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by
L, C. Squire, Ph.D,

SUMMARY

The wind tunnel tests on cambered gothic wings reported in Reports
and Memoranda No.3211 have been extended to inoclude the effects of changes
in design 1lift coefficient and of changes in spanwise camber without changes
in camber inoidence distribution,

It was found that the camber was successful in that the flow was
attached over the whole wing at the design 1ift, Also at the design lift
the lift-dependent drag was close to the predioted values, However, the
lift=-dependent drag of the uncambered wing was also close to this value 80
that the benefit of camber on lift/drag ratio was very small, At subsonio
speeds the cambered wings were less stable than the uncambered wing; also
the changes of stability with incidence and Mach number were greater,
particularly near M = 1,0,

Changes in spanwise camber, without changes in inoidence distribution,

do not alter the foroe characteristios near the design 1ift, but do alter
the off-design characteristios,
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1 INTRODUCTION

In conneotion with the design of slender wings for high 1ift over drag,
an experimental investigation of slender wing models with ourved leading
edges and various types of ocamber is being made in the 3 £t tunnel at
R,A.E,, Bedford, The results of tests at supersonic speeds on the first.
two wings in this programme were presented in Ref,1. Both of these wings
were of gothio planform, aspeot ratio 0,75, with the same thickness distri-
bution, One wing was uncambered and the other was cambered by Weber's
method? to have completely attached flow and low drag-due-to-1ift at the
design lift coefficient {(CL) = O,1}. Tests, both at supersonioc speeds?

d
and at low speed.s3 , on this first cambered wing showed that the large droop
of the. wing near the leading edge retarded the development of leading edge
separation at off-design conditions,

In the present Note tests at supersonic speeds on two more cambered
gothic wings are desoribed, On both these wings the amount of leading edge
droop was decreased by reducing the design 1lift coefficient to 0,05; the two
designs were obtained by integrating the camber incidence distribution with
two different initial conditions (see section 2,1 for details),

The Note also includes results of tests on all fouwr wings at aubsonio
and transonic speeds,

2 DETAILS OF TESTS

2.1 Desoription of models

All the canbered wings tested in the present programme were designed
by a method desoribed by Weber2, One feature of this design method is of
particular relevance in the present programme, The oamber design is based
on "slender, thin wing" theory which yields, for a given load distribution,

a formula for the local incidence distributdon, g—;- (x,y). This incidenoce

distribution must then be integrated with respeot to x to obtain the camber
surface, The integration introduces an arbitrary function of y (the spanwise
co-ordinate), this funotion Weber fixed by making the wing trailing edge
straight, i,e, by putting £ = oonstant at x = e For struoctural and aero-

dynamioc reasmns it may be desirable to modify this condition, and the fourth
wing in the present series is designed to find the effeot of a change in this
funotion of y (see Fig.k and belovS’.l

Full details of the four wings are given in Table 1 and in Figs.,i1 to &4,
where the wings are designated by the numbers 1 to 4. .Wing 1 is the
unoambered wing and wing 2 the cambered wing of Ref.1. Wing 3 has the same
type of camber incidence distribution as wing 2, but the amount of camber
(and hence of leading edge droop) has been decreased by reduoing the design
CL to 0,05, Wing 4 has the same ocamber incidence distribution as wing 3,

but differs in aotual shape as the camber surface was obtained by making the
wing straight (i.e, z = constant) at x = 0,8 o, instead of at x =o_as on

wing 3.

