1,N

DO 50 JE-1,KA
_50_ZxZ+H(I*JE)*W(JE)

51 DM(I)=Z
Z3u0.
DO 58 1 2 19 N........
Z2=0.
DO 55 1-19N

55 Z2=Z2+P(12#I)*DM(I)___ ____

1-12
58 Z3aZ3+Z2*DM(I)

ETA=D/Z3
63 1F 1-EA) -66 9649 64
64 ETA2=ETA

.GO TO 69 __ __ ___

66 ETA2*19
69 DO 72 JEz19KA
72 U(JE)sU(JE)+ETA2*W(JE).-

GO' TO-250-
199 zZ=Oo
200 DO 201 JE=1#KA ______

201 ZzZ-C(JE)*C(JE)
ETANZ
DO 203_1=19N_
Z0.
DO 202 JE-19KA

202 Z=Z+H(I*JE)*C(JE)
203 DM(I)uZ

ETAD=O.
DO 205 12-1,N

DO 204 I=19N
204 ZzZ+P(129IJ*DM(I)

205 ETAD=ETAD+Z*DM( I)
ETA =ETAN/ETAD

~5 3'0 206' JEzisf KA
DELU(JE)zETA*C(JE)
W(JE)=UHI-U(JE)
-fF fDbELCU(IJE)+ U(JE) -U:IW 20f7. i 26 T206

207 W(JE)-ULO-U(JE)
IF(DELU(JE)+U(JE)-ULO) 206.206.208
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208 W(JE)-DELU(JE)
206 CONTINUE

ETAN=Q.
DO 209 JE=19KA

209 ETAN=ETAN-W(JE)*C(JE)
DO 211 I-1N
Z=00

DO 210 JE-1,KA
210_ZzZ+H.(IJE)_W(JE)
211 DM(T)=Z

ETAD=O*
DO 213 2...N
Z=Os

DO 212 I=1,N
212 Z=Z+P('12I)*DM(1)

I=12
213 ETAD=ETAD+Z*DM(1)

ETAzETAN/ETAD
IF(1.-ETA) 214#2169216

214 ETA-l
216 DO 217_JE=,KA
217 UIJE)=U(JE)+ETA*W(JE)
250 ITER=I+ITER
73 IF(MAX-ITER)971#9'71.77
77 DO 97 JE1l9KA

IF(C(JE)) 81,802982
81 ABSC(JE)=-C(JE)

GO TO 802
82 ABSC(JE)=C(JE)

802 IF(U(JE)-UHI) 86.86984
84 WRITE OUTPUT TAPE 3985
85 FORMAT(20H UH OUTSIDE BOUNDARY)
86 IFIULO-U(JE)) 91991988
88 WRITE OUTPUT TAPE 3989
89 FORMAT(20H UL OUTSIDE BOUNDARY)
91 IF(ABSC(JE)-EPSIL) 97#97993
93 IF(C(JE)) 94997995
94 IF(UHI-U(JE)-DELTA) 97,97996
95 IF(ULO-U(JE)+DELTA) 96997,97
96 GO-TO 20
97 CONTINUE

GO TO 98
971 WRITE OUTPUT TAPE 3,972
972 FORMAT(21H ITERATIONS EQUAL MAX)
98 WRITE OUTPUT TAPE 3999
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99 FORMAT(35H ITERATIONS COMPLETE FOLLOWING IS U)
100 DO 101 JE=19KA

WRITE. OUTPUT. TAPE '1 4 97 U( JE)-----
101 WRITE OUTPUT TAPE 397.U(JE)

WRITE OUTPUT TAPE 39591TER
5 FORMAT(17)....... ~

WRITE OUTPUT TP ,,
CALL EXIT
END
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The first READ statement accepts the order of the system, the nuimber -of

control subintarvals, the maximui* number of iterations, the upper boundary'

for control, the lower boundary fat control, and the values for E and g
Theme are N, KA, MAX, UHI, ULO, EPSIL, sind DELTA respectively. KSENS

is read in by the next statement. A KSENS of 0 selecte the gradient

projection deecent scheme while a KSENS of 1 -selecte the bang-bang"

descent scheme. ia next reed in by staetment 2 se A* Statement 13

accepts U which is the initial guss for the control. The metric** H

and R are read in by statements 16 and 18. The DO loop ending with

statement 24 calculate* g) * The terminal norm -V in calculated. by

the DO loop ending with stateme nt 35. The gradient ia calculated next

by he DO loop with statement 41. The next statement selects the option

of using the gradiant Projection Scheme or the Cbrar'rAia~ng.:SLehom9.

