UNCLASSIFIED

AD 294 511

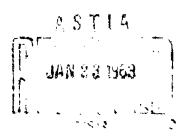
Reproduced by the

ARMED SERVICES TECHNICAL INFORMATION AGENCY ARLINGTON HALL STATION ARLINGTON 12, VIRGINIA

UNCLASSIFIED

NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto. 7

THE PREPARATION OF A POWDER-METALLURGY COBALT-TUNGSTEN ALLOY FOR INSTRUMENT MAKING


I

Вy

A. V. Savin, Yu. A. Eyduk

294 511

¥.

294511

UNEDITED ROUGH DRAFT TRANSLATION

THE PREPARATION OF A POWDER-METALLURGY COBALT-TUNGSTEN ALLOY FOR INSTRUMENT MAKING

By: A. V. Savin, Yu. A. Lyduk

English Pages: 9

."

ì

Source: Russian Book, Trerdyye Splavy, Nr. 2, Moskva, 1960, pp. 15-23.

SC-1518

SOV/137-62-0-2-45/144

THIS TRANSLATION IS A RENDITION OF THE ORIGI-NAL FOREIGN TEXT WITHOUT ANY ANALYTICAL OR EDITORIAL COMMENT, STATEMENTS OR THEORIES ADVOCATED OR IMPLIED ARE THOSE OF THE SOURCE AND DO NOT NECESSARILY REFLECT THE POSITION OR OPINION OF THE FOREIGN TECHNOLOGY DI-VISION. PREPARED BY: TRANSLATION SERVICES BRANCH FOREIGN TECHNOLOGY DI-WP-AFB, OHIO.

FTD-TT-62-1265/1+2+4

Date 23 November 19 62

Ρ

THE PREPARATION OF A POWDER-METALLURGY COBALT-TUNGSTEN

ALLOY FOR INSTRUMENT MAKING

A. V. Savin, Yu. A. Eyduk

The authors have tested various regimes for the preparation of a cobalt-tungsten alloy by powder-metallurgy methods. Moreover, the fundamental parameters affecting the preparation of a dense single-phase alloy with a reduced gas content have been found.

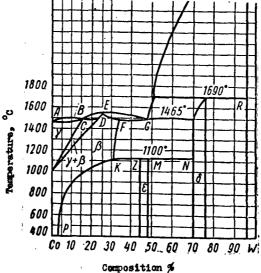


Fig. 1. Phase diagram of cobalttungsten system

An alloy of cobalt with tungsten possesses, after appropriate thermomechanical treatment, improved strength and wear-resistance properties. Since it is at the same time a corrosion-resistant material, this alloy has been used in place

FTL-TT-62-1265/1+2+4

of alloy steel, e.g., in the building of vibration-proof axles in measuring instruments.

The phase diagram of a cobalt-tungsten system is given in Sikes' paper [1]. As is apparent from the diagram (Fig. 1), the cobalt dissolves about 35% of the tungsten at 1465° (i.e., at the eutectic temperature). At 350° the cobalt dissolves a total of only 3% of the tungsten. In the case of an alloy containing 25% tungsten a β -solid solution exists at temperatures above 1075°, while at temperatures below 1075° the alloy consists of two phases: β and ϵ . The separation of the ϵ -phase in a supersaturated solution leads to dispersion hardening of the alloy at temperatures above 500° .

A powder-metallurgy method of preparing the alloy from cobalt and tungsten powders (75% Co and 25% w by weight) was considered in St. Stolarz' paper [2].

Cobalt in powder form was obtained by reduction at 700° for three hours in a hydrogen atmosphere. Tungsten powder was prepared by the oxidation of tungsten scrap at 1000° and subsequent reduction in a hydrogen stream at the same temperature. After mixing in a porcelain mill the charge was completely reduced in a hydrogen atmosphere and then pulverized and screened. The molds were pressed from the mixture thus obtained at a specific pressure of 2 metric tons per cm². The author points cut that flaking appears when the molding pressure is raised above 5 metric tons per cm². The sintering temperature of the cobalt-tungsten molds was chosen as 1400° with a ten-hour holding. As a result, metallic molds with a homogeneous structure were obtained, but with an extremely low density—8.67 g/cm³. After the molds were pressure-treated, their density increased and approached the theoretical, i.e., 10.28 g/cm³.

As the initial raw material for the preparation of the metallic tungsten powder the authors of the article used ammonium paratungstate of the "Pobedit" plant, as well as tungsten anhydride from the hard-alloys plant of the Sverdlovsk Council of National Economy. The ammonium paratungstate was roasted in a muffle furnace at

FTD-TT-62-1265/1+2+4

-2-

800°, until tungsten anhydride was obtained. The reduction of the tungsten anhydride to tungsten was carried out in a hydrogen stream in two stages in a two-tube laboratory direct-heating furnace with the inner diameter of the tubes being 51 mm and the length of the heating zone being 1500 mm.

Nickel boats 30 by 200 mm were used for the reduction. Fifty grams of tungsten anhydride were loaded into each boat.

The reduction regimes are given in Table 1.

