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ABSTRACT

A nondimensional design technique is developed to obtain the minimum
weight cf structural components (columns, plates, and beams) subjected to an
aerospace environment. Design curves are developed and presented for vari-
ous structural configurations in terms of the applied loads and geometric and
material parameters which can be readily evaluated. The design technique can
be employed to obtain, in a relatively simple and rapid manner, preliminary
estimates of the structural design weight as well as a good approximation to
the final design. The design procedure for minimum weight is illustrated for
a truss-like spar and a wing section which are typical of aerospace structures.
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SECTION I - INTRODUCTION AND SUMMARY

The prime objective of a structural designer is to distribute structural
material in such a manner that it can satisfactorily perform its assigned tasks for
the life of the vehicle with minimum weight and reasonable cost. His job has be-
come more complex as the high performance characteristics required for aerospace
vehicles have exposed the structures to loads at high temperatures for extended
periods of time.

At the inception of the design, the designer must make preliminary esti-
mates of the structural design of the vehicle in order to estimate its weight and its
effect upon the performance. Methods of estimating the minimum weight must be
employed before the design is finalized. The designer must use his ingenuity and
imagination to supplement the present state of the art in order to obtain preliminary
designs of "optimum" structure for the contemplated load and environment history.
This must be done in a relatively rapid and simple manner, considering all logical
types of constructions and configurations.

The design of a minimum weight structure is more complicated than its
analysis. An analysis of the strength of a structure can be readily performed when
given the applicable equations, the geometry, and the material properties. Given,
however, the applied loads and material, it is a much more difficult task to deter-
mine a structure which would withstand the applied load and be of minimum weight.

A nondimensional approach has been employed in this report in order to
make the design techniques applicable to the infinite possible variations in the ma-
terial properties and geometric configurations. The various possible environments
and load histories make it mandatory to consider all materials with modifications
due to the effects of temperature, time, and load since each environment is equiva-
lent to creating a different stress-strain relationship. The choice of the geometric
configuration (area distribution) is also arbitrary and is usually determined by the
designer after considering the applied loads and temperatures and the available
materials. In addition, many analyses are encumbered with empirical constants
which may change with the material, temperatures, etc. These considerations
would make it impractical to develop design curves or to obtain adequate experi-
mental data for each possible combination of environment, material, and geometry.
The nondimensional technique presented in this report permits the designer to
readily evaluate the effects of various modifications upon the minimum weight de-
sign. Such modifications as different materials, different environments, load mag-
nitudes, changing empirical analysis constants or edge fixities can be considered
utilizing the same design graph. Design graphs will usually be required for each
type of construction.

Manuscript released by the author July 1962 for publication as an ASD Technical
Documentary Report.
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Nondimensional equations and graphs are developed to obtain the weight and
cross-sectional description of minimum weight structures for a given load-tempera-
ture history. The solutions are expressed in terms of geometric and material para-
meters which are readily determined from the known boundary conditions, type of
construction, and the stress-strain curve of the material after the contemplated ex-
posure. Various criteria of structural adequacy or material behavior can be em-
ployed to supplement the design procedure by modifying allowables or material para-
meters.

The design procedure for minimum weight is illustrated for a truss-like
spar and a wing section such as may be employed in an aerospace vehicle. The
tension members are designed by an allowable stress which can be determined from
such criteria as the short time static strength or the maximum creep strain, The
design of compression members must also consider optimum distribution of ma-
terials for stability. The unspecified dimensions of a cross section of a compression
member are determined by solving a set of equations defining the load, the stability,
and the minimum weight in terms of these dimensions.

A compression structure can be visualized as a set of deformation springs
in parallel and series. The springs are in parallel if they have the same deforma-
tion pattern (e.g., bending and transverse shear). The springs are in series if the
deformation pattern can occur independently of each other (e.g., bending and local
"wrinkling'"). If the springs are in series then the structure becomes unstable when
the applied load becomes equal to the critical load for the weakest spring. This
critical load can be increased by a redistribution of the area of the cross section
8o as to increase the stiffness of the weakest spring. This is usually done at the
expense of reducing the critical loads of the stiffer springs. The optimum distribu-
tion of the area of the cross section occurs when the weakest springs are made
equally stiff by a judicious selection of the unspecified dimensions. This technique
is sometimes described as the "one horse shay" approach.

Various types of structures designed to withstand compression, shear,
or bending loads are considered. Columns with various types of cross sections
(I-beam, channel, tee, angle, rectangular and circular tubes) are investigated in
detail, although the technique is applicable to many more cross sections. Design
considerations for plate constructions such as solid plate, corrugations, stiffened
plate, and honeycomb sandwich are also analyzed. Bending of corrugation plate and
beams is also investigated. In addition, the effects of combined loadings upon the
design are reviewed.

This report is intended to provide a procedure for the preliminary design
and weight estimation for a minimum weight structure. The final weight will include
construction details and design modifications for additional problems which are not
considered here. It is considered beyond the scope of this report to take into account
the effects of fatigue and thermal stresses upon the minimum weight design. The
failure of the structure due to fatigue or thermal stresses is not sufficiently defined
for design purposes. In addition, the thermal stresses cannot be defined until the

detail design is fixed.

ASD-TDR-62-763 2




SECTION II - ANALYTICAL STUDIES

A, TECHNIQUES

The procedure to obtain a minimum weight design is fairly straightforward.
There exist a number of equations which must be satisfied by the geometry. In
addition, there are subsidiary conditions which indicate the distribution of the
cross-sectional area required to minimize the weight. The design technique for
structures in compression or shear is described below for columns in compression
in order to aid in the visualization of the procedure. This technique is equally
applicable to plates and tubes in compression or shear. The design technique
for structures in bending is only slightly different and is best described in Part E
of this section (Bending Members).

1. APPROACH

The selection of a type of construction results in a number of unknown
dimensions of the structural cross section that must be specified by the designer.
As an example, the diameter (d) and wall thickness (t) of a minimum weight cy-
lindrical column of a prescribed length (b) and end fixity (Cc) must be determined.

The determination of these unknown dimensions requires the solution
of an equal number of equations defining the geometry. These equations can be
characterized in the following manner.

a, ILoad Equation (P= g A)

The applied load is equal to the product of the allowable stress
and the area of the cross section. This basic equation is employed in designing all
types of minimum weight cross sections and is sufficient to determine the cross
section with one unknown dimension (e. g., solid plate, solid circular tube). The
buckling stress is employed as the allowable compressive stress since buckling and
failure usually occur simultaneously in a minimum weight structure.

b. Stability Equation

The local stability stress of the cross section is made equal to the
over-all stability stress of the structure. This is the ""one horse shay' design
philosophy described previously. Increasing the diameter of a circular tube, while
maintaining a constant cross-sectional area, increases the column stability by in-
creasing the inertia but reduces the local (wrinkling) stability by reducing the''t/d" ratio.
The minimum weight design occurs when the ratio of diameter to column length
"d/b" is a prescribed proportion of the thickness to diameter ratio "'t/d". This
relationship and the applied load equation are sufficient to determine cross sections
with two unknowns. The value of the ""t/d" ratio in terms of the '"d/b' ratio is
substituted into the load equation to obtain the load as a function of the ""d/b" ratio.
Cross sections of more than two unknown dimensions are designed in a similar
manner by employing subsidiary conditions ¢. and d. described below, to represent
the area and inertia of the cross section in terms of two characteristic dimensions.

ASD-TDR-62-763 3




c. Maximum Over-all Stability

The relative distribution of the area in the flanges and webs of
the cross section can be specified by considering the modes of over-all failure. If
the column can only buckle about one axis because of boundary restraints (e.g.,
skins, webs, etc.), the minimum weight is assumed to be obtained when the inertia
of the cross section about this axis is maximum, subject to the constraint thatthe area
and the thickness ratios are stationary. If, however, over-all buckling is possible
about both bending axes, then the equality of the buckling stabilities about each axis
can be employed. This would require that the inertias about each axis be propor-
tional to the end fixities associated with the buckling about that axis. Equations of
these types can be employed to determine the ratio of areas (zz=wh/dt) of the cross-
sectional elements. Cross sections of three unknowns (d, t, w), as exemplified by
bent-up sheets where the ratio of the thicknesses (h/t) is known, can be designed with
the above equations. Caution, however, must be exercised, for cross sections in
which the ratio of the thicknesses is specified, to select the proper characteristic
dimensions of the cross section. The characteristic dimensions must belong to the
least stable of the elements of the cross section, This would ensure that the failing
stress would occur when the maximum over-all stability would equal the lowest of
the local stability stresses. For most cases investigated (summarized in Table 1)
the "t" and "d" of the web are the characteristic dimensions of the cross section,
since it satisfies the following inequality.

2 1/2
(h/t) (Ch/ C) >

d. Maximum Local Stability

When the cross section is defined by four or more unknown
dimensions, then the equality of the local stability of each of the elements of the
cross section must be employed. In addition, symmetry conditions which will max-
imize the inertia and equalize local stabilities are utilized.

Equations of the types described above are employed to obtain
a relationship between the applied load and a characteristic dimension. The solu-
tion of this relationship for the geometry of the minimum weight structure would be
quite simple if the material were linear. Unfortunately, the minimum weight design
almost always occurs at stress levels which are beyond the proportional limit of the
material and thus a direct closed form solution is not possible.

An inverse solution is employed in which a nondimensional load
index (P and a nondimensional stability index (§) are equated to functions of the stress ratio
_ a, Cc /C EA3/ 2
(o/ cro). The load index (e.g., P =(P)( b 2) ( 5/2
¢
expressed in terms of the applied load (P), the known boundary conditions (C C +)
and geometry (b, a 1,03), and the material constants (E A S ) The stabnhty mdex

E 2 :
(e.g., Ep = Ct b (t—d) for a web) is expressed in terms of the material constants,
%
the known boundary conditions, and the unknown dimensions of the cross section.
The procedure is to assume a stress ratio, compute the stability and load indices for
a given type of construction which correspond to the minimum weight design, and to

)for a flanged column) is

ASD-TDR-62-763 4
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TABLE 1 - GEOMETRIC FACTORS FOR COLUMNS

z a as Thick.
Section Defining Ratio
Condition 3 3 )
wh/dt | A/dt  A/wt | 1/d°t I/w't h/t
I-Beam 1+4z 4+1/z|.083+z 1.333 h/t
Y Max I .083| 1.333 - .167 - -
XX
FE—‘;‘_ = =1, ® |2.370 10,480 - |2.450 . -
‘____} z 470 - e.124| - . 667 .500
tn 1, =41 @ | 6a3| 3.584 - | .729 - -
Y yy .250 | - 8.000| - . 667 .500
1
Channel 142z 2+41/z| .083+. 5z .ets'z-m_1 -
W.
t_j Max I .167 | 1.333 - .167 - -
T -
d L @ | 7090 1680 - [4.033 - -
yy 1.366 | - 2.732| - .301 1.000
L h
*F— =1 @172 | 44e - | s - -
yy .639 | - 3.565| - .386 1.000
Tee 1422 241/z|.333-:2> 667 h/t
ECCTa et AZN 1427 28l /L
}i— . Max I 063 | 1.125 - |.111 - -
T XX 5
h L= yy(3) .570 | 2.140 - |.216 - -
W .553 | - 3.81 - .333 .500
1 =41 @1 250 | 1.500 - |.167 - -
yy .356 | - 4.81 - .333 .500

(1) Unspecified h/t is defined by —tll- = (z) 1/2 (Ct/ch)1/4

Specified h/t is defined by sheet metal construction
(2) X-axis and Y-axis are horizontal and vertical references axes, respectively,
for all sections

o
(3) C_CL =1 (Eq. 13¢)

CcX

C
(4) —CEL = 4 (Eq. 13c)

cX

ASD-TDR-62-763




TABLE 1 - GEOMETRIC FACTORS FOR COLUMNS (Cont'd)

Thick.
Section Defining z a, ag Ratio
Condition 3 3 i)
wh/dt | A/dt A/wt | I/d"t I/w't h/t
Angle ©) 14z 1+1/2 .333-'1-%-:-
Y Al
t
Tt Max I_ a2501.125 - | .n - 354
X I {
h
L-i-w An angle free to bend about any axis wouid not buckle about
X or y axes.
Square Tube 2427 .167+.5z
b d—f Max I .167 | 2.333 - |.250 = . 409
N
all i =1 @ |1.000]4.00 - [.e67 - 1. 000
‘ XX yy
C¢ = Ch 1 =41 W 090|280 - |.212 - . 300
XX yy
Circular Tube - - |3.142 = . 393 - -
A,

(1) Specified h/t is defined by —t‘l= z)}/2 (c/ ch)l/ J

(2) X-axis and Y-axis are horizontal and vertical references axes, respectively,
for all sections

o
3) C—°-‘L=1 (Eq. 13c)
cX

C
) —CQY- = 4 (Eq. 13c)
cX

(5) Angle assumed to bend about x axis only

ASD-TDR-62-763 6
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plot these relationships. The design can then be determined by reversing the
process. For a given type of construction, load, and material, a load index
can be computed. The stress ratio can then be obtained from the P vs, cr/cro

plot and the detail design and minimum weight can then be determined with this
stress ratio. The use of these nondimensional design curves results in a rela-
tively simple and rapid method of designing a minimum weight structure and in a
radical reduction in the amount of design data and aids required. The effects of
modifying end fixity, introducirng empirical constants, and considering materials
with various thermal exposures and loading temperatures, can be rapidly evalu-
ated with the same graph. '

In addition, the detail design of a portion of a structure can
sometimes be utilized to design other areas. If the structural arrangement is
maintained over an area of the structure in which the temperatures and airload
intensity are similar, then the detail design of one portion of the area will be a
scale model of all the other portions. This is because the load index for a given
material and temperature will be the saume in all portions and will result in the
same design stress and thickness ratios.

The design technique is illustrated in the examples which
follow (Section III)., The methods of obtaining the load and stability indices
for various types of constructions are illustrated for the columns and summarized
for plates, tubes, and bending members. The evaluation of the geometry and
material parameters is discussed in the remaining parts of this section,

2. GEOMETRV FACTORS

The stability of a structure depends upon the type of construction,
the detail geometry, the over-all geometry, and the edge fixity conditions. The
type of construction, the over-all geometry, and the edge fixity conditions are
known to the designer, and must be employed to obtain the detail geometry. The
type of construction determines the form of the stability equation

(e.g., 0= Ct ER (t/b)2 for a plate), and coupled with the internal edge fixities,

determines the relative distribution of the thickness ratios of the cross-sectional
elements. The over-all geometry (e.g., aspect ratio) and the edge fixity de-
2
termine stability constants (e. g, Ct = i"———é = 3, 62 for an infinitely long
12(1-17)
simply supported pla'e) . The effect of the nonlinearity of the material is reflected
in an effective stability modulus ER which is assumed to be defined knowing the

end fixities. The end fixities determine the ratio of bending and twisting energies
of the structure and result in an expression for the effective modulus in terms of
the secant (ES) and tangent (ET) moduli,

ek

Values of stability constants (or constants from which they can be
derived) as well as expressions for the effective stability moduli in terms of
the edge fixities and aspcct ratios are readily available in the literature (c.g. .,

References 1 through 9). A summary of such values can be found in References
2 and 4,

SRR PRSI P KL SR
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3. MATERIAL FACTORS

The stability of a structure is dependent upon the stress-strain re-
lationship of the material. When the material is linear then only the modulus (E,)
is required to determine the stability stress (up to the allowable stress at which
time the allowable stress governs). In general, however, the design stress for
minimum weight occurs above the proportional limit and recourse must be taken to
employ the actual stress-strain relationship.