Wing 1 was made of steel throughout, but the three cambered wings were
made of glassoloth and araldite formed onto a metal core, In all models a
small circular body of 1,35 inches diameter was used at the rear of the
model to shield the balance and sting support (Fige1).
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2,2 Range of tests

The tests were made in the transonic and supersonioc test sections
of the 3 £t tunnel at R.A.E,, Bedford, The range of force tests, ocon-
sisting of measurements of 1ift, drag and pitohing moment, is given in the. .
following table:

A
Incidence Range
Wings Test Seotion Mach numbers (19 steps)
3 Supersonio 142, 1,61, 1,82, 2.0 | =5° to +12°
b Supersonio 142, 1,61, 1.82, 2,0 | ~=5° to +10°
1 and 2 Transonio 0wk, 0,7, 0.8, 0,85, -5° to +10°
0.9, 0.9k, 0,98, 1,02,
1425, 1,30
3 Transonic Oule, 0.7, 0.9, Os9k, -2° to +13°
0,98, 1.02, 1,25, 1.30
L Transonio Oulk, 047, 0.9, 0.5k, -2° to +10°
0.98
3and 4 Nominal supersonic Ol -2° ¢o +17° ’
test sesction with
unshaped (flat)
wall -

All tests were made at a Reynolds number of 2 x 106 based on
aerodynamioc mean ohord.

The foroe tests on wings 1 and 2 at supersonic speed51 with free
transition showed that extensive regions of laminar flow ocourred on the
wings at low inocidence, It was also found that turbulent flow over the
whole wing oould be obtained with bands of carborundum along the leading
edge; these bands of carborundum did not change the lift or pitohing
moment, but did inorease the drag, For all the present force tests
therefore, transition was fixed with bands of carborundum along the full
length of the leading edge; the bands were approximately O,5" wide normal
to the leading edge and started 0,125" inboard of the edge, Two grades
of carborundum were used, the grain size being 0,007" for M = 1,42 and
above and 0,003" for lower speeds., 0il-flow tests suggested that these
bands had in faot fixed transition throughout the inoidence range at all
Mach numbers, ' .

During initial tests on wings 1 and 2 in the transonioc test section,
large fluctuating stresses cocurred in the balance*, Near M = 0,80 these
reached & peak value which was considered dangerous; hence no measurements
were made on wings 3 and 4 between M = 0,70 and 0,90.

*The vibrations which were responsible for these fluctuating stresses
ocourred when the natural frequenoy of the model system (i,e, model,
balence and ating) oorresponded with a frequensy of main disturbances in
the tunnel air stream: they had no other aerodynamic significance,

- b -
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In addition to force tests, oil flow investigations were made at
various Mach numbers and inocidences; details are given in the following
seotions, Early tests with and without roughness bands showed no aignificant
changes in vortex position or shape, Thus, sinoe the main region of interest
in the flow development ocours near the leading edge, the main oil flow tests
were made without roughness bands,

2.3 DReduction and acouracy of results

Force results have been reduoced to the usual coefficient form; on all
four wings the reference areas and chords are based on the common planform,
Pitching moment coeffioients are given about the quarter chord point of the
nean aerodynamic chord. The drag has been oorrected to a base rressure on
the minimum body equal to free stream static pressure,

No ocorrections have been applied for wind tunnel interference or for
angularity of the tunnel flow, The former correotion is sero at Mach numbers
above M = 1,3 since the refleotion of the bow wave strikes the model support
well downstream of the model base, Below this Mach number the interference
effects are probably smll, exoept near K = 1,0, where the measured spsed
may have been somewhat in error, Also, at M = 1,25 and 1,30 measurements of
base pressure suggested that flow at the model base was still affected by
wall interference, Hence the drag results at these Nach numbers were
oonsidered not reliable and have not been presented,

Apart from tunnel interference it is estimated that the aoccuracy of
the results is as follows:

C, % 0,003
¢, * 0,0005

D:O.OOOh-atCL=O
] M3 1.42
* 0,001 at CL = 0.3

o * 0.05° from meuurement,_togsther

with a possible error of +0,1  from
flow angularity.

