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I. INTRODUCTION

The purpose of this report is to derive a set of equations describing the
motion of artillery shells for convenient solution by computer. The effect of
mass unbalance is taken into account. The equations are set up in an inertial
coordinate system and the effect of the rotation of the earth is included.

The form of the ballistic equations for rockets as formulated in University
of Illinois TAM Report No. 166 is preserved whenever possible, and the same
notation is used.

The method of treating the rotation of the earth is that used in University

of Illinois TAM Report No. 204.




II. GENERAL CONSIDERATIONS
1. Equations of Motion

The artillery shell is a rigid body, and the somewhat complex theorems
of linear and angular momentum which must be used in rocket theory, take
the following elementary form:

The vector sum of all the exterior forces acting on a system of particles
is equal to the time rate of change of momentum of the system.

The vector sum of the moments of the exterior forces acting on a system
of particles, taken about the centre of mass of the system, is equal to the time

rate of change of the angular momentum of the system. In equation form:

mn G

— d _
LF - I = G+ F (1)
K
_ - dP _
L% * By s g% v (2)
where SF_k and Z?k x F‘-k represent respectively the sum of
K K

the exterior forces acting on the shell and the sum of the moments of these forces

taken about the mass centre; M , and ,é are respectively the momentum
of the shell, and the angular momentum of the shell about the mass centre. G
is the resultant aerodynamic force, F the force due to gravity, and N the

moment due to the aerodynamic forces.




2. Coordinate Systems and Basic Assumptions

In establishing the equations of motion of an artillery shell, we must apply
Newton's laws of motion in an inertial coordinate system. For purposes of this
discussion, we will consider an inertial system to be one which consists of the
normal, tangent, and binormal to the path of the earth's centre The particular
system to be used will be rectangular Xo’ Yo, Zo coordinates chosen in such
a way that:

(a) The origin will coincide with the mass centre of the shell at launch.

(b) The direction of aim of the shell will be in the plane Y0 =-0.-

(c) The Z0 axis will pass through the '"centre" of the earth.

In order to obtain the location of the shell in a system fixed with respect to the
earth, we have to apply a transformation between two coor dinate systems, These
transformations are derived in the appendix. Let us briefly describe the nature
of the two coordinate systems. The coordinates (XE, YE’ ZE ) (measured with
respect to the earth), are defined in Eqs. (A-17) to be functions of (Xo, Yo’ Z0 )
(the inertial coordinates), and also of (BL, d>L, P sz ), the coordinates and
direction of the shell at launch measured in a system fixed in the earth,

It may further be convenient to express the (XE, YE’ ZE ) coordinates in
terms of the longitude, latitude, and altitude. In Egs. (A-19) (pE, b _, BE) are
expressed as functions of (XE, YE’ ZE ) . Here d>E and BE are related to the
latitude and longitude as described in section iii of the appendix.

The wind velocities which are used in computing the aerodyrzmic forces
must be expressed in terms of the (Xo, YO, Z0 ) system. However, they will
be given in terms of the earth coordinates (BE, ¢E, PR ) , and are specified by a

direction I‘DE (azimuth) plus vertical and horizontal components Pw and Qw 5




Let us now return to the inertial Xo YO Zo coordinate system and

talk about the equations of motion in detail.
zZ

\\ EZ"=Z

LY
orientation of the X Y Z system \
0 o'o

given in terms of the angles 6 ¢L’ \ %
sz measured relative to the (X,, Y,, Z*)\

wt
system, as described in the appendix.

Yer = YE (at launch)

X* = KE X COORDINATE SYSTEMS

(at launch) E
FIGURE 1




Let R be the vector from the origin of the X, Y, Z, system to the

mass centre of the shell, and let R have components (Xo’ Yo, Zo) in(X Y Z ).

0o o"o
Then the velocity of the mass centre is v = g—tg and has components
d X0 d Y0 d Z0 ‘
=6 T T in (Xo YO Z0 ). At the mass centre ¢ , wWe construct

(XC YC Zc ) which moves with ¢ but remains always parallel to X0 Y0 Zo -
This is illustrated in Fig. 1.
We will use the subscripts 1, 2, 3 for the components of vectors in
(X0 YO Z0 ). Then, since the mass m of the shell is fixed, Eq. (1) may be
written
dX
0

m—dt = G1+F1

m o+ = G, +F, (3

where

o B []
dt = K 4

Now, principal axes and moments of inertia for the shell may be computed.
The c-xyz coordinate system may be constructed with the y-axis along the
principal longitudinal axis of inertia (plai), and thex and z axes along the other

two (transverse) principal axes as shown in Fig. 1. The orientation of c-xyz is
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defined by the three rotations ¢ , © , y taken in the indicated order. The

angular velocity vector of c-xyz will be denoted by w . Let IX, Iy’ IZ
denote the principal moments of inertia along the x, y, and z axes. It will also
. s R . . . . :
be convenient to use i, j, k as unit vectors in the x, y, z directions respectively.

