

Reproduced by the

ARMED SERVICES TECHNICAL INFORMATION AGENCY ARLINGTON HALL STATION ARLINGTON 12, VIRGINIA

NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.

Report 285-16 (62-16)

J.

CONTRACT AF 33(600)-30271

HOT CYCLE ROTOR SYSTEM WHIRL TESTS

March 1962

HUGHES TOOL COMPANY -- AIRCRAFT DIVISION Culver City, California

For

Commander

Aeronautical Systems Division

Edited by:

K. B. Amer Chief, Helicopter Research Department

Approved by:

j.

Chira

S. J. Chris Project Engineer

J. L. Velazguez

Sr. Project Engineer

H. Q. nay

H. O. Nay Manager, Transport Helicopter Department

Hot Cycle Rotor During Whirl Test

ARED BY	· · · · · · · · · · · · · · · · · · ·
KED BY	
	•
	TABLE OF CONTENTS
LIST	OF FIGURES
LIST	OF TABLES
1.	SUMMARY
2.	INTRODUCTION
3.	TEST EQUIPMENT
3. 1	General Test Setup and Test Rotor
3. 2	Whirl Tower
3.3	Power Plant Installation
3.4	Power Plant Performance and Operational Characteristics
3.5	Van-to-Rotor Control System
3.6	Instrumentation
4.	DESCRIPTION OF TESTS
4. 1	General Discussion
4.2	Procedures
4.3	Log
5.	TEST RESULTS AND ANALYSIS
5.1	Performance
5.2	Dynamics
5.3	Temperature and Leakage Surveys
5.4	Structural Effects
5.5	Sound Level Measurements
5.6	Post-Test Inspection
6.	REFERENCES
APPI	ENDICES
Ä.	Whirl Tower Structural Analysis
в.	Test Log Sheets
C.	Method of Calculation; Area and Mass Weighted Parameters
D.	Thermodynamic Calculation Procedure, Non-Rotating Components
E.	Summary of Strain Gage and Thermocouple Locations
F.	Nomenclature & Computer Program Formats

-

EPADEN BY	
ECKED BY	
	LIST OF FIGURES
Frontispiece	Hot Cycle Rotor During Whirl Test
2.1	Schematic - Hot Cycle System
2 2	Blade Cross Section
0.0	
3.1-1	Test Site Installation
3.1-2	Test Site Area
3.1-3	Internal View of Control Van; Temperature, Pressure and Recording Instruments
3.1-4	Perspective Sketch of Hot Cycle Rotor
3.1-5	Hot Cycle Rotor Assembly
3.3-1	Powerplant and Duct Installation
3.3-2	Engine Rotated 180° for Calibration with Standard Nozzle
3.3-3	Whirl Site Support Equipment
3.5-1	Internal View of Control Van: Engine and Rotor Controls
3.5-2	Control Installation - Cabin Flight
3.6-1	Instrumentation Installation at Blade Aft Spar
3.6-2	Instrumentation on Main Rotor Shaft
3.6-3	Strain Gage B ridge Locations
3.6-4	Thermocouple Locations
3.6-5	Instrumentation Installation on Top of Rotor
3.6-6	Instrumentation Installation on Top of Rotor
3.6-7	Calibration of Lift Measuring Strain Gages
3.6-8	Blade Hung Vertically for Bending Calibration and Frequency Measurements
3.6-9	Slip Ring and Tachometer Drive Installation
3.6-10	Oscillograph Installation
3.6-11	Brown 48 - Point Temperature Recorder
3.6-12	Multi-tube Manometer Bank and Single Point Temperature Recorder
3.6-13	Turbine Discharge and Rotor Bearing Oil Temperature
	Recorders
5.1-1	Hot Cycle Whirl Test Performance
5.1-2	Nozzle Effective Velocity Coefficient
5.1-3	Flow Function vs Nozzle Pressure Ratio
5.1-4	Whirl Tower Station Designations for Power Calculation
5.1-5	Velocity Profiles in Branch I
5.1-6	Velocity Profiles in Branch II
5.1-7	Average Velocity Profiles
5.1-8	Graphical Integration of Average Velocity Profile in Branch l
5.1-9	Graphical Integration of Average Velocity Profile in Branch l
5.3-1	Measured Duct and Skin Temperatures; Inboard Segment
5.3-2	Measured Duct and Skin Temperatures; Outboard Segment
5.3-3	Flexure, Spar, and Cooling Air Temperature Distribution

	MODEL REPORT NO. PAGE III
ANALY815	
PREPARED BY	
CHECKED BY	
5.3-5	Distribution of Temperature in the Hub
5.3-6	Temperature of Rotor Components at Various Power Levels
5.3-7	Temperature of Rotor Components at Various Power Levels
5.3-8	Leakage Test, Typical Setup
5.4-1	Pitch Arm Cyclic Load vs. Wind Speed
5.4-2	Flapwise Cyclic Bending Moment vs Wind Speed, Inboard
5.4-3	Flapwise Cyclic Bending Moment vs Wind Speed, Outboard
5.4-4	Spar Cyclic Axial Load vs Wind Speed
5,5-1	Engine Inlet Suppressor
5.5-2	Engine Surplus Exhaust Suppressor
5.5-3	Sound Pressure Levels
5.5-4	Sound Pressure Level vs Frequency
5.5-5	Sound Pressure Level vs Distance
5.5-6	Noise Comparison for Take-Off Condition
5.6-1	Rotor Removed from Tower for 18 Hour Inspection
5.6-2	Rotor Disassembled for 35 Hour Inspection
5.6-3	Rotor Disassembled for 35 Hour Inspection
5.6-4	Hub Lower Shaft and Duct Outer Seal Rotating Surface After
	18 Hours
5.6-5	Hub Upper Radial Bearing and Seals Disassembled After 18 Hours
5.6-6	Fabroid Flapping-Feathering Bearing, Showing Good Condition After 35 Hours
5.6-7	Hub Inner and Outer Seals
5.6-8	Hub Upper Duct and Inner Seal Face, After 18 Hours
5.6-9	Hub Lower Duct With Outer Seal Segmented Rings in Position, After 18 Hours
5.6-10	Close-Up of Articulate Duct Inboard Seal Segmented Carbon Rings
D - 1	Vertical Ducts Showing Location of Flow Measuring and Hub Stations
D - 2	Identification of Probe Locations at Flow Measuring and Hub Stations
F.3-1	Input Format
F.3-2	Input Format - Listing of Input Data Cards
F. 3-3	Printout
F. 3-4	Program Listing

9704

l

HUGHES TOOL COMPANY-AIRCRAFT DIVISION PAGE IV MODEL REPORT NO. ANALYSIS PREPARED BY CHECKED BY ... LIST OF TABLES 4.3-1 Whirl Test Temperature Log Comparison of Whirl Test with Military Specifications 4.3-2 4.3-3 Components Replaced with New Parts During Whirl Test 5.1-1 Duct Losses From Engine to Hub Rotating Seal 5.3-1 Rotor Component Temperatures 5.3-2 Gas Leakage Measurements 5.5-1 Sound Pressure Levels vs Frequency

E. 2-1	Tabulation of St	rain Gage	Installations
E.2-2	Thermocouple S	Summary	

è

	HUGHES TO	OL COMPANY-AIRCRAF	T DIVISION	285-16	1_1
		NODEL	REPORT NO.	TUL-IU/ PAGE	
ANALYSIE					
PREPARED BY-	<u>%</u>				
			•		

SECTION 1

SUMMARY

This report has been prepared by Hughes Tool Company -- Aircraft Division to present the results of a 60 hour whirl test program conducted under Item 7a of USAF Contract AF 33(600)-30271 "Hot Cycle Pressure Jet Rotor System, "D/A Project Number 9-38-01-000, Subtask 616. It is submitted in fulfillment of Item 7c of the contract. The whirl test program was conducted primarily to establish the structural feasibility of the Hot Cycle Rotor System. Shown in the frontispiece is the 55 foot diameter Hot Cycle Rotor during whirl test.

The Hot Cycle Pressure Jet Rotor System is based on a principle wherein the exhaust gases from high pressure ratio turbojet engine(s) located in the fuselage are ducted through the rotor hub and blades and are exhausted through a nozzle at the blade tips. Forces thus produced drive the rotor.

The structural feasibility of the Hot Cycle Propulsion System has been more than demonstrated by 60 hours of whirl testing accomplished with no significant problems. The final 25 hours of the whirl test program have been conducted with no substitution or alteration of any components. The spectrum of test conditions agrees very closely with the conditions called for in the military specifications for rotor and engine preflight tests. No dynamic problems have evidenced themselves, in confirmation of the prediction of no resonances in the operating rotor speed range. The measured temperatures for all components have been within design limits. The measured loads have generally been within design limits. At the completion of the test the total leakage has been measured at a very small level (about 0.2%). A post-test inspection has revealed no basic mechanical or structural difficulties.

The two primary parameters required to predict Hot Cycle performance, duct friction coefficient and nozzle velocity coefficient, have been verified. The duct friction coefficient has been shown to be less than the conservative value of 0.004 used for performance predictions. The nozzle velocity coefficient has been shown to be 0.98; thus showing greater efficiency than the conservative value of 0.955 used for performance predictions. As a result, the maximum measured thrust of over 20,000 pounds compares very well with predicted thrust.

9704

HUGHES	TOOL CO	MPANY-AIRCRAFT	DIVISION	285-16	
		MODEL	REPORT NO.	(62-16) PAG	1-2
PREPARED BY					
CHECKED BY					

Based on this favorable performance comparison, it is estimated that the T-64 gas generators, which will ultimately power the present hot cycle rotor and which has a much higher pressure ratio than the J-57 used for the whirl test, will produce a maximum thrust of about 28,000 pounds.

¢

MODEL

ANALYSIS	
PREPARED	ه ۲
CHECKED	m ×

REPORT NO. (62-16) PAGE

2-1

SECTION 2

INTRODUCTION

The helicopter industry is continuously striving to advance the rotary wing state of the art in order to improve the efficiency of the helicopter. One area in which a great deal of effort has been expended is that of the propulsion system. The gear boxes and drive shafting normally used to transmit engine power to the rotor have been a major source of cost, weight, and maintenance. While significant advances have been made, a major improvement is still required. The Hot Cycle Propulsion System promises such a major advance.

Figure 2.1 illustrates schematically the Hot Cycle Rotor System in which a turbine gas generator mounted in the fuselage exhausts through ducts to the rotor tips where the jets propel the rotor. In this way, the power of the engine drives the rotor without requiring mechanical components such as the power turbine, gear boxes, shafting etc. of the conventional propulsion system. As a result, there is a substantial saving in weight and complexity.

Although the Hot Cycle Rotor System has long been recognized as a potential means of accomplishing substantial improvements in rotor propulsion systems, several developments were required for its realization; these are:

- 1. Small high pressure ratio turbojets to minimize the volume of flow through the blade ducts.
- 2. High temperature duct material to contain the full turbojet temperature with acceptable weight.
- 3. Unique blade structure design to eliminate fatigue in hot parts, to provide for thermal expansion, and to be dynamically suitable.
- 4. Demonstration of structural feasibility by means of actual whirl test of a full scale rotor system.

The T64 engine gas generator has fulfilled the first requirement. This engine has completed its Preliminary Flight Rating Test and is currently undergoing a Flight Qualification Test. Thus, unlike other novel propulsion systems which have been proposed, no special engine development program is required.

	NODEL REPORT	NO. (62-16) PAGE 2-2
ANALYSIS		
PREPARED BY		
CHECKED BY		

The material Rene' 41 has fulfilled the second requirement. This material is suitable for operation up to temperatures of over 1200°F.

The blade structure to satisfy the third requirement is illustrated in Figure 2.2, and was developed under the present contract. The hot gases pass through the two central ducts which are attached to the skin by closely placed ribs. The skin-duct structure is divided into spanwise segments by chordwise flexures which makes this structure flexible in a spanwise direction and also causes the axial and bending loads to be carried in the two spars. This eliminates the fatigue loading from the hot parts while the spars, which carry the fatigue loads, are kept cool by the insulating air chamber and by a flow of ambient air which is pumped spanwise by centrifugal force. This flexibility also permits relative thermal expansion of the hot parts. Another important factor is that the dynamic characteristics in bending are determined entirely by the two spars. This permits tuning the blade by varying the spar dimensions so as to obtain the optimum natural frequencies.

This report presents the results of the final portion of the contracted work program -- the Whirl Test Program. As spelled out in the Contract, a total of 60 hours of whirl testing were to be conducted. The first 25 hours were specified to prove the structural feasibility of the concept. Maneuver and transient conditions were investigated in the following 10 hours. The last 25 hours consisted of an endurance-type test with no changes or modifications of components.

		_	MODEL	REPORT NO.	(62-16) PAGE 3. 1-1
ANALYSIS		F		ALCONO. COM	
PREPARED	BY				
MECKED	BY				

SECTION 3

TEST EQUIPMENT

3.1 GENERAL TEST SETUP AND TEST ROTOR

3.1.1 General Arrangement of Test Site

The Hot Cycle Rotor Test Site is located in an open area, adjoining the HTC-AD runway, approximately 800 feet from the nearest building or public road. See Figure 3.1-1 and 3.1-2. Two major installations on the site are the tower, complete with rotor, and the control van.

The tower is approximately thirty feet high, is built of large diameter steel tubes and is secured at its base to a reinforced concrete pad. A hydraulically operated permanent work platform long enough to service an entire blade, is attached to the whirl tower.

A Pratt & Whitney J-57 engine is located at the base of the tower with the exhaust directed toward the landing strip. Intake and exhaust suppressors are used to minimize the engine intake and the excess output noises of the engine. (See Section 5.5) Accessories such as engine starter, power generator, fuel trailer, lubrication oil pump, and air compressor are grouped around the tower as close to their point of application as practicable, as shown in Figure 3.1-2.

The control van is located seventy-two feet south of the tower in such a manner as to give a clear view of the tower and surrounding area. Housed within the van are rotor controls, engine controls, and instrumentation equipment. An interior view of the van showing the power plant engineers station and the instrumentation is given on Figure 3.1-3.

• Because of the experimental nature of the program, considerable attention was given to the provision of barriers and safety equipment to protect test personnel in case of rotor or test equipment failure.

3.1.2 Test Rotor

Figures 3.1-4 and 3.1-5 show a schematic and photograph of the Hot Cycle Rotor Structure as fabricated for this test.

The blade design incorporates two machined titanium alloy spars that comprise the only continuous member running from the blade root to the tip. The spars are separated fifteen inches chordwise by eighteen identical sheet-metal segments 12.50 inches long, made up of two ducts contained

2 1 9

	MODEL	REPORT NO.	(02-10) PAGE 3. 1-4
ANALYSIS	-		
PREPARED BY			
CHECKED BY			

within nine ribs and an outer cover. The segments are bolted to the spars and are jointed together by bellows-type flexible couplings riveted to the outer cover. The ducts and skins of adjacent segments are slip-jointed. In this arrangement the spars are the only members that react normal blade bending loads and centrifugal loads. Torsional and chordwise shear loads are carried by the assembly of segments. For convenience, the blades were color coded blue (instrumented blade), red and yellow.

The rotor blade retention and hub structure consists of a free-floating hub supporting three coning blades by means of converging tension straps and a monoball-type bearing. The free-floating hub transfers the loads to the mast and then through two bearing systems to the supporting trusses. This hub must also provide clearance for the ducts which transfer gases used in propulsion from below the hub to the three blades. The over-all hub structure provides support for the control system.

The control system is intended to be as conventional and troublefree as possible. The various components were located so as to keep them small in size, relatively cool and readily accessible.

A complete discussion of the design and fabrication of the rotor is contained in References 3.1-1, 3.1-2, and 3.1-3.

.

Figure 3. 1-2 Test Site Area

Report 285-16 (62-16)

3.1-4

3.1-5

TIUGHES TOUL COMPANY AIRCRAFT DIVISION	HUGHES	TOOL	COMPANY-AIRCRAFT DIVIS	10N 285	i -
--	--------	------	------------------------	---------	-----

16

INUGIES I	MPANT-AIRCRAFT	DIVISION	162 161	9 2 1
	NODEL	REPORT NO.	(02-10)	PAGE 3. 4-1
ANALYSIS		the static cards and a		
PREPARED BY	 · · ·			1
CHECKED BY				

3.2 WHIRL TOWER

9704

The support tower is composed of three main structural components; the upper rotor mounting truss (285-0523), the center structure (285-0703) and the lower support structure (285-0701) which attaches to the reinforced concrete base. These may be seen in the photographs of the Frontispiece and Figure 3. 1-2. The upper mounting truss is a welded steel tube structure which provides support for the main rotor shaft bearings. Side loads are applied at the upper bearing and side and thrust load are taken at the lower bearing. The truss base is attached to the 285-0703 structure assembly with four 5/8 and eight 3/8 high strength bolts (180-200 KSI). The 285-0703 structure assembly acts as a spacer for transferring rotor imposed loads from the mounting truss to the main tower (285-0701). In addition it houses and supports the control system actuating cylinders. It is a welded structure composed of 5.0 inch heavy steel tubes. The lower and main tower structure (285-0701) is a welded structure consisting of large I-beams and steel tubes. The base of the tower is attached to a 2 foot thick reinforced concrete pad by 68 one-inch bolts. In general the tower is designed from rigidity considerations and is not critical for imposed loads.

The whirl test duct system is composed of two parts; the vertical ducts for carrying the hot gas to the rotor system and the horizontal ducts for exhaust overflow. Valves are located in each path to provide adjustment for operating requirements. Potential rust and subsequent spalling of the vertical ducts (test stand items only) represented a source of potential damage to the hub and blade ducts and seals. For this reason, the vertical ducts are made from corrosion resistant steel. The duct system is supported from the tower at appropriate points. Bellows are provided in the duct system to allow for differential expansion.

Structural analysis of the tower and ducting is contained in the Appendix A.

	MODEL	REPORT NO.	(62-16) PAGE 3. 3-2
ANALYDIA			
PREPARED BY	4		
CHECKED BY	{		
			the second se

Engine throttle control was initially maintained from the mobile control van by a hydraulic servomechanism actuated by the twist grip on the collective pitch stick. This was later changed by the addition of a separate throttle control lever operating in series with the stick grip. Emergency throttle cutoff was instantly available through the use of a hydraulic accumulator which discharges high pressure fluid into the throttle servo when electrically actuated.

¢.

3.3-3

-

Engine Rotated 180° for Calibration with Standard Nozzle Figure 3. 3-2

3.3-5

HUGHES	TOOL	COMPANY-	AIRCRAFT	DIVISION
--------	------	----------	----------	----------

162 161 34	
163 161 4	
	È

285-16

	MODEL	REPORT NO.	[06-10] PAGE	
ANALYSIS				
PREPARED BY	4			
CHECKED BY	<u> </u>			

3.4 <u>POWER PLANT PERFORMANCE AND OPERATIONAL</u> CHARACTERISTICS

During most of the operation of the whirl test installation, the engine is operated in complete accordance with the recommendations of the applicable technical orders and operating instructions for the J-57 (References 3.3-1 and 3.4-1). When operated in this manner, however the engine is incapable of exhaust gas temperatures equivalent to the maximum rated temperature of the T-64 gas generator: i.e., J-57 - 1148°F, T-64 - 1180°F to 1225°F. Further, the 1148° F is the maximum observed sea level value thereby indicating a probable lower value for the particular engine used. (It should be noted that Reference 3.4-1 shows 30 minute temperatures of 1200°F at 55,000 feet altitude and two minute acceleration limit values of 1220°F for the J-57.)

A method of operation of the J-57 was established and coordinated with Pratt & Whitney Aircraft to achieve the necessary elevated temperatures without distress to the engine. The operating procedure is as follows:

- a. Trim and calibrate the engine with the standard exhaust nozzle prior to connection to the test rig ducting. This trim setting remains unchanged throughout the test operation of the engine.
- b. For all operation simulating T-64 power settings of maximum continuous or below, the operation of the J-57 is maintained on the operating line $({}^{P}T_{7}$ vs. $N_{2})^{*}$ established during the standard calibration run.
- c. Military rated power of the T-64 is simulated by reducing the effective exhaust nozzle area of the J-57 through manipulation of the exhaust dump valve. This procedure allows an ample increase in $^{T}T_{7}^{*}$ although the increase in $^{P}T_{7}$ is only slight, i.e., the T-64 simulated exhaust temperatures are reached without exceeding the J-57's $^{P}T_{7}$ limitation.

The T-64's exhaust pressure values are not simulated exactly. This latter deviation is of little consequence as sufficient exhaust pressure is generated to choke the rotor tip nozzles, thereby permitting accurate extrapolation to T-64 conditions. However, meeting the T-64's exhaust temperature is important to demonstrate the mechanical integrity of the rotor blade and seals at prototype temperature. The calibration is discussed completely in Reference 3.4-2.

*See Nomenclature in Appendix F.

3704

HUGHES TO	OL COMPANY-AIRCRAFT	r Division	285-16		
		REPORT NO.	(62-16)	-	3.4-2
ANALYSIS					
PREPARED BY					3
CHECKED BY					

Although operation of the J-57 in this manner decreases the surge margin, no difficulty was incurred during steady state or transient runs.

During operation at maximum ${}^{N}_{2}$, it was found that as the exhaust dump value position was moved to regulate the system's pressure, several peaks in ${}^{P}T_{7}$ were observed subsequent to installation of inlet and exhaust noise suppressors. The first peak was at ${}^{N}_{1} = 97$ to 100%, second at ${}^{N}_{1} =$ 92 to 94%, and the third at ${}^{N}_{1} = 88$ to 90%. These peaks were generally 1 to 1.5 psi above the general level of ${}^{P}T_{7}$ and always below values corresponding to the engine pressure ratio limit of the J-57. In order to achieve maximum power from the engine near a ${}^{T}T_{7}$ of 1200°F, it was necessary to operate at an ${}^{N}_{2}$ of approximately 89%. This generally resulted in a ${}^{T}T_{7}$ operation at 1220 to 1240°F depending on ambient conditions and is comparable to the 1225°F take off rating of the advanced T-64. These peaks were slightly shifted depending on the particular inlet and exhaust noise suppressors in use at the time.

	MODEL	REPORT NO.	(62-16) PAGE 3. 5.
ANALYSIS			
PREPARED BY			1
CHECKED BY	{		

3.5 TEST SITE ROTOR CONTROLS

All of the whirl tower control items were originally designed for and successfully used on the Hughes developed U. S. Air Force XH-17 Helicopter under contract AF 33(038)-8907. They are considerably oversize, but for economy were adapted to the requirements of this program.

The whirl tower rotor controls are actuated by conventional cyclic and collective pitch sticks in the control van, shown in Figure 3.5-1. Stick motions are transmitted through a mixing linkage, shown in Figure 3.5-2, to the three quadrants that drive cables running 75 feet horizontally to the rotor tower. Relative locations of the tower, van, and run of control cables were shown previously in Figures 3.1-1 and 3.1-2.

On the tower the cables control three servo-cylinders connected to the rotor swashplate. The cylinders were designed for 3000 psi. hydraulic pressure, but were operated in this test at 625 psi..

Figure 3.5-1 Internal View of Control Van; Engine and Rotor Controls

No. of Concession, Name of Concession, Name of Street, or other Distances, Name of

HUGHES	TOOL	COMPANY-	AIRCRAFT	Divisi
--------	------	----------	----------	--------

	- COMPANY AIRCRAFT	DIVISION	162-161	3.6-1
	MODEL	REPORT NO.	(UL-IU/PAGE	
ANALYSIS				
PREPARED BY				
CHECKED BY				

1

285-16

3.6 INSTRUMENTATION

3.6.1 Strain Gage Installation

The high temperatures at which the Hot Cycle Rotor Blade operates present numerous difficulties in attachment and operation of the strain gages. The strain gages chosen, Baldwin¹ ABD-13 and Tatnall² C6-142-350B, are designed for use at 350° F and higher. The gages are considered fatigue resistant and stable at the temperatures indicated The ABD-13 gages and some of the C6-142-350B gages were bonded to the various components with Baldwin EPY 400 Cement, capable of service at 600° F with proper cure, with very good results. The remainder of the C6-142-350B gages were bonded to the components using Tatnall GA-50 cement. All strain gages were cured at 350° F except those on aluminum components

In addition, the problems of bridge configuration had to be considered. Most bridge locations are such that a temperature gradient could exist across the bridge. Such a condition causes an apparent strain when the normal bridge configurations are used. As a result it was necessary to use an eight gage bridge, as in the case of the spars where there are four strain gages on the top, and four strain gages on the bottom of the spar. Each four gages are wired in such a fashion as to be completely temperature compensated. The two four gage bridges were then wired in parallel to give the desired sensitivity, either to bending moments or to axial loads.

All strain gage installations were waterproofed and potted by using Dow-Corning³ RTV 601 silastic rubber compound. The RTV 601 maintains its properties at elevated temperatures and showed fair resistance to abrasion. It was satisfactory in all respects. A typical strain gage installation on the aft spar of the blue blade, the only strain gaged blade, is shown in Figure 3.6-1. The strain gaged rotor shaft is shown in Figure 3.6-2. The strain gage wiring on the spars and other fatigue loaded parts was attached with RTV 601 which proved to be highly satisfactory throughout the test.

1 Baldwin-Lima-Hamilton Corporation, Waltham 54, Massachusetts

2 Budd Company, Instruments Division, Phoenixville, Pennsylvania

3 Dow-Corning Corporation, Midland, Michigan

Figure 3. 6-1 Instrumentation Installation at Blade Aft Spar

3.6-2

Figure 3. 6-2 Instrumentation on Main Rotor Shaft

HUGHES TOOL COMPANY-AIRCRAFT DIVISION 285-16

	MODEL	REPORT NO.	(62-16) PAGE 3. 6-4
ANALTER			
PREPARED BY			
CHECKED BY			

Strain gage bridges located on the structural components of the blade and hub are shown on Figures 3.6-3. Information pertaining to all of the individual strain gage bridges used is given in Table E.2-1, Appendix E.

3.6.2 Thermocouple Installation

Chrome-alumel thermocouples were used throughout on the whirl test rotor. The thermocouple wires, which were 30 gage wire (AWG), were double insulated with fiberglas. The particular type wire used was Thermoelectric Company¹ GG 30CT.

The thermocouples used on the duct walls, flexures, blade skins, and other areas which were not fatigue loaded, were attached by spot welding the ends of the wire to the part directly. These spot welds formed the junction at which the temperature was measured.

The installation of thermocouples on fatigue loaded parts such as the spars, rotor shaft, and hub gimbal lugs presented the same difficulty in attachment as encountered with the strain gages, i.e., high temperature bonding problems. The thermocouple was formed by fusing the two wires into a bead with a submerged mercury arc. This thermocouple was then installed using EPY-400² cement with a fiberglas retainer pad. These installations were then cured at temperatures in excess of $350^{\circ}F$.

All thermocouple lead wires on the blades were tied into bundles and attached to the blade structure with either spot welded sheet metal retaining clips or screw-on clamps. At least 3 clips were used for each standard blade segment. Slack was allowed at the flexure to prevent breaking of the wire due to blade deflection. To prevent centrifugal force from causing the wire bundles to slip and break, RTV 601 was used to anchor the thermocouple lead wires in the retention clips. This installation can be seen in Figure 3.6-1. The location of the individual thermocouples is shown in Figure 3.6-4 and listed in Table E.2-2, Appendix E.

3.6 3 Miscellaneous Instrumentation Installation

3.6.3.1 Crack Detection Wire

A crack detection wire was installed on all spars as a precautionary measure. 40 gage heavy Formvar copper wire was cemented to the spars with G. A. -50 cement between stations 55 and 90. The cement

1 Thermoelectric Company, Saddle Brook, New Jersey

2 Baldwin-Lima-Hamilton Corporation, Waltham 54, Massachusetts

1 IDING 6 STRAIN GAGE LOCATIONS R BENDING HOT CYCLE WHIRL TEST BLADE 10 BENDING ____ AXIAL LOAD FRE 05. 38 \$ 39 (STA 83.5) RSION • -BRIDGE No. 17 REAR SPAR BENDING -BEIDGE NO. 23 REAR SPAR BENDING - BEID REAR OAD STA 164.5 STA 135.38 STA 206 NA NO. 7 PAR BENDING BRIDGE NO. 5 REAR SPAR BENDING BEIDGE No.17 BRIDGE NO. 23 BA 11 \$13 9 \$12 5. 6¢7

HUGHES TOOL COMPANY-AIRCRAFT DIVISION 285-16

	MODEL	REPORT NO.	(62-16) PAGE 3. 0- /
ANALYSIS	1		
PREPARED BY	4		
CHECKED BY			

was cured at 350° F. All spars were hooked up in a series circuit so that a crack in any spar would break the wire and extinguish a light bulb mounted on top of the hub. The light bulb and batteries are shown in Figure 3.6-5. The crack detection wire on the aft spar of the blue blade can be seen in Figure 3.6-1.

3.6.3.2 Hub Tilt Stop Position Indicator

A hub tilt stop indicating system was used to determine when the 2° tilt stops were disengaged. This system consisted of three microswitches hooked in series with a light and battery. When all three microswitches were closed, indicating every 2° tilt stop was disengaged, a red light mounted on the skirt of the hub was actuated.

3.6.3.3 Hub Tilt Indicator

The motion of the hub was measured by using the 285-0956 hub tilt pickup. The pickup consisted of a strain gaged cantilever beam with a ball on one end and a teflon covered fitting attached to the hub structure. The surface upon which the beam rubbed was cylindrical about the feathering axis of the yellow blade so that the pickup registered hub tilt about one axis only. This installation can be seen in Figure 3.6-5.

3.6.3.4 Blade Coning Indicator

Blade coning and flapping was measured using the 285-0947 flap angle pickup. The pickup consisted of a strain gaged beam connected to a spring loaded beam whose outboard end rested on a teflon pad mounted on the blade. This installation can be seen on 285-0947. It was necessary to use the spring loaded beam to cut down the deflection of the strain gaged member. The teflon pad was a cylindrical surface whose center was the feathering axis of the blade. Thus the pickup was uneffected by a change in pitch of the blade. This installation is shown in Figure 3.6-6.

3.6.3.5 Strap Windup Indicator

The amount of strap windup is directly related to the movement of the 285-0303 torque tube assembly with respect to the hub. The pickup was a strain gaged member attached to the hub at one end with the other end connected to the torque tube assembly by a link, as shown on 285-0947. The installation is shown in Figure 3.6-6.

Figure 3. 6-5 Instrumentation Installation on Top of Rotor

Figure 3. 6-6 Instrumentation Installation on Top of Rotor

HUGHES TOOL COMPANY-AIRCRAFT DIVISION 285-16

			$(1 - 1)^{-1} = (1 -$	
	MODEL	REPORT NO.	(62-16) PAGE	
ANALYSIS				
PREPARED BY	-4			
CHECKED BY				

3.6.3.6 Azimuth and RPM Indicator

An azimuth indicator and rpm indicator were installed for recording this information on the oscillograph records. A magnet was attached to the shaft directly underneath the blue blade. A coil was placed on the stationary structure in such a fashion that when the blue blade was pointing forward it caused a blip on the oscillograph record. In addition, a tachometer generator was attached to the rotor shaft and connected to a tachometer indicator mounted on the instrument panel in front of the pilot.

3.6.3.7 Vibration Pickup

Two accelerometers were placed on the rotor to measure the vibration and check for resonant frequencies. One accelerometer sensitive to horizontal accelerations was mounted on the upper truss 285-0523-1 directly beneath the upper bearing at W.L.-19.0. The other accelerometer, oriented so as to be sensitive to vertical accelerations, was attached to the stationary swashplate 285-0313 at W.L.-57.0.

3.6.3.8 Control Movement Sensors

The movements of the control sticks and the hydraulic control cylinders were monitored by using 3 turn variable potentiometers. The potentiometers were equipped with spring loaded sheaves around which was wrapped the braided wire cable attached to the particular item. One potentiometer was attached to each one of the control hydraulic cylinders. The cyclic pitch control had two potentiometers attached to it. One responded to fore and aft movement of the stick, the other to lateral movements. One potentimeter was also attached to the collective pitch control stick.

3.6.3.9 Oil Temperature Sensors

A thermocouple was installed in the oil return line from the thrust bearing to detect any significant temperature increase. The output of this thermocouple was monitored by a Brown Strip Chart recorder placed in front of the pilot. In addition a thermoswitch set at $225^{\circ}F$ was placed in the oil return line from the upper bearing. When this switch closed it flashed a warning light on the panel in front of the pilot.

9704

HUGHES	TOOL	COMPANY-AIRCRAFT	DIVISION	285-16
--------	------	-------------------------	----------	--------

	NODEL	REPORT NO.	(62-16) PAGE 3. 6-11
ANALYSIS			
PREPARED BY			
CHECKED BY			

3.6.4 Pressure Instrumentation

For whirl tests, primary stream pressure instrumentation was provided at three stations; two stations each being parallel branch pairs. These locations are referred to as turbine discharge, flow measuring, and hub stations. The former two stations also include total temperature thermocouples for engine monitoring and flow determination.

The turbine discharge averaging total pressure rake is engine supplied while the flow measuring and hub station rakes are HTC-AD designed and fabricated. Details of these latter two rakes are provided by HTC-AD Drawing 285-1015.

3.6.5 Calibration Procedure

3.6.5.1 Strain Gage Installations

a. Rotor Shaft Axial Bridges

The rotor shaft axial load and lower pylon bridges were calibrated at the same time on the whirl test stand. This was accomplished by hooking a crane to the 285-0765 hoist fitting which was attached to the 285-0306 control support assembly, using a hydraulic cylinder and a 100,000 pound load ring. The load ring was calibrated in the lab before being used. The load ring was strain gaged and the output read on a Baldwin Lima-Hamilton Type 20 strain indicator. The load was applied as follows; 0, 4000, 8000, 12000, 16000, 18000 and 24000 pounds. The output of the pylon strain gage bridge and shaft strain gage bridges were recorded by an oscillograph. The calibration hook up is shown in Figure 3.6-7. The calibration procedures demonstrated that the rotor shaft bending bridges were not sensitive to axial loads. The pylon gages were monitored during the pressure testing so that a correction could be applied to values obtained during the runs.

b. Rotor Shaft Bending Bridges

The rotor shaft bending bridges were calibrated by two methods. During the assembly of the rotor the rotor shaft bending bridges

Figure 3.6-7 Calibration of Lift Measuring Strain Gages (Note load ring and hydraulic cylinder attached between hub shaft and crane.)

HUGHES 1	TOOL	COMPANY-	AIRCRAFT	DIVISION	285-16
----------	------	----------	----------	----------	--------

	MODEL REPORT NO. (62-16) PAGE 3.6-1
NALYSIS	
MECKED BY	
	•
- 1	were calibrated by attaching a cable to the top of the rotor
	shaft and applying a load through a hydraulic cylinder and
3	load ring. The load was applied in 200 pound increments up
	to 1000 pounds and the output recorded using a Type "L"
	Baldwin strain indicator.
	re,
	The hub gimbal lugs bridges were also calibrated during
	assembly in the shop by pulling on the hub with a cable and
	hydraulic cylinder connected to a load ring. The load was
	applied in 200 pound increments up to a maximum of 1000
	pounds. A cable was also attached to the hub and to the pylon
	base to prevent rotation of the hub due to eccentric loading.
	The output of the gages was recorded on a Baldwin Type "L"
	strain indicator.
	After the rotor was installed on the whirl tower following the
	35 hour inspection the rotor shalt bending gages in line with
	the blue blade and the hub gimbal lug gages were calibrated
	by attaching the 285-0923-3 tip loading fixture to the blue
	blade and pulling on it with a hydraulic cylinder and load ring
	attached to a crane. The load was applied in increments of
	500 pounds up to a maximum load of 2000 pounds. The blade was
	supported at the tip by the crane so that it was level and
	props were placed beneath the hub on the side opposite the
	blue blade to prevent rotation due to the eccentricity of the

blade to prevent rotation due to the eccentricity of the blade retention straps and hub trunnion. The calibration of the bending bridge oriented at 90° to the blue blade was accomplished by pulling on the tip of the yellow blade in a similar manner.

c. Flapwise Bending Bridge Calibration

The flapwise bending bridges were calibrated in the shop during the assembly of the rotor with the blade hanging in the 285-0921 blade support fixture which was attached to a gantry crane as shown in 285-0925. The installation is shown in Figure 3.6-8. Shims were inserted between the droop stop rollers and the support fixture so that the blade was prevented from swinging. A flapwise load was then applied at the tip through a load ring and load cell. The 285-0944 loading fixture was attached to the blade at Station 312.6. The load was applied in 20 pound increments up to a maximum of 100 pounds. The output of the strain gages were recorded by an oscillograph.

Figure 3.6-8 Blade Hung Vertically for Bending Calibration and Frequency Measurements

HUGHES	TOOL	COMPANY-AIRCRAFT	DIVISION	
		MODEL	REPORT NO.	

ANALYSIS -----

DIVISION 285-16 REPORT NO. (62-16) PAGE 3. 6-15

<text><text><text><text><text><text></text></text></text></text></text></text>	CHECKED BY	
 d. Chordwise Bending Bridges d. Chordwise Bending gages were calibrated with the blade supported as shown in Figure 3.6-8 and described in 3.6.5.1, above. The 285-0923-3 tip loading fixture was attached to the blade, and to this fixture a cable carried the load of a hydraulic cylinder. This cylinder was placed in series with a 10,000 pound load ring and a 10,000 pound load cell which were stratached to an 1-beam achored to the floor by lead weights. The 285-0923-7 chordwise load fixture was attached to the blade at Station 320.9. The gages were calibrated by applying an axial load to prevent the blade retention straps from buckling, and then applying chordwise loads in increments. The tip loading fixture was designed so that the axial loads were applied along the feathering axis of the blade. The axial loads with the chordwise load increments were as follows: 7000 pounds; 0, 30, 60, 90, 120, 150 pounds 6000 pounds; 0, 20, 40, 60, 80, 100 pounds 5000 pounds; 0, 20, 40, 60, 80, 100 pounds 4000 pounds; 0, 20, 40, 60, 80, 100 pounds 4000 pounds; 0, 20, 40, 60, 80, 100 pounds 4000 pounds; 0, 20, 40, 60, 80, 100 pounds 4000 pounds; 0, 20, 40, 60, 80, 100 pounds 4000 pounds; 0, 20, 40, 60, 80, 100 pounds 4000 pounds; 0, 20, 40, 60, 80, 100 pounds 4000 pounds; 0, 20, 40, 60, 80, 100 pounds 4000 pounds; 0, 20, 40, 60, 80, 100 pounds 4000 pounds; 0, 20, 40, 60, 80, 100 pounds 4000 pounds; 0, 20, 40, 60, 80, 100 pounds 4000 pounds; 0, 20, 40, 60, 80, 100 pounds 4000 pounds; 0, 20, 40, 60, 80, 100 pounds 4000 pounds; 0, 20, 10, 60, 80, 100 pounds 30, 50, 60, 80, 100 pounds 4000 pounds; 0, 20, 40, 60, 80, 100 pounds 500 pounds; 0, 20, 10, 60, 80, 100 pounds 4000 pounds; 0, 20, 40, 60, 80, 100 pounds 4000 pounds; 0, 20, 40, 60, 80, 100 pounds 4000 pounds; 0, 20, 10, 60, 80, 100 pounds 4000 pounds; 0, 20, 10, 60, 80, 100 pounds 50, 60, 80, 100 pounds 50, 50, 50, 50, 50, 50, 50, 50, 50, 50,		After the inspection which followed 35 hours of whirl testing, the flapwise bending gages were calibrated with the rotor installed on the whirl tower. For this calibration the blade was raised so that it was clear of the droop stop and supported on the 285-0939 blade support between Stations 63 and 73. Dead weight was added in 20 pound increments up to a max- imum of 100 pounds at Sation 314.4. The outputs of the strain gages were recorded by an oscillograph.
 The chordwise bending gages were calibrated with the blade supported as shown in Figure 3.6-8 and described in 3.6.5.1, above. The 285-0923-3 tip loading fixture was attached to the blade, and to this fixture a cable carried the load of a hydraulic cylinder. This cylinder was placed in series with a 10,000 pound load ring and a 10,000 pound load cell which were attached to an I-beam achored to the floor by lead weights. The 285-0923-7 chordwise load fixture was attached to the blade at Station 320.9. The gages were calibrated by applying an axial load to prevent the blade retention straps from buckling, and then applying chordwise loads in increments. The tip loading fixture was designed so that the axial loads were applied along the feathering axis of the blade. The axial loads with the chordwise load jourds; 0, 30, 60, 90, 120, 150 pounds 6000 pounds; 0, 20, 40, 60, 80, 100 pounds 5000 pounds; 0, 20, 40, 60, 80, 100 pounds 4000 pounds; 0, 20, 40, 60, 80, 100 pounds 4000 pounds; 0, 20, 40, 60, 80, 100 pounds Dimensional scales were attached to the blade at the tip and near the root, and the deflection of the blade swere recalibrated with the blade supported as described previously in 3.6.5.1, c. In addition, the 285-0923-5 blade torsion fitting was attached to the floor fitting at the tip of the blade in such a fashion that the torsion was applied without causing 	d.	Chordwise Bending Bridges
 Dimensional scales were attached to the blade at the tip and near the root, and the deflection of the blade was measured by means of a transit. The output of the strain gages were recorded by using an oscillograph. e. Blade Torsion and Pitcharm Bridges The blade torsion and pitch arm strain gage bridges were calibrated with the blade supported as described previously in 3.6.5.1, c. In addition, the 285-0923-5 blade torsion fitting was attached to the end of the blade. The 285-0935 torsion test load jig was hooked to the fitting at the tip of the blade in such a fashion that the torsion was applied without causing 		The chordwise bending gages were calibrated with the blade supported as shown in Figure 3.6-8 and described in 3.6.5.1, above. The 285-0923-3 tip loading fixture was attached to the blade, and to this fixture a cable carried the load of a hydraulic cylinder. This cylinder was placed in series with a 10,000 pound load ring and a 10,000 pound load cell which were at- tached to an I-beam achored to the floor by lead weights. The 285-0923-7 chordwise load fixture was attached to the blade at Station 320.9. The gages were calibrated by applying an axial load to prevent the blade retention straps from buckling, and then applying chordwise loads in increments. The tip loading fixture was designed so that the axial loads were applied along the feathering axis of the blade. The axial loads with the chord- wise load increments were as follows; 7000 pounds; 0, 30, 60, 90, 120, 150 pounds 6000 pounds; 0, 20, 40, 60, 80, 100 pounds 5000 pounds; 0, 20, 40, 60, 80, 100 pounds 4000 pounds; 0, 20, 40, 60, 80, 100 pounds
 e. Blade Torsion and Pitcharm Bridges The blade torsion and pitch arm strain gage bridges were calibrated with the blade supported as described previously in 3.6.5.1, c. In addition, the 285-0923-5 blade torsion fitting was attached to the end of the blade. The 285-0935 torsion test load jig was hooked to the fitting at the tip of the blade in such a fashion that the torsion was applied without causing 		Dimensional scales were attached to the blade at the tip and near the root, and the deflection of the blade was measured by means of a transit. The output of the strain gages were re- corded by using an oscillograph.
9 TD4	e.	Blade Torsion and Pitcharm Bridges The blade torsion and pitch arm strain gage bridges were calibrated with the blade supported as described previously in 3.6.5.1, c. In addition, the 285-0923-5 blade torsion fitting was attached to the end of the blade. The 285-0935 torsion test load jig was hooked to the fitting at the tip of the blade in such a fashion that the torsion was applied without causing

HUGHES TO	OL COMPAN	Y-AIRCRAFT	DIVISION
-----------	-----------	------------	----------

	TUGHES TO	MPANT-AIRCRAFT	DIAIPION	26	16
		MODEL	REPORT NO.	(62-16) PAGE 3. 0=	
ANALYSIS					
PREPARED	BY	 4		1	l
CHECKED	BY	1			

285-16

translation of the blade tip. A recently calibrated load cell connected the pitch arm assembly to the blade support fixture. The torque applied to the blade by a hydraulic cylinder was measured by both a load ring and a load cell attached in series with a cable which wrapped around the blade torsion fitting. Torque was applied (in both directions) in 1000 inch-pound increments up to a maximum of 10,000 inch-pounds. Blade torsional deflection and the pitch calibration were accomplished at the same time since the load cell attached to the pitch arm assembly measured directly the reaction force at the pitch arm. An oscillograph was used to record the output of the strain gages.

f. Feathering Ball Horizontal Shear Bridge

The strain gage bridge which measures horizontal shear at the feathering ball was calibrated by attaching a cable, load ring, hydraulic cylinder, and load cell in series to the pitch arm and pulling horizontally. The load was applied in 200 pound increments up to a total of 1000 pounds. The output of the load cell as well as that of the horizontal shear bridge was recorded using an oscillograph.

Feathering Ball Vertical Shear Bridge g.

The vertical shear strain gage bridge at the feathering ball was calibrated by applying a load at the attachment for the 285-0133 droop stop installation. The blade was supported at the tip so that the droop stop was clear. The load was applied in 200 pound increments to a maximum of 1000 pounds. The load was applied by using a hydraulic cylinder. load cell. and load ring in series. The output of the load cell and the vertical shear bridges was recorded by an oscillograph.

h. Swashplate Drag Link Bridge

The 285-0332 drag link assembly was reworked to act as a load cell in measuring the stationary swashplate drag loads. The assembly was calibrated in a baldwin static test machine using a Baldwin Type "L" strain indicator. The load was applied in 200 pound increments to a maximum load of 2000 pounds.

HUGHES	TOOL	COMPANY-AIRCRAFT	DIVISION
		MODEL	STOPPET NO.

		-	
	110 111	2	6_17
-	(62-10)		,

285-16

•	C . A. 1	T	T
1.	Control	Force	Bridges

AMAL VEL PREPARED BY CHECKED BY

> The 285-0326-3 rod ends were reworked so that they could be used as transducers in measuring the control forces. The rod ends were calibrated in a Baldwin test machine using a Baldwin-Lima-Hamilton Type 20 strain indicator. The load was applied in 500 pound increments to a maximum of 5000 pounds.

Horizontal Force Bridges i.

