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" ABSTRACT

This report summarizes results of studies which were conducted at
North Carolina State College under various contracts with the Department

of the Army r’elative to sources of dispersion of artillery-type rockets.

A B
v - Mathematical equations and formulas which are applicable to the analysis

 of the \ ct of various dispersion-producing factors on both spin-
> ,

sEabiiLiz?@i and fin-stabilized gun-boosted roc~kets are presented, and
their uses “are illustrated by numerical examples. Experimental techniques
a:c'e described and some results are given. Impiications of mathematical
‘results relative to rocket design are discussed. A mathematical model

for studying effect of launcher tube motion is given in Appendix B.
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CHAPTER 1

INTRODUCTION

The purpose of this report is to summarize the work of the Rocket Research
Group at North Carolina State College for the total period of duration of its
investigations, and to present the results obtained in a unified and related
mamner so that they may be of use in the design and development of new
artillery-type rockets. This work was done for Army Ordnance under Con-
tract Nos. DA-01-021 ORD-3190, DA-01-021 ORD-4592, DA-36-03,-509 ORD-25,
and DA~01-009 ORD-1022, and it spans the period from June, 1952 to August,
1962. This research group had as its basic objectives the following:

(1) To investigate sources of dispersion of spin-stabilized and fin-
stabilized rockets by theoretical, computaticnal and experimental
methods.

(2) To assist in the design and development of experimental methods
of measuring certain parameters that are of significance in the
study of rocket accuracy.

(3) To act in a consulting capacity for other groups who might be
working on the design and development of artillery-type rockets.

In initiating the theoretical studies of sources of dispersion of spin-
stabilized rockets, this group first made an exhaustive study of the existing
literature on the theoretical treatment of the motion of spin-stabilized
rockets in order to determine the most suitable existing mathematical model
which might be used as a springboard for its activities. The theoretical
treatments given by Davis [DFB]*, Follin [F], Galbraith [Ga], Harrington [H1],
and Herz [H], and Rankin [Ra] were compared and found to be essentially
equivalent under uniform assumptions relative to the various physical quan~
tities associated with the motion. This group consequently adopted the
notation and approach used by Harrington as a takeoff point for further
study and development of the theory of rocket motion.

*Bracketed expressions refer to the list of references at the end of the report.



CHAPTER 2

FACTORS WHICH CONTRIBUTE TO ROCKET INACCURACY

Before going into the theoretical basis for the study of rocket motionm,
we shall examine first certain factors which may lead to rocket inaccuracy.

In later chapters mathematical expressions, called characteristic functions,

will be introduced by means of which the effect on angular deviation for
a unit amount of any one of these disturbing factors may be computed.

A1l of the factors to be discussed here contribute in varying degrees
to the inaccuracy of both spin-stabilized and fin-stabilized artillery-type
rockets except that of fin misalignment, which clearly applies only to the
latter type of rocket.

In the course of the following discussion it will be necessary to

frequently make use of the term geometric axis of the rocket. Although

the rocket would have to be perfectly formed for a geometric axis to exist,
it suffices for practical purposes to define such an axis as the line of
centers of twe circular bands or bourrelets, one placed around the rocket
near the rear of the rocket and the other near the forward part of the
rocket near the point where the body of the rocket begins to taper off
toward the nose.

2.1. Initial Cross-Spin, 2 .

At the instant the rear end of the rocket emerges from the launcher,
the rocket is describing a transverse rotation about an axis passing through
the center of gravity and perpendicular to the axis of the rocket. Thus the
angle (®) which measures the direction in which the rocket is pointing with
reference to some fixed direction (such as the bore-line of the laPncher)
is undergoing a time rate of change at launch which is denoted by éo (the
subscript zero being used to indicate here a value at launch). This cross-
spin (of transverse angular velocity) has long been recognized as one of the
signifiéﬁnt contributors to deviations of the rocket from the desired
direction of flight.

The cross-spin at launch may be attributed to various causes, one of
which is certainly the tip-off effect induced by gravity because of the
fact that for a short interval during the launching phase the center

b
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of gravity of the rocket is already outside’ t‘hé Llauncher while the rear end

of the rocket is still engeged Other causes. are, attributable to behavior
. of the rocket w1th1n the launcher itself, where precessional motion of th
{‘ center of the rear band of the rocket static and dyndmic unbalance, and
misaligned thrust (see later sectlons) can cause a build-up .through the
tip-off phase of a significant amount of cross-spin at’ launch.

It is highly prooeble that 1euncher reaction 'also contributes signifi-
cantly to cross-spin at launch, especially~in the case of gun-boosted
rockets. Some preliminary experihehtal’ﬁork in this area indicates that
thls is true, but definitive ‘results still have not been obtained.

2.2. Initial YEW,.AO. ‘ ' ~‘ - '
The yaw of a rocket is defined as the angle which the geometric axis of
i the rocket makes ﬁith‘the:tangent to the curve described by the center of

gravity of the rocket during flight. This curve is usually referred to as
'[' the trajectory of the rocket. It is clear that the larger this yaw angle
i} | becomes, the more tendericy there is for tHe rocket to be driven off the
desired flight path by the thrust imparted by’ the rocket jets. Thus it is
that any yaw which the rocket attains during the tip-off period, and hence
has acquired at the instant the rocket becomes disengaged from the launcher,
will be a factor in determining the direction of flight of the rockst through-
out the burning period. It is true that under;éesirable conditiens the
varying yaw outside the launchetr may damp out rather rapidly, but its wvalue
at launch still has an effect that endures to the end of burning.
The same factors that. contribute to imitial cross-spin, as discnssed
in Section 2. l<above, can cause yaw at launch. |
2.3." Cross-Wind, W, . ) .
The component of the wind VelOClty'Wthh is perpendlcular to the tra~-
‘jectory of the rocket is a significant ‘facter in.causing’ ‘rocket, inaccuracy,
especially if the winds are quite gusty. -It will be seen later that a con-
‘stant cross-wind has an effect equivalent, to:ah Anitial yaw. It Will also
be shown that the maJor contribution of cross—w1nd Lo dev1atlon of the rocket;
from the desired direction of motlon oocurs 1n the 1nterva1 1mmed1ately
 following the lawnching of the rocket partiéi:l‘é.rly 1f the launch velocilty '
«>1S~Q°t larget Another s1gn1f1cant result that shows up 1n the the?ny s >f3
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. that wind effect may be diminished by decreasing the variation in the velocity

during the flight of the rocket.

2.L. Dynamic Unbalance, B ,
Dynamic unbalance arises from the fact that the rocket jets are attempt-

ing to rotate the rocket about one axis (the geometric axis for a perfectly
symmetrical rocket with perfectly aligned jets), while, due to the unsymme- !
trical distribution of the mass of the rocket, the inclination of the rocket
is to rotate about anocther axis (the longitudinal axis of inertia). The 1
angle, Bc s between these two axes is taken as the measure of dynamic unbalance.
The dynamic unbalance of an unloaded round may be measured on a machine |
designed for this purpose, such as the Tinius-Olsen balancing machine, and
the amount of unbalance may range in magnitude up to several mils(or
thousandths of a radian), This magnitude depends to a great extent on the
tolerances maintained in manufacturing and assembling the metal parts of ';
the rocket, _ ‘
Clearly as therate of spin of the rocket is increased the effect of l
a given amount of dynamic unbalance on the direction of motion of the rocket ,}v’ i
will be increased. A high rate of spin may also cause a break-up of the

propellant in the rocket motor and thus cause an increase in ‘the amount of

dynamic unbalance of the rocket as the burning progresses.

2.5. Static Unbalance, r_.

Ideally, the mass distribution of the rocket should be such that the
center of gravity (henceforth referred to as the c.g.) is on the geometric
axis of the rocket. If this fails to be true, the rocket is said to have

static unbalance, which is measured by the distance, T.s from the c.g. to i

the geometric axis.
" Static unbalance is brought about by the same factors that cause dynamic

unbalance, as listed in Section _2_.)._;_ above. The chief contribution of staﬂic
unbalance to rocket inaccuracy is made through its effect on the behavier ,
of the rocket during the 1aunch:Lng (or tip-off) phase, and thus shows up in {
the form of ‘additions to é and A the quantities discussed above in. -
Sections 2.1 and 2.2. . ]
2.6. Lincar Thrust Misalignment, L. T
If the resultant 'line £thrus‘b due to the rocke‘b ,Jets i‘a.lls to pass

through t.he c. .g. of the rocket, the rocket is Sa.ld 'bo have: linear
mlsallgnment wh:z.ch 1s measured by the d:.stance, L fro‘ 1
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line of thrust. When the rocket has such a misaligned thrust, it is clear
that there is a tendency of the thrust to rotate the rocket about a line
through c.g. and perpendicular to the axis of the rocket, and this torque
can cause significant deviations of the rocket from the desired direction
of flight.

Linear thrust misalignment can be caused by lack of uniformity in
the manufacture of the jet nozzles, by improper insertion of these nozzles,
or by tilting of the nozzle plate in assembling the rocket. This type
of disturbance could also be caused by erosion of the jet nozzles during
burning, by the improper attachment of a diverter plate, or by the plugging
of nozzles by pieces of propellant during burning.

In cases where the rocket spins, the effects of misaligned thrust tend
to cancel out, and hence this factor may then become relatively negligible
in cases where reasonable tolerances are maintained in the manufacturing
and assembling of the rocket. For the purpose of counteracting this effect,
it is thus desirable to impart some spin to fin-stabilized rockets.

2.7. Angular Thrust Misalignment, a.-

The angle, s which the resultant line of thrust of the rocket jets
makes with the geometric axis of the rocket is called the angular thrust
misalignment of the rocket. Such misalignment can be attributed to the

same causes as those listed above in Section 2.6. as causes.of linear. thrust
misalignment.

Practically speaking, the effect of angular thrust misalignment on
the motion of spin-stabilized rockets is negligible, but it may be signifi-
cant in the case of fin-stabiligzed rockets.

2.8. Fin Misalignment, B
If a perfectly made fin-stabilized rocket is suspended in an air

stream (such as in a wind tunnel) which initially is parallel to the geametric
axis of the rocket and in such a way that the rocket is free to rotate about
the c.g., then the air stream will cause no change in the direection of

the geometric axis. However, 1f there are bent fins or other 1mperfect10ns

in the fin assembly; the rocket under the above conditions, may assume a

p051t10n in which its ax1s makes an angle, B, relatlve to the dlrectlan ,,' _

of the agir stream. This angle is taken as the measure of fin mls?
Thus a rocket with mlsallgned fins has a nauural tendency to es
relative to the resultant direction of air flow durlng 1ts £
can be a sa.gnlflcant source of maccuracy for fa.n-sta.b' '

S i o 8 Lt N e 3 A e At 30 0 e Yo i b prt o s ot i e ny




CHAPTER 3
MATHEMATICAL BASIS FOR STUDY OF THE MOTION OF
A SPIN-STABILIZED ROCKET DURING BURNING OUTSIDE THE IAUNCHER

3.1. Reference Systems
. In setting up thedifferential equations which describe the motion of a

rocket,- several coordinate systems are used. For complete details as to all

of these coordinate systems, reference is made to [H-1] or [CH]. For the
purposes of the present report, it is sufficient to say that the location -
of the center of gravity of the rocket in space, and the rotational motion

of the rocket about the c.g. are completely described by use of the three

- rectangular coordinates Xo’ YQ’ ZO of the center of gravity, and by the

three complex angles, &, ®, A, denoting respectively orientation, angular
deviation, and yaw of the rocket. All of these quantities will be described
more fully in what follows.

The coordinate system to whi;h Xo, YO, Zo are referred is a right-handed
rectangular coordinate system Oo— XOYOZO, with the Xo-axis along the bore-
line of the launcher and Xg measured positively in the direction of travel
of the. rocket, the Yo—axis running vertically with Yo measured positively
upward, and the Zohaxis running horizontally with Zé measured positively
to the right (as viewed from the rear of the launcher). .The origin 0 of
this system is fixed on the boreline in such a position that the Xb-coordinate
of a p01nt (denoted by X’ ) at the muzzle of the launcher is given by
X - v, /(ZG)(See Fig.3. 1)where v, is the launch velocity (velocity at
the end of tlp-off) of the rocket, and G is the acceleratlon of the rocket
outside the launcher. It is assumed here, as in much of the later work of
this chapter, that G is constant during burning. In actunal practice, the

average value of G over this interval will serve as, an adequate approximation

for-use in this mathematical model. It should be noted that for rockets

fired from an open launcher, X can be interpreted as the length of the
o1
launcher, but for boosted rockets, X varies with the amount of boost and

is thus often called the effective launcher length.

Since. X measures distance down range along the borellne, one sees that "

for the’ 1nterva1 -immediately follow1ng 1aunch, where there is llttle bendang

of. the traaectory, the X -coordinate of the c. o durlng burnlng is glven

£ g

[Raie V)
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by

- 1 =+ 32 —
Xo = x01 + 3 G(t to) + vo(t to),

where (t-to) represents the time elapsed since the c.g. left the muzzle of
the launcher. The other two space coordinates, Yo, ZO of the center of
gravity (denoted by c.g.) are dealt with most conveniently as components
of a complex number R, where

=Y + iZ
0 o)

This quantity is called the linear deviation of the rocket, and it clearly

determines how far and in what direction the c.g. deviates from the bore-
line of the launcher. Later in this report, in order to take care of
situations where there is appreciable change in the direction of the tra-
jectory from launch to burnout, the meaning of R will he extended to denote
the linear deviation of the rocket from an ideal trajectoﬁ that the center

of gravity would traverse under the actions of jet thrust, aerodynamic drag,
and gravitational force, with all other forces neglected. In general, we
shall thus write

R =Ry * iR,

so that Ry denotes the upward or downward (negative) displacement (in ft.),
and RZ the horizontal displacement of the c.g. from the ideal trajectory.
This means that the reference line for R in this case is the tangent to the
trajectory rather than the borellne O X If the trajectory is essentially
a straight line, clearly RY Y and R
given by

7 Zo, The magnitude of R is clearly

2 1/2
IR 1 = &2+ R,HM2
Thus, for example, if one has given that

R=-0,4 +10.3

for a certain point on the trajectory, this means that the c.g. of the
rocket is . h ft. dcwnward (measured perpendicular to the tangent) and e 3

*The symbol = is used to denote "approxima'tely equal to.t
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magnitude of this linear deviation is

Ir| = [(-o.u)2 + (0.3)2] 12 . 0.8 gt.,

so that at the point in question the rocket is actually a distance of 0.5 ft.
from the desired trajectory.

In order to study the rotational motion of the rocket about its c.g.,
as well as to deal with the-direction of motion of the rocket during burning,
a second right-handed rectangular coordinate system 0-XYZ is used, with O
at the c.g. of the rocket, and with 0X, OY, OZ fixed in direction paraliel
respectively to OOXO, OoYd’ and Oozo as given above. Also the complex angles
@, 4, and $are introduced. The complex angle ® is defined as the angle bet-
ween the forward tangent to the actual trajectory of the rocket and a re-
ference line which at first will be taken as the boreline OX of the rocket
launcher. This angle is measured positively from the positive reference
line to the forward tangent to the trajectory. This angle will be referred

to as the angular deviation of the rocket, and clearly defines the direction

of motion of the c.g. of the rocket. ILater, in order to take care of cases
where there is appreciable change in direction of the trajectory during
burning, the reference line for measuring ® will be taken as the forward
tangent to the ideal trajectory.

The angle © is used as a measure of rocket accuracy, since a large
magnitude for ® at burnout (denoted by @D) indicates a large deviation of
the rocket from the desired trajectory, and this deviation will in turn be
reflected in the deviation of the impact point from the desired target
point. Furthermore, lack of reproducibility of @b from round to round in
a given firing of successive rounds will be reflected in the dispersion of
the impact points for this group of rounds.

It is convenient to represent ® as a complex angle, where, as in
dealing with linear deviation, R, above, the term complex refers to the
familiar complex numbers of the form a + i b which are dealt with in algebra.
One can then embody in one expression for the angle ® both the size of the
angle, or magnitude (denoted by |®| ), and the location, or orientatien, of -
the plane in which the angle is measured. This plane rotates as “bhe rocket

moves down range. Thus we shall write, in general,

0= g+iB,,
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where the components O, and ®Z are in radians, @, being measured positively
upward in the vertical plane through the reference line, and C& measured
positively to the right in the plane (through the reference line) perpendi-
cular to that of @Y'
The magnitude of the complex angle ® is then given by

l8] = (8,2 + 8,2)1/2,

and the orientation of the plane (called argument of ®) in which this

magnitude is measured is given by

Arg ® = arc tan @z/®Yo
This latter angle is measured clockwise from the vertical as one faces down
range.

For example, if
8 = - 0.0070 + i 0.0QSO

at a certain point on the rocket trajectory, and if the boreline of the
rocket launcher serves as references line, then at the point in question
the forward tangent to the trajectory is pointing 0.0050 rad. (approximately
5 mils) to the right and 0.0070 rad.(or 7 mils) downward from the boreline
of the launcher (or from the desired direction of motion). Otherwise put,

we compute the magnitude of 9,
o] = [ (- 0.0070)? * (0.0050)2] /2 _ 6.0086 rad.

and the orientation of 8,

Arg @ = arc tan (0.0050/- 0.0070) = 1hL.L°

(the choice of angle is clear from the description given by the components
above, namely, "to the right and downward") and get the result that the
tangent to the trajectory at the point in question 11es in a plane passing
through thereference line and rotated 1Ll. 4° from the vertical in a clock-
wise sense. Furthermore, the magnitude of @& or. the actual angle which the
tangent to the trajectory makes with the reference 11ne, is 0. 0086 rad. (or
8.6 mils). Wb this say that the angular dev1at10n (or dlrectlon of motlen)
of the rocket at this point is 8.6 mils, thls dev;atlon.belng 1n a dlrectfon
indicated by Arg ® = Wh.)°, as already descrlbed. ‘ S '
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The complex angle ¢, called the orientation of the rocket, is the angle
determined by the geometric axis of the rocket and the reference line used
in measuring ®. This angle is measured positively from the positive reference
line to the forward directed rocket axis. (The term geometric axis, also

called the bourrelet axis, is used to mean the axis of the cylindrical body
of the rocket, assuming that it is a perfect circular cylinder). This
angle gives the direction in which the rocket is pointing, and is repre-

sented in complex form by
= ]
- @Y * i <3
so that the magnitude of @ is given by

2] = (2,7 + 2,512,

and the location of the plane in which & is measured by
Arg & = arc tan éz/éY.
As noted in Chapter II, the time rate of change of @ at launch, denoted by

éo, is called the initial cross-spin and is one of the significant factors

contributing to rocket inaccuracy.
A third complex angle that is of significance in describing rocket
motion is the angle A called the yaw, which is determined by the geometric

axis of the rocket and the tangent to the trajectory. In component form,
it is represented by

A= AY+ 1&2,

and its magnitude and direction are found similarly to those of @ and @

above. It is related to ® and @ by the equation

A=§"®o

3.2. Characteristic Functions

" We use the term characteristic function to refer to that mathematical

expression (or Tormula) which determines at any point during burning the™

effect of a unit amount of a disturbing factor (such as initial CI‘OSS-Spln é ) -

on one of the significant quantities related to rocket accuracy (such as the

angu_'l.ar dev:x.atlon, 8, discussed above) There is thus-a separate chara,

func'blon for 8 correspond:.ng to each of the fac’oors causmg rocket :mac'




!
;

1

which were discussed in Chapter 2 of this report. ILikewise, there is a set
of such characteristic functions for yaw, A, and for linear displacement, R.
In order to distinguish between the characteristic functions due to
the various disturbing factors, we use a notation in which the subscript
indicates which factor applies. Thus, for example, a subscript g(as in @q)
always refers to a characteristic function related to initial cross-spin.
The characteristic function giving the effect on @ of a unit amount of
cross-spin (namely, one radian per second) is denoted by @q/éo. Thus,
in the example of ® given on Page 12, if the value of € iven there repre-
sents the value of the characteristic.function giving the effect on angular

deviation, 8 of initial cross-spin, éo, we would write
:“)q/cla0 = - 0.0070 + i 0.0050

and, unless otherwise indicated, the units would be rad/(rad/sec). Thus
mltiplying this by 1000 would convert the units (approximately) to
mils/(rad/bec): Again, as we saw on Page 12, the magnitude of this complex
value is | @q/@ol = 0.0086 rad/(rad/sec), or 8.6 mils/(rad/sec). This

means that an initial cross-spin of 0.5 rad/sec would produce .3 mils of
angular deviation at that point of the trajectory for which the characteristic
function @q/':i’o was computed. One notes that the nota?ion is quite natural,
eince the total amount of ®q due to a given'amount of éb, divided by that

éo gives the amount of ® due to a'EEEEE.Sf.fO’ which is what we mean by the
characteristic function value.

It is desirable to deal with characteristic functions in connection
with accuracy computations, since values of these functions depend only on
parameters such as physical measurements of the round, launch velocity
(angular and linear), acceleration produced by the thrust, etc. Thus, in
dealing with accuracy computations for a group of rounds of a given rocket
type, with consistent launching parameters, the value of the characteristic
function depends essentially on the location down range (during burning) for
which it is computed, and hence does not have an appreciable round-by-round
variation. On the other hand, the value of cross-spin at launch, @ o? varles'
from round to round (see [G]) even under the most carefhlly controlled 7 '
firing condltlons, Thus a complete analysls of rocket behaV1er falis 1nt6

wo qulte separate categorles, first,the determdnatlon of values of the S

-~.
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characteristic functions for prescribed design values and firing conditions

(launch velocity, acceleration, etc.), and secondly, the determination of

the distribution of éo by experimental measurements. The first phase of

this analysis is of chief ccncern in this report.
Characteristic functions which appear later in this chapter will be

designated as follows:

8,/2rad. /(red. /ssc.) h

Gh/@o rad. /(rad. /sec.)

Rq/éo ft./(rad. /sec.)

@B/ﬁc(rad./fad.)

R'3 /Bc (ft. /rad.)

