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[ "ABSTRACT

This report summarizes results of studies which were conducted at
North Carolina State College under various contracts with the Department

of the Army rAelative to sources of dispersion of artillery-type rockets.[ 'IMthemtical equations and formulas which are applicable to the analysis

of the ct o f'various dispersion-producing factors on both spin-

- stabiz id and fin-stabilized gun-boosted rockets are presented, and

the~r uses are illustrated by numerical examples. Experimental techniques

are described and some results are given. Implications of mathematical

results relative to rocket design are discussed. A mathematical model

for studying effect of launcher tube motion is given in Appendix B.
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FCHAPTER 1

[INTRODUCTION

The purpose of this report is to summarize the work of the Rocket Research

Group at North Carolina State College for the total period of duration of its

investigations, and to present the results obtained in a unified and related

manner so that they may be of use in the design and development of new

artillery-type rockets. This work was done for Army Ordnance under Con-

tract Nos. DA-O-021 ORD-3190, DA-Ol-021 ORD-4592, DA-36-034-509 ORD-.25,

and DA-01-009 ORD-1022, and it spans the period from June, 1952 to August,

1962. This research group had as its basic objectives the following:

(1) To investigate sources of dispersion of spin-stabilized and fin-

stabilized rockets by theoretical, computational and experimental

I. methods.

(2) To assist in the design and development of experimental methods

1of measuring certain parameters that are of significance in the

study of rocket accuracy.

(3) To act in a consulting capacity for other groups who might be

working on the design and development of artillery-type rockets.

j In initiating the theoretical studies of sources of dispersion of spin-

stabilized rockets, this group first made an exhaustive study of the existing

literature on the theoretical treatment of the motion of spin-stabilized

U rockets in order to determine the most suitable existing mathematical model

which might be used as a springboard for its activities. The theoretical

* treatments given by Davis EDFB]*, Follin IF], Galbraith [Ga], Harrington IH1],

and Herz 1H], and Rankin [Ra] were compared and found to be essentially

i equivalent under uniform assumptions relative to the various physical quan-

tities associated with the motion. This group consequently adopted the

notation and approach used by Harrington as a takeoff point for further

study and development of the theory of rocket motion.

*Bracketed expressions refer to the list of references at the end of the report.

i



CHAPTER 2

FACTORS WHICH CONTRIBUTE TO ROCKET INACCURACY

Before going into the theoretical basis for the study of rocket motion,

we shall examine first certain factors which may lead to rocket inaccuracy.

In later chapters mathematical expressions, called characteristic functions,

will be introduced by means of which the effect on angular deviation for

a unit amount of any one of these disturbing factors may be computed.

All of the factors to be discussed here contribute in varying degrees

to the inaccuracy of both spin-stabilized and fin-stabilized artillery-type

rockets except that of fin misalignment, which clearly applies only to the

latter type of rocket.

In the course of the following discussion it will be necessary to

frequently make use of the term geometric axis of the rocket. Although

the rocket would have to be perfectly formed for a geometric axis to exist,

it suffices for practical purposes to define such an axis as the line of

centers of two circular bands or bourrelets, one placed around the rocket

near the rear of the rocket and the other near the forward part of the

rocket near the point where the body of the rocket begins to taper off

toward the nose.

2.1. Initial Cross-Spin, 1_.

At the instant the rear end of the rocket emerges from the launcher,

the rocket is describing a transverse rotation about an axis passing through

the center of gravity and perpendicular to the axis of the rocket. Thus the

angle (5) which measures the direction in which the rocket is pointing with

reference to some fixed direction (such as the bore-line of the launcher)

is undergoing a time rate of change at launch which is denoted by ') (the

subscript zero being used to indicate here a value at launch). This cross-

spin (or transverse angular velocity) has long been recognized as one of the

significant contributors to deviations of the rocket from the desired

direction of flight.

The cross-spin at launch may be attributed to various causes, one of

which is certainly the tip-off effect induced by gravity because of the

fact that for a short interval during the launching phase the center

hI
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of gravity of the rocket is already outside' the launcher while the rear end

of the rocket is still eng.ged. Other causes. are, atAtributable to behavior

of the rocket within the launcher itself, whern precessional motion of the

center of the rear band of the rocket, static and dynamic unbalance; and

misaligned thrust (see later sectibns) can cause a build-up -through the

tip-off phase of a significant amoiunt of cross-spin at launch.

It is highly probable that launch6 reaction also contributes signifi-

cantly to cross-spin at launch, especiallyin the case of gun-boosted

rockets. Some preliminary experimental' Work in this area indicates that

this is true, but definitive results still have not been obtained.
2.2. InitiLal Yaw, Ao " ..

The yaw of a rocket is defined as the angle which the geometric axis of

the rocket makes with the tangent to the curve described by the center of

gravity of the rocket during flight. This curvu is usually referred to as[ the trajectory of the rocket. It is clear that the larger this yaw angle

becomes, the more tendency there is for the rocket to be driven off the

[ desired flight path by the thrust imparted by' the 'rocket jets. Thus it is

that any yaw which the rocket attains during the tip-off period, and hence

has acquired at the instant the rocket becomes didengaged from the launcher,

I will be a factor in determining the direction of flight of the rocket through-

out the burning period. It is true. that under, desirable conditions the

varying yaw outside the launche' may damp ouat rather rapidly, but its value

at launch still has an effect that endures to the end of burning.

The same factors that contribute to initial cross-spin, as discussed

in Section 2.1 above, can cause yaw at launch.

2.3. Cross-Wind, c"

The component of the wind velocity which is perpendicular to the tra-

jectory of the rocket is a significant factqar in. causing rocket inaccuracy,

especially if the winds are quite gusty. -It will be. seen later that a con-

stant cross-wind has an effect, eqUivaent to'a3 -initial yaw. It will also

be shown that the major contribution of cross-wind to deviation of the rocket

from the desired direction of motion occurs in the interval iMmdiately

following the launching of the rocket " tiiTy if 'the launch velodiy

is not large. Another significant result that shows up in the thery is,
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that wind effect may be diminished by decreasing the variation in the velocity

during the flight of the ropket.

2.4. Dynamic Unbalance, k,

Dynamic unbalance arises rom the fact that the rocket jets are attempt-

ing to rotate the rocket about one axis (the geometric axis for a perfectly

symmetrical rocket with perfectly aligned jets), while, due to the unsymme-

trical distribution of the mass of the rocket, the inclination of the rocket

is to rotate about another axis (the longitudinal axis of inertia). The

angle, Pc , between these two axes is taken as the measure of dynamic unbalance.

The dynamic -ulbalance of an unloaded round may be measured on a machine

designed for this purpose, such as the Tinius-Olsen balancing machine, and

the amount of unbalance may range in magnitude up to several mils(or

thousandths of a radian). This magnitude depends to a great extent on the'

tolerances maintained in manufacturing and assembling the metal parts of

the rocket.

Clearly as therate of spin of the rocket is increased the effect of

a given amount of dynamic unbalance on the direction of motion of the rocket

will be increased. A high rate of spin may also cause a break-up of the

propellant in the rocket motor and thus cause an increase in the amount of

dynamic unbalance of the rocket as the burning progresses.

2.5. Static Unbalance, r.

Ideally, the mass distribution of the rocket should be such that the

center of gravity (henceforth referred to as the c.g.) is on the geometric

axis of the rocket. If this fails to be true, the rocket is said to have

static unbalance, which is measured by the distance, r, from the c.g. to

the geometric axis.

Static unbalance is brought about by the same factors that cause dynamic

unbalance, as listed n Section 2.4 above. The chief contribution of static

unbalance to rocket inaccuracy is made through its effect on the behavior

of the rocket during the launching (or tip-off) phase, and thus shows up in

the form of additions to 4 and A0 , the quantities discussed above in
0 0

Sections 2.1 and 2.2.

2.6. Linear Thrust Misa L e0
If the result ant line<O trs ueothrcket .jets ails t s. "i:i:

through the c.g. of the 'rocket, the rocket is said to, have: linear thrut

misalignment, hc smasrdb h distanice- L, from teeg oti
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line of thrust. When the rocket has such a misaligned thrust, it is clear

that there is a tendency of the thrust to rotate the rocket about a line

through c.g. and perpendicular to the axis of the rocket, and this torque[can cause significant deviations of the rocket from the desired direction
of flight.[ Linear thrust misalignment can be caused by lack of uniformity in

the manufacture of the jet nozzles, by improper insertion of these nozzles,

or by tilting of the nozzle plate in assembling the rocket. This type

of disturbance could also be caused by erosion of the jet nozzles during

burning, by the improper attachment of a diverter plate, or by the plugging

1 of nozzles by pieces of propellant during burning.

In cases where the rocket spins, the effects of misaligned thrust tend

to cancel out, and hence this factor may then become relatively negligible

in cases where reasonable tolerances are maintained in the manufacturing

and assembling of the rocket. For the purpose of counteracting this effect,

it is thus desirable to impart some spin to fin-stabilized rockets.

2.7. Angular Thrust Misalignment, a--c"

The angle,a c . which the resultant line of thrust of the rocket jets

Umakes with the geometric axis of the rocket is called the angular thrust

misalignment of the rocket. Such misalignment can be attributed to the

same causes as those listed above in Section 2.6 as .causes of linear thrust

[misalignment.
Practically speaking, the effect of angular thrust misalignment on

I the motion of spin-stabilized rockets is negligible, but it may be signifi-

cant in the case of fin-stabilized rockets.

2.8. Fin Misalignment,

If a perfectly made fin-stabilized rocket is suspended in an air

stream (such as in a wind tunnel) which initially is parallel to the geometric

axis of the rocket and in such a way that the rocket is free to rotate about

the c.g., then the air stream will cause no change in the direction of

the geometric axis. However, if there are bent fins or other imperfections

in the fin assembly, the rocket, under the above conditions, may assume a '

f position in which its axis makes an angle, lci relative to the direction

of the air stream. This angle is taken as the measure of fin misa-ignment.

Thus -i rocket with misaligned fins has a natural tendency to assu ay

relative to the resultant direction of air flow during its flight, n h :

can ~be a significant source of-inaccuracy for fin-stab Ied rcesIlz4_ _0



CHAPTER 3

MATHEMATICAL BASIS FOR STUDY OF THE MOTION OF

A SPIN-STABILIZED ROCKET DURING BURNING OUTSIDE THE LAUNCHER

3.1. Reference Systems

In setting up tiedifferential equations which describe the motion of a

rocket, several coordinate systems are used. For complete details as to all

of these coordinate systems, reference is made to [H-l] or ECH]. For the

purposes of the present report, it is sufficient to say that the location

of the center of gravity of the rocket in space, and the rotational motion

of the rocket about the c.g. are completely described by use of the three

rectangular coordinates 0, Yo, Zo of the center of gravity, and by the

three complex angles, 1@, @, A, denoting respectively orientation, angular

deviation, and yaw of the rocket. All of these quantities will be described

more fully in what follows.

The coordinate system to which Xo, Yo' Z are referred is a right-handed

rectangular coordinate system 0o- XoYoZo, with the X -axis along the bore-

line of the launcher and X measured positively in the direction of travel0
of the. rocket, the Y -axis running vertically with Y measured positively

upward, and the Z -axis running horizontally with Z' measured positively
0 0

to the right (as viewed from the rear of the launcher). The origin 0 of
0

this system is fixed on the boreline in such a position that the X -coordinate
0

of a point (denoted by I ) at the muzzle of the launcher is given by
v 2 ( Fig.3.)where v is the launch velocity (velocity atXO1l. 0 /2)SeFg310

the end of tip-off) of the rocket, and G is the acceleration of the rocket

outside the launcher. It is assumed here, as in much of the later work of

this chapter, that G is constant during burning. In actual practice, the

average value of G over this interval will serve as an adequate approximation

for use in this mathematical model. It should be noted that for rockets

fired from an open launcher, X can be interpreted as the length of the

launcher, but for boosted rockets, I varies with the amount of boost and

is thus often called'the effective launcher length.

Since. X .measures distance down range along the boreline, one sees that

for. the interval immediately following launch, where there is little bending,,

of .the trajectory, the.X -coordinate of the c.g. during burnin is gi1en
0
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by
lX G(t-to) (t-to)

0  Vo

where (t-to) represents the time elapsed since the c.g. left the muzzle of
0

the launcher. The other two space coordinates, YOP Z of the center of

gravity (denoted by c.g.) are dealt with most conveniently as components

of a complex number R, where

R =Y + iZ
0 0

This quantity is called the linear deviation of the rocket, and it clearly

determines how far and in what direction the c.g. deviates from the bore-

line of the launcher. Later in this report, in order to take care of

situations where there is appreciable change in the direction of the tra-

jectory from launch to burnout, the meaning of R will he extended to denote

the linear deviation of the rocket from an ideal trajectory that the center

of gravity would traverse under the actions of jet thrust, aerodynamic drag,

and gravitational force, with all other forces neglected. In general, we

shall thus write

R = R + iRz,

so that R denotes the upward or downward (negative) displacement (in ft.),

and Rz the horizontal displacement of the c.g. from the ideal trajectory.

This means that the reference line for R in this case is the tangent to the

trajectory rather than the boreline 0 X . If the trajectory is essentially

a straight line, clearly Ry Y* and Rz -1 Zo. The magnitude of R is clearly

given by

IR I = ( 2 + Rz2)1/2.

Thus, for example, if one has given that

R=- 0.h + i 0.3

for a certain point on the trajectory., this means that the c.g. of the

rocket is 0.h ft. downward (measured perpendicular to the tangent) and 0.3

ft. to the right of the desired path of flight (the ideal trajectory). The

*The symbol " is used to denote "approximately equal to.-It
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magnitude of this linear deviation is

[ IR I= [(-0.4)2 + (0.3)2] 1/2 0.5 ft.,

so that at the point in question the rocket is actually a distance of 0.5 ft.

from the desired trajectory.

In order to study the rotational motion of the rocket about its c.g.,

as well as to deal with the--direction of motion of the rocket during burning,

a second right-handed rectangular coordinate system O-XYZ is used, with 0

at the c.g. of the rocket, and with OX, OY, OZ fixed in direction parallel

respectively to 0 o0 0 Y and 00 Z0 as given above. Also the complex angles

93, A, and are introduced. The complex angle @ is defined as the angle bet-

ween the forward tangent to the actual trajectory of the rocket and a re-

ference line which at first will be taken as the boreline OX of the rocket

launcher. This angle is measured positively from the positive reference

line to the forward tangent to the trajectory. 'This angle will be referred

to as the angular deviation of the rocket, and clearly defines the direction

of motion of the c.g. of the rocket. Later, in order to take care of cases

where there is appreciable change in direction of the trajectory during

Iburning, the reference line for measuring 9 will be taken as the forward
tangent to the ideal trajectory.

I The angle 0 is used as a measure of rocket accuracy, since a large

magnitude for 0 at burnout (denoted by %) indicates a large deviation of3 lthe rocket from the desired trajectory, and this deviation will in turn be

reflected in the deviation of the impact point from the desired target

3 point. Furthermore, lack of reproducibility of ab from round to r ound in
SU-a given firing of successive rounds will be reflected in the dispersion of

the impact points for this group of rounds.I It is convenient to represent 3 as a complex angle, where, as in

dealing with linear deviation, R, above, the term complex refers to the

I familiar complex numbers of the form a + i b which are dealt with in algebra.

One can then embody in one expression for the angle 0 both the size of'the,

I angle, or magnitude (denoted by 0J ), and the location, or orientation, of
the plane in which the angle is measured. This plane rotates as the roce t t -

moves down range. Thus we shall write, in general,

= Z

W,
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where the components Oy and E, are in radians, Oy being measured positively

upward in the vertical plane through the reference line, and @Z measured

positively to the right in the plane (through the reference line) perpendi-

cular to that of Sy.

The magnitude of the complex angle 9 is then given by

= (D y2 + az 2)1/2

and the orientation of the plane (called argument of 9) in which this

magnitude is measured is given by

Arg 3 = arc tan EVA,

This latter angle is measured clockwise from the vertical as one faces down

range.

For example, if

(3 - 0.0070 + i 0.0050

at a certain point on the rocket trajectory, and if the boreline of the

rocket launcher serves as references line, then at the point in question

the forward tangent to the trajectory is pointing 0.0050 rad. (approximately

5 mils) to the right and 0.0070 rad. (or 7 mils) downward from the borelimie

of the launcher (or from the desired direction of motion). Otherwise put,

we compute the magnitude of S,

[ ( 0.0070)2 + (000 )2 1/2 0.0086 rad.

and the orientation of (,

Arg ( = arc tan (0.0050/- 0.0070) = 1344l4.0

(the choice of angle is clear from the description given by the components

above, namely, "to the right and downward") and get the r esult that the

tangent to the trajectory at the point in question lies in a plane passing

through thereference line and rotated 144.4 0 from the vertical in a clock-

wise sense. Furthermore, the magnitude of 4 or the actual angle which the

tangent to the trajectory makes with the reference line, is 0.0086 rad. (or

8.6 mils). We. thus say that the angular deyiation (or direction of motion)

of the rocket at this point is 8.6 mils, this deviation being in a direction

indicated by Arg 8 14.4 0 , as already described.
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iThe complex angle c, called the orientation of the rocket, is the angle

determined by the geometric axis of the rocket and the reference line used

J in measuring 8. This angle is measured positively from the positive reference

line to the forward directed rocket axis. (The term geometric axis, also

called the bourrelet axis, is used to mean the axis of the cylindrical body

of the rocket, assuming that it is a perfect circular cylinder). This

angle gives the direction in which the rocket is pointing, and is repre-

Fsented in complex form by

so that the magnitude of 4' is given by

I , = (Y2 +,1 Z2l12

and the location of the plane in which 4, is measured by

Arg 4' = arc tan -4./y.

As noted in Chapter II, the time rate of change of 4' at launch, denoted by

4 01 is called the initial cross-spin and is one of the significant factors) contributing to rocket inac curacy.

A third complex angle that is of significance in describing rocket[motion is the angle 4 called the yaw, which is determined by the geometric

axis of the rocket and the tangent to the trajectory. In component form,

I it is represented by

A=Ay+ i ,

and its magnitude and direction are found similarly to those of E and it

above. It is related to 1 and I) by the equation

A -0.

3.2. Characteristic Functions

We use the term characteristic function to refer to that mathematical

exIression (or formula) which determines at any point during burning the-

effect of a unit amount of a disturbing factor (such as initial cross-spin 4'

on one of the sianificant quantities related to rocket accuracy (such as ,the

i angular deviation, 0, discussed above). There is thus a separate charadteristi

function for 1 corresponding to each of the factors causing rocket acc ,
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which were discussed in Chapter 2 of this report. Likewise, there is a set

of such characteristic functions for yaw, A, and for linear displacement, R.

In order to distinguish between the characteristic functions due to

the various disturbing factors, we use a notation in which the subscript

indicates which factor applies. Thus, for example, a subscript q(as in 0 )q
always refers to a characteristic function related to initial cross-spin.

The characteristic function giving the effect on 8 of a unit amount of

cross-spin (namely, one radian per second) is denoted by q/11" Thus,

in the example of 0 given on Page 12, if the value of -,iven there repre-

sents the value of the characteristic function giving the effect on angular

deviation, % of initial cross-spin, 4' , we would write
- /40o -0.0070 + i 0.0050

and, unless otherwise indicated, the units would be rad/(rad/sec). Thus

multiplying this by 1000 would convert the units (approximately) to

mils/(rad/sec). Again, as we saw on Page 12, the magnitude of this complex

value is 0 /4o I = 0.0086 rad/(rad/sec), or 8.6 mils/(rad/sec). This
means that an initial cross-spin of 0.5 rad/sec would produce 4.3 mils of

angular deviation at that point of the trajectory for which the characteristic

function q/4o was computed. One notes that the notation is quite natural,

since the total amount of ) due to a given amount of 4', divided by that
q 0

40 gives the amount of 8 due to a unit of ' , which is what we mean by theo q --

characteristic function value.

It is desirable to deal wth characteristic functions in connection

with accuracy computations, since values of these functions depend only on

parameters such as physical measurements of the round, launch velocity

(angular and linear), acceleration produced by the thrust, etc. Thus, in

dealing with accuracy computations for a group of rounds of a given rocket

type, with consistent launching parameters, the value of the characteristic

function depends essentially on the location down range (during burning) for

which it is computed, and hence does not have an appreciable round-by-round
variation. On the other hand, the value of cross-spin at launch, 4o, varies

from round to round (see [C]) even-under the most carefully controlled .

firing conditions. Thus a complete analysis of rocket behavior falls into

two quite separate categories, first,,the determination of values ofthe:

, , ~~ ~ -. -- -- -. ' . . !. .. , 7 
.

