

Reproduced by the

ARMED SERVICES TECHNICAL INFORMATION AGENCY ARLINGTON HALL STATION ARLINGTON 12, VIRGINIA

NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.

63-1-4

REFORT NO. FGT-2939 DATE: 26 October 1962

MATERIAL STEEL ALUMINUM BRONZE - MPINED GALLANIC STRESS CORROSION OF

17

Fublished and Distributed Under Contract No. AF33(657)-7248

GENERAL DYNAMICS | FORT WORTH

GIIIII

* * -9-64

C 0) N	V	A I	R			PWP 1919-9.
A DIVISION	N OF GENI (FOI	ERAL DYI	NAMICS CORPOR DRTH)				
		الكفرون ورجع					
I		t) (n			REPORT	<u>FUT-2939</u>
MO	DEL	B-5	8			DATE	4-3-62
TES	T No.	50-1	1833		TITLE		
			MATERIA	AL - STEEL, GALVANIC,	ALUMINUM, BRON STRESS CORROSI	NZE - COMBIN ION OF	ED
				CON AF3	TRACT NUMBER 3(600)-41891		
			Tests d	escribed in	this report we	ere conducte	d
i			between	November 7	, 1961 and Febr	ruary 1, 196	2.
PRE	PARFI		EW.	Fuins	GRO	ue. Chemistr	y Section
			E. W. T	urns		Engineer	ing Test Lab.
					REFI	ERENCE: FSG-	529
СНЕ	ECKED	BY:	J. E. H	alkias	APPI	ROVED BY: K.	E Porces
				NO. OF	PAGES19	- d	Twilson
				NO. OF	DIAGRAMS_1	– D.	C. Wilson
					REVISIONS		
NO.	DAT	r ec	BY		CHANGE		PAGES AFFECTED
			<u> </u>				
					·····		

7AGE	1
REPORT NO_	FOT-2939
MODEL	<u>B-58</u>
DATE	4-3-62

MATERIAL - STEEL, ALUMINUM, BRONZE - COMBINED GALVANIC, STRESS CORROSION OF

PURPOSE:

The purpose of this test was to determine what galvanic effect dissimilar metals have on stress corrosion in critical areas on the landing gears. The dissimilar materials in this area are S.A.E. 4340 electric furnace steel (heat treated to 260-292 KSI F_{tu}) axle, hard anodized (Alumilite 226) unclad 7075-T6 aluminum spacer ring, manganese (Mn) bronze scissor bushing and possibly several landing gear greases.

SUMMARY:

Tests were conducted to determine what effects the various dissimilar materials in the landing gear have on accelerated stress corrosion of the landing gear axle material, 4340 steel. Based on test results the following conclusions were made:

- 1. Water absorption by the various landing gear greases was virtually equal with a 200 to 300% increase over the amount present in the grease.
- 2. The combined galvanic effect of the dissimilar metals in the landing gear fail area does not increase stress corrosion of 260-292 KSI Ftu 4340 steel when tested in a 20% salt spray accelerated stress corrosion environment.

GENERAL DYNAMICS FORT WORTH

PAGE 2 REPORT NO. FGT-2939 MODEL B-58 DATE 4-3-62

MATERIAL - STEEL, ALUMINUM, BRONZE - COMBINED GALVANIC, STRESS CORROSION OF

OBJECT:

To conduct tests to determine the following:

- 1. Absorption of water by landing gear greases.
- 2. Relative electromotive potentials of landing gear materials.
- 3. Accuracy of deflection specimen loading method.
- 4. Effects of various materials on wear life and galling of X-38 solid film lubricant.
- 5. Galvanic effects of materials on accelerated stress corrosion of 4340 steel bent beam specimens.