We will use the subscripts X, y, z for components of vectors in c-xyz . The

angular momentum of the shell (about c ), can now be written as:

fa" + 51 +%1 5
dllxwx ]yoay zwz (5)

From Fjg. 1 it is apparent that the components of angular velocity are given by:

d ¢ . d®6
=z - 0
wy o Tes sin y + e cos Y,
¢ . dy
= 6
wy dt sin +dt s
_d¢ doe .
@ = FJT cos © cos y + g7 Sind .

which can be inverted to yield:

dé _ N
g sec 6[ wzCOSzp-wXSIHsz )

do _ -

o = w cosy t+ w siny, (6)
dy _ - [ _ '

Tt wy tan © e, cos y - w_sin zp]

(We assume that © is always within the bounds 16| £ T7/2),
A
1 o /N

Differentiating Eq. (5), and recalling that ?l—t = w x i, etc. we obtain




o
7ol
%

= i [ ad—t (IX wx) + (IZ-Iy)wzwy]

[=¥
ot

+ § [ Z2ag I =

J[dt (ywy)+(x z)wxwz]
4 d

+k [ﬁt—(lzwz)‘f(ly‘lx)wyw]

X

We now assume that the shell is rotationally symmetric sc¢ that we can

set IX =1 = Iy = I'. Then Eq. (2) can be written in the scalar form:

—
I

-(I-I)mymZ + NX

:

Tt s (D

P—
n

= (I -17 wywx + NZ

When we consider the aerodynamic forces and moments it will be
convenient to have the velocities relative to the undisturbed air in the neighborhood
of the shell rather than the fixed XO YO Z0 coordinate system. Therefore
in the neighborhood of the shell the undisturbed air flow weuld have had a linear

velocity W . The velocity of the shell relative to air can then be defined by:

T =v-W
So that
XC S Vl +Wl
Y0=V2+W2 (8)
Z. =V, + W




where Wl ; W2 ; W3 are known functions of time and position. We can now

substitute Eq. (8) into Eq. (3) and (4) to obtain

dX0
- Vl-i~Wl
dY0
T - V2+W2 9
dZO
at - V3t W;
and
dVl .
m——dt E -le+F1+Gl
dV2 5
m ¢ = -mW2+F2+G2 (10)
dV3 .
m 5T = - mW3+F‘3+G3
. dWl
where we have set Wl = =T etc.

The wind velocities will be specified in a coordinate system fixed in
the earth. As mentioned previously, they are specified by a direction z/)E
(azimuth), plus vertical and horizontal components PW and QW . Let us use
the transformation of a vector from earth to fixed coordinates as indicated in the
appendix (A-23, A-24).

Then, the wind velocities become:
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W1= PW(AE(ALcos szt+DLsmszt)+BE(-ALst t+DLcos Qt)

+CEGL)

+QW(GE(ALcosSzt+DLsmszt)+HE(-ALsmszt+DLcoth)

+JE G'L)

W2=PW(AE(B'L:cos Qt+ E'L sith)+BE(—BLsith+E'LcosSzt)

+ Cg A'L)
+QW(GE(B'LcosQt+E'Lsmszt)+HE(-BLstt+ELcosszt)

+JgH ) (11

W3=PW(AE(CLcoth+F smszt)+BE(-C sinQt+F'. cos Qt)

L L L

EJ'L)

+QW(GE(CLcoth+FLsmszt)+HE(-CLstt+FLcosszt)

+Igd')

The quantities AE cee JE’ A Lo ] L arise due to the transformation

as discussed in the appendix, and are defined there.

Egs. (6), (7), (9) and (10) constitute a system of twelve first order
differential equations in the twelve dependent variables X b= Yo’ Zo’ Vi V2’ 3
¢, 6, », @ wy, w, and the independent variable t (time ). It remains

now to express the other terms in this set of equations in terms of these twelve

generalized coordinates and the time.
®
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We will need expressions for the direction cosines of the X0 Y0 Z0

and c-xyz axes with respect to each other. From Fig. 1 to within first order

terms (in ¢ ) we have:

a, = cos y - ¢ sin O sin @ ,

a o= ¢ cos y + sin 6 sin ¢,

a g = -cos 0 sin g,

ayl = -dcos 0,

ay2 = cos 0, . (12)
ayS: sin 6,

a - sin  + ¢ sin © cos ¥,

a,o, = ¢ sin - sin © cos p,

a g = cos O cos P .

Then if U is a vector we have

le = axl Lll Gt axz Ll2 sk axs l.,l3 , etc.

u +a_,u +a_,u_ , etc.
X vyl 7y zl "z




III. THE FORCE SYSTEM
1., Gravitational Force

We will consider the gravitational force to be given by :

pc)z,g\
PE

F=-mg(

where 'g\ is a unit vector along the line joining the centre of mass of the
shell, and the centre of the earth, PE is the distance from the shell to the
earth's centre, and Po is the radius of the earth. The components of g
must be expressed in the XO YO ZO system. To this end, we utilize the
transfoi‘mation of a vector derived in the appendix, (Eqs. A-23, A-24), with
P=0,Q=1.

Then the components of the gravitational force are:

2 . " .
(GE(ALcos Qt+D'_ sinQt)

1

F,=-m po
= go(g) L

+HE(-A'Lstt +D'Lcos9t)+JEGL)

P
- 042 " C
Fz— mgo( pE) (GE(BLcoth+EL31th)
+HE(-BLstt+ELcosQt)+JEHL)
F,=-m (—po)2 (GL(C'  cos Qt+F' sinQt)
3 £o' g E'C L 0

+HE(CLsm Qt+ F Lcoth)—l—JEJL)

2. Aerodynamic Forces and Moments

11,

(13)

The aerodynamic forces and moments are classified in three categories:
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a) Those independent of angular velocity (Drag Force, Lift Force
or Force due to cross velocity, Restoring Moment or Moment due
to cross velocity),
b) Those depending on transverse angular velocity of the shell
(Force due to cross spin, Damping Moment or Moment due to cross
spin),
c) Those depending on the axial spin of the shell (Roll Moment or Moment
due to spin, Magnus force and moment due to cross velocity and cross

spin).