-.
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[7 characteristic functions for prescribed design values and firing conditions

(launch velocity, acceleration, etc.), and secondly, the determination of[the distribution of 4, by experimental measurements. The first phase of
this analysis is of chief concern in this report.

Characteristic functions which appear later in this chapter will be

designated as follows-

A /IP rad. /(rad. /sec.)

q d0 /ad/e) cross-spin, 450(rad./sec.).

PqA0ft./(rad./sec.)Efet on, ,Rfiiia

a /c (rad./rad.) Effects of dynamic unbalance,

R pP c (ft. /rad.) P0c (rad.).

1 %/c(rad/ft.) Effects of linear thrust mis-

[RL/L (ft -/ft)} alignment, L c (ft.).

I (~/A 0 rad/ra.) 1 Effects of initial yaw, A (rad.).

%/LA(ft. /rad.)

a /w rad./(ft./sec.) 'Wc Effects of constant cross-wind,

re r/rc(rad./ft-) Effect of static -unbalance r (ft.

I 8/a (rad. /rad.) Effect of angular thrust miisalignment

a (rad.).
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Formulas for these quantities are derived from differential equations

which will be given in Section 3.4.

3.3. Notation

In the differential equations and formulas for characteristic functions

which appear later in this chapter, the following notation is used:

A = axial moment of inertia - (slugs - ft 2).

B = transverse moment of inertia (slugs - ft2).

q = A/(2B).

m = mass of the rocket (slugs).

k = B/m = transverse radius of gyration (ft).
2

G = acceleration of the rocket (ft/sec2).

v = velocity (ft/sec) of rocket at time t (sec).

v = velocity (ft/sec) at t = to (sec)(at launch).

co = axial spin rate (rad/sec).

n = co/v(rad/ft) = "tspin ratio".

p = Tr/qn(ft).
2 2

s = v/2.G(t.), s 6 v 0/2G(ft).

Gl= acceleration (ft/sec 2) due to jet thrust.

ntG1 = spin angular acceleration(rad/sec 2) due to jet thrust.

r = s/p = v2 /2Gp, r so/pv /2Gp.

K= aerodynamic overturning moment coefficient (see reference [KM]).

KN= aerodynamic lift coefficient.

K = aerodynamic axial drag coefficient.

KH= aerodynamic damping moment coefficient.
K = aerodynamic spin decelerating coefficient.
p = density of the atmosphere (lb/ft3 ).

d = diameter of the rocket(ft).
J. pd 3 K./m, i = M, D, N, H, A.

S = q2n2k /J = aerodynamic(gyroscopic) stability factor.i(l - 1/8) •I
GN pJN/d, C1 = pdJ/k = P A.

%.D /doC dJA

1 + 2 0 ~.L

Cir 0
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1k = TT/g - hl, k 2 = Tr/q h 2 -

w = T r W-= vh/ Tr_

w 2 rTr , w vi 7
w

CMw = f cos(n 2 /2)dx = Fresnel integral (see references EJE] or [D]
0for tabulation).
w

S(W) = fo sin(rTx 2 /2)dx =Fresnel integral.

IE(w) = C(w) + i w)
rc(x) =rr(x) - i rj(x) =the complex conjugate of the rocket function

rc(x) (See references IRNG]'amd tRC] forI tabulation)..

D = 1 V IF i,(ftjro)IiV 2
g = acceleration (ft/sec 2) due to gravity.

[ = angle of elevation of tangent to trajectory.
t

TI 1 co~dt =spin angle(after launch).

3.4. Differential"Equations Of Motion Of A Spin-Stabilized Rocket
Jifferential equations of motion of a spin-stabilized rocket during the5 burning period outside the launcher are derived by Harrington in [H-1] and,

EH-2] by making use of fundamental principles of dynamics. The results,3with certain insignificant terms omitted, are given here without details

of the derivations.

Basic equations defining the motion of spin-stabilized rockets and

whose solutions yield the characteristic functions defined in Section 3.2

are the following:

4, - (2iqca.- C V/If C/p) (vA+w,

I = .GlL -A2 ) (l-2g)p(ox2  i&)971 '% 43~)

I777



I

181

- ( A) - (CNV/P)(vA + wc)

- g cos E + Glcae' + rc(2 - i)e, (34.2)

-G - g sin e, (3.4.3)

= ntG1 - CAm, (3.4.4)

= v a, (3-4-5)

where the dot indicates differentiation with respect to time,
S 2 2t(e.g., 4 = d 4/dt ). In this system of equations the quantities A, 4,e

have as reference line the boreline OX of the O-XYZ coordinate system as

discussed in Section 3.1, and the complex quantity R is referred to the

OYZ plane of that system.

The differential equations of the ideal trajectory referenced in

Section 3.1 are given by

- V 2-g sin s,

V = -g cos C. (3.4.6)

This pair of equations is obtained by assuming that the only forces acting

on the rocket are due to the jet thrust, the aerodynamic drag, and gravity.

It is also assumed that this trajectory lies in the vertical plane through

the boreline of the launcher and that the rocket axis (geometric axis) re-

mains tangent to the trajectory. In this situation it is clear that the

complex yqw, A, remains zero, and that the complex orientation, I), has

the value 4 8- o, where & is the angle of elevation of the boreline I
(OX).

It is now assumed that equations (3.4.6) have been solved to obtain ]
v and e as funetions of t. With v and & thus determined as known functions

of t, and with the value co resulting from equation (3.4.4), one could solve

equations (3.4.1) and (3.4.2) for A-and ;P, aid from these results -obtan .

= 4 - A. However, it is advantageous first to obtain new values of 1

.- 7 ' P - -
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and '1 by subtracting from each the angle e- representing the change in

direction of the ideal trajectory. The new § and G thus obtained (for

convenience, we shall not change notation) are now referred to the tangent

to the ideal trajectory instead of the boreline. The angular deviation

thus becomes the deviation from the ideal trajectory, as pointed out in

Section 3.1. It should be noted that the new linear deviation R (given

by equation (3.4.5)) is now measured in a coordinate plane perpendicular

to the tangent to the ideal trajectory, and having its origin on that

tangent line; so that R now represents the complex distance from the ideal

trajectory.

In addition to the changes made in the variables § and @, we find it

convenient to change the independent variable in equations (3.4.1), (3.4.2),

and (3.4.5) to the new variable r = s/p representing normalized distance

along the trajectory. Thus we make the. change

4) = d4'/dt = (ddr)(dr/dt) = (v/p)4",

and similarly for the change in 4) , etc. After making these changes of

variables, we eliminate 4' from equation (3.4.1) to get a new equation in

the quantity vA , by use of (3.h.2). We also substitute the value 4' = + A

from equation (3.4.4) into equation (3.4.2).

After all of these changes, the resulting equations of interest forI later work thus become

(v),, (% % -2ir) (v, A) (2i, .N+u2/S) (v +.)
(vA"+(CN + CH - 2ir)v

I = [p2GLc/(k2v)] ei~lhinpP(1c(-q2q)(vei)
'  (3,4.7)

I + (gcos)(p/v) (CH + - HI1T_ pGo/v 2],

ve--vIA +CN(vA +wc

+ (GAp/)m ei - Lnc (veTI)', (3..8)

where the primes indicate differentiation with respect to r.,

I . ' .. .- -
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3.5. Formulas For Characteristic Functions

We now solve equations (3..7) and (3.4.8) under the assumption that

G, the acceleration of the rocket during burning, is essentially constant,

so that we may use the relation! __ vpr. (3.5.1)

It is also assumed that nt is constant and equals to coo/vo. Since the

effect of gravity is reproducible from round to round, the terms

containing g do not appreciably affect the dispersion of a group of

rounds, and hence these terms are neglected.

Because of the superposition property of linear differential equations,

one may solve equation (3.4.7) considering separately the effects of initial

conditions A and 4, and then the effects of c , w c, and Lc respectively.
The resulting value of vA for each separate effect (and thence A ) may then

be substituted in equation (3.4.8) and the resulting equation solved for @

(wc being omitted except in solving for wind effect). Finally, this value

of 8 is substituted in (3.4.8), and the formula for R is thus found by

evaluating the integral
Sr

R p EOr. (3.5.2)

Such work is carried out in detail in reports issued by this project group

and referenced as H-l], [H-2], [B-2], [BT-4], [BT-5], [-li, and hence the
complete details of the derivations will not be repeated here. Formulas for

characteristic functions which are the end results given in the referenced

reports are listed below. Note that a normalized form of notation is intro-

duced for convenience in relating the functions to each other.

Effect of Initial Cross-Spin on Yaw

= / i h 2(r - r ° ) ih 1 (r-r ° )
2 qo

Effect of Initial Cross-Spin on Auar Deviation

"q ..

=~~~ ~ [c0~]~ e"~ [E (w) - (w 0 )

-v~i2wo ;~2rs Ei) -E cii)]

+ (i q~) [e 6: 7e 2 o}
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[ Tables of Fresnel integrals are given in references IJE] and [D].

One may also write § in terms of the rocket function r-(x) as follows:q

q (iC/2va) [frc (hjro ) -ehl(r-r°)rC(hlr)]

- V 2 E (h 2 ro ) ih2 (r-ro)
-tg c~ -e rFc (h 2r) ]

(1 (/jT') le ih (r-r°) -eih2 (r-rO0(35) a

Tables of rocket functions are given in references ERNG] and ERC].

Effect Of Initial Cross-Spin 4' On Linear Deviation

R q =( 1 G , ) q /o ri lr

= r5q + [iC/(4h h)] I e- lr° eE(w) -E(woA

-[iC/(h4T h2)] Trh 2  eih2r°E -E(i) ]}o) (3-5-4)

In terms of rocket functions, this is

q q0
i (r-r )

(C/4roV2) [P (h 2ro)-e 2 (hr)]. (3.5.4a)

Effect Of Initial Yaw A On Angular Deviation

~6 %/A o [ iC /(2wac)] th 2 V n_ ieC Vrro[E(w) E(wo)ih

- o -h1  oi e 2 --E _

§1 (r-r) ih (r-r) } "("

Note thatthe used here has the value 1 atr =-r0-

i -z
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Or, in terms of rocket functions,

1 0
a6 =(C Vr 0/2ra) [h2 V71 [F(hlro) -h (r-r )

h tl V 2 [h 2 r 0 ) 2h r-

+ (l/vrr) 1h 2 e ihl(r-ro) -Iie ih 2 (r-r)] + 2 CNr. (3.5.5a)

An approximation f or this expression is given by

-ihlv'l ;q - c Vlr rc(hlr0 ) + 2C ro. (3.5b)

Effect Of Initial Yaw A on Linear Deviation

(l/p)%/A0o ! -ih 1 Vr _ + (CD - 1) (r-r~) (3.5.6)
0 q 0

Effect Of Dynamic Unbalance LOn Angular Deviation

Effect Of Dy~iamic Unbalance kOn i-near Deviation

ik, r_ R+ C(r-ro). (.

Effect Of Constant Cross-Wind w. On Angular Deviation

-,r2'Gp 0wc l/ VS + (1/V) ~ (365.9)

Effect Of Constant Cross-.Wind wOn Linear Deviation

W w

I3
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Effect Of Linear Thrust Misalignment L On Angular. Deviation.

S - (k2 /p) 2) = [ i (k2 r)/(2 V9 ) ] + CD /(2rokk 2 ).

(3.50'11-)

F Effect Of' Linear Thrust Misalignment L On Linear Deviation

TI -(k 2 /p 2 )RL 0 = i Fc-(k r.)/(2 ,2-2)] Rl + CD(r-r )/(2r. 0 ~9

(3.5.12)

We have listed here only one of the characteristic functions for yaw, A,

but others may be found in tBT-I], EBT-4], [BT-5].

Same further remarks are in order relative to the manner in which the

characteristic functions listed here were obtained. To obtain formula

(3.5.3), one first drops all the forcing terms (we, Lc, PC, ga %, rC)

- appearing in equation (3.h.9) and also assumes that CH = 'N = 0. The

resulting differential equation is then solved under the boundary conditions

r = ro, vA = 0, (vA), = P1o" This result for vA is then substituted in

equation (3.4.8), also using (3.5.1), and the resulting equation is inte-

grated using the condition r=r0 , 8 = 0. The resulting value of @, which

is really E , is now multiplied bythe constant C (appearing in the list

of notation) to give formula (3.5.3). The effect of putting CN= CH= 0

is to neglect the aerodynamic lift and damping moment, but it is shown

in tCH] and EB-2] that multiplication of the end result by the constant C

then gives an excellent approximation for the solution resulting from

keeping CH and C in the differential equation. Once q (or any 9-function)

has been determined, it is a routine matter to substitute the result in

(3.5.2) to find R (or any R-function).q
Formula (3.5.5) results from a procedure similar to that for finding

I t, except that the solution of the modified vA differential equation is

carried out with boundary conditions r = r, vA voA, (vA)' =0. After

the resulting %/A is found, in order to incorporate the effects of

aerodynamic lift and damping moment, one muet multiply the result by G

and add (C - 1). This is because of the fact that in the formula:' f

I,... ,()
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this chapter the initial value (at r = r) of is maintained as -1,

so that the actual change in angular deviation during burning as a result of

a unit of initial yaw is obtained by adding one to the expression given here

for

Formula (3.5.9) results from neglecting terms in Lc, PC , g in equation

(3.4.7), again putting CH = = 0, and integrating for vA using boundary

values r = ro, vA = 0, (vA)' = 0. Use of (3.4.8) then gives an expression

for 8Vwc which, after having been multiplied by C, is in terms of %/A

as shown.

Formulas (3.5.7) and (3.5.11) are excellent approximations for the

quantities in question for points on the trajectory for which (r - r )>0.5.

The details of their derivation and the validity of the formulas are com-

pletely discussed in IBT-4], EBT-51 and IB-2].

In Chapter 4 the use of these formulas for making computations of values

of characteristic functions will be illustrated.

I-D



[ 3.6. Graphs Of Characteristic Functions

By assigning values to the parameters occurring in the coefficients of

F the system of differential eq uations (3.4.7), (3,4.8), and (3.4.9), one may

obtain solutions by use of analog or digital computers. In this section

analog computer graphs of some of the characteristic functions referenced

in Section 3.2 will be shown and discussed.

The parameters assigned here for the purpos-e of computing are based

on measurements taken from rockets of types that were fired on experimental

programs carried out in connection with the rocket research work of this

project group. Most of the graphs shown here are connected with gun-boosted

rockets. For the sake of comparison, a few graphs relating to unboosted

rockets are given.

Graphs exhibited here represent complex plots of the quantities in

j] question, with the real axis R taken vertical and the imaginary axis I

taken horizontally. Furthermore, points indicated along the graphs by

small circles are shown at intervals of 0.2 for values r - ro, the

normalized distance along the trajectory from the launch position r . These

00ipoints are labelled at integer values of r - ro -

For instance, Figure 3.2 shows two graphs of the yawing motion due

to initial cross-spin I) in the case of an unboosted rocket for two different
0

launcher lengths, one of which is four time the length of the other. Typical

lengths here would be 3 ft. and 12 ft. One notes that there is little
difference: in the magnitudes of yaw (represented by the distances of corres-

ponding points such as r - r = 0.2, 0.4, 0.8, etc. shown on the graph from

the origin of coordinates), with the shorter launcher showing larger magni-

tudes during the phase up to r - r = 1. To illustrate a reading from this0

graph, note that a radial line OP is drawn from the origin to the point

where r - r = 0.6, and the length of this line measured to the indicated

scale of either axis represents the magnitude of 2Gp A o or the

I value of I A /0 1 multiplied by the normalizing factor x p. In this

case,! J v A4 / II=0.52. Thus if G = 24 ft./sec. 2 and p 120 ft.

for this rocket, cnm would have IA 1/oI 0.082 rad./(rad./sec) of initial
q o

cross-spin. Thus at p(r r ) 20(0.6) 72-- ft. along the ctraj ;ory
.01

W the yaw due to one unit of @o is 82 mils. Also, :the plane in ich his :
01

yaw takes place is located by-the angle 5 -l~~ which the r7adial 1ine ae

A. n
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[with the vertical axis (measured clockwise from the R(+) axis). One could

also arrive at these same results by reading the real and imaginary com-

ponents of the normalized characteristic function to get

T7p. A/ -. 16 + i o.50.Fq
This is the form in which results are given by the characteristic function

j formulas in Section 3.4. One would now determine the magnitude to be

xV2G7I- A,/;.! Q= [(-0.16)2 + (0.50)211/2= 0.52,

as before.

Figure 3.3 shows a yaw graph for a gun-boosted rocket. The general

behavior is much the same as for the unboosted rocket, but magnitudes are

f considerably less. One should keep in mind, however, that the value of

I. V G7-would still need to be reckoned with in measuring the actual yaw.

One also notes that the rate of damping of the yaw is a little slower in

j Figure 3.3 and the precession rate is faster than for the unboosted case.

Figure 3.4 shows a family of graphs based on varying launcher length

(or launch velocity in case length is fixed) and showing the effect of

initial cross-spin 4 on angular deviation for an unboosted rocket. One0

may interpretthese graphs as showing that as launcher length is increased
the effect of a unit 4 (rad./sec.) on magnitude of angular deviation at

0
a given value of (r - r )(or distance along the trajectory) becomes

0

smaller. Otherwise, one may conclude that for a fixed launcher length

a higher launch velocity gives a relatively smaller magnitude of angular5 deviation due to unit cross-spin at launch.

Figure 3.5 shows a family of graphs for the normalized linear devia-I tion corresponding to the same set of parameters r used in Figure 3.4.
These two figures, 3.4 and 3.5, illustrate respectively results of com-I putation one could make by use of formulas (3.5.3) and (3.5.4) with C = 1.

Figures 3.6, 3.7, and 3.8 display graphs of normalized angular devia-
tion due to unit 4 for cases of gun-boosted rockets with three different

0

launch velocities, vo(recall that v = eV'G ). These graphs are

practically identical in form, with points corresponding to a given value

of r- r° almost in phase, but magnitudes decrease with increasing launch,

I0
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velocity. From the theoretical formulas developed in connection with Section

3.2, one concludes that with other parameters fixed the value of a varies

approximately as (1 + 2CNr)/r03/. Checking this result against the three

graphs in question, using r - r = l, the ratios of successive values of

8q/o for ro = 7.477, 15, 25 are 2.03, 1.56, while for (1 + 2CNr 0)/ro3/2

the corresponding ratios are 2.12, 1.60. One is thus led to conclude that

higher launch velocities lead to higher accuracy, but it is not yet known

what the effect on 40 of higher velocities might be. Other sources of0

inaccuracy, such as dynamic unbalance, might be enhanced by increased

velocity.

In connection with Figures 3.6, 3.7, and 3.8, one also notes that as

r - r increases each of the graphs of @ q/o eventually winds around and

spirals inward toward a limiting position. Thus, in Figure 3.6, for instance,

if the rocket burns out at r - r = lO(a distance of 10p = 10(70) = 700 ft.

frc launch), then the magnitude of 0q /4o would be pretty well approximated

by the magnitude of the limiting value. Estimates of these limiting values

due to various disturhing factors are given in the next section.

Figure 3.9 illustrates one of the significant results arising from the

theoretical and computational work of this project group. It shows two graphs

of lO 3 gq, one of which (the graph labeled &q) results as the true graph for

the case of a boosted rocket, and the other of which (the dotted graph

labeled ql) results from using the formulas applying to unboosted rockets

to compute points on the graph. In the latter case the effects of aero-

dynamic lift and damping are neglected. One notes, however, that the

essential difference. in the graphs is in magnitudes. Note that radial

lines through the origin almost pass through corresponding (r - r ) points
0

of the graphs, as illustrated for (r - r ) 1,, and (r - r 0 ) = 8. Further-

more, the constant factor (1 + 2% r) (in this case 2.04) multiplied by the

value for dotted graph (the case of the simpler unboosted rocket theory)

gives an excellent approximation to the value of the solid graph (resulting

from the more complicated boosted rocket theory). In tB.21 similar re-

sults were found to hold for other effects (dynamic unbalance, initial yaw,

etc.), so that a very -simple transition can-be made fromtheoretical

formulas for unboosted to the formulas for boosted rockets given in.'Secti-on.

3.5 above.

wt - 7T
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Figures 3.10, 3.111 3.12, 3.13 show respectively the graphs for 8/

a P~c'9 v7GF@ /w , and -10 6(k 2/p) G j%(effects of' initial yaw, Ar,, dynamic

unbalance, P3 , cross-wind, w C, and linear thrust misalignment, L c), for the

case of' ro = 15, thus corresponding to the rocket of Figure 3.7. Let us

look at results given by these graphs, assum'ing that we are dealing with
2

a rocket for which the following parameter values hold: G = 300 ft./sec.,

p100 ft., k 05f., rb =25(e.g. burnout distance from launch is

(rb-rO = 10, so that s = lop =1000 ft.).