SPECIMEN, MATERIALS AND EQUIPMENT:

SPECIMENS

		Item	Use	Source
A.	Те	st Greases		
	1.	MIL-G-21164 Grease	Test I	Standard Oil of Indiana Whiting, Indiana
	2.	FMS-0169 (Royco 60 AMS) Grease	Test I and IV	Royal Lubricants Inc. Hanover, N. J.
	3.	MIL-G-25760 (Amber) Grease	Test I and IV	Standard Oil of Indiana Whiting, Indiana
	4.	MIL-G-25760 A Grease	Test I and IV	Standard Oil of Indiana Whiting, Indiana
	5.	4L210 (1 part by wt. MIL-M-7866 Molybdenumdisul- fide + 32 parts by wt. MIL-G-7118)	Test I, IV and VI	The Almasol Corporation 316 North Sylvania Fort Worth, Texas

CIIIIII)

٢

1

GENERAL DYNAMICE FORT WORTH

PAGE 3 REPORT NO. FQT-2939 MODEL B-58 DATE 4-3-62

		Item	Use	Source
	6.	Used B-58 Land- ing Gear Grease	Test I	GD/FW Flight Line
в.	Te	st Metals		
	1.	37 pieces of 4340 Steel, MIL- S-5000, .040" x 1"x3" heat treated to 285 KSI FTU	Test II, III, and VI d	United States Steel Corp. 525 William Penn Place Pittsburgh 30. Penn.
	2.	12 pieces of .040"x1"x1" Hard Anodized unclad 7075-T6 Aluminum	Test II and VI	Aluminum Company of Americs 1200 Alcoa Building Pittsburgh 19, Pa.
	3 .	12 pieces of .040"x1"x1" unclad 7075-T6 Aluminum	Test II and i VI	Aluminum Company of Americ 1200 Alcoa Building Pittsburgh 19, Pa.
	4.	16 standard Tim- ken races	Test IV and V	The Alpha Molykote Corp. 64 Harvard Avenue Stamford, Conn.
	5.	21 pieces of .040"x1"x1" man- ganese bronze QQ-B-726 Class C	Test II and VI	American Brass Company Waterbury 20, Conn.
c.	Ter	st Metal Finishes		
	1.	l pint of FMS- 0003 Epoxy Primer	Test V	Andrew Brown Company Irving, Texas *7A 862
	2.	l pint Dry Galv (zinc dust plus dibutyltitanate)	Test V	American Solder Flux Co. 19th and Willard Street Philadelphia, Pa.
	3.	X-38 solid film lubricant	Test IV, and V	Prepared in Engineering Chemistry Laboratory

) ERAL D) DYNAMICS FORT WO	RTH		PAGE 4 REPORT NO. FGT-2939 MODEL B-58 DATE 4-3-62	
D. Tes	<u>Item</u> st Fluids	Use		Source	<u>.</u>
1.	MIL-H-8446B. Amend.l (Oro- nite 8515) Hydraulic Fluid	Test IV		Oronite Chemica 200 Bush Street San Francisco 2	l Company 0, Calif.
2.	MIL-H-5606 Hydraulic Fluid	Test IV		Bray Oil Compan 344 Medford Str Los Angeles, Ca	ny Peet Llif.
MATERI	IALS:				
1.	l gallon of Karl Fisher Reagent	Test I		The W. H. Curti 1800 Sidney Houston 1, Texa	n Company S
2.	l liter of 5% sodium chloride	Test II Electrol	yte	The W. H. Curti 1800 Sidney Houston 1, Texa	n Company s
3.	4 strain gauges C6121 (Budd Metal film gage)	Test III		The Budd Compan P. O. Box 245 Phoenixville, F	цу ?а.
4.	One gallon of Parco Lubrite Number 2	Test IV and V		Parker Rust Pro 2169 East Milwa Detroit 11, Mic	oofing Company uukee higan
5.	6 manganese bronze rub shoes QQ-B-726 Class C	Test IV		Fabricated by 0 Department 37	D/FW in
6.	Zero to six inch scale graduated in 0.01" divisions	Test III and VI s.	:	The L. S. Starr 101 Crescent St Athol, Mass.	ett Company reet
7.	SR 4 Strain Indi- cator SN 562964	Test III	:	The Baldwin Lim Philadelphia Na Philadelphia 7,	na Hamilton Co Itional Bank B Pa.
8.	Modified Mac Millan Wear Tester	Test IV and V		Hartmann Tool C 6626 San Fernar Glendale 1, Cal	Company ndo Road L ifornia

