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STUDIES IN SEARCH FOR A CONSCIOUS EVADER* 

ABSTRACT 

This paper considers a search problem in which the search is directed against a conscious evader 

or an object controlled by a conscious evader. It is a two-person, zero-sum game called a search 

evasion game. Although the searcher cannot observe any of the evader's actions, the evader can 

observe the searcher's and can capitalize on errors that he makes. 

At the beginning of the game, the evader hides in one of several boxes. The search process con- 

sists of a sequence of looks into the various boxes until the evader is found. Each look into a 

given box takes a fixed amount of time. If the searcher looks into the box in which the evader is 

located, he will find the evader with a certain probability— the detection probability associated 

with the box in question. A particular evasion device is assumed: the evader can move from one 

box to another between looks.   A cost is usually associated with such a move. 

Primary emphasis is placed on the study of the search evasion game that involves two boxes, for 

solutions have been found. Two limiting forms of the two-box game are considered first, in G , 

moving is prohibited.    In G", the other limiting form, the evader can move at no cost. 

The game becomes more interesting when a nonzero but finite cost is associated with each move. 

In most cases, a finite prohibitive bound on the moving cost exists. When the moving cost ex- 

ceeds this bound, the searcher's good strategy is identical with his good strategy in G . The 

evader should never move if the searcher uses this strategy. When the moving cost is strictly less 

than the prohibitive bound, the searcher's good strategy is Markovian in form. That is, the good 

search strategy can be generated by a finite Markov process in which a look is associated with 

each transition. 

The search evasion game that involves more than two boxes is also studied. In G0, the limiting 

form in which the moving costs are equal to zero, exact solutions can still be found. The basic 

properties of the other limiting game, where moving is prohibited, are simple extensions of those 

that apply when there are only two boxes. In this game, however, the computational effort re- 

quired to find a solution can be excessive. 

The properties of the general many-box game in which the moving costs are neither prohibitive 

nor equal to zero are quite different from those that apply in the two-box case. Except when the 

moving costs are very small, the searcher's good strategy can no longer be generated by a Markov 

process. The complex character of the game is indicated by the partial solution that has been 

found to the simplest three-box game. The prospects of being able to find exact solutions to the 

general game in an efficient manner appear to be remote. A particular approach to finding ap- 

proximately good search strategies is suggested for future research. 

* This report is based on a thesis of the same title submitted to the Department of Electrical Engi- 
neering at the Massachusetts Institute of Technology on 31 August 1962, in partial fulfillment of 
the requirements for the degree of Doctor of Science. 
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STUDIES nsr SEARCH FOR A CONSCIOUS EVADER 

CHAPTER 1 

INTRODUCTION 

1.1   HISTORY OF THE  PROBLEM 

Operations research was first recognized as a formal discipline during World War II when 
scientific methods of analysis were applied to operational military problems.    One of the first 
endeavors of this new discipline in this country was the development of satisfactory methods for 
searching for enemy submarines.    The search theory that evolved considered a homogeneous 
environment in which the hidden object (submarine) was located.    From this theory developed 
search patterns that optimized the probability of detection when it was assumed that the hidden 
object was either stationary or moving in some prescribed manner independent of the search 

1 -3 effort.    Since then,  this work has been developed further,  notably by Koopman. 
Search problems in which the environment cannot be approximated by a homogeneous one 

have also been considered by assuming a discrete environment.    In these problems,  the search 
effort consists of a sequence of looks into various boxes in which the object may be hidden.    In 
many cases,   the time required to examine a given box is fixed or "quantized." 

4 Gluss    considers a problem of this type in the process of developing sequences for testing 
the various subassemblies of a complex system in order to find a faulty component.    In his work, 
he assumes that on each look the searcher either locates the object (faulty part) or gains no in- 
formation.    In other words,   the failure to find the object in a given box does not decrease the 
probability that the object is there. 

Pollock    treats a similar problem,  particularly the case in which there are only two boxes. 
He assumes that when the correct box is examined,  the object is found with probability q.,   where 
q. is called the detection probability of the box in question.    After an unsuccessful look,   the prob- 
ability that the object is in the box just examined is decreased according to Bayes' rule.    Many 
of Pollock's results are found in Chapter 2.    In particular,   he originated the approach used in 
Sec. 2.3. 

Another discrete search problem is considered by Blackman. '      He studies a problem in 
which one or more objects appear as the search process goes along. 

A feature common to all these problems is that the object never moves from one box to 
another. 

Examples can be found in both continuous and discrete search problems,  however,  where 
the object need not be stationary or move in some arbitrary manner.    Rather,   the object may be 
an intelligent evader who attempts to outwit the searcher by moving so as to increase his chances 
of escape.    The search problem in such a situation should be treated as a game where the actions 

o 
of the evader are taken into account.    Dubbins    points out this consideration in a discussion of 
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the treatment of military problems associated with tactics,  pursuit,  evasion,   search,  and the 
like when he says,   "For the most part these have been treated as 'one-sided' problems;  given 
prescribed behavior for an opponent,   one seeks to optimize the result of his own actions.   With 
the development of the theory of zero-sum,  two-person games,   however,   it has been natural to 
seek extensions to the more realistic 'two-sided' problems in which each of the two participants 
is free to choose his actions from a non-trivial class of possible strategies."   This is a valid 
statement,  and several of the problems mentioned above have been considered from a two-sided 
point of view.    The  author,   however,  has been unable to find any papers in which the theory of 
two-sided search is treated. 

This paper will consider a discrete two-sided search problem in which the looks are quan- 
tized.    To avoid the ambiguity of the term "two-sided search," it will be called a "search evasion 
game."   Before going into the details of the game to be studied,   let us consider a particular 
example. 

1.2   THE REVENUER VB THE MOONSHINER:   AN EXAMPLE 

In a particular section of the hills of Tennessee,   it is known that a moonshiner is operating 
an illegal still.    As a result,  a federal agent has been dispatched to the scene and a game ensues. 
In this game,   we assume that the moonshiner can operate his still in any of several locations or 
areas known to both players.    Each day,   the revenuer selects one of these areas to search,   and 
he continues his hunt until he catches his man.    Since the moonshiner is a clever fellow,  he can 
conceal his apparatus in such a manner that he will not necessarily be found when the revenuer 
searches the area in which he is located.    Rather,   he will be found with a certain probability, 
the detection probability of that area.    It will be assumed that both players know the detection 
probability of each of the various areas. 

The moonshiner,   being a rational businessman at heart,   is mainly interested in securing a 
good profit for himself.    He knows that his still will yield him a profit of one unit per day. 
Through spies,   or by other means,   he can observe where the revenuer looks,   and he realizes 
that he can prolong the expected length of his operation by changing the location of his still from 
time to time.     Since the revenuer searches during the day,   the evader knows that he can move 
his still with relative safety at night.    However,   when he moves it,   he must suspend his opera- 
tion and destroy the material being processed at the time.   This will cost him ^  units.   We shall 
assume that once he has completed his move,   he can immediately replace the process materials 
so that his future production is not affected.    Nonetheless,   our entrepreneur realizes that he 
suffers a loss in profit whenever he moves and that he must balance this moving cost against the 
advantage of a possibly longer career. 

The revenuer is also an intelligent man who has specific motives.     Since none of the areas 
has a detection probability equal to zero,  he knows that he can eventually catch his man.   However, 
in addition to catching criminals,   he is interested in making this crime as unattractive as possi- 
ble.     That is,   he considers deterrence to be one of his primary functions.    As a result,   he is in- 
terested in minimizing the expected profits which the moonshiner accumulates before he is caught. 
Therefore,   the two players' interests are directly opposed. 

This is a two-person,   zero-sum game.    The revenuer is a searcher and the moonshiner is 
an evader.    Each of the areas in which the evader can hide can be called a box,   and each box has 
an associated detection probability.    The search process consists of a sequence of looks into the 



various boxes.    The evader can observe where the searcher looks,   and between each pair of looks 
the evader can move from one box to another.    The game continues until the evader is found. 

1.3   THE SEARCH  EVASION GAME MODEL 

The game described above is a particular example of the search evasion game to be studied 
in this paper.    This game was motivated by a problem involving inspection under an arms con- 
trol agreement.    Assume that the manufacture of certain weapons systems is prohibited by an 
arms control treaty and that under this treaty an inspectorate is established to enforce the agree- 
ment.    One of the functions of this inspectorate would be to visit the various places where such 
systems could be manufactured.     The purpose would be twofold:    to discourage a violation of the 
treaty and to disclose any such violation if it occurs.    Although the inspectee may choose to 
honor the treaty,   the inspector has no reason to assume this.     Furthermore,   whether the in- 
spector wishes to deter a violation or minimize the possible advantages of such a violation,   it is 
reasonable to assume that his opponent's gain is his loss.    This results in a two-sided,   zero-sum 
game in which the inspector should assume that a clandestine operation exists.    When it does, the 
game becomes interesting. 

Although the game to be studied was motivated by the arms control problem,   no claims are 
made as to the validity of the model to be defined,   in this context.    Many simplifying assumptions 
have been made.    Furthermore,   all political considerations have been ignored and an arbitrary 
utility function is assumed.    The result is a game that is studied for its own sake.    It is a two- 
sided extension of a more classic one-sided search problem.    It will be interesting to see how a 
particular evasion device — moving between looks — affects the behavior of the game.    If the re- 
sults of this study can be applied to a practical problem,   perhaps the one just mentioned,   so 
much the better. 

In our search evasion game there are two players,  the searcher and the evader.     The evader 
must hide at the beginning of the game in one of a set of boxes.    The searcher must make a se- 
quence of looks into these boxes until he finds the evader.    A look into a particular box takes a 
particular amount of time,   known to both players.    If the searcher looks into box  i  and the evader 
is there,  the evader will be found with probability q.,   where q. is the detection probability of 
box  i.    The detection probability of each box is known to both players.    We shall always assume 
that the evader can observe where the searcher looks.    Unless a statement is made to the con- 
trary,   we shall also assume that the evader can move from one box to another between looks.   If 
a cost is associated with such a move,   this cost is known to both players. 

To complete the definition of this game,   a utility function over the possible outcomes of the 
game is needed for each player.     It is not appropriate to develop the theory of utility here.    A 
good treatment of this theory as well as the theory of games in general can be found in Ref. 9. 
We shall assume that the utility of any outcome can be expressed in a numerical form equivalent 
to money.    The game is zero-sum:   the sum of the two players' utilities for a given outcome must 
equal zero.     Thus,   one player's utility is the negative of the other's,   and only one of the utilities 
need be considered explicitly.    In this game,   the evader's utility will always be used. 

The search evasion game is of a sequential nature and may be thought of as a two-sided ex- 
tension of a sequential decision process.    A particular play or outcome of the game consists of 
a particular sequence of events.     An unsuccessful look into box  i  while the evader hides in 
box J   is such an event.    Similarly,  an event occurs when the evader moves from one box to 



another or when he chooses not to move between a given pair of looks.    Associated with each 
event is a "reward."   This reward is equal to the amount that the event in question contributes to 
the evader's utility.    Thus, the utility of a given play of the game is equal to the sum of the re- 
wards associated with the events that occur.    In the example of the revenuer vs the moonshiner, 
a reward of one unit was  associated with each look.    This reward did not depend upon the box in 
which the evader was hiding and was even collected on the final look when the evader was found. 
A reward was also associated with each move.    This reward was equal to —ji.    If a reward is 
negative,   we may refer to the corresponding positive quantity as a "cost" or a "loss."   Thus,   in 
the above example,  a cost of ^  was associated with each move. 

Both players may use strategies involving random decisions.    Also,  a stochastic element 
is introduced by the detection probabilities of the various boxes.    As a result,  a particular play, 
or sequence of events,   cannot be associated with a given pair of strategies for the two players. 
Rather,   such a pair of strategies defines a probability distribution over the various plays that 
can occur.    By taking the expected value of the utilities associated with these plays over the above 
probability distribution,   a utility can be associated with a given pair of strategies.    The evader's 
utility will be called the  "payoff" for the given pair of strategies.    This payoff will be equal to the 
expected value of the sum of the rewards associated with the various events that can occur.    Since 
the payoff is equal to the total amount,   in the expected sense,   that the searcher pays to the evader, 
we see that the evader is interested in maximizing the payoff while the searcher is interested in 
minimizing it. 

We shall assume that payments are made while the game is being played.    When an event 
occurs,   the searcher pays the appropriate reward to the evader.    This will be necessary when 
discounting is considered in Chapter 7.    The actual transfer of a reward,   however,   cannot be 
used to provide information concerning the event that occurred.    Thus,   the searcher cannot infer 
that a move occurred because he received |j.  units.    We think of the rewards as being transferred 
from the searcher to the evader only because the searcher considers the evader's gain to be his 
loss. 

In Chapters 2 through 7,   the search evasion game that involves only two boxes will be studied 
in some detail,   for the "good" strategies,   or at least "e-good" strategies,   can be found for the 
two players. 

In Chapters  2 through 5,   a simple reward structure is assumed.    The evader receives one 
unit for each look and pays \x   units for each move.    In Chapter 2,   the game in which moving is 
prohibited (where the evader chooses only where he hides) is considered.    In Chapter 3,   the other 
limiting form of the game is considered — the game in which ^J.,   the naoving cost,   is equal to zero. 
In Chapters 4 and 5,  the more general game where [i   is finite but unequal to zero is treated.    In 
Chapter 4,   the evader's good strategy is developed;   in Chapter 5,   the searcher's. 

A more general reward structure is assumed for the two-box game in Chapter 6.     The re- 
ward associated with a given look depends on where the look is made and also on where the evader 
is hiding.    The moving cost depends on which move occurs.     Finally,   a detection loss is subtracted 
from the evader's payoff when he is found.     This loss can depend on where the evader is hiding 
when detection occurs. 

In Chapter 7,   discounting is introduced.    With discounting,   the utility of a given event decays 
exponentially as the amount of time that elapses before the event occurs increases.    Discounting 
is useful in situations where immediate rewards are more important than rewards delayed until 
the distant future. 



In Chapter 8,   the N-box form of the search evasion game is considered.    When moving is 
prohibited, the general properties of this game are simple extensions of those of the two-box 
form.    The computational effort required to find the good strategies, however, becomes far more 
difficult.    When the moving costs are all equal to zero,  the game is fairly simple,  and exact so- 
lutions can be obtained.    The good search strategy of this game will prove to be of special interest. 
The general N-box game in which the moving costs are unequal to zero but finite becomes very 
complex and the general approach used in the two-box game breaks down.    The partial solution 
of a very simple example indicates the complex character of the general N-box game.    It is be- 
lieved that only approximate solutions are feasible,  and a particular approach to finding an ap- 
proximately good search strategy is suggested for future research. 



CHAPTER 2 

THE SEARCH  EVASION GAME WITH MOVING PROHIBITED 

2.1 INTRODUCTION 

In this chapter we shall study the search evasion game in which the evader is not allowed to 
move between looks.    We should expect that in G,    the game without this restriction, the evader 
would not move if the moving cost |j.   became sufficiently large.    The game where moving is pro- 
hibited will,  therefore,  be called G   .    As a limiting form,  its properties should be of interest, 
and we shall see that the mathematical techniques developed In its study will be useful in the 
more general game. 

The rules for G    can be stated simply.    The evader may hide in either of two boxes or may 
make any random choice between them.    The searcher must pay the evader one unit for each look 
and must continue his search until he finds the evader.     The payoff of the game for a given pair 
of strategies is equal to the expected search time.     Associated with each box  i  is a detection 
probability  q. known to both players.    It is the probability that a look into that box will reveal the 
evader's presence if he is there. 

A strategy for the evader can be defined by the probability vector P = {p., p,} that deter- 
mines where he hides.    The evader is not required to reveal the vector he uses to the searcher. 
A fundamental theorem from the theory of games states,   however,   that if both players use good 
strategies neither suffers any disadvantage by revealing his strategy to the other.    As a result, 
we shall study the modified game F     in which the searcher is informed of the vector that the 
evader selects.    This study will compose the bulk of this chapter,   for once the solution of F     is 
known the solution of G     is simple. 

2.2 MODIFIED GAME  F"":   EVADER'S STRATEGY KNOWN TO SEARCHER 
oo 

Having required the evader to reveal his strategy,   F     almost ceases to be a game.    Once 
the evader has hidden,   he no longer has any control over his fate,   and the searcher is simply 
faced with a problem of optimization.     With this as a rationale,   we will adopt the convention of 
using the term "optimum strategy" in place of "good strategy" in reduced games of this type 
where one player is required to reveal his strategy to the other.     The term "good strategy" will 
be reserved for use in the original game in which this requirement does not apply. 

An optimum strategy for the searcher in F     may be thought of as a rule for generating,   as 
a function of  P,    a search sequence that minimizes the expected search time.     Since we are con- 
sidering only two boxes,    P  has only one degree of freedom,   and it is convenient to adopt the no- 
tation  P = {P, 1 — P}.    The symbol  P  equals the probability that the evader will hide in box 1, 
and we can let U   (P) represent the expected search time that results when the searcher uses an 
optimum strategy.    As we shall soon see,   the optimum search strategy is simple in that U    (P) 
need not be known numerically in order to determine this strategy. 

On the other hand,   the evader's optimum strategy in F     (his good strategy in G   ) consists 
in selecting that   P  at which U   (P) is a maximum.     For this reason,   and because U    (P) is needed 
in order to determine the good search strategy in G   ,   it must be calculated.     This calculation is 
fairly involved and will be considered in some detail.    The techniques developed will be useful in 
the more general game where moving is allowed at a cost. 



In the process of looking for the evader,  the searcher must make a sequence of decisions 
as to where he should look,  until the evader is found.    Since the evader may take no counter- 
measures once he has hidden,   these decisions can be made in advance and can be deterministic. 
Since the game ends with the first successful look,   an optimum strategy may be viewed as asso- 
ciating with each P a single infinite look sequence that is used as long as necessary. 

Although we can expect the optinaum search sequences to be different for different values 
of P,   it is worthwhile to see how the expected search time,  or payoff,  associated with a fixed 
sequence behaves as a function of P.    Let a  represent the payoff that results if the evader ac- 
tually hides in box 1 (P = 1) and let b  represent the corresponding payoff if the evader hides in 
box 2 (P = 0) when a fixed sequence is used.    With this sequence,  the payoff as a function of P 
is [a P + b(l — P)] and is linear.    Consider the ensemble of linear functions generated by the in- 
finite set of all infinite search sequences.    The expected search time U   (P) must be the greatest 
lower bound on this ensemble.    Therefore,   U   (P) must be continuous and convex.    Throughout 
this paper a function f(x) will be considered convex if for all x.,x.eX, 0-$y-$l, 

yftej) + (1 -y) f(x.) < flyx. + (1 -y) x.]      . 

In many cases, we shall find that U   (P) is piecewise linear over any interval (e, 1 — e) where 
e > 0.   That is, if we exclude the intervals (0, e) and (1 — e, l)from the interval (0, 1) over which 
P is defined,  the remainder (e, 1 — e) can be partitioned into a finite set of nonzero intervals 
over each of which U   (P) is linear.    The quantity e  must be strictly greater than zero,   for the 
linear intervals will always become arbitrarily short as  P approaches zero or one.    If U   (P) is 
linear over a nonzero interval,   a single infinite search sequence is optimum over this interval, 
and U   (P) equals the payoff associated with this sequence over this interval.    At a point where 

co 
U   (P) is formed by the intersection of two linear functions,   the sequences associated with both 
functions are optimum. 

Some additional properties of U   (P) are easily shown.    Since at least one look is required 
to find the evader,   U   (P) must be positive.    Furthermore,   it must be bounded as long as the 
detection probabilities are all unequal to zero.    This will always be assumed,  since the game 
holds little interest otherwise.    If the evader is known to be in a particular box,   it is clear that 
the searcher should always look there.    The expected search time is then equal to the reciprocal 
of the detection probability and we find that U   (0) = l/q, and U   (1) = l/q.. 

2.3   DYNAMIC  PROGRAMMING WITH P AS A STATE  VARIABLE 

The function U   (P) has been defined as the payoff of F    that applies when the evader hides 
in box 1 with probability  P and in box 2 with probability (1 — P) and the searcher uses an opti- 
mum search sequence.    Since the searcher knows the a priori probability distribution defining 
the evader's position at the beginning of the game,   he can calculate the a posteriori probability 
distribution that applies after a sequence of unsuccessful looks.    Therefore,   at any point in the 
game,  we can use P = (P, 1 — P) to represent the probability distribution defining the evader's 
position at that time.    The searcher's future behavior should depend only upon the value of P 
which applies at a given time.    That is,   the searcher's future sequence of looks should be the 
same as the entire sequence that would apply if the evader had originally used this  P in hiding 

0O 
at the beginning of the game.     The probability  P  can be treated as a state variable and U   (P) 
can be used to represent the future payoff that results if the searcher uses his optimum strategy 
for all future looks. 



The manner in which P  changes during the search process is easily shown.    Let us adopt 
the notation P 
box  i.    Then, 

P' to indicate that  P  is transformed into P' by an unsuccessful look into 

Pr, 
P — Pr1 + (1 P) 

^=1 

P + (1 - P) r- = 1 - n 

(2-1) 

(2-2) 

If a sequence involving more than one look transforms  P into  P',  this sequence can be written 
over the arrow in a similar manner.    However,   the final transformation depends only on the 
total number of looks into each box and not on their order,  and it is often convenient to repre- 

(ki,k2) 
sent the transformation that involves k.  looks into box 1 and k    looks into box 2 by P  P'. 
Then, 

(k.,k ) 
P — =. P' = 

Pr, 
(2-3) 

Pr, + (1 

In the above expressions,   r,  and r?,   the complements of the detection probabilities q.  and 
q, are used.    We shall call these complements the escape probabilities.     If the evader is hiding 
in box  i  and the searcher looks into that box,   the evader will escape detection (will not be found) 
with probability r..    Although only the detection probabilities are needed,   we shall find it con- 
venient to use both the r's and the q's in our expressions,   with the condition q. + r. = 1  implied. 

We are now in a position to write the fundamental functional equation.    If the searcher looks 
into box 1,   the evader receives one unit for the look and survives this look with probability 
(Pr,   + 1 — P).     When this occurs,    P  transforms into Pr,/(Pr,  + 1 — P).     Similar conditions ap- 
ply if the searcher looks into box 2.    Letting U   (P; i) represent the payoff if box  i  is  examined 
first,   after which an optimum search strategy is employed,   we have 

U   (P)  = min 

U"(P; 1) = 1 + [P^ + 1 - PJ U"  [pr    +
r

i
1_p| 

lAP; 2) = 1 + [P + (1 - P) r2] U"    fp + (1 - P) r. (2-4) 

This functional equation makes two problems apparent.    In order to find the searcher's op- 
timum strategy we must find which of U    (P; 1) and U    (P; 2) is smaller for a given  P.    Once this 
is known,   we are still faced with the problem of evaluating U   (P),   for Eq. (2-4) expresses U    (P) 
as a function of another unknown U    (P').     Unless  P  eventually transforms back into itself after 
a finite number of optimum looks,   U   (P) must be evaluated by means of an infinite series. 

At present we are in a position to derive the searcher's optimum strategy.'    It is clear that 
if P = 1,   the searcher should look into box 1,   and if P = 0 he should look into box 2.    It is rea- 
sonable to assume that there exists a P. such that if  P  is greater than P0 the searcher should 
look into box 1,   whereas if it is less than P., he should look into box 2.    When P = P- we should 

t A rigorous proof is contained in Appendix A.   A more general form of F00 is treated, and its reading should be 
deferred until after one has read Chapters 6, 7 and 8. 



expect that the searcher can look into either box.    A look into box 1,  however,  decreases   P and 
requires that the next look be into box 2.    Similarly,   if the first look is into box 2,    P will be- 
come greater than P0 and the next look should be into box 1.    Letting u"(P; 12) represent the 
payoff when the searcher looks into box 1 and then into box 2,  after which an optimum strategy 
is employed,  we have 

U"(P; 12) = 1 + [P^  + 1 - P] + [Pr1 + (1 - P) r2] U"  [pr    + J-p) r   ] (2-5) 

In a similar manner. 

U^CP; 21) = 1 + [P + (1 - P) r2] + [Pr1 + (1 - P) r-,] u"   [pr    + (^ p) r  | (2-6) 

Note that both equations contain the same expression 

[Pr1 + (l-P)r2]U-    [p^  + ^ P) r J 

for the expected future payoff after the first two looks.    The equation 

U°°(P0) = U°o(P0;12) =.U°O(P0;21) 

cancels these terms and reveals that PQq^  = (1 — PQ) <iz,   or 

0 -   q!   + q2        ■ 

The searcher's optimum strategy therefore requires that 

^2 

(2-7) 

if P > P 0 ^1  +c52 
look into box 1 

if P < Pr, =  - 0       q 1  +q2 
look into box 2 

if P 0 look into either box (2-8) 
^ +12 

Noting that   P = {P, 1 — Pj = {p^P-,},   we see that the searcher's optimum strategy requires him 
to look into the box for which pq. is the larger.    That is,  the searcher should make the choice 
that maximizes the probability of finding the evader on the next look. 

This strategy is,  in a sense,  a deterministic form of a behavioral strategy,   and it is worth- 
while here to contrast behavioral strategies with pure and mixed strategies.    Let us consider a 
game tree.    Each node of the tree corresponds to a move for one of the players.    Each branch 
extending from the node represents one of the possible alternatives that the player can select on 
that move.    The nodes of the tree are partitioned into a set of information sets.    For all nodes 
in a given information set,  the same information concerning the past play is available to the player 
whose move it is.    All moves in a given information set must have the same alternatives. 
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A pure strategy may be thought of as a list that specifies the alternative which should be 
selected in each information set.    A mixed strategy specifies a probability distribution over the 
set of pure strategies.    Thus,   when a player uses a mixed strategy,   he selects a pure strategy 
at the beginning of the game by means of this probability distribution.    Once this selection has 
been made,  he selects his alternatives throughout play deterministically.    In our game,   an in- 
finite search sequence is a pure strategy and a random selection of an infinite search sequence 
is a mixed strategy. 

In a behavioral strategy,   a player associates with each information set a probability distri- 
bution for selecting his next alternative.    Thus,   when a behavioral strategy is used,   random de- 
cisions are employed throughout play and not Just at the beginning.    Behavioral strategies are 
completely general as long as the players have perfect recall,   which they do in this game. 

In succeeding chapters,   we shall find that we can characterize our information sets by means 
of state variables.    The strategies that we shall develop will be formulated in terms of decision 
rules which are functions of these state variables.     They will,   therefore,   be behavioral strategies. 
In F   ,    the searcher's optimum decision rule is a deterministic function of  P  and therefore,   in 
a rigorous sense,   is a pure strategy.    As our study develops,   however,   we shall find that behav- 
ioral strategies are employed increasingly. 

2.4   EXAMPLE WHERE  BOXES ARE IDENTICAL:   q1 = q2 = q 

When the two boxes are identical the searcher's strategy is very simple.     ?_ = 1/2 and the 
searcher should always look where the evader is most likely to be.    We also have the good for- 
tune in this example to find that if the searcher looks first into one box and then into the other, 
P  returns to its initial value,   that is,   Pr./[Pr.  + (1 — P) r,] = P-    Clearly,   if such a pair of 
looks is optimum,   it should be repeated,   and the total optimum sequence should consist of alter- 
nate looks into the two boxes. 

In order to find when such a sequence is optimum,   let us define Pn. and Pn, as the proba- 
bilities into which P0 is transformed by an unsuccessful look into box 1 and box 2,   respectively. 
Then, 

P0rl 
01 pori + i 

and 

02 P0 + (1 - P) r2 

These probabilities will be of use in the more general case where q.   7^ q-,   and the definition 
given above should be kept in mind.    In this example,  however,   Pn.  = r/(l +  r) ,   Pn-, = 1/(1 + r), 
and we find that 

01 

02 

If  P  belongs to the interval (PQJ. PQ) the searcher should look into box 2,   and   P  transforms into 
(P., PQ2).    A look into box 1 is then called for,  since P > P0,   and  P transforms back to its 

11 



original value.    Therefore, the sequence 2121. . . is optimum when  P belong to (P01, PQ)-    Simi- 
larly,  the sequence 1212. . . is optimum when P belongs to (P., PQ,).    Since 

Pr 
^[pr^-P)^^) 

Eqs. (2-5) and (2-6) may be used to calculate the respective payoffs,   which are 

~1 

U   (P) =  |- (1-P) P e (P01, P0) 

U   (P) = ± - P P c (P0, P02) 

When  P lies outside the interval (PQ*, PQ?)-  ^he optimum search sequence no longer con- 
sists of alternate looks into the two boxes.    Rather,  there must be a sequence of looks into one 
box until  P  enters this interval.    At this point,  an alternating sequence commences.    Since  P 
must eventually enter (Pnl, ^o?' where U   (P) is known,   we can calculate the payoff outside this 
interval also.' 

First,   let us consider the case where    P  is greater than Pf,, and define P.   as the probability 
that transforms into P0 after k looks have been made into box 1.    Thus, 

(k, 0) 
^k 0 

and 

Pk = 1  + r 

Clearly,   if  P  belongs to (P, ,  Pk+>).   it will be transformed into (PQ,  PQT) by  k  looks into box 1, 
and 

U°°(P) = 1 + (Pr + 1 - P) + (PrZ + 1 - P) + . . . 

k 
+ (Prk + 1 - P) U"   (—j-^ )     , 

x Pr    + 1 - P ' 

where 

xPr    + 1 - P' 
Pr 

Pr    + 1 - P 

Therefore, 

U   (P)  =  ^  +k C-^-) - -KM 
The optimum sequence calls for k  looks into box 1 followed by 1212. . .   . 

When   P  is less than PQ.,   a sequence of looks must first be made into box 2.    As a result 
of the symmetry of this problem,   we can simply write 

t If P - 0 or 1,  P  never changes and all looks are made into box 1 or box 2, respectively. 
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where 

U    (P) = -  + k- (1 - P) 

p i.(oik) 

(L 

k+1 
+ k P^P.U-i-P.k) 

-k ~   i   I    k 
1 + r 

The optimum sequence in the interval (P  k_1. f .v' consists of k  looks into box 2 followed by 
2121. . .   . 

This completes the solution.    The function U    (P) is graphed in Fig. 1 for the case where 

q = 1/2. 

Fig. 1.    U   (P):   q1=q2=l/2. tT 

2.5   FURTHER PROPERTIES OF  F 

Although the previous example is rather special,   many of its characteristics are typical of 
the more general case where q.   =^ q,.     In this more general case,   U   (P) is convex.    If two se- 
quences are optimum at the same point   P,    this point must,   in general,   be transformed into P« 
by both sequences.     Until this transformation occurs (for the first time),   both sequences must 
be identical.     In the case where U   (P) is piecewise linear over (e,  1 — e),   such a point must be 
a breakpoint where two linear intervals intersect.     The optimum sequences associated with both 
intervals must be optimum at this point.    In the previous example,   P, was a breakpoint and it 
was transformed into P- by three optimum (and unsuccessful) looks into box 1.    The optimum se- 
quences associated with the linear intervals  (P?, Po) and (P,, P.) were 1112121. . . and 
1111212. . .   ,   respectively.    If  P  is a breakpoint,   it transforms into another breakpoint, whereas 
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if P  lies within a linear interval,  the next optimum look transforms it into the interior of another 
linear interval.    In general,  P. will always be a breakpoint;   that is,  the derivative of U   (P) has 
a nonzero jump at this point.    This occurs because the optimum next look is different on either 
side of P0.    The point P- is transformed into either P..  or PQ,-    We shall soon see that U   (P) 
is piecewise linear over any interval (e, 1 — e),  where e   > 0,   if and only if P-, and P-, are 
transformed back into P. by finite sequences of optimum looks. 

The behavior of P is interesting in that once   P belongs to the interval (PQJ, PQ?' ^ remains 
in this interval for all time if optimum looks are used.    If P  is less than P0,  a look into box 2 is 
required and   P increases to a new point that cannot exceed PQ?

-
    Similarly,   if  P  is greater than 

P0,   a look into box 1 is required,  and although P decreases in value it must still be larger than 
P«..    In contrast to this behavior,  if P lies outside (P01, PQ?) it will eventually transform into 
it.       If  P is greater than P, ? this transformation is accomplished by a sequence of looks into 
box 1.    If P  is less than P««,  a sequence of looks into box 2 serves the purpose (the bounding 
points P = 0 and P = 1 are exceptions because they transform into themselves).    As a result of 
these properties,   (Pnl, PQ?' will be called the recurrent region and the interiors of (0, PQ.) and 
(P0;,, 1) will be called the transient regions. 

The recurrent region is of special interest for several reasons.    First,   as we have seen 
from our example,   once U   (P) is known within this region it is not too difficult to compute 
U   (P) for any  P lying outside it.    In addition,  U   (P) attains its maximum somewhere inside 
this region.    The point P* at which this occurs corresponds to the evader's good strategy in G   . 
Also,  we shall find that the infinite search sequences and the associated payoff functions optimum 
at P* are all that are needed to derive the searcher's good strategy in G   . 

The proof that U   (P) is a maximum inside (PQ1, PQ?) is quit6 simple.    At P. a look into 
either box is optimum and we can write 

UOO(P0) = U°°(P0; 1) = 1 + [F0ri + 1 - PQ) U"(P01) 

U   (P0; 2) = 1 + [P0 + (1 U (P02' 

It follows that U   (P01) = U   (P02). The function U   (P) is convex,  and furthermore,   it can be 
shown that it cannot be flat over the whole recurrent region.    Therefore P* must lie inside the 
recurrent region. 

2.6   PERIODIC BEHAVIOR IN  THE  RECURRENT REGION 

In the previous example we found that there were two intervals inside (PQJ, PQ?) over which 
U   (P) was linear and that the optimum search sequence associated with each was periodic.    This 
was true because,   with the detection probabilities equal,   a look into each of the two boxes trans- 

formed  P back into itself and looks of this form were optimum in (Pnl' ^02'"    With the periodicity 
that resulted,    P could oscillate during the search process only between two points,   one in each 
of the two intervals.    Finally,   since   P transformed back into itself after two looks,   it was easy 
to compute U   (P) in closed form for each of the two intervals. 

In this section,  we shall study the conditions under which  P transforms into itself after n, 
looks have been made into box 1 and n2 looks have been made into box 2.    We shall find that when 
these conditions hold,   some ordering of n. looks into box 1 and n   looks into box 2 will be opti- 
mum for each  P belonging to the recurrent region.    Furthermore,   over this region U   (P) will 

14 



consist  of n.  + n2  linear  segments,    with ^ in (P0, P02) and n? in (poi' Po''    Tlle Point  p wil1 

transform into each of these intervals over which U   (P) is linear before it returns to its starting 
point.    We shall see that within each interval the associated optimum sequence is periodic with 
period n.  + n? and that the periodic sequences for the various intervals differ from one another 
only in phase. 

m    The conditiop under which  P transforms into itself after a total of n. looks have been made 
into box 1 and n*  looks have been made into box 2 is quite simple.     Recalling Eq. (2-3), 

(n^ n2) Pr, 

nl n2 Pr1      + (1 - P) r2 

we see that this transformation occurs if 

(2-9) 

where n.  and n, are integers,   and r,  and r-, are the escape probabilities.     Since we are inter- 
ested in the first return,   n,  and n? should have no common factor.     Equation (2-9) is equivalent 
to requiring that 

"-!        log(r2) 
n2   "   log(r1) 

A pair of integers (n  , n.) exists if the ratio of the logarithms of the escape probabilities is 
rational.    If this ratio is irrational there still exist rational numbers that are arbitrarily close 
to it,   and the case where r 

nj 

1 
"2 is of general interest.    The only exception occurs when 

r.  and/or r? is equal to zero.     This case is quite simple to solve and will be considered later. 
will The problem of approximating log (r-j/log (r, ) by an n-./n.  for which n,  + n    is not too large 

2 1 i     1    n 
12nn 

also be deferred.    Here we shall consider the behavior of F     when the equation r.      = r        is 
satisfied exactly. 

In order to see how the optimum search sequences behave in (PQ... PQ2) under this condition, 

let us define an ordering of probabilities P_n7,   P-n-j+l' . . P V ••■Pn1-1' P,,,.    Here, 
Pn has its usual meaning.    For the moment, .we shall only require in addition that P_n    = Pci^ 

= P..,,   and that P. < P. if  i < 
02' 1 ] 

-n2+l ■n,-! '1 

If P. < P.,   a look into box 2 will transform P. to a point which is less than that into which P. is 
transformed. 