The nondimensional approach recommends the use of a mathematical
expression of the stress-strain relationship with three arbitrary constants (E Ar %
B). Thisoffers the widest latitude in matching the actual stress-strain curve whife
still being able to present single design graphs for each type of construction. The
nondimensional form of the stress-strain law is

E, e
‘:o . _% (1-B) +B sinh o/o, (1a)

The formulation is based upon representing the nonlinear material deformations as
an exponential function employing a rate diffusion model of deformations (Reference
7). The formulation is in good agreement with experimental data and has been em-
ployed to approximate creep as well as instantaneous strains, It can be readily
adapted to computation techniques since the nonlinear component is a simple pro-
duct of sinh 9/ (which need be tabulated only once) and 8, rather than an odd power
function, (which would require many tabulations) as is exemplified by the Ramberg-
Osgood representation

E., ¢ n
A _ © 3(6)
= e e e (1b)
Tq7 %9 T\%

The material constants are selected so as to match the initial por-
tion of the stress-strain curve up to the area of interest in the design. This would
require matching the linear and nonlinear portions of the curve up to the vicinity of
the yield stress. Selecting E , equal to the initial slope of the curve matches the
initial portion of the curve. ’ﬁ-le remaining constants % and 8- are selected to match

the nonlinear portion of the curve. One procedure is to plot the strain deviation
(8= ¢ - °'/EA) on a log scale versus values of the stress () on a linear scale (Fig-

ure 1a). This plot would result in a straight line for the plastic portion of the stress-
strain curve if the formulation was exact. Selecting values of % and 8 which depend
upon the best straight line would result in a good approximation to the actual curve
with the error in the stress represented by the horizontal distance between an

actual point and the straight line in the referenced plot. The material constants o
and B are determined, after two points (0‘,81) and (0'2,82) on the best straight line®
are selected, in the following manner:

99

%~ 2.3 log(62/61) (lc)
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28, E o
and log 3 =log < 2 A) 2

%, T 2.3 A
E ) 8
_ A 2\ _ P2y o
=log (_&_2__cr1 )-!-log (4.682 log8_) [1og(81)] 2 (1d)
1 ————————

0'2 -0'1

Requiring the approximation of the stress-strain curve to pass through
two nonlinear points on the actual curve is equivalent to selecting the stress and devia-

tion of these two points to establish the straight line. As an example, if the .001 and
. 002 offset stresses are employed, then

o, =1 442 (9, - 9,) (le)
E .3010,

and log B =log (;—:Acr—) - 2,558 - ;—_—02— (1f)
2 1 2 1

results in a computed stress-strain curve [Eq.(la)] which passes through the yield
stress (02) and the . 001 offset stress (01) and which has an initial modulus equal to E

The Ramberg-0Osgood Parameters (E A’ 0: 7 n) can be transformed
to the above parameters (EA, cro,ﬁ )} by making the curve pass through the same

control points (cr7 and 5-85) This results in the following formulae:

1-(c_ /o
o,o- - (.85 .7) o7 (1g)
o1 (.88178)
@/ (o, /a)
and 8= idio (1h)
sinh 7 - o-_7
c, T,

where 0'85/ o 7 is known or obtained from Figure 3b of Reference 4.

Data available in various texts (References 10 through 19)were ana-
lyzed to obtain the material constants and creep properties employed in the illustra-
tive examples. These constants (Figures 1lb, 2 and 3) should not be viewed as the
best values for the materials investigated but rather as values to be employed in
illustrating the design technique. Variations in the material constants,obtained from
different tests, occurred because of variations in the stress-strain curves for the
same material and temperature. The scatter was more severe with the higher
temperatures and newer materials which are now being developed. Fortunately, the
design stress and minimum weight are not too sensitive to variations of the nonlinear
material constants (co and 8). Engineering judgement was employed in obtaining the

material constants for the illustrative examples.
A statistical analysis of all available data is recommended to obtain

the most probable values of the material constants and to estimate the cffects the
variations have on the design stresses and weights in an actual design.

ASD-TDR-62--763 10
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An estimate of the effect of thermal exposure upon the material
constants can be obtained by noting the effect of the exposure upon the yield stress,
1

1f o =Xx0
y y .
. v
and assuming E A EA

the following approximations result:

o = XO
o 0
t
and B = B/x
1
logB = logB-log x~ logfR

Primed constants refer to exposed material whose yield stress is x times the unex-
posed yield stresses. Values of x can be estimated from master '"Larson-Miller
Strength after Exposure' plots as exemplified by Figure 3a.

B. COLUMNS

The calculations required to determine the load and stability indices are indi-
cated in some detail for some column cross sections of up to 4 unknown dimensions.
The results for other column cross sections, plates, and tubes can be obtained in a
similar manner and are summarized in Table 1 for columns and in the appropriate
sub-sections for some piate constructions and tubes.

The design would be obtained by computing the load index, determining the

stress ratio from a P vs. 9/o_plot, and determining the detail geometry from both
§vs. O /a-o plots and the appropriate equations indicated below. ->|
P |

1.  ONE UNKNOWN DIMENSION -

Example - Solid circular column
using ;oad equation

Load Equation . J

P = AO‘ i (23.)

Let €c= (‘T,;)/(ET/EA) (Fig. 4) (2b)

where values of the stability index (§ c) as a function of the stress ratio (cr/a-o) are
plotted in Figure 4 for various values of log 8 .
I

But c=C E (__) (2¢c) .
¢ T Ab2
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Where Cc is the end fixity of the column. Substituting Eq. (2c) into Eq. (2b) results

in the stability index as a material-geometry parameter, giving

C E E
- L. __A .g. 2 = _A _C_i_ 2
$c =16 (o‘o) (b) Ca 7, (b) (2d)
2
where Cd = CC (I/Ad ) = Cc/16 (2e)
§c 0 )1/2
and d = (3)
b(cd Ex

is obtained from-Eq. (2d).

From Eqs. (2a) and (2d) we obtain
= -(1F) () -(5) &) ()
bzoo 4 b2 %, 4 ) Cd EA %

Rearranging terms so that the left-hand side of the equation is devoid of stability
index and stress ratio terms, results in the following expression for the load

index:
_ P C, E
() (4)(52)-<. ()
b o, o o

This load index was not plotted since it was not deemed to be of sufficient interest in
design and is only employed to illustrate the computing techniques to obtain load-
material-geometry parameters (P) and material-geometry parameters () that can
be expressed as functions of the stress ratio (o/ o).

d -
tyd

2.  TWO UNKNOWN DIMENSIONS \T\K®>A \.@
|

Examples - Circular or square tubes using b
stability and load equations.

Stability Equation \ ) ] J
Gp = UC'

Setting the local stability equal to the over-all

stability results in

(5a)

= d\n _ I
T=Cy ER( d) = C;, Ep o2 (5b)

ASD-TDR-62-763 16
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where Ct and n are constants determined by the geometry.

Letn=1

and ER= /EAET for a circular tube (Reference 6) (6a)

Let n = 2 for a plate-like element

R E S

E
and E_, = .428+.572J.25+.75—T- E (6b)
S

This is an average value for plates with various boundary conditions (See Table 31
and Fig. 176 of Reference 2).

Let A =a, dt ; (a1 = 7 for a circular tube) (7a)

and I =a, a3t i(ag=mw /8 for a circular tube) (7b)

Substituting Eqs. (7a) and (7b) into Eq. (5b) results in

Q
_ t\n 3d% d\2
o=C, Eg ()" =¢, Eq 3 =C4Ep () e
a, dtb
where Cy=C_-L, i 1 (8b)
A 91 °©
Rearranging Eq. (8a) results in
L=[fg Ep (g)z}l/n o
d C, Ep b

Load Equation (P= A0)
Employing the load equation with Eq. (7a) results in

P=aldta'

Putting the equation in nondimensional form and substituting Eqs. (9) and (3) results in

1/n
P _a 4t o _a 5c¢%|% Er & 9% ra
b2a0 1,2 d o 1 C,E,T, E, C, E, =

ASD-TDR~62-763 17




Placing only stress ratio functions on the right hand side of the equation results in the
load index

ECa

1+
- p CiEn n (Eqp o
P= 2 o.a o =(€c) E, o ()
b A o1 o R

The following design equations resuit for columns with rectangular plate elements
(n=2).

3/2 3/2
i')=i (EA)___ & C = P EA 03 Cc “/q
b2 (0'0 ) 5/2 ay t b2 o, 512 O,12
32 (Et\12 (o 1/2
- ()" (%) = €% (%)

This equation is plotted in Figure 6 for various values of logf3.

§ o 1/2 € o a,\1/2
d=b (A) =D ( c 9o ._1_> llb
Ca Ea C.Ea %3 —
§ o \1/2
t=d(EET°) (11c)
t A
E, /¢\2
where§ = (/o) / (Ep/Ey =C, —2 (E) (Fig. 5) . (11d)

o

For a circular tube (n=1),

2 2
p-2 Fa %% _p EFa % CC=2( ) (<)
b2 0,2 a, b2 0_03 012 c 't e A o,
. (B, ¢ 3/2
= ec _E_A-) (T;) =<, (a’/a'o) (Fig. 7) (12a)
§ o 1/2 § o a. \1/2
d=b ch = p cc EO a_l (11b)
d A c A "3
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1/2
o d(" % 3 )
t=d

= c
(CtEa) VET/Ep t Fa

(12b)

3. THREE UNKNOWN DIMENSIONS
Examples - Sheet metal channels, angles, etc.,

using maximum over-all stability and stability
and load equations.

Maximum Over-all Stability (ch Ixx =C 1)

cy yy
(Equal stability about both bending axes)

Evaluating the inertias of the channel about both axes results
in the following:

2
-1 3 wtd™ _ .3 1 w _
I, =13 t+ ¥ =a% (3 + 25) (13a)
3 2 2
= o Wt w (2 (wt) (w/2))
Ly = 2713 r2em (3) - R
-2 3 _w+t _ 3 (2 _ 1
=% Wi- = w? (3 2+'d7w) (13b)
For equal stability,
ch L= Ccy Iyy (13c)
where ch and Ccy are the end fixities for buckling of a column about the x and y
axes, respectively.
Substituting Eqs. (13a) and (13b) in Eq. (1.3c) results in
3 1 w\_ 3 2 1
Cox &t ({5 +25) Coy Wt (%- v )
Let “y = y=z (t/h) (13d)
hed e (adriala)
12772 7Y \3y+ )\ C,y (13¢)

C
If -C—CL=1, solving Eq. (13e) results iny = 1,366
cx
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e

smceA=dt+2wt=m(1+2—‘g—)=dt(1+2y) (14)

we obtain the coefficients which reduce this design to one with two characteristic
dimensions similar to that described in the previous section. From Egs. (14).and
(13a) we obtain -8

= (1 + 2y) = 3.732

2ga=(53 +§) = 768

The detail design would be determined by employing Eqgs. (11a), (11b),
(11c), and (13a) provided that the web is most critical. The criteria for determining
when the web is most critical is obtained as follows:

2
Ch ER(%)Z > ¢, Ep (3)

h 1/2
T 2 (C/cy) (%)
Substituting z = % results in

2

(+) V7S, 22 (15)

t

The value of Ch can be increased, if desired, by adding a bead or reinforcement to

the flange. This criteria is not satisfied in sheet metal construction with free flanges
which can buckle about both axes. 1t is satisfied for all sections when buckling can
occur about the X-axis only (see Subsection B, 4). For the case illustrated, the
flange is more critical than the web since, from Eq. (15),

2 1/2
('?_) (Cw/c,) v =1(3—:%%8') = -329<(t5/'h) = 1"366 =1.366

From Eqs. (14) and (13a) we obtain

A=wt(i +2)=wt (% +2) = 2732wt = @ wt

w 1w
— 3, (2 1 = 3, = 3
I wt(3-——-—2+1/y) .301 w't a3wwt

This results in similar expressions for the design using w as the characteristic
dimension, i.e.,

£ 32 g
P = blg ) ( C,A 53 ) (03_2) (Cc) (Ch) 12 (16a)
(o] 1

ASD-TDR-62-763 23




smanmoy,

1/2

§ o a
w= b |mt—2-L (16b)
<Cc Ea °3>
€ 1/2
[+
t = W<CL——h £A> (16c)
d = w/y (16d)

1w’ and a 3d °F 3y for various cross sections with

Ccy/ch equaltol (l.e., I = Iyy) and 4 (l.e., I = 4Iyy) are presented in Table

1. Note that the design procedure is identical to that described in Sub-section 2
except that the geometry constants (a G gy and Ch) are employed to solve for w

rather thand.

Values of z, a,q Ore

1w’

4, FOUR OR MORE UNKNOWN DIMENSIONS

Example - Extruded or machined channels, etc. , “ Wy ‘ '|
]

using symmetry, maximum over-all stability,
hl

and the stability and load equations.

Symmetry (Equal stability and max. I)
=[BT A0 - je— t

W SW, =W 1

d

i 2 I ‘— h2
Maximum Over-all Stability

]
(Maximum inertia [ Ixx] about only bending axis) | w ?
2 . |

X

A=dt+2wh=dt(1+2z) " 7a)
2
=1 43 4\ _ 43, (L
1=+ dtr2wh () =a*t (55 +2/2) (17b)
wh
where z =3t {17¢c)

To determine the mass distribution which will maximize I for a stationary A and t/d
ratio, we first determine the relationship which makes the A and t/d ratio stationary
for an incremental change in z.

(i.e., g‘: =—s£-/-91= o)
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Since

84 8 [t/a @) a2 | 182)
3z < Sz -

it follows that

2

SA _ 3t/d 2 3d° [t t 2 =
25 = _S(Tl [d (1+2z)] S (d)(1+22)+(-E) @)@ = o
but for maximum stability of element
8(t/d) _ 0
Sz
2
3d 2 _
—-ST (1 + 2Z) + 2d = 0
8d® _ 82
dz 1+ 22z
2
logd™ =-1log (1 + 2z) + ¢
2
logd® (1+2z)=c¢
d2 1+ 2z)= e®= constant for stationary area (18b)

For maximum over-all stability, the incremental change in I for a change in z should
be zero.

8'(e2°) (t/d) (1/12 + z/2)]
31 _ Skd‘l) (t/d) (1/12 + z/2)] L 1+ 2z)2 J =0 (18¢)

8z Sz 32

This results in

1+ 2z)2 (1/2) - 1/12 + z/2) (2) (1 + 22) (2) =0
1+ 22&)4

and 1/6= z (18d)

Substituting in Eqs. (17a) and (17b)

a, =1+ 2z =1.333 (Table 1) (18e€)
1 -
ag=15"% z/2=.,167 (Table 1) (181)
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Utilizing the equal stability of elements (provided the h/t ratio is not specified)
results in

Lo way cyept? (192)
but from Eq. (17¢) h = Zl‘%- (19b)
ztd 1/2
28 - @) c/cy)
w
and wi=d (z)1/2 (ch/ct)l/ . (20a)
Similiarly,
h=t (2 (ct/ch)l/ . (20b)

Values of z, a and h/t are presented in Table 1 for typical machined or sheet

1 %3
metal sections,

The above analysis is for a column which can only buckle about one axis, and
can be applied to sheet metal constructions as well as machined sections. The value
of z which optimizes the cross section does not change. Thus values of a 1 and a,

can be determined even when the thickness ratio is specified as in sheet metal con-
structions. All the sections summarized in Table 1 for sheet metal construction which
can bend about the x axis, only, satisfy the criteria of Eq. (15). Thus the web is the
critical element and Eqs. (11a), (11b), (11¢), and (13d) define the detail design. The
case of a machined section with unspecified h/t ratio need not be investigated as to the
characteristic dimensions since the criteria of Eq. (15) is automatically satisfied by
Eqgs. (20a) and (20b) which results in the web and flanges being equally stable,

C.  PLATES

The basic difference between the column and plate is the restraint in the trans-
verse direction due to the Poisson's ratio (v) and the edge fixities of the unloaded sides.
If the unloaded ends are free, then the plate acts as a column with the bending stiffness

increase by a factor of the order of 1/(1-¥ 2). If the unloaded ends are restrained and

the aspect ratio is significant (a/b> 1) then the width of the plate, rather than the
length, becomes the characteristic buckling dimension (b) which determines the sta-
bility. It cannot, in this case, be treated as parallel columns.

Many types of plates can be fabricated. This report will consider a limited
number of such types of construction. The unreinforced plate, the corrugated plate,
the integrally stiffened plate, and the sandwich plate constructions will be examined.