From Figure 3.7 we read at (r -r) 10 the value

10~ ~~q 2.25 i 1.65, (3.6.1.)

qoq

Thus P 1 rad./sec. produces 1.1 mils of angular deviation at burnout.
0

From Figure 3.10 weiead at (r -~ r )10 the value
0

%/ 0 1.028 + i 0.055, (3.6.2)

and since the initial value was -1, this gives a change in 9%/AO of'

magnitude 0.062 mil/mil, which is the effect of one mil of initial yaw.

From Figure 3.11 we read at (r - r) 10 the value

=0. 85 - i 1. 25, (3.6.3)

so that

I /PcI=1.!5 mils/mil.

From Figure 3.12, using (r -r 0 10 we read

'2fp 0 =/w -0. 066 +- i 0. 014, (3.6.4)

so that

10 W/wc 0.00027 rad./(ft./secj)

0.27 mil/(ft./secj )
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From Figure 3.13 we read at (r - 0  10 the value

I "106(k2/p)'L/L c  1.4 - i 1.9, (3.6.5)

so that

F IL/LCI = 4.7(104)rad./ft.

f = 0..47 il/ft.

From these results it is clear that for the hypothetical rocket in

question the factors having significant effect on angular deviation at the

end of burning are initial cross-spin, @, dynamic unbalance, C , and

cross-wind, w with the latter the dominant factor. This is based on

the assumption that initial cross-spin would not exceed one radian per
second and dynamic unbalance would not exceed one mil. Then a 10 mi./hr.

wind could cause about 4.5 mils of angular deviation at burnout, as

against about one mil for each of the other effects.[ Figure 3.14 is included to show the effect on linear deviation of

initial cross-spin. Again at (r - r 0 ) = 10 it is seen that

L r2/p R / o -0.o03l + i 0.055,

[ so that for the parameters used above,

IR q/4 0 1.3 ft./(rad./sec.).

A rocket having the qualities that would lead to the results given3 here would thus be considered extremely accurate.

I
I
I

IJ
I "
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[3.7. Asymptotic Estimates Of Angular Deviation

It is noted from the graphs of the characteristic functions given in[Section 3.6 that as r increases (or as burning time ,creases) the curves
representing angular deviation approach a limit point. Thus if a rocket

burns long enough, this limit point will furnish a fair approximation to

the desired value of the characteristic function at burnout. In this

section, under proper restrictions, quite simple expressions giving good

approximations to these limit points are listed. The details of the

derivation of these formulas may be found in reference tH-5] and will not

be repeated here.

Additional notation used here involves the following aerodynamic

parameters with typical magnitudes:

Overturning moment: cM = MA2- 42( - 4 ) (ft.-2

Normal force: CN = JN/dh 3(10-4)(ft.- .

Assumptions made in arriving at the results listed later are that[during the burning period outside the launcher we have

< O-08(rad. 1 ), I11 < ( - v - 500(ft./sec.).
(3.7.1)

I Under these conditions formulas which follow give approximate values for

the limit points of the indicated characteristic functions for angular

I deviation.

Effect Of Initial Cross-Spin @
-o

Where one is interested in magnitude2 o , the estimate is

@q/o= -(cN + G/vo 2 )/CVo (rad. per rad./sec.). (3.7.2)

Effect Of Initial YawA °

206/A -2iqn (6 + G/v, )/9 (rad /rad.- or. mils a/mil)j (037.3)0 M

Note: The used here has the value 0 at r r, and thus takes3acc-ount Of~ the chng in 91 due to A0.



Effect Of Dynamic Unbalance

@'/ 0j1 @/ + a /A (rad. /rad. or mils/mil.)
'c o q o 6o0

inp~ (1-2q) (c~ + G/v 2)/cM. (3-7-4)

Effect Of Constant Cross-Wind w

)/W = (l/vo) [ %1h 0 - (1-v/v)MI (i-ad. per ft./sec.). (3.7.5)

This is the same formula as that given in (3.5.9), since this is an
exact relationship. It becomes an estimate if (3.7.3) is used as the value

of 9/o

Effect Of Linear Thrust Misalignment L_

GAc (GA 2 CO2 ) (iCO 0/ + 8%/A)(rad. /ft.) (3.7.6)

Effect Of Anua Thrust Misalignment a

Fopr n>VT5Wc, (e. g. n >0.1)

a -(G/v co) (1 -%A v w el/v)(rad./rad. or mils/mil).

(3.7,7)

Effect Of Static Unbalance r

ar/rc =in (1 - /Ao -ei1 T(rad. /ft.).(37)

The latter two characteristic functions were not listed in Section 3.5
because of the fact that for spin-stabili1zed rockets-.they are neg i gible

during the burning period. This is indicated by the estimates given below

using the formulas just listed.

As an example *of the use of these forkm.14aas: eatimates f or values; at

the end of burning,, consider a boosted spin-stabilized racket with,



I
2 o00A Sc n 1 a.W

350 ft./sec.2, v = 100 ft./sec., n 1.3 rad./ft., and e 0 < . We

note that with

G/V 2= 3 (10 -4), k2 
i0.5;. .

the estimates of formulas (3.7.2) and (3.7.3) give

1@/@ V 1.6 mils per rad./sec. of I I,

f1 0.1 mil per mi of A I01

For a comparable shell, assuming no significant change in (cN-CD)/CM,

the corresponding estimates would be half as large as for the rocket, since

the term in G/v2 arising from rocket thrust would be missing.

Looking at the other sources of dispersion for this rocket, we note

from (3.7-5) that if at the end of burning the rocket has burned long
enough for the velocity vb to be twice the launch velocity v0, then the

term is (1 - vo/V) becomes the major contributor to @1w c. Since the

term in 86/Ao is almost pure imaginary, as indicated by (3.7.3), we would
I then have

th v /W -0-.001(- 0.5 + i 0.1),

j [or approximately 0.5 mil per ft./sec. of wind.

For the effect of dynamic unbalance, formula (3.7.4) yields a value

on the order of 2 mils per mil ofl J
In the cases of linear and angular thrust misalignment, one notes

[ from (3.7.6) and (3.7.7) that for the rocket of this example

, L =8 mils/ft.

if and

I S o o a/a1 =0.0002 il/ail.

Since one would usu y have I l< 0.005 ft. and Ia1 < 5 mils for a rocket
manufactured with reasonable tolerances, it is clear that the effects of

,thrust misalignment are negligible for this- rocket.

From formula (3.6.8) the parameters assigned to this rocket yId the

value
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so that if the amount of static unbalance is limited to I r c <0.0005 ft.

the effect on linear deviation here is less than about 0.5 milo

It is clear from this discussion that the estimates made by use of

the very simple formulas listed in this section show that the significant

causes of angular deviation 'for the rocket treated here are initial cross-

spin, 0o cross-wind, w c, and dynamic unbalance, PC. If one should use

the more complicated formulas given in Section 3.5, much more accurate

quantitative results would be obtained, but qualitatively one would arrive

at the same conclusions relative to significant sources of dispersion for

the subject rocket as were reached here.

3.8. Application Of Theoretical Results To Design Of Spin-Stabilized Rockets

The use of theoretical results listed in this chapter as guides in de-

signing an accurate rocket would usually begin at the stage where the rocket

configuration was already prescribed in the sense that its dimensions, loca-

tion of center of gravity, moments of inertia, nose ogive, etc., would have

already been determined. Considerations such as purposes for which the

rocket was to be used, total weight desired, limitations on length-tb-diameter

ratio, range desired etc., would have been used in determining design

characteristics up to this point. It would still remain to determine such

parameters as launch velocity, v0 , launch spin rate, wo, and for the burning

period outside the launcher, acceleration, G, spin-to-velocity ratio, n, and

burning time.

The following disturbing factors, which were discussed in Chapter'_2,

are the prominent causes of inaccuracy of spin-stabilized rockets in general:

1. Initial cross-spin, § .
0

2. Cross-wind, w .
c

3. Dynamic unbalance, Pc-
4. Initial yaw, A

*0

5. Linear thrust misalignment, Lc|

On the basis of estimates made by use of formulas in Section 3.7, or .

by use of the more accurate formulas given in Section 3.5, one can conclude ,

that for typical gun-boosted rockets the- effects of initial yaw, - and .

linear thrust misalignment, Lc, are practically negligible. This has j
!c
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[already been noted also in connection with graphical results presented in

Section 3.6.

Forthe sake of more specific discussion, let us assume that in the

remainder of this section we have under consideration a fairly typical gun-

boosted rocket with launch velocity fixed at v = 1000 ft./sec. and with

aerodynamic constants C h(10-), C~3(10 ). and other parameters 2q-0.O,

n -1.2. In order to make use of the estimates of Section 3.7, we should.2 2< 2 1
keep G/Vo - CM = 4(10-4), which means that G <- 400 ft./sec. The value

G G = 400 ft./sec. is still considerably higher than one would want it to be

in order to attain best results from the standpoint of reducing that angular

deviation of the rocket at burnout. Equations (3.7.2) and (3.7.3) show that

a significant contribution to the values of C6 /o and /A° is made by the
2 qgo 60

quantity (ON + G/v 0 ), and since ON and CM remain nearly constant except

near sonic velocity, decreasing G would decrease the effect of initial

cross-spin on both of these characteristic functions (0/o and a5/o).

As a result, other characteristic functions which depend directly on these

would be correspondingly decreased. However, consideration of desired range

characteristics might well dictate a lower limit to which one could go in

assigning G.

Note that in particular the value G = 400, along with other parameters

jlisted here, gives estimates of I E) AIJ - 1. 75 mils per rad. /sec. and

185/A 0-0.07 mil/mil. Since such an excessive initial yaw as 10 mils would[ lead to only 0.7 rail of angular deviation, one concludes that initial yaw

is not a significant factor in determining accuracy in this case.

f The advantage of a low value of G is further borne out in the con-

sideration of the effect of constant cross-wind. From formulas (3.7.5)

g "the wind effect on angular devation is given by

wherein ED/Ao may be estimated by use of formula (3.7.3). This expression

shows that the nearer the velocity v at any time during burning is to the-

initial velocity vo, the smaller the second term involving (1- vo/V) will

be. This means, in other words, that the ne.rer to zero the total accelera;--[ tion G is, the less the effect. of wind on angular deviation ' bei, and

IN
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hence wind sensitivity would be minimized by use of a sustainer type of gun-

boosted rocket.

Considering the expression for the effect of dynac imbalance given

in equation (3.7.4), we note again that a low acceleration is desirable.

Furthermore, since the effect of dynamic unbalance clearly increases

directly as the spin-to-velocity ratio n, and since a rather high rate of

spin is essential to maintain stability in flight, another recourse would

be to; increase launch velocity while maintaining the minimum spin rate

required for stability. Remaining means of reducing inaccuracy due to

dynamic unbalance are, of course, the assignment of tolerances in manu-

facturing metal parts and the choice of a propellant that will not break

up under the conditions of high spin rate.

Summing up the results of the above discussion, we again see that the

chief sources of inaccuracy for gun-boosted spinner rockets are initial

cross'spin, bo' cross-wind, wc, and dynamic unbalance, PC. If we combine

the consequent effects on 0 b' the angular deviation at the end of burning,

we get

b 8o + i O %P( o) - (wc/Vo)(l - Vo/V), (3.8.1)

where 0 is the direction of motion of the c.g. as the rear end of the rocket0

clears the launcher, and @q/1o is the unit effect whose magnitude is estimated

by equation (3.7.2). High launch velocity and the maintaining of a small

change in velocity during burning tend to minimize the effects of the

referenced disturbing factors. The cross-spin at launch, 09 and the

dynamic unbalance, Pc , appearing in the coefficient of equation (3.8.1)

are statistical quantities which vary from round to round in firing a series

of rockets. For P this variation can be controlled by manufbcntur±ipgtolerances.
c J

There is little experimental evidence as t o the behavior of 0 for boosted

rockets. Its magnitude clearly depends on such things as precessional mo-

tion of therear of the round during the tip-off period and launcher motion.

From the above remarks, it would appear that a pure sustainer type of -

rocket (thrust exactly cancelling drag) would be the proper choice; however,

for purposes of attaining maximum range, it appears that for c ..ta=.quad-

rant elevations a rocket with acceleration somewhat higher than that of .a

pa
! ~pure sustainer might An'nsh an~ optm Combiation :of rage- and a.rac€yi,:;~.-i 7:i."
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In this connection, for high angle fire, it is desirable to maintain burning

almost to summit, for it is desirable in all cases to have as large a velo-

city at the summit as possible under the conditions being used. This follows

from the fact that the magnitude of the yaw of repose is given essentially

A = 2qng cos s/CMV2,
r

j where a is the angle of elevation of the trajectory (s = 0 at summit).

Thus small velocities v at summit would lead to larger relative varia-

tions in A due to small variations in v than would large values of v5 .[ r ss
The consequent drift on the downward path would be less systematic for

small vs than for large vs and hence lead to higher dispersion of impact

points.

V

[
I

°I
I
I
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CHAPTER 4

COMPUTATIONS ILLUSTRATING ACCURACY ANALYSIS FOR A

GUN-BOOSTED SPIN-STABILIZED ROCKET I
In the accuracy analysis illustrated in this chapter, it is assumed

that the rocket has already been designed and that the following set of.

typical values has been assigned to significant parameters. Coe then wishes

to compute effects of disturbing factors by use of the formulas listed in

Section 3.5. We illustrate such computations here.

4.1. Rocket Data At Launch At Burnout

Linear Velocity: vo= 500 ft./sec. Vb=2000 ft./sec.

Angular Velocity: co= 100 rev./sec. ab=390' rev./sec.
0 2 .2

Axial moment of inertia: A = 14O lb.-in. A =110 lb.-in.
2 .2

Transverse moment of inertia: B = 3000 lb.-in. B =2300 lb.-in.

Weight: 44 lb. 34 lb.
Center of gravity: 18 in. from nose 17 in.from nose

Other parameters are

Burning Time: 2.5 sec.

Diameter of rocket: d = 4.5 in.

Aerodynamic constants (for v0 = 500 ft./sec.): KM= 2,KN= 1,KH 6.

Other physical constants to be used are

Air density: p = 0.002335 slug/ft.
3

Gravitational constant: g = 32.17 ft./sec.2

4.2. Computation Of Basic Parameters

We compute the acceleration of the rocket (assumed constant) by

? b-Vo 1500 ft./sec_, c

b f s 600 ft./se2tb-to 2.5 sec.

By referring to the list of notation in Section 3.3, we compute

the following basic quantities for use in the characteristic function

formulas, noting that here launch values are used for moments of inertia,

weight, and for computing n. One could-use average values here.
In the following computations, free use is made of numerical -

50
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results appearing in ER].

n 0)c~/V= (100 rev./sec.)(2t rad./rev.) 1.26 rad./ft.,F 500 ft./see.

2

k 2 B/M 3000 lb.-in.2  o.473 ft. ,

V(44i lb.)(ht i. 2 f 2)

It -Tq r -_ 107 ft.,

(0.0233) (1.26 rad./ft.)

rb = /2Gp - (2000 f.sc 2 31.2,
rb vb 2(600 ft./sec. 2)(107 ft.)

Ir = ~02 (500 ft./sec.) 2  -=195
0 2GP- 2(600 ft./sec.2 )(107 ft.)

3/a (0.002335 sjug/ft.3) (4-5/12) 3ft. 0 0( )-4

-[ (44/32.17) slug

JrT (Pd3/m)KM 0.900(10)-4 (2) 1.0=0-

jI = (pd3/m)KN = 0.900(l0)-4(l) =0.900(l0)-4,

II =H (Pd./m)KH = 0.900(10)-4(6)= 40lY4

4.3 Computtion Of Quantities Ocurn In Formulasf From the above basic values the following quantities are now

computed. 2 2 2j 003)2(.7 t-2)12 a. )
(0.0233)M (047 .8 )4 2 ad/t) 2.26,

S~qnk/JM1 10o~o

I 7



= - (107 ft.)Eo.900(l1 )] 2~
CN = pJ n /d(4.5A2) ft.0.27

Ca = pdJ1H/k
2 =(107 ft. )1 (4 .5A2)ftJ.hO4(l0)-41 0_ 45.

H .473 ft.2  h8

a= (1-1/8)1/ (1-1/2.26)1/ = (0-557522)2 = 0.746674,

1, ff(1+o) V i(1.74674) = 2Tr(0.873337) = 5.48734,

h 2= ir(l -a) ff~(0.253326) =2ir(0.126633) = 0.795847,

hlrb = (5-48734)(31.2) = 1?.L.205,

hlr0  (5-48734)(1-95) = 10.7003,

hl (rb-rO0) =2Tr(.873337)(29.25) = 2-ir(25h541),

h 2rb = (0.795847)(31.2) =24.63%h,

h 2 ro (0-795847)(1-95) = 1.55190s

h 2 (rb-r) 0 2rr(O.126663)(29.25) = 21r(3.7o489).,

We now use these values to evaluate the exponential functions and

rocket functions which appear in formulas (3-5.3a), (3.4a), and

(3-5.5a). Note that we now take r = rb in order to compute values

at burnout. For the exponential functions we reduce results to

rectangular form and get

iht.(rb -3r 0 i21r(25-5451) i2'r(25) i21r(0. 545)
e -e e e

e-e =Cos 3.42+ isin 3.425.

o .960108 - i 00279629,



i2Trj-I:wherein use has been made of the property that e 1 for j an
integer, and the Euler formula

e x= Cosx + isin X.

F In like manner,

ih 2(rb-ro) i2ir(3.70489) i2ir (0 70489)

e - -29 0.279611 -i 0.960113.

To evaluate the rocket functions Fc-(x) appearing in the characteristic
function formulas referenced above, one may use tables of these functions

given in rRC] or [RNG], and if values fall beyond the ranges of these
tables, the following series forms are available for use in making the

computations:

rTc(x) lxx [( 0. 75/x 2+ 6.5625/x4 +

-i (0.5/x- 1.875/x3 + 30/x5 + .) (4.3-1)

[ From tables in rRCI,

cF (hro) = Fc(10.7003) = 0.303831 - i 0.013867,

Fc(h r ) = £6(1l.5190) = 0.704530 - i 0.156599.

I By use of the series form given in equation (4~.3.1), one finds

I Th(hlrb) FF i(171.0~ =.076tI- i 0.000223,

iPc(h 2rb) = £-(24.8304) =0.200414 - i 0.004017.

I Remaining quantities in formulas (3.5.3a), (3.4a), and (3.5a)
arefC =1 + 2 =r 1 + 2(0.0257)(1-95) 1.1.0,

if iG/2wcy - -1 = 1 0.234467,
2w(0. 746674)

v'T = 0.795847 =0.892103o

2

l /V-Z V, 9-ID52 3 00.1790295



Substituting the above values ini (3.5.3a) now givesI

5 (iO.234467) 1232103381-i 0.013867

-(-0.960108 - i 0.279629)(0.076424 - i 0.000223)]I

(.892103)[0-704530 - i o.156599

-(-0.279611 - i o.960113)(0.200441 - i 0.004017)]

+ (0.179029)[-0.960108 - i 0.279629)

-(-0.279611 - i (o.960113) 1}

and hus= (i 0.234467)(0-079975 
+ i 0.107924),

5q =eF-~ q' o =-0.025304 + i o.018752 (4.3.2)1

The unnormalized form of (4.3.2) thus becomes, on using the values

of p and G given above,

a /;o =Vpj721T (-0.025304 + i 0.018752)

=(0.298608)(-0.025304 + i 0.018752),
so that we finally get forI

Angular Deviation Due To Initial Cross-Spin i 0

a /;)' = - 0.007556 + i 0.005599 ract./(rad./sec.)Iqo0

-- 7.556 + i 5.599 niils/(rad./sec.), (4-3-3)

and hence for the magnitude we get

l~q4)o E(0.07S~) 2 + 5ooo99)2]1/2I

= .009404 rAd/rad. /sec.).~434

9.404 mails/(rad./s-ec.-)*



I: 55
[ In a similar manner, substitution into formulas (3.5.4a) and (3.5.5a)

of quantities computed above leads immediately to the following results:

Linear Deviation Due To Initial Cross-Spin i 0

A q = (R q 0 ) = -Q7079 + i o.5892, (4.3.5)

R q/ ° = -22.62 + i 18.83 ft./(rad./sec.), (4.3.6)

IR q/4 I = 29.43 ft./(rad./sec.). (4.3.7)

Angular Deviation Due To Initial Yaw A :-0O

06 = a6/Ao = - 0.8496 + i 0.2437 mil/mil, (4.3.8)

I&/Ao 1= 0.8839 mil/il. (4.3.9)

The remaining characteristic functions whose formulas are listed in

I Section 3.5 are expressed in terms of the normalized functions whose values

are given here in (4.3.2), (4.3.5), and (4.3.8), and hence their cor-[ putation is quite simple. Additional quantities entering these formulas

are

V/Fo = 1.- = 1.396, -E-TV7 = - 5.585,If D 1- -- r° r-c(hr o ) 1 - V10.70 (0.3038 - i 0.01387)

= 0.006126 + i 0.04536,

k,= Trq - hI = (3.1416/0.0223) - 5.487

E= 129.3,

if Ik 2 = IT/q - h2 = 134.832 - 5"487 129.3,

vT VTF 7 = 11.58,.