The hub support upper structural truss stain gage bridges were calibrated in the fore and aft direction at the same time the hub gimbal lugs and rotor shaft in-plane gages were calibrated as described in 3.6.5.1, b. The lateral direction calibration was accomplished by rotating a blade to a position 90° to the fore and aft direction and pulling on the tip with the crane. The blade was held horizontal for this calibration. The load was applied in 500 pound increments to a maximum of 2000 pounds by using a hydraulic cylinder and load ring.

k. Flapping Angle Measuring Bridge

The 285-0948 flapping angle pickup was calibrated by attaching the crane to the tip of the blade and raising it in 2° increments to a maximum of 10° as measured by a precision clinometer on the pitch control arm. Shims were used to hold the hub level and to prevent rotation of the hub about the trunnion. A small outboard load was maintained to prevent damage to the feather ing ball during the calibration. The output of the pick-up was recorded by using an oscillograph.

1. Hub Tilt Measuring Bridge

> The calibration of the 285-0956 hub tilt pick-up was accomplished by pulling down on the yellow blade with 2° hub tilt stops disengaged. Two climometers were used, one a precision clinometer, to measure the hub tilt. and the other one to make sure that the hub was level in the direction normal to the yellow blade. The hub was tilted in 2° increments until the full travel, 9.6°, was reached. The calibration was performed in both directions, first by pulling down on the yellow blade and then by pulling down on the red blade. An oscillograph was used to record the output of the pick-up.

HUG	HES TOOL	COMPANY-AIRCRAFT	DIVISION	285-16	
				(62-16)	5.

	MODEL	REPORT NO.	(62-16) PAGE 3. 0-	1
ANALYSIS		1.0		
PREPARED BY	-			
CHECKED BY.				

m. Strap Wind-up Measuring Bridge

The strap wind-up pickup, 285-0948, was calibrated by installing a template at the 3/4 radius point on the blade. The blade was then moved in 2° increments until maximum travel was reached. The angles were measured by using a precision clinometer attached to the template. The output of the strap wind-up pickup was recorded by an oscillograph.

n. Duct Torsion Bridge

The 285-0178 articulated duct gimbal ring was strain gaged to measure the duct torsion loads. This assembly was supported in the 285-0943 test jig and dead weight loads applied at the end of an arm to give 200 inch pound torque increments up to a maximum of 1000 inch pounds. The output of the gages was monitored by a Baldwin Type "L" strain indicator. The torque was applied in both directions during the calibration.

3.6.5.2 Thermocouple Calibrations

The thermocouple wire used was calibrated by the manufacturer and guaranteed to be within standard tolerances. The various recorders used were calibrated according to the manufacturer's directions several times throughout the whirl test program.

3.6.5.3 Miscellaneous Calibrations

9704

a. Control Cylinder Movement Sensors

The variable potentiometers attached to the hydraulic control cylinders were calibrated by moving the collective control stick the amount which caused the control cylinders to move exactly one inch. Since these potentiometers are linear, it was un-

b. Control Stick Movement Sensors

The variable potentiometers attached to the collective pitch and cyclic pitch control sticks were calibrated by moving the control sticks through their respective full ranges in 2° increments as measured by a precision clinometer attached to the template at the 3/4 radius point of the blade. The output of the potentiometers was recorded by using an oscillograph.

ANALYSIS Prepared by Checked by	
3.6.6 Recor	ding Instrumentation
3661 Str	ain Gage Instrumentation
5.0.0.1 50	an Gage fisti unentation
а.	Strain Gage Wiring
	The inboard ends of the strain gage wiring were equipped with a Winchester M4P plug which fitted into a Winchester M4S socket contained on one of three boxes attached to the 285-0306 upper control support assembly. From the three boxes the wire ran to the 285-0310-17 conduit assembly which was supported by spokes in the center of the rotor shaft. The wire ran to a 44 channel slip ring assembly mounted on the lower end of the rotor shaft as shown on 285-0500. The slip ring had coin silver rings and silver graphite brushes. The 44 channel slip ring as installed is shown in Figure 3.6-9. From the slip ring the wires ran to a junction box at the end of the main instru- mentation cable. Cannon XL-3 plugs were used in this box. The instrumentation cable ended at the bridge balance boxes in the control van. All strain gage circuits were powered by a parallel power connection at the upper junction box. Thus each bridge required only two wires through the slip ring assembly. This made a total of 21 channels available for strain gage bridges through the slip ring.
b.	Strain Gage Bridge Balance Box
	Two bridge balance boxes were used to condition the signal for recording by the oscillograph. One, a 20 channel box was built by American Helicopter Corporation while the other, a 15 channel box, was made by HTC-AD. Both bridge balance boxes had individual balance control, and attenuation for each channel. In addition, an internal electrical calibration device was contained in each unit. The balance boxes are shown in Figure 3.6-10.
c.	Strain Gage Recording Instrumentation
l Consolidate	A CEC ¹ 5-119P3-50 model recording oscillograph was used to record the output of the various transducers. The oscillograph shown in Figure 3.6-10, had provision for 50 channels and a mirror galvanometer compatable with the transducer involved was used in each channel. The magazine was a CEC 5-036C ed Electrodynamics Corporation, Pasadena, California

I

I

I

I

1

1

l

3.6-20

.

ŀ

I

I

ļ

CKED BY	
	Datarite equipped with CEC 5-046 take up reel. The Datarite Magazine processed the record as it was taken, and so provided instant read-out of the test data. Kodak type 33 paper was used throughout the test and proved to be very satisfactory.
.6.6.2	Thermocouple Instrumentation
	a. Thermocouple Switches and Hot Reference Junction
	The chromel-alumel thermocouple lead wire was run to the Minneapolis -Honeywell 918W2P aircraft type, 48 point switching unit which had compensated terminals. From the thermocouple switching units the thermocuple lead wires went to a Pace model FRJ-33-3 hot reference junction. The hot reference junction was used so that no error would be introduced by junc- tion of dissimilar metals at the slip ring, plugs, etc The 48 point switching unit together with the hot reference junction is shown in Figure 3.6-5.
	b. Thermocouple Slip Ring Installation
	The thermocouple signal copper leads, together with six other wires necessary for the operation of the hot reference junction and switching units ran through the 285-0310-17 conduit assembly to an eight channel slip ring attached to the bottom of the 44 channel slip ring as shown on 285-0500. The eight channel slip ring can be seen in Figure 3.6-9.
	c. Temperature Recorders
	Temperatures from the rotor were recorded by a 12 point Brown recorder with a 0 to 1200° F capability. This combination of the 12 point recorder and the three 48 point switching units made it possible to read a total of 144 thermocouples. The Brown recorder and recorder control switches are shown in Figure 3.6-11.
	Temperatures at the 285-1015 duct pressure rake installation were recorded on a Leeds and Northrup Speedomax H single point strip chart recorder. The recorder had a range of 0 to 1200° F. A manually operated thermocouple selector switch was provided to monitor the thermocouples. The recorder is shown in Figure 3.6-12.
	•

• • • •

Figure 3.6-11 Brown 48-Point Temperature Recorder

l

Figure 3. 6-12 Multi-tube Manometer Bank and Single-Point Temperature Recorder

202-10		
162 161	2	

	MODEL	REPORT NO.	(62-16) PAGE	3. 6-Z5
ANALYSIS				
PREPARED BY	-			
CHECKED BY				

Turbine discharge temperature of the J-57 engine was recorded on a Leeds and Northrup Speedomax H single point strip chart recorder with a 0-1000°C temperature range. The recorder is shown in Figure 3.6-13.

Thrust bearing oil return temperature was monitored by a -0.5 to +10.5 millivolt Brown strip chart recorder. The recorder had a scale that was calibrated to read in degrees Fahrenheit. The recorder was connected to a Thermoelectric Company protected type chromel-alumel thermocouple inserted in the oil return line. The recorder is shown in Figure 3.6-13.

3.6.6.3 Manometers

9704

Primary stream pressure distributions were measured with an HTC-AD fabricated 50 tube manometer. The fluid employed therein was TBE manometer fluid with a usable column height of approximately 48 inches. The reservoir pressure was monitored with a single tube, well type mercury manometer (Meriam) and although control of the engine was accomplished by continuous monitoring with a 30 psig maximum Helicoid Pressure Gage, another mercury manometer was used for accurate measurement of the turbine discharge pressure. Figure 3.6-16 is a photograph of these manometer instruments within the control van.

¢.

.

3.6-26

	HUGHES '	TOOL (COMPANY-AIRCRAFT	DIVISION	285-16	
			MODEL	REPORT NO.	(62-16) PARE 4.	1.
ANALYSIS				Contraction of the second		
PREPARED BY	······					
CHECKED BY						

SECTION 4

DESCRIPTION OF TESTS

4.1 GENERAL

9704

This section discusses the procedure used during the whirl test program and summarizes the test conditions. In general, the whirl test program was conducted in accordance with Report No. 285-8-3SR "Proposed Whirl Tower Program," dated November 1961 (Reference 4.1-1).

SHECKED BY			
4.2	PROCEDURES		
equipment we re refin the conduc	Following is an outline of the described and shown previewed in the early tests and the tion of the whirl tests.	ne pr Dusly Is out	ocedures for operation of the in Section 3. The procedures line was utilized thereafter in
4. 2. 1	Ground Equipment		
	 a. Start hydraulic unit for b. Start hydraulic unit for c. Start auxiliary starter of 	engin roton comp	ne oil cooler pumps. r control power units. re ss or.
4.2.2	Engine Starting Procedure		
	Pilot		Power Plant Eng.
		a.	28 V inverter switch to "on".
a. Place at 2 ⁰ o ticular b. Place neutra c. Start r oil sys d. Power	Collective Pitch control or 4 ⁰ as required for par- r test. Cyclic Pitch control in al. rotor bearing lubricating stem, vacuum pump first. lever to "fuel cut-off".		
		b. c. d. e. f. g. h.	Butterfly valve closed. Exhaust dump valve full open. Fuel shutoff valve - open. Oil cooling hydraulic system - on. Fuel boost pump - on. Energize starter (record time At 8 to 10% N [*] ₂ - energize ig- nition.
e. At 12 lever move gine to	to 15% N ₂ move power to idle (fuel flow will to 1000 PPH). Allow en- paccelerate to idle speed		
PREPARED BY S. J. Chris 3/13/62 CHECKED BY			
--	----------------	--	
	i. j. k.	Record time to reach idle rpm. De-energize ignition when lite- off is evident. De-energize starter at 25 to 30 N_2 rpm.	
4.2.3 Test Procedure			
Pilot		Power Plant Eng.	
	a. b.	When oscillograph has been cali brated, open butterfly to rotor. Adjust exhaust dump valve to bring engine operation on line.	
 a. Increase power to produce 170 rpm to disengage centrifugally operated 2⁰ rotor hub tilt stops. (watch for signal light) b. Adjust cyclic pitch control to level swash plate. c. Proceed with test maneuvers. 			
	c.	Adjust exhaust dump value as necessary to maintain on-line engine operation. For max temp tests adjust dump value to reduce exhaust area and thus produce temp desired (off- line operation)	
d. Following tests, return to 170 rpm. e. Bring engine to idle.			
	d.	Close butterfly to rotor.	
4.2.4 Engine Shutdown Procedure			
Pilot		Power Plant Eng.	
a. Power lever to idle for 5 minutes stabilize engine temperatures.	to		

NALYSIS C. L. Chria 2/19/64	
REPARED BY D. J. CHILS JIJID	
HICKED BT	
b. Power lever to 75% N ₂ to	
scavenge oil system for 30	
seconds.	
c. Power lever - off.	
	a. Fuel boost pump - off (when
	engine has stopped.)
	b. Fuel shutoff valve - closed.
	c. Oil cooling hydraulic system -
	off.
d. After rotor has coasted to stop,	,
shut off rotor bearing lubrication	ng
oil system, pressure pump firs	t.
	d Instrumentation and master
	d. Instrumentation and master
	$e(ec(r)ca) \le w(rcn) \le o(r)$
	electrical switch - off.
4.2.5 Unsatisfactory Engine Sta	rt
4.2.5 Unsatisfactory Engine Sta	rt
4. 2. 5 Unsatisfactory Engine Stan	rt
4. 2. 5 Note: a. If fuel flow exceeds 100 b. If orbaust gas tompore	$\frac{rt}{00}$ pph - discontinue the start.
 4. 2. 5 Unsatisfactory Engine Statistics Note: a. If fuel flow exceeds 100 b. If exhaust gas temperative distributions 	00 pph - discontinue the start. ature exceeds 610°C (1130°F),
 4. 2. 5 Unsatisfactory Engine Statisfactory Engine Statisfactor	00 pph - discontinue the start. ature exceeds 610°C (1130°F), scontinue start.
4.2.5 Unsatisfactory Engine Stat Note: a. If fuel flow exceeds 10 b. If exhaust gas tempers even momentarily, dis <u>Pilot</u>	00 pph - discontinue the start. ature exceeds 610°C (1130°F), scontinue start. <u>Power Plant Eng.</u>
 4. 2. 5 Unsatisfactory Engine Statisfactory Engine Statisfactory Engine Statisfactory Engine Statistical Statistical	00 pph - discontinue the start. ature exceeds 610°C (1130°F), scontinue start. <u>Power Plant Eng.</u>
 4. 2. 5 Unsatisfactory Engine Statisfactory Engine Statisfactory Engine Statistical Statistic	00 pph - discontinue the start. ature exceeds 610°C (1130°F), scontinue start. <u>Power Plant Eng.</u>
 4. 2. 5 Unsatisfactory Engine Station Note: a. If fuel flow exceeds 100 b. If exhaust gas temperate even momentarily, distributed a. Power lever - off. 	a. Ignition switch - off.
 4. 2. 5 Unsatisfactory Engine Statisfactory Engine Statisfactory Engine Statisfactory Engine Statistical Statistical	a. Ignition switch - off. b. Starter switch - off. b. Starter switch - off.
 4. 2. 5 Unsatisfactory Engine Statisfactory Engine Statisfactory Engine Statistical Statistic	a. Ignition switch - off. b. Starter switch - off. c. Fuel boost pump switch - off
 4. 2. 5 Unsatisfactory Engine Statisfactory Engine Statisfactory Engine Statistical Statistic	a. Ignition switch - off. b. Starter switch - off. c. Fuel boost pump switch - off (when engine has stopped rotating
 4. 2. 5 Unsatisfactory Engine Statisfactory Engine Statisfactory Engine Statistical Statistic	a. Ignition switch - off. b. Starter switch - off. c. Fuel boost pump switch - off (when engine has stopped rotating cem as follows
 4. 2. 5 Unsatisfactory Engine Statisfactory Engine Statisfactory Engine Statisfactory Engine Statistics Note: a. If fuel flow exceeds 100 b. If exhaust gas temperate even momentarily, distributed by the even momentarily of the even momentarily is a statistic prime of the even for the even of the even for the ev	a. Ignition switch - off. b. Starter switch - off. c. Fuel boost pump switch - off (when engine has stopped rotating stem as follows
 4. 2. 5 Unsatisfactory Engine Station Note: a. If fuel flow exceeds 100 b. If exhaust gas temperate even momentarily, distributed a. Power lever - off. Note: Purge engine exhaust system b. Power lever - cutoff.	a. Ignition switch - off. b. Starter switch - off. c. Fuel boost pump switch - off (when engine has stopped rotating stem as follows
 4. 2. 5 Unsatisfactory Engine Statisfactory Engine Statisfactory Engine Statisfactory Engine Statistics Note: a. If fuel flow exceeds 100 b. If exhaust gas temperate even momentarily, distributed b. If exhaust gas temperate even momentarily, distributed b. Pilot a. Power lever - off. Note: Purge engine exhaust systems b. Power lever - cutoff. 	a. Ignition switch - off. b. Starter switch - off. c. Fuel boost pump switch - off (when engine has stopped rotating d. Ignition switch - off.
 4. 2. 5 Unsatisfactory Engine Statisfactory Engine Statisfactory Engine Statisfactory Engine Statistics Note: a. If fuel flow exceeds 10 b. If exhaust gas temperate even momentarily, distributed b. If exhaust gas temperate even momentarily, distributed b. Pilot a. Power lever - off. Note: Purge engine exhaust systems b. Power lever - cutoff. 	 a. Ignition switch - off. a. Ignition switch - off. b. Starter switch - off. c. Fuel boost pump switch - off (when engine has stopped rotating ster as follows d. Ignition switch - off. e. Fuel boost pump - on.
 4. 2. 5 Unsatisfactory Engine Station Note: a. If fuel flow exceeds 100 b. If exhaust gas temperate even momentarily, distributed a. Power lever - off. a. Note: Purge engine exhaust system b. Power lever - cutoff.	 a. Ignition switch - off. a. Ignition switch - off. b. Starter switch - off. c. Fuel boost pump switch - off (when engine has stopped rotating stem as follows d. Ignition switch - off. e. Fuel boost pump - on. f. Fuel shutoff valve - open.
 4. 2. 5 Unsatisfactory Engine Station Note: a. If fuel flow exceeds 100 b. If exhaust gas temperate even momentarily, distributed on the second state of the second state	 a. Ignition switch - off. a. Ignition switch - off. b. Starter switch - off. c. Fuel boost pump switch - off (when engine has stopped rotating stopped rotating) c. Fuel boost pump - on. f. Fuel shutoff valve - open. g. Engine start switch - on. b. Maintain appehlant for 10 to 20
 4. 2. 5 Unsatisfactory Engine Station Note: a. If fuel flow exceeds 10 b. If exhaust gas temperative even momentarily, distributed a. Power lever - off. Note: Purge engine exhaust system b. Power lever - cutoff.	 a. Ignition switch - off. a. Ignition switch - off. b. Starter switch - off. c. Fuel boost pump switch - off (when engine has stopped rotating stopped rotating) c. Fuel boost pump - on. f. Fuel shutoff valve - open. g. Engine start switch - on. h. Maintain cranking for 10 to 20 seconds
 4.2.5 <u>Unsatisfactory Engine Stat</u> Note: a. If fuel flow exceeds 10 b. If exhaust gas temperate even momentarily, distributed a. Power lever - off. Note: Purge engine exhaust systems. b. Power lever - cutoff.	 a. Ignition switch - off. a. Ignition switch - off. b. Starter switch - off. c. Fuel boost pump switch - off (when engine has stopped rotating stopped rotating) c. Fuel boost pump - on. f. Fuel shutoff valve - open. g. Engine start switch - off. h. Maintain cranking for 10 to 20 seconds. i. Engine start switch - off.

•

ž

BY S. J. Chris		
θΥ		
	k.	Fuel shutoff valve - closed.
2.6 Emergency Shutdown Proc	cedure	
2.6.1 Controlled Emergency		
Pilot		Power Plant Eng.
. Engine power lever to idle.		
	a. b.	Open exhaust dump valve. Close butterfly valve.
 Collective pitch control to 4-2⁰. Cyclic pitch control to approximately level hub position. 		
	c.	If possible comply with normal shutdown procedures above.
2.6.2 Uncontrolled Emergency		
Pilot		Power Plant Eng.
Place power lever in cutoff Dump collective pitch. Cyclic pitch control to approximately level hub position if emergency allows.	OR	Use emergency engine shutoff switch.

HUGHES TO	OL CON	PANY-AIRCRAFT	DIVISION	285-16 (62-16)	PAGE 4. 3-
ANALYSIS					
CHECKED BY		•			

4.3 TEST LOG

9704

A detailed log of the tests is presented in Appendix B. Table 4.3-1 summarizes the hours spent at various temperature levels. The hours at each of the temperatures are further broken down to show the portion of time during the final 25 hours of running during which there were no change of components. Also shown in Table 4.3-1 are the exhaust temperatures of both the standard and an advanced version of the T-64 gas generator (ST129). It can be seen that a total of 5.5 hours were run at temperatures of 1200° to 1275°F which is equivalent to the Take Off rating (five-minute rating) of the T-64 (ST129). A total of 14.8 hours were run at engine discharge temperatures of 1100° to 1200° which is equivalent to the Take Off rating of the standard T-64 and to the Military Power rating of both the standard and ST129 versions of the T-64. Table 4.3-2 compares the hours run at Take Off and Military temperature levels with the hours of running required by Military specifications. Inasmuch as the Hot Cycle rotor is both a rotor and a portion of an engine, both rotor and engine 50 hour specifications are presented. It can be seen that the hours at the Take Off temperature level are approximately twice those called for in the specifications and the hours at the Military temperature level are three to five times the values in the Military specifications. Also shown in Table 4.3-2 is a comparison of the number of power transients performed during the whirl test program with those called for in the Military specifications. It can be seen that the number of transients performed is approximately equal to the average of the two specifications.

Table 4.3-3 lists all components replaced with new parts during the 60 hour whirl test program. The time at which the part was replaced and the total hours in service are tabulated, as well as the reason for the replacement. Note that there were no changes in components whatsoever during the final 25 hours of whirl testing.

		HUGHES TOOL COMP	ANY-AIRCRAF	T DIVISION 28	5-16 2-16) PAGE 4. 3- 2
10 - V	RÉPARED BY				
		TABL	JE 4.3-1		
		HOT CYCLE RO	TOR WHIRL	TEST	
		TEMPER.	ATURE LOG		
	T _m o _n		Time a	t Temperature	
	7 7 Engine Discharge	Equivalent T-64 Engine Rating	0-35 Hours Whirl Test	Whirl Test (No Change of Components) Total
	1200-1275	Take-off, ST129: 1225	. 3.2	2.3	5.5
	1100-1200	Military, ST129: 1180 Take-off, Std: 1180 Military, Std: 1150	6.9	7.9	14.8
	900-110	NRP, Std. and ST129: 1100 75% NRP, Std. and ST129: 1010	5.8	2.6	8.4
	90 0		19.1	12.2	31.3
	TOTALS		35.0	25.0	60.0

ł

HUGHES TOOL COMPANY-AIRCRAFT DIVISION 285-16

:85	-16		
12	1/1	4	3

	NODEL		(62-16) 4. 3-3
ANALYSIS			
PREPARED BY			1
CHECKED BY		4	

TABLE 4.3-2

COMPARISON OF WHIRL TEST WITH

MILITARY SPECIFICATIONS

Power Condition	Hot Cycle Whirl Test	MIL T 8679 50 Hour Rotor Ground Endurance	MIL E 8597 Engine PFRT
Take Off, hours	5.5	2.5	2.7
Military, hours	14.8	2.5	4.0
Number of Transients	37.0	30,0	48.0

TABLE 4. 3-3

I

COMPONENTS REPLACED WITH NEW PARTS DURING WHIRL TEST

0 35 35 Chrome plate on alum. casting bliste. blade feathering bearing ball, 0 35 35 35 Chrome plate on alum. casting bliste.	TC-AD Dwg. No. and Description Time - Rotor Hours Installed Replaced In Service	Reason Damage resulting from binding of artic- duct outboard seal. In IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	In Service 1 34 11 35 35 35 35 35	Replaced 1 35 35 35 35 35 35 35 35	Installed 0 18 0 0 0 0 0 0 0 0 0 0	 285-0179-11 Sheef metal cyl. section of inboard artic. duct, 3 blades 285-0178-5 Flexure assy's of artic. duct inboard gimbal, 3 blades 285-0162 Lip seal, artic. duct outboard, 3 blades 285-0217 Lip seal,artic. duct outboard, 3 blades 285-0161 285-0126 Blades 285-0126 Blade feathering bearing ball, 1 blade
	$\begin{array}{llllllllllllllllllllllllllllllllllll$	Flame plate spalling due to effect of h cycles on uneven coating on out-of-ron base part.	35	35	0	285-0161 Seal cyl., artic. duct outboard, 3 blades
85-0161 0 35 35 Flame plate spalling due to effect of h beal cyl., artic. duct outboard, cycles on uneven coating or out-of-ro	85-0179-11 Damage resulting from binding of arti heed metal cyl. section of inboard rtic. duct, 3 blades 0 1 1 " " " " 85-0178-5 0 1 1 "<	Conservative precaution. Moderate w	17	35	18	
 18 35 17 Conservative precaution. Moderate v 17 Conservative precaution. Moderate v 18 35 17 Conservative precaution. Moderate v 195-0161 195 35 55 55 55 55 55 55 55 55 55 55 55 55	85-0179-11Damage resulting from binding of arti heef metal cyl. section of inboard atic. duct, 3 bladesDamage resulting from binding of arti duct outboard seal.rtic. duct, 3 blades011185-0178-51111"lexure assy's of artic. duct inboard imbal, 3 blades0113534Conservative precaution. No sign of d85-01620777Replaced by 285-3217. Improved des to prevent binding.11	Conservative precaution. Moderate w Small crack in one leaf of one seal.	11	18	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	.85-0217 Lip seal ,artic. duct outboard, 5 blade s
 85-0217 blades blad	85-0179-11Damage resulting from binding of arti duct outboard seal.rtic. duct, 3 blades01185-0178-51111exure assy's of artic. duct inboard3534Conservative precaution. No sign of d	Replaced by 285-3217. Improved desi to prevent binding.	2	2	0	.85-0162 Lip seal, artic. duct outboard, blades
85-0162 0 7 7 Replaced by 285-3217. Improved des to prevent binding. ip seal, artic. duct outboard, blades 0 7 18 11 Conservative precaution. Moderate v seal. 85-3217 ip seal, artic. duct outboard, blades 7 18 11 Conservative precaution. Moderate v seal. blades 11 Conservative precaution. Moderate v seal. 91 35 17 Conservative precaution. Moderate v seal. blades 18 35 17 Conservative precaution. Moderate v seal. 91 blades 35 17 Conservative precaution. Moderate v seal. 91 95-0161 eal cyl., artic. duct outboard, or 35 35 57 57 57 57	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Conservative precaution. No sign of d	34	35		imbal, 3 blades
 (imbal, 3 blades (indersides) (indersides)<td>85-0179-11 heef metal cyl. section of inboard duct outboard seal. rtic. duct, 3 blades 0 1 1 1</td><td></td><td>I</td><td></td><td>0</td><td>85-0178-5 Marita assu's of artic, duct inhoard</td>	85-0179-11 heef metal cyl. section of inboard duct outboard seal. rtic. duct, 3 blades 0 1 1 1		I		0	85-0178-5 Marita assu's of artic, duct inhoard
 85-0178-5 1 asysy's of artic. duct inboard imbal, 3 blades 1 asysy's of artic. duct inboard imbal, 3 blades 85-0162 85-0162 96-0162 97 7 7 7 Replaced by 285-3217. Improved destinates of the prevent binding. 85-01217 85-0161 85-0161 95-0161 		Damage resulting from binding of arti duct outboard seal.	1	-	°、	85-0179-11 heet metal cyl. section of inboard rtic. duct, 3 blades

...

TABLE 4.3-3 (Continued)

COMPONENTS REPLACED WITH NEW PARTS DURING WHIRL TEST

Reason	Handling damage.	Handling damage.	Handling damage.	Carbon softened and eroded.	Slight fretting.	Small amount of rust	To stay within estimated service evidence of damage.	Rust and some roughness.
Hours In Service	35	35	35	35	35	35	35	35
- Rotor Replaced	35	35	35	35	35	35	35	. 35
T i me Installed	0	. o	o	0	0	0	0	0
HTC-AD Dwg. No. and Description	285-0121 Armalon anti-fret shims on blade strap, 3 blades	285-0198 Armalon anti-fret shims on spars, 3 blades	285-0160 Carbon seal segments, artic. duct inboard, 1 blade	285-0590 Caron-faced unit, hub inner seal	285-0514 Hub gimb a l bearings	285-0303 One large Timken bearing, control torque tube	285-0307 Rod end bearings, central control rods	285-0313 Two Fafnir bearing, swashplate

4. 3-5

e. No

4

HUGHES TOOL COMPANY-AIRCRAFT DIVISION 285-16

	NODEL	REPORT NO	(62-16)	PAGE 5. 1-1
ANALYSIS				
PREPARED BY	-1			
CHECKED BY				

SECTION 5

TEST RESULTS AND ANALYSIS

This section of the report presents test results and analysis in the areas of performance, dynamics, thermal considerations (temperature and leakage measurements) structure, sound, and post-test inspection.

5.1 PERFORMANCE

5.1.1 Summary

1

Section 5. 1 presents the results of performance measurements made during the 60 hours whirl test program. It is shown that the two key parameters affecting the conversion of engine gas power to rotor power (duct friction coefficient and nozzle velocity coefficient) are both better than originally estimated. It is shown that the duct friction coefficient (and hence the pressure loss) for the test rotor is actually less than the value of . 004 used for performance estimates. It is also shown that the nozzle velocity coefficient, which is a measure of efficiency of the tip nozzle in converting pressure energy to jet velocity is about 2-1/2% better than the value of . 955 used for performance estimates.

As an over-all check of the performance of the test rotor and propulsion system, Figure 5.1-1 presents a comparison of measured and predicted rotor thrust. It can be seen that the agreement is very good. In this figure, the values of thrust are plotted against total pressure at the rotating seal. In this section, the procedures required to calculate rotor thrust from measurements of total pressure and other data are described. Figure 5. 1-1 also shows a maximum value of measured thrust of about 22,000 pounds. For the higher pressure ratio available from the T 64 gas generators $(\approx 2.8 \text{ atmospheres})$ the maximum thrust will be about 28,000 pounds.

5.1.2 Discussion

A performance analysis of the Hot Cycle Whirl Test System requires a study of the internal thermodynamics of the gas generator and ducting coupled with the external aerodynamics of the rotor blades. For simplicity, the performance of the J 57-P-19W gas generator, ducts, and blades are presented separately. Once introduced sequentially, however, the various analyses are assembled into an IBM-7090 computer program to permit a comparison of aerothermal predictions with strain gauge measurements of rotor thrust on the main rotor shaft and support pylons. This comparison, then permits a

-13

5.1-2

	NODEL	REPORT NO.	(62-16) FAGE 5. 1-
ANALYSIS			196 - C
PREPARED BY			
CHECKED BY			

direct check on the over-all efficiency of the system. Also, through pressure and temperature measurements at several stations along the system, the thermodynamic performance can be studied in increments thereby permitting isolation of any possible problem areas.

Nomenclature for this work is given in Appendix F.

5.1.3 Internal Thermodynamic Performance

This section presents the pressure and temperature losses from the engine to the rotating seal (hub) station. Duct losses between the rotating seal station and nozzle inlet station are covered in Sections 5.1.5.2 and 5.1.7.1. These sections also present data on the tip nozzle coefficients.

5. 1. 3. 1 Pressure and Temperature Losses

Pressures, temperatures, and flow rates are provided by Table 5. 1-1. The station locations are identified by Figure D-1 in Appendix D. From Table 5. 1-1 column 5, it can be seen that generally, the duct loss in temperature between the engine and the rotating seal station is of the order of $80-100^{\circ}$ F for high power runs. These values were fairly constant despite the fact that the blanket of insulation (fiberglass backed with aluminum foil) around the vertical ducts was saturated with rain water on occasion.

The total pressure loss parameter given by column 8 has a range from 0. 071 to 0. 098 showing a total pressure loss between the engine and the rotating seal station from 7. 1 to 9.8% of engine discharge pressure. The variation of pressure loss is mostly due to changing the position of the exhaust dump valve for off-line operation and these losses agree well with the predicted values for the whirl test installation. **TABLE 5. 1-1**

ł

DUCT LOSSES FROM ENGINE TO ROTATING SEAL (HUB) STATION

10	\mathbf{P}_{amb}	psia	14.77	14.77	14.77	14.81	14.78	14.70	14.70	14.69	14.82	14.82	14.81	
6	\mathbf{T}_{amb}	0F	56	× 56	56	50	49	66	66	62	55	54	49	
œ	$P_{T_{\gamma}} - P_{T_{Hub}}$	$^{\rm P}T_7$	0. 097	0. 095	0.098	0.077	0.081	0.075	0.071	0. 085	0.077	0.074	0. 095	
2	W _{Hub}	Lb/Sec	32.99	36.48	40.85	46.10	47.41	45.09	44.10	45.69	45.51	44.76	46.88	
6	${}^{P}T_{\gamma}/{}^{P}amb$	1 1	1. 623	1. 790	2.003	2.492	2. 397	2. 387	2.401	2. 362	2.455	2.366	2. 452	
S	$T_{T_7} - T_{Hub}$	0 F	21	26	47	89	96	95	87	96	89	89	98	
4	T_{Hub}	0 E	686	762	831	1186	1006	1011	1152	980	1186	1141	1017	
S	$\mathbf{P}_{\mathbf{T}_{\mathbf{Hub}}}$	psia	21. 65	23.92	26. 65	34.08	32.56	32.48	32.80	31.73	33. 56	32.44	32. 90	
2	$\mathbf{T}_{\mathbf{T}_{7}}$	о _F	707	788	878	1275	1,102	1166	1239	1076	1275	1230	1115	
	PT7	psia	23.97	26.43	29.58	36.91	35.43	35.10	35. 30	34.68	36. 37	35.05	36. 33	
	Run	No.	20	21	22	34	I	10*	11*	20 *	36	35	-	

^{*}Test runs of October and November, 1961. All other run numbers correspond to test series of February 27-28, 1962.

5.1-4

NALYBI6	
REPARED BY	
HECKED BY	
5 1 3 2	Nozzle Coefficients
5. 1. 5. 2	
	The effective velocity coefficient defined in Reference 5.1-1
is:	d
	e
-	
C_{γ}	$f = \frac{eff}{\sqrt{1}}$
-	
	$(\tau)_{1S}$ $(\tau)_{1S}$ $(\tau)_{1S}$
	for static blade
on (v pre A P F g w	nozzle inlet (Sta. d) conditions = $\frac{1}{w/g}$ r_{is} = jet velocity for full isentropic expansion to ambient essure based on nozzle inlet conditions = $\left\{\frac{2g \left[I + \frac{3}{8}R}{8-1} \left[I - \left(\frac{P_{f}}{P_{T_{d}}}\right)^{\frac{3}{2}}\right]\right\}^{\frac{3}{2}}$ = flow area = density = gross thrust = static pressure = nozzle flow rate
This coeffi pressure r that the eff region (in earlier the nozzles local back ambient pr discharge	cient was measured on the tip nozzle as a function of nozzle atio with the blade non-rotating. From this test, it was seen fective velocity coefficient is approximately 0.98 in the choked $(p_r \ge 1.86)$ which is 2.5% better than the 0.955 value used performance predictions. Further, due to the discharge of s into a vortex wake region at the tip of the loaded rotor, the pressure on the nozzle is considerably below atmospheric ressure. This causes early choking of the nozzle for engine pressures corresponding to P_{T_d}/P_{amtr}

This is pointed out to show that when considering the operation of the nozzle only, the coefficients may be defined in terms of the local back pressure P_f but for the overall performance of the ship, Pamb is the logical reference since it is the only measurable value.

HUGHES TO	OL COMPANY-AIRCE	RAFT DIVISION	
	NODEL	REPORT NO.	PAGE 5.1-
ANALYSIS			
PREPARED BY			
CHECKED BY		_	

It was found that a rotational speed of 170 rpm (design normal = 240 rpm) at approximately 6° collective pitch was suitable to cause choked flow. For a wide range of engine power, rpm, and collective pitch, Figure 5. 1-2 shows the effective velocity coefficient as a function of the nozzle exit flow parameter and shows an almost constant coefficient of approximate 0. 98 throughout the performance range of interest. This is substantiated by Figure 5. 1-3 which shows the actual and ideal flow vs nozzle pressure ratio (PTd/p_{amw}) utilizing nozzle coefficients corresponding to choked flow. The lower curve shows the flow function values corresponding to $(PTd/p_c) = (PTd/p_{amw})$

which is incorrect when applied to the rotating system as explained above.

5.1.3.3 <u>Refinements of Weight Flow Measurement</u> (See Fig. 5.1-4 for Branch Location)

A correct determination of the mass flow through the rotor is a requisite for accuracy in any subsequent performance calculation. Therefore, when in the early phase of the test program, discrepancies were discovered in the mass flow measurement, an effort was made to determine their origin. As the test data accumulated, it became apparent that in spite of symmetry of the test rig, the flow in the duct system was not symmetrical. In addition, the velocity distribution across the diameter of the duct was distinctly different from the Nikuradse profile used tentatively in previous computations. Eventually, these irregular conditions existing in the system were linked with the rotation of flow generated by the engine since the exhaust gas leaving the turbine disc at an angle contains considerable rotational energy. In a smooth and vaneless duct, the rotation is not immediately converted or dissipated. It moves along with the flow and substantially changes the velocity pattern from a classical distribution. From a large number of test runs taken over the entire range of rotor operation during October 27 through November 1, 1961, this

285-16 Page 5.1-7 (62-16 FIGURE 5.1-2 EFFECTIVE VELOCITY COEFFICIENT VS. FLOW FUNCTION 1.0 0.000-00-000-0.9 [©] Typical values over the range of measurement 0.8 $C_{v_{f}}$ 0.7 0.6 0.5 Т Т Т Т 60 50 80 70 $\overline{P_T}_e$

Ł

	HUGHES	TOOL COM	MPANY-AIRCRAFT	DIVISION	
			MODEL	REPORT NO.	PAGE 5.1-10
ANALYSIS					
PREPARED	BY				
CHECKED	BY				

pattern was found to be fairly stable.

The test data from the flow measuring stations showed that the velocity profiles from the Branch I station plotted as $\frac{v}{v_c}$ vs $\frac{r}{r_p}$ are almost flat $\frac{v}{v_c}$ in the center over about half of the duct diameter. The curves seem to be pivoted on the center and inclined at various angles from the inboard to the outboard side of the test rig. For the purpose of analysis all curves were transformed into the equivalent symmetrical profiles by plotting their mean ordinates. Or,

$$\frac{\mathbf{v}}{\mathbf{v}_{c}} \text{ mean} = 1/2 \left[\frac{\mathbf{v}}{\mathbf{v}_{c}} \text{ left} + \frac{\mathbf{v}}{\mathbf{v}_{c}} \right] \text{ right}$$

where r = radial distance from center line

 $\mathbf{r}_{\mathbf{p}}$ = pipe radius

9704

- v = local velocity
- v_c = centerline velocity

left and right = corresponding radial positions either side
 of center line.

It must be noted that the area weighted velocity computed for the original profile remains unchanged after such a transformation. Applied graphically, this method allows a fast and direct comparison of the large number of test data. It was thus disclosed that when reduced to the symmetrical form, all velocity profiles nearly coincided. Later this significant observation led to a further simplification of the method used in evaluating the weight flow in the system. Additionally, in computing the average velocity, an assumption was made that the transformed profiles also represented the duct sections other than those in the plane of probes. With this assumption, which incidentally is believed to represent the actual flow, a constant could be found showing how the average velocity at the flow measuring station of Branch I is related to the velocity measured in the duct center. Similarly, another constant

relationship $\left(\frac{v}{v_c}\right)_{average}$ was determined for the flow at the B ranch II

station. Although the velocity distribution in Branch II was markedly different, the same rules as described above were applicable. When the data from 50 test runs were analyzed, over 90% of the transformed profiles were found to be within \pm 1% from their mean value. This narrow spread most likely reflects the error of measurement. Outside of that band, the remaining 10% of the runs did not have a deviation exceeding 3% of the mean value.

In Branch I, low rotation tends to produce the steepest velocity profile.

Hughes T	OOL COMPANY-AIRCR	AFT DIVISION	
	MODEL	REPORT NO.	PAGE 5. 1
ANALYSIS			and the second s
PREPARED BY			

-11

On the other hand high rotation tends to produce flatter profiles. The range from steep to flat is very small, namely an average velocity equal to . 93 v to .95 v_c . In Branch II, rotation seems to act in the opposite direction, with effects less visible. The average velocities of the runs analyzed is represented by 935 and 927 as used for the Z_1 and Z_2 values in the computer program (see Appendix D). The interesting fact is that although the average values for Branches I and II may deviate up to .95 v_c and .91 v_c respectively, their mean value remains the same throughout all runs (around $.93 v_c$). The implication of this relationship is very convenient.

Figures 5.1-5 and 5.1-6 show the typical velocity profiles in Branch I and Branch II respectively. A series of five tests was selected for the purpose of illustrating conditions existing in both ducts. The test runs, taken at a constant pitch of 9°, cover the range of rpm from 170 to 240. The difference in velocity distribution between Branch I and II is obvious. The spread of the "equivalent" profiles in the two branches is respectively less than + . 6% and less than + . 2%. It is seen that the similarity of the "equivalent" profiles persists in spite of the varying power and the apparent scatter of actual velocity profiles,

Figure 5.1-7 shows the accumulated results from the 50 tests with both branches being included. The cross hatched areas around the two "average" profiles include also the most deviated profiles. The heavy line contours represent the majority of 90% of the test runs. Included for comparison are two analytically defined Nikuradse contours. These are drawn for the extreme Reynolds numbers that may occur in the duct. The more pronounced fullness of the actual profiles can be expected as the result of wall cooling of the hot gases which is the present case. The difference between Branch I and Branch II profiles is attributed mainly to rotation.

Figures 5.1-8 and 5.1-9 show a further step in computing the average velocity. The curves on Figure 5.1-8 are directly derived from the Branch I average contour (heavy line) shown in Figure 5.1-7. Figure 5.1-9 similarly corresponds to Branch II of Figure 5.1-7. The area under the upper curves is equal to the result of the integral defining the area weighted total velocity. The area under the lower curve equals the integral used in computing the mass weighted total pressure (see Appendix C).

5.1.4 J 57 Performance

Various aspects of the J 57 engine performance and operational characteristics are presented in Section 3.4 and Reference 3.4-2. To determine the engine air injection rate, an enthalpy balance across the engine is made as follows:

CHECKED BY.

KAR 10 X 10 TO THE V2 INCH JUJ-11 KEUTEL& ESSER CO. V-(TIV) 5.4.

-

A MENTEL A PSER CO. VILLALL

HAE KEUFTEL A ESSER CO. MARTHUEA.

Ţ

)

44 101 1/2 IN ... 355 ...

10 X 10 TO THE 1/2 INCH 359-11 KEUFFEL & ESSER CO. *ASTINU.5.A.

N.

5.1-16

HUGHES TOOL COMPANY-AIRCRAFT DIVISION

$$W_{a_2} h_2 + \eta_B W_f Q_f = h_{T_7} W_7$$

Where

h_{T2} total enthalpy of incoming air

 $\eta_{\rm B}$ combustion efficiency (≈ 0.96)

compressor inlet air flow rate

 $\Omega_{\rm f}$ lower heating value of JP-4 fuel (\approx 18,400 $^{\rm BTU/LB}$)

W_f fuel flow rate

total enthalpy at turbine exhaust (400% theoretical air)

w₇

hT7

w_{a2}

Thus, the engine air ingestion rate is

w_	÷	$(\mathcal{T}_B Q_f - \mathbf{T}_7)$	w.
ື2	-	$h_{T_7} - h_{T_2}$	"f

This equation is employed in the Non-Rotating Component equations of Appendix D.

The h_{T_2} values for air are taken from Reference 5.1-4 and are linearized over the ambient temperature range for use in the computer program. Also, the h_{T_7} values are taken from the same reference for 400%

theoretical air and is linearized over three temperature ranges for use. The values of specific heat at constant pressure and volume as well as gas constant is computed by the method of Reference 5. 1-5.

5.1.5 Rotor Power

To determine the rotor power through aerothermal analysis, the system is separated into two components (rotating and non-rotating) and the corresponding analyses are programmed for the IBM 7090 in subroutine form. For convenience the nomenclature and the input and output formats are given in Appendix F.

HUGHES TOOL COMPANY-AIRCRAFT DIVISION

	MODEL	REPORT NO.	PAGE 5. 1-18
ANALYBIB	-		
PREPARED BY			
CHECKED BY	<u> </u>		

5. 1. 5. 1 Non-Rotating Components

The non-rotating components include the J 57 gas generator and ducts required to deliver the hot gas to the rotor hub. Due to the length of the calculation, the details are given in Appendix D.

5.1.5.2 Rotating Components

The rotor power available is computed from the gas conditions of mass flow, temperature, and pressure existing at the tips of the rotating blades. These conditions differ from those at the rotor hub because of friction and contrifugal force acting on the gas. The gas conditions at the rotor hub are assumed equal to those discharging from the non-rotating ducting, described in Section 5. 1. 5. 1. The calculation procedure for computing the changes of gas conditions in going from hub to blade tip is described in Reference 5. 1-3. Reference 5. 1-3 is based on one dimensional, compressible flow relations developed in Reference 5. 1-6 and extended to the rotating helicopter blade case in Reference 5. 1-7. Because the treatment of References 5. 1-3, -6, and -7 is one dimensional, it was necessary to anticipate a simplification of what is really a complicated three-dimensional flow by computing the output gas conditions on a mass and/or area weighted basis. The gas conditions derived in Appendix D and computed in Steps 38, 100a and 100b are then used directly in this section. The equations that are used to convert gas conditions at the rotor hub to rotor power at the blade tips are as follows:

(1) Blade Root Pressure Ratio

$${}^{P}T_{3} = {}^{P_{0}} \times {}^{r_{2}} \times \left(\frac{r_{3}}{r_{2}}\right)$$

Where $r_2 = \overline{P}_T Hub/P_o$

Blade Duct Inlet Number (Substitute values of W, T_{T_2} , and P_{T_3} , and iterate to 0.1%

to find M₃)

(2)

$$\left(\frac{W\sqrt{T_{T}}}{A P_{T}}\right)_{3} = \frac{M_{3}\sqrt{\frac{\Upsilon g}{R}}}{\left(1 + \frac{\Upsilon - 1}{2} M_{3}^{2}\right)\frac{\Upsilon + 1}{2(\Upsilon - 1)}}$$

9704

A.

