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INTRODUCTION

Recent studies to determine the effects of very large numbers of
cluster-delivered bomblets and the effects of the relatively large actualidelivery patterns have led to a search for a method of extrapolating
data which already exists in NAVORD Report 7019, "A Handbook on
the Effectiveness of Cluster Weapons Against Unitary Targets". 1 The
graphs in the Handbook cover the delivery of up to 400 bomblets in a
cluster and delivery standard deviations of up to 8 target widths.

In studying the "Handbook", there seemed to be a remarkable
similarity between many of the graphs. Further encouragement was
received by superimposing one graph upon another. In some cases,
the graphs were virtually identical except for a coordinate scale
change. The scale changes can be made by a proportional change in
various pairs of variables, where all other variables are constant, as
in the following algebraic expressions.

2

N* (F
N \U /~

P N 0rR.
-' = when -, and P constant.K p Fx  o F x

'K* P aF * 2II
"' p Cr Fx

where

N number of bomblets or rounds in the salvo

aFx = delivery error standard deviation in x-direction
0 Fy = delivery error standard deviation in y-direction

0"Rx = bomblet standard deviation in x-direction

"R = bomblet standard deviation in y-direction
y

Kp = probability that a single random hit on the target will
result in a kill

P = over-all kill probability of a delivered cluster weapon

'U. S. Naval Ordnance Test Station. A Handbook on the Effective-
ness of Cluster Weapons Against Unitary Targets, by Eldon L. Dunn.
China Lake, Calif., NOTS, 9 December 1959. (NAVORD Report 7019,
NOTS TP 2382), UNCLASSIFIED.
t1
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* denotes a different set of values for N, Kp, px, etc.

ratio indicates the extent to which the cluster pattern is

'Fx elliptical in the ground plane.

The principle obstacle in using these equations is the unknown
limits to which they will hold.

Several attempts were made to explain these relationships on a
rigorous theoretical basis without any complete success (this approach
is receiving further attention at NOTS).

Eventually, a more complete expression was developed which

makes a rather versatile extrapolating tool when the user is aware of

its limitations. When P and - are held constant,
aFx

K,N L/W K * N* L/W*

rFx r F CrF* Cr Fx yx y

where L= target length, W = target width and a is expressed in target
widths. In other words, when

- is constant,
O'Fx

Fx  y

at least over a limited region.

LIMITED THEORETICAL ASPECTS

Although a complete theoretical analysis using the basic equation
is not available at the present time, a few hints on the probable origin
of this parameter grouping will be useful in later discussions of the
limitations in using the extrapolation formula.

Fortunately it is possible to prove that, when everything else is
constant,

Kp N = Kp* N*

is an excellent approximation under certain conditions.

-4]
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Fortunately it is possible to prove that, when everything else is

constant,

KpN = K *N*

is an excellent approximation under certain conditions.

If the expression

{I - [I -P(xy)]N}

in the basic equation (see Appendix) is expanded by the binominal
series,

(lx)n = 1 - nx + n(n-l)x - n(n-l)(n-Z)x3  + + ( - l) i n !xi
Z' 3! (n-i)! i!

and {1l1[ -KpPh N}

N(N-1)(KpPh) 2  N(N-1)(N-Z)(KpPh) 3

=N KpPh- 2! 3! +..

(N-1)(KpPh) (N-l)(N-2)(KpPh) 2

=N KpPh 1 - Z! + 3! . ..... .

where Ph is the single round hit probability defined by

B(U2D v 2
- 7 - Tv

du e dv

If the expansion in the brackets, which is multiplied by N KpPh,
would cancel in a proportion such that the basic equation reduces to

N Kp x-bx 2

x (yo)raFF f (Ph)exp -Fx +
-O -C3

( -b)2]}

_ _ _ _ _~~C _ _ _ _

- _ _ _- * - -* - - - --
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the approximation that

.-p Ir* N*,

when everything else is held constant, is proven.

That this expansion in the brackets does very nearly cancel in a
proportion under certain conditions is shown by the following numerical

examples.

If N=1, it is obvious that

1.- [1 -KpPh]N} =KpPh •

If N is small, but larger than 1, the approximation is quite
inaccurate.

For instance, if N= 2, Kp = 0.8, Ph = 0. 2 andN* = 4, Kp* = 0.4
Ph* = 0.Z,

then

- -(1.037).Cl -El - (0.8) (o.Z) ]2}_ 0.2944 _ (0.8)

{1 - El -(0.4) (0.2) ]4} 0.1836 4(0.4)

Obviously the ratio of the bracketed terms is (1. 037) instead of
K N

1; so the ratio - constant is not true in this region.

