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Preface

The selection of threshold logic as the subject for this thesis

was due to my interest in modern mathematics, computer logic, and

two specific suggestions: one, the suggestion by Captain F. M. Brown

that non-linear flow-graph analysis might profitably be applied to net-

works of threshold elements; and two, the suggestion by Captain R. B.

Stuart that an algorithm he developed for realizing threshold functions

might constitute a necessary and sufficient test for the realizability of

Boolean functions. Study of the extensive literature on threshold logic

revealed that a large and important body of fact, theory, and synthesis

procedures has been developed by the intensive research of the past

few years; but in the process of this development, much confusing

(and sometimes conflicting) notation and terminology has been gener-

ated. Since no textbook on threshold logic has yet appeared, it seemed

desirable to present a brief unified description and survey of the field

of threshold logic. This effort comprises Chapter I of this study.

The analysis of threshold gate networks has received only limited

attention in the literature. Therefore, methods for accomplishing such

analysis were developed and are presented in Chapter II. Many excel-

lent synthesis procedures have been developed for realizing arbitrary

Boolean functions in terms of threshold gates; however, these methods

are generally difficult to apply to functions containing a large number

of variables, unless the procedures are programmed for use on a

digital computer. Hence a relatively simple method for synthesizing

such Boolean functions directly from their algebraic expressions was

ii
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developed and is presented in Chapter III.

Study of Captain Stuart's algorithm revealed that counter-exam-

ples could be constructed to disprove the conjecture that it provided a

necessary and sufficient test for realizability of a Boolean function.

The algorithm and a counter-example are presented in Chapter IV.

The bibliography, while extensive, is by no means exhaustive.

However, the sources listed provide other references to important

papers in this field.

This study assumes that the reader is familiar with Boolean

algebra and conventional switching theory. Since truth tables and

threshold gate realizations in symbolic form can be considered as

additional ways to express Boolean and threshold functions, the con-

vention of treating such representations as equations has been adopted.

Hence, thro~hout this study these representations are numbered in

sequence as equations rather than treating them as figures or tables.

In the interest of further simplicity, inequalities have also been num-

bered in the same sequence as the equations.

It is a pleasure to acknowledge my heavy indebtedness to those

persons whose assistance and guidance made this study possible: to

Mr. D. J. Boaz and Captain Bill Wilson of the Electronic Technology

Laboratory, Wright-Patterson Air Force Base, who willingly made

available much of the important literature on threshold logic and with

whom many fruitful discussions were held; to Captain Frank M. Brown,

my thesis advisor, whose patient nature and exceptional teaching ability

were severely strained in many invaluable consultations; and to my
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wife, Barbara Lee, who has endured two years of "widowhood" with

unfailing patience and understanding. Without her help and encour-

agement I would have found the path very rough indeed.

Noel Stewart Alton
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Abstract

Threshold logic is the body of fact, theory, and procedures

pertaining to the properties and characteristics of threshold gates,

threshold functions, and threshold gate networks. A brief but unified

survey of the present "state of the art" is presented. Methods for

accomplishing the logical analysis of both general threshold gate

networks and symmetric threshold gate networks are developed. The

effect of feedback on a simple threshold gate is analyzed; and a pro-

cedure for synthesizing an arbitrary Boolean function directly from

its algebraic expression is given. A counter-example to a conjec-

ured necessary and sufficient test for the realizability of a Boolean

function is given.

vii
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THRESHOLD LOGIC

I. Description and Survey

The design of combinational networks in binary logic systems

has historically been based on the use of gates embodying the elemen-

tary switching functions. These functions - AND, OR, NOT, NAND,

and NOR - also have had the desirable property of being readily real-

ized with mechanical and electronic devices. Developments in recent

years, however, have produced intense interest in a type of switching

device called a threshold element, or threshold gate. This gate is in

many ways more complex and interesting than conventional gates; un-

like these gates a threshold element can treat its inputs asymmetrical-

ly. Hence a single unit can generate switching functions far more com-

plex than those generated by a conventional gate.

Extensive investigation of this new gate was due in large meas-

ure to the early work of Karnaugh (Ref 17), who pointed out the logical

possibilities of a ferrite core, and to the early and widespread recog-

nition of the essential similarities between the mathematical models

of the threshold gate and the neuron. This similarity suggested the

use of threshold gates as neuron-simulating elements in pattern-recog-

nition and self-organizing machines. Intensive research over the past

seven years has resulted in a body of fact, theory, and design proce-

dures known as threshold logic. This logic, though not yet as unified

and complete as conventional logic theory, now represents a most

useful and general approach to logical design. Not least among its

I
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benefits is a major reduction in the number of gating devices needed

to realize a complex switching function. This chapter presents some

of the more important elements of threshold logic in sufficient detail,

it is hoped, to serve as a useful introduction to this growing and im-

portant segment of computer technology. The notation presented in

the following section will be used consistently throughout this report.

Notation

The following logical symbols are used:

G: exclusive disjunction

+ : inclusive disjunction

* : conjunction

= • logical equivalence

identity

.X: complementation (negation) of A.

Conjunction is also shown by juxtaposition where this usage leads to

no confusion. Logical truth and falsity are consistently mapped to

1 and 0, while recognizing that other assignments could be selected.

A useful Boolean difference operation is defined, based on the concept

of exclusive disjunction (Ref 4:487): The fact that

A 9 A =1 (1)

is extended by definition to the following difference operation:

A=1-A

or (2)

= -A

2
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A Boolean function of n binary variables xl, x 2 ,..., x n is denoted

by F where

F - F(Xl, x2, ... , Px n )  (3)

A threshold function of n binary variables xl, x2 ,..., xn is denoted

by T where

T -- T(x], x2,... xn )  (4)

The letter n denotes the number of arguments of F or T. The binary

variables used as arguments of F or T are represented by the suitab-

ly subscripted lower case letters x or y, or by the capital letters A,

B, C,..., excluding the letters F and T. The word "function"

appearing without modifiers is intended to mean a logical function.

The subscripts T and F on any symbol, i. e., AT, or AF, identify

that symbol as a member of the respective true or false subset of the

set of all such symbols. The lower case letters w and t, subscripted

as required, represent, respectively, the weights and threshold value

of a threshold gate; i. e., they are real constants which give the values

assigned to the weights and threshold of the threshold gate. When the

threshold is represented as a bias it is depicted by wo instead of t.

Use of the symbolS is restricted to arithmetic summation;

that is, it will not be used to indicate Boolean summation or disjunc-
n

tion. An indicated summation, -wixi, implies that the n x's have
i=l

been mapped to 0 or 1, prior to summation, by a particular assignment

of truth values; hence the indicated summation represents a real num-

ber. An assignment of a particular set of truth values to the n variables

3
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of F is referred to as a valuation on the n variables of F. Use

of the symbols > < or > < is limited to conventional algebraic ine-

quality; and logical implication is noted by the symbol , i. e., if

F 1 -. F 2 then F 1 implies F 2 .

If, in a given context, the conventional algebraic operations of

addition and multiplication can be confused with logical disjunction or

conjunction, the correct interpretation will be noted. Certain essen-

tial definitions will now be given.

Definitions

Boolean Function: A Boolean function is a member of the set of

all switching or logical functions; it is sometimes called a "truth"

function (Ref 19:1). Distinction is made between a Boolean function and

a Boolean expression, since the Boolean function may be represented

by a variety of Boolean expressions, no one of which may be said to

be "the function. " Two Boolean expressions are particularly useful

in specifying a given switching or logical function: the canonical min-

term form, whose terms correspond directly to those rows of the truth

table for which the function is true; and a minimal normal disjunctive

form in which F is expressed as a disjunction of essential prime impli-

cants., i. e., no prime implicant can be deleted without destroying the

equivalence. This minimal form for F is sometimes called "the irre-

dundant normal disjunctive form, " abbreviated INDF (Ref 28:19). For

simplicity, this study will use the term minimal normal form when

*A prime implicant of a function is a conjunction of variables that
implies F and contains no shorter conjunction of variables also

implying F.

4
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referring to a Boolean function expressed in INDF. Several pro-

cedures exist to reduce a function to this minimal normal form, one

of the more common being the Quine-McCluskey reduction method

(Ref 24:288).

Threshold Gate. A threshold gate is an operator which maps

the 2 n possible valuations on the n input variables to a binary output

of truth or falsity, in such a way as to realize a particular subset of

all Boolean functions. Members of this subset are called threshold

functions. It performs this mapping operation by a process of linear

summation of the weighted input values: if the weighted input sum is

greater than the threshold level of the gate, an output representing

truth is obtained; if the weighted input sum is less than the threshold

level an output representing falsity is obtained.

Threshold gates are physically realized with many different

devices, the most common of which are magnetic cores, resistor-

transistor circuits, parametron circuits, resistor-tunnel diode cir-

cuits, and multiple coil relays (Ref 20:6). Although these circuit

configurations differ widely, they are all represented logically by the

following symbols:

X2 W t T (5a)

w
x n

5
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or alternatively,

xl
xt (5b)

Xn

Note that in the alternate representation the threshold level is rep-

resented by a biasing input ( considered to have a truth valuation of 1)

with weight wo = -t. The representations are completely equivalent

and both are used in the literature.

Threshold Function. Mathematically, threshold functions are

defined as follows: A Boolean function F of n binary variables is said

to be a threshold function if and only if there exists a set of n + 1 real

constants wl, w 2 , .. , wn and t, such that, for all possible valuations

on the n input variables of F, the following conditions hold:

n n"w ix i  > t (6a)
i=l

for all valuations for which F is true; and

nnwix i < t (6b)
i= 1

for all valuations for which F is false. This definition could alter-

natively be expressed in terms of the n + 1 real constants wo, Wl,

w 2,.., wn and the inequalities would then be

n
wo + wixi > 0 if F is true, (7a)

i--1
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and

n
wo + - wix i < 0 if F is false. (7b)

i=l

The definitions are completely equivalent, differing only in the manner

of expressing the threshold. Two important points should be noted:

a. These defining inequalities actually represent a set of 2 n

n
inequalities corresponding to the 2 possible valuations on the input

variables. The inequalities express conditions which the n + 1 constants

must satisfy if a given function is to be a threshold function.

b. Implicit in the definition is an ordering, or partial ordering,
n

of the 2 n weighted input sums represented by - w.x.; that is, all such

sums for which F is true must be greater than all such sums for which

F is false. Stated another way, the smallest weighted true term(s)

must be greater than the largest weighted false term(s). Thus, the

threshold level t may have any value such that

minfweighted true terms) > t > maxfweighted false terms (8a)

or

minfweighted true terms) > t > maxfweighted false terms] (8b)

Hence it is a matter of definition whether the weighted input sum

equal to t is considered true or false. The interpretation of Ineq (8a)

is used consistently throughout this study since it is the more com-

mon usage.