Consider the -Inr:d~nzca i tat4 :The,.D0 loop .beginning '.with i,*tats-

sent 42 and ending with 46 examines ssh pmoent of the gredie nt

vactor and determine* the proper U%~ according to thg Corner Aimin0g.Meso~nt

Scheme. Statement 46 then performs the matrix vector multiplication

Of C~y, The DO loops ending with statement 58 then faze the product

~ The next statement calculates the value.i 1 , 0,which is always

positive. The next four statements determine -e.*47, Statement 72 then

calculates the new value of U. Control ia then transferred to statement

250.

If the Stediont Orejection Descent Scheme had been selected control

would have been taierred from statementv:41:to'statement 1". The DO

loops beginning with 200 and ending with the statement after 205 cal-
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culate -* -' . The DO loop beginning with statement 53 then

selects the proper values for k4rin accordance with the Gradient Pro-

jection Scheme. A new value for ') is then calculated by the next

sixteen statements. Statement 214 end the one przediogS it compute -440

The DO loop ending with 217 them computes the new value for U. Statement

250 adds 1 to ITER, which is the number of iterations completed. The

value for ITER is then tested to determine if it equals MAX. If it

does the value of U just computed is read out. If ITER does not equal

MAX the DO loop beginning with statement TT is entered. This DO loop

determines if the conditions of equation (i44) for the termination

of the descant have been met. If not, control is transferred to statement

20 and another iteration begins. If the conditions of equation (144)

have been met, the next few statements read out U, ITER, and V. The

values for U are also punched on cards for later use.

Calculation of V

The final program, which is labeled CALCULATION OF V calculates

the trajectories of the state variables. This program which is listed

on the next two pages is written in 7090 FORTRAN. It requires the 'p(4&)

matrix, the H matrix and the B matrix for a particular probleml it

then will accept as many different solutions for the control , as

are desired and from these compute the trajectories for the the state

variables for eachA&,provided. The trajectories are calculated by solving

for the values of

) H + (158)
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C - CALCtLATION'OF' V-----
WRITE OUTPUT TAPE 3,20

20 FORMAT(15H FOLLOWINGIlS V)
R EAD I NPUT TAPE 2 9 9,N 9KA #KC...........

99 FORMAT(316)
DIMENSION XT(6.80).H(6,83) ,U(80),P(6,6),A(6,8O)
DO "1 *1E a1. iKC ____

DO 1 fu1.N
1 READ INPUT TAPE 2918#A(I*ME) _____

DO 2 JE-l'K ______ ___

DO 2 1-1,N
2 READ INPUT TAPE 2918#H(I#JE) ______

.DO 6 "I'l 1 O
DO 6 12-loN

6 READ IN4PUT TAPE 29979P(12#1) ________

97'FORMAT(FlOo0)
31 READ INPUT TAPE 29989NB#XSENS

DO 3 JBu1.NB
3 READ INPUT TAPE 2#18*U(JB) _ _____

9 ME' M+1-.______

KB:NB-M
IF(KC-ME) 51#52952 ___________

'51 MEiiC -... __ __...._ __

52 DO 5 Iu1.N

~~ J~iiYKB -_______

JE=JB+M+KA-MB
4 ZxZ+H(IJEJ*U(JB)

IF(1-K) 71972.72
72. V=09

DO _7 rT2.r.N' ~------- - ----- _______

ZZO
DO 8 1-19N

1z 12
7 V=V+*XT(Itl)

13 IF(NB-M)11911,9
11 WR'ITt 'OUTPUT -TAPE.3T7'V-
41 WRITE OUTPUT TAPE 3#21
21 FORMAT(30H FOLLOWING IS XT STARTING AT T)
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DO 16 K= ....N8.-.--

16 WRITE OUTPUT TAPE 39199(XT(I#K)9!11N)
IF( KSENS )31 ,31 ,30

15 FORMAT(E1O.4)
18 FORMAT(El6e8)
19' FORMAT16E12*4)
98 FORMATCI8'914)
30 CALL EXIT

END
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at each control subinterval. In order to compute these trajectories

a rather involved system of indexing was necassary.

The first READ statement of the program requires the order of

the system, the number of columns of /J and the number of columns of PM.

In case P(Atxs constant throughout the entire control interval it is

only necessary to supply one column of p(60; for this reason, the program

was designed to use a different number of columns of f &,)than of H

The READ statements down to statement 6 accept the matrices_(4*, H

and g . Statement 31 requires a value for the number of cards to

be read by statement 3, which accepts the matrix 4, A I or a 0 is

also required by statement 31 for KSENS* The next ten =statements

down to statement 5 calculate. )4 each element of which is a point

in theetrajectory of a state variable. The next statement tests. to see

whether or not.XI)for the entire control interval was just computed;

if it was, Via calculated by the DO loop ending with statement 7;

ifA(T) was not just calculated, control is transferred to statement 71.