DEPARTMENT 6

(CIIIIIIIII)	
--------------	--

GENERAL DYNAMICS | FORT WORTH

746E	
REPORT NO.	FGT-2939
MODEL	B-58
DATE	4-3-62

	Item	Use	<i>`</i>
9.	Salt Spray Chamber, Model No. C. A. 1	Test VI	Universal Filter & Pump Mfg. Co. Chicago, Ill.
10.	Heat Treat Furnace	Heat Treat- ing 4340 Steel Speci- men	Heavi Duty Furnace Company Milwaukee, Wisconsin
11.	V Block Speci- men Holders, Cadmium Plated, and painted	Application Bending Load to specimens	Manufactured in GD/FW by Dept. 81, per FTJ-1345-2
TEST	PROCEDURES:	•	

I. Water in landing gear greases before and after humidity exposure.

Test greases shown in the materials section were identified, spread out separately on glass slides and placed in a cyclic R. T. to $160^{\circ}F$, 95% relative humidity chamber operated as described in MIL-E-5272B. After 72 hours they were removed from the chamber and immediately weighed on a tared piece of aluminum foil. The foil and grease were immersed in Karl Fisher reagent for analysis on the aquameter. Standard Karl Fisher aquameter procedures (per FZM-1776) were used to determine water content. Control specimens of the various greases, not exposed to humidity, were analyzed along with test specimens. The used grease was obtained from a B-58 on the flight line.

) Dynamice Fort Worth	PAGE 6 REPORT NO. FGT-2939 MODEL B-58 DATE 4-3-62
II.	Potential measurements of landing gear mate sodium chloride.	rials in 5%
	Small specimens cut from 260-292 KSI Ftu 43 Hardas anodized unclad 7075-T6 aluminum, an aluminum without anodize were grouped in di and immersed by pairs (but each separated p by weight sodium chloride. Prior to test t specimens were vapor honed to remove heat t 7075T6 aluminum specimens were washed in me and vapor degreased in trichloroethylene. of all specimens were then protected from c test.	40 steel bar stock, d unclad 7075-T6 fferent pairs hysically) in 5% he 4340 steel reat scale. Bare thyl ethyl ketone Finished surfaces ontamination until
	Each pair of specimens was joined electrica vacuum tube voltmeter, allowed to stabilize and the resultant voltage was determined an stressed specimen (see Table II) was mounte device and stressed to 180,000 psi (tensile in Figure 1. No potential between unstress detectable.	lly through a about 5 minutes, d recorded. The d in a loading) as illustrated ed specimens was
III.	Comparison of bent beam specimen loads calc and measured with a strain gauge.	ulated by deflection
	Heat treated 4340 steel specimens were plac device shown in Figure 1 and stressed by sc bolt, thus bending the specimen. Deflectio with a linear scale (having 0.01" subdivisi on a line between the two specimen ends to deflection (center) of the specimen. Prior strain gauge (C6121) had been applied to th tension deflection. Read out was accomplis indicator type N. The set-up was single ga See procedure, section VI, for procedure us by deflection method.	ed in a loading rewing in the n was measured ons) from a point a point of maximum to bending, a e area of most hed on a SR-4 strain uge with compensator. ed to calculate load
IV.	Effects of various materials on wear life o lubricant.	f X-38 solid film
	Standard Timken races were phosphate pretres point Parco Lubrite No. 2 for 20 minutes at was then coated with X-38 solid film lubrics Type Z MoS ₂ which had been ball milled 8 how	ated in 12.5 205°F. The race ant prepared from urs.
	The race was then tested on a modified Mac machine operating in oscillating motion in a speed of 240 cycles per minute. Loading	Millan test a 22 1/2° arc with was 630 pounds