Threshold functions are known by many names in the extensive

literature existing. Some of the more common terms are given below:

a. Realizable Function: A threshold function is a function

7
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realized by a threshold gate. Hence the term "realizable function"

is used in the limited sense of being a function which can be realized

by a single threshold gate. This is a commonly used term.

b. Setting Function (Ref 17:570): The inputs to a magnetic core

are currents on several lines, each of which is associated with a given

number of turns on the core. The resulting magnetomotive force is

the weighted sum of the input signals (called the "input composite"),

with the turns on the core representing the weights. If the input

composite is sufficient to "set" the core, then an output pulse will be

obtained during the next phase and the function which "set" the core

is termed the setting function.

c. Linear Input Function (Ref 20:6): This term was derived

from the manner in which the threshold gate performs its summation

on the weighted inputs.

d. Linearly Separable Function (Ref 19:1): This name derives

from geometric considerations discussed in the next definition. The

term is widely used in the literature, frequently in abbreviated form

LSF. The two expressions "realizable function" and "linearly sepa-

rable function" will be used as synonymous terms for threshold

functions in this study.

Geometric Representation. For a function of n variables there

are 2 n possible assignments of truth values to the arguments of the

function; and the particular valuations for which the function is true

define the given function. The 2n valuations can be mapped to the

vertices of an n-dimensional unit hypercube; then those vertices cor-

responding to the valuations for which F is true are termed true ver-

8
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tices and constitute a geometric representation of the function. The

remaining vertices correspond to those valuations for which F is false

and are called false vertices. As an example, consider the function

F = B(A + C) = ABC + ABC + ABC (9)

This three variable function has the following geometric representation:

C

(AB) A C) (10)

(A8g) B
(A F)

(ABc)

A

The three"dotted" vertices represent the function and hence are true

vertices; all others are false vertices. While higher dimensionalities

may be difficult to visualize, the concept is valuable and mathemati-

cally meaningful. Since threshold functions are a subset of Boolean

functions, they can, of course, be represented geometrically. From

their defining Ineqs (7) the following equality can be written for the

particular weighted input sum which equals the threshold:

w o +W 1 +w 2 x 2 +...+Wnxn = 0 (11)

Eq (11) represents the equation of a hyperplane in n-dimensional

space, where wl,..., wn are proportional to the direction cosines of

a normal to the plane, and w o is proportional to the distance of the

hyperplane from the origin. This plane separates the true vertices

from the false vertices of the n-dimensional cube. Thus the term

9
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"linearly separable" is a descriptive name for threshold functions.

In Eq (10) note that the given function is linearly separable, since the

three true vertices can be separated from the five false vertices by a

two-dimensional plane. This geometric concept and terminology are

widely used.

Threshold Network. A threshold network is a logic circuit com-

posed of threshold elements. A simple network, discussed in Chapter

II, is shown below:
E

1 2 H 1

A

B 2 2 F (12)

Threshold networks to perform many arithmetic functions are given

in Ref 11:287. Others are discussed in later chapters.

Threshold Logic. Threshold logic is the body of fact, theory,

and procedures pertaining to threshold gates, threshold functions, and

networks of threshold gates. An interesting subdivision of threshold

logic is termed majority logic. It is a system of logic based on an aug-

mented Boolean algebra which includes a majority operator, #, defined

10
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by (Ref 9:17):

A # B # C = AB + AC + BC (13)

Majority logic is applicable only to networks of three input majority

decision elements. Such an element is a simple type of threshold gate:

A

B 2 T (14)

1

Although majority logic gates are not as flexible in logical design as

more general threshold gates, the desire for a minimum number of

different "building blocks" in a given computer design provides strong

motivation for their use. Even though the term majority logic is com-

monly accepted to mean "two out of three" logic, the name is occasion-

ally applied to more general majority decision studies; and it is also

sometimes applied to the general study of threshold functions (Ref 21).

Certain practical considerations will now be discussed before proceeding

to a more detailed study of threshold functions.

General Considerations

Weight and Threshold Considerations. By definition, if a function

is to be a threshold function, a set of n + 1 constants must be found which

satisfy Ineqs (6) or (7). Such a set of n + 1 constants is not unique,

since if any set is found that satisfies the defining inequalities, it may

be multiplied or divided by any positive real number to generate a new

11
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set of n + 1 constants also satisfying the defining inequalities. Fur-

ther, there may be more than one set of n + 1 constants, not linearly-

related, which satisfy the required inequalities. As an elementary

example, F = AB can be realized by

A
F 2 (15)

B

or

A

7 9 (16)

and many others. Note also that the definition of a threshold function

only requires these n + 1 constants to be real numbers, not necessarily

integers. However, they can be, and universally are, restricted to

integer values with no loss of generality in the functions generated.

This can be shown by the following reasoning: Assume a set of n + 1

rational constants which satisfy the defining inequalities; then this set

can be multiplied through by a common denominator to obtain an integer

realization. Assume now a set of n + 1 constants, some or all of which

are irrational numbers, which satisfy the defining inequalities; then

each irrational constant can be replaced by a rational number suffi-

ciently close in value so that the threshold t may still be selected in

the range required by Ineq (8a). Thus restricting the n + 1 real

12
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constants to integer values provides a desil able simplification with

no loss of generality (Ref 28:7).

Normalization of Inputs and Outputs. All previous discussion has

implicitly assumed that the input and output values of a threshold gate

are:

true input x i = I , false input x i = 0
1. (17)

true output T = I , false output T = 0

Actually, of course, the inputs and outputs may be any two voltage

levels, current levels, phases, or frequencies, depending on the phys-

ical realization. It has been shown, however, that any circuit using

the normalized inputs and outputs given by Eqs (17) can be transformed

by a linear transformation into one having more realistic input and out-

put levels (Ref 20:8). Hence no loss of generality results from using

the normalized values given in Eqs (17).

Physical Constraints. Many physical constraints exist and their

effect must be taken into account during the final phase of logical design.

Chief among these constraints is component tolerance which, when

combined with the required tolerances in input and output signal levels,

puts a definite bound on the gate's ability to discriminate between

different weighted input sums. There are other design considerations,

such as the fan-out or driving capability of the gate; the problem of

even loading of the inputs; the problems imposed by physical dimensions,

such as the number of turns on a ferrite core; the desire to obtain regu-

lar patterns of threshold gates for simplicity in manufacturing and

servicing; and many others of a similar nature. These constraints will

13
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not be discussed further, not because they are not important, but

because this study is principally concerned with purely logical

considerations. An excellent discussion of the effects of constraints

on logical design is contained in Ref 27 Ch 3.

Minimal Realization. The problem in conventional logic theory

of what constitutes, and how to attain, a minimal realization of a

switching function is also a problem in threshold logic. The concept

of "minimal" realization may be approached from the points of view

of component or circuit complexity, component accuracy (tolerance),

or circuit delay. The interrelation between the three considerations

is obvious, and in any given design problem the criteria for minimal-

ity are determined in terms of cost, permissable delay, and the function

to be performed. In threshold logic studies it is usual to consider the

minimal realization of a threshold function to be the smallest possible

sum of weights plus threshold values which will realize the given

function. In the realization of a general Boolean function, it is usual

to consider the minimal realization to be the smallest number of

threshold gates that can be used, each with a minimal sum of weights

plus threshold. These criteria are used in this study.

Properties of Threshold Functions

Threshold functions, as a subset of Boolean functions defined by

a threshold gate, have been the object of intensive study in their own

right. The objective of this investigation has been to discover those

properties a Boolean function must have to be a threshold function.

That the answer is not obvious may be inferred from the following

14
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equations:

F 1 = AB+CD (18)

and

F 2 = A(BC + (B + C)(D + E + F) + DE)

+ BC(D + EF) + (B + C)DEF (19)

Eq (18) is not a threshold function and hence needs more than one

threshold gate (two, actually) for its realization. Eq (19) is a thresh-

old function and therefore is realizable with a single threshold gate.

Some of these properties of realizable functions will now be discussed.

The Number of Threshold Functions. It is a well known fact in

switching theory that 22n functions can be defined for the 2n combina-

tions of n binary variables. The question arises as to what portion of

these 22n functions are realizable. Interestingly, fourteen of the six-

teen functions of two variables (all but the equivalence and exclusive-or

functions) are realizable (Ref 25:213); but the percentage becomes

vanishingly small as n increases. This fact is graphically depicted in

Table I:

Table I

Number of Boolean Functions, Threshold
Functions, and Symmetry Types as a

Function of n

No. of Arguments: 0 1 2 3 4 5 6 7

Boolean Functions 2 4 16 256 65536-4. 3x10l91. 8x10 19-1. 0x10 3 6

Threshold 4 6 10
Functions 2 4 14 104 1882'-9.4x4041.5x0 -. OxlO

Symmetry Types 14
Boolean Functions 2 3 6 22 402 -1. 0xi0 6-4.0xl0 --

Symmetry Types
Thres. Functions 2 3 5 10 27 119 1113

(From Her 30:l19)

15
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The symmetric functions listed in the table are discussed below.

Symmetric Functions, Complements and Duals. Symmetric

functions are Boolean functions which remain invariant under all

permutations of the input variables. A simple example of a symmetric

function is

F = ABC + ABC + A3C + ABC (20)

which may alternately be expressed as

F =AB + C(AS + AB) (20a)

or
F = BC + A(BC +3C) (20b)

or
F = AC + B(A?7 + AC) (20c)

If any member of a symmetry class is a threshold function then all

members of that class are threshold functions (Ref 20:9). This con-

cept has been extended by proving that the property of linear separa-

bility remains invariant under repeated applications of the transfor-

mations of complementation and/or permutation of the variables of

a threshold function (Ref 16: Ch 3). It has also been shown that duals

and complements of a threshold function are themselves threshold

functions. These useful facts are used in later discussions.

Threshold Function Characterizations. In general, a Boolean

function has more than one minimal normal expression. A threshold

function, however, has a unique minimal normal expression, and

this expression contains all of the prime implicants of the function

(Ref 27: 2. 36). Two other representations, in non-Boolean form,

16
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have been proven for threshold functions:

a. A threshold function can be characterized by (wl, w2 ,..., Wn; t)

where the w's are the weights and t is the threshold of the threshold

gate which realizes the function. In other words, these n + 1 constants

define a unique threshold function T (Ref 27:2. 3). Recall, however,

that the reverse implication does not hold: a given threshold function

T does not define a unique set of n + 1 constants.

b. A threshold function of m minterms, expressed in positive

unate form, can be characterized uniquely by the paiticular set of

n + 1 real numbers, [P(n), Sl(n - 1), ... , l(2), -l(l); mi], where the

indicated sums are column sums of the function's truth table, summed

over the m true entries only (Ref 7). This is an interesting, but, thus

far, not very useful representation. The meaning of the phrase "posi-

tive unate form" will be defined in the following section.

Necessary and Sufficient Conditions for Realizability.