In either case, however, new indices are determined by 71 and the

following statement.. It should be pointed out that the trajectories

are calculated beginning at t'T and working back to *-O. This was done

to prevent further indexing complications. Statement 13 tests to see

if all the points in the trajectory have been computed. If they have

not, control is transferred to statement 9 for further computation.

If the trajectories are complete they are read out by statement 16.

At this point the value for KSENS is tested. If it was zero there will
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be another set of trajectories to be calculated for a different control

interval; thus, control will be transferred to 31 where new values

for the number of control subintervals and for KSENS will be read in.

The new control will also be read in by statement 3 and the computations

then repeated. If the last value of KSENS was 1, however, exit will

be called.

Use of the ProQrams

The use of the programs is straightforeward and should present

no difficulty if the following points are kept in mind:

ii all matrices are read in by columns; each element of a matrix

must be on a seperate card;

2) FORMAT for the input statements, if specified, must be followed;

3) all data to be used in another program is punched in the proper

FORMAT and in the proper order;

4) DIMEN5ION statements may have to be changed.

Finally, the programs may be modified for use on other computers.

However, since the descent program contains a large number of statements

memory limitations of the computer should be kept in mind.
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Appendix B

Sample Problem #1

In order to check out the computer programs a sample problem

which could be worked out by hand was necessary. It was felt that

if an interested reader wished to duplicate the results of this

report a statement of this example problem and its solution might

be helpful. Following through the solution will also give a better

understanding of the calculations of the solutions for a more complex

problem.

The problem which was selected is a very simple (from the

standpoint of calculation) fourth order problem. The following are

the system equations in Stats Space form:

• = 
(159)T7

= X 3 + 4-

A control interval of T 77T and a subinterval oft z, were chosen,

The e- and H matrices can be calculated by direct integration of

the system equations as was developed in Chapter IV. To find the

vector 4. the system equations may be integrated with an initial

condition of 0(e)O. The system must be excited by a unit step
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input. Thus, to find .0 integrate from 4: 0 to -Uthe system

Ax - I) k,(o) =o,

iz  - -__ 4 1 x ; .fo)-
rr (160)

pLX3  +1 .'X = .)"

The integration yields for O.

.: -- " ," = *T/,7
) = - -.(O,.." t 4 -1 a (161)

Using the above result as an initial condition the following system

can be integrated from zero to each control subinterval in order

to calculate the matrix H :

0, 7T/#
-X

ff- 7 (0) .cf93 (162)

The result of this integration is 1

.113" .F * 2 -3 - .7
756 2 .707 -f3

•715 .O707 •7e7 . 213

•.7W .O~ Il -..73 .707
-- " . s" -. 273 .- '07I. .715' .1/ - .70

_ .7L$ ./~ -.r? ~...a
.71 .F Vr  -117 . 7 07 (163)

•71$ .3,21 ..af '1 707

.71- .60 .707 .7o
6?f 1 173 .701
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Since this problem is used to check results of the computation of

the optimum driving function, an optimum driving function ip chosen

using the maximum principal and then the initial error calculated

by using this driving function# and setting the solution to the

system equations to zero. Figure B-I shows the driving function chosen.

-1.0

Figure B-I

Optimum Driving Function

This correspond to a Aof

[1 1 1 1 '-1 1 - 1 1 1 (163)

Forming the product HAegivee the vector

(164)

The mtrixipuust now. be calculated. Again the system equations

nay be integrated directly by hand to compute I4.The following

is the matrix equati6n which is integrated after f4rst putting

it into scalar notation. The matrix f is given Table B-I:

r_~ (165)
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The following is obtained for 1(377)

(.0
• 5 6'

0 0 62

~(3fl):(166)

Now set the solution to the system equal to zero

~ -o (167)

Numerically this is

. o0 0 0 c "  IT
0 -105 0 15 (168)

0O 0 0 - O 0

The initial condition C is readily determined to be

c: (169)

Thus, by working backward from a known solution a problem has been

formulated which can be used to test the digital computer programs.

The data of Table B-I was used for the computer solutions.

The-pertinent results of the computations are shown in Tables

B-If and B-III on the last page of this appendix. A slight change

had to be made in the control interval and subinterval in order to

make subinterval divide into the control'interval an integral number
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of times. This change accounts for the slight discrepancy in the

third decimal place of the h matrix. The descent was terminated

after 135 iterations when it was evident that the driving function

would converge to that calculated above.

Another conclusion may be drawn from the results of this problem

in addition to the fact that the computer programs were correct.