The errors in drag measurement may be slightly greater at subsonioc speeds
owing to the balance vibration mentioned in last seotion; also all the
results at M = O,4 are subjeot to larger errors than those listed above
owing to the low level of loading at this Mach number,

3 PRESENTATION AND DISCUSSI ULTS

Full results for wings 1 and 2 at supersonic speeds are given in Ref,1,
Force results for wings 3 and 4 at supersonio speeds and for all four wings
at subsonic and transonio speeds are given in the present Note, Graphioal
presentation has been adopted (see Figs.5 to 8 and 12 to 20).

In discussing the results some oross-reference to the esrlier report
is obviocusly necessary., In order to keep this reference to a minimum the
discussion has been divided into four parts. In the first part, results for
wing 3 at supersonic speeds are discussed, and the behaviour of this wing is
compared with that already desoribed for wings 1 end 2 in Ref,1, The other
three seotions then deal with topios which are less related to the subjeot
matter of Ref.1.



Techniocal Note No. Aero 2803

3.4 Flow and foroce development on wings 1 and 3 at supersonic speeds

The variations of GL with a, and of Cm, GD and L/D with CL for

wings 1 and 3 are compared in Figs.5 to 8. 01l flow photographs for
wing 3 at a series of incidences at M = 1,61 and M = 2,0 are given in
Figs.9(a), 9(b) and 10, Comparable photographs for wing 1 (though not
at identical incidences) are shown in Figs.11(a) and 11(b).

Before discussing the results it should be reocalled that in the
investigation! of the flow development on wing 2 at supersonic speeds it
was found that the flow remained attached at the leading edge, and over
the whole wing, for an inoidence range on both asides of the design
incidence; also the 1ift curve slopes were linear throughout the test
range, At the same Maoch numbers the flow separated from the leading edge
of wing 1 at very low incidence and the separated sheet rolled into a
vortex which produced a non-linear 1ift contribution; the size of this
oontribution deoreased with inorease of Mach number,

The results plotted in Figs.5 to 8 show that apart from a dis-
placement of the curves the foroce results for wing 3 are simllar to those
of wing 1, and again the non-linearity of the 1lift and moment ocurves
decreases with inorease in Mach number.

The oil flow photographs (Figs.9(a) and 9(b)) at M = 1,61 for
wing 3 show that separations do occur on this wing at small inoidenoces
away from the design point (CL = 0,05), but there is still a small

inoidenge range in which the flow ois attached, for example at
o = 3.1 (cL = 0,070) and a = 2,0 (cL = 0,045) the flow was attached

on both surfaces of the wing?®, (The Qactual flow pattems at a = 2° are
almoat identical to those at a = 3.1 and so are not presented.) Above
these inoigenoes the lower surface oil pattern remains similar to that
at a = 341" but a separation ocours on the upper surface, The vortex
associated with this separation 1s quite small but oan be seen in the
photograph for o = 4,2° (CL = 0,097) over the outer half of the leading

edge where the attachment and secondary seperation lines are clearly
visible*, At higher inoidences (a = 6,3° and 8,4°) separation starts
nearer the apex and the attachment and seoongary separation lines mgve
inboard, It should be noted that at a = 6,3, i.e. approximately 4
above the design point, the shape %nd position of the vortex is similar
to that on the plane wing at @ = 4 (Fig.11(b)). At inoidences below
@ = 2° gseparation ocours along most of the leading edge, and a vortex
lies along the lower surfaoen%see photograph for a = 0),

At M = 2,0 the photographs (Fig.10) of oil flow do not show a single
large vortex, even at o = 8°; instead at this incidenoe the oil flow
could be interpreted as showing a series of small vartices running baock
over the wing. However, the 1ift curve slope for this Mach number begins

*In the interpretation of these photographs it should be noted that the
regions of unmoved oil which exist at most inoidences represent reg%ons of
attached laminar flow, For example on the lower surface at a = 3,1 the
0il has formed streamlines near the leading edge due to the high shear in
the laminar attached flow there, Further inboard the oil is unmoved exoept
for two regionas at the rear of the wing where the well defined oil lines
indl cate that transition has ocourred, It should be noted that roughness
which was used to fix transition in the foroe tests was removed for the
visualisation <tests in order to cbtain details of the flow in the
immediate vioinity of the edge, Thus the transition changes do not ocour
in the foroe tests,