Although these forces and moments interact with each other, they are traditionally
treated separately.

It is also customary to describe the aerodyngmic forces and moments by
means of dimensionless aerodynamic coefficients. For this purpose we introduce
the average mass density of the air surrounding the shell and denote this density
by p ; we also need a length characteristic of the shell and therefore introduce
the diameter d of the shell. Also we use the linear and angular velocities of
the shell where appropriate. Since we wish to base our computation on motion
of the shell in undisturbed air we must account for winds by using V as the
velocity of the mass centre of the shell with respect to the air.

Drag Force and Lift Force. The aerodynamic force which acts on the shell when

there is no angular velocity (w =0 ) is resolved into two components; the drag
force D which is taken parallel to V, and the lift force L perpendicular to

V . We define the drag coefficient K[ and the lift coefficient K by

5 2_2
D—KDpd v o,

_ 2,2
L—Kdi V=
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From physical considerations we can argue that there must be at least three
principal directions such that if V is parallel to one of them the lift force is
zero. The principal direction most nearly parallel to the plai of the shell is
called the aerodynamic axis and the angle between the aerodynamic axis and V
is called the angle of attack (denoted by a). Let € be a unit vector along the
aerodynamic axis. We assume that a is a first order quantity and use the
angles gx and gz to orient € in the C-Xyz coordinate system as shown

in Fig. 2. Then to first order terms .

and

e) =-%cos 6-£ cos y+ €, 8in y,

e2=cose-sin6(§xcoszp + S,z'sin D), (14)

sin 8 + cos 6(&,x cos ¥ + gz sin 3 ).
z

FIGURE 2
AERODYNAMIC AXi<




We assume that the lift force vector lies in the plane defined by & and

V , and since we have specified L perpendicular to V we could write
= 2 = ~ 42
L=KLpd Vx{e x'V )
_ 2 20 S A —]
=K pd [ VPE-T .8 ¥
where

KN: KLs1na-~-KL a

to first order terms. We could also write V - €=V cos a=V to first order

terms so that

le KLdeV[V(—¢cos6+gxsin;b-gzcosz,b)-Vl] ’

L2 =KLpd2V [(V cos 6 —Vz) -V(&,X cos zp+§z sin 3 ) sin 9] (15)

2 . :
L3=KLpd A" [(Vs1n6—V3)+V(§Xcos ¢+§zsmzp)cos6]

The drag force is written as

= 2 =
D -=-Kppd'V ¥V,
so that
_ 2
D, ="Ky pd Vv,,
D, - -Kepd® VV (16)
2 DP 2
- 2

3= Kypd Vv

3 -
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For small angles of attack both KL and KD can be taken as independent
of a since both must be (approximately) even functions of a and therefore the
dependence will be second order. The other significant variables, chief among
which is the velocity, are assumed to enter only by way of the Mach number
related to V and we therefore allow KL and KD to be functions of Mach
number. If we further assume that both the sonic velocity and the mass density
p depend only on altitude, the drag and lift for’ces can be determined from the
generalized coordinates and the time.

Restoring Moment. The aerodynamic moment which acts on the shell when there

is no angular velocity has a component perpendicular to the aerodynamic axis.
Since this moment is due to the same forces as the Lift and Drag force, it follows
that the restoring moment must be perpendicular to V also. We use P for the

restoring moment and write

3.2
P=Kppd V

where Kp is the restoring moment coefficient, positiveif P-%€ x V = 0. It
is usually more convenient to define a centre of lift by the vector IP from the

mass centre,

=1 A
EP -EP e

such that

P = QP x L,
so that QP has the same sign as KP » It follows then that
2 _ —

F:KLdePx [Vx(ng)J

2 S — =
=K p d (€ V)Ex V),
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and to first order terms

- 2 — A
PX-KLpd QPV [(V1+V2¢)smzp (stme Vscose)COSz/)
_.gx (V2 cose+V3 sine)] .
P =0, (17)
2 2 L ; = .
P - KLpd,QPV[(V1+V2¢)CObzp+(V25m9 V, cos ) sin g

+ £, (Vycos 04V, s 0)] .

It is presumed that ‘QP is a known function of time and the Mach number associated
with V. Dependence on all other parameters, including angle of attack,is

ignored. Generally, the location of the centre of lift is taken as a function of

Mach number only, while the location of the mass centre is a function of time only.

Force and Moment Due to Cross Spin. If the shell has an angular velocity &

the resultant aerodynamic force and moment will, in general, be different from the
case when angular velocity is absent. For if p is a vector from the mass centre

to some point on the surface of the shell, the velocity of this point willbe V + o x P
with respect to the air, and among other things, the aerodynamic force exerted on

a small part of the surface depends on the velocity of that surface with respect to

the nearby undisturbed air., The component of the angular velocity which is

perpendicular to the aerodynamic axis, Bs » is called the cross spin. Clearly

Z)s=e x(w x €)= w-(%-w) .