8 /L (rad./ft.)
RL/Lc (f&./ft.)

| ®5/Ao(rad, /rad.)
Rﬁ/lso(ft./rad.)
®w/wc rad. /(ft. /sec.)
Rw/wc ft./(£t./sec.)

@r/fc(rad./ft,)

@%I/'ccc(rad./&-ade)w

Effects on A, ® R of initial

cross-spin, @O(rad./éec.).

Effects cf dynamic unbalance,

Bc(rad,).

Bffects of linear thrust mis-
alignment, L (££.).

Effects of initial yaw, Ao(rad.).

Effects of constant cross-wind,
wc(ft./éec.).

Effect of static unbalance rc(ft.).

Effect of angular thrust misalignment
ab(rad,). ' S
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Formulas for these‘quantities are derived from differential equations

which will be given in Section 3.l.

3.3. Notation {
In the differential equations and formulas for characteristic functions

which appear later in this chapter, the following notation is used: {
A = axial moment of inertia - (slugs - ft2).
B = transverse moment of inertia (slugs - ftz). }
q = &/(2B). "
m = mass of the rocket (slugs). §
k = B/m = transverse radius of gyration (ft). )
G = acceleration of the rocket (ft/becz). T
v = velocity (ft/sec) of rocket at time t (sec). Z
v = velocity (ft/sec) at t = to(sec)(at launch).
® = axial spin rate (rad/sec).
n = o/v(rad/ft) = "spin ratio".
p = w/qn(ft).
s = v2RG(ft.), Sof v02/2G(ft).
G, = acceleration (ft/secz) due to jet thrust.
n,G, = spin angular acceleration(rad/éecz) due to jet thrust.
r=s5/p = vz/éGp, r, = so/p = vo2/2Gp. l
KM= aerodynamic overturning moment coefficient (see reference [KM]).
KN= aerodynamic 1ift coefficient.

= aerodynamic axial drag coefficient. !

KH= aerodynamic damping moment coefficient. '
KA= asrodynamic spin decelerating coefficient.
p = density of the atmosphere (lb/ftB).
d = diameter of the rocket (ft). '
J. = pdK./m, i =M, D, N, H, A. 5

i \ ,
s = q2n2k}/JMi= aerodynamic (gyroscopic) stability factor. [
o = (1-1/8)Y2 .

- - 2 2 - - - J - P ) [
Gy = PJN/a, QH = PdJﬁ/k s Oy = Pqﬁ/k . . r
Gy = D/d, CA - d.JA/k .

c=1 * Z_Chro. R

Y
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(1l +o), h2 =w(l - o).

!

3 n/q - hy, k, = /g - h,.
o \/é'hlr /n, ﬁo = \/§h2r0711.
W =V2h1r717 s w = V§h2r7n .

w

C(w) =‘j\ cos(nxz/é)dx = Fresnel integral (see references [JE] or [D]

~
]

w

o]

° for tabulation).
w

Stw) = JN sin(nxz/?)dx = Fresnel integral.
0
E(w) = C(w) + i S(w).

rc(x) = rr(x) - i rj(x) = the complex conjugate of the rocket function
rc(x) (See references [RNG] amd [RC] for

tabulation)..
- D=1 -y hr 'rc(hlro).
g = acceleration'(ft/%ecz) due to gravity.
e = angle of elevation of tangent to trajectory.

7 =\£‘mdt = spin angle(after launch).
0

3.h. Differential Equations Of Motion Of A Spin-Stabilized Rocket
Differential equations of motion of a spin-stabilized rocket during the
burning period outside the launcher are derived by Harrington in [H-1] and
{H-2] by making use of fundamental principles of dynamics. The results,.
with certain insignificant terms omitted, are given here without details .-

Comgant e e e L

B NS MmOt EEE R M ey [

of the derivations.

Basic equations defining the motion of spin-stabilized rockets and
whose solutions yield the characteristic fhnctions defined in Section 3.2 .
are the following: '

& - }(2:i~_qm‘- QHV/p)é’_- (GMvA/p)(v‘ A *‘ﬁe)

?-(-GlL&/kz)éi"; * .(14.29‘)5; (m2 = 1a)e™", R ;.;"(*3‘;4.3‘.})»'
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ve - (VA) - (Guv/o)(vA + )

= - gcos & + Glacein + rc(m2 - ib ein, (3.4.2)
8=2-4,
v=0, - CDv2 - g sin e, (3.4.3)
& =n,G - Gy, (3.4.1)
R=v ®, (3.4.5)

where the dot indicates differentiation with respect to time, -

t(e.g., s - d2§>/dt2). In this system of equations the quantities A, $,@
have as reference line the boreline OX of the 0-XYZ coordinate system as
discussed in Section 3.1, and the complex gquantity R is referred to the

0YZ plane of that system.

The differential equations of the ideal trajectory referenced in

Section 3.1 are given by

o _ 2 .
v = Gl - CDv - g sin €,

vEi = -g cos €, (3.4.6)

This pair of equations is obtained by assuming that the only forces acting
on the rocket are due to the jet thrust, the aerodynamic drag, and gravity.
It is also assumed that this trajectory lies in the vertical plane through
the boreline of the launcher and that the rocket axis (geometric axis) re-
mains tangent to the trajectory. In this situation it is clear that the
complex yaw, 4, remains zero, and that the complex orientation, @, has
the value @ = ¢- € where €, is the angle of elevation of the boreline
(0x). T
It is now assumed that egquations (3.);.6) have been solved to obtain

v and ¢ as functions of t. With v and & thus determined as known functions

of t, and with the value @ resulting from equation (3.4.}i), one could sqivéi :
‘equations (3.1.1) and (3.1.2) for A and @, and from thesé Tesults obbain ~
@=3 . A. 'chever,ﬁ it is advailtagedtis first to obtain new ~‘faluesli'10£ @ | "

e TS——

PR ————
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and @ by subtracting from each the angle e- € representing the change in
direction of the ideal trajectory. The new % and @ thus obtained (for
convenience, we shall not change notation) are now referred to the tangent
to the ideal trajectory instead of the boreline. The angular deviation
thus becomes the deviation from the ideal trajectory, as pointed out in

i |

Section 3.1. It should be noted that the new linear deviation R (given

- by equation (3.4.5)) is now measured in a coordinate plane perpendicular
to the tangent to the ideal trajectory, and having its origin on that
tangent line; so that R now represents the complex distance from the ideal
trajectory.

In addition to the changes made in the variables € and @, we find it
convenient to change the independent variable in equations (3.L.1), (3.4.2),
and (3.4.5) to the new variable r = s/p representing normalized distance
along the trajectory. Thus we make the change

& = 4d/dt = (a2/dr) (dr/at) = (v/p)@',
and similarly for the change jllég, etc. After making these changes of
variables, we eliminate @ from equation (3.L.1) to get a new equation in
the quantity vA , by use of (3.L.2). We also substitute the value & =@ + A
from equation (3.l4.L) into equation (3.4.2).

After all of these changes, the resulting equations of interest for
later work thus become

(v + (Gy * Gy - 24m) (v - i+ /5) (vA + w,)

]

- [P0yt /0] o™Metmpp (1-2,) (v (3.1.7)

+ (g cos &) {(p/v)(cH + QD - 2iw - pGl/vz) ],

ve = via + G +w)
v (Gp/e e - ne (vl - (3.1.8)
®=pe, R 1 S

-where the primes indiéate‘differentiation with;respebﬁ‘ﬂbﬁr};:;"

{ mm e s e M e e —
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3.5. Formulas For Characteristic Functions

We now solve equations (3.4.7) and (3.4.8) under the assumption that

G, the acceleration of the rocket during burning, is essentially constant,
so that we may use the relation

Gpr . (3.5.1)

It is also assumed that n, is constant and eguals to mo/vo. Since the
effect of gravity is reproducible from round to round, the terms

containing g do not appreciably affect the dispersion of a group of

rounds, and hence these terms are neglected. .

Because of the-superposition property of linear differential equations,
one may solve equation (3.4.7) considering separately the effects of initial
conditions Ao and é)o’ and then the effects of Bc, L and Lc respectively.
The resulting value of vA for each separate effect (and thenceA ) may then
be substituted in equation (3.4.8) and the resulting equation solved for @
(wc being omitted except in solving for wind effect). Finally, this value
of ®is substituted in (3.4.8), and the formula for R is thus found by
evaluating the integral

R=rp Lzédr (3.5.2)

Such work is carried out in detail in I?eports issued by this project group
and referenced as [H-11, [H-2], [B-2], [BT-L1, [BT-5], [W-1], and hence the
complete details of the derivations will not be repeated here. Formulas for
characteristic functions which are the end results given in the referenced
reports are listed below. Note that a normalized form of notation is intro-

duced for convenience in relating the functions to each other.

Bffect of Initial Cross-Spin é on Yaw

(r -r ) 1h1(r-r )]

B, = VT A /@ = (1/2"0W)Ie
Effeet of Initial Cross-Spin 20 on Angular Deviation
_ﬁq = ("V2G/p )@ / .

[3/(271'0')] vz"ﬂ R [E(w) - B, )]

‘/TE?L e [E(w) = E(W )]
. j_hl(r-r ) lh (r,r )
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Tables of Fresnel integrals are given in references [JE] and [D].
One may also write ® in terms of the rocket function rc(x) as follows:

- ih (r-r )
@q = (iC/2mo) vﬁ; [rc (hlro) -elh—'L "o fE(hlr)]

_ ih, (rr ) _
- \/ﬁ; {rc (hzro) -e rc(hgr)]

ih (r-ro) -eih2 (r-ro)

+ (ANE) Te 1f- (3.5.3a)

Tables of rocket functions are given in references [RNG] and {RC].

Effect Of Initial Cross-Spin 20 On Linear Deviation
B = ( v2a/00) Rq/‘1>Q

r@q + [iC/(hmh_l)] \/Zﬁh_z e_ihlro[E(w) - E(wo)]

It

lio/mony) | 465 o 2o &) - w6 ]S | (3.5.1)

o

In terms of rocket functions, this is

o - ey OO T
$ Rq = r®q - (C/)_movf'[_E) [rc(hlro) -e rc(hlr)
| l _ ih, (r-r )
+ (C/).mc\/-ﬁ;) [rc (hzro)—e ° ITE(hzr)] . (3.5.4a)
' Bffect Of Initial Yaw A = On Angular Deviation
b S
l B PR VIR [ .ic\/?;/(z;m)] h, VETE, e ! O[E(w) - E(WO)]
l -ih2ro _ _
oy Vo, e [ E(w) - E’(%)’]A
: ih (p-r ) i -
1 v AP [ 2T L .
' | Note 'bharrb“ther .@5 used here has the _’?‘Var.ll'u_e,"e'.l gﬂo:r =r .

1 M-
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Or, in terms of rocket functions,

- _ ihl(r-ro)_
®6 = (C \/;;/2170) b, \/h_;_ [rc(hlro) -e rc (hlr)]
ih, (r-r )
- by \/Eé [E(hzro) —el 2" o r-'c'(hzr):l
ih (r-r ) ih, (r-r )
. (l/ﬁ) [hzelhl r ro —hle 2 r I‘O ] + 2CNI-‘0. (3.5.53)

An approximation for this expression is given by

@5 £ -ihl\Eo @q -C \/rgro I-:E(hlro) + 2CNrO. (3.5.5b)

Effect Of Initial Yaw é—o on Linear Deviation
Ry = (1/p)Rg/A & -ihy Vr_ R, + (@ - Dlrr). (3.5.6)

Effect Of Dynamic Unbalance B, On Angular Deviation

éB = @B/Bc * ik \/r_o @q + CD. (3.5.7)

Effect Of Dypamic Unbalance -Ec On Linear Deviation

ﬁp = (l/p)RB/BC : il Vr_ fzq + & (r-r ). (3.5.8)

Effect Of Constant Cross-Wind W, On Angular Deviation

B, =V 8, -1/ VF + U/ E) & (3.5.9)

Effect Of Constant Oross-Wind w, On Linear Deviation

w

B, = VI R, = 20F - VB ¢ QAEDE. - - (35300
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Effect Of Linear Thrust Misalignment L. On Angular Deviation.

8 = -0/p) o/ = [i re (kyr )/(2 k) ] 8, + 00/ (2r Jyky).
(3.5.11)

Effect Of Linear Thrust Misalignment L On Linear Deviation

R = -0 AR/, = | E(kzro)/@ V)| B+ ler )/ (e k)
(3.5.12)

We have listed here only one of the characteristic' functions for yaw, 4,
but others may be found in [BT-1], [BT-4], [BT-5]. A

Scme further remarks are in order relative to the manmner in which the
characteristic functions listed here were obtained. To obtain formula
(3.5.3), one first drops all the forcing terms (wc, L., Bc’ g, @, rc)

c
appearing in equation (3.4.9) and also assumes that CH =C_ =0. The

resulting differential equation is then solved under the blgundary conditions
r=r, vA =0, (vA)' = péo. This result for vA is then substituted in
equation (3.4.8), also using (3.5.1), and the resulting equation is inte-
grated using the condition =T s ® = 0. The resulting value of ®, which
is really @q’ is now multiplied bythe constant C (appearing in the list |
of notation) to give formla (3.5.3). The effect of putting Cy= Cy= 0
is to neglect the aerodynamic 1ift and damping moment, but it is shown
in [CH] and [B-2] that multiplication of the end result by the constant ©
then gives an excellent approximation for the solution resulting from
keeping CH and CN in the differential equation. Once ®q(or any @ -function)
has been determined, it is a routine matter to substitute the result in
(3.5.2) to find Rq(or any R-function). .
Formula (3.5.5) results from a procedure similar to that for finding
@ except that the solution of the modified vA differential equatlon is

carrled out with boundary conditions r ro,' VA =V A o (va)' =0 Af‘b_,er SRR

‘the resulting %/A is found, in order to. mcorporate the effects of

aerodynam:l_c 11ft and damplng momen'b 5 ‘one. must mﬂ:blply ’che xesul’o by‘ G
a:ad add (C - 1). Th:.s is 'because of ‘the fact ‘tha:b in the formul_ ;éf
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this chapter the initial value (at r = ro) of @%/Ao is maintained as -1,

so that the actual change in angular deviation during burning as a result of
a unit of initial yaw is obtained by adding one to the expression given. here
for @6/1\0.

Formula (3.5.9) results from neglecting terms in L., B,» g in equation
(3.4.7), again putting CH = CN = 0, and integrating for vA using boundary
values r =r_, vA =0, (vA)' = 0. Use of (3.4.8) then gives an expression
for Ch/hc which, after having been multiplied by C, is in terms of C%/Ab
as shown.

Forrulas (3.5.7) and (3.5.11) are excellent approximations for the
quantities in question for points on the trajectory for which (r - ro)>0.5.
The details of their derivation and the validity of the formulas are com-
pletely discussed in [BT-4], [BT-5] and [B-2].

In Chapter L, the use of these formulas for making computations of values

of characteristic functions will be illustrated.
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3.6, Graphs Of Characteristic Functions

By assigning valuesAto the parameters occurring in the coefficients of
the system of differential eqaations (3.4.7), (3.4.8), and (3.4.9), one may

cbtain solutions by use of analog or digital computers. In this section

—s.u——v} "..ﬂ .

3“' analog computer graphs of some of the characteristic functions referenced
in Section 3.2 will be shown and discussed. ‘

i The parameters assigned here for the purpose of computing are based
{ on measurements taken from rockets of types that were fired on experimental
programs carried out in comnection with the rocket research work of this
project group. Most of the graphs shown here are connected with gun~boosted
rockets. For the sake of comparison, a few graphs relating to unboosted
-rockets are given.

Graphs exhibited here represent complex plots of the quantities in
question, with the real axis R taken vertical and the imaginary axis I
taken horizontally. Furthermore, points indicated along the graphs by

o

small circles are shown at intervals of 0.2 for values r - T the

normalized distance along the trajectory from the launch position T These
points are labelled at integer values of r - T
For instance, Figure 3.2 shows two graphs of the yawing motion due

to injtial cross-spin éo in the case of an unboosted rocket for two different
launcher lengths, one of which is four time the length of the other. Typical

lengths here would be 3 ft. and 12 ft. One notes that there is little

difference: in the magnitudes of yaw (represented by the distances of corres-

ponding points such as r - r, = 0.2, 0.4, 0.8, etc. shown on the graph from

the origin of coordinates), with the shorter launcher showing larger magni-

tudes during the phase up to r - r, = 1. To illustrate a reading from this

graph, note that a radial line OP is drawn from the origin to the point

where r - r, = 0.6, and the length of this line measured to the indicated

scale of elther axis represents the magnitude of VEE75- /éo’ or the 7

value of |A /§ | multiplied by the normalizing factor v§§7~. In this

case VEG/D |4 /é |~ 0.52. Thus if G = 2400 ft./sec.” and p = 120 £, .
for this rocket one would have |a /§ | = 0.082 rad. /Crad /éec) of 1n1t1alf -
“cross-spin. Thus at plr - r ) = 120 (0 6) =72 ft. along ”ohe *bfaaectery L
the yaw due to one unit of 4, 1is 82 mils. Also, ‘the plene: i + R
v takes place is lecated by'the angle (~115 ) whlch the ra

g
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with the vertical axis (measured clockwise from the R(+) axis). One could
also arrive at these same results by reading the real and imaginary com-

ponents of the normalized characteristic function to get

VﬁG;p Aq/éo = - 0016 + i 0.500

This is the form in which results are given by the characteristic functian

formulas in Section 3.L. One would now determine the magnitude to be
V3Ge A /<1s | = [(-0.16)% + (0.50)%12= 0,52,

as before.

Figure 3.3 shows a yaw graph for a gun-boosted rocket. The general
behavior is much the same as for the unboosted rocket, but magnitudes are
considerably less. One should keep in mind, however, that the value of
V2G/p would still need to be reckoned with in measuring the actual yaw.
One also notes that the rate of damping of the yaw is a little slower in
Figure 3.3 and the precession rate is faster than for the unboosted case.

Figure 3.4 shows a family of graphs based on varying launcher Jength
(or launch velocity in case length is fixed) and showing the effect of
initial cross-spin éb on angular deviation for an unboosted rocket. One
may interpret these graphs as showing that as launcher length is increased
the effect of a unit éb(rad./sec.) on magnitude of angular deviation at
a given value of (r ~ ro)(or distance along the trajectory) becomes
smaller. Otherwise, one may conclude that for a fixed launcher length
a higher launch velocity gives a relatively smaller magnitude of angular
deviation due to unit cross-spin at launch.

Figure 3.5 shows a family of graphs for the normalized linear devia-
tion corresponding to the same set of parameters r, used in Figure 3.L.
These two figures, 3.l and 3.5, illustrate respectlvely results of com~
putation one could make by use of formulas (3.5.3) and (3.5.4) with C = 1.

Flgures 3.6, 3.7, and 3.8 display graphs of normalized angular devia-

‘tion due to it @ for cases of gun-boosted rockets with three different
‘launch velocities, v (recall that v, VZGpr ). These graphs are

praCtlca“lv 1dent1ca1 in form, Wlth POlHtS COrPeSp@ndIng to a glven value o
of r - s almost in- phase, but. magnltudes decrease with 1ncrea31ng 1aundh
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velocity. From the theoretical formulas developed in connection with Section
3.2, one concludes that with other parameters fixed the value of @q varies
approximately as (1 + ZCNr )/% 3/2. Checking this result against the three
graphs in question, using r —:r'O 1, the ratios of successive values of
l@q/@ol for r = 1. 477, 15, 25 are 2.03, 1.56, while for (1 + 26y )/% 3/2
the correspondlng ratios are 2.12, 1.60. One is thus led to conclude that
higher launch velocities lead to higher accuracy, but it is not yet known
what the effect on éo of higher velocities might be. Other sources of
inaccuracy, such as dynamic unbalance, might be enhanced by increased
velocity.

In connection with Figures 3.6, 3.7, and 3.8, one also notes that as
rT-rg increases each of the graphs of @q/éo eventually winds around and
spirals inward toward a limiting position. Thus, in Figure 3.6, for instance,
if the rocket burns out at r - r = 10(§ distance of 10p = 10(70) = 700 ft.
from launch), then the magnitude of @q/@o'would be pretty well approximated
by the magnitude of the limiting value. Estimates of these limiting values
due to various disturhing factors are given in the next section.

Figure 3.9 illustrates one of the significant results arising from the
theoretical and computational work of this project group. It shows two graphs )
of 103 §q’ one of which (the‘graph labeled @q)~results as the true'graph for
the case of a boosted rocket, and the other of which (the dotted graph
labeled éql) results from using the formulas applying to unboosted rockets
to compute points on the graph. In the latter case the effects of aero-
dynamic 1ift and damping are neglected. One notes, however, that the
essential difference: in the graphs is in magnitudes. Note that radial
lines through the origin almost pass through corresponding (r - ré) points
of the graphs, as illustrated for (r - ro) =1, and (r - r,) = 8. Further-
more, the constant factor (1 + ZQNPO)(in this case 2.04) multiplied by the
value for dotted graph (the case of the simpler unboosted rocket theory)
gives an excellent approximation to the value of the solid graph (resulting
from the more complicated. boosted rocket ‘theory). In [B«2] similar re- MWW,AQKJ;mmku
sults were found to hold for other effects (dynamic ‘unbalance, 1n1t1al yaw,-f
etc.), so that a Very simple tran31t10n can-be- made from:theoretical ragjh}vmn¢§¢
formulas for unbeosted to ‘the formulas for boested rockets glven 1n Se;>'>' P 3
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Figures 3.10, 3. 11 3 12, 3.13 show respectively the graphs for @ /A
8 /ﬁc, Vﬁﬁﬁ_@ /ﬁ , and =10 (kz/p)®L/L (effects of initial yaw, 4, dynamlc
unbalance, B s Cross-wind, W and linear thrust misalignment, L ), for the
case of ro 15 thus corresponding to the rocket of Figure 3.7. Let us
look at results given by these graphs, assuming that we are dealing with
a rocket for which the following parameter walues hold: = 300 ft. /sec.z,
p = 100 ft., K2 = 0.5 ft.z, T = 25(e.g. burncut distance from launch is

(rb-ro) = 10, so that s = 10p = 1000 ft.).