Making use of similar considerations,   we can define the set {P-} by the following relations. 
Given P.,   a look into box 1 transforms it n, points to the left.    Similarly,   given a look into box 2, 
P  shifts n.  points to the right.     Therefore,   we can write 

{k,,k  ) 
P. —i ±_ P 

i-k.n,+k-,n. ■'     12     2  1 
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~1 

and we see that 

P. 
J 

'n1'
n2) 

If P. is greater than P0,  the searcher's strategy calls for a look into box 1,  and if P. is less 
than P- he should look into box 2 Let us consider a P. that is unequal to P01, or P„ 0'   "'  ^02-    " 
little thought will show that since n. and n, have no common factor,   P. will eventually transform 
into P0 as a result of an optimum sequence.    At this point the searcher can look into either box 
and  P can transform into P«. or PQ?- 

and after a total of n. looks into box 1 and n, looks into box 2 
In either case,  the next look transforms   P into P 

P returns to P 
nl-n2' 

Therefore, 
associated with each P- are two optimum periodic sequences.    These two sequences differ only 
in the order in which the two boxes are examined after P. has transformed into P0. 

In order to calculate the actual value of an arbitrary P.,  we must note the number of looks 
into the two boxes (k,, k,) which transforms it into P«.    Then, 

iK k2' 3   1 

J 

J     1 
+   (1 *w 

A simple manipulation reveals that 

k2 (k,.^) 

J k2 kl 
P0r2     +(1-P0)rl 

(2-10) 

The entire set {P.} can be evaluated in this manner. 
As has been mentioned,  there are two optimum periodic sequences associated with each P.. 

If we consider a  P that lies just to the right of P. we see that either sequence will transform  P 
into the interval (P.,, P.) as P. transforms into P-.    A look into box 1 is required next,   and the 
sequence associated with P. that calls for this look will eventually transform  P back into itself. 
Working through the same argument when  P  lies  just  to the  left of P-,A,   we can conclude that 
the optimum periodic sequence common to P. and P-+1 is the unique optimum sequence for all  P 

oo J J 
inside (P., P.   .).    The function U   (P) consists of a single linear segment over the interval 
(P., P., .).    The associated optimum sequence is periodic,  with period n.  + n,,and one period of 
this sequence   transforms  P  into each of the other intervals in (P01, PQ?) before transforming 
back into itself.     Hence,   the sequences associated with each interval are identical except in phase. 

2.6.1   Example Where rf = r|:   Calculation of if^P) 

4 3 Let us examine the case where r.   = r, .    This will not only clarify the previous discussion, 
but will provide a device for showing how U   (P) can be calculated when the optimum search se- 
quences are periodic inside the recurrent region.    Ordering the breakpoints P 01 P P -3'       -2' 

-1'     o-      1 
indicated below. 

r01 

. . . P . = P02 on the real line,  we can designate each interval that results by TT. as 

TV JLL 
roi 
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In order to determine the periodic sequences associated with each interval it is convenient 
to draw a chain diagram showing the manner in which these intervals transform into each other. 
Each state s. in the chain represents an interval TT..    Starting with TT.,  a look into box 1 shifts  P 
three (n?) intervals to the left to ir   ,,  at which point a look into box 2 transforms it four (n.) 
segments to the right to TT   .    If the process is continued in this manner,   the following diagram 
results.    It is clear that one period of each optimum sequence involves n. looks into box 1 and 

n-, looks into box 2,   and that these sequences differ only in phase.    The sequence associated with 
s, is  1212112,   1212112, . . .   and so forth.    In order to calculate the breakpoints it is convenient 

to note that Pj^-* PQ 
as sk—' s _l when k  is positive,   and that P.j^-"■ PQ 

as S-k-' sl"    Por exam- 

"l 

2 

pie. P.,   121Z1.  P0,   or P1  <3' zl P0,   so that 

P  r ^0   2 
P0r2   + (1 po) rl 

Once we have found the optimum sequence associated with an interval over which U   (P) is 
linear,   we are in a position to calculate the payoff over this interval.    This calculation is fairly 
straightforward.    However,   the general techniques that can be employed will be considered in 
some detail,   since a thorough understanding of them is necessary when the more general game 
G,    in which moving is allowed,   is studied in Chapter 4. 

The general approach that we shall use is to calculate the payoff which results when a partic- 
ular search sequence is used.    Associated with each state s. in a chain diagram is a unique in- 
finite sequence.    We shall let U.   (P) represent the payoff that results when this sequence is used. 
The payoff associated with s. is,   therefore,   U.   (P) and it is valid for all   P belonging to the inter- 
val (0, 1).    If the state s. generates a sequence optimum over the interval TT.,   then U.   (P) = U   (P) 
over this interval. 

Usually,   the state s. will be assumed to generate a sequence that is optimum over TT..    Thus, 
we shall usually assume that U.   (P) = U   (P) when  P  belongs to TT.. 

At times,   however,   the payoff of an approximately optimum search sequence will be con- 
sidered.    In this situation,   U.   (P) will be the exact payoff associated with s..     The approximation 
that U.   (P) = U   (P) over TT. results from associating with this interval the approximately optimum 
search state s.. 

i 
The payoff U.   (P) is defined for a fixed sequence.    This payoff,  therefore,   must be linear in 

P and we can express it in the form 

V"{P) = a.P +^(1 - P)      . 
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Perhaps this is not the most obvious form in which the function could be expressed,  but it wi,ll 
prove to be the most convenient.    Although the evader may have chosen to hide in box 1 with 
probability P,    once he has made this choice he knows exactly where he is.    The quantity a. is 
his expected payoff if he is actually in box 1,  and b. is his expected payoff if he is actually in 
box 2 when the searcher uses the sequence of s.. 

When this formulation is used,   the manner in which the payoff of one state is related to that 
of the state to which it is connected by the next look becomes quite simple.    If s. ► s.,  we 
may use Eq. (2-4) to write 

/ Pr-i \ 
U."(P) = a.P + b.(l - P) = 1 + (Pr.  + 1 - P) U.°° (^ —^—5) 11 1 1 j    \Pr,   + 1 — P/ 

which shows that 

1 + r.a. 
1 J 

b. = 1 + b. 
1 J 

(2-11) 

Similarly,   we find that 

2 

a.  = 1 + a. 
1 J 

1 + r-,b. 2  1 
(2-12) 

If we wish to express U. (P) in terms of a U. (P) that follows after several looks, we may 
simply compound the above equations. However, it will prove to be more convenient to use an 
alternative formulation. In this formulation we can consider a complete set of mutually exclu- 
sive events,  multiply the reward associated with each by the probability of the event,   and sum. 

1211 For example,   if s. * s. and the evader is in box 1,   he can be found on the first,  third,   or 
fourth look or he can survive all of them.     The rewards associated with these events are 1,   3, 
4 and 4 + a.,   respectively,   and the associated probabilities of these events are q.,   q^r.,   q..r. 
and r, .     We can,   therefore,   write 1 

a. = q^l + 3^ +4^) +r1
3(4 H-a^.)       . 

In order to write general expressions of this form,   consider the set {t    (n)},   where t    (n) 
represents the look on which box  m  is examined for the n     time.    In the above case,   t. (1) = 1, 
t. (2) = 3,  t, (3) = 4 and t2(l) = 2.    If s. is transformed into s. by a sequence defined by {t    (n)} 
that involves a total of k.  looks into box 1 and k    looks into box 2,   then 
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s.^U 
3 

. K, 

h = Cli     T,    t^n'> r±        + rl    (kl  + k2 + ai) 

n=l 

k. 

b. = q2     Z    ^f") r2        + r2    (kl  + k2 + bi) (2-13) 

n=l 

If (t    (n)} is used to represent the sequence that transforms s. into itself,  k.  = n. and k-, = n,, 

and we find that 

m s. .S.= 

1 - r. 
^i z ti*11) rr" + ri (ni+^ 

n=l 

1 - r. 

n-1   .        2, 
2    LJ    -2^' r2        + r2    (nl  + n2 q2    S    ^^ 

n=l 

(2-14) 

4 3 As an illustration let us consider the interval TT .   in our example where r.    = r, .     Referring 

to state s.   in the chain diagram we find that one period of the associated optimum sequence is 

1212121.    Therefore, 

a    =   —^  [q  (1  + 3r1  + 5rf + 7rf) + Vr.4] 
1 — r^ 

and 

bl = 1 - r: 
(q   (2  +4r     +brh + 7r3] 

Once U.   (P) is known,   the payoffs for the other states can be computed in order around the 

chain by means of Eqs. (2-11) and (2-12).    If only a particular payoff is desired,   Eq. (2-13) may 

be used. 

In Fig. 2 the payoff over the recurrent region is graphed for the case where r.   = 0.512 and 
4 3 12 r, = 0.4096,   i.e.,   where r.   = r,   = x      and x = 0.8. 

These equations can also be used to compute the payoffs in the transient regions.     However, 

the linear intervals approach zero in length as   P approaches zero or one,   and one should not 

attempt to calculate every payoff. 

Equation (4-13) can be used to calculate the payoff for an arbitrary sequence even if it is 

not periodic.    In this case,  the set {t    (n)} must be used to represent the entire infinite sequence 

and 

19 



73-J!-4IJ3i    i 

32 - 

/ 

/ \ 
K 

3.0 
/ \ '\ 

z.a - 

Fig. 2.    U^P):   r, = 0.512, r2 = 0.4096. 

n=l 

n-1 

b = q2 z t2(n) r2 

com- 

n=l 

If the payoff is known for any fixed sequence as a function of  P,    Eq. (2-13) may be used to 
pute the payoff that results if this sequence is preceded by an arbitrary finite sequence. 

2.6.2   Applicability of the Periodic Case 

It should be clear that for any pair of escape probabilities (r., r,) where both are unequal 
to one,   a pair of integers (n., n,) can be chosen which makes n./n, arbitrarily close to 
logr^/logr,.    The choice of n. and n, depends upon the accuracy desired in the approximation. 
The choice that is made will determine the sequences used and the payoff that results. 

Even when n. + n2 is fairly small,  the approximation can be fairly good if n. and n2 are 
well chosen.    Associated with each search state s. is an interval TT..    The breakpoints that define 
the boundaries of each such interval are those points that transform into P« sometime during the 
first n.   + n-, — 1 looks of the actual optimum sequence (P.j^    and Pn    should be calculated in this 
manner even though they will be only approximately equal to P.. and P^-,,   respectively).    As a 
result,   the first period of the sequence associated with s. will be optimum for any  P belonging 
to IT..    During the next few periods,   errors can be made only when  P  is close to P-,   and their 
effect will be small.    With increasing time, the errors become more frequent and more serious. 
The effect of these larger errors is mitigated,   however,   by the decreasing probability that the 
game lasts long enough for them to be made. 

Perhaps the most intriguing aspect of an approximation of this type concerns the appearance 

of U   (P).    Given a choice (n., n,) the resulting payoff in (P-n,. Pn.,) - (^0-1' ^"o?' WÜ1 consist of 
n.  + n-, linear segments.   Since the associated sequences are only approximately optimum, we can- 
not expect the function to be exactly continuous at the breakpoints.   The interesting consideration. 
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however,   concerns the piecewise linear appearance of this function compared with that of the 
optimum payoff function.    If logr2/logr.  is irrational,   or if it is equal to nl/nö where 
n!  + n' » n.  + n?,  the optimum payoff function will have many more linear segments and divid- 
ing breakpoints.    A breakpoint occurs at a point that transforms into P.,  and the sequences as- 
sociated with the interval on either side will agree up to the time when this occurs.    Breakpoints 
that transform quickly into P0 will be much more apparent than those that transform into P0 later 
on.    If the integers (n., n?) are well chosen,  the important breakpoints will appear in the payoff 
function of the approximating strategy. 

2.7   F" WHEN q1  AND/OR q2 IS EQUAL  TO ONE 

When the detection probability of at least one box is equal to one,  the optimum search strat- 
egy can never consist of a periodic sequence with looks into both boxes.    Once a box with unity 
detection probability has been examined,   it should never be examined again.    If q.   = q-, = 1,   the 
search can last for at most two looks,   whereas if q = 1 for only one box,   an optimum sequence 
can call for at most one look into it.     In either case,   the game is fairly easy to solve. 

When both detection probabilities are equal to one,  the game is trivial.    If P  is greater 
than one-half,  the optimum search   strategy calls for a look into box 1,  followed by a look into 
box 2 if necessary.    When P is less than one-half,  the reverse is true.    Clearly,   U   (P) = 
P + 2(1 - P) for P $-1/2,   and U^P) = 2P + (1 - P) for P^ 1/2. 

When  q = 1 for only one box,   the optimum search strategy is almost as simple.    Let us con- 
sider the case where q    = 1 and q,   ^= I.    If  P  is less than P.,   box 2 should be examined first. 
P then becomes equal to one and all the future looks should be made into box 1.     Since U   (1) = 
i/l*.   we find that IJ°° {P) = P[l  + (l/q.)] + (1 - P) when P <: P0 = 1/(1  + q1),   and the payoff func- 
tion consists of only one linear segment over (0, Pn)- 

Over the interval (Pn, 1), the payoff function consists of many segments. In fact, there are 
an infinite number of them, since as P approaches one they become arbitrarily short. For all 
P in a given interval over which U (P) is linear, the same number of looks into box 1 is re- 
quired before a look into box 2 is called for. We can define each breakpoint P. by P, 
and designate ir, as the interval (P, ,, Pk). If P belongs to TT then k looks into box 
forms it to the left of P0.     Using Eq. (4-13) we find,   after a simple manipulation,   that 

(k, 0) 

uk~<p) = r{i li 
+ r"U (1-P) (k + 1) 

where 

Tk=(r7 k-l + q1r,k/ 

The function that applies when q,  = 1/2 is graphed in Fig. 3. 
It is worthwhile to note that there are dangers inherent in assuming that a detection proba- 

bility is equal to one.    Usually,   if a search strategy that is optimum for one pair of detection 
probabilities is used for a slightly different pair,   the payoff will be almost optimum.    However, 
if one of the q's is assumed to equal one when it is only close to one this is no longer so.    In this 
case,   the searcher will look only once into that box.    In the unlikely but possible event that the 
evader is in that box and escapes detection,   he will receive an infinite payoff.    This is clearly 
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Fig. 3.    ^(P):   q, = 1/2;  q2 = 1. 

undesirable.    If both boxes are assumed to have unity detection probabilities the danger is not 
quite so great.    If the evader is not found after the first two looks,   the fallacy is revealed. 

It should be mentioned,   on the other hand, that 11°° (P), the payoff that applies when the actual 
optimum search strategy is used, is well behaved as one or both of the q's approach one.   There- 
fore,   if one  wishes to get a rough idea of what the payoff is when q. is close to one,    the q-  = 1 
solution is valid as an approximation. 

2.8   SOLUTION OF G" 

Now that we have considered the modified game,   we are in a position to find the good strat- 
egies and value of G     where the evader is not required to reveal his strategy to the searcher. 
In F   ,  a great deal of emphasis was placed on deriving the searcher's optimum strategy and the 
resulting payoff as a function of P.    The evader's optimum strategy was scarcely mentioned be- 
cause it was so simple - he should select the  P at which u'x>(P) is a maximum,   i.e.,   P* where 
U   (P--*) = V   .    We now need to find the strategy for the searcher that limits the evader to this 
amount when  P   is unknown.    This will be the searcher's good strategy,   and it will imply that P':! 

is the evader's and that v" is the value. 

The searcher's good strategy is easily derived.    We can usually expect that U^P) will be a 
maximum at a unique point and therefore that the segments on either side will have slopes of op- 
posite sign.    Let the associated intervals be designated by IT. and ir..    If the searcher chooses to 
use the sequence associated with Sj^ with probability y. and that associated with s. with probability 
y.,   where yj + y ■ = 1,  the payoff will be 

u"(P; y^) = yiu.°0(p) + yjUpP)     . 

P  can take any value between zero and one and is unknown to the searcher.    Both U.^CP) and 
U.   (P) are equal to V    at P* and have slopes (with respect to  P) of opposite sign.    It follows 
that there exists a probability distribution (y., y.) that yields a payoff equal to v"3 for all P. 
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In the event that U   (P) is a maximum over a whole interval TT . where it has zero slope,  the 

strategies are even simpler.    The evader can select any  P belonging to this interval,  and the 
searcher's good strategy consists simply of the sequence that is optimum over TT.. 

In order to illustrate the manner in which the searcher's good strategy is derived,   let us 
4 3 consider the previous example in which r.  = 0.512,  r, = 0.4096,  and where r.   = r   .    The payoff 

U^P),   shown in Fig. 2,   is a maximum at P* = P0 = 0.5475.     (Although P* is often equal to P«. 
this is not always true.)   The intervals on either side of P. are TT   . and TT.,   which have payoffs 

U0°1(P)  = 3.549P + 2.827(1 - P) 

U^fP) = 3.025P + 3.461(1 - P) 

In general. 

ifCPjy., y.) = (a.y. + a.y.) P + (b.y. + b.y.) (1 - P) 

and is independent of  P   (and equal to V   ) if a.y. + a.y.  = b.y. + b.y..    Therefore,   y. must satisfy 
the equation 

7; = ! - y-i = 
b-aJ 

j       (a. - b.) + (b. - a.) (2-15) 

In our example we find that 

y_1 = 0.377        , 

y1 = 0.623       , 

and V = 3.222. The searcher's good strategy requires that he select the periodic sequence 
2112121, 2112121... with probability 0.377 and 1212121, 1212121,... with probability 0.623. 
The evader should hide in box 1 with probability 0.5475 and in box 2 with probability 0.4525. 
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CHAPTER 3 

G°:   SEARCH  EVASION GAME WITH ZERO MOVING COST 

3.1 INTRODUCTION 

In this chapter let us consider the other limiting form of our search evasion game — the 
game G° in which the evader can change boxes after each look with zero cost.    Since p.,   the 
moving cost,   is equal to zero,  the payoff from the searcher to the evader is again simply equal 
to the expected number of looks required to find the evader.    Here,   however,  the evader plays 
an active role throughout the game.    We should expect that,  because of this additional freedom, 
he can guarantee himself a payoff larger than V   . 

If we assume that the evader is playing against an intelligent searcher,   we should expect him 
to make his moves in a judicious manner.    The decision rule for making these moves should be 
formulated so as to accomplish a specific purpose — to maximize the guaranteed payoff.    The 
evader should not move according to whim but only according to a carefully defined rule.    Since 
the characteristics of such a decision rule will be common to the more general game where 
moves must be paid for,   let us examine them in some detail. 

3.2 A PROPERTY OF EVASION STRATEGIES;   EVADER'S GOOD STRATEGY IN G" 

In general,   a moving strategy,   or behavioral strategy,   for the evader should specify as a 
function of past play a probability distribution for moving before the next look.    Thus,   at some 
point in the play,   the evader may decide to move to box 1 if in box 2 with probability x, and to 
move to box 2 if in box 1 with probability x   .     In order to see what the effect of such a rule is, 
let us   assume that we as observers  know  the past   search sequence and all such decision rules 
that have been used up to this point.    Given this information,   we can calculate   P,    the probability 
that the evader is in box 1.     By exercising the above decision rule,  the evader transforms   P 
into a new value,   P'.    Clearly, 

P1 = P(l - x,) + (1 - P) x, 

and 

1 - P' = Px2 + (1 - P) (1 - x1) 

where only one of these equations is necessary.    A result of such a strategy is,   therefore,   the 
transformation of the state variable  P  into P'. 

In fact,   this transformation is the only effect that the moving strategy has on the future be- 
havior of the game.    In order to show this,   let us assume that the evader is required to reveal 
each decision rule of the above form to the searcher when it is exercised (note that we are not 
requiring him to reveal his complete strategy all at once).    Such a revelation will not hurt the 
evader if he is using his good strategy and the searcher is intelligent enough to use his.    On the 
other hand,   the evader will certainly suffer a disadvantage if he uses a poor strategy,   since the 
searcher can use the value of P' to determine where he should look next.    This is the only man- 
ner in which the searcher can make use of this knowledge,   and it follows that the only purpose 
of a moving strategy is this transformation. 

We noted earlier that a moving strategy (x., x   ) could be a function of the entire previous 
play.    However,   given x,  and x?,   the a posteriori P' is a function of the a priori  P  alone and 
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not of the entire past play in all its detail. Therefore, the evader's good strategy must belong 
to the class of behavioral strategies in which the move probabilities x. and x, are functions of 
the a priori  P.    These arguments apply equally well to the general game where n ^ 0. 

A strategy belonging to this class is completely defined by the functions x. (P) and x7(P) and 
the initial  P that the evader uses when he first hides.    The influence of the functions x. (P) and 
x2(P) on the behavior of the game may be described completely by the mapping of P that they 
produce.    We shall determine the evader's good strategy in terms of this mapping.    We can ex- 
pect the mapping associated with the good strategy to be unique.    For a given mapping,  however, 
the functions x. (P) and x2(P) are not unique but have one degree of freedom.    Therefore,   the 
evader's good strategy will not be unique so far as these functions are concerned.    In the next 
chapter,  we shall see that when \x =£ 0,   the cost associated with a transformation of  P depends 
upon the particular functions used.     The functions that produce a given mapping at minimum cost 
are unique. 

The evader's good strategy in G° is easily derived.    In a manner analogous to that used in 
the last chapter,  let us consider the modified game F" in which the evader must tell the searcher 
the value of P that applies before each look.    In this game,  the evader is completely free to 
change  P after each look and therefore needs to consider only the effect that  P has on the next 
look.    If a given P  is optimum before one look it should be used before each look.    Therefore, 
after each look the evader should return  P to its original position if it is optimum and we may 
write 

U°(P) = min 
U°(P; 1) = 1 + [Pr1 + 1 - P] U°(P) 

U°(P; 2) = 1 + [P + (1 - P) r2] U0(P) 

If a given look is optimum once,   it is always optimum.    Therefore, 

U°(P) = min 

U°(P; 1) = 

U0(P; 2) 

P<ll 

(1 - P) q? 

The optimum  P is that which maximizes U°(P) and is PQ = q^/Cq^ + c^'-    Thus,  the evader hides 
in a manner that causes the probability of detection on each look to be independent of where the 
look is made.    Using this optimum strategy,   the evader guarantees a payoff in F° of (l/q.,) + 

(l/q2). 
The functions x. (P) and x?(P) that achieve the optimum mapping are defined by the equation 

Po      q,  + q7 
P[i -x2(P)] + (1 -P) x^P) 

where we must require that 0 .< x,,   x, .< 1.    As long as the evader uses a good strategy through- 
out play,   his strategy may be more simply defined.     Given a look into box 1, 

al  +CJ2 

q, - q1q 1^2 
qi + q2 - q1q2 

Similarly, 
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Therefore,   after each look into box i,  the evader should select x. and x? which satisfy 

qz     _ (q2 - y^j t1 - x2) -t- q^! 
qt + q2 "        qt+ qz - qiqz 

and after each look into box 2 he should select those which satisfy 

qz      q2(1-x2)+ (qi-q^z'xi 
qt +q2 qi + q2 - q1q2 

Again,  x,  equals the probability of moving to box 1 if the evader is in box 2 and x    is the proba- 
bility of moving to box 2 if he is in box 1. 

In the next section we shall show that the searcher can limit the evader to the payoff (l/q.) + 
(l/q  ).    This will prove that the above optimum strategy in F° is the evader's good strategy in 
G" and that V° = {i/q^ + (l/q2). 

3.3 SEARCHER'S GOOD STRATEGY 

The searcher's good strategy is also easily derived.    In G    the searcher's good strategy 
required each look to be a function of the past search sequence.    He made a random choice be- 
tween two infinite search sequences and after this choice was made all looks were specified de- 
terministically.    In G",   we find the opposite extreme.    The evader can change P at will,   and the 
searcher cannot make any use of his past sequence in choosing his next look.    Therefore,   we 
may consider only the class of behavioral search strategies in which each look is made independ- 
ently of the others;  that is,  where box i is examined with probability  Y and box Z is examined 
with probability 1 — Y. 

It is convenient to turn the tables on the searcher and define the modified game H° in which 
he must reveal his probability distribution to the evader.    Letting W0(Y) equal the payoff that 
results when the evader uses an optimum strategy,   we find that 

W0(Y) = max 
W°(Y; 1) = 1 + [Yr1  + (1 - Y)] W°(Y) 

W°(Y; Z) = 1 + [Y + (1 Y) r2] W°(Y) 

where W°(Y; i) is the payoff if the evader hides in box i.    Clearly,   if box  i  is optimum once it is 
always optimum.    Therefore, 

W°(Y) = max 

W°(Y; l) = 

W0(Y; Z) 

Yq, 

(1 -Y) q. 

The searcher's optimum strategy minimizes W°(Y),  and we find that he should look into box 1 

with probability Y = q^/Cq*  + q2) and into box Z with probability 1 — Y = qj/(q.  + q,)- 
This strategy causes the probability of detection on any look to be independent of where the 

evader hides.    It limits the evader to the payoff (l/q.) + (l/q2),   and is,  therefore,   the searcher's 
good strategy in G°. 
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It is interesting to note that in this game the payoff is equal to V° if only one player uses 
his good strategy.    In G   ,  the payoff is always equal to V     if just the searcher uses his good 
strategy.    If the evader uses his good strategy but the searcher uses a poor strategy,   however, 
the payoff can be greater than the value. 
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CHAPTER 4 

SEARCH  EVASION GAME WITH ß ^ 0:   EVADER'S STRATEGY 

4.1   INTRODUCTION 

In the last two chapters we have considered the two limiting forms,   G° and G   ,   of the two- 
box search evasion game.    In G0the evader was completely free to move,   and we found that after 
each look he should return the state variable  P to the value that minimized the probability of de- 
tection on the next look.    The game degenerated to a sequence of move-look pairs,   each of which 
was independent of the previous ones (except that the game stopped once the evader was found). 
In G    the opposite occurred.    Once the evader hid,    P became a function of the search process 
only.     Therefore,   the evader had to consider the influence of the whole search process on his 
choice of  P.    The searcher's good strategy became deterministic once an initial random selection 
was made from two infinite sequences.    G     was considered a limiting form of  G  because it ap- 
peared plausible to assume that the evader would never choose to move if the moving cost became 
infinite.    We shall find that this is indeed true.     In fact,   we shall usually find that the evader 
should never move (even if the searcher is aware of this) as long as  [JL   is larger than some finite 
|JI   .     That is,   when  \i   is greater than (j.    we may consider the moving cost prohibitive since the 
increase in search time achieved by moving is more than offset by the cost of moving. 

In game  G,    when    the moving cost is neither prohibitive nor zero    we shall find character- 
istics intermediate between those of  G" and G   .     The evader receives one unit each time the 
searcher examines a box but must pay p.   units each time he moves.    Therefore,   he must balance 
the increase in search time afforded by moving against the cost of moving.    Also,   we shall find 
that the searcher can make use of his past search sequence in determining where to look next 
but must make some random decisions throughout play.    The good strategies for the two players, 
as would be expected,   change in a well behaved manner from those associated with G° to those 

CO / 
associated with G     as  |j.   increases.     Furthermore,   the value of the game decreases monotoni- 
cally as ji   increases from zero to [i   .    Once  ^   is greater than (i   ,   the value is independent of |j. 
and equal to V    because the evader never incurs a moving charge. 

In this chapter we shall develop the evader's good strategy.    This will be accomplished by 
using the device that we used in the previous chapters — the modified game  F   in which the evjider 
must reveal part of his strategy to the searcher.    Many of the properties and techniques de- | 
veloped in studying F     and F° will be useful here.    As before,   we shall proceed on faith and as- 
sume that the evader's optimum strategy in the modified game will be his good strategy in  G. 
This faith will be Justified,   for we shall find in the next chapter that the searcher can indeed 
limit the evader in  G to a payoff equal to that which the evader can guarantee himself in  F.    Also, 
as in the no-move game,   we shall find that the optimum search strategies and the associated 
payoff functions developed in  F  will be of use when the searcher's good strategy in  G  is con- 
sidered. 

4.2   SOME  RESTRICTIONS ON THE EVADER'S GOOD STRATEGY: 
EFFICIENT  MOVE  CONDITION 

In the last chapter,   we saw that the influence of the evader's strategy on the behavior of the 
game could be completely characterized by the manner in which it transformed the state variable 
P  between looks.     It followed that the evader's good strategy must belong to a class of behavioral 
strategies in which the probability of moving is a function of  P and the box in which the evader 
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finds himself.    As a result,   we were able to characterize the evader's good strategy in terms of 
a mapping and an initial  P used at the start of the game. 

When y). is unequal to zero, these properties still hold. As before, once the evader has ex- 
ercised a moving strategy, the future payoff can be characterized by the a posteriori value of the 
state variable and the strategies that the players use in the future. Now, however, a cost is as- 
sociated with a transformation of the state variable, and it is clear that if a given transformation 
of P into P' is desired, it should be achieved at minimum cost. This condition causes the move 
probabilities x. (P) and x2{P) associated with a given mapping to be unique and allows us to asso- 
ciate with any transformation a unique cost function C(P — P'). 

The move probabilities that achieve a given transformation at minimum cost are easily de- 
rived.    If the desired transformation is P -► P',   then x,  and x7 must satisfy the equation 

P' = P(l -x,) + (1 - P) x1 

The probability that a move occurs is equal to Px, + (1 — P) x, and the cost of the transformation 
is simply ^[Px, + (1 — P) x. ].    The quantities x.  and x, must minimize this cost,   subject to the 
usual restriction that 0 ^ x.,   x_ < 1,   and we find that 1       Z 

P' < P ■ x.  = 0       ,        x-. P 

p. > P => Xi  =   F^—P       ,        x^ = o       . (4-1) 

This implies that the evader should never move from a box unless he wishes to decrease the 
probability that he is there.    The cost of the transformation,   which is now a minimum,   is equal 
to (j.(P — P1) if P' < P and ^{P1 — P) if P' > P.    We may therefore write 

C(P - P') = |j.|P-P'l       . (4-2) 

With the evader limited to strategies belonging to the class of efficient-move behavioral 
strategies defined above,  we are in a position to develop the functional equations from which the 
good strategy can be computed. 

4.3   MODIFIED GAMES F AND F':   ASSOCIATED PAYOFF  FUNCTIONS 

In the last chapter,   the evader's good strategy was derived by considering the modified 
game F" in which the evader was required to inform the searcher of the value of the state varia- 
ble that applied before each look.    We can do the same thing here.    Now,   however,   a cost 
C(P — P1) is associated with any transformation of the state variable and it will prove convenient 
to split the game into two parts.    This will allow us to develop two payoff functions,   one that ap- 
plies before the evader exercises his move strategy and another that applies immediately 
thereafter. 

These payoff functions can be developed by defining the modified games  F  and  F'.    In both 
games,   the evader is required to reveal the value of  P  that applies before each look.     Game   F 
applies prior to the time when the evader exercises his moving strategy.    Game F1 applies after 
this has occurred.    Therefore,   we can consider F' as the game in which the evader is not allowed 
to move until after the next look has been made.    Clearly,   F and F' are two parts of a single 
sequential game.    Their relation to each other is shown in the following diagram. 
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MOVE   STRATEGY 

UNSUCCESSFUL   LOOK 

In this diagram,  the transition from  F to F' that occurs when the evader exercises a move 
strategy is represented by a broken line,  whereas the transition that occurs when the searcher 
makes an unsuccessful look is represented by a solid line.    This convention will be used in all 
future chain diagrams,   etc.    Usually,   however,  any transition representing detection will be left 
out.     Then,   as in the chain diagrams used in Chapter 2,   all look transitions will represent un- 
successful looks. 

Payoff functions can be associated with both F and F' in the same manner as before.    We 
can let U(P) represent the future payoff in game  F when the evader is in box 1 with probability 
P and both players use optimum strategies in the future.    Similarly,   we can define U'lP) as the 
corresponding payoff in game F'.    Note that   P   is used to represent the state variable in either 

game. 
The functional equations that express these payoffs in terms of each other are easily derived. 

Given game F',   the searcher must decide which box should be examined,   and his decision can be 
based on the present value of  P.    The situation is exactly the same as in game F     except that if 
the look is unsuccessful,   game   F  is played next.    Therefore, 

U'CP) = min 

U'(P; 1) = 1 + (Pr1 + 1 P) U 

U'CP; 2) = 1 + [P + (1 -P) r   ] 

f ^1 I lPr1 + 1-Pj 

U [p + (1 - P) r   ] (4-3) 

As before,   UUP; i) represents the payoff that results if box  i   is examined and both players use 
optimum strategies thereafter. 

In game  F,    the evader has the opportunity to transform   P  into some other P'.    He must 
weigh  the cost of  such a transformation against the future payoff U'(P') in the subsequent game 
F'.    Clearly, 

U(P) = max {-ii | P' - P |  + U'CP1)} (4-4) 

These two functional equations are necessary and sufficient.    That is,   a unique pair of func- 
tions U(P) and U'(P) exists that satisfies the above equations.    Once they are known,   the optimum 
strategies for the two players can be found easily.    This fundamental property,  plus others of 
interest,   is developed in Appendix B.    Since most of the properties are fairly clear once they are 
stated,  the proofs are not included here. 

It is interesting to note in passing,   however,  that the proofs are accomplished by the use of 
the truncated games F    and F' .    Given F  ,  the evader exercises a move strategy and F'  is 
played.    If the next look is unsuccessful,  F     . follows and this process continues down to F.. 
If the evader survives until this point,  the game stops and he collects an additional reward that 
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is independent of P.    It is shown that as n approaches Infinity,   U  (P) and U' (P) approach limit- 

ing forms U(P) and U'(P),   respectively.    Furthermore,  it is shown that as n approaches infinity, 

the probability that the game will last until F. approaches zero.     It follows that these limiting 

functions must satisfy Eqs. (4-3) and (4-4).    Furthermore,   most properties that hold for all F 

or all F'   must apply equally well in  F  or F1,   respectively. 

An important property developed in this manner is that both U(P) and U^P) are continuous 

and convex.    We shall see in Sec. 4.6 that they are also piecewise linear over the entire interval 

(0, 1) if the moving cost is not prohibitive.    The  quantity  U^P) is represented by a function of 

this form in Fig. 4. 

1 

/ 

|3-22- 4I2S]    j 

1 Fig. 4.    A typical payoff function. 

With Fig. 4 in mind, we are in a position to find the simple manner in which U(P) is related 

to U'(P) and the general form of the evader's optimum strategy. The points P and P included 

in this figure are defined as follows: 

dUMP)   »M- 
dP 

P < P 

h P > P 

dU'jP) 
dP 

M- 

P < P, 

P >P, (4-5) 

Equation (4-4) states that 

U(P) = max {-n | P - P' j   + U'CP')} 
P' 

A little thought will show that if P_ < P ^ P      then U(P) = UMP).     On the other hand,   if P < P , 

it follows that U(P) = -|j.(P_ - P) + U'(P_),   and if P > P+,   then U(P) = -|J.(P - P+) + U^P   ).    If 

P  lies in the interval (P   , P,),   the evader should not move before the next look,   and we shall 

call this interval the no-move region.    If  P  is less than P_,   the evader should transform   P to 

P_ by moving to box 1 if he is in box Z with probability x.   = (P    — P)/(l — P).     If  P  is greater 

than P  ,   he should transform   P  into   P,  by moving to box 2 if he is in box 1 with probability 

x, = (P — P,)/P.     The intervals (0, P   ) and (P+. 1) will be called moving regions. 

In the next section we shall see that the magnitude of the slope of U'(P) must be greater than 

[j.   at P = 0 if q    ^ 1 and at P = 1  if q,   ^1.    Therefore,   except in these unusual cases,    P_ and 

P ,  belong to the interior of the interval (0, 1).    These points are defined with care because U'(P) 
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is usually piecewise linear,  and it is possible for one of these segments to have a slope whose 
magnitude is exactly equal to p.. 

The function U(P) can be constructed from U'CP) by replacing this function in the moving 
regions (0, P  ) and (P.. 1) by tangent segments with slopes ji and — JJL,   respectively.    This is 
shown in Fig. 5.    Clearly,   U(P) achieves its maximum inside the no-move region. 

~1 

Fig. 5.    The relationship between U(P) and U'(P). 
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The final property that is developed in Appendix B by means of the truncated games con- 
cerns the searcher's optimum strategy in F',   namely: 

There exists a P„,   where P 0 P       such that 

P > P„ 

=> U'(P; 2) < u'(P; t) 

^> U'(P; i) < U'lP; 2) 

look into box Z 

look into box 1 

Thus, the searcher's optimum strategy is quite similar to that in F . Here, however, P0 will 
in general be a function of the moving cost in addition to the detection probabilities. In F00, PQ 

was simply equal to q  /(q.   + q   ). 