The additional aerodynamic force due to cross spin is denoted by S and is assumed

to be perpendicular to both € and Bs ;
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- 3..A -
S:Kspd Vest
= K pd3V/e\x:>'

where Ks is the cross spin force coefficient. To within first order terms,

3 r .
Sl—-Kspd V:L(wx+§zwy)s1nzp-(wz-gxwy)cos zp] ;

‘ S, = Kspd3V [(wx+§zwy)cos zp+(wz—§xwy)sin zp] sin 8 (18)

3 ) :
S3= ‘KsPd \"/ [(wx+§zwy)coszp+(wz-gxwy)smzp] cos 6 s
A similar argument can be advanced for the existence of a moment due to

cross spin, H, which must be parallel to the cross spin. We therefore write

4

H -Kde sz

-Kde4V3 X (Z) X ’é)

so that, to first order terms,

_ 4
. Hy = Kde vl [wx+§z wy] ’
H =0, 19
B A (19)
= 4 -
e Kde y/ [wz gxwy] ’

where KH » the cross spin moment coefficient is also called the damping moment
coefficient. This name follows from the fact that for KH > 0, the moment H
is proportional to the cross spin and tends to damp it out. ®

The coefficients KS and KI—I are usually taken to equal zero since their

effect is generally small compared to the effects of other causes. In any event,
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we presume that Ks and KH are at most known functions of the Mach
number associated with V. Sometimes it is convenient to define a cross spin
centre of pressure by the vector IS from the mass centre, IS = -ls’e‘ where
Ky = K ls . Note that £ can now be a function of Mach number and time.
Also, if the cross spin centre of pressure is behind the mass centre (ﬁs > 0)

the damping moment does indeed oppose the cross spin.

Roll Moment. To this point we have accounted for the aerodynamic force and

moment due to the linear and angular velocity of the shell in still air, except for
the component of moment along the aerodynamic axis due to linear velocity, and
the force and moment due to the component of angular velocity along the aero-
dynamic axis. Aerodynamically, we assume that the shell is a surface of
revolution about the aerodynamic axis. Due to skin friction, the component

of angular velocity along the aerodynamic axis causes a friction moment about

this axis. If R denotes this moment, then we can write

R- kg p d'v(5.8)¢,

or to first order terms,

4
Ry =Kppd Ve £

=
T

4
5 -KF pd Vv wy , (20)

4
R, =-Kppd Vo £ .

We suppose that K the roll friction coefficient, is at most a function of the

F ?

Mabh numbers associated with V and % w .
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Magnus Force and Moment. We have finally to consider the Magnus force and

moment. These are significant only when there is appretiable angular velocity
along the aerodynamic axis. Then there will be a force perpendicular to both

V and & (if they are not parallel ) which can be represented by

- 3 -
FNI-KMpd meXV

where Be =(w é\) 2 is the component of angular velocity along the aero-
dynamic axis, and KM is the Magnus force coefficient due to cross velocity,

. . o d
assumed to be at most a function of the Mach number associated with 5 @ and

V . To first order terms

= 3
F -KMpd

. 0,8 x 7

so that

3 . )
FMl = -KMpd wy [ V(gxcos zp+§zsm ¢)+V2sme -V3cos e] ,

3 . .
Frz =Ky e @ o [vl Sin © + Vg(é cos 0 -& siny + gzcos¢)] (21)

3 .
FM3=-KMpd wy [Vlcose + V2(¢ cos 6 -gxsm 17 +§zcoszp)]

Now because the cross spin adds a cross velocity to poirt s away from
the mass centre (in the amount Ze X p where p is the position vector from
the mass centre ) we might expect the cross velocity to affect the Magnus force.
We therefore suppose KM to be measured at zero cross spin and consider a
Magnus force due to cross spin, IE'_M' with coefficient KM' . We therefore

write




’ = . 4 ~ A =
F KMpd wyex(est)

(21)

' & T
= -KMpd wyws

= .K'Mpd4my [’i\(wx +wy §Z)+ﬁ(wz-wy gx)]

so that

F'Ml = —K'Mp d4wy [ (wx +wy§z) cos ¥ + (wz - wygx) sin z/)]

Flypp = K d? o, [(@y *o € ) sin ¥ - (o, - & )cosy]sine, (22)

] —_ [ 4 3 - -
FMB_ KMpd wy [(wx+wygz)sm P (wz wygx)cos zp] cos. 6 .

We should also expect a Magnus moment due to cross velocity and one due

to cross spin. We define a Magnus cross velocity centre of pressure by the vector

IM = —,QM € from the mass centre and allow ﬂM to be a function of the Mach

. . d ’ . .
number associated with V, 3 Y and possibly the time. Then we write

MM=£MXFM .

<l

3 A A
-KMpd ngye x (e x

KMpdS‘QMwy [V-(%-V)E] ,

so that

3 . , :
Ky pd” 0y [vgz+(vl +V,6) cosy + (V,sin0-V, cose) smzp]

3

0, (23)

£

3 . .
MMz = KMpd ﬂMwy [-vgx +(Vl +V2¢) sin -(V2 sin 0-V3 cos 9) cos zp] 3
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Similarly, we define a Magnus cross spin centre of pressure by

' _ 0 End g
‘QM_ ,QMe and write

Mo =T x By

L 4' A =N
_KMpdﬁMwyest ¢

, 4 , a
=KMpd ‘QM wy [l(wz_wygx)_l?(wx-’-wygz)]

so that
M. = K., pd¥ e o (@ -w £ )
Mx M Myz y°x” ?
My, =0 (24)
Mv = _Kl d4 ] ( +
Mz MP ﬁMwy “x wygz)'




in this chapter for easy reference.

IV. SUMMARY

22,

The equations of motion along with the necessary notation are collected

The independent variable is time denoted by t.