-7-



Technioal Note No, Aero 2803

to inorease at incidences sbove sbout 6° inoidence, the rate of inorease
being less than at lower Maoh numbers, Thus it would appear that although
a single vortex has not formed at 8° inoidence, & change in the flow has
nevertheless taken place which causes an inorease in 1ift curve alope.

On wing 1 there appears to be little change in the surface flow
pattern as the Mach number is inoreased from 1,6 to 2,0; the only ohange
being that the vortex starts nearer the wing apex at the lower Mach number,
Thus the deorease in non-linear lift on this wing with inorease in Mach
number is probably associated with changes in the vortex strength, which
might not produce large changes in the surface flow pattern, rather than
with the disappearance of the vortex as on wing 3.

3.2 Effeots of camber design 11ft coeffioient

J3e2e1 Lift and pitohing moment

The variation of CL with o and of cln with CL for wings 1 and 3 are

oompared in Figs.5 and 6 for Mach numbers between M = 1,42 and ¥ = 2,0,
Similar ourves for wings 1, 2 and 3 between M = O.4 and M = 1,3 are given
in Figs,12 and 13, 15 and 16 and 18 and 19.

These figures show that in addition to giving a positive no<lift angle
and a non-gero pitching moment at zero 1ift, camber also causes a displace-
ment to higher 1ift ooceffioient of the minimum slope of the 1ift and moment
curves, This minimum slope ocours at, or near, the oondition of flow
attachment and the non~linear behaviour of the ocurves away from this con=
dition is associated with the growth of leading edge separations, In order
to study this non-limsarity in more detail results at Mach numberg of 0,7,
0.9, 1,02, 1,61 and 2,0 have been replotted in the form of (cL - EL) against

(o - a) and (c, - Em) sgainst (C, - EL) {Figs.21 and 22}, where a, EL and Em
are values of o, CL and (.3m corresponding to the minimum 11ft ourve slope.

Fig.21 shows that the 1ift development about o is similar for all three
wings although there are scme small diffeerences between the wings, For
example, at supersonioc speeds the 1ift curve slope of wing 2 at a = a is
larger than that of the other wings, also the 1ift of wing 2 is linear
throughout the test range, and at the highest values of (a = &) wing 3 has the
greatest 1ift, Fig,21 also includes linear lift curve slopes as given by
slender wing theory (CL = %/2 Aa) and, at supersonic speeds, by not-so=
slender wing theory5:6, Also included are curves of G, = %/2 Ao + lulzs
4aZ being the non-linear 1ift inorement derived by Smith’s At M = 0.7,

C, = ®/2 Ao + 4ol slightly overestimates the total 1ift of wing 1 whereas at

M = 1,02 1t provides a slight underestimate, However, at N = 1,02 the initial
1ift ourve slope is higher than %x/2 Aa so that Lka® is still a fair approxima-
tion to the non-linear 1ift inorement, At M = 1,6 the 1lift is again in fair
agreement with Smith's estimate, however a study of the curves shows that
this agreement is fortuitous sinoe the initial 1ift ourve slope is much
greater than x/2 A, and is in fact in excellent agreement with the
not=so-slender value,