From Figure 3.7 we read at (r - ro) = 10 the value
?
i
10> V5G/p 8 /8, = - 2.25 - i 1.65, (3.6.1.) |

so that

I@q/ci:o] = 1.1(207)rad. /(rad. /sec.) = 1.1 mils/(rad./seé.).

THus @O = 1 rad./sec. produces 1.1 mils of angular deviation at burnout.
From Figure 3.10 weread at (r - ro) = 10 the value

@6/Ao = -1.,028 + i 0.055, (3.6.2)

and since the initial value was -1, this gives a change EE~@6ZA0 of
magnitude 0.062 mil/mil, which is the effect of one mil of initial yaw.
From Figure 3.11 we read at (r - ro) = 10 the value

Qﬁ/ﬁc = 0.85 - i 1.25, (3.6.3)
so that ‘
l@B/Bcl = 1.5 mils/mil.
From Figure 3.12, using (f - ro) = 10 we read

v 2Gp aw/wc = -0.066 + i 0.01}, - (3.6.1)

so that

0.00027 rad./(ft./sec.)

0.27 mil/(ft. /sec.);
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From Figure 3.13 we read at (r - ro) = 10 the value
1n8 /1.2 _ .
-10°(k“/p)8r /L, = 1.k -1 L9, (3.6.5)

so that
L7 (10-h)rad. /ft.

le /n |

0.47 mil/ft.

From these results it is clear that for the hypothetical rocket in -
question the factors having significant effect on angular deviation at the
end of burning are initial cross-spin, éo’ dynamic unbalance, Bc’ and
cross~wind, LA with the latter the dominant factor. This is based on
the assumption that initial cross-spin would not exceed one radian per
second and dynamic unbalance would not exceed one mil. Then a 10 mi. /hr.
wind could cause about 4.5 mils of angular deviation at burnout, as
against about one mil for each of the other effects.

Figure 3.1l is included to show the effect on linear deviation of

initial cross-spin. Again at (r - r ) = 10 it is seen that

26/ Rq/ciO = - 0.031 + i 0.0055,

so that for the parameters used above,

| Rq/éol = 1.3 ft./(rad./sec.).

A rocket having the qualities that would lead to the results given

here would thus be considered extremely accurate.




P DU————

42

R

V2GP Re
L 2

WITH

=150

S=167 , C,=03469, C=07477

(r=r,)s1

{3y

=0l

-02

.03 104

Y




J—— ww’xm@wx@"ﬁ’@‘”ﬁﬁi‘%?‘*@‘% ‘

S accvun‘b of the c

L3

3.7. Asymptotic Estimates Of Angular Deviation

It is noted from the graphs of the characteristic functions given in
Section 3.6 that as r increases (or as burning time jncreasés) the curves
representing angular deviation approach a limit poiné. Thus if a rocket
burns long enough, this limit point will furnish a fair approximation to
the desired value of the characteristic function at burnout. In this
section, under proper restrictions, quite simple expressions giving good
approximations to these limit points are listed. The details of the
derivation of these formulas may be found in reference [He5.] and will not

be repeated here.

Additional notation used here involves the follow1ng aerodynamlc
parameters with typical magnitudes:

Overturning moment: Cy = JM)k2~ h(lo-h)(ft.-z).

Normal force:

- JN/d~ 3(10‘1‘) (ft.'l).

Assumptions made in arriving at the results listed later are that
during the burning period outside the launcher we have

|ayb2| - 0.08(rad. l) |G/ 2] G/ ft._l) v = 500(ft./sec.).
(3.7.1)

Under these conditions formulas which follow give approximate values for

the 1limit points of the indicated characteristic functions for angular
deviation.

Effect Of Initial Cross-Spin 20

Where cne g§ interested.iE.magnitude only, the estimate is

; @q/édf -(QNJ+-G/j°2)/bMv6(radj per rad.yéeéi);“ o : (3i7.2)

Effect Of Inltlal Yaw A

f’/ : ”'Zlqn(% * G/" )/°M(Tad /rad- or m:Ls/m:L) B R R

Note: The ﬁ% used here has the value O at r= T o and thus tak'f‘ o

€ 1n @ dne %o A .-'
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Effect Of Dynamic Unbalance -Ec
@B/ﬁc sicoo@q/éo + @ /A (rad./rad. or mils/mil.)
~~ ing_(1-20) (ey + G/v 2) /ey I CR A

Effect Of Constant Cross-Wind W,

®w/wc = 4(1/v0) [ @6/A0 - ,(l-vo/v)]‘. (rad. per ft./sec.). (3.7.5)

This is the same formula as that given in (3.5.9), since this is an

exact relationship. It becomes an estimate if (3.7.3) is used as the value
of ®6/Ao.

Effect Of Linear Thrust Misalignment L,
2 2+,. .
@/ch - (6/x @, )(mo@)q/@o + ®5/Ao) (rad./ft.). (3.7.6)

Effect Of Angular Thrust Misalignment e,

- For n>V10cy (e.g. n>0.1)

] a/ac = —i(G/vomo) a - ®6/A;> - vocnoce:m /vo) (rad. /rad. or mils/mil).

(3.7.7)
Effect Of S'b'atic Unbalance z,
8 /r ~in(l - 8;A 6" (rad. /tt.). (3.7.8)

The latter two characteristic functions were not 1lsted in Section 3.5
because of the fact that for spln-stablllzed rmkets ’they are negligible , ‘
during the burning period. This is indicated by the estimates given below
using the formulas just listed. o

As an example ‘of the- use of these formulas as est:.ma‘bes for va.l ¢
the end of burmng, cons:.der a boosted spm-stab::.llzed recket Wl'bh
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_thrust mlsahgmnent are negllglble for this rocket. =

L5

= 350 ft./sec.”, v = 1000 ft./sec., n = 1.3 rad./ft., and & <10°, We
note that with :

o/v 2n 3(10%), K¥a0.55
the estimates of formulas (3.7.2) and (3.7.3) give

i®§/‘i,o[ ~1.6 mils per rad./sec. of I«i’ol,

|| ~0.1 mil per mil of IAo .

For a comparable shell, assuming no significant change in (cN D)/CM’
the correSpond:Lng estimates would be half as large as for the rocket, since
the term in G/v arising from rocket thrust would be missing.

Looking at the other sources of dispersion for this rocket, we note
from (3.7.5) that if at the end of burning the rocket has burned long
enough for the velocity Vy to be twice the launch velocity Vs then the
term is (1 - vo/v) becomes the major contributor to ® w/wc' Since the
term in ®6/AO is almost pure imaginary, as indicated by (3.7.3), we would
then have :

®n#&% =0.001(~- 0.5 + i 0.1),

or approximately 0.5 mil per ft./sec. of wind.

For the effect of dyna.mic’unbalance, formula (3.7.)4) yields a‘ value
on the order of 2 mils per mil of l BJ .

In the cases of linear and angular thrust misalignment, one notes
from (3.7.6) and (3.7.7)’that for the rocket of this example

l®L/chl~38 mils/ft.
and
(@ e | ~0.0002 mil/mil.

S:ane one would usually have IL |< 0. 005 :I':'t. and 10: ] <S m:Lls for a rocke’b
manufactured mth reasonable tolerances s it is clear that the effects of

7 From formula (3 6. 8) the parameters a.ss:l.gned to this rocke‘b" X
value : | . R Lo
e,/ rcl =1 28 T ?d.:‘/ Ty




[RU—

s e AT A BGT 7

R e | s

Lé

S0 that if the amount of static unbalance is Limited to | ;-CI< 0.0005 ft.
the effect on linear deviation here is less than about 0.5 mil,

It is clear from this discussion that the estimates made by use of
the very simple formulas listed in this section show that the significant
causes of angular deviation for the rocket treated here are initial cross-
spin, éo’ cross~wind, LA and dynamic unbalance, ﬁc. If one should use
the more complicated formulas given in Section 3.5, much more accurate
quantitative results would be obtained, but qualitatively one would arrive
at the same conclusions relative to significant sources of dispersion for

the subject rocket as were reached here.

3.8. - Application Of Theoretical Results To Design Of Spin-Stabilized Rockets

The use of theoretical results listed in this chapter as guides in de-
signing an accurate rocket would usually begin at the staige where the rocket
configuration was already prescribed in the sense that its dimensions, loca-
tion of center of gravity, moments of inertia, nose ogive, etc., would have
already been determined. Considerations such as purposes for which the
rocket was to be used, total weight desired, limitations on length-to-diameter
ratio, range desired etc., would have been used in determining design
characteristics up to this point. It would still remain to determine such
parameters as launch v’elocity, Vo launch épin rate, ® s and for the burning
period outside the launcher, acceleration, G, spin-to-velocity ratio, n, and
burning time.

The following disturbing factors, which were discussed in Chapter'.2,

are the prominent causes of inaccuracy of spin-stabilized rockets in general:

1. Initial cross-spin, ‘I) .

2. Cross-wind, W,

3. Dynamic unbalance, Bc'

L. Initial yaw, 'Ao'

5. Linear thrust misalignment, L,-

- On the basis of estimates made by use of- formulas in Section 3. Ty-or -

by use of the more accurate formulas given in Sectlon 3.5, one can conclude

that for typlcal gun-boos’oed rockets the effects of initial yaw, A' and“"' oo

linear thrust msallgnment L 3 are pract:.cally negl:.g:.ble., Thn_s has

Frovmdiy
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already been noted also in connection with graphical results presented in
Section 3.6.

For the sake of more specific discussion, let us assume that in the
remainder of this section we have under consideration a fairly typical gun-
boosted rocket with launch velocity fixed a'b v = 1000 ft./sec. and with
aerodynamic constants CM h(lO—h) QN 3(10" ) and other parameters 2g~0.0l,
n~l,2, In order to make use of the estimates of Section 3.7, we should
keep G/vo2 2 CM = h(lo_h), which means that G = L,00 ft./sec.2. The value

= ;00 ft./sec.2 is still considerably higher than one would want it to be
in order to attain best results from the standpoint of reducing that angular
deviation of the rocket at burnout. Equations (3 7.2) and (3.7.3) show that
a significant contrlbutlon to the values of & /é and 8 /A is made by the
quantity (CN + G/v ) , and since Cy and Gy remaln nearly constant except
near sonic veloc:Lty, decreasing G would decrease the effect of initial
cross-spin on both of these characteristic functions (@q/«i>o and ®6/Ao)'
As a result, other characteristic functions which depend directly on these
would be correspondingly decreased. However, consideration of desired range
characteristics might well dictate a lower limit to which one could go in
assigning G.

Note that in particular the value G = 40O, along with other parameters
listed here, gives estimates of |@ /éJ ~1.75 mils per rad./sec. and
e /A |~0.07 mil/mil. Since such an excessive initial yaw as 10 mils would
lead to only 0.7 mil of angular deviation, one concludes that initial yaw
is not a significant factor in determining accuracy in this case.

The advantage of a low value of G is further borne cut in the con-
sideration of the effect of constant cross-wind. From formulas (3.7.5)

the wind effect on gngular deviation is given by

Q fu_ == [@5/A -(1-v /v)]

O -
wherein @ /A may be estimated by use of formula (3.7.3). Thisexpression
shows that the nearer the velocity v at any time during burnlng is to the
initial velocity v o the sma.ller the second term :mvolv:\.ng (1 -V /v) m_ll

be. Tl’llS means, ln Other 'W'OI‘dS, that the nemr '[',o Zero the -botal accelera—
‘tion G is, the less the effect.of wind on angular dey;pat:,on.m_]l be,

S s S s e T = ek ¢ o resos e 2
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hence wind sensitivity would be minimized by use of a sustainer type of gun-
boosted rocket.

Considering the expression for the effect of dynamic unbalance given
in equation (3.7.&), we note again that a low acceleration is desirable.
Furthermore, since the effect of dynamic unbalance clearly inéreases
directly as the spin-to-velocity ratio n, and since a rather high rate of
spin is essential to maintain stability in flight, another recourse would
be to increase launch velocity while maintaining the minimum spin rate
required for stability. Remaining means of reducing inaccuracy due to
dynamic unbalance are, of coufse, the assignment of tolerances in manu-
facturing metal parts and the choice of a propellant that will not break
up under the conditions of high spin rate.

Summing up the results of the above discussion, we again see that the
chief sources of inaccuracy for gun-boosted spinner rockets are initial
cross-spin, éo’ cross-wind, w_, and dynamic unbalance, B_. If we combine

the consequent effects on @ , the angular deviation at the end of burning,

b’
we get

o, -0 z(éo +1 wogcx@q/&ao) - @ A - v ), (3.8.1)

where ®0 is the direction of'motion of the c.g. as the rear end of the rocket
clears the launcher, and @ /@o is the unit effect whose magnitude is estimated
by egnation (3.7.2). High launch velocity and the maintaining of a small
change in velocity during burning tend to minimize the effects of the
referenced disturbing factors. The cross-spin at launch, éo’ and the
dynamic unbalance, B, appearing in the coefficient of equation (3.8.1)
are statistical quantities which vary from round to round in firing a series
of rockets. For B this variation can be controlled by'manufacturiqgtolerances.
There is little experimental évidence as to the behavior of @ for boosted
rockets. Its magnitude clearly depends on such things as prece531onal mo~
tion of therear of the round during the tlp-off period and launcher motion.
From the above remarks, it would appear that a pure sustalner'type of
rocket (thrust exactly cancelllng drag) would be the proper choices however,

_ for purposes of attaining maximum range, it appears -that for certaln quad— ;»wa;>x;i

pure sustainer m:Lght furn:.sh an, optlrmm csmbmatlon of range ,and a
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In this connection, for high angle fire, it is desirable to maintain burning
almost to summit, for it is desirable in all cases to have as large a velo-
city at the summit as possible under the conditions being used. This follows
from ‘the fact that the magnitude of the yaw of repose is given essentially
by '

Ar = 2gng cos s/CMyz,

where & is the aﬁgle of elevation of the trajectory (& = 0 at summit).
Thus small velocities Vg at summit would lead to larger relative varia-
tions in Ar due to small variations in v than would large values of Ve
The consequent drift on the downward path would be less systematic for
small vy than for iarge v and hence lead to higher dispersion of impact

poirnts.
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CHAPTER L

COMPUTATIONS ILLUSTRATING ACCURACY ANALYSIS FOR A
GUN-BOOSTED SPIN=-STABILIZED ROCKET

In the accuracy analysis illustrated in this chapter, it is assumed
that the rocket has already been designed and that the following set of”
typical values has been assigned to significant parameters. Onethen wishes
to compute effects of disturbing factors by use of the formulas listed in
Section 3.5. We illustrate such computations here.

L.1. Rocket Data

At Launch At Burnout
Linear Velocity: A 500 ft./sec. v, =2000 ft./sec.
Angular Velocity: ®,= 100 rev. /sec. mb=390‘rev./éec.
Axial moment of inertia: & =140 1b.-in.? & =110 1b.-in.?
Transverse moment of inertia: B = 3000 1b.-in.2 B =2300 Ib.-in.2
Weight: L)y 1b. 3l 1b.
Center of gravity: 18 in. from nose 17 in.from nose

Other parameters are

Burning Time: 2.5 sec.

Diameter of rocket: d = L.5 in.

Aerodynamic constants (for v, = 500 ft./sec.): Ky 2,K= 1,K; = 6.
Other physical constants to be used are

Air density: p = 0.002335 slug/ft.3

Gravitational constant: g = 32.17 ft./sec.2

L.2. Computation Of Basic Parameters

We compute the acceleration of the rocket (assumed constant) by

V., =V .
G = b -to = 1500 ft./SGC, = 600 ft./sec.z
% - o 2.5 sec.

By referring to the list of notation in Section 3.3, we compute
the following basic quantities for use in the characteristic function
formulas, noting that here launch values are used for moments of inertia,
weight, and for computing n. One could use average values here.

In the following computations, free use is made of numerical : -
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51
results appearing in [R].

(100 rev./sec.) (2% rad./rev.)

n=o/fv-= = 1.26 rad./ft.,
500 ft./sec.
- 1,0 1b.-in.°
q = A/2B = ‘ 5T = 0.0233,
2(3000 1b.-in.<)
.2
k2 = Bm = 3000 lb.-ln.2 5 = Oo)-l-73 f_b.Z,
(Ll 1b.) (ALl in./ft.9)
"
p:‘r{/n: =107ft.,
(0.0233) (1..26 rad./ft.)
2
r, - Vb2/2Gp _ (2000 ftt/sgc.) - 31.2,
2(600 ft./sec.”)(107 ft.)
V02 (500 ft. /sec.)?
To T 5Gp = 195,

2(600 ft./sec.?) (107 ft.)

o3 i = (0:002335 slug/et.%) (4.5/12Y28.% _ 900(0)%,
(4h/32.17) slug

de/m)KM = o.9bo(1o)'h(2) = 1.80(10)’h,

3y = (pd® fm)ky = 0.900(10) 4 (1) = 0.900(20) %,

]

Iy '(pd3/m)KH = 0.900(10)'h(6)

)]

s.uo(lo)’h.

]

i.3 Computation Of Quantities Occurring In Formulas
From the above basic values the following quantities are now

computed. 5 >
S = 2 2k /J (0.0233)2 (0. 173 ft. )(1.26 rad /ft )<

.26; .

1 80(10)’
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-
c, - PJn/a _ (107 ££.)[0.900(107)7 _ 0.0257,
(L.5/12)f%.
-
Cy = deH/kz _ (107 £6.)[(h.5/12)£6.][5.40(10) "] _ 0.0L58,

0.473 ft.°
o = (1-1/5)2 = (1-1/2.26)1/2 = (0.557522)2 = 0.7U667L,

w(1+o) = w(1.74674) = 2m(0.873337) = 5.L4873kL,

jn
[

h, = (1 -0) = m(0.253326) = 2w(0.126633) = 0.7958L7,

2
hyr, = (5.4873L)(31.2) = 171.205,
hyr = (5.4873L) (1.95) = 10.7003,

n (ryr,) = 2m(0.873337)(29.25) = 2m(25.5451),

h,ry (0.7958L47) (31.2) = 2L.630L,

[}

b,z = (0.795847) (1.95) = 1.55150,

hy (e —r ) = 21 (0.126663) (29.25) = 2w(3.70489).

We now use these values to evaluate the exponential fu.ncfions and
rocket functions which appear in formulas (3.5.3a), (3.5.ka), and
(3.5.5a). Note that we now take r = rp
at burnout. For the expaonential functions we reduce results to

in order to compute values

rectangular form and get
ihl(rb—ro) 12m(25.5451)  i2w(25) i2w(0.5451)
e = e = e e
izn(o.5u51)_ i3.1,25

=g e = cos 3.425 + i sin 3.425.

- 0.960108 - i 0.279629,
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. L | i2wj -
ij wherein use has been made of the property that e =1 for j an
integer, and the Euler formula h

ix ..
e =cos x + 1 sin x.
In like manner,

ihg(rb—ro) ) i2v(3.70h89)= i21(0, 70489)

e = e e

= eih'h29o = - 0,279611 - i 0.960113.

To evaluate the rocket functions rc(x) appearing in the characteristic
function formulas referenced above, one may use tables of these functions
given in [RC] or [RNG], and if values fall beyond the ranges of these

- tables, the following series forms are available for use in making the

computations:

) = IVELQ - 0.75/42 + 6.5625/5% + ...)

]
] L

- i (0.5/%- 1.875/x3 + 30/x5 +o..). (L4.3.1)

From tables in [RC},

EE(hlro) = rc(10.7003) = 0.303831 - i 0.013867,

fE(hzro) = rc(1.55190) = 0.704530 - i 0.156599.

S e
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By use of the series form given in equation (}4.3.1), one finds

0.07642) - i 0.000223,

fE(hirb) = 75 (171.205)

fE(hzrb) = rc(24.8304) = 0.200441 - i 0,004017.

Remaining quantities in formulas (3.5.3a), (3.5.ka), and (3.5.5a)

C=1+2Cr =1+ 2(0.0257)(1.95) = 1.10,

'i1.10

= i 0.234467,
2w (0. 7L667L)

iC/2we =

\/-h—_:L- __. /5. : 73], -‘,-“72.31@51, .
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. Substituting the above values in (3.5.3a) now gives

8
q

(10.23L467) {(2. 34251)[0.303831 - i 0.013867

(-0.960108 - i 0.279629)(0.076L2L - i 0.000223)]

(0.892103)[0. 704530 - i 0.156599

(-0.279611 - i 0.960113)(0.200441 - i 0.004017)]

+

(0.179029)[ -0.960108 - i 0.279629)

(-0.279611 - i (0. 960113)]}

(i 0.234467)(0.079975 + i 0.10792L),

and thus
®
q

1l

v/ @q/éo = - 0.,025304 + i 0.018752 (4.3.2)

The unnormalized form of (4.3.2) thus becomes, on using the values

of p and G given above,

@q/&:o =vp/2G (-0.02530L + i 0.018752)

= (0.298608) (-0.02530L + i 0.018752),
so that we finally get for

Angular Deviation Due To Initial Cross-Spin Eo:

@q /‘I"o

]

- 0.007556 + i 0.005599 rad./(rad./sec.)