The sandwich plate differs from the others in structural design in that the
stability stress can be assigned and the plate designed so as to attain this stability
stress. The other constructions require the determination of the "optimum" stress
level which will provide the minimum area to resist the applied load. A lower sta-
bility stress would require more area to withstand the load and would weigh more
than the minimum weight. A higher stability stress cannot be obtained without in-
creasing the area or taking it away from one element to increase the stability of
another which will decrease the controlling stability stress,

ASD-TDR-62-763 26




The sandwich construction has the design characteristic described above be-
cause it employs a core which does not resist the applied compression load. The

sandwich construction is very efficient for low load intensities (P/ b2 a-o),where the

built-up constructions have low ""optimum'" stress levels, butit becomes less efficient
than built-up constructions as the "optimum'" stress increases to the order of the
stress in the sandwich construction. Corrugations, and then reinforced panels,
approach higher optimum stresses at lower load intensities than the unreinforced
plate. The shear deformation due to axial load is relatively small for non-sandwich
type constructions and its effect upon the stability is ignored except for the sandwich
construction, It should be noted that non-structural details necessary for these
various types of constructions may overshadow the difference in the minimum weight

designs, b
t /A—— 7/

1. UNREINFORCED PLATE

The unreinforced plate contains
only one unknown dimension, the thick-

ness '"t". Employing the load equation, a
we obtain,
P=Ac T —0Q
=tbeo (21a)
2 P
Dividing Eq. (21a) by b Ty to make the equation nondimensional, results in
t
2P'=(‘b—> <L> (21b)
b % %
2 2 2
; t T a nb .
Since 0 = Ct ER (T) , Where Ct = ?(1?2 (_1-1? + a_) for simple supported

ends (see Table 36 of Reference 2 and Figures 14 to 20 of Reference 4 for values of
1.08C))
t ’

) E 2
we obtain Ep - (cr/cro)/(ER/EA) =c, U_A (%) (11d)

o

/E o
and %=ﬁ (11c)
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Substituting in Eq. (21b) results in

§ o \1/2
Poo (el (=
bzc-o ( t EA ) <°'O )
1/2
C, E,: 1/2
P = P t A = < i
P bzco ( - ) (fp) ( o )(Flg. 8)

and from Eq. (l1c)

1/2
AtD (Ep"_o)/
CiEa

A plate in shear can be handled in a similar manner, i.e.,

(22a)

(22b)

2 2

where Ce.. —Lz— (5. 34+ i4—b-2-)for simple supported sides (See Eqs. 735 and 736

12 (1-v7)
of Ref 2). Assuming an invariant octahedral stress-strain law results in the trans-
formation :

= o/f3 [Eq. 739 of Reference 2 and]

2(1+v)e Section 3 of Reference 7
and —_———————

V3

This is employed to obtain the shear stress-strain curve from the uniaxial stress-

strain curve and results in
E 2
€= o/ 0 Ep/E ) = /T 0 (/B =T o 2)()

%
£ o 1/2
t=pb| P ©

Lﬂcf Ea
J/3C, E 1/2 -
P = Q T A = L = i i
and P = bzo- ( o, ) = Jg N ﬁp<% ) (Fig. 8)
o
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Thus the same design graph can be employed. It should be noted that the use of the

design graph would result in solutions for X rather than v /o and that the aver-
% o
age ER used for plates in compression was employed.

2. CORRUGATED PLATE

Plate construction consisting of
corrugations must be considered as orthotropic
plate in that the cross-sectional properties vary
in different directions. The bending stiffnesses
of the corrugated plate about axes parallel (Dyy)

and perpendicular (Dxx) to the longitudinal axis

of the corrugations are not difficult to determine.
The torsional stiffness is more difficult to
evaluate. It is assumed that the torsional stiff-
ness (GIx is associated with the weaker of the
two bending stiffnesses, [i.e. . ny
imated by Dyy (see Eq. 203 of Ref. 1)] . This is a goud approximation for corrugated

=1/2 (Vnyy +vy D )+2G Ixy can be approx-

plate with two faces (almost isotropic) since the torsional stiffness of a multicellular
box is approximately equal to the enveloping box. In the case of one or no faces, the
torsional stiffness can be viewed as two springs in series (since the torsional moment
must be taken in both directions). Since the stiffness of the weaker spring is a good
estimate of the stiffness of the two springs in series, we again conclude that ny~D v

The corrugated sandwich shown in the sketch above has as many asfive
unknown dimensions. The variables § and nd are not always at the discretion of the
designer but may be particularized because of fabrication requirements. Discrete
corrugation angles § and minimum flats (nd) for joining may be specified to the de-
signer who must consider these details when he seeks to obtain a minimum weight
design. The type of design equations employed for the column still apply, however,
and are utilized.

From specified values of n and & and employing equal stability of the
elements, it is possible to express the area and inertia about both axes in terms of
two characteristic dimensions, '"d" and "t"". Employing the load and stability equa-
tions described in Paragraphs a. and b. of Subsection II-A-1, it is then possible to
develop design graphs. The double-faced corrugation panel must be considered
separate from the single-faced and no-faced corrugations because of a difference in
form of the over-all stability equations, The values of the geometric constants which
express the area and inertia will be presented in terms of n andg . Methods of ob-
taining the best values of n and @ will be discussed in the Appendix.
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o _%_R(JDXXDYY +DXY)~KWR(‘ Ixxlyy +IYY)
P - 2 -

a. Double-Faced Corrugations in Compression

The local stability of the face and corrugation web elements is em-
ployed to obtain a relationship between the face and corrugation web thicknesses.
It is assumed that the flat is sufficiently small so as to be more stable than the web.

Values of + Ct/Cf of 1 (equal end fixities) and of 1.14 (obtained from Figure 5a of

Reference 20 in which moment distribution was employed) are recommended.

2 2
. _ f _ t _
Since o = Cp Ep (2 nd + d tane))' Ci ER (71731?9%— % (252)
f _ .
then + =2 (nsin 6 +cosf)./ Ct/cf (25b)
The geometry can then be expressed as
Ax/in.a a,t (264a)
I /in=a  td?2 (26b)
xx' 4
. 2
Iyy/ in=a . td (26c)
where a_ =48I0 §+1 + 4 (C /C )1/2 (n sin 6 + cos 6) (26d)
12¢  nsin g + cosg t'f
a =(n/4) sing +1/12 (C /C )1/2 (nsin@ +cos@f ) (26e)
42c nsin g+ cosg tf
and 0520=«/ Ct/cf (nsin@ + cosg) (26f)

where @ oe = Geometry factor for double faced corrugations in compression,

ne

Employing over-all stability equations such as found in Reference 8 and
in Eq. 233 of Reference 1, and equating this stability to the local stability of the cor-
rugated web, we obtain, noting that A, D, and I are per inch of width,

(27a)

bA b2A
2

wherek= K(1-v )~ 27 2 for simple supported plate of infinite aspect ratio (See Ref-

erence 8 for other boundary conditions). Substituting Egs. (26) into Eq. (27a) and
equating this to the local stability results in

ke (V% % 4 %) 9 2
(o2 = R (_d.) = C E (__l___ =0
P a] b t BER \@/sing) =%t 27b)
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Solving for d/b, we obtain

1/2
%o )

k(AT + %)/

()

From the load equation (P = o A b), we obtain

—g— = (sing)(

bc:r0 o

Substituting Eq. (27c) in Eq. (28a) we obtain

£ o -a sin{,‘/ S % ) (_t.)z( g )
b2°(_) 1 \K(@, e , a5 d oy

9 o
but t/d°= P9

Ct EAsm g

and manipulating Eq. (28b) results in

[ 1/2
= ( P\ Easing cK(/a, a +a) _e (<= .
P =l a3 =\ ) e 9
b’ a % 17 L o
o
The detail geometry is as follows:
. 1/2
== al €p c,-o
d=b . o
Ja a a
K( 4 95t 5) A
1/2
§ o
t:—_i- i L
sing Ct EA

f=2t(nsing +cosg)v Ct/cf

o)) ) ()6 @

(27¢)

(28a)

(28b)

(28¢)

(28d)

(292)

(29b)

(29¢)

The manipulation of Eq. (28a) could as easily have resulted in an expression of the
load in terms of the '"d/b" ratio rather than the "./d" ratio. The technique employed
was to obtain results similar to those with less than two faces where the plate stress

can not be expressed dircctly as a function of "d/b" ratio; see Eq. (33b).
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b. No Faces or Single-Face Corrugations In Compression

For these types of construction, the following cross-sectional prop-
erties apply:

I = a,td? (30D)
XX 4

_ 3
- a_t (30c)
I > 1 (30d)
XX yy

Equation (25b) applies to the "f/t" ratio for single-face corrugations
and is not needed for the case of no faces since f = 0 is no longer an unknown dimen-
sion.

For one face, we obtain

__nsinf +1
11c- nsing + cos 8

+2 v Ct/cf (n sin § + cos@) (31a)

@ = (0/4)sin@ +1/12 (1/2) J/C/C;(nsin 6 +1)

41c nsing + cos g ai; Soale)
1 3
and 051C=E [1 + 2~/Ct/Cf (n sin 8 +cos9)] (31c)
For no faces, we obtain
nsin@ +1
10c= nsing + cosg (322)
_ (n/4) sin 8 +1/12
a400" nsing * cos g (32b)
1
- a = e .
“and 500 12 (32¢)

where Ale ™ Geometry factor for single faced corrugation in compression,

The larger inertia about the x axis is employed to simplify the over-
all stability equation

KE (~/1 I +1 ) KE, VI 1
= R XX Yy Yy ~ R XX yy
P b%a b2a

(33a)
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SSpunnl N | (33b)
p % b2

Employing equal stability to evaluate d/b in terms of t/d results in

.2
i=(Ctalsm 9)1/2/t)1/2
b Kva, a, \d

(34)

From the load equation (P = o A b), we obtain

S__P (K,/a4a5sinp>1/z (CtEA)3/4=€3/4
P
o

23 o (o/ o) (Fig. 10) (35)
(o} 1

and the following formulae for the detail geometry:

C, @, sin@\1/2/& o \1/4
d=b (———) <_CRE—°> (36a)
1/2
t = (d/sing) (%P—Eaﬁ) (36b)
t“A
f=2t(nsin 8+ cosf )V Ct/cf (36¢)

c. Corrugation Panels in Shear

Corrugation panels in shear require a somewhat more complicated
approach., The stability of a corrugation panel in shear is not as well defined as in

compression. Equation 235 of Reference 1 is employed to define the stability in shear,

In addition, the area of the corrugated web is not as efficient as the faces in carrying
the shear load. The shear strain (and therefore stress) in the corrugations must be
smaller than that in the faces. This is because the deformations from node to

node, which join the faces to the core, must be equal to ensure compatibility of the
assembly but the load path from node to node is longer via the corrugation web than
via the face. For this reason the corrugation web can be made to buckle at a lower
stress than the faces. The relationship between the faces and core is obtained by

making the faces and webs buckle simultaneously when the stresses are properly dis-
tributed.

To obtain the f/t ratio,use is made of the compatibility equation

yf(nd+d/tan8)=yt(nd+d/sin9) (37a)
T
oo f _ nsin8 +1
resulting in r—t S SO B87b)
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The simultaneous instability criteria yields

f 2
Ty CiEr [2 (nd + d/tan 9)] _ S [ 1 (f/t-J T
r, C,E t 2 - C 2(n sin 8 + cos @)
t t R —_— t
( d/sin 3)
This result is approximate because of the assumption that the

effective moduli for the face and web are equal. Combining Eqs. (37b) and (38)
results in

—f =2V (C/Cp (nsin § +1) (nsin B +cosf) =a, (39)

where Ct and Cf refer to the stability constant for web and face panels in shear, The

thickness ratio is then employed to obtain the area and inertia of the plate in terms of
t and d. The over-all stability equation defined by Eq. 235 of Reference 1 is then
employed giving

3 1/4
4 k(D D ) 4k E 1/4
vy XX _ R (I I 3)

b? @-pHp? VWYX

2 = (40a)
1/2

D
XX

D I 1/2
where k~ 8 + 5(—¥L> =8+5 (_IXY_> for simple supports and infinite
XX

aspect ratio (Fig. 203 of Reference 1).

1). No Faces or Single Face Corrugation in Shear

Let A, =a_t
X

1
- 2
Ixx =a td
= 3
I = t
yy 9%
and K = kS 32 for simple supports since I__ >>1 and1-V v ~1
l-vxvy XX yy xy
From Eq. (40a), we have
1/4 3/2
KEp gql/4 K (°5 al ) (ERt) (d) 3/2
= [y W) - (#12
b yy XX b2
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Q £\/
but —b = Tff+ Ttt =Tt t[(f_t)(_t—)+ 1] =t T‘, (aa) (41b)
R AVA nsin 8 + 1
Where dg = [(;)(T) * 1] - (Fsrgremme o7 *1) (t1e)

is obtained from Eqs. (37b) and (39).

Cc;r;tjining Egs. (41a) and (41b) results in

{172 43/2 (as °43) Ve
= g = KEg — 3 (42)
8 b 8

Equating this to the stability of the web [Tt = Ct ER (37%1-1_1_8)2-] results in

5 /2
b 3\ 1/4| \'d o\ 'd
K (a5 a4 )
Using the load equation, we obtain,
Q i a /3 _t_) 7/4
" ple -GST:T)'%"—B'(U‘O)GS’(C’
o J3
a 7/8
2 -t ('f) 09( $s % ) (44a)
b VIO sin’g E , CY3
7/8 |
s o _9Q V3 (sinzeEA_Ct“/s—) - B e\ 8 (44
(Fig. 11)
EAe
where 3 g = (9/9)/ (Eg/E,) = —&:- (Fig. 12) 45)

The effective modulus was approximated with the secant modulus in
accordance with Reference 9. The average value ,ER=ES(. 428 + .572 4,25+, 75 ET/ES)

was employed for unreinforced plates to avoid the need of another design curve. This

is justified by the fact that the correct form of ER is in doubt and the differences in
the design curves are slight.
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Values of the constants are as follows:

- D sinf +1
@10s nsing + cos@

(n/4) sinf +1/12

%40s = nsing +cosf
asos = 1/12
080 =1
. [aSO C, sin0 ]1/2

90 IK(“s 043) 1/4J

where a x0s ~ geometry factor for corrugation with no faces in shear.

C
@, = Zth— (n sin 8 + 1) (n sin 6 + cos 6)

f
_nsinf8 +1
2118~ T sin@ + cos8 ta,
(n/4) sin@ +1/12 @799
a = 2 + —
41s n sin@ + cos 4 a
11
1 3
ags=18 A+ %)

n sin8 +1
a81"(nsin9 + cos @ )a7 + 1

. 2 1/2
ag; C, sin (¢]

291 = K (05 043) 1/4

The detail geometry is obtained from:

§ o 7/8
S (o]
t=b Gg\sinBE, Cx/3

1/2
d=t (EA Ct ‘/;i_sinzg)

%o Es
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(39)

(41c)

(46a)

(46b)
(46c)

(464d)

(46¢)

@472)

(47b)

47¢c)

47d)

(48a)

(48b)




f=ta, (f=0/forno faces) (48c)

W/p=ta (48d)

1

2). Double-Face Corrugations in Shear

The results for double-face corrugations in shear are obtained in a
similar manner to that for corrugation with one face in shear with the exceptions

that the Iyy inertia is defined in terms of td2 rather than t3 and the stability constant
is modified by the ratio of the inertias.

Let Ax=a12t
2
Ixx = 042 td
2
vy -a52 td

,I
K~ 4 (8 +5 Txx )/(1 -v 2) for simple supports
XX

Expressions similar to Eqs. (42), (43), (44b), (47) and (48) can then be obtained with
the above definitions of the geometry.

%52 1/4
. . 4 (8+ 5\/; ) (50 24°) ER(—d-)2= c, Eg(+Sine S"“9) (49)

t= 1.2 = b
.2

d _ C sin 9“82

Ll b s Tt W)
1y 2 ( 52/“42) 52 42

_ 2 C,E,

p= ZQ a 2 SI:: : = p (Fig. 9) (51a)

b, 82 92 %o cro
92 €, o,
t= (—P— ) (51b)

sin 9 V3 Ct EA

ds=

agb, € o \1/2
2 (_p o °) (1c)

sing 3 Ct EA
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f=at (51d)

e “12 t (51e)
where
_ nsin@ +1 . o
0128- n sine + coséd 7
a
_(nsinB/4) + 1/12 7
42s  n sin§ + cosB8 5 (51g)
0525 =a 7/2 (51h)
39
a, = 2 [ (C/C) (sind +1) (nsinf +cosB)] 1/2  (39)
@..=@a,nsind+l__ ., -
82 = 7 hsin@ +cos§
1/2

.2
082 Ctsm 8

( 2 ) = (“ 528 ¢ 42s)
1-v @425

- —
The stability index fp is employed rather than ES in order to utilize Figure 9

which was obtained for a double-faced corrugation in compression. The present state
of the art does not warrant refining the design procedure any further. The technique
is versatile enough, however, to develop new design curves whenever experimental
and analytical investigations present more reliable stability equations.

The Appendix presents a technique for determining the corrugation angle 8 for
given values of n which would result in minimum weight of the plate. The results of
this analysis are presented in Figures A-1a to A-2b together with the resulting values of
the geometry coefficientsa. These can be employed wherever the fabrication require-
ments do not dictate the values of 8 and n. A possible design technique is to assume a
value of n in order to determine the appropriate geometric constants and to design a
minimum weight structure. The detail design is then reviewed to obtain a better
estimate of n consistent with the requirements of a minimum flat for joining and a
minimum bending radius for the corrugation thickness. This process can be repeated
until the assumed value of n is in satisfactory agreement with the value of n required for
fabrication,

3. REINFORCED PLATE

A plate is reinforced for the purpose of working to a higher stability
stress level by-modifying the buckling pattern of the plate. Reinforcing a plate by
transverse stiffeners will not be too effective unless the stiffeners are spaced closer
than the width of the plate so as to force buckle waves shorter than those for the un-
reinforced plate, A more efficient construction is usually obtained by introducing
longitudinal stiffeners. These stiffeners not only carry a portion of the compression
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load but they attempt to subdivide the plate into smaller panels with smaller buckle
waves, The longitudinal stiffeners can be viewed as intermediate "'elastic' supports
for the plate. If the bending stiffness of the stiffener is sufficiently large relative
to the plate, then it can act as a node provided it is also stable as a column. Ortho-
tropic plate theory, similar to that employed for corrugated plate, will be utilized
in the design of reinforced plate.