S= 0(k2 r.)6249

=w - .o62499 - i 0.001198
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Making use of R from (4.3.5) then givesq

16 (1/p) (R6 /A ) = -ih xv- + (CD-1) (r-r)
o q

- - i(5.487)(1.396)(-0.7079 + i 0.5892)

+ 1l.lO(o.oo6126 + i o.04536) - 1](29.25)

= - 24.54 + i 6.883. (4.3.10)

Thus the unnormalized form gives the following

Linear Deviation Due To Initial Yaw A

R/A ° -- (lO7)(-24.54 + i 6.883)

= - 2626 + i 736.4 ft./radian

= - 2.626 + i 0.736 ft./mil, (4.3.11)
so that

IRE/AoI = 2.727 ft./mil.

Similar substitution into formulas (3.5.7) - (3.5.12) respectively

then gives the remaining results as follows.

Angular Deviation Due To Dynamic Unbalance 4:

e/P = -3.379 - i 4.519 mils/il, (4.3.13)

iaP1 = 5.643 mils/mil. (4,3.lh)

Linear DeviationDue To Dynamic Unbalance

R P/ = - 11360 - i 13520 ft./rad.
- - 11.36 - i 13.52 ft./Mil, (4.3.15)

IR / c = 17.66 ft/mil. (4e3.16)
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[ Angular Deviation Due To Constant Gross-Wind w:

a w/wc' - 0.001399 + i 20.000489 rad/(ft./sec.)

= - 1.399 + i 0.489 niils/(ft./sec.)j (4.3.17)

Gww 0.0015 rad./(ft./ sec.)

1. 15 mils (ft. /sec.) (4.3.18)

Linear Deviation Due To Constant Cross-Wind w

R-w 2.748 + i 1.473 ft./(ft./sec.), (4.3.19)

iRww 3.118 ft./,,(ft. /sec.) (4.3.20)

Angular Deviation flue To Linear Thrust Misalignment L

ED L/L 0.-1174 + i 0. 1521 rad. /ft. (ni1073-A.) (4.3.21)

L-31/1, 0.1921 ma1/l0T3Ift.
Linear Deviation Due To Linear Thrust Misalignmfent LC

RIA = 45.38 +t i 39.27 ft./ft., (4.3.22)

IRL/Lcl =60.078 ft./ft. (4.3.23)

Ji



CHAPTER 5

FIN-STABILIZED ROCKETS WITH SLOW SPIN

5.1. Differential Equations Of Motion

In this chapter a mathematical basis for study of the motion during

burning of a fin-stabilized rocket with slow spin will be introduced.

Differential equations and the resulting formulas for the characteristic

functions expressing unit effects of the various disturbing factors des-

cribed in Chapter 2 will be given.

The quantities used to describe the motion of a fin-stabilized rocket

and the coordinate system to which they are referred are the same as those

described in Chapter 3 for the case of spin-stabilized rockets.

The equations of motion to be considered constitute a three-dimensional,

small-yaw representation of the motion of fin-stabilized rockets. The deriva-

tion of the equations closely parallels the corresponding derivation for

spin-stabilized rockets in [H-l] and tCH]. Closely related material con-

cerning the equations of motion and their derivation is to be found in MIKR]

and tDFB].

The following four equations describe the motion of the rocket and re-

late respectively to

(a) the velocity of the rocket in its trajectory,

(b) the spin-rate about the rocket axis,

(c) the angular notation of the rocket about an instantaneous

transverse axis through the center of gravity,

(d) the motion of the center of gravity at right angles to OX.

G irG G 1 - v -g sin;

c =ntG - c (.1.2)
t 1 A

0 2qo (i + i To) (vA + w> -iN/B (l

58
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" v - vA - &A -(CNV-iPF~c )(vA +.w )= -g cos 8+ Fc/m; (5.1.4)

in which much of the same notation as for spinner rockets appears, namely

v = rocket velocity (ft./sec.),
2

G = acceleration of the rocket (ft./sec.2),

co= axial spin rate (rad./sec.),

4 = complex orientation,

A = complex yaw,

0 = P -A = complex angular deviation,

g = gravitational constant (ft./sec. 2),

GI= acceleration (ft./sec. 2 ) due to rocket thrust outside the

launcher,

ntGI = axial angular acceleration (rad./sec.
2) such as might be

provided by canted nozzles,

s = angle of elevation of tangent to trajectory,

B k2 = transverse moment of inertia (slugs-ft.2),

2q = A/B = ratio of axial and transverse moments of inertia(0.02),

[ Wc = cross-wind velocity (ft./sec.),

M = resultant of cross-torques due to misalignment (and perhaps

c unbalance),

£ F = resultant of cross-forces due to misalignment (and perha4ps
C

unbalance).

Aerodynamic parameters with representative magnitudes (for rockets

with diameters of the order of 4 or 5 inches) are the following:

Drag: cD = JD/d- 5(lo-5)(ft.l).

Spin-deceleration: c = dJA/k (10 )(ft.-).

Damping moment: cH = dJAl2 2(10-1)(ft.-1

Stabilizing moment: CM = jA 2  (10 3 )(ft.-2).

Magnus torque: cT = dJTA2 -4

Normal force: cN = JN/d" 6(0-) (ft),

Magnus force: CF = JF D(O"4(ft').
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in which d denotes the projectile diameter and k the axial radius of gyration.

It should be noted that in (5.1.3), the term cMvA is preceded by a since

it enters in a stabilizing torque rather than in a de-stabilizing (over-

turning) torque as in the spinner case.

In the development below, we shall have use for the following

symbols:

n = co/v = ratio of spin-rate to velocity (rad./ft.),

X = 2/VTM wave-length of yaw(ft.),
It

= f w dt spin-angle (after launch).

0

The exponential e I will appear in the representations of those forces and

torques which rotate with the rocket. Thus

-(GI~cA2) e i n (due to thrust misalignment)

c c+ C cV 2ei- (due to fin misalignment)

Fc/m Glacce . (due to angular thrust misalignment)(516)

In these formulations, Lc, tLc, and a c are the complex parameters, described

in Chapter 2, which represent "measures" of the respective misalignments.

They incorporate both a magnitude and an initial orientation. (i.e., at

launch, t =to). ILc Icorresponds to a distance (ft.); Iicl and Ja c

correspond to angles. Thus jc represents that angle of yaw (measured

relative to the rocket axis) at which the cross-torque due to cross-velocity

reduces to zero. These parameters will be considered constant.

A torque due to dynamic unbalance and a cross-force due to static

unbalance could be included in (5.1-5) and (5.1.6). However, these effects

(assuming that reasonable tolerances are maintained) should not be signifi-

cant for fin-stabilized rockets with slow or moderate spin rates, where the

spin is employed primarily to "average outlt possible misalignment effects.

The formulations up to this point have indicated that consideraio -

I... L # 4L r
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is to be given to fin-stabilized rockets with slow spin. It should be pointed

out that the results apply equally well to finner rockets with no spin. To

- relate the equations of motion explicitly to the case of no spin, one merely

sets co = 0, nt = 0, = O, n = 0 in equations (5.1.1) - (5.1.4), and removes

the exponentials ell in (5.1.5) and (5.1.6).

Just as was done in the case of spin-stabilized rockets, we now intro-

duce a new '1 and a new 8 obtained by subtracting the angle ( s- &o ) from

both the old 2 and S, where we ecall that (& -e ) represents the change in

direction relative to the launch direction, 0, of the ideal trajectory

discussed in Section 3.4. The new I) and @ thus represent the orientation and

angular deviation relative to the tangent to the ideal trajectory. In so

doing, we shall assume that, during the burning period of the rocket, the

curvature of the trajectory remains sufficiently small so that we can ignore

) the slow rotation of our new moving axis system OXYZ with OX tangent to the

trajectory.

Equations (5.1.3) and (5.1.4) are now rewritten in terms of the new

4(notation is kept the same for convenience) and a new dimensionless inde-

pendent variable r = s/x , where s is arc length along the trajectory (in

L ft.) and X is the wave-length of yaw (in ft.). Furthermore, it can be

readily shown that cT and c have a negligible effect on solutions of
T F

these equations for the cases of interest here and hence they are neglected.

The resulting equations are then

1i !4I" + (vt/v - 2iqnk +XcH)V' + (4r 2/v)(vA + w)

SI-.--iMcX2/v 2 
- [ g(cos &)/v2] [2iqnX -XcH+v'/v-Xg(sin e)/v2]

,, - (vA),/v - (C.cN/v)(vA + w) = XF/mv2 , (5.1.8)

wherein the primes represent differentiation with respect to r.

The gravity effects reflected in the bracketed terms at. the end of

Iequation (5.1.7) will not be further considered in this report. To the

extent that, for a given type of rocket, v-, At and ;-can be reproduced.
io 0 0

from round to round, the gravity effect upon the deviations qf the rocket

will be reproducible and hence is not a significant source ofrsion.

tv 7
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If one thus neglects the gravity terms in equations (5.1.7) and (5.1.8) and

then eliminates 4 from the resulting pair of equations, the following equa-

tion results:

(vA)" + X(c+cH-2iqn) (vA) -2iqnX CN) (wc + vA)

(v'/v + 2iqnX -XCH)(XFc/mv) -i 2 /Bv- (/v) d (Fc/m)" (5.1.9)

Furthermore, by making use of the relation

-i=f = +A 

in equation (5.1.8), one may write the equivalent equation

I
(1 + 2 XcNr)A/2r + XcNwc/v + XFc/mv2. (5.1.10)

Once @is determined, the linear deviation may be found from the
e quati on R =x $!)dr 

(5.1.1) I
0

Equations (5.1.9), (5.1.10) and (5.1.11) serve as basic equations in I
determining the characteristic functions given in the next section.

5.2. Characteristic Function Formulas I
In solving the linear differential equations (5.1.9) and (5.1.10), one

may make use of the superposition principle to consider separately the effects

of initial launch conditions (initial yaw, A O, initial cross-spin, ' , initial

angular deviation, 0o) and of the misalignments given in equations (5.1.5)

and (5.1.6). The unit effects of each of these on angular and linear devia-

tion are listed in this section.

Effect Of Initial Cross-Spin @ On Angular Deviation

O

q = qo2 e...r (,) -E(. 10 )

+ -~ 'o]} (21)im r
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where the following additional notation has been used here or occurs later

in the report:

J7 r = s/, where s is arc length along the trajectory,

r v 0 2 /2Gk = launch value of the dimensionless variable r,
ml 2Tr + qn XI = 2Tr - qn X

1TH = nX - ml, rH2 
= nX + m2 ,

w = V2 riF, W10 -= v2 ro/ T,

w2 = V2m2 r/Tr, w20 = V0o ,

C3 = 1 + 2X CNro, D =1 V o F-(mlro)'

E(w) = C(w) - i S(w), conjugate of E(w) as used in Chapter 3.

In terms of rocket functions, formula (5.2.1) may be written as follows:

jq q o

Fim 1(r - r0[ (iC 3  T)jvTr [Fc(mlro) - e (r - (mlr)

[ [rc(m 2ro) -em2(r -r) rc(m2r)]

IF- e r(.2.1a)

Effect Of Initial Gross-Spin on Linear Deviation

I
I or in terms of rocket functions L

-~0

qq o

r a+(C- "Ir ) E(mlr)-

I + (C3 /8m 2 )[ rc(m2ro) - - r ) (5.2.a) -
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Effect Of Initial Yaw A on Angular Deviation

00

~1 n/A'
(iC 3 "F ) {m2 V-" e- r [E(l ) - E(W1 0 )]

- m2 r 0 (w2) - S(w2) (5.2.3)

+ (iN m2ei ml(r - r o ) -m2 (r -r ) 1 C
+iA)[me + mle 2 o + 3

or in terms of r ocket functions

" M, V 2 T rc(m2ro) e e - im ( r  r 0o ) rc(m r)]
= (3 Wh) i~ [(ro) -M (r - r )

+ (i//lF) [' e i ml(r -r°) +r e (  lj + C3 . (5.2.3a)

Note that the a6 used here has the value 0 at r = r

An apprximation for this expression is given by

imy 8 or3 (5.2.4)
q 33

Effect of Initial Yaw A on Linear Deviation

R6  AA = -A0 + C3D (r -ro). (5.25)

Effect Of Constant Cross-Wind Wcon Agular Deviation

aw = , q/W =
6 /vo + l/v - /v. (2.6)
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Effect Of Gonstant Cross-Wind w On Linear Deviation

I w RAw =R/V+2( -Vo)/IV -' ( r - ro)/v. (5.2.7)

Effect Of Linear Thrust Misalignment Lc On Angular. Deviation

=k2c ALT2H (og 33 r6. (5.2.8)
L k k2L *L "- (-i/2H2 Vro) q - C3D 23 A

For boosted rockets this is almost equivalent to

- "(-i/2TrH 2 V ) q

which in turn implies that

LAC -1 -(iGN/rOk 2H2 v )E /4 o. (5.2.8a)

Effect Of Linear Thrust Misalignment On idnear Deviation

[ -= DALL -(i/2irH )R - r- 2 r o .  (5.2.9)

C 2L~ o 2 q ~ 3 (3~r r0)/2 f21H 2r0

F Effect Of Fin Misalignment gc On Angular Deviation

+ (C D3/_ 2  ('- in /TH1H2 ro). (5.2.10)

Effect Of Fin Misalignment A-- On Lnear DeviationI -AC-

S(2 /H 3(1/H 
2V 4 + i2V '1 H

(r'V3 -d'V [ 5
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Effect Of Angular Thrust Misalignment a On Angular Deviation

( {i/2V9) [1 F20. r.c (TrH 2 r)]

2o

+ nX (1 - 2q) ErwH ro)/2xT}7q

- iC 3 D3nX (1 - 2q)/, 2 HH 2 r o . (5.2.12)

For boosted rockets this is equivalent to

a L [n& - 2r)/T4 yr1

(4GX/H 2 Vo)q/o (5.2.12a)

Effect Of Angular Thrust Misalignment a On Linear Deviation

R a R.Aa

S(I/Tr)[ _VwH 2roF T(vH2 r)

+2nX(l - 2q) rc(iTfrH
2 0 2

- i4C3 D nX(1 - 2q)(r -ro)/ H2r. (5.2.13)

3

5.3. Remarks On Derivation Of Characteristic Functions

Although full details of the derivation of the characteristic functions

listed in Section 5.2 will not be given here, some remarks will be made rela-

tive to the procedure for obtaining these formulas.

The results are based on the following two fundamental assumptions:

(1) The acceleration G of the rocket is constant during the burning

period, so that one may use the relation

v ' (5-31) '
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(2) The spin angular velocity co is proportional to the linear velocity,

so that o = nv(n constant) and hence

t t

f cot f nvdt = nXdr nX (r - r ). (5.3.2)
0 00

To find the effect of initial cross-spin, o, givenjn (5.2.1), one

puts c c = w g= M = F = 0 in equations (5.1.9) and (5.1.10) and
NH c C c

first solves equation (5.1.9) for vA using.the conditions that

at r =  vA = 0, (vA), =ko,0

the last condition being a consequence of equation (5-1.8). The expression

for A thus obtained is then substituted in (5.1.10) and the resulting equa-

tion solved for A under the condition that

at r = ro, .= .

The result is finally multiplied by C3 (as defined on p. 6 3) to account for

CN-and CH in accordnace with the result given in ICH], p.70, and [B-2]
modified for the fin rocket case. The argument for doing this carries

through in exactly the same manner as for spin-stabilized rockets. The

resulting expression is then formula (5.2.1), which gives a very good

approximation for G /4.
Formula (5.2.2) results from substitution from (5.2.1) into (5.1.11)

and applying integration by parts. This same procedure, of course, applies
for all cases where linear deviation R is to be found after having found

the angular deviation @.

The procedure for finding the effect of initial yaw A as given

in (5.2.3) is identical with that for finding (5.2.1) except that in

determining vA the bound,,ry conditions that

[at r vA = VoA, (vA)' =
0~ 0 0

are used. wth

v V- - 7"II0 0
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The effect on angular deviation of cross-wind w in equations (5.2.6)

results immediately fromwriting equation (5.1.9) as a second order equation

in (vA + wc ) and proceeding as in finding the effect of Ao, except that the

boundary conditions that

at r = r0, (VA + Wc) Wc, (vA+wc) = 0

are used in this case.

To find the effect of linear thrust misalignment Lc, we take

cN = cH = w = F = 0 in equations (5.1.49) and (5.1.10) and put

-iMc/B = -(GLCik 2 )e (r - r)

The equation thus resulting from (5.1.9) is then solved for vA using the

boundary conditions that

at r = ro, vA = (vA) 0.

The resulting expression for A (denoted by AL). may then be expressed in
terms of A (the yaw due to initial cross-spin 'o ) just as was done in

q 0

IBT-5(pp.6-7). This expression for AL is then substituted for A in

equation (5.1.10) and the same approximation made as used in [CH] (pp.69-70)

to take account of having omitted cN and cH above. The significant inte-

gral is then evaluated and negligible resulting terms are dropped to give

formula (5.2.8) for eL/Lc. The fact that C3 tends to zero rather rapidly

as r increases accounts for the approximation given in (5.2.8a), which

is obtained from (5.2.8) by taking C = 0.

The formulas for e /gc and E/ac result from a procedure similar to

that for finding 8L, except that the appropriate M or F is chosen fromc c

(5.1.5) or (5.1.6).
It should be noted that once the value of 8 has been computed by

N N q
use of (5.2.1), the remaining Ots ( %IBL etc.) can be computed rather

easily. Tables of Fresnel integrals for computing E are li ted as
q

IJE] and ID] in the references at the end of this report.

I

} -

I ____-_____,-__. . ] a , :.':c. . .
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5.4. Graphs Of Characteristic Functions For Fin-Stabilized Rockets With

Slow Spin

In Section 5.2 formulas were given representing particular solutions of

equations (5.1.9) and (5.1.10) corresponding to particular boundary conditions

and particular forcing terms representing various factors which are sources

of dispersion. If these same equations are solved under the same conditions,

with certain basic parameters assigned, by use of an analog computer, one

obtains graphs of the type exhibited in this section. Then if one is making

a study of a rocket whose parameters come fairly close to matching those

for which the graphs were computed, a quick graphical estimate of angular

deviations due to the various disturbing factors can be made. Furthermore,

a succession of such graphs obtained by varying only one of the parameters
involved will give a picture of how this particular parameter affects the

j angular deviation due to a certain factor. For example, the effect of vary-

ing launch velocity is reflected in some of the sequences of graphs here.[However, we simply give enough graphs to indicate some orders of magnitude

and to show how a more extensive program of computing might be used to draw[ conclusions about accuracy.

We shall first give descriptions of the various graphs shown in this

section and make some general remarks about them. Later in the section we

shall discuss some quantitative results which can be obtained from these

graphs. Use of these graphs in discussing rocket design will also be made

in a later section.

Figure 5.1 shows a graph of the yaw A due to initial cross-spin
q

4 One notes that the plane of yaw rotates slowly in the direction of
0

the spin, and that the yaw oscillations gradually damp out.

V Figure 5.2 shows graphs of angular deviation @ due to initialI q
cross-spin for two cases of constant spin (see EP] for a discussion of

this) and one case where spin rate t is proportional to linear velocity

v. Note that an increase in the constant spin rate from 25 rad./sec. to

75 rad./sec. causes little change in the magnitude of angular deviation,-

but gives a greater deviation to the right of the desired direction of

motion. if @ is directed upward. These graphs are typical of unboosted
0

fin-stabilized rockets.
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Figures 5.3 - 5.7 show graphs of angular deviation ( due to initialq

cross-spin for various effective launcher lengths r0 and for two different

spin-to-velocity ratios n (n =  /v). These graphs are typical for boosted

fin-stabilized rockets with slow spin where spin rate is proportional to

linear velocity.