The equations of motion are in the form of a system of twelve first order differential

equations in twelve coordinates:

¢r e:w

w,
X

s W

y

’ wz

components of the displacement vector of the mass centre of the

shell from the launching site (measured in inertial coordinates)

inertial components of the velocity vector of the mass centre

relative to the air

angles orientating the shell

components of the angular velocity vector of the shell

The twelve equations of motion are

dX

fl

fl

—mW2+F2+G

2

—mW3+F3+G3

)

(10)
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d¢ = sec 6’: wzcoszp-wxsinzp ]

i

dt
% w, €08 ¢ +w, sin P (6)
T

wy-tane [mzcosw-wxsmzp]

dt =~
dwx
I dt = (I 'I)wywz+Nx
,dw
dwz
I_—dt = (I'I)wywx-f-Nz

We now define the individual terms in the above equations:
Wl = W(AE (A L, cos 9t+DLsm Qt) +BE(-A Lsin Qt+DLCOS Qt)
+ CE G L)

+QW(GE (A'L cos 9t+DLsin9t)+HE (-A'Lsith+D'Lcos Qt)

+Jg G )
W2 =PW (AE (B'L cos Qt+E'L sin Qt) +BE(-B’Lsith+E'L cos Qt)
+Cy A (11)
+QW (GE (B'L cos S'2t+E'L sin Q t) +HE(—B'Lsin Szt+E'L cos Qt)

+]E H'L)
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d¢ = sec © w_ COS P - w_ sin
z ¥ X %

dt -

d® ’

Tt T 9 0S¥ +w, siny (6)

d _ :

?‘tL_wy tanﬁ[wzcoszp wxsmzp]

dwx

I T3 = (I -I)<.uy<.uz-{-NX

,dw

1 TLt = Ny (7
dwz

I——dt E (I-I)wywx+Nz

We now define the individual terms in the above equations:

Wl = PW(AE(A'LcosQt+D'LsinQt)+BE(-A'Lsith+D'LcosQt)
+CE G'L)
+QW (GE (A'Lcos Qt+D'Lsith)+HE(-A'L sin SZt+D’L cos Qt)
+JE G'L)
W2 =PW(AE(B’L cos Qt+E'L sith)+BE (-B'L sith+E’L cos Q¢t)
+Cg A') (11)
+QW(GE(B'Lcos Qt-;—E’L sith)+HE(-B'L sin Qt+E’Lcos Qt)

+lg H'} )
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w3 =PW(AE(CLCOS szt+FLsith)+BE(-CLsmnt+FLcosszt)
+CpJ'p)
+QW(GE(C'LcosQt+F'Lsith)+HE(-C'Lsith+F'Lcoth)
+IgT ) (11)
F, = -m (-p—°—)2(c, (A", cosQt+D'_ sinQt)
1- Mg, P E‘'L L
+HE(-ALstt+DLcosQt)+JEGL)
F, = -m (p° )2 (G (B', cos@t+E' si Qt)
2= B s Y (O & L S
+ HE (-B'L sin Qt + E'L cos Qt) +JE H'L ) (13
po 2 t t :
F3=-mg0 (_p-E—,) (GE(CLcoth+FLstt)
+HE(-C'L sin Qt+F' cosQt) +Jg J'L)
Ag =cos GE COS¢E €OS Y + sin 6 sin Vg
BE = sin OE cos ¢E CO8 Yp - cos GE sin Yg
Cg = -sin d)E cos Pp (A-25)
GE=cos OE sind)E
HE= sin OE sin ¢E
Jg =cos¢E

i
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pE2 = XEZ+YEZ+ZE2

¢ =cos ™ z_/ JXE2+ YE2+ Ze (A-19)

GE =sin-l YE/ /;;7;?

XE =XO(ALcos Qt +BL sin Qt) + Yo (DL cos Qt+ EL sin Q t)

+(Zo+p)(GL cos Qt+HL sint)

YE/=XO(-AL sith+BL cos Qt)-f—Yo(-DL sith+ELcos Qt)
+(Zo+p)(-GL sith+HL cos Qt) (A-17)

Zp =CLX0+FL YO+JL(ZO+pE)

AL = cos GL cos ¢>L cos sz + sin GL sin sz

BL =sin GL cos ¢L cos sz - coS8 GL sin sz

CL = - sin ¢L cos sz

DL = Ccos GL cos ¢L sin $p, - sin GL cos Y,

E; =sin GL cos q’L sin $p + cos GL cos ¥ (A-198)

FL = - sin ¢L sin sz

GL = cos GL sin ¢L

HL = sin GL sin ¢L

JL = COoS ¢>L




gt

Iy

= cos sz cos ¢L cos 6

e + sin sz sin OL

sin y, cos ¢L cos OL - cos y; sin BL

sin d)L cos OL

cos y; cos ¢L sin OL - sin Y, cos eL

sin g, cos ¢L sin OL + cos Yy cos eL
. -

sin ¢L sin 6,

-cos sz sin d)L

= -sin sz sin c[>L

= cos d)L

D +L +S +F  +F etc.

M Ml

2
“Kypd VV,

2

2
Ky pd Vv,

K  pd”V (V(-¢cos® + g Sing- § cosy)-V, )

2 . . .
KLpd V ( (Vcose-Vz)-V(gxcosz/)+ gzsmzp)mne)

2

L3=KLpd V{( (VsinO—V3)+V(§xcos Y +§Zsinzp)cose)

26.

(A-13)

(16)

(15)
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3 .
S, = -Kspd vV ( (wx +§zwy)sm zp-(wz—gxwy)cos b))

S, = Ks-pd3V ( (wx +§zwy)cos ] +(wz-§x<%,)sin Y ) sin ©

SS= -Kspdsv( (wx +§zwy)cos ) +(wz-§xwy)sin $) cosB (18)

F =-KMpd3wy(V(§xcoszp+§zsinzp)+stin9-Vscos 8) 5

Ml

3 . .
Fyp = Ky e d wy(Vl sin 6 + V,( ¢cose-§xsm¢ + £, cos 4 )) (21)

= = 3 - i o)
Fps = Ky pd wy( V) cos 8 +V, (¢ cos 6 Egsin y +§ cos p)) .