C

A typical integrally stiffened plate
is shown in the accompanying sketch, The simi-
larity of repeated portions of the reinforced plate
with column sections is apparent. It can be shown
that in order to obtain maximum stability, the
geometric distribution of area in the cross section
will be similar to a column for maximum inertia
about one axis,

The requirement of equal stability
of the elements of the cross section permits ex-
pressing the area and inertia in terms of two
characteristic dimensions, From Eq. (20) we
have ‘

w=d (2?2 (ch/ct)l/4 (20a)

and h= t(z)2 (ct/ch)l/ 4 (20b)
The area and inertia are then evaluated utilizing the relationships for columns

3
(Ac= e dt and Ic = '-'13 a-t).

Area/in.= Ap/b = [n (Ac) + wh] /b = (na, +z) dt/b = a, dt/b (52a)
2 Dxx 3 3 )
(1l-v )Q-Ixx~nlc/b=na3dt/b=a4d t/b (52b)
2 D 3 / 3/2 .3 3
(1-u)—E¥l=1 =h%/12 = V' C,/C, )% © (t°/12) ma_t (52c)
R vy t" “h 5
where @y = na,; +z (524)
a, = na, (52¢)
a. = @v/C7C)¥ %12 |
5 = t' “n (52f)
and n = number of stiffeners,
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Employing Eq. (33a) for an orthotropic plate with Ixx>> I , we obtain the
stability stress of the plate: yy

KERJlxxxyy KERJa4a5 ¢ v\
P b’ A 7

Equating the local stability of the element to this stress results in

a_ C 2/3
(%)= (__7 : 1«1) (54)
K,/r:z‘lcn5

The load equation results in

4/3 CE, /6
 JRg_ ( Ky °4°5) ( t A) =(€p7/6)(—a%)(Fig. 132)  (55)
o,
b 9, a, Ct 07 (o}
with the detail geometry determined as follows:
Ct a7 2/3 £ o 1/3
d =b(————) (C—‘;:% (562)
!(.,/0405 t A
¢ o 1/2
t =d< = ) (56b)
t A
h=t zJCt7Ch (56c¢)
\
o = 9 dt { 56d)

The load index is not unique sincé the (d/b) ratio can be solved for in terms of
the (t/b) ratio as well as the (t/d) ratio. This would result in

3/2 K2 a, a 2
=t P E 4 5 3/2

— 3 1
a’(n+
b o, \o, 7(“ 1) (12) Ch

(Fig. 13b)  (56€)
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The design of the structure requires a knowledge of the distribution of area
(z = wh/dt) between the plate and the stiffening elements, The distribution should
be arranged so that the product DXX Dyy is a maximum when the area and stability

thickness ratio are stationary. This would result in a maximum stability stress,
Considering a typical reinforced portion of the plate, we can resolve the product of
the bending stiffness to

E & 2
R 3/2 b 3
D D ~ | (c,/c,) <—> a, dt (57a)
12(l_yz)z t h n+1 3

For a given number of stiffeners the value of the terms multiplying a 3d3t is
stationary and we arrive at the conclusion that the area distribution which maximizes
the inertia of the column section (a 3d3t) will also maximize the over-all stability

stress of the reinforced plate. These values of z = wh/dt correspond to values pre-
sented in Table 1, when the moment of inertia (Ixx) of the column section is maxi-

mized, for angles (see shaded area of sketch above) or for channels (if stiffener has
area above the web) . This is because the area of the skin assumed acting with the
stiffener is "wh" and not "2 wh"', Any stiffener area (wh) above the web should be
distributed so that the areais stabletoa stress equalto or greater than the stability

stress of the web. Note that the Ch for the base is for a supported plate while the

Ch and C t of the upper flange and web may be for a flange or a supported plate.

If the plate is stiffened by stringers then the optimum distribution of area will
depend upon the cross-sectional properties of the stiffener. Assuming a stringer
whose cross-sectional properties are defined as

Area = AS =Qsl dt (57b) —u T

3 — e ¢

Inertia = Is = Q. dt (57¢c) - - d

Centroidal distance = ¢ = L d (57d)
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and where all the elements of the stringer are at least as stable as the web (dt) .
Then employing the technique of maximizing the inertia of the sheet-stringer com-
bination for a stationary area, results in

a (a_ d 2(1)
, = Wh_ sl s1 %s6 " “%s3

s At L,/ 2 +a (57e)
( sl "s6 s3)
which can be employed to calculate values of
a = nfa :
7 ( Sl+zs)+zS (571)
a 02
8l "s6
a, = a, + 57
4 “( 83 asl+z) (57g)
and
3/2
a =z (C:/C)l/2 (57h)
5 s t h

to be substituted in Eqs. (55) and (56€) .

The above design procedure assumes that reinforced plate buckles as an
orthotropic plate. The dimensions of the plate, however, may be such as to enforce

another type of deflection pattern. If the plate is very short so that it will not buckle
except as individual smaller plates, then

S s A R ()& (2) (583)
b2cr bza b2cr A% b OE)
(o] (o] o
b
but vy w=d z ,/Ch7Ct (20a)

which results in

1

d
—_ = (58b)
L (n+1), / z\/Ch7Ct

2 1/2
o (W0 /AR (e

. 5" Yoo o

ASD-TDR-62-763 49




If the plate is sufficiently wide so that the side supports do not significantly restrain
the center of the panel, then the design procedures developed for columns would be
applicable for a plate with a few stiffeners.

It is recommended that the stability stress level be evaluated for all the modes
of failure described, whenever the designer has any doubts, and to base the design -
upon the lowest stability stress obtained.

4, SANDWICH PLATES
A typical honeycomh sandwich plate is shown Core
in the accompanying sketch. Each component of the sand- s\’/
wich must be capable of doing its assigned task. Failure of /'\

any component can precipitate instability of the assembly at
a stress lower than the design stress. The facing material
provides the load carrying medium of the structure and must 1
be stiff and continuous. The core material must have enough

stiffness to stabilize the individual faces against buckling; E X
restrain the faces from deforming independently of each i
other (the large bending stiffness to weight ratio is depen- | . |

dent upon the faces and core acting together) ; and to carry r
lateral loads and shears (lateral deflections of the plate

cause a lateral component of the axial load) . The core is

connected to the faces by means of a bonding agent which ;
must be capable of transmitting the loads between the faces

and the core. For minimim weight design the core and bond should be as light as pos-
sible ( consistent with their ability to do their assigned tasks), and the faces should
have the highest stress to density ratio in the expected environment,

The design curves presented in this study are based upon an analysis
presented in Reference 21 for square cell core and they should be sufficiently accurate
for hexcel core. The problem of face wrinkling, for which no acceptable design proce-
dures exist, was empirically resolved by making the thickness of the core cell greater
than 10 percent of the face thickness (t>.1f). This criteria can be readily modified
without affecting the design curves. The definition of effective stability modulus (ER)

was avoided since disagreement exists as io the proper modulus. The design proce-
dure permits the designer to select any definition he believes to be appropriate.

The analysis of the stability of the honeycomb sandwich is similar to the
analysis of unreinforced plate with the exception that the effect of shearing energy upon
the stability cannot be ignored. The general equation employed ( as, for example, in
References 7, 8, and 21) is as follows:
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i b e

1

2
K Ep (I/Ab)

9crm
Ter =T P__— 2 (59)
crm K (I/Ab)A E
1+ R
P rs 1+ A G
¢ s R
where subscript crm refers to stability due to bending and no shear
subscript crs refers to stability due to shear and no bending
and AS = shear area of sandwich ~ (pc/pf)/Z ~ t/s. (The other symbols are

defined elsewhere.) Manipulation of this equation under the assumptions that the faces
are small with respect to the depth of the sandwich (f<<d) and that the effective shear
modulus is proportional to the effective stability modulus

[ER/GR =2 (1 +v)]

results in the following

K—%—: (1+,,)( 5 )(-f—)(xz) + \/[(1-»;/) (—g) (-f—)(l(i)] 2.4Ke  (60a)

b o bo
(Eq. 13.2 of Reference 21)
where & = tr/ER (60b)
2
and K== l,f (60c)
1-°

where k is the standard stability constant for plates presented in various texts, Ref-

2
erences 1 to 8, (e.g., K = Ll g = 43,5 for a simply supported plate of infinite aspect
1-y

ratio) .

Plots of this equation are presented in Figures 14a to 14d for given

2
values of t/s. Entering with the known abscissa (P/b'o) and proceeding to the
proper curve € = O /ER, results in the ordinate (K d/b) which can be employed

to solve for the minimum depth which will stabilize the faces to the selected stress.
The proper value of t/s is obtained by selecting an available s and t where t 2.1 f

/3

2
(this ratio can be modified) and s < 2f/(3 €) . These requirements can be
satisfied with the aid of Figure 15 which also indicates the available cores.
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Figure 14a. Design Curves for Honeycomb Sandwich ( t/s = 0. 004)

ASD-TDR-62-763 52




T wr———.

“.0 T T T T T T T T 1 T T T T L} T T || T L T T T T T

t/s = 0.006
10.0 |-

olllllllllllllllllLllllll

0.00I 0.005 0.009 0.013 0.017 0.021 0.025

P 2f _ Al/in.
b2c b b
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Figure 14c. Design Curves for Honeycomb Sandwich ( t/s = 0.008)
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Figure 14d. Design Curves for Honeycomb Sandwich ( t/s = 0. 012)
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The design procedure can be described as follows:

(1) Select a design stress o and a material (E,, o, B)

(2) Enter Figures 12 and 4 with o/ o in order to determine
£ S and € o °

(3) Calculate ES and ET:

Eg = E, [(cr/ao) / ES] (61a)
E, = E A[W co)/ec] (61b)

(4) With the appropriate effective modulus formula, determine E_, where

R
Egp = Eg (Eg Eqp)

( 5) Calculate € and e

where € = o-/ER (60b)
and ¢ = cr/ES ‘ (61c)

(6) Enter Figure 15 with € and determine an available t/s which stabilizes
P .
> = o
the faces. Wheret 2 (.1)f (.1) b o {62a)

and s < 2f/(3¢)2/3 (62b)

(7) Enter Figure 14 for the appropriate value of t/s with

P/bzo- and € and determine K % .

( 8) Calculate the depth of core required
d, = (K d/b) (b/K) - £ (63)

An analysis of the weight of the sandwich indicates that the weight of the bond
is fairly independent of the design, the weight of the faces is dependent upon the face
density (p f) and stability stress (o), and the weight of the core increases with core

density ( pc) . This would suggest that the honeycomb sandwich be constructed with

faces of the highest stress to density ratio and the lightest core that satisfies the core
requirements.
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Figures 14a to 14d indicate that the depth of core increases with the 2f/b ratio.
A minimum weight design would result if the face thickness is made as small as pos-
sible consistent with other requirements, such as required torsional stiffness, etc.,
and if the remaining required axial load carrying area were distributed at the supports
so as to preclude instability.

For plate-like structures the minimum weight occurs for equal faces. For box-
like structures in bending, however, a more efficient design can occur with thicker
outer faces.

In some cases, selecting the allowable compressive stress does not result in a

minimum weight design. This cdfi Sécur if the load intensity (P/b2 o-o) is too small

or the available core which satisfies the core specifications is too heavy. An analysis,
such as performed in Reference 21, indicates that the design stress which results in
minimum weight satisfies the following:

i P
8¢ _ _P g (Eq. 20 of Ref. 21) (64a)

80 vt p /KT

Plotting
E 2 5/2 /E \1/2 [E S(E,./E_)
p ( A) =<L>’ (..A.) [_A ()R e
bzo-0 pcfl'(- % % I‘:R ER % (o cro)

as a function of o/ o_can be employed to obtain a graphical solution of the optimum
stress ratio o/ o No attempt was made in this report to present such curves since

the value of ER was not defined,

If ER = ES, Eq. (64b) reduces to

3/2 5/2 1/2

o [E E E :
£ e -
b a-o pc\/!? % % S T

If the optimum stress is low then a good approximation (upper bound)

would be to assume that ER = EA. This results in
5/2 P
b2
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D. TUBES IN TORSION

Tubes in torsion can be designed in the manner described for compression
members. Two types of problems will be considered. The first is a tube (e.g.,
control rod) where the diameter (d) wall thickness (t) are determined by con-
sidering the local and over-all stabilities. The second is for a cylindrical tube
(e.g., fuselage) where the thickness must be determined by considering the local
stability.

1, LONG TUBE
The over-all stability of a tube in torsion
is obtained by the use of Eq. 107 of Reference 1. This /v\
results in
2 \/Cc Cl3 ¢
T
T = 7 EI~Tch ER 7 (65a)
T e
where Ao = % d2 is the area enclosed by the median curve (65¢)
and t <<d. R
The local stability is determined by the use of Eqgs.
(A6) and (A7) of Reference 5, i.e.,
kth Ep 2 £ ¢ 5/4 d 1/2 ¢ 5/4 d 1/2 _
(@) (7) -x=(3) (1) (66a)
12 (1-,%) 58 \d ) R\d y)
where K = 23/4 rzkt/lz (1-v2) i (66b)
kt = ,85 F for simple supports
kt = .93 F for clamped supports
F = Factor to correlate theory and tests ~ .84 (Reference 5).

The effective modulus is assumed to be the secant modulus (E

= ES) for a tube in
torsion,

R
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Equating the two stabilities results in

E 5/4 1/2
= 2:0t = TR ‘/E; (li)= KEp (%) (%) (67a)
4/5
w (52) (3" 43) (e
The load equation (T =-g- %t T) (68)

expressed in nondimensional form becomes

4/5
T ="_(2>3 (L)L_JE— L(@) (2>17/5 Y3 6o
Vo N\ \T) T T A R T v

but from Eq. (65c), we have

( d) 2t (’ ‘/—3-)/"6 & (65b)
1/ E - E " E
sVCe (bs/E) (e Ea) Ea g
2 o 20 c i
(o] (o]
17/5 -4/5
E J/C .
E F () (%) C6TIED e
L% L4 % c s %o
° (Fig. 16)
The detail geometry is obtained as follows:
y 13
d =E—-S— (70a)
A /3c
o (]
o
RV N
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2. CYLINDRICAL TUBE

In many cases the tube is not too long and over-all stability does not
determine the design. The following design approach can be employed for the case
of a monocoque fuselage when the length and diameter are prescribed and it is desired
to determine the minimum wall thickness to preclude local instability., The load equa-
tion is

T=gdtr (68)

t = (L) 2———47_—— (71a)

Substituting Eq. (71a) into Eq. (68) and transforming to nondimensional form results
in

e W) () ) e

) 3::0 o/3 k¥/° E5/E, \/B—EA T

o

T s 5k (£)13/5( J3_EA>4/5: (E s )("/3_

3 = q p a_—')(Fig. 17)(72)
o o

The value of t can be determined by the equation

= T
‘"dz (r,ls)%
z ] MO

(73)

% M3

o

3

after the value of — = ¢/ o is determined from the graph,
o
o

E. BENDING OF BEAMS AND BEAM-LIKE PLATES
The minimum weight design of a beam is not as apparent as a column., Ina
column the axial stress in the member is independent of the distribution of the area

in the cross section, This does not apply to a beam since an area redistribution will
generally change the stress distribution, A redistribution of a given area of the beam -
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may decrease the stability of an element to increase another but it may also reduce

the resulting stresses so that the elements remain stable for larger moments., Thus

increasing the web of a heam at the expense of the flange will increase the allowable .
applied moment of a beam of constant area up to a point after which the loss of sta-

bility overrides the decrease in stress. The problem posed is how to determine this

point so as to design a beam to resist a given moment with a minimum weight.

The technique employed is to examine a beam which fajls because the compres-
sion stress exceeds the buckling of an element of the beam, Consider any beam: The
area, the inertia, and the extreme fiber distance can be expressed in terms of two
characteristic web dimensions d and t and a ratio of flange area to web area (z = wh/dt).
As an example, the cross-sectional properties of the channel section can be repre-
sented as follows:

A=a1dt=(1+22)dt
I = 113 d3t=(1/12+z/2) d3t
c = a6d=(1/2)d

The assumption is made that the extreme fiber stress can be calculated with sufficient
accuracy by employing linear bending theory (i.e., ¢ = Mc/I). This should be satis-
factory for optimum structures such as I-beams where the moment carrying capacity
is primarily concentrated in the flanges. In addition, it is assumed that the stress-
strain relationship is the same in tension and compression and that the neutral axis
does not shift even when the stresses become nonlinear.