4.4  PROHIBITIVE  MOVING COST 

It has been mentioned that a finite bound \i.     usually exists above which the moving cost is 
prohibitive.    That is,   for any p.   greater than p.   ,   game  G  behaves in a manner essentially iden- 
tical to that of 0°°.    In particular,   the value and the searcher's good strategy are identical to 
those in G   ;   the evader's good strategy requires him to hide initially in box 1 with the same 
probability P,;' as in G   ,   and finally the evader should never move as long as the searcher uses 

his good strategy. 
In this section,   the conditions that insure this behavior will be considered,   and we shall find 

that ji     may be obtained from the payoff function U    (P).    Furthermore,   we shall find that the 
evader's complete good strategy,   including the rule for moving when the searcher does not use 
a good strategy,   can be easily obtained once U   (P) is known.     It follows that one can determine 
whether p.   is prohibitive and compute the good strategies from the solution of the no-move game. 

Let us first consider more closely the conditions under which the evader should move.    In 
the last section we found that the evader should exercise a moving strategy if   P  does not belong 
to the no-move region (P  , P   ).     Such a strategy transforms   P to the nearest boundary of 
(P  , P   ),   and since the game should start at P*,   which lies inside this region,   moving is required 
only when the state variable is transformed out of the no-move region by an unsuccessful look. 
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If P cannot be removed from the no-naove region by an optimum look,  the evader will never 
need to move when the searcher uses an optimum strategy. 

In order to determine when this occurs,   let us define the recurrent region (Pn.., Pn7) in the 
same manner as in F That is,   let 

01 

P0rl 
pori +i-po 

02 P0 + (l po)r2 

(4-6) 

Since the searcher should look into box 1 if P  is greater than P0 and into box 2 if P is less than 

P0,   P can never be removed from (PQ... PQ?' ^ an optimum look.    Also,   P can never be re- 
moved from this region by the evader if he uses his optimum strategy,  because such an optimum 
strategy can only shift  P in the direction of P0 but not beyond it.    Therefore,  for any ji,   the re- 
current region has the same property that it had in F   . _ 

The condition under which  P  cannot be removed from the no-move region by an optimum 
look  should now be clear.    The no-move region (P  , P  ) must contain the recurrent region 

(P01, P02).    That is,  we require that P_ < P01 and P02 > P .    If P belongs to (P01, PQZ)'   ^ wil1 

remain there and hence inside (P  P,)-    On the other hand,  if P belongs to the no-move region 
but not to the recurrent region,   it will soon be transformed into the recurrent region by means 
of a sequence of optimum looks.    During this process,    P moves towards (PQJ, FQ^) 

an^L there- 
fore cannot leave the no-move region. 

When this condition holds, U(P) must be equal to U^P) throughout the recurrent as well as 
the no-move region. We may therefore derive P0, the unique point at which a look into either 
box is optimum,   in the same manner as it was derived in Chapter 2.    Since 

UMPQ;!) = U(P0;1)      , 

U'{P0;12) = U(Po;12) etc. 

the derivations are identical and 

P0 = %   + 1? 

It follows that PQ. and Pn    have the same values as in F    .    Furthermore,   both U(P) and U^P) 
are identical to U°0(P) throughout the no-move region.    In Sec. 4.3,  the no-move region was de- 
fined as the interval over which  | [dU^Pjj/dPl is less than \J..    Therefore,  the no-move region 
contains the recurrent region and ji  is prohibitive if and only if | [dU'CPjj/dPl  is less than \i for 

all  P belonging to (P01. PQ?''    
Since u   (P) is convex,   we may define (ip by 

ix    = max rP 

dU   (P) 
dP 

P01 + 

dU   (P) 
dP (4-7) 

02 

34 



The quantity n    will be finite as long as the magnitude of the slope of U   (P) is finite over the 
recurrent region.    This will be true if both q. and q    are unequal to one,   since both P-.  and P«- 
belong to the interior of (0, 1) under this condition.    When both detection probabilities equal one, 
P0. = 0 and P-, = 1.    In this case,  however,   U   (P) consists of only two linear segments,   both 
of finite slope,   and n    =1-    The only case where [x    is infinite occurs when one,  but not both,   of 
the detection probabilities is equal to unity.    For example,  when q, = 1 and q. =£ 1,   P0    = 1 and 
the magnitude of the slope of U   (P) approaches infinity as  P approaches one. 

A heuristic argument supports the fact that |j.    is infinite when just one detection probability 
is equal to one.    If the searcher assumed that the evader could not move when [j.   was finite,  he 
would look only once into box 2 (q    =1).    After this look,   the evader would be willing to pay any 
finite price to move to box 2 if he were in box 1,   since he could then survive for all time and 
collect an infinite payoff. 

Since U(P) is equal to U   (P) over the entire no-move region when ^ > |a   ,   the evader's com- 
plete good strategy can be easily derived.     The quantity U(P) is a maximum inside (P  , P   ) and 
the state variable P1'',   which should be chosen at the beginning of the game,   and the maximum 
guaranteed payoff U(P*) are the same as in F    .     Since   P  can still be transformed outside of the 
no-move region if the^searcher does not use a good strategy,   one must calculate the values of 
the points P    and P   .    This can be done by finding thf  points at which the magnitude of the slope 
of U   (P) first exceeds  |J..    Note that both U(P) and U^P) are unequal to U   (P) over the moving 
regions. 

The searcher's good strategy in  G  is identical to that in G     as long as  (i   is greater than 
[i   .    As we saw in Chapter 2,   the good strategy consists of a random selection of the two infinite 
sequences that are optimum in F     at P*.    Each of these sequences has an associated payoff 
function U.   (P) = a.P + b.(l — P).    After each look,   the future sequence is the same as that asso- 
ciated with another linear segment of U   (P) in (PQJ, PQ?) 

and can be represented in the same 
manner.    For all of these sequences. 

dU    (P) 
i 
dP 

must be less than (i.    Therefore,   even if the evader knows the future sequence,   he will find it 
unwise to move.    The initial random selection of one of the two optimum sequences associated 
with P* is such that it limits the evader to a payoff independent of  P  and equal to U   (P!|!) = 
U(P*) = V   .    When the searcher uses this good strategy the evader will receive this payoff as 
long as he does not move. 

4.5 BEHAVIOR OF THE PAYOFF FUNCTIONS WHEN ß  IS LESS THAN ß 

In Sec. 4.3,   some general properties of the payoff functions were discussed,   and in the last 
section we saw that both of them were identical to U   (P) in the no-move region when the moving 
cost was prohibitive.    In this section we shall consider the case where the moving cost is not 
prohibitive and examine the properties of the payoff functions more closely.    Particular emphasis 
will be placed on the manner in which these functions change as  n   increases from zero to |i   . 

Before considering the case where 0 < (j. < [j. , however, it is worthwhile to consider the ap- 
pearance of the payoff functions when \i is equal to ze~o. In Chapter 3 we found that the evader 
should always return the state variable to P« = q-,/(q. + q-,) before each look and that he could 
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guarantee a payoff equal to (l/q1) + (l/q2)-    It follows that P_ and P+ are both equal to P0 and 
that the no-move region is simply a point.    Since ji = 0,  the quantity U(P) is simply equal to 
UVP«) for all P and is thus a constant.    In game F',   however,  the evader is not allowed to move 
before the next look.    Therefore,  the payoff U'(P) will be a function of P.    Using Eq. (4-3) and 

noting that U(P) = (Vq^ + (1/q2) s v° for a11  P'   we find that 

U'(P) = 

P(l + r1V°) + (1 P) (1 + V) 

P(l + V°) + (1 P) (1 + r2V°) 

P   >Pr 

P  <   Pr 

Both U(P) and UMP) are shown in Fig. 6,   where the convention of representing U(P) by a broken 
line outside the no-move region is used. 

If pi  is very small but unequal to zero,  the appearance of these functions can be only slightly 
different.    Since \i  is unequal to zero,   U(P) can no longer be flat but must decrease at a rate 
equal to p.  as it extends from each side of the no-move region.    For any fixed  P,   U(P) and 
U'CP) must be continuous functions of \x.    They must be identical over the no-move region,   and 
U'(P) must be linear over an interval that is transformed into one of the moving regions by an 
optimum look.    It follows that the no-move region must still consist of the point P0 (which can 
change with p.) when IJL  is slightly greater than zero. 

|3-22-4in| 

S U(P1 

^ U'(P) 

Fig. 6.    Payoffs when |j = 0. Fig. 7.    Payoffs when  |j is slightly greater than zero. 

A pair of functions whose appearance satisfies the above properties is shown in Fig. 7.   Here, 
the magnitude of the slope of U(P) is equal to H-  on either side of PQ.    Now U^P) consists of four 
linear segments.    As before,  a breakpoint occurs at P0,   since the associated optimum look is 
different on either side of PQ.    The point P. is transformed into P0 by an optimum look into box 2. 
It is a breakpoint of U'(P) because the segments of U^P) to the left and right of P^ transform into 
the segments of U(P) that are to the left and right of P0,   respectively.    A similar effect occurs 

at P. where P. ► Pn. 
1 j 0 
If we continue to increase  p.   from zero on up,   these functions will keep on changing in a con- 

tinuous manner.    The point P0 may move,  but P. and P. must be related to PQ in the above manner. 
The two linear segments of U(P) will continue to increase in steepness with p.,  and so forth.   Both 
functions must retain the same general appearance until at some yi. either the segment of U(P) in 
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(P0, i) becomes tangent to that of U'(P) in (P0, P.), or the segment of U(P) in (0, P0) becomes 
tangent to that of U^P) in (P., P0). 

Because the general appearance of the payoff functions and hence the general behavior of the 
associated optimum strategies for the two players are the same over the interval (0, JJL.),  this in- 
terval is called a strategy interval.    When p.  increases beyond yt..,  the payoff functions take on 
new forms associated with the next strategy interval (ji., IJ.,).    We shall see that there is a se- 
quence of strategy intervals (0, (i,),   (|j.., (j,   ), . . . ,  ((i,, , (j.  ) over (0, u  ).    The appearance of the 
payoff functions and the general behavior of the optimum strategies are the same over each in- 
terval but change from interval to interval.    We shall see that as (i,  goes from interval to inter- 
val,   these characteristics approach those associated with F    . 

In order to extend this discussion in a more precise way,   it is necessary to develop the prop- 
erties of the payoff functions,   which have already been discussed,   more fully.     Recall that both 
U(P) and U^P) are continuous and convex,   that U(P) is identical to U'CP) over the no-move region, 
defined as the interval in which 

dU^P) 
!     dP     I ~ K 

and that the searcher's optimum strategy requires a look into box 2 if  P   is less than some 
unique P^ and a look into box 1 if  P   is greater than P,. 

Let us consider the linear relationships that exist between U(P) and XJ^P).     The function 
U'(P) is equal to U^P; i) if P > P0,   and is equal to U'(P; 2) if P < P        If U(P) is linear over some 
interval TT, ,   then U'(P; i) must be linear over the interval that is transformed into TT,   by an un- 
successful look into box   i.    Therefore,   if U(P) is piecewise linear,   U'(P) must be also.    U(P) is 
identical to U'(P) over the no-move region and is linear over each of the moving regions.    Hence, 
the reverse is also true.    We shall assume that both functions are indeed piecewise linear.    That 
is,   we shall assume that each function is partitioned into a set of linear segments by a set of 
breakpoints.    As long as we can show that the set of breakpoints associated with each payoff func- 

nl r2^,   U(P) tion is finite,   this assumption must be correct.    We shall soon see that when r 
and U'(P) are piecewise linear over the entire interval (0, 1) as long as  (x   is finite.    Also,   we 
shall see that both functions are piecewise linear over the interval (0, 1) in general if  \J.   is strictly 
less than u   . 

Let us consider the manner in which the breakpoints of the two functions are related to each 
other: 

U^P) = min 

PI U UVP; 1) = 1 + [Pr1 + 1 

U^P; 2) = 1 + [P + (1 - P) r 

Pr, 

Pr1 + 1 

U   [P + (1 -P) rj 

The point P- must be a breakpoint of UMP) because it is the unique point at which U'(P; 1) and 
U'(P; 2) are equal.    To either side of any other point,  the same next look is optimum.    Therefore, 
such a point can be a breakpoint of U'(P) if and only if it is transformed by the next optimum look 
into a breakpoint of U(P).    U(P) is linear over each of the moving regions.    Therefore,   all its 
breakpoints must belong to the no-move region where U(P) = U'(P).    It follows that any breakpoint 
of U'CP) other than P» must be transformed into some other breakpoint of U'(P) that belongs to 
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the no-move region.    Such a point must eventually be transformed into PQ and it cannot be trans- 
formed into a moving region before this occurs.    Therefore,  the breakpoints other than PQ that 
are common to U(P) and U'(P) are those points belonging to the no-move region that are trans- 
formed by an optimum search sequence into P« before leaving this region.    The remaining break- 
points of V'iP) are those points transformed into a breakpoint of the no-move region by the next 

optimum look. n n 

In F00,  we found that the general behavior of the optimum search sequence when r1     = r^ 

could be found by ordering the breakpoints in the recurrent region as follows: 

r-n2        r-n2+l        •■• -1 0 '1 ■■• n,-! n, 

We saw that any interval to the right of P0 was transformed n2 places to the left by an optimum 
look into box 1 and that any interval to the left of P0 was transformed n1 places to the right by 
an optimum look into box 2.    A chain diagram could be drawn which would show the manner in 
which the linear intervals transformed into each other.    If this was done,   it was a fairly straight- 
forward task to calculate the linear payoffs associated with each interval ^ and the values of the 

separating breakpoints. 
In games  F and F' a similar technique can be used.    As we saw in the last section,  the re- 

current region (P01, Pg,) has the same properties that it has in F°°.    Although we may no longer 

■•   Pr Pn   as before.   These equate P- to qz/(q,   + q?),   we can still order the points P-n?' 
are the points belonging to the recurrent region that would be transformed into PQ by an optimum 
search sequence if no moving were to occur.    Therefore, these are the only points belonging to 
the recurrent region that can be breakpoints of U(P) or U^P).    If M-  is less than u  ,   at least one 
of the moving regions must extend into the recurrent region.    In this case,   some of these points 
cannot be breakpoints of U(P) and usually some of them won't be breakpoints of U'(P) either. 

4 3 As an example,   consider again the case where r.   = r,  and suppose that the no-move region 
is (P   ., PJ.    It is a simple matter to find where the breakpoints occur.    They are shown in Fig. 8. 

|3-?2-4l2» | 

Fig. 8.    The form of a possible pair 
of payoff functions. 
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Breakpoints of both U(P) and U'(P) occur at P_1,   PQ,   P, and P,.    In addition,   P  ,,   which belongs 
to the recurrent but not the no-move region,  is a breakpoint of U'(P)-    Breakpoints of U'(P) that 
lie outside the recurrent region are not shown. 

This set of breakpoints is consistent.    Each breakpoint of U'CP) to the left of Pn transforms 
into a breakpoint in U(P) four (n,) places to the right and so forth.    Therefore,   it is possible 
that the payoff functions may take on this form over some range in n.    A little thought will show, 
on the other hand,  that if (P  2, P,) were guessed for the no-move region,   inconsistencies would 
develop. 

4.6   EXAMPLE:   r 

It is appropriate at this point to return to our study of the manner in which the payoff func- 
tions behave as \x  goes from zero to JJ.   .    In particular,  let us again consider the example where 

; P 
.    Figure 9 shows the various forms that these functions assume in the recurrent region 4 

(P  ,, P4).    The boundary points of the no-move region are denoted by circles.    The linear inter- 
vals are numbered in order,   ir.,TT- 1     2 
P   and P, 

., .. _?, . . . ,   starting from P« and working toward ,   and TT 

.    Note that there is no longer any general correspondence between the subscript of an 
interval TT. and its bounding breakpoints P. and P..    The linear intervals of U(P) in the moving 

i j K 
regions are designated by TT    and TT      ana U  (P) and U  (P) have slopes equal to |j. and — ji,   respec- 
tively.    The linear intervals of U'(P) that immediately adjoin (P  , P+) are designated by TT'   and TT'. 

(a) o « M «M 

(b) u, ii, S M,  __ — 

(c) M2 * [J ^ f 

ItS) p, S pi |i4 

(e) M4 S JJ <■ jjp 

Ou   SM 

4_   3v Fig. 9(a-f).    The forms of the payoff functions for a set of strategy intervals (r,   = r„). 
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(a) O  <  u S  M, 

(b) Vi v <   V, 

(c) g2 < 11 < 1J3 

((Jig     <   u  <  M 

4 4 

Fig. 10(a-f).   Chain diagrams associated with the payoff functions of Fig. 9. 

~i; 
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In Fig. 9(a),  the general form of the payoff functions in the recurrent region is shown for JJ. 

close to zero.    This result agrees with the discussion at the beginning of Sec. 4.5.    As \J.  in- 
creases,  the segments in TT    and TT    increase in steepness.    At some point,  either P    will shift 
to P_4 or P,  will shift to P,.    In general,  there is no simple way to predict which shift will oc- 
cur.    In the next section,   where the actual computation of the payoff functions   is considered, a 
method for computing which shift occurs first will be discussed.    In this example,   U  (P) becomes 
tangent to U'(P) and P    shifts to P,.    The second strategy interval yields functions of the form 
shown in Fig. 9(b).    Here a new breakpoint appears in U'(P) at P   . as a result of the breakpoint 
introduced at the new position of P.. 

As the moving cost increases further, we find the behavior exhibited in Fig. 9(c-e).   In Fig. 9(e), 
P    has shifted to the edge of the recurrent region.    When U. (P) becomes tangent to U'(P),   n is 
equal to \i   .    Figure 9(f) shows the general form when the moving cost is prohibitive.    Here,  of 

course,   P0 = q2/(q1 + q2). 
If both q,   and q    are unequal to one,   the magnitude of the slope of U   (P) becomes arbitrarily 

large as   P  approaches zero and one.    Therefore,   as long as  i^   is finite,    P    must be greater 
than zero and P    must be less than one.    It follows that U(P) and U^P) can have only a finite 

n. n, 
number of breakpoints in the no-move region when r.      = r-,    .    Furthermore U'(P) can have only 

n. n-, 
a finite number of breakpoints in either moving region.    Therefore,   when r.      ~ rz   '   *'len   U(P) 
and U'(P) will be piecewise linear over the interval (0, 1) if  |JI   is finite. 

Chain diagrams that illustrate the behavior of the optimum strategies can be drawn in a man- 
ner quite similar to that used in Chapter 2.    Those associated with the various strategy intervals 
of our example are shown in Fig. 10.    In these chain diagrams,   each state s- is associated with 
the interval TT. and has an associated payoff function.    A transition from one state to another pro- 
duced by an optimum look is represented by a solid line.     The transitions from state s    to s|_ and 
from s    to s'   occur when the evader moves (with the proper probability) and are represented by 
broken lines.    In general,   each linear interval that belongs to both the no-move and the recurrent 
regions will be represented by a single state s. in the chain diagram since U.(P) and UI(P) are 
identical.    In addition to these states,   s    and s'   will be included in the chain if P    belongs to the 
interior of the recurrent region and s    and s'   will be included if P    does.    Here we must differ- 
entiate between the states associated with U(P) and U^P) since these payoffs are different. 

In the case where q    = 1 and q.  ^ 1,   the behavior of the payoff functions is quite similar to 
that found in the above example.    In this case,   the breakpoints occur at P0, P., . . . ,  P, , . . . ,  P   , 
where P,   is transformed into P« by  k  looks into box 1.     There is one linear segment over 
(0, PQ).    In the first strategy interval,   P    = P0 = P   .    As   \i.   increases,   P    will shift from P. to 
P. to P, and so forth.    At some point,   P    must shift from PQ to zero,   and as  (a.  increases fur- 
ther,   P    will continue to shift to the right,  point by point.    Since P,   approaches PQ, = 1 only as 
k approaches infinity,   this process will continue indefinitely.    Over any strategy interval,  the 

4 3 chain diagram can be drawn in the same manner as in the example where r,   = r   . 
In Chapter 2,   we found that a chain diagram could not be associated with the linear segments 

of U    (P) in the recurrent region when logr^/logr.  was irrational because there were an infinite 
number of segments.     That is,   there were an infinite number of points in (PQJ, Prw' that were 
eventually transformed into PQ by the optimum search sequence.     In games   F   and F' this no 
longer occurs as long as  \i.   is strictly less than \i.   .    In this event,   at least one of the moving 
regions must extend into the recurrent region,   and only a finite number of points can be trans- 
formed into PQ by an optimum sequence without leaving the no-move region.    As a result,  these 
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points partition the payoff functions U(P) and U'CP) into a finite number of linear segments and 
both functions are piecewise linear.    A finite chain diagram that illustrates the manner in which 
these segments transform into each other can be drawn. 

A consequence of this result is that an n1/n2 approximation of logr2/logr. may be used to 
obtain an exact solution of the payoff function when ji < [i  .    The reason that an exact solution can 
be obtained by assuming a good choice of n, and n2 follows from the fact that the actual computa- 
tions of the payoff functions depend only on the chain diagram used.    If the correct chain diagram 
is found,  the resulting solution will be correct.    The n./n    approximation can be used as a de- 
vice for generating a sequence of chain diagrams.    As long as the approximation is sufficiently 
accurate,   it will produce a sequence of chains as [i  increases that will agree with the sequence 
associated with the irrational case up to the correct one.    The former sequence will merely be 
finite whereas the latter is infinite.    Clearly,  the approximation must be increasingly more ac- 
curate and the resulting chain diagram will become increasingly large as  |JI approaches u   . 

As an example,   let us approximate n./n? = 4/3 by n'./n'   = 3/2.    In this case,   the 3/2 approx- 
imation will yield a sequence of three chain diagrams identical to the first three in Fig. 10.    If 
H  is sufficiently small,   one of these three will be the correct one and the correct solution can be 
obtained. 

4.7   COMPUTATION OF THE PAYOFF FUNCTIONS 

The computation of the payoff functions is accomplished in two steps.    First,  the correct 
chain diagram must be found.    Once this has been done,  the payoff functions U.(P) and U!(P) as- 
sociated with each interval jr. that has a corresponding state s- in the chain can be calculated. 
Finally,   the separating breakpoints can be found.    In the last section we saw that the chain dia- 
grams changed from one strategy interval to another and that at the end of each strategy interval 
two possible changes could occur.    In this section we shall see how the correct change can be de- 
termined.     The required computations,   although simpler,   are quite similar to those used to com- 
pute the actual payoff functions within a strategy interval.    Therefore,  we shall consider the 
latter problem first. 

4.7.1   Computation of the Payoff Functions When the Correct 
Chain Diagram Is Known 

The chain diagram associated with a given strategy interval contains all the information 
needed for computing the payoff functions.    In order to clarify the discussion,   the chain diagram 
in Fig. 10(c) will be used as an example. 

I3-22-47ÜÖ] 
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This diagram is typical of those that occur when both P_ and P+ belong to the interior of the 
recurrent region.    Each linear interval belonging to the no-move region,   where U(P) = V'(P), 
has a corresponding state in the chain.    The states associated with n  ,  IT' ,   ir    and »'  are also 
included,  since these intervals extend into the recurrent region.    In such a chain there is a sin- 
gle loop.    Moving occurs only in the transition from s_ to s'  and from s    to s'.    These two pairs 
of states divide the loop into two parts. 

The linear payoffs associated with each state can be expressed in the same form used in F    . 
For any state s. associated with an interval in the no-move region we can write 

U.(P) = U!(P) = a.P + b.(l - P) 
i 11 i 

Furthermore,   we can let 

U  (P) = a_P + b_(i - P) 

U'(P) = a^P + bMl - P) 

and so forth. 
If two states are not separated from each other by a move transition,   their payoffs are re- 

lated to each other in the same manner as in F    .    If a look sequence represented by {t     (n)} 
transforms s. into s. and no move transitions intervene,   we may use Eq. (2-13) to write 

YJ    tjn) r^"1 +r1
1(k1 + k2 + a.) 

n=l 

k. 

Z  M11' 
n=l 

I-2n'1+I-22(kl+k2 + V (4-8) 

As before,   k. represents the total number of looks into box  i  during the transition.     Since at 
least one move transition occurs in the chain when \i.   is less than (j.   ,   the payoff associated with 
a given state can never be expressed in terms of itself and solved directly.    The above equations 
can be used,   however,   to express UT (P) in terms of U   (P) and U'(P) in terms of U   (P).    This 
will yield four equations involving the eight unknowns a   ,   b   ,   a' ,   h'_,   a  ,   b  ,   a'   and b'. 

Other properties that can be utilized in order to get a complete set of equations are as follows. 
First,   the magnitudes of the slopes of U_(P) and U   (P) are equal to  n-    Therefore, 

a    — b    = u 

b+-a+ = ti (4-9) 

Also,   U  (P) and U' (P) must intersect at P   ,   and U   (P) and U' (P) must intersect at P   .    This 
yields the equations 

a   P    + b   (1 - P   ) = a' P    + b' (1 - P   ) 

a+P+ + b+(l - P+) = a;p+ + b;(l - P+) (4-10) 

bringing the total to eight equations.    With the addition of the unknown P    and P   ,   however,   there 
are now ten unknowns. 
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These points are the bounding points of the no-move region.    They are related to P. by the 

manner in which they are transformed into it by the optimum search sequence.    These sequences 

can be found by looking at the chain diagram.    In particular,   P_ -► P,, as s'  -► s  A,   and P,  -* P„ p0 as sl "* s-l' 
No moving transitions occur during the above processes since the states in the 

chain diagi-am form a single loop in which 

As before. 

'-1 
and '+1 

P. 
i 

(k^^) 
P. : 

P.r,' 
3   2 (4-11) 

P.r, ' + (1 PJ)rl 

The two equations of this form introduce the additional unknown P. and one more equation 

is necessary to complete the set.    The final property which can be used is that a look into either 

box is optimum when  P is equal to PQ.    Since P., belongs to n    and PQ, belongs to TT 

U(P0) 1 + [P 
O'l 

+ 1 P0]U -[ 
Vi 

P0ri  + i 

+ [P0 + (1 - P0) r^ U, 

which reduces to the equation 

a_P0r1 +b_(l P0) = a+P0 + b+(l 

P-RT 

P0>r2 

P0'r2 

(4-12) 

This completes the set of equations from which a solution can be obtained.    It should be noted 

that the number of states in the chain has no effect on the number of equations required,   and 

these equations apply whenever both P    and P    belong to the interior of the recurrent region. 

Most of the above equations are linear and express only one unknown in terms of another.     The 

complete set can be reduced to a single cubic equation in a fairly direct manner.    It is usually 

most convenient to derive this cubic equation in terms of P«.     Once this has been done,   the other 

variables in the set of equations can   be  obtained easily.    Finally,   the payoff functions associated 

with the other states in the chain and the remaining breakpoints can be calculated by using the 

same techniques used in Chapter 2. 

To illustrate the general method,   let us write the equations appropriate to the chain diagram 
212 11 at the beginning of this section.    We see that s'  >■ s ,  and s'  ► s   .     From Eq. (4-8) it follows 

that 

q1(2) + r1(3 + a+) 

q2(l + 3r2) + r2(3 + b+) 

q1(l + r1) + r1 (2 + aj 

2 + b 
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4 
Equations (4-9),   (4-10) and (4-12) may be used directly.    Finally,   since P.  ► Pn and 

21 + u 
P_ ' P„,   we may write 

P^ 
P,  = 0 

+ "   P0 + (1 - P0) ri 

and 

P0r2 
-"  P0rz + H-P0)ri       ■ 

These equations and the chain diagram are appropriate for the case where r.   = 0.512 and 
4 3 r-, = 0.4096 (r.   = r-, ) when fi   is equal to 1.3.    These are the same escape probabilities used in 

the example in Chapter 2.    The payoff functions which result are presented in Table I and graphed 

in Fig. 11.    The quantity U(P) is a maximum at P« = 0.528 and is equal to 3.243.     Therefore,   the 

evader should initially hide in box 1 with this probability and can guarantee a payoff equal to 

3.243.    The quantities P_ and P    are equal to 0.482 and 0.694,   respectively,   and define the no- 

move region.    With these,   the evader's moving strategy is easily calculated.     If  P  is less than 

P  ,   he should move to box 1 if in box 2 with probability x.   = (0.482 — P)/(l — P).     If  P  is greater 

than P      he should move to box 2 if in box 1 with probability x-, = (P — 0.694)/P. 

It is worth noting that the equations used to compute these functions did not make use of the 
,43 fact that r,    - r, .     The solution is correct because the correct chain diagram was used and no 

contradictions occurred. The contradictions that would arise if the wrong diagram were used 

are quite simple: either the magnitude of the slope of U'(P) would be less than (j. in a moving 

region (in TT' of ir') or it would exceed \i somewhere inside the no-move region. The slope of 

each linear segment in TT . is equal to a. — b. and is included in Table I. 

If only P    or P    belongs to the interior of the recurrent region,   the solution is somewhat 

simpler.    As an example,   consider the chain diagram in Fig. 10(e).    Here only P    belongs to the 

interior of the recurrent region,   and neither s    nor s'   occurs in the chain.    As a result,   a'   and 

b'  may be expressed in terms of a    and b    by means of Eq. (4-8).    None of the equations that in- 

volve P  ,   a   ,   b  ,   a'  and b^ are required.     On the other hand,   Eq. (4-12) must be rewritten and 

some new variables must be introduced into the set of equations.     Previously,   a    and b    were 

included in this equation because P«,  belonged to the interval TT   .    In this example,   ?„,   is the 

breakpoint separating TT    and IT     .    Since s   , is included in the chain diagram,   while s_ is not,  it 

is worthwhile to rewrite Eq. (4-12) in the form 

a-3P0rl  + b-3(1 " P0'  = a
+
P0 + V1 " Po) r2        • 

We can express a, and b   , in terms of a    and b  ,   respectively,   by means of Eq. (4-8).     The set 

of equations that results can be reduced to a single quadratic equation in PQ.    In other respects, 

the solution is accomplished in the same manner as before. 

4.7.2   Determination of the Correct Chain Diagram 

Unless one wishes to guess the form of the chain diagram that applies for a given pair of 

boxes and a particular moving cost,   one can examine the manner in which the form of the payoff 

functions changes from one strategy interval to another.    Two problems should be apparent. 

First,   one must find which of the two possible changes occurs when fi   moves from one strategy 
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Fig. 11.   Payoff functions (rj =0.512, r2 = 0.4096, p=1.3). 

TABLE  1 

PAYOFF FUNCTIONS 
(r, =0.512, r2 = 0.4096, M= 1.3) 

Payoff Function Range 

Slope         | 
(Oj-b.)         | 

U^(P) =3.918P + 2.498(1-P) (0.427, 0.482) 1.420 

U_(P) = 3.856P + 2.556(1-P) (0, 0.482) 1.3           | 

U^P) =3.747P + 2.658(1-P) (0.482, 0.538) 1.089 

U^P) =2.974P + 3.556(1-P) (0.538, 0.645) -0.582       | 

U2(P) =2.918P + 3.658(1-P) (0.645, 0.694) -0.739       ! 

U+(P) = 2.747P + 4.047(1-P) (0.694, 1.0) -1.3 

u;(P) = 2.523P + 4.556(1 - P) (0.694, 0.780) -2.033       i 

Note:    P* = P0 = 0.538 

U(P*) =3.243 
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interval to another.    In addition,  one must determine the point at which the change occurs,   i.e., 
the value of the moving cost at the change point. 

In order to illustrate a method that can be used to answer these questions,   let us consider 
the manner in which the third strategy interval (jt,, jO of Fig. 9 changes into the fourth.    We 
know that the third strategy interval is correct over some range of \x  when r.  = 0.512 and 
r-, = 0.4096 since it gave a valid solution for n = 1.3.    To find which change occurs at ^,,  we 
must make a guess and find if it is correct.    For convenience,   let us make the right one.    That 
is,  let us assume that U1 (P) becomes tangent to U_(P) as |J.  approaches n,. 

When JJ.  is exactly equal to |i,,  then U' (P) must be identical to U  (P).    Therefore,   in the 
chain diagram in Fig. 10(c) we can delete the dotted line joining s    and s' ,   and we can express 
U'(P) in terms of U ,(P).    However,  (i, must be left as an unknown. 

212 The equations that result in this particular example are as follows.    Since s'  s    = 
,    11 .. s    ► s+,   we may write 

a^ = q1(2 +4r1  + Sr^) + r^S +a+)       , 

b^ = q2(l + 3r2) + r|(5 + b+)        , 

al = a. = ^l*1 + rl) + rl2(Z + a
+)       ' 

b^ = b_ = 2 + b+ 

No equations involving P    are required and,   in fact,   P    is not unique.    On the other hand,  U  (P) 
is equal to U'(P) only at P..     Therefore, 

a+P+ + b+(l p
+) = a;p

+ + b\.{i - F+) 

where P, P0,   or 

po + (1-po)ri 

Again Eq. (4-12) must be used,   and Eq. (4-9) may be expressed in the form 

The solution reveals that (j-,  = 1.393.    The magnitude of the slope of s'   proves to  be equal to 
1.973.     Since this value is greater than |j.       no contradiction arises and our guess was correct. 
The form of the payoff functions in the fourth strategy interval must therefore be that shown in 
Fig. 9(d). 

The values of n«,  JJ..,  \xz, . . . ,   \x  ,  given in Table II,   indicate the range over which each of 
the chain diagrams of Fig. 10 is valid when r.  = 0.512 and r, = 0.4096.    The maximum payoff 
U(P*) is also included for each \i...    These payoffs indicate the manner in which the value of the 
game decreases as |ji  increases from zero to \i.   .    Note that as  n gets close to ^    the value de- 
creases very slowly. 
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TABLE II                                          1 

THE BOUNDARIES OF THE STRATEGY INTERVALS 
AND THE VALUE AT EACH BOUNDARY 

(r, =0.512, r2 = 0.4096) 

i V; U(P*) 

0 0 3.743          1 
1 0.903 3.297 

2 1.170 3.256           | 

3 1.393 3.234           | 

4 1.541 3.227           ! 

P 1.913 3.222           j 
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CHAPTER 5 
THE SEARCHER'S GOOD STRATEGY 

5.1 INTRODUCTION 

In the last chapter,   the evader's good strategy was developed by assuming that his optimum 
strategy in the modified game was indeed his good strategy in  G.    In the process,   we found that 
he could guarantee a payoff equal to U(P) if he selected   P  initially,   and that he could guarantee 
a maximum payoff U(P!;!).     The searcher's optimum strategy,   which limited the evader to the 
above payoff in the modified game,   proved to be quite similar to that in F    .     In fact,   we were 
able to solve   G  completely when n  was prohibitive because the game degenerated to a form ef- 
fectively the same as that of G   . 

In this chapter,  we shall develop the searcher's good strategy in G when the moving cost is 
not prohibitive.    It will be shown that the searcher can limit the evader to U(P) if he knows only 
the initial   P that the evader selects and no more.    This statement applies even if the evader 
knows the strategy used by the searcher.    Once the evader has been thus limited,   the solution 
can be extended to  G,    where even the initial   P  is unknown,   in much the same way as it was in 
G   .    This good strategy will limit the evader to the payoff U(Ps:!)- 

The actual computation of the searcher's good strategy will prove to be fairly easy because 
this good strateny is strongly related to the function U(P) and the chain diagram utilized in com- 
puting it.    Most of the work has been done once U(P) has been found.    As we shall see,  the 
searcher's good strategy will be Markovian in form.     Therefore,   it is appropriate to examine 
some basic properties of Markovian search strategies before considering the relationship be- 
tween the searcher's good strategy in  G  and his optimum strategy in  F. 

5.2 MARKOVIAN SEARCH STRATEGIES AND MODIFIED GAMES H AND H' 

In this section we shall consider search strategies that generate a search sequence by means 
of a discrete-time Markov process.     Such a process is a mathematical model defined by a set of 
states,   a set of transitions between these states,   and an associated set of transition probabilities. 
Given a particular state,   a transition will occur in the next time interval to some other state,   or 
possibly to the same state,   according to the set of transition probabilities associated with that 
state.    A search sequence can be generated by such a process if a particular look is associated 
with each transition and a probability distribution for selecting a starting state is defined. 

Oiscxelft^time Markov processes have most often been used to model the behavior of a physi- 
cal system.    In such a situation,   each state is defined by a particular set of values for a set of 
variables that completely characterize the system at any given time.    As a result,   the primary 
interest usually focuses on these states.    For example,   one may wish to calculate the probability 
that the system will be in a particular state after  k  units of time if it is originally in a known 
state. 

When Markov search strategies are considered,   however,   the primary interest shifts to the 
looks and hence to the transitions,   for the Markov process is used strictly as a device for gen- 
erating a search sequence.    Any dis<yete-time Markov process may be used once a look is asso- 
ciated with each transition,   and we need not consider the physical significance of any state.    As 
we shall find in Sec. 5.5,   each state in the process defined by the searcher's good strategy will 
have some significance.     It is not appropriate at this point,   however,   to concern ourselves with 
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this problem.    The only restrictions which will be imposed on the Markov processes are that the 
number of states must be finite and that,   at most,   one transition from each state can be asso- 
ciated with a given look.    Since there are only two boxes,  there can,   of course,  be at most two 
transitions from each state. 