The same "bang-bang" ablution which.was used to determine the initial

condition was arrived at by an entirely'different method when the

computer programs were used to find the driving function. The maximum

principal was used to formulate the control in the first case. The

optimization technique of Steepest Descent was used in the second

case. This result again supports the maximum principal of Pontriagin.
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Table B-I

Data fdi Computer Solution

o 0 c9 6

0 -.3t? 0 0
F:

0 0 0 I

0 -

7 I/ z .7

[JO.o 1I-O -to

ER PIt.. ",e
PE LTA .04a. i

0 3 L 0
C' 0 0

0 0 /
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Table B-II

" Computed by Runge-l(utta

FOR H SW ONE OFF ENTER ALIT.-AS A
FOR LG A SW ONE ON WNTER XNHOT AS *A
FOLLOWING IS H-TRANSPOSE
.786OOOE+o0 ,1 44853E-01 ,288202E+00 -.709631E+OO
.786OOEi-oo .571173E-O1 r705754E+OO -.0297570E+0O
; 78600OE+00 :.733363E-01 ;709283E+O0 -.289056E+OO
.786000E+OO -.941607E-01 ;29672OE+00 .706112E+OO
.786000E+00. ; 120898E+00 -;289909E+00 -0'708935E+O0
.786000E+O0 ;155228E+OO -;7o6468E+OO -.295870E+OO
;786000E+00 .199306E+00 -;708586E+00 -.290762E+00
;786oOOE+OO ; 255901E+OO -;0295020E+00 -;706824E-0
.786OOOE+O0 ;328567E+00 .291615E+O0 -;708235E+0O
0786000E+OO. ;421866E+OO ;707178E+00 -.294169E+0O
;786000E+00 .541658E+00 .7078C4E+0O .292467E+OO
.786000E+0O .695467E+OO .293318E+OO .707531E+00

ST(P

Table B-III

Computed Driving Function

ITE, EQUALS 135
.99187806E+OO
.99187806EL-OO
,99187806E+00
". 99187t0 06E+OO

-4,98661603E+OO
.9918i806 E+O0

-;9918780 6E+()o
-096398862-E+O0

.99187806EI-00
;99187806E+0.
.99187806.+O0
.99187806E+00
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Appendix C

Computer Solution of a Fourth Order Test Problem

In order to further test the computer programs and to gain

experience in their use a more realistic problem than the one presented

in Appendix B was used. The example problem solved by Ho and Brentani

in their paper (Ref 5:A-3T) was chosen because an answer was readily

availabl. The results are of interest in that a "bang-bang" solution

was again obtained.

The data for the programs is set forth in Table C-I.The solution

of the optimum driving function for a control interval of 2.5 seconds

is presented in Table C-II. These results agree with those obtained

by Ho and Brentani.
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Table C-I

Data for Computer Progrmns

5+ ..
(5+ 1 ) 5 -t . CS' + 7 9 4- :

o 

0 0

-4 -/0 _/o -5

V TAP .0a5L4.5] _0_ Li~a =-/.o
0

-j t/ 0

0

125
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Table C-II
Optimum Dr~iving Function

ITER EQUALS 50
-1 0000000 E+01I
.1,0000000 E+01
-1 0000000 E+0 1
-10000000 E+0 1'10000000E+01
-1 0000000 E+01I

-.1 0000000 E+01
-10000'000 E+01
.10000000 E+i01
-10000000 E+0 1

-. 10000000E+01
-.10000000OE+01
*100000001+0 1
'-10000000 E+0 1
.10000000E+01

-,1 0000000 E+01
-.10000000 E+01
-.10000000 E+01
-. 10000000E+01
-. 10000000E+01
-. 10000OOOE+01
-.10000000E+01
!-.10000000 E+01
-.10000000E+01
-.10000000E+01
-.10000000OE+01
.1 0000000 E+01

-.10000000 E+01
-.10000000 E+01
-. 1 0000000 E+01-

-. 10000000 E+01*
-. 1 0000000 E+01'

-I 0000000 E+011
-.-3 193 2941 E+i00
.69166105E+00
.10000000 E-0 I
.10000000 E+01;
. I 0000000 E+01
. 10000000 E+ 1;
. I1000000QE+01
. 10000000 Ei-01t
*.10000000E+01,
.3 521241 5E+00,

-.10000000 Ei01'
-.10000000OE+01.

-,,10000000 E+01l
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Appendix D