9704

, ,

UNCHES	TOOL	COMPANY-AIRCRAFT DIVISION	202+1
HUGHES			

	NODEL REPORT NO.	(62-16) PAGE 5. 1-20
ANALYSIS		
PREPARED BY		
CHECKED BY		

 $W_{g_4} = W_g$

 $T_{T_4} = T_{T_3} = T_{T_2}$

 $r_4 = r_2 \times \left(\frac{r_3}{r_2}\right) \times \left(\frac{r_4}{r_3}\right)$

Gas Conditions at Blade Tip (5)

Temperature

Mass Flow

Pressure Ratio

(6)

Jet Velocity

$$= C_{v_e} \sqrt{2 g J C_p T_{T_4}} \left[1 - \left(\frac{1}{r_4}\right)\frac{J-1}{\delta}\right]$$

(7)

v,

Rotor Power Available

$$RHP = \frac{W_g (V_j - V_T) V_T}{g \times 550}$$

It should be noted that computation of rotor power available depends on the value of several coefficients which are functions of the particular Hot Cycle hardware. These coefficients include f, the blade duct friction coefficient, ${}^{C}V_{e}$, the nozzle velocity coefficient, and ${}^{r}3/{}^{r}2$, the ratio of total pressure at the blade root to that at the rotor hub. These coefficients are established by tests such as References 5. 1-1 or 5. 1-8, or are given reasonable values based on tests of similar components. Reference 5, 1-1 permits determination of $^{\rm C}$ w, the nozzle flow coefficient, as well as $^{\rm C}V_{\rm e}$, the velocity coefficient. However, it was necessary to assume a value for f, the duct friction coefficient. By using the flow function, Equation 2, it is possible to make a cross-check on the assumed value of f. This is accomplished by recognizing that if there are no leaks, all of the mass flow that leaves the rotor hub must pass through the blade nozzles, which have total area ^AN. With the assumption of fixed gas temperature from the hub to the blade tip (which was found to be quite reasonable during whirl tests), the total pressure at the nozzle is therefore fixed. Since the pressure ratio at the hub, $r_2 = P_T hub/P_0$ is known, and the pressure ratio from the hub to the blade root, r_3/r_2 is also available, the blade pressure ratio $(r_4/r_3)_N$ that will satisfy the flow function at the nozzle is therefore determined.

	HUGHES	TOOL	COMPANY-AIRCRAFT	DIVISION	285-16		
			MODEL	REPORT NO.	(62 - 16)	PAGE	5.1-21
PREPARED							
CHECKED	BY						

Since r_4/r_3 is a function of β , in Equations (3) and (4), the accuracy of the assumed value of β can be established by comparing the values of r_4/r_3 from Equation (4) with $(r_4/r_3)_N$ from Equation (15). The procedure used to compute $(r_4/r_3)_N$ is as follows; (An iterative procedure is required to establish nozzle pressure ratio.):

(8) Critical Nozzle Pressure Ratio

$$r_4 = \left(1 + \frac{\gamma - 1}{2}\right) \frac{\gamma}{\gamma - 1}$$

(9) Initial Assumed Value of Nozzle Pressure Ratio

$$r_{4_a} = (r_4) = 1.15 r_2$$

assumed

(10) Nozzle Mach Number for Assumed Nozzle Pressure Ratio

If ${}^{r}4_{a} > {}^{r}4$ crit., ${}^{M}5 = 1.000$, otherwise, use following

equation:

$$M_{5} = \sqrt{\frac{\binom{r_{4}}{2} \frac{\cancel{r}-1}{\cancel{r}-1}}{\frac{\cancel{r}-1}{2}}}$$

(11) Flow Function at Nozzle Mach Number

$$\left(\frac{W\sqrt{T_T}}{AP_T}\right)_5 = X = \frac{M_5\sqrt{\frac{Yg}{R}}}{\left(1 + \frac{Y-1}{2}M_5^2\right)\frac{Y+1}{2(Y-1)}}$$

(12) Nozzle Flow Coefficient C_W

Find C_W for assumed value of r_{4_a} , or assume value \cong .98

9704

HUGHES	TOOL	COMPANY-AIRCRAFT	DIVISION	285-16	
		MODEL	REPORT NO.	(62 - 16)	PAGE 5. 1-22
ANALYSIS					
PREPARED BY.					
CHECKED BY					

(13) Computed Noszle Pressure Ratio

$$F_{4 \text{ comp.}} = \frac{W_{g} \sqrt{T_{T}}}{C_{w} A_{n} P_{o} X}$$

(14) Iterated Value of Nozzle Pressure Ratio

If ${}^{r}_{4_{comp}} < {}^{r}_{4_{a}}$, reduce ${}^{r}_{4_{a}}$ by .01 and repeat 10, 11, 12, and 13 until ${}^{r}_{4_{comp}} \ge {}^{r}_{4_{a}}$. This last value of ${}^{r}_{4_{a}} = {}^{r}_{4_{comp}}$.

(15) Blade Pressure Ratio Based on Flow Through Nozzle $(r_4/r_3)_N$

$$(r_4/r_3)_{\rm N} = \frac{r_4_{\rm comp}}{r_2 \times (\frac{r_3}{r_4})}$$

The value of $({r_4}/{r_3})_N$ can be compared to ${r_4}/{r_3}$ of Equation (4) to evaluate the assumed value of duct friction coefficient f.

5.1.6 Rotor Thrust Calculation

9704

The computed thrust of the rotor in hovering is determined from the rotor power available and the rotor geometry using standard NACA methods presented in Reference 5. 1-9. The approach is to make the power available equal to the power required; the power required is the sum of the induced power and the profile power. The geometry of the whirl test tower introduces some ground effect; its influence on induced power is determined from the empirical data presented in Reference 5. 1-9 Mas obtained for a 12% thick blade. As the Hot Cycle blades are 18% thick, the profile power has been increased by 17% to allow for the increased drag of the thicker section. The blades are twisted -8° ; therefore the correction to the over-all power coefficient presented on page 85 of Reference 5. 1-9 is used. Applying the above factors, the equation for power as a function of thrust - Equation 36 of Reference 5. 1-9 becomes:

$$C_{P} = C_{I} \left[\frac{C_{T}}{\sqrt{2}B} \left(\frac{T_{\infty}}{T} \right)^{3/2} + 1.17 \left(\frac{\sigma_{f}}{8} + \frac{2}{3} \frac{\sigma_{I}}{a} - \frac{C_{T}}{B^{2}} + \frac{4\sqrt{2}}{\sigma^{2}} \left(\frac{C_{T}}{B^{2}} \right)^{2} \right) \right]$$

This equation is iterated for various values of thrust until the power required is equal to the power available from Section 5.1.5.

HUGHES	TOOL	COMPANY-	AIRCRAFT	DIVISION	285-	-16	
					162	141	

	MODEL	REPORT NO.	(62-16)	PAGE 5. 1-23
ANALYSIS	ſ			
PREPARED BY	4			
CHECKED BY	4			

5.1.7 Rotor Thrust Measurement

The best evidence of the performance of the hot cycle rotor is a direct comparison of measured and computed rotor thrust as a function of engine power. Data were obtained during the 60 hour endurance test and reduced according to the procedures discussed in Section 5. 1. 5. 1 and 5. 1. 5. 2 on Non-Rotating and Rotating Ducting, and Section 5. 1. 6 on Rotor Thrust. Excellent agreement was obtained for the over-all performance conversion of measured engine output to measured rotor thrust.

5. 1. 7. 1 Rotating Duct Thermodynamics

Computed rotor thrust and measured rotor thrust are both direct functions of rotor power. Rotor power in turn is critically dependent on the actual hardware duct friction coefficient, f, and nozzle velocity coefficient, $^{C}V_{e}$. These two factors are the biggest unknowns in the rotating system. In the initial design stages, assumed values of f = 0.004 and $^{C}V_{e} = 0.955$ were chosen. All performance predicitions in application studies such as Reference 5. 1-10 and in the whirl tower performance estimate, Reference 5. 1-3 were based on these values of f and $^{C}V_{e}$.

The velocity coefficient ${}^{C}V_{e}$ was measured during the tether tests discussed in Reference 5.1-1. It is shown in that report that, at maximum nozzle pressure ratios, the measured velocity coefficient of the tip cascade is equal to 0.98 at pressure ratios corresponding to those available from the T-64 gas generator (2.6 - 2.9). This measured value is approximately 2.5% higher than the assumed value of 0.955.

The duct friction coefficient of f = 0.004 was shown to be conservative by comparison of nozzle pressure ratio derived in two different ways. A reference value of r_4 was computed by starting from the hub pressure ratio r_2 , multiplying it by the assumed value of

$$\left(\frac{r_3}{r_2}\right)$$

and multiplying again by the blade pressure ratio

$$\left(\frac{r_4}{r_3}\right)$$

which is a function of the assumed duct friction coefficient, f = 0.004 (Equations (1) through (5) of 5. 1. 5. 2). A second value of nozzle pressure ratio, r_{4_N} was

HUGHES TOOL COMPANY-AIRCRAFT DIVISION 285-16

	MODEL	REPORT NO.	(62-16) PAGE 5. 1-24
ANALYSIS			
PREPARED BY			
CHECKED BY			

computed using the nozzle flow function equation and making the assumption that all of the mass flow that passed through the hub measuring station also passed through the tip nozzle. No evidence whatsoever was found of any appreciable leaks, so it is felt reasonable to assume all the gas went out the tip nozzle. When this second value of tip nozzle pressure ration was computed (r_{4N} , from Equations (8) through (15) of Section 5.1.5.2), it was found that r_{4N}^4 was 5 to 6% higher than the reference value based on computations

using f = 0.004. The tip nozzle pressure ratio computed for the nozzle, r_{4N} , is the actual pressure ratio required to push the measured mass flow through the nozzle If any lower pressure is available the mass flow will not go through the nozzle. Since it was established that the measured flow did go through the tip nozzles, the reference pressure ratio based on the duct friction coefficient was too low. Since a low computed nozzle pressure is caused by a high duct friction coefficient, a reduction of duct friction coefficient will permit the nozzle pressure based on f to rise to the value permitted by the nozzle equation, r_{4N} . Therefore, the duct friction must be somewhat lower than the assumed value of 0.004. Consequently, performance computations based on f = 0.004 are conservative, and higher rotor powers will be computed when the lower and more accurate value of f is established.

5.1.7.2 Rotor Aerodynamics

Figure 5.1-1 shows that measured rotor thrust agrees very well with the computer rotor thrust as a function of rotating seal pressure ratio, up to the maximum value available from the J-57 turbojet used during the whirl tests. The calculated curve of Figure 5.1-1 includes an allowance for the power required to centrifically pump the spar cooling air on the test rotor. The mean value of maximum measured lift was approximately 2),000 pounds, at a seal pressure ratio of 2.2 atmosphere. It should be noted that extrapolation of the J-57 data (which agrees very well with theory) indicates that the rotor will produce over 28,000 pounds of lift at a 2.82 pressure ratio which is available from the ST129 model of the T-64 gas generator.

1.

	HUGHES	TOOL	COMPANY-AIRCRAFT	DIVISION	285-16	
			NODEL	REPORT NO.	(62-16)	PAGE 5. 2-
ANALYSIS						2.2.4
PREPARED	• ¥					
CHECKED	BY					

5.2 ROTOR DYNAMICS

9704

A free floating hub configuration was selected for the Hot Cycle Rotor to avoid the need for lead-lag hinges. No dynamic or flutter problems were evidenced during the entire whirl test program. During the early phases of the program, while building up to higher values of rpm and collective pitch, the cyclic and collective controls were pulsed to establish proximity to resonance of flutter conditions. At no time were such conditions in evidence.

Reference 5.2-1 discusses the calculated dynamic characteristics of the Hot Cycle rotor and concludes that there are no resonant conditions in the operating rotor speed range. The absence of any dynamic problems during the whirl test program substantiates the prediction of Reference 5.2-1.

	MODEL REPORT NO. (62-16) PAGE 5.
REPARED BY	
HECKED BY	
5.3 <u>TE</u>	MPERATURE AND LEAKAGE SURVEYS
5.3.1 <u>Co</u>	mparison of Design With Measured Temperatures
5.3.1.1 <u>s</u>	ummary .
tures corr stations. ditions.	Table 5. 3-1 compares measured and estimated component tempera- esponding to gas temperature as measured at the flow measuring No correction is made to account for the difference in ambient con- the analysis of all data leads to the following conclusions:
a.	The temperatures of the duct and flexures are as predicted.
ь.	All remaining components operate at temperatures considerably lower than predicted. Spars, outer skin, and hub temperatures compared with the estimates are more than 40% or 50% cooler. These low thermocouple readings are confirmed by indications of temperature sensitive tape checked at corresponding locations.
5.3.1.2 <u>I</u>	Discussion
prevailing The object	This section contains a brief study of temperature distribution in the hot cycle rotor under maximum operating conditions. ive was to provide:
а.	A comprehensive presentation of data from the whirl test program
b.	A check of all component temperatures earlier predicted in Reference 5. 3-1.
Several fig in the whin ture is inc interpolati the actual	pures are prepared to enable a quick review of thermal conditions ling rotor. Where applicable, the "predicted" reference tempera- luded for a direct comparison with the measured temperatures. An on equation is given below for reducing estimates to correspond to test component temperatures. $T = 100 + \frac{(T_{1200} - 100)(T_{gas} - 100)}{1100}$
This equat It appears from Refe of the high temperatu ture used tions were	ion was applied when correcting data tabulated in the summary. that corrections are small and in many cases the basic prediction rence 5.3-1 can be used either as a reference or as an indication est possible temperature. The estimates were based on 1200° gas re and 100° F day at sea level. One exception was the duct tempera in the analysis of flexures, which was 1050° F. In this case correc- used in reverse to predict the average temperature of flexures.

.

.

9704

1

ANAL TEIS PREPARED Checked	BY								
		Component Temp. % of Estimated	4. 2% Cooler	1. 2% Cooler	41% Cooler	42% Cooler	1% Hotter		
		Actual Error	+48	+13	+185	+183	- 7		
	RES	Estimated Absolute Error [‡]	-50, +30	-50, +30	-60, +100	-60, +100	- 0, +200		
: 5. 3- 1	EMPERATU	Measured	1105	1070	272	240	640		
TABLE	NPONENT T	Corrected for 1176°F Gas Temp.	1153	1083	457	423	633		
	CO	Predicted at 1200°F Gas Temp.	1177	1105	465	430	645	- Predicted	
		COMPONENT	Duct 3/8" from chord line BS-1-13	Duct top, BS-18-4 Blade Radial Station	Outer Skin on the Rib, BS-18-7	Rear Spar BRS-3	Flexure BC ₂ Aver.	[#] ERROR = Measured	

HUGHES TOOL COMPANY-AIRCRAFT DIVISION 285-16

	MODEL REPORT N	0. (62-16) PAGE 3. 3+ 3
ANALYSIS		
PREPARED BY		
CHECKED BY		

5. 3. 1. 3 Temperature Survey

Data from the following tests were selected to include two representative maximum temperature steady state runs, a fast acceleration transient, and a high temperature transient.

(1) Test Run No. 66, Dec. 1, 1961, turbine discharge temperature $T_{T_{-}} = 1255^{\circ}F$, turbine discharge pressure $P_{T_{-}} = 21.1$ psig,

gas temperature at flow measuring stations 1176°F, ambient temperature 64°F, 235 RPM at 8.5° collective pitch.

(2) Test Run No. 11, October 27, 1961, $T_{T_7} = 1237^{\circ}F$, $P_{T_7} =$

20.6 psig, gas temperature at flow measuring stations 1152° F, ambient temperature 65° F, 240 RPM at 9° collective pitch. (Data from Run No. 11 are used only on Figure 5.3-5 for the record of the hub mast temperatures).

- (3) Transient test on December 11, 1961, Run No. 19, gas temperature at flow measuring stations 720°F to 1175°F.
- (4) Transient test on Dec. 13, 1961, $T_{T_7} = 1220^{\circ}F$, $P_{T_7} = 21.1$ psig, 240 RPM at 8° collective. Gas temperature at flow measuring station not recorded due to thermocouple failure.

Figure 5.3-1 shows duct and outer skin temperatures measured at the inboard segment (No. 1) during Run No. 66.

Figure 5.3-2 shows similar data taken at the outboard Section No. 18 during the same runs. It can be seen that both the duct wall temperature and the temperature of the outer skin are lower than estimated.

Figure 5.3-3 shows the temperature distribution in the flexures, spar and cooling air. This is the most complete set of data that covers any specific area of the rotor. The plot makes a good picture of temperature distribution along the blade.

For the flexure temperature distribution the test results of Figure 5.3-3 positively confirm all predictions. These data are based on 35 active thermocouples. The figure also shows the spread of temperatures that may be expected to exist within any flexure.

		Ti 1 Tita Tita				1			1	- i			
				°F.						<u> </u>			·
				700				-			i		
						1	·						
				,					L				· • • • • • •
\mathbb{H}^{1}	1									8			+i
							\$		+	- 0 -			+ +
E PA	0	······					. 8		L,sL			\$	- -
				600		1			111			1. 1	1
	1	+	11		[1-1		• •• •••••••••••••••••••••••••••••••••	1 1			r	
	3		#11. · · · ·	1.1.1.1.1	· · · · · · · ·		aa di sada		i .			-0-	
LAN	0	B							T	_			1
17	TORIMS	TAN 400							++-			2	
	MAN ALL												
	1 ROMENUS			500								1.	
	J. J. MARA	0000				1			1			12	, ,
	L		·			_			<u> </u>				1
						M	RASUREL	TRM	PERAT	TIRE O	FFLEX	URES	
	+	╶╁╍╍┼╍╍┨╼╵┽╍				A	T 1174	T GA	S TRA	PERAT	URE		1
No. 1	0 4					11							
	V			400				i.				1	
No. 2	0 4	>						••••	1 1				
				II		4.1		į	ļ				i
No. 3	0 4							1.				1	
	+ b	-+	+ + +			111		1	1				
No. 4	e			i					I			_ ii.,	Pr.
	A I			300				÷.				00	OLING
BLUE BL	ADE _	••••••••••••••••••••••••		- 500	f	+ +			1				
TELLO	BLADE	· · · · · · · · · · · · · · · · · · ·										hr has	-
					REAF	SPA	R	: i					
						1		X					
								`	-				
				200									
finit.						1	-						
							FRONT	SPAR					
								1					
						1	1						
<u>↓</u>		n na international de la compañía d		- r · ·	•••••								
				100			1				i	1	
								°					
++	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	: 								· · · · • • • • • • • •	··· ŧ ··· ŧ ···	· + · · · · + ,
								4			l'i		an a L
			1						1				
STATIE	ROOT COOLTN	ATR (PTT)		1.00			8 YERV AUT	<u>a</u>	+				++-
STA 7	7 TRMPERAM	URE RANGE		0			No. 2	. 1		4		6	
	a b transferring the Here	Acen corrections	X					1					
			the					· ·	i			ere 🖡 e rațion	
BLATIC	ROOT GOOLDW	G ATR											
(EXTT)	874. 53.7	5 A24			- 250-850)°F	-						
TEMPER	ATURE RANGE		\bigcirc		i			••••• <u>+</u> •••••	+		~~~{~~````````````````````````````````		· - · · · i-
			880-840	F				1	ļ				
								. 1	i			FIGURE	5.3-
		· · · · · · · · · · · · · · · · · · ·	ala selas b					i j					
					L	·			FL	exure	S, SPAR	l, and Ci	OOLIN
				1		i				TEM	PERATUR	us pistr:	IBULI
											RUN	NQ. 66	1 - i-
			-		ļ	÷	Ì		ļ				-
							· •		†° - † '		· · · · ·		· · · ·
			1						1 0	1			0

Kot 10 X 10 TO THE ', INCH 359-11LG

, with

HUGHES TOOL COMPANY-AIRCRAFT DIVISION 285-16

	MODEL	REPORT NO. (62-16)	PAGE 5. 3-6
ANALYSIS			C7
PREPARED BY			
CHECKED BY			

The rear spar temperature is included on the same figure. This is also a very well instrumented component covered with 8 active thermocouples. At sections where thermocouples were close together the average values were used in the plot. The front spar is covered only with a single active thermocouple. This thermocouple consistently indicated that the front spar is always cooler than the rear spar. Similarly the front spar cooling air has lower temperature than air in the rear cooling duct. When compared with the estimates, it is evident that both spars actually operate at lower temperatures than predicted.

Figure 5. 3-3 also shows the temperatures of the blade root cooling air as measured at Station 53. 4 and Station 77 on all three blades.

Figure 5. 3-4 shows a plot of transient temperatures during acceleration runs. The curves are directly transcribed from the Leeds Northrup recorder equipped with the selector switch for this purpose. It is interesting to note that the outer skin temperatures change little between idling and the maximum power. The differential temperature between the duct and the skin is largest at steady state. Transient runs did not disclose the existence of any critical thermal conditions in the blade.

Figure 3. 3-5 shows temperatures prevailing in the hub of the rotor. Two hot runs are presented. Run No. 66 with gas temperature $1176^{\circ}F$ and Run No. 11 with gas temperature $1152^{\circ}F$. It can be seen that the hub assembly temperatures are considerably lower than predicted. Since the hub assembly was not a subject of Reference 5. 3-1, the predicted values were taken from Reference 5. 3-2. As higher readings from Run No. 66 cannot be explained entirely by the small difference in gas temperature, they evidently indicate some minor leakage in the hub.

Figure 5. 3-6 and 5. 3-7 show the relation between the temperature of pertinent rotor components and the turbine discharge temperature $T_{T_{T}}$. It

is interesting to note that most of the component temperatures are almost directly proportional to T_{T_7} . The data of Figures 5.3-6 and 5.3-7 represent 13 test runs taken at various rotor rpm and engine temperature levels. The hottest run of this series was run No. 11 earlier described in Section 5.3.1.3.

5.3.2 Leakage Results

A typical test setup used for the measurement of gas leakage in the various components of the rotor system is shown on Figure 5, 3-8.

The component under test, having its inlets and outlets sealed, is

11.	1	BS-18-7				Tur		T	1	- <u>1;-</u>	1			1-1
	+		+		-	1			41					
	1													
	F	B\$-18-2						+			+			+
	11	1	4	Yf		1		4	4					
	11	TO DOING						1 .		21				
	1	B RUD 1				HEAL	"	1	1	-	++			+
E		Į	4 : 1] [- 				1	· · · · · · · · · · · · · · · · · · ·		4
							VI	1 ;						
			+		Da-10-0			1 1						+
-					-			• 8	-	in the	+ +			++
	ļ		1 1		B0.10.9									DUCT
	1				D0-70-2		1	1	ļ	1				1
1	-					1			-		· · · · · · · · · · · ·		i in in i	-
			SIGHE	WT NO. 18										
÷			Import	m mmm		-		1	1					1
		100	ATTON O	THERE SCI	JUPLIES					1. A			+	++
			CIUS 1 W	MULT RIES			1000	++	1					
					-	:	1		-				1 .	
Ei.						1		1 1				••••	-	+ +
E.						+	+		· · · · · · · · · · · · · · · · · · ·					
1		NOTE :											- :	
17														1
		READINGS OF	DUCT W	ALL		+	800		•	+	<u> </u>	+		
-		TEMPERATURE	BS-18-	2 and BS-1	8-6									
111	1. 1	WERE ALMOST	IDENTI	CAL									1.1.1	1
	1		F			<u> </u> •	+	+#	+			·		
4		READINGS OF	OUTER !	SKIN TEMPS	RATURE		L	L		L			1.	
.		BS-18-7 and	BS-18-	9 WERE			600						1	\top \uparrow
1		WITHIN + 5%	FROM T	HEIR AVERA	G		000	+	+	†	+		++	t
H	•	VALUE.			· · · · · · · · · · · · · · · · · · ·									
11.												11		
1	:	HEAVY LINES	REPRESI	ENT PLOT C	FAVERA	CH.		1	1	1				
		TEMPERATURE	OF DUC	I WALL OR		· · · · · ·	hand it is	1.1. ;						ļ
1111		OUTHR SEIN.	<u> </u>				400						i	
				min and a d								1	Duter	Ski
		TB	NO LENT	TEMPERATU	NES 1			- ∮ ∼∔ce e	· · · · · · · · ·			••••••••••••••••••••••••••••••••••••••		
			Bast	12.1001	-			1		-Skin	Front		1: :	R
HET		1030		LOPISOL ST				1 .	L					
H.		1000	ange at	soure roup.				1	1.0			· · · · · · · · · · · · · · · · · · ·		
Tit		Test of	Dag	1-1961 -+	-+		200					===		
41		1170 .	ing. Die	sch. Tamp		I					- 1			
H [i									/ /	5ki	n Hear		
<u></u>	-+	- Prediet	ed at	1200 Dunt	Gas. T	- 0.00	<u> </u>							
				an kanal an an a							+ = = = =	- + +		
i: I												1		
1	1		STEADY	STATE:										
:	• -						t t		20	D	40	6	50	
		- Test Ru	in No. 6	5 on Dec.	1-1961	at								
4.1	- [highest	record	led gas te	mp. (11	76 F)								
		(spar t	hermolec	uples not	at .					1				
	·	No. 18	segmen	16)						1		I	LOORE 1	.3+4
F					1							TRANS LENT	TEMPE	ATUR
											P	REDICTED	AND ME	SUR
int.	·				1									
i, 1														
	1								101 - Shee					
		1 1			- 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10			4						

КоЕ 10 X 10 TO THE 12 INCH 359-11LG

۲,

£

5.3-9

10X10T0 THE MINCH 359-11

5.3-10

No.Y

Figure 5.3-8

.....

\, /

Lookage Test Typical Test Setup

HUGHES TOOL COMPANY-AIRCRAI	FT DIVISION 285.	- 16
MODEL	REPORT NO. (62-	16) PAGE 5. 3-12
ANALYSIS		
PREPARED BY		
CHECKED BY		

connected to the pressure source through a flow meter. One of the two pressure gages required for the test is coupled directly to the meter, while the other measures pressure maintained in the tested duct. The measurement of air flow (cfm) and the indications of the two pressure gages (psig) are used to estimate the rate of leakage under typical high power whirl conditions.

The flow rate through the meter W_m equals the rate of leakage in the component W_1 ; the ratio of the corrected leakage W_W representing the whirl conditions to the measured leakage can be expressed in terms of a fundamental equation.

$$w_{\rm m} = w_1 = \frac{Q}{60} \rho_{\rm m} ~(1b/sec)$$

$$\frac{W_{w}}{W_{1}} = \frac{KA\rho_{w}Y}{KA\rho_{1}Y} \frac{\sqrt{2g(P_{wa} - P_{am})/\rho_{w}}}{\sqrt{2g(P_{1a} - P_{am})/\rho_{1}}} = (1)$$

$$= \frac{\rho_{w}}{\rho_{1}} \sqrt{\frac{P_{wg}\rho_{1}}{P_{1g}\rho_{w}}} = \sqrt{\frac{P_{wg}P_{wa}}{P_{1g}P_{1a}}}$$

Where

- Q = flow meter readout (cfm) ρ = specific weight (lb/ft³) W = air flow (leakage) lb/sec Subscripts single or combined m flow meter l test condition w whirl condition
 - g gage pressure
 - a absolute pressure
 - am ambient pressure

Equation (1) determines the correction necessary to convert the rate of measured leakage at a duct test pressure P_{1g} , to that which will occur at whirl pressure P_{wg} .

$$\mathbf{w}_{\mathbf{w}} = \mathbf{w}_{1} \qquad \sqrt{\frac{\mathbf{P}_{\mathbf{w}g} \mathbf{P}_{\mathbf{w}a}}{\mathbf{P}_{1} \mathbf{P}_{1}}}$$

In addition, due to the elevated whirl temperature, the density of escaping gas is considerably lower than the density of ambient air used for testing. The ratio of densities at different temperatures (other parameters being constant) is

$$\frac{\rho_{\rm w}}{\rho_{\rm l}} = \frac{T_{\rm l}}{T_{\rm w}}$$

on the other hand, the effect of temperature on the gas escape velocity acts in the opposite direction. The ratio of the escape velocities is

 $\frac{\mathbf{v}_{\mathbf{w}}}{\mathbf{v}_{1}} = \frac{\mathbf{T}_{\mathbf{w}}}{\mathbf{T}_{1}} \cdot$

The combined effect of the above relations results in

$$\frac{W_{w}}{W_{1}} = \sqrt{\frac{T_{1}}{T_{w}}}$$
 (2)

1

The correction factor due to the combined differences of pressure and temperature that exist between the test and the whirl conditions is:

$$\frac{W_{w}}{W_{1}} = \sqrt{\frac{P_{wg \times} P_{wa \times} T_{1}}{\frac{P_{lg \times} P_{la \times} T_{w}}{\frac{P_{lg \times} P_{wa \times} T_{w}}{\frac{P_{lg \times} P_{wa \times} T_{w}}{\frac{P_{lg \times} P_{wa \times} T_{w}}{\frac{P_{wg \times} P_{wg \times} P_{w}}{\frac{P_{wg \times} P_{wg \times} P_{w}}{\frac{P_{wg \times} P_{w}}{\frac{P_{w}}$$

The rate of leakage measured at the test pressure of 23.6 psig and standard ambient conditions at sea level is converted to the anticipated leakage at the 21 psig blade pressure and 1190° F gas temperature as follows:

$$W_{w} = \frac{Q}{60} P_{m} \sqrt{\frac{P_{wg x} P_{wa x} T_{1}}{P_{1g x} P_{1a x} T_{w}}}$$
$$= \frac{Q P_{ma} 144}{60 \times 53.35 \times 530} \sqrt{\frac{P_{wg x} P_{wa x} T_{1}}{P_{1g x} P_{1a x} T_{w}}}$$
(4)

This equation was used to prepare Table 5.3-2.

	HUGHES TOOL COM	PANY-AIRCRAFT	DIVISION	285-16 (62-16)	PAGE 5. 3	- 14
	NALYSIS					
-	HECKED BY		- <u></u>			4

and for the test pressure $P_1 = 20$ psig,

$$W_{w} = \frac{5.00}{10^{5}} Q P_{mg}$$
 (5)

Equations (4) and (5) were used to prepare Table 5.3-2.

I

I

I

285-16 (62-16)

TABLE 5. 3-2

I

LEAKAGE MEASUREMENTS

	Hours	D		117	Leakage	
Asembly	Whirl Time	Fl Psig	Q cfm	ww #/sec	% of Com)- December 1
Under Test	Before	Duct Test	Meter	Corrected	penent	Kemarks
7	Test	Pressure	Flow Rate	Leakage	Flow	
1						
Blue Blade	0	23.6	Less than 1 cfm	0.00393	0. 027	
1						
. ed Blade	0	23.6	18	0. 00393	0. 027	
Yellow Blade	0	23.6	11	0.00393	0. 027	
Hub Ass'y	0	23.6	11	0. 00393	0.009	
Blue Blade	18	23.6	0.9	0. 00355	0. 02 4	
Fiel Blade	18	23.6	1.5	0.00592	0. 038	
lellow Blade	18	23.6	2.8	0.01105	0.072	
Total 3 Blades	18	23.6	5.2		0.044	
Totor System*	18	23.6	17.0	0.0672	0.146	
) otor System	18	20	17.0	0.0767	0. 168	On the tower,
Fotor System	35	Negligible	20.0	-	High Leak	On the tower
					due to de-	
					fective seal	l
l lue Blade	35	23.6	1.5	0. 00593	0. 0388	
Red Blade	35	23.6	2.7	0.0109	0.0698	
sllow Blade	35	23.6	2.7	0.0107	0.0698	
l 15 Ass'y	35	23.6	4.5	0.0178	0.0387	As rec'd from
l ib Ass'y	35	23.6	1.8	0.00712	0.0154	After rapping to
						seat seals
Hub Ass'y	35	23.6	0.6	0, 00237	0.00515	Reassembled
1	25	20				after teardown
1. Mor Ass'y	35	20	17	0.0767	0, 168	Reassembled
						after teardown
L_ue Blade	60	23.6	2.0	0. 00792	0.0517	
Red Blade	60	23.6	4.0	0.0158	0.103	
1 sllow Blade	60	23.6	3. 2	0. 0131	0. 0855	
Lab Ass'y	60	23.6	13.2	0.0523	- 0.114	

⁴ Note: Rotor System includes the hub plus the three blades

5. 3-15

HUGHES	TOOL	COMPANY-AIRCRAFT	DIVISION	285-16 (62-16)	PAGE 5. 4-1
ANALYSIS					
PREPARED BY					
CHECKED BY-				• · · · · · · · · · · · · · · · · · · ·	

5.4 STRUCTURAL EFFECTS

5.4.1 Comparison of Design With Measured Mechanical Strains

Typical Strain Gage data obtained during the whirl test are presented in Figures 5.4-1 through 5.4-4. These are discussed below.

5, 4, 1, 1 Blade Pitch Arm Loads

Pitch Arm cyclic load versus wind speed is presented in Figure 5.4-1. All of the measured cyclic pitch arm loads fall well below the design limit. (Reference 5.4-1)

5.4.1.2 Rear Spar Flapwise Bending Moments at Station 53.5 Inches

Blade cyclic flapwise bending moments versus wind speed are plotted for blade station 53.5 inches in Figure 5.4-2. The moments plotted are the maximum cyclic moments that occurred during typical operating conditions. The measured cyclic bending moments are below the design allowable limit, (Reference 5.4-1) with the exception of one point. A few cycles at this amplitude occurred and probably resulted from wind gusts.

5.4.1.3 Rear Spar Flapwise Bending Moments at Station 73.4 Inches

Blade cyclic flapwise bending moments versus wind speed are plotted for blade station 73.4 inches in Figure 5.4-3. The moments plotted are the maximum cyclic moments that occurred during typical operating conditions. The measured cyclic bending moments are below the design allowable limit, (Reference 5.4-1) with the exception of one point. This point occurred during large wind gusts with the wind varying from 19 to 25 MPH.

5.4.1.4 Front and Rear Spar Cyclic Axial Load (Cyclic Chordwise Bending)

Plotted in Figure 5. 4-4 are the measured cyclic axial loads in the rear spar at station 103 inches, and front spar at station 83.3 inches, versus wind speed. The loads plotted are the maximum cyclic loads that occurred during typical operating conditions. Three points for the rear spar and nine points for the front spar fell above the endurance limit, (Reference 5. 4-1). It is believed that the spar cyclic axial loads (cyclic chordwise bending) were aggravated by gusty wind conditions. It is estimated that the small number of cycles above the endurance limit, used up a very small percentage of the service life of the blade.

5.4-2

5.4-5

HUGHES TOOL CO	OMPANY-	AIRCRAFT	DIVISION
ANALYSIS HOT CYCLE	MODEL	285	REPORT NO. 285-16 PAGE 3. 4-1
PREPARED BY C.R. SMITH			
CHECKED BY			

5.4.2 THERMAL EFFECTS ON STRUCTURE

A COMPARISON OF DESIGN WITH MEASURED TEMPERATURES FOR THE HOT CYCLE ROTOR IS PRESENTED IN SECTION S.Z.I. THE RESULTS, FOR THE MOST PART, SHOW THAT PREDICTED VALUES USED IN DESIGN WERE REASONABLY ACCURATE FOR CRITICAL COMPONENTS.

THE ANALYSIS WHICH FOLLOWS SINGLES OUT SEVERAL CONTONENTS AND ANALYZES THE THENTHLE FREETS OF THE MEASURED TEMP-EXPTURES. FROM AN OVER ALL STANDPOINT, INSPECT-ION OF THE ROTOR SUBSEQUENT TO COMPLETION OF THE WHIRL TESTS SHOWED NO DELETERIOUS EFFECTS OF TEMPERATURE ON THE STRUCTURE.

5.4.2.1 BLADE SEGMENT RIBS

X SKIN TEMR ("F) AT RIB (MEASURED)

· DUCT WALL TENP. (°F) BETWEEN RIBS (MEASURED)

() VALUES IN PARENTHESES ARE DESIGN VALUES

NOTE: TENIPERATORE CONTRACISED SHOWN IS FOR SEGNENT IS. THERMOCOUPLES COULD NOT BE LOCATED ON THE DUCT WALL AT THE RIB BECAUSE OF FABRICATION RESTRICTIONS.

HUGHES TOOL COMPA	NY-AIRCRAFT DIVIS	ON E 4-7
ANALYSIS HOT CYCLE MO	DEL 285 REPORT	NO. 285-16 PAGE 5. 4-1
CHECKED BY-		
BLADE SEGMENT RIES (CONTD)	
THEOMON STRESSES A	< CALCULATE	1 IN FEE 54-1
ARE BASED ON TEMPER	CATURES AT	THE RIB.
TEINERATURES OF THE	AT MEASUREL LUCT AT TH	E KIE ARE
DIFFENENT BY THE S THE TEMPERATURES B	ATTE INCREME ETWEEN RIS.	10.17 A-S S THE
FOLLOWING MAY BE S	URMISED:	
AT (DUCT BETWEEN RIE:	5)= 1100-1067=	231=
FRAM FREDICTED CURVE	Т (ат Кісі) — 9 (Кел.	15°F Section 5.3.1)
Teourerses (AT Ries) = 915	-33 = 882°F	
THEN: AT (OURT TO SEN)=	882 - 272 = 6	10° F
AT' (DESIGN) = 10	50-500= 550°F	(REF. 5.2-1, FG 5.2.4.12)
THEREFORE THE THE ON MEASIRED TENTHER DESIGN BY THE RAT	THERMAL STR ATURES ARE	PESSES BASED HICHER THAN
R= 610 = 1.11 0	R. 11 22 Hier	ER.
ALTHOUGH THE ALC.L THE POSSIBILITY OF H POST TEST INSPESTION SHOWED NO EVIDENCE	CHER THERI S OF THE OF PERMAN	INDICATES TAL STRESSES DUCT WALLS ENT SET,
5.4.2.2 BLADE SPARS		
MERSURED TEMPERAT WERE WELL BELOW P. AT THESE LOW TEMP ON THE MATERIAL PROD NEGLISIELE.	WRES OF TH REDICTED TED ENATURES TH PERTIES OF TH	E SPARS MPERATURES. E EFFECT TRNIUM IS
	DESIEN	MAX MEASURED
FRONT SPAK	460°F	TEMPERATURE 170°=
KEAR SPAR	435°,=	230°F

.

HUGHES TOOL CO	MPANY-AIRCRAFT	DIVISION	
CHECKED BY			

5.4.2.3 ELADE FLEXURES - CONSTANT SECTION

IN THE INITIAL DESIGN, THE FLEXURES JOINING THE BLADE SEGMENTS WERE OF ELECTROFORMED VICKEL. HOWGVER DUE TO A PROCUREMENT PROCLEM WITH THE NICKEL PARTS, THE ERSIC FLEXURE WAS CHANGED TO INCONEL'X' WHICH PROVED TO BE SUPERIOR FROM BOTH A FATIGUE AND TEMPERATURE STANDPOINT. THE INCONEL'X' PARTS WERE USED THROUGHOUT WITH THE EXCEPTION OF THE LAST THREE FLEXURES AT THE TIP, WHERE CYCLIC DEFLECTIONS ARE A MINIMUM. A COMPARISON OF PREDICTED AND MEASURED TEMPERATURES IS GIVEN BELOW. POST TEST INSPECTION SHOWED NO DAMAGE TO EITHER TYPE FLEXURE,

FLERURE	DESIGN TEMP.	MEASURED TEMP,
ELECTRO-FORM NICKEL	600°F	SIO'F) (REF
INCONEL X"	600° F *	660°F SECT. 5.3.1)

#INCONEL'X RETAINS ITS STRENGTH TO APPROX, 1000 F

5.4.2.4 ROTOR HUB & SHAFT

9704

MEASURED TEMPERATURES OF SECTION 5.3.1 ARE BELOW PREDICTED TEMPERATURES FOR ALL STRUCTURAL COMPONENTS.

HUGHES TOOL COMPANY-AIRCRAFT DIVISION
ANALYON HOT CYCLE MODEL 285 REPORT NO. 285-16 PAGE 5. 4-
CHECKED BY
5.4.3 GIMBAL LUG STRESSES
THE HUE IS ATTACHED TO THE GIMBAL
RING THRU LUGS THAT EXTEND DOWN FROM THE 285-0529 FITTING AND STRADDLE THE TWO
BEARINGS. THE CRITICAL DESIGN LOAD WAS
THE LUSS. A COMPARISON OF DESIGN AND
MEASURED LOADS AND STRESSES IS GIVEN BELOW.
LOADS
WEIGHTED FATIGUE (DESIGN):
Hc = = 1050 205
MEASURED (WHIRL TEST):
He 144 = 13340185.
HENORMAL = 1700 TO 1600 LES.
STRESSES (REF 5.4-1, PS. 5.3.2.12.3)
THE CRITICAL SECTION IN FATIGUE IS SECTION 8-8 AT THE RADIUS.
f= 4370 = 6580 PSI (WEIGHTED FATIGUE COND.)
FOR MEASURED WHIRL TEST LOADS !
frex = 3340 (+6580) = + 21,000 PSI
Fa = = 26000 psi
ALTHOUGH THIS CALCULATED CYCLIC STRESS IS
ACCEPTABLE THERE ARE CERTAIN UNKNOWNS INVOLVED SUCH AS THE LOAD DISTRIBUTION BETWEEN
LUGS. IN VIEW OF THIS A MODIFICATION WAS
HADE AT THE 35 HOUR INSPECTION TO INCREASE
PATH FOR TAVIALE SIDE LOADS. SET SCREWS
WERE ADDED IN THE WALL OF THE HUB
SURROUNDING THE SIMEAL TO BEAR DIRECTLY
PORTAS , HE LOG TO RING ATTACH DORTS.

A

•

1.1.5

PREPARED BY CIRES	MITH.	REPORT NO 205-/
CHECKED BY	nana a a sanan ana ana ana ana ana ana a	
GIMEAL.	LUG STRESSES (C	ONT 'D.)
IN ADDIT INSTALLE. RING TO	TON FALLUID RUB D BETWEEN THE LIMIT THE UEP	LUGS AND SIMOA LECTION.
FOR APP A MINOR THE LUG.	DESIGN TO A DESIGN CLANC S WEULD BE IN	ELISAE ARTICLE SE TO STRAISTHE ORDER.
		I

- Some

HUGHES TOOL COMPANY-AIRCRAFT DIVISION 285-16

	MODEL	REPORT NO.	(62-16) PAG	5.5-1
ANALYSIS				
PREPARED BY	-			1
CHECKED BY				

5.5 SOUND LEVEL MEASUREMENT

5.5.1 Test Noise Alleviation

During the early part of the whirl testing sound levels in the vicinity of the test site were relatively high. This was due to the fact that only about one third of the J57 exhaust flow was used to power the rotor, and the surplus flow was exhausted directly to the atmosphere. The noise associated with the surplus exhaust flow of the J57 proved bothersome and inconvenient to test site personnel, some of the neighbors of the test site, and particularly to Loyola University, which is located on a hill about 100 feet above the site and 800 feet distant. Because of the orientation of the test installation, the engine inlet was pointed almost directly at the University. The inlet noise is highly directional in nature, and thus in this position both the intake compressor whine and the exhaust roar were a source of irritation to Loyola University personnel.

In an effort to lower the sound levels to an acceptable range, sound suppressors were installed at both intake and exhaust ends of the J57 engine. These suppressors are shown on the frontispiece and on **Figures 5.5-1 and** 5.5-2. The intake suppressor was designed, built, and installed by General Accoustics Corporation, Los Angeles, California. The exhaust suppressor (Model 1195) was leased from Kittel Lacy, Inc., El Monte, California.

Overall sound level intensity measurements were taken on the crest of a hill above the test site and within 50 feet of the Loyola University cafeteria. These measurements were made with a General Radio 759B Sound Level Meter using the "c" scale only. Refer to Figure 5.5-3. Before installation of sound suppressors the sound intensity was 88 decibels and after suppressors were installed the sound intensity dropped to 76 decibels, considered an acceptable level for this location. This suppressed sound level is one sixteenth of the original unsuppressed sound level.

In addition, octave band sound pressure level measurements were made in St. Roberts Hall, which is the closest building, containing classrooms, to the Hot Cycle Rotor Test Site. These measurements were made with a General Radio type 1550-A Octave-band Sound Analyzer operating from the output of a type 759-B Sound Level Meter. Data obtained and representative curves are shown on Table 5.5-1 and Figure 5.5-4. The curves indicate that noise levels of the Hot Cycle Rotor plus suppressed engine noise fall almost directly on the lower curve of normal ambient classroom noise levels.

ANALYSIS		HUG	HE	S	TC	00	E.	C	DN	\ P /	MODEL	- A		REP	FT	DI' 		510	PN	G	5. 5	5
REPARE	D 8 Y 8 Y			T	1						T		1	1 1			<u> </u>		- 1	1	1	
	CNARNO)		PAL .	-BAND	16 FROM	8-6						ER) NOISE									
586.)	R. SAMB			: GENE	A OCTAVE	PERATIA	TYPE 75	ER.					TFULL POW									
	SERVERS			UIPMENT	PE ISSU	IALYZER 0	OF OF A	VEL MET					ENGINE A							_		
NS. FREG	aro			TEST EQU	RADIO TY	NOISE AN	THE OUTS	SOUND LE					OPRESSED			ar ~						
(ELS (Db) ANALYS	BUT HALL (DO	SOUTH SIDE, TULL CLASS ENGINE NOT DPERATING.	62	66	66	68	99	90	53	48			PLUS SUIT									
USE LEV E BAND	1, ST. ROBEN	NORTH SIDES NO CLASS	65	64	6 /	58	52	48	44	3			LE ROTOR									
DRESS	NINA VTOLOT	NORTH SIDES	66	99-09	58-66	46-62	46-60	48-52	40-49	30-36			* HOT CYC									
SOUND		DESIMED VALVE (Db)	76	64	55	48	43	40	38	37												
1-2-2-	BAND	AVERAGE CYCLES / SEC. DLOTTED VALUE	47 .	112	225	450	006	1800	3600	7400									-			
74812	SOUND	RANGE .	20-75	75-150	50-300	009-00	00-1200	200-2400	400-4800	1900-10,000												

		MODEL	(62-16) PAGE 5. 5-7
ANALYSIS			
PREPARED BY	<u></u>		
CHECKED BY			

5.5.2 Prediction of Rotor Sound Level

After reducing the intake and exhaust noise levels of the J57 engine, overall sound pressure level measurements were made close to the test site so that a preliminary study of rotor blade tip exhaust sound levels could be made. Data obtained and a representative curve are shown on Figures 5.5-3 and 5.5-5.

Operation of the whirl test installation with the suppressor installed on the surplus flow exhaust, provides a good indication of the sound levels to be expected in an actual hot cycle helicopter with the same rotor. However, two differences between the whirl test installation and an actual helicopter should be noted.