The load equation is therefore

3
ca dt a
‘ 2
M':: O'I = 3 = —3 dta’ (74a)
¢ d ag
%

1/2

£.9, /
Letting t/d =(—ER—E-) define the thickness ratio which becomes unstable at the
t A

design stress results in a load index

1/2

a M E, C
6 ( A t) SRR e (74b)
3 o o p 0
03 cod o 0
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Similarly, the area can be expressed as an area index.

1/2
E C
A ( A t) (74c)
— o = V&,
a 1 d - p

For a given material and geometry, the area and weight of the beam are pro-
portional to d \/f_ whereas the moment carried by this beam is proportional to
3~/— (c/c ) Solvmg for d in Eq. (74b) and substituting the resulting solution into
Eq. (74c) results in

1/2 .2/3
1/2 B E, C
E C a t
At 6
A( a ) %3 7 ( h >
I T = = & JE_ (75a)
a, ( = ) p
[\ )
a6M EA Ct 1/2
Letting ( ) = X (75b)
a3 co co
and (°' ~/£_) ol (75¢)
co P [}
results in
(EA Ct )1/2
A
% st T
Y = d, Y&, = . 2/3 . (75d)
(=2

This equation can be plotted to determine the value of o/ a'o that would minimize this

expression which is proportional to the weight of the structure for a given material,
applied moment, and geometry. (See Fig. 18 for a typical plot for a corrugation plate
beam). ‘

The above analysis indicates that the optimum value of the extreme fiber stress
ratioo/ T which would minimize the weight of a given beam of a given material, de-

pends only upon the stress-strain relationship. The area distribution (z) and the
boundary conditions (C t) do not affect this optimum stress ratio.
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The other questions that must be resolved are what is the distribution of the
area in the cross section and what are the elemental dimensions that would result in
minimum weight when stressed to this optimum stress. The approach is to examine
various types of distributions and to determine which would result in a minimum
weight for a given moment. A complementary procedure is to note that a cross sec-
tion which can resist a higher moment can be reduced in weight to take the required
moment. It is immediately obvious that an area distribution which would maximize
the section modulus (I/a 6 d) while maintaining the area and thickness ratios would

reduce the stress level and result in 2 minimum weight. The technique is similar
to that of columns (maximum Ixx) in solving for the area distribution z. Sections of

constant thickness, such as bent-up sheet, can be determined in this manner.
Sections of variable thickness require some additional defining conditions. In an
arbitrary cross section the flange elements can be less stable, equally stable, or
more stable than the web element. If the flange is less stable, then some area could
be removed from the web and added to the flange; this would increase the moment
carrying capacity of the beam. If the flange is more stable, then area could be re-
moved from the flange and employed to increase the d=pth of the web. This would
increase the section modulus and moment carrying capacity of the beam. This sug-
gests that a minimum weight beam would have the flanges and webs equally stable up
to the optimum stress.

Thus the design of beam sections is somewhat similar to columns. The re-
quirements of maximum section modulus and equal stability result in defining the
cross-sectional properties in terms of two characteristic dimensions d and t. The
optimum stress ratio (o/ a'o) required to solve for d and t, however, can be deter-

mined as a function of the nonlinearity of the stress-strain relationship of the
material (B8), aund is presented in Figure 19. There is no need to resort to a P
vs. o /o, plot to determine this stress ratio.

1 BEAMS

The design procedure for beams is straightforward provided stability
designs the cross section. The description of the cross section in terms of the web
dimensions is determined by maximizing the section modulus for a stationary area
and thickness ratio. Values for typical sections are shown in Table 2. The optimum
stress ratio i8 determined with the aid of Figure 19 and the beam is designed for this
stress,
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TABLE 2 - GEOMETRIC FACTOR FOR BEAMS IN BENDING
- %
Section z a 1 a 3 a 6

(Bending about x axis, 3

see Table 1) wh/dt A/dt 1/d"t c/d
1-Beam .250 2.000 .333 .500
Channel I .500 2.000 .333 .500
Tee .625 2.250 .222 . 222%*
Angle (Sheet stiffener) M 1. 250 2,250 . 222 . 222%%

~ * The flange may have to be stiffened for bent-up sheet to ensure that ChZ C t(z t/h)2

where Ch stability constant for flange in compression

C ¢ = stability constant for web in bending
2
(Ct AL where k is defined in various
12(1-+°)

texts, e.g., References 2 and 4).

** Flange in compression.

The design equations then become

d = (M1/3= GG_M_(EA_Ct)l/z 1/3
ay o 3/2 i, ep >
1/2 M 1/3 v 1
P (El:_ct) =(::E_Rc‘t> = d(ﬁ)

where o = (o-/a-o) o

(a-/cr0 obtained from Fig. 18)

Ep = E, (cr/cro)/€p (€p obtained from Fig. 5)
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1f the beam is of sheet metal, then
w=d (z t/h) (77a)
If the beam is machined, then

/ /4

w=d (z) /2 (ch/ct)1 (77b)

/ /4

and h=t (z)1 2 (ct/ch)1 (77¢c)

The weight of the structure is

W=pa_ dt (77d)

and must be compared for various materials.

If the allowable compressive stress is lower than the optimum stress
e.g., if tension, creep, or fatigue governs), then a possible design procedure is to
employ the same equations to obtain a beam of maximum section modulus that is
stable up to the allowable stress. Equal stability of the elements will result in an
optimum weight as indicated in the previous discussion.

2. CORRUGATION PLATE BEAMS
The design procedure for corrugation plate is identical to that des-

cribed for beams with the exception that the moment and cross-sectional properties
are given per inch of width, i.e.,

A = alt
2
I = a4dt
c = asd
This results in
1/2

N (EACt>
7 VT,
172 =< - . 77" do«/€p (78a)
01 T e )

o 'p
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L

it e i by R e o s

1/2

a.M /E, C
where X = g < At ) (78b)
04 0'0 %o

-1/2
and do = |:(0'/0'0)4/€J
A typical plot of do"/fp as a function of t'.!‘/a‘0 is shown in Figure 18, The

results of such plots are then employed to obtain a plot (Figure 20) of the optimum
stress ratio (cr/o-o), depth (do), and area index (do ‘/gp ) as a function of 8.

The values of a, a, and a, vary as a function of n and 8 and are formu-

lated by Eqs. (26), (31) and (32).

The resulting design equations are

ag M R Ct 1/2
d = (79a)
¢14 o 3/2 . .
\1/2 a, M 1/2
t = d <'EEE"> =( ) (79b)
R t a JoE_C
4 Rt
f = 2t (nsin@ +cosf) Jct/cf (79¢)
and W= a tp (79d)
F. COMBINED LOADING CONDITIONS

Structures are frequently subjected to more than one type of loading. The
combination of loads must be considered in designing the structure since it affects
the stability. The addition of a tension load would tend to restrict the lateral de-
flections and increase the stability while a compression load would have the oppo-
site effect. The effect upon the stability of loads causing different stress systems
is usually expressed by an interaction equation. The interaction equation is a re-
lationship between the ratios of the applied stresses to the buckling stresses (acting
alone). When the loads cause stresses in the same direction they are usually added
numerically and compared to the critical stress.

1. INTERACTION EQUATIONS

The interaction equations can be employed to obtain a modification
factor to apply to the load index in the design procedures described previously. A
typical interaction equation is as follows:
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The ratio of stresses is usually known since the stresses are propor-
tional to the known applied loads and the corresponding resisting areas, i.e.,

o, = P)/A
o =
2 PZ/AZ
o P A
2 2 1
=5 T X (81a)
1 2

The ratio of the critical stresses is known provided the stability equa-
tions are similar in form, i.e.,

2
. = CIER (t/d)

q
!

2
= C, E (t/d)

Crz

o)
crz = -C—z = 81b
ery 1

Substituting Eqs. (81a) and (81b) in Eq. (80) results in

n o n o
B ) -
cr cr

1 1

This cquation can be solved for the stress ratio o /ccr . The structure could then

1
be designed for a load equal to Pl/(o-l/a-cr ). This would be a structure which would
1

1

. °F P o Were applied but would become unstable

when both loads were applied simultaneously.

not become unstable when the loads P
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The technique can be readily applied to the cover of a box beam subjected
simultaneously to bending and torsion. The cover will have an axial load equal to
the moment divided by the height of the box (P = M/h) and a shear load equal to the
twisting moment divided by twice the height of the box (Q = T/2h). The interaction
equation for a plate in compression and shear (Eq. 55 of Reference 4) is usually
given as

2
(a">+(rr> = 1 (82a)
cr cr

A comparison of the stability equations results in

2
C Eq (t/d) C

Ter T
T e - 2 C
E

cr C, R(t/d) t

Eq. (81c) then becomes

2 2
) o) 2z =2

y / o o

cr cr

h tion i
and the solution is 1/2

1/2 C 2

2 Q t
) (BR)) e
- 2 = 2 |
cr X C

2(2) 2(3 t)

P Cr

This results in the following modified load index for unreinforced plates:

/ - c,\’ _
1/2 Q “t
P (CtEA> 2(’5’6;)

1/2

0 ° C -
' ( 1+4 <& —t> > -1 (82¢)
. p CT

el
i
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2. COMBINED AXIAL LOAD AND BENDING OF BEAMS

The design of beams subjected to combined axial load and bending can
be treated in a manner similar to beams in purc bending provided the axial load is not
too large. Employing the assumptions of linear stress distribution and non-shifting
of the neutral axis, results in the following stress equations:

Ma

Mc P 6 P
T = _ E
T ‘A 2. ' T (832)
a dt 1
3
a6M aspd EACt 1/2
3 (1+aaM)( ) - R (83b)
a d'o 16 %o %o p
3 o)
A E, C, 1/2
( ) = v (83c)
a d2 %o P
1
a 3 Pd
If the expression ——— is small compared to 1 then the equations
a1a6M 3

are identical with Eqs. (75) for pure bending and the optimum stress ratiq, which does
not change, can be obtained from Figure 19. Assuming that the optimum stress ratio
does not change significantly results in the following design equation which must be
solved for d:

d 3 a6M e, Pdo(d/do) EA ct 1/2
d - a, o 1+ a,a M o (842)
(o) (o} 176 o
agM (E,C, 1/2
Letting ( ) = b - (84h)
a,.o o
30 o
a P
a 3
and —_—= —— (84c)
b czla6 M

[~

d 3 ado d o
results in (T) = 14 il (d—o> (84d)

o
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which is solved graphically in Figure 21 for (d/do) knowing the value of b and adO/b.
The design technique is to determine values of b, a, and d0 knowing the material, the

loads, and the geometric distribution. With this information the depth is calculated
from which all the other dimensions are obtained with the aid of Eqs. (76b), (77a),
(77b), and (77c). It is necessary to either assume that the value of C t does not change

because of the axial load or else to employ an iterative technique. This would require
assuming a value of C t calculating the geometry and stress distribution and deter-

mining the corresponding Ct for the web (e.g., Table 34 of Reference 2). This pro-
cess would then be repeated until the assumed and calculated values agreed to a satis-

factory degree.

The same design technique can be employed with corrugated plates subjected
to bending and axial loads. The design equation becomes

2 ad
d 0 d
(—d ) = b [1 + b ( ra )] (85a)
o (o]

a M E, C,\1/2
where By 8 ( & t) (85b)
a o o
4 o 0
a
a 4 P
and = B — (85c)
b ala 6 M
This can be solved directly as
1/2
a d0 [( a do) 2 :|
d 5 + B + 4b 45
a_ 2 Bk,

or graphically as shown in Figure 22. The detail design is then obtained from Egs.
(85d), (79b) and (79c).

G. DESIGN HINTS

Errors can be introduced into the design because of reading and interpolating
the design graphs. In order to minimize these errors it is wise to incorporate check
calculations. The largest errors occur in estimating the values of stability parameter
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€ whenever log B is not a negative integer. In the elastic range (low load indices)

the stability parameter is equal to the stress ratio (Ec = Ep = fs = O‘/G'O) but as the

material becomes plastic (larger load indices) then the incremental changes of the
values of a'/a'o, fs, fp and Ec increase in the order given.

Having calculated the load index P from the appropriate formula, the designer
enters the appropriate curves to obtain values of o /o o’ ES, fp’ and fc. If the

graphical results indicate that the stress is elastic (cr/a'0 = ¢ ) then the exact value of a’/a'0
can be obtained by the solution of the load index equation (e.g., Eq. (44b);
F:({ . v/ 8) (0'/0-0) = (cr/o-o) 15/8 for a corrugated panel in shear) and will serve as

a check upon the graphical result. If the graphical result indicates that the stress is
plastic (cr/a'o # ¢ ) then calculating the load index by means of the stress ratio and

stability parameters would serve as a check upon the graphical interpolation. The
least sensitive parameters, coupled with the load index, can be employed to obtain
a better estimate of the most sensitive parameter. For example,
P
£ = —
G [—

(o]

can be employed from Eq. (10b) to obtain or check the column stability parameter
3 e Greater accuracy in reading the design graphs can be obtained by enlarging the

scales for the particular type of construction, material, and loads of interest. The
possibility of having to design for materials which have high stress ratios (e.g.,
structural steel) resulted in the design curves presented in this report.

The minimum weight design must be increased in area if the allowable stress
is less than the stability stress that corresponds to a minimum weight. A method of
increasing the area so that the stability of the different modes of failure remains
equal is recommended. This will result in the most stable structure for a given
area and will permit a maximum increase of the applied load if the allowable
stresses should ever be increased. If the allowable stress is predicated upon
the permissible creep strain in a column then maintaining equal stability of the
local elements and over-all buckling should tend to result in an optimum design
for creep buckling. As an cxample, if the area of a column has to be changed
because the allowable stress (o') is lower than the optimum design stress (o), then

A' = AL (86a)
1/3
d' = d(%) (86b)
2/3
and t' = t(c%) (86¢)
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increases the area properly by insisting that the % and id_‘ ratios be equal so that

the local and over-all modes remain equally stable. The primed terms refer to the
new geometry while the unprimed terms refer to the minimum weight geometry dis-
regarding the lower allowable stress. Similar equations can be derived for other

types of cross sections. .

The basic load equation can be employed to check on the design area. Errors
in reading the graphs can result in slight errors in the detail geometry. Comparing
the load that can be resisted by the designed details (e.g., P= oa 1 dt) to the actual

applied load can serve as a check upon the calculations. Small errors can be recti-
fied by modifying the area as indicated in the preceding paragraph. Large errors
would suggest redoing the calculations,

The detail design will result in odd size gages and dimensions which should
be modified in an actual design to conform with available sizes. Wherever possible
these modifications should be apportioned in such a manner as described previously
to maintain the proper relationships between the thickness ratios and never to de-
crease these ratios below the ones prescribed by the minimum weight design.
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SECTION II - ILLUSTRATIVE EXAMPLES

Two structures, representative of aerospace constructions, will be investi-
gated in order to illustrate the nondimensional design technique presented in this re-
port. The first is a heated (800° to 1000°F) beam truss with the design dependent on
a relatively simple load-temperature-time history. The second is a portion of a
wing with the covers heated to as high as 2000°F with two load-temperature-time
histories representative of possible aerospace missions with relatively rapid or slow
exits and reentries.

It is not intended that these examples cover all the design details or to rep-
resent exact material properties and final designs. They are presented to demon-
strate the simplicity and ease of employing the nondimensional design technique in
preliminary designs.

A. BEAM TRUSS

A beam truss is loaded as indicated below. The lengths of the beam truss
members and their loads are presented in Table 3. The loads in the members are
given in terms of limit loads which change with temperature and are applied fcr the

times specified.