Despite the efforts of many authorities, the problem of finding

an algebraic test for realizability, which may be applied directly to

Boolean expressions, remains unsolved; and some authors now believe

that such an algebraic test will never be found (Ref 30:33). The consis-

tency of the set of 2 n inequalities defined by Ineqs (6) or (7) remains

the only completely applicable necessary and sufficient test for the

realizability of a function. Several properties, to be presented, have

been defined which provide necessary conditions for realizability; but

the sufficiency of these properties is limited to Boolean functions of

relatively few arguments. Concise geometric conditions can be

17



GE/EE/62-2

stated that are necessary and sufficient for a function to be linearly

separable; but no convenient method of applying these conditions is

available. Almost all of the algorithms and tests existing in the

literature reduce, in one way or another, to a test for the consistency

of the set of 2 n inequalities prescribed by the definition of a threshold

function. Before discussing these tests, which are essentially synthe-

sis procedures, certain properties which are necessary conditions for

realizability will be discussed.

Unateness. A unate function is one that can be represented by

a minimal normal expression in which no variable appears both comple-

mented and uncomplemented (Ref 19:1). As examples, consider the

functions

*1 =AB+AC (21)

and
F 2 = AB + AH (22)

F 1 is unate, but F 2 is not, since it cannot be reduced to any minimal

normal form in which neither variable appears both complemented and

uncomplemented. The concept of unateness is extended by another

definition:

A function F is positive (negative) in an argument, represented

by A, if there exists a minimal normal expression for F in which A

appears only as an uncomplemented (complemented) variable. Thus F

is unate in an argument if it is either positive or negative in that argu-

ment. Further, if F is positively (negatively) unate in each variable

then F is termed a positive (negative) unate function. This concept is

useful when synthesis procedures are discussed, since the weights
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necessary to realize a positive unate threshold function are always

positive. The property of unateness is a necessary condition for

linear separability of a function, but it is a sufficient condition only

for functions with n < 3 (Ref 19:3). As an example, the function of

four variables

F =AB +CD (18)

is unate but it is not a threshold function.

Complete Monotonicity. A rather difficult concept of "complete

monotonicity" of a function has been defined (Ref 28:11) as a stronger

necessary condition for realizability than unateness. Certain notation

and definitions must be presented before the definition of monotonicity

can be given:

Consider a function F of n variables. Let X and Y be valuations

on a subset of the n variables. As examples, if n = 5, let

X- (x1 = T, x 3 = T, x4 = F) (23)

Then Fx is the restricted function

Fx- F(l, x 2 , 1, 0, x 5 ) (24)

Similarly, if

Y (x1  T, x2 = F, x 3 = F) (25)

then Fy is the restricted function

Fy-F(l, 0, 0, x 4 , x 5 ) (26)

Further, two functions F 1 and F 2 are said to be comparable if one
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implies the other; that is, F 1 and F 2 are comparable if

F I1- .0 F 2

or (27)
F2 -F 1

Complete monotonicity can now be defined:

A switching function F is completely monotonic when, for every

two valuations X and Y on some common subset of F's arguments, F x

and Fy are comparable. Thus to check for complete monotonicity, it

is necessary to compare all 2 n possible subsets of valuations with each

other, checking for any implication between the two restricted functions

Fx and Fy for each pair. Since this is obviously a formidable procedure

the concept of complete monotonicity is decomposed into the concepts

of l-rnonotonicity, 2-monotonicity,..., n-nu,,otonicity. The latter

is synonymous with complete monotonicity. 1-monotonicity restricts

the valuations X and Y to subsets of 1 variable; 2-monotonicity to sub-

sets of 2 variables, and so on. Two additional theorems simplify the

procedure for checking for complete monotonicity: the first proves

that if a function is shown to be m-monotonic, then the only valuations

that need be examined for determining m+ 1 monotonicity are X and Y

where Y a X, instead of all possible pairs of valuations on the m + 1

variables. The second theorem proves that if a function is shown to

be n/2 -monotonic then it is completely monotonic. Hence, if F, a

function of six variables, is to be checked for realizability, it is

necessary to check only for 1-, 2-, and 3-monotonicity of the function.

If at any step the function is found not to be monotonic, then the given

function is not realizable and the process is discontinued. It can be
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shown that the condition of 1-monotonicity is equivalent to the property

of unateness; and 2-monotonicity is equivalent to a test named the

"sieve method" (Ref 25:210) which was proposed as a possible necessary

and sufficient test for realizability. Complete monotonicity comprises

a necessary test for realizability, but it is a sufficient test only for

n < 6. For n > 9, it has been proven not to be a sufficient test; its

sufficiency for n = 7 or 8 has not been determined (Ref 30:59).

Geometric Conditions. Using convex set theory, several authors

have proven that a necessary and sufficient condition for linear separa-

bility is that the function's true vertices and its false vertices form two

disjoint convex hulls (Refs 13:225, 14:777). The latter reference tests

for linear separability by applying a corollary: If there exists at least

one point which is a convex combination of points from ST and which

is also a convex combination of points from SF (where ST and Sp are

the convex hulls representing the respective sets of true and false

vertices), then the function is not linearly separable. Using convex

set theory, a set of n + 2 linear algebraic equations in m unknowns is

established, where m is the number of points jointly shared by ST and

SF . If these equations have a non-negative solution then the convex

hulls are not disjoint and the function is not linearly separable.

Another geometric condition conjectured to be necessary and

sufficient for linear separability has been presented (Ref 22:1335).

This condition is that no set of vertices of the n-cube forms a parallel-

ogram (or sub-cube) such that true vertices form one diagonal pair

and false vertices the other diagonal pair. The meaning of diagonal
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vertices is illustrated below:

a b 
ee

b a d

Fig. 1

Diagonal Vertices

This geometric condition has been shown to be analogous to complete

monotonicity; it is therefore a necessary condition but sufficient only

for functions with n < 6. Since there is no convenient method for

determining if this condition is met ( at least for n > 3), utility of

the procedure is limited.

Threshold Function Synthesis

A comprehensive coverage of the many synthesis procedures

extant cannot be undertaken in this limited study. Rather, an attempt

will be made to present the essential concepts of the major synthesis

procedures, with references to the more important papers on synthesis

given where appropriate. The synthesis of a threshold function will

first be discussed, and then the procedures developed will be extended

to the synthesis of arbitrary Boolean functions with networks of

threshold elements.

It was previously noted that the definition of a threshold function

establishes a set of 2n inequalities on the n + 1 constants needed to

realize it. Two facts are obvious:

a. The number of inequalities soon becomes unmanageable as
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n increases; and

b. a great number of redundant inequalities exists.

Hence, the essential element in most synthesis procedures is the

method used to reduce the 2 n inequalities to a workable number. The

reduced set of inequalities is then solved by various methods which

include trial or iterative procedures and linear programming. In the

absence of a suitable algebraic test to determine directly from the

Boolean expression whether the given function is realizable, the synthe-

sis methods proceed as if the function is indeed a threshold function.

Then, if a set of weights and threshold can be generated, the synthesis

procedure has served as a necessary and sufficient test to prove linear

scparability. If a set of weights and threshold cannot be found (i. e.,

the inequalities are inconsistent), the function is not realizable; and

depending on the particular method being used, the procedure is either

discontinued or extended to generate a multi-gate realization of the

function.

Since it is convenient in most synthesis procedures to work only

with positive unate functions, a simple method is presented which

transforms a function to positive unate form for purposes of test and

synthesis, and then converts the realization obtained for the transformed

function to a realization for the original function:

The defining inequality for the weighted true terms of a function

can be written

WXlI + w 2 x 2 +... +wnx n > t (28)
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Assume that the given function F is positively unate in all but one

variable, say x2:

F- F(x2,2, .... Xn) (29)

Assume now that the function is transformed to positive unate form

by substituting x 2 wherever 32 appears in the expression, so that the

transformed function is

]-- F(xl, x2,..., Xn) (30)

Suppose that F1 is realizable and that Eq (28) represents the set of

weights and threshold that realize F': then the realization for the orig-

inal function F can be obtained by substituting the quantity (1 - x 2 ) for

x2 in the realizatior for F'. The resulting inequality will represent

the realization of F:

wix 1 +w 2 (l- x2 ) +...+wnXn _> t

or
w 1x - w2 x2 +... + wnxn > t - w2  (31)

The basis for this procedure is, of course, the Boolean difference

operation which has been defined. Thus any function can be transformed

to positive unate form by changing all complemented variables to uncom-

plemented form. Then, when a realization is obtained for the trans-

formed function F' it is changed to a realization for the original

function F by:

a. changing the sign of the weight of each transformed variable,
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and

b. adding the amount of the weights, for all variables transformed,

to the original threshold value.

In all further discussions it will be assumed that the given function is

transformed to positive unate form before applying any synthesis

procedure.

Two primary methods are used to effect a reduction in the 2 n ine-

qualities to be solved: ordering of the vertices and ordering of the

weights. These procedures will now be explained.

Ordering of the Vertices. It has been pointed out that the 2n

possible valuations on the variables of a function can be mapped to the

2n vertices of an n-cube. An ordering of these vertices will now be

defined:

Let X = (a,,..., a n ) and X' = (a,.... an') be two valuations

on the n variables of F. Then by definition, X < X' if and only if, for

every i, a i < ail. This ordering is a partial ordering only since some

vertices are not comparable. Thus, (10001) < (10101) but (10001) and

(01001) are not comparable. This partial ordering constitutes a lattice,

and the vertices (00... 0) and (11... 1) are respectively the least vertex

and the greatest vertex for positive unate functions. The defining

inequalities for a threshold function require each weighted true term

to be greater than each weighted false term. It is obvious that, in the

partial ordering of the vertices defined above, the leastterms found will

have the smallest weighted sums, and the greatest terms found will have

the largest weighted sums. This provides a convenient method to

reduce the 2n inequalities to a more workable set: If the least true
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vertices are foULid and the greatest false vertices are found, then a

reduced set of inequalities is obtained which consists of inequalities

established between the weighted least true vertices and the weighted

greatest false vertices. It is apparent that if this set of inequalities
n.

is consistent the entire set of 2 inequalities is consistent, since the

least true terms represent a smaller weighted sum than any other true

term, and the greatest false terms represent a greater weighted sum

than any other false term.

The least true terms can be found from the truth table for the

given function by eliminating any true entry which "covers" another

entry, i. e., (01011) "covers" (01001) and would be eliminated. True

terms that finally remain are those not comparable and they constitute

the set of least true terms. Similarly, the greatest false terms are

obtained by eliminating any false entry in the truth table "covered" by

another false entry. Thus (10001) is covered by (11001) and would be

eliminated. The false terms remaining are those not comparable and

constitute the set of greatest false terms.