After reduction, the tungsten powder was screened by hand through a No. 0.112-0.1 (130-150 mesh) sieve and placed in a glass jar with a ground-in stopper, in order to preserve it.

TABLE 1

Regimes of the Reduction of Tungsten

Anhydride to Metallic Tungsten

Reduction stages	Reduction temperature C	Rate of advance of boat, mm/min	knount of hydrogen sup- plied through tube,liters/hr	
II	650	13.3	800—1000	
	800	10.0	800—1000	

TABLE 2

Characteristics of the Metallic Tungsten Powder Obtained

Adsorption of methanol, mg/g		Four weight g/om ³	Comment
0,3-0,6	0,2-0,3	0,9-1,0	From anmonium paratingstate from
0,3—0,6	0,20,3	1,01,1	the "Pobedit" plant. From tungsten anhydride from the hard-alloys plant of the Sverdlovsk
			Council of National Economy.

Cobalt trioxide $Co_2 O_3$ was reduced to metallic cobalt in the same furnace in iron boats 30 by 400 mm according to the regime given below:

The powdered cobalt thus obtained was screened freely by hand through a No. 0.112 (130 mesh) sieve and poured into a glass jar with a ground-in stopper. The cheracteristics of the cobalt obtained are given below:

> Amount of oxygen, % 0.2-0.5Adsorption of methanol, mg/g 0.4-0.5Pour weight, g/cm³ 0.6-0.7

The charge, which consisted of 75% Co and 25% W by weight, was prepared by mixing the cobalt and tungsten powders in a 5 liter porcelain mill 180 mm in diameter. Porcelain balls 25 mm in diameter served as the mixing bodies. The ratio of the weight of the balls to the weight of the charge was 1:2. When the weight of the balls was increased, cold-hardened cobalt in the form of bright scales was obtained in the charge. The mixture thus obtained was pressed into molds 10 x 10 x 400 mm in a sectional steel die. The specific molding pressure chosen was 3 metric tons per cm².

The specimens were sintered in an Alundum furnace with a molybdenum winding in two stages with different variations of temperature and time in a hydrogen atmosphere with a moisture content of 10-12 and a "dew point" of 25°.

For the high temperature sintering the specimens were placed in a molybdenum boat on a correx burden. During the sintering of the cobalt-tungsten molds their density was brought up to the compact metallic state. Also, at certain sintering regimes complete homogenization with respect to composition was achieved, and a single-phase structure in the G-solid solution was obtained.

-4-

Listed below are the changes in the density of the alloy specimens as a function of the temperature of the first sintering in the interval from 800° to 1100° :

At the preliminary sintering temperature (800°) there was practically no shrinkage in the specimens. With an increase in temperature into the range from 900° to 1100° the density of the specimens increased noticeably.

Data pertaining to the effect of the sintering regime on the microstructure and density of the cobalt-tungsten alloy are given in Table 3.

é

It is apparent from Table 3 that the appearance of foreign inclusions in the form of isolated impregnations of the other phase (cf. Fig. 5) in the cobalt-tungsten alloy is connected with the temperature regime of the sintering.

Thus, a first sintering at 800° (series I) did not give foreign inclusions in the finally sintered alloy. When the temperature of the first sintering equaled 1100° (series II) with the same regimes for the second sintering, the cobalt-tungsten alloys, as a rule, had foreign inclusions. The reason for the appearance of these inclusions and the question of their composition remain unclear.

In specimens that were heated immediately to a temperature of $1500-1350^{\circ}$ without a first sintering (series III), the process of homogenization took place completely, but in this case the specimens had an increased porosity of approximately 2-4% by constrast to specimens which had undergone a first sintering and whose porosity smounted to 0.2-1.5%.

The results regarding the influence of the duration of the first sintering on the microstructure and density of a cobalt-tungsten alloy, when the first sintering is carried out at 800° and the second sintering at various temperatures, are presented in Table 4.

It is apparent from the table that an increase in the time of the low-temperature

-5-

first sintering of up to 3 hours does not affect the homogenization and density of the alloy during the final second sintering.

The microstructure and density of the alloy specimens were determined by metallographic investigation. Typical structures of specimens obtained using different sintering regimes are presented in Figs. 2-5.

TABLE 3

The Effect of the Sintering Regime on the Microstructure

C

Series		Regime of first sintering		Regime of second sintering		Metallographic study	
No•	Tempera- ture, °C	Time, brs.	ture, °C	Time hrs.	gravity, g/om ³	Prese: inclus	
I	800 800 800 800 800 800 800	2 2 2 2 2 2 2 2	1250 1250 1300 1300 1350 1350	2 4 2 4 2 4	10.18 10.24 10.18 10.27 10.25 10.28	Yes No Yes No H H	36 69 1218 1218 2540 4050
ц	1100 1100 1100 1100 1100 1100	222222	1250 1250 1300 1300 1350 1350	2 4 2 4 2 4	10.18 10.26 10.13 10.26 10.26 10.26 10.28	Yes n n n n	36 69 612 2540 2540
III		11111	1250 1250 1300 1300 1350 1350	2 4 2 4 2 4	10.0 10.16 10.12 10.19 10.12 10.20	Yes w n n n	36 36 69 69 2540 126

and Density of Cobalt-Tungsten Alley

The sintered specimens of cobalt-tungsten alloys were analyzed for ges content. Figure 6 shows how the gas content in the initial charge and the moisture content in the hydrogen atmosphere in the furnace affect the gas content in the sintered alloy specimens as a function of the sintering duration. It is apparent from the graph that the less gas contained in the initial cobalt and tungsten powder (or charge), the less the gas content in the alloy for the same regimes of sintering. Also, a degasification of the cobalt-tungsten alloy occurs in the second sintering as the moisture content in the hydrogen atmosphere in the furnace is decreased and the holding time is increased.