The design technique will be illustrated (using slide rule accuracy) for
one type of cross section (wide flanged columns) and two possible materials, 6A1-4V
Titanium and 17-7 PH (TH1050) Stainless Steel. The actual design would have to be
investigated for other probable cross sections and materials. The material properties
are determined from scant experimental data presented in References 10 to 13 and are
shown in Figures 1b and 23. The data are for sheet material and are assumed to apply.
A more sophisticated investigation would require a greater amount of experimental data
with a statistical procedure to obtain the proper confidence level for the material pro-
perties.
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1. LOAD TEMPERATURE TIME HISTORY

TABLE 3 - LENGTHS AND LOADS IN TRUSS MEMBERS

Member length b load/X = P/X
U, - U, / 30. 0 -4 4/n -12.0
1/2 1/2
2 2 2 2
U, - U, (2% +m/2)%) 30.41 | -(L+a/2?) /| -s0m
U - L h 10.0 - 3.0 -3.0
U,- L, h 10.0 -2.5 - 2.5
1/2

L -U (22 +n2) 31. 62 3% + v2)2 9,486

17 Y% /

. 1/2
L, - U, (22 + /2)?) 30.41 (2 +0/22)Y%m | 3.0
i, )

L -L, 2 30. 0 /h 3.0

Note: £ = 30", h= 10"

Limit Load X = 10, 000 1b, at 800°F for 10 hours
8,500 1b. at 900°F for 1 hour
7,000 1b, at 1000°F for 0.1 hour

2. DESIGN STRESSES

The maximum stresses that the elements can attain without destroying
the structural adequacy must be determined. This stress must be evaluated by con-
sidering all possible modes of failure. The structure may be inadequate because of
instability or because of stresses which cause rupture or excessive dcformations. The
stresses should be sufficiently low so that the structure does not fail statically (short
time strength), dynamically (fatigue), or through inelastic action (stress rupture,
creep) when magnified by appropriate factors of safety. The technique of designing
for instability has been presented previously. The upper limit that the stress can
attain must be evaluated by considering the other modes of failure.
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Allowable stresses are determined in Table 4 by considering short-
time strength (with a factor of safety of 1.5) and long-time creep deformation (with
a factor of safety of 1.1). The table is self explanatory. The factors of safety can
be varied at the discretion of the designer to note their influence upon the final
design. It should be noted that the designer should consider other modes of failure
as well as other materials. The data presented are intended merely to indicate the
design technique rather than to obtain an actual design.

3. DESIGN OF MEMBERS

a. Tension Members

The tension members would be designed simply by supplying
sufficient area so that the allowable stress is not exceeded. The distribution of the
area is not critical. The optimum material is the one in which the cra/p ratio is

maximum. Note that the allowable stress at the reference temperature (800°F) is
the minimum of the creep stress (a-c) and the lowest value in columns 5 and 12 of

Table 4. This would preclude failure from short-time or long-time tensile stresses
for the required lifetime of the structure.

(-3

Since ( ?,m) 500 Tit+ = %5;_= 410
Oam 80.0

and (_P_) goo 5t = Tz76 ~ 289

therefore the titanium is more efficient for the tensile members and Com 65.5

and p = .160 are employed in the design. Knowing the allowable limit stress in
tension, it is then possible to determine the area and weight of the tensile members
of the beam truss. The calculations are shown in Table 5.
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TABLE 5 - DESIGN OF TENSION MEMBERS

Limit Load Length of | Weight of
at 800°F Tension Area | Weight/In. Member Member
P P
Member (Ref. Table 3) A= Tam W=Ap b Wb
o =65,500
am
(Table 4) p =.160 (Table 3)
L1 - U2 94, 860 1. 440 . 230 31.62 7.28#
L2 - U3 30,410 . 465 .074 30.41 2.26
L1 - L2 30,000 . 457 .073 30.0 2,19

Compression Members

1)

Geometry Factors

Assume that the wide flange cross section must buckle by

bending about the X - X axis because of the lateral support supplied by covers which
We obtain the following geometric parameters with

introduce the load into the truss.

the aid of Table 1.

area distribution,

area ratio,

inertia ratio,

stability constant for flange,
stability constant for web,

stability constant for column,

modified stability constant

for column

modified geometric constant

width ratio,

thickness ratio,

ASD-TDR-62-763

a, = 1.333 C
-] fe—t |
a, = .167
X- - -X d
C, = .38 | |
Ct = 3.62 ﬂ 1 J
_ .2 h
C, =7
C a
Cy = =2 3 -  .125w% = 1.23
a
1 )
K _ % cl/2 125 2 /=5 _ 115
G @, "t 1.333 " (04 = L
W o_ 1/2 1/4 _
b _ 1/2 /4. _
— (z) (Ct/ch) = ,503
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o

2) Material Factors

The material parameters are obtained from Figure 1b

and are tabulated in Table 6 for the different materials and temperatures.

TABLE 6 - MATERIAL PARAMETERS

. 6A1-4V Titanium 17-7 PH(TH1050) St. Steel
Material Temperature ——g55 500 1000 500 500 1000
log B* 5.6 | -4.7 | -4.2 -6.9 -5.2 | -5.0
%
1-:A/106 10.2 8.9 7.6 24.6 23.0 | 21.0
*
0'0/103 5.0 5.2 5.25 9.0 8.8 8.2
EA/croloz 20.4 | 17.1 | 14.48 | 27.35 | 26.2 | 25.6
EA3/2/0'05/2 18.4 13.5 10.5 15.9 15, 2 15. 8
*Figure 1b
3) Load Indices

The load index for the various members and loading

conditions can be readily calculated from the geometry and material parameters. The

load index is calculated with the aid of Eq. (11a) which can be expressed as

3/2

P B kg
% 5/2

(o]

P =
b

Data from Tables 3 and 6 are then employed to obtain the ultimate load indices pre-
sented in Table 7A.

TABLE 7A - ULTIMATE LOAD INDICES P

A
6Al-4V Titanium 17-7TPH (TH1050) St, Steel
TGS 800° 900° 1000° 800° 900° 1000°
U2 - U1 6440 3950 2580 5540 4570 3820
U2 - U3 1590 980 640 1370 1130 940
Ul - L1 14,500 8900 5810 12,470 10, 300 8610
U2 - L2 12,080 7410 4850 10,390 8580 7170
4) Design Stresses In Compression

The critical stress ratio for these load indices is
obtained from the nondimensional plot of Figure 6 and is Tabulated in Table 8A. The
stresses and weights for these conditions are also calculated and tabulated. The
maximum weight for each material governs the design for that material in order
to ensure structural adequacy under all conditions. The smaller of these maximum
weight values determines the material, the design weight, and stress. The results
are tabulated in Table 8A which is self expanatory.
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TABLE 8A - STRESSES AND WEIGHTS

Member
Titanium U2 - U1 U2 - U3 U1 - L1 U2 - L2
Pgooer 180, 000 45,600 45, 009 37,500
p=.160
Min. Wt. Pp /a’a 0.293 0.075 0.073 0. 061
o =150 =98, 300(1)
au am
800°F cr/cro (Fig. 6) 15.2 13.7 16.0 15.8
o =5000 o = (o¢/c )o 76, 000 68, 500 80, 000 79, 000
o cr [ N o]
A= rP/acr 2,37 0.67 0.56 | 0.47
W=Ap [o.37d]] [0-107] | [[o-090]] |[[o-076]
900°F o-/cro (Fig. 6) 13.0 11.4 13.8 13.4
o =5200 o = ('.r/cro)co 67, 600 59, 300 71, 800 69, 600
A= rp/ o 2.26 0. 66 0.53 0. 46
W=Ap 0.334 0.105 0. 085 0.073
1000°F a'/a'o (Fig. 6) 11.5 10.2 12.3 12.1
o, = 5250 o = (o/oo) o, 60, 400 53, 600 64, 600 63, 500
A= I‘P/a'cr 2.09 0.60 0. 49 0. 41
W=Ap 0.334 0. 095 0. 078 0. 066

(1)

Allowable ultimate stress = 1.5

(3] optimum design weight for both materials (minimax)
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TABLE 8A - STRESSES AND

WEIGHTS (Cont)

Memb
17-7PH emper
St. Stl. u,-U, U, - U, U, -L |U,-L,
Min. Wt. o =120, 000'? 0.414 0.105 0.104 0.086
800°F cr/cro (Fig. 6) 10.9 9.8 11.6 11.4
g,=9000 o = (a'/cro)cro 98, 100 88, 200 104,400 | 102,600
p=.276 A= rp/c,cr 1.83 0.52 0.43 0.37
W= Ap 0.505 0.144 0.119 '0.104
900°F a'/cro (Fig. 6) 9.0 8.0 9.7 9.2
c,=8800 o = (a'/cro)cro 79, 200 70, 400 85, 400 81, 000
A=rP/o 1.93 0.50 0.45 0.39
W=Ap 0.138 {0.124] | [o.108]
1000°F o/ o (Fig. 6) 8.8 8.7 10.8 10.6
o =8200 o =(o/o)o 72, 200 71,300 88, 600 86, 900
(¢ cr o o
A=rP/o 1.74 0.45 0.36 0.30
W=Ap 0.480 0.124 0. 099 0.083

(1)

Allowable ultimate stress = 1.5

3  Design weight for the 17-7 PH St. Stl. material (maximum)
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5) Detail Design

Having determined the optimum axial stress, the
member can be designed as shown in Table 9A.

It is interesting to note that although the steel has
a higher modulus to density ratio it is not employed in the minimum weight designs
of the compression members in the temperature ranges considered. This can be
attributed to two causes. The optimum design stresses for the applied loads are
well into the plastic range. Any effect of a high elastic moduli ratio is considerably
reduced in this region and the allowable stress to density ratio tends to govern the
selection of the material (as was the case with tension members). Secondly, it
can be shown that the optimum material for a column is governed by a ratio

of the density to the three fifths power of the stability modulus |\ i.e., Wﬂp/(ER)

An analysis of this ratio in the elastic range of titanium and stainless steel would
indicate that the steel is slightly less efficient at 800°F but that this is reversed

at the higher temperatures. Thus the steel would tend to become more efficient at
the higher temperatures when the applied loads are so small that the optimum design
stress is in the elastic range.

3/5)

To investigate this possibility, the structure was
redesigned for load indices of 1% of the original load indices, presented in Table 7 A.
This is equivalent to increasing the length and depth of the truss by a factor of 10
(i.e. , £ =10(30)= 300, and h = 10 (15) = 150) while the loads on the truss remain
unchanged. It should be noted that increasing the loads on the truss by a hundred -
fold would result in the original load indices and in cross sections in titanium which
are ten times those indicated in Table 9A.

The design of the cross sections of the tension members
would be identical to the original structure (Table 5) since the scaling factor does not
change the magnitude of the loads in the members.

The design of the compression members presented in
Tables 8B and 9B illustrates the conclusion stated above. The designs are lighter
in titanium for the load condition 800°F (which still designs the members) but heavier
for the load conditions at 900°F and 1000°F. The weight ratios are presented in Table

8C and are in excellent agreement with the p/(ER):S/5 ratio,
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TABLE 8B - STRESSES AND WEIGHTS

Member
Material U2 - U1 U2 - U3 U1 - L1 U2 - L2
Titanium(p = . 160)

Min, wt. (D) ) 0. 293 0.075 0.073 0.061
800° F o-/o-o(Fig. 6{ )) 5. 29 3,02 7.32 6. 81

L =5000 o =g(o/o) | 20,500 15,100 36, 600 34,000

A=rPly__ 6. 80 3. 02 1.23 1.10
W=Ap 0.483 0.197 0.176
900° F G'/O‘O(Fig. 6(2)) 4.35 2. 49 6. 02 5.59
o, =5200 o =0 (s/c) | 22,600 12,950 31,300 29,100
A=rP/g,_ 6.76 2. 99 1.22 1.10
W=Ap 1.08 0.479 0.195 0.175
1000°F o/ O'O(Fig. 6(2)) 3. 67 2.10 5.08 4.72
= = 4
0 =5280 g .= o (o/c) | 19,300 11,000 26,700 24,800
A=rP/o,_ 6.54 2.89 1.18 1.06
W=Ap 1.05 0.463 0.189 0.169
17-TPH St. Steel (p = . 276)

Min, wt. (D . 0.414 0.105 0.104 0.086
800°F o/o, (Fig. 6@) T 4.98 2.85 6.70 6.41
o, =9000 o =0 (s/a) | 44,800 25,600 60,300 57,700

A=rP/g__ 4.01 1.78 0. 746 0. 650

W=Ap 1,11 0.491 0. 180
900°F a'/a'o(Fig. 6(2)) 4.61 2.64 6.39 5.93
0, = 8800 o =0 (o/o) | 40,600 23,200 56, 200 52, 200

A=rP/g 3.77 1.67 0.681 0.610

W=Ap°r 1.04 0.461 0.188 0.168
1000°F c‘/a‘o((Fig 6)(2)) 4.29 2.45 5. 94 5. 52
0, =8200 o, =g (o/c) | 35,200 20,100 48,700 45,300

A=rP/g 3.58 1.59 0. 646 0.580

W=Ap 0.988 0.438 0.178 0.160
()  Table 8A; (2) Py =0.01P,

C=J Design weight for each material (maximum)

[E=3 Optimum design weight for both materials (minimax)
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TABLE 8C - RATIOS OF W .. ANIUM/WST. T
Theoretical
Temp. Weight Ratios of Members Ratios
Pt (Egs\%/®
Upy-U; | Up-TUg Up-Ly | Up-L, | Ps \ Egr
800 F 0.983 0.984 0. 955% 0.982 0.983
900 F 1.04 1.04 1.04 1.04 1.025
1000 F 1.06 1.06 1.06 1.06 1. 067

* The minimum weight design stress for this member in 17-7PH Steel is slightly
in the plastic range. This reduces the ratio below that of the theoritical value.
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B. WING PORTION

A design of a wing section is appropriate since aerospace vehicles still require
wings for aerodynamic operations during exit and reentry into an atmosphere.

1, STRUCTURE

A typical type of wing construction for an aerospace vehicle is shown in
Figure 24 in which great care has been exercised to minimize thermal stresses. Dif-

ferential expansion between the covers is accommodated by expansion strips (Sec. A-A).

The vertical airloads are carried by beam action in the corrugated covers to the cor-
rugated spar webs by means of vertical strips. The shear loads due to torsion of the
wing box are carried to the truss ribs by a single pin tie in each cover. The depth of
the continuous spar caps and truss members are kept to a minimum to reduce any
stresses due to thermal gradients. The spar webs are corrugated to permit differ-
ential expansions between the webs and the covers or spar caps.

Typical elements of each type of construction will be designed for two
kinds of aerospace missions considering several feasible materials.

2. UNIT SOLUTIONS

An analysis of the structure shown in Figure 24 for a pressure of 1 psf
on the bottom cover has been performed and the results are summarized below.

a. Bending Moment in Covers

M per psf = 1.39 in. lb/in.
b. Spar No. 1
The shear load (Q) acting upon the spar increases linearly while
the moment (M) increases parabolically. Since the beam is of constant depth (assumed
to be 22 inches), the load (P) in the spar caps also increases parabolically. The max-
imum values occur at the root and are noted as follows:
Q = 20.6 lb. per psf
M= 1800 in. lb. per psf
P = 81.9 1b. per psf
c. Rib Truss

The loads in the truss members were computed for a cover load
of 1 psf and are shown in the sketch on page 97.
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3. ENVIRONMENTAL HISTORY

In order to provide a reasonably representative spectrum of flight ex-
periences upon which to base the design technique demonstration, two orbital mission
profiles have been delineated. Each profile defines a possible history of exit from and
reentry to the sensible atmosphere but is significantly different during both exit and
reentry phases in respect to the speed-altitude-time rclationship. Basically, the flight
patterns assumed are compatible with the concept of a vehicle having aerodynamic lift
and maneuver capabilities derived from highly swept wing surfaces. The exit profiles
adopted show the differences in mechanical and heat loading experiences which can
exist whea the speed-altitude histories are such that in one case relatively high altitude
is attained at relatively low speed (Mission 2) by the use of aerodynamic lift, whereas,
in the other case (Mission 1) the speed-altitude history is characterized by significantly
higher speed at any altitude. For the reentry phase, Mission 2 represents a global
range, lift modulated, flight path requiring approximately a two hour time lapse, where-
as Mission 1 is based upon a constant high angle of attack equilibrium glide flight path
for which the time from reentry initiation is one hour.

It has to be emphasized that the mission experiences described herein
are not representative of maximum severity flight conditions which could be encountered
in mission abort circumstances, extreme short range reentries, or reentries requiring
pullup and/or out of plane maneuvers. However, the two hypothetical profiles are
deemed entirely adequate as a spectrum of inputs for structural design procedure
demonstration.

The equilibrium temperatures and pressures acting in a region remote
from the leading edge were calculated from the appropriate speed, altitude and angle
of attack parameters based upon flat plate, turbulent flow theory. Temperature dis-
tributions on a continuous time base were then estimated for an analogous uninsulated
thermodynamic structure representative of the corrugated covers, spars, and truss
iribs. To a certain extent the results obtained from a direct electric analog computer
for an essentially similar structure subjected to the reentry environment of Mission 2
were employed. The analog set-up was based upon a heat energy exchange in which
the aerodynamic heat input is continuously balanced by conduction, absorption, and
radiation actions by the structural elements. The technique and thermodynamic equa-
tions used are fully described in Reference 22.