A more convenient method of obtaining the least true set and

greatest false set of vertices uses the minimal normal forms of the

given function F and its complement F. Recall that this form of a thresh-

old function is unique and contains all of the prime implicants of the

function. It has been shown (Refs 19, 27, 28) that the prime implicants

of a positive unate function F represent the least true vertices of the

function and the prime implicants of F represent the greatest false

vertices of F. Thus, if we express F and F in minimal normal form

we directly obtain'the reduced set of inequalities between minimum true
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vertices and maximum false vertices. The following example synthe-

sizes a given function and will make these procedures clear.

Example. Given the function (from Ref 19),

F = ABC + BCD (32)

1. Convert to positive unate form:

F' = ABC + BCD (33)

2. F' is in minimal normal form; therefore, each prime impli-

cant represents a least true vertex of F', or

least true vertices= (1110), (0111) (34)

3. F' is obtained through normal Boolean manipulation as

F- WDE +"R + C (35)

and the greatest false vertices corresponding to the three prime

implicants of F' are as follows:

greatest false vertices = (0110), (1011), (1101) (36)

4. Since each of the weighted least true terms of Eq (34)

must be greater than each of the weighted greatest false terms of Eq (36)

we can set up the following set of inequalities:

w + w2 + w 3 > w2 + w3  (37)

wl +w 2 +w 3 >w I +w 3 +w 4  (38)

wl +w2 +w 3 >wl +w 2 +w 4  (39)

w2 + w3 +w 4 >w 2 +w 3  (40)

27



GE/EE/62-2

w2 +W 3 +W 4 >w 1 +W 3 +w 4  (41)

2 +w 3 +w 4 >w 1 +w 2 +w 4  (42)

Thus the original 2 inequalities have been reduced to a set of six

inequalities, two of which are obviously redundant. If this reduced set

is consistent, then the entire set of 2 inequalities is necessarily consistent.

5. The above inequalities reduce to the requirement that w2 and

w3 each be greater than w1 or w4 . If we choose

w1 = w4 = 1 (43)

and
w2 = w3 = 2 (44)

the inequalities are satisfied.

6. Since the threshold t must satisfy Ineq (8a), we have, using

Ineq (37),

1(x 1) + 2(x 2 ) + 2(x 3 ) + 1(x4 ) > t' > (-I1 ) + 2(x 2 ) + 2(x 3 ) + 1(- 4 ) (45)

or
1(1) + 2(1) + 2(1) + 1(0) > t' > 1(0) + 2(1) + 2(1) + 1(0) (46)

or 5 > t' >4 (47)

Therefore, the value for t' is selected as 5 and F' is realized by

(1, 2, 2, 1;5). Note that any other of the reduced set of inequalities

could have been used in place of Ineq (37) to determine t'. To obtain

the realization for F we apply the rules previously given: Change the

signs of those weights corresponding to transformed variables and add

these weights to t'. Therefore, since C and D were transformed,
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w = -2 (48)

w 4 = -1 (49)

and
t = 5- 2 -1 = 2 (50)

and F is realized by (1,2,-2,-1;2).

It should be noted that the procedure was applied to the given function

just as if it were known to be a threshold function; had this assumption

been false it would have been so indicated by failure to obtain a solu-

tion of the reduced set of inequalities. This method of ordering of the

vertices was first presented by McNaughton (Ref 19). It is essentially

the method used in synthesis procedures presented in Refs 12, 27,

28, and 30. For many functions the reduced set of inequalities obtained

may still be uncomfortably large. This set can be reduced still further

by a procedure which determines the relative order of magnitudes of

the weights needed to realize the function. A discussion of this method

follows.

Ordering of the Weights. It has been proven, in many different

forms (Refs 5, 12, 16, 27, 28), that the relative magnitudes of the

weights needed to realize a threshold function T can be determined

from the number of appearances of each variable in certain of the

Boolean expressions for T. The canonical minterm form and the mini-

mal normal form are generally used. Using first the canonical minterm

form, the procedure for obtaining the relative ordering of the weights is

as follows:

The relative ordering of the weights assigned to the n variables
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of T can be determined by counting the number of appearances of each

variable in uncomplemented form in the minterms of T; the relative

ordering of the number of appearances of each uncomplemented variable

gives the relative ordering of the respective weights. The procedure

is applied to any given function, again assuming the function to be a

threshold function; and the truth or falsity of this assumption will be

demonstrated by the ultimate success or failure in solving the reduced

set of inequalities.

Example. Given the function

F = ABCDE + ABCD + ABCDE + ABCDE + ABCDE (51)

Counting the appearances of the uncomplemented variables, C appears

4 times, A and E appear 3 times, B and D appear 2 times: The

ordering of the weights is therefore

WC >wa = we >wb = wd (52)

and this ordering can now be applied to the reduced set of inequalities

obtained by ordering of the vertices to effect a further reduction in

their number.

Since the number of minterms may be quite large tor a function

of many variables, it is often more convenient to obtain this ordering

from the minimal normal form for F. Recall that the smaller the

number of variables in a prime implicant, the greater is the "cover"

of that term: if a prime implicant consists of a single variable, then

2 n-l of the minterms of F will contain that variable; if a prime impli-

cant consists of two variables, the two variables will appear in 2n - 2
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of the minterms of F, and so on. Thus the relative ordering of the

variables, and hence of the weights, can be obtained as follows:

a. Count the appearances of the variables in those prime impli-

cants consisting of the least number of variables. Order the variables

appearing in these "least" prime implicants in order of the number of

appearances of each variable. This ordering of variables is of higher

order than those obtained in successive steps.

b. Count the appearances of the variables in those prime impli-

cants consisting of the next greater number of variables. The number of

appearances of any variable already ordered is immaterial unless an

equality exists in the ordering of step 1; if this is the case, then the

number of appearances of these variables in step 2 may resolve the

equality of ordering obtained in step 1. Order the variables not pre-

viously ordered. This ordering of variables is of lower order than

the preceding ordering.

c. Continue in like manner until all variables are ordered. An

example will clarify this procedure.

Example. Given the following function, expressed in minimal

normal form:

F =A+BC +BD +CE+BEFG+EFGH (53)

1. Prime implicants of I variable: A

2. Prime implicants of 2 variables: B and C appear twice,

D and E appear once; therefore, the ordering obtained thus far is

A >B = C >D = E (54)
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3. Prime implicants of four variables: E, F, and G appear

twice, B and H appear once; the equalities of Ineq (54) can now be

resolved as B > C and E > D. The ordering obtained for F, G, and H

is F = G > H, and the overall ordering is

A >B >C >E >D >F = G >H (55)

This ordering can now be used to further reduce the set of inequalities

obtained by ordering of the vertices.

When the ordering of weights yields an equal ordering of two

weights, such as F and G in the previous example, common practice

assigns equal weights to these variables. An interesting fact proved

by Winder (Ref 30:87) is that an assignment of equal weights in these

'-ases does not necessarily provide a minimal realization of the function.

Other Methods for Reducing the Set of Inequalities. Other methods

exist either to obtain an initial reduced set of inequalities or to effect

still further reductions in the reduced set obtained after applying the

two procedures given above. Coates and Lewis (8:447) present a

rather complex method of decomposing a given function into a function

"tree". The method utilizes any symmetry of the function in subsets

of the arguments: it successively factors out the highest order groups

of symmetric variables and determines the next level of symmetry.

The process is continued until it cannot be carried further. Equal

weights are assigned to all variables in a given symmetry group and

the highest order symmetric group of variables is given the highest

weight. A reduced set of inequalities is obtained by the method of

factoring which forms a function "tree. " The relative order of the
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weights of the symmetry groups is used to reduce this basic set still

further; the resulting reduced set is solved by a complicated process

termed "reconstruction. "

Winder (Refs 28, 29, 30) uses the results of previous checks for

monotonicities to deduce certain "reducing" relations. These are used

to effect still further reductions in the set of inequalities obtained

through ordering of the vertices and ordering of the weights.

Other Synthesis Methods. Numerous synthesis procedures have

been devised which do not utilize the reducing procedures presented

above. Linear programming techniques are used in several well-known

procedures: Minnick (Ref 20:6) presents a synthesis procedure for

symmetric functions which is applied to the entire set of 2n inequalities

and utilizes the Simplex algorithm to obtain a solution; Einhorn (Ref

10:615) presents a similar procedure for general Boolean functions

and again utilizes the Simplex algorithm to obtain a solution. Akers

(Ref 2) presents an interesting variation on the linear programming

technique by showing that the solution of the 2 n inequalities may be

viewed as a two-person, zero-sum game, and he utilizes game theory

to obtain a solution.

Two synthesis procedures are contained in Ref 27 which differ

from any of the above methods. The first of these is an iterative

geometric test procedure which may have to be continued through 2n

iterations before determining if a function is linearly separable. The

second method utilizes a class of orthogonal digital functions called

Walsh functions, and a sub-class of these known as Rademacher

functions.
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General Synthesis Procedures

The general problem of threshold logic synthesis is, of course,

to obtain a realization of an arbitrary Boolean function in terms of a

network of threshold gates. Various procedures to accomplish this

synthesis are now reviewed.

Primitive Synthesis. Since the elementary AND and OR functions

are simple threshold functions, any Boolean function can be given a

two-level realization. Such a realization is obtained with the least

number of gates if the function is first put in minimal normal form.

Then each prime implicant is realized by an AND gate, and a single

OR gate terminates the outputs from these gates. This is a minimal-time

realization, but, in general, requires an excessive number of gates.

This procedure is further discussed in Chapter III where a new

synthesis method for multilevel realization of a function is presented.

Lineai" Programming. The linear programming techniques

previously mentioned provide a means to accomplish two-level synthesis.

Initial application of the linear programming method determines if the

given function is linearly separable. If it is not, the method yields

a "best" solution and a residue function. The procedure is reapplied

to this residue function; again this function is shown to be linearly

separable, or another "best" solution and another residue function are

generated. The method is successively applied to the residues until

the process terminates in a threshold realization of a residue function

and no new residue. An advantage of this procedure is that it may be

programmed on a digital computer.
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Geometric Methods. The iterative geometric procedure for

realizing threshold functions which was discussed on p 33 is also

applicable to multilevel synthesis. Successive applications of the

method yield successive linearly separable functions, which are each

the sum of all previously generated linearly separable functions plus

at least one additional true vertex of the n-cube. The process is

continued until all true vertices have been included in at least one

realizable sub-function.

Winder (Ref 30) presents a method based on an involved geometric

decomposition of a function into linearly separable sub-functions. An

important result of his method is that if a function can be realized with

two threshold gates, this realization is guaranteed to be minimal.

Majority Logic Synthesis. Several procedures have been presented

for multilevel synthesis using three-input majority gates. Cohn and

Lindaman (Ref 9) present a direct synthesis method using majority

logic to build a "tree" realization of the given function. Akers (Ref 3)

gives a "truth table" method for such synthesis which can handle

"don't care" conditions as well as fully-specified functions. A method

of factoring Boolean algebraic expressions so as to effect a 3-input

majority gate realization of a function is contained in Ref 27.