The ourves of C - Em against C; = §; show an almost complete collapse

at supersonic speeds (Fig.22), but at subsonic and transonioc speeds the
range of GL about CL in which the aerodynamic oentre remains at a constant

position before moving back inoreases with camber design 1ift coefficient,
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This difference in behaviour is presumsbly associated with the changes
in leading edge separation discussed in seoction 3.,1. The effect of this
inorease in range of constant aerodynamic centre position is clearly
illustrated in Figs.23 and 2, where the variations of oentre of pressure
position with CL at fixed Mach number, and of centre of pressure position

with Mach number for fixed CL are ocompared for the three wings*, It

should be noted, however, that the large forward shift in oentre of
pressure position which ooccurs on both cambered wings near M = 1,0 is
associated both with a forward shift of aerodynamic oentre (see Fig,22)
and with a deorease in cln in this speed range. Reasons for the forward

shift in aerodynamic ocentre near M = 1,0 have not been found, The faot
that the effeot only oocurs on the cambered wings rules out wind tunnel
interference as the main cause, although the actual magnitude of the
forward shift may be influenced by tunne). constraint effeots,

36242 M

Drag polars for wings 1, 2 and 3 at transonioc and subsonio speeds
are presented in Figs,14, 17 and 20, Similar ourves for wings 1 and J
at supersonic speeds are shown in Fig.7. All results are for wings with
fixed transition. Comparative drags are plotted for fixed Mach number in
Fig.25 and for fixed CL in Pig.26,

From Fig.25 it ocan be seen that at negative and low positive 1lift
ooeffioient, the drag of wing 1 is less than that of the cambered wings,
but that with inorease in CL the drag of wing 1 becomes greater than that

of the cambered wings, The drag of wing 3 [(CL)d = 0,05} is always less
then that of wing 2 {(cb)‘i = 0,10}, The large increase in zero lift drag

of wing 2 as compared with wings 1 and 3 is mainly due to the extensive
flow separations which ocour on the lower surface of wing 2 at 1lift
coefficients below 0.10,

The drag results have also been Q.Balysed in terms of a 1if%
dependent drag faotor** {m(cD - ¢} )/cL} The variations of this factor
-]

with C; for the three wings are compared in Pigs,27(a) to (d) at Maoh

numbers of O.4, 0.7, 0,9, 0.98, 1.42, 1,61, 1,82 and 2,0, These figures
also include the theoretiocal valueg of this faotor as given, at supersonio
speeds, by not-so-slender theory!s5, It will be seen that the induced
drag faotor of wing 3 is equal to, or lesas than, the theoretical value,
although the theoretical value only applies near CL = 0,05 where the flow

is attached, The experimental factor for wing 2 is always higher than
the theorstioal value at the design point (CL = 0.1), but it drops below

the design value at 1lift coeffioients above 0,2, The differences in shape
of the ocurves at low values of CL for the various wings are assooiated with

the relative positions, and shapes, of the drag polars as shown in Fig,.25,

*Note that, for oconvenience of presentation, different vertical ascales are
used in Figs,23 and 24,

I"CI‘) is equal to the zero 1lift drag of the uncambered wing together with
o

an inorement to allow for the greater wetted areas of the cambered wings,

For wing 2 the inorement was 0,0006, and for wing 3, 0.0003.

-9-
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In Fig.28 the zero lift drag of the plane wing is compared with
theoretiocal estimates, The skin friotion drag was ocalculated by a strip
method! based on a flat plate turbulent boundary layer, The wave drag at
supersonioc speeds was caloulated by slender body theory; two values are
given in Fig,28 the upper corresponds to the wave drag of the wing alone,
i.e. ignoring the small body at the rear of wing, while the lower ourve
includes the effect of this body (with zero base drag). When allowanoce is
made for form drag it will be seen that agreement between the estimated and
measured drags is good throughout the speed range.