ASD-TDR-62-763 a7




The results of this study can then be represented on graphs which depict
the pressure and temperature histories of each element. A conservative step history,
in which the temperature and pressure is never less than the actual, is then employed
to design the structure with a finite number of loading conditions. The time intervals
are selected so as to be large in regions of temperature and load which will not signifi-
cantly affect the design and to be small in regions_of significant temperature or load.
The technique is illustrated for Mission 1 in Figures 25a and 25b. The design loading
conditions for Missions 1 and 2 are summarized in Tables 10A and 10B for the lower
cover and the lower and upper cap materials. The temperature of the upper cap was
estimated to be approximately 85 percent of the temperature of the lower cap.

The value of r represents the ratio of the load (or stress) in a given
time interval to the load (or stress) in the interval which would determine the short-
time strength. This is determined by examining the lpad and temperature intervals
and the available materials (chosen so that they do not depreciate appreciably in the
required thermal environment). The reference condition (r = 1) for Mission 1 is
characterized by a very high loading at a moderate temperature (exit). Relatively
low loadings exist at the higher temperatures (reentry). The reference condition for
Mission 2 is characterized by a relatively high load at a relatively high temperature
during reentry.

4. MATERIAL SELECTION

A survey of the temperature and the load ratios on the lower covers
and caps indicated that the refractory materials (TZM molybdenum and FS-85 colum-
bium) would be satisfactory but that the superalloys (Rene 41, etc.) would be un-
satisfactory because of poor creep strength at the exposure temperatures Prelimi-
nary calculations, employing Figure 3b, indicated that a René 41 lower cap designed
for extremely low stresses would still creep excessively with each mission. Thus the
design of the lower cap in Rene 41 would be much heavier than a design in TZM or
FS-85.

The refractory alloys TZM and FS-85 did not indicate any significant
tendency to creep even when the maximum stress became two-thirds of the ultimate
stress at the designing temperature (Figure 26). The creep was calculated with the
aid of Figures 2 and 3b by assuming a maximum stress; computing the stress, creep
rate, and incremental creep strains for each time interval; and accumulating these
creep 'strains to obtain the total creep strain.

TZM, FS-85 or René 41 can be employed in the upper caps even though
the creep of the Rene 41 is not insignificant. A plot of the creep per mission (of an
upper cap of René 41) as a ratio of the maximum stress to the ultimate stress is shown
in Figure 27. The design of the upper spar cap in René 41 indicates that the minimum
weight design for 100 missions is determined by the stability (F.S. = 1.5) of the cap
while it can be determined by the creep allowable (F.S. = 1.1) for 200 missions.

The materials considered do not exhaust the possibilities; although they

represent the extent of material data readily available to the author and serve to illus-
trate the design technique.
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TABLE 10A - TEMPERATURE-TIME HISTORY FOR MISSION 1

INC;{E%%NT TEMPERATURE PRESSURE
Bottom Cover Bottom Cap Top Cap q r
Hrs, °F °F °F - psf
EXIT
. 333 580 500 425 199 . 826
117 1175 1050 893 180 . 747
. 0167 1175 1050 893 241 1. 000
. 075 1340 1240 i054 241 1, 000
. 0583 1540 1320 1122 128 . 531
. 0833 1000 840 714 = -
REENTRY
. 333 1295 1200 1020 3 . 0124
.233 1760 1700 1445 21 . 0871
. 0687 2010 1890 1607 21 . 0871
. 0333 2010 1950 1658 25 104
. 0333 2010 1950 1658 29 .120
. 0333 1800 1720 1462 38 .158
. 0667 1800 1720 1462 4 .183
. 0667 1920 1800 1530 48 .199
.133 1800 1700 1445 51 212

ASD-TDR-62-763

101




TABLE 10B - TEMPERATURE-LOAD HISTORY FOR MISSION 2

TIME TEMPERATURE PRESSURE
INCREMENT
Bottom Cover Bottom Cap Top Cap q r
Hrs. °F °F °F psf
EXIT
. 067 400 400 340 100 1. 053
. 067 1270 960 816 100 1, 053
. 067 1770 1610 1369 95 1. 000
. 067 1770 1610 1369 76 .8
. 067 1770 1610 1369 58 .611
. 067 1770 1610 1369 40 .421
.133 1640 1610 1369 27 .284
.133 1560 1510 1284 - -
. 067 1470 1420 1207 - -
. 067 1100 1100 935 - -
. 088 400 400 340 - -
REENTRY
167 115 115 98 - -
o1l 1160 750 638 2.7 . 0284
. 083 830 750 638 2.7 . 0284
.183 925 830 706 2,7 . 0284
.183 1055 1020 867 2.7 . 0284
.183 1315 1230 1046 5.4 . 0568
.183 1530 1450 1233 5.4 . 0568
.183 1835 1670 1420 11.0 .116
. 85 1965 1780 1513 43,0 .453
.183 1660 1530 1301 59.9 .631
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5. DESIGN OF STRUCTURAL COMPONENTS FOR MISSION 1
a.  Lower Cover

1). Design Condition (Figure 24, Section B-B)

T 1340°F

M

241 (1.39) = 336 in. Ib/in. (Limit Load)

]

504 in. 1b/in. (Ultimate Load)

2). Material Data (Figures 1b and 26)

(1) (2) (3) 4) (5) (6) (7 8) 9)
Mat'l Fa %o 1ogB | €/ dopt| “opt | u o =0 /4.55%
P (Fig. 1b) | (Fig. 1b)|(Fig. )| (Fig. 20) |(6) x (4)|(Fig. 26)

TZM | .369 | 39,000,000 | 7700 | -3.1 7.5 |57,800 | 89, 000 19, 600
Fs-85 | .380 | 19,000,000 | 3200 | -6.1 13.5 |43,200 | 57, 000 12,500

@ 6t .82

* 4,55 =—" = =32 [Ref. Eq. (A-8)]
ag, 18

3). Design Configuration

As indicated in the Appendix, the single face corrugation
with the face in compression (8 = 90°, n=,815, f= 4t) is more efficient than a double
faced corrugation, especially if the optimum stress is below the ultimate stress of the
material. In addition, the double face corrugations will result in large deflections and
in a thinner and smaller web which may become critical for the shear load which was
not considered. The corrugation with no faces would usually be most efficient since
aopt is generally greater than .37 L (see Appendix) but cannot be employed since the

cover must have a smooth exterior. It should be noted, however, that a single faced corru-
gation can resist only about 9 percent of the moment in the other direction [Eq. (A-lO)] 5

The design of single face corrugations is simplified in the
fact that the compressive stress is usually elastic which results in linear design equa-
tions (fp = o'/a'o).

4), Design

From Eq. (79a) and (79b) we have
ASD-TDR-62-763 105




e £p°-o 71 3/2
o
3 A 1/2 o 1/2
t A t A
where a6 = .18 W
a, = .710 } (see Appendix )
a, = 6.225 ‘
2 2
and Ct Sy and is assumed equal to-ﬂ ~ 21.72
12(1- ") 12(1-y")

The value of k = 24 corresponds to a plate in pure bending. This
is probably conservative for a plate in bending and tension (for which no stability con-
stants could be found). Values of k for plates in bending and compression can be found
in various texts (e.g., Table 36, Reference 1; Table 34, Reference 2; etc.).

Substituting in Eqs. (79a) and (79b) results in the following design

for TZM:
d = 1,168
t = .00562
A= a 1 t=.035
and W= Ap = .0129
The deflection of the beam can be obtained from the following
equation:
5 o 12
A= — — == = ,398 (at ultimate load) (87a)
48 E A a 6d

If the deflection is too large then the stress required to result
in an acceptable deflection at ultimate load can be obtained by introducing Eq. (79a)
into Eq. (87a) and by assuming that the compressive stress is elastic, Solving for the
stress results in

1/2 E5/4 “63/2 4/17

542 a,- 1/2

48 AM

(87b)
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If the design has been completed and the deflection must be
changed, then the following equations can be employed:

o! =cr%’) T (88a)

-3/7

a = d%’) ' (88b)

t! = t(%,)Z/7 ‘ (88c)
A - A(—AEI-) 7 (88d)
and w! = w(%l) M (88e)

where the primed terms refer to the desired deflection and geometry.

The design for FS-85 columbium utilizing Eqs. (79a) and (79D),

results in
d = 1,361
t = .0075
A= ,046
and W= ,0175 »,0129

Thus TZM is more efficient. This is to be expected since TZM has a higher modulus
and allowable stress coupled with a lower density.

It is interesting to compare designs of the cover as a double face
or single face corrugation in TZM, Utilizing the optimum stress of 57,800 psi corre-
sponding to a 0/0¢ of 7.5, results in plastic stresses (%= 9,0 # 7.5) and the following
double face corrugation design:

d = ,454<1,168

t = .0041 <,00562

A = 10,225 (,0041) =, 042> ,035
and A= 1,086 >,398
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Thus the double face corrugations weigh and deflect more than the single face. Space
requirements or significant negative moments may, however, favor the double face cor-
rugations,

b. Corrugated Spar Web (Figure 24, Section C-C)

1). Design Condition

T

1240°F (Highest Temp. at Lower End)

4960# limit

Q = 20.6 (241)

7450# ultimate

2). Material Data (Figures 1b and 26)

!
Mat'l E, oo log B oy
TZM 40, 300, 000 7950 -3.2 91, 000
FS-85 19, 400, 000 3600 - 6.4 61, 000

3). Design Configuration

A square corrugation (n= 1, 8 = 90°) was employed be-
cause of fabrication considerations. From Eqgs. (46a through e) the following geometric
constants are obtained:

aj = 2
Q40 = .333
acy = . 083
Ggo =1.000
Q9o = . 765
a, = f/t=0
b = 22 in,
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TG py

e —

2
T

and Ct = ——— (5.34) = 4.83 (Eq. 735 of Reference 2)
12(1- %)
4). Design
From Eq. (44b) we have
. 7/8
= Q V3 E,CV/3Y ‘B 18 o /8
P== -7/4 b fs “% s
b°c a_ a,sin '@ % %
o 879

Substituting the appropriate values for TZM molybdenum gives
P = 49.3
which results in

a'/a'o = 7.8 (Figure 11)

and 63 = 8.4 (Figure 12)

This indicates that the minimum weight design will result in a slightly plastic stress.
As a check,

/8 (7.8) = 50 vs. 49.3 = P (slightly high but satisfactory)

(8.4)"
.. o= 7.8(7950) = 62,000

From Eqs. (48a) we obtain

7/8
e.s %o
t=>b aq (———) = ,0093
EACt/'B"
As a check,
ot = 576 vs. 582 =-¥-—
EACt\/:; 22
d =t| —— = ,681
3
o°s8
‘A = alot = ,0186
W= Ap = .00687
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Similarly, for FS-85 columbium:
P = 115 (Eq. 44b)

0'/0'0 = 12.6  (Figure 11)
ES = 12.6 (Figure 12)

The design stress is elastic.

15/8 -

As a check, (12.6) 115vs 115=P

The details of the design are

o = 45,200
t = .0130 (Eq. 48a)
As a check, ot = 586 vs. 582 = 9-b£

d = .770 (Eq. 48b)
A = .026
W = .00988 >,00687

TZM is more efficient.

If the area had to be modified by the factor x = a"/o- , then in order to

maintain the thickness ratio relationship of Eq. (43) [t

t = xt
d = x-3/7d
\ = xA
W'=xW
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(89a)

(89b)
(89c)

(89d)
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C.

in Paragraph b. 2) above.

ditions, we obtain

b = 22

al = 1.333

ag = ,167

Ch = ,388
P =
o/o
EP
3

ASD-TDR-62-763

Vertical Truss Member (U 4" L n Fig. 24)

1).

2).

3).

4).

P

1

Design Conditions

T

1240°F (Highest Temperature at Lower End)

P 3090# Limit

4630# Ultimate

12. 80 (241)

Material Data

The material properties are the same as those tabulated

Design Configuration

A bent up channel (t = h) was employed because of ease of
procurement and fabrication. The column was assumed to be able to buckle only in the
plane of the truss because of the out-of-plane support supplied by the spar. The ends

were assumed to be pinned. From Table 1, and the given geometry and boundary con-

C, = .362

C =72

%3
C,.=¢C = 1,23
d c al
w = g(t/h)d = .167d

Design

From Eq. (1la) we obtain

E \¥2/4
(—A) (—3-)0 vc. = 160
o 2 c t

o a

1
From Figures 4, 5 and 6 we obtain

8.6 (Figure 6) and o = 68,500
12. 0 (Figure 5)

24.0 (Figure 4)
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As a check, — & & /2 _ 719 vs. 760= P
7 cp

The value of fc is difficult to read accurately in Figure 4 because log 8 is not a

negative integer. A better estimate of the value of § o is obtained from £ c -

P
—i5 - 25.4. A readjustment of o/ and fp is not indicated because

o
- (tp)

of the small change in € o

Employing Eqgs. (3), (13d), (11c), and (7a) results in
d = 1.41 (Eq. 3)
w= .235 (Eq. 13d)

t

.0361 (Eq. 1lc)

4630 _ o/

=a = = = N
As a check, A ldt (1.333) (1.41) (.0361) .0679 vs, .0676 8. 6(7950)

W= Ap = .0025
Similarly, for FS-85 columbium
P = 1850 (Eq. 1la)

a'/a'o = 15.3 (Figure 6) and o = 55, 200

1 Ep = 18 (Figure 5)

I tc = 28 (Figure 4)

|

I

r -—

E Asacheck, T ¢ ¢ 2 - 1820 vs, 1850 = P
o c'p

(o]

d = 1.43 (Eq. 3)

w= .238 (Eq. 13d)

t = .0435 (Eq. 1llc)

ASD-TDR-62-763 112




4630
.0831 ve. .0840 = m = Plo

As a check, A= Gldt

.00316 > ,0025

W=Ap
TZM is more efficient.
d. Spar Cap (Figure 24, Section A-A; Note: Cap of Spar #1 is a single channel)

1). Design Condition

T = 1054°F
PRoot = (81.9) (241) = 19, 650# limit
= 29, 500# ultimate

where the load P increases parabolically due to a uniform load on the beam.

2). Material Data (Figures 1b and 26)

Mat'l Ea % log B Ty
TZM 42,500, 000 8000 - 3.4 96, 000
Rene! 41 24,500, 000 5600 -9.4 167, 000

3). Design Configuration

A shallow bent-up channel was employed because of ease of pro-
curement and fabrication and also to minimize thermal stresses due to thermal gradients.
To illustrate the design technique it was decided to design the spar caps so they would
. not have any tendency to buckle in a plane parallel to the covers. The spar caps can
deflect to a limited degree in this direction before introducing any significant loads in
the corrugation webs and covers. Excessive lateral deflections would introduce loads
which were not considered in the design of the corrugations. The spar cap cannot
buckle in the plane of the web because of the planar stiffness of the web,

The geometry constants are

b = 96 in.
a, = 1.333
a, = . 167
Ch = ,388
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t
cC = 217.3 .

c Table 14 of Reference 1 for a fixed-free column of
constant cross section with a parabolically increas-
ing load.

a
C,=0C (—3-) = 3.42
d cla 1

w = z(t/h)d = .167d
For TZM,
P = 75 (Eq. 1la)

o/c = 9.1 (Figure 6)
'3 =23.5 (Figure 4)

{p =12.5 (Figure 5)

As a check, (o/7) fc €p1/2 = 757vs. 755 = P

o= (/oc)oc = 72800
‘0 "o
d= 3.45 _ (Eq. 3)
t= .088 (Eq. 1llc)
29,500
h k = = ., L o — —'_ =
As a check, A aldt 405 vs, .405 72,800 P/o

W= ,1491
For René 41,

P = 309 (Eq. 1la)

. »
— = £, =& = 14.6 elastic (Figures 4, 5, and 6)
0'0 C p
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As a check, -2—

€c Epl/z = (14.6)5/2

= 809 vs. 809 =P

29,500 _

=%1800 - F/°

o
o
o = 81,800
d = 3.00 (Eq. 3)
w= .50 (Eq. 13d)
t = .091 (Eq. 11c)
Asacheck A = a1 dt = ,364 vs, 361
W= Ap = .1043 < ,1491

René 41 is more efficient for-a single mission.

An analysis of the deterioration and creep data (Figures 3 and 27)
of René 41 results in the. following allowables:

Number of Missions

1 100 200

(. 0894 hr. at 1658°F)%| (8.94 hrs. at 1658°F)¢$| (17.88 hrs. at 1658°F)t
Short-Time #
Strength - psi i
(F.S. = 1.5) 111, 500 86, 400 82, 500
Creep Strength
(O £.01)-psi
(F.S. =1.1) - 91, 500** 67,600 | **
Stability - psi ~ -~
(F.S. =1.5) 81, 800 81, 800 81, 800

C—] Design condition

* It is assumed that the deterioration does not cause the stability stress to become
" significantly plastic.