- 7.556 + i 5.599 mils/(rad. /sec.), - o ((e3.3)
and hence for the magnitude we get
l6g/2, ] = 1(-0.007556)% + (0.005599)%1/2

=9 hOh mﬂs/ &%@1- [sec.)s

- | - = 0.00900k made/(rad. fese) (3
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In a similar mammer, substitution into formulas (3.5.lLa) and (3.5.5a)

of quantities computed above leads immediately to the following results:

Linear Deviation Due To Initial Cross-Spin_go:

‘Rq =\/£/_p? (Rq/éo) = -0.7079 + i 0.5892, (4.3.5)

Rq/&ao = -22.62 + i 18.83 ft./(rad./sec.), (4.3.6)

qu/éol = 29,43 ft./(rad. /sec.). (h.3.7)
Angular Deviation Due To Initial Yaw A :

B4 ==@8/Ao = - 0.896 + i 0.2)437 mil/mil, (4.3.8)

|®5/A0 | = 0.8839 mil/mil. (L.3.9)

The remaining characteristic functions whose formulas are listed in
Section 3.5 are expressed in terms of the normalized functions whose values
are given here in (4.3.2), (L.3.5), and (4.3.8), and hence their com-

putation is quite simple. Additional quantities entering these formulas
are

Vv =yI.95 = 1.396, yr =+3L.2 = 5.585,

o
D=1-vhr re(nyr) =1 -v10.70 (0.3038 - i 0.01387)
= 0.006126 + i 0.0L536,
ky =m/g-hy = (3.1416/0.0223) - 5.1487
=129.3,
k, = w/q - h, =134.832 - 5.487 = 129.3,
VE, =VIDT = 11.58,
T (yr ) = F5(261.4)

i

- 0,062,499 - i 0.0001198.
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Making use of ﬁq from (L.3.5) then gives

2
I

(/) (Rg/A ) = i, B+ (D) (ror)

- 1(5.487)(1.396) (-0.7079 + i 0.5892)

+ [1.10(0.006126 + i 0.04536) - 1]1(29.25)

- 24.5h + i 6.883.

Thus the unnormalized form gives the following
Linear Deviation Due To Initial Yaw Ao:

Rg/A = (107)(-2h.54 + i 6.883)
= - 2626 + i 736.l ft./radian
= - 2,626 + i 0.736 ft./mil,
so that
]RB/AOI = 2.727 ft./mil.

(4.3.10)

(4.3.11)

Similar substitution into formulas (3.5.7) - (3.5.12) respectively

then gives the remaining results as follows.

Angular Deviation Due To Dynamic Unbalance -Ec:

@B/pc = =3.379 - i 4.519 mils/mil,

i@B/Bcl = 5,643 mils/mil.
Linear Deviation'Due To Bynamic Unbalance -Ec:

RB/BC - 11360 - i 13520 f£t./rad.

- 11.36 - i 13,52 ft./mil,
]RB/BC | = 17.66 ft/mil.

(4.3.13)

(h.3.1h)

(4.3.15)
(4.3.16)
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Angular Deviation Due To Constant Cross-Wind W

®1N/wc‘ 0.001399 + i 20.000489 rad/(ft./sec.)

1
1

= - 1.399 + i 0,489 mils/(ft./sec.),

|®w/wcl

i

0.0015 rad./(ft./sec.)

1.5 mils(ft./sec.).

Linear Deviation Due To Constant Cross-Wind w,:

Rw/wc = - 2,748 + 1 1.473 ft./(ft./sec.),

IRW_/Wc |= 3.118 £t./(ft./sec.).

Angular Deviation Due To Linear Thrust Misalignment Ec :
@ /L= 0.1174 + i 0.1521 rad. /ft. (mi1/107 3158, ),

ley/al = 0.1921 mil/107 5t

Linear Deviation Due To Linear Thrust Misalignment L:

RL/LC = 15.38 + i 39.27 ft./ft.,

IRL/LC! = 60.078 ft./ft.
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(4.3.17)

(4.3.18)

(4.3.19)

(L.3.20)

(L.3.21)

(4.3.22)

(L.3.23)
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CHAPTER 5

FIN-STABILIZED ROCKETS WITH SLOW SPIN

5.1. Differential Equations Of Motion

In this chapter a mathematical basis for study of the motion during
burning of a fin-stabilized rocket with slow spin will be introduced.
Differential equations and the resulting formulas for the characteristic
functions expressing unit effects of the various disturbing factors des-
cribed in Chapter 2 will be given.

The quantities used to describe the motion of a fin-stabilized rocket
and the coordinate system to which they are referred are the same as those
described in Chapter 3 for the case of spin-stabilized rockets.

The equations of motion to be considered constitute a three-dimensional,
small-yaw representation of the motion of fin-stabilized rockets. The deriva-
tion of the equations closely parallels the corresponding derivation for
spin-stabilized rockets in [H-1] and [CH]. Closely related material con-
cerning the equations of motion and their derivation is to be found in [MKR]
and [DFB].

The following four equations describe the motion of the rocket and re-

late respectively to

(a) the velocity of the rocket in its trajectory,

(b) the spin-rate about the rocket axis,

(c) the angular botation of the rocket about an instantaneous
transverse axis through the center of gravity,

(d) the motion of the center of gravity at right angles to OX.

G=7v-= Gl - CDV2 ~ g sinss (5-1-1)
& =nG - c, Vo (5.1.2)
# - (2igo - V)@ +(oyy * o) (vA +w )= M /By (5.1.3)

58




[

e

HQUQ@I:*B*8Q4

Magnus torque: c

59

vé - v - VA -(ch-igﬁw)(vA +_Wc)= -g cos &+ Fc/m; (5.1.4)

in which much of the same notation as for spinner rockets appears, namely

= rocket velocity (ft./sec.),

= acceleration of the rocket (ft./sec.z),

= axial spin rate (rad./sec.),

= complex orientation,

complex yaw,

= & -A = complex angular deviation,

= gravitational constant (ft./éec.z),

= acceleration (ft./éec.z) due to rocket thrust outside the

launcher,
ntG1 = axial angular acceleration (rad./sec.z) such as might be
provided by canted nozzles, '
& = angle of elevation of tangent to trajectory,
B = mk-2 = transverse moment of inertia (slugs—ft.z),

2q = A/B = ratio of axial and transverse moments of inertia(~0.02),

. W, = cross-wind velocity (ft./sec.),
M = resultant of cross-torques due to misalignment (and perhaps

unbalance),
P = resultant of cross-forces due to misalignment (and perhaps

unbalance).

Aerodynamic parameters with representative magnitudes (for rockets

with diameters of the order of L or 5 inches) are the following:

Drag: cp = JD/d~ 5(10'5) (£t. 71y,

Spin-deceleration: = dJA/k2~ (10’5) (ft.,“l).

Cx

Damping moment: ¢ = dJH/k2~ 2(10-3)(ft._l).

Stabilizing momgﬁt: Cy = M/k?~,(1o'3)(f£,f2).

T SR O |
p = Wk : (2077) (££.77) .-

Normal force: .cy =rqﬁ/ﬁnvé(leu)(fﬁg%;)yfv'

Magnus force: cp = Jy ~(10+4)(£t.f;);7:
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in which d denotes the projectile diameter and k the axial radius of gyrationm.
It should be noted that in (5.1.3), the term cMV2 A is preceded by a + since
it enters in a stabilizing torque rather than in a de-stabilizing (over-
turning) torque as in the spinner case.

In the development below, we shall have use for the follewing
symbols:
/v = ratio of spin-rate to velocity (rad./ft.),

n =
A = 2npN cy = wave-length of yaw(ft.),
t
N = f o dt = spin-angle(after launch).
t
o |

The exponential et will appear in the representations of those forces and

torques which rotate with the rocket. Thus

/ .
-(Gch/kg) e (due to thrust misalignment)
'-i MC/B = . (5.1.5)
+ cmxcvzem s (due to fin misalignment)
- in . .
Fc/m = Glmce . (due to angular thrust misalignment) (5.1.8)

In these formulations, Lc s Koo and o are the complex parameters, described
in Chapter 2, which represent ™measures®™ of the respective misalignments.
They incorporate both a magnitude and an initial orientation. (i.e., at
launch, t = to). ILc | corresponds to a distance (ft.); Ip.cl and lacl
correspond to angles. Thus B, represents that angle of yaw (measured
relative to the rocket axis) at which the cross-torque due to cross~velocity
reduces to zero. These parameters will be considered constant.

A torque due to dynamic unbalance and a cross-force due to s‘batie
unbalance could be included in (5.1.5) and (5.1. 6) However, Athese effects
(assuming that reasonable tolerances are malntalned) should not be s:.gm.fl-

spin is employed prlmarlly to "average out" pOSS:Lble msahgnment
The formulatlons up to ’ohls pom'b have :mdmcated that con

PN,

Y

WIRWY

-cant for fm-stablhzed rockets with slow or moderate spin rates, where 'bhe




one R SRS

[N

Bl

ok

.

61

is to be given to fin-stabilized rockets with slow spin. = It should be pointed
out that the results apply equally well to finner rockets with.no spin. To
relate the eguations of mofcion explicitly to the case of no spin, one merely
sets o = 0, > oy = O, @=0, n =0 in equations (5.1.1) - (5.1.L), and removes
the exponentials e insp (5.1.5) and (5.1.6).

Just as was done in the case of spin-stabilized rockets, we now intro-
duce a new @ and a new ® obtained by subtracting the angle ( e- eé) from
both the old & and® , where werecall that (g - eo) represents the change in
direction relative to the launch direction, €. of the ideal trajectory
discussed in Section 3.L. The new € and ® thus represent the orientation and
angulsr deviation relative to the tangent to the ideal trajectory. In so
doing, we shall assume that, during the burning period of the rocket, the
curvature of the trajectory remains sufficiently small so that we can ignore
the slow rotation of our new moving axis system OXYZ with OX tangent to the
trajectory.

Equations (5.1.3) and (5.1.}) are now rewritten in terms of the new
®(notation is kept the same for convenisnce) and a new dimensionless inde-
pendent'variable r = s/\ , where s is arc length along the trajectory (in
ft.) and A is the wave-length of yaw (in ft.). Furthermore, it can be
readily shown that Cop and Cp have a negligible effect on solutions of
these equations for the cases of interest here and hence they are neglected.

The resulting equations are then
& + (v'/y - 2ignA +,XCH)‘§' + (Lmz/v) (va + ‘W‘c)
= - iMcxz/sz -[ g(cos s)/vz] [2iqn)\ -.)\cH'*'v‘/v-Xg(s:m 8)/\7’2],
-t ’ (5'1-7) N
o () - (hoy/M)(vA +w ) =AF fm®, e (5.1.8)

wherein the primes ‘re'presenﬁ differentiation with respect to r.
The gravity effects reflected in the bracketed terms atft’.lie, end of
equation (5.1.7) will not be further considered in 'bhls report. To the

‘extent that, for a glven type of rocke'b, v ) m “and- &, can be reproduced
' from rmmd to round the grav:.ty effect upon 'bhe devmatlons qu.' the recke'b e
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If one thus neglects the gravity terms in equations (5.1.7) and (5.1.8) and
then eliminates & from the resulting pair of equations, the following equa-

tion results:

(vA)r + X(cN+cH-2iqn) (va)' + (hwz-Ziqn)\ch) (Wc + vA)

= (v' /v + 2ignh =hoy) (WF_/mv) -0 ¥/Bv-(0fw) & (F_/m). (5.1.9)

Furthermore, by making use of the relation
®=0+A

in equation (5.1.8), one may write the equivalent equation
2
Qt= (1 + 2)»0Nr)1-\/2r + Xchc/v + )\Fc/mv . (5.1.10)

Once @®is determined, the linear deviation may be found from the

equation

R =\ Eadr (3.1.11)

o
Equations (5.1.9), (5.1.10) and (5.1.11) serve as basic equations in

determining the characteristic functions given in the next section.

5.2. Characteristic Function Formulas

In solving the linear differential equations (5.1.9) and (5.1.10), one
may make use of the superposition principle to consider separately the effects
of initial launch conditions (initial yaw, A , initial cross-spin, % , initial
angular deviation, ®0) and of the misalignments given in equations (5.1.5)
and (5.1.6). The unit effects of each of these on angular and linear devia-

. tion are listed in this section.

Effect Of Initial Cross-Spin 20 On Angular Deviation

VIR o /3,

@R
i

fl

.‘(Q3/h")' {\/"c"m? e Lo [E‘(wl) - »E(‘wlo-)] ‘
, :x.mzro - ' o
o 2

2 [E(Wz) ’E(Wzo) ] S R
B A L G |

++1/7m

|
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r where the following additional notation has been used here ar occurs later

in the report:

r = s/A, where s is arc length along the trajectory,
r

0= VOZ/ZGX = launch value of the dim.ensionleSS variable r,
m1=2‘f.'+qn7\., =27 - gn}i,

TrH1 = nA -m, wH2 nx + My,

1 = VAT, g = VI T
wy = Vempr/i, wyg = Vemr fu

C;=1l+2cr,, Dy=1- Vi r T (mr ),

E(w) = C(w) - i S(w), conjugate of E(w) as used in Chapter 3.

In terms of rocket functions, formula (5.2.1) may be written as follows:

V2G/ @q /éo

- @
g

.

| in (r - r )
= (iCB/LUT) {\fr_nl_ [I"E(mlro) - em:L o FE(mlr)]
-im, (r -r )
-\/52- [rc(m,zro) -e T2t o rc(mzr)]

(e -1)  -im(r x)
(1/\/‘5>[eml‘r Yol _ TR o ]} (5.2.1a)

Effect Of Initial Cross-Spin & on Iinear Deviation

+

ﬁq = mﬁq/éo
¢ B @ + (10 /8’““1)‘/57"71- € nnlro[E(Wl) - E(WIO)]
v (10, /8m,) Vo e”"2r°[ﬁ(w2> S Bl |,  (s2.2)
or in terms of rocket functions
R =8 - (C /am/@[rc(mlr y - <m1r)]

J.mz(

+ (GB/BmZ)[rc(mzro) -6 rc(mzr)] .

|
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Effect Of Initial Yaw —éo on Angular Deviation

6 =®/Ao(

= (iCB\/E:/Lur) {mzv‘ml‘ o Lo [E(W:L) - E(Wlo)]

im.r
- m VB, 6 2O [E‘(wz) - Blnyy) | (5.2.3)

in (r -~r) ~im, (r -r )
+(i/</?)l:mzelm1r ro+mlemzr I‘o ]}+CB,

or in terms of rocket functions

~ _ :Lml(r - ro)__
% = -(CB\/‘FO/)m) {"‘2 my [rc (mlro) - rc (mlr)]

—irn2 (r - ro)

+ rnl\/-xf2 [ re (mzro) -e re (mgr) ]

im (r -r ) =im, (r -
+ (A7) [m2em1r Yo '*'mle:Lm2r ro)]}-i-CB- (5.2.3a)

Note that the ®5 used here has the value O at r = r..

An approximation for this expression is given by

~n ~

8, = - m1\/1'~'0 ®q + 031)3. (5.2.14)

Bffect of Tnitial Yaw Ao on Linear Deviation

mﬁs = R AL s _ in Ve, B+ 00, x). (5.2.5)

Effect Of Constant Cross-Wind w, on Angular Deviation

- éw =@ _/w, =<335/v0~+ =L (526) ,
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Effect Of Gonstant Cross-Wind w  On linear Deviation .
R_= RW/}\WC = Ra/vo + 2 - \/I-’-;)/\/ hn - (r - ro)/vo. (5.2.7)
Effect Of Linear Thrust Misalignment. LC On Angular Deviation
~n _ 2 . ’_- . ~ 2 )
8 = kO /AL, = (-i/2tH, \/Z«;)®q - C3D3/21T H Hyr, . (5.2.8)
For boosted rockets this is almost equiwvalent to
e = (-1/2nH2\/i»‘o )@q,
which in turn implies that '
. 2 .
L _ .
6, /L, (1GW/mk szo)@:q/éo. (5.2.8a)

Effect Of Linear Thrust Misalignment On linear Deviation

'f?L’= R AL £ -(i/2nH,\F )Eq - 6D, (x - ro)/ZTrzHlero. (5.2.9)

Effect Of Fin Misalignment B On Angular Deviation

8 =0
] P-/p'c

1

(2/8,) (LB NE_ + 12w vE_ )éq

+

(C3D3/H1H2) (b + inM(1-q) /i H r ). (5.2.19)

Effect Of Fin Misalignment B, On Iinear Deviation

R
1

R}JMLC

/) /g, + somF R

['(}3])3(:r'-‘-rD)/I{IlH2 ][h + j_ﬁ}g(l-eq) /nHlHZ:_c-é]. 7.

+
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Effect Of Angular Thrust Misalignment g, On Angular Deviation
~ _ ®
®a a/ %
= {(1/2\/33—07 [1 - Vilr - re (rngro)]
+nh (1 - 2q) 7o(mi r )/2 V@
20 2( "q
2
- i - H . L] L
103D3nx (1 - 2q)/w HHr (5.2.12)
For boosted rockets this is equivalent to
8 * [2n)\(l - 2q)/Hé/r0]@)q
= (hGn)»/sz )8 /‘I’ (5.2.12a)
Effect Of Angular Thrust Misalignment o, On Linear Deviation
R_= Ra/ko:c
= {(1/2/1'—0) [ 1 -V 1'rH2r0 rc (ﬂH2ro) ]
+ 2mn\(1 - 2q) rc (Terro)/\/__ i,
i;: - 3 D - - ﬂz - .
1LL03 Bnk(l 29) (r ro) / HHr (5.2.13)
% 5.3. Remarks On Derivation Of Characteristic Punctions
& - ‘
g Although full details of the derivation of the characteristic functions
listed in Section 5.2 will not be given here, some remarks will be made rela-
% tive to the procedure for obtaining these formulas.

The results are based on the following two fundamental assmnptlons. .

(1) The acceleration G of the rocket is constant - dur:i.ng the bummg
period, so that one may use the rela:blon : : '

veyIE . (s.lsf,;)‘:fifL;f{f =
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(2) The spin angular velocity o is proportional to the linear velocity,

so that @ = nv(n constant) and hence

t t T :
! =f wdt =f nvdt =L mdr = m(r -z ). - (5.3.2)
to tO (e} ©

To find the effect of initial cross-spin, 2 , given.in (5.2.1), one
Ny =%y =W, =g=M4 =F =0 in equations (5.1.9) and (5.1.10) and
first solves equation (5.1.9) for vA using .the conditions that

puts ¢, = ¢

atr=r, vA =0, (va)! =12,

the last condition being a consequence of equation (5.1.8). The expression
for A thus obtained is then substituted in (5.1.10) and the resulting equa-

tion solved for A under the condition that

atr=r, 68 =0,
o

The result is finally multiplied by C3 (as defined on p.63) to account for
CN'and CH in accordnace with the result given in [CH], p.70, and [B-2]

,' modified for the fin rocket case. The argument for doing this carries
through in exactly the same manner as for spin-stabilized rockets. The
I : resulting expression is then formula (5.2.1) s, which gives a very good

approximation for @ /@O. |
Formula (5.2.2) results from substitution from (5.2.1) into (5.1.11)
l and applying integration by parts. This same procedure, of course, applies
3 for all cases where linear deviation R is to be found after having found
’ the angular deviation @.
The procedure for finding the effect of initial yaw AO as given
in (5.2.3) is identical with that for finding (5.2.1) except that in
determining vA the boundiry conditions that

= = . 1 =
at r T v A v, Ao’ (vh) 0

are used,; with




SR o e

68

The effect on angular deviation of cross-wind Wc in equations (5.2.6)
results immediately fromwriting equation (5.1.9) as a second order equation
in (vA + Wc) and proceeding as in finding the effect of Ao, except that the

boundary conditions that

at r =r, (vA+wC) =W, (vA+wc)' =0

are used in this case.
To find the effect of linear thryst misalignment Lc s we take

cy = ¢y =W, =F_ =0in equations (5.1°9) and (5.1.10) and put

inA (r - ro)

. _ 2
-].MC/B = -(GLC/‘k e .

The equation thus resulting from (5.1.9) is then solved for vA using the
boundary conditions that

atr=r, vA = (v = 0.

The resulting expression for A (denoted by AL).may then be expressed in
terms of A (the“yaw due to initial cross-spin éo) just as was done in
[BT-5](pp.6~7). This expression for A; is then substituted for A in
equation (5.1.10) and the same approximation made as used in [CH](pp.69-70)
to take account of having omitted Cx and Cy above. The significant inte-
gral is then evaluated and negligible resulting terms are dropped to give
formula (5.2.8) for @L/Lc. The fact that 03 tends to zero rather rapidly
as r increases accounts for the approximation given in (5.2.8a), which

is obtained from (5.2.8) by taking C, = O.

The formulas for ®p./}"c and ®cc dc result from a procedure similar to
that for finding ®L’ except that ’ghe appropriate Mc or Fc is chosen from
(5.1.5) or (5.1.6).

Tt should be noted that once tjle :ralue of 5q has been computed by -
use of (5.2.1), the remaining @'s (c%,@aL, etc.) caane computed rather
easily. Tables of Fresnel integrals for computing @q are listed as
[JE] and [D] in the references at the end of this report.

[T
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5. Graphs Of Characteristic Functions For Fin-Stabilized Rockets With

Slow Spin

In Section 5.2 formulas were given representing particular solutions of

equations (5.1.9) and (5.1.10) corresponding to particular boundary conditions
and particular forcing terms representing various factors which are sources
of dispersion. If these same equations are solved under the same conditionms,
with certain basic parameters assigned, by use of an analog computer, one
obtains graphs of the type exhibited in this section. Then if one is making
a study of a rocket whose parameters come fairly close tovmatching those

for which the graphs were computed, a quick graphical estimate of angular
deviations due to the various disturbing factors can be made. Furthermore,

a succession of such graphs obtained by varying only one of the parameters
involved will give a picture of how this particular parameter affects the
angular deviation due to a certain factor. For example, the effect of vary-
ing launch velocity is reflected in some of the sequences of graphs here.
However, we simply give enough graphs to indicate some orders of magnitude
and to show how a more extensive program of computing might be used to draw
conclusions about accuracy.

We shall first give descriptions of the various graphs shown in this
section and make some general remarks about them. ILater in the section we
shall discuss some quantitative results which can be obtained from these
graphs. Use of these graphs in discussing rocket design will also be made
in a later section.

. Figure 5.1 shows a graph of the yaw Aq due to initial cross-spin
@0. One notes that the plane of yaw rotates slowly in the direction of
the spin, and that the yaw oscillations gradually damp out.