However, if

N - 50, Kp = 0.8, Ph = 0. 2

and N*= 100, Kp 0.4, Ph*= 0. 2,

then

1 E E - (0.8) (0.2) ] °}  0.9998363 50(0.8) (1.000075).

{ E - (0.4).(0.Z) ]10} = 0.9997608 100(0.4)

The error of the approximation is only 0. 0075o.

If N ='50, Kp = 0.8, Ph = 0.2 andN , = 1000, Kp* = 0.04,

Ph* 0. 2,

4
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then

1 - [1 -(0.8) (0.2) ]0} 0.9998363 - 50(0.8) (1.00016).

{J - r1 (0. 04)(0. 2) o1000} 0.9996751 (1000) (0.04)

The error is still only 0. 016%.

If 14 = 50, Kp = 1, Ph 1

then andN* = 100, Kp* 0.5, Ph* = 1,

then

i- E1- (1)(1) ro} 1.00000 _ 50(1) (1)

{l - [1 - 0.5(1) 1oo} 1 - 7.8886(l0 "1) 100 (0.5)

The accuracy of the approximation is obviously excellent when the
IfN = 50, K = 0.02, Ph = 0.0 1

andN* = 100, Kp* = 0.01, Ph* = 0.01,

then

j1 -[1 (0. o)(0.0l) ]ro .__ 0.009955 50(0.02) (1.001)

{l - [ - (0.01)(0.01) ]10 0} 0.00994 100(0.01)

Here again, the approximation error is small. An error of approxi-
mately 0. 1% occurs.

The accuracy of the approximation is also demonstrated in
Fig. 1, Z and 3 and will be discussed further. It is concluded from
the preceding examples that the starting (lower) value of N should be.
greater than 50 and the starting value of the product KpPh or of the

Kp
quotient " should not be extremely small.

Since the validity of the parameter grouping (N Kp) in the

approximation

P c N Kp j f (Ph) exP{ -x +

• 7T)Uyxa 
.i

j1 I'(;~b;. ~]}dx5
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has been proven over the region of interest, it is a little easier to
speculate as to the origin and validity of the other parameters in

SKp N (L/W) = Kp* N* (Live)*

It is not difficult to see the origin of (UFxOrFy) if the integral is
regarded as a summation of an infinite number of terms--each con-

taining, among other things, the parameter grouping p -

The degree to which the remaining terms will tend to destroy the pro-
portion cannot be shown except by the graphical examples that follow
later, but it is expected that for large values of aR and UrF, the
exponential terms in the infinite expansion will tend to approach unity,
and the ratio of the expansions for slightly different values of o"R , aF
will be nearly 1.

The inclusion of the term LW or L/W when ar is expressed in

terms of target widths is dute mainly to intuitive considerations, It
is meaningless to speak of kill probabilities and delivery errors
without reference to the target size. The expression of delivery
error in terms of target width would necessitate the inclusion of a
term such as L/W in order to make the expression dimensionally
consistent.

The adjustment of the target shape, (L/W), can be expected to be-
quite limited and heavily dependent on the starting values of arRx, 0"Ry

(or oil oFx, orFy, if L-Rzx and 2-L are constant).o"Fx U;Fx

The correspondence between the delivery standard deviation and
the cluster pattern size or ammunition standard deviation is unique,
as is the correspondence between the target size and ammunition

standard deviations. The ratio ORx is a parameter in its own right,a Fx

and the replacement of a Rx with aRx is one of the most important

steps in permitting the handbook graphs to be superimposed with a
good fit.

GRAPHICAL TESTS OF THE LIMITS ON THE
EXTRAPOLATION FORMULA

The first test of proportional relationship between the various
parameters in the extrapolation formula is made with N and Kp. The
originally presented extrapolation formula is solved for Kp € .
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N L/W I F,* arF*

"p-Pl 4 >(L W)( N aF aC' /

toIf L/W =(L/W)* and orpx* cYF * y = xO the equation reduces

to= N

In Fig. 1, two of the graphs of the handbook are plotted one upon

the other, with the abscissa redn aR' nta fCR.Tegah

j~1.0
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were selected2 so that

NI = 10, Kp 1 = 1.0,

NZ = 100, Kpz = 0. 1,

N , = 100, Kp* = 0.1.

A check on one curve will thus be given.

The values of uFx = 1W and L/W = 3 were selected more or less
arbitrariiy as a start.

From Fig. 1, it is obvious that the two curves that were supposed
to match do not match exactly. The curves have a similar shape, but
are displaced so that a nearly constant error in P occurs for the

various values of .