F -K'Mpd4wy( (o ¥y €,)C08 8 + (0, - € Ysin 4)

ML~

' : 4 . ) ,
B = K’y pd Wy ((wx+wy§z)sm¢ -(wz—wygx)cos¢ ) sin 6 (22)

A =T 4 . )
FM3—KMpd wy((wx+wygz)sm¢ (wz-wygx)cos ¥) cos ®

N =Px +HX+RX+M +M etc.

X Mx Mx'’

2 . .
P =K pd £Lp V((V1+V2¢’)sm ¢ - (V, sin 9-Vscose)coszp

-gX(V2 cos 6 +V,_ sin 0) )

3

“P_=0. (17)

-KLpd2 £p vV (v, +V2¢’)cos P +(stin9-Vscose)sin )

i)
I

e .
+§Z(Vzcos +V351n9))
H =-K pd*Vv(w+t w)
H X zZ'y

H =0, (19)




4
R, =-Kppd Vo (20)

4
Rz = KF pd wa §x
3 a -
MMX—KMpd ﬁM wy( V§Z+(V1+V2¢)cos ¢+(V2s1n9 -Vscos e) siny)
=0 23
M'My (23)
3 ; ] 4
MMZ = KMpd ﬁM wy (-v §X+(V1+V2 $) siny - (V2 sin 6 - V3 cosB) cos i)
M =+K  p d4 L'3rw (w -w &) :
Mx M My*z “yx’
M= 0, (29
M',, =-K' at £ (v, +w_§
Mz~ ~MP M %y \Wx Ty z)




29,

Notation

2
3

2

2 2
V=V +v, 4y

Wl’ Wz, W3 - components of the wind velocity in the neighborhood of the shell,

relative to the inertial reference system

m mass of the shell (constant)

I principal transverse moment of inertia of the shell (constant)

T principal longitudinal moment of inertia of the shell (constant)
§X, §z aerodynamic malalignment angles (constant)

P density of the air (function of position), i.e. GE, PR ¢E

d shell diameter

Dl’ D2, D3 aerodynamic drag force

Ll’ L2’ L3 aerodynamic lift force

Sl’ SZ’ S3 aerodynamic cross spin force

FMl’ FMZ’ FM3 Magnus force due to cross velocity

F'Ml’ F'MZ’ F'MS Magnus force due to cross spin

Px’ Py’ Pz aerodynamic restoring moment (due to cross velocity)

Hx’ Hy’ HZ aerodynamic damping moment (due to cross spin)

Rx’ Ry’ RZ aerodynamic roll moment

MMx’ MMy’ MMz Magnus moment due to cross velocity

M'Mx’ M'My’ M’Mz Magnus moment due to cross spin

KD aerodynamic drag coefficient (function of Mach number)

KL aerodynamic lift coefficient (function of Mach number)

KS aerodynamic cross spin force coefficient (functioh of Mach number)
KM Magnus force coefficient due to cross velocity (function of Mach

number)




H o
Kg
2p
v
Pw’ Qw
Yg
Op g Pg
eL’ ¢L ’ pL
Q
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aerodynamic damping moment coefficient (function of

Mach number)

aerodynamic roll frictian coefficient (function of Mach number)

distance between mass centre and centre of lift (function of
Mach number)

distance between mass centre and Magnus cross spin centre
of pressure (function of Mach number)

horizontal and vertical components of wind velocity

direction of wind velocity as given in coordinat;as fixed in
the earth

coordinates of a point measured in earth coordinates

coordinates of the shell at time of launch (fixed with respect

to the earth)

angular velocity of the earth = 2 7 radians/day

L ]




30.

aerodynamic damping moment coefficient (function of

Mach number)

aerodynamic roll frictian coefficient (function of Mach number)

distance between mass centre and centre of lift (function of
Mach number)

distance between mass centre and Magnus cross spin centre
of pressure (function of Mach number)

horizontal and vertical components of wind velocity

direction of wind velocity as given in coordinates fixed in
the earth

coordinates of a point measured in earth coordinates

coordinates of the shell at time of launch (fixed with respect
to the earth)

angular velocity of the earth = 2 m radians/day
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V. APPENDIX

COORDINATE SYSTEMS

i We will first derive some general transformations, and then apply them

to specific applications. Let us consider 4 such transformations.

ii General Transformations

ii-1 Rotation of Coordinate. Axes

Let us successively make rotations about the X, Y,and Z axes res-
pectively; through the angles 6, ¢, and y . Then we will obtain the following
relations between unit vectors:

~

A » Pl A A
i'=iA+ jB+kC =i"A'"+j'B' +k' C

~ A ~ A A ’~ A
j'=iD+jE+kF i=i"D'"+j"E'+ k' F' A-1
~ A A A ~ A A A
k'= iG+jH+k] k=i"G'+j'H'+ k'[J'
A AN AN~ N
Here i, j, k, and i', j', k', are unit vectors along the X, Y, Z, and X', Y', Z'

axes respectively.