Figure 5.2 shows graphs of angular deviation ® due to initial
cross-spin for two cases of constant spin (see [P] for a discussion of
this) and one case where spin rate % is proportional to linear velocity
v. Note that an increase in the constant spin‘rate from 25 rad./sec; to
75 rad./sec. causes little change in the magnitude of sngular deviation,
but, gives a greater deviation to the right of the desired direction of
motion.if & is directed upward. These graphs are typical of uiboosted

fin-stabilized rockets.
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Figures 5.3 - 5.7 show graphs of angular deviation GE due to initial
cross=spin for various effective launcher lengths ry and for two different
spin-to-velocity ratios n (n = H/v). These graphs are typical for boosted
fin-stabilized rockets with slow spin where spin rate is proportional to
linear velocity. ' ‘ '

Figure 5.8 shows angular deviation due to initial yaw A, for two
cases of constant spin, % = 25 rad./sec. and % = 75 rad./sec., and for
one case where spin is proportional to velocity. Launch velocities used
here were in the unboosted range (ro = 0.1) and one notes that angular
deviations of the order of 0.3 mil/mil are induced. As in Figure 5.2 most
of the deviation is upward from the desired direction of motion, ii?AO is
upward.

Figure 5.9 shows the angular deviation 84 due to initial yaw which
is typical of a gun-boosted fin-stabilized rocket (launch velocity vo-VSOO
ft./sec., G~ 670 ft./éeé%) with spin proportional to velocity. Note that
in comparison with Figure 5.8 magnitudes are much smaller. In fact the
maximum angular deviation here is of the order of 0.06 mil per mil of initial
yaw and hence is a negligible effect.

Figure 5.10 shows graphs of angular deviation @}Ldue'to fin misalign-
ment for unboosted spin-stabilized rockets having spin-to-velocity ratios
ranging through the values n = 0.02, 0.05, 0.1, 0.2. As n increases magni-
tudes of angular deviation clearly decrease, with magnitudes of limiting
values roughly inversely proportional to spin-ratio.

Figures 5.11 - 5.1l show angular deviations Q# due to fin misalign-
ment which are typical of gun-boosted fin-stabilized rockets with constant
spin-to<velocity ratio n. Graphs in this group include cases of three
different effective launcher lengths Ty and two different spin-to-velocity
ratios.

Figure 5.15 shows a graph of angular deviation @ due to linear
thrust misalignment for a rocket with spin-to-velocity ratio n = 0.2
and effective launcher length ro = 1.5, One notes.that with k2~ 0.5,

A~ 180, the maximum value of I@L/L [~ 6(10‘5)m1/ft., and hence this
effect is negligible in this case. - - ' ’

In turning now to a further dlscu531on of 1mpllcat10ns that can be

drawn from graphs presented here, we first p01nt ‘out that there 1s seme L“f;!"‘li"
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[ flexibility in the use of these graphs because of the formula
v, = V2G A ro - (5.4.1)

Thus a graph correspording to a fixed value of r  can indicate results for

various launch velocities if one simply assigns successive values to G, the

acceleration outside the launcher (during burning).
| For example, in Figure 5.6 the effect of 1 rad./sec. of initial
Y cross-spin, éo’ on angular deviation, 8 , is shown for the case where
r, = 1.5 and # = 0.2v(n = 0.2). With A~180 ft. (wave-length of yaw),
equation (5.4.1) gives

v_ =/ 5L0G . (5.4.2)

Thus an acceleration G = 667 f.‘t./sec.2 corresponds approximately to a launch

velocity v = 600 ft./sec. A point on the graph of Figure 5.6 at which

(r - ro) = |, gives a reading

-

vV 2G/X (aq/é'o = 0.0095 + i 0.0005, (5.1.3)

which then leads to the unit effect

®q/<i>o ViB0/133h (0.0095 + i 0.0005)

0.00350 + i 0.00018} rad/(rad/sec). (5.4h.14)

Thus, at this point, which is at a distance s =\ (r - ro) = (180) (L)=
720 ft. from launch, and if burnout has not yet been reached, the angular

sk T T I

deviation due to <I>o = 1 rad./sec. of initial cross-spin has a magnitude

|®q/<i'6|z 0.00350 rad. =3.5 mils. (5.4.5)

In this case an initial cross-spin of 0.75 rad./sec., which might be a

reasonable value of ‘.I)o’ would lead to a deviation of about 2.6 mils at 720

ft. o S '
From the behavior of the graph in question, it is also clear 'bha‘b't‘hei

e R L e e

5 e e i

Vmagmtude of @ /‘I’ will not vary by more than 10 /o Over the rema:mder e e
of the burnlng perlod ' :
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Figure 5.7 shows the same type of behavior for the case .where r, = 5,
which means that if vy is still kept at the value 600 ft./sec. the thrust

has been lowered to give a G value arising from (using equation (5.4.1)

600 = VAG(180)(5) ,

so that here G = 200 ft./sec.2 For the same amount of rocket propellant as
before, one would then have a longer burning rocket, and hence at burnout
would be close to the limiting value of the graph in Figure 5.7, which clearly

gives a magnitude reading of

| VBGA @q/é:o |=0.002) (5.4.6)

which when wnnormalized by using G = 200, A = 180 gives
I@q/éol =~0.0016 rad./(rad./sec.) 1.6 mils/(rad./sec.), (5.4.7)

and hence the angular }eviation in this case is about one-half of that in

the case corresponding to Figure 5.6. This would then indicate that for a
fixed launch velocity, a lower acceleration outside the launcher leads to less
angular deviation due to initial cross-spin.

One may interpret the results obtained above from Figures 5.6 and 5.7
in a different way. Suppose in the case of Figure 5.7 we keep the accelera~".
tion at G = 667 ft./éec.z instead of fixing the velocity v Then from
(5.4.1) it follows that for r, = 5 the value v, = 1100 ft. /sec. results.

The reading from Figure 5.7 at (r - ro) =), is then

Vv 2G/ @q/@o ~0.0025 + i 0,000L,
and hence the unnormalized magnitude is

i@q /&, | ~0.00092 rad./ (rad. /sec.)

~ 1 mil/(rad. /sec.) ' (5.L.8)

Comparing this result with that of (5.4.lL), one sees that raising the launch

~velocity from v = 600 ft. /seé. to v = 1100 ft./éec., keeping G»fixéd 1owersb%“ ;‘

the angular dev1at10n for thls set of parameters from 3. 5 mlls to 1 mll for
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Figures 5.3 and 5.6 (as well as Figures 5.5 amd 5.7) show the results
of increasing spin relative to angular deviation due to initial cross~spin.

- . These graphs indicate that stepping up the spin-to-velovity ratio from

n = 0.1 ton » 0.2 has 1ittle effect m magnitudes of angular deviation 8,

From Figures 5.12, 5.13, and 5.1, we note the effect on angular deviation

®“ due to fin misalignment of inéreasing launch velocity with other para-
meters, including G, held fixed. At (r - ro) = ||, for instance, we note the
following readings based on G = 667 ft./sec;é and A = 180 ft.
For r = 0.5 (Pig. 5.12), so that v, = 3L6 ft./sec.,
le;/—“c' » 0,0260 mil/mil.
For r = 1.5 (Pig. 5.13), so that v, = 600 ft./sec.,
'Qp/“c’ ~ 0,0130 mil/mil.
For r_= 5.0 (Fig. 5.14), so that v, = 1100 ft. /sec.,

Io“/ucl ~ 0,00725 mil/mil.

Tims the angular deviation due to fin misalignment decreases with increased

-launeh velocity, and for the parameters used here it is clearly neg]igible_
-wnless a rather large misalignment develops. '

Comparisen of Figures 5.11 and 5.1k indicates that doubling the
spin-to-velocity ratic (in the given range of parameters) practically

. reduces the magnitude of angular deviation due to fin-misalignment by
-half.” Figure 5.10 shows a similar result for (r - r_)>2 in the three

cases of n = 0.05, 0.1, 0.2.
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5.5. Asymptotic Estimates Of The Angular Deviation

Just as was the case for spin-stabilized rockets, one may write very
simple formulas for estimates of the values of the chai'acteristic functions
listed in Section 5.2 for large values of r, and these short formulas may
be used for qualitative accuracy estimates in the case of fin-stabilized
vockets with slow spin. We merely list the estimation formulas here, but
details of the Mathematical derivation of these formulas are given in
Appendix A of this report.

Restrictive Conditions for using these formulas for reasonable esti-

mates are
v 2 500 ft./sec.,
| /%] S 1073 £.71,

1ochn25025

For the formulas listed here, n is assumed constant.

Effect Of Initial Cross-Spin 20

Where magnitude is of chief concernm,

8, /8, ~(oy + 1o/ 2 fey,: (5.5.1)

Bffect Of Initial Yaw A_

Where one is interested primarily in magnitude,

. e g2 o o : '
®5/A0 ~ - 2:an(c:.1\I + vo/vo )/cM = - 21qwb@q/'¢l>o. (5.5.2)

Bffect OF Constant Gross-Wind w_

GW/WC ='(1/Vo)‘(1" vc\,/v - @5/Aé), R “(59.‘5,..3)’ R

This formula is exact in the form g:l.ven and becomes a:a estn.ma‘t. on
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~launch, and the -amount of SlﬁW-Spln, if- any, wlnch dis :mear‘t%ed +to-the.
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EBffect Of Fin Misalignment B

8, /s, = [cM/(nz-cM)]gimo@q/éo " A ad. frad. or milsuil).

Effect Of Linear Thrust Misalignment L,

® /L = -(G/kzmoz)(mo@q/éo + @ /A ) (rad. /£8.). (5.5.5)

Effect Of Angular Thrust Misalignment Q.

@(I/ac z(iG/vomo)[ (1- ®6/Ao -(vomo/vm)ein](rad./rad. or mils/mi](.;.5 6

These formulas are useful in making a quick evaluation of the suscepti-
bility of a given rocket to the disturbing factors discussed in Chapter 2,
as well as to determine which of these factors are significant in causing
inaccuracy. Furthermore, they enable one to make qualitative estimates of
the rela;tive contribution to angular deviation made by these significant

factors.

5.6. Use Of Theory In Rocket Design

Except for symbols denoting certain parameters relating solely to fin-
stabilized rockets, (e.g., the fin-misalignment parameter, ;Lc), the notation
to be used in this :section will be the same as that of section 3.3. Among
the dispersion-producing factors which can be significant for finners are
several (‘i'o’ Ao’ @o, I’é’ Ty W, ) which have already been discussed in re-
lation to spin-stabilized rockets. The chief additional factor is that
of fin-misalignment noted above. The relative significance of the various
factors depends both upon the magnitudes of the parameters which 'measure!
the respective factors and upon a variety of conditions pertain:iné fb>o the
nature of the rockst, such as the method of 1aunch:mg, the’ launch veloclty,

the magnitude and duration of the acceleration due to rocket thrust after_ o

Before one, "Va.n cons:l.der speclf:.ca.lly 'the poss
- ‘fac'b T :Lt should be;no d '




© eonst o sk e o RGPy

VLSRR <l W ST LS

A 3 b s Tt e 4%

-

-~ spimner rockets. - The graphs shewn in th:Ls chapter md;l.cajbe clesely the

g » b
barrrsonmad

91

least as order-of-magnitude specifications. within reasonably narrow margins.
Such information would include the over-all dimensions and Wéight of the
rocket, the probable location of the c.g. and the magnitudes of the moments
of inertia, and the estimated amount of rocket—impulse needed for the desired
pay-load and range characteristics. All of these con31derat10ns relate to
the type of weapon desired, its over-all purpose, a.nd the manner in which it
is expected to be used. It should be noted that these same considerations
relate to the method of launching. The wéight, portability, and complexity
of the launcher are important factors in the design of the weapon, and, in
turn, the nature of the launcher cammot be ignored in the discussion of
sources of inaccuracy. It can be significant in defennining feasible launch
velocities and spin-reﬁ:éé“ (for slow-spin), and also the interac.:tions of the
rocket and launching process determine the launch parameters, éo, A o’ and @O.
The round-to-round variations in these parameters in either magnitude or
direction, together with variations in launch velocity, v, can be among the
chief contributors to dispersion.

It has already been pointed out that the purpose of imparting slow spin
to a fin-stabilized rocket is to prevent the deviation, 'a.rising from some
source such as thrust-malalignment or fin-misalignment, from building up
steadily in one particular direction. The slow spin provides a mechanism
for averaging out at least partially the deviations due to such a malalign-
ment. Figure 5.10 shows how increases in spin-;rate reduce 'significantly the
magnitude of angular deviation due to fin-malaljignment. Tt should be pointed
out tﬁa‘b the spin-rate should not be such that, over any extended portion of
the trajectory, the distance required for one spin-revoiutitn.:is approxi-
mately equal to the "wave-length of yaw"™ of the rocket. (See Appendix A).
Otherwise, there would be possible resonance effected due to forcing funetions
rotating with a frequency near that of the "natural yawing freguency® of the
rocket. ‘ :

Slow-spin does not serve to reduce the effects of launch coﬁdi'bions",
AO, éo’ or. of wind. For a reduction of these effects, the cons:LderatlonSf S
of the role of r o the effective launcher 1eng'bh, ‘are much the same a

effect of :mcreasmg T -and :anreases in 7 5 ‘can be acc
changa_ng v or G ‘or bo‘bh Invreases :Ln T, also Serve ‘bo 'rgd
of m:.sallgnmen'bs. - ' B o
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5.7. Accuracy Analysis for a Gun-Boosted Fin-Stabilized Rocket

In this section we illustrate an accuracy analysis for a gun-boosted
fin-stabilized rocket in which the rocket configuration is determined, but
certain significant parameters (G, A, etc.) are allowed to take various
values., Computations made in this analysis are based on the formulas for
asymptotic estimates given in Section 5.5 above.

Based on the given dimensions, shapes and weights of the component
parts of the rocket, calculations of the axial and transverse moments of
inertia are made for the two cases of the rocket with propellant and without
propellant. The following results are thus obtained in terms of the nota-
tion given at the beginning of this chapter:

With propellant: A = 126 1b. - in.2,
2

B = 3710 1b. - in.°,
¥®= BM = 0.58 £t.°2,
2g= A/B = 0.03L.

Without propellant: A =102 1b. - in.2,
B = 3550 1b. - in.2,
1%= 0,65 1.2,
2g= 0.029.

It is clear from the estimation formulas given in Section 5.5 that
the aerodynamic parameters N and Cy are of particular significance in
determining values of angular deviation due to various factors. We note
that

= = 2
oy = /A = pdEM

where the magnitude of the normal force corresponding to a small yaw [Al'ig

2
| pa’K, v |a]
Also

Gy = Iy/k" = oKy /mc®

‘where the magnitude of the restoring (stabilizing) moment is

i lul .




“the wave-length of yaw,f can be expected to mcrease somewha’c.. No
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The size and nature of the fins will affect both the normal force and
the restoring moment. One simple way of relating the two is to consider a
distance N measured from the center of mass to the point at which it
would be necessary to apply the normal force so as to produce the restoring
moment. This position is not. identical with the center of pressure corres-

ponding to the normal force but is probably fairly close to it. In terms

5 = @K,

cy = (kz/g\‘)cM.

The restoring moment leads directly to the wave length of yaw, A; that,

of 'QN’ one can readily write

and

is, the trajectory distance in which one yaw-oscillation is completed. Re-

call that
A = 2wf/ Cy = 2w/+/ deKM/B .

In the results tabulated below, wave-lengths of yaw ranging from 100 ft. to
L4OO ft. have been used and Table 5.1 shows corresponding values of cy and
KM. Reliable values of KM and KN for the rocket will probably be cbtainable
only by aerodynamic testing. There is no simple way of estimating the re-
storing moment unless the rocket is quite similar to another rocket for
which the wave-length of yaw is known. See, for example, the discussion
in Chapter 2 of Exterior Ballistics of Rockets by Davis, Follin, and
Blitzer [DFB].

In order to keep Sy and Cy (or KN and AM) inter-related, we have adopted

the simple expedient of estlmar,lng whatxe might be. With the center of mass
some 15 or 16 inches from the base of the rocket, one can expect that, with
fins of adequate size (to correspond to wave-lengths of yaw in the range -
mentioned above), the dlstance/e might be of the order of 10 or 12 1nches.
For convenience, the value ZN = l foot has been used in the computa‘blons
below. If ’(N were reduced to 0.8 ft., then the significant ratio c /c

would be increased by 25 percent. As the fin area is :anreased to reduce

attempt has been made to est:unate the variatien of ,( W:Lth X, s:mce 'bhe
basic lN as used 1s a.t best a rough estlmate. ' R
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Table 5.1

¢, and KM for Various Values of A(ft.)

A 100 150 | 200 250 300 350 1,00
(103)cM 3.95 | 1.76 |0.987 | 0.632 | 0.439 | 0.322 | 0.247 .
Ky 25 11 | 6.2 1.0 2.8 2.0 | 1.5 Z

(with propellant)

P

(without propellant) 2L 10.5 5.9 3.8 2.6 1.9 1.5

The quantity (cN + w'ro/voz) /cM shown in Table 5.2 below is fundamental in
the estimates of both @q and @5 It should be noted, for the range of \'ro used,
the ratio cN/cM is the major contributer to the quantity. This ratio, in turn,
as was indicated earlier, is determined by k2/4. Since 4 has been estimated
to be approximately one foot, with no variation of ﬂN with Ataken into account,
the numbers shown in Table 5.2 should be interpreted as significant only in

the following respects. First, the table shows an overall order of magnitude.

Secondly, for a particular A, the table shows how the quantity varies with \'ro.
Table 5.2 o I

Values of (cN +{r‘o/v02)/cM for Various Values of A(ft.) and {ro(ft./sec.z)

With v = 1000 ft. /sec.

N Vol =4O =20 0 20 i 1,0 100 ]
100  |0.57 0.575 0.58 0.585 | 0.59 0.605 -'
150 .56 .57 .58 .59 .60 by - |
200 Sy | .6 | .58 ' ]
20 | .52 [ .35 | .58

0 |9 | .53 | .58

% 1w | w= | % |

wo | e | .0 | .88 |
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If gN were taken to be 0.8 ft. instead of 1.0, the entries in Table 5.2
would be increased by apprdximatély»QS percent throughout most of the table
but with smaller percentage increases when both A and W'ro arelarge.
It should be noted that
. — 2 .
v, E Gl - cho - g sin eo,) |
where G, denotes the acceleration due to rocket thrust, - chO? the drag

1
deceleration, and -g sin g, the gravity deceleration at launch. If the

rocket thrust were increased so as to increase w'ro significantly beyond the

100 ft./sec.’ shown in the table, then the term, W'ro/choz, would become

more significant and would be the dominant term at least for the larger

values of A
We now turn to estimates of unit effects on angular deviation for the

various disturbing factors. For order of magnitude estimates of @Jq/‘i’0 and
@6/Ao, we use equations (5.5.1) and (5.5.2) of Section 5, namely

®q/&)o z(CN + \'ro/vo2)/cho(rad. per rad./sec.); (5.5.1)
(95/1\0 z-2iqn(cN + W'ro/voz)/cM(mils per mil). (5.5.2)

Effect of Initial Cross-Spin

With v, = 1000 ft./sec., estimates of @ /¢I> in milliradians of deviation
per rad. /sec. of §> can be read dlrectly from Table 5.2. For a sustainer
type rocket with ]v|~ 20 ft. /sec. or less during burning, one finds that

the effect of initial cross-spin is
® /§> ~ 0.6 mil per rad./sec.,

with the possibility that this estimate might increase to 0.75 if / should
turn out to be of the order of 0.8 ft. rather than 1.0.

If x'ro is increased, the unit effect is increased.

The paramei.:er éo depends upon the :_cocket-lagncher co_mbingtion. E}'cperir-r ,
mental data on éo for boosted rockets are very scarce. Extrapolating from
data for unboosted rockets, one might expect I@O |'s up to 0.8 rad. /sec., .
perhaps, and it would be hoped that the magnitude could be kept under 1.0 -
rad. /sec. Thus the max:umnn angular denatlon that one m.ght expect d.ue to-
‘I' should not exceed 0.75 m:Ll for thn.s ronket. -
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Effect of Initial Yaw

With 2q = 0.03L4 just outside the launcher,

0.003} if n = 0.1 rad./ft.
2qn =
0.0068 if n

0.2 rad./ft.

Thus, for the sustainer type rocket, the effect of initial yaw is

- 0.0021 mil/mil if n = 0.1,

8 /A &~
5/0

- 0.004i mil/mil if n = 0.2. ¢

Even with a large initial yaw of 60( ~100 mils) , the deviation ®6 would be
quite small. :

In case there were no spin, equation (4,36) of Appendix A, with ¢
expected to be~ 5(1073) or less, shows that log/a | <1073 (mi1/mi1) iz

[4y/7,2] £ 107, | |

H

Bffect of Fin Misalignment

Referring to equation (5.5.4) of Section 5, neglecting ('38/130 and

expressing @q as above, we have

® /s, =liney/@m® - e\ )10 (ey *+ ¥ /v ) /o] (5.5.4)

If the factor ncM/ (n2 - cM) is calculated (see Tablé 5.3 below), the second
factor is available in Table 5.2.

Table 5.3

Values of ncM/ (n2- cM) for Various Values of A and n

A n=20.,1- n=0.2
100 0.65 0.22
150 ) o 0.22 1 0.093 ) -
250 o 0.067 0032 | |
300 ' e | : 3
350
100
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If one chooses 0.6 as the order of magnitude of (cN + x'ro/vog) /cM, then
the corresponding estimates of @p/uc would ¥ary from 0.39i to 0.0078i. The
basic reason for the wide variation is that the torque resulting from fin-
misalignment is directly proportional to cM(seé equation (5.1.5)) while Cyy
varies inversely as the square of k. This is one effect for which the
deviétion increases with increase in stability (i.e., as. y incrgases and
\ decreases). Consider A= 250 ft. as a possible wave-length of yaw, so
that by use of Tables 5.2, 5.3, and formula (5.5.lL) we have

0.04i(mil/mil) if n = 0.1,
®u/uc ~

1}

0.02i (mil/mil) if n = 0,2.