) DYNAMICS FORT WORTH	PAGE REPORT N MODEL DATE	7 FGT- 2939 B-58 4-3-62
	(approximately 63,000 psi) on the race. If test specimens, two controls without greas tested. Test greases were then applied in separate areas of the race contacting the oscillation. Automatic shut off occurred of friction exceeded 0.1.	Prior to se or flu dividual rub shoe when coe	running id were ly to during fficient
v.	Galling effects of various coatings applie races.	d to sta	ndard
	Standard Timken races which had been phosp in Parco Lubrite No. 2, coated with the va and then coated with X-38 solid film lubri furnished by the Materials and Processes g for this test were manganese-bronze alloy. machine was a modified Mac Millan operati oscillating motion at 240 cycles per minut	hate pre rious te cant, we roup. R The te ng in a e.	treated st primers, re sub shoes st 22 1/2°
	Two separate 22 1/2° areas on each race wer test was at 69.5 pounds load (approximatel the second run on a new area was made usin (approximately 9900 psi). New manganese b used for each run. Time to failure shown on visual observations of a stop watch.	re tested y 6950 p g a 99 p ronze ru in Table	. One si) while ound load b shoes were V was based
VI.	Effects of 20% salt spray on combined galv. corrosion of landing gear materials.	anic-str	ess
	Various combinations of landing gear mater Table VI were assembled in triplicate and illustrated in Figure 1. Special effort and was made to isolate and/or combine each mat have galvanic effects on the prime test mat	ials, sho stressed nd consid terial th terial, b	own in as deration hat might 4340 steel.
	The 4340 steel specimens used for this test .040" machined from mill run 1 1/4" 4340 st Specimens were ground to the .040" thickness tolerance of ±.001". After grinding, speci- heat treated at 1550°F for 1/2 hour, oil qu subjected to a 1 hour draw at 400°F. Rockw test indicated a tensile ultimate strength Heat treat scale was removed by vapor honir aluminum oxide in an aqueous suspension at pressure. The ends of steel specimens were polyester film (Mylar) tape to insulate the	t were 1 teel bar ss and he lmens wer lenched, well C ha of 285,0 ng using 100 psi e covered specime	" x 3" x stock. eld to a re solution then ardness DOO psi. 320 grit air i with a en
	·		

· .

. ·

- UTILITY REPORT SHEET

1

۰.

A	!AGE	8
	REPORT N	o <u>FGT-2939</u>
NERAL DYNAMICS FORT WORTH	MODEL	<u> </u>
	DATE	4-1-02
galvanically from the painted, cadmium j V block. Attachment clamps to hold the were made of teflon. Calculation of the to obtain a bending stress of 180 KSI w follows:	plated mild dissimilar e required was accompl	steel materials deflection ished as
$Y = \frac{P1^3}{48EI} \qquad S = \frac{MC}{I} \qquad M =$	= <u>P1</u> 4	
When		
<pre>M = Bending moment in inch pounds Y = Deflection (applied) in inches P = Force in pounds 1 = Beam length in inches E = Test material modulus of elasticity I = Moment of inertia (inches⁴) C = <u>Thickness</u> (t) in inches</pre>	in psi	
S = Stress in psi of outer fiber of spec	cimen	
Therefore by substitution and rearranger	nent	
$\mathbf{Y} = \frac{\mathbf{S1^2}}{\mathbf{6Et}}$		
The necessary deflection of the specimer by substituting in the equation known the material modulus and bending stress desi	n, Y, can be nickness, be lred.	e obtained am length,
Specimens of unclad 7075-T6 aluminum rec received 2 mils of Hardas anodize at Ana Texas. Later it was learned the hard an spacer ring was actually Alumilite 226; ties are virtually identical and this en should not affect the test results.	uiring hard adite, Inc; nodize coat; however, th roneous sub	i anodize Hurst, Ing on the he proper- Dstitution
After assembly test greases were applied The area of maximum tensile stress on the specimens was covered with grease.	l with a spa ne required	atula. Steel
RESULTS:		
Water adsorption properties of all the test g in Table I. Table II reveals the various ele potentials generated between 4340 steel, mang unclad 7075-T6 and Hardas anodized unclad 707 Similarity between calculated deflection and	greases are ectromotive ganese brong 75-T6 alumin strain gage	shown ze, num. e