Synthesis from Boolean Expression. A method is given in Ref 27

for synthesizing a function, using 2-, 3-, 4-, or 5-input threshold

gates, directly from the Boolean expression. This method factors

the function (initially expressed in minimal normal form); then, using

a table of standard reference form realizations, it assembles a network

according to the factorization. The method presented in Chapter III
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of this study is a more general and useful method of synthesizing a

function directly from its Boolean expression, since it can utilize

gates with any number of inputs and does not require any auxiliary table

of reference functions.

Symmetric Function Synthesis. In addition to Minnick's linear

programming method for synthesizing symmetric functions which has

been discussed previously, there is a procedure presented by Kautz

(Ref 18:371) for synthesizing symmetric functions. It is based on the

number of "transitions" undergone by any threshold gate, where a

transition is defined to be a change in effective value of the threshold

of an element brought about by the weighted input from a previous

threshold gate. Algebraic equations based on the number of transitions

necessary to realize a function are set up, and their solution yields a

realization.

Summary

Threshold logic can be divided, somewhat arbitrarily, into the

following major sub-areas of concern: properties of threshold functions;

necessary and sufficient tests for the realizability of Boolean functions;

synthesis procedures for threshold functions; and synthesis procedures

for general Boolean functions. This chapter has briefly discussed each

of these major sub-areas in sufficient detail, it is hoped, to provide

a basis for further study in the field of threshold logic.

Methods for the analysis of threshold networks will be presented

in the following chapter.
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I1. Logical Analysis of Threshold Networks

Since the physical realization of a threshold network contains

threshold gates, bias and synchronizing circuits, and power supplies,

its conventional (electrical) network analysis is similar to that

required for conventional computer circuits using the more common

gating devices. The logical analysis of threshold networks is more

complex, however, since the conditions (excitation of various inputs)

under which a signal appears at the output of any gate is not as easily

determined as it is in conventional logic circuits. The problem of

accomplishing such logical analysis of threshold networks has received

only limited attention in the literature. This chapter develops effective

methods for analysis of general threshold networks and symmetric

threshold gate networks, both without feedback loops. The effects of

feedback on the action of individual threshold gates is also analyzed.

Theory

As is the case with conventional logic networks, a threshold net

containing no feedback loops uniquely determines a Boolean function

of the n input variables. This Boolean function is a combination (in a

manner defined by the given network) of all of the individual threshold

functions uniquely defined by the individual threshold gates. Unique-

ness of the overall network Boolean function follows from consideration

of the uniqueness of a threshold function realized by a threshold gate:

The final output of any threshold network is always the output from a

threshold gate whose inputs are, in general, a combination of individ-

ual variables and other threshold functions, Tl, T 2 ,..., Tk, all of

37



GE/EE/62-2

which are unique outputs of other threshold gates:

XnjF (56)
Tjw

Tk

Thus, uniqueness of the overall function F is assured. Once.the

individual threshold functions are determined, the overall function F

can be obtained. Hence, analysis of a single threshold gate is the

first step in logical threshold net analysis.

Analysis of a Single Threshold Gate

Consider the general representation of a threshold gate with

n inputs:

xl
T (57)x2  (5t

x 
n

An output signal T appears whenever any combinatioai of input leads

is activated such that

n
w.x. >t, x. = 1 or 0 (58)

i=l -.

Theoretically, to determine the threshold function realized by the

gate all 2n possible input combinations must be examined. In prac-

tice, however, this number of input combinations is greatly reduced

by the following analysis.

Consider a Boolean function F expressed in minimal normal form:
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Assume that F has as its first three terms the following:

F = x 1 + x 2 x 3 + x4 x 5 x 6 +... (59)

If the 2n possible input combinations are represented by the 2 n

vertices of the n-dimensional hypercube, then all vertices containing

x, are true vertices; and since exactly half of all of the vertices con-

tain x, (the other half containing ]I), F is true for these 2 n/2 or 2n 'l

vertices. Now consider the second term of F, a conjunction of two

variables: one-fourth of the vertices contain x 2 x 3 , with the other

three-fourths of the vertices containing either i 2 x 3 , x 2 x 3 , or x2x3;

and F is again true for those vertices containing x2 x 3 . Consider the

third term, a conjunction of three variables: one-eighth of the ver-

tices contain x4 x 5 x 6 , with the other seven-eighths containing one of

the other seven possible combinations of complemented and uncomple-

mented variables. It is apparent that the smaller the number of

variables appearing in a prime implicant the greater the "cover"

(number of true vertices) represented by that term. This well-known

fact suggests a method of reducing the number of input combinations

that needs to be examined in determining the threshold function gener-

ated by a particular element.

Consider the threshold gate realized in Eq (57). If any single

weight wi is such that

wi > t (60)

then the variable x i corresponding to wi is a prime implicant of T,
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and the number of input combinations to be examined is reduced to

2n - 1 . This means that x i need not be included in any combination of

two or more variables to be compared with t. If the sum of any two

weights, wj and wk, is such that

wj + wk > t (algebraic addition) (61)

then xjxk is also a prime implicant of T, and the number of input com-

binations to be examined is further reduced. The combination xjxk

is not included in any combination of three or more variables remaining

to be compared with t. This procedure is continued until no further

prime implicants can be formed, and the function F generated by the

threshold gate is then the disjunction of these prime implicants. The

procedure is systematized below.

Procedure. 1. Convert all negative weights to positive weights,

since negative weights tend to complicate the analysis. This is accom-

plished, .as explained in Chapter I, by

a. changing the sign of the weight from - to +;

b. complementing the variable; and

c. adding an amount equal to the weight to the threshold.

2. Compare each weight with the threshold t. List all variables

corresponding to a wi > t as prime implicants of T and exclude these

variables from any combination of two or more variables remaining to

be compared to t.

3. Compare each possible pair of the remaining weights to
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determine those pairs of variables with a sum of weights equal to

or greater than t. List these pairs of variables as prime implicants

of T and exclude these pairs from any combinations used in further

comparisons.

4. Continue this process for combinations of three, four,

of the weights until no further prime implicants can be formed. Then

T is the disjunction of all prime implicants found.

Example. Given the threshold gate shown. Determine the

threshold function it realizes:

C21

E 2 (62)

H 6

1. Convert all negative weights to positive weights:

D (63)

G 1

J K

2. Check for wi, w + wk* t

Combinations Prime Implicants_

a. singles > t: H (64)

b. pairs > t: AK, BK, CK, UK, EK, UK, JK, EJ, GJ

-K(A +B +C+ +tE + G+J) +J(E+) (65)
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Combinations Prime Implicants

c. triples > t: ACJ, BCJ, ADJ, BDJ, CDJ, AEG, BEG,

CEG, CDG, DEG.

J(AC + BC + A5 + B5 + CD) (66)

+ (AE+ BE +CE +C5 +5E).

d. quadruples > t: ABCG, ABDG

= G(ABC + ABD) (67)

e. quintuples > t: ABCDE (68)

No further combinations can be formed which represent additional

prime implicants. Therefore,

T = H+ K(A + B + C +D + E + G + J) + J(E +G)

+J(AC +BC +ABD+B5+ CD)

+ G(ABC + ABD + AE + BE + CE + CD + DE) + ABCDE (69)

or
T =H +K(A +B +C +13+ E +G +J)

+ J(E + C+(A+B)(C +D) + C13)

+ G(AB(C + 1) + E(A + B + C + D) + CD) + ABCDE (70)

It should be noted that simple threshold functions such as AND or OR,

and others for which n is small, do not require the procedure given

above since they can be determined by inspection.

Determination of the Overall Network Function

Once the threshold function for each threshold gate in the network

has been obtained, determination of the function generated by the network

is then a matter of successive substitution. The threshold function for
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the output gate will, in general, be in the form

F = F(Ti, Tj ... Xk,...) (71)

By substituting the expressions for Ti, T,... into this equation the

function, expressed in terms of the input variables only, is constructed.

This procedure is best illustrated by use of an example.

Example. Given the threshold network shown. Determine the

function F:

. T 1 =C(A+B) (73)

2. T 2 =T 1 DE--DE(AC +BG)

which simplifies to

T 2  DE(C + AB) (74)
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3. T3 A(T1 (B + D) + BD) + ABDT,

=TIBA + D) +AD) +ABD

=C(A +B)(B(A +D) +AD) +ABD

which simplifies to

T3 = B(A(C + D) + CD) (75)

4. T4 = C(GT 2 + GT3 + T 2 T3 ) + CGT 2 T 3

= T2 T3 (C + G) + (T 2 + T3 )CG

=BDE(ABi + C)(AC + AD + CD)(C + G)

+ CG(CDE + ABDE + A BC + ABD + BCD)

which simplifies to

T4 =BG(A(C +DE) +CD) (76)

5. F = T3 (H(T 2 + TO) + T2 T 4 ) + HT 2 T 3 T 4

=HT2'T3 + HT 4 T 3 + T 2 T 4 (H + Tf3 ) (77)

and
T3 =B(A(C +D) +CD)

which s implif ies to

T3 = A + B+CD (78)

Therefore, F can now be found in terms of the variables by

substituting Eqs (74), (75), (76), and (78) into Eq (77):

F = H(A + Bf + C5)DE(C +AiB) + H(A + Bf + CD)BG(A(G +DE) + ED)

+ DE(C + XfB)BG(A(E + DE) + ED)(H + A + f + C5)
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which reduces to

F = H(DE(C(A + B + G) + AB +ABG) + ABCDG) (79)

This example brings out several important points:

a. The "flow" of the analysis is generally from those threshold

gates with inputs consisting of variables only to the final output gate.

b. The procedure is simplified if substitution of previously

determined threshold functions is accomplished as necessary in the

determination of succeeding threshold functions; i. e., in the above

example T 1 is substituted in the expressions for T 2 and T 3 , and T 2

and T 3 are substituted into the expression for T4 . Simplification at

each step greatly reduces the complexity of the final determination.

The method of analysis just presented is practical, easy to apply,

and applicable to most threshold networks. There are two special

classes of networks, however, which require further discussion: these

are networks of threshold gates which generate symmetric threshold

functions and networks containing feedback loops.