It is difficult to indicate what magnitude of Ip.cl one might expect.
On the other hand, one might hope that with feasible manufacturing tolerances
an upper bound of one degree (or 17 mils) on Iuc| might be maintained.

It should be noted that with no spin the deviation due to fin-misalignment

increases without bound as trajectory distance increases. See equation (A.6L)

of Appendix A.

Effect of Constani Cross-Wind
From equation (5.53), the effect of constant cross-wind is

0 = (w/v) (-1 +8/a + v /v),

where W, denotes the cross-wind velocity vector in the~plane normal to the
trajectory. Thus the effect correspondsto a combination of the equivalent
of an "initial yaw" deviation with 4 = Wc/vo and an additional deviation

wc/v. We can write ‘

®W/Wc = (l/vd)[ (vo/v -1) + 851

Note that under the assumption of slow spin with n ~0.1 or greater, @ 5/Ao_ is,

" predominantly pure imaginary, whereas the remainder oi‘ the expression is real.

Futhermore, consider:ing : : - S S L e e
' 8/ ~= 0.004i (mil/mil) fofho = 0.2,

s - -oxt

- one notes that if ‘there is any aj:pr_eeiablé chanlge; in velocltythen he
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] 1 - 1 Iracd. peI' «/S€C.,

In the case of a trajectory in which v decreases from 1000 ft./sec. to
900 during the first 1l.L sec., the angular deviation due to w, will be
downwind and of the order'of_o,l mil per ft./sec. of Iwbl . If the velocity
then increases from 900 up to 990 during the next 1.l sec., the angular
deviation will be approximately the same in magnitude but upwind, and the
@W/ﬁb over the total burning period of the rocket will have a real component
which essentially reduces to zero and a small imaginary component - 0.00L4i
mil per ft./sec.

After the end of burning, the deviation due to cross-wind follows the
same general pattern. If v decreases from 990 to 830 in another 1l.l sec.,
the deviation will again be downwind and 0.2 mil per ft./sec. Then if v
increases from 830 up to 990 again in 30 sec., there will be a corresponding

upwind deviation. The net angular deviation of the trajectory due to a

constant component of wind velociiy normal to the trajectory should be small

in this situation. The actual displacements (or deflections) of the rocket
over the various subintervals would probably not cancel out to the same
extent as the angular deviations, since the correspondiﬁg displacement depends
upon the algebraic difference between the actual time interval and the time
interval which would be required if the velocity at the start of the inter-
val had been maintained. Thus, over the final interval (30 sec.) of velocity
increase, the upwind displacement (or_deflection) of the rocket would excged
in magnitude the downwind displacement during the preceding interval (1L.lL
sec.) of velocity decrease.

It is to be noted that the over-all behavior of Qw/ﬁ will depend upon
the angle of elevation and the resulting velocity variation over the tra-
jectory. However, the sustainer-type thrust, by means of which the velocity
variation is held within a'reiétivelj'narrow range, is very effective in

reducing the wind sensitivity.

Efféét of Liﬁear'Thrust Misaiignment

Prom equation (5.5. 5), we have, on neglectlng @%/A 5

QL/L “-(lG/km )® /§ - (lG/kwv )I(ON +fr/v 2)/‘»_“" |
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under the assumption of slow spin. For boosted rockets, this effect tends’
t0 be negligible provided Gl(a.nd thus {ro) is relatively small and provided
reasonable tolerances are maintained in the rocket construection so as not to
allow |LC | to be unduly large. For a L.5 in. rocket one would expect that
ILc | would be less than 0.01 ft.

If, from Table 5.2, we choose 0.6 as the order of magnitude of
(c:N + w'ro/voz) /eys then we note that

0.0176(1073) (£t.72) if n = 0.1,
G/(kza) v) =
©° -3 -2
. 0.0085G(10 “)(ft. ) if n = 0.2,
and thus

0.01G(mil per foot) if n = 0.1,
O /L o
L'7¢ . R
0.005G(mil per foot) if n = 0.2.

A L5 1b, thrust would correspond to approximately 32 :t‘t./sec.2 of rocket

acceleration Gl’ and for this Gl’

i

@L/LC ~0.32 mil per foot of Lc or less,
or

@L/Lc ~0.003 mil per 1072 ft. of L.

This would be negligible, and Gl could be increased considerably before thrust

misalignment would become a serious source of dispersion.
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7 c:u-cultry. As the rocket (banded to a specified 0.D. at two- appreprlate ' ‘
‘ p031t10ns about 20 inches apart) moves ‘along the launcher, contacts of R

CHAPTER 6

EXPERIMENTAL RESULTS

Various experimental methods have been used in comnection with jheﬁjm?k
of this project group to obtain data from actual flrlngs of rocket ' he"sﬁe N

data were in turn used to compare theoretical with exper:ﬂnental %e ts g.nd
also as a guide to further developments in the theory of f@qket mo‘blon.

In this chapter the outstanding experimental devices ‘are described
and theoretical results arising from some of the resulting,d’ata are given,

Some of the devices used were the following: : *ﬁ

(1) The segmented rail iauncher for s;tudy of motion of the rocket in-

side the launcher. . . L o#

(2) An optical lever device for determination of the orientation of
the round during the tip-off period and for several feet of travel
beyond the launcher. | )

(3) A Fastax camera for determining linear and angular velocity during
the first few feet of travel after leaving the launcher.

(L) One or more pairs of cameras positioned in such a mammer as to
give trajectory coordinates during burning.

(5) An impact field survey for obtaining impact coordinates.

The facilities of the Transonic Free Flight Range at Balli:tic Research
Laboratories were also used for experimental firings, and the layout and

instrumentation there is fully described in [Ro].

6.1. Segmented Rail Launchers

The 1l-rail, 9.5 ft. launcher (ID l;.600%) is essentially.a smoothbore
launcher. It consists of 11 contoured rails insulated from each other and
from the outside launcher tube, and each rail consists of 8 sections of
lengths, respectively, 3", 3, 18", 18, 18+, 18", 18" and 15", given from
breech to muzzle. The rail sections are connected to a ba.ﬁk of neon lainps

which are photographed by three 35MM stripped film records. A wire 'b\hrough‘

the front of the launcher “to the rocket is used to conplete the ’electrica‘l' S

the rear arid fron‘b bands mth the variocus ra:Ll seci‘,:l.ons are t s y
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as a function of time. Mathematically the data that resvlt furnish cylindri-
cal coordinates of points of contact in terms of time for ‘the rear and front
bands of the rocket. Sample records from this ™neon®" launcher are shown

in Figures 6.5, 6.6 of this report.

A similar smcothbore launcher 5 ft. long was used earlier in the
experimental work described in [cHM]. Later a ten~foot, four-rail launcher
of somewhat similar construction with the rails positioned at 1:30, hL:30,
7:30, and 10:30 ofclock was used for study of motion of a spin-stabilized
rocket inside a rail launcher. Experimental results of a firing program

using this launcher are given in [Ca-2].

6.2. The Optical Lever Device

This instrumentation involved modification of standard rounds by replacing
the rocket fuses by fuses equipped with two-inch front surfaced mirrors.
A high-speed camera (4O in. focal length) focused on the muzzle of the
launcher was positioned 80 ft. down range from the launcher muzzle and a
few feet to one side of the line of fire, and a coded screen was positioned
at the same distance but on the other side of the line of fire as shown in
Figure 6.1.

by the mirror on the nose of the rocket, and the angular orientation of the

_ The camera photographs a spot on the coded screen as reflected
rocket as a function of time for the interval during and immediately follow-
ing tip-off can be determined from the camera data. Reduction of these
optical lever data leads to graphs of the components éy, @Z' of erien‘bation
® as shown in Figure 6.2. In turn, these graphs are used to determine
experimental values of initial cross-spin é’o, and a emmnary of such values
arising from four different firing programs reported on as indicated is
given in Table 6.1.

At the time of this Wr:LtJ.ng, no firm data yielding direct experi-
mentally measured values of é for boosted rockets are available. There
1s some indirect evidence (see [¥-1]) which indicates that for such rockets
4’ 's of rather large magnl’c.ude s possibly somewhat systematlc s may develop

for a partlcular rocket-launcher combination.

6.3. Schematic. La.yout of Cameras

- Determlnatlon of linear a.nd angular veloclty at launch, Htogether W "bh -
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launcher, is determined from data from a Fastax camera placed about 4O ft.
to the left of the line of fire. Pairs.of cameras, one on the line of fire
and one at a considerable distance along to one side, are used to determine
position of the rocket as a function of time during the Burning period and
for several hundred feet beyond, The-reiative pdsitioning of these cameras
is shown in Figure 6.3 below; some of them may also be seen in Figure 6.1.
Sample figures from the resulting data are to be found in'[C], [CD], and.
[w-2]. o . | |

Typical results for end-of-burning parameters arising from reduction
of camera data and impact spotting are given in Table 6.2 (see [W-2] for
further details of results of this firing). A summary of information
obtained from side Fastax data for four different firing programs is given
in Table 6.3. ‘

Key To Notation In Tables 6.1, 6.2, 6.3

= component of initial cross~spin @O‘in the vertical direction.

YO :
ézo = component of éo in horizontal direction.
tb = time from ignition to end of burning. %

te =1, - time from ignition to 1.8 in. of motion.’

X, = distance along boreline from launcher muzzle to position of %
rocket c.g. at burnou..

v, = linear velocity at launch.

T = linear vélocity'at burnout.

= spin angular velocity at launch.

= acceleration of rocket.
= spin angular acceleration.

= ratio of Spin angular velocity to linear velocity.

G
a
n
ﬁ&b = vertical component of angular deviation'Q at burnout.
%m»éhmnzmmalcm@mmntof® a;MHnmm.

Yﬁ = vertlcal dlstance from borellne at burnout‘.-f

= horlzontal dlstance from'borellne at burncut.

dlstance from borellne at burnout. ;'

‘ f ‘?'arc‘fén(,‘ Y ) = dlrectlon in whlch] ] is measured relatlvejwrr‘
'»;fb; e ;1~?p/YB' -vertical. Rb L i
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6.h. Rocket Motion Inside A Smoothbore Launcher

In this section results of data obtained from neon records and optical lever
records lead to a mathematical model for determining rocket motion inside-

a smoothbore lsuncher.

(1) Some Experimental Data

Attention is to be given first to certain experimental data concern-

ing the motion of some M33 rockets which were deliberately misaligned by
a 1°12' tilt of t'= nozzle-plate. The tilt was initially oriented in the
launcher at one of four positions spaced 90o apart, to be referred to as
the "3 ofclock", "6 ofclock™, %9 ofclock", and "12 o'clock" positions.
For these rounds data were obtained on the motion inside the 9.5 ft.

smoothbore launcher (neon records), on the motion during tip-off and

during the first few feet of travel outside the launcher (optical leve:

records), and on the motion at and near the end of burning. For a

description of the test program and the instrumentation used at the
Ordnance Missile Laboratories of Redstone Arsenal, see the report of
Horn and Cone [HC]. The reduced data from the program are presented in
[w-21.

The theoretical amount of linear thrust misalignment produced in
the M33 rocket by a 1012' nozzle-tilt is expressed by an ILJ (linear
thrust misalignment parameter) of at least 0.026 ft; see the report of
Cell on nozzle-plate tolerances [C-4].

This amount of misalignment was sufficiently large so as to be a
dominant source of maltorque even though it might be combined with addi-
tional misalignment or unbalance inherent in a basic standard round, One
purpose of the test was to trace the effect of this misalignment upon the
motion of the rocket during its burning period in an attempt to determine
whether its effect upon the direction of motion at the end of burning was -
in general agreement with the theoretically predicted effect. Our interest
in this section concerns the misalignment effect upon the rocket motionA

inside the launcher.
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Neon Records

In Figure 6.5 are shown, side by side, the neon rzecords of ithe rear
band contacts of three rounds. 11 three had the nozzle-tilt initially
oriented at the 3 ofclock position. The sketch below shows the positions
of the eleven rails in the segmambed-rail simulated-smootabore launcher

as viewed from the rear of the launcher.

12 o'clock

3 o'clock

6 o'clock

Fig. 6.4: The Positions of the Eleven Rails of the Launcher

The clockwise precessional patterns of the rear contacts in the three
records are very similar. A1l show the final contacts (at position 8 on the
records) to have been approximately on rail l4; and, if one traces tlo eon~
tacts back through the launcher, there is a reasonably definitive "starting
position® of the clockwise pattern back in the second section of the launcher -

(after about L inches of forward uct:.on). This starting positxon is in the

nelghborhood of rail 3, and this corresponds very closely to tke m:x.’o:al

..

e

3 o'clock mentatz.on of the nogzle-tilt. In fact, the over-all ra‘be of change o
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of orientation of contact with respect to distance moved down the launcher
(i.e., a mean precessional rate in radians per foot of travel) is very
¢lose to the spin rate of the rocket. The rockets completed one spin-
rotation in 5 feet of travel.

Similar reproducibility of motion inside the launcher was found
within each of the other three groups. From group to group, the main
observable differences were due to the difference in the initial orienta-
tion of the nozzle-tilt. This is shown in Figure 6.6, in which is presented
& representative neon record from each of the four groups. Note that the
"starting positions" of the precessional patterns correspond closely to
the initial orientation of the tilt. Also, note that the positions of
final contact are phased approximately at 900 intervals, and that the

precessional rates are quite reproducible.

(2) A Mathematical Model And Theoretical Considerations

Figures 6.5 and 6.6 indicate a significant dependence of the preces-
sional pattern of contact between rear-band and launcher upon the orienta-
tion of the nozzle-tilt as the rocket moved down the launcher. In these
rounds the nozzle-tilt corresponded to an intentionally large thrust mis-
alignment which can also be interpreted in terms of a cross-force of
approximately 70 1b. acting at the rear band. In an attempt to set up
a simple mathematical model to account for the observed precessional motion
of the rear of the rocket under the action of such a large cross-force, we
have produced a reasonably simple mathematical representation which has
broader implications than those which were being sought. Not only did the
resulting mathematical theory call attention to some aspects of the above-
mentioned records whose significance had not been previously appreciated,
but, in addition, simple modifications became evident which provided a basis
for understanding other patterns of contact of both front and rear bands
which had been observed in many neon records.

There have been previous theoretical studies of the motion inside a
smoothbore launcher, and general equations of motion have been set up.

See Hall [Ha] and Cell, Herz, Menius [CHM]. None of these has yielded
a satisfactdfy understanding of the motion as depicted by the neon records.
One such representation was presented by Herz in Chapter VI and Appendix I
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of the reference [CHM]. He pointed out that because of certain physical
characteristics of such rockets as the ML7 and M33 it is possible to
approximate the physical situation in terms of two uncoupled particles,
one at the center of the rear band and one at the center of the front

band. In such a represenﬁaﬁion, one would have

m = mkz/(k2 +}Zr2) the 'reduced mass at the rear band!,

the 'reduced mass at the front band',

2 70,2 2
ng = ml/02 + L)

where

A

= B = transverse moment of inertia about the c.g.,

‘.
/

£

distance from c.g. to center of rear band,

distance from c.g. to center of front band.

a) We wish to use such an approximate representation, but, as an aid
to visualization, we shall replace the two uncoupled particles by un-

coupled solid cylindrical disks of appropriate mass and with diameters

equal to the respective band diameters.

b) We shall assume that frictional effects arising from contact bet-

ween the disks and the launcher can be ignored. Thus, we picture the

disks as sliding freely on the inner surface of the launcher.

c) We shall be primarily concerned with the nature of 'continuous con-
tact! patterns between disk and launcher, although it is possible also

to consider conditions which may cause a discontinunity in the contact.

d) Many neon records have indicated a sudden 1lift of the rear of the
rocket (and to a lesser extent of the front also) immediately after
ignition. This has been analyzed in [CHM] in terms of a Bernoulli
effect. In numerous cases this 1ift has rééultediih the rear of the
rocket striking the top of the launcher. In some cases, this leads to =
a balloting type motion of the rear as the rocket moves down_the launcher,
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More often, as the rear falls, it 'slides' down a portion of the launcher
wall and there is set up a 'continuous contact' motion with an 'initial!
cross~velocity of significant magnitude. Such a record is shown in

Figure 6.9. We shall be interested in the above 1lift effect as a potential

source of significantly large initial cross~velocities.

The Basic Model | — - I

Real Axis

Cfoss—se ction of
Inner Launcher Wall

g. AxiS

S1iding Disk

R e ey o L L

Figure 6.7

center of outer circle (i.e., on launcher axis)
center of sliding disk

point of contact

"= one half of clearance = g (e.g., 0.01 in.)
= radius of disk, (e.g., 2. 29 :l_n.) ;

i, Few«(t) '

S N R R

= complex var:l.able plt)e=e

= a force rota‘b:mg with the rocket
Treduced welgh‘c' of the. d:.sk
= reactlon i‘orce on t.he d:.sk at P -He

“‘Il

:)s. (t)

*40% REE - T

i e
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Considering the forces acting on the disk, we obtain in-complex

form

mp' = - mg + Felt _ Nelt . (6.1)

With p = 5el)‘; £ assumed constant for continuous contact), we obtain

as component equations along OP and normal to OP,

EX=g sin) + (F/m) sin (1 -\),

2]

EXmg cosh =(F/m) cos (p-A) + N/m. (6.,2)

Three cases will be considered briefly. There is first the case where

F is negligible in comparison with the gravity effect. Secondly, we consider

"F>>mg, constant in magnitude, but spimning with the rocket. Lastly, an F

of variable magnitude can arise from unbalance (dynamic and/or static) in the

rocket, with the magnitude of F increasing as the square of the spin-rate.

Case 1: F =0,

In the sketch of our model, it is convenient in this case to orient P
relative to the bottom of the launcher, using % = 180° -\A. Equations (6.2)
become )

EV+ gsiny =
g+ gcosy =N/m (6.3)

The first of these is the familiar pendulum eqﬁation which may be integrated

to yield the energy equation,
oV

1/2()° + 2g 5 sin® f = 1/2(e} )% + 2g & sin® 2 = E, (6.1

in which Eo has the dimensions of energy per unit mass. The second equa-

tion may be written in the form

N = '2"'; {E + —g E - 3g£ s:.n2 \I’} o (6.5) o T T
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possible cases are of interest.

a) If E = g?;’,, one has the oscillatory pendulum type motion with
amplitude = 90 . The period of such oscillations is dependent upon &, g,
and the amplitude. For the neon records shown in Figures 6.8, 6.9, ,
£ =1/2(0.C2) in. = 0.0008 ft. and g/E = uo,ooo(sec.’z). In order for such
an oscillation to show up on a neon record there must be an amplitude of
at least 17O Under these circumstances the period would range from 32
milliseconds up to 37 ms. for a 90 amplitude.

Such oscillations appear primarily in the neon records of front
band contacts. In Figure 6.8, such an oscillation is seen in the nose con-
tact record with a period of approximately 35 ms. There is also an indica-

tion of such an oscillation in the front contact record shown in Figure 6.9.

b) If Eo z 5g¥/2, one has a ‘circulatory' type motion in which the

~disk (in the model) would slide completely around the launcher in a periodic

fashion. With & = 0.0008 ft., (i.e., 0.02 inch clearance in the launcher),
one finds that if EO is interpreted in terms of the precessional rate (clock-
wise or counterclockwise) at the bottom of the launcher, the minimum such
precessional rate required for a ‘continuocus contact! cireculatory motion is
approximately 450 rad./sec. with a corresponding maximum period of approxir -
mately 20 ms.

Such motion has been observed many times in the neon records of
rear band contact. In most cases, it appears as a counterclockwise pattern
(i.e., as viewed from the rear of the launcher). Figure 6.9 shows such a
counterclock motion of the rear of the rocket with fairly uniform period
of about 10 ms. This type of neon record usually indicates that the rear
of the rocket has experienced the Bernoulli 1ift effect and has 'bounced!
off the top of the launcher (once or twice) and has acquired a s:Lgn:Lf:Lcant

cross~velocity as it goes :Lnto the circulatory metien.

c) If gE< E < (S/Z)gé_’, the disk has sufflclent energy to sllde above

"‘the 90 level (on either- s:.de) but -at some. pemt before At ~reaches»,the..ui;opmA,,.
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-5
Case 2: F = a constant>>mg and with F rotating with the rocket.

As a first approximation to this case, we use equations®.2) with the
-
gravity terms omitted. Since F rotates with the rocket, the angle w(t) is
such that fi = # and I ="}, where % and % are the spin rate and angular

acceleration respectively. These are assumed to be mm, and in the M33

case 7] is taken to be a constant (approx. 3000 rad./sec.z). Letting
8= A~ g, (6.6)
the first of equations6.2) is expressible approximately as
0 + - sin 6 = - Y. 6.7)
mg

With F~70, m~0.28, and & = 0.0008, corresponding to the cases depicted
in Figures 6.5 and 6.6, we find that

F/m £~ 300,000,

and thus we choose to ignore the term - *f nequation(67), and consider

0 + 2 gin 6 = 0. - (6,8)
mg

This is the pendulum equation again. Because the size of F/mE (as
indicated above) would tend to prohibit a circulatorytype solution under.
the conditions of our rocket problem, we consider only the osc:n.llatory type
of solution with amplitude < 90°,

Note that an oscillatory solution for 6 would have the physical signi-
ficance of an oscillation of the 'centact-angle' abeut the 'prescribed! |
spin angle y; that is, in a neon record, an oscillation of the contact about

the rotating orientation of the cross-force. TFor small @ oscillations ,'bhe
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One can see some evidence in Figures 6.5 and 6.6 of oscillations of
the rear contact about some rotating 'equilibrium position!. This type -
of motion shows up very clearly in the record of Round 54l as shown in
Figure 6.8. Round 5,1 was one of the rounds with the nozzle~tilt initially
at . 9 o'clock, The oscillation shown in the lower portion of that figure
was obtained by subtracting from the contact record the spin-angle u(t).
The resulting approximate curve clearly shows an oscillatory pattern about
the initial 9 ofclock position and its 'period! is approximately equal to
the 11 ms.