Also:

A = cos ® cos ¢ cos y + sin O sin
B =sin® cos¢ cos y - cos® siny
C = -sin ¢ cos ¢

=cos O cos¢ sin y - sin 6 cos ¢

= sin © cos ¢ sin ¢ + cos © cos y
-sind sin ¢

= cos © sind

Iz Q m m g
n

= sin © sin &

cos ¢

*
Gy
H

Figure A-1

- cos Y cos ¢ cos® + siny sin O

A
B' = sin cosd cos® - cos y sin 6
C'=sind cos ©
D' = cos y cos ¢ sin® - sin y cos ©
E' = sin ¢ cos ¢ sin® + cos y cos ©
F' = sind sin 6
G' = -cos y sin ¢
H' = -sin ¢ sin ¢

J' =cos ¢

' Then any point may be located by the vector:

|

~N

= ~ A A ~ _l\
T U, GER T I Y <77 S T, G A 7




34

where:
X = AX' +DY' + GZ' X'=A'X+D'Y+G'Z
Y =BX'+ EY' + HZ' Y'=BX+EY+HZ A-3
Z=CX'+FY+]Z' Z'=CX+FY+]'2

ii-2 Translation of Coordinate Axes:

S It will {requently be convenjent
to consider the translation of
coordinates given by:

kS =X
YS =Y A-4
Y
S Zo:=2Z -p
A
Xg
Pg
Y
Figure A-2
X gu

ii-3 Rotation of the Earth

Consider X Y Z to be a rectangular system of coordinates fixed in the earth,
with the Z axis along the axis of rotation of the earth. Let Xy Y,, 4, be an
inertial system such that Z, will coincide with Z. The X, Y, Z system then rotates

A
with a constant angular velocity k @ with respect to the X, Y, Z, system.




_ ow. Tadians
b= S
k, k,
Y
M
- Y
Ja '
X, Figure A-3
From Figure 3:
AN . 2 -3 D
1L=1 cos Qt+]j sinQt; 1L =1cosQt-jsinQt
~ -~ i A A A N
j=-i, SinQt+ j cos Qt J, 7isin@Qt+jcosQt
A et -
K=k K =k
LS *
Then, any vector may be represented by:
_— A ~ /N A A A =
r=iX+jY+kZ=i X +j Y +k Z
* * * * * *
where:
X=X* cosQt+ Y, sinQt; X, =XcosQt-YsinQt
Y:-X*sith+Y* cos Q t; Y*=Xsin9t+Ycoth

ii-4 Spherical Coordinates:

35.

It will be convenient to use spherical coordinates in addition to the rectangular

coordinates,
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p sin ¢ sin B
——Y
~
,_,.-'"
p sin¢ cos 6 -
N
X Figure A-4
We have;

X = p sin & cos 6 2 K8 e P g
14

- p sin & sin 6 <1>=cos'lz/¢x2+Y2+z2 A7

Z = p cos ¢ e=sin'lY/ x? 4+ y?

iii Location of Points; and Direction of Vectors in Space

Pertinent quantities, such as air densities, wind velocities, and gravity forces
are available in a reference system fixed with respect to the earth. Any point in this
system may be located by specifying two angles GE, ¢E » and a length PE - These
quantities are the longitude, latitude, and distance from the center of the earth
respectively.

We may also determine a direction at the point (GE : ¢E ' PR Ve
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ES'
VE
— Xgs:
. = 0 plane
Figure A-5
Consider an additional rotation sz as performed in section II-i. Then if

Yg is chosen so that the direction (or vector) lies in the plane Y'ES = 0, the vector
may be represented by 2 components; one along the X'ES axis, and one along the Z'ES
axis. The angle bp + 180° is referred to as the azimuth of the vector; and the angle a
between the vector and the XE'S axis is called its elevation,

The angle GE varies from 0 to 360°, As GE goes throughthe variations:
0—90°—~180%~ 270°— 360° longifude goes through the variations:
0—-90°E —180°E = 90°W —~° ,

The angl.e d)E varies from 0 to 180°, As ¢E goes through the variations:
0—=45%>~90% 135%—>-180° latitude goes through the variations:

90°N —> 45°N —» 0% 45°5—>90%5 .
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The angle Y varies from 0° to 360° . As Y 8oes through the variation:

0—=90%—=180%—=~270“—360° , azimuth goes through

1802 270%—>360%—=-90°—=180° , and the more familiar directions go

through S —=W —=N - —=§,

iv Transformation of the Coordinates of a Point From a System Fixed in the Earth

to the X'OS LI oS’ Z oS (or XO YOZO) System

The transformation of coordinates from the system fixed in the earth to the
inertial system may be carried out using 4 successive transformations. (We will
assume that the location of a point is specified by ¢, 6, p ).

1. From the (pE ) ¢E’ GE) system to the Xp o YE " ZE system (both fixed

in the earth), using ii-4.

XE = pg sin ¢E cos GE

1

YE Pg Sin ¢E sin GE A-8

ZE = pg cOS ¢E

2. From the XE'YE ZE system fixed in the earth to the X, Y*Z* inertial
system using ii-3

X, =XE cos Qt - YE sinQt

Y*=XEsith+ YEcoth A-9

Zs :ZE

3. From the X,Y Z, inertial system to the X'O Y'o Z'O inertial system

using ii-1
X'O= ALX"»+ DLY* +GLZ*
Yo:BLx#+ELYF +H]_,A* A-10
ZO: CLX%9+ FLY‘N+JLZ*
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Here the angles ¢L N GL ; sz appearing in A'L --- j'L are the angles

giving initial position and orientation of the missile at launch,

4. From the X 2 Y o’ yA 5 inertial system to the X oS’ Y oS’ V/ oS (Oero,
Yoo Zo) inertial system using ii-2.
Xo - B oS = o}
0Y0=YOS=YO A-11
Z ~ Z = Z' -