Tabula: Dath

Tabular data from the computations descrived in Chapter V is

presented in this appendix. The first two tables are the matrices

for the fourth order approximation and the sixth order system res-

pectively. The rest of the tables are optimum driving functions

for various solution and various values of the control interval 7

In all the tables of the optimum driving functions the last two

numbers from the bottom are the number of iterations used to:compute

the driving function shown and the value of the terminal norm V,

respectively.
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Table D-I

HLFourth Order Approximation

F'-)LLOW ING IS H TRANSP 0;SE
119739E-01 -•150925E-01 .112162E-01 .3 1 1E-01

.127419E-01 -..156121E-01 -953558E-02 .3 54125E-01
..13 5336E-01 -.160431E-01 .767584E-02 .39662E-U1..143445E-01 -.163767E-01 .56'4029E-02 .424395E-01.
S.151695E-01 -. 166043E-01 .3 43375E-02 .458005E-01
.160.031E-01 -.167174E-01 0106267E-02 .490159E-61
.168392E-01 -.167079E-01 -.146484E-02 -5205-E-01
0176717E-01 -. 165684E-01 -. 41.3 893 E-02 .54b731E-01
•,84938E-01 -.162918E-O1 -.694799E-.02 .574448E-01
,192985E-01 -.158716E-01 -•987866E-02 .597311E-01
•.200784E-Ot -.153022E-Ot -;*'I29157E-01 .616965E-01
.208261E-01 -.1,45786E-01 -.160423E-01 .63305bE-01
.215337E-Ot -456968E-01 -. 9,2397E-Ot .645236E-01
.221931E-01 -. 126537E-01 -•224876E-01 .653166E-01
.227963E-01 -.114475E-Ot -.2-57638E-01 .656518E-01
.233351E-01 -.100773E-01 -.290446E-01 .654980E-01
.238013E-01 -. 854346E-02 -0323049.E-01 .648258E-O1
.241867E-01 -.684763E-02 -.355181E-01 •b36079E-01
.244834E'-01 -.499290E-02 -. 86.562E,-Ot .618198E-01
246834E-01 -.298374E-02 -.416902E-01 .594A9JE-U1

• 247793E-.1 -•82-6114E-03 -6445900E-01 .564486E-01
.247637E-01 .147250E-02 -. 473246E-01 -528320E-01
.246298E-01 .390307E-02 -.498625E-01 .485786E-01
.243714E-01 .645495E-02 -.521717E-01 .436818E-01
.239825E-01 .911590E-02 -.542200E-01 .3 81391E-01
.234582E-01 .118720E-01 -.559749E-01 .319533E-01
.2-27940E-01 . 147079E-01 -. 5744047E-01 .251322E-ol
.219864E-01 .176065E-01 -,584778E-01 .176890E-U1
.210326E-01 0205492E-01 -•591635E-O1 .964257E-02
-. 199311E-01 ,235159E-01 -, 5943 24E-01 •101757E-U2
.186810E-01 .264851E-01 -.592562E-01 -.815514E-02
0172829E-01 .294337E-01 -.586084E-01 -.17838bE-01
157384E-01 .323376E-01 -.574645E-01 -.27989bE-01
.140503E-01 .351715E-01 -.558024L-01 -.3855b6E-u1
.122228E-01 .379085E-01 -.53b02bE-01 -. 494o9bE-01
.102615E-01 .405225E-U1 -.504b5E-01 -. b07204E-U1
.817317E-02 .429843E-01 -. 4752b7E-u1 -.72162bE-01
.596611E-02 .452655E-01 -.436276E-61 -.83801bE-U1
.,365010E-02 .473373E--Ot --. 391453 E-01 -.95497OE-01
.1'23636E-02 .49,1703E-01 -.340761E-01 -.107182E+Uu

[TOP
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Table D-III

Optimum Control for Sixth Order Systm

Direct Control of First ' Two State Variables

.T , .6T5 Sc.

IIERATIONS' COMPLETE FOLLOWING IS U
-0.19500000E 03
-0.19500000E 03
-0.19500000E 03
-0.19500000E 03
-0.195C0000F 03-
-0.19500000E 03
-0.19500000E 03
-0.19500000E 03
-0. 1i500U00F 03
-0.19500000F 03
-0.19500000E 03
-0.19500000E 03
-0.'0UUOOE 03
-0.19500000E 03
-0.19500000[ 03
-0.19500000E 03
-0.lU524182F 03
0.195000001 03
0.19500000E 03
0.19500000[ 03
U.19500U0OE 03
0.19500000E 03
0.19500OOE 03
0.19500000E 03
0. 19500000E 03
0.19500000E 03
0.19500000E 03

129
G.1203Q0.Q4,Z-00
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Table D-III
(cont. ).

Optimum. Control for Sixth Oider Sstsm

Direct Control of First Two State Variables

T - .625 onc.

ITERATIONS COMPLETE 'FOLLOWlN, IS U
.. 19560000E 03

-0.19500000E 03
-0.19500000E 03
-0.19500000E 03
-0.19500000E 03
-0.19500000E 03
-O.19500000E 03
-O.19500000E 03
-0.19500000E 03
-0.19500000E 03
-0.19500000L 03
-0.19500000E 03
-O.19500000E 03
-0.19500000E 03
-0.12865712E. 02
0.19500000E 03
0.19500000E 03
O.1950OOOOE 03
0.19500000E 03
0.19500000E 03
0.19500000E 03
0.19500000E 03
0.19500000E 03
Q.19500000E 03

60
0.35551506E-00

13
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Tabl D-III

(coant.)