Symmetric Threshold Gate Network Analysis

Symmetric threshold gates will be defined as any threshold gate

which generates a symmetric threshold function. Symmetric functions

have previously been defined (Chapter I) as Boolean functions which

remain invariant to all permutations of the input variables; and it

should be noted that a result of this definition is that a symmetric

function of n variables is described uniquely by stating its truth value

for k true inputs, with k = 0, 1, ... , n. The simple example previously
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given,

F =ABC +ABC+ABC +ABE (20)

is uniquely described by specifying that F is true for two true inputs;

it has the following realization:

F (80)

C

Now consider the threshold gate shown:

B 1
C

D3 F(81)
E

GV

The threshold function realized by this gate can be written, but the

unwieldiness of the expression can be demonstrated by recalling that

the number of combinations of n things taken r at a time is

n!
nCr = r,(n - r)! (82)

In this case the expression for the function would have thirty-five

terms in its normal form. Thus a practical difficulty arises in

applying the previous method of analysis to networks of symmetric

threshold gates: the expressions obtained soon become so cumber-

some as to defy analysis.
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Other methods must be used, therefore, to analyze such net-

works. For the special case of networks of simple majority gates

(two out of three), the analysis may make use of majority logic. Since

majority logic requires specialized knowledge of Boolean algebra which

has been extended to include the majority operator #, this case will not

be further discussed. An algebraic method of analyzing networks

which realize symmetric Boolean functions has been presented by

Kautz (Ref 18:371). His method uses the concept of "transitions"

which was explained previously (Chapter I p 36). The "truth table"

method to be developed below is an alternate and somewhat simpler

method of accomplishing such analysis. This method avoids formu-

lating the Boolean expression for the function, relying instead on the

truth table representation as the definition of the function realized.

General Considerations. Consider the following network (from

Ref 19), which is typical of threshold networks used to realize sym-

metric functions:

Xl _ll4 T1

x_ 1 1-(83)

4 7-
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Characteristics of networks such as this are as follows:

P. The input vector (xl, x 2 ,..., x n ) is applied to each threshold

gate and each input variable is assigned a unit weight. The leads for

the input vectors are termed "input vector leads" and the input leads

representing outputs from other gates are termed "threshold leads. "

b. A valuation on the n variables of the input vector is expressed

by an integer which represents the number of variables having a truth

value of 1. These valuations are denoted by N in this development,

where 0 < N < n. Since each variable has a weight of 1, N also repre-

sents the weighted input sum for the input vector leads. Thus if N = 3,

three input variables have a truth value of 1, and the weighted vector

input sum is 3.

c. These networks are "feed forward" networks: the output of

each gate is fed to one or more succeeding gates until the output gate

terminates the process. The output gate is termed the lowest level

gate, and the gate having input vector leads only (the input gate) is

the highest level gate.

d. The defining inequalities for a threshold function, given by

Ineqs (6), can be written in the following simple form for those

symmetric threshold gates having, as additional inputs, the output(s)

from higher level gates: For all possible values of N, the following

conditions must hold:

wTiTi + wTTj +. .. +N> t whenever F is true (84a)

and
wTiT i + wT T j  ... + N < t whenever F is false (84b)
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T. and T. are used as binary variables in Ineqs (84). Since there are

only n + 1 possible valuations on the input variables for these symmet-

ric threshold gates, Ineqs (84) can be easily used to determine the

output truth value for any threshold gate in the network. This fact

provides the basis for the simple "truth table" method for determining

the network function. The procedure follows:

Procedure and Example. Form a "truth table" for the network

function with column headings as follows: The first column heading

is N; succeeding column headings are the outputs from each threshold

gate, ordered from the highest level gate to the lowest level gate. Thus

the network function F is represented by the last column of the truth

table. The first column is the vector (0, 1, 2,..., n) which represents

the possible values of N. Applying this step to the network of Eq (83)

we obtain the following:

N T 1  T 2  F

0

1

2

3
(85)

4

5

6

7

2. By inspection of each threshold gate, set up the conventional

algebraic inequality given by Ineq (83a) for each gate. For the example
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of Eq (83) we have the following inequalities:

a. T 1 is true whenever

N > 4 (86)

b. T is true whenever2

-4T 1 + N_> 2 (87)

c. F is true whenever

-4T 1 - 2T 2 +N_> 1 (88)

3. Use these inequalities to successively complete each column

in the truth table. F will now be defined by the last column of the

truth table. In this example the completed truth table is as follows:

N T, T 2  F

0 0 0 0

1 0 0 1

2 0 1 0

3 0 1 1 (89)

4 1 0 0

5 1 0 1

6 1 1 0

7 1 1 1

By inspection of the truth values for F it is apparent that the network

realizes the odd parity function, and no further analysis is needed.
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This truth table method is generally applicable to all networks of

symmetric functions.

The problem of feedback loops in threshold networks will now

be examined.

Feedback in Threshold Networks

A general discussion of feedback loops in threshold networks would

encompass the study of sequential logic and the theory of automata,

both of which are areas outside the scope of this study. Investigation

will therefore be limited to the interesting effects of feedback on a

single threshold gate.

Analysis of a Single Threshold Gate with Feedback Loop. Since

feedback alters the operating state of a threshold gate, the logic

performed is no longer combinational but sequential in nature; and

some attention must now be paid to tae timing involved in the operation

of threshold gates. For the simplest type of threshold element, a

magnetic core, the timing is generally a two-phase synchronous system,

with pulses repre-senting the logical variables appearing at the input

windings during phase one and the output pulse, if any, appearing on

advent of the advance pulse during phase two. Other types of threshold

gates can have the output signal appear simultaneously (for all practical

purposes) with the input signals.

Consider now a threshold gate of the latter type, having a simple

feedback loop with weight wF. The simplifying assumption is made

that the signal level representing truth is the same in both input and
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output circuits:

. 1tF(90)

F is generated initially only when

n
-wix i >t , x i - I or 0 (91)

i=1

Assume that the input signals are such that an output signal appears;

then there is feedback present and its effect depends on the value

assigned to wF. Only two limiting cases need be examined, since the

feedback appears at the input simultaneously with the input signals.

a. If wF < t, the feedback has no effect.

b. If wF > t, the threshold gate locks up, i. e. , a continuous

output signal appears. This suggests a possible application to a very

simple active threshold gate flip-flop circuit:

A(S) 
A

(92)

A(R)

The functioning of the circuit is apparent by inspection.

The second case to be investigated involves feedback with a

delay, say for simplicity, one clock period. Again it is assumed
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that the output signal, if any, appears simultaneously with the appli-

cation of the input signals:

xl F (93)

x w 5

Assume now that in the initial clock period the input composite is

such that an output F 1 appears, where F1 is uniquely determined by

(wl ... , wn;t). Since the feedback is delayed until the next clock

period it has no immediate effect.

In the second clock period, the effect is contingent upon the value

assigned to wF. Several cases must be examined:

a. wF > t: This will cause an output signal to appear

regardless of the input composite; since this causes another feedback

signal to appear in the succeeding clock period, the threshold gate is

locked up.
n

b. wF <-( W i - t): This will cut off operation of the threshold

gate gate for the current clock period; with no output signal, there will

be no feedback in the succeeding clock period and the threshold gate

will again be able to generate F1 . The net effect is that, regardless

of the sequence of input composites, F, can never be generated in

two successive clock periods.
n

C. 1 >w>F -(F w' - t): In this range of values for wF the
F i=1 1

feedback acts in such a way as to change the effective threshold from

its value t to a new value, t - wF, for the next clock period. The effect
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of this threshold change is to generate a new function F 2 which is

uniquely defined by (wl,..., w ; t - w F). The sequence of states of

the threshold gate can best be described in terms of the state variables

Q and Q' defined as follows:

Q: the present state of the threshold gate.

Q': the next state of the threshold gate.

The input composites are defined as follows:

('WX) 1: the input composite necessary to generate F 1 .

(1wx) 2 : the input composite necessary to generate F 2 .

It will further be assumed for clarity that

(5'wx) 1 > (I-w×) 2  (94)

The sequence of states can now be represented by the following "truth

table" where* for Q and Q', a value of 0 denotes the state which can

generate F and a value of 1 denotes the state which can generate F 2:

Q (Iwx)1 (Twx) 2  F Q'

0 0 0 0 0

0 0 1 0 0

0 1 0 X X

0 1 1 1 1
(95)

1 0 0 0 0

1 0 1 1 1

1 1 0 X X

1 1 1 1 1
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Since (Ywx) 1 > (Ewx) 2 , it is obvious that whenever (Ewx)1 is true,

then (Iwx)2 is also true; therefore, it is impossible to have the

condition that (jwx)1 = 1 and (Ewx)2 = 0. Hence, the symbol X is

used for F and Q' for these combinations to denote a "don't care"

condition. Using this table, Q' can be mapped as follows:

Q1: (Ewx) 1

(96)
x 1 0 10

(ywx) 2

Hence, Q' can be represented by the logical expression,

Q= (5wx) 1 + Q(-wx) 2  (97)

A state diagram can be drawn for this circuit, using the following

notation:

Input composite magnitudes (Ewx) are represented by:

00: (Zwx) < (Ywx) 2  (98)

01: (zwx)2 < (zwx) < (Ewx) 1  (99)

11: (Xwx) >T(wx) 1  (100)

States are represented by:

0: the state which can generate F 1 .

1: the state which can generate F 2

Then the state diagram is:

00/0 11/1 (101)
ol/ ooo l1

01/0 00
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Suitable modifications of the truth table, map, expression for Q',

and the state diagram are easily made if wF is so chosen that

(Y wx) 1 < (IZwx) 2  (102)

Thus it is clear that the feedback and delay causes the threshold gate

to generate one of two threshold functions in accordance with Eq (97).

This discussion of feedback loops will be concluded by examining

a very simple binary counter whose operation depends on the inherent

one-phase delay in a magnetic core. A delay of one full clock period

is obtained by using two threshold gates in sequence:

' 1otu t (103)

A 1 1 o

Operation of the binary counter is demonstrated by the following truth

table:

Timing A A' Output

Clock 1: (1: 1 0 0

02: 0 1 0

Clock 2: 01: 1 0 1

S2: 0 0 0 (104)

Clock 3: (I: 1 0 0

02: o 1 0

Clock 4: 0 1: 1 0 1

9.: 0 0 0
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Feedback circuits with threshold gates can be used in similar fashion

to obtain many other useful logic and arithmetic circuits.

Summary

Two effective methods of analysis have been presented, one

applicable to threshold networks without feedback loops, and the other

to symmetric threshold gate networks without feedback loops. The

effect of different types of feedback on a single threshold gate were

analyzed and several simple circuits presented to emphasize the utility

of feedback loops in certain applications in threshold networks. The

next chapter presents a method for synthesizing a Boolean function

in terms cf a network of threshold gates.
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III. Threshold Gate Synthesis of a Boolean

Function from its Algebraic Expression

Conventional switching theory shows that any Boolean function

can be realized by the use of AND, OR, and NOT gates, or one

universal such as the Pierce or Sheffer functions. In one method,

the given Boolean expression is simplified by conventional reduction

methods, factored, and then decomposed into conjunctions or disjunctions

of equal level terms. As an example, consider the function

F = A((B + C)(C + D) + KLM) (105)

Then

T= (B + C) (106a)

T 2 = (C + D) (106b)

T 3 - T 1 T 2  (106c)

T 4 =KLM (106d)

T 5 = (T 3 + T4) (106e)

T 6 - F AT 5  (106f)

and the function is conventionally realized with six gates:

(107)

M
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Application of the synthesis procedure presented below leads to the

following realization using three threshold gates:

K

3 F7(108)

A

The validity of the synthesis procedure rests on two theorems which,

in effect, provide a means of combining conventional AND and OR

functions into threshold functions. The possibility of such combination

has been noted in the literature, but no synthesis procedure has been

presented which utilizes this combining process. The method of

synthesis is valuable in the synthesis of functions containing a large

number of variables -- a type of function not easily handled by any of

the synthesis procedures presented in Chapter I.