1. The engine inlet contribution would be different in the case of

an actual helicopter from that of the whirl test installation. Only one-third the air flow would be involved in the helicopter, but the inlet sound suppression would probably not be as effective as that used in the whirl testing. However, an examination of the data of Table III of Mr. Irving's excellent paper on this subject (Reference 5.5-1), indicates a negligible contribution of inlet noise to the over-all sound level of typical turbine-powered helicopters. In each test reported, the lowest sound levels were actually recorded in front of the machines tested. Therefore, it can be concluded that differences in inlet configuration between the whirl test and an actual hot cycle helicopter should not contribute significantly to a difference in sound level between the two cases.

2. In an actual helicopter using the same rotor and two T64 engines, there would be no surplus exhaust flow. Thus, the sound level would be reduced by the amount contributed by the surplus flow of the J57 that is exhausted through the suppressor. Based on the observations of a number of persons with different affiliations and backgrounds, it has been estimated that somewhat more than one-half the sound output of the whirl test installation comes from the surplus exhaust. Accordingly, it has been conservatively estimated that an actual helicopter would have roughly one-half the sound power level, or three db less than measured during the whirl testing.

0-0. NAT KEUFFELA ESSERCO.

5. 5+8

HUGHES TOOL COMPANY-AIRCRAFT DIVISION 285-16

nuones n	OUL COMPANISAIRCH	162-161	5.5-
	MODEL	REPORT IN (02-10)	PARE
ANALYSIS			
PREPARED BY			
CHECKED BY			

Results of the measurements made during the whirl testing are replotted on Figure 5.5-6 in the form of a comparison with other large helicopters and fixed-wing aircraft. The comparison is made for the take-off condition, and presents the over-all sound power level as a function of distance from the observer to the aircraft. It can be seen that the sound level of a hot cycle helicopter is much lower than a typical jet or piston airplane, 22 db lower than (or about 1/2 of 1 percent of) the sound power level of a DC-7. Significantly lower noise than recorded for the H-37A helicopter was also observed during the whirl testing. This measured result was verified by personal observations of individuals who observed the whirl testing and who were also experienced in H-37A operations.

9704

.

WESTMINSTER (5-56) 2 EAMPS 5000 WAIRA WALLO (5-55) GUOME 750

GAZELLE 1450 WIE SEFY (5-58) EXCESS FLOW FROM J-57 EXHAUSTED THRU SUPPRESSOR

N.S. NEUFFEL & ESSER CO 35

HON, 12/18/61; REVISED, RTN. 3/21/62

HUGHES TOOL COMPANY-AIRCRAFT DIVISION 285-16

	MODEL	REPORT NO.	(62-16) PAGE 5. 6-
ANALYSIS			
PREPARED BY.	4		
CHECKED BY	4		

5.6 POST TEST INSPECTION

5.6.1 General

The hot cycle rotor was given an intensive major inspection three times during the whirl test program. These occurred at the end of eighteen, thirtyfive and sixty cumulative hours of whirl testing. (Refer to Figures 5.6-1, 5.6-2, and 5.6-3.) The operating conditions experienced by the rotor system prior to each inspection are discussed in Section 4 of this present report.

For the purposes of the eighteen hour inspection, the rotor hub with blades attached was released from the support pylon and lifted down from the test tower. All fairings, trailing edge segments, tip cascades, cover plates and access panels were taken off. Blade root ducts were removed and the upper rotating duct was lowered out of the hub. All moving seals of the duct system and both bearings of the hub shaft were disassembled.

At the conclusion of the thirty-five hour whirl test period, the entire rotor was removed from the whirl tower to an indoor facility and torn down for inspection. Inasmuch as the inspection was in preparation for 25 hours of lifetype testing, a very complete disassembly was undertaken. In addition to the parts taken off for the eighteen hour inspection all other major structural and mechanical components were removed and stripped of fittings, bearings, bushings, etc., and inspected by Magnaflux, Die Penetrant, visual or other methods, whichever was the most suitable in each case. All holes and edges of parts were carefully studied for the existence of such stress raisers as burrs and nicks.

At the conclusion of a total of 60 hours of whirl test, the entire rotor was again removed to an indoor facility. The major components were disassembled and given a thorough visual inspection.

None of the major inspections revealed any basic flaw in the hot cycle system. Of the few components replaced by new parts following inspection, not one was rejected for evidence of imminent structural failure. In general, replacements were made as conservative measures to ensure continued good mechanical performance, taking advantage of the disassembly and reassembly incidental to inspection rather than possibly incurring interruptions and delays of ensuing whirl tests. In a few instances, notably as applies to the hub duct inner seal, components were reinstalled after minor rework to improve their mechanical performance.

The discussions that follow are concerned with inspection findings of special interest. Materials problems are discussed at length in Reference 5.6. Unless stated otherwise, components were found to be in good condition and were kept in service throughout the entire 60 hours of whirl testing.

Figure 5. 6-1 Rotor Removed from Tower for 18 Hour Inspection

5

ł

Figure 5. 6-3 Rotor Disassembled for 35 Hour Inspection

HUGHES TOOL COMPANY-AIRCRAFT DIVISION 285-16

	MODEL	REPORT.NO.	(62-16) PAGE 5. 6-5
ANALYSIS			
PREPARED BY			1
CHECKED BY			

5.6.2 Mechanical Components

5.6.2.1 Bearings

a. Thrust (Hub lower) Bearing Assembly

At eighteen hours this bearing, which reacts all lift loads, was found to be in good condition. However, circumferential marks (see Figure 5.6-4) on the black oxide surface of the hub shaft indicated the possibility of creep between the inner race and the shaft. Although there was no certainty that creep had occurred either during rotor operation or during assembly, the preload between the two Timken Bearings was reduced upon reassembly and the clamping force across the inner races was considerably increased. In addition, a lubricant was added to the shaft in case there should be a tendency for the race to rotate on the shaft during subsequent testing.

At thirty-five hours, the thrust bearing was again found in good condition. Experience since the eighteen hour inspection had shown the reduction in bearing preload made at that time to be more than adequate. Therefore a housing shim was eliminated to produce an intermediate preload.

b. Hub Upper Bearing

This bearing takes only radial loads. All components of the bearing and oil retaining seals were found to be in excellent condition at all inspections. (Reference Figure 5.6-5)

c. Rotor Gimbal Bearings

These bearings were not accessible for direct inspection at eighteen hours; however, no roughness could be felt when the gimbal was rotated while loaded only by the weight of the shaft. At thirty-five hours, slight fretting was found in two SKF bearings which join the gimbal clevis and ring. All four SKF bearings were replaced. At 60 hours, all bearings revealed slight fretting.

d. Swash Plate Fafnir Bearings

These two ball bearings showed rust and some roughness at thirty-five hours. Although the condition was not serious, they were replaced. At 60 hours, they appeared in good condition.

,

I

I

1

Figure 5. 6-4 Hub Lower Shaft and Duct Seal Outer Rotating Surface After 18 Hours. Note lines on shaft at location of thrust bearing and corrosion on lower edge of sealing surface.

Figure 5. 6-5 Hub Upper Radial Bearing and Seals Disassembled After 18 Hours.

		 	MODEL	 REPORT NO.	(62-16) -	ADE 5.
PREPARED (DY	 				
	IY			 		
	Y			 		

At thirty-five hours a small amount of rust was found on one large Timken bearing in one of the three torque tubes. This particular bearing was replaced.

f. Rod End Bearings, Central Control Rods

At thirty-five hours all six shafer rod end bearings (in the three central control rods only) were replaced. This was done as a conservative measure because calculations indicated a relatively short service life under the design loads for the bearing in this particular location. On the other hand, although a destructive disassembly was not performed, the bearings showed no evidence of damage.

g. Feathering Bearing

This bearing consists of a chromium plated cast aluminum ball rotating within a Fabroid¹ faced ring. At eighteen hours the Fabroid surfaces were inspected by raising and lowering the blades through the maximum available clearance angles to expose the riding surfaces. These appeared to be in excellent condition with no evidence of significant wear.

At thirty-five hours the bearings were disassembled and the Fabroid wear surfaces found to be in generally good condition, as shown in Figure 5.6-6. Local areas of high contact pressure showed a general smearing of the teflon, which appears to have no effect on its load carrying ability or friction coefficient. Because two segments of one bearing had been scored in handling and two segments of another were locally unbonded, all segments of both these bearings were relined.

At eighteen hours the cast aluminum balls showed blisters of the chromium plate, apparently resulting from sub-surface corrosion. This phenomenon is discussed in detail in Reference 5.6-1. No action was taken at that time since the blisters were located outside of critical wear areas. At thirty-five hours one ball showed no blistering, one showed only a very small amount in a non-critical region, while the third had a considerable amount of blistering which approached a critical wear area. This third ball was replaced.

¹Fabroid is a teflon filament and fiberglass thread woven cloth manufactured by Microprecision Division of Micromatic Hone Company, Los Angeles 32, California

HUGHES TOO	DL COMPANY-AIRCR	AFT DIVISION	285-16
	MODEL	REPORT NO.	(62-16) PAGE 5. 6-10
	i		
	and the second se		
	HUGHES TO	HUGHES TOOL COMPANY-AIRCR	HUGHES TOOL COMPANY-AIRCRAFT DIVISION

5.6.2.2 Duct Seals

a. Hub Inner Seal (Figure 5.6-7)

This face-type seal prevents escape of gases at the inner surface of the hub stationary-to-rotating duct joint. Contact of the sealing faces is maintained by axial movement of a cylinder at the inner periphery of the stationary duct. At operating temperatures, differential expansion of this cylinder and the duct resulted in increased clearance between the two, and therefore the cylindrical portion of the seal could move freely. However, continued heating and cooling of the units produced slight warpage of the components which eliminated the small clearance originally incorporated into the parts. This interference in turn prevented axial movement and contact of the sealing faces at ambient temperatures, and thus the duct system could not be pressurized during the eighteen hour inspection. Action taken was to machine the surfaces to increase clearance.

Figure 5.6-8 shows what appears to be a slight subsurface corrosion beneath the aluminum oxide flame plate on the type 347 corrosion resistant steel base of the seal mating ring, first noted during the eighteen hour inspection. This corrosion did not become more extensive, and therefore no action was necessary.

The carbon portion of the Hub Inner Seal, after eighteen hours of test, appeared to have some local spots which were softer than the remaining material. This could be an indication of inconsistencies in the raw stock or in the impregnation, with a resultant deterioration of some of the material at the high temperatures encountered. The face of the carbon ring was surface ground to remove the soft spots.

At thirty-five hours, the inner seal showed essentially the same type of softening as had appeared at the 18 hour inspection period. Since it was believed that additional grinding would reduce the thickness of the riding element to an unacceptable dimension, a new part was installed. After 60 hours, this part was in excellent condition.

b. Hub Outer Seal (Figure 5. 6-7)

9704

This seal, which consists of two layers of carbon segments riding on a steel ring, apparently functioned with little leakage during

Figure 5.6-8 Hub Upper Duct and Seal Faces After 18 Hours. Note apparent sub-surface corrosion under aluminum oxide plating.

MODEL

REPORT NO. (62-16) PAGE 5. 6-13

the whirl test. However, at eighteen hours the upper edge of the lower ring of carbon segments was found to be chipped evenly around the periphery (Shown in Figure 5.6-9) and both rings were replaced. Rather exhaustive investigation indicated the damage was probably done during preliminary calibration or trial assembly prior to any testing. Satisfactory performance under these conditions is evidence of the durability and practicality of the design.

At thirty-five (35) hours the seal carbon segments were in excellent condition and were retained. After sixty (60) hours, the upper ring of segments had an etched appearance, the cause of which has not yet been determined.

For ease of handling, the 24 small seal-seating coil springs were replaced by a single wave spring at the 35 hour inspection period.

The mating ring of this seal is fabricated of type 347 corrosion resistant steel. The surface actually in contact with the carbon segments was clean and smooth. However, the edge which was exposed to the hot gases and not wiped by continuous motion of the carbon had corroded severely, as shown in Figure 5.6-4. This corrosion was removed, but it is essential that on service craft more resistant materials or plating be used to prevent such corrosion.

c. Articulate Duct Inboard Seal

These seals, of carbon segments riding on type 347 corrosion resistant steel balls, were generally in good condition at all inspections. As noted above regarding the Hub Outer Seal Mating Ring, the metal balls showed definite corrosion in the area not generally wiped by the carbon. Material or a plating more resistant to corrosion will be required for longer seal life.

As noted for the hub inner seal, the carbon material used here indicated at the 18 hour period a very definite softening of some protions of the carbon segments with a resulting tendency for the edges to errode, as shown in Figure 5.6-10. Nevertheless, since these seals did not show signs of appreciable leakage, the whirl test was continued with these particular carbon segments.

ANALYDIE -----PREPARED BY-CHECKED BY-

Figure 5. 6-9 Hub Lower Duct with Outer Seal Segmented Rings in Position,After 18 Hours. Note uniform chipping (apparently from assembly and checkout operations) on upper edge of lower of two carbon rings.

Figure 5. 6-10 Close-Up of Articulate Duct Inboard Seal Segmented Carbon Rings. Note local softening of carbon and resulting erosion of edge.

ALYBIS	MODEL REPORT NO. (62-16) PAGE ^{3.}
IPARED BY	, ,
ECKED BY_	
	At thirty-five hours their condition did not appear to have changed. Sealing performance had not deteriorated. It was decided, therfore, to continue the whirl tests with these same carbon segments. One set of carbon elements however, was inadvertantly shattered in handling and was replaced by a new one. There was no significant change in any carbons at the end of sixty hours of test.
	d. Articulate Duct Outboard Seal
	This seal, discussed at length in Reference 5.6-2, consists of metal lips riding on a metal cylinder. The lips are fabri- cated of Rene' 41, while the cylinder is of type 347 corrosion resistant steel with tungsten carbide flame plate on the rubbing surface. Both surfaces were electrofilmed for lubrication.
	At eighteen hours, wear on the lips of the three seals was moderate, but one of the lobes on one lip of one seal had a crack extending circumferentially 1/4 inch. As a conserva- tive measure, a new set of lip rings was installed in all blades. At 35 hours, the metal lips of this seal again showed moderate wear, but there was no evidence of cracking. The lips were once more replaced by a new set.
,	The cylinders on which the lips rode were flame plated with tungsten carbide. Difficulty in maintaining roundness of the original cylinders during the fabrication process resulted in an uneven thickness of the tungsten carbide. As a result, it was believed the internal stresses due to differential thermal expansion were high. At thirty-five hours the tungsten car- bide showed signs of spalling, possibly initiated by attachment of thermocouples or by other handling during the long check out periods on this particular seal, and aggravated by the thermal stresses. There was, therefore, a real possibility of extension of this spalling. In order to avoid an otherwise long delay of the whirl testing, all of the cylinders were re- placed at thirty-five hours.
5.6.3 <u>S</u>	tructural Components
5.6.3.1	Hub Shaft-Spoke Assembly
n the 10	Gold paint, because of its high heat reflectivity at temperatures 0 to 1000°F range, had been applied to the mast and upper hub support

ų,

REPORT NO.

HODEL

ANALYSIS	
PREPARED	8 Y
CHECKED	my l

spoke piece external surfaces over electroless nickel plate (See Reference 5.6-3 for a more extensive presentation.). At the eighteen hour inspection, the shaft exhibited a tendency to corrode severly, even though the spoke piece did not. Measured temperatures of the shaft and upper support, on the other hand. were well below critical values. and therefore it was decided a coating of less reflectivity could be used. For these reasons, the gold paint was removed and the surfaces coated with a high temperature aluminum paint having

At thirty-five hours the shaft-spoke assembly was separated for inspection, particularly in reference to the possibility of fretting and corrosion at the mating surfaces. A ring of corrosion pits was found at the outermost edges of the mating surfaces, in addition to sharp edges around the holes drilled and reamed on assembly for the retaining bolts. Both conditions were corrected, one by polishing off the corrosion area and the other by rounding off and polishing the edges of the holes. In order to facilitate separation at future inspection periods, interference fit between these two parts was reduced to zero. In addition, pitting of the lower part of the shaft due to presence of gold paint as described above, and all tool marks on the shaft were carefully polished away.

5. 6. 3. 2 Hub Gimbal

a substantially improved corrosion resistance.

Rotor horizontal forces, as measured in the gimbal clevises. were higher than originally estimated. Therefore, a reinforcement to the gimbal was installed at the eighteen hour inspection period to reduce the stresses resulting from these loads.

At thirty-five hours the trunnion shaft was found to have a flaw in the original hand forging from which the part was made. Although the original ultrasonic inspection and a final X-ray inspection failed to reveal this defect, it was found to penetrate from outer to inner wall. Fortunately this flaw was located in an area of reasonably low stress and therefore rework could be tolerated. In order to completely remove the flaw, a hole of approximately 1/4 inch diameter was drilled through, rounded at the edges and polished.

5.6.3.3 Swash Plate

It was noted at thirty-five hours that the stationary swash plate, which is aluminum alloy, had been brinnelled around the edges of some bolt holes. Bushings inserted in the holes left insufficient surface under the bolt head for bearing on the surface of the swash plate. The brinnelled areas were spot faced, and large diameter washers were added to increase bearing area.

HUGHES TOOL COMPANY-AIRCRAFT DIVISION 285-16

CHECKED BY

ANALYSIS

9704

5.6.3.4 Blade Spars

The spars were removed from the whirl test blades and given close scrutiny during the thirty-five hour inspection. Special attention was directed towards such potential stress raisers as burrs, sharp corners, scratches, nicks and tool marks. Upon reassembly, reinforcement plates, corresponding to that utilized on the Full Scale Fatigue Test specimen (Reference 5.6-4), were added to the rear spars at the bend point. At the end of 60 hours, careful inspection of the spar disclosed no evidence of damage.

ANALYSIS	
PREPARED BY	
	SECTION 6
	REFERENCES
2 1 1	Selleme S. F. and Diama O. L. a Wilst Grade Datas Sectors
5.1-1	Final Report. Detail Design of Rotor": HTC-AD Report
	285-12 (62-12), March 1962.
3.1-2	Doyle, J. T.; "Hot Cycle Rotor System, Fabrication Effort";
	HTC-AD Report 285-15 (62-15), March 1962.
3.1-3	Needham, J., Erle, L. and Nicholls, D.; "Hot Cycle Rotor
	System, Structural Analysis"; HTC-AD Report 285-13 (62-13),
	March 1962.
3 3-1	Pratt and Whitney Aircraft: "Gas Turbine Installation Handbook
	JT3 Turbojet Engines''; Volume 1, May 1956.
3. 4-1	Pratt and Whitney Aircraft; "Specific Operation Instructions
	J57-P-19W; lurbojet Engine; Operation Instruction 158", July 1 1957
	5 dry 1, 1751.
3.4-2	Jones, D. L. and Rabek, J. W.; "Results of Static Test
	Program, Hot Cycle Rotor System, Gas Flows and Tempera-
	(61-79). February 1962.
4. 1 - 1	Amer, K. B.; "Hot Cycle Rotor System Anticipated Tests,
	Proposed Whirl Tower Program"; HTC-AD Report 285-8-3SR
	(02-235K), Revised November 1901.
5.1-1	Jones, D. L. and Rabek, J. W.; "Results of Static Test
	Program, Hot Cycle Rotor System, Gas Flows and Tempera-
	tures''; HTC-AD Report 285-9-7 (61-79), February 1962.
5.1-2	Hoerner, S. F.; "Aerodynamic Drag": Published by the Author.
5.1-3	Sullivan, R. J.; "Hot Cycle Rotor System Final Report,
	Performance Calculation Method"; HTC-AD Report 285-20
	(62-20), March 1962.

i

2 -

KED BY	
5.1-4	Keenan, J. H. and Kaye, J.; "Gas Tables"; John Wiley and Sons, 1949.
5.1-5	Thompson, W. R.; "Empirical Equations for Specific Heat", Aircraft Engineering, p. 251; August 1955.
5.1-6	Shapiro, Asher H.; "The Dynamics and Thermodynamics of Compressible Fluid Flow." Volume I; The Ronald Press Company, New York 1953.
5. 1 - 7	Henry, John R.; "One-Dimensional, Compressible, Viscous Flow Relations Applicable to Flow in a Ducted Helicopter Blade"; NACA Technical Note TN3089, December 1953.
5.1-8	Boswell, C. C. and Thurston, S.; "Results of Component Test Program, Hot Cycle Rotor System, Test No. 4, Flow Distribution Studies of the Upper Static Duct"; HTC-AD Report No. 285-9-4, 30 August 1957.
5.1-9	Gessow, A. and Myers, G.; "Aerodynamics of the Helicopter"; The Macmillan Company, New York, 1952.
5.1-10	Sullivan, R. J.; "Hot Cycle Rotor System, Application Study", HTC-AD Report No. 285-6, February 1957.
5.2-1	LaForge, S. V., "Hot Cycle Rotor System, Final Report, Rotor Dynamics"; HTC-AD Report No. 285-14 (62-14), March 1962.
5.3-1	E. E. Warner; "Hot Cycle Rotor System, Final Report, Therma Analysis, Part I"; HTC-AD Report 285-10, June 1960.
5.3-2	HTC-AD Drawing 285-0937.
5.4-1	Needham, J., Erle, L. and Nicholls, D.; "Hot Cycle Rotor System, Structural Analysis"; HTC-AD Report No. 285-13 (62-13), March 1962.
5.5-1	Irving, H. B.; "Helicopter Noise Suppression"; Journal of the Helicopter Association of Great Britain, August 1959.
5.6-1	French, J. C.; "Hot Cycle Rotor System, Material and Process es"; HTC-AD Report No. 285-18 (62-18), March 1962.
5.6-2	Sallows, S. E. and Plowe, O. I.; "Hot Cycle Rotor System, Final Report, Detail Design of Rotor"; HTC-AD Report No. 285-12 (62-12), March 1962.

ANALYSIS		MODEL REPORT NO. (06-10) PAGE O
PREPARED	• Y	· · · · · · · · · · · · · · · · · · ·
CHECKED	8Y	
n.	5.6-3	French, J. C.; "Hot Cycle Rotor System, Materials and Processes"; HTC-AD Report No. 285-18 (62-18), March 1962.
	5.6-4	Deveaux, G.; "Results of Component Test Program, Hot Cycle Rotor System, Final Report"; HTC-AD Report No. 285-9-8 (62-8), March 1962.
	A. 1-1	Needham, J., Erle, L. and Nicholls, D.; "Hot Cycle Rotor System, Structural Analysis"; HTC-AD Report 285-13 (62-13), March 1962.
	A. 3-1	MIL-HDBK-5; "Strength of Metal Aircraft Elements"; March 1959.
•		
		,

I

I

1

1

-

APPENDICES

A. Whirl Tower Structural Analysis

B. Test Log Sheets

C. Method of Calculation; Area and Mass Weighted Parameters

- D. Thermodynamic Calculation Procedure; Non-Rotating Components
- E. Summary of Strain Gage and Thermocouple Locations
- F. Nomenclature & Computer Program Formats

HUGHES TOOL COMPANY-AIRCRAFT DIVISION

NODEL

REPORT NO.

PAGE A. 1-1

APPENDIX A

.

WHIRL TOWER STRUCTURAL ANALYSIS

A.1 INTRODUCTION

9704

This section contains the structural analysis of the whirl tower used for testing the Hot Cycle Rotor System. The analysis includes both the tower structure and the duct system. Loads and pressures used are based on the design criteria given in HTC-AD Report 285-13 (Reference A. 1-1), Section 1. A sketch of the whirl tower installation is given in the figure on page 2 of this appendix.

HUGHES TOOL COMPANY-AIRCRAFT DIVISION PARE A.1-2 MODEL 285 ANALYSIS HOT CYCLE PREPARED BY C.R. SMITH REPORT NO. WHIRL TOWER CHECKED BY_ WHIRL TOWER INSTALLATION REF. DWGS. 285-0700 285-0720 FIGURE A-1 285-0713 ~ 285-0523 HUB TRUSS MOUNT ASSY. 285-0703 STRUCTURE ASSY. 285-0713 DUCT INSTAL. 285-0701 WHIRL TEST SUPPORT STRUCTURE ASSEM. 9704

HUGHES TOOL COMPANY-AIRCRAFT DIVISION A.2-2. ANALYSIS HOT CYCLE PREPARED BY C.R. SMITH WHIRL TOWER STRUCTURE CHECKED BY. DESIGN LOADS (CONT'D.) REACTIONS AT BASE OF MOUNTING TRUSS Ð 36.0 Pv = 1.5 (38,250 + 8,660) = 1.5 (46,910) = 70,000 LBS. ULT. P2 = 1.5 (9770) = 14,700 LBS. ULT. P,= 1.5 (3030) = 4545 LBS. ULT. M= 14,700 (57,25-8.65) - 4545 (57,25-37,35) = 14,700 (48.6) - 4545 (19.9) = 624,000 IN, LOS. DIAGONAL LENGTH = V 2 (36.0) = 51.0 IN. LOAD AT BOLT # 4 15' $P_T = \frac{70,000}{4} + \frac{624,000}{5} = 17,500 + 12,200 = 29,700 LBS.$ 9704

HUGHES TOOL COMPANY-AIRCRAFT DIVISION ANALYDIS HOT CYCLE ROTOIC HODEL 285 REPORT NO. PREPARED BY C. KAYSING 4/15/60 WHIRL TOWER -AGE A.2-4 NODEL 28.5 STRUCTURE CHECKED BY. HOUNTING TRUSS STRUCTURE (CONT) #285-05-23 UPPER SUPPORT STRUCTURE (CONT.) ALLOWABLE WELD LOAD: PALLOW = 12 X,065 X45000 = 35000 #. P=10700# M.S. = 35-000 -1 = 2.28 -11 TUBE AS COLUMN D/t = 7,065 = 31 21/p = 51.8 = 75.5 A = .395 2" Feo = 42000 /51 P= 10700 # 11,5, = 42000 x, 395 10700 -1 = .55 9704

HUGHES TOOL COMPANY-AIRCRAFT DIVISION PAGE A.2-5 ANALYSIS HOT CYCLE ROTOR PREPARED BY C KAYSING 4/15/60 NODEL 285 WHIRL TOWER STRUCTURE :) MOUNTING TRUSS STAUCTURE (CONT DWG 285-05-23 LOWER SUPPORT STRUCTURE LOAD IN -9 TUBE DUE TO Py =79000 # $P_1 = \frac{70000}{8} \times \frac{28.4}{19.5} = 12800 \#$ LOAD IN -9 TUBE DUE TO PSIDE = 13300# $P_2 = \frac{13300}{4} \times \frac{28.4}{17.6} = 5300 \#$ PMA:=P,+V2 = 18100# ULT. PALLOW (-9 TUBE) =, 32x 85 000 = 27,200# M.S. = 27200 -1 = 50 WELD ATTACHMENT TO BUYY-5 PALLOW = 6x,095 × 45000 = 25:00# M.S. = 23600 -1= 141 WELD ATTACHMENT TO DS44-3 10" OF WELD; OK BY COMPANISON BOLT ATTACHMENT TO HOUSING 0524 BOLT 15 9/16 HT 180000 451 M.S. = 31000 -1 = 17 BOLT ATTACHMENT TO BASE BOLT 15 5/8 HT 180000 PT = 29,700 LES. ULT. M.S. = 39000 -1 = 31 9704

ANALYS	CR SMITH		lation of the		
CHECKE			HIRL TOW	ER STRUC	TURE
A.1.					
	-				
5	TRUCTURE A	SSEMBLY	285-0	703	
	-1				
	HIS ASSEMBLY	ACTS AS	A SPACE	FR. AND SI	ERVES
7	RUSS STRUCTURE	E (285-052	S) AND	THE MAN	VIING
7	OWER STRUCT	URE (285-	0701). 1	N ADDITIO	N
1	T PROVIDES TH	te suppo	AT FOR	THE CONT	ROL
5	YSTEM ACTUA	TING CYLI	NDERS. 7	HE ASSEN	YBLY
	S A WELDED	TRUSS S	TRUCTUR	E COMPOS	ED
	F DIU INCH E. S SATICEATTOA	Y RY CA	APPRICAN	TO THE	ND
2	85-0523 MOUN	TING TRUS	5.		
	*		4		
			Car	5 40	
	VHIRL TEST SI	UPPORT S	TRUCTURE	E 285-07	101
-	HIS ASSEMBLY	FORMS THE	E MAIN 7	OWER ST	RUCTUR
		Y STAM	17 15 4	WELDED	
	ACCOUNT FOR		1		C .
	ASSEMBLY COMP	OSED OF	LARGE 5	TEEL TUB	Es,
	ASSEMBLY COMP TBEAMS AND C	OSED OF GUSSET PL	LARGE S ATES. TH	TEEL TUB	ES, OF There
	ASSEMBLY COMP EBEAMS AND C THE TOWER 1: DEMERSED	SUSSET PL	LARGE S ATES. TH FED TO A	TEEL TUB HE BASE A 2 FOOT	ES, OF THICK
	ASSEMBLY COMP IBEAMS AND C THE TOWER IS REINFORCED CON TOWED AND D	OSED OF SUSSET PL S ATTACH NCRETE F	LARGE S ATES. TA FED TO A PAD BY	TEEL TUB HE BASE H 2 FOOT 68 1.0 IN, C	ES, OF THICK SOLTS,
	ASSEMBLY COMP EBEAMS AND C THE TOWER IS REINFORCED CON TOWER AND PAR AND ARE NOT C	OSED OF GUSSET PL S ATTACH NCRETE F 40 ARE D CRITICAL F	LARGE S ATES. TH FED TO A PAD BY ESIGNED OR ROTOR	TEEL TUB HE BASE A 2 FOOT 68 1.0 IN, C FOR RIGIDI SYSTEM L	ES, OF THICK SOLTS, TY OADS.
	ASSEMBLY COMP ASSEMBLY COMP THE TOWER IS REINFORCED CON TOWER AND PARE AND ARE NOT C	OSED OF SUSSET PA S ATTACH NCRETE F 40 ARE D CRITICAL F	LARGE S ATES. TH FED TO A PAD BY DESIGNED OR ROTOR	TEEL TUB HE BASE H 2 FOOT 68 1.0 IN, C FOR RIGIDI SYSTEM L	ES, OF THICK SOLTS, TY OADS,
	ASSEMBLY COMP EBEAMS AND C THE TOWER 12 REINFORCED CON TOWER AND PAR AND ARE NOT C	OSED OF GUSSET PL S ATTACH NCRETE F AD ARE D CRITICAL F	LARGE S ATES. TH FED TO A PAD BY DESIGNED OR ROTOR	TEEL TUB HE BASE A 2 FOOT 68 1.0 IN, C FOR RIGIDI SYSTEM L	ES, OF THICK SOLTS, TY OADS,
	ASSEMBLY COMP EBEAMS AND C THE TOWER IS REINFORCED CON TOWER AND PR AND ARE NOT C	OSED OF SUSSET PA S ATTACH NCRETE F 40 ARE D CRITICAL F	LARGE S ATES. TH FED TO A PAD BY DESIGNED OR ROTOR	TEEL TUB HE BASE H 2 FOOT 68 1.0 IN, C FOR RIGIDI SYSTEM L	ES, OF THICK SOLTS, TY OADS,
	ASSEMBLY COMP EBEAMS AND C THE TOWER 12 REINFORCED CON TOWER AND PARE AND ARE NOT C	OSED OF SUSSET PA S ATTACH NCRETE F 40 ARE D CRITICAL F	LARGE S ATES. TA FED TO A PAD BY DESIGNED OR ROTOR	TEEL TUB VE BASE 4 2 FOOT 68 1.0 IN, C FOR RIGIDI SYSTEM L	ES, OF THICK SOLTS, TY OADS,
	ASSEMBLY COMP EBEAMS AND C THE TOWER 1: PEINFORCED CON TOWER AND PAND AND ARE NOT C	OSED OF SUSSET PL S ATTACH NCRETE F 40 ARE D CRITICAL F	LARGE S ATES. TH FED TO P PAD BY DESIGNED OR ROTOR	TEEL TUB HE BASE A 2 FOOT 68 1.0 IN, C FOR RIGIDI SYSTEM L	ES, OF THICK SOLTS, TY OADS,
	ASSEMBLY COMP EBEAMS AND C THE TOWER 13 REINFORCED CON TOWER AND PAR AND ARE NOT C	DOSED OF SUSSET PA S ATTACH NCRETE F 40 ARE D CRITICAL F	LARGE S ATES. TH FED TO A PAD BY DESIGNED OR ROTOR	TEEL TUB HE BASE A 2 FOOT 68 1.0 IN, C FOR RIGIDI SYSTEM L	ES, OF THICK SOLTS, TY OADS,
	ASSEMBLY COMP EBEAMS AND C THE TOWER 1: REINFORCED CON TOWER AND PAR AND ARE NOT C	OSED OF GUSSET PL S ATTACH NCRETE F 40 ARE D CRITICAL F	LARGE S ATES. TA HED TO A PAD BY DESIGNED OR ROTOR	TEEL TUB VE BASE 4 2 FOOT 68 1.0 IN, C FOR RIGIDI SYSTEM L	ES, OF THICK SOLTS, TY OADS,
	ASSEMBLY COMP EBEAMS AND C THE TOWER 12 REINFORCED CON TOWER AND PAR AND ARE NOT C	OSED OF SUSSET PA S ATTACH NCRETE F 40 ARE D CRITICAL F	LARGE S ATES. TH FED TO A PAD BY DESIGNED OR ROTOR	TEEL TUB HE BASE H 2 FOOT 68 1.0 IN, C FOR RIGIDI SYSTEM L	ES, OF THICK SOLTS, TY OADS,
	ASSEMBLY COMP EBEAMS AND C THE TOWER 1: REINFORCED CON TOWER AND PAR AND ARE NOT C	OSED OF SUSSET PA S ATTACH NCRETE F AD ARE D CRITICAL F	LARGE S ATES. TA FED TO A PAD BY DESIGNED OR ROTOR	TEEL TUB VE BASE 4 2 FOOT 68 1.0 IN, C FOR RIGIDI SYSTEM L	ES, OF THICK SOLTS, TY OADS,
	ASSEMBLY COMP EBEAMS AND C THE TOWER 1: PEINFORCED CON TOWER AND PA AND ARE NOT C	OSED OF SUSSET PA S ATTACK NCRETE F 40 ARE D CRITICAL F	LARGE S ATES. TA FED TO A PAD BY DESIGNED OR ROTOR	TEEL TUB VE BASE 4 2 FOOT 68 1.0 IN, C FOR RIGIDI SYSTEM L	ES, OF THICK SOLTS, TY OADS,
	ASSEMBLY COMP EBEAMS AND C THE TOWER 13 REINFORCED CON TOWER AND PAR AND ARE NOT C	DOSED OF SUSSET PA S ATTACA NCRETE F 40 ARE D CRITICAL F	LARGE S ATES. TA FED TO A PAD BY DESIGNED OR ROTOR	TEEL TUB VE BASE 2 FOOT 68 1.0 IN, C FOR RIGIDI SYSTEM L	ES, OF THICK SOLTS, TY OADS,
	ASSEMBLY COMP EBEAMS AND C THE TOWER 1: REINFORCED CON TOWER AND PAND AND ARE NOT C	OSED OF SUSSET PA S ATTACH NCRETE F 40 ARE D CRITICAL F	LARGE S ATES. TA HED TO A PAD BY DESIGNED OR ROTOR	TEEL TUB VE BASE 2 FOOT 68 1.0 IN, C FOR RIGIDI SYSTEM L	ES, OF THICK SOLTS, TY OADS.
	ASSEMBLY COMP EBEAMS AND C THE TOWER 12 REINFORCED CON TOWER AND PAR AND ARE NOT C	OSED OF SUSSET PA S ATTACK NCRETE F 40 ARE D CRITICAL F	LARGE S ATES. TA FED TO A PAD BY DESIGNED OR ROTOR	TEEL TUB VE BASE 2 FOOT 68 1.0 IN, C FOR RIGIDI SYSTEM L	ES, OF THICK SOLTS, TY OADS,
	ASSEMBLY COMP EBEAMS AND C THE TOWER 13 REINFORCED CON TOWER AND PAR AND ARE NOT C	DOSED OF SUSSET PA S ATTACA NCRETE F 40 ARE D CRITICAL F	LARGE S ATES. TA FED TO A PAD BY DESIGNED OR ROTOR	TEEL TUB VE BASE 2 FOOT 68 1.0 IN, C FOR RIGIDI SYSTEM L	ES, OF THICK SOLTS, TY OADS.
	ASSEMBLY COMP E-BEAMS AND C THE TOWER 1: PEINFORCED CON TOWER AND PA AND ARE NOT C	OSED OF SUSSET PA S ATTACH NCRETE F 40 ARE D CRITICAL F	LARGE S ATES. TA HED TO A PAD BY DESIGNED OR ROTOR	TEEL TUB VE BASE A 2 FOOT 68 1.0 IN, C FOR RIGIDI SYSTEM L	ES, OF THICK SOLTS, TY OADS.
	ASSEMBLY COMP EBEAMS AND C THE TOWER 12 REINFORCED CON TOWER AND PAR AND ARE NOT C	DOSED OF SUSSET PA S ATTACA NCRETE F 40 ARE D CRITICAL F	LARGE S ATES. TA HED TO A PAD BY DESIGNED OR ROTOR	TEEL TUB VE BASE 2 FOOT 68 1.0 IN, C FOR RIGIDI SYSTEM L	ES, OF THICK SOLTS, TY OADS,
	ASSEMBLY COMP EBEAMS AND C THE TOWER IS REINFORCED CON TOWER AND PAR AND ARE NOT C	DOSED OF SUSSET PA S ATTACA NCRETE F AD ARE D CRITICAL F	LARGE S ATES. TA HED TO A PAD BY DESIGNED OR ROTOR	TEEL TUB VE BASE 4 2 FOOT 68 1.0 IN, C FOR RIGIDI SYSTEM L	ES, OF THICK SOLTS, TY OADS,
	ASSEMBLY COMP EBEAMS AND C THE TOWER 12 PEINFORCED CON TOWER AND PAR AND ARE NOT C	OSED OF SUSSET PA S ATTACA NCRETE F 40 ARE D CRITICAL F	LARGE S ATES. TA HED TO A PAD BY DESIGNED OR ROTOR	TEEL TUB VE BASE A 2 FOOT 68 1.0 IN, C FOR RIGIDI SYSTEM L	ES, OF THICK SOLTS, TY OADS,
	ASSEMBLY COMP EBEAMS AND C THE TOWER 13 REINFORCED CON TOWER AND PAR AND ARE NOT C	DOSED OF SUSSET PA S ATTACA NCRETE F 40 ARE D CRITICAL F	LARGE S ATES. TA HED TO A PAD BY DESIGNED OR ROTOR	TEEL TUB VE BASE A 2 FOOT 68 1.0 IN, C FOR RIGIDI SYSTEM L	ES, OF THICK SOLTS, TY OADS,

HUGHES TOOL COMPANY-AIRCRAFT ANALYON HOT CYCLE ROTOR WHIRL TOWER STRUCTURE NATURAL FREQUENCY OF CONTROL TO DNG 5.285-0701 TOWAT 8 = 2 (Strain Energy) (Castigliano's 1st Theorem $l_1 = 250^{\circ}$ Str. Energy = $\sum_{i=1}^{n} \int_{-\infty}^{\infty} \frac{di}{2} \frac{p^2}{A_E} dl$ 12=280 $= \int_{0}^{279} \frac{(k_{1}, P)^{2}}{2 \frac{(k_{1}, P)^{2}}{A_{1}E}} dl + \int_{0}^{280} \frac{(k_{1}, P)^{2}}{A_{1}E} dl$ l; =107" $A_1 = A_2 = 19^{-7}$ E=29× 106 $= \left(\frac{259^{3}}{2\times107^{2}} + \frac{280^{3}}{2\times107^{2}}\right) \frac{p^{2}}{4F}$ = 1720 P2 = 3,12×10-6 P2 (IN 285-0701) $\delta = \frac{\partial (3, 12, 10^{-6}, p^2)}{\partial p} = 6.24 \times 10^{-6} p$ P= 1000 L85 <u>S=.0125" (285-0701)</u> DEFLECTION OF MOUNT ASSY. 285-0523 $5tr. t = 3 c + gy = 2 \int_{0}^{52} \frac{(52 - p)^2}{2} dl$ A .4"" P=900# = 523× p2 35524,4×3×107 = 9.3 ×10-6 p2 8 = <u>d(9.3 x10-6 p2)</u> = 18,6 ×10-6 p S = 18.6 × 10-6 × 900 = 0167" 9704

HUGHES TOOL COMPANY-AIRCRAFT DIVISION ANALYSIS HOT CYCLE ROTOR MODEL 285 REPORT NO. PREPARED BY C. KAYSING 5119140 WHIRL TOWER 5 PAGE A.2-8 WHIRL TOWER STRUCTURE CHECKED BY NATURAL TREQUENCY OF TOWER (CONTO) E & =,012 +,0167 =,0292" f - 188 8-12 CVH = 188 x,0292-1/2 = 1100 C.P.M 9704

$\frac{DWERL TEST}{DUCT INSTALL}$ $\frac{DWERL TEST}{DUCT INSTALL}$ $\frac{DWERLSTALLATION}{DWG 285-07}$ $\frac{A.3 WHIRL TEST DUCT INSTALLATION}{A.3 WHIRL TEST DUCT INSTALLATION}$ $\frac{THE DUCT SYSTEM SERVES TO TRANSF HOT EXHAUST GASES FROM THE TURE POWERPART TO THE ROTOR SYSTEM. THE ROTOR AND MORIZONTAL DUCTING TO ROTOR AND MORIZONTAL DUCTING FOR TO OF EXCESS GASES. BUTTERLY VALUE LOCATED IN BOTH THE VERTICAL AND PATHS TO AUJUST FOR OPERATING REA THE DUCT SYSTEM IS SUPPORTED FRO TOWER AND BELLOWS ARE PROVIDED FOR DIFFERENTIAL EXPANSION. \frac{DESIGN LONDS}{FOR DIFFERENTIAL EXPANSION} \frac{DESIGN LONDS}{FOR DESIGN (REF. A.I-I, SECTION 4)} \frac{TE 1184°F}{F} = \frac{270}{PSIG} (LIMI FOLLOWING USED FOR DESIGN: \frac{t}{2} = 1200°F \frac{F}{2} = 30 psig (LIMI = 60 psig (ULT.) \frac{MATERIAL PROPERTIES:}{321 STRINKESS STEEL TEMP, = 1200°F Fty = 18,000 psi - YIGLD IS CRITICAL Ftu = 43,030 PSI$	
DWG. 285-071 A.3 WHIRL TEST DUCT INSTALLATION THE DUCT SYSTEM SERVES TO TRANSF HOT EXHAUST GASES FROM THE TURE PUMERPARAT TO THE ROTOR SYSTEM. THE IS COMPOSED OF VERTICAL DUCTING FOR ROTOR AND HORIZONTAL DUCTING FOR OF EXCESS GASES. BUTTERFLY VALVES LOCATED IN BOTH THE VERTICAL ADD PATHS TO AUGUST FOR OPERATING RE THE DUCT SYSTEM IS SUPPORTED FRO TOWER AND BELLOWS ARE PROVIDED FOR DIFFERENTIAL EXPANSION. DESIGN LOADS (REF. A.I-I, SECTION 4) MAX. TEMPERATURES AND PRESSURES $t = 11E4^{\circ}F$ $f = 290$ psig (LIM FOLLOWING USED FOR DESIGN: $t = 1200^{\circ}F$ $f = 30$ psig (LIM = 60 psig (ULT.) MATERIAL PROPERTIES: 321 STAINLESS STEEL TEMP. = 1200°F Fty = 18,000 psi - YIGLD IS CRITICAL Fty = 43,000 psi	ATION
A.3 <u>WHIRL TEST DUCT INSTALLATION</u> THE DUCT SYSTEM SERVES TO TRANSF HOT EXHAUST GASES FROM THE TURE PUMERPAANT TO THE RETOR SYSTEM. TI IS COMPOSED OF VERTICAL DUCTING FOR: OF EXCESS GASES. BUTTERFLY VALVES LOCATED IN BOTH THE VERTICAL AND PATHS TO AUJUST FOR OMERATING FRO THE DUCT SYSTEM IS SUPPORTED FRO TOWER AND BELLOWS ARE PROVIDED FOR DIFFERENTIAL EXPANSION. <u>DESIGN LOADS</u> (REF. A.I-I, SECTION 4) MAX. TEMPERATURES AND PRESSURES t = 11E4°F = 29.0 psig (LIM FOLLOWING USED FOR DESIGN: t = 1200°F = P = 30 psig (LIM <u>MATERIAL PROPERTIES:</u> <u>321 STRINKESS STEEL</u> TEMP. = 1200°F Fty = 18,000 psi - YIELD IS CRITICAL Fty = 43,000 psi	12
H.3 <u>WHIRL TEST DUCT INSTALLATION</u> THE DUCT SYSTEM SERVES TO TRANSM HOT EXHAUST GASES FROM THE TURE POWERPLANT TO THE ROTOR SYSTEM. THE IS COMPOSED OF VERTICAL DUCTING FOR ROTOR AND HORIZONTAL DUCTING FOR OF EXCESS GASES. BUTTERELY VALUES LOCATED IN BOTH THE VERTICAL AND PATHS TO AUJUST FOR OPERATING REA THE DUCT SYSTEM IS SUPPORTED FROM TOWER AND BELLOWS ARE PROVIDED FOR DIFFERENTIAL EXPANSION. DESIGN LOADS (REF. A.I-I, SECTION 4) MAX. TEMPERATURES AND PRESSURES t = 1184°F $p = 270$ psig (LIM FOLLOWING USED FOR DESIGN: t = 1200°F $p = 30$ psig (LIM = 60 psig (ULT.) MATERIAL PROPERTIES: 321 STAINLESS STEEL TEMP, = 1200°F Fty = 18,000 psi - YIELD IS CRITICAL Fty = 43,000 psi	
THE DUCT SYSTEM SERVES TO TRANSF HOT EXHAUST GASES FROM THE TURE POWERPLANT TO THE ROTOR SYSTEM. TI IS COMPOSED OF VERTICAL DUCTING FOR. GOTOR AND HORIZONTAL DUCTING FOR. OF EXCESS GASES. BUTTERFLY VALVES LOCATED IN BOTH THE VERTICAL AND PATHS TO AUJUST FOR OPERATING RE THE DUCT SYSTEM IS SUPPORTED FRO TOWER AND BELLOWS ARE PROVIDED FOR DIFFERENTIAL EXPANSION. DESIGN LOADS (REF. A.I-I, SECTION 4) MAX. TEMPERATURES AND PRESSURES t = 1184°F $f = 290$ psig (LIM FOLLOWING USED FOR DESIGN: t = 1200°F $f = 30$ psig (LIM MATERIAL PROPERTIES: <u>321 STRINKESS STEEL</u> TEMP. = 1200°F Fty = 18,000 psi - YIELD IS CRITICAL Fty = 43,000 psi	
$\frac{DESIGN LOADS}{MAX. TEMPERATURES} (REF. A.1-1, SECTION 4)$ $MAX. TEMPERATURES AND PRESSURES$ $t = 1184°F \qquad p = 290 psig (LIN FOLLOWING USED FOR DESIGN: t = 1200°F \qquad p = 30 psig (CIMI = 60 psig (ULT.) \frac{MATERIAL PROPERTIES:}{321 STAINLESS STEEL} TEMP. = 1200°F F_{ty} = 18,000 psi - YIELD IS CRITICAL F_{tu} = 43,000 psi$	FER TH D JET HE SYST THE OVERFLO S ARE HORIZON: QUIRE ME TO ALL
$t = 1184°F \qquad p = 29.0 psig (21)$ FOLLOWING USED FOR DESIGN: $t = 1200°F \qquad p = 30 psig (21)$ $= 60 psig (217.)$ $MATERIAL PROPERTIES:$ $321 STRINKESS STEEL TEMP. = 1200°F$ $F_{ty} = 18,000 psi - YIELD IS CRITICAL$ $F_{tu} = 43,000 psi$	ARE:
FOLLOWING USED FOR DESIGN:	Mrs).
$t = 1200°F$ $p = 30 psig (LIMI)$ $= 60 psig (ULT.)$ $MATERIAL PROPERTIES:$ $\frac{321 STRINKESS STEEL}{F_{tr}} = 1200°F$ $F_{tr} = 18,000 psi - YIELD IS CRITICAL$ $F_{tu} = 43,000 psi$	
= 60 psig (ULT.) <u>MATERIAL PROPERTIES:</u> <u>321 STAINLESS STEEL</u> TEMP. = 1200°F Fty = 18,000 psi - YIELD IS CRITICAL Ftu = 43,000 psi	(, ,
MATERIAL PROPERTIES: <u>321 STRINKESS STEEL</u> TEMP, = 1200°F Fty = 18,000 psi - YIELD IS CRITICAL Ftu = 43,000 psi	
MATERIAL PROPERTIES: 321 STRINKESS STEEL TEMP. = 1200°F Fty = 18,000 psi - YIELD IS CRITICAL Ftu = 43,000 psi	
MATERIAL PROPERTIES: <u>321 STRINKESS STEEL</u> TEMP. = 1200°F Fty = 18,000 psi - YIELD IS CRITICAL Ftu = 43,000 psi	
$\frac{321}{578} \frac{578}{NLESS} \frac{57EEL}{TEMP} = 1200°F$ $F_{ty} = 18,000 \text{ psi} - YIELD IS CRITICAL$ $F_{tu} = 43,000 \text{ psi}$	
$\frac{321}{577} \frac{577}{NLESS} \frac{57EEL}{TEMP} = 1200°F$ $F_{ty} = 18,000 \text{ psi} - YIELD IS CRITICAL$ $F_{tu} = 43,000 \text{ psi}$	
Fty = 18,000 psi - YIELD IS CRITICAL Fty = 43,000 psi	÷
Ftu = 43,000 psi	
1 EU - 72,000 PSI	