A simple example of a Markovian search strategy that obeys these constraints is defined by 
a transition diagram (Pig. 12),  a set of transition probabilities and the probability distribution 
Y0 = ^O^l''  ^o'0^''  ^0^3''  ^0^4^'  which is used to select the starting state.    In contrast to 

Fig. 12.    The transition diagram of a Markovian 
search strategy. 

the usual convention in which p.. is used to represent the probability of a transition to o-.,   given 
CT.,  here y.(k) is used to represent the probability that box k  is examined next,   given <T..    The 
term   cr. r.   will be used to represent the state that follows when this event occurs. 

The above transition diagram exhibits several properties worth noting.    First,   a. can be 
occupied only at the beginning of the process,   since after the first look no transitions can be made 
into it.    Therefore IT. is a special example of a transient state.    In general,   a state will be a 
transient state if the probability that it can be occupied approaches zero as the process continues 
indefinitely.    Clearly,   a.,   cr, and o-, are not transient states and,   in fact,  belong to a single re- 
current chain.    A recurrent chain consists of a set of states in which it is always possible to get 
from one to any other by a series of transitions.    Once a state belonging to a recurrent chain is 
entered,   only states belonging to that chain can be occupied in the future.    Furthermore,   once 
this has occurred,  the probability that each of the states in the chain is occupied as the process 
continues indefinitely approaches a nonzero limiting value.    It will develop that Markov processes 
with only one recurrent chain will be sufficient in our study. 

The final property which we should note is that only one transition can occur from a. and that 
the next look associated with this state is deterministic. A state of this type will be called a pure 
state.    States from which more than one transition is possible will be called mixed states. 

In order to discuss the influence that such a Markovian search strategy has on the behavior 
of the search evasion game,   it is helpful to introduce the modified games  H and H'.    These 
games are similar to the modified games  F and F',  but here we reverse things and require the 
searcher to reveal part of his search strategy to the evader.    In particular,  he must reveal the 
transition diagram and the associated transition probabilities that he uses and must tell the evader 
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which state is initially selected once the evader has hidden.    He is not required,   however,   to 
reveal the probability distribution Y0 used for this selection,  and for the time being we shall not 
concern ourselves with it.    In the same manner as before,   H applies when the evader still has 
an opportunity to move before the next look,   and H' applies after this opportunity has passed. 

Payoff functions can be associated with each of these games,  but now a different pair must 
always be associated with each state cr. since both players are aware of the state that applies at 
any given time.    The quantity W.(P) will be used to represent the future payoff that applies in H 
if the search process is in u. and if the evader is in box 1 with probability  P and uses an opti- 
mum strategy in the future.    The quantity W!(P) will be used to represent the corresponding pay- 
off in H1.    No statement concerning the searcher's future strategy is included in these definitions, 
since it is completely specified by the Markov process. 

Although the searcher is no longer informed of the value of  P that applies at any given time 
and the evader always knows exactly where he is,  these payoffs are still functions of  P.    This 
variable is the one that an observer would use to define the evader's position if he knew both 
players' strategies and was able to observe the search sequence which resulted.    This assumes, 
of course,  that the observer cannot see when the evader actually moves.    In these games,  the 
evader's moving strategy may now be a function of the search state as well as a function of P 
and his own position. 

A pair of functional equations can be written to express the payoffs associated with H  in 
terms of those associated with H' and vice versa.    In H',  the searcher's next look is completely 
specified by the Markov process.    Given a.,   he will look into box 1 with probability y.(t) and into 
box 2 with probability y.(2).    Therefore, 

W!(P) = i + yi(l)[Pr1 + 1 - P] W^ [pri   *\ _ p] 

+ y (2)[P + (1 - P) r-,] W. i  2 IP + (1 - P) r- (5-1) 

Here,   W.i, (P) represents the payoff in  H  associated with the state that follows (7. if box  k  is 
examined.    If tr. is a pure state,   the above equation will of course degenerate to a simpler form. 

In H,   the evader has the opportunity to move.    As before,  the cost function C(P -* P') is 
associated with a transformation of the state variable.    Since the evader can calculate the pay- 
offs {WI(P)}, 

W.(P) = max{-^|P-P'|   + W!(P')} 1 pi 1 

Each payoff function WI(P) must be linear and is valid for all   P  in (0, 1).    It follows that 

-fiP + W!(0) 

1(P) = W!(P) 

-IJid -P) +W!{1) 

dWI{P) 
dP 

dW!(P) 
(i ^ dP 

dW!(P) 
dP (5-2) 
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When the slope of W!(P) is greater than n,   the evader must move to box 1 if he is in box 2,  and 
when the slope is less than — [i he must move to box 2 if he is in box 1.    On the other hand,   if 
|dW!(P)/dPi  is strictly less than (i,   the evader should not move,   and W.(P) is equal to W!(P). 
W,(P) is also identical to W!(P) when |dW!(P)/dP|  = n,   but here the evader can still move.    If 
dW!(P)/dP = [i, the evader can move to box 1 if he is in box 2 with any probability and can there- 
fore increase  P by any desired amount.    The reverse holds when dW!(P)/dP = —JJL.    This prop- 
erty is very important,   for it allows the evader's optimum strategy in F to be consistent with 
his optimum strategy here when the searcher uses the correct Markov process.    The three 
possible ways in which the payoffs W.(P) and W'.(P) can be related to each other are illustrated 
in Fig. 13.    Here,   W.(P) is indicated by a broken line if it is unequal to W!(P). 

Once the Markov process,   except for the starting rule Y-,   is specified,  the evader's optimum 
strategy may be obtained by using a form of linear programming.   Such a solution will maximize 
W.(P) for all  P  in each o-..   Although we do not need to concern ourselves with the manner in 
which such a solution can be obtained,   it is worthwhile to discuss some properties implied by 
the result. 

Fig. 14.   A possible set of payoff functions 
Fig. 13.    The relation between W.(P) and W|(P). for the strategy shown in Fig. 12. 

Let us suppose that the Markov process of Fig. 12 yields the solution shown in Fig. 14.    Let 
us assume that dW^(P)/dP = -|j. and that dW^(P)/dP > ji.    In both o^ and cr4,   dW^P^dP = ji.    In 

a. however,   the evader must move to box 1 if he is in box 2,   whereas in a. he can decrease  P 1 4 
by any desired amount.    In cr, and cr,,   on the other hand,   he should not move.    Note that in gen- 
eral  | dW. (P)/dP | <: \x.    As long as Y0 is unknown to the evader,   he should initially hide in box 1 
with probability P* since this guarantees the maximum payoff of W2(P*) = W3(P*).     Of course, 
if the searcher started the Markov process in cr.  or a. the evader would receive more.     The 
searcher would be foolish to do this,   however,   for there exists a Y« = (0, y0(o-,), y0(o-,,),  0) which 
limits the evader to the above amount. 

Unfortunately,   such a solution does not guarantee that this is the searcher's good strategy 
in  G,   for we have no reason to assume that the transition probabilities or the transition diagram 
is correct.     We can be sure that such a strategy is the good strategy only if it limits the evader 

to UCP*).    Clearly,   it would be a formidable task to guess the transition probabilities,   let alone 
the transition diagram associated with the good search strategy,   if we did not have some guide- 
lines to help us on our way.    For this reason the evader's good strategy has been developed first. 
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Before we consider how the good Markovian search strategy is related to the behavior of game 
F,    however,   a fundamental property of good strategies should first be discussed. 

5.3   AN IMPORTANT PROPERTY OF GOOD STRATEGIES 

In general,   a two-person zero-sum game has a value,   and a pair of good strategies exists, 
if each player can guarantee that he will receive a payoff no worse than the value.    The strategy 
that guarantees this payoff is the player's good strategy,  and each good strategy is optimum 
against the other.    If one player tells the other that he is using his good strategy,  the other player 
can gain no advantage by using a strategy different from his good strategy. 

This behavior is quite different from that associated with any other pair of strategies.    If 
one player were to use an arbitrary one and inform the other of what it was,  the other player 
could also use a different strategy and collect a larger payoff.    If in turn,   he told the first player 
what this new strategy was,   that player would probably decide to use a different one himself. 
This process can be continued and leads to a "if I do this,  he will do thus and so,   but then I should 
do something else,  but then he will " type of reasoning.    Only the good strategies avoid in- 
stabilities of this type. 

In most games of interest (excluding perfect information games such as chess) each player's 
good strategy involves random decisions.     Such a strategy is called a mixed strategy if the game 
is expressed in normal form.    On the other hand,   it can be expressed in terms of a set of be- 
havioral strategies as we shall do here.    As was mentioned earlier,   a behavioral strategy asso- 
ciates with each information set or behavioral state for the player in question a probability dis- 
tribution for selecting the next alternative.    In general,   the probability distribution associated 
with a given behavioral state need not include a nonzero probability for each alternative.    An al- 
ternative that does have a nonzero probability in a given behavioral state can be called an admis- 
sible alternative of that state.    Alternatives that occur with probability zero will be called inad- 
missible alternatives of that state.    This of course holds only when the number of alternatives 
in each state is finite as it is in the search evasion game. 

The property of the good strategies that we wish to discuss here is as follows.    If one player 
uses his good strategy,   the payoff will be equal to the value of the game as long as the other 
player selects only admissible alternatives.    That is,   the payoff is the same for any set of prob- 
ability distributions over the behavioral states of one player as long as these distributions exclude 
the selection of inadmissible alternatives and the other player uses his good strategy. 

As an example,   consider the good strategies in G   .    The evader's good strategy requires 
him to hide in box 1 with probability P* and in box 2 with probability 1 — P*.    Thus,   hiding in 
either box is admissible.    The searcher's good strategy,   on the other hand,   requires him to 
choose one of the two infinite search sequences optimum at P!'',   and these two sequences are his 
admissible alternatives.    As long as the evader uses his good strategy P*,  the payoff will equal 
the value if either of these two sequences is selected.     Similarly,   the probability distribution 
that the searcher uses to choose one of these sequences causes the payoff to be independent of  P 
and,   therefore,   equal to the value for either of the evader's admissible alternatives.    Note that 
in this game the evader has no inadmissible alternatives,  whereas the searcher has an infinite 
number. 

This property of good strategies is very useful when one wishes to derive the good strategy 
for one player once the other's is known.    Any alternative that causes the payoff to be unequal to 
the value when the other player uses his good strategy must be an inadmissible alternative for 
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that behavioral state and can be excluded from consideration.    Once this has been done,  the 
problem of finding the "good" probability distributions over the admissible alternatives in each 

state is much simpler. 
In the next section,   we shall find that this property allows us to derive the transition diagram 

associated with the searcher's good strategy in a straightforward manner.    The associated transi- 
tion probabilities can then be computed by making use of the previously calculated function U(P). 
Finally,  the initial distribution Y. can be found to complete the solution. 

5.4   DERIVATION OF THE SEARCHER'S TRANSITION DIAGRAM 

When a Markov process is used to generate a search sequence,   each state in the transition 
diagram is a behavioral state of the searcher's strategy and each transition represents an alter- 
native.    To start this process,   one of these states must be selected by means of YQ.    A starting 
state a«,  not shown in the transition diagram,  may be associated with this distribution.    As would 
be expected,   only some of the states in the transition diagram should be initially selected with a 
nonzero probability.    The selection of these states corresponds to the admissible alternatives in 
o-0.    The general form of the transition diagram and also the admissible alternatives associated 
with o-, can be found by considering the behavior of game  G when the evader is required to use 
his good strategy.    It will be more  convenient,   however,  to derive the form of the transition 
diagram first,   and consider the start-up state CT« later. 

In order to do this,  we must modify slightly our restrictions on the evader's strategy.    In 
G,   the evader's good strategy contains two parts.    First,  he must use P* to determine where 
he hides initially,   and then he must exercise his good moving strategy as the game is played. 
We can simplify things by assuming that the initial P is arbitrarily assigned and known to the 
searcher.    Once it has been used,  the evader is required to exercise his good strategy and,   in 
fact,  must move before the first look,   if necessary.    Under these conditions,  the searcher can 
utilize the initial  P in starting the search process,  and we must find a transition diagram with 

which he can limit the evader to U(P). 

| 3-22-4136| 
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Fig. 15.   A pair of payoff functions for F and F', 

In order to clarify the discussion,  let us consider Fig. 15 [the payoff functions in Fig. 9(c)] . 
Let us also reproduce the associated chain diagram in Fig. 10(c) with the moving transitions 
eliminated. 

If the evader were to use his good moving strategy,  this diagram could be used to generate 
a search sequence that would yield a payoff equal to U(P).    The process should merely be started 
in the state a. that corresponds to the interval if. in which the assigned  P lies.    It follows that 
the look associated with each state in the chain must be admissible.    Unfortunately,   each state 
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is a pure state and the resulting search sequence would be deterministic.   Under these conditions, 
the evader could obviously secure a larger payoff by using a moving strategy other than his good 
one.    Clearly,  we have not found all of the searcher's admissible alternatives. 

In order to determine when other looks are admissible,  the evader's good moving strategy 
must be examined more closely.    After a transition to cr   has occurred,   P belongs to TT    and the 
evader must transform it to P .,   the left boundary of TT   .    The state or    requires a look into box 1 
and a transition to cr. occurs.    In the process,   P    is transformed to P«,  the left boundary of TT .. 
As a result,  a look into either box is admissible,  and if box 2 is examined,    P will return to TT 

It follows that a look into either box is admissible in u    once the search process has occupied 
cr  .    A look into box 2 produces a transition to cr ,   whereas a look into box 1 yields a transition 
to cr    as before.     Similar reasoning shows that a look into either box is admissible and the same 
transitions occur if the Markov process is in cr   .  and has occupied cr    beforehand.     Since this 
reasoning does not apply until cr    or cr    has been occupied,   we must differentiate between these 
two situations. 

The transition diagram that takes this into account is shown in Fig. 16.    In this diagram, the 
t r t states cr.  and or.   are associated with each interval ir. in the no-move region.   State cr.   is transient 
ii i b i 

and applies before a move occurs.    State a.  belongs to the recurrent chain and applies thereafter. 
States cr    and cr    also belong to the recurrent chain but have no superscripts because there are 
no corresponding transient states.    These will be called the moving states,   since the evader's 
good moving strategy requires a transformation of the state variable   P  in each one of them.    If 
P  belongs initially to TT.,   the searcher should start the search process in the transient state cr. . 

r r The only mixed states in the diagram are cr   .  and cr   .iwhich are entered only after the proper 
moving state has been occupied.    Any probability distribution over their associated alternatives 
will produce the payoff U(P) as long as the evader uses his good moving strategy. 

|3-Zg-4I37| 

Fig. 16.   The searcher's transition diagram. 
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This transition diagram is typical of those which apply when both P_ and P. belong to the 

interior of the recurrent region (PQA. 
P

O2'
-
    

In this situation'   both s    and s, are included in the 
chain diagram associated with game F.    In general, such a chain diagram must be of the follow- 
ing form. 

[3-z?-4i5fl 

— Gh^-<$ 

(b—r~® — <b 
Here,   of course,   s   . may be equivalent to s',   and s   .  may be equivalent to s'.     Both always 

occur,   for example,   in the first strategy interval.    As in the previous example,   each state s. of 
t r 1 

the no-move region is replaced by two search states CT.   and rr. .    The recurrent chain is identical 
to the above chain diagram except that each pair of moving states in the chain diagram is replaced 
by a single moving state.    Each transient state is connected to a   or cr    in exactly the same man- 
ner that s. is connected to s    or s +' In both a   . and cr, . a look into either box is admissible.    A -1 +1 
look into box 1 produces a transition to cr    and a look into box 2 produces a transition to cr,. 

(o) aci^> 
ASSOCIATED    . 

PAST SEQUENCES 

<7_-   II 

o+- 12 

- 1211 

+ - 1212 

,-1121 

f-2121 

^-2112 
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Fig. 17(a-d).    The transition diagrams associated with the chain diagrams of Figs. 10(a-d). 
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The transition diagrams associated with the chain diagrams in Figs. 10(a) through (d) are 
shown in Fig. 17.    Note that each transient chain is used to bypass the mixed states until one of 
the moving states has been entered. 

It is not surprising to find,   in each of these diagrams,   that a finite part of the past search 
sequence uniquely determines the recurrent state in which the process must be.    This should 
have been expected,   since each state is a behavioral state of the searcher's strategy and must 
have a corresponding information set.    The above property holds for any transition diagram that 
can be associated with a good search strategy.    In Fig. 17(a),   each state is defined by the last 
look;   er    applies if the last look was made into box 1 and cr    applies if it was made into box 2.   In 
Figs. 17(b) through (d),  the past sequence of the last two,  four,   and six looks,   respectively,   is 
required to determine uniquely the recurrent state that the process must occupy.    Note that not 
all the possible past sequences of a given number of looks have corresponding states in the dia- 
gram.    This is true because the pure states cause some sequences to be inadmissible.     For ex- 
ample,   in each of these latter' diagrams it is inadmissible to make two consecutive looks into 
box 2.    Naturally, the finite past sequence associated with each recurrent state is valid only when 
the search process has generated the required minimum number of looks. 

When only one of the bounding points of the no-move region belongs to the interior of the re- 
current region,   the transition diagram is only slightly different.    As an example,   consider the 
chain diagram in Fig. 10(e): 

|3-2Z-4I53| 

(Sy^S^-^-^ 

In this case,   n    extends into the recurrent region and s    and s'  are included in the chain diagram. 
Once a move occurs in the transition from s, to s',   the point   P  will always be at the left boundary 
of each interval TT..     AS a result,    P  will be equal to P„ when it is associated with tb    interval 

i ^ 0 
TT       and a look into either box will be admissible in crr.    Point   P will no longer be c'qual to P- 
when it belongs to rr       because the moving state s    does not. occur in the chain diagram. 

~ t The searcher's transition diagram is shown in Fig. 18.     Here,   (r.   is the only transient state, 
for all of the other states transform into cr, before reaching the single mixed state a-, .     This,   of 
course,   does not always occur.    In general,   any other interval IT. that transforms into TT, before 
reaching te   .   (and hence ir   ) requires a transient state cr.   in addition to a recurrent state a. .   In 

Fig. 18.    Transition diagram associated 
with the chain diagram of Fig. 10(e). 
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such a situation,   tr.  will be connected by a series of transitions to tr,  in the same manner as 
As before,   if  P  initially belongs to TT.,   the search process should start is connected to 

t 

r 

in a.' if such a state exists.    If it does not exist the process should start in the unique state o-., 
which is associated with TT. and belongs to the recurrent chain. 

5.5   CALCULATION  OF THE GOOD PROBABILITY DISTRIBUTIONS ASSOCIATED 
WITH EACH MIXED STATE 

Once the correct transition diagram for the Markov process is determined,  the good proba- 
bility distributions associated with each mixed state must be calculated.    We have seen that a 
payoff equal to U(P) will result for any set of probability distributions as long as the process is 
started in the correct state and the evader uses his good moving strategy.    The good probability 
distributions that we now seek must limit the evader to this payoff even if he is no longer re- 
quired to use his good strategy.    We must still require him to reveal the initial value of  P to the 
searcher.    As would be expected,  the modified games  H and H' will be of use once we add this 
constraint. 

In order to avoid confusion,   let us first consider the case where both P    and P    belong to 
the interior of the recurrent region and use our standard example,   i.e.,  the chain diagram asso- 
ciated with the modified games   F  and F' and the transition diagram associated with the modified 
games  H  and H' where the initial   P  is known (Fig. 19). 

Fig. 19.   Chain and transition diagrams associated 
with the strategy interval of Fig. 15. 

As we have seen,the search process should start in a.   if the initial   P  belongs toT.,   in a 
if it belongs to ir .,  and in cr    if it belongs to n   .    Since the evader is no longer required to use 
his good strategy,   it should be clear that the good probability distributions associated with cr   . 
and u* must insure that W.^P) = U.(P) for each cr*,   that W  (P) = U_{P),  and that W+(P) = U+(P). 
It should be recalled that W.(P) and WI(P) were defined as the payoffs that result if the evader 
uses an optimum future strategy.    The evader's optimum strategy has more freedom than his 
good strategy because he knows the strategy used by the searcher.    If the searcher does not use 
his good strategy,   the evader can capitalize on this error. 

It is easily shown that the payoff W. (P) associated with each transient state is identical to 
the corresponding payoff U,(P) as long as W_(P) = U_(P) and W+(P) = U  (P).    If the search proc- 
ess starts in a transient state,   only transient states are occupied until a   or a   is entered.    Un- 

til this occurs,   all looks are deterministic,   and the resulting sequence is the same as that which 
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transforms the equivalent state s, and s+ or s_.    Therefore,   any W. (P) must be related to W  (P) 

or W   (P) as far as the look sequence is concerned in exactly the same manner as U.(P) is re- 

lated to Ui(P) or U_(P).    Each payoff U^P) is appropriate to an interval r. that belongs to the 

no-move region where U.(P) = U!(P) and |dU|(P)/dr| < [i.    Therefore,  as long as W_(P) = U  (P) 

andW+(P) = U+(P),  moving cannot be optimum for the evader in any transient search state either, 

and  W.^P) = W!t(P) = U.(P) = U!(P). 

In contrast to this behavior,   some moves must be admissible in cr    and a  ,   since the search- 

er's good strategy must allow the evader to choose any of the admissible alternatives associated 

with his good strategy at no loss.    The state cr    corresponds to s    where the evader increases 

P  to P   .    As a result,   both moving from box 2 to box 1 and remaining in the same box must be 

admissible alternatives in cr   .    The function W (P) must,   therefore,   have a slope equal to +|a. and 

be identical to W_(P).    Similar reasoning can be used to show that the slope of W'(P) must be 

equal to -^ and that W^(P) = W+(P). 

The necessary and sufficient condition that the searcher's good strategy must satisfy when 

the initial P is known should now be clear. A pair of probability distributions Y . = (y .(1), 

y_1(2)) and Y.. = (y+1(l), y+1(2)) must be found that causes W^(P) and W^(P) to equal U_(P) and 

U. (P), respectively. If this occurs, W (P) and W (P) will also be equal to the asscaated pay- 

offs of game F. Such a condition insures that each payoff associated with a transient state will 

equal the corresponding payoff U.(P) and that the searcher will be able to limit the evader to 

U(P) at the beginning of the game. 

Before considering the actual computation of the "good'1 probability distributions,   let us 

show that they exist.     The payoff functions U(P) and U'(P) for our example have the general ap- 

pearance shown in Fig. 15.    For the moment,   let us assume that W   (P) = U   (P) and W   (P) = 

U. (P) and that moving occurs only in cr    and cr   .    Feedback occurs in the recurrent chain of the 

transition diagram and these assumptions will be correct if they are not contradicted by this 

feedback.    If we set y, (1) equal to one,  then <T    -» cr    in exactly the same manner as s'   — s   .    In 

this case,   W'(P) = U'(P) ^ U. (P),  a contradiction.    On the other hand,   consider what happens 

if Y* (1) = 0.    In this example,   TT    is the interval immediately to the left of P  .    Therefore, 
r    2 T? — n   ,  in exactly the same manner as ir'   -" TT ..     As a result,   when y, (1) = 0,   cr    -*• cr.    ► cr 

as s, — s   . * s   .     It follows that W'(P) = U2(P).    This is again a contradiction.    The functions 

U;,(P),   U   (P) and U'(P),   however,   all intersect at P    and have slopes greater than,   equal to, and 

less than —|JL,   respectively.    Therefore,   there must exist a y. (1) where 0 ^ y. (1) ^ 1 for which 

the slope of W'(P) equals —|x.    Since W'(P) must also intersect the above functions at P,,   it must 

be identical to U . (P) when this occurs.    The function W'(P) is then equal to W  (P) and no contra- 

diction results.    In a similar manner,   the slope of W (P) must change from that associated with 

U   (P) to that associated with U  < (P) as y   .(2) goes from one to zero.    Therefore,  there exists 

a y  1(2) where 0 ^ y_1(2) « 1 for which WMP) = U_(P) = W_(P). 

The above argument was developed by assuming that moving could occur only in cr    and cr  . 

Actually,  the result is valid as long as the evader can gain no advantage by moving in any re- 

current state,  that is,   as long as  | dW.,r(P)/dP| < (i for each cr*.    If this occurs,   W.'r(P) = W.r(P) 

for each o-.r,   and the payoffs associated with each state in the transition diagram are consistent. 

It can be shown that this final requirement is always satisfied by the probability distributions 

derived in the above manner,  and,  therefore,  that they yield the searcher's good strategy.    The 

proof,  however,   is somewhat involved.    Since it is not particularly illuminating,   it has been put 

in Appendix C. 
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In order to illustrate the manner in which the good probability distributions can be calculated, 

let us again refer to the transition diagram in Fig. 19.    In the usual manner,   we can let 

W.r(P) = W^r(P) = a.rP + b^l - P)       , 

W.t(P)   = W.,t(P) = a.P + b.(l - P) iv   ' i v i r 

W_(P) = WMP) = a_P + b_(l - P) 

WJP) = Wi(P) = a^P + b. (1 - P) T T T + 

Here,  the coefficients associated with the payoffs of the transient states and the two moving states 

have no superscripts and are identical to those associated with U(P).     It follows from Eq. (5-1) 

that 

a^ =y1(l) (1  + r1a_) +y1(2) (1 + a + )       , 

bj1- =y1(l) (1 +b_) +y1(2) (1 + r2b+)       . 

Since the transition from u    to cr.   involves deterministic looks only,   Eq. (4-8) can be used to 

express a,  in terms of a.   and b,  in terms of b. .    In this example,   cr    ► cr.   and we find that 

a
+ = q-t + r1(l + a^) 

b ,   = 1 + b,r 

+ 1 

In these equations,   the only unknowns are y, (1),   y, (2),   a     and b. .     Since y. (1) + y, (2) = 1,   one 

of the four equations is redundant.    As long as the solution of game   F  is correct,   however,  no 

contradiction will result.    Since the equations are linear,   Y.  = (y, (1),  y . (2)) is easily calculated. 

The result when r1  = 0.512,   r2 = 0.4096 and \i =  1.3 is Y1 =  (0.4334,   0.5666) 

fore, 

21 r The quantity Y-, can be calculated in the same manner by noting that cr ► cr   ..     There- 

a_  = q1(2) + r1(2 + a^)       , 

b_ = q2(l) + r2{2 + bfj)       , 

while 

-i.= y-i(1) (1 + ria-) + y.i<2) (*+ a
+

) 

hIi = y.i*1' d + bJ + y.i*2) (* + r2b+) 

The solution in the numerical example is Y   .  = (0.1575,   0.8425).    It should not come as a sur- 

prise to find that y   .(2) $-y. (2) and that y   .(!)-< y, (1).    This is true in general. 

In Fig. 20,   the payoff associated with each of the states in the   transition diagram is graphed 

for this numerical example.    Those associated with the transient states and the moving states 

are shown by solid lines,   and those associated with the other recurrent states are shown by broken 
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Fig. 20. The payoff functions associated with the ü 
states in the transition diagram shown in Fig. 19 * 
(r, =0.512, r2 = 0.4096, M = 1.3). 

lines.    Here,   of course,   each payoff is valid for all   P,   and there is no need to differentiate be- 
tween a pair of payoffs for  H  and H' since they are identical.    The lower bound of this ensemble 
of functions forms the payoff U{P).    This follows from the fact that the searcher can limit the 
evader to U(P) when  P initially belongs to Jr. only by starting the search process in a^ .    Finally, 
It should be noted that W^P) = Wf^P) and W*(P) = W^(P) at PQ,   while W^P) = wJ(P) at P+. 
This is true because these are the respective values of  P  that apply in cr   .,   a.    and  a^  when 

the evader uses his good strategy. 
When only one of the bounding points of the no-move region belongs to the interior of the re- 

current region,   the searcher's good strategy can be derived in much the same manner.    Only 
one probability distribution is required,   however,   for there is only one mixed state as well as 
a single moving state.    In the transition diagram of Fig. 18,   the payoffs associated with (T_3,   (J2, 

a   -,,   o-, and cr   .  are each identical to the corresponding U.{P) in game   F,    since each of these 
- r r states is transformed into a    before reaching the mixed state a^ .  The function W1 (P) will of 

course be unequal to U.(P).    In general,   any other recurrent state o^   that transforms into the 
mixed state will have an associated transient state and W.r(P) ^= W^P) = U^P).    Appendix C 
shows that   |dWlr(P)/dP| < ^ for each state of this type also. 

5.6   COMPLETION  OF THE SEARCHER'S GOOD STRATEGY 
WHEN INITIAL P IS UNKNOWN 

Now that we have seen how the searcher can limit the evader to U(P) when he knows the 
evader's initial choice of  P,    we must extend this strategy to the actual game,   where initial  P 
is unknown.     Clearly,  the searcher can no longer limit the evader to U(P) given any   P.    This is 
not necessary,  however,  for we know that the evader can guarantee himself U(P*).    As long as 
we can find a search strategy that limits him to this payoff,   U(P*) must be the value of the game 
and the searcher has a complete good strategy. 
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All that remains to complete the solution is the computation of the starting rule Y0 for the 
Markov process that generates the search sequence.    No look is associated with this starting 
rule,   and Y0 is derived in exactly the same manner as the searcher's starting rule in G   .    If 
the evader is to guarantee a payoff equal to U(P-"!:),  he must initially hide with probability P*. 
Therefore,   if P* is the breakpoint that separates TT. from TT.,   a choice of either a.   or cr.   is ad- 

t t 1 ^ missible for the searcher.    Since W. (P) and W. (P) must be equal to U(P*) at P* and must have 1 J I + 
slopes of opposite sign,  there must exist a Y- = (VQ^- ),  YQ^')) which insures that W0(P) = 
U(P*) for all  P.    If,   on the other hand,  the unusual occurs and U(P) is a maximum over a whole 
interval ir^,  the searcher's starting rule is deterministic and requires the Markov process to 
start  in cr. .    Here again the evader is limited to a payoff equal to the maximum of U(P).    We 
may finally state with assurance that a value exists for our search evasion game and that the 
strategies we have developed for the two players are indeed good strategies. 

In the numerical example that has been used throughout these chapters,   P* occurs at P0 = 
0.538.     Since W1. (P) = 3.7471P + 2.658(1 - P) and W.^P) =  2.9744P + 3.556(1 - P),   the starting 

t t rule requires that ynf17  .i) = 0.3481 and yn(a'1) = 0.6519.     rr'''     searcher's complete good strategy, 
illustrated in Fig. 21,   limits the evader to W0(P) = U(P*) = 3.243. 

|3-iZ-4l42| 

2 (.8425) 

Fig. 21.    The searcher's complete good strategy 
(r, =0.512, r2 = 0.4096, (4= 1-3). 

(.6519) (.3481) 
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CHAPTER 6 
GENERALIZED REWARD STRUCTURE 

6.1 INTRODUCTION 

The two-box search evasion game considered in Chapters Z through 5 had a very simple 
reward structure.    The evader simply received one unit from the searcher each time a look was 
made and paid him (x  units each time he moved.    Thus,   the reward associated with each look 
was independent of where the look was made and where the evader was hiding at the time.    Also, 
the moving cost was not a function of the direction of the move. 

We have deferred treating the more general reward structure until now because it has al- 
lowed us to study the behavior of the game with a simpler notation.    In this chapter,  we shall ex- 
amine the two-box game with a more general reward structure.    Most of the properties that have 
been developed will carry over directly.    In fact,  all the properties that make the two-box search 
evasion game interesting have already appeared.    These properties arose because 

(a) The searcher did not know where the evader was until he found him. 
(b) The state variable  P was changed according to Bayes' rule by each 

unsuccessful look and this transformation was a function of the escape 
probabilities alone. 

(c) The evader could move at a cost, and the cost of a transformation of 
the state variable P was proportional to the magnitude of the change 
in P. 

These properties will still apply. 
In the example of revenuer vs moonshiner in Chapter 1,   we noted that a reward of one unit 

was associated with each look.    It took the revenuer one time unit to examine an area,  and during 
this time the moonshiner was able to produce enough moonshine to secure one unit of profit.    We 
can imagine that in a more general situation it takes the revenuer different amounts of time to 
examine the various areas.    Also,  the moonshiner may be able to operate more efficiently in one 
area than in another.    That is,  his earning rate may vary from box to box.    As a result,  the re- 
ward associated with a given look may depend on where the look is made and where the moon- 
shiner,   or evader,   is hiding. 

To account for these possibilities,   as well as others,   let us introduce the following reward 
structure: 

p. = evader's earning rate in box i if the searcher is not looking 
there; 

TJ . = loss in earning rate in box i when the searcher is looking 
there (net earning rate = p. — ?).); 

T. = time required to examine box  i; 

A.. = detection loss of box i. 
i 

In order to make these quantities realistic,   we shall require that p., T. > 0;   77., X.> 0. 
Our reward structure can be interpreted as follows.     In the event that the searcher looks 

into box j  while the evader is hiding in box i,   the evader receives the reward p.T..    If,   on the 
other hand,   the searcher looks into box   i,  the evader receives a reward of (p. — JJ.) T..    The in- 
troduction of »). allows us to consider examples in which the evader cannot operate as efficiently 
when the searcher is examining the box in which he is hiding.    To be realistic,  77. should not 
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exceed p.;  that is,   p. — r;. > 0.    However,  this restriction will not be formally imposed for it is 
not necessary in the mathematical development. 

The net reward associated with the event in which the searcher looks into box  i  and finds 
the evader need not be equal to (p- — rj.) T..    The evader may be found at the beginning of this 
look.    In addition,  he may suffer a penalty for being caught.    For example,  the evader may be 
sent to jail.    We can combine these losses in X,,  the detection loss.    The net reward associated 
with the event in which the searcher looks into box  i and finds the evader is,  therefore, 
(P._T,.) T._x.. 

A final generalization that can be applied to the reward structure with little increase in com- 
plexity concerns the moving cost.    We can let the moving cost depend on which move is made. 
Since only two boxes are considered here,   only two moves can occur.    Thus we can let fj,,  repre- 
sent the cost associated with a move to box 1 from box 2 and (j.., represent the cost of the move in 
the reverse direction.    The subscripts of these coefficients correspond to those associated with 
the move probabilities x.  and x,'. 

In order to utilize the work of the previous chapters most efficiently,   the two-box search 
evasion game with the generalized reward structure will be discussed in the same sequence. 
Those properties that still hold will be mentioned,   exceptions will be noted,   and the new form 
of each of the various equations that were of use before will be listed.     To simplify the associa- 
tion of each new form with the old,   each new equation will be numbered as before but will be fol- 
lowed by the symbol §. 

6.2   G° THE NO-MOVE  GAME 

When moving is not allowed,   G     can be solved as before by using the modified game F   . 
The function U    (P) is continuous and convex.     It is piecewise linear under the conditions stated 
in Chapter 2.    A single infinite search sequence is optimum over any interval in  P  over which 
U   (P) is linear.    The fundamental recursion equation that applies in place of Eq. (2-4) is 

ifiP; 1) = P[(p1 -V^ T1- q1X1] + (1 - P) p2T1 

Pr. 

U   (P) = min . 

+ fPr1 + 1 PI U Pr.  + 1 1 

U°°(P; 2) = Pp1T2 + (1 - P)[(p2 - t)2) T2 - q2\2] 

+ [P + (l-P)r2]U
a'   [p^p,^ (2-4)§ 

The searcher's optimum strategy requires that 

if P > Pn 

if P < Pc 

if P = Pr 

look into box 1 ; 

look into box 2 ; 

look into either box 

Again,   this property is derived rigorously in Appendix A.    The point P- can be calculated again 
by requiring that U°°(P0; 12) = U°°(P0; 21): 
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lAP; 12) = (P[(p1 - n*)  Tj - q^Xj] + (1 - P) p2T1} 

+ (P^Pl^ + (1 - P) [(P2 - 12)   T2 - q2X2]} 

implies that 

+ [Pr. + (1 - P) r :]U     [Prj + (1-P) r2] 

^(PiZl) = {Pp1T2 + (1-P) [(P2-r)2) T2-q2A2]} 

+ {P[(P1 - Vi)   ^ - q1X1] + (1 - P) r2P2T1} 

+ [Pr, + (1 - P) r,] U"   [pri + ^ P) ^ ] 

P0 = 
p.q iMi 

pHq iHi p7q 2^2 

It is interesting to note that P0 is independent of rj. and X..    Since p. and T. must be positive but 

finite,   Pn will always lie in the interior of the interval (0, 1). 