Optimm Control for Sixth OdO SYstam

Di=ct Control of First Two SU Varwible

T .575 am.

ItERAtIONS COMPLETE FOLLOWING IS U

J0.1950000E 03.
-U.19500000E 03

-0.19500000E 03
-o.19500000E 03
*0.19500000E 03

..QQQQOE 03
-U.19500000E 03
-0.19500000E 03
-U.19500000E 03
=O.19500000E 03
-0.150000OE 03
-. 1i950Q00E 03
-0.19500000E 03
0.95030949E 02
0.19500000E 03
0.19500000E 03
.. 19500000E 03
U.i19)OOOOQE 03
0.19500000E 03
0.19500000E 03
u.19500000E 03
6.19500000E 03
65

0.69346071E 00
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Table D- 1I1I
(cont.)

OptMUm Contzl for Sixth Order System

Diret Control of First Two State.Variables

.T .500 oac.

iTCRATIUNS COMPLETE FOLLOWING IS U
-G.1950000E 03,
-o.19500000E 03

-k; .19500U0UE 03
-O.I9500000E 03
-0.19500000E 03
-0.19500000E 03
.-0.19500000E OS
-U.19500UOOE 03
..-0. 19500000E 03
-0.19500000E 03
-0,19500000E 03
-0.19500000E 03

---.. .5i.A&40.E 02
O..]L95OOOOOE 03
0.1-950.0000 E 03
-0.1950000E 03

__.Q,..IL9.OOOOOE 03

0.19500000E .03

0.19500000E 03
- 44
U. 13.500035E. 91
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Tehle'D11I
(cont.)

Optimum Control for Sixth Order System

Direct Control of First Two State Variables

T = .375 ec.

C.TERATIONs CUMPLETE FOLLOWING IS U

..:-0.19500o00E 03
-0.19500000E 03
-U.19500000E 03
-O.19500000E 03
-0.19,500U00E 03
-0o.19500000E 03
-0.19500000E 03
-0.19500000E 03
-U.19500000E 03
0.18410978E 03
0.19500000E 0,3
0.19500000E 03
u.195U0000E U3
0.I900OOE 03
O.19500000E 03

33
0.26502431E 01
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Table D- IV

Optimim Control for Fourth Ozdar Approximation

Diect Control of Flist Two State Varables

T a .650 sm.

ITERATIONS COMPLETE FOLLOWING IS U
-0.7U999999E ()I
-0.70999999E OL.
-0.70999999E 01
-0.70999999E 01
-Q.70999999E 01
-0o70999999E 01
-0.70999999E.01.
-0.70999999E OL
0.23082887E 01.
0.70999999E. 01.
0.70999999E. 01
0.70999999E 01
O. 799999I .

,9..16079205E-00 -.... . .

T

ITERATIONS COMPLETE FOLLOWING IS U
-0. 70999999E ...
-O.70999999E 01-
-0.70999..9991. .I
-0.70999999E 01
-0.70999999E 01
-0.70999999E 01
-0.70999999E 0.
-0.35306581E 01
0,70999999E 0.,.....
0.70999999E 01
0g70999999E.01

0.70999999E 01
21

0.41684502E-00
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GE/EE/62-8

Table D-. IV

Optimaum Control for Fourth Order Approximation

Direct Control of FiLnt Two'Stat. Variables

T a .500 eec.

ITERATIONS COPPLETE FOLLOWING IS U
-0.70999999E 01
-0. 7099999'E C1
-0.70999999E 01
-0.70999999E 01
-0.7C999999E 01
-0.7099999qE :01
0.82834515E CC
0 .7C999999E 01
O.70999999E Cl
O.70999999E 01

32,
O.12158052E 01
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Table D.. V

Optimm Control for ouz th Order Approximation'

Direct Cantrol of All rout stat Variables

T- 1.05 sc.

IYTAT* S CCMPLETE FOLLOWING IS. U
-O.709999.qgE 01
:-0.70999999E 01 ,

-0.7C999999E 01.
-0.7C999999E C
-O.70999999E ol
-0.7C99999qE 01

-O.TOC99999;SE 01-
-0,7099999'9E 01
-0.7099999,9E, 01.

-. 7C999.qgqE 01

-o.70999949E 01
-0'. fd §99,9t 01
-O*70999999E 01

0!1.70999999E 01
0'70999999 01
.7099,9999E 01
0*7C9999q9E 01
070999999E 01
07C994999E' 01
0".70999999E 01
0 7099999§E C1
0:709995999E01l
OP-C999999I 01
0.7C999999E.01
0.70999q99E 01

-0.34156581E Cl
-0.7C999999E 01
-0.70999999E 01
-0.7C999999E CI-0.7C999999E 01
-'07C99 999E 01

-0.7C999999E 01
-0;70999999E 01
.O.7C999999e 01

1350
0.81695723E-01
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Table 0- V
(cant.)