Theory

Chapter I noted that the conventional AND, OR, NOR, NOT,

and NAND logic gates comprise a subset of the set of all threshold

logic gates. Any normal disjunction of m binary variables, therefore,

constitutes a threshold function realizable by (wl, w 2 1 ... , wm;t) where

t is given by

t = min (wi  (109)

Therefore, if

T = yl + y 2 +"°+ Ym (110)

it is realized as shown at the top of the next page.
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r2ninwt T(1)

Ym

Similarly, any normal conjunction of m binary variables is also a

threshold function, realized by weights and threshold (wl, w 2 ... , wm;t)

where t is given by

m
t = w i  (112)

i=1

Therefore, if

T yly 2... ym (113)

it is realized as shown:

Y2T (114)

Consider now a function T 2 consisting of T 1 and n other binary

variables, in one of the following forms:

T 2 = T 1 + + x 2 +...+x(115a)

or
T 2 = TlX 1 X ... x (115b)

where T 1 is a threshold function of m binary variables. Then T 2 can
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be realized by a single threshold gate, which is, in effect, a modi-

fication of the threshold gate used to realize T The basis for such

modification is given in the two theorems stated below.

Theorem I. Let T 1 be a threshold function of m binary variables,

realized by weights wl, w2 ... , wm and threshold tl; consider now a

second threshold function T 2 , a disjunction of T 1 and n binary variables

such that

T 2 = T I +x I +x 2 +... +xn (115a)

Then T 2 can be realized by a single threshold gate using the same

weights wl, w2 ,..., wm for the m original inputs of T 1 ; a common

weight wc , given by

w =t (116)
c 1

for the additional n inputs to T 2 ; and a threshold t 2 given by

t 2 = t 1  (117)

Proof by Construction: 1. The proposed connection is as

follows:

Y 2 (118)

xl-
-M T
Xn

2. For an assignment of truth values to the m original inputs

of T 1 such that T 1 is true, or if any x is true, then T2 is true. This

requires that
m

'wry i > t 2 when T 1 is true, (119)
i=1 1
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and
w c _t t 2  (120)

3. We are free to select any values for wc and t 2 consistent

with Ineqs (119) and (120). Therefore, select

wc = t 1  (116)

and
t2  -t1  (117)

and the threshold function T 2 is realized.

Theorem 2: Let T 1 be defined as in Theorem 1; consider now

a second threshold function, T 2 , a conjunction of T, and n binary

variables such that

T2 = T 1 x 1 x 2.. Xn (115b)

Then T can be realized by a single threshold gate using the weights2

wl, w2 , . 0., w for the m original inputs of T 1 ; a common weight wc

given by
m

wc = -w.-t 1 +1 (121)
L=l

for the n additional inputs to T2 and a threshold t 2 given by

t 2 =t 1 + nw (122)

Proof by Construction: 1. The proposed connection is as follows:

2(123)
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2. For an assignment of truth values to the m inputs of T I such

that T I is true, and if all x's are true, then T 2 is true. This requires

that

t 2 <t I + nw c  (124)

3. If all y's are true and at least one x is false, then T 2 is

false. Hence,
m

t > Y=wi + (n - 1)wc (125)

4. Combining Ineqs (124) and (125),

Wi + (n - 1)wc <t 2 <t 1 + nwc

or

m
Wi - wc < t2 - nw c < t1 (126)

5. We are free to select any values for w and t 2 consistent withc 2

Ineq (126). Therefore, select wc and t 2 such that

m

iwi - wc + 1 =t2 - nwc =t1

or,

Wc =iwi - t 1 + 1 (121)

and

t 2 =t1 +nw (122)
c

and the threshold function T 2 is realized. These results are now used

as the basis of the following synthesis procedure.
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Procedure

1. Simplify and reduce the given Boolean function using normal

switching theory techniques.

2. Determine the threshold function order of synthesis as

follows:

a. Insert parentheses (if not already present) around each

term or group of terms that correspond to a conventional AND or OR

gate realization in normal switching theory synthesis. In the example

of Eq (105), parentheses are inserted, where needed, around those

terms corresponding to T 1 , T 2 ,..., T 6 , i.e., Eqs (106). Thus,

Eq (105) would appear as

F = (A((B + C)(C + D) + (KLM))) (105)

b. Number opening parentheses increasing from the left;

number closing parentheses decreasing from the left; and at adjacent

parentheses of opposite type, leave the numbers unchanged:

1 23 33 3 3 321
F = (A((B + C)(C + D) + (KLM))) (105)

c. The order of synthesis is from the highest order terms

to the 1st order term representing the complete function. Referring

to Eq (105), the 3rd order terms are realized first, then the 2nd

order term, and then the 1st order term.

3. Sub-functions to be realized (T 1 ,..., T 6 of Eq 106 for

example) will be in one of the following forms:

a. Simple AND or OR functions: These are realized using
m

a common weight of 1, and a threshold of .w i or 1, respectively.
i=1

b. Functions of the forms given by Eqs (115): These are
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realized by applying Theorems 1 and 2 respectively.

c. Functions of the form T3 = T1T2: A choice exists as to

whether to apply Theorem 2 to T 1 or T2 . With one exception, explained

below, Theorem 2 is always applied to the T having the least sum of

weights plus threshold. This leads to a lower aggregate sum of

weights and thresholds in the overall realization. The exception to

this rule comes only when one function, say TI, is a simple (i. e.,

has equal weights) conjunctive realization, and T2 is a disjunctive

realization. Then T3 is expressed as

T 3 = T 1 T 2 = YlY2'..YmT 2 (127)

and Theorem 2 is applied to T 2 , resulting in the elimination of

gate T See Eq (134) in the example to follow.

d. Functions of the form T3 = T1 + T 2 : Again, a choice exists

as to whether to apply Theorem 1 to T1 or to T2 . With one exception,

Theorem 1 is always applied to the T having the least sum of weights

plus threshold. The exception to this rule comes when one function,

say T 1, is a simple (i. e., has equal weights) disjunctive realization,

and T 2 is a conjunctive realization. Then T 3 is expressed as

T 3 = T 1 + T2 = yl + Y2 +' '+ ym +T 2  (128)

and Theorem 1 is applied to T2, resulting in the elimination of gate T 1.

The following example illustrates the complete synthesis procedure.

Example. Given the function

F = I(AB + CD(E +G + H)

+ JKL(M(N +0) + (0 + P)(QR(S + T + U) + V) + WXY + Z)) (129)
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1. Insert parentheses and determine order:

123 3 34 44 43 34 445 6 65
F = (I((AB) + ((CD)(E + G + H)) + ((JKL)((M(N + 0))

56 6678 88 87 65 5 5 4321
+ ((0 + P)(((QR)(S + T + U)) + V)) + (WXY) + Z)))) (129)

Note that unsubscripted T is used as one of the binary variables.

2. Realize 8th order terms:

Q
T1 =TQR: 1 (130)

S

T 2 = S +T +U: T 2 (131)

U

3. Realize 7th order terms:

T 3 =T T 2: Express T 3 as T 3  QRT 2 and applyTh2 to T2

*w 3  =: w - t 2 + 13 . 23 2

= 3 - 1 + 1 3 (132)

and S3  t 2 + nw 3

= + (2)(3) =7 1 (133)- U 1

Thus T 3 is realized by: 3 (134)
Rb

*Subscripts on w and t refer to a particular threshold function T..
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4. Realize 6th order terms:

N 1

T4  N +O: 1 T4  (135)

0

0 rp
T 5  0 + P: 1 1 5 (136)

T 6 = T 3 +V: Apply Th 1to T 3 :

w6 = t 3 = 7 (137)

and
t 6 = t 3 = 7 T S 1 (138)

U 1
Thus T 6 is realized by: 33 T 6 (139)

Q 3

5. Realize 5th order terms:

T7 = Mr 4 : Apply Th 2 toT 4 .

w7 =,FA-W4 - t 4 + 1

= 2 - 1 +1 =2 (140)

and
t 7 = t4 + nw

-1 + (1)(2) = 3 (141)
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N 1

T7 (12Thus T7 is realized by: 0 1 3 12

T8= T 5 T 6 : Apply Th 2 toT5

W 8 .I.w 5,- t 5+ 1

= 2- 1 + 12 (143)

and
= t 5 + nw(144)

=1 + (1)(2) =3

01

Thus Tis realized by: P 1 3 T 8  (145)
8 2

T9 = WXY: x 1 3 9 (146)

6. Realize 4th order terms:

T CD: (147)
10 1
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E

Tll=E+G+H: G 1 1 1  (148)

1
H

Ji1
T12 JKL: K 1 T 1 2  (149)

121

T 1 3  T 7 + T8 +T 9 + Z: ApplyTh 1 to T9

w 13 = 9 =3 (150)

and
t 1 3 =to - (151)

y 1

Thus T13 is realized by: Y13 (152)13 T 33 (12
733

7. Realize 3rd order terms:

A 1
T = AB: 1T 14 (153)B 14

T 1 5 = T 1 0 Tl1 : Express T 1 5 as T = CDTl1 ; apply Th 2 to T

w1 5 =.WIll - tll + 1

= 3 - 1 + 1 =3 (154)
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and
t 1 5  t t11 + lwl15

1(2)(3) = 7 E (155)
1

G
Thus T 15 is realized by: H 1 7 5 (156)

3
C 3

D

T 1 6 T 12T 13: Apply Th 2toT 1

w 1 6 =,EwV1 3 i,- t 13+ 1

12- 3+ 1 =10 (157)
and

t 1 6 t 1 3 + nw 16  (158)
=3 + (3) (10) = 33 W

x1
Thus T1 is realized by: T7 3 T1  (59

16 ~~T8, 31 19

il
K L

8. Realize 2nd order term:

T 1 7 T 1 4 + T 1 +T6: Apply Thi1to T 14:

w 17t =2 (160)

ad t 17t 142 
(161)

17 14 (12

T T17;

T1 6
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9. Realize 1st order term:

F=IT Apply Th 2to T17

w18 =Ayw17 -t17+1

= 6 - 2+1= 5 (163)

and
t18 =t17 + w18

= 1()=7A (164)

BlF
2FThus F is realized by: T,2 7(165)

T 1 6 4

I

10. Reconstruct the function:

1
Gi1

H 1

C33 7

D 1

1 T6 1 7 F (166)
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Thus, F is realized using six threshold gates; in contrast, a conven-

tional switching theory realization would require eighteen AND and OR

gates. No threshold gate has an unreasonable sum of input weights,

since threshold elements are presently available which are capable

of proper discrimination with any input combination of weights totaling

up to 51'.