Figure 5.8 shows angular deviation due to initial yaw A for two

cases of constant spin, ' = 25 rad./sec. and = 75 rad./sec., and for

one case where spin is proportional to velocity. Launch velocities used

here were in the unboosted range (r = 0.1) and one notes that angular

deviations of the order of 0.3 il/mil are induced. As in Figure 5.2 most

of the deviation is upward from the desired direction of motion, if A is0

upward.

Figure 5.9 shows the angular deviation S due to initial yaw which

is typical of a gun-boosted fin-stabilized rocket (launch velocity v -1500
2 0

ft./sec., G_ 670 ft./sec.) with spin proportional to velocity. Note that

in comparison with Figure 5.8 magnitudes are much smaller. In fact the

maximum angular deviation here is of the order of 0.06 mil per mil of initial

yaw and hence is a negligible effect.

Figure 5.10 shows graphs of angular deviation 0 due t o fin misalign-

ment for unboosted spin-stabilized rockets having spin-to-velocity ratios

ranging through the values n = 0.02, 0.05, 0.1, 0.2. As n increases magni-

tudes of angular deviation clearly decrease, with magnitudes of limiting

values roughly inversely proportional to spin-ratio.

Figures 5.1-1 - 5.14 show angular deviations A due to fin misalign-

ment which are typical of gun-boosted fin-stabilized rockets with constant

spin-to-velocity ratio n. Graphs in this group include cases of three

different effective launcher lengths r andtwo different spin-to-velocity0

ratios.

Figure 5.15 shows a graph of angular deviation (L due to linear
L

thrust misalignment for a rocket with spin-to-velocity ratio n = 0.2

and effective launcher length r 1.5. One notes that with k2  0.5,
o 6 (i0 -5)rail,/ft.

X ~ 180, the maximum value of Iand hence this

effect is negligible in this case.

In turning now to a further discussion of implications that can be,

drawn from graphs presented here, we first point out that there is some -
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flexibility in the use of these graphs because of the formula

v ° = Vr (5.4.1)

Thus a graph corresponding to a fixed value of r can indicate results for0

various launch velocities if one simply assigns successive values to G, the

acceleration outside the launcher (during burning).

For example, in Figure 5.6 the effect of 1 rad./sec. of initial

cross-spin, 0.o on angular deviation, (q , is shown for the case where

r = 1.5 and 71 = 0.2v(n = 0.2). With X-180 ft. (wave-length of yaw),

equation (5..l) gives

f vo =V_770 (5.4.2)

Thus an acceleration G = 667 ft./sec. 2 corresponds approximately to a launch

[ velocity vo = 600 ft./sec. A point on the graph of Figure 5.6 at which

(r - ro) = 4 gives a reading

-q o = 0.0095 + i 0.0005, (54-3)

[which then leads to the unit effect

Sq/ = ib O0/1334 (0.0095 + i 0.0005)

= 0.00350 + i 0.000184 rad/(rad/sec). (5.4.4)

±1 Thus, at this point, which is at a distance s =X(r - r ) = (180)(4)=
0

720 ft. from launch, and if burnout has not yet been reached, the angular

deviation due to o = 1 rad./sec. of initial cross-spin has a magnitude

3 IAq/,OI 0.00350 rad. -3.5 mils. (5.4.5)

In this case an initial cross-spin of 0.75 rad./sec., which might be a

reasonable value of -§ would lead to a deviation of about 2.6 mils at 720

ft.

From the behavior of the graph in question, it is also clear that the'

magnitude of a/ will not vary by more than 10 / '% over the remainder
q o

of the burning period.

I
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Figure 5.7 shows the same type of behavior for the case ,where r = 5,

which means that if v is still kept at the value 600 ft./sec. the thrust

has been lowered to give a G value arising from (using equation (5.4.1)

600 = vG(80) (5),

so that here G = 200 ft./sec. 2 For the same amount of rocket propellant as

before, one would then have a longer burning rocket, and hence at burnout

would be close to the limiting value of the graph in Figure 5.7, which clearly

gives a magnitude reading of

I v eq/ 0 o0.0024 (5.4.6)

which when unnormalized by using G 200, X = 180 gives

16 q/ o I -0.0016 rad./(rad./sec.) -1.6 mils/(rad./sec.), (5.4.7)

and hence the angular eviation in this case is about one-half of that in

the case corresponding to Figure 5.6. This would then indicate that for a

fixed launch velocity, a lower acceleration outside the launcher leads to less

angular deviation due to initial cross-spin.

One may interpret the results obtained above from Figures 5.6 and 5.7

in a different way. Suppose in the case of Figure 5.7 we keep the accelera-".
2

tion at G = 667 ft./sec. instead of fixing the velocity v0 . Then from

(5.4.1) it follows that for r = 5 the value v = 1100 ft./sec. results.

The reading from Figure 5.7 at (r - ro) = 4 is then

V 07/ 0 A0 0.0025 + i 0.0004,

qo

and hence the unnormalized magnitude is

is / ° 1=0.00092 rad./(rad./sec.)
qo0

= 1 mil/(rad./sec.) (5.4.8)

Comparing this result with that of (5.4-4), one sees that raising the launch

velocity from v = 600 ft./sec. to v = li00 ft./sec., keeping G fixed, lowers
0

the angular deviation for this set of parameters from 3.Smils to 1 toil for

the effect of 1 rad./sec. of §0.
0 :2
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Figures 5.3 and 5.6 (as well as Figures 5.4~ amd 5.7) show the results

of inicreasinlg spin relative to angular deviation duie to initial cross-spin.

These graphs Indicate that. stepping up the spin-to-velovity ratio froM

n .- 0.1 to n w0.2 has little effect on magnitudes of angular deviation 0
q

From Figures 5.12., 5.13., and"5.14 We note the effect on angular deviation

9 1 due to fin misalignment of increasing launch velocity with other para-

meters, including G, held fixed. At (r - r 0) -h4, for instance, we note the

following readings based on G - 667 ft./sec'. 2and X - 180 ft.

Fo 0 =0.5 (Fig. 5.12), so that v 0  346f./e.

1/C 0.0260 mil/n.

For r 0  1.5 (Fig. -5.13), so that v 0= 600 ft./Sec.,

-Sx/leLi 0. 0130 inil/rail.

For r 0 5.0 (Fig. 5.11k), so that v 1100 ft./sec.,

ISAL 0m. 00725 mi/mil.
p C

Thuis the angular deviation due to fin misalignment decreases with iacrFaied

launch velocity, and for the parameters used here-it is clearly ngiil
unless a rather large misalignment develops.

Comparison of Figures 5.11 and 5.14j indicates that doubling the
spin-to-velocity ratio (in the given range of parameters) practically

reduces the magnitude of angular deviation due to fin-misalignment by

1af'F~gure 5.10 shows a similar result for (r r r)> 2 in the three

cssof n 0.05, 0.1, 0.2.

: M1 oi
I7
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[ 5.5. Asymptotic Estimates Of The Angular Deviation

Just as was the case for spin-stabilized rockets, one may write very

Vsimple formulas for estimates of the values of the characteristic functions
listed in Section 5.2 for large values of r, and these short formulas may

be used for qualitative accuracy estimates in the case of fin-stabilized

rockets with slow spin. We r erely list the estimation formulas here, but

details of the Mathematical derivation of these formulas are given in

Appendix A of this report.

Restrictive Conditions for using these formulas for reasonable esti-

mates are

v - 500 ft./sec.,
11

•I /v 21 - 10-3 ft. - 1,

lO 2<

10 CM -n - 0.25.

j For the formulas listed here, n is assumed constant.

Effect Of Initial Cross-Spin

Where magnitude is of chief concern,

q (N + %/Vo )/CMVo" 551

[Effect Of Initial Yaw A
-- 0

Where one is interested primarily in magnitude,

[ @A =-2iqn(c + v o 2 )/CM 2iq o .  (5.5.2)

60N o0 0 M oq'

I Effect Of Constant Gross-Wind w

0W/0 -=--(l/Vo)(1- vv- 0/A). (5.5.3)

This formula is exact in the form given and becomes an estmaion i t .e

from (55.2) is used-.

Io
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Effect Of Fin Misalignment 1-C

O/tc ECM/(n 2cM) ](ico%@/ o + &/A °) (rad./rad. or- mils/ril).
q~ (5.5.4)

Effect Of Linear Thrust Misalignment t

L/c ,-(G/k 2 60
2 ) (ico / 0 + 6 /Ao)(rad./ft.). (5.5.5)

Effect Of Anular Thrust Misalignment a

i--c

/a (iG/voo)[ (1- 06/Ao -(V o o/vw )ei T (rad. /rad. or mils/mil).
(tC 0 0 0 (55.6)

These formulas are useful in making a quick evaluation of the suscepti-

bility o a given rocket to the disturbing factors discussed in Chapter 2,

as well as to determine which of these factors are significant in causing

inaccuracy. Furthermore, they enable one to make qualitative estimates of

the relative contribution to angular deviation made by these significant

factors.

5.6. Use Of Theory In Rocket Design

Except for symbols denoting certain parameters relating solely to fin-

stabilized rockets, (e.g., the fin-misalignment parameter, itc). the notation

to be used in this :section will be the same as that of section 3.3. Among

the dispersion-producing factors which can be significant for finners are

several k o' A o' 0C' %c' wc) which have already been discussed in re-

lation to spin-stabilized rockets. The chief additional factor is that

of fin-misalignment noted above. The relative significance of the various

factors depends both upon the magnitudes of the parameters which 'measure'

the respective factors and upon a variety of conditions pertaining to the

nature of the rockt, such as the met1ha of aunc hing, the launch velocity,

the magnitude and duration of the acceleration due to rocket' thrust after

launch, and the- amount --of slowspin, if y,. which- -is imparted- to-the ,

r ound.

Before one- can cosdrspecifically the possiblignfc eo ka,

_ipqrso-rdcn ftoishuld be notedthat certa4n infrmatioMn

concrnig te r-kt u d deigx Z'ast arayh-,b~ pec4,eat

-~ e>~~
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I least as order-of-magnitude specifications. within reasonably narrow margins.

Such information would include the over-all dimensions and weight of the

V rocket, the probable location of the c.g. and the magnitudes of the moments

of inertia, and the estimated amount of rocket-impulse needed for the desired

pay-load and range characteristics. All of these considerations relate to

the type of weapon desired, its over-all purpose, and the manner in which it

is expected to be used. It should be noted that these same considerations

1 relate to the method of launching. The weight, portability, and complexity

of the launcher are important factors in the design of the weapon, and, in

[ turn, the nature of the launcher cannot be ignored in the discussion of

sources of inaccuracy. It can be significant in determining feasible launch

velocities and spin-rates (for slow-spin), and also the interactions of the

rocket and launching process determine the launch parameters, 4)' A 0' and @o"

The round-to-round variations in these parameters in either magnitude or

direction, together with variations in launch velocity, v, can be among the

chief contributors to dispersion.

It has already been pointed out that the purpose of imparting slow spin

to a fin-stabilized rocket is to prevent the deviation, arising from some

i source such as thrust-malalignment or fin-misalignment, from building up

steadily in one particular direction. The slow spin provides a mechanism

for averaging out at least partially the deviations due to such a ialalign-

ment. Figure 5.10 shows how increases in spin-rate reduce significantly the

magnitude of angular deviation due to fin-malalignment. It should be pointed

out that the spin-rate should not be such that, over any extended portion of

the trajectory, the distance required for one spin-revolutibn.-is approxi-

mately equal to the "wave-length of yaw" of the rocket. (See Appendix A).

Otherwise, there would be possible -resonance effected due to forcing functions

rotating with a frequency near that of the "natural yawing frequency" of the

rocket.

VSlow-spin does not serve to reduce the effects of launch conditions,
Ao, @0 or of wind. For a reduction of these effects, the considerationsr

of the role of ro, the effective launcher length, are much the same as for

spinner rockets. The graphs shown in this chapter indicate cose2y.ythe_

effect of increasing r , and. inreases in r * can be acclior shed, ed by
0 0

changing- v0 or, 0 or b oth. Invreasea in r .also serve to, reduc e effet

of misalignmentS.L
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5.7. Accuracy Analysis for a Gun-Boosted Fin-Stabilized Rocket

In this section we illustrate an accuracy analysis for a gun-boosted

fin-stabilized rocket in which the rocket configuration is determined, but

certain significant parameters (G, X, etc.) are allowed to take various

values. Computations made in this analysis are based on the formulas for

asymptotic estimates given in Section 5-5 above.

Based on the given dimensions, shapes and weights of the component

parts of the rocket, calculations of the axial and transverse moments of

inertia are made for the two cases of the rocket with propellant and without

propellant. The following results are thus obtained in terms of the nota-

tion given at the beginning of this chapter:

With propellant: A = 126 lb. - in. 2
2

B = 3710 lb. - in.,
2 2
k = B/M = 0.58 ft. ,

2q= A/B = 0.034.

Without propellant: A = 102 lb. - in. 2

B = 3550 lb. - in. 2

k 2= o.65 ft.2

2q= 0.029.

It is clear from the estimation formulas given in Section 5.5 that

the aerodynamic parameters cN and cM are of particular significance in

determining values of angular deviation due to various factors. We note

that

cN N/d = 2 /M

where the magnitude of the normal force corresponding to a small yaw IAlis

p 2 v2 '

Also
C =j /k 2

M M

where the mantd of the restoring (stabilizing_) moment is

3' 2kv A
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[ The size and nature of the fins will affect both the normal force and

the restoring moment. One simple way of relating the two is to consider a

distance 11 N measured from the center of mass to the point at which it

would be necessary to apply the normal force so as to produce the restoring

moment. This position is not identical with the center of pressure corres-

ponding to the normal force but is probably fairly close to it. In terms

of N' one can readily write KN(= 4

and

cN = (k2/ )cM.

The restoring moment leads directly to the wave length of yaw, X; that,

is, the trajectory distance in which one yaw-oscillation is completed. Re-

call that

-K = 27r,e'M= 2 UIV/K/IB~

In the results tabulated below, wave-lengths of yaw ranging from 100 ft. to

400 ft. have been used and Table 5.1 shows corresponding values of cM and

KM Reliable values of KM ard KN for the rocket will probably be obtainable

only by aerodynamic testing. There is no simple way of estimating the re-

storing moment unless the rocket is quite similar to another rocket for

which the wave-length of yaw is known. See, for example, the discussion

in Chapter 2 of Exterior Ballistics of Rockets by Davis, Follin, and

Blitzer [DFB].

In order to keep cN and CM(Or d a K) inter-related, we have adopted

F the simple expedient of estimating what N might be. With the center of mass

some 15 or 16 inches from the base of the rocket, one can expect that, with

fins of adequate size (to correspond to wave-lengths of yaw in the range

mentioned above), the distance N might be of the order of 10 or 12 inches.

For convenience, the value N = 1 foot has been used in the computations

below. If were reduced to 0.8 ft., then the significant ratio CN/CM

would be increased by 25 percent. As the fin area is increased to reduce

F the wave-length of yaw,,f.4 can be expected to increase somewhat. N .o

attempt has been made to estimate the variation of with X, since the

~ Ibasic LN sued., is at best a r -ough estimate.

LNI __s us__ _
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Table 5.1

cM and KM for Various Values of X(ft.)

100 150 200 250 300 350 400

(I03 )cM  3.95 1.76 0.987 0.632 0.439 0.322 0.247

KM 25 11 6.2 4.0 2.8 2.0 1.55

(with propellant)

KM

(without propellant) 24 10.5 5.9 3.8 2.6 1.9 1.5

The quantity (cN + ro/vo 2)/cM shown in Table 5.2 below is fundamental in

the estimates of both E and (. It should be noted, for the range of 0 used,
q 0

the ratio cN/CM is the major contributer to the quantity. This ratio, in turn,

as was indicated earlier, is determined by k2/4. Since 4 has been estimated
to be approximately one foot, with no variation of N with ktaken into account,

the numbers shown in Table 5.2 should be interpreted as significant only in

the following respects. First, the table shows an overall order of magnitude.

Secondly, for a particular X, the table shows how the quantity varies with 4 0
0

Table 5.2

Values of (cN + /v0 2)/cM for Various Values of X(ft.) and - (ft./sec.2 )

With v = 1000 ft./sec.

-40 -20 0 20 140 100

100 o.57 0.575 0.58 0.585 0.59 o.605

150 .56 .57 .58 .59 .6o .64

200 .54 .56 .58 .60 .62 . 68

250 .52 .55 .58 .61 - 4.64. .4

300 49 -53 .58 .63 6

350 46 52- .58 .64 . .70 89

1400 .142 .50 .58 , .66. .7-k *9

4 -
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rf Nf were taken to be 0.8 ft. instead of 1.0, the entries in Table 5.2

would be increased by approximately-25 percent throughout most of the table

but with smaller percentage increases when both ? and ir are dCarge.
0

It should be noted that

0 = G1 - DVo - g sin e ,

where G1 denotes the acceleration due to rocket thrust, - cDvo2 the drag

deceleration, and -g sin & the gravity deceleration at launch. If the
0

rocket thrust were increased so as to increase j0 significantly beyond the

100 ft./sec.2 shown in the table, then the term, *o/Civo2 wouldbecome

more significant and would be the dominant term at least for the larger

values of .

| We now turn to estimates of unit effects on angular deviation for the

various disturbing factors. For order of magnitude estimates of q /4o and

./Ao we use equations (5.5.1) and (5.5.2) of Section 5, namely

eq/o = (cN + "o/vo 2)/cgvo(rad. per rad./sec.); (5.5-1)

I e6/A =-2iqn(c + o/Vo2 )/cM(mils per mil). (5.5.2)

[i Effect of Initial Cross-Spin

With v =1000 ft./sec., estimates of @ / in milliradians of deviation
o qo0

per rad./sec. of 4 can be read directly from Table 5.2. For a sustainer0
type rocket with lf lI- 20 ft./sec.2 or less during burning, one finds that

the effect of initial cross-spin is

° / 0.6 ail per rad./sec.,q o4

Iwith the possibility that this estimate might increase to 0.75 if should

turn out to be of the order of 0.8 ft. rather than 1.0.

If r is increased, the unit effect is increased.
0

The parameter § depends upon the rocket-launcher combination. Experi-
0

mental data on 41 for boosted rockets are very scarce. Extrapolating from
0Idata for unboosted rockets, one might expect JI@° s u o08rd/e.

perhaps, and it would be hoped that the magnitude could be kept underI.0

rad./sec. Thus the maximum angular deviation that one might expect due to

P should not exceed 0.75 mil for this rocket.

I0
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Effect of Initial Yaw

With 2q 0.034 just outside the launcher,

2qn - t03h if n = 0.1 radj/ft.

0 .0068 if n = 0.2 rad./ft.

Thus, for the sustainer type rocket, the effect of initial yaw is

0.002i il/il if n = 0.1,
6 o I 0.004i mil/-il if n = 0.2.

Even with a large initial yaw of 6o( -100 mils), the deviation @ would be

quite small.

In case there were no spin, equation (A. 36) of Appendix A, with cH

expected to be- 5(10- 3 ) or less, shows that 1a/A 0 1 < 10-3(mil/mil) if

V o/vo
2 I-4.

Effect of Fin Misalignment

Referring to equation (5.5.4) of Section 5, neglecting 06 /A ° and

expressing Eq as above, we haveq

0 I/Ac ItincM /(n - CM) ] (CN + o/vo 2)/cM] (5.5.4)

If the factor ncM/(n 2 - cM) is calculated (see Table 5.3 below), the second

factor is. available in Table 5.2.

Table 5.3

Values of ncM/(n 2 - cM) for Various Values of X and n

jX n =0.1 n 0.2

100 0.65 0.22

150 0.22 0.093

200 0.11 0.051

250 0.067 0.032
300 0.046 0.022

350 0.033 0.016-, ,

400 0.026 0.013
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If one chooses 0.6 as the order of magnitude of (cN + ./V, 2 then

the corresponding estimates of Su~t would Vary from 0.39i to 0.0078i. The

basic reason for the wide variation is that the torque resulting from fin-

misalignment is directly proportional to cM(see equation (5.1.5)) while cM

varies inversely as the square of X. This is one effect for which the

deviation increases with increase in stability (i.e., as cM increases and

X decreases). Consider X= 250 ft. as a possible wave-length of yaw, so

that by use of Tables 5.2, 5.3, and formula (5.5.4) we have

fO.Ohi(mil/mil) if n = 0.1,

. 02i (ail/il) if n = 0.2.

It is difficult to indicate what magnitude of kt.1 one might expect.

On the other hand, one might hope that with feasible manufacturing tolerances

an upper bound of'one degree (or 17 mils) on hIc might be maintained.