HUGHES TOOL COMPANY-AIRCRAFT DIVISION PAGE A. 3-2 MODEL 285 ANALYSIS HOT CYCLE PREPARED BY C.R. SMITH TEST WHIRL DUCT INSTALLATION CHECKED BY ENGINE ADAPTER ASSEM. DWG. 285-0726 MAT'L; 347 OR 321 STAINLES: STEEL _.06 p= 30 psil LIMIT 28.7 0 HOOP TENSION $f_{t} = \frac{p_{0}}{2t} = \frac{30(28.7)}{2(106)} = 7,180\,ps1 = M_{.5.} = \frac{18.000}{2180} - 10 = 1.50$ Fty = 18,000 PSI ENGINE EXHAUST DUCT ASSEM. DWG. 285-0727 -- 12 BUSSET -0~--- GTUBE -- 4 REDICER - -2 TUBE 33.25 D 28.94 D MAT'L ALL PARTS 321 STAINLESS STEEL LOADS: p= 30 psis LIMIT = 60 psis ULT. -6 TUBE HOOP TENSION fe= + = 30(33.25) = 8,300 ps1 X Fty = 18,000 PSI M.S. = 18.000 - 1.0 - 1.17 9704

HUGHES TOOL COMPANY-AIRCRAFT DIVISION PARE A. 8-3 NODEL 285 ANALYSIS HOT CYCLE PREPARED BY CIR, SMITH WHIRL TEST DUCT INSTALLATION ENGINE ADAPTER ASSEM: (CONTO.) END LOAD ON ASSEMBLY 15. P= I (33.25 - 28.84)60 = 12,700 LBS. ULT. -12 GUSSET BOLT ATTACH: 2 34 IN. AN BOLTS LOAD/BOLT = 12,700 = 6,350 × 85. BOLTS OK BY INSPECTON ATTACH -12 GUSSET TO TUBE : WELD LENGTH = 10.5 IN. PER SIDE 95 = 6350 = 302 LBS. /IN. NOT CRITICAL 4130 STEEL PLATE - NORMALIZED -10 RINGS Po = 3.0 (6350) = 1730 185. ULT. Pc ______ = 865 LBS, LIMIT RING MEDIAN DIA,= 36.0 IN. MMAX = . 3183 WR (REF. A. 3. 1, TABLE VIII, CASE 1) M= .3183 (1730) 18 = 9900 M.LES. (LIMIT) RINS SECTION IS . 50 × 2.00 w f = 9900 (6) = 29,700 FSI LIMIT EST. TEMP. = 800 F FTU = . 75 (95,000) = 71,000 PSI (REF. 3.2-3) M.S. = 71,000 -1.0 = 1.40 9704

HUGHES TOOL COMPANY-AIRCRAFT DIVISION PAGE A. 3-4 ANALYSIS HOT CYCLE PREPARED BY GIR SMITH MODEL 285 WHIRL TEST CHECKED BY____ DUCT INSTALLATION EXHAUST DIVERTER ASSEM. DWG. 285-0728 285-0724 VALVE -----8 FLANGE --6 TUBE -2 20 285-0725 BUTTERFLY GUSSET VALVE INSTAL. -22 GUSSET --36 TUBE--24 GUSSET -30 PLATE DISCUSSION ADJUSTMENT OF THE 285-0725 VALVE IN THE OVERFLOW DUCT AND THE 285-0724 VALVE IN THE VERTICAL DUCT DETERMINES THE GAS FLOW. FOR DESIGN THE FOLLOWING LOAD CONDITIONS ARE CONSIDERED: 1. VALVE IN VERTICAL OUCT CLOSED p= 30 psi6 Limit = 60 psis ULT. t = 1200°F 2. VALVE. IN EXHAUST (HOR ZONTAL) DUCT CLOSED p= 30 psic Limit = 60 psic ULT. t = 1200°F

	HOT	SMITH	+	W	HIRL T	EST.	
 KED BY	Y			- 000	T INST	ALLATIO	N
 Exn	AUST	DIVE	RTER P	ASSEM	(CONT 'O.)		
A TH OF	AL D HE 20 E MO	00071N 85-072 104 61	6 15 27 DUG REATED	LESS TAS RUNA	CRITIC SEMBL) LL THIC	BECA KNESS.	IAN USE
- <u>2</u>	0 \$ -2	2 603	SSETS				
G T B	USSE OTAL UTTE	TS AR VERTI RFLY	CAL LU VALVE	SUMED NAD UN 15 C	TO TR HEN T LOIED.	ANSFER HE 285	THE -0724
	A = <u>1</u>	T (18.0) 4-	2 = 25	5 IN. 2	(-2	ELBOW)	
2	END.	LOAD =	255 ((30) =	7650	es, Lir	117
1	VELL	OF	GUSSE	TS TO	-12	RINGS	;
Å	WEL	A =	7.0 (1.	o) = 7.0	IN, ~	Nor	CRITICAL
- 30	PLA	TES					
アデアムレ	HESE HE N RUSSE OA DS QLVE	PLATE 14111 TO 5 AND BUILT 15 CL	ES, TU DWER SERU OSED.	IO PE. STRWE E TO WHEN	R SIDE TURE TRANSP THE 2	, ATTA THRU 7 ER E1 25-072	CH TO TUBE ND S
E	NO 1 E - 3	COAD C 32 TUE	ONSER E	VATILE	LY BA	teo on	34 OIA
	A =	TT (34)= 9,	10 11.2			
	P =.	910 (60	() = 54	500	(BS. OL	T.	
1	1620	OF P	KATES	To -32	TUEE	Nor C	RITICAL
/	FOR	2 1.0	INCH	BOLTS	IN DI	overe s	HEAR.
	Pair	ew = 2	7,489 ((4)= 1,	10,000 L E	5.	
					11,5 =	11.2,000	-10= 1.0

A
HUGHES TOOL COMPANY-AIRCRAFT DIVISION PARE 4.3-6 MODEL 285 ANALYSIS HOT CYCLE WHIRL TEST ABED BY C.R. SMITH DUCT INSTALLATION EXHAUST DIVERTER ASSEM. (CONT'D.) ATTACH AT -24 GUSSET 15° <u>±</u>-<u>±</u>-38TUBE <u>‡</u>-36TUBE <u>‡</u>R DUCT AREA = I (26) = 530 1N.2 P = 530 (60) = 32,000 LBS. ULT R= 32,000 (SIN 7.5°)(2) = 8400 LBS ULT. GUSSET IS 1.0 IN. STEEL PLATE AND BOLT IS 1.0 IN. DIA. OK BY INSPECTION DIVERTER DUCT BRACE DWG. 285-0744 BRACE ATTACHES TO THE 285-0728-30 PLATES AND TRANSFERS THE END LOAD TO THE TOWER STRUCTURE. 27,250,85. 33'35 - 3 TUEE LOAD IN -3 TUBES $P_{c} = P_{r} = \frac{27,250}{2(\cos 33^{\circ})^{-1}} = 16,400 \text{ Les}.$ 1 = 57.0 = 92 A=.799 p=.62 f = 16,400 = 20,500 PSI Fc = 26,000 psi (REF. 3.2-3) M.S. = 26,000 -1.0= .27

HUGHES TOOL COMPANY-AIRCRAFT DIVISION -ASA A. 3-7 ANALYSIS HAT CYCLE PREPARED BY C.R. SMITH MHIRL TEST INSTALLATION EXHAUST DIVERTER ASSEM. (CONT'D.) ROTOR CONTROL BUTTERFLY ASSEM. 285-0724 -4SHAFT 19.38 -2 PLATE 6 GUSSET MATZ: 321 STAINLESS STEEL -6 CUSSET t= .75 W. PRESSURE = 30 psis LIMIT AREA (SEMI-CIRCLE) = TT (9.7) = 148 IN. 2 LOAD = 148 (30) = 4450 LES. MA-A = 4450 (.424) (9.7) = 18,300 IN. LES. (LIMIT) $f \approx \frac{19,300(6)}{.75(5.25)^2} = 4420 \text{ psi}$ M.S. HIGH -4 SHAFT 4.0 "O.D. X . 25 WALL TUBE MAX = 4450 (1.00 - . 424) 10 = 25,600 IN.LBS. (LIMIT) I = HAFT = 5.20 IN. 4 fo= 25,600 (2.0) = 9900 psi Fty = 18,000 ps; M.S. 18,000 - 1.0 = .82 -2 PLATE NOT CRITICAL

HUGHES TOOL COMPANY-AIRCRAFT DIVISION PAGE A. 3-8 MODEL 285 ANALYSIS HOT CYCLE PREPARED BY C. R. SMITH WHIRL TEST CHECKED BY-DUCT INSTALLATION EXHAUST DIVERTER ASSEM, (CONT'D.) EXHAUST CONTROL BUTTERFLY ASSEM. 285-0725 2--2 PLATE 25.0 DIA. ------C-4SHAFT -6 GUSSET MAT'L: 4130 STEEL - NORMALIZED AT t=1000°F Ftu= .50 (90,000) = 45,000 PSI REF _ Ftr = . 35 (70,000) = 24,500 psi -6 GUSSET t= 1.00 IN. p= 60 PSIG ULT. AREA (SEMI-CIRCLE) = IT (12.5) = 245 IN. -LOAD = 60 (245) = 14,700 1 BS. ULT. MA-A = 14,700 (.424) (12.5) = 78,000 IN. LOS. $f_0 = \frac{78000(6)}{10(70)^2} = 9550 PSI$ M.S. = HIGH -4 SHAFT 4.0x 625 WALL MMAX = 14,700 (1.0 - . 424) (12.5) = 106,000 IN.LES. I= 9.8 IN. 4 fb= 106,000 (2,0) = 21,600 psi Ftu= 45,000 PS1 M.S. = 45000 -1.0 = 1.08

HUGHES TOOL COMPANY-AIRCRAFT DIVISION PAGE A. 3-9 NODEL 285 HOT CYCLE REPORT NO. PREPARED BY C.R. SMITH TEST WHIRL DUCT INSTALLATION CHECKED BY. VERTICAL DUCT ASSEM. 285-0723 205-0722 THE VERTICAL DUCT ASSEMBLY FLEXURE ASSEM IS ATTACHED TO THE TOWER STRUCTURE AT POINTS "A" AND 'B". BELLOWS AT THE --12 ELBOW ENDS OF THE -10 PIPE ALLOW FOR EXPANSION. -10 PIPE THIS CENTER DUCT IS SUPPORTED AT POINT 'B' AND IS LOADED 10 PIPE BY PRESSURE AND ITS OWN WEIGHT. PIPE IS 12,5 × 3/4 WALL APPROX. AND IS NOT CRITICAL FOR 4 BLOCK PRESSURE LOADS 160 " ARED = TT (12.5)(.375) = 14.7 IN.2/IN. W = 14.7 (.29) (160) = 680 LBS. ATTACH AT "B"- 2 1.0 INCH BOLTS - NOT CRITICAL BELLOWS (STAINLESS STEEL) BELLOWS MAX. DIA, = 15,8 IN. THICKNESS = ,062 HOOP TENSION : p= 30 psig. LIMIT ft = 30 (15.8) = 3820 ms1 BENDING OF FLATS! MMAX = we = 30 (12) = 3.6 IN, LE. LIMIT fb= 3,6 (6) = 5600 PSI M.S. HIGH 9704

HUGHES TOOL COMPANY-AIRCRAFT DIVISION -A . 3-10 NODEL 285 ANALYSIS HOT GYCLE ARED BY G.R. SITITH WHIRL TEST UVET INSTALLATION VERTICAL DUCT ASSEM. ATTACH AT POINT "A" 72'30 PRESULTANT 285-0703 STRUCTURE ASSEM. ---POUTA 285-0742 STRAP 285-0793 LINK) DUCT 1. D. = 12.2 IN. AREA = T (12.2) = 117, N. 2 FOR p= 60 psie ULT. P= 117(60) = 7000185. ULT. PRES. = 7000 (2) (Cos 53,75°) = 10,100 LBS. 285-0742 STRAP (COMM. STEEL) PT = 11,500 LES. ULT. (BY GRAPHICAL ANAL.) f = 11.500 = 15,400 psi ATTACH BOLTS ARE 1.0 DIA. AND NOT CRITICAL Assume Ftu (STAMP) = 50% Ftu (Koom t)= 27,500 PSI M.S. = 27,500 -1.0 = .78 285-0743 LINK - LESS CRITICAL THAN STRAP. 9704

HUGHES TOOL COMPANY-AIRCRAFT DIVISION PAGE A. 3-11 MODEL 285 ANALYSIS HOT CYCLE PREPARED BY C.R. SMITH WHIRL TEST DUCT INSTALLATION CHECKED BY VERTICAL DUCT ASSEM. (CONT'D.) 285-0722 FLEXURE ASSEM. -10 FLANGE -14 PLATE TO -12 PLATE --16 ROD L-20 RING 15,8 DIA. -- 8 CONE CP-120-9 12.0 DIA EXPANSION JOINT 10.4 DIA. EXPANSION JOINT SATISFACTORY BY COMPARISON TO 285-0723 BELLOWS CHECKED ON PREVIOUS PAGE. -16 RODS A= I (15.8-10.4.2) - 142 IN. 2, p= 60 psi ULT. P= 142 (60) = 8500 LBS ULT. LOAD IS TAKEN BY 3 -16 RODS (12" DIA.) - OK BY INSPECTION ATTACH -12 PLATE TO-10 FLANGE WELD SHEAR AREA == 3.0 (.25)= .75 IN." LOAD / PLATE = 3500 = 2830 LBS, ULT. f = 2830 = 3800 PSI ()M.S. = 4164 9704

HUGHES	TOOL COMPANY-AIRCRAF	T DIVISION	B 1
	MODEL	REPORT NO.	PAGE
PREPARED BY			
CHECKED BY			

APPENDIX B

TEST LOG SHEETS

B.1 INTRODUCTION

9704

3

Included herein are the 44 engine log sheets bearing the signatures of USAF witnesses; a summary of the whirl operation following the 35 hour tear-down inspection; and turbine discharge temperature as a function of time as plotted by a continuous recorder for the most severe transient runs. The latter plots are read with time beginning at the bottom of the page. The space between each horizontal line corresponds to 15 seconds. Each transient is identified by number and date so that corresponding engine data can be read from the engine log sheets.

B. 2-3

WHIRL TEST - J57-PW-19W ENBINE DATA SHEET -

~~

ľ				े सुर्वे :		Γ.												8.2	<u> </u>	r
T				1			∾ні	RL En	11	EST VÆ		~ J Dati	57- 4 51	PW-	- 19 N -					
		ADE	Rota	T10K	′ <u> </u>	L			1-				Du	CH	B.P.	UTH VAL	UTH			-WW
ľ –		Ī	Ī	5.5				6-5						,	T	Ī				2
1-		e	2	-	4	ω.	N		16		ì	4	13	12	2	10	2	60	2	Rux No.
Ĩ			66	66					71	-	2	21	2	67	67	67	67	63	67	Tiot
-			:	29.9			Z	+	:	-+	2	:	:	:	:	:	2	2496	29.95	U.S.
· •			35.1	35.5	101	36	RIOU	35.8	-	-+-		 	95	87.	84.5	89	41.3	946.1	94.7	• ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
		104	60,3	60.6	n	()	S Pou	60.7	101	70.1	0	10	94.2	196.4	94.9	94.9	94.18	94.7	93.8	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
		-	0.9	io		.45	UER S	1.0	-			n.	- 12.1	21.7	18.9	19	18.2	19.5	16.6	PALAS
			212	311		210	ALL A	22					424	626	590	563	539	500	480	6. H
)	÷	<u> </u>	. 840	84C		870	5	1890	1				624	7000	6/5	6300	630	6400	600	Lave
COM			46	45-5		46		45.5		-			48	48	8,0	48	98	6	048	Des S
Tora			43	. 32		44		30	+	+			457	45-	45-	45	ž	15	45	ا-يە
TIME	$\overline{)}$	1101	1012	1034	444	ALL AL	1425	14-23	Aus	1113	1105	hion	Sout	101 g	100	100 T	los	1045	1036	Time
5:52		33			32				42	T						ľ				TIME
15 STARTS	no situal for the	NORMAL SHUTPOL	OPER. of ROTOR CONT	NORMAL START WIND ESE 6 MPH	NURMAL SHUTDOL	CLOSED B.F. VALVE	PILOT FAMILURAZAT	@ CONTROLS	NORMAL SHUTPO	SLOW ENGINE REACT	VALE QUICKLY @ 90	FALLURE BY OPEN	NRP TON LINE	MIL. PT AND MAX.		HOLDING NE CONST	THIS THROTTLE SE	KORMAL CONT WI CLOSE B.P. VALUE		REMARKS

.

1.1.

A sale of a stand of a second B.2-7 TEST ~ 157-PW-19W WHIRL DATA SHEET ENGINE A State W G 64 6% 2-6 PATE 5 6 Rux 41 4 w 1 R 0 N 1 Im 2 22 .7 σ, Y n 30 3 23. 1.EV0 34 66.3 0 2 2 ĩ 2 1 88.6 60 0 C 71.614.7 86 80 83.1 104 work S.L. 104 1004 3701 >,⊲ DAE τ. F ł. 2.8 In. • 100 9.4 6.8 -25 Ν 0 11.9 Di 1 J.D 11.6398 3 382 368 140 340 208 C 295 0 330 11.7 490 3800 2500 2982 5100 3000 900 1 STA 2. 3, ÷ すい 42 おう 45.5 CUM. TOTALTIME 8:41 47 40 S P 8 S 2 50 65 2 3 40 3 0 S. ŗ٦ 1. 1 Ep. S. 120 6.14 3 1052 é. AL ST in the 1010 104 TIME Q 1vic 105 \$3 8 17.2 8 Ś 0 15 0.27 0.5 A B 1:05 N w CLEAR 121 Unital Nek . NCO WATE NCD UPENED NUT MANC. NORNAL STR - CAL С 3 VALUE 2 DUENED 20 ŝ. 3 TO 220"C ŧ, e. wit 1 Ver STARTS REMARXS SMORE 10.1 Y and an $\tilde{\chi}$ ~~~~ • 10 22:0 0 5765 Diew U.T. 111 2112 INVERTON 5 LALDE 0 5 - MotoRES OUT NV207 122200 2 J-Dow K 16 \$ ĩ . 0 Cours 5

. 8.2-8 WHIRL TEST ~ J57-PW-19W ENGINE DATA SHEET \boldsymbol{x} PIE -61 6 5 5 0 6 Rux 5 in s 5 , ∧ X 3 00 0 N 2 26 27 . 5 ۲, 29 σ, Ŕ 00 81.2 95.5 6.22 ň 8 (L) (L) 21 20 92.5 74.2 100 5 Ś 2 100 ້ < 6 0 à 96 945 25.8 96 5.5 95.9 93.57 204 (1) (1) (1) 96.5202 n, 90.2 and the 64 °_≥ 17 0 in 9). 16 18.2 10.7 129 13 ω. 2 25 ħ, 2 4 15 in the 19.7533 h 066 490 433 578 400 540 420 450 390 50 201 ليتي Sol 4080 1700 6800 6200 6300 2000 4600 インドン 3000 4800 7000 484 604048 e X COM. TOTAL TIME 48 84 84 54 1. オン 30 64 S. D 57 1 r œ 5 5 4 3 49 SI 5 5 50 5 5 3 Ĉ₽-I l V V 5 ×. · 3:25 10.33 0. V TIME Nº:-6:18 5.1 0.1 .44 4:49 14 ŝ ç 0 11:06 5 ώ . در در 00 Ner Mal 1.44 N NCD NOR WHI STAK 0 ω 0 STARTS 0 NAL REMARKS Ni NIC SYN ð Wind - 1 0

•			ý	1 ANT												0	_		
	REMARKS	NORMAL START	Nr. Power -	N, & M. WITH DROP IN P	FATER FOWD TO HAVE	NORMAL SHUTDOWN	NORMAL START	Roral BEARING TEMP TO HIGH. DULT TEMP @ 620°F		BEARING TEMP. TO HIGH	3	BEARING BO HUT	NORMAL CLAST DEWN	NURNAL START	BEARING TO HOT	NED WARD	To Martin of		27 STARTS
						5		- A								1:05			-
T	TIME	22	Pin Pin		\backslash	8.1	ar:/	1.80	68:1	2:1	24:1	Shill.	250	priz 1	1.1	2:29	\backslash	$\overline{\ }$	13:5
	Toit		20	NO															IME
T	σ. i		84	VGS															TAL
T	₩		 0320	OV S											-				
Ī	Tr.	-	030	5				ER		ER.		WER							
	م۴		6.2	EVA		1		Pour	1014	Pour	Ę	r pa		W	Ĺ	1E			
Ī	××	1046	 62	00	j	101	10/	MIL		NIN	à	N	104	101	5	4/			
F	×		 10:0	Sou	H'L														
ſ	٩٩		28.92	DNI		1			ž										
	۲°			1 X															
	Rux No.	<i>.</i> ;	~				1	-6	5	7	5	9	5	Ø	5	U/			
	DATE	10-					6-18												

WHIRL TEST - JST-PW-19W

01 - 2.8

WHIRL TEST - J57-PW-19W ENGINE DATA SHEET N 60 4 8-28 PATE 100 6 13 4 Rux 20 C N w L 2 6224 63 61 5 29.70 2893 29.97 σ, 63.7 59.3 639 92.1 23.4 0 20 R 0 3 4 5 894.7 òb 86.6 6.2 77.7 2. 82.7 803 27.9 26 10x 104E \$,⊲ 101/2 101 1012 10KE 101 V 9.54 37d m is is 20 TF. 20 20.5 4.9 44 18.8 20.4 J.D 104 5-25 53 37 264 568 625 531 203 268 VAR. 308 040 040 A. 6800 2120 2000 reac 200 2160 1560 4 87046 3 5 50 48 48 17. 48 48 46 46 4 o O CN 5 Y 54 1. 3 46 47 45-48 C e-l \$ w aking a 15:0 2:5 14.00 9:4 10 TIME 52.81 12-13 11:45 19:00 55 1, Ú H 9:45 F. 5.0 ò 6:36 01:10 14.0 2.4 0 10:32 305 ů U 20 ā 1:00 NORMAL SUUND Nen and 1831 158 RX 18 RozaR Noz. Haw fr Net NOD 40 Nuizie A: 20 NORMAL STAR 50 NORMAL 11:14 じんち しょぎ 32 STARTS Vok RP 0 REMARKS W/NO d' REMOVED どうえ SP ٨, ~ ~ 07, 1 ROTOR START 2445 RPM SUSPESSOR 5 1 1 N 「リス しょう 1 in Ù 1 11 12:34

B. 2-11

8.2-12 WHIRL TEST - 157-PW-19W DATA SHEET ENBINE 2 5 P 00 P 66 DATE 6 -6 ٢ Rux 5 4 3 5 <u>⊰</u> 2 6 S F 10 J. •] 85 85.2 80.1 83.2 11.7 50 28 K-S 287 635788.5 3 3 VARIOUS 5 89,2 86.2 81: 22.0 87.4 84.5 863 88 83.4 82.48.2 86.3 54 1045 ò R à ショ 37K 2 8.5 6.3 80 2.6 10,5 26 5,4 5.9 25 Ç. 101/5 J.D 308 0.0 332 320 350 350 340 330 320 322 354 31.6 177 R 00 3100 42 3600 47 SHOO 242047 2580 29847 410047 122042 3400/47 24404D 2420 47 X x PM 44 a D 42 46 5 ちい 46 46 64 54 よい 52 22 47 . -19:59 6:27 5.2 55% NGSP 11:10 TIME 20 535 10 5 2:02 Sa 52 147 143RPM 240 RPM 179 RPM Aco 218 RPM 230 RPM 210 RPM MAN OCT NOD NoRMA 5 1.0. 4:57 NORMAL START NUDOG 34 STARTS STUD OUT @ ISD RPM 10:38 V.O. 19:17 VALVE SHUT 59 168 ROTOR 2MPH WIND Remarks RPM DE OREN -4 W 4 12 23 TART RorpR * 2 RPN 1:05 20 1:25

B2-13 WHIRL TEST - 157-PW-19W DATA SHEET ENBINE 5 0000 S 4 DATE 3.6 25 Rux No. 5 5 3 v 6 4 5 00 w 2 10 6 7 TA .0 98.5 95.4 18.4 98.7 95.8 18. JJ8 64048 986 95.0 19.0 518 6900 48 28.5 91892 90.1 87.5 78.5 9677 19.0 521 6900 48 94.5 93.2 86.0 84.1 80.2 86.8 8.0 1 Mit 2 H RE 91.2 44 84.9 10.0 380 4080 47 R 6 101E 6 á, 1.1 29 5 En 11.9 420 485049 m P. 138 444 Rotary 15.0445 J,D 518 6900 48 403 465045 348 365 5 SAUND ()3100 47 6 5300 48 5700 48 3800 × 43 B 5 P 43 43 3 14 50 S 43 44 9 3 3 9 ŗ 10:05 11:00 TIME 6:0 No.1 11:0 ALES . linte 10:1 23:28 1:22 1:07 200 RPM 180 RPM NOR RPM 170 RPM NeD 240 RPM 130 RPH 140 RIPM 2057 5 V.C. " 220 RPM NORMAL START 2 MPH SH 210 R RM 190 RPM WIND 7HRS 35 REMARKS 4 Col Cort 100 7.5 MPHSWUL MIN OWER CLERN 39

TEST - 157-PW-19W WHIRL ENGINE DATA SHEET PIT -16 26 6 Rux 0 3 5 4 00 P. ω y š 6 3 ۲. .0 87 950 884 94.8 88.594.818.3 654 88.574.8 18. 1 152 87 93.6 95.718.5 545 8.3 88.4948/8.5132 62004 B 2 98.8 98.6 2 94.8/18.1 95.4 94.2 94218 95.8 18.6 957 95.618.2 101 54 1046 1046 10LE IOKE 1046 1 18 18.3 18.51528 18-2516 .TO 5664048 561 540 515 552 155 7 2/00 48 6100 6600 610048 600048 601048 660048 6400 48 62048 9900 3 48 48 48 P S' 43 43 43 43 č 5 t 40 44 43 5 ام TIME 25:46 6 28 54 23 + 7º Corto 240 RPM SUPPRESSER FAILED NCO YCD RPM 118 RPM 210 NORMAL STAR NO RMAL STARIER NRP VORMAL 12:00 Wino LJORPH 38 200 RPM C:NG REMARKS RPM ITO RPM 1908PM SFEADY 13 SW 180 RPM 1.0. Run STAR 171 RPM 122.5 0 X Craft MIN. MAL ST NUN 1.0 3 120 611 49