Case 3: Effects of Unbalance

In order to represent the unbalance effects in equations®.2), it is

necessary to introduce two unbalance parameters relating to the rear and

front bands respectively: f
U, = 7B, = Tes
Uf = ffﬁ c * Tes
where Bc = the measure (in radians) of dynamic unbalance,
‘v, = the measure (in feet) of static unbalance.

In the 'uncoupling' of the equations of motion mentioned above, it is found
that the corresponding forces on the 'uncoupled' disks at the rear and

front are given by

2
-m U o,
T

F
r

_ 2
Fe=mlur,

° . . . . 2 )
if &(the angular acceleration) is small in comparison with o (the square

of the spin rate). o
If dynamic unbalance is dominant, then these two forces are

eéééntlally 186° out .of phase in their ‘orientations. - In- thewflring_}p;iof-« E——

gram rei‘erenced a.bove, some rounds were deliberately unbalan d dytia-
‘mically s6 as to produce a ] ;3 ]~2 2 mils m.the'
vunbalance. , W:.th a. clearance of @.@2 1n.,




122

/

%= (5/12) ft., one obtains (with r, = o) the following orders of
magnitudes:

At rear band A&t front band

Ur~0.0028 ft. Uf~0.0009(ft.)
T o2 2 - -2
O /& ~ 21,000 X U g0 /& ~T7,000 X(sec. ),

where X denotes the distance (ft.) through which the band has moved down
the launcher.

Thus,: at the r ear band, U e / g increases from zero to approximately
200,000(sec. ) when the band is at the muzzle of the 9.5 ft. launcher.
After two feet of travel, Urco /g ~ ;2,000 and is comparable in magnitude
with the corresponding gravity parameter (namely, g/& = L0, 000). After
L or 5 feet of travel, Urooz /& definitely dominates the gravity effect at
the rear band.

At the front band, Ufmz/?g increases only to Sh,OOO(sec.-z) as the
front band reaches the muzzle after travelling 7.75 ft. Only after some
5 feet of travel does U imz /£ become comparable with g/ . However, the
following is worth noting. If the contact at the front band remains near
the bottom of the launcher under the influence of gravity (with A near
180%) , then in the first of equations 6.2) as F/mZ (i.e. Ufmz/ ¥) becomes
comparable in magnitude with g/ and its orientation (spinning with the
rockets) causes |p. - Xlto tend toward 900, the unbalance term can become,
at Yeast temporarily, dominant. This can cause the contact to move toward
the orientation of the unbalance force, and with this force increasing
in magnitude, it can affect the pattern of the front contact during the last
two or three feet of travel. This effect has been noted often in the neon
records of the front band contacts., There is some indicabtion of,such' an

effect in the front band contact record shown in Figﬁre 6.8, Withf’a_

discontinunity in contact following a simple gravitj rosdilﬂ.atiena

Flgure 6 10 shcws the neon. records of one o:E the. rounds whlch were

tion 3..
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starting at position L, there is a continuous contact dominated by the un-

balance force. Note the oscillation of the contacts about the indicated
rotation of the unbalance force which was initially-directed toward the
bottom of the launcher, and which had rotated again ‘to that direction just
beyond position 5 in the record (after 5 feet of:travel). At the front
band, the contacts show a simple gravity~type oscillation about the bottom
of the launcher up through position C. From poSitioh D through F, the con-
tact is dominated by the unbalance force at theiffont band. Note %hat the
indicated rotating orientation of the unbalance force at the front band is
180° out of phase with that at the rear band.

Mathematically, the equations of motion arising from equations (6,2) in
this case are not as simple as in Cases 1 and 2 since the magnitude of F is
not constant for an accelerating rocket. Hoﬁever, gualiitatively the ideas
of Case 2 apply after the unbalance force becomes the domiﬁating effect.
Instead of oscillations periodic in time, one can easily'shéw that if the
rocket has constant linear and angular accelerations, there is an.approximate
periodicity in the distance variable X. The first of equations (6.2) is trans-

formed ‘ato an equation,
" + (1/2Xx)6¢r + (Unz/g) sin® = 0,

comparable with equation(6.8)but with differentiation with réspect to X.

In the coefficient of sin 8, n denotes the constant ratio of éngular to
linear acceleration. Thus, for small 0, approximate solutions are ex-
pressible in terms of Bessel functions of orders = (1/4). - The corresponding
oscillatimms would not be strictly periodic and would be sﬁbject 1o some
damping., But, for the neon records obtained in the test program:referenced
above, the data could be expected to exhibit at most two successive oscilla=
‘tions since the expected period can be estimated to be neafly 3 feet. In
Figure 6.10, the distance along the launcher between positions 5 and 7 is 3
feet. o o . '

With regard to the three cases which have been briefly presented, it
should be kept in mind that the fundamental equations(6.2) are non-linear,
and thHus one canndt think in terms of a linear‘superposition of‘effects.

"The above treatment sheds some llght on What may'be expected if - ‘Some -one -

disturbing factor is dominant.

A
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APPENDIX A

ASYMPTOTIC EXTIMATES OF THE
DEVIATION OF BOOSTED FIN-STABILIZED

ROCKETS DURING THE BURNING PERIOD

In this appendix the mathematical procedure for arriving at the results
given in Section 5.5 will be presented. The techniques involved here are
somewhat unusual, and the implications relative to applications in other
areas should be significant.

The take-off point for the discussion here is the fundamental system
of differential equations given in Chapter 5 as eguations (5.1.7) and (5.1.8),
in which @ is measured relative to the ideal trajectory. Again ME and Fc
are given by (5.1.5) and (5.1.6) and other notation is the same as in Chapter
5, except for the fact that in the treatment the ratio n of spin rate to
linear velocity is allowed to vary. This extends the results obtained here
to cases covered by the more general theory given in [CH], and the results
may readily be specialized to the case of constant n as was done in writing
the formulas of Section 5.5.

By changes of independent variable in equation (5.1.7) and (5.1.8), the

following basic equation result:

é‘ - (Ziqﬁ—cH)é + cM(vA + wc)= -iME/Bv
(4.1)
- [(g cos a)/v]IZiqn-cH + ﬁ/%z-(g sin a)/vz],
é - (vA)? - cN(vA +'wc) = Fc/mv,
wherein the dots indicate differentiation with respect.to time t, and the
primes indicate differentiation with respect to trajectory arc length s,

that is,
i . _d .4
2 =5 (&

125
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Equations (A.l) yield, on elimination of &, a single differential
equation in (vA). The corresponding homogeneous (or reduced) equation

obtained from this new equation in (vA) is the following:

(vA)" - (2ign - c Y(va)r + (cM- 2ign cN) (va) = 0. (a.2)

H™ N
In the case of no spin (i.e., n = 0), if the damping of (cy * cN) is
ignored, (vA) is a periodic function of distance with a "period® (i.e.,
the wave-length of yaw) equal to 2w/ \/q{—. If) denotes this wave-length
of yaw,

A= 2n/\/c‘M‘. (A.3) -

This basic wave-length is still significant even when slow spin and damping
are taken into account.

Likewise, if only the gravity forcing term is retained in the equation
resulting from eliminating & in equations (A.1), and if A is taken as the

dependent variable, one obtains the differential equation

. v . v
Arn o (2lqn - CH - CN "';é')Al + [CM - 21qn(CN +%)] A=

_gcos &, G _ _2 sin ¢
5——-v2 (21qn-l'v2 cy - °p -g———vz ). a.L)

This equation yields, as a good approximation for the yaw of repose,

~g(cos e)v-2[2iqn r vl - cy - Cp - 2g(sin s)v_z]
A = .

r . -2 . -2
cy - 2ign[Gv “+ ey - Cp - g(sin €)v °]

This differs from that given in [MKR] only in the presence of G/vz, expressing
the effect of the rocket thrust in {r/vz.
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The gravity effects will not be further considered in this appendix.
It can be assumed that in equations (a.1) , after v and o are replaced by
v(s) and w(s) as obtained for the approximate trajectory, the forcing
terms, MC/Bv and Fc/mv, expressing the misaligfunents , will be independent
of further significant gravity effect. Thus, in solving the linear system
(A.1), the superposition principle enables one to consider separately the
effects of initial launch conditions, of the misalignments, and of gravity.-
For a given type of rocket, to the extent that Vs Qs and €, can be
reproduced from round to round,; the gravity effect upon the deviation
will be reproducible and is not a source of dispersion. The parameters
associated with the other effects, (initial yaw Ao,- initial cross-spin éo’
initial deviation ® , and the misalignment parameters, L, u, and ac)
are not, in general, reproducible from round to round, either in magnitude
or in orientation, and need to be cansidered as possible sources of
dispersione.

We shall make the following basic assumption regarding stability.
Discussions of relevant statility conditions may be found in [MKR],
[DFB], and [Mu].

Stability Assumption: That the solution, & and (vA), of the homo-

geneous system resulting from (A.l), namely

' - (2iqn - 0p)® + oy (v) = O,
(4.6)

3 - (vA)' - cN(vA) =0,

as produced by initial cond?tions, éo and VOAO_, are such that §> and (vAh)
remain bounded, with A and #/v damping out as trajectory distance, s, *
increases, the damping being produced by an increasing.v, or aerodynamj.c-
damping, or both. " )

In the considerations to follow, the solution of the homogeneous system
(A.6) will be expressed in terms of two basic solutions. determined by the .
two sets of initial conditions: (&,o =1, 'Ao = Q) a.ndf‘ (:Qo =0,4 = 1).

Lk
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Thus a general solution of equations (A.6) is to be expressed as

3 = @Oéq(so,s) + Aoés(so,s),

A= ‘i’oAq(so,S) A1+ a.(s ,8)],

in which the subscripts, g and 8, are used to denote respectively the first
and second of the abcove sets of initial conditions. Note that the functions
éq’ é’a, Aq’ and A6 have initial values respectively of 1, 0, O, and 0, In
turn, one can produce functions, éq and 455, with

t
. é L]
= = — = 4 Y
2=23 + LO@ dt =& j; S ds =2 + @o@q(so,s) Aoé"ﬁ(so,s),

(a.8)
in which the functions éq and «I>6 are initially zero. Likewise,
= D - = +
=& - A ®o + £I>O®q(so,s) Ao®5(so,s), (a.9)

in which ®o = éo - Ao, ®q = @q - Aq, and ®6 = <I>z5 - Ag. Note that bo*l:,h;(@q
and ®5 are initially zero, with the initial yaw Ao having been made a
part of the initial parameter ®o.

We shall next obtain, under conditions applicable to rockets launched
at high velocity, asymptotic estimates for ®q and ®6' Then later some
approximations will be derived, expressing the effects of the forcing
terms (cross-wind and misalignments) in terms of Mequivalent initial
conditions®™ and thus the corresponding effects upon angular deviation

® will be expressible in terms of @q and @5.

Asymptotic Estimates for _@q and %

Wettow impose restrictive conditions on the launch velocity and the
acceleration due to rocket thrust outside the launcher. It will be assumed

that, during the burning period outside the launcher,

v 2 500 ft./sec.,

AP 51073 T

It will also be necessa;ry'toylmow s.bmething about - the sp:.n:m onder'bo :

o - (8.10) | e
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estimate the magnitudes of terms in which n (i.e., ©/v) appears. . For

the cases where spin is involved, we shall assume that the spin rate is

such that 10c) S n’ 0.25(rad./ft.). The upper bound on n simply means

that the spin-rate is not permitted to attain the high values characteristic
of sspin-stabilized projectiles (for which normally 1< n< 2). A word of
explanation is in order concerning the lower bound. Recalling that the
wave-length of yaw is) = 2Tr/\/"c:';,I s we note that, for n constant, distance
transversed by the rocket during one spin-revolution of the rocket is
expressible as (2w/n) ft., and thus the number of spin-revolutions per
wave-length of yaw is given by n/ Vé?d To avoid the possibility of
resonance effects, introduced by forcing terms which rotate with the
rocket, it is desirable to avoid having n/ \Cy close to wnity. It is
expected that, if spin is employed, then n would be maintained at values
exceeding \/EB—'I’ The condition n2 = 1OcM

at least 3 spin-revolutions per wave-length of yaw. With Cy ~0.001, we

means that the rocket will complete

shall consider n to be~ 0.1 or greater.

It is also cupected that the possible variation in n will tend to be
either monotonic increasing or decreasing during the burning period. With
the assumption of a burning distance on the order of 1000 ft., we shall
thereby expect that | n'| will not exceed 5(1o’h) and that | n® |<10‘6.

The three most specific and simplest patterns are respectively:

(1) no spin, with @ =n = 0;

(2) pre-spun, with only aerodypamic-spin deceleration outside the

launcher, with o = ® Cpl ds;

CRNE S
(3) spin proportional to velocity, i.e., n constant.

For all of these cases, we can write

n' = ((I)/vz) - n(x'r/v2), -’ (a.11)

with this quantity reducing to O in cases (1) and (3) and to (~n) (CA+ fr/v?)
in case (2). '

From the second of equations (&.6),

vE - VAl =ve ' = (o + w‘r_/v?)(vA),

and thus | A1)

81 = (o + /) &
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Under our stability assumption, A=0 and (CN + fr/vz) remains bounded as
s+, Hence (@ - @o) will approach a limiting value which is also the
limiting walue of (% - @+ AO). It is convenient to seek an estimate of

the limiting value by considering the relation

5 - =f 2 gs. (8.13)
o J v
o
The homogeneous system (A.6) can be rewritten in the form

ot e o Cos Ve =
& - (2ign - ¢ cN)é' + (cM 2ign ¢y - 2iqn )@ =0,

H
. . (a.14)
&' = (2ign - cH)é’ - cM(vA).
Let L denote the linear operator
I . _ _ s _ os
L = [D" - (2ign - Cy cN)D + (cM 2ign °x 2ign')1, (a4.15)
and M its adjoint operator
_ e . .
M= [D° + (2ign - cy - cN)D + (cM - 2ign cN)]. (4.16)
A standard Green's formula may be expressed as follows:
. L4 . L . s
f[L(@)f(s) - M(£)?]ds = [f &' - £'@ - (2iqn - cH—CN)f@]
s s
o o)
. s
= [(cNf - f1)& - cM(vA)f]s , &.17)

0
in which f denotes an arbitrary function such that the integral in (A.17)
is meaningful,

To evaluate the integral of (A.13), we wish to have m(f) = -1/v.
If one designates that

(cy + op + 38/%°)

~1 2ign N4 N4 /
£(s) == [1+=F(oy + %) - — 5] (8.18)
cyv? o °N V2 Cy V2 ’ ,
in which e¢; = cy ~ Cpe then the more significant terms of f' and f" are -

L
given by

MV

£1(e) = o 1 + BB+ 3 B BB L) aa

M CM
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and

£7(s) = g};—,?;(—% °.  (a.20)
v

Considering M(f), one finds that, within the conditions which have been

imposed,
M(g) = - 31 + Q107 -1/,  (@a.21)

Since L(2) = O and M(f)= - %, one obtains, from (A.17) and (A.13),

. s
- - tI>0 = f:o %;ds = [(cNf - f1)& - CM(VA)f]so . (a.22)

Using (A.18) and (A.19), one finds that the more significant terms of
(cNf - f') are as follows:

c.f - f1 =1 {(CN +.-{_T2.) +%S£[(CN +_fr_)2 + 2(12.)2] _%EEI.L(CNA-:%)}
v M v M v

N G v2
(4.23)

and thus that

L - o L4 S
1 v 2ign! 2ign V2 v £\2
(ot @ - B« BB 5% o) s ]

Cuv v M M S,
3-8 = )
"o 2,
i (c,; + c. *+ 36/~7) . s
+ {1 + _iﬂzz' - (CN + .irz_) S = L . -% ] (&.24)
M v ‘M v S,

Under the étability assumption, /v and A approach zero as s increases.
Thus from (A.24) we find that

@O x'ro 2iqn'o Ziqno W'ro 5 L
llnl(é - @0)-: C.V (CN + 2)(1 - c )+ C [(cN+ T 2) + 2(_2') ]
Mo v M M v v
o o o)
" hs : 2
2ign g (c,, + c. + 36/ °) ¥
B R (25} . (@.25)
© M v M Y A
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and
1im(® -@o) = 1im(® - @+ Ao)
é)o vo Ziqn_(:)' {ro 2 vo 2
T (o F TR @ e Myt =) 265
Mo v M v v
o) o) o
2ign 2 (c,; * c, + 3G/ 2) ¥
- 2oy + —25) -~ 2 " (o) (8.26)
o) c N 2 c 2 - °
M v M v
o o)
We thus obtain, as the asymptotic estimates for @q and@a, the
following:
\'ro 2iqno' 2iqnO W'ro 2 ¥
@q(so,‘”) = o (CN"' v—g) - oy ) + oy [(CN + ';—g) + 2(‘-9—-v 2)] B
o 0 o
(8.27)
. 2
2ign T (c,, +c. + 3G/~ °) ¥
- ) 0 H L 0 o
O (sp9m) = - —— (g +—5) * c ), (a.28)
M v, M v,

in which W'TO and ng(i.e., flo/vo) are to be interpreted as t—*ro * or
physically simply as the rates of change just outside the launcher,
assuming that the rocket thrust (as opposed to that of the boost charge
in the gun tube) has already been initiated at launch. However, if the
rocket propellent is not ignited until after the rocket has traversed a
significant distance along its trajectory, then Vs s W'ro, and 1’10 are
to be evaluated at that time.

For the case of no spin, one notes that

. 2
\ 0 (e, = (oy + ¥ v Dfeyw,
(c,, + c. + 3G/v 2) s (4.29)
8. (s ,») = —2—_L o 0
&' Cy v02 °

For the case of the pre-spun rocket with no angular acceleration after

launch except aerodynamic deceleration, (with c y Of lower order than #;/voz)

with 8g(s_,~) .as in (A.28).
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For the case of n constant, we obta:Ln the estimates for @ and@
directly from (A.27) and (A.28), setting n =0 in (A.27). °

In the cases where the rocket is sp::.nnlng, one notesthat the @q
estimate is predominantly real and positive. As viewed from the rear
of the launcher,a .éo(initial cross-spin) which is directed upward produces
a limiting angular deviation @q which is upward and slightly to the right.
Similarly the ®6 , due to an initial upward yaw, is predominantly imaginary and
is directed to the left and slightly upward.

In the case of no spin, both estimates are real and positive.

If, in the cases where spin is present, one is interested primarily
in the magnitudes of @q and @5 then the estimates can be given in the

simpler forms,

@q = (CN + x'ro/voz)/cho, . (A.31)

. .. 2 _ .
O =~ 2:|.qno(c:N + vo/vO )/cM = - 21qmo®q. (a.32)

In (A.31) if one replace w‘ro by (G - ch2 - g sin eo) -and employs the "1ift"
parameter, Cr, = Cy = ©ps then
g sin ¢

o G
@q CMVO (CL - N D + - 2)' (A'33)
(o] o]

The one significant respect in which (A.33) and the corresponding estimate
for @ differ frem the analogous estimates for ordinary projectiles (as

derlved for instance in [MKR]) is 'bhe presence of the term. G/v 2 arising
from the rocket thrust. When G/v is of the same general order of magni-

tude as cL(cL =ec. - cD) and Cpp 25 We have assumed in this development, then

N
the angular deviations for the boosted rockets, due to unit amounts of initial
cross-spin and initial yaw, become comparable in magnitude with the corres-

ponding deviations for shells.
The Effects of w_, M and F Expressed in Terms of Eguivalent Launch

w

Parameters

- .
----- b

1. Cross-wind, w-. (w:l.th cross-wind veloc:.ty Wc assumed constan‘b)

In equa'b:x.ons (A 8)we set M = VFé 0 and remove 'bhe grav:l.ty 'berm. oo T
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Since W, is constant, we may write
(vA)' = (vA "'Wé)' ,

/

and thus

& - (2ign - cH)‘ia + cM(vA + WC) = 0,

é - (va + wc)‘ - cN(vA + wc) =0 . (a.34)

This can be considered as the homogeneous system (A.6) in 4’ and (va + wc).
Taking é’o = §>o = Ao = 0, we consider the solution of (A.3L) in the frame-
work of (A.7), (A.8), and (A.9), with A replaced by ( A + wc/v) and with
the corresponding initial value, wc/vo. Thus, using a subscript w to denote
the solutions due to LR in the absence of other disturbing factors, one

obtains, with _ = 0 and (a + WC/VO)O = Wc/vo,

L] W L]
_ e
éw = v <I>5(so,s),

w
(AW + wc/v) = v—z [1+ AS(SO’S)] s

and thus
( e \
éw v éﬁ 4
o]
Wc Wc .. > '
< Aw = v—o [1 4+ Aﬁ] - —'V'_ 3 N [ (A'BS)
WC WC
®=§-A=-v—o[1-®6]"'—v—_' . ) ‘

Note that the angular deviation can be written in the form,

W v ‘ :

- C (0] .
CH -7 [1--=2 -gl. - (a.36)

Except for the assumption that. W, remains constant, this result is valid . . -
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for rockets and projectiles in general, fin- or spin-stabilized so long
as wc/v0 remains sufficiently small to be considered in the linear, "small
yaw" equations. The behavior of @5, of course, will depend upon the

characberistics of the particular projectile in question.