It should be noted that with no spin the deviation due to fin-misalignment

increases without bound as trajectory distance increases. See equation (A.64)

of Appendix A. Effect of Constant Gross-Wind

1f From equation (5.53), the effect of constant cross-wind is

= (w /v) (-1 + 8lA° + voM,

I where w denotes the cross-wind velocity vector in the-plane normal to the
C

trajectory. Thus the effect correspondsto a combination of the equivalent

of an "initial yaw" deviation with A = w/v and an additional deviation

w/v. We can write

[ =c (1/v)t(vo/v-1) + 6].

Note that under the assumption of slow spin with n -0.1 or greater, @6 /A is

predominantly pure imaginary, whereas the remainder of the expression is real.

Futhermore, considering

6/A -- O.Oi~mil/mil) for no. 0.2,

one notes that if there is any appreciable change in t velocity hn the ii- iud ,

i! "
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;of a W is determined by
ofw/a wwe (1/v - 1/v (rad. per ft./sec. )

In the case of a trajectory in which v decreases from 1000 ft./sec. to
900 during the first 14.4 sec., the angular deviation due to w will be

C

downwind and of the order of 0,1 mil per ft./sec. of IWcI . If the velocity

then increases from 900 up to 990 during the next 14.4 sec., the angular

deviation will be approximately the same in magnitude but upwind, and the

Ow c over the total burning period of the rocket will have a real component

which essentially reduces to zero and a small imaginary component - 0.004i

mil per ft./sec.

After the end of burning, the deviation due to cross-wind follows the

same general pattern. If v decreases from 990 to 830 in another 14.4 sec.,

the deviation will again be downwind and 0.2 mil per ft./sec. Then if v

increases from 830 up to 990 again in 30 sec., there will be a corresponding

upwind deviation. The net angular deviation of the trajectory due to a

constant component of wind velocity normal to the trajectory should be small

in this situation. The actual displacements (or deflections) of the rocket

over the various subintervals would probably not cancel out to the same

extent as the angular deviations, since the corresponding displacement depends

upon the algebraic difference between the actual time interval and the time

interval which would be required if the velocity at the start of the inter-

val had been maintained. Thus, over the final interval (30 sec.) of velocity

increase, the upwind displacement (or deflection) of the rocket would exceed

in magnitude the downwind displacement during the preceding interval (14.4
sec.) of velocity decrease.

It is to be noted that the over-all behavior of E/w c will depend upon

the angle of elevation and the resulting velocity variation over the tra-

jectory. However, the sustainer-type thrust, by. means of which the velocity

variation is held within a relatively narrow range, is very effective in

reducing the wind sensitivity.

Effect of Linear Thrust Misalignment

From equation 5.5.5),we have, on neglecting %/A o,

2 + 2
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J under the assumption of slow spin. For boosted rockets, this effect tends-
to be negligible provided Gl(and thus % ) is relatively small and provided1 o

[reasonable tolerances are maintained in the rocket construction so as not to

allow ILc I to be unduly large. For a h.5 in. rocket one would expect that

V ILIc would be less than 0.01 ft.

If, from Table 5.2, we choose 0.6 as the order of magnitude of

(cN + %o/Vo2 )/c., then we note that

0.Ol7G(10 3)(ft. -2 ) if n = 0.1,
I G/(kcoV) =

200 0.0085G(0 -3 )(ft.-2 if n = 0.2,

and thus

0.OIG(mil per foot) if n = 0.1,

S0 0 5 G (m i l per foot) if n = 0.2.

1 A h5 lb. thrust would correspond to approximately 32 ft./sec. 2 of rocketI-

acceleration G1, and for this Gl ,

[ -0.32 mil per foot of L or less,
LLc _c

or

L/Lc -0.003 mil per 10-  ft. of L .c

This would be negligible, and G1 could be increased considerably before thrust

misalignment would become a serious source of dispersion.

I

I
I -ri

'"I- o' . ' ...; -



CHAPTER 6

EXPERIMENTAL RESULTS

Various experimental methods have been used in connection with 4e-o~k

of this project group to obtain data from actual firings of rocket a ~ese

data were in turn used to compare theoretical with expqrental tS and

also as a guide to further developments in the theory of i&et motion.

In this chapter the outstanding experimental evices are described

and theoretical results arising from some of the resulting data are given.

Some of the devices used were the following:

(1) The segmented rail launcher for study of motion pf the rocket in-

side the launcher. .

(2) An optical lever device for determination o0 the orientation of

the round during the tip-off period and for several feet of travel

beyond the launcher.

(3) A Fastax camera for determining linear and angular velocity during

the first few feet of travel after leaving the launcher.

(4) One or more pairs of cameras positioned in such a manner as to

give trajectory coordinates during burning.

(5) An impact field survey for obtaining impact coordinates.

The facilities of the Transonic Free Flight Range at BalliL tic Research

Laboratories were also used for experimental firings, and the layout and

instrumentation there is fully described in [Ro].

6.1. Segmented Rail Launchers

The 11-rail, 9.5 ft. launcher (ID 4.600") is essentially~a smoothbore

launcher. It consists of 11 contoured rails insulated from each other and

from the outside launcher tube, and each rail consists of 8 sections of

lengths, respectively, 3., 3" 18", 1811, 18", 18", 18" and 15", given from

breech to muzzle. The rail sections are connected to a bank of neon lamps

which are photographed by three 35MM stripped film records. A wire through

the front of the launcher to the rocket is used to complete the electrical

circuitry. As the rocket (banded to a specified 0.]b. at two appropriate

positions about 20 inches apart) moves along the launcher, contacts of

the rear and front bands with the various rail sections are.ths recorded

100.
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as a function of time. Mathematically the data that result furnish cylindri-

cal coordinates of points of contact in terms of time for the rear and front

) bands of the rocket. Sample records from this "neon" launcher are shown

in Figures 6. 5, 6. 6 of this report.

F A similar Smoothbore launcher 5 ft. long was used earlier in the

experimental work described in [CHMI. Later a ten-foot, four-rail launcher

of somewhat similar construction with the rails positioned at 1:30, h:30,

7:30, and 10:30 o'clock was used for study of motion of a spin-stabilized

rocket inside a rail launcher. Experimental results of a firing program

using this launcher are given in [Ca-2].

6.2. The Optical Lever Device

This instrumentation involved modification of standard rounds by replacing

the rocket fuses by fuses equipped with two-inch front surfaced mirrors.

A high-speed camera (hO in. focal length) focused on the muzzle of the

launcher was positioned 80 ft. down range from the launcher muzzle and a

few feet to one side of the line of fire, and a coded screen was positioned

at the same distance but on the other side of the line of fire as shown in

j. Figure 6.1. The camera photographs a spot on the coded screen as reflected

by the mirror on the nose of the rocket, and the angular orientation of the

rocket as a function of time for the interval during and immediately follow-

ing tip-off can be determined from the camera data. Reduction of these

optical lever data leads to graphs of the components- iy, 4Z of orientation
. Z

@ as shown in Figure 6.2. In turn, these graphs are used to determine

experimental values of initial cross-spin @o0 and a summary of such values

I arising from four different firing programs reported on as indicated is

given in Table 6.1.

At the time of this writing, no firm data yielding direct experi-

mentally measured values of @ for boosted rockets are available. There
0

is same indirect evidence (see [W-1]) which indicates that for such rockets

- ts of rather large magnitude, possibly somewhat systematic, may develop

for a particular rocket-launcher combination.

-63. Schematic .Layout..Off Cameras

- Determination of linear and angular velocity at launch, ltogether. with

.the average acceleration during the first 15 feet of travel outside the
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launcher, is determined from data from a Fastax camera placed about 40 ft.

to the left of the line of fire. Pairs of cameras, one on the line of fire

and one at a considerable distance along to one side,. are used to determine

position of the rocket as a function of time during the burning period and

for several hundred feet beyond. The relative positioning of these cameras

is shown in Figure 6.3 below; some of them may also be seen in Figure 6.1.

Sample figures from the resulting data are to be found in tCI,. IC], and.

[W-2].

Typical results for end-of-burning parameters arising from reduction

of camera data and impact spotting are given in Table 6.2 (see IW-2] for

further details of results of this firing). A summary of information

obtained from side Fastax data for four different firing programs is given

in Table 6.3.

Key To Notation In Tables 6.1, 612, 6.3

,I) = component of initial cross-spin o ' in the vertical direction.

SZO = component of 4o in horizontal direction.

t = time from ignition to end of burning.
b

tf = tb - time from ignition to 1.8 in. of motion.

x b = distance along boreline from launcher muzzle to position of

rocket c.g. at burnou_:.

v = linear velocity at launch.

vb = linear velocity at burnout.

c = spin angular velocity at launch.

G = acceleration of rocket.

a = spin angular acceleration.

n = ratio of spin angular velocity to linear velocity.

% = vertical component of angular deviation 6 at burnout.

Shorizontal component of @ at burnout.'

= vertical distance from boreline at buout,

horizontal distance from boreline at burnout.

'y(= 2" + ) distance from boreline at b-"out.

r a rc tan(ZIY) ,= direction in which j is measured I-elative to.
7b hb
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6.4. Rocket Motion Inside A Smoothbore Launcher

In this section results of data obtained from neon records and optical lever

records lead to a mathematical model for determining rocket motion inside

a smoothbore launcher.

Il (1) Some Experimental Data

Attention is to be given first to certain experimental data concern-

ing the motion of some M33 rockets which were deliberately misaligned by

a 1012t tilt of t1;3 nozzle-plate. The tilt was initially oriented in the

launcher at one of four positions spaced 900 apart, to be referred to as

the "3 orclock", "6 otclock", "9 o'clock", and "12 o'clock" positions.[ For these rounds data were obtained on the motion inside the 9.5 ft.

smoothbore launcher (neon records), on the motion during tip-off and

during the first few feet of travel outside the launcher (optical lever

records), and on the motion at and near the end of burning. For a
description of the test program and the instrumentation used at the[Ordnance Missile Laboratories of Redstone Arsenal, see the report of
Horn and Cone EHC]. The reduced data from the program are presented in

[ EW-2].

The theoretical amount of linear thrust misalignment produced in

the M33 rocket by a 1012! nozzle-tilt is expressed by an ILJ (linear

thrust misalignment parameter) of at least 0.026 ft; see the report of

Cell on nozzle-plate tolerances EC-h].

This amount of misalignment was sufficiently large so as to be a

dominant source of maltorque even though it might be combined with addi-

tional misalignment or unbalance inherent in a basic standard round. One
purpose of the test was to trace the effect of this misalignment upon the
motion of the rocket during its burning period in an attempt to determine

whether its effect upon the direction of moti.on at the end of burning was
in general agreement with the theoretically predicted effect. Our interest

in this section concerns the misalignment effect upon the rocket motion

inside the launcher.

777;77
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Neon Records

In Figure 6.5 are shown, side by side, the neon z ecords of the rear

band contacts of three rounds. All three had the nozzle-tilt initially

oriented at the 3 otclock position. The sketch below shows the positions

of the eleven rails in the segTnted-rail simulated-smnootabore launcher

as viewed from the rear of the launcher.

12 o'clock

9 o 'clock 3 o'clock

10 3

6 o'Clodc

Fig. 6.4: The Positions of the Eleven Rails of the Launcher

The clockwise precessional patterns of the rear contacts in the three

records are very similar. All show the fInal contacts (at position 8 on the

records) to have been approximately on rail 4; and, if one traces t: con-

tacts back through the launcher, there is a reasonably definiti-e "starting

position" of the clockwise pattern back in the second section oi the launcher

(after about 4 inches of forward motion). This starting po itin is in the

neighborhood of rail 3, and this corrsponds Very closely t. tte initial

3 o'clock orintation of the nozzle-tilt. In fact, the o '-al rate. of change

7I
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of orientation of contact with respect to distance moved down the launcher

(i.e., a mean precessional rate in radians per foot of travel) is very

close to the spin rate of the rocket. The rockets completed one spin-

rotation in 5 feet of travel.

Similar reproducibility of motion inside the launcher was found

within each of the other three groups. From group to group, the main

observable differences were due to the difference in the initial orienta-

tion of the nozzle-tilt. This is shown in Figure 6.6, in which is presented

a representative neon record from each of the four groups. Note that the
"starting positions" of the precessional patterns correspond closely to

the initial orientation of the tilt. Also, note that the positions of

final contact are phased approximately at 900 intervals, and that the

precessional rates are quite reproducible.

(2) A Mathematical Model And Theoretical Considerations

Figures 6.5 and 6.6 indicate a significant dependence of the preces-

sional pattern of contact between rear-band and launcher upon the orienta-

tion of the nozzle-tilt as the rocket moved down the launcher. In these

rounds the nozzle-tilt corresponded to an intentionally large thrust mis-

alignment which can also be interpreted in terms of a cross-force of

approximately 70 lb. acting at the rear band. In an attempt to set up

a simple mathematical model to account for the observed precessional motion

of the rear of the rocket under the action of such a large cross-force, we

have produced a reasonably simple mathematical representation which has

broader implications than those which were being sought. Not only did the

resulting mathematical theory call attention to some aspects of the above-

mentioned records whose significance had not been previously appreciated,

but, in addition, simple modifications became evident which provided a basis

for understanding other patterns of contact of both front and rear bands

which had been observed in many neon records.

There have been previous theoretical studies of the motion inside a

smoothbore launcher, and general equations of motion have been set up.

See Hall tHa] and Cell, Herz, Menius tCHM]. None of these has yielded

a satisfactory understanding of the motion as depicted by the neon records.

One such representation was presented by Herz in Chapter VI and Appendix I
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of the reference [CHM]. He pointed out that because of certain physical

characteristics of such rockets as the M17 and M33 it is possible to

approximate the physical situation in terms of two uncoupled particles,

one at the center of the rear band and one at the center of the front

band. In such a representation, one would have

m = mk2/(k2 +Ir2) = the 'reduced mass at the rear band',

mf = mk2/(k2 + /f2) = the 'reduced mass at the front band',

where

mk2 = B = transverse moment of inertia about the c.g.,

i = distance from c.g. to center of rear band,
r

= distance from c.g. to center of front band.

a) We wish to use such an approximate representation, but, as an aid

to visualization, we shall replace the two uncoupled particles by un-

coupled solid cylindrical disks of appropriate mass and with diameters

equal to the respective band diameters.

b) We shall assume that frictional effects arising from contact bet-

ween the disks and the launcher can be ignored. Thus, we picture the

disks as sliding freely on the inner surface of the launcher.

c) We shall be primarily concerned with the nature of 'continuous con-

tact' patterns between disk and launcher, although it is possible also

to consider conditions which may cause a discontinunity in the contact.

d) Many neon records have indicated a sudden lift of the rear of the

rocket (and to a lesser extent of the front also) immediately after

ignition. This has been analyzed in tCHMI in terms of a Bernoulli

effect. In numerous cases this lift has resulted in the rear of the

rocket striking the top of the launcher. In some cases, this leadsto.

a balloting type motion of the rear as the rocket moves down the launcher.
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j More often, as the rear falls, it IslidesI down a portion of the launcher

wall and there is set up a tcontinuous contactt motion with an 'initial'

cross-velocity of significant magnitude. Such a record is shown in

Figure 6.9. We shall be interested in the above lift effect as a potential

source of significantly large initial cross-velocities.

The Basic Model

RelAxis

Cross-se ction of

Inner Launcher 'all

I P

Aii

IYI
Sliding Disk

I Figure 6.7

O center of outer circle (i.e., on launcher axis)

C: center of sliding disk

i I P: point of contact

0M = one half of clearance =j, (e.g., 0.01 in.)

CP = radius of disk, (e.g., 2.29 in.)

OC = complex variable p(t)= + _(t)
aforce rotating with the rocket = t)e;+; ...

_mg = 'reduced weightt of the. disk

=,reaction, force on the disk a = e24 W

,. -"....-.
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Considering the forces acting onthe disk, we obtain in complex

form

"= - mg + Fei
- Ne1X (6.1)

With p = e i , ( assumed constant for continuous contact), we obtain

as component equations along OP and normal to OP,

g sin X + (F/m) sin (i-t),

&g cos *X -(F/m) cos (-X) + N/m. (6.2)

Three cases will be considered briefly. There is first the case where

F is negligible in comparison with the gravity effect. Secondly, we consider
F >>mg, constant in magnitude, but spinning with the rocket. Lastly, an F

of variable magnitude can arise from unbalance (dynamic and/or static) in the

rocket, with the magnitude of F increasing as the square of the spin-rate.

Case 1: F = O.

In the sketch of our model, it is convenient in this case to orient P

relative to the bottom of the launcher, using = 1800 -X. Equations (6.2)

become

+ cos N/m (6.3)

The first of these is the familiar pendulum equation which may be integrated

to yield the energy equation,

1/2 + 2g sin2  = 1/2(&Io) 2 + 2g 9 sin 'o _ 2 =

l/(~r)*2~2 o 2 0'(~
in which E has the dimensions of energy per unit mass. The second equa-

0
tion may be written in the form

2m J 1 s2

In order to insure continuous contact, N must be non-negative. Two such

.4 .....
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f possible cases are of' interest.

a) If E 0  g , one has the oscillatory pendulum type motion-with
<5 0

amplitude -90 .The period of such oscillations is dependent upon , g,
and the amplitude. For the neon records shownm in Figures 6.8, 6.9,9

1/2(0.02) in. m0.0008 ft. and gA =h0.000(sec . In order for such

an oscillation to show up on a neon record there must be an amplitude of'

at least 170. Under these circumstances the period would range from 32

milliseconds up to 37 ins. for a 90 0 amplitude.
Such oscillations appear primarily in the neon records of front

band contacts. In Figure 6.8, such an oscillation is seen in the nose con-

tact record with a period of approximately 35 ins. There is also an indica-

tion of such an oscillation in the front contact record shown in Figure 6.9.

b) If E0 5g g2, one has a Tcirculatory? type motion in which the

disk (in the model) would slide completely around the launcher in a periodic
fashion. With =0.0008 ft., (i.e... 0.02 inch clearance in the launcher),

one finds that if ER is interpreted in terms of the precessional rate (clock-

wise or counterclockwise) at the bottom of the launcher, the minimum suchI precessional rate required for a 'continuous contact' circulatory motion ig;

approximately 450 rad./sec. with a corresponding maximum period of approxu).,-

inately 20 mns.

Such mnotion has been observed many times in the neon records of

r rear band contact. In most cases, it appears as a counterclockwise pattern
j (i.e., as viewed from the rear of the launcher). Figure 6.9 shows such a

c ounterclock motion of the r ear of the rocket with fairly uniform period

of abobut 10 s. This type of neon record usually indicates that the rear

of the rocket has experienced the Bernoulli lift effect and has lbouncedt

of f the top of the launcher (once or twice) and has acquired a significant

cross-velocity as it goes into the circulatory motion.-

[ c) If g< 0 < (/2)g the disk has sufficient energy to slide above

the 90 ltvel (-on rbut .at- some: point be-fore it-reaa te top

fth lea Un er theseaction forceN -will redceto zro, ang otact

be- broken and oci otinu ous co ntact type of bo rd show n Frevl.

b) If E>5s arlU

! o
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Case 2: F = a constant>>mg and with F rotating with the rocket.

As a first approximation to this case, we use equations(612) with the

gravity terms omitted. Since F rotates with the rocket, the angle 1.(t) is

such that f = and it = O', where ' and if are the spin rate and angular

acceleration respectively. These are assumed to be known, and in the M33
case'S" is taken to, be a constant (approx. 3000 rad./sec.2 ). Letting

c= X-e, (6.6)

the first of equations6.2) is expressible approximately as

F + - sine = - M (6.7)

With F -70, m -0.28, and 0.0008, corresponding to the cases depicted

in Figures 6.5 and 6.6, we find that

F/m 300, 000,

and thus we choose to ignore the term - %11iequation(&7), and consider

e F+ -+ sin 0 0 .(6)

This is the pendulum equation again. Because the size of F/m6 (as

indicated above) would tend to prohibit a circulatorr-type solution under.

the conditions of our rocket problem, we consider only the oscillatory type

of solution with amplitude< 900.

Note that an oscillatory solution for 0 would have the physical signi-

ficance of an oscillation of the 'contact-angle' about the 'prescribed'

spin angle ji; that is, in a neon record, an oscillation of the contact about

the rotating orientation of the cross-force. For small 0 oscillations., the

period would be given by

T i/s-:ou (-larg s.-forlvalu s citd- a"ove). _.