The transformation of the state variable  P  is a function of r,  and r? (or q,  and q,) only; 

therefore the recurrent region (P01, PQ?) 
can ^e defined as in Chapter 2.     Once   P  enters this 

region it must remain in it as long as the searcher uses an optimum strategy.    It is possible to 

calculate U   (P) outside of this region once U   (P) is known within it.    The payoff inside the re- 

current region can be calculated in the same manner as before because the optimum chain dia- 

gram remains the same.     Only the position of Pn and,   therefore,   the other breakpoints are func- 

tions of p. and T.. 1 1 

When a chain diagram is used to generate the search sequence,   a linear payoff U.   (P) = 

a.P + b.(l — P) can again be associated with each state s. in the chain.    If the chain is optimum, 

U.co(P) will be equal to the optimum payoff over the associated interval TT.. 

The equations which relate the payoff associated with one state to that of another are 

ai = (pl 

b. = P,T.   + b. 
i 2   1 j 

q.X.   + r,a. HI 1   j 

a. = P1T2 + a.      , 

bi = (P2-T,2) T2-q2X2 + r2bj (2-ll)§ 
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When s. is transformed into s. by a sequence defined by {t    (n)} which involves a total of k. looks 
into box 1 and k, looks into box 2,  we have 

ai = ^l    E    rin~    {(Pi-n^ nTi + pi[ti{n)-n] TZ-\2} 

n=l 

kl + r1     [{pi-Vi)kiTi +p1k2T2 + a ] 

bi = q2     S     r2n"     ^(P2 ~ ^2) nT2 + P2ft2(n) " "' Ti "* 2^ 
n=l 

+ r2     [p^Tj +(p2- ^2)k2T2+ba (2-13)§ 

By letting {t    (n)} represent an infinite search sequence,   it becomes clear that the payoff asso- 
ciated with such an infinite sequence mast be linear in  P.    Finally,   if r. 1  = r-, 2,   the optimum 
search sequence will be periodic inside the current region and we find that 

S.   -iB .3.=* 
1 1 

*! =—Sr (qi  2  ^ {<.pi-ni)iri+piiti{i)-3]r2-\l} 
1 - r. j=l 

^    [(P1-r)1)n1T1 +P1n2T2] 1   , 

/        2       ■ 

Sr   (q2    E     ^i"1 ((Pa -  "2' JT2 + P2[t2(^) - Jl T
1 - 

X2> 
1 - r \    3=1 

+ r2    [P2nlTl +(P2-T,2)n2T2l)    • 

The only important differences which arise with the introduction of the generalized reward 
structure are that U   (P) may be negative for some  P and that it need not achieve its maximum 
inside the recurrent region.    The former situation can occur if one or both of the detection losses 
is very large.    This has no other effect on the solution,  although it may deter the evader from 
playing the game.    Furthermore,   no difficulty should be encountered if U   (P) is a maximum out- 
side the recurrent region.    The payoff inside the recurrent region can be calculated in exactly 
the same manner as before,   and once this has been done,   it can be calculated as far into a tran- 
sient region as is necessary. 
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To illustrate the manner in which the solution can be extended into the transient regions, let 
4 3 us consider our familiar example where r.   = r, .    The interval (0, 1) can be partitioned into the 

intervals over which U   (P) is linear as before: 

'-5 '-2 

-5 -1 •v- 
r01 r02 

The same chain diagram also applies for intervals inside the recurrent region. Transient states 
can be added by noting that a look into box 1 shifts an interval n, places to the left and a look into 
box 2 shifts an interval n. places to the right. The chain diagram that includes some of the tran- 
sient states is shown in Fig. 22.    Once the payoff associated with each state in the recurrent chain 

 Fig. 22.—A-e+iöm-d+ogfom-with-tFSBsient states. 

is known,  those associated with each transient state can be calculated by using Eq. (2-ll)§  or 
Eq. (2-13)§ .    The values of the separating breakpoints can be calculated in exactly the same way 
as before.    Naturally,   the solution should be extended only in the direction in which U   (P) in- 
creases and only as far as is necessary. 

The point P* is again the evader's good strategy in G   .    Once the payoffs associated with 
the two states that are optimum at P = P* have been found,  the searcher's good strategy can be 
calculated.    Equation (2-15) can be used to make this computation without alteration. 

6.3   GAME G°:    ß1, ß2 = 0 

When both moving costs are equal to zero,  the game can be solved as it was in Chapter 3. 
The evader should restore the state variable  P to its optimum value P0 after each unsuccessful 
look,   and the searcher should make each look according to the probability distribution 

Xo = (yo(1)' yo(2))- 
If the evader always restores the state variable to P before each next look and the searcher 

looks into box 1, 

U°(P;1) = P[(p1-T,1) Ti-qi\i] + (1 -P) p2T1 +(Pr1 + 1 - P) U°(P)       . 
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If a look into box 1 is optimum for a given P,   it is always optimum for that  P;  therefore, 

U°(P; 1) =  p^-  (PHPJ - V T 1 ~ qlXl 1 + d - p) P2Tl}       • 

Similarly,   if the evader always returns the state variable to  P before each look and the searcher 
always looks into box 2,  the payoff is 

u°(p:2)= (T^hl^ {P'Vz^1-P)[(P2-^z-^zl>     • 

The optimum value Pn of the state variable is that which maximizes the minimum of U°(P; 1) and 
U0(P; 2).    Since both of these functions are nonlinear,  it must be shown that there indeed exists 
a P0 where 0 < P    < 1 for which max (minU (P; i)) = U°(P0; 1) = U°(P0; 2).    The demonstration is 

carried out in Appendix D.    It follows that the evader's good strategy and the resulting guaranteed 
payoff can be found by solving the equations 

uo(po' = p^ {po((Pi - V Ti -^1^1 + d - po' fW 

(1 - P0) q2 
{P0p1r2 + (1 - P0)  [(p2 - r,2) T2 - q2X2]} 

The nonlinearity of the functions U°(P; 1) and U0(P; 2) might appear surprising at first thought, 
because similar functions such as U'(P; i) in Chapter 4 have usually been linear or piecewise 
linear.    Note,  however,  that in that chapter V{P; i) was defined as the payoff in F' which resulted 
if the searcher looked first into box  i and both players used optimum strategies thereafter.    The 
function U°(P; i),   on the other hand,  has been defined here as the payoff that results if the searcher 
always looks into box i and the evader always returns the state variable to P.    Thus,  the evader's 
entire future strategy is a function of the variable  P.    When  P  is unequal to P-,  the evader's en- 
tire future strategy is not optimum.    This point was not mentioned in Chapter 2 since the general 
game with ji ^ 0 had not been considered at that time. 

Let us return to G°,   where the searcher's good strategy can he found in the same manner as 
was the evader's.    If the searcher uses the probability distribution Y = (Y, 1 — Y) and the evader 
hides in box 1,  the payoff is 

W(Y: 1) = Y[(p1 - n1) ri - q1X1] + (1 - Y) p1T2 + [Yri + (1 - Y)] W(Y)       . 

If,   on the other hand,  the evader hides in box 2,   we find that 

W°(Y; 2) = Yp2T1 + (1 - Y) [(p2 - r,2) T2 - q2X2] + [Y + (1 - Y) r2] W°(Y)       . 

The searcher's good strategy can be found by solving the equation 

1 
(1 - Y0) q2 {Y0P2T1 + (1 - Y0)[(P2 - "Z» T2 - ^zti 

because the above equations yield a Y0 for which 0 < Y- < 1 and W(Y0) = U(P0) = V°,   the value. 
These properties are also shown in Appendix D. 
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Since the equations used to determine PQ,  YQ and V° are nonlinear,  it is not convenient to 

express the solution algebraically.     Nonetheless,   the solutions are rather easy to obtain nu- 

merically. 

In several special cases algebraic solutions can be found readily.    For example,   if TJ. = \. = 0, 

P^ = 
ri^i P1/q1 

0 "   T1/q1 + T2/q2        ' 0 "   p1/q1  + p2/q2 

When X. = 0 and r). = p.  [when (p. —TJ.) T. = 0], then 

^1 

l;l   +  ^2 

P0 = 
p.q i^i 

[Pi / Pz 
v 

T1T2P1P2 

N/        ^^ 

In this last example,   the searcher concentrates more attention on a box if the earning rate is 

large and the look time is small.    The evader does the reverse.    Both players,  however,   concen- 

trate more attention on a box if its detection probability is small. 

6.4   GAME G 

When the evader can move between looks at a cost,   the search evasion game can be solved 

in essentially the same manner as in Chapters 4 and 5.    The efficient move condition given in 

Eq. (4-1) still holds,   but now the cost of the transformation of the state variable depends on 

whether it is increased or decreased;   that is. 

C(P - P1) 

^(P'-P) 

^(P-P1) 

P' >P 

P' < P (4-2)1 

As was mentioned,   [i.^  is the cost associated with a move to box 1 from box 2 and (j.    applies for 

a move in the reverse direction. 

The modified games  F  and F' can be used as before,  but the functional equations are now 

•U'(P;1) = P[(p1 -nj) Ti -<i±\] + (1 -P) P2T1 

Pr. 

U^P) = min  ■ 
+ [Pr, + ! - P] u  [pjr-TT^p] 

U'(P; 2) = Pp1T2 + (1 - P)  [(p2 - T)2)   T2 - q2X2] 

+ [P + (l-P)r2]U   [p^.p) 

and 

U(P) = max 
P' 

-|i1(Pl - P) + U^P') 

-^2(P - P') + V'(P<) 

P' ^P 

P1 ^ P 

(4-3)1 

(4-4)§ 
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Both U(P) and UMP) must still be continuous and convex (see Appendix B).    As in Fig. 5,   U(P) 
and U'(P) are identical over the no-move region (P , P.),  but now this region is defined by 

dU'(P) 
dP 

dU'(P) 
dP 

P< P_ 

P > P_ 

P < P+ 

P »P, (4-5)§ 

The function U(P) has a slope equal to +JJL.  in the moving region (0, P  ) and a slope of —M'? in ^e 
moving region (P.. 1). 

The fundamental property of the searcher's optimum strategy in F',  which was discussed 
in Sec. 4,3,   remains the same (see Appendix B).    There exists a P0,  where P   ^ PQ < P.,   such 
that, 

P < P„ 

P > P^ 

UMP; 2) < U'(P;1) =>  look into box 2 

UMP; 1) < U'(P; 2) ==> look into box 1 

The moving costs are again prohibitive and the game can be solved in terms of G     if the 
no-move region contains the recurrent region.    This occurs if 

V-i  * 
> dU   (P) 

dP P=P 
01 

> — dU   (P) 
dP P=P 

/(4-7)§ 

02 

When this condition holds,   U(P) will be identical to U   (P) over the no-move and hence the re- 
current region.    Although U(P) may be a maximum outside the recurrent region,   clearly it must 
achieve this maximum value inside the no-move region where it is identical to U   (P).    Thus, the 
value and good strategies can be obtained from the function U   (P) as before.    It should be noted 
that a simple prohibitive bound cannot be placed on either moving cost.    The moving costs can 
be considered prohibitive in the previous sense only if they both satisfy (4-7)§ . 

When the moving costs are not prohibitive,  the correct chain diagram must be found before 
the payoff function U(P) can be calculated.    This can again be accomplished by studying the man- 
ner in which the form of the payoff functions changes from strategy interval to strategy interval 
as H-.  and H-T increase up to their appropriate values.    In order to do this,   it is best to hold JJL . 
and ji, in a fixed ratio as they are increased. 

Although the form of the chain diagram associated with the optimum search strategy is in- 
dependent of the reward coefficients when the moving costs are prohibitive,  this is not true when 
the moving costs are not prohibitive.    In Chapter 4,  we saw that two possible changes could oc- 
cur in the form of the payoff function U(P),   and hence in the form of the chain diagram,  at the 
end of each strategy interval.    The change that now occurs depends on the reward coefficients 
and the ratio ji./^, that are used.    Thus,   the sequence of chain diagrams associated with a 
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particular pair of detection probabilities and the simple reward structure need not be the same 
as that which occurs when an arbitrary set of reward coefficients is used. 

When both moving regions extend into the recurrent region and the appropriate chain diagram 
is known,   the payoff functions can be calculated in much the same way as in Sec. 4.7.    The chain 
diagram must include the moving states s_ and s , and each interval in the no-move region must 
have an associated state in the chain.    As a result,  the two search states optimum at P* must be 
included in the chain and no additional transient states are required.    Once the payoff coefficients 
have been introduced,   the same set of equations may be used to obtain a solution.    The function 
U^P) may be expressed in terms of U. (P) and U'(P) may be expressed in terms of U  (P) by 
means of Eq. (4-8)§ .   Equation(4-8)§   is identical to Eq. (2-13)§   in Sec. 6.2,   just as Eq. (4-8) is 
identical to Eq. (2-13).     Equation (4-9) must be modified to 

*>=[*■. 

(4-9)§ 

The functions U   (P) and U' (P) must again intersect at P ,  and U  (P) and U'(P) must intersect 
previously, 

aP    +b(l-P) = a,P    + b1 (1 - P  ) 

at P   .    Therefore,   as previously 

a
+
p

+ + b+(l a'+
p

+ + b^1 (4-10) 

The sequences of looks which transform P    into P« and P    into P« can also be found from the 
chain diagram,   and Eq. (4-11) remains the same as before: 

k-, 
(k. v p. 

P.r, " 
p   = J   2 

1 ^2 ^1 
Pjr2     +(1-Pi)rl 

(4-11) 

Finally,   Eq. (4-12) must be modified and we find that 

,[(?! -V ri -<ii*i + r1aj + (1 - P0) (p^ + b_) = PQ^T., + a+) 

+ (1-P0) [(p2-„2)T2-q2X2 + r2b+]       . (4-12)§ 

Once this set of equations has been solved, the payoffs associated with the other states in the 
chain can be calculated by means of Eq. (4-8)§ and the remaining breakpoints can be found by 
using Eq. (4-11). 

If only P    or P    belongs to the interior of the recurrent region,   the payoff can be calculated 
inside the recurrent region in the same manner as in Chapter 4 once the appropriate equations 
have been modified as above.    Although U(P) must always be a maximum at a point that lies in 
the no-move region,  this point need not lie in the recurrent region.    Transient states associated 
with intervals that lie in the no-move but not the recurrent region can be attached to the recur- 
rent chain in exactly the manner discussed in Sec. 6.2.    Once this has been done,  the payoffs 
associated with each of these states can be calculated by using Eq. (4-8)§ ,   since no moving occurs 
during the look sequence that transforms such a state into the recurrent chain. 

It is perhaps worth noting here that,  with the simple reward structure,  intervals may also 
exist which lie in the no-move but not in the recurrent region.    For example,   in Fig. 9(e),  the 
bounding point P    may shift to the left of P«. = P_3 before P, shifts from P, to P4.    This situation 
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would have no effect on the recurrent chain in Fig. 10(e).    Therefore,   it would have no effect on 
the manner in which the payoffs associated with the states in this chain are calculated.    If such 
a shift were to occur,   a linear interval TT   . would result.    This interval would lie in the no-move 
but not the recurrent region.    The associated state s_4 would be a transient state and would be 
transformed into s, by an optimum look into box 2. 

The possibility of such behavior was not mentioned in Chapter 4 because it was tacitly as- 
sumed that P* would always lie inside the recurrent as well as the no-move region.    Although 
this assumption has not been proved,   it is the author's opinion that it is indeed valid.    However, 
if this faith were contradicted by some special example,  the result would not be catastrophic, 
for the payoff associated with a state such as s  4 in the above example could be calculated easily. 
Once this had been done,  the evader's good strategy could be calculated as before.    The searcher's 
good strategy also could be found in the usual manner once a transient state a   . was attached to 
a-, by a look into box Z (see Fig. 18).    Note that in such a situation there would be no correspond- 
ing recurrent state a   .,   since only states having associated intervals in the recurrent region 
belong to the recurrent chain. 

In the search evasion game with the generalized reward structure,  the searcher's good 
strategy can be derived easily once games  F and F' have been solved.    The searcher's good 
strategy must again be Markovian and the recurrent chain of the transition diagram is identical 
to the recurrent chain of the chain diagram of games  F  and F' after the move transitions have 
been deleted.    A transient state a.   is associated with each interval ir. in the no-move region and 
transforms into tr    or cr    in exactly the same manner as TT. transforms into IT    or TT   .    If P    and 
P    do not both belong to the interior of the recurrent region,   there may exist intervals that lie 
in the no-move but not the recurrent region.    As was just mentioned,   such an interval will have 

t r an associated transient state a.  but not a recurrent state cr.    in the transition diagram. 
The searcher can limit the evader to U(P) when the initial  P is known as long as U.(P) = 

W.(P) for each of the moving states that belongs to the recurrent chain of the transition diagram. 
The fundamental functional equations of games  H and H' necessary now are 

W!(P) = y.(l) 

+ yiU) 

• P[(P1 - V ri - q1X1 ]   + (1 - P) P2T1 

+ [Pr1+l-P]Wi|l   [p^/^p] 

pplT2 + (i-p) [(p2_^2)T2-q2x2] 

+ [P + (1 -P) r2] W.|2 [F-RrgTrF-] 
(5-l)§ 

and 

W^P) 

-^P + W!(0) 

W!(P) 

.-Hjd -P) + W!(l) 

dW!(P) 
i 

dP 

dW|(P) 
l2 <  ^P—   ^1 

dW!(P) 
dP (5-2)§ 
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When both a    and <T    belong to the recurrent chain of the searcher's transition diagram,  the 

good probability distribution Y    = {y. (1), y1(2)) for the mixed state a, can be found from the 

equations 

*l = y1(1)  [(Pj - -nj T1 - q1A,1 + r1a_] + y1(2) (pjTj + a+) 

t^   = y1(1) (P2T1 + b-) + yl(2> [(p2 _ T)2)  T2 _ q2X2 + r2b+]       ' 

n=l 

1 r + r1    [(p1 - t71) k1T1 + P1k2T2 + a1 ) 

b+ = cl2    Z    r"'   {(p2-n2) nT2 + p2[t2(n)-n]T1-X2} 
n=l 

k2 + r2    [P2k1T1  +(p2-T?2)k2T2 + b1
r]       , 

where {t    (n)} represents the sequence in the recurrent chain that transforms cr    into CT.   and 

a      b,,  a    and b    are again the coefficients associated with U (P) and U  (P).    In the same man- 

ner,   Y.   = {y   .(1), y   .(2)) must satisfy the equations 

al\ = y.i^1' [(Pi ~ ''i* Ti _ ^i + ria-i + y-i(2) (piT2 + a+) 

b^ = y_1(l) (P2T1  + b_) + y_1(2)  [(p2 - 772) T2 - q2X2 + r2b+]       , 

n=l 

+ rl1 [(pl - ^l' klTl  + plk2T2 + a^l' 

b. = ^2     S    r2"    ((Pz-T,2) nT2 + P2[t2(n) _ nl 'ri ~ ^2^ 
n=l 

k2 + r2    [p^^ + (p2-T72) k2T2 H-b^]       , 

where {t     (n)} represents the sequence that transforms cr    into cr   .. 

If only one of the bounding points of the no-move region belongs to the interior of the recur- 

rent region,   only one moving state and one mixed state will occur in the recurrent chain of the 

transition diagram.    The good probability distribution associated with the mixed state can be 

calculated as in Chapter 5 once the appropriate equations have been modified as they were above. 
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When the good probability distributions associated with the mixed states have been found, 
the starting rule YQ needed in G where the initial P  is unknown can be calculated exactly as be- 
fore.    The starting rule merely provides a probability distribution for selecting the state in 
which the Markov process starts.    Since a look is not associated with this selection,  the equation 
used to calculate Y- is identical to that used in Chapter 5. 
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CHAPTER 7 

^_ -DISCOUNTING 

7.1 INTRODUCTION 

In the last chapter,  the reward   structure of the search  evasion game was  generalized. 
Nevertheless, the contribution to the payoff of any particular event, i.e., the utility of the event, 
was still considered independent of when the event occurred.    In many cases,  however,  this is 
not appropriate.    For example,  if a reward of one dollar is associated with a given event,  the 
utility of the event should be greater if the event occurs immediately rather than in the future. 
A dollar in hand can be invested and earn interest. 

In this chapter,  we shall consider the behavior of the search evasion game when future re- 
wards must be discounted.    The term discounting is used when the utility of an event can be found 
by multiplying the associated reward (the utility that applies when the event occurs) by a discount 
factor.    This discount factor,  which is applied to all rewards,  must be a function of only the dif- 
ference between the time at which the utility is evaluated and the time when the event  occurs. 
Thus,   it must have the property of stationarity.    A further restriction which will be imposed in 
this chapter is that the discount factor must decay exponentially with time. 

Such a discount factor is clearly appropriate when the various rewards are made in monetary 
units.    In the example of revenuer vs moonshiner,  this is the case.    If the moonshiner is able to 
invest his profits so that they earn compound interest at a rate a   per unit time,   one   dollar in- 

at vested at t = 0 increases in value according to the function e     .    By reversing this reasoning, we 
find that a reward of one unit received at time t  should have a utility at t = 0 of e~     .    Thus, e- 

is the discount factor.    If interest is compounded only at discrete time intervals,  as for example 
in a savings bank,  the discount factor does not decay continuously but at discrete intervals.    As 
long as the interest per period is of the order of a few percent or less,  the approximation of con- 
tinuous compounding is very good. 

When rewards are not made in monetary units,   exponential discounting is often still appro- 
priate and in many other situations it serves as a useful approximation.    One must,  of course,  be 
careful that the utility of a reward decays in a manner which depends only on the total decay time 
and not on the time when the decay begins. 

As an example of a reward that does not satisfy this requirement of stationarity,   consider 
the utility of information concerning the fixing of a horse race.     Such information clearly has a 
high utility to a prospective wagerer if it is received before the race is run.    Once the race is 
over,   however,  it has no value at all (except,  of course,  to a race official).    Thus,  the utility of 
such information does not depend upon how far in the future it is received but on when it is re- 
ceived relative to the time of the race. 

As we can see,  the restriction of stationarity implied by the term discounting is a very strong 
one.    On the other hand,  the further requirement that the discount factor decay exponentially with 
time does not restrict its applicability appreciably more.    A little thought will show that in most 
cases if the utility of a reward decays in a nonexponential manner, the requirement of station- 
arity itself is actually violated. 

As an example of a situation in which exponential discounting of rewards may be appropriate 
when the rewards do not involve money,   consider a search evasion game in which the evader is 
a clandestine manufacturer of ballistic missiles violating an arms control agreement and in which 
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the searcher is a member of an inspectorate set up to police this agreement.    Here,  the evader 
manufactures weapons rather than moonshine.    The utility of a given stockpile of missiles must 
be defined in terms of the political power (sudden ultimatum,   etc.) which such a stockpile gives 
to the state in question,   and not in terms of money.    In this situation, the rate at which these 
weapons are amassed may be very important to the evader.    He may have to make political con- 
cessions that are distasteful to him until he has a sufficient stockpile.   Also, in time,  an effective 
antimissile missile may be developed by his opponent,  making his missiles obsolete.    Exponential 
discounting may be useful as a device for approximating the evader's interest in quick returns. 

One must bear in mind that when any realistic situation is modeled,  many assumptions and 
approximations are usually necessary before the problem can be simplified to the point where it 
can be handled analytically.    When rewards do not involve money,  the problem of establishing a 
set of utilities for the various possible events usually poses far more difficulties than does the 
problem of finding an appropriate discount factor.    In the above example,  the assumption that the 
utility of a stockpile of missiles is proportional to the number of missiles (an automatic result of 
the model) is far more open to criticism than is the discounting device. 

In this chapter we shall use the reward coefficients p.,  TJ.,  T. and X. that were defined in r 'i     'i      i i 
Sec. 6.1.    In addition,   let us define 

a = interest rate, 

d = e       = discount factor per unit time. 

y. =   = effective search time for box  i. 
i a 

When the evader hides in box i and the searcher looks into box j (j ^ i),  the evader receives 
income at a rate p. for T. units of time.    The reward of this event,  which is equal to the utility 
that applies when the event begins,  is 

I 
-a T. 

' i -at ,. Il —f        ^ ■> p.e       dt = p, I- 

p.y. 

If the evader is hiding in box j, the reward is (p. — TJ .) y..    This is equivalent to the a = 0 case 
where the search time for box  i is y..    As a result,  y. is called the effective search time. Both T.. 

J J 1 
the actual search time,   and y. will be used in our equations. 

A final detection loss (or negative reward)  can be incurred by the evader when he is found. 
This loss may be used to account for a penalty that the evader incurs as a result of being found 
and also for the loss of earnings,  in the expected sense, that can result if he can be found some- 
time during the look rather than just at the end.    The utility of this loss when it is evaluated at 
the end of the final look will be represented by X.. 

Now that time is an important consideration, we must also consider the time during which 
moving can occur.    Usually,  we can expect that a dead time between looks provides the opportu- 
nity for this action.    It is convenient to let the search time T. include the dead time at the end of 
the look.    This may require some adjustments in the various earning rates,  and so forth,  but usu- 
ally there is no reason for assuming that the evader cannot continue earning during the dead time. 
In fact,  the moving cost fi. may result partially from the loss in earnings which occurs during the 
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time required for the move.    The value of each ft. will be defined as the loss in utility that applies 
just before the next look and hence at the end of the time available for moving.    This definition 
allows us to write our equations as though moving occurred instantaneously. 

The introduction of discounting into the search evasion game does not appreciably affect its 
general behavior but does increase the notational complexity of some of the equations.    As a re- 
sult,  we shall merely paraphrase the developments of Chapters 2 through 5 as we did in Chapter 6 
when the generalized reward structure was introduced.    Any equation that must be modified will 
again bear its original number,  but this time the double section sign will be attached.    Also,  any 
changes in the game's properties that affect the previous results will be discussed. 

7.2  INADMISSIBLE BOXES 

Perhaps the chief phenomenon that is introduced by discounting and that must be considered 
before continuing concerns inadmissible boxes.    In the previous chapters,   we found that the evader 
should always hide in either box with a nonzero probability and that the searcher's good strategy 
always requires at least one look into each of them.    This is true even if one box has a much lower 
detection probability q  or a much higher earning rate   p.    The evader's good strategy requires P 
to be unequal to zero or one,   since otherwise the searcher, if he knew this strategy, could always 
look into the correct box.    Similarly,  the searcher's good strategy always results in some looks 
into each box,  for otherwise the evader could receive an infinite payoff.    When discounting applies, 
however,   the evader can never receive an infinite payoff.    As a result,   we may find that the detec- 
tion probabilities,   earning rates,   and so forth,   are biased so much in the favor of one box that the 
inferior one is not used by either player.     If this occurs,  the box is inadmissible. 

The conditions under which a box is inadmissible can easily be found.    To do this,  first con- 
sider the case where the evader hides and remains in box i  and the searcher always looks into 
box j.    In this situation,  the evader has an earning rate p. that continues for all time.    Therefore, 
he receives a total payoff equal to p./a .    If,  on the other hand,  he were to hide in box j  until he 
were found, while the searcher always looked there,  he would receive a payoff equal to 

T. T. 
U = (p.-r7.)y.-q.d')\. + r.d:1U 

J        J      1        1 J        J 

(P3-V7i q.d  ^X. 
2l 3 

1 - r.d J 
: 

Thus,  if 

p,     (p. -i,) r,- q:d J\. 
 i. <   _J J      J J J. 
a ^ T. 

1 - r.d 3 

J 

box i is inadmissible,  for the evader would be foolish to hide in box i  even if the searcher al- 
ways looked into box j.    Similar reasoning shows that the searcher should never look into an in- 
admissible box unless he knows that the evader is foolishly hiding there with a sufficient  non- 
zero probability.     Since we require each p,  T),   T,   and  A to be nonnegative,  both boxes cannot be 
inadmissible. 
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If one of the boxes is inadmissible,  the two-box game loses all interest,  for the game degen- 

erates to a trivial one-box game.    It should be clear that the inadmissibility condition does not 

depend upon the moving costs or,  in fact,  on whether moving is allowed or not.    In the remaining 

sections of this chapter,  we shall assume that neither box is inadmissible. 

7.3   G° THE NO-MOVE  GAME 

When moving is not allowed,  the modified game F     may again be used.    The payoff function 

U   (P) has the same properties of being continuous,   and convex.    Perhaps the only difference in 

its general appearance worthy of note is that the magnitude of the slope of this function no longer 

becomes arbitrarily large as P  approaches zero and one.    This follows from the fact that the 

payoff is no longer infinite if the evader hides in one box and the searcher always looks into the 

other.    The fundamental recursion equation that now applies is 

U   (P)   = min 

[Pr1 + 1 

u^iP-.i) = pL1-rj1) yj-qjd 1x1J+ (i-P) p2yi 

p] U"   [prj^-p] 

I' 
oo      I P 

U     [PTTT^ 

U   (P;2) = Pp1y2 + (1 P) (P, 

+ d ■[P + (1- P) r2] 1 (2-4)§§ 

There again exists a P- (see Appendix A) where the searcher should look into box 1 if P is 

greater than Pn,  and into box 2 if it is less than P.. 

way and is 

P0 "   i/^1 + i/ß2      ■ 

where 

The value of P. can be found in the usual 

T. 
d v. 

y. 
— (p. + aX.) + on] 

Perhaps a simpler way of expressing this rule now that the above expression is so complex is 

simply to state that the searcher should look into that box for which the associated expression 

dlq 
1 (p. + a A. ) + art 

y. i i 'i = P-/3- 

is the larger.    Note that if a   is very small,   y. =  T.,  d      =1,   and P. is approximately equal 

to (T1/p1q1)/(T1/p1q1 + r2/p2q2) as in Chapter 6. 

Every term in the expression for P0 is positive. Therefore, 0 < P0 < 1. This occurs even 

if one of the boxes is inadmissible. This should not be surprising since, even when a box is in- 

admissible,  the searcher should look there if he knows that the probability that the evader is 
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there is sufficiently high.    On the other hand,  U   (P) will be a maximum at P = 0 if box 1 is in- 

admissible and at P = 1 if box 2 is. 
n. n 

The recurrent region (P01- Po2' has iile same properties as in Chapter 6.   When r.      = r-,    , 

the search sequence in this region is again periodic.    If log rVlog r,  is irrational,   it can be ap- 

proximated by n./n, as before.    With discounting,  this approximation can be looser than before, 

since the effects of incorrect looks in the distant future are ameliorated by the discount factor 

as well as by the decreasing probability of survival.    With a given pair of integers n.  and n,,   a 

chain diagram can be devised in the same manner as before.    Transient states can be added when 

necessary,  as was discussed in Chapter 6. 

The functional relationship between the payoff associated with a given state in the searcher's 

chain diagram and the one into which it is transformed by the next look is 

(P. 'l' yl _ qld  lxi + rld   lai 

b. 
i 

T
1 

:    1  + d      bj p7y 

P^z + d  2a. 
] 

(P, r,2) y2-q2d 
2 2 

*2 + r2d     ^ (2-ll)§§ 
2 ■ i.-     •£.•£.£.£. 

If one wishes to express the payoff associated with a state s. in terms of that associated with 

a state s. when a sequence of looks transforms s. into s.,   our notation must be redefined slightly. 

In particular,  the sequence must be defined by a set {r    (n)} where T    (n) is the time at which the 

n      look into box m is completed.    We can again let k     represent the total number of looks into 

box m.    Furthermore,   it is convenient to let j   represent the total time of the sequence.    Clearly, 

T.  = max{T.(k.),   T^k,)},   and we find that 

{tm(n)} 
s. 

J 

1 r        / T  (nK 

2 ^r k Nr- - 
n=l '■        V ' 

"iV 
k=l 

T,(k) r,(n) 
X.d 1 

,kl   f      A-dTt\ "^    y    H
Tl(n>      /t     1 

\   Y^\tr-) -"i0       Z. d       +d ajJ 
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bi = 12 z 
/ T2<n'\ 

(^)-^ 

-T)2r2d E 
k=i 

T?(k) 
d - ^d 

(n) 

2 d 

n=l 

,(n) 
+ d   'b (2-13)§§ 

These equations are rather complex and it may prove simpler to compound Eq. (2-ll)§§   if the 

sequence is fairly short.    In  Eq. (2-13)§§)   the payoff associated with each of the possible times 

at which detection can occur is found by first calculating the utility contributed by the earning 

rate  p,  then subtracting the loss in earnings from each of the looks into the correct box,   and fi- 

nally deducting the detection loss.    These equations could,   of course,   be formulated in many other 

ways.    Perhaps the main reason for doing it this way is that it carries over fairly directly to the 

many-box case.    When s. is transformed into itself by a sequence of looks,   the coefficients a.  and 

b. can be expressed in closed form by the usual extension of (2-13)§§. 
oo 

Once the value of  P  at which U   (P) is a maximum and the payoffs associated with the search 

states optimum at this point have been found,  the searcher's good strategy can be completed in 

the usual manner. 

7.4 GAME G":    /L^, Mo = 0 

This game may be solved in exactly the same manner as it was in Chapter 6 once the effects 

of discounting have been introduced into the necessary equations.    Now,   however,   we must re- 

quire that neither box be inadmissible.    The evader's good strategy can be obtained from the solu- 

tion of the equations 

U°(P0) = U0(Po;l) 

U°(P0;2) 

1-d  1(l-P0q1) 

P0P1Y2 + (1 - PQJCPJ - ri2)  yz - q2d   ZXZ\ 

1-d   2[l-(i-P0) q2l 

¥/here 0 < Pn ^ 1.    The searcher's good strategy can be obtained from 

W(Y0)  = W(Y0;1)  = 
T T 

l-Y^d   i-{i-YQ) d   Z" 

W(Y0;2) 
Ynp7Y1 + t1 - Y0)1(P2-»i?) T? - q,d "*•: 0^2'! '2'   '2 

1-Y0d   i-d-Y^d   2 

where 0 ^ Y    < 1.    Appendix D shows that these solutions exist and that U°(P  ) = W°(Y   ) = V 

the value. 
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The above equations will not,   of course,  yield a solution if one of the boxes is inadmissible. 

When this occurs,   the two curves U°(P; 1) and U°(P; 2)    still intersect at some point P- in the in- 

terior of the interval (0, 1).    Hence,   there still exists a strategy for the evader that yields a pay- 

off independent of the searcher's strategy.    This is not the evader's good strategy,   however,  for 

he can guarantee a larger payoff by hiding in the admissible box with probability one;  that is, 

U°(Pr); 1) = U°(Pn; 2)  < max {minU°(P; i)}.    It should not be surprising to find,   in contrast,   that 
Pi 

the two curves W°(Yn; 1)  and W°(Yn; 2) do not intersect in (0, 1) when a box is inadmissible.    If 

they did,   the associated strategy would produce a payoff independent of the evader's strategy. 

In general,   when each player has a strategy that yields a payoff entirely independent of the other's, 

the payoffs must be equal and the strategies must be good strategies. 

7.5 GAME G 

When one or both of the moving costs are no longer equal to zero,   the techniques developed 

in Chapters 4 and  5 may again be used once the appropriate changes have been introduced into the 

various equations.    The fundamental functional equations for the modified games  F  and   F'   are 

now 

U'( P) = min 

U'(P; 1) = P[(p1 - T)1) y1 - q^   1A1| + (1 - P) p2y1 

+ dTl[Pr1+  1-P]U   [p^ ^l _ p] 

UUP; 2) = Pp1Y2 + (1 - P) [(p2 - 7!2) y2 - q2d   Z\z 

+ d [P + (1 -P) r. I P + (1 - P)  r 2 J 
(4-3)§< 

and 

U(P) max 
P' 

-M1(P' - P)  + U'{P') 

-M2<P P')  + U'(P') 

P' >P 

P' < P (4-4)§ 

The functions U(P)  and U'(P) again have the same basic properties that allow the previous 

solution techniques to be used.     Both functions are continuous and convex.    In general,   they will 

be piecewise linear if the moving costs are not prohibitive.    In game F' there exists a P. where 

0 < P     < 1 that has the usual properties.    The proof that these properties are still satisfied is 

found in Appendix B. 

The moving region (P   , P   ) is again defined by Eq. (4-5)§ .    The moving costs are prohibitive 

if they both satisfy Eq. (4-7) § .    When this occurs,   both U(P) and U'{P) are again identical toU   (P) 

over the no-move region and also over the recurrent region,   which it contains under these condi- 

tions.    As we have seen,   once the moving costs become prohibitive,   the searcher's good strategy 
oo 

becomes identical to that in G    .    The evader should never move as long as the searcher uses this 

good strategy.    We also found that the no-move regions never completely disappeared as long as 

H    and ^2 were finite (unless q,  or q2 = 1).    It was necessary to calculate the values of P   and P 
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if we wished to obtain the evader's complete good strategy.    These bounding points of the no-move 
region are of use to the evader when the searcher uses an inadmissible sequence that transforms 
P into a moving region. 