Restrictive Assumptions to be made in the considerations to follow:

I*fr/vzl = 0.005; (A.37)

nt w1070 J . (4.38)

2.. Fin Misalignment, § . _
Fram equations (5.1.5) and (A.1l), we consider

punny oy

&' - (2ign ~ cH)é + cM(vA) = i v oI ,

. (2.39)
3 - (vb)r - cN(vA) = 0.

i H

We consider first the case where spin is present. For convenience, let

H= cﬁuc vt o (A.140)

B

and note that
H' = (i n *+ ¥/v°)H. (A.h1)

If one substitutes in the left-hand members of equations (A39)

4o —in® e L g2 oL
(1—2q)1’?2 -CM[ in'/m%], (8.42)

]

Yums.

e |
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he finds that the left-hand member of the first equation differs from H
by a quantity of the order of c
. ¢l A M 3n'!
-i[= + L) + = -2
1 [n (CH v2) + n3 (CN n )] H,

which is, in magnitude, less than 10°/o of | H | Similarly, the left member
1c
of the second equation reduces essentially to ———(cN - 3n'/n)H. This could

3

n
be readily absorbed as a modification of the §> given in (A.L2), but it is

negligible in comparison with the basic @ of (A.L42).
Thus, to a good approximation, we can replace the non-homogeneous system

(A.39) by the homogeneous system;

(é + P)t - (2iqn-cH) (is + P) + cM(vA + Q)= 0,

. (&)
(2+P) - (vA+ Q) -cp(va + Q) =0 s
in which
P = inHQ [1- in'/nz], (A.45)
(1-2g)n“ - Cy
and
_ H i 3n'
Q= [1+=(c, ~-=)1. (A.L6)
(1-2q)nT- Cy N

Taking é = 4’ = A = 0, we express the solutlon of (A. hh) in the framework
of (A. 7), (a. 8), and (A.9), considering ‘I’ replaced by (§ + P) with its
initial value, P, and A replaced by (A + Q/~) with initial value Qo/vo.
Thus, using the subscript g to denote the fin-misalignment effects, we
obtain

‘I’p. +P = Poéq + (Qo/vo)&:a. (A.L7)

To a good approximation, since (i n v e ") = d(em)/dt,

t

: ipP
—.iH t "iP [o]
. ©E m—— 5 eeminme o emm—— .

to
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Thus ‘
@u = iP/o - iPo/mo + Poéq + (Qo/vo)qnﬁ, | ({x.us)
and similarly
By ==+ Pa QI+ ag). (A.L9)
Since ®p = ‘I)p - A}L’ one cbtains
®p, = Po®q + (Qo/vo) ®5 + [Qfv - Qo/vo] + i[P/o = Poooo]. (4.50)

Equation (A.50) is the simplest in the case where w = nv with n constant.,

Taking n' = 0 and (1 + icN/n) = 1, one notes that
iP/o = - Q/v. (A.51)

Thus, where the spin rate is approximately proportional to the velocity,

inve c_H
@ = oMp'c®+ mc e . (A.52)
B n2-c 9 n2—c 5
M M

In (A.52), (1-2g) has been replaced by 1 for convenience.

It should be noted that if one is primarily interested in an estimate
of the magnitude of the angular deviation ® and in those parameters which
significantly affect@® o then equation (A.52) is relevant to all cases
where spin is present, provided the spin-pattern satisfies the general
restrictive conditions as given in (A.38). This can be recognized by
noting that, in (A.45) and (A.L6), the imaginary terms within the brackets
do not affect the magnitudes of P and Q but rather correspond only to
slight rotations in the complex plane. Thus, in regard to magnitudes,
relation (A.51) is a good approximation in general and likewise (A.52)
with n replaced by n_ in case n is variable. ‘ “

Where the magnitude of @is the primary concern, we can also use the
approximation given by equation (A.32) and replace (A.52) by the simpler
result ‘ '

0,,/it ~—3 LA 6 = ,;'—‘,’»Maq ‘ o A3
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Since we have assumed that no2 z 100M, we can note further that, since the
basic estimate for@é, as given in (A.31) or (A.33), is independent of n,
@u/vuc is essentially inversely proportional to n_. As a first order
approximation, we can write . . g sin e,

®j-l-/y‘ zn—o (CL + 5 - > )0 (AOSh)

(¢
v v
0 o}

Thus ®}L/p.c is predominantly imaginary and inversely proportional to e
This general behavior of @u'/uc also shows up in the results for unboosted
finner rockets with slow spin, as may be seen in Figure 20 of [P] which
relates to unboosted rockets.

Although we are not primarily concerned with the no spin case, it is
of interest to note that our approximation methods are readily applicable
to that case also. With n = 0 and the exponential ein deleted, equations
(A.39) became

3 4+ cH‘I’ + cM(vA) = Cpit v,

é - (vA)' - cN(vA) = 0 . (8.55)

In this case, we can simply absorb the forcing term as a (vA) and write

 + o+ o lv(8-w)] =0,

3 - [v(a- 1)1 - oylv(a- )] = 1 v(e, + ¥/42) |.

Absorbing the right member of the second of these equations as a @, one
obtains

[é - pcv(cl\I + w‘r/v?)]' + cH[&’ - ;:,cv(cN + %/vz)] + CMIV( 4- itc)] =0,

[&r - ;ch(c:N + fr/vz)] - {v(A- ;tc)] - ON[V( A- L'»c)] =0, (4.56)

where the right member of the first of these equations should be essentially

-;Q.év(éN ,'-!‘ '5'/v2) (cﬁ + W’f/vz).
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However, the ratio of this to the original right member in (A.35) is

—(cN + {r/vz) (cH + \'r/vz)
c

2

M

and this is negligible in comparison with 1.
Treating (cN + w'r/vz) as a constant, one obtains as basic estimates in

the case of no spin,

S ., 2 ., 25
@u = HCV(cN + vN) - p.cvo(cN + T/ )tbq- B B
2 2
= + - - - .
ép» p'c (cN v/v) (s so) p’cvo(cN A )®q y'céﬁ’

- e /2 .
Au =g - u.cvo(c:N + ¥ /v°) Aq - uc(l + Aa),
and thus

8 /i, = (o + W) (oms.) - v (o + ¥/7P) 8 -85 (4 oy

The significant term in (A.S57) is, of course, the first, which increases

with trajectory distance (s-so).

3. Linear Thrust Misalignment, L , and Angular Thrust Misalignment, a .

We shall deal with these effe;ts briefly to obtain the approximati;ns
primarily for the case where © # nv with n constant. However, the same
considerations as above would show that the results are relevant in general
(within the scope of the stated restrictive assumptions) to other spin
patterns, if one is primarily concerned with the magnitude of the resulting
deviations.

In the case of linear thrust misalignment, one has the basic equations

. . oL .
. e X
' - (2ign - )2 + o (vh) = - 52 &7,
kv
® - (vA)! -’ON(V‘A) =0, 1. ) (A'SB)
Noting that ‘
T it i 7 S IR Yo
CoAde N - Ay =8 eq LAV
=)= ‘U-"’ -] = —{1 nsz

w0
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we absorb the rlght member of the first equation of (4. 58) as a §> replacing
§> by [@ - 1(GL /k oa)eln] To balance the second equation, we replaca (vh)
by vi & - (GL /k 11’]]

One obtams an approximate homogeneous system and thus the ‘appr.QXihate
results,

~GL GL_ GL, 1 Gin
3 = 5 - . S ( - .
L 2, 9 2,28 2 2 "7
(o] (o] (o]
16T, GL_ ) GLcei”
A_ = —>— A - -5 (1 +4.) + 3
L% 9 (5,2 5 K02
(o] Q
and thus
8. /L =—2Jiw® +@_]. (A.59)
e 22 0 q 5 )

o

Using (A.32) to express 8, in terms of @q, one obtains

. /L,

(1 - 2q) @ (A.60)
k o:

Similarly, for angular thrust mlsa.hgnment one can obtain as good
first approximations,

-’:'I;G(Ic
q’a = V.0 éﬁ’
oo
-iGCC J_Ga i
Bg = (1 + ag) + L
and thus T o
_ -G iG , oo in
®cc/uc v o, ®8 + vocco‘l " Tw © ) (8.61)

For boosted rockets ®5 will be small in comparison with 1 and the behavior
of @ a/ac will be determined primarily by

v @

10 v W .
o (L5t e™)
© 0

If (vm) increases durlng burmng, the effect of the rotatmg term em will

damp out. Otherwise the magnitude can vary approx:.mately from 0 to 2G/v os
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Summary
Under the assumption of a spin pattern within the scope of restrictive

conditions (A.38) and with v-= 500 ft./sec. and'w'}/vz < 0.001 (ft.‘l), there

have been obtained the asymptotic estimates,
. 2
~ +
®q ..(cN vo/vo )/cho, (A.62)

and

05 ~- Ziqa)o®q, (A.63)

together with the approximations,

i
®p./“c -~ cMroO@q s (a.64)
s
8. /L ~—l @ (8.65)
L c’k2m q’ ¢
o
) /a~ iG a vomo i'r]) (A.66)
¢ v " © . y
00

As the combined angular deviation (with the gravity effect excluded), one

can write

. icldﬂb ;LA iG’L w
0~0 + (& + 2°° 2°)® + (A +._C_)@6
o o n K20 q o v,
o) o]
Wc vo iGo:c vomo in
- -v—(l - T) + vomo(l - o e’ ). (8.67)

From (A.62) and (A.63), one notes thatroughly @q is of the order of magnitude
1/v, and @, of the order of (2iqno).
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APPENDIX B

SOME. CONSIDERATIONS CONCERNING THE EFFECT OF

LAUNCHER MOTION UPON THE IAUNCH PARAMETER. @o

The simple model to be considered below was formulated in an attempt
to obtain some order-of-magnitude estimates of possible effects of launcher
motion upon éo' The situation under consideration involves a boosted
spin-stabilized rocket launched from a rifled tube. Experimental data,
secured at Redstone Arsenal and at Aberdeen Proving Ground, have exhibited
high frequency oscillatory motion of the muzzle of the launcher in both
the vertical and horizontal planes.

The model is to be considered in the following context. Presumably
the rocket is well constrained by the rifled launcher during most of the
interval of emergence from the launcher, and the launcher motion is
transmitted to the rocket as a whole, with no freedom for rotational
motian on the part of the rocket about the end of the launcher. However,
suppose that the rocket and the launcher are so constructed that there
can be a short length at the rear of the rocket (less than an inch,
perhaps) such that one might expect continued contact (of some sort)
between launcher and rocket as the rear emerges but with sufficient
clearance (or partial freedom from constfaint) so that the rocket is
free to rotate about a point at the muzzle of the launcher. In such

a situation, high frequency oscillations of the muzzle might have a

- significant effect upon éo.

The considerations below are limited to a plane and the vertical
plane is specifically considered. However; the results, except for the
gravity effect, would be applicable to the horizontal plane. The dia-

grams below (some of them exaggerated) indicate the geometrical

2
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framework to be considered.

center of gravity

7 S S S I ? S S S A— S S S S |

O__ o __¢_C____ ™\ Reference Axis

v

>

L undisplaced lawicher

" S S S gy St— o

v

displaced muzzle

1. Iet y denote the displacement vector of the muzzle and ¥ the position
vector of the c.g. Positive displacements will be measured upward.

2. Let x denote the horizontal distance from the muzzle to the c.g.
(positive to the right). N

3. Let @ denote the orientation angle of the rocket axis relative to the
reference axis (counter-clockwise angles positive).
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Reference AxIis
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For small angles &, .

x®=2-~17y. (B.1)

To obtain equations of motion, we consider the motion of the c.g.
at right angles to the reference axis and the rotational motion of the
rocket about its c.g. The forces and torgques to be considered are those
due to gravity and to the reaction force, R, acting upon the rocket at

the muzzle. This reaction force is assumed to be at right angles to the

reference axis.

Reference Axis

v




Thus

m¥=-mg+R

w5

oo (Be2)

mk2 $ = - xR s
in which mk2 denotes the transverse moment of inertia (sbout a transverse
axis through the c.g.).
From eq. (B.1),
L=x®+y,

Over the short-time interval under consideration, we assume that

X = v = a constant, v_, the launch velocity.
Then

£Z=x® +2vo<1’+y, (B.3)
and

x® +2v@=-g-y + R/m

o (B.L)
K° @ = - xR/m .
Eliminating R, we obtain
2 2 * e . L
(x +k-)¢I>.+2vox‘1’=-gx-xy. (B.5)

In the derivation of the above equations, it is evident that no
attempt has been made to take account of the rocket's spinning motian

(about its longitudinal axis). If the gyroscopic effects of the spin were

included, there would be a gyroscopic terque to rotate the rocket out of
the plane under consideration. In notation, relative to a complex plane
perpendicular to the reference axis, (as in the 3-dimensional equations
of motion of spin-stabilized rockets), this gyroscopic term would appear
in eq.(B.5) as (-Ziqw‘i’) ; in which o denotes the spin rate and 2q the
ratio of the moments of inertia. With 29 ~0.04 and w = nvo(rad./sec,)
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with 1<n <2, the coefficient of -i’ in the gyroscopic term would have a
magnitude less than 0.08v_, whereas the term in (B.5), 2v x &, with
x ~1 ft., would have a coefficient (of @)~ 2v,. The gyroscopic effect is
much smaller and, over the short time interval involved, the gyroscopic
effect would be.insignifican'b, particularly if, at the start of the interval,
no appreciable & had as yet developed. )

Equation (B.5) is readily integrated. Since we are particularly
interested in the effect over some Ax distance, as the rear of the rockeﬁ

emerges, we transform (B.5) into the equaticn

(x2+k2)%§+2xé=--$x-;,’i y - (B.6)
[0} o}
Thus,
£I6P+iPe = -Ex- Xy, (B.7)
' o o}

Note that equation (B.6) is linear and hence that we can consider
separately the effects of gravity, the initial & (at the start of this :
interval under consideration), and the launcher motiom.

For boosted launch velocities, v, = 500 ft./sec. perhaps, the gravity
effect is quite negligible. Writing X, = X + Ax, with x1~1 ft. and

X ~1 inch or less,
. X, + X
%1% - B (x%x?y - B (L _2
Gey ¢ K)By= =50 (- 7)== - ) Ax
o 0
~ = 0,005 (or less in magnitude).’

With k% ~0.5 ft.2,
li’z |~ 0,004 or less. (rad. /sec.)

For the effect of Ql(the initial 4), we have
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. %%+ k2 . . (xz-xz).
2 .h I Nl AL
2", 2 1 T2, 2
2 2
- - 3 X"'X
. - 1 2
=5 - —2X__ (Ax) 3, with % = .
17 1 2
< 2%

Note that for Ax = 1 inch, ix ~ 0.1 or less. Thus the resulting

2, .2
x2+k

é2 is of the same order of magnitude as &:1’ being slightly less in magnitude.
If the constraints, prior to this final Ax of emergence, are such as were pic-
tured at the start of this appendix, namely such that the él would essentially
represent a rotational rate of the launcher tube itself (or of the more
flexible portion of the tube near the muzzle), we are here also presented
with the questn:.on as to whether the launcher motion itself could involve
a significant @l.

Turning our attention to the effect of y, we consider

d 2 2 . . 0
Ex—[(x +k)§>}=—v5;y , (B.8)
with él = 0, Since
[ZEa- [xap-w- [y o
0
=Xy - Voy s
we obtain
. X
2 2 _ o 2 :
(x2 + K )§2 = - [x¥ - vo:)r]Xl . (B.9)

If the displacement of the muzzle is represented by

y =A + Bt + C sin(ht + a), - (B.10)
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i.e., a sinusoidal oscillation superimposed upon a linear displacement,
(A + Bt), with t = O corresponding to x = 0, then we note that

xy - vy Px + Chx cos(ht + a) - Av - Bfot - Cvosin(ht + a)

- Av_ * Cvo[ht cos(ht + a) - sin(ht + a)]

Cvo[-'% + 0 cos (6 + a) - sin(6 + a)],

in which 6 denotes ht.
Thus

. 6
(x22+ k2)4>2 =-Cv, [- ‘%‘ + £(0) ] ei s (B.11)

where .-

_£(8) = 6 cos(6 *+ a) - sin(6 + a).

It is clear that the term (fA/C) does not contribute, and-that one islf
concerned with the change in £(8). The magnitude (and algebraic sign)
of the change in f£(8) depends upon the location of the interval,
A0 = 62 - 91, and also upon the phase angle, a.
One can quickly verify that f£(8) has successive maxima and minima at
=0, m1-~-a 2w -a, 3r - a, etc., with the graphical representation of
£(8) somewhat as follows:

f(eX

>

T+ with o« ~ n/4

L4 21 3'77' @
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It is clear from,the above curve that where the original sinusoidal
contribution to the displacement is near zero (i.e. sin(g + a) = 0), the
corresponding change in £(6) (for A8 not toc largs) would not be as
serious as Af(6) might be where [sin(g + a)|~1.

If one were to consider Ax and the corresponding ag to be sufficiently
small so that a differential approximatiofl‘might be used, one can return

to equation {B.8) and consider

. X .
AL G2+ K2)3] « - = ¥ (.12)

o

Since A[(X2+ k2)<I>] - (xl2+ k2) A@ 4 @l A(X2+ k2)’ then with @1 = O’

X

2, 2\ am 2. 2. 1 er po
(Xl + k )Aé = (Xl + k )@2 ~ -—v; yle,
and with

y =A + Bt + C sin(ht + a),

¥ = - Chlsin(ht + @) = - Ch’sin(6 + a),

one obtains 5

Ch™x
N L sin(e . + a) Ax.

2.
(x +k)§2= 1

For some of the relevant data, C~ 0.002 fr., h ~2600 rad./sec.,
xq ~1 ft., k2~ 0.5, and v 500 ft./sec. If one restricts 4x to 1/2 inch,
then 46 = R Ax~ 0.22 rad., and the above approximation is reasonably good,
One finds tRat

&>2 ~(3/L)sin(e6 1 * a) rad./sec.

Note that, within the scope of this differential approximation, the

resulting contribution to ® is proportienal to Ax and depends significantly
both upon the frequency and amplitude of the sinuseidal oscillation and

also upon the particular portion of the sinusoid involved.
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APPENDIX C

COMPLETE LIST OF PROJECT REPORTS

R. C. Bullock and E. H. Tompkins, Jr., Comparison of Results of a
Spin-Stabilized Rocket During Burning, November 19, 1952.

' C. S. Herz, The Motion of a Spin-Stabilized Rocket Durlng Burn:_ng.

Outside the Launcher, November 26, 1952.

W. J. Harrington, The Effect of Dynamic Unbalance on the Motion of
a Spinning Rocket During the Burning Period Outside the launcher,
May 25, 1953.

J. W. Cell, First Report on Motion of Spinner Rockets, l;.5 in.
M1i7A1, in the Launcher and During Tip-Off, November 1, 1952.

E. H. Tompkins, Jr., Characteristic Functions for the Effect of
Certain Launch Parameters on the Orientation and Yaw for Spin-

Stabilized Rockets, July 21, 1953.

R. C. Bu]_lock' Comparison of Results of Various Theories of the
Motion of a Spln—Stab:LlJ.zed Rocket During Burning, Part II,
August 28, 1953.

Jo W. Cell, Effects of Impulsive and of Constant Malforces on
the Motlon of a Spin-Stabilized Rocket During Burning, June 10,
1954.

J. W. Cell, Summary Report on Study of Causes of Inaccuracy
During Burning of Spinner Artillery Roeckets, July 7, 195L.

W. J. Harrington, Unbalance in Spinner Rockets, dJuly 22, 195L.

W. J. Harrington, Mathematical Studies of the Motion of a Spin-
Stabilized Rocket During the Burning Period, April 22, 1955.

A. C. Menius, Jr., Optical Lever Method for Mea.surement of Orien-
tation of a Spinner Rocket, August 9, 195L.

G. C. Caldwell, Experimental Determination of Motion of T161
Spinner Rockets Dur:mg Burnlng IFJ.rst Report), January T 1955

J. W. Cell, C. S Herz and A. C, Menius, Jr., Motion of Spinner

' Rockets Inside Smoothbore Launchers,Aprll 8, 1955.

G. €. Galdwell and R. E. Del'brlck Exper:unental Determ:matlon of

Motion of M33 Spinner Rockets Durmg Burnlng (Second Report) "
July 21, 1955,

J. W. Cell, Summary Report on Sbud_;g of Causes of D:l.sperSJ.on of
Spinner Rocke'bs , dJuly 15, 1955,
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ERD=82/1 J., W. Cell, Nozzle Plate Tolerances for Spimmer Rockets, October
21, 1955, :

ERD-82/2 J. W. Cell, Summary of Experimental and Computational Information
on the M33 Spinner Rocket, December 12, 1955. .

ERD-82/3 W. J. Harrington, Motion of Spinner Rockets During the Tip-Off
Period, February 1, 1956.

ERD-82/L; R. C. Bullock and E. H, Tompkins, Jr., Characteristic Functions
for the Motion of a Spin-Stabilized Rocket During Burning, Part
I: Mallaunch, August 30, 1956. ‘

ERD-82/5 R. C. Bullock and E. H. Tompkins, Jr., Characteristic Functions
for the Motion of a Spin-Stabilized Rocket During Burning, Part
IT: Dynamic Unbalance, August 30, 1956.

ERD-82/6 R. C. Bullock and EB. H. Tampkins, Jr., Characteristic Functions
for the Motion of a Spin-Stabilized Rocket During Burning, Bart
II1: Linear Thrust Malalignment, September 8, 1956.

ERD-82/7 G. C. Caldwell, E&perimental Determ:l.natlon of Motion of M33
Spinner Rockets Durln&Burning {Third Report), August 20, 1957.
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ERD-82/8 J. W. Cell and W. J. Harrington, The Motion of a Spin-Stabilized
Rocket with Constant Angular and Tinear Accelerations Dumﬂ
Burning Outside the Launcher, February 26, 1958.

ERD-82/9 William T. Wells, Experimental Determination of the Effect of

Dynamic Unbalance on the Motion During the Burning Period Jf_ a
Certain Sp:.nner Rocket (C@ﬁFTﬁER\ITIALj May 30, 1958.

ERD-82/10 William T. Wells, The Motion of M33 Spinner Rockets During Burn-
ing, Part Iz Experimental Results, danvary 16, 1959.

. ERD-82/11 J. W. Cell, W. J. Harringtem, R. C. Bullock, Sumary Renor'b on

Study of Causes of Dispers:Lon of Spimner Rgckets s October 959.
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ERD-82/12 G. C. Caldwell and J. A, Robests » Tables of the Rocket Functions
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ERD-82/13 R. C. Bullock, Gharaeteristic Functiens for the Motion of adS inw
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