-	h .								·								. 2	3:2-	15
							Wн	EN	TE	57 E	- J Data	57- 4 54	PW-	- -					ų
												Ĺ				9-27			Date
-	.~1	4	ŵ	2	-	10	0	00	2	6	5	4	Cu -	2				Ξ	Rux No.
1		-	-	-				-	-	-	-	-	-	-	-		-		7
1	89.0	88.0	88.7	849	85.6	88.5	88.5	88.7	88.0	87.0	874	93.2	86.2	86.8	87.1		6	88.8	۰ ، ج
2	95.1	94.5	94.9	452	529	948	94.8	H.8	74.8	94.8	94.8	8:8	. 44.2	94.2	4.2		La	94.8	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
7	18.1	18.0	18.0	14:60	194	18.1	18.1	18.1	18.1	18.1	18.0	19	12.9	17.95	17.9		_	18.5	٩
~~~	560	60	55	ô	545	EB	19	225	566	Sec.	560	51	30	30	30			58	7,
an sé a	6/00	6000	000	300	300	6/00	100	6100	8	000	Opt	600	8	00	000			6200	₹,
-	48	40	48	48	48	48	48	48	84	49	48	48	48	48	40			48	۶Ū
4	44	44	44	43	43	43	#3	43	43	42	42	42	42	42	42			42	₽Ţ
	Clill	12:08	la:s	12:01	10:01	10:27	10:20	10:19	10:01	100	9:50	5.4	1.10	2:24	9:29	7:12	and	A.C.	TIME
7:56	2:01					5											9		
) 39	140 RPM	180 RPM	10 COLL	8° 193	7.30.	220	210 RFM	200	140	180	10 Car	Lac RPM	230RPM	LLORPH	210 717	NORMAL START	NCD 10:11	110 8 Co	REMARKS
₽¥	- and the second	2 53 C	•	5"H20	た"た0												BhRS ROTOR	¥Г.	

.

1

· · ·



8125.18 WHIRL TEST - 157-PW-19W ENBINE DATA SHEET ()Dute 10-2. 10-20 61 6 Aux No. w 2 ... ъ. .0 80.8 81.8 80 94.4 44 AND VARIOUS DEMONSTRATION ₹ 5 96 9/2-96 97.1 60. IDLE ≥, 3 5 DEMO 10KE DULE 5 21.0 20.9 13.75 5 5 DIE 21.8 650 6400418 EMP. 1 ,TP 104E Roran 0 658 Runs w w 660 600 240 5 6000 (abort) 72.00 SXO 3 RAM 48 48 ٦ 45.5 × P. 44 46 * 20 5 1 0 TIME 120 11:5 12.30 1225 13-20 2 630 1 8 ç 32:56 Darsenuin 32 1.41 2 FAMILINE IZATION Run USAFQC OPENSIGO B.5° COLL NG NORMAL STARI NORMAL NCD # 240 Lanon æ REMARKS 40 RPM 20 DUMP VALYE 1645 1617 RoTe & 18:10 1628 8:38

WHIRL TEST - J57-PW-19W DATA SHEET ENBINE 21 127 DATE ù 2 0 2 00 1 G Rux No 5 4 5 X N 66 -4 -÷ ٠ 5 2 ۲. 29,92 34.5 To 757. 4 30.00 ~ ÷ . --0 2 346 56 87.5 80.5 94.5 30 5.38 92.3 84.5 00 82.5 30 65 5 34.2 2 IDLE 5.96 90.0 76 2.36 20 60.2 93.1 -305 KC-90 5.26 87.8 80 90 10 00 60 >,4 0 20.4 15:5 20 20.4 -1.0 144 470 10.4 OLE 17.0 540 13.5 10.7 9 7.0 7.7 3.0 J.D . Kara. och 670 585 6900 630 6700 400 260 370 50% 350 XIS ž NORMAL 2851720 260 S AUT DOWN ۲, 5700 6400 650. 5500 \$200 910 3 100 5200 4400 Xood 3000 1930 3 2 \$5 2 83 X 84 *1 2 47 \$ \$5.5 ** 47 47 14 ۶D XX 457 45.5 ŧ, 3 K ì 45 2 ž ñ 83 3 20 ** 9 e٦ TH. 14.0 * 20 3:43 1220 440 1215 3:55 4/4 ins in 1SH 11140 10 1.1.1 10 TIME 101 134 35.12 61:19 DASERYED 77, WITH BEADES IN STALLED B-VALVE OPEN FAMILIARIZATION FROM START 200mm 240/20 2 yeypm STACI ZYON 2391pm - 6° Cars 519 epm 173 11 243 400 Strem FLUCTUATED 15°C 220 pm 240 10 + 2.5 cm 2 deten 105 KM - 4.0.11 REMARKS STARTER CLATTER TOLE - 90000 -9°00 - Cat-4°COLL ۱ 8. Saint - 6 Core 6 0044 - ( °call 6º cor 1.00 C Guis 20:20 000

8.2-10

4. SHF

B.2- 19 WHIRL TEST - J57-PW-19W 4. 4. DATA SHEET ENBINE 130 121 DATE 23 Rux 22 24 2 20 à ~ 30 17 2 × n 0 67 62 ۲. 29.89 35.5 .0 94.296.1 88.5 2 88 00 25 00 36 32 86.8 90 かし 00.0 6 2 6 3 10 90.0 90.0 92.5 90.9 83. 94.516.5 888 19.8 30 6 ≥4 20,3 54 1.2 13.5 10.8 OLE 10.2 10 × 10.2 50 20.7 670 6300 5.2 10.2 12 J.D c 605 6900 398 240 510 n 420 460 \$10 380 400 520 292 T 30 223 5 SAUTODWN DUNA 6 000 5100 30 ×200 5 KK00 \$200 380 2650 068 \$100 5000 ž KS C+ æ 148 8 \$ 47 10 14 46 ** 5 14 47 P 5 x 42 XX 53 * 5 \$5 3 8 2 40 * ŗ٦ TIME

REMARKS

5 1 X3 1011 6201 1003 256 846 156 1025 146 153 526 SA BO \$16 00 486 154 30:5 for the work of 5 NOLWIND - ITMPH- NUE NORMAL SHUT LOWN 180.cm 200 Mm VALVE DREN-856 Bl.S. Mm - 8.5° COLL STACK YALVE CLOSED ISt 17 Orpm -- unit 216 180 YPM 220 Mpm - 10 mm -200 YPM Zyoven 170 Kpm 2310m -100011 NORMAL Suur 1 ۱ - 9° ... // -10°Coll -2 COLL ۱ 8.5 COLL 9° call 9°0044 2º c . 11 7700.6 00 8.5 con SCOLL 21:49

i

WHIRL TEST - 157-PW-19W ENGINE DATA SHEET

B.2-20*

																		10/30	Dire
		20	38	37	36	и 17.	40	u u	42	31	50	63	82	27	NG	22			NC:
							69							•		<b>F</b> :	69	-	5
																	59.83		σ,
	XE	70	92,1	88,2	1:48	81.4	85.5	87	92	97	81.2	97.3	08	97.2	648	71	U K		<u>ج</u>
	8.09	96	93.2	91.1	6.68	88.5	90	16	93.8	96.4	96.4	176	88.K	126	88.5	83,Z	60.Z		× 4
	4.1	18.0	14.4	11,9	9.6	8.6	11.0	12,0	15,0	18.9	2.03	20.4	8.6	20,0	8.6	4.9	6.1		٦٦
,	587	syr	490	KKS	415	390.	Res	KKS	510	570	665	600	395	570	370	320	250		Ţ,
,	850	6500	5300	Kao	3900	3400	\$200	<b>X500</b>	51600	6 760	6300	7100	3200	7000	ঽৢৢঢ়৽	2320	190		×
	101	×7	¥7	14	14	47	40	×8	87	8×	×8	84	14	84	· 47	**	X7	574	o r
	*	14	E,	63	2	64	3	¥5	25	xs	5	X5	50	44	50	47	ee 41	PT-+	ہے ج
	1539	1529	152	151	12.1	1508	1820	1447	18.41	Lex L	14	1419	ALC	ixin b	1356	1384	330	1332	TIME
		-								2:01									
ť	- Noemas Sout Down	240 mm, 8° coll	220 pm 8'ec 11	Zoorph, 8°col	180 ver 8° coll	17047m . 8° coll	WIND-LEAPH - NNE 17000m 100 Coll	WIND- 4 mph -N 180 mp 10 cell	zoorr 10° coll	2 20 ypm /0" call	231 7pm 10° coll	240 rpm S"call	2401pm 2° Coll	2 Yorm 9 coll 1	Down he so at and of data in 24/ Nom 2. coll	17010m 2° coll	1342 - 8 VALVE CPEN		REMARKS

50 64 n

1 1 ()	~				v		Wн	EN	TE	ST E	- Ј Дат,	57- 54	PW-	- /9 /	در ۲	<b>\B</b> .	<b>Z</b> -	R.	, ,
T				12/2/			T						1	Τ	Γ		1	10/30	DATE
. I			5		6					14	46	#5	¥	\$3	42	41	40		Rux Nc.
1	-		UUTO	58								. 						67	75
1			Julu	30.00													ten un e	29.82	0
			OUE	20					67	'n	92.8	846	97.7	516	87.5	82.5	29	N YE	?
Ι			24	1/12					50	97.2	0.06	97.1	96.6	93./	90.9	88.8	87	60 1 E	× 1
		1 Tr	0 55	1.3					× ~	20.6	18.3	20.6	0.21	14.3	11.8	8.7	7.5	1.5	٦٦
			C 100	230					340	610	580	610	570	¥90	135	400	370	223	77
			E OT	26		Ц			2010	7000	6300	7000	6900	5200	4500	3600	2770	020	¥.
			NUS A	84		270			£	83	88	X	×e	r	47	47	47	15 YS	o F
			Edenny						y	XX	X	XT	KG.	ži	X	ex	67	××,	۰-۱ ۲
-	$\sum$	8:34	8:343	2:24	172	En	DIC	11:33	1708		120	ic vo		6.55	1620	in the	1620	jeon 1	TIME
10:18		17	11.12	5			2												
2 1 May 15	<i>d</i>	NORMOL SHUT DOWN	170 YM C Call	START 2, SMIN	NOEMAL SHUT DOWN		1 mind - 20 440 2 x 6 ym - 2° coll	Every sec	17010m - 2°coll	246 mm - 2°cs 11	zxavpm - 2°Coll	220 V/m - 10.5 °c. 11	220 pm - 10 call	220 ypm - 8 cull	220100 - 2mph - N	Wing - 4 mph - N 220xpm - frail	220 1pm - 2° cell	1608 - BVALVE OPEN	REMARKS



1 8.2-23 WHIRL TEST - J57-PW-19W ENBINE DATA SHEET 7 ) PITE 11/1/6 X 1.1 50 Rux ₹o. > es AJ WITNESLES 55 52 5 28 5 うちんん 30.0 5.5806.62 29.95 ß σ, 34.5 7.50 87.2 25 6 5 3 00 60.5 85. 9 97.319.6 97 61 61.5 >,⊲ 1045 101 10,5 A 5.8 10 ., D 2 --0 270 500 240 640 370 2770 230 602 6900 <u>'</u> J \$300 300 7000 200 1000 ž 23 43 5 Q. 5 が οŪ * 47 45 20 X y U. メマ 1× 10 e-I M 1000 insi 1033 1959 43-27 440 156 620 1240 1010 2001 10.7 1250 Sui TIME 1002 10 33 STACT Xn21 123 STAT SHUT SUUT JUNC STUR WIND - NNE - 2 mph DEMONSTRATION 56 HYORALK PUMP MOTOR 240EPM-NOCIMAL SHUT NORMAL SHUT DO WIND-ZZMPH-JW 170 Km - 4 Care NORMAL SHUT VOUN = yo RPm - 7.6000-240 m 24.1m - may 02. WIND - SWAN -JIRPH - K°COLL 3707 10LE IDLE REMARKS 27-41 1 SHUT DOWN t 4ºCOLL 2° с ° 2001 2º00 (1 Down PUN v -



8.2-25 TEST - 157-PW-19W WHIRL DATA SHEET ENBINE Dir 12/2 Y Run 30 00 4 5 * 6 5 2 64 5 ~ 30.15 3001 23.97 ~ J, 5%6 4 87.8 77.8 53.5 29.5 51.3 79.2 4 3 th 2 3 36 2.9 61.× 60.6 20 16 200 36 77 5.09 5.96 >,⊲ 010 20.1 . 2.1 21.1 11.6 20.8 1.2 ** 20.2 ٥٦ 1.1 X.C U 670 610 N 682 \$20 228 242 58 565 670 3 <u>'</u> x š 6500 6×00 1820 090 6600 CS. 4100 6300 7100 600 280 ₹, 83 47 5 20 XK かっ 83 ×2 5 xa 5 o r 4 3 2 5 r x 55 47 X 83 K XX 3-0-1 -۴ 1:2 11:21 1610 11:42 1:35 10:11 Neir N 2:13 2:1 All 2:55 TIME 11.10 212 1:0 0 11:33 10:11 LIAN STOP Sac SMPA-NE 170 EAM- 2. 228100 STAPPER 10mph-W VILVEOPEN 11:10 221 mm - 10 ca 11 230 cm SLOW 3 50000 2/8 rpm 23 Yrpm 70YPM-12mpt - w SAL - 1 1m/ z Yorpu Smpk -2351 5 2 Yorm -REMARKS I VALVE CLOSKO SIAC START-M --10° call m) オッカ 5 8.7°C1 No 1 -8.5.01 8.0011 4° call 11 2, 23 K. C. E.Scull S 0.50 ) 1. c. 11. 45 1220 1 2,06× 5 5%



I I							7	HIRI EN	L TES	T - DA1	J57- Ta si	- PW - IEET	19				G	2-	-27	
				-	,		12/1/					•					•	13/21	1	DATE
I	2	é	à	jè	is k	ùñ					1							1	1	RUN NO.
I							56									-		60	5	AMBIENT TEMP OF
ł							30.05											29.82	00	AMBIENT PRESS. in Hg.
r i				28.2			35.5		u n									36	Z	LOW COMPRESSOR
1				37		83.0	60.8		60.1									61	NN	HIGH COMPRESSO 1 SPRED
				N		5.2	1.3		N									1.3	T	TURBINE DISCHA PRESS PSIG
I				585		4 • C	240		240									240	17.	TURBINE DISCHA
-0 L				7300		2800	010		000									36	3	FUEL FLOW RATE - Lb/Hr
-0.7				8		K6	15		×5.									46	aD	OIL PRESSURE PSIG
$\left  \zeta \right\rangle$			3	×0		× o	82		2							-		à	07 1	OIL TEMP.
				•		4	ч			ù								4	eris .	WIND VELOCITY MPH
1	5			n m		٤	SW			3 S								SE	Dir.	WIND DIRECTION
1	25.	230	220	220	202	170												1	rpm	ROTOR rpm
1	25	90	Ň	00	2.0	e N												1	Pitch	Collective Pitch
•	11:23	11:20	1111	1:12	11:03	10:51	10:45	2:35	2:34	2:51		2:10	2:10			25:1	1:52	1:43		TIME
I				50			staet	STOP										Stuct		START S
<b>I</b> I イン	70 JOLE 10 Ste	TEDNSIENT	1 P.	Nov. N.	C N N CS	19 10	500°C START-BUD		TOLE -2:3	170 ppm -2°cc11	VALVE OPEN 2:30	YELLOW LIGHT OUT	1701m - 2. Coll	YALVE OPEN - Z: 1	WILE LOSED - 15'	TOLE DETECTOR	1701pm - 2 " 611	JOD & START IDLE - YOLVE OPEN	-	REMARKS

						*	HIRI El	l te: Igini	ST - E DAT	J57- A Sh	PW-1 EET	9W				E	3:2.	- 28
	Τ			14.	-	h											Yula	DATE
	27	26				0				25	24				23	22	21	RUN NO.
	0.	070		20		R			0	9			50					AMBIENT TEMP OF
	80	80		50.04		2			0				30.00					AMBIENT PRESS. in Hg.
46	AF	wo	5	35		Þ			Yev.				35.2					LOW COMPRESSOR
25	a	cro		60		11			a.				8.09					HIGH COMPRESSOR
18.7	YCL	110		R	6	$\overline{\Sigma}$			044				7.	ļ	•			TURBINE DISCHARG
550	ic -	440		260	ň			}	r 1 0				542					TURBINE DISCHARG
6 140	i.	N°		920	cs	1			102				063					FUEL FLOW RATE - Lb/Hr
z	5	E		5	N	B			0				ñ					OIL PRESSURE PSIG
3	CR	Ger		5	2	5							84					OIL TEMP.
G	G	r*	4	4	N	m			20				10					WIND VELOCITY MPH
NE	NR	NW	2	٢	~	3			See.			4	y E					WIND DIRECTION
240	246	240	200		1	2			2%	240	230	230		1.	5	220	220	ROTOR rpm
5	R	*	*		1	Z			*	00	4 2	n o			0 9	N C	2	COLLECTIVE
141	1:30	62:1	01:10	1:03		SE		C.48	2:13	2112	2:11	1.51	1:46	11:43	1/:38	1134	1/135	TILE
				STAC		R		STOP					START	STOP				START
	1			1.5			\$1	2		55	50	1:58	1. t	2	63	5		
F	R	P.Y		00 %	6.6	- and	ATS	oem.		K II	EC VE	Val	707	UKM	JEC.	EC		72
	80	200	E'S	XUT	N.	INE .	1	10		2 Mis	NON C	10	- 572	F	12 CE	TRAL	1	MARKS
	0	×0	N	act C		33	62	er		ENT	Sier	E	NA T	U	ousi	SIRA		
			ŧ.	PEA		1 1		0		Tal	A'		V. or		ENT	1		


ł						[	•	W	HIRL	tes Gine	T -	J57-1 A Shi	PW-19 EET	W			3	20	8-2-	30
.[	4		12	×			Hice							75/62				1/mla		DATE
1		i i	K	F	100	100	S.		FA	RST	N 3	HIR	k R zns	Pecr					1	RUN NO.
1 [			6	N			57						60				al.		, o	AMBIENT TEMP OF
-							30.06						30.01						°	AMBIENT PRESS. in Hg.
e ebe ge				22.5			36		36	79.9	2.86	66	3		-	34	77	34.5	L _N	LOW COMPRESSOR 7. SPEED
				97			61.3		61.9	36	97.1	86	6			60.3	20.5	60.1	N2	HIGH COMPRESSOR
				21.3			1.3		ir	2.1	2.1	6.8	1.2		•			1	Γ ⁷	TURBINE DISCHARG
				600		_	252		2 40	670	265	320	240			320	550	• 62	TT7	TURBINE DISCHARG
( <del>-</del> )			60	750			046		800	6	7400	2:50	1000			7%	38 8	1000	J.M	FUEL FLOW RATE - Lb/Hr
				40			24		xn	84	24	47	46			23	47	47	Poil	OIL PRESSURE PSIG
				3			20		63	×.	41	41	81			87	35	22	Toil	OIL TEMP. C
				w			4		À	à	15	15	15						¥∎1ind	WIND VELOCITY MPH
				n			SE		Sw	sw	Sw	Sw	รพ						Dir.	WIND DIRECTION
				2%	240		1		1	210	240	175	40						грш	ROTOR rpm
				2	~ 7		۱		ł	γ	8	4	4						Pitch	Collective Pitch
-		11:20	50:11	11.00	10: S	10 'Ita	10:31	3:06	3101	2:5	15:2	2:47	2:40		s://	10:58	5:01	54:01		TIME
67							STACT	STOP					SACT		STOP			STAET		START S
		BUGLYE OPEN	TOLE	MIL PWR		VALVE OPEN - 10:45	TOLE - 500°C STAR	No ema	IDLE VALVE CLOSED - :	MAX TEMP- TT ST VIBRATIONS IN COLLECT	mil, pure	VALVE OPEN - 2.42	3 3 see on Start		Normal Shut Down	IDLE	Hoser n'Start 500 °C light off	Mon the Run Up of		REWARKS

WHIRL TEST - J57-PW-19W ENGINE DATA SHEET

B. 2-31

ASST SEC 442 i DERENSE U Y DATE S. 2 6 20 5 5 4 N > i 8 1 w RUN NO. Z T. 5 0 AMBIENT 3 TEMP. - OF AND TENT °. PRESS. in Hg. 99.V 13 34.5 76 4 Q, 5 34:4 (Jr R LOW COMPRESSOR 2 2 + n n V, ق 1 SPEED 848 t 6 60 6 S 60 60 5 NN HIGH COMPRESSOR 2 2 5 'n **U** n 1 SPEED Y PT7 1.4 1.25 21 2 0 ~ = 2 TURBINE DISCHARGE 2 -5 5 5 PRESS - PSIG 670 CL N 583 υ, 50 275 ~ 2 312 Š TURBINE DISCHARGE 2 * 20 -0 5 0 6600 7500 2720 910 -6 : = FUEL FLOW 2 1 2 ø RATE - Lb/Hr þ 011 X 5 OIL PRESSURE 2 22 2 æ ~ ₹ 2 × -PSIC 7 Toll XX 2 が 2 2 OIL TEMP. Ξ 3 \$ 2 τ °C wind WIND VELOCITY 4 5 Д × S 9 ... 3 ÷, 2 ~ MPH 5 3 Dir. 3 se Se 6 4 3 2 WIND 2 3 S 3 3 DIRECTION H 240 2% 58 S 60 4 5 ROTOR rpm 43 В 20 ŵ CI. 20 0 C, Pitol 4 COLLECTIVE 3 4 2 2 * = 2 -9 2 2 PITCH 11:41 12:3 12:2 11:5 27:11 12:34 11:34 11:20 11:4: ۲ 2 12:3 2 1:32 TIME 37 00 SN 5 START S 4 H NORMIL 200 00 Ø £ ULE VALVE Ś ンマバ VOLVE 2 1 -Ξ 2 ž REMARKS Ż 4 2 Z, STORY D Ц アット 0 0 3/4 OPEN 2 DR 17 3 4 7 7 2 P 1 2 Down 12:3

ù

							l	THIRI ICT	l tes Igine	T - DAT	J57- Xa Sh	PW-1 EET	9W			·B	2.2	- :	32
In			Γ	1/2/2	1	the second	ac		1	T	T	1	1	Τ	-		Plizk		DATE
T	2	1			Ċ.	6	16	is	À	3		N	1	6	e			:	RUN NO.
T				80													59	, •	AMBIENT
1. 	<u> </u>			30.00													30.06	ൗ	AMBIENT PRESS. in Hg.
-	46	80		36			79.0	24.4	80	6		99.2	6.3	2.5	93.2	78	36	ц. И	LOW COMPRESSOR 1. SPEED
1000 1000	6.26	16		5			36	97.1	76	1.56		95.7	56	40	92.8	26	61.5	NN NN	HIGH COMPRESSOR 1 SPEED
velje.	20.9	20.1		in			2.0	10.4	86/	17.5		8	16.7	6	13.5	6.7	1.2	PT7	TURBINE DISCHARG. PRESS PSIG
-	600	585		242			10	580	565	525		530	510	490	52	337	522	^T T7	TURBINE DISCHARG
	7/00	160		0/0	<b>_</b>		6400	7200	7200	6800		: 700	623	6000	4200	2750	080	<b>1</b>	FUEL FLOW RATE - Lb/Hr
	84	57		24			8×	X	44	87		84	44	×8	34	44	XS	110	OIL PRESSURE PSIG
	4	£		32			*	*	¥.	ŧ		4	4-	8	45	K6	20	Toil	OIL TEMP.
	16	16		is			ì	2	é	à		8	2	23	16	6	6	¶ ∎ind	WIND VELOCITY MPH
	Sw	Sw		33			Sw	ε	Sw	Sw		ŝ	Sw	S E	Sw	s E	sw	Dir.	WIND DIRECTION
1	240	240		TOL			240	exo	240	Sto.		246	240	246	240	170	1	rpe F	ROTOR rpm
	5'2	7.5:					8.0	80	7.5	6.5		6.7	5.71	5.75	5	4	1	hotic	Collective Pitch
**£	4:00	87.2		3.19	\$,00	3:49	5:47	XX: 5	5'32	3:22	8:09	5:02	25:2	2:40	52:25	2:05	1:54		TIME
69				STACT	STOP											3	STACT		START S
		BYDLYE OPEN - 3:39 5°LEFT CYCLIC	B VALVE OPEN - 3:27 B VALVE CLUS RO- 3:29	35 SAC STACT 320°C STACT	Norman Suut Dawn	3:56 - BVALVE CLOLEO Flyid BACKEO UP IN Mannerice	Sock-r	5° 010 - L	SILAFT CYCLIC ' 3:37 - 5° L.C. Fud, dft cyclic	5°LRFT CYCH C 3:29-5°LIR.Fud.Aft Gydn	TDLE	5.06 - S. L.R. Ful Aft Cyclic	Z:56 - 5°L, C, Ful, Aft Cydic	2:48 - 5°2, End, Aft Cydic	2:35- 50 L, R, Fund, Aft Cyclic	1:59 -13 VALVE. OPEN	35 SEL ON STARTER		REMARKS

I		1					1	HIRL	GINE	T - DAT	J57-1 A Shi	PW-19	**				<i>3.</i> 2	2- 3	33
1		F.	i	2		THE .		Γ									Her.	:	DATE
1			27	26		Γ			25	24	N J	22		12	NO		61	:	RUN NO.
1						53							-				59	о Н	AMBIENT TEMP OF
-						30,03											30.05	°0	AMBIENT PRESS. in Hg.
			P3.5	96	72	36			35.5	35.9	36	36		82.7	176	46	24	t _N	LOW COMPRESSOR
-			96.8	97	84.6	61.5	8		60.8	2	61.2	61.2		8.00	8.9	6.96	96.9	2 ^N 2	HIGH COMPRESSOR
			20	20.4	C.K	5			2.0		in	1.5		1.2	20.8	70.9	20.6	۲ ² 7	TURBINE DISCHARG
1			610	590	50	235			270	242	852	240		KK0	598	600	265	TT7	TURBINE DISCHARG.
e .			6700	7/00	2630	0/0			1000	920	900	200	0	4200	7/00	7/00	7100	л. М	FUEL FLOW RATE - Lb/Hr
7 m	•		87	48	5	R'S			47	74	× 8	87		84	87	87	8×	Poil	OIL PRESSURE PSIG
			40	F	43	8			25	é	ĩ	4		÷	7	4	x	Toil	OIL TEMP. C
			10	ò	ò	ò			20	81	81	×		4	NC	'n	à	<b>V</b> wind	WIND VELOCITY MPH
I			sw	wsw	Sw	ч Е			Sw	3	wsu	s w		Se	wsw	WSw	ŠE	Dir.	WIND DIRECTION
1		IOL	23/	2×0	170	10			ZO	হ	66	70		240	240	240	240	rpm	ROTOR rpm
		17	8.25	7.5	4,0	m			4.0	4.0	£.0	4,0		3,5	8,0	8.0	7.5	Pitoh	Collective Pitch
	11:29	11:24	11:02	10:48	10:39	10;27	5:00	4:43	4:38	4:37	×:34	4:32	4:26	61:4	\$:16	4.13	4:04		TIME
70	STOP					START	STOP					0							START S
	NORMAL SHUT DOWN	BVALJE CLIERD	11:14 - REPEAT 11:21 REP		SVALVE OPEN 10:31	40 SEC STIRT		BVOLVE CLOSED -4.	1/4 OPEN	1/2 OPEN	34 OPEN	B YALVE OPEN-20LE	I 01 E	to reft cychic	5° LEFT CYCLIC	=	50 LIR, aft, hund cyc		REMARKS

1			[		W	HIRL En	TES	T - DAT	ј57-1 А Shi	9 <b>W-1</b> 9 NET	*				e:	2-3	34
$\frac{1}{2}$	Γ	 R.	1	-			0								Tryles	:	DATE
1		 1	P. N		Ą		あしょ									:	RUN NO.
1							4714						62			्म	AMBIENT TEMP OF
T							3						30.02			°	AMBIENT PRESS. in Hg.
1							im				8. 98		36			۰ ۲ _N	LOW COMPRESSOR 2 SPEED
							( (				5.68		61.5			N2	HIGH COMPRESSOR
1							EN				10		1.0			$r_{I_{a}}$	TURBINE DISCHARG
-							Sini		•		390	340	250			4T.	TURBINE DISCHARG
							1				1200		910			J.M.	FUEL FLOW RATE - Lb/Hr
1. st. f. s.							621				27		5×			P _{oil}	OIL PRESSURE PSIG
							15/				45		82			Toll	OIL TEMP. C
							2200				۶/		13			<b>▼</b> ∎ind	WIND VELOCITY MPH
ĩ							2.				รพ		Sw			Dir.	WIND DIRECTION
1							5		IDI	220	022	170	JD		0.000 a	rpm	ROTOR rpm
1							ART		ē	え	4	4	L R		ACT AL	Pitch	Collective Pitch
1							ł	3'08	20.5	65:2	55:2	15:2	2.40		2.29		TIME
T							72	STOP					START	STOP	Siger		START S
		- 1					Buse Hhrs 1600	NORMAL SHUT DOWN	A VALVE CLOSED 3:0	Sarer cycric		Statig open 2:45	SZO°C START SOSEC ON STARTER	NO FUEL FLOW WITH THEOTILE IN DETENT	40 SEC ON START ABORTED START		REMARKS

Γ Γ	Q		4					hirl En	TES	T -	J57-1 A Shi	P <b>W-1</b> 9	9W				B.,	2-3	35
	ه_	-	R	E	10	e.	F										2/20/6		DATE
				6	36	0	۲	35	୭	76	33	32	3/	30	62	28	2		RUN NO.
de l'ante				ļ	-		*	:		=	2	2	:	:	*	*	5-8	°	AMBIENT TEMP OF
	2				2			:		=	:		2	2	*	4	29.00	°	AMBIENT PRESS. in Hg.
Ţ	te		85		20.8			77.8		326	95,2	95.2	97.5	576	56	93.9	36	N1	LOW COMPRESSOR 1/ SPEED
	20		11		5.2		N	78	1	87.5	200	96.8	96.2	95.5	8.40	93.9	6	N2 1	HIGH COMPRESSOR 2 SPEED
	3		N		19.8		13/5	2.5	SON	26	86	12.8	2.5	16.6	15.5	ix	<u> </u>	rr7	TURBINE DISCHARGE
•	R		250		610		27	370.	SIA	378	065	590	555	540	940 (	900	1	TT7	TURBINE DISCHARGE
	n.		1100		6900		2	3/00	Y	\$200	7100	7100	7000	6600	.200	5800	080	T.	FUEL FLOW RATE - Lb/Hr
	-		Xy		87		à	46	202	K7	28	¥8	K o	48	47	47	ĥ	1109	OIL PRESSURE PSIG
(	1-10		5		41		3	X	Sec	RX	40	× o	×	ž	4	40	22	Toil	OIL TEMP. C
	30		ò		13		ev V	7	3	ù	7	12	ò	is .	<i>`</i> 0	v _j	00	▼ind	WIND VELOCITY MPH
	045		3		Sau		5	Sw	200	ŝ	Sw	Sw	ч ш	sw	sw	S	S	Dir.	WIND DIRECTION
64	14		100		240			220	e e	222	240	2960	240	240	240	240	TOF	rpm	ROTOR rpm
51 3	1 to		N		7.6			2		N	7.5	7.6	2	V	•	•	(R)	itch	Collective Pitch
mue	-w-	12:33	12/27		12:14	12.10	2.2	11:50	11:53	11:44	11:90	//:33	1/:22	11:17	1:12	1/:01	6:39		TIME
73	* *	STOP							- -							<b></b>	staet		START S
424,424	2	Nor me	BULLIE CLOSED 12:30	12:22 Sotie 4 Exerc	5° L, R, F, A CYCLIC	0.5% CYCLIC	SAME DE QAOVE	11:59-2°L/R, FA CHELL	SSEC PECKL TO FULLPU	SOLAFT CYCLIC	11:36 So L, R, F, A Cyclic	2	11	SOLEFT CYCLIC	11/17- SULEAT CYCLIC	TT READ ON ALTERNITE T.C.	. Tz not recording		REMARKS

40 c.		Z	U.			W	HIRI	TES	T -	J57-1 A Shi	PW-1:	9W			i e	8,2	5-3	°6
$\sim$			É	100								4				Hok.	ł	DATE
				2	42	\$	40	65	38			26.	37				:	RUN NO.
				:	:	2	:	:	:	55		ren 1	¥			55	0	AMBIENT TEMP OF
ь. 				:	*	*	:	:	•	\$ 8, 62		10	2			29,88	ര	AMBIENT PRESS. in Hg.
				Xis	90	97.5	89.5	96.2	26	36		K	66	85	35		L _N	LOW COMPRESSOR
				63	\$1.36	92.6	2.2	97	2.5	(1.5		oun	20	77	60.8		N2	HIGH COMPRESSOR
·	 			2.2	20.7	15.5	20.5	21	20.7	is		25	19.8	6.2	1.2		PT7	TURBINE DISCHARG. PRESS PSIG
	 			245	512	500	610	500	600	230		5	670	330	512	H	τ ₇	TURBINE DISCHARG
			_	1050	6900	5384	6900	72.00	7000	900			6500	2850	190	Ĩ	J. <b>4</b>	FUEL FLOW RATE - Lb/Hr
				124	88	84	53	84	84	KS		nc _	87	92	45		P ₀₁₁	OIL PRESSURE PSIG
)			1	2X	Ko	40	Ko	x o	U) 20	38			14	50	43		Toll	OIL TEMP.
				10	6	13	ò	~	6	~			80	ò	6		<b>▼</b> ∎ind	WIND VELOCITY MPH
				NE	NE	シベ	NE	えい	NE	NE			8	560	3		Dir.	WIND DIRECTION
				100	230	230	230	240	240				240	170	62		rpm	ROTOR rpm
				2	00	6	<b>2</b> 0	7. 5	52				7.6	4	2		Pitch	Collective Pitch
			5.20	5:11	4:59	4:51	4:45	4:35	4:22	¥!)/	2:12	2:06	1.40	1:38	1:32	1:25		TIME
			SR							START	STOP					57487		START S
)				BYDLIA -CLUSRO SI	SOR, L, F, A Cycure -:	SOK CYCLIC	JOR CYCLIC	L: 40 - SOPL, FACTO	4:20 - 50 R CYCLIC 4:32 - 50 R L. F.A	BYDLINE OPEN #:13	NOR MAL SWI DOWN	3 VOLVA CLISED	5° 2, R, A, F CYCLIC -1:51	1.2 CYCLIC	BVALVE OPEN - 1:32	500°C Start		REMARKS

Ĩ.			Ŀ				1	HIRI M	l tes Igini	ST - DAT	J57- A Sh	PW-1 ERT	9₩				E	2-	37
T	;	F			Per an	e		Τ	Τ	Τ	Τ				Γ	Ī	421/		DATE
an de la			84	90	0	14	\$		2		44	K.S					1	:	RUN NO.
			*			*	:	•	*		*	:	:				55	, P	AMBIENT
N			2		Z	:	:	*	:		•	:	2				56.62	م	AMBIENT PRESS. in Hg.
• •			26		17 S	72	90	06	16	=	89.7	96	97.2				36	r N	LOW COMPRESSOR
			2.5		\$. \$	36	2.2	96.7	24,2	=	5.2	96.2	26.6				61.5	N2	HIGH COMPRESSOR
			20.2		Lora	8.2	20.1	20.4	16.8		20,9	20	20.4				1.2	FT7	TURBINE DISCHARC PRESS PSIG
i i			610	2 4	à	370	610	610	525	*	610	570	590				230	TT7	TURBINE DISCHARC
-			7000		n K	0562	6700	6900	6000	2	6900	7000	7200				010	J.L	FUEL FLOW RATE - Lb/Hr
_			37		7 5	14	48	87	22	*	27	68	46				46	Poil	OIL PRESSURE PSIG
<u>i</u> `			¥o		ette	44	× 0	ŝ	40	-2	38	38	38				è	Toil	OIL TEMP.
D M			ε,		•••	12	8	ч	*	*	ч	5	6				7	¥ <b>∵</b> ind	WIND VELOCITY MPH
2001			Sw			Sw	Sw	Ē	n	"	NE	e	NE				NE	Dir.	WIND DIRECTION
20		100	210			220	230	240	240	230	210	2×0	240	170	IOL	170	H d	rpm	ROTOR rpm
2-2		N	52			N	8	7	•	8	25	7	7,3	4	M	4	37.	Pitch	Collective Pitch
w as	81:21	12:12	11:54	11:47	11:40	11:34	11:31	//;23	11:13	11:06	10:42	10:17	10:11	10:07	65:6	5:53	9.47		TIME
5	STOP																STAPT		START S
Starts	NORMOL	BUDLYE CLOSED 12:17	5° LIREA - 12:00	* *	ssecto may Pur Such talle	1° L CYCLIC	50 R C YCLIC -11 :35	5° R. L.E.D -11:26		50 R L FA-11:12:02	50 R - FA, -10:48	50 R, L, F, A - 10:22	Sar CYCLIC	SOR CYCLIC	10;0; 00;00 10,02 20;07 - 2020 8	30 & CYCLIC	8402VE - 9:48-00E		REMARKS

4			4				V	HIRI	. TES	T - DAT	J57-) A Shi	PW-19 Cet	9W			Ň	B. 1	2-	38
1 4 )	1	2	Fe		2		1		$\Gamma$		ŀ						4/2	:	DATE
1			65	55		45			S S		52	51	50		64			:	RUN NO.
1									•		z	:	2		:		55	о Ч	AMBIENT TEMP OF
Ţ									*		:	:	:		=		29.92	°	AMBIENT PRESS. in Hg.
		2		77	89	80.5			87.8	5.16	79.2	88	00	18	98.5		36	L _N	LOW COMPRESSOR 2. SPEED
-		,		93.5	<i>9</i> ¥	56			22.4	94.4	26	in in	5:26	46	97		61.5	N2	HIGH COMPRESSOR
				18.5	16.6	18.8			20.5	16.7	12	20	18.2	16.7	20		1.3	7 ⁷ 7	TURBINE DISCHARGE
				13-1-2	540	620	320	1	600	520	670	620	570	570	570		230	TT7	TURBINE DISCHARGE
				6803	5800	6000	2600		600	6000	6400	6700	6300	5500	7200		900	J.M.	FUEL FLOW RATE - Lb/Hr
4				48	8#	48	46		24	87	54	42	87	8,4	44		85	P011	OIL PRESSURE PSIG
<u>}</u>				40	42	42	42		42	x z	42	5%	42	42	42		30	Toil	OIL TEMP.
20%				15	15	/5	15	22	6/	18	81	16	16	16	17		è	<b>▼</b> ∎ind	WIND VELOCITY MPH
4mu				510	SHI	SW	SW	s æ	560	Sw	Sw	SW	Sw	56	See	-	si	Dir.	WIND DIRECTION
00 A			100	230	24'0	230	190	100	296	240	240	250	240	240	ZYO		HO	rpa	ROTOR rpm
3000			2	8	ő	8	3.5	N	7.5	6	~	2.5	5.9	6	7.5		N.	Pitch	Collective Pitch
1	ir Ei	5:18	5:12	5:02	4:57	4:25	#:15	4:00	3;32	3;25	2110	3,'00	2:45	2.28	21,2	2:07	2:00		TIME
111	STOP																STAC		START S
JIAKIS	HORAL SHUTTERINY	1062	8.1.5 - 5.1.5 - 5.1.8	Jos L Crecic		5.7 545416 4:30	4:15 20 2 GUCLIC		3:30 2° 20 2010-1	JOL CYCLIC 3:30 SOL, R, FA CYCLIC	102 CACTIC	1.2 drent	1ºF CYCLIC	102 CYCLIC	1 or cycric		3 VALVE OPEN - 2:05		REWARKS

I			11					HIRL	tes Gine	T -	J57-) A Shi	PW-19 RET	)W			8.	2-	5	² 9
I,		N .	F.		1 AS	-	1			Γ		İ		10			Jerke	:	DATE
I			~	60	2					65		500		57	51			:	RUN NO.
1							59										35	Ч Ч	AMBIENT TEMP OF
T A							46.67	n									29.95	Po	AMBIENT PRESS. in Hg.
1		90.5		56				いろい		58		85.7		83	83	76	37	L _N	LOW COMPRESSOR 2 SPRED
1 2		245		61				JE -		5.26		95.8		95.1	26	58	61.5	N2	HIGH COMPRESSOR 2 Speed
12		16.5		20				74		19.2		19.1		18.6	19.8	6,5	1.2	PT7	TURBINE DISCHARG
10	320	535		530	605			*		610	540	610		605	605	3×0	230	τ ₇	TURBINE DISCHARG.
		5800		7000						6200		6200		6100	6100	2840	9/1	J.M.	FUEL FLOW RATE - Lb/Hr
LANE		48		94				814		2		49		8 3	48	46	45	P _{oi1}	OIL PRESSURE PSIG
		47		42				30		42		42		40	40	40	41	Toil	OIL TEMP.
1. 01	G	13		16		15		51-		12		10		5	4	4	4	¥∎1nd	WIND VELOCITY MPH
14	SW	SW		Sw		Sw		¥0.	ZON	Sw		Sw		Sw	S	m	NE	Dir.	WIND DIRECTION
1 1	170	240		240	240	170		785	Ē	240	240	240	240	240	230	170	Ŧ	rpm	ROTOR rpm
	2.0	6.0		7.0	7	4		aer-		2.5	•	7	4.5	6.5	8	4	22	Pitch	COLLECTIVE PITCH
I .	2.36	2:29		2 '0 5	1.51	1:35	/:'30	11:45	11.40	11:25	11.20	10:50	10:45	10;30	10:14	10:10	10:02		TIME
79							STACT	5701									STACT		START S
starts	102 CVC1/C	202 CYCLIC	LIILO - REFA - SOCIELIE	TZ 10 SO AFT CYCLIC	1 . T CLCTIC	20204040	1:31 BVALVE OPEN	NORMOL	BUDNAR CLUSED-11:41	11:36 SOCYCLIC L		10:52 - RL FA, - SUCYCL		10:31 ELFA, 5° CYCH	10:17 - R.L. F.A SOCYCLIC 50 R- CYCLIC	10:29 OPEN -10:06	3550C START		REMARKS

~

•

1				1			1	HIRJ IEP	l tes Igine	T - DAT	J57- X Sh	PW-1 LERT	9W			B	2-	4	0
1			2	102	Are ?	er a	-					Ī		27/1		Γ	**	:	DATE
1	0	S	×	4	Ν	F					~							:	RUN NO.
oller	Γ					53								*				아	AMBIENT
n -						30,09								30,06				٥P	AMBLENT PRESS. in Hg.
2	80	83.8	80.2	76	3.11	36					93,9	293	76	36	Ez		36	T _N	LOW COMPRESSOR
	88	89.9	87	28	83	61					96.6	92.7	\$4.0	6	Siz		60	N2	HIGH COMPRESSOR
-0	~	U	7.6	6.4	5.4	1.3	ò				21.1	à	6.6	1.3	N		290	PT7	TURBINE DISCHARG
	356	380	355	35 8	303	240					Sec	760	325	225	1		290	7.T.7	TURBINE DISCHARG
	3/00	3800	3100	585	2380	200					720	450	582	0/0	×			J. <b>H</b>	FUEL FLOW
8241	47	41	47	47	46	45					X	×7	46	24	20		45	Poil	OIL PRESSURE
R	4	42	42	42	41	26				1-	2	35	40	22	401		49	Tol	OIL TEMP.
	5	S	5	5	×	ì			<b> </b>	<u> </u>	16	ù	'n	is	S		$\square$	n A.	WIND VELOCITY
	s	ч	8	S	NE	NW	ŀ	ł	<b> </b>	0H	2 3	2w	2 8	NW	2-2			Dir	
	220	2\$1	220	200	170	6	n N	£		N	NR	240	184	τo	ŵ			rpm	ROTOR rpm
	4	N	4	N	N	N					8.5	0	4	n				Pito	COLLECTIVE
1 ²	411	4:11	11:3	11:3	11:2	1. 11	10:4	6.4	2. C	1.6	5,9	9:5	9/1	1.5	70	3:2	3:13	7	TIME
X	7	ä	8	<u> </u>	01	STAC	9 576F	STA	3 570	<u> </u>	×			STR	S	o Stup			START S
e stads	11	"		2	D, S & CYCLIC	A BUALVE OPEN-11:2	PRESSURA-LINE	BUALVA OPEN-10:4	PEMERGENCY FUEL	SHULT IN 24 YoL	11		0.5°L CYCLIC	9/18 BVALVE OPEN	TARTS	NORMAL	B VALVE ELOSED DO		REWARKS
lats		R	-	2	D, S . R CYCLIC	SVALVE OPEN-11:20	PRESSURG-LINE BROKE	VALVE OPEN-10:47	ALARY SUEL MERGENCY SUEL MARGACIDENTALLY ACTUME	CIRCUIT YOLT	11	1	N.SOL CYCLIC	18 BVALVE OPEN	75	NORMAL	VALVE ELOSED 03:14		REWARKS

			4	11-			ľ	HIRL EN	tes Gine	T - Dat	J57-) А Shi	PW-19 EET	977		-		B.	2 -	41
r i		Γ	P	Y	B	Fe	0		1			1		T	 	<u> </u>	Har /		DATE
* /	21	20	6	10	1	6	5	¥			ŵ	N	2	6	9	20	2	:	RUN NO.
																		о Ч	AMBIENT TEMP OF
																		ి	AMBIENT PRESS. in Hg.
	89.9	848	2.52	87.5	26	87.8	84.6	77		-	73	79	36	78	80.5	75	70	۲ ۲	LOW COMPRESSOR
	16	89.4	28	00	92.1	9.9	89.4	6.29			78	86.8	89.5	88.5	28	87.8	23	N ₂	HIGH COMPRESSOR 1 SPEED
	ò	9.3	7	*	¥	~	2.6	7			5	7.8	6	3,6	8	6.3	5.2	^F T7	TURBINE DISCHARG PRESS PSIG
	K 20	246	340	\$60	24.7	400	370	556		610	320	320	Sec	375	350	330	300	TT7	TURBINE DISCHARG.
	4800	4000	2920	4300	5200	4400	0/68	2910			2500	3000	4200	3900	3100	2460	2220	<b>7</b>	FUEL FLOW RATE - Lb/Hr
	47	47	47	5	47	47	47	46			46	47	47	14	X	**	z	Poil	OIL PRESSURE PSIG
.(	42	42	42	41	4	42	42	44			44	42	42	42	25	K.	X'C	Toil	OIL TEMP. C
	2	81	5	16	8	6	6	ò			8	ч	~	У	7	7	7	¥ ∎ind	WIND VELOCITY MPH
	86	Sw	sw	S w	wsw	Seu	3°	sw	TOL		Sw	S	3	Se	S	Sw	S E	Dir.	WIND DIRECTION
	200	170	170	220	240	220	200	170	•	240	170	200	NXC	220	200	170	170	rpm	ROTOR rpm
	8	8	8	•	6	6	6	6		8.5	x	*	R	R	4	*	N	Pitch	COLLECTIVE PITCH
	12:5	12:55	87:21	57:20	12:39	2:35	12:51	12:28	2.18	2:17	12:16	12:11	12:07	12:03	دد.//	11:55	11:54		TIME
		-1																	START S
1		200						BVOL 0.5	BVA							0	0		2
1 1	4	104	"	"	2	2	ų	or c	LVR		1	=	=	2	:	c Yc	, c X c		Re ~
ł		0- 10				э		YCLI	6201							с Г	5110		ARKS
1								í è	10/2										
Ť.								2											

Ĩ			4	La			1	WHIRI	. Tes Igini	T - Dat	J57- A Sh	P <b>W-1</b> EET	9W			B	2	- 4	2
1	$\square$		1	1	6	Pa	T			Ι	2460				Ι		1/2%	:	DATE
1				30	62	82		27	26	25					24	23	22	:	RUN NO.
T											53							्म •	AMBIENT TEMP OF
5											30.10	-						൞	AMBLENT PRESS. in Hg.
NG	-7		92.2	5:56	61	G	16	79	79.8	8.46	36	NG			3.8	5 56	46	r N	LOW COMPRESSOR 1. SPEED
NN			94.3	8.9	156	95.7	46	956	7.26	5.36	4.5	2			16	20	93	N2	HIGH COMPRESSOR 1 SPEED
1			17.5	2.5	2.6	21.1	17	21.4	6'02	20.9	1.2	6	ļ		3.7	8.3	15.1	۲ ^۲ 7	TURBINE DISCHARG PRESS PSIG
6	2/5	640	521	585	680	670	522	670	660	202	30	1			50	580	470	TT7	TURBINE DISCHARG
0	2/2		6000	7200	\$60	6400	5986	1406	560	7200	000	62	ļ		4800	6200	5600	<b>J</b> #	FUEL FLOW RATE - Lb/Hr
7	45	84	148	87	17	87	48	1 *	84	84	47				5	47	47	Poil	OIL PRESSURE PSIG
( )	te	40	μo	40	ð	40	5	40	×0	42	2 4	84			Ke	42	42	Toil	OIL TEMP. C
132	10	0	10	10	12	10	Ś	'n	n	'n	'n	30			'n	13	ì	<b>▼</b> ∎ind	WIND VELOCITY MPH
206	SVI	(MS	NS	S E	Sw	s w	ŝ	ž	e E	š	Su	is_		H	Se	Sw	sw	Dir.	WIND DIRECTION
S	102	240	240	5×2	240	240	240	256	240	8 a	HO	-		M	200	240	220	r pm	ROTOR rpm
16.	(î y	5.3	7	2.7	8.1	8.7	7	8.4	8.5	8.5	'n	N			2	80	2	Pitch	Collective Pitch
5	5:42	5:36	5:26	5:25	5:12	4:54	4:47	1.10	4:29	£'25	4:13		1:28	1:23	81:/	1.70	40:1	1 5	TIME
STOP											START	20	570/0						START S
KIZWELZ	BRY CLOSED 5:42	2°2	5°2 7° 202	5°2, 2, 7, A CYCLIC (5	SOL, R.A CHELIC (S:	SOL, R, FA CYCLIC (	11	Sor cherre in		BVALVE OPEN -4:19	500°C START	STARTS		1:24 BUALVE CLOSS	*	13 LAOR TACNOMETER FLUCTURTING	201 640010		REMARKS

		L	U.	,	3	1	HIRI	. TES	T -	J57- A Shi	PW-1 ECT	9W		·	***	B.	2-	43
		3-	17	6 2	K.	k		1	T	T		1	Τ	Τ		and a		DATE
6	D	6	0	0	0		0		1	34	33	52	31			N		RUN NO.
																47	्म	AMBIENT TEMP OF
																30.14	° ⁰	AMBIENT PRESS. in Hg.
					TR			77	90.5	78	93.4	93.4	93.6	63	53	35.5	L _N	LOW COMPRESSO
					ansi		ies,	86.4	93.8	8.56	c. 76	26.8	2.5	\$5.5	78	61.7	N2	HIGH COMPRESS
					ENT		SIE	8.5	16.8	22	2.5	21.5	21.3	10.2	5.2	1.2	r ₇	TURBINE DISCH PRESS - PSIG
					4		1	360	518	063	602	602	602	226	340	220	TT7	TURBINE DISCH
;	*	:	:	2	ne		Roa	2770	5800	6700	7200	7200	7200	3700	2020	016	л. Ж	FUEL FLOW RATE - Lb/Hr
					AS		4	\$	8	84	87	¥ 8	48	41	RS	45	Poil	OIL PRESSURE PSIG
					Ø		Sev A	2	36	36	36	35	35	ž	ω u	12	Toil	OIL TEMP.
						H	u	7	V	V	7	7	7	6	ò	7		WIND VELOCITY MPH
			 			XE	177	20	3	32	2 M	NE	SC SC	NE	NE	NE	Dir.	WIND DIRECTION
							<u>کر</u>	023	240	240	240	230	275	240	170	Ha	rpm	ROTOR rpm
								N	5	6	00.2	5.6	200	4	4	ΓE	Pitch	Collective Pitch
10:23	10:15	10:08	10;06	9:55	34.6	9:34	9:33	62:6	5:21	5:17	9:11	50:6	8:48	44:8	8; 40	55,8		TIME
																staet		START S
" CYCLIC A	CONTINUES TIP GAS SEC	N CYCLIC I	CONTINUES DUCT REC	" CYCLIC I	1			Jor Crewen 2:33	5° 6, 8, 6, 0, 545-16 6	10R CTCLIC	10x CLCRIC	=	SOROTONS	2	BUALNE OPEN 8.3			REWARKS

WHIRL TEST ENGINE D	- J57-PW-19W Ata Shiret	B.244
rede 1		DATE DATE
	58	RUN NO.
		AMBIENT TEMP OF
X6.		ت AMBIENT PRESS. in Hg.
7 (E) 14.0	70.3	LOW COMPRESSOR
	28 58 58 58	
SU-	2. 2 N T	TURBINE DISCHARG
31 SE	265 FR	TURBINE DISCHARG
L'AND	" 2800 2800	FUEL FLOW RATE - Lb/Hr
 2LA	84 88	OIL PRESSURE PSIG
X Fri X	×m + 7 42	C C C C
103	10000	E MPH
0 60 8	SSW SW	
N A	220	ROTOR rpm
2 (	0 4 0	
12:00	96.// 20://	OC SEC. SELSS TIME
a su		START S
LEVAL HUB-11:5: LEVAL HUB-11:5: RVALVE CLOSED-11. STAR JS STAR JS	SELA RECORD	REMARKS CONTINUOUS TIP AFT AIRI SONTINUCUS SKIN RECO

B. 3-1

B. 3 OPERATION SUMMARY OF HOT CYCLE AFTER 35 HOUR INSPECTION

	DATE	TT. 7 7	r.ber	Coll. Pitch	Cyolie Pitch	Time Min.	Coll. Rotor Time	Coll. Engine Time	Starts	Page	
- Andrew Contractor	2-5-62	= 1				2		2	66	30	
-14		464	A0	4	[	ى ا	5	7			
w		608	175	4		5	10	12		}	
		1105	240	6		5	15	17		}	
		1240	240	8		4	19	21			
- 72						ス	21	23			
						3	-	26			
	2-6-62	160				14	-	40	67		·
21			170	4		3	24	43			
			170	4		7	31	50			
			240	4		5	36	55 .			
		1112	240	8		` ک	41	60			
						1	42	61			
1.00						14	<u> </u>	75			
						5	47	80			
		527	60	4		૩	50	83		31	
		527	58	4		4	54	87			
		536	43	4		Z	56	89			
		390	13	4		ح	59	92			
		518	60	4		4	63	96			
		310	30	4		4	61	100	L.		
		570	43	4		4	77	104			
		305	13	4		0	19				
9		615	110	4		30	109	142			
1		1740	240	a		3	112	140			
		1270	240	0		2	115	176			
						2		190			
1	2-12-62	437	ł			5		156	68	37	
		437				6	121	162			
		635	170	4		20	141	182			
1		850	240	ۍ	5	15	156	197			
		914	240	5.25	5	12	168	209			
		950	140	6.5	5	10	178	219			
		986	240	6.7	5	7	185	226			
						13	198	239			