With one exception,  all of these properties still hold when discounting is considered.    The 
one exception is that the moving regions can now disappear completely when ß, and n? are finite. 
This can occur because the magnitude of the slope of U   (P) no longer approaches infinity as  P 
approaches zero or one.    In game F   , the searcher should always look into box 1 if P = 1.   There- 
fore, 

lim U   (P) 
P-l 

1     1 
(pl ~r,il y±~ qld     Xl 

1- r.d 1 

P + —(1 - P) 

Similarly, 

lim U   (P) = —  P 
rv P-*0 

(PZ-1^  Y2_Cl2d     XZ 

l-r2d 
(1-P) 

It follows that if 

and 

Ml>   a 
Pi    (Pz-^z* yz-^d   \ 

^> 

l-r2d 

(P1 - n^) yi -q1d 

1- r.d 1 

U(P) and U'(P) will be identical to U   (P) over the entire interval (0, 1).    Under these conditions, 
the evader should never move.    Of course,  as ix. and /J, increase from zero,  they will become 
prohibitive before both of the above conditions occur.    The above bounds,  however,  are easily 
calculated and may possibly indicate that the moving costs are definitely prohibitive when MJ and JJ, 

are very large.    Furthermore,  they show that when a   is unequal to zero the moving cost will be 
prohibitive for sufficiently large but finite moving costs even when one, but not both,of the detection 
probabilities is equal to one. 

When the moving costs are not prohibitive,  games  F  and F' may be solved by going through 
the same process of studying the manner in which the optimum chain diagram changes from strat- 
egy interval to strategy interval as n . and ^j, increase in constant ratio.    Also,  the usual tech- 
niques may be used to calculate U(P) and XJ^P) once the correct chain diagram has been found. 
To avoid repetition,  only those equations in Chapter 6 that must be changed will be listed here. 

Equation (4-8) §  could be used in that chapter to express the payoff of a state s. in terms of 
the payoff of some other state s. when the transformation of s. into s. did not involve any move 
transitions.    Thus,  it could be used to express U'(P) in terms of U  (P),  and so forth.    This equa- 
tion is identical to Eq. (2-13)§ ,  which was used in the no-move game.    It must now be replaced 
by Eq.(2-13)§§. 
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Equation (4-12) §  must also be rewritten and is now 

PoK " "l» ^1 - V^l + rldTla-l + (1 - P0' ["2^1 + dTlb.l = PoK^2 + dT2a
+| 

+ (l-P0)[(P2-r)2)y2-q2dT2A2 + r2dT2b+] (4-10)« 

This equation is used in the above form when P.. belongs to the interior of )r_ and P02 to the in- 
terior of ir  .    As in Chapter 4,  the coefficients a    and b    or a    and b    must be replaced by those 
appropriate when only one of the moving regions extends into the recurrent region (see Sec.4.7.1). 
Equations (4-9)§ ,   (4-10) and (4-11) can be used without any alterations since discounting has no 

effect on them. 
Once games F and F' have been solved and the evader's good strategy in G has been found, 

the searcher's good strategy can also be obtained in the usual manner. The functional equations 

of games  H  and H' are now 

W!(P) = y.(l) 

+ yAz) 

P^Pi - »?!) Yi - q^  \j   + (1 -P) P2y1 

+ dTl[Pr1 + l-P]W.|l   [p^/Lp] 

Pp1y2 + (i - P) [(p2 - n2) yz - q2d 2A2] 

+ dT2[P + (l-P)r2]W.|2   (p+(1!p) 

(5-l)Sf 

and 

dW.'(P) 
-M2P + Wj(0) dP     <-*z 

W.(P) =  ■ W.'(P) 
dW^(P) 

-^2^      dP 

-^U-P) + w;(i)     , 
dW.'(P) 

dP       >" 

«^ 

(5-2)§ 

The correct transition diagram can be derived from the searcher's chain diagram of gameF', 
once that game has been solved,  in the usual manner.    The only computational changes required 
in calculating the probability distributions of the mixed states are those which result from the new 
form of Eq. (5-1)§§ .    The reasoning used in Chapter 5 and Appendix C to show that the searcher 
could indeed limit the evader to U(P) when the initial P  is known is still valid in the discounting 
case.    To complete the searcher's good strategy,  the starting rule Y- can be computed precisely 
as in Chapter 5.    Discounting has no effect on this computation.    No look,  hence no time,  is in- 
volved in the selection of a starting state for the Markov process that generates the search se- 
quence. 

This completes the discussion of the two-box search evasion game. As we have seen, all 
of the important properties of this game occur with the simple reward structure used in Chap- 
ters 2 through 5.    Discounting,   of course,  raises the interesting possibility that a box may be 
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1 
inadmissible.    This occurs only in extremely biased cases,  however,  when    the interest rate is 
fairly high.    The various equations become more complex algebraically when the generalized re- 
ward structure and discounting are introduced.    On the other hand,  we have seen that the same 
general computational methods are still valid,  that the number of equations necessary for a given 
calculation does not increase,  and that no new nonlinearities (except in G°) arise.    Thus,  the in- 
crease in computational complexity is not great and is a small price to pay for the increase in 
generality achieved in these last two chapters. 
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CHAPTER 8 
THE SEARCH EVASION GAME WITH N BOXES 

8.1 INTRODUCTION 

In the previous chapters,  the two-box search evasion game has been considered in some 
detail,  and it is now appropriate to turn our attention to the more general N-box game.    As would 
be expected,  the behavior of the game becomes more complex when three or more boxes are in- 
volved.    We shall first examine the limiting games G    and G°.    These games behave much as 
before and only the computational effort becomes more involved.    The good search strategy as- 
sociated with G° will be of particular interest since it may always be used to limit the evader to 
V°,   the value of G°,   when the moving costs are unequal to zero or when evasive countermeasures 
other than moving are available to the evader. 

When game   G  is considered,   we shall find that some of the properties fundamental to the 
solution techniques of the previous chapters no longer hold.    For example,   the searcher's good 
strategy can no longer be generated by a simple Markov process,   and there no longer exists a 
finite number of strategy intervals as the moving costs increase in constant ratio from zero up 
to a point where they are all prohibitive.    As a result,   no general method for solving  G  when 
there are more than two boxes has been developed.     A simple example has been solved,   however, 
and will be used to illustrate some of the problems that can be expected in the search for exact 
solution techniques.    It will also indicate the extreme magnitude of the computational effort that 
could be expected if a general method were devised and,   therefore,   the desirability of finding an 
efficient method for obtaining strategies that limit the evader to a payoff close to the value.    A 
particular approach will be suggested for future research. 

The reward structure that will be used for the N-box game is the same as that used in 
Chapter 6.     Thus, 

p.  = the evader's earning rate when he hides in box  i  and the searcher looks 
elsewhere, 

T|. = the loss in earning rate when the searcher looks into the correct box, 

T.  = the time required to examine box   i, 

X.  = the detection loss. 
i 

We again require that p.,   T. > 0 and r}.,   \. > 0.    If discounting is used,   we can again let 

oi  = compound interest rate, 

d = e       = discount factor per unit time, 
T. 

1-d i 
y.  =   = effective search time. 

i a 

8.2 GAME G" 

In G   ,   the evader cannot move between looks and the N-box case is quite similar to the 
two-box version.    A strategy for the evader consists of the selection of a probability vector 

N 
E = {p,i. P?. ■ • ■ , P*T} that is defined over a bounded N — 1 space (since    S    p. = 0,   p. > 0).     A 

i=l 
pure strategy for the searcher consists of an infinite search sequence that is used as long as 



necessary.   The probability space over which P  is defined can best be represented by a regular 
simplex of degree N— 1 and barycentric coordinates.    In the three-box case the simplex is an 
equilateral triangle and in the four-box case a regular tetrahedron.    For each coordinate p., 
there is an associated vertex or extreme point of the simplex where p. = 1 and an opposite face 
over which p. = 0.    This face is the regular simplex of one lower degree that is generated by all 
of the remaining vertices.    At any given point within the simplex, the value of p. is equal to the 
distance from this point to the i     face.    Requiring the altitude of the simplex to equal one in- 

N 
sures that    S    p. = 1 for any P belonging to it. 

i=l     1 

In the modified game F   ,  the searcher is informed of the initial position of P and can cal- 
culate its a posteriori position after each unsuccessful look.    Thus,   if the searcher looks into 
box i,  we find that 

1 — p.q. i^i (8-1) 

A sequence of looks that involves a total of k. looks into box  i for each i transforms _P accord- 
ing to 

P N k. 
S    p.r. ] 

(8-2) 

As before,  the order of the sequence has no effect on the final transformation. 
Given a particular ]?,   the searcher must decide where to look next.    Since  P  is transformed 

by the search process only,   an optimum infinite search sequence can be associated with each P^. 
As before,  the payoff associated with any arbitrary sequence is linear in  P^.    The payoff function 
U   (P),   which results when an optimum sequence is used for the  P in question, is formed by the 
lower bound on the ensemble of payoffs generated by all infinite search sequences.    The function 
U   (P) must be continuous and convex.    Furthermore,   it may be piecewise linear in the interior 
of the simplex over which  P is defined.    That is,  the simplex may be partitioned into a set of 
hypervolumes within each of which U   (P) is linear in P.    Over each of these hypervolumes,  a 
particular infinite search sequence is optimum.    As  P approaches any boundary,  these hyper- 
volumes must become arbitrarily small. 

The functional equation that defines the optimum payoff function is now 

VX{P) = min {^(P-.i)}      , 
i 

where 
N 

U"(P; i) = y.     X    pkpk - p.(r .„. + q^V) + d  V " P^) U^P') (8-3) 
k=l 
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and 

The optimum search strategy for P    can be derived heuristically in much the same manner 
as before.    It is again convenient to let U   (P; ij) represent the payoff that results if a look into 
box i  is followed by a look into box j  and then by an optimum sequence.    It follows from 
Eq. (8-3) that 

N 

U^P; ij) = Yi    2    PkPk - Pi fi"! + ^ \) 
k=l 

r     N dTi h 2 
1

      k=l 
pkpk P^jP ■ — P- IT'?- + qd  ^Xll 

i     ^J V J  J      H3 ])\ 

where 

+ d  l    J(l -p.qj-p^.) U°°{P') 

P^— P' 

If we set U   (P; ij) equal to U   (P; ji),   the term U   (P1) cancels,   and we find that 

Pi^i = Pj^j 
where 

*\ 

When a = 0, 

..=^q. 1         T.    ^1 

- {pi + aXj) + arji 

The equation p./3. = p.ß. defines a hyperplane of degree N— 2 that intersects the line joining 
vertices  i and j  and also all of the remaining vertices.    It therefore partitions the simplex into 
two parts.    In the space where p.ß. > p.ß.,  the sequence ij + optimum is preferable to ji + opti- 
mum,   and so forth. 

This does not imply that either of these sequences is necessarily the optimum one.    On the 
other hand,  it is not unreasonable to assume that the optimum strategy will require a look into 
box i before a look into box j  when this occurs.    Carrying this reasoning a little further,  we 
should expect the optimum search rule to require the next look to be into that box for which p.ß. 
is a maximum. 

The above argument does not,   of course,  prove that this is indeed the optimum search rule. 
It has provided a convenient means for deriving the form of the expression ß.,  however,  and with 
this expression it is not too difficult to prove that the above search rule is indeed the optimum 
one.    The proof is contained in Appendix A.    Since the optimum search rules of F     developed 
previously for the two-box game are special cases of this rule,  this proof also establishes their 
validity. 
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As a result of the simplicity of the optimum search rule — the searcher should merely look 

into a box for which p./3. is a maximum — many interesting properties can be developed.    In order 

to do this,  we must first examine more closely the behavior of the state vector  P as a function 

of a sequence of unsuccessful looks.    For any given P = {p.},   we may define an associated set 

{|.} which satisfies the equations P^^ = P?^? = • • ■   = PIU^-NT suchthat |. >0 for all  i.    Such a set 

is not unique unless it is normalized,  but any set of this form will uniquely determine a  P be- 

longing to the probability simplex.    An equation of the form p.^. = p.|. defines a hyperplane that 
th th 1 1       J J 

intersects all but the i     and j     vertices and,   in addition,  the line joining these remaining two. 

Since  P must belong to all of these hyperplanes,  it lies at their common point of intersection. 

Although there are N(N — 1) such hyperplanes,   only N — 1 are independent and any arbitrary set 

{|.} will have a unique point of intersection. 

The most interesting property of these hyperplanes concerns the way in which  P is trans- 

formed from one to another by a sequence of unsuccessful looks.    If  P  is defined by the set {|.}, 

the a posteriori   P' resulting from an unsuccessful look into box k  must satisfy the equations 

Pit k5k 

^J 

P^i 

P^ 

i^k 

U 7^ k 

If  P  originally belongs to the hyperplane p.|. = p-^-,   it will not leave it until either box  i  or 

box  j   is examined.    If an arbitrary sequence includes k. looks into box  i  and  k. looks into box j, 

the a posteriori   P' will belong to the hyperplane 

PU- ii 
k. 

i 

PU- 
1   .1 

This condition applies even if the arbitrary sequence includes looks into other boxes. 

For a given pair (i, j),   all hyperplanes of the form p.|. = p.?.,   or (£., | .) for short,   intersect 
th th !  !        J  J !     J 

the line joining the i      and j      vertex,   and they can be ordered by their intersection along this 

line.     If (|!/|l) < (l-A-).   the hyperplane (^!, ^!) intersects this line at a point closer to the i 1     J l     J !     J th 
vertex (where p. = 1),   and we can say that (|l^!) lies on the i      side of (|., |.).     Similarly,   the 

1 th Z  ^ / 1     ^ 
vector   P  lies to the i'    side of (|., |.) if (p./p.) < (£■/£■). 

Any vector that lies on the i^" side of (ß.,ß.) will remain there until box   i  is examined,   and 

the searcher's optimum strategy will require at least one look into box  i  before box  j   is ex- 

amined for the first time.    Therefore,  by ordering of the terms p./3. in decreasing magnitude for 

a given  P,   we can tell more about the associated optimum sequence than merely which box should 

be examined first. 

As an illustration of the manner in which the simplex is partitioned into a set of hypervolumes 

over each of which a particular next look is optimum,   let us consider the three-box case.    Here, 

the simplex is an equilateral triangle,   and a hyperplane (i;., |.) is a line joining the k      (k ^ i, j) 

vertex to the line connecting the i      and the j     .    A hyperplane (ß.,ß.) partitions this triangle into 

two parts.    If  P^ lies to  one  side,   box  i will be examined at least once before box j   is,  and so 

forth.    The simplex is of the form shown in Fig. 23.    The part of each hyperplane {ß.,ß.) over 

which the first look can be made into either box  i or j  is indicated by a solid line,   and the three 

solid-line segments of this type partition the triangle into the three areas in which a particular 
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~1 
next look is optimum.    If P  belongs to the broken section of the line {ß.,ß.),  the next optimum 
look will be made into some other box,   i.e.,   the remaining one.    As long as 0 < p., p. < 1, both 
probabilities will be increased in constant ratio by such a look.    Eventually,  such a point will be 
transformed into the solid .section by an optimum sequence of looks into the other box and a look 
into box i or box j  will then be optimum. 

|3-8Z-4I<4] 

'*..*,' 
(3, .*,) F!g. 23.   The three-box simplex: 

the optimum next look. 

At the point FV, where the three hyperplanes intersect,   a look into any box is optimum,   and 
each box should be examined once during the first three looks.    In the more general N-box case, 
any of the NI possible orderings of one look into each box is optimum during the first  N  looks. 

A recurrent region can be defined for the N-box game.    This region consists of the minimum 
hypervolume from which no   P^ belonging to it can be removed by an optimum search sequence 
(of unsuccessful looks) and into which any other  P not belonging to a boundary of the simplex 
must eventually be transformed.    We shall first consider the form of this region when all the de- 
tection probabilities are less than one.    When  P belongs to the hyperplane (|., £.) it can be trans- 

th 1     ^ formed only to the j      side of it by a look into box  i.    For a look into box  i  to be optimum,   how- 
ever,    P must belong to or lie to the i     side of the hyperplane {ß.,ß.).    It follows that no  ,P can 

th / 1     ^ be transformed to the j      side of the hyperplane [{ß ./r.), ß .] by an optimum look.     Similarly,   we 
th 1     1      J 

see that no   P  can be transformed to the i      side of the hyperplane [(/3., Iß./r.)] by an optimum 
th 1      J     J 

look once it lies on or to the J      side of it.     Therefore,  the hypervolume 

ß.r. 
4, 

J 
ß.r. 1  J 

must contain the recurrent region.     In fact,   the recurrent region must clearly consist of that 
hypervolume which satisfies this requirement for all pairs (i, j).    The form of the recurrent re- 
gion,for the three-box game (Fig. 24) is an irregular hexagon. 

Since the recurrent region is convex and bounded by a set of linear hyperplanes,   it can be 
generated by a set of extreme points.    It can be shown that these extreme points are the 2    — 2 
possible points into which P- can be transformed during the first N — 1 looks of an optimum se- 
quence. 

If there exists a set {n,} such that r.      = r,     = . . .   = rN   ,   the optimum search sequence will 
be periodic for any P belonging to the recurrent region.    A set can always be found that satisfies 
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(^) 

(lhßz}ißi-ßz)     (^l'^i) 

Fig. 24.   The recurrent region in the 
three-box game. 

Fig. 25.   Relative ordering of looks into boxes 
I and 2 0-3 = r2). 

{A,/32)   (/3,,/y (/3„&) 

Fig. 26.    General form of the recurrent 
r,  =r2=r3) region (r? = r^ = r_). 

(^.^) 
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the above equations to any desired degree of accuracy as long as each q. is less than one.    In 
each period of such a sequence,   each box i will be examined n. times.    A set of hyperplanes 
partitions this region into a set of hypervolumes,  each having a different sequence of this type 
associated with it.    The form of this partition can be found once we note that the relative order- 
ing of looks into boxes   i and j  within the optimum sequence is invariant over a hyperplane of the 
form (|., ^ .).    A set of hyperplanes of this form must,   therefore,  partition the recurrent region 
into a set of hypervolumes,   over each of which the relative order of looks into boxes  i and j is 
unique and periodic.    Each hyperplane is uniquely determined by the point at which it intersects 
the line joining the i     and j     vertex,  and the members of the set may be ordered by these points 
of intersection in exactly the same manner as the breakpoints in the two-box game were.    Each 
such separating hyperplane is transformed into the hyperplane 03j,/ä,-) by an optimum sequence. 

As an example,   let us consider the three-box case where r.   = r.~.    The hypervolume 

_J_ 
ß.r.       p. 

.1  i <     i < 
1      PJ      1 J 

(which contains the recurrent region) is partitioned into n.  + n, = 5 hypervolumes where three 
(n.) lie to the first side and two (n,) lie to the second side of (ß.,ß.).    This partitioning is illus- 

i £ i    j i 

trated in Fig. 25,  where the relative ordering of the looks into boxes 1 and 2 is shown for each 
hypervolume.    Along the line connecting vertex one with vertex two,  p.  + p, = 1,   and the game 
behaves as though these were the only two boxes involved.    Thus,  we can determine the positions 
of each of the separating hyperplanes and the ordering of looks into these two boxes within each 
hypervolume by using the techniques of Chapter 2.    A look into box 1 transforms   P^ two (n,) 
hypervolumes in the direction of vertex 2,   and so forth.    If one wishes to find the relative order- 
ing of such looks outside the region enclosed by the hyperplanes [(/^j/r.), 02] and [ß ., (/3  /r,)], 
one can,   of course,   partition these exterior regions by using the appropriate techniques,   which 
are analogous to those used in the two-box case. 

In order to complete the partitioning of the recurrent region,  we need only continue the above 
process for all pairs (i, j).    When r.   = r^  = r- in our three-box example,  the general form of 
the resulting partition is that shown in Fig. 26.    In this particular example,   we find that five dif- 
ferent periodic chains,   shown below,   occur within the periodic region: 

Associated with each of these chains are Sn. = 6 hypervolumes,  the sequence of each hypervolume 
having a different phase.   The hypervolumes belonging to each of these chains are indicated in the 
figure,  and it is worth noting that all of those belonging to the same chain have the same general 
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configuration.    A more important property to note,    however,   is that there must always exist 
more than one periodic chain within the recurrent region when there are more than two boxes. 
Thus,  the state vector P. will not enter each of the hypervolumes of the recurrent region during 
one period but will occupy only a subset of them.    This contrasts rather strongly with the be- 
havior of the two-box game. 

If some of the detection probabilities are equal to one, the recurrent region assumes a new 
form, and the general behavior of the optimum search sequences within it is also somewhat dif- 
ferent. When this occurs, it is convenient to separate the boxes into two sets, letting S' include 
those which have unity detection probabilities and letting S include the others. Boxes belonging 
to S' can be examined once, at most, and after each of them has been searched, P must belong 
to the subsimplex generated by the boxes belonging to S. The recurrent region must belong to 
this subsimplex.    It is defined by the relations p. = 0 for all  i belonging to S',  and 

r. 
1 ] 

for all pairs (i, j) belonging to  S.    Within this region,  the optimum search sequence involves 
f    -, n* 

looks into boxes belonging to S and is periodic if there exists a set |n./ such that r.     is the same 
for all i belonging to  S.    This recurrent region is partitioned into a set of hypervolumes with 
unique sequences In the same way as before. 

Now that the general behavior of the optimum search strategy has been discussed at some 
length,   it is appropriate to turn to the problem of evaluating the payoff function U   (P).    For any 
fixed search sequence,  the payoff is linear in  P,   and if we let IT     represent a hypervolume over 
which a given sequence is optimum,  we can express the associated payoff function in the form 

U    (P) nv—' 

N 

z Sn«' pj 

Here,  a    (j) equals the payoff that results if the evader is actually hiding in box j. 
If the infinite optimum search sequence associated with 7rm is defined,   as in Chapter 7,  by 

the set {T.(J)},  where T.(j) represents the time at which the j"1 look into box  i is  completed, 
each coefficient a    (i) can be expressed in terms of an infinite series as follows: 

a    (i) nr 
L     \ / k=1 J 

When a = 0 (no discounting),  this equation reduces to the form 

(8-4) 

am(i) = cli    S    ^{p^W-j^-Xj (8-5) 

When a finite sequence transforms TT     into ir  , m n the payoff U    (P) may be expressed as a func- 
tion of U    (P).    Letting {T.(J)} represent this finite sequence and k. the total number of looks into 
box i that are included,  we find that 
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a    (i) = q 

ki r       . r (j) 

n.v.d 'i'i 

j 

k=l 

TM) T (j) 
d  1       -\.d  1 1 

+ r. ■'(.(^-^'s^'-V,] , (8-6) 

and when a = 0, 

x(\) = qj    X    ri ^ (^^0) - jrj.Tj - X.} 

j=l 

k. 
+ r.     {p.T. — k.n.r. + a   (i)} i      l-Ki  t        I'II        n     J (8-7) 

When the search sequence associated with TT     is periodic,  the above equations may be used to 

express each a    (i) in terms of itself,  hence,   in closed form. ^ m 
If the sequence transforming TT     into TT    involves only one look,   Eq. (8-6) can be written in 

the simpler form 

am(i) = (Pi - rjj) v. - qjd  \ + r.d  ^(i) 

T. 
a    (j) = PT- + d    a  (i)      ,       i T^ i      ; (8-8) 

and Eq. (8-7) reduces to 

i      _      — 
m               n 

SnW = (p.  -7,.)^ 

am«' = PjTi + ^W' 

q.X. + r.a   (i) n  i        in1' 

j^ (8-9) 

In order to find the evader's optimum strategy in F     and both players' good strategies in 

G°°,  the space over which U   (P) is a maximum must be located.    Since U°°(P) is linear within 

each hypervolume 7rm over which a single sequence is optimum,  the payoff must attain its maxi- 

mum at at least one extreme point common to a set of such hypervolumes.    If this occurs at more 

than one such point — an unlikely event — these points will generate a space over which U^P) is 

constant.    If this space is of degree N — 1,   it will consist of a single hypervolume TT    .    Other- 

wise,   it will form a boundary,   of the appropriate degree,  that is common to a set of such hyper- 

volumes.    The evader's optimum strategy in F    and his good strategy in G" consist in selecting 

any  P belonging to this maximum space.    The searcher,   on the other hand,  must find a proba- 

bility distribution Y0 for selecting one of the sequences that are optimum over this space.    This 

distribution must cause the expected payoff to be independent of P and hence equal to max U^fP) = 

v"".    Such a distribution must exist,  since U^fP) is convex. — 
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ia P^~« 

Our principal problem is to find a single extreme point at which II   (P) = V   .    The general 
approach to such a problem is fairly simple.    Any extreme point lies at the intersection of at 
least N — 1 hyperplanes (N — 1 being independent),  each of the form (* ., 4 .) and having the property 
that the associated optimum sequences will transform it at some point into {ß-,ßA.    Radiating 
from such a point are a number of rays,   each formed by the intersei tion of N — 2 of the independ- 
ent hyperplanes.    If U   (P) is nonincreasing as   P moves along each such ray away from the ex- 
treme point,  this point must be an extreme point of the space over v hich U   (P) is a maximum. 
If U   (P) is strictly decreasing along each ray,   it must be the unique point at which U   (P) is a 
maximum.    One can start at a known extreme point,   P0 for example,  find the ray along which 
U   (P) increases most rapidly, and the next extreme point along this    ay.    The process can be re- 
peated until an extreme point is found that satisfies the required property.    Any pair of extreme 
points is connected by a network of such rays,   and this process will eventually locate the desired 
point. 

Although this process is simple in principle,  the computational effort required can quickly 
reach astronomical proportions as  N and Zn. increase.    Radiating from each extreme point are 

1 N at least 2(N — 1) rays and at an extreme point such as P. there are .1    — Z rays.    The task of 
computing the derivative of U (P) along one of these rays is not ea;iy, even after an associated 
optimum sequence along this ray has been found. Also, the total number of extreme points be- 
longing to the recurrent region alone can be tremendous, even in attificial examples where Sn. 
is small. The location of the maximum point within a single hyper\olume TT requires a, linear 
programming routine of no mean size when N is large, and the taf.k of locating a maximum point 
for the whole simplex can quickly exceed the capabilities of even the largest and fastest computers. 

As a result of these considerations,   it would be advisable to develop an efficient method for 
deriving approximately good strategies for the two players.    The location of a point reasonably 
close to the maximum space would suffice as an approximation to   lie evader's good strategy. 

N 
Any payoff U    (P) =    S    a    (j) p. that is associated with some optimum sequence has the property. 

m i — 1     ^^ J 
that min{a    (j)} < V" < max{a    (j)}.    The sequence limits the evader to max{a    (j)}.    If the 

i       m J        "' j        m n 
sequence selected is optimum at a point near the maximum space    the quantity max|a    (j)| — 

min {a    (j)} is likely to be small,   and with it the searcher should bo able to limit the evader to 

a payoff fairly close to V   .    In order to get a better solution,  the rptimum sequences associated 
with a number of points about the maximum region could be found,   and from them a random se- 
lection could be made that would yield an expected payoff indepen lent of  P.    Such sets do exist 
as long as there are no inadmissible boxes.    Although the resultiaf: payoff will be larger than 
v"",   it will be less than the maximum over P  of any of the individual payoffs. 

As shown in Chapter 7,   discounting introduces the possibility   hat some boxes may be inad- 
missible.    If the evader hides in box i and the searcher uses the good strategy that applies when 
this box is eliminated,  the evader will never be found and will receive a payoff equal to p^/a.   If, 
on the other hand,  the evader also uses his good strategy that applies when box  i  is eliminated, 
the resulting payoff will equal v"" ,   the value of the reduced game.    If p^/a < V     ,   box  i  is in- 
admissible,  and the good strategies and   value of both the original and the reduced game are 
identical.    This condition is both necessary and sufficient.    When more than one box is inadmis- 
sible,  the good strategies and values will be those which apply \'hon all such boxes are removed, 

and p./a < V    for each such box. 

94 

Since the abjve condition depends on the value of the game,   or at least on the value of a re- 
duced game that may involve more than one box,  there is no simple method for finding the inad- 
missible boxes \ hen they exist.    A stronger but quite simple condition exists,  however,   that 
may reveal the \ resence of such a box in an extreme situation.    The value of 0°° cannot increase 
as boxes are rei loved and must,  therefore,  be greater or equal to that which applies when only 
one remains.    li both players restrict themselves to box J,   the resulting payoff is 

(p. — -n.) y. ~ q.d  J\. 
J        J      J        3 3 

T. 
1 - r.d ^ 

3 

If there exists £ pair of boxes where 

p.        (p. — T).) y. 
11 <    H3       T   "j 
a T. 

1 - r.d ^ 
3 

q.d  ^X. 
J2 3_ (8-10) 

box j   dominate1,  box  i,    and the latter must be inadmissible. 
It should be observed that the presence of inadmissible boxes is unlikely unless the interest 

rate is very high or the earning rates are highly biased.    The possibility exists as long as  a   is 
unequal to zerc,  however,  and must be taken into account if one wishes to develop a method for 
finding strategics that approximate the good ones. 

While on tha subject,   it is worthwhile to look ahead and note that the   V,   the value of game 
G,   is a function of the moving costs.    A box may be inadmissible with one set of moving costs 
but not with an:r.her.    Since  V  is monotonically nonincreasing as the moving costs increase,   any 
box inadmissible in G    will also be inadmissible in G and G°. 

8.3   GAME  G" 

In this section we turn again to the other limiting form of the search evasion game,   G°.   The 
N-box form of this game is fortunately quite similar to the two-box form,   which we have con- 
sidered previously,   and we also have the good fortune to learn that exact solutions can be found. 
In order to do this,   we must find a state vector  P that maximizes the evader's guaranteed payoff 
and another probability vector  Y_ with which the searcher can limit the evader to the same amount. 
The procedures used in the two-box game require little modification.    We shall again consider 
the evader's good strategy first. 

As we have mentioned and justified previously in Sec. 3.2,  the evader's good strategy in G° 
must belong to the class of strategies in which the state vector  P is returned to the same position 
after each unsuccessful look.    If the searcher knows the position of this vector,   he may use this 
information in £;electing an optimum search sequence.     Since the same  P^ applies before each look, 
a look that is optimum once is always optimum.    For a given  P,   the searcher can limit the evader 
to U°(P) = min|U°(P; i)},   where U0(P; i) is the payoff that results if the searcher always looks 

i 
into box  i.     This payoff is 

N 
yi A Pjpj-Pi^i^/S) 

u°(P; i) = ^ - 
1 - dTi(l - p.q.) 
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ia P^~« 

Our principal problem is to find a single extreme point at which II   (P) = V   .    The general 
approach to such a problem is fairly simple.    Any extreme point lies at the intersection of at 
least N — 1 hyperplanes (N — 1 being independent),  each of the form (* ., 4 .) and having the property 
that the associated optimum sequences will transform it at some point into {ß-,ßA.    Radiating 
from such a point are a number of rays,   each formed by the intersei tion of N — 2 of the independ- 
ent hyperplanes.    If U   (P) is nonincreasing as   P moves along each such ray away from the ex- 
treme point,  this point must be an extreme point of the space over v hich U   (P) is a maximum. 
If U   (P) is strictly decreasing along each ray,   it must be the unique point at which U   (P) is a 
maximum.    One can start at a known extreme point,   P0 for example,  find the ray along which 
U   (P) increases most rapidly, and the next extreme point along this    ay.    The process can be re- 
peated until an extreme point is found that satisfies the required property.    Any pair of extreme 
points is connected by a network of such rays,   and this process will eventually locate the desired 
point. 

Although this process is simple in principle,  the computational effort required can quickly 
reach astronomical proportions as  N and Zn. increase.    Radiating from each extreme point are 

1 N at least 2(N — 1) rays and at an extreme point such as P. there are .1    — Z rays.    The task of 
computing the derivative of U (P) along one of these rays is not ea;iy, even after an associated 
optimum sequence along this ray has been found. Also, the total number of extreme points be- 
longing to the recurrent region alone can be tremendous, even in attificial examples where Sn. 
is small. The location of the maximum point within a single hyper\olume TT requires a, linear 
programming routine of no mean size when N is large, and the taf.k of locating a maximum point 
for the whole simplex can quickly exceed the capabilities of even the largest and fastest computers. 

As a result of these considerations,   it would be advisable to develop an efficient method for 
deriving approximately good strategies for the two players.    The location of a point reasonably 
close to the maximum space would suffice as an approximation to   lie evader's good strategy. 

N 
Any payoff U    (P) =    S    a    (j) p. that is associated with some optimum sequence has the property. 

m i — 1     ^^ J 
that min{a    (j)} < V" < max{a    (j)}.    The sequence limits the evader to max{a    (j)}.    If the 

i       m J        "' j        m n 
sequence selected is optimum at a point near the maximum space    the quantity max|a    (j)| — 

min {a    (j)} is likely to be small,   and with it the searcher should bo able to limit the evader to 

a payoff fairly close to V   .    In order to get a better solution,  the rptimum sequences associated 
with a number of points about the maximum region could be found,   and from them a random se- 
lection could be made that would yield an expected payoff indepen lent of  P.    Such sets do exist 
as long as there are no inadmissible boxes.    Although the resultiaf: payoff will be larger than 
v"",   it will be less than the maximum over P  of any of the individual payoffs. 

As shown in Chapter 7,   discounting introduces the possibility   hat some boxes may be inad- 
missible.    If the evader hides in box i and the searcher uses the good strategy that applies when 
this box is eliminated,  the evader will never be found and will receive a payoff equal to p^/a.   If, 
on the other hand,  the evader also uses his good strategy that applies when box  i  is eliminated, 
the resulting payoff will equal v"" ,   the value of the reduced game.    If p^/a < V     ,   box  i  is in- 
admissible,  and the good strategies and   value of both the original and the reduced game are 
identical.    This condition is both necessary and sufficient.    When more than one box is inadmis- 
sible,  the good strategies and values will be those which apply \'hon all such boxes are removed, 

and p./a < V    for each such box. 
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Since the abjve condition depends on the value of the game,   or at least on the value of a re- 
duced game that may involve more than one box,  there is no simple method for finding the inad- 
missible boxes \ hen they exist.    A stronger but quite simple condition exists,  however,   that 
may reveal the \ resence of such a box in an extreme situation.    The value of 0°° cannot increase 
as boxes are rei loved and must,  therefore,  be greater or equal to that which applies when only 
one remains.    li both players restrict themselves to box J,   the resulting payoff is 

(p. — -n.) y. ~ q.d  J\. 
J        J      J        3 3 

T. 
1 - r.d ^ 

3 

If there exists £ pair of boxes where 

p.        (p. — T).) y. 
11 <    H3       T   "j 
a T. 

1 - r.d ^ 
3 

q.d  ^X. 
J2 3_ (8-10) 

box j   dominate1,  box  i,    and the latter must be inadmissible. 
It should be observed that the presence of inadmissible boxes is unlikely unless the interest 

rate is very high or the earning rates are highly biased.    The possibility exists as long as  a   is 
unequal to zerc,  however,  and must be taken into account if one wishes to develop a method for 
finding strategics that approximate the good ones. 

While on tha subject,   it is worthwhile to look ahead and note that the   V,   the value of game 
G,   is a function of the moving costs.    A box may be inadmissible with one set of moving costs 
but not with an:r.her.    Since  V  is monotonically nonincreasing as the moving costs increase,   any 
box inadmissible in G    will also be inadmissible in G and G°. 

8.3   GAME  G" 

In this section we turn again to the other limiting form of the search evasion game,   G°.   The 
N-box form of this game is fortunately quite similar to the two-box form,   which we have con- 
sidered previously,   and we also have the good fortune to learn that exact solutions can be found. 
In order to do this,   we must find a state vector  P that maximizes the evader's guaranteed payoff 
and another probability vector  Y_ with which the searcher can limit the evader to the same amount. 
The procedures used in the two-box game require little modification.    We shall again consider 
the evader's good strategy first. 

As we have mentioned and justified previously in Sec. 3.2,  the evader's good strategy in G° 
must belong to the class of strategies in which the state vector  P is returned to the same position 
after each unsuccessful look.    If the searcher knows the position of this vector,   he may use this 
information in £;electing an optimum search sequence.     Since the same  P^ applies before each look, 
a look that is optimum once is always optimum.    For a given  P,   the searcher can limit the evader 
to U°(P) = min|U°(P; i)},   where U0(P; i) is the payoff that results if the searcher always looks 

i 
into box  i.     This payoff is 

N 
yi A Pjpj-Pi^i^/S) 

u°(P; i) = ^ - 
1 - dTi(l - p.q.) 
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With no discounting,   it reduces to 

ir{P;i) = 

N 
.    S    pjpj - Pi{Tir,i + q-Xj) 

~1 

The evader's good strategy maximizes the guaranteed payoff,   and therefore corresponds to that 
P which maximizes U°(P). 