$+ The environmental history of each miss

ion (Table 10A) is equivalent to . 0894

hour at 1658°F. This is computed by converting each interval to an equivalent
time at the reference temperature which would result in the same Larson-
Miller Parameter. The deterioration is then obtained from Figure 3a.

*k
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(167,000/F. S.) (O/Uu) of Figure 27.
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If the spar cap is to be designed for 100 missions or less, then
the design described above is the most efficient. For 200 missions, however, the area
must be increased by the ratio

_ 81,800 _
~ 67,600 ot

For a column, the maintenance of thickness ratios is defined by
Eqgs. (86a, b, and c) and results in

d = x"% =310 (90a)
L T (90b)
A = xA=0.440 (90c)
w/ = xw=.1261 <.1491 (90d)

Rene' 41 is still the more efficient material for 200 missions.
6. DESIGN OF STRUCTURAL COMPONENTS FOR MISSION 2
Mission 2 can be analyzed in a similar manner. 1t is obvious, however,
that the TZM molybdenum will be more efficient than FS-85 for the lower structural
elements (because the modulus and strength is higher and the density is lower than

FS-85) while TZM and René 41 should be considered for the upper structural elements.

a, Lower Cover in TZM

For T = 1770°F
M = (1.5) (95) (139) = 198 in. #/in. ultimate

E

33, 000, 000 (Figure 1b)

A
o, = 6, 700 (Figure 1b)
logB= -3.0 (Figure 1b)
o = 77, 000 (Figure 26)
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For a single face corrugation (8 = 90°, n= ,815, and f = 4t), we obtain from the
appropriate equations

o, = 77,000/4.55 = 16,900
d = .78  (Eq. 79a)
t = .00378 (Eq. 79b)
A = .606 (Eq. 87a)

If we wish to restrict our deflection at ultimate load to a maximum of .4 inch, we
modify our design by the use of Eqs. (88).

; 4 4/7
o = (.—é—%-) 16,900 = 13,350
d = (.661)'3/ T .85 = .936
t/ = (.661)2/ T 00378 = .00366 ‘

b. Corrugation Web in TZM

For T = 1610°F
Q = (1.5) (95) (20.6) = 2940# ultimate
EA = 35, 000, 000 (Figure 1b)
o, = 7200 (Figure 1b)
logB = -3.0 (Figure 1b)
o, = 81, 0600 (Figure 26)

we obtain for a corrugated wéb‘"( 6 =-90°, n=1.0).

P = 20.7 (Eq. 44b)
o q
-5 © €S= 5. 05 (Figures 11 and 12)
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€78 - (5.05'/% - 20.7vs 207 = T

o
As a cheek, o5 s

£ o 7/8
S

t =ba © = .0064 (Eq. 48a)

9 ————
EA Ct,/3

Qv
b

As a check, ot = 232vs, 231 =

EActﬁ 1/2
d = t( = ,570 (Eq. 48b)

% Es
c. Vertical Truss Member U4 - L4 in TZM
For T = 1610°F
P = (1.5) (95) (12.80) = 1825# ultimate

and the same material properties reported in b above, we obtained for a bent-up
channel

P = 311 (Eq. 11a)
. = 1.5 (Figure 6)
o
o
o = 54,000
fc = 14 (Figure 4)
‘fp = 9.3 (Figure 5)
1/2 =
As a check, (cr/a-o) Ec €p = 319vs, 311 = P

with resulting detail geometry
3t 1/2

d = b( C" E" > = 1.06 (Eq. 3)
dA
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1/2

£ 9,
t = d(cpz ) = 0243 (Eq. 1lc)
t A
- 1825
= Q = il S
As a check, A 0 td . 0344 vs. . 0336 54, 000 P/o
modifying the value of fc results in a better agreement:
/(311 _
Ec = (319) 14 = 13.6
!
d = 1.045 (Eq. 3)
t! = 0239 (Eq. 11c)
and A =a d'f= 0334 vs. .0336 = P/o
d. Spar Cap
For T = 1370°F
P = (1.5) (81.9) (95) = 11,680# ultimate

and the following material properties (Figures 1b and 26).

]
Mat'l EA o, log B L
TZM 39, 000, 000 7600 -3.1 87, 000
Rend' 41 20, 500, 000 6500 - 6.5 140, 000
For TZM
P = 286 (Eq. 1la)
—‘;— = 7.5 (Figure 6)
(o]
€c = 13.0 (Figure 4)
fp = 9,0 (Figure 5)

ASD-TDR--62-763 119




1/2 -
As a check, (o-/c-o) {c Ep / = 292 vs. 286 = P
o = 57,000
d = 2.62 (Eq. 3)
t = .0576 (Eq. 11c)
_ _ _ 11,680 _
As acheck, A = aldt = ,202vs. .205 = 57000 - P/o
W= Ap = .0755
For René 41
P = 169 (Eq. 11a)
> = £, = Ep = 7.8 (Figures 4, 5, and 6)
(o]
As acheck, (o/c )€ epl/ 4 o (7.8)5/ 2 . 169vs 169 = P
o = 50,600
d = 2,58 (Eq. 3)
t = .0674 (Eq. 11c)
- _ _ 11,680 _
Asacheck, A =a . dt .232 vs, .231 50,600 P/

w

Ap = .0668 < .0755 (René 41 more efficient for one mission).

An analysis of the deterioration and creep data (Figures 3 and 27) of
Rene' 41 results in the following allowables.
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| Number of Missions

1 100 200
b 4
(.571hr. at 1513°F) | (57.1 hrs. at 1513°F)¢ (114.2 hrs. at 1513°F;‘:

Short-Time ¥
Strength - psi .
(F.S.= 1.5) 93, 500 83,500 80, 500

Creep Strength
(ec < .01)-psi

%
(F.S.=1.1) = 56, 0002 43, 200

%*
Stability 50, 600 50,600 50,600

3 Design Condition
¥ The environmental history of each mission (Table 10B) is equivalent to .571

hour at 1513°F. This is computed by converting each interval to an equivalent
time at the reference temperature which would result in the same Larson-Miller

Parameter. The deterioration is then obtained from Figure 3a.

For 100 missions or less, Renc 41 is more efficient, For 200 missions the
- . 50,600\ _

TZM becomes more efficient since . 0668 (m) =

a (140,000/F.S.) (O/Cru) of Figure 27.

.0784 > .0755.
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APPENDIX

A. OPTIMUM GEOMETRY FOR CORRUGATIONS

The solution for the minimum weight design requires expressing the geometric
properties.of the cross section in terms of the web thickness and depth. Section II C2
defined the geometric properties of the cross section in terms of the corrugation angle
(6) and the flat ratio (n) as well as the face thickness (f), the web thickness (t), and
depth (d). The determination of the variables n and 8 are often dictated by fabrication
requirements (available dies, necessary bend radii and joining flats). In these cases
it is a relatively simple matter to compute the geometric properties in terms of the web
thickness and depth Keqs. (26), (31), (32), (46), (47)and (51)]by utilizing the requirement that
the faces buckle simultaneously with the web. If the selection of § and/or n is left to
the discretion of the designer, he has to employ additional relationships to determine
the optimum area distribution. Panels in compression and shear are considered sep-
arately from corrugations in bending.

B. CORRUGATED PANELS IN COMPRESSION OR SHEAR

For corrugations in compression or shear the value of n is usually made as
small as possible consistent with fabrication requirements, even though the design
equations would indicate that a large n is more efficient. This is done primarily to
satisfy the assumptions that the flats are more stable than the webs and that the
structure is sufficiently stiff in transverse shear to permit ignoring the shear energy
of distortion. The applicability of the design equations is based upon the hypothesis
that the corrugations can act in a manner similar to the sandwich core, but with a
relatively large shear stiffness. Thus the corrugations must have an adequate axial
stiffness to force nodes in the faces and a shear stiffness which will ensure that the
value of

/P of Eq. (59)

crm’ ~ crs
n sinf@ + cos 8\/d ¢
[approx1mately 2(1+v)Ka 4o (_STG_— )(F) for double faced

corruga.tions] would be insignificant. Since the axial and shear stiffnesses of the
corrugations decrease with increasing n and decreasing g, it is questionable whether
the design equations presented in this report are satisfactory for large n or small 8.
Additional studies are recommended to derive more general minimum weight design
procedures which will not limit the range of variations in the geometric parameters.

Assuming that n should be made as small as possible, it is still necessary to
establish the value of 8 which will minimize the weight for given values of n. The
technique employed is to express the weight of the corrugated structures with one,
two, or no faces as a function of n, § , and the stability parameter (¢). If the weight
is to be a minimum, then the function must be stationary. The stability parameter,
or the equivalent stability ratio (d/b), should be stationary in order to maximize the
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design stress (which minimizes the weight). If nis given, then the variation of the
weight is proportional to the partial derivative of the weight function with respect to

6 times the variation in 8, i.e., .
-1 !
3W = 30 58 (A-1) .

Thus the weight of the structure would be a minimum when the variation of the
weight with respect to the angle became stationary. In the cases investigated, the
weight is directly proportional to a power of the thickness ratio and some complex
function of n and§ . Plotting this function for given values of n and variable § would
indicate the value of @ which will minimize the weight. The results of such an in-
vestigation are summarized in Figures A-1a and b and A-2a and b which present the
optimum fabrication angle (g) as a function of the flat ratio n for corrugation panels
with one, two, or no faces in edge compression or shear and with relative edge fixity
values of ¥/ C /C = lor 1.14. The value o‘i«/Ct/Cf = 1.14 was obtained from
Figure 5a of Reference 20, for the value of (tf/bf)/(t /b Q) = 1/[2 cos @ (t, /t,) ]~1 14

which indicated an equal stability of the corrugation and faces where the end fixities
were calculated from the moment distribution at the junctions.

The technique for obtaining the weight function is indicated for a double faced
corrugation in compression and summarized for the shear load and for the other types
of configurations in compression or shear.

The weight per inch of structure is

= Abp = a, thp (A-2a)

Dividing by b2p results in a nondimensional equation

S EMORENOIC e
P

Equation (27c) can be manipulated to express t/d as a function of (d/b), i.e.,

(o5

()

4 5

L.
C a, sinze

ASD-TDR-62-763 A-2




90°

SINGLE
FACE

© — -
e DOUBLE FACE . ]

80°

75°

700

OPTIMUM FABRICATION ANGLE - 8

65°

o | | | |
0% 2 4 6 .8 1.0

FLAT RATIO-n

Figure A-la, Optimum Fabrication Angle for Corrugation Panels in Compression (~/ Ct/ Cf =1 )
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Figure A-1h. Optimum Fabrication Angle for Corrugation Pancls in Compression (v Ct/Cf =1.14) :
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Figure A-2a. Optimum Fabrication Angle for Corrugation Panels in Shea.r( /Ct/cf = 1)
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Figure A-2b. Optimum Fabrication Angle for Corrugation Panels in Shear ( Ct/Cf =1.14 )
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Substituting Eq. (A-2c) into Eq. (A-2b) results in

™ / 11/2
W alK./a4a5+as) d Z

T 2 'y (A-2d)

1 1/2

a Jaa. +a /

. 1 475 5 w : .
Thus a plot of 5 = =17z 5 as a function of 6 for
sin © @ - b “p K 7(d/b)

given values of n will indicate the value of § which would minimize W.

Similarly, for single-face or no-face corrugations in compression, we obtain,
with the aid of Eq. (34),

W (@)(d)"

-_— = (A-3a)
b2 St \ sin2g /\P
w V%% .
and ) 3 - T3 . (A-3b)
b p (K/Ct) (d/b) sin” 8

For single-face or no-face corrugations in shear we obtain, with the aid of
Eq. (43),

7/3

w a ( d )
—_— = = (A-4a)
bzp (a )473 b
9
and
a
w 1
—_—7 = ———m (A-4b)
2 7/3
b% (d/b) / (a9)4/3
Similarly, for double-face corrugations in shear we obtain with the aid of
Eq. (50),
a 2
W 1/d
2 " a (‘b‘) (A-5a)
b p 9
and
A (A-5b)
b% (d/b)> ag
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C. CORRUGATED BEAMS

In order to maximize the section modu'lus (I/c), it is desirable to place as
much material as possible at the extreme fibers. This is done most efficiently with
a corrugation angle of 8 = 90°. A smaller angle may be more efficient, however,
for corrugations with no faces. The smaller angle reduces the flat and web area
per unit length, which is desirable for lightly loaded structures. This reduced area
is obtained at the expense of reducing the transverse shear area (which was ignored
in the design). Corrugations with faces tend to be most efficient at the maximum
angle of 90° since smaller angles require thicker faces with larger areas. Addi-
tional studies inthisarea of investigation are recommended.

To increase the section modulus, the depth and flat ratio should be made as
large as possible consistent with the requirements of stability. The optimum value
of n can be determined by making the elements equally stable. It should be noted
that the design criteria for beams assumed that the effects of transverse shear
stresses were negligible. This was done because it would be difficult to assess the
effect of the transverse shear stresses since they are not a fixed ratio of the bend~
ing stresses.

For corrugations with no faces, the value of n is obtained by equating the
stability of the flat to the stability of the web.

2 2

t t
e (nd) = C (d) (A-6a)
and
1/2
n = (Ch/ct) (A-6b)
IfCh/Ct = 3.62/21.72 = 1/6, then
n=0.408 (A-6c)

For corrugation with one or two faces, the values of (f/t) and n are obtained
by equating the stability of the flat to the stability of the face and the web.

Assuming that the joining of the flat to the face results in a node, we obtain for
equal stability of flat and face

2 2
Cs (2_;'1) = Sy (ndt/Z) (A-7a)
R (Ch/chl/ 2 (A-Tb)

= 4 if the end fixities of the face and flat panels are assumed equal (Cf= C
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Multiple attachments of face to corrugation flat or beads in the face can in-
crease the stability of the face and is equivalent to increasing the value of Cf.

Equal stability of flat and web results in

2 2
Ch(n;/z) - Ct(%)
)1/2

n = 2( ch/ct

0. 815, lfch/Ct = 1/6

Stiffening of the web (e.g., beads) or flat (e.g., multiple attachments) will increase
the values of Ct or Ch'

‘ The above values of n anf f/t result in the following geometric properties for
corrugation beams:

For no faces, Eq. (32) with n = 0,408 becomes

a, = 3.40 (A-8a)
a,, = 0.452 ~ (A-8b)
T agy = 0.50 (A-8c)

For one face, Eq. (31) with n = 0, 815 and f/t = 4 becomes

@, = 6.225 (A-8d)
a = ’ -

41 0.710 (A-8¢)
061 = 0.82 (tension) or 0. 18 (compression) (A-8%)

For two faces, Eq. (26) with n = 0.815 and £/t = 4 becomes

a,, = 10.225 (A-83)
a,, = 2.352 (A-8h)

= = _Qi
@, = 0.50 (A-8i)
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Manipulation of Eq. (74a), (79a), and (79b) and (79d) results in the following
expression for the weight of the corrugation in terms of the gecmetric and material
factors, the applied moment, and the design stress:

1/2
— <.‘_zi)1/2 (i _epi.) (A-9a)
o E
bp 1 04 Ct EA

If the corrugations are designed for the same compressive stress, then the
one-face corrugation in compression would be the most cfficient since

a 1/2
al( a—6> = 3.15 (one face) < 3.58 (no face) ¢ 4. 70 (two faces) (A-9b)
4

In general, however, the design compressive stress for the no-face and two-face cor-
rugations is usually higher than that employed for the» one-face corrugation (O'Oc =

> a
2¢ = 1t (61c/°61t
The no-face corrugation can become more cfficient for an elastic design compressive
stress of

o ) = a'lt/4. 55), and the relative efficiencies are not as great.

4

("10" %60/ %0 > 6lc 5 .
%1V %1/%

%61t

times the allowable tensile stress. The double-face corrugation approaches but never
attains the efficiency of the single-face corrugation as the optimum compressive stress
approaches the allowable tensile stress. The higher tensile stress plus the plasticity
of the material recsults in a heavier double corrugation.

The single-face corrugation has, however, a scrious shortcoming. The max-
imum moment that can be resisted with the face in tension (M-) is significantly lower
than the moment with the face in compression (M+). This is because of the higher
compressive stress caused by the larger extreme fiber distance, and because of the
lower stability of the web caused by the larger region of compressive stresses, i.e.,

M- _ %+ Cu _ 0.18 (0.905) (9.5) _
M+ " @, C_ 0.82 (0.905) (29)

0.087 (A-10)

Thus, one-face corrugations are usually more cfficient (lighter and stiffer) than
two-face corrugations provided that the negative moment is relatively small and the
depth is not limited.
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