The process of degasification takes place in the cobalt-tungsten material mainly

during the second final sintering. The emount of gas decreases by a factor of ten or more during the final sintering process. No noticeable degasification takes place in the first preliminary sintering. The amount of gas lies in the same range (about 0.3% to 0.5% by weight) after the first sintering, as it did in the initial cobalt and tungsten powders.

On the basis of the results obtained it is possible to draw the following conclusions regarding the conditions needed in order to prepare the most compact singlephase alloy from cobalt and tungsten powders with the above-stated purity and granularity.

1. The oxygen content in the initial powders should not exceed 0.3% in the tungsten and 0.5% in the cobalt.

2. In order to reduce the residual-gas content, the sintering process must be carried out in a hydrogen atmosphere with a moisture content for which the "dew point" is no higher than 12°.

3. For complete homogenization of the alloy and at the same time high compactness the following regime will be optimal:

first sintering at 800° for 1-2 hrs.

second sintering at 1300-1350° for 4 hrs.

TABLE 4

Influence of the Time of the First Sintering on the Microstructure and Density of the Cobalt-tungsten Alloy for a First Sintering Temperature of 800° and Various Second Sintering Temperatures

Time of first Bintering hrs.	Second sintering temperature with a 2-hr. holding	Specific grav-	Metallographic investigation		
		ity, g/om ³	Presence of inclusions	Bulk of grains	
1	1250	10.1	Ne	36	
3	1250	10.08	N	36	
1	1300	10,15	n	69	
3	1300	10,13	m	69	
1	1350	10,19) n	69	
3	1350	10.21	n	6-12	

₹

-7-

Fig. 2. Single-phase structure of β -solid solution. First sintering at 800°; sintering time: 2 hrs. Second sintering at 1350°; sintering time: 2 hrs. Size from 6-9 μ . x 400. Etched in a mixture of hydrogen peroxide (10%) and sulfuric acid (50:1 concentration)

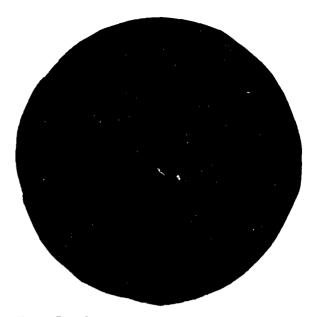


Fig. 3. Single-phase structure of β solid solution. First sintering at 800° ; sintering time 2 hrs. Second sintering at 1350°; sintering time 4 hrs. Grain size from 6 to 18μ . x 400. Etched as in Fig. 2.

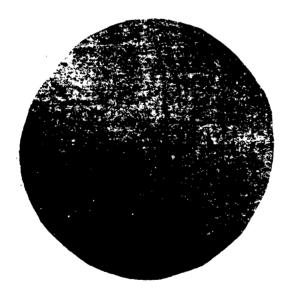
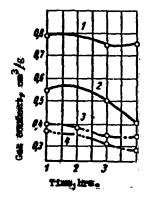



Fig. 4. Porosity of cobelt-tungsten alloy. x 90.

ť

£

Fig. 5. Alloy with a small number of foreign inclusions. First sintering at 1100° ; sintering time: 2 hrs. Second sintering at 1300° ; sintering time: 2 hrs. x 400. Etched in a saturated solution of cupric chloride in concentrated nitric acid.

¥

L

÷

Ķ,

Fig. 6. Measurement of the gas content in cobalt-tungsten molds as a function of the variation in the sintering time for hydrogen etmospheres with various moisture contents; sintering temperature: 1350°: 1) about 1.0% 0₂ by weight in cobalttungsten charge before sintering; 2) about 0.5% 0₂ by weight in cobalttungsten charge before sintering.

ŧ

REFERENCES

1. Sikes. Trans. of the American Society for Steel Treating, V. XXI, 1933, p. 5.

2. <u>St. Stolarz.</u> Metal and Production of Cobaltfug Stenalloy, 55, IX-X. 1953, p. 298-302.

DISTRIBUTION LIST

DEPARTMENT OF DEFENSE

1

16222111

Nr. Copies

AFSC1`SCFTR1AEDC (AEY)1ASTIA25TD-Bla5TD-Blb3

MAJOR AIR COMMANDS

HEADQUARTERS USAF

-

3

\$

Δ.

AFCIN-3D2 ARL (ARB)

.

OTHER AGENCIES

NSA AID OTS AEC PWS NASA RAND

. .

· · · ·

FTD-TT- 62-1265/1+2+4

10

ţ