Figure A-6

Then the transformation becomes:
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X/pE = sin ¢y, (A"} (cos 6L cos @t - sin O sin Q1) + D'; (cos 6p sin @ t+ sin O cos @ 1))

+ G'L cos d)E

y/pE = sin ¢E (B'L (cos OE Cos @t - sin O sin Q1) + E'L(cos OE sin Q t+ sin BE cos Qt))

+ H L €os ¢E A-12

z/pE = sin 6(C'| (cos O cos Qt - sin 6 sinQt) + F'; (cos B sin @t + sin O cos 2 1))

where;

B’
c'
D
E'
B
G
H

I
L
J'L

L
3 =
L=
-
L=
L®

+]'y cos g -1

= cos y; cos daL cos GL + sin sz sin GL

sin Yy cos ¢L cos GL - cos Y sin GL

sin ¢L cos OL

CoS ¢, cos ¢; sin,B, - sin Y, cos GL A-13

L
sin ¥, cos ¢L sin OL + cosy, cos OL
sin ¢L sin OL
-CO0S sz sin ¢L

-8in sz sin ¢L

= cos ¢L

Similarly, by reversing the order of the transformations, we may express the

coordinates P GE, ¢E in terms of XoYo and Zo .

S. Applying ii-2

S:Xo

= Y(‘ A"l4

Xl
o

Y'oS

Z'0S+ PE =Zo+ PE




6. Applying ii-1

X
%

Y* =BLXO+ELY'O+H

ALXO+DLY0+GLZ0
Lzo

Z* =CLXOJYAFLYOJY‘JLZO

Applying ii-3

i

X, coth+Yﬁ sin @t
-X, sin Qt+ Y, cosQt

Z*

Cr, we may write:

where:

XE =XO(AL cos Qt+ BL sin Q t) +YO(DL cos Qt+EL sin Q t)

Q @™ m g qQ % >
-

F- = F

+(Zo+ p)(GLcoth+HLsith)

=X0(-AL sin Qt+ B, cos Q1) +Y0(-DL sin Qt+ E

+(Zo+ p)(—GL sin Qt+ H

CLXO+ FLYO+ ]L Qo+ pEz

in 8 si
cos 9L cos ¢L cos sz+ sin 8, sin ¢,

sin 9L cos ¢L cos y; - cos GL sin §

-sin ¢L cos P,

0 . - sin 6 .
cos LCOS¢L smsz sin I_‘cos L

. . 0
sin 9L cos 4>L sin y, + cos 8, cos I

-sin ¢L sin sz

0 .
cos L sin 4>L

— .
sin L sin 4>L

cos ¢L

L

cos Qt)

cos Qt)

41,

A-15

A-16

A-17

A-18




8. And applying ii-4:

pé - sz + YE2+ zE2
E.a \[ 2 2 2
¢ = cos ZE/ XE + YE + ZE A-19

v Transformation of a Vector From the System Fixed in the Earth to the Inertial

System (x, ¥, Z)

Frem Fig. 5, we see that a vector may be expressed as:

= = ~ /l\('
r-PlES+Q ES

N
We wish to express this vector in terms of its components in the i’ S’
=, 2, o o~ N . .
i'sg k oS (or i, J,, k) directions.
This may be done by 3 successive transformations:

~ ~ ~ ~
l. From the i’ i

% o o~ » k' A
s’ Vs ¥'gs (or i gri'gr K'g)totheip, jp, kg components.
Applying ii-1

” ~ ~ N

1E=1EAE+]EBE+kECE

e e e N Ho 4R A-20
k'g "1l Cp tigHp +kglp -

~ ~ N ~ ~
2. From the ig, g, kE to the i, j, k, components. Applying ii-3:

-
1]

A N
i, cos Qt+j, sinQt

E

o =~ A

jE = -i, sin Qt+]j, cosQt A-21
~ [

kE =k,




A [a A ~ a ~
3. From the i,, j,» Kh to the i’o, j'o, k’o components. Applying ii-1:

™ '
L o L o L oCL
f\_{} ! 'A' L A’ * _22
I = PP+ W B« BB A
’\_{\' L /'\l Hl l?' 1
k*-loGL+]o i* oJL
But
n & T B & w% 3, i L
los “lo "0 Jos™ o713, koS'ko'kO
Then the vector v may be written:
- "? Av
V=P1E+QkE
= Bt 5 A
—Rlos+ JoS+TkoS -23
A n
=R10+S]+TkO
where:
R=P(AE(ALcos$2t+DLsinQt)+BE(-ALstt+DLcoth)
+Cg G')
+Q(GE(ALcosQt+DLsith)+HE(-ALsmQt+DLcoth)
+]EG’L)
S=P(AE(BLcosQt+E'Lsinﬂt)+BE(-BLsith+ELcosnt)
+CEAL)
+Q(GE(B’Lcosnt+E'LsinQt)+HE(-BLsin9t+E'LcosQt)

4y B A-24

L)




and:

AL - - -

L

44,

= D 4 3 J i - _:1 0 ]
T ‘(AE(CLCObSZt+FLsmszt)+BE( C Lsmszt+FLcos Qt)

gJ)

+Q(GE(CLCOS SZt+F'L Sinﬂt)+HE(-C'LSin9t+F

+Jg L)

AE = COS GE cos ¢E cos Y + sin GE sin Yg
BE = sin GE cos ¢E cos Y - cos OE sin Vg
CE = -sin ¢E cos z,bE
GE = COS OE sin ¢E
HE = sin OE sin ¢E
JE = CoS ¢E

]'L have been defined in (13).

L

cos Qt)

A-25
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