UTH ITY REPORT SHEET

1

1.1

PAGE	9	
REPORT NO.	FOT-2939	
MODEL	B-58	
	4-3-62	

measured stress levels on bent beam stress corrosion test specimen is shown in Table III. Effects of various test materials on wear life and galling are illustrated in Tables IV and V. Finally, in Table VI the effects of 20% salt spray on various isolated and/or combined landing gear materials may be observed.

DISCUSSION:

The critical area of the main landing gear axle beam is a specific area bounded by an Alumilite 226 hard anodized unclad 7075-T6 aluminum spacer ring and a manganese bronze scissor bushing insert. It became desirable to determine what effect these dissimilar materials, plus possibly moisture in 4-L-210 grease, have on the combined galvanic and stress corrosion of the axle beam. A test was conducted to determine the actual galvanic potentials between these materials. By examining Table II it is apparent that manganese bronze is cathodic to 4340 steel. However, the bare 7075-T6 aluminum is anodic to the steel by a larger extent so that the overall effects of all of the dissimilar metals should be slight anodic protection for the steel.

Test results shown in Table VI do substantiate that anodic materials, unclad 7075-T6 aluminum, prolong the time to failure due to accelerated stress corrosion. However, the overall effects of the various materials in the fail area is inconsequential or minor.

At the beginning of the test there was no knowledge of water absorptive properties of the greases used in different areas and applications on the landing gear. Test data shown in Table I was collected to determine the extent water or electrolyte might be absorbed and contribute toward galvanicstress corrosion. The water pick-up is 2 to 3 times the original water content value but not unusually great for any of the materials.

As a test to determine the effects of dissimilar metals, electrolyte and stress on corrosion of 4340, a bent beam specimen appeared best because it could be designed to simulate all of the landing gear materials and be used in an accelerated test environment. Since this was an unfamiliar specimen and loading device, a small scale test was conducted to determine the accuracy of the method for applying tensile load to the specimen. Data presented in Table III shows that reasonable accuracy can be expected in applying tensile loads by bending to calculated deflection.

UTILITY REPORT SHEET

3

PAGS	10
REPORT NO.	FGT-2939
MODE	B-58
DATE	4-3-62

A related landing gear problem has been lubrication of an area under a race that was occassionally subjected to sliding forces when the face sometimes turns, upon landing, on the axle beam. Solid film lubricant, X-38, has been applied for lubrication of the area. Another test was con- ducted to determine the effects of various landing gear greases and hydraulic fluids on the X-38 solid film lubricant. Data shown in Table IV shows that all of the materials tested are detrimental to the lubricating properties of X-38 solid film.
Soon after X-38 was applied, it was found that fatigue properties of the 4340 steel axle had apparently been lowered by the X-38 solid film phosphating pretreatment reported in FSG-529. Also, on axles without solid film, failures were being experienced and the cause appeared to be stress corrosion. Two treatments (1) FMS-0003 epoxy primer and (2) dry galv paint were being considered for pretreatment prior to X-38 solid film application. The detrimental effects of these materials on the lubricating properties of X-38 can be seen in Table V.
The last but probably most important test is reported in Table VI. In this test all of the materials from the landing gear failure area were isolated and then combined to various degrees to determine their galvanic effects on heat treated 4340 steel in 20% salt spray accelerated stress corrosion environment. Upon examining data for specimens 7, 8 and 9, it is apparent that manganese bronze does lower the stress corrosion resistance to below the control value. Data for specimens 4, 5 and 6 may be misleading because the anodic coating is a good insulator and the specimens did not make galvanic contact; therefore, they could not exert protective anodic influence. The protective effects of bare 7075T6 aluminum (without anodize) can be seen by examining data for specimens 13, 14, 15 and 28, 29, 30. Specimens 25, 26 and 27 represent all of the materials and conditions found in the fail areas after tests in 20% salt spray accelerated stress corrosion environment. This condition is obviously not conducive to accelerate stress corrosion failures. It is important to note, however, that this data is all from an accelerated environment and may not correlate with data obtaine from actual service environment.