Optimu Control for Fourth Order Approximation

Direct Control of Ail Four State Variables

T . 1.T5 sac.

ITE-RA IONS CLIMPLFTE FOLLUKINGo IS U
-0.70999999F 01:
-0.7C999499E 01
-0.70999999E 01
-0.7U999999E 01
-0.70999999E 01
-O7o:gq9999F 01
-O.70999999E 01
-0.7U999Y99E 01
.-0.70999999E 01
-0.?999999F 01
-0.709999q9E 01
-0.7u99'99E 01
-U.70999999E 01
-0.7C999999E 01
-0.18881381E 01
0.70999y99E 01
0'.70999999E 01
0.70999999E 01
0.70999999E 01
0.70999999E 01
0.70999999F 01
0.70999999E 01
0.70999999E 01
6.70999999E 01

.Q.JQ.9.999 Q1.
0.70999999E 01
0.,34043817E 01

-0.70999999E 01
-0.70999999E 01
-0.70999999E 01
-.Q.,Q999.99E 01
-0.70999999E 01
-0.70999999E'0.1
-0.70999999E-01
-0.7999999E 01

695
0. 24872,32.5E-00
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Table D-V
(cont.)

Optima Cetanl for Fourth Order Approximation

Direct Control of Ail Four State Variables

T 1,50 sae

ITERAT[ONS COMPLETE FOLLOWING IS U
-0.70999999E d1
-0.70999999E 01
-0.70999999E 01
-0.70999999L 01
-0.70999999E 01
*-0.70999999E 01
-0.70999999E 01
-0.70999999E 01
-0.70999999E 01
-0.70999999E 01
-0.70999999E 01
-0.22782274E 01
0.70999999E 01
9.70999999E 01
0.70999999E 01
0.70999999E 01
0.70999999E 01
o.70999999E 01
0.70990999E QL
0.70999999E 01
0.70999999E 01
0.70999999E 01
0.67485256E 01

-0.70999999E 01
=Q.. 7Q9.99% QI..
-0.70999999E 01
-0.70999999E 01
-0.70999999E 01
-0.70999999E 01
-0.70999999E 01

.o90P23644E 00
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Table D-V
(cont.)

Optimum Control for Fourth Order Approximation

Direct Control of All Four State Variables

T a 1.25 sec.

ITERATIONS COMPLETE FOLLOWING IS U
-0.70999999E 01
-0.70999999E 01
-0.70999999E 01
-0.70999999E 01
-0.70999999E 01
-0.70999999E 01
-0.70999999E 01
-0.70999999E 01
-0.70999999E 01
0.55472609E 01
0.70999999E 01
0.70999999E 01
0.70999999E 01
0.70999999E 01
0.70999999L 01
0.70999999E 01
0.70999999E 01
0.70999999E 01
0.70999999E 01

-0.39656283C 01
-0.70999999E 01
-0.70999999E 01
-0.70999999E 01
-0.70999999E 01
-0..10999999E 01

290
O16630284E 01
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Table D-V
(cont.)

Optimum Control for Fourth Order Approximation

Direct Control of All Four State Variables

T a 1.00 sec.

ITERATIONS COMPLETE FOLLOWING IS U
-0.709999%9E O ,
-0.70999999E 01
-0.70999999E 01
-0.70999999E 01
-0.70999999E 01
-0.70999999E 01
-0.68830554E 01
0.70999999E 01
0.70999999E 01
0.70994999E 01
O.70999999E 01
0.70999999E 0i
0.70999999E 01
O.70999999E 01
0.70999999E 01
0.16569404E-00

-0.70999999L 01
-0.70999999E 01
-0.70999999E 01
-0.70999999E 01

460
0.23394992E 01
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Table D-V
(cont.)

Optimum Control for Fourth Order Approximation

Direct Control of All Four State Variables

T a .75 sec.

ITERATIONS COMPLETE FOLLOWING 19 U
-0.70999999t 01
-0.70999999E 01
-0.70999999E 01
-0.70999999E 01
-0.70999999E 01
0.36115248E 01
0.70999999E 01
0.70999999E 01
0.70999999E 01
0.70999999E 01
0.70999999E 01
0.53904514E 01

-0.70999999k 01
-0.70999999E 01
-0.70999999E 01

337
0.28406490E 01

T a .50 se.