1		975	240	6.5	5	10	208	249			
·											
T										é	
1											
						1		1			

### OPERATION SUMMARY OF HOT CYCLE AFTER

### 35 HOUR INSPECTION

Ĩ	DATE	т _{т7} •т	rpa	Coll. Pitch	Cyclic Pitch	Time Min.	Coll. Rotor <b>Time</b>	Coll. Engine Time	Starts	Page
1		1050	240	7.5	5	12	220	261	69	32
-10		1076	240	<b>8</b> '	5	з	223	264		
		1240	240	8	ى ا	2	225	266		
					]	7	232	2.73		
						4	-	277		
	6-13-62	470				13	-	290		
		470				Z	234	292		
		470				10	-	302		
		1085	240	7.5	5	9	243	311		
		1112	240	7.5	5	12	255	323		
		1112	2.40	7.5	5	4	259	327		33
		1104	240	7.5	سى .	9	768	336		
		1112	240	8	عی	3	271	339	[	
-		1110	140	8	5	3	274	341		
		814	1.40	5.3	4	7	281	347		
		1110	70			6	100	200		•
12		464	10	4		K	107	357		
		460	66	4		3	103	360		100
		518	20	4		5	199	361		
			~~	1		2	300	31.9		
						5	-	373		
ang.		4.55				4	_	377	70	
		455				8	308	385	10	
		662	170	4		9	317	394		
-		1094	240	7.5	5	14	331	408		
		1130	231	8.75	ى	22	353	430		
						شى	-	435		
		ABORTE	DSTA	RT					71	34
ł		482				س		440	72	
		487				6	359	446		
1		482	170	4		4	363	450		
1		694	220	4		ح	368	155		
		734	220	Ζ	سى	3	371	458		
						5	-	463		
•										
T										
1										
22.2										
~	٠		1			•		•	•	

B. 3-3

#### OPERATION SUMMARY OF HOT CYCLE AFTER 35 HOUR INSPECTION

1

I

	^T T ₇ •F	rpm	Cell. Pitch	Cyelie Pitch	Time Min.	Cell. Roter Time	Cell. Engine Time	Starts	Page
2-20-62					18	371	501	73	35
	900	240	6		4	375	505		1999 1997
-	900	240	6		11	386	516		
T	940	240	6	ح	ح	391	521		
	1004	240	7	ۍ	ى	396	526		
	1030	240	7	5	11	407	537		
	1094	240	7.6	5	7	414	544		
1	1094	240	7.5	0	4	418	548		
	115	222	ン	لی	12	430	560		
	698	220	2	0.5	18	448	578		
1	1130	240	7.6	5	13	461	591		
					3	464	594		
ł		1			3	464	597	{	
2-20-62		1			7		604	74	36
4	419	62	2		6	470	610		
	626	170	4	1	2	472	612		
· (	1240	240	7.6	5	26	498	638		
					1	499	639		
	•				5		644		
[					2	_	646	75	
	146				Ø	508	655		
0	1112	240	7.5	ح	13	521	668		
	1094	2.40	7.3	ۍ	10	531	678		
	1130	230	6	ح	6	537	684	1	
	932	230	6	5	8	545	692		
	1140	230	8	ۍ	12	557	704	1	
	473	100	2	0	7	564	711		
					2	_	7/3	1	
2-21-62	446				1	-	714	76	37
					5	569	719		
		170	4	5	6	575	725		
					3	578	728		
			,		.4		732		
					1	579	733		
		170	4	ا سی	4	583	737		
	1094	240	7.3	5	6	589	743		
	1058	240	7	ى گ	25	614	768		
	1130	240	7.5	سی ا	24	638	792		
	1130	230	8	ا می	7	645	799		
	977	244	6	-	10	655	809		
	1130	240	7	ا سی	8	663	817		
	,			-	-				[
1		1 1				1	1	1	1

.

# OPERATION SUMMARY OF HOT CYCLE AFTER

.

35 HOUR THE PICTION

	DATE	T _y	rpm	Coll. Pitch	Cyclic Pitch	Time Min.	Coll. Roter Time	Coll. Engine Time	Starts	Page
-	2-21-62	1130	230	8	5	5	668	822		
		698	220	2	1 1	18	686	840		
		1130	240	7.5	5	18	704	858		
			100	2		5	709	863		
						1	-	864		
		446				5	-	869	77	38
		446				2	7/1	871		
						8	719	879		
		1058	240	7.5	1	13	732	892		
		1058	Z40	6	1	17	749	909		
		1058	240	6.5	1	15	764	924		
		1148	240	7.5	1	10	774	934		
		1238	240	8	1	15	789	949		
		968	240	6	1	7	796	956		
		1112	240	7.5	5	28	824	984		
			100	2		15	839	999		
		608	190	3.5	2	/3	852	1012		
		1148	230	8	5	26	878	/038		
		1004	240	6		8	886	1046		
		1148	230	8	5	10	896	1056		
			100	2		6	902	1062		
						5	-	1067		
	2-22-62					4	-	/07/	78	39
		446				4	906	1075		
		644	110	4		4	910	1079		
-		1118	230	8	5	16	926	1095		
1		1118	240	6.5	5	/5	941	1110		
		1120	240	4.3	5	30	976	1115		
T		1004	240	6		30	776	1143		
4		/004	240		5	3	781	1165		
		//30	240	7.3	5	/5	997	1160		
ſ						и И	-	1170		
						7	-	1171	79	
1						4	1001	1175		
			170			22	1023	1197		•
		1121	240			8	1031	1205		
1		1094	240			24	1055	1229		
		995	240			7	1062	1236		
_		608	170		90 (E	37	1099	1273		40
I										
1										

## OPERATION SUMMARY OF HOT CYCLE AFTER 55 HOUR INSPECTION

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	DATE	7 _{T7} •F	rpm	Coll. Pitch	Cyclic Pitch	Time Min.	Coll. Rotor Time	Coll. Engine Time	Starts	Page
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						1	1100	1274		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						6	-	1280		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2-27-62	437				1	-	12.81	80	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						1	1101	1282		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		617	184 .	4	ۍ.	13	1114	1295		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-	860	240	6	.5	4	1118	1299		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1103	240	8.5	ح.	6	1124	1305		
$ \begin{vmatrix} i & - i & j & 08 \\ i & - i & j & 07 \\ 2 & j & 178 \\ 3 & j & 170 \\ 5 & 76 & j & 70 \\ 6 & 3 & 2 \\ 5 & 76 & j & 70 \\ 6 & 35 & 200 \\ 6 & 71 & 220 \\ 7 & j & 141 \\ 1 & j & j & 325 \\ 6 & 35 & 200 \\ 6 & 71 & 220 \\ 1 & 2 \\ 7 & j & 160 \\ 6 & 320 \\ 1 & 2 \\ 7 & j & 165 \\ 1 & 320 \\ 1 & 33 \\ 1 & 337 \\ 1 & 357 \\ 1 & 357 \\ 1 & 357 \\ 1 & 357 \\ 1 & 357 \\ 1 & 357 \\ 1 & 357 \\ 1 & 357 \\ 1 & 357 \\ 1 & 357 \\ 1 & 357 \\ 1 & 357 \\ 1 & 357 \\ 1 & 357 \\ 1 & 357 \\ 1 & 357 \\ 1 & 357 \\ 1 & 357 \\ 1 & 357 \\ 1 & 357 \\ 1 & 357 \\ 1 & 357 \\ 1 & 357 \\ 1 & 357 \\ 1 & 357 \\ 1 & 357 \\ 1 & 357 \\ 1 & 357 \\ 1 & 357 \\ 1 & 357 \\ 1 & 357 \\ 1 & 357 \\ 1 & 357 \\ 1 & 357 \\ 1 & 357 \\ 1 & 357 \\ 1 & 357 \\ 1 & 357 \\ 1 & 357 \\ 1 & 357 \\ 1 & 357 \\ 1 & 357 \\ 1 & 357 \\ 1 & 357 \\ 1 & 357 \\ 1 & 357 \\ 1 & 357 \\ 1 & 357 \\ 1 & 357 \\ 1 & 357 \\ 1 & 357 \\ 1 & 357 \\ 1 & 357 \\ 1 & 357 \\ 1 & 357 \\ 1 & 357 \\ 1 & 357 \\ 1 & 357 \\ 1 & 357 \\ 1 & 357 \\ 1 & 357 \\ 1 & 357 \\ 1 & 357 \\ 1 & 357 \\ 1 & 357 \\ 1 & 357 \\ 1 & 357 \\ 1 & 357 \\ 1 & 357 \\ 1 & 357 \\ 1 & 357 \\ 1 & 357 \\ 1 & 357 \\ 1 & 357 \\ 1 & 357 \\ 1 & 357 \\ 1 & 357 \\ 1 & 357 \\ 1 & 357 \\ 1 & 357 \\ 1 & 357 \\ 1 & 357 \\ 1 & 357 \\ 1 & 357 \\ 1 & 357 \\ 1 & 357 \\ 1 & 357 \\ 1 & 357 \\ 1 & 357 \\ 1 & 357 \\ 1 & 357 \\ 1 & 357 \\ 1 & 357 \\ 1 & 357 \\ 1 & 357 \\ 1 & 357 \\ 1 & 357 \\ 1 & 357 \\ 1 & 357 \\ 1 & 357 \\ 1 & 357 \\ 1 & 357 \\ 1 & 357 \\ 1 & 357 \\ 1 & 357 \\ 1 & 357 \\ 1 & 357 \\ 1 & 357 \\ 1 & 357 \\ 1 & 357 \\ 1 & 357 \\ 1 & 357 \\ 1 & 357 \\ 1 & 357 \\ 1 & 357 \\ 1 & 357 \\ 1 & 357 \\ 1 & 357 \\ 1 & 357 \\ 1 & 357 \\ 1 & 357 \\ 1 & 357 \\ 1 & 357 \\ 1 & 357 \\ 1 & 357 \\ 1 & 357 \\ 1 & 357 \\ 1 & 357 \\ 1 & 357 \\ 1 & 357 \\ 1 & 357 \\ 1 & 357 \\ 1 & 357 \\ 1 & 357 \\ 1 & 357 \\ 1 & 357 \\ 1 & 357 \\ 1 & 357 \\ 1 & 357 \\ 1 & 357 \\ 1 & 357 \\ 1 & 357 \\ 1 & 357 \\ 1 & 357 \\ 1 & 357 \\ 1 & 357 \\ 1 & 357 \\ 1 & 357 \\ 1 & 357 \\ 1 & 357 \\ 1 & 357 \\ 1 & 357 \\ 1 & 357 \\ 1 & 357 \\ 1 & 357 \\ 1 & 357 \\ 1 & 357 \\ 1 & 357 \\ 1 & 357 \\ 1 & 357 \\ 1 & 357 \\ 1 & 357 \\ 1 & 357 \\ 1 & 357 \\ 1 & 357 \\ 1 & 357 \\ 1 & 357 \\ 1 & 357 \\ 1 & 357 \\ 1 & 357 \\ 1 & 357 \\ 1 & 357 \\ 1 & 357 \\ 1 & 357 \\ 1 & 357 \\ 1 $		1				2	1126	1307		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						1	-	1308		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			1			1	-	1309	81	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		-		:		2	1128	1311		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1					1	-	1312	82	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		964	63	2		6	1134	1318		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		576	170	ス		7	1141	1325		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	635	200	2		5	1146	1330		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		671	220	2		2	1148	1332		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		716	240	2		7	1155	1339		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		667	220	2		5	1160	1344		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		572	170	Z		3	1163	1347		41
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	12	626	170	4		4	1167	1351		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		662	200	.4		4	1171	1355		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		707	220	4		4	1175	1359		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		743	1.40	4		4	1179	1363		•
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		662	200	4		5	1184	1368		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	÷	608	170	4		1	1185	1369	÷	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	m.	1130	240	8.5		1	1186	1370		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		14				3	1189	1373		
3 1192 1380						4		1377		
	T					3	1192	1380		
		635	170	6	.5	3	1195	1383		
698 200 6 .5 4 1199 1387		698	200	6	.5	4	1199	1387		
1 757 220 6 .5 4 1203 1391	T	752	220	6	.5	4	1203	1391		•
833 240 6 .5 4 1207 1395	a S	833	240	6	.5	4	1207	1395		
752 220 6 .5 5 1212 1400		752	220	6	.5	5	1212	1400		
644 170 6 .5 7 1219 1407		644	170	6	. ح	7	1219	1407		
1 707 170 8 Z 4 1223 1411	I	707	170	8	Z	4	1223	1411		
, 788 200 8 2 5 1228 1416 42		788	200	8	2	5	1228	1416		42
878 220 8 2 6 1234 1422		878	220	8	2	6	1234	1422		
1004 240 8 8 1212 1430		1004	240	8		8	1242	1430		
842 200 8 5 1247 1435	Ţ	812	200	8		5	1247	1435		

5

## OPERATION SUMMARY OF HOT CYCLE AFTER 55 HOUR INSPECTION

DATE	т _т • <b>у</b>	rpm	Coll. Pitch	Cyclic Pitch	Time Min.	Cell. Rotor Time	Cell. Engine Time	Starts	Page
2-27.62					1	1248	1436		
					4	-	1440		
11					6	-	1446	83	
					4	1252	1450		
	1103	240	8. <b>5</b>	1	6	1258	1456		
	1220	240	8.5	1	11	1269	1467		
	/238	240	8.4	5	7	1276	1474		
	972	240	7	5	7	1283	1481		
	/238	240	8.7	5	18	1301	1499		
	/256	240	8.7	5	/3	1314	1512		
	1103	240	8.7	5		1315	/5/3		
	970	240	1	5	10	/325	/523	14	2
	1132	240	8.0	5	6	/331	1529		
					4	-	/ 333		<i>µ</i> 3
2 - 2 9 - 6 2	420				7	1224	1537	84	73
2 20 00	144	170	4		3	/334	1546	67	
	797	240	4		4	1342	1550		
(	1116	240	8.5		17	1359	1567		
	1116	230	9.5		6	1365	1573		•
	1116	240	8.5		. 6	1371	1579		
	1274	240	. 9		4	1375	1583		
	964	240	6.5		8	/383	1591		
	680	220	2		67	1450	1658		
	671	200	2		29	1479	1687		44
	1229	240	9		51	1510	1710		
	689	220	2		9	1519	1727		
	1 274	240	9		6	1525	1733		
					6	1531	1739		
					3	-	1742		
;									
		I	1	1	1	1	1	1	1





B. 4-3 11 ٠. 11 24 1 1 1 T Chr. Al. Couples ł 4 CI 01 200 400 600 800 I 1.4 600027 14EDS & HORTIFUP CO., PHAA i AAM RULLA 1 i ł i No. Ì 1 8 1 Chr. Al. Couples C C 1 ÷ 600 i ŧ 200 400 800 Pen # 22 1 12/11/16 777 t 1 1 Chr. Al. Couples Г 400 • 600 200 800 ł 1 1 Į ļ 3 Î 1111 1

1

.

1

	ΤΗΠ			<b>B.4-</b>	Ш
	┼┼┼┼╢┼┼	┽┧┽┫╿┤┾┽┠	╘┽┽┼╏╎╎╎╽	┤┼╽╎┼┥┼┼┼	H
╟╎┽┽╎		+++++			Ш
					H
		<u>+++++++++++++++++++++++++++++++++++++</u>			Ħ
•	200		60	800	-
					1
		┼┼╃┤╂┼┼┼┼┤	╅╪╪╋┽╽╽┼╋╆		$\dagger$
┝╎┽┝┽	┼┼┼┼┤┼┧┫┼┥	┼┼┿┼╎┥┽┼┼╎┥	┽┼┼╊┼┼┼┼┼┼	+	H
					Ц
	N				
			b		
₩ ³ <del>       </del>		┼┼╎┠┱┼┿┥			ť
	┼┼┼┼┼┼┼	<u><u></u> <u></u> + + + + + + + + + + + + + </u>	111 124	14 /16	#
°c	200			Chr. Al. Coup	
Ĩ####			111 <b>7</b> 111111		ΪĨ
┟┼┼┼	┼┼┼┼┼┼╎	┼┼┼┼╎┤┼┼╎	┽┼┼╉┼╎┼╎┼┼┼┼		Н
			┤┽┼┋╎╎╎╎╽╽╽		Ц
					H
					Π
++++	┼┼┼┼┼┼┼┼	<del>┤╿╎╎<u>╎</u>╿╿</del> ╎╎	┽┼┼╊┼┼┼┼┼┼	++++++++++++++++++++++++++++++++++++	$\mathbf{H}$
			<u>↓↓↓<b>↓</b></u> ↓↓↓↓↓↓		4
		制机杆			+
		1 2 M M M M M M M M M M			П











	W 18 10 M					,													· · · · ·	
					-:8	3	]								3		ļ		S	ļ
					- ă -				-	+						+				
					. S						1	1		Ē				-		
0						1			Į			+				+	l	·		
					<u></u>	+			ł	+		1		<b>_</b>		+		+		i
					t å -	1	1					4		- <b>ð</b> -	1					
9								·	·											
				·	<u>+−− ģ</u>	<u> </u>		+	<u>+</u>	<u> </u>		+		—— Š	{	+	<u> </u>		<u>†</u>	
						•		<b>+</b>	1			1	)		1					
																			l	
				<u>↓</u>	÷	1		N		+		•	-	+	+	<u>+</u>		+	i	+
					+			V	N	<u>+</u>				<u> </u> ···-			1		<u> </u>	
	i			1	1			1. 3												
				L	1			A N		I		· ·····					i	• )		
			±	<u>+</u>	0	1		e v	· · · ·	; ·		i			,t		t			+
					13	¦	1	-							3	1			~	
								N		1									·	
								- <b>}</b>		÷ .		· · · · · ·	1 1 1		\	+			1	+
							1-1	· + ····	-			-		+						+
					1			†- <b>1</b>		· · · · · · · · · · · · · · · · · · ·			<u>}</u>		1	1	1			-
																				h
			-					4								1	÷		<b>↓</b>	-
		†					1-+	·			1 a 10 a 10 a	*						i - — —	t	
					t— 6		1		1		E.					1		·		1
-							I/					T		+		<u>†</u>				+
t-					k	+	1	<u>+</u>						ļ						+
					5	1-1		1	1					<u></u>	1	1	Ph. 23		1	1
					1						· · · · · · · ·	1			1					
					ł										+				ł	
			**		1	1			-			1	2000		1					+
					22									8	1	1			-	
					ñ			· · · · · ·		· · · - ·				· · · · · ·	4		<b>↓</b>			4
					¦	+			· · · · · · · ·			1			· • • • • • • •	+	<b>† -</b>		† ·	
				• • • • • • • • • • •	1	1						· · · · · · · · ·			1				1	
				ł 				+				;				+		<b>+</b>		
				· · · · ·		+				+ -	10 L.C	1.000	96) - L -	- (f==0)	· · · · ·	-				1 1 1 1 1 1
1					3			1	· · ·	T				1	1	1				1 1 1
				21					1-	! =	ł		1-		4				11.	:
					- <u>-</u> o	L			·	<u></u>	4		L	C	<u>، ا</u>		i	·	L	

•

-



NORTHRUP CO.





-



8					B. 4-13	
						+
3444	┼┼┟┥╎┼┝┝┟╽	<u>       </u>				
ŝ						
	┼┼┼┼┼┼				┼┼ <del>╎</del> ┼┼┼┤	1
						$\parallel$
0	200	400	6	20	800	oup
						11
		┝╋╪╋╧┽	-			+
						1
					u IIIII	1
		┤┼┼┼╴				+
						1
°c		+ + + + + + + + + + + + + + + + + + + +			Chr Al C	tt
	200	400		» C		
				2/28/62		
	┝┫╪╪╉╪┽╡┊╅╎	++++++				
						-
						11
				BL 4-14		
--------	------------	-----------------	--------------	------------------------------------------------------------	--------	
litti						
Į	┼┼┼┼┼┼	┝┼╢┟┼╿┼╎┾	┝┿╪╪┼╌┝╌┊┼┿┤	· <del>        <b> </b>                             </del>	++	
n.[]]]						
	┿┽┿┽╉┼┼┼┼┼			┽┼┼┦┫┦┫┦	╫	
	<u> </u>				1	
					1	
°C				Chr. Al. C	Couple	
•++++	200	400	600		#	
		<b>/</b> ++++++		╅╪┽╬╋┿┿╋┥	+	
				┼╎┽┾┠┼┽┽┥┽	4	
	N					
					T	
	+++++++	╇╋┿╪╪╪╪╡		┼┼┼┼┟┼┼┼┼	H	
			Per		Щ	
			2/28	19 24		
°C				Chr. Al. C	ouple	
°+++++	200	400	600	800	+	
				┶┶┶┼┼╽╎┥┥	44	

-1

•





11 B. 4-17 200 11 c 600 11 Chr. Al. Couples 11 1 400 1 1 1000 800 ŧ. ł i. ľ ÷ ÷ 1 Î. TIT Chr. Al. Couples 11 ¢ I 1 10: 1 1000 là. 200 100 800 412 1 1 ï 2/28/62 1 AL HE 2 ł 40+1430H 1 \$0311 - 0009 AADE IN U. S. A. ŀ ï i. 11 111 111  $\{x_i\}^4$ 1 ŧ. 1 100 600 800 200 c 1.1 Chr. Al. Couplas 1000 800

-





P

.





t

Trans.

### HUGHES TOOL COMPANY-AIRCRAFT DIVISION



### APPENDIX C

### METHOD OF CALCULATION; AREA AND MASS WEIGHTED PARAMETERS

### C.1 AREA WEIGHTED VELOCITY

It is assumed that the velocity profile is a body of revolution determined graphically in a nondimensional form  $(\frac{v}{v_c}) = f(\frac{r}{r_p})$  where  $v_c$  designates the velocity measured in the center of pipe, and  $r_p$  is the inside radius of the pipe. From the definition of the area weighted velocity,

v  
area weighted = 
$$\frac{V_c}{A_{P_o}} \begin{pmatrix} A_P \\ (\frac{v}{V_c}) dA \\ \frac{v_c}{V_c} \end{pmatrix} \begin{pmatrix} T_P \\ (\frac{v}{V_c}) 2\pi r dr$$

or in a nondimensional form

$$V_{a,w} = \frac{V_c}{\Pi} \int_{0}^{r_p} \left(\frac{v}{v_c}\right) 2\pi \left(\frac{r}{r_p}\right) d\left(\frac{r}{r_p}\right) = 2v_c \int_{0}^{l} \left(\frac{v}{v_c}\right) \left(\frac{r}{r_p}\right) d\left(\frac{r}{r_p}\right)$$
(1)

the integral  $\int_{0}^{1} (\frac{v}{v_{c}}) (\frac{r}{r_{p}}) d(\frac{r}{r_{p}})$  is found by measuring the area

under the curve  $\left(\frac{v}{v_c}\right) = \frac{f}{r_p} \left(\frac{r}{r_p}\right)$  shown on Figures 5.1-8 and 5.1-9.



	HUGHES	TOOL	COMPANY-AIRCRAFT	DIVISION	285-16		<b> – 1</b>
			MODEL	REPORT NO.	(02-10)	PAGE	D-1
ANALYSIS						1000	
PREPARED	BY						
CHECKED	8Y						

### APPENDIX D

### THERMODYNAMIC CALCULATION PROCEDURE; NON-ROTATING COMPONENTS

The various pressure and temperature measuring stations are shown in Figure D-1. Details of the various rakes are given by Figure D-2. The basic equations used in conjunction with these instrumentation locations are given in Reference 3. 4-2 and the computer equation flow scheme is presented herein (see Appendix F for nomenclature).

Due to the length of this calculation, the flow scheme follows steps e, a, b, c, d, f, g, h, i, j, k, l, m, n. Step "e" is misplaced as it was initially intended as part of an iterative procedure to determine the effect of water injection on  $\delta$  and R which required the output of Steps "a" through "f" based on initially assumed values of  $\delta$  and R. Since virtually all running was done without water injection, the iterative procedure is unnecessary when the output of Step "e" (no water injection) is used as input for Steps "a", "b", etc. The hub area weighted total pressure values of Steps "h" and "i" are used only for reference since the distortion of the velocity profile at that station does not permit accurate area weighted pressure values with the instrumentation provided. These values do provide a useful reference, however, and together with the results of Reference 3. 4-2 help in determining the loss coefficients  $C_{I}$  and  $C_{II}$ .



### FISURE D-2

IDENTIFICATION OF PROBE LOCATIONS AT FLOW MEASURING AND HUB STATIONS

- I. ALL PROBES ARE TOTAL PRESSLAT EXCEPT AS NOTED
- 2 UPPER SYMBOLS USED IN ANALYSIS, CORRESPONDING LOWER SYMBOLS APPEAR IN READOLT.



**D-4** Stepa). Flow Kote- Branch I Input: 8, R, from Step"e." g= 32.17 ft/sec² T, (OF), Tz (OF), Pres (In-Hg), P, (In-TBE), P& (IN-TBE) Colculation : 1. TT = T, + Tz + 460; OR 2. Pref = Pros (70.721); psfa 3. PFS = P(15.365) + 2; psfa 4. P= = P(15.365) + E ; psfa 5. Mrs = / 2 [(B) 7-1]; dimensionless 6. TFST = 0 ; OK 7. afst = /8gR(6); 54/sec 8. UF = DO; Ft/sec  $\begin{array}{c} 9. \ f_{F_{5}} = \underbrace{3}_{-2}, \ \pm/f_{7} \end{array}$ 10. u = [1.937348 + 1.780448×10×0 - 4.170257×10×0 +5.805605×10 × 0 -2.156955×10 × 0 ] 1 [4.32×10]; #/ Ar ft

11.  $R_{e_{f_{s_{i_{max}}}}} = (58)(1.021)(3.62.10^3)$ ; dimensionless 12. Ups = Z, x & ; ft/sec 13. Mrs = (2) ; dimensintess 14. Tfor = 0; ok any 1+ 1-1 (13) ; ok 15. R = (3); #/st 3 arg R (4) 16. ass = YYgK UD, Ft/sec 17.  $\left( \begin{array}{c} \sigma_{f_{S_{I}}} \\ a_{Y_{A}} \end{array} \right) = \left( \begin{array}{c} \sigma_{G} \end{array} \right) ; ff_{S_{I}}$ 18. up = (5) (0.8.8); #/sec Step 6). Flow Kate - Branch I Input: Y, R frim Stop"e" g=32,17 filse2 T3(of), T4(of), P(in-1136), P3(in-1136) Calculation: 19.  $T_{F_{s}} = T_{s} + T_{4} + 460; K$ 20.  $\vec{F}_{5\pi} = \vec{F}_{g}(15.3(5) + 2); psfa$ 

1 21. PT = Pis (15.365) +2; psta. 22,  $M_{FS} = \sqrt{\frac{2}{8-1} \left[ \left( \frac{20}{25} \right)^{\frac{8-1}{7}} - 1 \right]}; dimensionless$ 23.  $T_{FST} = (0)$ ;  $^{\circ}\mathcal{R}$   $T_{Max} = 1 + x - 1 (zz)^{2}$ ;  $^{\circ}\mathcal{R}$ et a = / rg K 23 ; ft/sec 25. Un = CO i filiaco  $26. P_{fs_{\overline{I}}} = (20) + (ff)^3$ 27. He = Eq. 10 with Dreplaced by 19 therein 28. Ke = (20,25) (1.021) (3.5×10); dimensionless fstmax (27) 29.  $U_{f_{3}} = \overline{Z}_{2} \times \overline{25}$ ; 5 + / sec30.  $M_{fs_{\frac{1}{4}xq}} = \underbrace{\mathfrak{S}}_{(2\overline{k})}$ ; dimensionless 31.  $T_{F_{\overline{L}}} = (2)$ ;  $c_{\overline{L}}$  $arg (+r-1) = 0^{2}$ 32, Not Used 33. 34. PFS = 23 ; #/++ 3 arg ~ (1)

D-7 35. after = Vrg R 3D; Filser 36.  $\binom{U_{fs}}{T_{avg}} = (5) (0); fl/sec$ 37. WTS = 32 36 (0.818); #/sec 38. WT = (8 + 87); #/20 Step c). Velocity Profile - Branch I Input: P2 (in-TBE), P3 (in-TBE), P4 (in-TBE), PS (in-TISE), P6 (in-TISE), P9 (in-TBE) Calculation ; 39. PT = P2(15.365) + (2); psfa 40. Pz = P3 (15,365) + @ ; psta 41. PT = Px (15.3(5)+ (2); psfa 42. PT = PS(15.365) + (2); pita 43. PT= = P(15.565) + 2; psfa 44, P7 = P7 (15.362)+ 3; psfa  $45. M_{1} = \sqrt{\frac{2}{8-1} \left[ \left( \frac{29}{31} \right)^{\frac{8-1}{2}} - 1 \right]}; dimensionless$ 

46.  $M_3 = \sqrt{\frac{2}{8-1} \left[ \left(\frac{40}{31}\right)^{\frac{1}{2}} - 1 \right]}; dimensionless$ 47. M₅ = Detc ,, 48 M7 = " 49. Mg = (H) 11 50. Me = (H) (H) 51.  $\left(\frac{U_1}{m_{\text{max}}}\right) = \frac{40}{49}$ 1  $52, \left(\frac{\omega_{\bullet}}{\omega_{\bullet}}\right) = \frac{46}{49}$ 11 53.  $\left(\frac{\omega_{5}}{\omega_{max}}\right)_{\mp} = \frac{(40)}{(40)}$ "  $54\left(\frac{U_{7}}{U_{max}}\right) = \frac{49}{49}$ 55.  $\left(\begin{array}{c} U_{0}\\ U_{0}\\ U_{n,n}\end{array}\right)_{7} = \begin{array}{c} (U_{0})\\   $56. \left(\frac{U_{E_1}}{U_{max}}\right)_{-7} = \frac{50}{(29)}$ 

Step d). Velocit, Kofile - Branch I Lipit: B (111-TRE), P. (IN TISE), P. (IN-TRE), P. (IN-TRE), P. (IN-TRE), P. (IN-TRE), P. (IN-TRE),

57. P= Pg (15.365) + (2); pota 58. P= = Po (15.365) + (2); pora 59. Pf = P, (15.365) + ; psfa 60. P= = P2 (15.365)+@ ; psfa 61. PT = P. (15,365) + (2); pofa 62. PT = P, (15.36=) + 2; psfa 63.  $M_{z} = \sqrt{\frac{z}{x-1} \left[ \left( \frac{sD}{2s} \right)^{\frac{x}{2}} - 1 \right]}; dimensionless$ 64. Ma (8) etc '1 65. M. 59)  $l_1$ 66. M8 60 (20) 66.a. M. 101 61 20) ŧ. 67. ME 62) 20)  $68. \left(\frac{\mathcal{F}_{\bullet}}{\mathcal{F}_{max}}\right)_{\Pi} = \frac{63}{(2\pi)}$ 

D-10 69.  $\left(\frac{\partial^2 \mathbf{r}}{\partial m_{ax}}\right) = \frac{69}{660}$ ; durient sion less 70.  $\left(\frac{\upsilon_{6}}{\upsilon_{max}}\right) = \left(\frac{\varepsilon_{1}}{\varepsilon_{66}}\right)$  $\left(\frac{\upsilon_{B}}{\upsilon_{max}}\right)_{T} = \frac{60}{664}$ 71. 72.  $\left(\frac{U_{10}}{U_{max}}\right)^{-1} = \frac{66a}{664}$  $73. \left(\frac{\mathcal{O}_{E_{\overline{I}}}}{\mathcal{O}_{E_{\overline{I}}}}\right)_{T} = \begin{array}{c} \underline{67}\\ \underline{66}\\ \underline{66}\end{array}$ Stepe). Enquie Parameters Input: w= (#/sec); TTZ (OK), TTZ (OR) 74. for 500 R < TT, \$ 1000 R h_= 120.42 + (0.2477) (T_- 500); Bhe /# 75. @ for 500°K < TT, = 1000 °K hry = 120, 42 + (0, 2477) (Try - 500); Btu / # ( for 1000 Re Ty, = 1500 R hr = 244.25 + (0,2627)(Tr - 1000); Btu /# @for 1500 "R < 77, 5 2250 "K hy = 375.62 + (0,2819) (TTy-1500); Btu / # 76. wy = (17,664 - 75) wy; #/sec

$$D-11$$

$$P7. \quad u_{T_{1}} = \frac{u_{T}}{(u_{n}) - u_{T}}; \quad dimension kiss$$

$$P3. \quad P. \quad Air = 0.0677 \times 100; \quad T.$$

$$P3. \quad R = \left[ 0.0095 \quad p7 + 53.3 \times 7; \quad 140 \times 8$$

$$P4. \quad R = \left[ 0.0095 \quad p7 + 53.3 \times 7; \quad 140 \times 8$$

$$P5. \quad (2) \quad for \quad 360^{\circ} R < T_{T_{1}} \leq 990^{\circ} R$$

$$C_{p} = \left( 0.2430 - 0.08 \quad p7 \right) - \left( 0.003 \times 3 - 0.115 \quad p7 \right) \left( \frac{5}{200} \right) + \left( 0.0008 - 0.008 \quad p7 \right) - \left( 0.003 \times 3 - 0.115 \quad p7 \right) \left( \frac{5}{200} \right) + \left( 0.0008 - 0.008 \quad p7 \right) - \left( \frac{5}{200} \right)^{2}; \quad 5 \text{ for } / \text{for } 390^{\circ} R < T_{T_{1}} \leq 1533^{\circ} R$$

$$C_{p} = \left( 0.2170 + 0.157 \quad p7 \right) + \left( 0.0057 + 0.0267 \quad p7 \right) \left( \frac{5}{900} \right);$$

$$(2) \quad for \quad 1530^{\circ} R < T_{T_{1}} \leq 6300^{\circ} R$$

$$C_{p} = \left( 0.3840 + 0.2 \quad p7 \right) - \left\{ \begin{array}{c} 0.824 + 7.6 \quad p3 + 10 \quad 72 \\ \frac{5}{777} + 3.65 + 20 \quad 73 \\ \frac{5}{777} + 5.65 + 20 \quad 73 \\ \frac{5}{777}$$

,

-

 $8z. \ \mathcal{S} = \frac{80}{81}$ 

in a martine

-----

Stepf). Flow Measuring Station Mass Weighted Mean Total Pressure; Branch I Input: All volues are taken from previous stops Calculation ;  $B3. \overrightarrow{F}_{F_{2}} = \textcircled{} \left\{ i \neq \chi, \left[ i \neq \frac{i}{2(B2 - i)} \left( \bigcirc 1 \right) \right] \underbrace{\textcircled{}}_{32.11} (\bigcirc 1) \left( \bigcirc 1 \right) \left[ \bigcirc 1 \right] \underbrace{\textcircled{}}_{32.11} (\bigcirc 1 \right] (i \neq 1)$ Step 9). Flow Measuring Station Mass Wleighted Mean Total Pressure; Branch I Input: All values are taken from prive steps Calculation : 84.  $\overline{P}_{I} = 29 \left\{ 1 + \chi_{2} \left[ 1 + \frac{1}{2(E_{2}-1)} \left[ \frac{29}{29} - 1 \right] \right] \frac{29}{32.17} \left[ \frac{1}{29} + \frac{1}{29} \right] \frac{1}{32.17} \left[ \frac{1}{29} + \frac{1}{29} \right] \frac{1}{32} \left[ \frac{1}{29} + \frac{1}{29} \right] \frac{1}{3$ Step h). Hub Station area Meighted Total Pressure; Branch I Input: Ps (in-TRE), Pr (in-TRE), Pr (in-TRE), Pr (in-TRE), Pr (in-TRE) P19 ( IM-717E) Calculation : 85. P7 = P15(15.365) + 3 ; pork 86. P= = P (15.265) + 2); p=fa 87. Pro = May (15.365) + 2 ; reta

D12

$$D-13$$
88.  $f_{21}^{2} = f_{10}^{2} (15.3(5) + @), perfecces
99.  $f_{25}^{2} = f_{12}^{2} (15.3(5) + @); perfecces
90.  $(f_{245}^{2})_{2447}^{2} = 0.298 @) + 0.192 @) + 0.145 @) + 0.145 @) + 0.146 @) + 0.195 @); perfecces
57. perfecces
57. perfecces
57. perfecces
57.  $f_{20}^{2} (m-766), f_{21}^{2} (m-7766); f_{22}^{2} (m-7766), f_{23}^{2} (m$$$$ 

I

L

1

f university

D-14  
98. 
$$F_{2} = F_{1}(70.921)$$
; psia  
98.  $F_{2} = \frac{F_{2}}{F_{2}} - (F_{2}m_{2})_{aur} = \underbrace{(3) - 3}_{(3)}$ ; demensionless  
 $\frac{F_{2}}{F_{2}}$   
98.  $C_{2} = \frac{F_{2}}{F_{2}} - (F_{2}m_{2})_{aur} = \underbrace{(3) - 3}_{(3)}$ ; demensionless  
Step i) Alco Station Total Amessave; Mass Weightel;  
Calculated, Exanch II  
Imput:  $C_{1}$ , assumed in the based in grint run value:  
of  $C_{1}$  serve plus results of tall scale more up to:  
Calculation:  
9.  $F_{2}m_{2} = \underbrace{(3)}_{1} - \underbrace{(2)}_{1} \underbrace{(3)}_{2}$ ; psia  
Step k). Alub Station Total Pressure; Mass Weightel;  
Calculation:  
9.  $F_{2}m_{2} = \underbrace{(3)}_{2} - \underbrace{(2)}_{2} \underbrace{(3)}_{2}$ ; psia  
Step k). Alub Station Total Pressure; Mass Weightel;  
Calculation:  
10.  $F_{2} = \underbrace{(3)}_{2} - \underbrace{(2)}_{2} \underbrace{(3)}_{2}$ ; psia  
Step k). Alub Station Total Pressure; Mass Weightel;  
Calculation:  
10.  $F_{2} = \underbrace{(3)}_{2} - \underbrace{(3)}_{2}$ ; psia  
Step k) Alub Station taxon class factors for Lapout to Felatus  
findage  
Step k) Alub Station Facon class for Lapout to Felatus  
Topont:  $\widehat{C}_{2}$ ;  $\widehat{C}_{3}$ ;  $\widehat{C}_{3}$ ;  $\widehat{C}_{4}$ ;  $\widehat$ 

Ţ

10 av

10.0-

40k 57

$$D-15$$

$$Calculation:
1002.  $\overline{F}_{nub} = \underbrace{\mathfrak{S}} + \underbrace{\mathfrak{s}}_{\mathfrak{s}} ; psta$ 

$$1004. \overline{F}_{nub} = \underbrace{\mathfrak{O}} + \underbrace{\mathfrak{S}}_{\mathfrak{s}} ; \mathfrak{R}$$

$$1004. \overline{F}_{nub} = \underbrace{\mathfrak{O}} + \underbrace{\mathfrak{S}}_{\mathfrak{s}} ; \mathfrak{R}$$

$$1004. \overline{F}_{nub} = 1000 - 5 ; \mathfrak{R}$$

$$1004. \overline{F}_{nub} = 1000 - 5 ; \mathfrak{R}$$

$$5tep m). \overline{Total} \ freessure \ Lass \ Formeters; \ formanch \ I$$

$$Input: \ \mathcal{All} \ rathers \ are \ taken \ from \ provides \ steps$$

$$Calculation:$$

$$101. \ \overline{F}_{\mathfrak{T}} - \overline{F}_{\mathfrak{s}} = \underbrace{\mathfrak{S}}_{\mathfrak{s}} - \mathfrak{S}_{\mathfrak{s}}; \ dimensionless$$

$$1014. \ \overline{F}_{\mathfrak{T}} - \overline{F}_{\mathfrak{s}} = \underbrace{\mathfrak{S}}_{\mathfrak{s}} - \mathfrak{S}_{\mathfrak{s}}; \ dimensionless$$

$$1014. \ \overline{F}_{\mathfrak{T}} - \overline{F}_{\mathfrak{s}} = \underbrace{\mathfrak{S}}_{\mathfrak{s}} - \mathfrak{S}_{\mathfrak{s}}; \ \mathfrak{S}; \\mathfrak{S}; \\mathfrak{$$$$

1.2

Step n). Total Pressure Loss Parameter; Branch II Input: All sopre are taken from present stops Calculation :

$$\frac{133.}{P_{7,7}^2} = \underbrace{(3) - 89}_{= 3} \cdot 1 \text{ minement less}$$

103a.  $\frac{\overline{P_{T_{3}}} - \overline{P_{T_{nub}}}}{\overline{P_{T_{n}}}} = \underbrace{\$\$ - 100}_{\$\$}; dimensionless$ 104.  $\frac{\overline{P_{T_{n}}} - \overline{P_{T_{nub}}}}{\overline{P_{T_{n}}}} = \underbrace{\$\$ - 100}_{\$\$}; dimensionless$   $\frac{104!}{\overline{P_{T_{n}}} - \overline{P_{T_{nub}}}}{\overline{P_{T_{n}}}} = \underbrace{\$\$ - 100}_{\$\$}; dimensionless$ 

PREPARED BY	
CHECKED BY	
	APPENDIX E
	SUMMARY
	OF
	STRAIN GAGE AND THERMOCOUPLE LOCATIONS
E. 1	INTRODUCTION
	Table F 2-1 following lists all strain gage locations and the
type of	gage and the data desired at each location. Table E. 2-2 is a
compila	ation of the thermocouple locations.

l

TABLE E.2-1

1

	vo. Station	140 23.)0	170 62.50	170 62.50	170 73.40	17) 73.40	17) 53.50	170 53.50	170 78.30	170 83.50	170 78.30	170 103.00 [*]
	Location Part N	Arm 285-31	285-01	285-01	285-01	285-0]	285-01	285-01	285-01	285-0]	285-0]	285-0]
VLLATIONS	Gage Part Name	Feathering	Front Spar	Aft Spar	Front Spar	Aft Spar	Front Spar	Aft Spar	Front Spar	Front Spar	Aft Spar	Aft Spar
IN GAGE INSTA	wırıng Configuration	Normal	Parallel	Normal	Parallel	Normal						
OF STRAI	Type	Bending	Bending	Bending	Bending	Bending	Bending	Bending	Bending	Tension	Bending	Tension
BULATION	o Cages	4	œ	œ	80	œ	œ	30	80	4	80	4
TAI	Gage Type	ABD-13	ABD-13	ABD-13	ABD-13	ABD-13	ABD-13	ABD-13	ABD-13	ABD-13	ABD-13	ABD-13
	Briage Num ber	1	4	2	6	2	œ	6	10	11	12	13
	Bridge Name	Pitch Arm	Flapwise Bending	Chordwise Bending	Flapwise Bending	Chordwise Bending						

*Moved from Station 83.5 after addition of aft spar doubler

ontinued)
의
5-1
ய்
E
AB
11

Bridge Name	Bridge Number	Gage Type	No. of Gages	Bridge Type	Wiring Configuration	Gage Locatio Part Name	n Part No.	Station
Flapwise Bending	17	ABD-13	æ	Bending	Parallel	Aft Spar	285-0170	138.30
Flapwise Bending	23	ABD-13	œ	Bending	Parallel	Aft Spar	285-0170	164.50
Flapwise Bending	24	ABD-13	ω	Bending	Parallel	Front Spar	285-0170	<b>206.</b> 00
Flapwi <i>s</i> e Bending	25	C6-142-350]	80	Bending	Parallel	Aft Spar	285-017)	<b>2</b> 06.00
Flapwise Bending	29	C6-142-350]	ŝ	Bending	Parallel	Aft Spar	285-0170	270,00
Thrust	30	ABD-13	80	Tension	Parallel	Shaft Assembly	285-0534	W.L1.4
Thrust	30X	ABD-13	80	Tension	Parallel	Shaft Assembly	285-0534	W.L1.4
In-plane Bending	31	ABD-13	œ	Bending	Parallel	Shaft Assembly	285-0534	W.L1.4
90° to In- plane Bending	32	ABD-13	ø	Bending	Parallel	Shaft Assembly	285-0534	W.L1.4
Hub Gimb <b>a</b> l	33	ABD-13	4	Bending	Normal	Hub Gimbal Beam	285-0529	W.L.+4.25
Hub Gimbal	34	ABD-13	4	Bending	Normal	Hub Gimbal Beam	285-0529	W.L.+4.25
Blade Torsion	36	ABD-13	4	Shear	Normal	Blade Structure	285-0166	Top. Skin 38.0

E-3

	ł
2-1 (Continued)	
ABLE E.	:
ΗĂ	

Gage Type Gages Type ABD-13 4 Shea ABD-13 4 Shea	<b>TIV</b> d d	e e	Wiring Configuration Normal Normal	Gage Locatio Part Name Blade Structure Blade Structure	on Part.No. 285-)166 285-0138	Station Bottom Skin 38. ) )
ABD-13 4 Shear	r Li		Normal	Blade Structure	285-0138 285-0138	lop Skin 82.0) Bottom Skin 82.00
ABD-13 4 Shear	L C		Normal	Blade Structure	285-3127	23.5)
ABD-13 4 Shear	ar		Normal	Blade Structure	285-0127	23, 50
ABD-13 4 Tension	sion		Normal	Swash Plate Drag Link	285-0332	Shown on 285- )300 W.L57.2
ABD-13 4 Bending	ding		Normal	Flapping Angle Pickup	285-0947	Hub 19. 00
ABD-13 4 Bending	ding		Normal	Feathering Angle Pickup	285-0948	Hub 19. ))
ABD-13 4 Bending	iding		Normal	Hub Tilt Pickup	285-0956	Hub 6.00
ABD-13 8 Bending	lding		Parallel	Duct Gimbal Ring Gages Installed per	285-)178	Shaft Assy. 19.00
				285-0995		E-

E-4

			1	BLE E.2	:-1 (Continued)			
ridge lame	Bridge Number	Gage Type	No. of Gages	Bridge Type	Wiring Configuration	Gage Location Part Name Pa	art No.	Station
s.		ABD-13	œ	Bending	Parallel	Duct Gimbal Ring 28 Installed per 285-0955	15-0178	Shaft Assy. 19.00
ed Blade nuct Torsion l.		ABD-13	œ	Bending	Parallel	Duct Gimbal Ring Gages Installed per 285-0955		Shaft Assy. 19.00
2.		ABD-13	00	Bending	Parallel	Duct Gimbal Ring Gages Installed per 285-0955		Shaft Assy. 19, 00
ellow Blade Mct Torsion 1.		ABD-13	œ	Bending	Parallel	Duct Gimbal Ring Gages Installed per 285-0955		Shaft Assy. 19.00
	-	ABD-13	œ	Bending	Parallel	Duct Gimbal Ring Gages Installed per 285-0955		Shaft Assy. 19.00
or and Aft lorizontal `orce Pickup	_	ABD-13	4	Tension	Normal	Upper Truss 28 05	85- 523-1	W.L43.0
ateral Hori: `orce Pickup	zontal	ABD-13	4	Tension	Normal	Upper Truss 28	85- 523-1	W.L43.0
ylon Thrust	۷	ABD-13	4	Tension	Normal*	Lower Truss 28	85- 523-3	W.L52.0

E-5

TABLE E. 2-1 (Continued)

1

Ī

			<b> </b>					
	Bridge Number	Gage Type	No. of Gages	Bridge Type	e Wiring Configurati	Gage I on Part Name	ocation Part No.	Station
[hrust	A	ABD-13	4	Tensic	on Normal	Lower Truss	285-0 0523-3	W.L52.00
	U	-	=	=	ŧ	-	Ξ	-
11	Q	:	=	=	ĩ		:	11
Ξ	ы	Ŧ	=	=	Ξ	=	-	=
=	ſщ	÷	E	=	=	-	Ξ	= =
=	U	Ξ	Ξ	=	Ξ	-	Ξ	=
Ξ	Н	11	=	:	=	-	Ξ	
ľ	-	AB-19	শ	Tensi	on Normal	Rod End	285- 0326-3	W.L57.00
1	2	AB-19	4	Tensi	on Normal	Rod End	285- 0326-3	W.L57.30