	11
EPORT NO.	FGT-2939
	B-58
	4-3-62

CONCLUSIONS:

- 1. Water adsorption of all B-58 landing gear greases are virtually equal with a 200 to 300% overall increase as compared to the original water content.
- 2. Bare 7075-T6 aluminum is anodic to 4340 steel while manganese bronze is cathodic. The overall effect is slightly anodic or protective to 4340 steel.
- 3. All materials listed in Table IV and V are detrimental to the lubricating properties of X-38 dry film.
- 4. The combined effect of the dissimilar metals in the landing gear fail area does not galvanically increase stress corrosion of 260-292 KSI Ftu 4340 steel when tested in a 20% salt spray accelerated stress corrosion environment.

126	12
TEDOR	No FGT-2939
MODE	B-58
DATE	4-3-62

TABLE I

WATER IN LANDING GEAR GREASES BEFORE AND AFTER HUMIDITY* EXPOSURE

Type Grease	Before Humidity **	After Humidity
MIL-0-21164	2.50 mg H ₂ 0/gram	7.95 mg H ₂ 0/gram
FMS-0169 (Royco 60 ams)	3.83 mg H ₂ 0/gram	8.60 mg H ₂ 0/gram
MIL-G-25760 (Amber)	3.54 mg H ₂ 0/gram	9.69 mg H ₂ O/gram
MIL-0-25760 A	4.27 mg H ₂ 0/gram	10.53 mg H ₂ O/gram
Landing Gear 41210	4.06 mg H ₂ 0/gram	10.18 mg H ₂ 0/gram
Used Grease From A	4.20 mg H ₂ 0/gram	Not applicable
B-58 Landing Gear		

* 72 hours of R.T. to 160°F Cyclic 95% Humidity per MIL-E-5272B **Average of 2 specimens run on Karl-Fisher Aquameter.

()

PAGE	13	
REPORT	NO.FGT-2939	
MODEL	B-58	
DATE	4-3-62	

TABLE II

POTENTIAL MEASUREMENTS* OF LANDING GEAR MATERIALS IN 5% SODIUM CHLORIDE

TEST MATERIALS	
Cathode	Volts
Manganese Bronze	0,22
4340 Steel	0.18
Unstressed 4340 Steel	0,06
4340 Steel	0.26
	Cathode Manganese Bronze 4340 Steel Unstressed 4340 Steel 4340 Steel

* Average of three consistent $(\pm .02 \text{ volts})$ specimens measured with a vacuum tube voltmeter.

UTILITY REPORT SHEET

3

٦

PAGE	14	
REPORT	NO FOT-2939	
MODEL	B-58	
DATE	4-3-62	
and the second second		

TABLE III

COMPARISON OF BENT BEAM SPECIMEN STRESS CALCULATIONS BY DEFLECTION AND MEASURED WITH STRAIN GAUGE*

Specimen Number	Calculated Stress By Deflection	Measured Stress By Strain Gauge
31	180,000 psi	213,000 psi
33	180,000 psi	180,000 psi
34	180,000 psi	199,000 psi
38	180,000 psi	172,000 psi
Average	180,000 psi	191,000 psi