Note that the manner in which the function was originally factored

directly affects the final form of the realization.

Conclusion

The procedure given allows a complex Boolean function to be

synthesized using threshold gates. The method is rapid, suitable for

hand calculation, applicable to all switching functions, and yields a

reasonable (in terms of weights, thresholds, and number of elements)

realization of the function. The example contained twenty-five

variables, far exceeding the number that can be handled by any

procedure outlined in Chapter I, unless these procedures are programmed

on a digital computer.

The primary disadvantage of the procedure is that the threshold

net produced is not necessarily minimal. However, it does provide

a starting point for further efforts at reduction, either by heuristic

reasoning or other techniques to be developed.

--Learned in conversation with Dr. S. B. Akers, General Electric
Laboratories, Syracuse, New York.
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IV. Counter Example to Stuart's Algorithm

An algorithm to test for linear separability of a function has

been presented by Captain R. B. Stuart (Ref 26). If the function is

proved to be linearly separable the algorithm provides a set of weights

and a threshold which realize the given function. Application of the

method to many known threshold functions supported Stuart's conjec-

ture that the algorithm constituted a necessary and sufficient test

for linear separability. However, investigation of the algorithm's

validity provided a counter example to disprove the conjecture. The

algorithm and counter example are presented below after first devel-

oping the matrix notation to be used.

Notation

Valuations on the n variables of a Boolean function F which make

F true are termed "true valuations;" all valuations not true valuations

are termed "false valuations. " Rows of F's truth table corresponding

to true (false) valuations will be called "true (false) rows. "

Consider now a Boolean function F of m minterms: Permute

the rows of F's truth table so as to have the first m rows of the truth

table be the m true rows. This truth table is called the "altered truth

table. " Define a truth table matrix P whose elements are those of the

altered truth table; partition this matrix so that the m true rows form

the sub-matrix PT and the false rows form the sub-matrix PF:

P - (167)
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Then the function vector f becomes

f -- --- (168)

Now map P into a new matrix defined by

Q [ ] where q .=if Pj = (169)

Tqij 
- 1 if Pij 0

Define the weight vector W T (superscript T indicating transpose),

WT= I1TQT (170)

i.e., T
wj=1 q. (171)

where q. is the jth column of Q.

Define the weighted minterm vector g,

g PW= P[Qd ]1 (172)

i. e.,

gi = piW (173)

Then

g g T( T 1 (174)

In effect the above matrix manipulation accomplishes the following:

The truth table representing the given function is so arranged

that the first m rows (which comprise P T) are true rows which
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n
correspond to the minterms of F; and the remaining 2 - m rows

(which comprise P F) are false rows which correspond to the minterms

of F. All O's in PT are then changed to -ls to form the sub-matrix QT

and each column of QT is summed. Each column sum gives the weight

w to be assigned to the variable represented by that column. The row
J T

vector W contains these weights for all variables. Each minterm of

the n variables is then assigned a weight gi equal to the sum of the

individual weights of the uncomplemented variables in the particular

minterm; then g contains the weights for all minterms. The algorithm

can now be presented.

Stuart's Algorithm

Given an arbitrary Boolean function F of m minterms:

1. Form rgl

g- (175)

2. Test for linear separability:

Is min _g9T> maxgf9 ? (176)

If not, F is not a linearly separable function. If so, F is linearly

separable and can be realized by weights WT and threshold t where

t = min {gTJ (177)

This test can be conveniently applied ( at least for n < 6) by using

Karnaugh maps as described in the following procedure.
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Procedure. 1. Plot the given function on a Karnaugh map. Note

that each entry on the map represents a minterm of the n variables.

2. Form the partial truth table PT from the m minterms of the

given function.

3. Change each 0 to -1 in PT to obtain QT"

4. Sum each column of QT to obtain the weight w. to be assigned

to the corresponding variable.

5. Weight each minterm of the n variables by summing the

weights of the uncomplemented variables in the minterm.

6. Enter the minterm weights on a Karnaugh map and circle

thost: entries representing the weighted minterms of F.

7. Determine by inspection of the map if all weighted minterms

of F are greater than all weighted minterms of F. If not, the function

is not linearly separable; if so, then the function is linearly separable

and can be realized by the weights determined in step 4 above and a

threshold t equal to the minimum weighted minterm of F.

Example 1. Given the function

F = DE(A i- B + C) + ABC(D + E) (178)

1. Plot F on a Karnaugh map:

A: A: D

19
(179)

7 23
-- C - -C

15 29 31 30

11 27

E E
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The numbers on the map are the conventional truth table designations

for the rows corresponding to the particular minterm.

2. Form PT* Note that subtracting the number of 0's in each

column from the number of l's in each column gives the same weight

as would be obtained by forming QT and then summing the columns to de-

termine the weights for each variable:

PT: # A B C D E

7 0 0 1 1 1

11 0 1 0 1 1

15 0 1 1 1 1

19 1 0 0 1 1

23 1 0 1 1 1 (180)

27 1 1 0 1 1

29 1 1 1 0 1

30 1 1 1 1 0

31 1 1 1 1 1

wj 3 3 3 7 7

3. Using the weights just determined, form the weighted minterms

and enter them on a Karnaugh map. Circle those minterms of F:

0 7 14 7 3 10 17 10

3 10 10 6 13 20 13(181)

6 13 20 13 9 16 23 16

3 10 17 10 6 13 20 13
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By inspection, since

IgTI= 16 >maxg = 14 (182)

the function is linearly separable and can be realized by

T
W = (3, 3, 3, 7, 7) (183)

and
t = 16 (184)

Example 2. Given the function

F = E(AC + BD) (185)

1. Plot F on a Karnaugh map:

A: DA:

3 19

7 21 23C C (186)
B 29 31

E E

2. Form P and find the weights:
T

PT: # A B C D E

3 0 0 0 0 0

7 0 0 1 1 1

19 1 0 0 1 1

21 1 0 1 0 1 (187)

23 1 0 1 1 1

29 1 1 1 0 1

31 1 1 1 1 1
wj 3 -3 3 3 7
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3. Using the weights just determined, form the weighted minterms

and enter them on a Karnaugh map. Circle the minterms of F:

0 7 10 3 3 10 13 6

310\13 6 6 13 16 9 (188)
o 710 3 3 10o13 6

-3 4 7 0 0 7 10 3

By inspection note that

min fgT max [9F) (189)

and therefore the function is not linearly separable.

In both examples the algorithm correctly determined if the

function was linearly separable; but a counter example will now be

presented to disprove the algorithm.

Counter Example

Given the Boolean function

F = ABC +D(A-+ B+C) (190)

1. Plot the function on a Karnaugh map:

3

5 7
(191)

13 15 8

9 11
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2. Form PT and determine the weights:

P T # A B C D

3 0 0 1 1

5 0 1 0 1

7 0 1 1 1

9 1 0 0 1
(192)

11 1 0 1 1

13 1 1 0 1

14 1 1 1 0

15 1 1 1 1

w i  2 2 2 6

w./2 1 1 1 3

Note that the weights can be reduced by dividing through by two.

3. Form the weighted minterms and enter them on a Karnaugh

map. Circle the minterms of F:

0 3 4 1

1 r4 5 2(13
(193)

2 5 6

1 4 52

By inspection, note that

min f9_TJ / max (_gF} (194)

Therefore, according to the algorithm, the function is not linearly

separable. But F is indeed a threshold function and it can be
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realized by T (195)
w= (1,1,1,2)

and a threshold
t = 3 (196)

This realization is shown below:

A

B 1F (197)

D

Hence Stuart's algorithm does not provide a necessary test for

linear separability.

The algorithm has a limited utility in that it does provide a

sufficient test for linear separability. Truth of this statement results

from the defining inequaliti:.s for a threshold functioi: If any set of

n + 1 constants can be found which satisfy these inequalities, then the

function is linearly separable. Since the algorithm generates such

a set of n 4 1 constants for those functions it identifies as being

linearly separable, it does constitute a sufficient test.

Conclusions

The practical utility of the algorithm is limited by the following

considerations:

a. The algorithm leaves open the question of the realizability

of those functions it fails to identify as being linearly separable.
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b. The realizations generated for those functions identified

as threshold functions are, in general, not minimal.

c. The algorithm is difficult to apply to functions of more than

six variables.

It is interesting to note that tables have now been compiled

which list all linearly separable functions, and the weights and

thresholds to realize them, for all functions of up to six variables

(Ref 30). An added advantage of the table is that the values of

the weights and thresholds are minimal values.
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V. Conclusions and Recommendations

Conclusions

Threshold logic now comprises a useful and growing segment

of computer technology. It is proving to be of great value in the

development of more sophisticated computers and "thinking" machines;

and it is providing simpler and more economical realizations for

conventional logic problems. Threshold elements have many prac-

tical physical realizations, and improved devices are being developed.

Certain improvements in threshold logic are needed, the most

important of which are the following:

a. an algebraic test for linear separability;

b. a method to systematically eliminate redundant elements

in complex threshold networks;

c. a method for reducing (to minimal values) the weights and

thresholds of complex threshold function realizations;

d. simpler methods for decomposing Boolean functions into

threshold functions, and tests to determine if the decomposition is

optimal;

e. better synthesis methods for functions of a large number of

variables; and

f. better procedures for including the effects of physical

constraints on synthesis procedures.

With the widespread interest in threshold logic now existing, it is

evident that many of these problems will soon be solved.

83



GE/EE/62-2

Recommendations for Further Study

The partial list of needed improvements in the field of threshold

logic, given above, indicates many areas for interesting and useful

investigation. Specifically, the following subjects are felt to merit

consideration as possible thesis topics:

a. A more detailed study of feedback in threshold gate networks

would provide useful design procedures and a better understanding of

the potential benefits of feedback in sequential threshold logic design.

b. An algebraic test for linear separability would be a valuable

contribution.

c. Methods for decomposing Boolean functions into a minimal

number of threshold functions are urgently needed. Several methods

exist in the literature, but they give no assurance of a minimal

circuit realization of the function.

d. The synthesis procedure outlined in Chapter III could be

refined to provide ways of accomplishing further simplification of

the resulting threshold gate realization.

e. The application of non-linear signal flow graph techniques

to the analysis of threshold networks would provide a clearer insight

into the characteristics of these networks.

f. To increase the utility of existing synthesis procedures,

the effects of physical constraints on these procedures could be

further investigated.

g. Improved synthesis procedures can undoubtedly be developed

with further research; and computer programs for such procedures

would be very useful.
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