For os54llat an-of, larger anplitudet the pioswouldb lihl

~g X
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f One can see some evidence in Figures 6.5 and 6.6 of oscillations of

the rear contact about some rotating tequilibrium position'. This type

of motion shows up very clearly in the record of Round 541 as shown in

Figure 6.8. Round 541 was one of the rounds with the nozzle-tilt initially

at 9 o'clock. The oscillation shown in the lower portion of that figure

was obtained by subtracting from the contact record the spin-angle ii(t).

The resulting approximate curve clearly shows an oscillatory pattern about

the initial 9 o'clock position and its 'period' is approximately equal to

the ll ms.

Case 3: Effects of Unbalance

In order to represent the unbalance effects in equations(6.2), it is

necessary to introduce two unbalance parameters relating to the rear and

[ front bands respectively: U r

r r

U + rc,

[ where Pc = the measure (in radians) of dynamic unbalance,

rc = the measure (in feet) of static unbalance.
c

In the 'uncoupling' of the equations of motion mentioned above, it is found

that the corresponding forces on the 'uncoupled' disks at the rear and

SI front are given by

Fr r r CO2'

IFf mf f0A2

2
if &(the angular acceleration) is small in comparison with co (the square
of the spin rate).

If dynamic unbalance is dominant, then these two forces are

essentially 180 out of phase in their orientations, In the fir:ng pro,

gram referenced above, some rounds were deliberately unbalanced d , a

-mically so as to produce a 1c 1--. mils wihu anfigthe sttc

vxxalane. With~ a ,Clearance of 0:,,02 n. ihj 1 ) t a_

1'A
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1 = (5A2) ft., one obtains (with r = o) the following orders offc
magnitudes:

At rear band At front band

U .O.0028 ft. Uf ' O. 0009 (ft.)
rf

u O 2 21, 000 1 U? 2 A, 7,000 X(sec.- 2 )
r

where X denotes the distance (ft.) through which the band has moved down

the launcher.
2

Thus,- at the r ear band, Ur / increases from zero to approximately
-2) r

200,00(sec. - ) when the band is at the muzzle of the 9.5 ft. launcher.
After two feet of travel, Urc 2/ A 42,000 and is comparable in magnitude

with the corresponding gravity parameter (namely, gA = 40,000). After

4 or 5 feet of travel, UrC2 / definitely dominates the gravity effect at

the rear band.

At the front band, Uf 2/ increases only to 54,000(sec. - 2 ) as the

front band reaches the muzzle after travelling 7.75 ft. Only after some

5 feet of travel does U?2/ become comparable with gA . However, the

following is worth noting. If the contact at the front band remains near

the bottom of the launcher under the influence of gravity (with X near

1800), then in the first of equations 6.2) as F/mg (i.e. U? 2/ ) becomes

comparable in magnitude with gA and its orientation (spinning with the

rockets) causes Ip -X Xto tend toward 900, the unbalance term can become,

at least temporarily, dominant. This can cause the contact to move toward

the orientation of the unbalance force, and with this force increasing

in magnitude, it can affect the pattern of the front contact during the last

two or three feet of travel. This effect has been noted often in the neon

records of the front band contacts. There is some indication of such an

effect in the front band contact record shown in Figure 6.8, with a

discontinunity in contact following a simple gravity oscillation. -

Figure 6.10 shows -the ne-on records of one of therounds which were:_ ..

dynamically unbalanced withI 1-2.2. Note that at the rear the contactc
-rea d n the.botto m of-the- launcher- (rails-

bottom of Ihel nhrtefrst. .2. feet of tra
tion 3. -By th at -timeb the unbalneefcthdo#m sgiiat a ,~ -

~X

... . .- ...

-. $>A~~va-- -- ~- ~~--- -- ;- -~ - ~ ~~- ~-'V
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starting at position 4, there is a continuous contact dominated by the un-

balance force. Note the oscillation of the contacts about the indicated

rotation of the unbalance force which was initially'directed toward the

bottom of the launcher, and which had rotated again 'to that direction just

beyond position 5 in the record (after 5 feet oftravel). At the front

band, the contacts show a simple gravity-type oscillation about the bottom

of the launcher up through position C. From position D through F, the con-

tact is dominated by the unbalance force at the front band. Note that the

indicated rotating orientation of the unbalance force at the front band is

1800 out of phase with that at the rear band.

Mathematically, the equations of motion arising from equations (6,2) -in

this case are not as simple as in Cases 1 and 2 since the magnitude of F is

not constant for an accelerating rocket. However, qualitatively the ideas

of Case 2 apply after the unbalance force becomes the dominating effect.

Instead of oscillations periodic in time, one can easily show that if the

rocket has constant linear and angular accelerations, there is an approximate

periodicitr in the distance variable X. The first of equations (6.2) is trans-

formed :_nto an equation,

0" + (1/2X)O + (Un 2/t) sinS= 0,

comparable with equation(6.8)but with differentiation with respect to X.

In the coefficient of sin 0, n denotes the constant ratio of angular to

linear acceleration. Thus, for small 0, approximate solutions are ex-

pressible in terms of Bessel functions of orders + (l/4 ). The corresponding

oscillations would not be strictly periodic and would be subject to some

damping. But, for the neon records obtained in the test program:referenced

above, the data could be expected to exhibit at most two successive oscilla-

tions since the expected period can be estimated to be nearly 3 feet. In

Figure 6.10, the distance along the launcher between positions 5 and 7 is 3

feet.

With regard to the three cases which have been briefly presented, it

should be kept in mind that the fundamental equations(6.2) are non-linear,

and thffs one cannot 'think in terms of a linear 'superposition of effects.

The above treatment sheds some light on what may be expected if some one

disturbing factor ia dominant.

................................-..-.
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APPENDIX A

ASYMPTOTIC EXTIMATES OF THE

DEVIATION OF BOOSTED FIN-STABILIZED

ROCKETS DURING THE BURNING PERIOD

In this appendix the mathematical procedure for arriving at the results

given in Section 5.5 will be presented. The techniques involved he&ce are

somewhat unusual, and the implications relative to applications in other

areas should be significant.

The take-off point for the discussion here is the fundamental system

of differential equations given in Chapter 5 as equations (5.1.7) and (5.1.8),

in which 15 is measured relative to the ideal trajectory. Again M14 and Fc c

are given by (5.1.5) and (5.1.6) and other notation is the same as in Chapter

5, except for the fact that in the treatment the ratio n of spin rate to
linear velocity is allowed to vary. This extends the results obtained here

Ito cases covered by the more general theory given in tCH],, and the results

may readily be specialized to the case of constant n as was done in writing

the formulas of Section 5.5.

By changes of independent variable in equation (5.1.7) and (5.1.8), the

following basic equation result:

4"-(2iqn-cQ4H + c M (vA + wc )=~ -i /Bv

2_ 2
[(g cos &)/v][2iqn-cH + sr/v -(g sin e)/v2],

t - (vA), - cN (vA + w) = F c/mv,

[ wherein the dots indicate differentiation with respect to time t, and the

primes indicate differentiation with respect to trajectory arc length s,
I that is.,

d- (L)
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Equations (A.1) yield, on elimination of 1, a single differential

equation in (vA). The corresponding homogeneous (or reduced) equation

obtained from this new equation in (vA) is the following:

(vA)" - (2iqn - cH - cN)(vA)' + (cM- 2iqn cN)(vA) = 0. (A.2)

In the case of no spin (i.e., n = O), if the damping of (cH + CN) is

ignored, (vA) is a periodic function of distance with a "period" (i.e.,

the wave-length of yaw) equal to 2T/VcM. IfX denotes this wave-length

of yaw,
X= c2 T C-M• (A.3)

This basic wave-length is still significant even when slow spin and damping

are taken into account.

Likewise, if only the gravity forcing term is retained in the equation

resulting from eliminating k in equations (A.1), and if A is taken as the

dependent variable, one obtains the differential equation

2
A" - (2iqn - cH - cN - AI + IcM - 2iqn(c N +-)] A =

v v

- g Cos s(2iqn + - cH 2g sin e). (A.4)2 2 H- D 2
V V V

This equation yields, as a good approximation for the yw of repose,

-g(cos )v-2 2iqn + Gv 2 - cH - cD - 2g(sin s)v - ]

r c M - 2iqnjGv2+ N c- D -g(sin )v- 2]

This differs from that given in EMKR] only in the presence of G/v , expressing
2

the effect of the rocket thrust in -/v
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The gravity effects will not be further considered in this appendix.

It can be assumed that in equations (A.1), after v and co are replaced by

v(s) and co(s) as obtained for the approximate trajectory, the forcing

terms, Mc/Bv and Fc/mv, expressing the misalignments, will be independent

of further significant gravity effect. Thus, in solving the linear system

(A.1), the superposition principle enables one to consider separately the

effects of initial launch conditions, of the misalignments, and of gravity.

For a given type of rocket, to the extent that vo0, Wo, and &o can be

reproduced from round to round, the gravity effect upon the deviation

will be reproducible and is not a source of dispersion. The parameters

associated with the other effects, (initial yaw A , initial cross-spin 4o'

I initial deviation 0 0 and the misalignment parameters, Lc, .C , and a )

are not, in general, reproducible from round to round, either in magnitude

or in orientation, and need to be considered as possible sources of

dispersion.

We shall make the following basic assumption regarding stability.

Discussions of relevant statility conditions may be found in EMKR],

tDFB], and [Mu]1.[ •_____________
Stability AssuMtion: That the solution, and (vA), of the homo-

geneous system resulting from (A.1), namely

f - (2iqn - CH)* + (v A) .0,
I (A.6)

4'- (vA), - CN(vA) = 0,
IN

I as produced by initial conditions, 4 and voA, are such that ' and (vA)
0 0

I; i remain bounded, with A and §/v damping out as trajectorY distance, s,

increases, the damping being produced by an increasing v, or aerodynamic

damping, or both.

I In the considerations to follow, the solution of the homogeneous system

(A.6) will be expressed in terms of two basic solutions- determined by the

two sets of initial conditions: (4 =1i, Ao 0) and'(4 = O, h0 = 1).
lit

0F
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Thus a general solution of equations (A.6) is to be expressed as

{4 ;q (so , S) + Ao 6(So0 S),

-- Aoq(s 0, s) + A i + A(s tS)],

in which the subscripts, q-and 6, are used to denote respectively the first

and second of the above sets of initial conditions. Note that the functions

,* 4%,A, and A have initial values respectively of 1, 0, 0, and 0. In

turn, one can produce functions, §q and with

tq

§ = 1o + t4 dt + ds + * 4 s (, S)+ A ,(s, S),o o 0 o o (A .8 )

in which the functions §' and §6 are initially zero. Likewise,q

+ ; (a (s Js) + A (ss), (A.9)
o o q o o

in which. =ED - Ao' =, 4 -Aand 6 - A Note that both,,q

and e6 are initially zero, with the initial yaw A having been made a6 o
part of the initial parameter 0

We shall next obtain, under conditions applicable to rockets launched

at high velocity, asymptotic estimates for l and 0 Then later someq
approximations will be derived, expressing the effects of the forcing

terms (cross-wind and misalignments) in terms of "equivalent initial

conditions" and thus the corresponding effects upon angular deviation

0 will be expressible in terms of E and 08"
q

Asymptotic Estimates for 0qan

W'e-ftow impose restrictive conditions' on the launch velocity and the

acceleration due to rocket thrust outside the launcher. It will be assumed

that, during the burning period outside the launcher,

v - 500 ft./sec.,
i /v21-510" < 3 ft-1. :, --

It will also be necessary to know something about the spin i-order .t

___77
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estimate the magnitudes of terms in which n (i.e., c/v) appears. For

the cases where spin is involved, we shall assume that the spin rate is
[ < 2<

such that 10c M 
= n< 0.25(rad./ft.). The upper bound on n simply means

that the spin-rate is not permitted to attain the high values characteristic

of ospin-stabilized projectiles (for which normally l< n< 2). A word of

explanation is in order concerning the lower bound. Recalling that the

wave-length of yaw isXK = 2/V_ M , we note that, for n constant, distance

transversed by the rocket during one spin-revolution of the rocket is

expressible as (2r/n) ft., and thus the number of spin-revolutions per

wave-length of yaw is given by n/,c M . To avoid the possibility of

resonance effects, introduced by forcing terms which rotate with the

rocket, it is desirable to avoid having n/ v M close to unity. It is

expected that, if spin is employed, then n would be maintained at values

exceeding VcM. The condition n 2 = lOcM means that the rocket will complete

at least 3 spin-revolutions per wave-length of yaw. 'With cM -0.001, we

shall consiler n to be- 0.1 or greater.

It is also &pected that the possible variation in n will tend to be

either monotonic increasing or decreasing during the burning period. With

[ the assumption of a burning distance on the order of 1000 ft., we shall

thereby expect that I n' I will not exceed 5 (1 0
- 4 ) and that In" I<10- 6 .

[ The three most specific and simplest patterns are respectively:
(1) no 'spin, with co = n = 0;

[ (2) pre-spun with only aerodyiamic-spin deceleration outside the

launcher, with c = co - r cco ds;

(3) spin proportional to velocity, i.e., n constant.

For all of these cases, we can write

nt = (&/v) - n(/v2), (A.11)

with this quantity reducing to 0 in cases (1) and (3) and to (-n)(cA+ 4/v 2 )

in case (2).

From the second of equations (A.6),

v(' - v A' ve - (% + '/ 2 )(vA),
and thus -A.. 12)

e '=( + / .A.



Under our stability assvmption, A -+- and (cN + .0/v) remains bounded as

S-+ Co. Hence (9@- 8 ) will approach a limiting value which is also the
0

limiting value of (.,I - 4 0+ A9 . It is convenient to seek an estimate of

the limiting value by considering the relation

0 V

The homogeneous system (A.6) can be rewritten in the form

(.~ (2in~c -c)~~+ (M~2iqn c 2iqn) =O,

(A. 14)

4" (2iqn - c H)§* - C M(VA).

Let L denote the linear operator

L =rD 2 _ (2iqn -c H c N)D + (c M- 2iqn cN - 2iqn')], (&.15)

and M its adjoint operator

M =ED 2 + (2iqn ..c H c )D +(c M- 2iqn c N)1. (A.16)

A standard Greent s formula may be expressed as follows:

EL(4')f(s) - 14(f)4']ds If .51fc) 2q HC~i~

o 0

in,- which f denotes an arbitrary function such that the integral in (A.17)

is meaningful.

To evaluate the integral of (A-13), we wish to have m(f) =-1/v.

If one designates that

f~s) =-1 11 2iqn(CH + cL + 3G/v
2 )

f cs) =.c- +_ -2) L (A
ccv CN v2 v

in which cL 0 CN then the more significant terms of V' and ft' are-

given by

cv ±2 c CN+ 2) (-L2) -c +A19N v v v -v
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and

cv

Considering 1(f), one finds that, -within the conditions whitch have been

imposed,

1 -

Since L(W, E 0 and 14(f) - ,, one obtains, from (A.17) and (A.13),

§ d (c f - t§ - c(vA)f] s .(.

Using (A.18) and (A.19), one finds that the more significant terms of

(c Nf -fl) are as follows:

I cf f I i + 2I.2.-)] 2ign (c1 +~

and thus that(A23

-2iqn 2*.1 i 22 ]

ifl 4,CN -2 c = c 2

+ l{ + 2iq1n +~ (c H + cL'+ 3G/v2) s i (A.24)

0

Under the stability assumption, ;'/v and A approach zero as s increases.
Thus from (A. 24) we find that

4, 2ijn' 2iqn (02

0 (c+ 0(

0 00

2in(cH + GL + 3G/v2 j

-A cM(cN + 2[~~M 0 -NV~j*(.
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and

lim(O -9)  lira(4, - , + Ao

I4 2iqif' ~21 (c)[(c + o )2 + 2 )CO O N + -22) (i - N( v22
0 0 0 -

2iqn (cH + CL + 3G/vo2)

0 C (CN + 2 CM (A.26)o v CM
0 0

We thus obtain, as the asymptotic estimates foraq andor the

following:

q (So) 0 _ o 0) + ____1 [ + +
gVo M Mo oo

0 0 0

(A. 27)

2iqn 0 °  (cH + cL + 3G/Vo
2 ) (

CM N C (A. 28)

0 0

in which Vo and n'(i.e., Ao/Vo) are to be interpreted as t-r0 + or

physically simply as the rates of change just outside the launcher,

assuming that the rocket thrust (as opposed to that of the boost charge

in the gun tube) has already been initiated at launch. However, if the

rocket propellent is not ignited until after the rocket has traversed a

significant distance along its trajectory, then v, no, 40, and Ao are

to be evaluated at that time.

For the case of no spin, one notes that

[ q(S,-) = (CN + o/Vo2 )/CMvo ,
2) (A.29)

(cH + cL + 3G/v °

e (S,) = cM 2)

For the case of the pre-spun rocket with no angular acceleration after

launch except aerodynamic deceleration, (with cA of lower order than t/v 2 )

_ 2iqn 2
q(o, ) V { N _22) + c N+3cN . %2 , (A.o) ....oI' O v o, . .

0 0 0

with 06(so,oo)as in (A.28).
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For the case of n constant, we obtain the estimates for 8 and 86

directly from (A.27) and (A.28), setting no 0 in (A.27).

In the cases where the rocket is spinning, one notesthat the e

estimate is predominantly real and positive. As viewed from the rear

of the launcher,ai 0o(initial cross-spin) which is directed upward produces

a limiting angular deviation q which is upward and slightly to the right.q
Similarly the e 6' due to an initial upward yaw, is predominantly imaginary and

is directed to the left and slightly upward.

In the case of no spin, both estimates are real and positive.

If, in the cases where spin is present, one is interested primarily

in the magnitudes of 8 and O then the estimates can be given in theq 6
r simpler forms,

Eq (cN + V )iVo /CMVo, (A.31)

6 2iqn(C + 0V2 )/cM - 2iqcoO e. (A.32)

In (A.31) if one replace o by (G - cDV - g sin &o) -and employs the "lift"

parameter, cL = cN - cD, then

1 gsin e0 + G (A.33)q o (ceL 2 2
M v°  v

The one significant respect in which (A.33) and the corresponding estimate

for 6 differ frem the analogous estimates for ordinary projectiles (as
derived, for instance in [MKR]) is the presence of the term G/v02 arising

from the rocket thrust. When G/vo2 is of the same general order of magni-

tude as cL(CL = cN - cD ) and cM, as we have assumed in this development, then

the angular deviations for the boosted rockets, due to unit amounts of initial

cross-spin and initial yaw, become comparable in magnitude with the corres-

ponding deviations for shells.

The Effects of w, M, and F Epressed in Terms of Equivalent Launch

Parameters

1. Cross-qind, wc: (with cross-wind velocity w assumed constant)
c

In equations (A.8 we set M = F = 0 and remove the- gravity- term.

Uc1
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Since w c is constant, we may write

(vA) (vA + w) ,

and thus

;i 2cin ~c H ) )+: ::(vA +w ) 0,

CC

Taking 4o 0 = A 0= 0, we consider the solution of (A-34) in the frame-

work of (A.7), (A.8), and (A.9), with A replacedi by ( A + w c/V) and with

the corresponding initial value, w c/v. Thus, using a subscript w to denot~e

the solutions due to w~ in the absence of other disturbing factors, one

obtains, with 1, 0 and (A + w c /v 0 0 = wc/VO,

w.

w V 0

0

(A +w wc 1+ s3)

w w 7 v00

w

w v - A.6

Nceteo thate anmption ethatioen c onseritnn th frsltisvai

c



~135

Ifor rockets and projectiles in general, fin- or spin-stabilized s'o long

as wc/v remains sufficiently small to be considered in the linear, "small

yaw" equations. The behavior of @ of course, will depend upon the

characteristics of the particular projectile in question.

Restrictive Assumptions to be made in the considerations to follow:

2< 05 (A-37)

7 {loc 2 < 0.205

n - 10- 6  (A.38)

2. Fin Misalignment, c.

From equations (5.1.5) and (A.1), we consider

i - (2iqn - cH) + c M(vA) - CecV el ,

[i (A.39)

S- (vA), - 0.(v 0

We consider first the case where spin is present. For convenience, let

H c C c v e i (A.40)

and note that 2

Ht  (i n + /v2)H, (A.hl)

If one substitutes in the left-hand members of equations (A,39)

$ -i nH . -i 2], (sJ12)Ii(l-2q)n 21c M (A42

and

vA-H Elt i-))
(l-2q)n2 - s

L____] L~3 ....
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he finds that the left-hand member of the first equation differs from H

by a quantity of the order of
1c + -_X) + CM3n

v 2 n

which is, in magnitude, less than 100/o ofj H 1. Similarly, the left member

of the second equation reduces essentially to .- (cN - 3nr/n)H. This could

be readily absorbed as a modification of the § given in (A.42), but it is

negligible in comparison with the basic @ of (A.42).