Since each function U0(P; i) is nonlinear in  P for reasons discussed in Sec. 6.3,   one cannot 
be hasty in forming any conclusions regarding the location of the optimum vector.    However, the 
following properties,  developed in Appendix D,   come to the rescue: 

(a) Define P0 as a point belonging to the probability simplex that is a solution 
of the equations 

u°(P; i) = u°(P; 2) = • • ■ = UMP; N) 

At least one PQ must exist,   and each one must belong to the interior 
of the simplex. 

(b) All boxes are admissible if and only if there exists a PQ that is the unique 
point in the simplex at which U°(P) is a maximum. When this occurs, PQ 
must also be the unique point that satisfies the definition in part (a). 

(c) If any inadmissible boxes exist,   there must be at least one for which 

-^< U°(P0)<maxU°(P) E V°       . 

This statement applies for any P«. 
(d) In the subsimplex generated by the admissible boxes,   there exists a 

unique  P where U°(P) = V*. 

The procedure for obtaining the evader's good strategy is,   therefore,   clear.    The set of 
equations above must first be solved to obtain a trial P«.    When discounting is not used,   this is 
automatically the solution.    With discounting,   a check must be made to see whether there are any 
boxes for which p./a < U0(Pn).    If none exists,   the correct solution has been found.     If,   on the 
other hand,   such boxes do appear,   they must be inadmissible and should be eliminated.    The 
above set of equations can then be solved in the reduced game.    There is no guarantee that all of 
the inadmissible boxes,   if there are more than one,   will be found on the first attempt.    The proc- 
ess can be repeated,   however,   until no more appear.    When this occurs,   the correct solution has 
been found.    With it,  the evader will never hide in any of the inadmissible boxes. 

In the preceding list of properties,   P0 is not claimed to be unique in general because the 
author was unable to prove that it was true in general.    The method for deriving the evader's good 
strategy does not require this property to be true.    It should be stated,   however,   that the author 
would be somewhat surprised if an example were found where PQ was not unique. 

Just as in the two-box form of G°,   the searcher's good strategy must belong to that class in 
which each look is selected according to a probability distribution Y = {y^},  this distribution being 
independent of the past search sequence.     In a manner analogous to that just used,   we can let 
W°(Y; i) represent the payoff that results if the searcher uses   Y  and the evader hides in box  i. 
With such a distribution,   the searcher limits the/evader to W°(Y) = maxW°(Y; i),   and his good 

strategy is that which minimizes W°(Y).    The expression for W°(Y; i) is 
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W°{Y;i) 

which reduces to 

N / Ti    \ 
Q.    2   y.y. — y-Iv-»?. + q.d    X. 1 i j=1 ^r:     'iyi'i    Hi       if 

ri ^i 

~1. 

N 

W 

p.    S    y.T.—y.(T.»7.+q.X.) 

°(Y; i) =  iZl  

when discounting is not used. 

In contrast to the set {U°(P; i)},   these payoff functions do not intersect at a common point 

that satisfies the probability constraints on Y  if there are any inadmitisible boxes.    This should 

cause no difficulty,   however,   for all the inadmissible boxes,   if any,   can be found if the evader's 

good strategy is calculated first.    In the reduced game in which all boxes not belonging to  S, the 

set of admissible boxes,  have been removed,  all of the payoff functions W°(Y; i) must intersect 

at a unique point Y«.    At this point,  where y. = 0 If J  does not belong to  S,   W°(Y0; i) = W°(Yn) 

for all  i belonging to S.    In Appendix D it is shown that this point must exist.    It is also shown 

that W°(Yn) = minW°(Y) = maxU(P) = V°.    Hence,  this Yn is the searcher's good strategy in 
u Y P. U 

the original game. 

Once the evader's good strategy is known the searcher's can be found more easily,   for V° 

is then known.    After removing all of the inadmissible boxes and renumbering the remaining ones 

from one to N',   if necessary,   we can write a set of equations,   each of the form 

N' , T.    , 
p.     S    y.y. — y. (y.T). + qd    \. 1 
^i i=1 Vl     'l V * i       l        1) 

V° 

y.d J — y.r.d 

These can be rewritten in the form 

E yj(piTj + v°dTj) + yiffi'pi- V - ^^i + ^ ^-1 = v 
^ J^l 

Each such equation is linear,   and Y« may be obtained by inverting an N'-by-N' matrix. 

In the simplified game where  a   and each 77. and X. are equal to zero,  the good strategies 

may be solved algebraically.    The solution that results is 

N 
S     T./q. 

p./q. 

N 
2     pVq: 

j = l r M 

T.p. 

,4 qi 

In the more general case,   a numerical routine is necessary to find the evader's good strategy. 

Such a routine should not be too difficult to establish.for the set of functions \U0(P; i)} is fairly 

well behaved within the probability simplex.    The function U^P; i) is linear over any hyperplane 

where p. is fixed and is monotonic along any ray extending from the i     vertex.    Also,   U°(P; 1) is 

equal to a constant over a linear hyperplane. 
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The good search strategy of G° can be useful when the moving costs are unequal to zero. 

If the searcher makes each look according to the same probability distribution Y,   the evader 
does not need to move,   even in G".    Rather,   he can collect a maximum payoff by remaining in 
one box.    The searcher's good strategy Y0 in G° allows the evader to remain in any admissible 
box.    Therefore,  Y^ provides a simple search strategy that limits the evader to V° when the 
moving costs are unequal to zero. 

The good search strategy of G0 can also be useful in more practical situations,   for it can be 
used to limit the evader to V° when some of the restrictions imposed by our game model are 
violated.    For example,  the evader may not have to hide before the game starts.    He may be able 
to wait until the search process has started and choose a favorable time at which to enter the 
game.    Also,  he may be able to stop playing the game temporarily.    For example,  he may be 
able to suspend production temporarily while remaining in the same box.    Although his earning 
rate would go to zero,  perhaps the detection probability would,   also.    In some situations it may 
be cheaper to stop playing than to move,  and it may provide a worthwhile evasive device.    If the 
searcher uses his good strategy associated with G°,  however,   such devices are of no help to the 
evader.    Either the evader should remain in an admissible box for all time or he should not play 
the game at all.    Our search evasion game was motivated by a problem in which the searcher 
would be very happy if he deterred the evader from playing the game.    Naturally,   if V° is nega- 
tive,   the evader can receive a larger payoff (zero) if he does not play the game. 

Another requirement imposed in our search evasion game was that the moving cost had to 
be incurred at the time that a move was made.    In a more practical situation,   a moving cost may 
result from a decrease in the earning rate over a period of time after the move.    It would be ex- 
tremely difficult to solve a game with this feature.    If the good search strategy of G° is used, 
however,  moving can never help the evader.    Therefore,  this good strategy will limit the evader 
to V° in this situation also. 

8.4   GAME G 

When the evader must incur a moving cost whenever he moves,   the N-box search evasion 
game becomes exceedingly complex.     In Sec. 8.2,   we found that G     could be rather complicated 
even though its general properties were simple extensions of those of the two-box form.    In game 
G,   we are not faced merely with an increase in the size of the problem.     Some additional com- 
plications arise that do not exist in the two-box game. 

In the modified games where the evader reveals the position of the state vector  P to the 
searcher before each look,   the general approach used in Chapter 4 still holds.    Here we must 
associate a moving cost with each of the possible moves and can let \i.. represent the cost incurred 
when the evader moves from box  i  to box j.    As before,   we can let  F   represent the game in 
which the evader can still move before the next look and F1 represent that in which this opportunity 
has passed.    The payoff functions that apply in these games when both players use optimum future 
strategies will be represented by U(P) and U'(P). 

The functional equation relating U'(P) to U(P) is 

U'(P) = min{u'(P;i)} 
i 

where 
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N T T 

V'(P: i) =Yi    Z    PjPj - Pifi^i + Ijd   ^i) + d  '(I - p.q.) U^1 

and 

In F,   the evader has the opportunity to move and must weigh the cost of a transformation 
of the state vector against a possible increase in the future payoff.    For a given  P,   his optimum 
strategy has an associated set {x../,  where x.. represents the probability that he will move to 
box j  if he is in box i.    This produces a transformation to 

N 
pi = /,    p.x.. 

i=l 

and has an associated cost equal to 

N 

Z   E p^ij^ij 
i=i j^i 

The function U(P),  therefore,  must satisfy the functional equation 

U(P)=max      -E      E    (P^^y) + U'(P') , 

where 

|N 1 
E p^j 

•1=1      • 

When all the moving costs are identical,  the equation reduces to 

U(P)=max     -1^    £     IPj-pll + UMP') 

as a result of the efficient move condition. 
These functions have properties quite similar to those found in Chapter 4.     Both must be 

continuous and convex.    Each will be linear over a set of hypervolumes that may be infinite, and 
the two are identical over a no-move region.    Outside this region,  the simplex is partitioned into 
a set of moving regions within each of which a particular set of moves is required. 

Although the solution of these functional equations would be a staggering task,   a far more 
difficult problem arises when we consider the form of the searcher's good strategy.    In the two- 
box form of G, this strategy could be generated by a finite Markov process.    Unfortunately, this 
cannot be done when there are three or more boxes,   except in the first strategy interval. 

In the two-box game there are only two moving regions,   one to each side of the no-move re- 
gion.    Two mixed states and two moving states,  at most,  are associated with the searcher's 
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Markov process.    When both players use their good strategies,   P enters a moving region only 
when the Markov process occupies one of the moving states.    The probability distributions asso- 
ciated with the mixed states allow the required move in each state to be admissible. 

In the N-box game,   on the other hand,  the state vector  P does not simply move back and 
forth along a line.    Instead,   it moves in an N — 1 space,  and can enter many different moving 
regions.    This has rather serious implications,  for it is not possible to construct a finite Markov 
graph that will have a set of mixed and moving states with the required properties.    In order to 
illustrate the problem,  we shall examine an extremely simple N-box game for which a partial 
solution has been found. 

8.4.1   Symmetric Three-Box Game with Simple Reward Structure 

Let us consider the three-box game where all the detection probabilities are the same and 
in which the simple reward structure of Chapters 2 through 5 is used.    Since this is the simplest 
game involving more than two boxes,  we can be sure that any complications that arise here will 
arise in general. 

With this setup,   both G° and G     have trivial solutions.    In G", 

P    = Y    = (±   1   ±) 
-0      ^0      l 3'   3'   3-" 

as a result of symmetry,   and V° = 3/q.    In G   ,  the evader should initially hide according to the 
probability distribution 

—0       x 3 '   3 '   3 -f 

and the searcher should make an equally likely choice from the 31 periodic search sequences in 
which the boxes are examined in order.    The value is V     = (3/q) — 1.    It can be shown that \i    = 2. 
Hence,   when [i   exceeds this value,   G behaves essentially the same as G   . 

Over the first strategy interval 0<(i<|a.    =1,   G also has a simple solution.    Just as in the 
two-box game,   the evader should return the state vector to the same point after each look.    The 
searcher's good strategy can be generated by a Markov process where each state is defined by 
the last look.    Each such state is both a mixed and a moving state.    In such a state,   a look into 
any box is admissible,   and the evader may move to the box just searched if he is in any other. 
These properties hold for the first strategy interval in any game   G. 

In this example,   symmetry causes the solution to be very simple.    The evader should always 
return the state vector to 

111 
P    = (i   i   i) —0       I 3 '  3 '  3 J 

The boxes are   identical,   and letting  i,   j   and  k  represent the  three different  boxes,   we   may 
write 

UMPQ) = i + (-^p1) u(p')    , 

where ?„  >■ P' when box  i  is examined.    In order to return P' to P«,   the evader; if in j   or k, 
should move to box  i   with  probability q/3.    Therefore, 

U(P') = - HL f (y^r) + U'(P0)       . 

It follows that U'CPo) = (3/q) - (2/3) p = U(P0). 

~1 
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In the Markov process that generates the searcher's good strategy,  the probability distribu- 

tion associated with the state cr. must be of the form y.(i) = y,  y.(j) = yi(k) = (1 — y)/2.    State a. 

applies when the last look was into box  i.    The payoffs associated with (T. must be of the form 

N 

W-CP) = W!(P) =    2    a.(j) p.       , 

j=l 

where a.(i) — a.(j) = a.(i) — a.(k) = \i..    The solution reveals that y = (1 — a)/{3 — a) and that 

W.(P) = W!(P) = I Pi + (| - M.) (Pj + Pk)       • 

The searcher should initially make an equally likely look,   and he limits the evader to 

3        2 W„ 
q 

As long as  fi   does not exceed one,   beyond which y  is negative,   these strategies are the good 

strategies,   and 

V(fJL) -^r M. 

Once  n   exceeds [i.   = 1,   real problems arise,   for the searcher's good strategy may no longer 

be generated by a simple Markov process.    The evader's good strategy is fairly simple,   however, 

and we shall derive it first.    The general form of this strategy can be guessed if one considers 

the behavior of the searcher's good strategy when n = p...    At this point,  y  = 0 and the searcher 

never repeats the same look twice in a row.    This indicates that the evader should no longer re- 

store   P to the point at which the payoff is indifferent to any next look.    Rather,   if box  i  was 

examined last,   he should restore  P to a point where 

P Pi = P       '        Pj = pk = 

If the look preceding the last one was into box j,    it is reasonable to assume that the searcher 

will be more likely to look into box  k  than into box j.    Therefore,   let us assume that the only 

admissible move after looks into boxes   j   and  i,    in that order,   is from  k  to  i.    Before the look 

into box  i,   we have 

After this look. 

and 

P-P Pi = Pk = 
1 -P 

r,l  =  2P „l - (1 - P) r Pj       2p + (1 -p) (1 + r)      '       Pi "   2p + (1 -p) (1 +p)      ' 

^ -P 
^k       2p + (1 - p) (1  + r) 

The evader must transform this to 

P4    =   P 3 
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by a possible move from k to i.     Thus,  p! is unaffectcti,  and 

Pj       2p + (1 - p) (1 + r) 
1-P 

2 

Therefore, 

P = - 
(2 + r) + V5 + 4r 

The correct transformation occurs if the evader moves from the box that has not been exam 

during the last two looks (k) to the one just examined (i) with probability 

^    At thak beginnin 

P 

3-^5 + 4r 
2 

game. in^hfÄe. ga 

0 "" T 3 '  3 '  3 

.the evader should hide at the point 

since U(P) must be a maximum at this point.    If box ;   is   examined first,  the evader should move 

to that box if H» is in either of thwothers with probab: litj 1 - (2 + r) [(1 - p)/2],  for this strategy 

transforms  P to the desired point.    Once two or more looks have occurred,  the evader moves 

only in the manner discussed in the preceding paragraph. 

With this strategy,  the payoff will be independent of ^here the searcher looks as long as he 

never examines the same box twice in succession.    The jfuaranteed payoff is 

U(Pr 
-l^-D  (il^MW^lcaj 

The payoff will equal the value as long as the searcher can limit the evader to this amount. 

Let us first assume that such a search strategy exis ;s (it does) and,   in addition,  that it is 

Markovian in form.    In the Markov graph,   each state would be defined by the last two looks.  Thus, 

we can let cr.. represent the state that applies if the last tvo looks were made into boxes j  and i, 

where j precedes  i.    The searcher should not repeat a look into i.    Therefore,  we can let 

y.,(k) = y and y..(j) = 1 — y.    The payoffs associated  .vith c .. must be of the form 

W..(P) = W!.(P) = a..(i) p. + a..(i) p. + a..(t) p. 

where 

a..(i) — a..(k) = u       and       0 < a..(i) — a..(1X u 

By means of the usual functional equations,  we can find that y does exist.    The result is 

1 
3-1 

and 

w  (P) = |-pi + (|--i)pi + (|--^Pk Jl'- q  ' 1       -q ' 'j       'q 

At the beginning of the game, the searcher has no past search sequence to define a state in 

the Markov chain. Therefore, we must add the stf tee o-., cr., o- and IT,. The state cr0 is used 

at the beginning,  and one of the others will apply a'ter the first look.    Because of symmetry. 
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With these probabilities 

for all  i,        and      yi(j) = y^k) = ~ 

W (P) = W!(P) = ^ p. + f-| - I-  (1 + ft)] (p. + pk, 

and 

WQ(P) = W<0iP) = 1 + 

Since W0(P) > U(P0),  when \x > M^,  the strategies we have developed for the two players 

cannot both be good strategies.    The reason for our difficulty becomes apparent if we consider 

what happens after the first look.    If box i  is examined first,   the evader must move to it,   il not 

ilrsady there,   with a probability that transforms   .P to p. = p,   p. = (1 -p)/2.    On the other 

hand. 

and 

W i(P)=|pi + [|--|-{l+K)](p;j+Pk) 

[a.d) - ajfj)] = [a.(i) - a.(k)] = -^ (1 + |x) < fi 

searcher's strategy,  therefore,   causes the necessary moves after the first 
when fi > 1. 

look to be inadmisüib 

These moves must be ad" 

moving strategy that does not involve 

amined.    Therefore,  we must find a search st 

does   exist,   in which the  searcher  introduces  a transT 

ible.    A little reflection shows that there can be no satisfactory 

move after the first look into the box just ex- 

that allows these moves.    Such a strategy 

into the probability   y   associated 

sociated with the state cr. 
with each state cr...    This strategy can be found by letting the payol 

be a function of the total number of looks that have occurred.    Thus, 

3 

Ji 

W^P) = Vf^'iP) =    2    aj>) Pk 

k=l 

We can also let the associated look probabilities be y..(j) and y..(k),   or y    and 1 — y  .    In contrast 

to the usual recuräion eouations,  a set of difference equations must be written to determine the 

good strategy.    Because of symmetry ia..<k) = a.I?(k) = a, ,(j). . . ],   this set can be written in a 
1J J. Kl 

compact form as follows: 

n,.,      .   ,     n+1,., a..(i) = 1 + a..     (i) 
Ji Ji      J 

a..(j) 
.U J 1 + (1 n+1,.,  ,    n   n+l„ , rs        (i) + y a..     (k) 

ji Ji 

n,, .     .   ,  ,.        n,     n+1,, .   ,     n     n+l... a   (k) = 1 + (1 - y ) a.j     (k) + y ra j     (i) 

Requiring a move from k to J  to be admissible adds the equation 

a^i) = a.^(k) = n       . 
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The solution for a..(j) is 

2 + r + A [1 - -v/S + 4r In 
I    2(1 + r) f + B[ 1 + N/5 + 4r I" ji'-'      1 - r l    ^u + r)     i i     2(1 + r) 

The coefficient  B  must be set equal to zero so that the transient will decay with time. 
The freedom left by the arbitrary coefficient A allows us to make the necessary moves after 

the first look admissible.    That is,  we can require that a.(j) — a.(i) = a.(j) — a.(k) = \x,   where 
cr.  a-'...    Since a?, is entered after two looks have been made,    n will be two less than the total 
number of looks.    The solution is 

a^)=l-(. .,   [-(2 + r) + ^5 + 4r 1    II - v/5 + 4r |n 
^   I :      T I   I     2(1 + r) 

n,.,       3       .    ,   ,        ^13 -N/5 + 4r 1 f 1 -N/5 + 4r In 
^i'j'-lf-1  ^^^   [     ^(l-r)       ||      2(1 +r)      J ■ 

a.'^k) =  a.'JU) - HL 

With these values. 

n 
y   = 

*  4. ( ^   f 1 -^5 +4r 
1 + (M- — * /   ' —^n—T—s  2° '   t    2{i   + r)  

M-  + (M.-1)    j 
3 -N/5 + 4I 1 — N; 5   '  4T- ]n 

2(1 + r)      J 

w0(p>^-4^(.-i)|i^LP^9EM] 

This solution yields the searcher's good strategy in the first part of the second strategy in- 
terval.    As  n approaches infinity,  the transients that have been introduced die out,   and each 
term agrees with the corresponding one associated with the simpler search strategy that we tried 
first.    The steady-state value of y..(k) = y    is 1/(3 — ^i),   and this approaches one as ^  approaches 

Unfortunately,   the transient introduced into y-.(k) causes y..(k) to equal one when n   is le 
than u,   ,   to be exact,   when 

_  10 + 3r - 4r    + (2 + r) N/5 + 4r 
2(4 + 2r - r2) 

The first part of the second strategy interval,  therefore,   ends at this point and does not extend 

m- strategy subinterval,  the look probabilities satisfying the difference 
in  ■:: ■ -   ■ • ■ - ^^M^™BM^»^ 

^^^^^^^^^^»■aH^^^^^K^^ooks has occur red.     The difference equations 
equationsä are used after a start-urTff^B^^^^^WHWHl^B^^»»^^ 

^^^^^^^^^^^^^^^afclin S  ended      The co- 
themselves assure the proper admissible moves once the start-up proce 
efficient  A   is adjusted to insure that the required moves during the start-up process are admis; 

sible. 

In succeeding subin+ervals,   the start-up process lasts longer.    During this process,   some 
of the looks are made deterministically,   and some of the moves that were previously admissible 
no longer are.    Once the start-up process has been coiiiplcted.,   the look probabilities are the 
same as before except that the coefficient  A  is different.    When the stai-t-up process is over, the 
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evader has managed to maneuver  P into the position where p. = p,  p   = p.   = (1 — p)/2,  where i 
represents the last box examined.    As (x approaches n  . the start-up process becomes infinitely 
long.    The interval 1 < ji < 2 = ^.    is,  therefore,  partitioned into an infinite number of strategy 
subintervals.    The start-up process differs from subinterval to subinterval,whereas the general 
behavior thereafter is the same for all those subintervals belonging to the same strategy interval 
(^.,(1   ).    In a more general N-box game,  there may be a finite number of strategy intervals, but 
there will always be an infinite number of subintervals in all but the first. 

~1 

8.4.2  Approximate Solutions for G 

In the example just discussed, an exact solution of G was found in the first strategy interval 
and in the first subinterval of the second. Finding the solution in any other of these subintervals 
would be an enormous task, and it should be apparent that the prospects of finding an exact solu- 
tion to a more general N-box form of  G are slight,  if not out of the question. 

Methods for finding approximate solutions are,  therefore,  in order.    Although no method 
has been developed,  a general approach to finding an approximately good search strategy is sug- 
gested for future research.    With this approach,   we assume that the searcher has a poor memory 
and can remember only where he has made his last n looks.    Since he can use only information 
he remembers,  his optimum search strategy under this condition can be generated by a Markov 
process.    In particular,   each recurrent state in the process is defined by where the last  n looks 
were made.    Transient states that apply when fewer than n looks have been made also exist. 

As an example,   let us consider the approach that could be taken when n = 2,    For simplicity, 
we shall let p. = T. = 1 and T; . = X.  = 0.    Letting a., represent the state that applies when the last 
look was made into box  i  and was preceded by a look into j,   we can express the payoffs asso- 
ciated with a., in the form 

N 
w:.(P) =   V  a!.(k; 

k=l 

and 

N 

wji(p)= E vk)pk   • 
k=l 

The payoff W..(P) applies when the evader can move before the next look and W!.(P) applies when 
this opportunity has been lost.    The cost of moving from box k to box I is Put-    Therefore, 

a,.(k) = max{—li, , + a! .(f)) Ji I pki       jiv   " 

where (J., ,   = 0. 
With each state CT.. we can associate a set of look probabilities y..(k) whe 

If box k is examined,  a transition to o-.,   occurs.    Therefore, 

N 
VQ   2    y   (k) = 1. 

k=l     3 



1 
Similar equations can be written for each of the transient states.    At the beginning of the 

N 
game, the payoff W0(P) =    2    a0(k) p.   applies, and the searcher limits the evader to max{a0(k)} = 

k=l k 
max{a!.(k)}.    To find the look probabilities that minimize the above expression,  a nonlinear pro- 

k        u 

gramming routine is necessary.    It is this routine that must be studied in detail. 
As  n approaches infinity,  the searcher's memory improves,  and in the limit,  the approxi- 

mating strategy approaches the good search strategy.    In the process,  the number of states in 
the Markov process can increase rapidly.    With a memory of n looks,  there can be N    recurrent 

■  n-1      . 
states and    S    N'' transient states. 

j=0 
The total number may not be as large,  however,  for some states may be superfluous.    When 

n = 3,  for example,  y..,(l) may equal zero for all  i.    If this occurs,   the state f-. , will never be 
entered and is of no interest.    The problem,   of course,   is to find a method for predicting such 
an event before the solution is attempted.    Such a method may lie in solving the n — 1 approxima- 
tion first.    It appears likely that if yk(^) = 0 for all j  in the n — 1 approximation,  y... (i) must 
also equal  zero for all  i, j in the  n approximation.    If this property can be proved to exist,  the 
problem of finding a good approximation to the searcher's good strategy can be greatly simplified. 
The solutions to the approximations of order 0,   1,   2, . . .   can be found in order,   and the process 
can be stopped when diminishing returns are found or when the computational effort becomes 
too large. 
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CHAPTER 9 

CONCLUSION 

The game that we have considered is a two-sided extension of a one-sided search problem. 
Although all search problems need not be considered from a two-sided point of view,  this is some- 
times necessary.    In our game,  the search is directed against a conscious evader or an object 
controlled by such an evader.    The evader can observe the searcher's actions and can capitalize 
on any errors he makes.    At the beginning of the game,  the evader hides in one of several boxes, 
each of which has an associated detection probability.    The search process consists of a sequence 
of looks into the various boxes until the evader is found.    Each look into a given box takes a fixed 
amount of time.    A particular evasion device — moving between looks — has been assumed.    The 
game is zero-sum,   and a fairly general reward structure that can include discounting has been 
developed.    The reward coefficients associated with this structure,   as well as the location of the 
boxes and their detection probabilities,   are known to both players. 

We have been able to derive the good strategies for the two players when the game involves 
two boxes.    In G00,   exact solutions can be obtained when there exists a pair of integers n.  and n, 

nl n2 1 £ 
such that r.      ~ rz    ■    The escape probabilities r.  and r,    are the complements of the detection 
probabilities.    An exact solution can also be found if one or both of the detection probabilities are 
equal to unity.    When the ratio of the escape probabilities is irrational,   an approximate solution 
can be obtained.    This approximation can be made to any desired degree of accuracy.    In game G, 
where moving la allowed at a cost,  the solution to the searcher's good strategy is identical to that 
of G" if the moving costs are prohibitive.    When these moving costs are not prohibitive,   the exact 
good strategies can be found in general.    Exact solutions can also be obtained in G°,  where the 
moving costs are equal to zero. 

The search evasion game becomes much more complex when there are three or more boxes. 
Although G0 may still be solved exactly,   the computational effort required to solve G""  can be pro- 
hibitive.     When more than two boxes are involved,  the general properties of G  become quite dif- 
ferent,   and the good search strategy can no longer be generated by a finite Markov process.    The 
limited memory approach to finding an approximation to the good search strategy is suggested for 
future research.    Such a strategy can still be generated by a Markov process. 

The results of our study of F00 may be useful in treating some one-sided search problems. 
The optimum search strategy is quite simple when the position of the evader,   or object,   can be 
described by a probability vector.    Only the problem of locating the point at which U°0(P) is a 
maximum causes the solution of the N-box form of G" to be difficult.    If the object is not a con- 
scious entity whose motives are opposed to those of the searcher,  we have no reason to suppose 
that the worst of all probability vectors applies.    Any reasonable statistical estimate of the posi- 
tion of the object should be preferable to taking the pessimist's approach,   i.e.,   using the minimax 
solution. /~ 

Most of the reward structure tnai'ha^ been developed could be useful in treating a one-sided 
search problem of this type.    The efetection loss X.  could be used lu  ^cpres^nt a reward associated 
with finding the object.    The reward associated with a given look could be used to represent the 
cost of making the look.    It would be difficult to imagine a problem in which a look was less costly 
to make if the object were in the box examined.    Therefore,  the TJ'S would normally be equal to 
zero.    In most situations,  there would also be no reason to suppose that the earning rates varied 
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from box to box.    If one wished to locate a faulty part that was causing damage over time in a 
complex system,  however, they might be of use.    Clearly, the set of look times and discounting 
could be useful in a practical one-sided search problem. 

At this point,  it is worthwhile to review some of the qualitative aspects of the good strategies 
associated with the two-box form of G.    Let us first consider the evader's good strategy.    If an 
arbitrary strategy is assigned to the evader, we may define his position as the search process 
proceeds by means of a probability vector.    If the probability that he is in one box becomes suf- 
ficiently large,  the evader should move from this box if he is there with a certain probability. 
This causes the probability vector describing his position to be transformed to the nearest bound- 
ary of the no-move region. 

The searcher's good strategy can be generated by a finite Markov process.    In some states 
of this process,  the next look is made deterministically.    In others, the mixed states,  the next 
look is made according to a probability distribution.    When the searcher uses his good strategy, 
the evader will collect a payoff equal to the value if he never moves.    That is,  not moving is al- 
ways an admissible alternative of the evader's good strategy.    In certain situations,   a particular 
move is also admissible.    As the moving costs increase,  deterministic looks are made more fre- 
quently,   and the situations in which a move is admissible occur less frequently. 

When the moving costs are prohibitive,  the searcher's good strategy is identical to the one 
that applies in G",  the game in which moving is prohibited.    In this strategy,  the searcher makes 
a random selection from two infinite., seapeh sequences.    Once this choice has been made, the 
search process is completely deterministic.    This strategy minimizes the payoff that results if 
the evader never moves.    The evader should not move because such an action can only decrease 
the payoff. 

When the moving costs are not prohibitive, the searcher should not use his good strategy that 
applies in G".    If he were to use this strategy, the evader could gain a'dcfinite advantage (perhaps 
a very large one) by using a strategy that involved some deterministic moves.    No search strategy 
that allows the evader to gain a definite advantage by moving can be the good search strategy. 
Therefore,  the good search strategy is the one that minimizes the no-move payoff without violating 
this condition. 

In a sense,  the good search strategy maximizes the number of situations in which moving is 
an admissible alternative subject to the above condition.    In each strategy interval,  a particular 
transition diagram is associated with the Markov process that generates the good search strategy. 
This diagram includes one or two moving states.    In such a state,   a particular move,   as well as 
not moving,  is an admissible alternative.    In the remaining states,  no moves are admissible.    If 
the moving costs are increased sufficiently,   a new strategy interval will apply.    In the associated 
transition diagram,  there are more states in which no moves are admissible.    One cannot use the 
previous transition diagram in this strategy interval.    If one were to try,   he would find that some 
of the transition probabilities,  or look probabilities, associated with the mixed states would be 
negative. 

In the N-box form of G,   the good search strategy cannot be generated by a finite Markov 
process.    Associated with the evader's good strategy is a set of situations in which moving is re- 
quired with a nonzero probability.    No Markovian search strategy can yield a payoff that is indif- 
ferent to whether or not the move is made in each of these situations.    (The one exception to this 
statement applies in the first strategy interval.)   In the symmetric three-box example that was 
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solved,  we saw that there was a Markovian search strategy which allowed all of the moves 
associated with the evader's good strategy to be admissible except those that applied during the 
start-up process.    Unfortunately,  the start-up process occurs at the beginning of the game,   and 
the early behavior of the game has the strongest influence on the payoff. 

In G°,   no cost is incurred by the evader when he moves.    As a result,  the searcher cannot 
gain any inference concerning the evader's position from his past sequence of unsuccessful looks, 
and each look should be made according to the same probability distribution.    The good search 
strategy causes the payoff to be independent of the evader's position and vitiates the influence of 
moving (all moves are admissible). 

When the N-box form of G° was considered,   we saw that the associated good search strategy 
may be useful when evasion devices not included in our game are considered.    For example,  the 
evader may be able to select a favorable time after the search has started to enter the game.    He 
may also be able to temporarily suspend production or leave the game.    These additional devices 
do not aid the evader if the searcher uses his good strategy associated with G".    This strategy 
would not be the good strategy in the more general game of this type.    It can be calculated,   how- 
ever,   and it may prove useful in a practical two-sided search problem involving these additional 
devices. 

Although the search evasion game we have studied includes only one evasion device,   it has 
demonstrated the interesting influence that a conscious evader can have on the outcome of a 
search process.    This study should only whet the appetite for deeper studies.    In a more general 
game,   it will be more difficult to find exact solutions.    In fact,   there is no reason to suppose that 
a value and good strategies will always exist.     Nevertheless,   the further development of relatively 
efficient search procedures that take the actions of the evader into account should prove interest- 
ing and useful. 
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APPENDIX A 
THE SEARCHER'S OPTIMUM STRATEGY IN F" 

The searcher's optimum strategy in F"" requires each next look to be made into a box for 
which p.ß. is a maximum,  where P = {p.} represents the value of the probability vector that ap- 
plies when the decision is made and 

~1 

■V' 
,fi i 'i 

In order to prove this,  let us adopt the following notation.    Let S  represent an infinite 
search sequence,   and let S = (s., s., . . . , S, ) represent a partition of this sequence into an ordered 

1      ] K 
set of subsequences where s., s, . . . are finite and S,   is infinite.    Let T. represent the length of 

1        J K 1 

s. in time. Let P. 
-1-3- 

represent the a posteriori position into which the a priori vector  P  is 
transformed by the sequence (s., s, . . . ) if detection does not occur. 

Letting U°°(P;S) = U0C(P; s., s., S.) represent the payoff given P and S = (s.,s.,Sk),   we may 
express this payoff in the form 

^(P; s., s., Sk) = f(P; s.) + g(P; sj d i ^(P^ s , Sk) 

T.+T. 
= f(P;s.,s.) + g(P;s.,s.) d  1    ^ ^(P.   .; S, ) 

The contribution f(P; s.) to the payoff occurs during the subsequence s. when  P  is the a priori 
value of the state vector;   g(P;s.) equals the probability that detection does not occur during s.. 

Let us consider an arbitrary infinite sequence S. and an arbitrary a priori P.    Let s    repre- 
sent the subsequence of S, that starts at the beginning of S. and continues up to,  but does not in- 
clude,  the first look that violates the optimum search rule (s    may be empty).    Let  C   represent 
the set of boxes that could be examined on the next look without violating the optimum search 
rule,  and let s,   be the maximum subsequence following, s    that does not include a look into a 
box belonging to  C.    Letting   B  represent the set of boxes that are examined at least once in s, , 
we see that B (1 C = 0. 

The next look following s,   is into a box belonging to  C.    This box will be called box  c  and 
the look into this box will form the subsequence s   .    Let S , be the remainder of S,.    For the 
moment,  let us assume that s.   is finite.    Then S. = (s   , s, , s   , S ,). b lab     c     d 

By reversing the order of s,   and s  ,  we can define a new sequence 

SII = (sa'sc'VSd)      " 

This definition will extend the sequence of optimum looks by one look [s1   = (s   , s   )],  and we 
must show that 

A = tTCF^Sj)- LTCl^Sjj) > 0       . 

These payoffs may be expressed in the form 

U00 (P; Sj) = f(P; sa) + g(P; sj d a u" (Ea: sb, Sc, Sd)      , 

U   (P; STT) = f(P; s  ) + g{P; s J d a U   (P  : s   . s. , S .)      . JII a'   c    b    d 
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Therefore,   A  is strictly greater than zero if and only if U   (Pa; s, , s  , S,) is strictly greater 
than U^fP  :s   , s, , S ,).    Furthermore, —a    c    b    d 

U   (P   : s. , s   . S.) = f(P  : 8. ) + g(P  : s. ) d  Df(P    . ; »J -a" "b' °c' "d' ' ''-a' "b'  ' sv-a- "h 

b     c ..«>. 
+ g(Pa:^^)d       ^u (Pa(b>c:sd) 

and 

—a     b    c 

U   (Pa: sc- sb- Sd> = f(?a: 8c' + g'^a^ sc) d     f(5a,c: V 

+ g(Pa:sc,Sb)dTc+Tbu"(P ;Sd) 

But,   g(Pa: sb, sc) = g(Pa; V sb) and Pa b c = Pa c b.    Therefore, 

Tb. A = f(Pa;sb) + g(Pa;sb)d"f(Pa_b;sc) 

f{Pa;sc)+g{Pa;sc)d  ^(P^Sb) 

We shall now prove that A > 0.     For convenience,   let us simplify our notation by using  P 
in place of P  .    The.n, r —a 

for all    i e C,  and all    j / C:      p.ß.>p.ß.      ; 

for all     i e C,   and all     i e B:       p.ß. > p.ß. 

For each i  c B,   let T.(n) equal the time in sb at which the n     look into box i is completed. 
Also,   let k. represent the total number of looks into box  i  contained in s, .    Then 

f(P;sb) E  Pi^i E ^r fpi(^4M-Vid'Ti i 
i€B      j j=l L      \ / k=l 

r k' i 

i    i,      T (k) TM) 
1      -      d  1       - X.d   1 

i 

+ P  P 'c c 
i^c, 
/B 
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g(P: sc) d ^c-b) = dTc 2 U 2 -r1 fpif1^-)-^"1 idTi 
ieB    1 j=l «•     >■ / k=l 

f(P;sc)= E  PjP^c+Pc[1'c(pc-7'c)-c'cd Cxcl +   X   PiPi-vc    ; 

- X. 