ITERATIONS COMPLETE FOLLOWING IS U
-0.70999999E 01
-0.70999999E501
-0.70999999L 01
-0.52056129E 01
0.70999999L 01
0.70999999E 01
0.70999999E 01
0.70999999E 01

-0.19497150E 01
-0.70999999E 01

754
0.31596032E 01
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Table D-V I I

State Variable Trajectories

Fourth Order A pproxiation

Direct Control of Two State Variables

FGLLCWING IS XT S1ARTING AT T
O.1582E-C6 -0.178CE-GC 0.1994E CI -C.18bbOL 01
0.1786E-00 -0.6403E 00 0.2285L 01 -0.8368E 00
o.,2224E-oC -C.1116E 01 0.2521E 01 0.3123E-00
0.2903E-CC -0.16ClE 01 0.2698E 01 C.1566E 01
0 27.3 E-CC"-0.204OE l 1 0.2806L C1 0.2920E )1
0.4938E-OC -0.2348F Ul .0.2713E 01 0.3802L 01

-0.6055E CC -C.2118E 01 0.2305E 01 C.3603E 01
0.7053E CC -0.1869E 01 0.Iog9E 01 C.3329E 01
O.7921E CC -0.15qSE 01 0.1528E 01 0.2978E 01
o.6649E CC -0.1312E U1 o.1167E 01 0.2547E 01
0.9229E C-C. 10 E1 0. 8296E 00 t.2034-bi
0.9653E CC -0.6852E O. 0.5199E 00 C.143qE 01
O.9912EC0 -O.3491E-00 0.242CE-0O 0.761OE' 0
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Table D6VIII

%,*to Vatiabe T,,oemtozaoe

Fovi'th ' O, r Appuaximtiom

qLmst. Cotzl, of Fou Stat. Vaubles

FOLLOWNG IGUS XT SFARUING AT r
.1221E-00 -0.103iE-U3 "0.6tE-01 -0.8755F-01

0.1133E-00 0.J5552E-00 -0.1129E-00 -0.9223E 00
0.8645E-01 0,7T'-).)E OU -0.2668E-00 -0.183.7E 01

.0.4120E-01 0.1091E 01 -0,373lE-00-O.2d2gE 01
-0o2272E-01 0.1466E 01 -0.4278E-00 -0.3896E 01
-0.1055F-00 O...43E. 1 -0.4275E-0 -0.5033E 01
-0.2070E-00 0.2218E 01 -0.3686E-00 -0.6238E 01

.- 0.3272E-00 Q.589E ..01. -0.247HE-00 -0.7504E 01
-0.4657E-00 0.2952E 01 -0.6238E-01 -0.8826E 01

.- 0.6175E 00 0.3117E 01 0.2951E-00 -0.9759F 01
-0.7638E 00 0.2730E 61 0.,983E. 00 -0.9442E 01
-0.8690E 00 _Q.,307 01 -. _.6 ..2E .01 -0...8 9. .85 ...0 1
-0.9940E 00 0.. 1852E 01. 0.2341E 01 -0.8421E 01
.-.0.07.5E.....01 0.1364E 01 0.2967E 01 70.7708E 01
-0.1130E 01 0.8456E 00 0.3555E 01 -0.6856E 01
-0.1159E 01 90P..9.92E-00 0.4096E 01 -0.5863E 0.1
:.-0.1159E 01 -0.2731E-00 0.4584E 01 -0.4727E 01

"-0.1072E 01 '-0.1483E 01 0.5371E 01 -0.2030E 01
•;-0.9824E 00 -.0.2114E 01 0.56574 ..0.1 -0.47.13.E-O
-0.8606E 00 -0.2ft7E 01 0.5662E oI 0.1223E 01

Q .. 0 ._A ,__ Q . , ..E o .5 . 9 7 8 . 0 .3 0 4 9 E 0 1
-0.5369E 00 -0.3372E o 0,5612E 01 0.3379E 01
--0.370 J .E-QO.-..O t.120 7 P_... ... 5?. _ ot. 5. ._.....

-0.2085E-00 -0.3183E U1 0.4dO7E 01 0.3185E 01
-0.5241E-01.-0.3058E 01 0.4392E 01 0.3910t 01
0.9692E-01 -0.2912E 01 0.3972E 01 0.3979F 01

..... 2384E-00 -.0.2745E 01 0.3550E 01 O.3q86E 01
0.3711E-00 -0.2557E 01 0.3129E 01 0.3928F 01

o..& 493QU-QJ2 -. iA4E 01 0.2713E 01 0..'3702F 01,
0.6055E 06- *-0.2118E 01 -0.2305-E 01i 'd.3603E' 01
0.7053E 00 -0.1869E 01 0.1909E 01 0.3329E 01
0.7921E 00 -0.'1599E 01 6.1528E 01 0.2978E 01
0.8649E-00 -O.1312E 01 0.1167E 01 0.2547E 01
0.9229E 00 -0.1QO7E 01 0.8296E 00 0.2034E 01
0'.9653E 00 -0.6852E 00 0.5199E 00 0.1439E 01
0.9 12..E 00 -0.3491E-00 0.2420E-00 '0.761QE ..QO
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