Thus, to a good approximation, we can replace the non-homogeneous system

(A.39) by the homogeneous system,

+ P)( - (2iqn-c H)(§ + F) + cM(VA + Q)= 0,

(A. 44)
(I + P) - (vA + - CN (VA + Q) = 0

in which

p = n 2 _inH 2/n2 (A-45)
(l-2q)n - cM

and

H 11 - 3I) (A.h6)

(1-2q)n - CM

Taking 0 4 A 0, we express the solution of (A.4h) in the framework0 0 0••

of (A.7), (A.8), and (A.9), considering @ replaced by (4 + P) with its

initial value, P0, and A replaced by (A + Q/v) with initial value Q/vo.

Thus, using the subscript It to denote the fin-misalignment effects, we

obtain

4 *= P *(QV (A-47)

To a good approximation, since (i n v ei ' ) = d(e1)/dt,

t iP
P t t =-IP 0

t c+

nv (0 CO : : ... : "-
ft 0 0 0 L..
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Thus

1=iP/CO iPo/O + P o + (Qo/Vo)46, (A.48)

and similarly

A -Q/v + PoAq + (Qo/Vo)(l + Ad- (A.49)

Since E ) 4 -A 0 1q e obtains

@ =po + (Qo/V) + IQ/v - Qo/Vo] + ifP/ - P O]. (A.5o)
0 q 0o0 0 0 00

Equation (A.50) is the simplest in the case where co nv with n constant.

Taking n' = 0 and (1 + icN/n) = 1, one notes that

L iP/co - Q/v. CA.51)

j Thus, where the spin rate is approximately proportional to the velocity,

i n voCc  E + Cm c

n 2 q)-c q n - cM

In (A.52), (1-2q) has been replaced by 1 for convenience.

It should be noted that if one is primarily interested in an estimate

of the magnitude of the angular deviation ED and in those parameters which

significantly affectO , then equation (A.52) is relevant to all cases

i where spin is present, provded the spin-pattern satisfies the general

restrictive conditions as given in (A.38). This can be recognized by

noting that, in (A.45) and (A.46), the imaginary terms within the brackets

do not affect the magnitudes of P and Q but rather correspond only to

slight rotations in the conplex plane. Thus, in regard to magnitudes,

relation (A.51) is a good approximation in general and likewise (A.52)

with n replaced by n in case n is variable.
0

Where the magnitude of a is the primary concern, we can also use the

approximation given by equation (A.32) and replace (A.52) by the simpler

result

inv c (1-2q) in vc"
e n 2c/U - (A'53-) .

n 0

[%[ I . '= no cM 0 n o - c M q - i .~:/::
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2 >
Since we have assumed that n = lOcM, we can note further that, since the

basic estimate forD q, as given in (A.31) or (A.33), is independent ofn,

E /P' is essentially inversely proportional to n . As a first orderP c 0

approximation, we can write g sin &

"-i -1 (C +- G 2 0 (A-54)
o v v

0 0

Thus (L /i_ is predominantly imaginary and inversely proportional to n

This general behavior of /Ic also shows up in the results for unboosted

finner rockets with slow spin, as may be seen in Figure 20 of IP] which

relates to unboosted rockets.

Although we are not primarily concerned with the no spin case, it is

of interest to note that our approximation methods are readily applicable

to that case also. With n = 0 and the exponential e"' deleted, equations

(A.39) become

' + c + cM(vA) = c~tLv

- (vA), - cN(vA) =0 . (A55)

In this case, we can simply absorb the forcing term as a (vA) and write

, + cH' + cMlv( A -Ic) 0,

§ - IV(A- 11c) I CNV(A- IL,) I = AcV~cN + t/V2)}.

Absorbing the right member of the second of these equations as a 4, one

obtains

It - c + 0/v2)] + cH'§ - IV + /v2)] + cMtv( A -c)I0,

1- IcVCCN + '/v 2)] Iv( A- %)] - c',v( A- Ic)] = 0, (4.56)

where the right member of the first of these equations should be essentially

2 2

-V V (a - -4 V
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SHowever., the ratio of this to the original right member in (A.55) is

--(CN + 4'/v 2 ) (cH + 0/v 2 )

cM

and this is negligible in comparison with 1.

Treating (cN + -0/v 2 ) as a constant, one obtains as basic estimates in

the case of no spin,

t= oV(CN o /v2 - cN + c6I 24'q

L= 'Lc(c N + 0/2Css) -L (cN( + "/v2 - %
22

t Ic - vo(% + "/v)Aq - %c(l+ )

[i and thus

4/v ( + JIv2)(S-so) - v q - (A.(7+ 2

The significant term in (A.57) is, of course, the first, which increases

[ with trajectory distance (S-So).

3. Linear Thrust Misalignment, L., and Angular Thrust MisaliMmentag.

We shall deal with these effects briefly to obtain the approximations

primarily for the case where o = nv with n constant. However, the same[ considerations as above would show that the results are relevant in general

(within the scope of the stated restrictive assumptions) to other spinIpatterns, if me is primarily concerned with the magnitude of the resulting

deviations.

In the case of linear thrust misalignment, one has the basic equations

( . GL
V , - (2iqn - c)+ 0 (vA) - ellH N2

- (vA), _ ON(VA) 0. (A58)

1Noting that

0i V I .I
CO n

------ ----- ----- ----- - --
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we absorb the right member of the first equation of (A.58) as a 4, replacing

by {4 - i(GL /k2  )e'Ti]. To balance the second equation, we replace (VA)

by v[ A (GLA 2co2)e1Th.

One obtains an approximate homogeneous system and thus the apprxi.nate

results, -GL GL GL 1 ij

0 0 0

iGL GL GL e 'n
_ C A _ cc

T q k(+Ad+ 22
k co k )k co

0 0

and thus

E = Ii a + E (A.59)L/Lc ke oo q @6 ]

0
Using (A.32) to express @6 in terms of 0q, one obtains

qL G 2 (l.- 2q) 6 (A.60)

0

Similarly, for angular thrust misalignment, one can obtain as good

first approximations, -@Ga

0 0

-iGa iGa
c vc ( l+A) + c e1

0 0

and thus

003

a d t uis / cc = -ia iG v o o ei )) (A .61 )a' c 0- + V- c (  v •

For boosted rockets 86 will be small in comparison with 1 and the behavior

of 6 /a will be determined primarily by

VTO

iO) V O
0 0 e

If (vto) increases during burning, the effect of the rotating term ed Vill

damp out. Otherwise the magnitude can vary approximately frot 0 to 2G/Vo4o.

0 O
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Under the assumption of a spin pattern within the scope of restrictive

conditions (A.38) and with v-:= 500 ft./sec. and -/v 2  O.OO1 (ft.-), there

have been obtained the asymptotic estimates,

q (cN + O/Vo 2 )/CMvo, (A.62)

and

@ 6 ---02i ) o.' (A.63)

together with the approximations,

a c - aC0e ,  (A.64)

0

-Lc iG q' (A.65)

0

/[ G (1- 0 e" (A.6)a c V CO - vW
0 0

As the combined angular deviation (with the gravity effect excluded), one
can write

0 +(40 + 2 2CcD + (A 0+ v c ED
c 0n k o vo

[ w v iGaC v e .-- v v o O --0 , eln) (A.67)
00 0 0

From (A.62) and (A.63), one notes thatroughly aq is of the order of magnitude

1/Vo 0and 06 of the order of (2iqn0).

lI!
F - :



APPENDIX B

SOME CONSIDERA.TIONS CONCERNING THE EFFECT OF

LAUNCHER MOTION UPON THE LAUNCH PARAMETER. 400

The simple model to be considered below was formulated in an attempt

to obtain some order-of-magnitude estimates of possible effects of launcher

motion upon 4 . The situation under consideration involves a boosted0
spin-stabilized rocket launched from a rifled tube. Experimental data,

secured at Redstone Arsenal and at Aberdeen Proving Ground, have exhibited

high frequency oscillatory motion of the muzzle of the launcher in both

the vertical and horizontal planes.

The model is to be considered in the following context. Presumably

the rocket is well constrained by the rifled launcher during most of the

interval of emergence from the launcher, and the launcher motion is

transmitted to the rocket as a whole, with no freedom for rotational

motion on the part of the rocket about the end of the launcher. However,

suppose that the rocket and the launcher are so constructed that there

can be a short length at the rear of the rocket (less than an inch,

perhaps) such that one might expect continued contact (of some sort)

between launcher and rocket as the rear emerges but with sufficient

clearance (or partial freedom from constraint) so that the rocket is

free to rotate about a point at the muzzle of the launcher. In such

a situation, high frequency oscillations of the muzzle might have a

significant effect upon @4o 0

The considerations beloware limited to a plane and the vertical

plane is specifically considered. However, the results, except for the

gravity effect, would be applicable to the horizontal plane. The dia-

grams below (some of them exaggerated) indicate the geometrical

142



F J143

framework to be considered.

ceniter of qravi~y

wid i s p aced i auvicier

1. Let y denote the displacement vector of the muzzle and .Ithe position[ vector of the c.g. Positive displacements will be measured upward.

r2. Let x denote the horizontal distance from the muzzle to the c.g.
I: (positive to the right).

3. Let § denote the or~pntation angle of the rocket axcis relative to the

I: reference axis (counter-clockwise angles positive).
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For small angles -§,

x = - y. (B.)

To obtain equations of motion, we consider the motion of the e.g.

at right angles to the reference axis and the rotational motion of the

rocket about its c.g. The forces and torques to be considered are those

due to gravity and to the reaction force, R, acting upon the rocket at

the muzzle. This reaction force is assumed to be at right angles to the

reference axis.

tReference Axis

Y g



Thus

m mg + R

22

mk2 @ = xR (B)

in which mk2 denotes the transverse moment of inertia (about a transverse

axis through the c.g.).

From eq. (B.1),

= x * + y.

Over the short-time interval under consideration, we assume that

[ v = a constant, v0 , the launch velocity.

Then

=x4 + 2v0 + y, (B.3)

andI:,
n + {2v - g - y + R/m

k2 = -xR/m (B-4)

Eliminating R, we obtain

(x 2 + k)* + 2vx -gx -xy. (B5)

1i In the derivation of the above equations, it is evident that no

attempt has been made to take account of the rocket's spinning motion

(about its longitudinal axis). If the gyroscopic effects of the spin were

included, there would be a gyroscopic torque to rotate the rocket out of

the plane under consideration. In notation, relative to a complex plane

perpendicular to the reference axis, (as in the 3-dimensional equations

of motion of spin-stabilized rockets), this gyroscopic term would appear

in eq. (B.5) as (-2iqco 0), in which ca denotes the spin rate and 2q the

ratio of the moments of inertia. With 2q -0.04 and Co = nv (rad./sec.)

U.7
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with l<n <2, the coefficient of P in the gyroscopic term would have a

magnitude less than 0.08v0 , whereas the term in (B.5), 2v 0x 4, with

x -1 ft., would have a coefficient (of §)- 2v.. The gyroscopic effect is0
much smaller and, over the short time interval involved, the gyroscopic

effect would be insignificant, particularly if, at the start of the interval,

no appreciable § had as yet developed.

Equation (B.5) is readily integrated. Since we are particularly

interested in the effect over some Ax distance, as the rear of the rocket

emerges, we transform (B.5) into the equation

2 k d + x
x+k 2x § x y. (B.6)

0 0

Thus,
d [(x 2 + k2)j]x -2 Y (B.7)

0 0

Note that equation (B.6) is linear and hence that we can consider

separately the effects of gravity, the initial 4 (at the start of this

interval under consideration), and the launcher motion.

For boosted launch velocities, v ° = 500 ft./sec. perhaps, the gravity

effect is quite negligible. Writing x 2 - x 1 + Ax, with xI -1 ft. and

x-1 inch or less,

2+ x 2

(X + k2)2 (x22 _ v
0 0

- 0.005 (or less in magnitude).

With k2 -0.5 ft.2,

"2 I- 0.004 or less. (rad./sec.)

For the effect of *l(the initial 4), we have
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F • Xl2 + k 2  . . (x2
2 - Xl 2 )

2X 222 2 )
-2 X ,+

2 2 (k 2~
= @I 2x (Ax) withx=-X+ 2

x 2 2+ k2  2 "

< 2x
Note that for Ax = 1 inch, 2 2 Ax- 0.1 or less. Thus the resulting

2
1 42 is of the same order of magnitude as @I. being slightly less in magnitude.
If the constraints, prior to this final Ax of emergence, are such as were pic-

tured at the start of this appendtr, namely such that the 4i would essentially

represent a rotational rate of the launcher tube itself (or of the more

flexible portion of the tube near the muzzle), we are here also presented

with the question as to whether the launcher motion itself could involve

a significant 1l"

Turning our attention to the effect of y, we consider

d_(x2+k2)-]x , (B.8)
Sdx k ) v° y

0

with 0 0. Since

f x_-Zd fx dyr)= xir - k x

= x* - v y,

1' we obtain
2 2 2

(x 2 + k2) VoxY]x2 (B.9)

If the displacement of the muzzle is represented by-

[ =A +Bt + Csin(ht +a), (B.10)

1-7
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i.e., a sinusoidal oscillation superimposed upon a linear displacement,

(A + Bt), with t = 0 corresponding to x = 0, then we note that

xy - voy =x + Chx cos(ht + a) - Av o - B/ot - Cvosin(ht + a)

-Av ° + Cvtht cos(ht + a) - sin(ht + a)]

-v ~+ e cos ( + a) -sin(e + a)]

in which 6 denotes ht.

Thus

(x 2 + 2 02 2 o [c ( 6  j (.ll)

where

f(e) = cos(e + a) - sin(e + a).

It is clear that the term (-A/C) does not contribute, and-that one is

concerned with the change in f(e). The magnitude (and algebraic sign)

of the change in f(e) depends upon the location of the interval,

AO = 62 - el, and also upon the phase angle, a.

One can quickly verify that f(e) has successive maxima and minima at

6 = 0, P - a., 2n - a, 3Tr - a, etc., with the graphical representation of

f(e) somewhat as follows:

7Tr- with 0 ,- /

-_T
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It is clear fromthe above curve that where the original sinusoidal

contribution to the displacement is near zero (i.e. sin(e + a) . 0), the

corresponding change in f(e) (for Ae not too large2) would not be as

serious as Af(e) might be where -sin(e + a)!I l.

If one were to consider Ax and the corresponding AG to be sufficiently
small so that a differential approximation might be used, one can return

to equation (3.8) and consider
x1

AU(X2 + k 2)1) 6---, Yl Am (B.12)
0

2~ 2  2 2 + &x2 2)Since AE (x2+ k2)@111 (x1
2 + k2 ) A' + 1 A(x2 + k2 ), then with 1,

2+2+ 2 Xl

(X2+ k2 ) Ai- (xJ + k 2)* v Ax.,

and with

y A + Bt + C sin(ht + a),

Y - Ch2sin(ht + a) = Ch2sin(e + a),

J one obtains 2

-2 :2 * h 1(xl + k)§ 2 hXlsin(e1 + a) Ax.

For some of the relevant data, C- 0.002 fr., h-2600 rad./sec.,
x~lf 2x1 -1 ft., k 0.5, and vow 500 ft./sec. If one restricts Ax to 1/2 inch,

then AG = h A x. 0.22 rad. and the above approximation is reasonably good,

One finds tRat

'2 -(3A)sin(e + a) rad./sec.
2 1

[ Note that, within the scope of this differential approximation, the

resulting contribution to § is proportional to Ax and depends significantly

both upon the frequency and amplitude of the sinusoidal oscillation and

also upon the particular portion of the sinusoid involved.
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APPENDIX C

COMPLETE LIST OF PROECT REPORTS

ERD-47/ R. C. Bullock and E. H. Tompkins, Jr., Comparison of Results of a
Spin-Stabilized Rocket During Burning, November 19, 1952.

ERD-47/2 C. S. Herz, The Motion of a Spin-Stabilized Rocket During Bbrning:
Outside the Launcher, November 26, 1952.

ERD-47/3 W. J. Harrington, The Effect of Dynamic Unbalance on the Motion of
a Spinning Rocket During the Burning Period Outside the Launcher
May 25, 1953.

ERD-47/4 J. W. Cell, First Report on Motion of Spinner Rockets, 4.5 in.
M17A1, in the Launcher and During Tip-Off, November 1, 1952.

ERD-47/5 E. H. Tompkins, Jr., Characteristic Functions for the Effect of
Certain Launch Parameters on the Orientation and Yaw for Spin-
Stabilized Rockets, July 21, 1953.

ERD-47/6 R. C. Bullock, Comparison of Results of Various Theories of the
Motion of a Spin-Stabilized Rocket During Burning, Part II.
August 2, 1953.

ERD-47/7 J. W. Cell, Effects of Impulsive and of Constant Malforces on
the Motion of a Spin-Stabilized Rocket During Burning, June 10,
1954.

ERD-47/8 J. W. Cell, Summary Report on Study of Causes of Inaccuracy
During Burning of Spinner Artillery Rockets, July 7, 195.

ERD-64/ W. J. Harrington, Unbalance in Spinner Rockets, July 22, 1954.

ERD-64/2 W. J. Harrington, Mathematical Studies of the Motion of a Spin-
Stabilized Rocket Daring the Burning Period, April 22, 1955.

ERD-64/3 A. C. Menius, Jr., Optical Lever Method for Measurement of Orien-
tation of a Spinner Rocket, August 9, 1954.

ERD-64/4 G. C. Caldwell, Experimental Determination of Motion of T161
Spinner Rockets During Burning (First Report), January 5, 1955.

ERD-64/5 J. W. Cell, C. S. Herz and A. C, Menius, Jr., Motion of Spinner
Rockets Inside Smoothbore LaunchApril 8, 19557

ERD-64/6 G. C. Caldwell and R. E. Deitrick, Experimental Determination of
Motion of M33 Spinner Rockets During Burning (Second Report),
July 21, 1955.

ERD-64/7 J. W. Cell, Smm Report on Study of Causes of Dispersion of
Spinner Rockets, July 15, 1955.
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ERD-.82/L J. W. Cell, Nozzle Plate Tolerances for Spinner Rockete, Oct ober
21, 19,,5.

ERD-82/2 J. W. Cell, Summary of Experimental and CSmpttional Inf ormation
on. the M433 Spinner Rocket, Decemiber 12, 1955.

ERD-82/3 W. J. Harrington, Motion of Spinner Rockets Duwring the Tip-.Off
Period, February 1, 1956.

ERD-82A R. C. Bullock and E. H. Tompkins,. Jr., Characteristic Functions
for the Motion of a Spin-Stabilized Rocket During Burning,' Part

I:Mallaunch, August 30, 1956.

ERD-82/5 R. C. Bullock and E. H. Tompkins, Jr., Characteristic Functions
for the Motion of a Spin-~tabil ized Rocket During BUrnig, Part

I:Dynamic Unbalance, August 30, 1956.

EIM-82/6 R. C. Bullock and N. H. Tompkins, Jr., Characteristic Functions
for the Motion of a Spin-Stabilized Rocket fuing Burning, 2part

f III: Linear Thrust Malalignment, September 8, 1956.

ERD-82/7 G. C. Caldwell, Experimental Determination of Motion of M433[ Spinner Rockets During Burning (Third Report), August 20, 1957.

ERD-82/8 J. W. Cell and W. J. Harrington, The Motion of a Spin-Stabilized
Rocket with Constant Anuarad iear Acerain Dur

Burning Outside the Launcher, February 26, .1958.

ERD-82/9 Wlliam T. Wells, &-perimental Determination of the Effect of
Dyniamic Unbalance on the Motion During the Burning Period ofa

Certain Spinner Rocket (CONFIDENTIAL), May 30, 195b.

EU-82A0 VIM T. Wells., The Motion of 1433 Spinner Rockets During Burn-

ing, Part.Ii, Experimental Results, January 16, 1959.
ERD-82/U. J. W. Cell, W. J. Harrington.. R. C. Bullock,,Re ort OnIStudy of Causes of Dispersion of Spinner Rockts ctoer, 1 959.

ERD-.8?/2 G. C. Caldwell and -J. A.< Roberts# Tables of the Rocket Functions

re r(x) and Re (x) 0 ~.x - 20. Noveber' 23,j 1Y955P
END-82/1 L. C Bullock, Characteritc IuNc-;tIon's for the Motion oftak -i

[ ~ ~ ~ .taie Rocket~ hen rizo& r 2! a 1"UtMs~ $?mia~ PaorW

31IJ-2/1 J. V. Perr, LAr- and Lnar flqviatin of Fn.tb1~d okt

pu h 1-IXat3!b'
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