Figure 2 is plotted the same as Fig. 1, except that the lower value
on the number of bomblets is changed from N = 10 to N = 50, and K
accordingly changed from Kp = 1. 0 to Kp = 0. 2. For this plot, there
are three curves which can be used as a check on the extrapolation
equation.

From Fig. 2, it can be seen that the curves that are supposed to
match do come very close to matching over the entire range of

Rx
-z- (there are without a doubt some plotting errors in the original

data).

To be sure that low values of aFx, cFy do not have an unexpected
effect on the accuracy of the extrapolating proportion, Fig. 3 was
plotted. Figure 3 was plotted the same as Fig. 2 except that O'Fx
was reduced from 1W to 0.5W. No degradation in accuracy can be
detected in Fig. 3 as a result of this change.

it is concluded that as far as can be determined from graphical
tests the previous numerical evaluation is correct. In short, the
extrapolating proportion

K K N
= p

aUnfortunately, there are only a limited number of handbook
parameter comb;nations which can be used for checking the extrapola-
tion formula. Graphs that are more appropriate could be constructed
by interpolating the handbook data; however, this would introduce an
error of unknown magnitude which would be undesirable for the present
purpose.

8
1_
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Figure 4 also shows the importance of the starting value Of tF x

that is chosen when extrapolating with oFx. If the region of interest

is to the right of the optimum value of P for the various values of Kp,
the starting value is not too critical and ZW is apparently adequate.

nIf the region of interest is to the left of optimum P, the starting point

.is very important. For small extrapolation intervals, a small value
-: Of Or"Fx can be used; but if a lac'ge extrapolation is made, the initial

:. value of ar Fx should be approximately 8W. It is recommended that
- Fig. 4 be used as a guide to point out the regions of limited extrapola-

.,' tion accuracy.

SIt is to be noted that the data of Fig. 4 for CrFx = 8W and N = 1600

are not found in the handbook, because these data are the result of.

running the IBM Program of the basic equation for a check on the
i extrapolation technique.

10 ,
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Figures 5-8 are intended to show the limitations in using the
extrapolation formula to account for the change in the target shape.

Figure 5 shows the handbook graph of N =30, L/W = 1 (target 1)
superimposed on the handbook graph of N = 10, L/W = 3 (target 3) for

FX = 1W in both cases. The canceling effect of N and L/W in the
extrapolation formula causes K * to equal Kp. The match is not
especially good for this trial vaue of a Fx; so Fig. 6 is const, acted.

Figure 6 has identical values of all parameters except for orFX*
which is increased to ZW. This time the match is good except where

xRx is smaller than that for optimum P.
Ur Fx

Figures 7 and 8 are similar to Fig. *5 and 6 except that the target
length of one set is increased to 5W when N = 10, and this is compared
to a set which has a target length of 1W and N = 50.

The match for Fig. 7 is very poor, and for Fig. 8 the match is
fair over the portion to the right of the optimum value of P.

It is concluded that a good deal of caution should be exercised in
extrapolating to different target shapes. The value of aFx should be
as large as possible, and each problem should be checked separately
for the error in making the extrapolation.

The handbook gives a method for changing the target shape or the
dive angle; however, it would have the same limitations as have just
been discussed because the two techniques are actually identical.

By changing the symbol definitions

(L/W)* a Fx* F*
L/W Fx aFy

to (L/W)* = K (1, 3 or 5 target widths),

L/W = L (actual length of target in units of target width),

aF
= csc 6 where 6 = desired dive angle,

a Fx

and

an -15 or csc 6 for the handbook dive angle,

12
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Appendix

BASIC EQUATION

The basic equation, taken from the referenced Handbook (NAVORD
Report 7019), is as follows:

P 1 fFxFy f co {P(xY)N}

r ( F bx\2~51exp bxK) O ~ ) ~' dx dy

where \ 2 Dx2

K B/
P(X, Y) e du e dv)

and

N = number of rounds in the salvo

%.Fx = delivery error standard deviation in x-direction

a Fy = delivery error standard deviation in y-direction

b],. = x-coordinate of the aim point of the salvo

b.I = y-coordinate of the aim point of the salvo

"IA =X , -
aR x

*B A+ XL
aR x

Ry

D +YL Uy

, aRx = round standard deviation in x-direction

aRy = round standard deviation in y-direction

X, = x-coordinate of lower left corner of the target

YJ = y-coordinate of lower left corner of the target

XL = length of the target in the x-direction

YL = length of the target in the y-direction.

16
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