+ p  d 

g(P: sb) d bf(Pb: sc) = d b   I    p.r. ipiYc + d bpc [yc(pc - nc) - qcd  cXc] 
i€B 

T 

db Z Pi P,-r. 

/B 

By collecting terms and noting that y    = (1 — d  c)/a and y.  = (1 — d    )/oi,   we can reduce 

A to the form 

^   „       V     ^-H^' 

ieB \ ' j=l 

ieB 

(1 - d  ^ (1 - d 

k. 
i 

k. 

v      i-i    v     Ti(k)       ki   v1  ^i0' 

j=i       k=i j=i 

k. 

I    P^d-d^,^    E    r^^d^' + p^/c  (i^L!) 
eB j=l \ ' ieB 

(1 -d ^ (1 -d  ")  . ■>   J  c,,       ,'b, + p   t?      i L_^ 1 +pqXd      (1— d      ) 
•c  c a "c^c  c 

But, 

k. k. 

Z    ^     d  1      <   Z    d 

j=l j=l 

1 

113 



~1 

and 

k. 

j=l k=l 

k. 

? i ; rj-i ^ /^'.^^ /i'^f d^ 
j=i 

Therefore, 

A > A1  = -    2    Pi«1 - d   C) 
ieB 

(i*'m][^{^y\^] 
Pel—Tb>[^^*(^)'C*v/

C] 
But, 

l-d b=   ^   d    ^l-d l)   E   d ' 
ieB j=l 

rAj) 

therefore, 

r k. 

A > A.   =    T    y.y  d     1 

1        '-'     'i'c 
ieB 

(P ß -p.ß.) 

Since p 0    > p.ß. for all  i belonging to B, 

A ^ A.  > 0 1 

If the sequences s,   and s    are reversed,   therefore,  the payoff is reduced.    If s,   were to 

increase in length and become infinite,  the inequality  A ^-A    could only become stronger, since 

some of the members of {k.} must eventually become infinite.    Therefore,   if S. = (s   , S. ),   the 

payoff can be reduced by inserting a look into a box belonging to C between s    and S, .    Hence, 

the sequence S.. = (s   , s   , S, ) would yield a lower payoff than S-. = (s   , S, ).    The process can be 

continued indefinitely until S, has been replaced by a sequence S  .    This yields the minimum l a 
payoff,   and the assumed optimum search rule is indeed optimum. 
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APPENDIX B 
SOME  PROPERTIES OF THE TWO-BOX MODIFIED GAMES  F AND F' 

Consider the sets of truncated modified games {Fn} and {F'}.    These games have the same 
definitions as  F  and  F'   except that F'  follows F    and F      .  follows F' .    In F„,   play stops and n n n-l n o    ^   ^        ^ 
the evader collects the payoff V", the value of G°.    Associated with F    and F' are the payoff 
functions U (P) and U^P),  respectively,   which apply when both players use optimum strategies. 
The functional equations are 

U'(P) = min n v 

u'(P; i) = P n 

+ (1 -P) YiPz 

+ [Pr1 + l-P]   d   Vllp^Vl-P 
Pr. 

U;(P;2) = Py2p1 

+ (i-P)  y?(p 2^2 ^2 d    X. 

+ [P +-(1 -P) r2]   U f P  1 
n-l   [P + (1 - P) r   J 

and 

U  (P) = max n p, 

-n1(P, - P) + u^(P')    ,    P'>P 

-K2(p-P') + u;(P') p' < p 

where 

U0(P) = V 

We shall require both boxes to be strictly admissible;  that is. 

P_l  > ^2 
a 

(p2-7j2)y2-q2d     X2 

l-r2d 

ipi -v i) Vi- q1d   xi 

1 - r.d 
l 

Theorem 1. 

For all n > 0:   U (P) and U'(P) are continuous and convex. 

In F0,  the function U0(P) = V°.    Hence,  U0(P) is continuous and convex.    To prove the theo- 
rem,  we shall show that 

U     .(P) is continuous and convex •• U  (P) and U'(P) are continuous and convex, n-l n n 
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For convenience,   we shall also use the same technique to show that U  (P) and U'(P) are both 
piecewise linear for all finite n. 

Assume that U     ^P) is continuous,  piecewise linear,  and convex.    Consider 

U^P; 1) = pfr^Pj - 1 j) - q1d hA 

+ (1 - P) yip2 

+ (Pl-1 + 1 - P> Un-1   [p^Tl-p]        • 
Clearly,  U' (P; 1) must be continuous since U     ^(P) is-    The function U     ^(P) is linear over a 
set of intervals {TT""  } that form a partition of the interval (0, 1).    Over 7r.n     , we may express 
U     ,(P) in the form n-1 

U     ,(P) = a."'1 P + b""1 (1 - P) n-1 i i 

Define T.   by the relation 

~1 

TT : 
i 
n      1 .n-1 

For all P e ?. 

U;(P; 1) = pfy^P! - Vi) - q1d
TlX1  + r^^a."-1] 

(1 - P) [^2 + d^b»-1] + (1- 

a.nP + b.n(l - P) 
1 1 

Hence, U' (P; 1) is piecewise linear over each interval belonging to {T. },  where {T. } partitions 
the interval (0, 1). 

Let IT .        > TT . 

U     ^(I3) is convex.    Hence, 

for all P. e TT!
1
'
1
,  and for all P. e T.      :   P. >P..    The function 

11 1       J 1 1 

But, 

„n-1 ^ „n-1 „ ^    n-1  ,    n-1 ,     wn-l ^ in-* TT.        > IT.        <; :• a.        < a. and     b.        > b. 

•n-1 >7r,n-1 

.1 i 

n-1   ,    n-1 
1.        < a. 

1 1 

.1 1 

TT," 

j 
> TTn 

1 

ar < n 
ai 

bn >b.n 

Therefore, 
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t 
_ n -^ , n 

3        i 
> a.   < a. and 

~1\ 

b.n > b.n 

.1 i 

and U'(P; 1) is also convex, n 
The-same reasoning can be used to show that U'(P; 2) is continuous,  piecewise linear,  and 

onvex: 

'ir(P;l) 

u;(P) = min 

.Un(P;2) 

Therefore,   U^P) is also continuous and convex.     It is piecewise linear as long as U^P; 1) and 

U^P; 2) do not intersect at an infinite number of points.    In proving Theorem 2,   we shall show 

that these functions intersect at a unique point Pg  e  (0, 1).    Hence,   UT(P) is piecewise linear. 

U  (P) can be constructed from U'(P) by using the techniques discussed in Sec. 4.3,   and 

U  (P) must also be continuous,   piecewise linear,   and convex, n 

Theorem 2. 

In F' ,  there exists a unique P- : 

0 < P'   < 1 

P < P' => U'(P;1) > U'(P;2) 

P > p' ^> U1 (P; 1) < U^P^) 

Let us adopt the notation 

6^(P,;i) + 
dUMPii) n 

dP P' + 

dU'(P;i) 
fi'(P';i)- n dP 

To ease the notation further,   we shall assume that a statement concerning ö'(P;i)+ over an 

interval (P., P, ) applies only for P. < P < P.,  unless an explicit statement is made to the con- 

trary.    Similarly,   a statement concerning 6'(P;i)— over (P., P, ) will apply only if P. < P < P.. 
n 3      ^ ' J K 

A statement concerning an unsigned quantity 6' (P;i) will apply to both 6' (P;i)+ and ö' (P;i)— once 

the above condition is imposed.     If a statement concerns several unsigned quantities,   such as 

6'(P;1) and ^'(P^),   it will be inferred that the statement applies as long as both quantities are 

evaluated by taking the limit of the derivative in the same way. 

We shall prove the theorem by demonstrating a stronger property;   namely, 

for all     P e (0, 1): 

6'(P;2) > ö^P; 1) n n 

and 

U' (0:2) < U^O; 1) 
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V {i;2) > U'{i; 1) n n 

where n > 1. 

First consider F r 

U^CP; 1) = Pfr^pj - 1 !> - qjd  1X11  + (1 - P) y1p2 

+ [Pr1 + 1 - P] d    V° 

U'^PiZ) = Py2p1   + (1-P) |y2(p2-7,2)-q2dT2A2j 

+ [P + (1 - P) r2] d   CV° 

The game F'. is equivalent to F° when the evader is not allowed to move until after the first look. 

Both boxes are strictly admissible.    The functions Ui(P; 1) and U1(P; 2) must intersect at the 

point P0 that corresponds to the evader's good strategy in G°,   where 0 < P. < 1 (see Appendix D). 

Both functions are linear over (0, 1).     By taking the derivative of UUP; 2) and applying the 

inequalities 

— > V° > 
y?(p?-v?)-q?<i   x-, 

l-r2d 

it can be shown that 

for all     P €  (0, 1): 

S'^PiZ) > o 

Similarly, 

for all     P €  (0, 1): 

Ö^(P; 1) < 0 

Therefore,  the required properties are satisfied in Fl. 

We shall now assume that these properties are satisfied in F 

we shall show that they are also satisfied in F' .    To do this,   we must first consider the special 

modified game F" .    In F" ,  the evader is not allowed to move until two looks have been made; 

that is. 

n-r where n > 2;   moreover. 

F„ .look , F look 
n-1 n-2 

Let U"(P; i j) represent the payoff in F" when the evader uses an optimum strategy and the 

searcher an optimum strategy after looking first into box i and then into box j.    No moving can 

occur until two looks have been made, 

as functions of the first two looks plus 

occur until two looks have been made.    Therefore,   both U"(P; 12) and U"(P; 21) can be expressed 
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TH+T, f Pr. 1 
[Pr1+(1-P)r2]d  !     2Un.2  [Pri+(1lp)rJ 

Taking the difference between U"(P; 12) and U"(P;21) cancels this unknown term,  and it can be 
shown that 

for all     P e (0, 1): 

6"(P;21) > a"(P;12) n n 

The functions U" (P; 22) and U" (P; 21) differ only in their dependence on 

Vk-i  [P + (1-P)r2 
; 2]    and   UA-1 [p + (l-P)r2 

; ^ '  respectively. 

For all     P e (0, 1): 

5'    ,(P;2) > ö'    .(P; 1) n-1 n-1 

and it can be shown that 

for all     P e  (0, 1): 

6Jl(P;22) > 6"(P;21) 

Using the same reasoning on U" (P; 12) and U" (P; 11) and combining results,  we find that 

for all     P e (0, 1): 

6"(P; 22) > (5"(P;21) > 6"(P; 12) > <5"(P; 11) n n n '        nv ' 

But, 

U"(P;i) = min n 

■u"{P;ii) n 

U"(P;i2) 

Therefore, 

for all     P e (0, 1): 

6"{P;2)> 6M(P;1) n n 

Consider the functions U1    .(P) and U     .(P).    In these cases F" -► F1    , in exactly the same n-1 n-1 n n-1 J 

manner as F'  -* F     ..    Let P    and P,  represent the bounding points of the no-move region in 
F   _1.    Furthermore,   define P_(l),   F_(2),   P+(l) and P+(2) by 

P  (1) 

P  (2) 

P+(l) 

P+(2) 
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"1 

and note that PJ2) < PJ1).   P+(2) < P+(l)- 

For all       P e  (0, P_): 

For all       P e  (P+, 1): 

ön-l<P
+

)-^6n-l(P>=-^»ö;-l(P
+)+       • 

From this,   it follows that 

for all       P e  [0; P_(i)]: 

6^[P_(i); i]- » ö'n{P; i) = 6'JPJi): i]- > ö^[P_(i); i]+      ; 

for all       P e  [P+(i), 1 ]: 

«^P+(i): i)- > «^(P; i) = ö^tP+a); i]+ > <5^P+(i); i]+     . 

Furthermore,   if P    < P,  (i.e.,   P    ^ P+),  we have 

for all       P e  [P_(i), P+(i)]: 

6^(P; i) = 6^(P; i)       . 

Both U'    .(P) and U     . (P) are convex.    Therefore,   6' (P; i) and (5"(P; i) are monotonically n-1 n-1 n n •' 
nonincreasing functions of  P.     Furthermore,   if P, < P., 

5' (P.;k)+ >ö' (P.;k)- n     i n    j etc. 

Consider the interval [0, P   (2)];   in this case 

Pe   [0;P_(2)]   => P e  [0; P_(l)] 

Therefore, 

for all       P e  [0, P_(2)]: 

6'n(P; 2) > 6^[P_(2); 2]+ > Ö"[P_(1); 2]- > Ö"[P_(1); i]->6' (P; 1) 

(This statement need only be considered when P    > 0,   and hence when P_(2) < P   (1).) 
Now consider the interval [P  (2), P   (1)] and note that this interval may intersect [P  (2), 1] 

For all       P e  [P_(2), P_(l)]: 

Ö^(P; 2) > 6^[P_(1); 2]-> Ö^PJl); 2]- 

> Ö^[P_(1);1]-^6^[P_(1);1]- 

= 6^P: 1)       . 

Therefore, 
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for all      Pe  [0,P_(1)]: 

1 

ö'(P;2) > 6'{P; i) n n 

A similar development shows that 

for all      Pe  lP+(2), 1]: 

0<{P:2) > 6'{P; 1) n n 

If P_(l) < P+(2),   we may write: 

for all     P e [P (1),  P+(2)]: 

ä'(P;2) = ö"(P;2) > ö"(P;i) = ö'{P:i) n n n n 

Hence, 

for all      P c  (0, 1): 

a^P;2)> 6^(P;1)      . 

To complete the proof,   we must show that 

U^(0;2) < U^0;t)       , 

U^(1;2)>U^1;1)      . 

To prove the first inequality,   we can apply the inequalities 

ylp2 p2 
 =-=—   = — > V0>max U     ,(P) > U     ,(0) T. a „       n-1 n-i    ' 
1 -d   1 ^ 

> U<o(0) = >'2(P2-'?2)-Cl2d     X2 

l-r2d ' 2 

to the expression 

U;(0,1)-u;(0;2) = yip2-y2(p2-r)2) 

q/h2+ (dTl-r2dT2)  U^^O) + 

The second inequality can be proved by using the equivalent approach (or by switching the labels 

on the boxes). 

Convergence:—   We can view the truncated games F    and F'  as being those games in which 

the moving costs are set equal to zero after  n  looks have occurred.    As  n  increases,  the evader 

must wait longer before he can move at no cost.    Hence, 

for all      P e (0, 1) n > 0: 

U  ^AP}< U  (P) n+1 n 
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~1. 

and 

for all     P e (0. 1)     ,       n > I: 

Since the evader need incur a moving charge only when it is to his advantage, 

for all     P e (0,1)      ,       n > 1: 

U (P) >U'(P) >\JX (P) n n 

For any fixed P e (0, 1) neither U (P) nor U^P) can increase with n,  and both functions are 
bounded  from below by U   (P).     Therefore,  both functions must converge in the limit and we 
can define 

U(P) =  lim  U  (P) n 

V'{P) =  lim  U'CP) 

The functions U   (P) and U^P) are bounded,   continuous,   and convex.    Hence,   in the limit, 
U(P) and U'(P) have these properties also.    Furthermore,   there must exist a unique Pn e  (0, 1) 
for which 

P < P0   =?• U^PjZ) < U'(P; 1) 

P > P0   =^> U^P; 1) > U^PlZ) 

Although 0 < P" < 1 for all finite-   n,   we cannot automatically infer that 0 < P    < 1 in the limit. 
To prove that this property exists,  we must show that 

U'(0;2) < U^O; 1) 

U'(i;2) > u'(i; i) 

These inequalities can be proved true by using the previous method,   since the inequalities such 
as 

T2 
r.|P7 r?(p7 - v?)~ q7d   x. 

> V°> V     .(0) >     c    c 

n-1 
1 - d 1 - r2d 

hold in the limit. 
Therefore,   there exists a pair of functions 

U(P) =  lim  U  (P) 

UMP) =  lim U'P n 

that satisfy Eqs. (4-3) and (4-4) where 

(1) Both are bounded,   continuous and convex, 
(2) There exists a unique P0: 
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0 < P„ 

p < p„ 

P>  Pn 

=> u'(P:z) < u'(P; i) 

=*> U'(P;Z) > V'{P: 1} 

Uniqueness:—   In F   ,  the evader can guarantee a payoff of U  (P) and the searcher can limit 
the evader to U (P), given P.    Hence U  (P) is the value of F  ,  given P.    Similar considerations 
apply in F' .    For all n > 0,   P e (0, 1),  there exists a minimum probability of detection on the 
next look that is equal to 

pnq 0^1 

U1 -Pr ^2 J 

> 0 

This statement applies in the limit as well,   since 0 < P    < 1.     Hence, 

lim  Pr{F    lasts to F.}   = 0 
„-™ n 0 

This equation implies that,   for any given P e (0, 1),  the evader can guarantee a payoff  lim 
n-»oo 

U (P) and the searcher can limit the evader to this amount in F.    Similar considerations apply 
in  F'.     Hence,   lim   U  (P) is the value of  F,  given  P,   and  lim  U'(P) is the value of F',   given P. 

n-»-oo n-»00     n 

Furthermore,  there is complete feedback (for any P) in Eqs.(4-3) and (4-4).    Therefore,   lim- 

U  (P) and   lim U'(P) are the unique bounded solutions to Eqs. (4-3) and (4-4),   and they yield the 
n-»°o 

optimum strategies in  F   and  F'. 

Theorem 3. 

P. e (P   , P   ),   the no-move region.    Assume that Pn < P   ,   and define P  (1) by the relation 

P  (1) —-—► P   . 

The function U(P) is linear over (0, P 
P  (1) > P   .     But, 

Hence,   U'(P; 1) is linear over [0, P (1)],  where 

for all     Pe(P0,i):   U'{P) = U'(P; 1) 

Therefore,  U'(P) is linear over [P«, P (1)],  which includes P    as an interior point.    This state- 
ment contradicts the definition of P    in Eq. (4-5). 

In the same manner,   P    cannot be greater than P   . Therefore,   Pg e (P_,P+). 
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APPENDIX C 

A PROPERTY OF {W!r(P)} 

In Sec. b.5,  the general method for calculating the searcher's optimum strategy in H' (his 

good strategy in' G) was developed.    The method was extended to cover the generalized reward 

structure and discounting in Chapters 6 and 7.    One a£    imption was made which we must now 

prove,  i.e., that 

dW.'   (P) 

-^2 *       ciP       < ^ ,       for each a. 
1 i 

The payoff associated with each state in the searcher's Markov process is linear in   P.    Let 

dW.'r(P) 

dP 

dW/ (P) 

dP- 

dW.-CP) dW.'t(P) 

dP- 

dU^P) 

dP 

dU;(P) 

dP 

The above functions are those that apply when the assumed optimum search strategy is used.    The 

derivatives ö!    and 6.   are associated with cr. ,   and 6.   is associated with a. .    In addition,   we can 
it ii i 

associate all of them with an interval TT. belonging to both the no-move and recurrent regions.    We 

can also define 

6    E 

dW+(P) 

dP- 

dW  (P) 

dP 

dW|(P) 

dP 

dW^(P) 

dP~ 

dU+(P) 

dP 

dUJP) 

dP- 

-M-, 

Let us first consider the case where both moving regions extend into the recurrent region. 

Number the intervals (if any) of the no-move region to the left of P„ as T   ., T     , . . .   .    Number 

the intervals (if any) that belong to the no-move region and lie to the right of Pn as tf      T7, ...   . 

Let TT    (if it exists) represent the interval belonging to the no-move region that is adjacent to it   . 

Similarly,   let T,   represent the interval in the no-move region that is adjacent to T   .    (Note that 

IT    and TT    may be the same interval.) 

The recurrent chain of the searcher's Markov process can be partitioned into two parts, 

S— and S+,   and must have the following form: 

~ri-gi-4i»i 
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States o-     and er    are equivalent if P     = P 

Let us consider the effect that the "good" probability distribution Y  .  = {y ^(1),  y  .(2)j has 

The states a   . and cr    are the same if P    = P„. -1 - _o 

on the payoffs associated with each CT/  e 2— other than a  .    If y   .(2) = 1,   then ö!r = ö.1.    If, 

the other hand. y_1(2) = 0,   then ö!r = 6.^,   where 6^ 

But, -v.z4 «j* « ^i.  and -(i2 $ 6i
t
+1 « 

latter event. 

dU'(P)           r         .                       dU'JP) 
dP      <<*<'       ^t           d

+
p      «- 

Therefore,   we must prove that ö!    ^ —ji2 when cr.    e S 

^i1 

(i.,  unless (T 

Since 0 ^ y_ . (2) ^ 1,   we find that 

T,    when ff- , . b i+l In this 

Similar reasoning can be used to show that if a.    e S+,   then ö. -^ 

state other than cr    belonging to Z)+,  we find that — (x-, <: 6! 

if ar e S+. 
a 

!r<Jö.t,. 
1 1-1 

Hence,   for any 

^ [i.,   and we must prove that 6'   ^ fi. 

We shall first show that both a     and cr.    must belong to the same set S— or S+.    Assume that 

0",    e S—.    Let a.   -» cr.   imply that a deterministic sequence of looks connects a. to cr. .    Also, 

let 

imply that the same deterministic sequence connects cr.   to cr.   and cr,    to cr   .    For the moment, r J r    ^ i j k n 
set y_1(2) = 1,   y^i) = 1.    Since crb  € Z-, 

r   1 

But, 

Therefore, 

r     2 
-1 

To prove the theorem in the case where both moving regions extend into the recurrent re- 

gion,   we need only show that ö!    ^ — \i    if a
a , au  E  S—.      In general,   öa < ö    = M-i •    If <5_  = 5   ,   we 

are at the lower boundary of a strategy interval,   and the proof can be accomplished in the pre- 

ceding strategy interval.    Therefore,  we can assume that 6    < ö     = M-i • 

If both ffa   and <r     belong to S- then TT    must lie to the left of P«   (i.e.,   P ^Pn).     If at 
—               -                                                   -                                                          "                        t      2 

least~twu intervals belonging to the no-move region lie to the left of P       then cr      ► cr ,  and 

cr      ► cr,   .    Therefore, 
+ 

~1 
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~1 
r     2   .  „ r 

a        -1 + 

If n-    = (P  , Pn), then er1" = o-r. and a -'      0" a -1 

Z r c  * a, b 

t    2 
(T      ►   CT , a + 

In either case. 

Therefore,   W^(P) = WJP) = U_(P) is functionally related to w5(P) exactly as W^(P) = 
W^(P) = U  (P) = U^{P) is'functionally related to W (P) = W'(P) = U+(P).    We may express these 
payoffs in the form 

WJP) = a_P + b_{l - P) 

W^(P) =a^P +bb
r(l-P)       , 

W^P) = aV + bV - P) a a a 

W+(P) = a+P + b+(l - P) 

The payoff coefficients must be related as follows: 

r a    = x    + y a,        , a     Ja  b       ' 

a    = x    + y a , a        a     -'a  + 

b    = x,   + y^b, b     •'b b 

b    = x.   + y, b,       , a        b      ■'b   + 

where y    is of the form r.  d    and y,   is of the form r-, d    where k, T < «>. ■^a 1 ■'b 2 
If both r. and r. are greater than zero, 

öat<ö- = ^1=^-^2 = ö
+
<öbr       • 
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If one of the r's is equal to zero,  the properties 

W  (P   ) = W_(P_) 
f 

and 

together with 

W^(P+) = W+(P+) 

=* 6+ < öb
r      . 

If both r, and r, are equal to zero,  the assumed case in which P_. < P    < P. cannot occur. 

Therefore,  ö^-H^.    Also,  ö^1"«:^.    Hence W^fP) = Wb(P),  so that ö^r = 6^".    Thus, 

In order to complete the proof,  we must consider the case where one but not both of the 
moving regions extends into the recurrent region.    Let us assume that P   < P«. and P    < PQ?

- 

In this case,  the recurrent chain must have the following form: 

Here,   c   . is a pure state and TT    is the interval lying in the recurrent region with P0. as a 
boundary.    For any <T. e S—,  the function W'.(P) = U'.(P).    Therefore.ö!1" ^ 6. only if cr.r e St. 
For any such state,   ö^^:ö!r<6.   ..    But CT    does not belong to 2+.    Hence,  — ji, ^ 6!r ^ ^. for 
each recurrent state CT.r. 
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APPENDIX D 

SOME PROPERTIED  OF G' 

We must show that the following conditions exist in G". 

(1) Define PQ as a point belonging to the probability simplex that is a solution 
of the equations 

U°(P; 1) = U°(P; 2) =  . . .   = U°(P; N) 

At least one Pg must exist and each one that exists must belong to the inte- 
rior of the simplex. 

(2) All boxes are admissible if and only if there exists a PQ that is the unique 
point at which U0(P) is a maximum.    If this occurs,  PQ must also be the 
unique solution of 

tHP; 1) = U°(P; 2) =  . . .   = U°(P; N) 

(3) If any inadmissible boxes exist, there must be at least one for which 

pi ^ ^ Uo(P0) «: maxU°(P) E V° 

This statement applies for any PQ. 

(4) In the subsimplex generated by the admissible boxes,  there exists a 
unique  P  where U°(P) = V. 

(5) There exists a Y belonging to the probability simplex wi^h which the 
searcher can limit the evader to V°. If box i is inadmissible, y. = 0. 
If box i  is admissible,  W0(Y;i) = W0(Y). 1 

We have defined U°(P) by U(P) = minU°(P; i),where 

y.     Z    p.pj - p.fa + q.d\) 

u°(P;i) = —1—  
l-d   "(l-p.q.) 

Box i is inadmissible if and only if 

pi — < V 

and box i  is dominated by box  j  if and only if 

r } 
TJ.) - q.d }\. 

i 3 J 

1- r.d ^ 
] 

Consider some properties of U°(P;i).    Let S^, represent the probability simplex where for 
N . th 

all i = 1. 2, .... N, p. > 0, and   S    p. = 1.    Let P   represent the i     vertex of S-, where p. = 1. 

A ray belonging to S-. extending from P intersects the opposite face at a point P' where p.' = 0. 

Along this ray each component of P other than p. can be expressed in the form p. = (1 — p.) pi, 

and 
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dU°(P;i) 
dP. 

Ji-dV-p^)]' 

(i-r/i)y.     I    pip. 

T.      r T- 1 

+ (l-d.1)[y.(p.-r,i)-qid V | 

At any point along this ray except P' (and at this point also if «  > 0),   1 — d  1{1 — PjqJ  > 0-    There- 
fore,   along a ray extending from P ,   U°(P; i) behaves monotonically.    That is,   as p. decreases, 
U°(P; i) must be monotonically increasing or decreasing,or equal to a constant.    (If box  i  does not 
dominate any other box,   U0(P; i) must be monotonically increasing as p. decreases.) 

Let R.(c) represent the hyperspace U°(P;i) c.    This equation can be expressed in the form 

p.p. 
y i 

piK(pi_T,i)_qid  '^i + c)] + yi    s 
Therefore R.(c) is a linear hyperplane.    If 

min  U°(P; i) < c < max U0(P; i) 
pesN pesN 

then R.(c) partitions S^ into two   nonempty hyperspaces of degree N —1.    Let us exclude R.(c) 
from each of these spaces.    Then,   U°(P;i) must be greater than  c   over one of these spaces and 
less than   c   over the other.    This follows from the monotonic behavior of U°(P;i) along any ray 
in SN that intersects P .    If c  is equal to 

max U°(P; i) 
PeS,, 

min  U°(P; i) 
PeS» N ""N 

then R.(c) must include at least one vertex of S 
W 

Therefore,   U°(P; i) achieves its maximum over 
SN at least one vertex and also its minimum at at least one vertex. 

Let {A, A'} represent a partition of the boxes into two sets.    Let S»  represent the subsim- 
plex of S-. where    Z     p. =  1.    Define T.  as the hyperspace belonging to S^ where 

i cA 

for all     1, jeA:    ü=(P; i) = tT°(P; j) = U°(P; A) 

Let us show that there exists at least one P    belonging to S,^ where 

for all     i = 1, 2, U°(P0;i) = U°(P0) 

Such a point must belong to the interior of S..,   for at any point   P  belonging to a boundary of S^, 
there must exist at least one p. = 0 and one p. > 0.    In this situation,   U°(P;i)  > U°(P; j). 

We shall first prove that this property is satisfied when N = 2.    The simplex S? is then the 
unit interval on the real line,   and we may write 

U°(P   ; 1) 
Y1(P1 -TJj) -q^ 

v 
vl     pl 1 - <  a       mP  ;2) 
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mP   ;2) = 
Y,(P7 - v?) -q?^ ^2 2 < ^ = ir(P2; 1) 

1- r2d 

As a result,  there must exist at least one P- belonging to S,. 
We can use induction to prove that at least one PQ exists in S^.    Let A include the first 

N — 1 boxes in a set of N boxes.    Assume that there exists a P0A belonging to S, where 

for all    ieA:       U°(P0A; i) = U°(P0A; A)       . 

Hence,  we assume that T.  intersects S,.    Also, 

N ''N for all    ieA:       U0(P   ;i)= — — a 

Therefore,  T .   contains the vertex P^.    Even when a  = 0,  the point P^ is a bounding point of T, 
for U°(P; i) is bounded and continuous over the interior of S-j. 

A simple manipulation reveals that 

N N U0(P   ;A) > UTP   ;N) 

and 

UTP0A;A)  <U°(P0A;N) 

Therefore, there must be at least one point P    belonging to T .  where 

U°(P0;N) = U°(P0;A) = U'(P0)       . 

Let us assume that all boxes are admissible.    Then, 

pi for all    i = 1, 2, . . . , N:    — > max U°(P) = V° 
"        PfS 

Consider a point P    belonging to S-. where 

Uo(P0) = V'^V       . 

The intersection of R.CV1) with S^ includes the interior point P    and must partition SM into two 
nonempty hyperspaces of degree N— 1.    But, 

for all ^ 
Pi 

U°(PJ;i) =-1 > V° >V 

Therefore,   all but the i     vertex are included in one hyporspace and P   is included in the other. 
Over the latter,   U°(P; i)  < V.    This inequality is true for any  i  and implies that for any P ^ P. 
belonging to SN,   there exist an i and j  where U°(P; 1) < V < U0(P; j).    Therefore,   Pn must be 
the unique intersection in S^ of {U°(P; i)}.    It must also be the unique point at which U°(P) is a 
maximum. 

Before proving the converse of this theorem,   it is necessary to develop some additional prop- 
erties concerning {U°(P; i)} .    Consider a partition {A, A'} where  A  contains more than one box. 

~\ 
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n 
In this case,  P1 e T. for all i t A'.    Also,  there exists at least one point P0A belonging to 

0     R.(c).    If 
ieA     1 T. 0  S..    Consider the hyperplane RA'

C
' 

min U°(P; A) < c < max U°(P; A) 
PcT, PeT, 

then RA(c) partitions T. into two nonempty hyperspaces.    If the boundary RA(c) is excluded from 
both of these hyperspaces,  U°(P; A) is greater than c over one and less than c  over the other.   It 
follows that U°(P;A) must be a maximum at a vertex P   e S.  or at a point belonging toT.Os.. 
Similarly,  it must be a minimum at at least one such point. 

Let us assume that there exists aPg that is the unique point, belonging to Sjvj atwhichU°(P) = V°. 
L,et A include all but the N     box.    Let PQA represent a point belonging to T. fl S..    The function 
Uo(P0A;N) >U(P0A;A).    Therefore,  U°(P0A;A) <U°(P0;A) = V°.    This is true for any P0A belong- 
ing to T. D S..   Hence,  U°(P0;A) must be a maximum at P    .    The hyperplane R,(V°) cannot con- 
tain P^ as well as P.,  for it would then be of degree one and intersect S. .    Therefore, 

—   = U°(P   ; A) > tHP,,; A) = V 

Similarly, p./a > V° for each box, and all boxes must be admissible.    Therefore,   if U°(P) is a 
maximum at a unique point that is some P0,  all boxes are admissible and P    is the unique point 
where,  for all i,   U0(P; i) = U°(P). 

Let us consider the case where at least one box is inadmissible.    We must first show that 
U°(P) will be a maximum at at least one point where,  for some i,   U°(P;i) > U°(P).    Let  B  rep- 
resent the set of admissible boxes and B' the set of inadmissible boxes.    Then, 

for all     i € B: i >V 

for all    i e B':    — ■$ V 

Consider a point P c Sj,. 

For all      j e B':     U^P; j) > min U0(P; i) 
ieB 

Let PnTD be a point belonging to S-, at which 

mininP.,,;!) =  max {minU0(P;i)} = V° 
icB 0B PESB    ieB ' E 

Then,  V°  $ V° and 

pi for all    ieB:      -^ > V° » V^ 

Therefore,  all boxes belonging to B are also admissible in the reduced game involving only those 
boxes.    Hence,  P0R is the unique point belonging to T„ 0 S— 

Consider a PQ e S« where for all i = 1, 2, . . . , N,  U^PQ; i) = U'(P0).  and assume that 
Vg < Uo(P0).    Define B" as the subset of B' where 
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for all    i e B":       p,- = max p. 

Then,  U°(P; B) is a maximum over S„„ which does not include P..    Therefore,  for any i £ B", 

U-<P0) = U-(P0;B) <-^< V« 

If VJ, is less than Uo(P0),  then U^P) can not be a maximum at Pg. 
If U°(P0) = Vg,  then U^P.) < V*.    In this situation,  U^P) will be a maximum either at P 

as well as P. or at neither point.    Therefore, if any inadmissible boxes exist,  U°(P) must be a 
maximum at at least one point where all the functions {U0(P;i} do not intersect. 

Assume that U0(P) = V° at a point where 

for all    j ^ 1:      U^P; j) > U°(P; i) = U^P) 

But,  U^P;!) is a maximum at at least one vertex,  and P   is the only vertex where U°(P; i) = U°(P). 
Therefore, U°(P) is a maximum at P   and box i  dominates all of the other boxes.    The function 
U°(P; i) must be a minimum at at least one vertex other than P ,  and there exists at least one in- 
admissible box where 

-1 < U°(P0) « V      . 

If no box dominates all the others,  and if at least one box is inadmissible,  U°(P) must be a 
maximum at at least one point belonging to a subspace T. .    Here,   A must include at least two 
boxes,  but we can choose it so that it does not include all N.    Furthermore,  the point in T,  can 
be chosen so that 

for all    i ^ A:      U°(P; i) > U0(P; A) = V° 

The function U°(P; A) must be a maximum at a point belonging to T. Pi S.  or at a vertex P1 not 
belonging to S. .    At each of these vertexes,  U°(P ; A) > U°(P ; i).    Therefore,  there exists a 
point P0A £ TA ("1 SA where U°(P0A;A) = V°.    Also, 

for all     i ^ A:      -± = LHP1; A) ^ U°(P0A; A) = V°       . 

Hence,   A must contain all of the admissible boxes, and for any Pn in S^ there must be at least 
one i e A where 

0 N 

^<U-(P0)<V      . 

The set A could have been chosen so that it would contain some inadmissible boxes.    How- 
ever,   it contains all of the admissible boxes and there exists a P0A £ T.HS. where U°(Pn.) = V° 
Therefore, we can consider the reduced game involving only those boxes belonging to A,  and re- 
peat the process.    Each time this is done,  at least one inadmissible box is removed.    Eventually 
only B, the set of admissible boxes,  can remain.    In SN, the intersection T« H Sp, consists of a 
unique point P0B,   and we can now state that U°(P0B;B) = U°(P0B) = V.    Also,  for any P. in S,., 
there must exist at least one inadmissible box for which 

pi -^ «Uo(P0) «V      . 
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Let us now show that there exists a good strategy for the searcher.    This will imply that V° 
is the value of G°.    Assume that the evader first hides with probability P e SN and that the searcher 
looks first into a box i that belongs to B.    Assume further that the evader always uses the opti- 
mum P0B from then on and that the searcher never looks into an inadmissible box.    Let U°'(P; i) 
represent the resulting payoff: 

N / -    X 
U"(P;i) = Ti    2   PjPj - PiVipi + qid  1Xi)+ (1 _ Piqi)d    V° 

But,  U°'(P;i) is linear in P  over Sg.    Furthermore, 

for all    i e B:      U,"(P0B; i) = V      . 

Since Pnr, is the unique ooint in S,-, where minU'lP; i) = V°, 
icB 

for all     i e B:       U^P1; i)  < V       . 

As a result,  there must exist a unique probability vector Y0 e Sj-, where 

"I 

for all    P e ST 

ieB 
'Oi U°l(P;i) = V 

If the searcher uses Y0 to determine each look,  the payoff will equal V° as long as the evader 
never hides in an inadmissible box.    If he does hide in such a box,  the payoff cannot be greater 
for p./a ^ V° for each such box.    Therefore,  ¥_ limits the evader to V°, a payoff that the evader 
can guarantee.    The searcher's good strategy is defined by Y0, which can be calculated by using 
the techniques suggested in Sec. 8.3. 
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