* SR-4 Indicator USA 82581

UTILITY REPORT SHEET

1

15	
FOT-2939	
B-58	
4-3-62	
	15 F0T-2939 B-58 4-3-62

TABLE IV

EFFECTS OF VARIOUS MATERIALS ON WEAR LIFE OF X-38 SOLID FILM LUBRICANT

Test Material Wearlife, Hrs.* None (Control) 12.8 FMS-0169 2.2 (Royco 60 AMS) Grease MIL-H-8446 0.6 (Oronite 8515) Hyd. Fluid 4.0 MIL-H-5606 Hyd. Fluid 4 L 210 Grease, 0.6 . Consisting of: 1 part - MIL-M-7866 Molybdenum Disulfide, and 32 parts - MIL-G-7118 Grease

* At the average of two specimens - Run on modified Mac Millan Lubricant Test Machine

Rub shoes made of steel Rc 57-60, Races made of 4620 steel Rc 58-63, case hardened.

UTILITY REPORT SHEET

CIIIIII)		
GENERAL	DYNAMICS	FORT	WORTH

٦

3

	16	
FFORT NO.	FGT-2939	
	B-58	
	4-3-62	

TABLE V

GALLING EFFECTS OF VARIOUS COATINGS APPLIED TO STANDARD RACES*

	Cycles to Failure @ 240 C.P.M.**	
Test Material	6950 PSI Load	9900 PSI Load
FMS-0003 Epoxy Primer	40	40
Dry Galv Paint (Zinc Dust Plus Dibutyltiti- nate)	12	12
X-38 Solid Film	Not Tested	2,664,000 and still running when discontinued.

* Standard races of 4620 steel, pretreated with Parco Lubrite No. 2. Rub shoes of manganese bronze, duplicate test.

**Failure was when coating had been rubbed off, exposing base coating, and a rumbling action began.

PAGE	17	
REPORT	NOFGT-2939	
MODEL	B-58	
DATE	4-3-62	

TABLE VI

EFFECTS OF 20% SALT SPRAY ON STRESS CORROSION OF LANDING GEAR MATERIALS

4340 Steel (Mill Run Bar) Specimens, Heat Treated to 285,000 PSI Tensile Ultimate, Bending Beam Load (Tensile) 180,000 PSI

Specimen Number	Test Material Combinations	Hours Exposure	Average Time of Exposure
1 2 3	4340 Steel (alone) Controls	250 * 136 250	212
4 5 6	4340 Steel Plus Unclad 7075-T6, Hardas Anodized Aluminum	211 116 211	179
7 8 9	4340 Steel Plus Manganese Bronze	197 244 104.5	181
10 11 12	4340 Steel Plus Hardas Anodized Aluminum Plus Manganese Bronze	244 250 250	248
13 14 15	4340 Steel Plus Bare 7075 Aluminum (no anodize) Plus Manganese Bronze	250 197 250	232
16 17 18	4340 Steel (alone) Plus Grease (4L210)	250 250 116	205
19 20 21	4340 Steel Plus Bare Hardas Anodized 7075 Aluminum Plus 4L210 Grease	250 250 140	213
22 23 24	4340 Steel Plus Manganese Bronze Plus 4L210 Grease	250 116 156	174

3

.

Ľ

١

1

7

1

¥

	18
REPORT I	NO. FOT-2939
MODEL	B-58
DATE	4-3-62

TABLE VI (Continued)				
Specimen Number	Test Material Combinations	Hours Exposure	Average Time of Exposure	
25	4340 Steel Plus Hardas Anodized Bare 7075	5- 167		
26	T6, 26 Aluminum Plus 4L210 Grease Plus Manganese	250	212	
27	Bronze.	220		
28 29 30	4340 Steel Plus Bare 7075 Aluminum (No Anodize) Plus Manganese Bronze Plus Grease 41-210	250 250 250	250	
	1			
	· · ·			
expo	sed to less than 250 hours actually failed	at period	indicated.	

,