1	ñ	AB-1 <b>9</b>	4	Tensi	on Normal	Rod End	285 - 0326 - 3	W.L57.0)

E-6

		THERMOC	OUPLE SUMMAR		
<b>General</b> Location	Thermocouple Identification	Numb <mark>er</mark> Thermocouples Involved	Blade Station or HUB W. L.	Blade	Specific Location
l. Coupling	BC-2, #1 thru 4	4	103.5	Blue	Coupling No. 2, Dwg. 285-1002
	BC4, #l thru 4	4	128.5	Blue	Coupling No. 4, Dwg. 285-1332
	BC-6, #1 thru 4	4	153.5	Blue	Coupling No. 6, Dwg. 285-1002
	BC-8, #1 thru 4	4	178.5	Blue	Coupling No. 8, Dwg. 285-1072
	BC-10, #1 thru 4	4	203.5	Blue	Coupling No. 10, Dwg. 285-10)2
	BC-12, #1 thru 4	4	228.5	Blue	Coupling No. 12, Dwg. 285-1002
	BC-14, #1 thru 4	4	253.5	Blue	Coupling No. 14, Dwg. 285-1002
	BC-16, #l thru 4	4	278.5	Blue	Coupling No. 16, Dwg. 285-1002
	BC-18, #1 thru 4	4	303.5	Blue	Coupling No. 18, Dwg. 285-1032
	RC-2, #1 thru 4	4	103.5	Red	Coupling No. 2, Dwg. 285-1902
	RC-18, #1 thru 4	4	303.5	Red	Coupling No. 18, Dwg. 285-1002
	YC-2, #1 thru 4	4	103.5	Yellow	Coupling No. 2, Dwg. 285-1002
	YC-18, #1 thru 4	4	303.5	Yellow	Coupling No. 18, Dwg. 285-1002
2. Mast	#1	1	WL-34	0 0 3 3	Lower Bearing Housing Dwg. 285-0937
	#2	l	WL-13	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Maet Structures Press and And

TABLE E.2-2

5 THERN E-7

----- Mast Structure, Dwg. 285-0937

WL-13

2.

TABLE E.2-2 (Continued)

# THERMOCOUPLE SUMMARY

	Specific Location	Mast Structure, Dwg. 285-0937	Mast Structure, Dwg. 285-0937	Spoke, Inboard Section, Dwg. 285-0937	Spoke, Station 7.0 (half-way out), Dwg. 285-0937	Spoke Station 14.0 (at tip), Dwg. 285-0937	Outer Skirt of Gimbal fitting, Dwg. 285-0937	Inner Surface ball joint, at top, Dwg. 285-0949	Outer Surface of inboard articu- lated Duct seal housing at top, Dwg. 285-0951	Hub cooling air near spoke	Inner surface closest to duct at top, Rib at Sation 33.25, Dwg. 285-0949	Inner surface closest to duct at top, Rib at Station 63.0, Dwg. 285-0950
ł	Blade			8 1 8 8	8 1 8 8	8 8 8 7		Blue	Blue	8 8 8 8	Blue	Blue
	Blade Station or HUB W.L.	WL-8	WL-1.0	WL-6.5	WL-6.5	WL-6.5	WL-2.5	. 21.88	15.50		33.25	63.0
	Numb <b>e</b> r Thermocouples Involved	1	1	I	1	I	-	I	1	1	I	-
	T <b>her</b> mocoup <b>le</b> Identification	#3	#4	# 2#	9#	し非	80#	BBJ-I	BHD-1	Н-1	BR-1	BR-2
	<b>General</b> Location	2. Mast						3. Misc.			4. Ribs	

E-8

			Specific Location	Inner surface closest to duct at top, Rib at Station 73.0, Dwg. 285-0950	On Rib No. 9, Segment No. 1, Dwg. 285-1002	Ribs, outer surface of skin, Segment No. 1, Dwg. 285-1002	Between ducts on Rib No. 5, Segment No. 1, Dwg. 285-1002	Segment No. 18, Rib No. 5, Dwg. 285-1002	Segment No. 18, outer skin, Rib No. 5, Dwg. 285-10)2	Front spar, Neutral Axis	Front spar, Neutral Axis	Front spar, Neutral Axis	Rear spar, Neutral Axis	Rear spar, Neutral Axis	Rear spar, Neutral Axis
		Υ	Blade	Blue	Blue	Blue	Blue	Blue	Blue	Blue	Blue	Blue	Blue	Blue	Blue
	.2-2 (Continued)	OUPLE SUMMAI	Blade Station or HUB W.L.	73.0	10 <b>B</b>	97	26	321	321	83.1	135.38	206	83, 3	135.38	206
	TABLE E.	THERMOC	Number Fhermocouples Involved	T	ę	4	4	7	4	1	l	l	1	1	1
			Thermocouple Identification	BR-3	BS-1, #1 thru 6	BS-1, #1 thru 10	BS-1, #11 thru 14	BS-18, #1 thru 6 and No. 11	BS-18, #7 thru 10	BFS-1	BFS-2	BFS-3	BRS-1	BRS-2	BRS-3
Ĩ			<b>Gene</b> ral Location	4. Ribs	5. Segments					6. Spars					

E-9

### TABLE E.2-2 (Continued)

P 14

## THERMOCOUPLE SUMMARY

. 1	Blade Specific Location	Blue Front spar, ton	Blue Front snar how	Blue Front and the	Blue Front and Lup	Blue Aft and the	Blue Aft snar how	Blue Aft spar. for	Blue Aft spar. bottom	Blue Aft spar. ton	Blue Aft snar hottom	Blue Aft spar ton	Blue Aft spar bottom	Blue Probe, front spar cooling duct	3lue Probe. rear anar cooling .	Blue Probe, main duct cooling and
	Blade Station or HUB W.L.	206	206	78.3	78.3	270	270	206	206	135.3	135.3	78.3	78.3	330	321 1	78
	Number Thermocouples Involved	I	l	1	1	l	1	l	1	l	l	1	1	I	1	I
	Thermocouple Identification	C13	C14	C15	C16	C17	C18	C19	C20	C21	C22	C23	C24	BCD-1	BCD-2	BCD-5
	General Location	6. Spars												7. Cooling Ducts		

where the .
	Blade Specific Location	Blue Probe, main duct cooling space near exit hole in bottom skin	Red Probe, front spar cooling duct	Red Probe, rear spar cooling duct	Red Probe, main duct cooling space near exit hole in upper skin	Red Probe, main duct cooling space near exit hole in lower skin	Yellow Probe, front spar cooling duct	Yellow Probe, Aft spar cooling duct	Yellow Probe, main duct cooling space near exit hole in upper skin	Yellow Probe, main duct cooling space, near exit hole in lower skin	Blue Probe, centered in aft duct 1" upstream of rotor tip nozzle cascade	Blue Probe, centered in forward duct 1" upstream of rotor tip nozzle
UPLE SUMMARY	Blade Station or HUB W.L.	57	325	325	78	57	325	325	78	57	325	325
THERMOCO	Number Thermocouples Involved	1	l	l	I	I	1	l	1	1	I	1
	Thermocouple Idendification	Cooling Air	RCDF	RCDR	Cooling Air	Cooling Air	YCDF	YCDR	Cooling Air	Cooling Air	C1	C2
	<b>General</b> Location	7. Cooling Ducts									8. Primary Ducts	

TABLE E. 2-2 (Continued)

E-11

cascade

ntinued)
ŝ
2-2
ш
BLE
TAI

# THERMOCOUPLE SUMMARY

	285-	285-	285 -
tion	Dwg.	Dwg.	Dwg.
Specific Loca	Duct Gimbal ring, 0178	Duct Gimbal ring, 0178	Duct Gimbal ring, 0178
Blade	Blue	Red	Yellow
Blade Station or HUB W.L	19	19	19
Number Thermocouples Involved	-4	1	l
T <b>her</b> mocouple Identification	Gimbal Ring	Gimbal Ring	Gimbal Ring
Jeneral ,ocation	). Seal Gimbal Ring		

÷.,

E-12

	Hughes	TOOL	Co	MPANY-AIRCRAFT	DIVISION	285-16 (62-16) PAGE	F. 1
PREPARED BY							
		A	PPE	NDIX F			
		NON	AENO A	CLATURE ND			
	COME	PUTER	PR	GRAM FORMAT	5		

#### F.1 INTRODUCTION

3 *04

This section provides the nomenclature, input and output format, and computer program listing for the thermodynamics and aerodynamics of the hot cycle system. This information is included in this appendix for convenience and is introduced and discussed further in Section 5.1.5 and Appendix D.

CKED BY		
. 2 <u>N</u>	omenclature	
Analysis	Fortran Program	Definition
a	А	Velocity of sound; Slope of lift curve in radians
А	BAD	Total duct cross-section area - square feet
A D		Duct cross-section area per blade - square feet
A _N	ANT	Total nozzle area at blade tips - square feet
ь	В	Number of blades
В		Tip loss factor (assumed = 0.97)
с	С	Blade chord - inches
с _р	CP	Specific heat at constant pressure - BTU/pound- ⁰ F
c v	cv	Specific heat at constant volume - $BTU/pound-^{O}F$
С	CORR	Profile power increase
с ¹		Calculated hub pressure loss coefficient based on hub area - weighted total pressure, Branch I
c ^{II}		Calculated hub pressure loss coefficient based on hub area - weighted total pressure, Branch II
C'I	C1	Estimated turning pressure loss coefficient through hub, Branch I
$c'_{II}$	C2	Estimated turing pressure loss coefficient through hub, Branch II
C _i	Cl	Power correction factor for blade twist
C _f		Nozzle thrust coefficient
С _р	CA	Nozzle power coefficient = $\frac{\text{RHP x 550}}{\text{Omp}^2 \text{w 3}}$



Fortran ProgramDefinitiPo PtAmbient pressure - pound/feet2Pt $P_T_7$ PT Gas total pressure - pound/feet2PT $T_7$ Turbine discharge total pressurePT $C$ PT or P $P_{1-24}$ readoutTotal and static pressures descr $P_{1-24}$ readoutrGas total pressure ratio, $P_T/P_0$ r3/r2R3R2Static duct pressure ratioRGas constantRRADBlade radius, feetRe $t/c$ TCRBlade thickness ratioTTRotor thrust - poundsT $T_{amb}$ TAMBAmbient TemperatureT $T_1-24$ readoutTotal temperatures described by $T_{1-24}$ readoutT $T_T$ TT $TT$ Gas total temperature - OR T $T_7$ TT7T $Total temperature - {}^{OR}$ T $T_7$ TT7T $T_7$ TT7T $T_7$ TT7T $T_7$ TT7T $T_7$ TT7T $T_7$ TT7T $T_7$ TT7T $T_7$ TT7T $T_7$ TT7T $T_7$ TT7			ED BY
AnalysisProgramDefiniti $P_o$ Ambient pressure - pound/feet2 $P_t$ PT $P_T_7$ Gas total pressure - pound/feet2 $P_T_7$ Turbine discharge total pressure $P_T_c$ or $P_c$ PT or $P$ Total and static pressures descr $r$ Gas total pressure ratio, $P_T/P_o$ $r_3/r_2$ R3R2RGas constantRRADBlade radius, feetReReynolds number $t/c$ TCRBlade thickness ratioTTRambTAMBAmbient Temperature $T_{1-4}$ Total temperatures described by $T_{T_7}$ TTTGTiGround effect parameter = $\frac{0}{T}$ $T_g/T$ TGTiGround effect parameter = $\frac{T \ln g}{T out}$		Fortran	
$P_o$ Ambient pressure - pound/feet2 $P_t$ PTGas total pressure - pound/feet2 $P_{T_7}$ Turbine discharge total pressure $P_{T_c}$ or $P_c$ PT or PTotal and static pressures descr $r$ Gas total pressure ratio, $P_T/P_o$ $r_3/r_2$ R3R2Static duct pressure ratioRGas constantRRADBlade radius, feetReReynolds number $t/c$ TCRBlade thickness ratioTTRotor thrust - pounds $T_{amb}$ TAMBAmbient Temperature $T_t$ T $T_1 - 4$ Total temperatures described by $T_{T_7}$ TTTGas total temperature - OR TTGTiGround effect parameter = $\frac{T \text{ in g}}{T \text{ out}}$	on	Program	ysis
$P_t$ $PT$ Gas total pressure - pound/feet2 $P_{T_7}$ Turbine discharge total pressure $P_{T_c}$ or $P_c$ $PT$ or $P$ Total and static pressures descr $r_{T_c}$ $PT$ or $P$ Total and static pressure ratio, $P_T/P_o$ $r_3/r_2$ $R3R2$ Static duct pressure ratio $R$ Gas constant $R$ RADBlade radius, feetReReynolds number $t/c$ TCRBlade thickness ratio $T$ $T$ Rotor thrust - pounds $T_{amb}$ TAMBAmbient Temperature $T_t^{-4}$ $T_{1-24}^{-24}$ readout $T_T$ $TT$ Gas total temperatures described by $T_{T_7}$ $TT7$ Turbine discharge total temperature - OR $T_{T_7}$ $TT7$ Turbine discharge total temperature $T_7$ $TT7$ Turbine discharge total temperature $T_7$ $TGTi$ Ground effect parameter = $T$ in g $T$ out		Ambien	
$P_{T_7}$ Turbine discharge total pressure $P_{T_c}$ or $P_c$ PT or $P$ Total and static pressures descr $P_{1-24}$ readoutrGas total pressure ratio, $P_T/P_o$ $r_3/r_2$ R3R2Static duct pressure ratioRGas constantRRADBlade radius, feetReReynolds numbert/cTCRTRotor thrust - poundsTTTambTAMBAmbient TemperatureTTTGas total temperature - OR TT7TTurbine discharge total temperatT_7TGTiGround effect parameter = $\frac{T \text{ in g}}{T \text{ out}}$	(absolute)	PT Gas tot	t
$P_{T_{c}} \text{ or } P_{c} PT \text{ or } P$ $P_{1-24} \text{ readout}$ $r$ $P_{1-24} \text{ readout}$ $r$ $Gas total pressure ratio, P_{T}/P_{o} r_{3}/r_{2} R_{3}R_{2} R_{3}R_{2} R_{3}R_{2} R_{3}R_{2} R_{3}R_{2} Static duct pressure ratio R R_{4} Gas constant R R_{4} R_{4}D B lade radius, feet Re Reynolds number t/c TCR B lade thickness ratio T T T Rotor thrust - pounds T_{4}nbb T_{1-24} readout T_{1-24} readout T_{7} TT TT Gas total temperature - ^{O}R T_{7} TT7 Turbine discharge total temperature - Total $	J	Turbine	7
rGas total pressure ratio, $P_T/P_o$ $r_3/r_2$ R3R2Static duct pressure ratioRGas constantRRADBlade radius, feetReReynolds numbert/cTCRBlade thickness ratioTTRotor thrust - poundsTambTAMBAmbient Temperature $r_{1-24}$ readoutTT_7TTGas total temperature - OR T_7TT7Turbine discharge total temperatTg/TTGTiGround effect parameter = $T$ in g T out	ibed by Figure D-2,	PT or P Total an P1-24 P	or P _c
$r_3/r_2$ R3R2Static duct pressure ratioRGas constantRRADBlade radius, feetReReynolds numbert/cTCRBlade thickness ratioTTRotor thrust - poundsTambTAMBAmbient Temperature $T_1$ TGas total temperatures described by $T_1-24$ readoutTTT7TGTiGround effect parameter = $\frac{T in g}{T out}$		Gas tota	r
RGas constantRRADBlade radius, feetReReynolds numbert/cTCRBlade thickness ratioTTRotor thrust - poundsTambTAMBAmbient Temperature $^{T}_{1-4}$ Total temperatures described by $T_{T}$ TTGas total temperature - OR $T_{7}$ TT7Turbine discharge total temperatTg/TTGTiGround effect parameter = $\frac{T \text{ in g}}{T \text{ out}}$		R3R2 Static d	[/] r ₂
RRADBlade radius, feetReReynolds numbert/cTCRBlade thickness ratioTTRotor thrust - poundsTambTAMBAmbient Temperature $^{T}t_{1-4}$ Total temperatures described by $T_{1-24}$ readoutTTTGas total temperature - $^{\circ}R$ T T T 		Gas con	ι
ReReynolds number $t/c$ TCRBlade thickness ratioTTRotor thrust - poundsTambTAMBAmbient Temperature $T_{amb}$ TAMBAmbient Temperature $T_{1-24}$ Total temperatures described by $T_{1-24}$ readoutTTTGas total temperature - OR $T_{T_7}$ TT7Turbine discharge total temperat $T_g/T$ TGTiGround effect parameter = $T$ in g T out		RAD Blade r	ε
t/cTCRBlade thickness ratioTTRotor thrust - pounds $T_{amb}$ TAMBAmbient Temperature $T_{amb}$ TAMBAmbient TemperatureTt1-4Total temperatures described by $T_{1-24}$ readoutTTGas total temperature - OR $T_{T}$ TTGas total temperature - OR T_{7}TT7Turbine discharge total temperatTg/TTGTiGround effect parameter = $T$ in g T out		Reynold	e
TTRotor thrust - pounds $T_{amb}$ TAMBAmbient Temperature $T_{amb}$ TAMBAmbient Temperature $T_{1-4}$ Total temperatures described by $T_{1-24}$ readout $T_T$ TTGas total temperature - OR $T_{T_7}$ TT7Turbine discharge total temperat $T_{g/T}$ TGTiGround effect parameter = $\frac{T \text{ in g}}{T \text{ out}}$		TCR Blade th	′c
$T_{amb}$ TAMBAmbient Temperature $T_{t_{1-4}}$ Total temperatures described by $T_{1-24}$ readout $T_T$ TT $T_T$ TT $T_T$ TT $T_{7}$ TT7Tg/TTGTiGround effect parameter = $\frac{T \text{ in g}}{T \text{ out}}$		T Rotor th	2
$T_{t_{1-4}}$ Total temperatures described by $T_{1-24}$ readout $T_T$ TT $T_T$ TT $T_{T_7}$ TT7 $T_{T_7}$ TT7 $T_g/T$ TGTiGround effect parameter = $\frac{T \text{ in g}}{T \text{ out}}$		TAMB Ambien	nb
$T_T$ TTGas total temperature - OR $T_T_7$ TT7Turbine discharge total temperat $Tg/T$ TGTiGround effect parameter = $\frac{T \text{ in } g}{T \text{ out}}$	Figure D-2,	Total te ^T 1-24 ^r	-4
$T_{T_7}$ TT7Turbine discharge total temperat $T_g/T$ TGTiGround effect parameter = $\frac{T \text{ in } g}{T \text{ out}}$		TT Gas tota	т
Tg/T TGTi Ground effect parameter = $\frac{T \text{ in } g}{T \text{ out}}$	ure	TT7 Turbine	ſ
	round effect of ground effect	TGTi Ground	/T
U U Duct utilization <u>-</u> duct area blade cross - s	ection area	U Ductuti	l
v V Velocity		V Velocity	•
V Vj Jet velocity at blade tip - foot/se	cond	Vj Jet velo	i

## HUGHES TOOL COMPANY-AIRCRAFT DIVISION 285-16 (62-16)

82-10			
2 - 16)	 F.	2-4	

PREPARED BY			
HECKED BI			<u> </u>
Analysis	Fortran Program	Definition	
v _T	VТ	Blade tip speed - feet/second	
w		Flow rate	
w ₇		Turbine discharge flow rate	
w _f	WF	Fuel flow rate	
w	WG	Total gas flow, pound/second = EXW	
wg	WG	Gas flow per engine, pound/second	
$\mathbf{x}_{1}$	XI	Mass weighted total pressure, flow measuring max. total pressure	g Sta. I
x ₂	X2	Mass weighted total pressure, flow measurin max. total pressure	g Sta. II
z ₁	Z1	Area weighted velocity, Branch I max. velocity	
z ₂	Z2	Area weighted velocity, Branch II max. velocity	
T	GAMMA	Ratio of specific heats - $c_p/c_v$	
8	DEL	Temperature droop of gas at blade tip below t ture of gas or blade root	empera-
Si		Coefficients of NASA drag polar	
м	MU	Absolute viscosity	
P	RHO	Density	
6		Blade solidity ratio	
ω		Rotor angular velocity - radius/second	
SUPERSOR	11715	Mass weighted value	
SUBSCRIP	ГS		
Ċ		Ambient air away from engine	
1		Face of gas generator	

I.

#### HUGHES TOOL COMPANY-AIRCRAFT DIVISION 285-16

		MODEL REPORT NO. (62-16) PAGE F. 2
ANALYSIA		
HECKED BY		
Analysis	Fortran Program	Definition
2		Hub measuring station
3		Blade root
4		Blade tip and nozzle inlet
5		Nozzle exit
I		Branch I
II		Branch II
aw		Area weighted value
e		Position at edge of flow station rake
$\mathbf{f}_{\mathbf{s}}$		Flow measuring station
hub		Hub station below rotating seal
max		Maximum value at center of duct
ref		Reference value
res		Reservoir value
tot		Total or summation
Т		Total or stagnation

## FIGURE F. 3-1 INPUT FORMAT HUGHES TOOL COMPANY-AIRCRAFT DIVISION 285-16

		NODI	EL	REPORT NO	(02-10)	P495 -
PREPARED BY-			HOT CYCL	TEST DATA	l -	
CHECKED BY			INPUT TO C	OMPOTER PRO	GRAN	
DATE	2/28/62					
and a local of the state of the	~/ NOTOL		101	4	19 B	
RUN NO.	35					
7 2-	925		1	1		
1 21	.755		1			
8 12 ····	. 9.67		t	* 1		
5 1 1	.996		:	4		4
C.	.440	*	1	0		
0 0	.01	1	÷ •	•	an Marcol Age of Stat	a su officia set
Pamb	30 17	2				
	240	i		1		1
G R.	1500	•	• 1	1		
	.54	8 9				-
Par	71.37	*		· · · · ·		ł
19 T ₁	1143	ł				1
TTP	1142			•		
T.3	1142					1
T	1137	2 1		1		4 1 7
P	68.61	8				1
Tre	1.65			* *		
	-7090	4	1			
P	- 4.70	F .		•		1
PR PR	- 7.80	I		:		
P4	- 3.60	2 8	kang ta tara			
PS	- 5.70	1		1		¢ 1
23 P6	- 4.30					
84 P7	- 6.15					
Pas Pa	-15.50					
P P	-11.10			,		1
P10	-11.40		,			
28 P11	- 9.30					1
29 P12	- 8.70					
50 P13	- 8.60					
1 P14	-12.50					
2 ¹ 15	- 5.90					
3. ^P 16	- 6.40	,		-		
54 P17	- 7.70					
55 18	-10.10					T
56 [19	-13.60					
57 P20	-11.10					
58 _ 21	-13.90					1
59	-17.00					á
40 ^P 23	-11.20			• é		- - -
41 ^P 24	-11.80					
42 RAD	27.5					
43 C	3/5					
44 B	З.					

 $\langle \cdot \rangle$ 

1

5)

1.4

٦

371,4

	· · · · · · · · · · · · · · · · · · ·	· · ··································	Duucion	285-16
HUGHES		COMPANY-AIRCRAFT	DIVISION	#034I0
11001120				

. .

1.27

PREPARED BY.				HOT CI WHI INPUT T	CLE HELIC IRL TEST D	OPTER -	4
CAECKED DIS	1						
DATE							
	3 -		1	t.	E.	1	-
RUN NO.	.33						
AS TOR	.18					- 15	1
46 BAD	1.1417						
47 RSR2	.98						1
48 7	1.001		1				
49 00	165	20/6				25 - C	
50 ANT	7375		1	<u>*</u>		10	<u>*</u>
ST ANI	1.21		*	*.			
50 <b>000</b>	-30	2.4	1		69		~
53 <b>ANT</b>	12.5			+	-14		
	120						
D4 COMR		( *)					1
	<ol> <li>10 (10.4)</li> </ol>		5			3	
			1				\$71
10	- K 5 7 - H					30	
		12	1				
			(B)				
			.t.				
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		5		14		
	(A)		×	83	2.8		
			8				
	-18 - 17 B	2				22	
	- B				17	15	
				8 V	ų –	30	360
			30				
	- 14 - 14 - 14 - 14 - 14 - 14 - 14 - 14	46				15	
	(g. 11)						3
	1. C						
	1.0				7 -	¥2	
							24
	12 8 8	÷				8	
	G 22	2		14 A.	<u></u>	21	
			F	10			
						¥2	
		12					
	- 4						
	10 an						
	· · · · ·						
	20						
iá.		1					

1

FIGURE F. 3-2 INPUT FORMAT - LISTING OF INPUT DATA CARDS

Page F.

 275
 315
 3
 18
 114166
 98
 004
 955
 7375

 121
 -3
 125
 935
 927
 442
 440
 1

 3017
 240
 0
 6500
 54
 7137
 1143
 1142
 1137
 6861
 665

 -2090
 -470
 -780
 -360
 -570
 -430
 -615
 -2550
 -1110
 -1140
 -930
 -870

 -860
 -1250
 -590
 -640
 -770
 -1010
 -1360
 -1110
 -1390
 -1700
 -1120
 +1180

 35
 01
 01
 01
 01
 01
 01
 01
 01
 01
 00
 01
 01
 01
 01
 01
 01
 01
 01
 01
 01
 01
 01
 01
 01
 01
 01
 01
 01
 01
 01
 01
 01
 01
 01
 01
 01
 01
 01
 01
 01
 01
 01
 01
 01
 01
 01
 01
 01
 01

-

4				-	_			11
-	_	FIG	URE F. 3-3	PRINTOU	Τ			
•	-	XEN					-	
	ENTRY POIN	TS TO SUBR	OUTINES NE	QUESTED P	RON LIBR	ARY,		
	(FPI)	L	HH)()	<u>RIN1</u>	(SIHM)	(F1L	.)	ET1 PA
	EXEC	ATTON TIM	E 1459		•			
<b>4</b>	RAD = 2	7.5 CHOR	D = 31.5	NO. BLAD	ES =3.	T/C =0.18	TOTAL DU	ICT AREA = 1
	E = 0.0	0400 CF	- 0-95500	TOTAL N	OZZLE ARE	A = 0.737	50	
	T6/TI =	1.2100	+ -3.0000	X CT/S +	12.5000	X CT/S X	CT/S, Z1	= 0+9350
	- KI R. MAR	<u>420 X2 4</u> 25 C1	- 0-0100(	A C2 =	0RK = 10	0000		·····
	PANS =	30.17R	PM = 240.	DEL .	A. NEL	1/HR = 6	500. TAMB	F = 54.
	FLOW ST.	TEMP F =	1143. 114	13. 1142	. 1137.	PRES =	68.61	-
	FRON ST.	PRESS = -	20.90 -4.7	10 -7.80	-3.60	-5-70 -4	.30 -6.15	-25.50 -11.
	-8.60 -12	•50 -5.90	-6.40 -7	.70 -10.	10 -13.60	-11.10 -	13.90 -17.0	0 -11.20 -1
		4 10202F		- 0.	100175-01	0/0 ▲	10 = 0.3	76748 03
		0_27748E-		0_208	03F-00	GAMMA =	0-1328]E	01
	FLOW ME	ASURING ST	ATION		/ <u>ul 10 _ 10 </u>	MITLULAT.	anna an <b>State State an</b> an an	
	BRA	NCH	1		2		BRANCH	1
	11		0.16030E	04 0	15995E U	4	PMAX	D.4:
	P	AX	0.478015	Q4	157725 0	14 14		9.5
		x	0+13013E	04 0	121125 V	4	RHOMAX	0.5
	MUM	A Y -	0-95087E-	-01 0,	-94958E-0	1	REMAX	0.1
_	VAV	G	0.51148E	03 0	51484E 0	3	MAVG	0.2
	TAV	G	0.15841E	04 C	15804E 0	4	RHOAVG	0.5
		G	0.19000E	04 0.	18978E 0	4	(VAVG)COR	R 0.51
	W TOT		0.22454E	02 00	22305E U	2		
		AL GAS FLUT	I I Ve	HAIDYE U	AN TOTAL	DOCCURF		
		$ASCKING 51, \\ 1 = 0.1$	110 MR33 HC 175856 04	RRANCH	2 S	A-46888E (	<b>л</b> ь	
	HUB STA	TION TOTAL	TEMP =	0.16012E	04			
	VELOCITY	Y PROFILE P	LOW MEASUR	ING STAT	ION			
	VELOCITY	Y PROFILE	BRANCH 1				-	
	<u>PT1 =</u>	0.47800E	04 PT3	= 0,41	1323E 04	PT5 =	0.479692	04 PT/ 1
	Piy = M5 =	0.4/001C	04 PIE	= 0.2	1511E U4 7597E-00	M 1 = M 2 =	4-20413E	-00 ME *
	VIZVMAX -	= C.9881	2E 00 V	ZVNAX =	0-8902	6E 00 V	S/VMAX =	0.16204E 0
	W7/VMAX :	= 0.9577	2E 00 V9	VMAX =	0.1000	DE DI VI	E/VMAX =	0.94370E 0
	VBLOCITY	Y PROFILE (	BRANCH 2				_	
	PT2 =	0.468165	Q4 PT4	= 0,40	5770E 04	PT6 =	0.47093E	04 PT8
	PT10 =	0.47200E	04 PTE	= 0.40	001E U4	M2 =	0.2/082t	-00 M4 4
	NO -		1F 00 VI		0.9150	OF DO V	6/VNAX =	0. 97950E 0
	NE/MAX .	- 0.997	0E 00 V19	YVMAX =	0.1000	QE Q1 VI	E/VMAX =	0.81919E OF
	HUB STAT	TION AREA I	EIGHTED TO	TAL PRES	SURE BRAN	CH 1 =	0.47229E 0	4
	<u> PI15 =</u>	9+476151	04 PT1	17 = 0.	.47538E 0	4 PT19	= 0.473	39E 🙌 P1
•	HUB STA	TION AREA N	EIGHTED TO	ITAL PRES	SURE BRAN	CH 2 =	0.4655/E 0	4 105 Ab 0'
	HUR STA	TION TOTAL	PRESSURE.	MASS HEI	GHTED. CA	L CHI ATED	- 0.437	
	BRANCH	1 = 0.4	7060E 04	BRANCH	2 = 0.	46383E 04	AVERAGE	= 0.467
	C1 = 0.1	00666 C2	= 0.00656	5 101 =	0.05763	101A =	0.01000	102 = 0.0
	103 = 0	.07103 10	3A = 0.01	1000 10	4 = 0.08	103 .		
	DESIGN	#3 = 0.424	5 PRESS P	ATIO = 0	•95765	R4 = 2.05	507 CT/SO	LID = 0.080
	KUTUK T	HRA21 =	20192	DIJC LUA	UING =	0.2022	KZ = 201	
	<u> </u>	0.573246-4	13 CPA .	= A_12	9076-03	ст .	_ N. AQQ476→0	

ì

•				and the state of the second	
TUC		7	<b>Report</b> 285-16	(62-16) _ Page F	3-4
FRON LIBRARY,					
(STHM) (F	IL) <u>SQRT1</u>	EXP(3			
ADES =3. T/C =0.	18 TOTAL DUCT A	EA = 1.14166	R3/R2 = 0.980	· · · · · · · · · · · · · · · · · · ·	
NOZZLE AREA = 0.7	3750	0760 72 - 0 0	270	(1991 - 10)	
+ 12.5000 X CT/S	$x CT/S,  ZI = 0_0$	4350 ZZ = 0.9	210		
= 0.01000	₩ <b>₩₩₩</b> ₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩				
0. WF LB/HR =	6500. TAMB F -	<u>54. PT7 = </u>	71,37		
42. 1137. PRES 4 80 -3.60 -5.70	-4.30 -6.15 -25.5	0 -11-10 -11-40	-9-30 -8-70	)	
0.10 -13.60 -11.10	-13.90 -17.00 -11	.20 -11.80			
	ATR - A 776748	07 04 0	677405 00	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
1893E-00 GANMA	0.13281E 01				
2	BRANCH	1	2		
0.15995E 04	PMAX	0.45310E 04	U-44604E 0	)4	
0.47200E 04		0.28815E-00	0.29294E-0	)0 	<u> </u>
0.55539E 03	RHOMAX	0.53714E-01	0.53015E-0		
0.94958E-01	REMAX	0.11358E 07	U.11397E J	7	
0.51484E 03	MAVG	0.26942E-00	Ú.27155E-0	0	
G.15804E 04	RHOAVG	0.53623E-01	0.52912E-0		
0.223055 02	(VAVG)CURR	U.STITE US	V-51555E V		
Ú2					
MEAN TOTAL PRESSUR	RE	NAME AND ADDRESS OF AD		the state of the state of the second supportant	
H 2 = 0.468888	E 04				
47323E 04 PT5	0.47969E 04	PT7 = 0.476	546E 04		
47577E 04 M1 =	0.28473E-00	M3 = 0.250	53E-00		
27597E-00 M9	U.28815E-00	$ME = \mathbf{Q}_{\bullet}27$	93E-00		
	VS/VMAX = C.I.	204E UI 3705 00			
V. TUUUVE UT	VE/VHAA - Vevy				
46770E 04 PT6	0.47093E 04	PT8 = 0.471	85E 04		
46601E U4 M2	0.27082E-00	N4 = 0.268	304 E-UU		
29209E-00 M10	0.29294E-00	ME = 0.257	55E-00		
0.91500E 00	V6/VMAX = 0.97	950E UD 0105 00			
SSURE BRANCH 1 =	0.47229E 04	7175 44			
0.47538E 04 PT	9 = 0.47339E .	4 PT21 = (	.46970E 04	PT23 = 0.464	3
SSURE BRANCH 2 =	0.46557E 04				-
0.46386E 04 PT	20 = 0.459108	4  PT22 = (	.46801E 04	PT24 = 0.467	
EIGHTED, CALCULATE		0.447225 AL			
= 0.05763 + 1014	= 0.01000 102	= 0.04763	·		· · · · · · · · · · · · · · · · · · ·
104 = 0.08103					•
0.95765 R4 = 2.1	DS507 CT/SOLID .	0.080780 RHP	= 1972.		
0ADING = 8,5033	R2 = 2.1898		Re Incorp as	·····	
12907E-05 CT =	0.69932E-02				
				•	1
		and the second			
					11 22 Alate 1084
					the section



#### -

SUBROUTINE ENPR (WF1+TT21+TT71+R+GAMMA+CP) WF=WF1/3600. TT2=TT21+463. TT7=1.8*(TT71+17.8)+460. HT2=120.42+.2477*(TT2-500.) IF(TT7-1000.)1.1.2 1 HT7=120.42+.2477*(TT7-500.) GOT05 2 . IF(TT7-1500.)3.3.4 3 HT7=244.25+.2627*(TT7-1000.) GOTOS HT7=375.62+.2819*(TT7-1500.) 4 5 ' W7=((17664.-HT7)*WF)/(HT7-HT2) WEWA=WE/(W7-WE) PAIR=6.77/WEWA R=.0095+WFWA+53.34 TT7C=TT7/180. IF(TT7-990.)6,6,7 CP=(+243-+08*WFWA)--(+00343-+115*WFWA)*TT7C+(+0008-+008*WFWA)*TT7C* 6 1TT7C GOTO10 7 'IF(TT7-1530.)8.8.9 CP=(.217-.157*WFWA)+(.0057+.0267*WFWA)*TT70 8 GOTO10 9 CP=(-334+-9*WFWA)-((-834+7-6*WFWA+10-*WFWA*WFWA)/(TT7C+3-65+20-*WF 1WA)) CV=CP-.06855 10 GAMMA=CP/CV WRITEOUTPUTTAPE2, 100, W7, WFWA, PAIR, R, CP, CV, GAMMA 100 FORMAT(8H WF = E15.5.11H WF/WA = E15.5.13H 0/0 AIR = E15.5.8 RN =E12.5/8H CP =E15.5.8H CV =E15.5.11H 1H -GAMMA =E15.5 2) RETURN

Report 285-16 (62-16) Page F. 3-7

SUBROUTINE FLRAT(GAMMA+R+T1+T2+PRES+P1+P6+T3+T4+P8+P13+Z1+Z2+X1+X2 1.WTOT.PREF.PIM.P2M.PT18.PT28.TTHUB) A=1.937348 B=1.780448 E-02 C=-4.170257 E-06 D=5.805605 E-10 E=-2.156955 E-14 F=4.32 E-03 TT1 = (T1 + T2)/2 + 460PREF=PRES+70.721 P1M=P1+15.365+PREF PT1M=P6*15.365+PREF CO1=(GAMMA-1.)/GAMMA CO2=(GAMMA-1.)/2. AM1M2=(1./CO2)*((PT1M/P1M)**CO1-1.) AM1M=SQRT1F(AM1M2) T1M=TT1/(1+CO2*AM1M*AM1M)A1M2=GAMMA+32.17+R+T1M A1M=SQRT1F(A1M2) VIM=A1M#AM1M RH1M=P1M/(R*T1M)AMU1M=(A+B*TT1+C*(TT1**2)+D*(TT1**3)+E*(TT1**4))*F RE1M=(RH1M*V1M*1.021*3600.)/AMU1M V1A = Z1 + V1MAM1A = (V1A + AM1M) / V1MT1A=TT1/(1+CO2+AM1A+AM1A)RH1A=PIM/(R#T1A) A1A2=GAMMA*32.17*R*T1A A1A=SQRT1F(A1A2) VIAC=A1A#AM1A W1=RH1A*V1AC*.818 TT2=(T3+T4)/2.+460. P2M=P8+15.365+PREF PT2M=P13*15.365+PREF AM2M2=(1./CO2)*((PT2M/P2M)**CO1-1.) AM2M=SQRT1F(AM2M2) T2M=TT2/(1 + CO2 + AM2M + AM2M)A2M2=GAMMA*32.17*R*T2M A2M=SQRT1F(A2M2) V2M=A2M#AM2M RH2M=P2M/(R*T2M)AMU2M=(A+B*TT2+C*(TT2**2)+D*(TT2**3)+E*(TT2**4))*F RE2M=(RH2M*V2M*1.021*3600.)/AMU2M V2A=Z2*V2M AM2A=(V2A+AM2M)/V2M T2A=TT2/(1.+CO2#AM2A#AM2A) RH2A=P2M/(R*T2A)A2A2=GAMMA*32.17*R*T2A A2A=SQRT1F(A2A2) V2AC=A2A+AM2A W2=RH2A+V2AC+.818 WTOT = W1 + W2WRITEOUTPUTTAPE2,100 WRITEOUTPUTTAPE2,101,TT1,TT2,PIM,P2M,PT1M,PT2M,AM1M,AM2M,T1M,T2M,A 11M+A2M+V1M+V2M+RH1M+RH2M+AMU1M+AMU2M+RE1M+RE2M+V1A+V2A+AM1A+AM2A+T 21A, T2A, RH1A, RH2A, A1A, A2A, V1AC, V2AC, W1, W2, WTOT 100 FORMAT(26H FLOW MEASURING STATION/97H BRANCH 1 1 2 SRANCH 1 2 2)  $CO3=1 \cdot / (2 \cdot * (GAMMA-1 \cdot))$ 

CO4 = (V1M + V1M) / (32 - 17 + R + T1M)PT1B=P1M#(1.+X1*(1.+CO3*(TT1/T1M-1.))*CO4) CO5=(V2M+V2M)/(32.17+R+T2M) PT2B=P2M#(1.+x2#(1.+CO3#(TT2/T2M-1.))*CO5) WRITEOUTPUTTAPE2,102,PT18,PT28 TTHUB = (TT1+TT2)/2. WRITEOUTPUTTAPE2, 103, TTHUB 103 FORMAT(28H HUB STATION TOTAL TEMP =E15.5) 102 FORMAT(58H FLOW MEASURING STAT. MASS WEIGHTED MEAD TOTAL PRESSU BRANCH 1 = E16.5.14H BRANCH 2 = E16.5) 1RE/14H 1101 FORMAT(18H TT 2E16.5.22H PMAX 2E16.5 1/18H PTMAX 2E16.5,22H MMAX 2E16.5/18H 2E16:5,22H 2E16.5/18H 2 TMAX AMAX 2E16.5.22H RHOMAX MUMAX 3VMAX 2E16.5/18H 2E16.5/18H VAVG 2E REMAX 4 2E16.5.22H TAVG 2E16.5.2 516.5,22H MAVG 2E16.5/18H 62H RHOAVG 2c15.5/18H AAVG 2E16.5.22H (VAVG)CORR 2E16.5/18H 7 w 2E16.5/25H TO 8TAL GAS FLOW =E16.5) RETURN

Report 285-16 (62-16) Page F. 3-9 SUBROUTINE VELPR(P2,P3,P4,P5,P6,P7,PREF,P1M,P2M,GAMMA,P9,P10,P11,P 112.P13.P14) PT11=P2+15.365+PREF PT31=P3+15.365+PREF PT51=P4+15.365+PREF PT71=P5*15.365+PREF PT91=P6#15.365+PREF PTE1=P7+15.365+PREE  $G1=2 \cdot / (GAMMA-1 \cdot)$ G2=(GAMMA-1.)/GAMMA AM112=G1+((PT11/P1M)++G2-1)AM312=G1*((PT31/P1M)**G2-1.) AM11=SQRT1F(AM112) AM31=SQRT1F(AM312) AM512=G1*((PT51/P1M)**G2-1.) AM712=G1+((PT71/P1M)++G2-1) AM912=G1*((PT91/P1M)**G2-1.) AME12=G1+((PTE1/P1M)++G2-1.) - AM51=SQRT1F(AM512) AM71=SQRT1F(AM712) AM91=SQRT1F(AM912) AME1=SQRT1F(AME12) VIVM1=AM11/AM91 V3VM1=AM31/AM91 V5VM1=AM51/AM91 V7VM1=AM717AM91 V9VM1=1. VEIVM1=AME1/AM91 PT22=P9*15.365+PREF PT42=P10*10.365+PREF PT62=P11+15.365+PREF PT82=P12#15#365+PREF PT102=P13*15.365+PREF PTE2=P14#10.365+PREF AM222=G1*((PT22/P2M)**G2+1.) AM22=50RT1F(AM222) AM422=G1*((PT42/P2M)**G2-1.) AM622=G1*((PT62/P2M)**G2-1.) AM822=G1*((PT82/P2M)**G2-1.) AM1022=G1*((P[102/P2M)**G2-1.) AME22=G1*((PTE2/P2M)**G2-1.) AM42=SQRT1F(AM422) AM62=SQRT1F(AM622) AM82=SQRT1F(AM822) AM102=SQRT1F(AM1022)

100

AME2=SQRT1F(AME22) V2VM2=AM22/AM102 V4VM2 = AM42/AM102V6VM2=AM62/AM102 V8VM2=AM82/AM102

VE2VM2=AME2/AM102 WRITEOUTPUTTAPE2,102

V10VM2=1.

1. AM82. AM102. AME2. V2. VM2. V4VM2. V6VM2. V8VM2. V10VM2. VE2VM2. FORMAT(29H VELOCITY PROFILE GRANCH 1/9H PT1 =E15.5.9H PT5 = 15.5,94 P17 = E15.5/9H 1 =615.5. 911 M1 = E15.5.... M3 =E 15.5/>H 2PTE == 10.5.94

1AM71,AM91,AME1,V1VM1,V3VM1,V5VM1,V7VM1,V9VM1,VE1VM1

wRITEOUTPUTTAPE2,100,PT11,PT31,PT51,PT71,PT91,PTE1,AM11,AM31,AM51,

WRITEOUTPUTTAPE2, 101, PT22, PT42, PT52, PT82, PT102, PTE2, AM22, AM42, AM42, AM42

PT3

PT9 =E15.5.9H

M5 =E15.5.94

#### Report 285-16 (62-16) F. 3-10

 3
 M7 = E15.5,9H
 M9 = E15.5,9H
 ME = E15.5/12H
 V1/VMAX = E15.

 45.12H
 V3/VMAX = E15.5,12H
 V5/VMAX = E15.5/12H
 V7/VMAX = E15.5,12H

 52H
 V9/VMAX = E15.5,12H
 VE/VMAX = E15.5)

 101
 FORMAT(29H
 VELOCITY
 PROFILE
 BRANCH 2/9H
 PT2 =E15.5.9H
 PT4

 1 =E15.5.9H
 PT6 =E15.5.9H
 PT8 =E15.5/9H
 PT10 =E15.5.9H
 P

 2TE =E15.5.9H
 M2 =E15.5.9H
 M4 =E15.5/9H
 M6 =E15.5.9H

 3 M8 =E15.5.9H
 M10 =E15.5.9H
 ME =E15.5/12H
 V2/VMAX =E15.5

 4.12H
 V4/VMAX =E15.5.12H
 V6/VMAX =E15.5/12H
 V8/VMAX =E15.5.12

 5H
 V10/VMAX =E15.5.12H
 VE/VMAX =E15.5.5
 V10/VMAX =E15.5.12H

 102
 FORMAT(43H
 VELOCITY
 PROFILE
 FLOW MEASURING STATION)

RETURN

#### Report 285-16 (62-16) Page F. 3-12

	SUBROUTINE EXTRAIPREF, P15, P16, P17, P18, P19, P20, P21, P22, P23, P24, PT7,
ī	1PT18,PT28,PTH8,C11,C21)
5	PT15=P15+15•365+PREF
	PT17=P16+15.365+PREF
1	PT19=P17#15.365+PREF
1	PT21=P18+15.365+PREF
~	PT23=P19+15+365+PREF
	PTH1Aw=•298*PT15+•192*PT17+•169*PT19+•146*PT21+•195*PT23
	WRITEOUTPUTTAPE2,100,PTH1AW,PT15,PT17,PT19,PT21,PT23
	PT16=P20+15.365+PREF
	PT18=P21#15.365+PREF
je	PT20=P22#15.365+PREF
	PT22=P23+15.365+PREF
	PT24=P24*15.365+PREF
	PTH2AW=•298*PT16+•192*PT18+•169*PT20+•146*PT22+•195*PT24
	WRITEOUTPUTTAPE2,101,PTH2AW,PT16,PT18,PT20,PT22,PT24
	PTHAW=(PTH1AW+PTH2AW)/2.
	PT7A=PT7*70•721
	C1=(PT1B-PTH1AW)/PT7A
	C2=(PT2B-PTH2AW)/PT7A
	PTH18=PT18-C11+PT7A
	PTH2B=PT2B-C21+PT7A
	PTHB=(PTH1B+PTH2B)/2.
	PLF1=(PT7A-PT1B)/PT7A
	PLFH1=(PT1B-PTH1B)/PT7A
	PLH1=(PT7A-PTH1B)/PT7A
	PLF2=(PT7A-PT2B)/PT7A
	PLFH2=(PT2B-PTH2B)/PT7A
	Р∟н2=(РТ7А-РТн2В)/РТ7А
	WRITEOUTPUTTAPE2,102,PTH13,PTH28,PTH8
	WRITEOUTPUTTAPE2,103,C1,C2,PLF1,PLFH1,PLH1,PLF2,PLFH2,PLH2
103	FORMAT(7H C1 = F9.5,7H C2 = F9.5,8H 101 = F9.5,9H 101A = F9.5,

- 18H 102 =F9.5/8H 103 =F9.5,9H 103A =F9.5,8H 104 =F9.5) 100 FORMAT(55H HUB STATION AREA WEIGHTED TOTAL PRESSURE BRANCH 1 =E
- 115.5/10H PT15 =E15.5,10H PT17 =E15.5,10H PT19 =E15.5,10H 2 PT21 =E15.5.10H PT23 =E15.5)
- 101 FORMAT(55H HUB STATION AREA WEIGHTED TOTAL PRESSURE BRANCH 2 = E 115.5/10H PT16 =E15.5,10H PT18 =E15.5,10H PT20 =E15.5,1CH 2 PT22 =E15.5,10H PT24 =E15.5)
- 102 FORMAT(57H HUB STATION TOTAL PRESSURE, MASS WEIGHTED, CALCULATE 1D/14H BRANCH 1 =E15.5.14H BRANCH 2 =E15.5.13H AVERAGE =E1 25.51 RETURN

Sec.

1.1

. ---.

1	SUBROUTINE POWER(RAD+C+B+VT+GAMMA+TCR+BAD+DR+WG+TTHUB+PTHB+R3R2+F+ 1CP+CV+P+ANT+DEL1+GN1+GN2+GN3+CORR)	2
	R2=PTHB/P	
1	TT=TTHU8-DELI	
3	SOLID=(B*C)/(37.68*RAD)	
	UR=(BAD+144.)/(B+TCR+C+C+.68)	
-	WAR=WG/BAD	
	WTAP=(WAR#SQRT1F(TTHUB))/(P#R2#R3R2)	
-1°	GA1=(GAMMA-1.)/2.	
	GA2=(GAMMA+1.)/(2.*(GAMMA-1.))	
	ROOT=SQRT1F(.603+GAMMA)	
-	AM3T=+35	
1	AM3=(WTAP*(1.+GA1*AM3T*AM3T)**GA2)/ROOT	
	IF (ABSF (AM3-AM3T)0009)3.3.2	
2	AM3T=AM3	
	GOTOL	
	AM3D=AM3	
-		
-		
÷.		
	10001)*(2.*CON+1.)*AM3*(1.+GA1*AM3*AM3)**2.)/(3438.96*11*(1.*AM3*AM	
1°.	231)	
4	AM3=AM3+DM	
	PR=((AM3D/AM3)*((1.+GA1*AM3*AM3)/(1.+GA1*AM3D*AM3D))**GA2)	
	R4=R2*Ŕ3R2*PR	
	XX1=(GAMMA-1.)/GAMMA	
	AET4=CP+(1(1./R4)++XX1)	
	VJ=224.*CV+SQRT1F(AET4+TT)	
	RHPWG=((VJ-VT)*VT)/17710.	
	RHP=RHPWG*wG	
	CPA=(RHP*550.)/(.002378*DR*3.14*RAD*RAD*VT*VT*VT)	
	BT=•97	
	CTT=(CPA+BT+1,4)4)4)++,66667	
9	CTST=CTT/SOLID	
	CPI=CPA/CI-CPO	
	C1=(CPI#BI#1•41414)##•66667	
	· IF (ABSF(CT-CTT)000005)10,10,13	,
. 3	CTT=CT	
	GOTO9	
10	CTS=CT/SOLID	
	TGTI≍GN1+GN2*CTS+GN3*CTS*CTS	
	CTSG=CTS+TGTI	
	TR=CTSG#VT#VT#RAD#RAD#.0074707#DR#SOLID	
	DL=TR/(3.14*RAD*RAD)	
	WRITEOUTPUTTAPE2,100,AM3D,PR,R4,CTSG,RHP,TR,DL,R2	
	WRITEOUTPUTTAPE2, 101, CPA, CPO, CT	
· 01	FORMAT(8H CP = E15.5.9H CPO = F15.5.8H CT = E15.5)	
00	FORMAT(15H DESIGN M3 = F7.4.16H PRESS RATIO = F8.5.7H R4 = F8.	
00	15.13H CT/SOLID = E9.6.8H RHP = F8.0/18H ROTOR THRUST = F10.0.1	
	$28H \qquad \text{DISC LOADING = F9.4.8H} \qquad R2 = F9.4$	
	RETURN	

ŧ.

## UNCLASSIFIED

# UNCLASSIFIED