3.3 [Effeot of change in wing shape

In this seotion the results on wings 3 and 4 are compared, It will
be recalled that these two wings have the same local inoidence distribution,
but that this inoidence distribution has been integrated to produce two
wing shapes (see section 2,1 and Fig.lk). On wing 3 the trailing edge is
straight and all spanwise sections have drooped leading edges; on wing 4
spanwise sections forward of 0,8 of the root chord have drooped edges, but
aft of this point the tips turn up,

The variations of C. with a, C_ with G, and C, with C for the two
L m D L

wings are presented in Figs.29, 30 and 31. Figs.29 and 30 show that near
the design condition (CL = 0,05), where the flow is attached, the 1ift and

pitching moments of the two wings are similar, although wing 4 has glightly
less 1lift; this lower 1ift corresponds to an inorease of about 0,15 in the
gero lift angle of wing 4 as oompared with wing 3, Away from the design
point the 1ift develops less rapldly and the inorease in stability with

inorease in cL is less on wing 4 than on wing 3. 0il flow patterns on

wing 4 did not, however, show any signifiocant differences to those on
wing 3 (Pigs.9(a) and (b)). In spite of this, the vortex may be weaker on
wing 4, or the wing shape may be less effiocient in converting the low
pressures asscciated with the vortex into 1lift,

The differences in the drag results are, in general, consistent with
the lower non-linear 1ift of wing 4; that is wing 4 produces a given 1ift
at a higher incldenoe than wing 3, and 8o has greater drag due to 1ift,
Near the design lift coefficient the drags of the two wings are identical
at supersonic speeds, but wing 4 has a slightly higher drag at subsonio
speeds; it 1s thought that this inorease in drag is due to slight differences
in the transition fixing on the two wings.

These results show that large changes in wing shape, without changes
in local incidence distribution, do not produce significant effeots on the
overall faroes when the flow is attached, However, in the present case the
wing with the straight trailing edge devel ops more non-linear 1lift,

3.4 Low speed, high incidence, results for wings 3 and 4

A oomparison of the results for wings 1 and 2 at M = O.4 with Keating's
low speed results for equivalent wings gave exoellent agreement. It was
thus decided to dispense with low speed models of wings 3 and &4, and to
extend the tests at M = O.4 on these two wings up to 17°, These tests could
not be made in the transonic test seotion due to limitations on the inocidence
range and so they were made in the supersonic test seotion with a flat top
wall, The results are presented in Pigs.32, 33 and 34; for comparison these
figures also include results from the transonic test seotion up to 10
incidence,
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The purpose of these tests at high incidence were twofold, (1) To
check whether any undesirable features (for example, pitch-up) ocourred at
these high incidences, (41) To study the non-linear 1ift at high inoi-
dence, since Keating found that, for given inoidence, the wing with camber
designed for C; = 0.1 (wing 2) had much less 1ift than the plane wing,

The results show that the foroces develop smoothly with inorease in
inocidenoce throughout the test range. They also show a rapid inorease in
non=linear 1lif't, partioularly for wing 3. At 15~ incidence the 1lift
coeffiocients for wings 3 and 4 are O,465 and 0,425 respeotively; Keating's
values at this incidence were 0,50 (wing 1) and 0,37 (wing 2). Thus at
these high incidences wing 3 produces nearly as much 1ift as wing 1
because the inoreased strength of the non-linear lift compensates for its
positive no 1ift angle (0.6°) and for the smaller range of incidence where
there 1s positive non=linear 1lift,

L CONCLUSIONS

The tests on ocambered gothio wings reported in Ref,1 have been
extended to inolude the investigation of changes in design 1ift coefficient,
and of changes in wing shape without ohanges in the loocal incidenoe
distribution, The results show that:=

(1) The camber design is sucoessful in that the flow is attached
over the whole wing at the design inoclidence, and for a limited range on
either side of it, The inoidence range over which the flow is attached
on the cambered wings appears to imorease with inoreasing supersonio
Maoh number, whereas on the uncambered wing the flow separates from the
leading edge at a small incidenoe for all Mach numbers,

(2) At any given incidence the cambered wings give less lift than
the uncambered wing because of the positive no-lift angle and because
positive non-linear 1ift does not commence until a higher incidence,

(3) At subsonioc and transonio aspeeds the rate of growth of non-
linear 1ift is similar on all wings, but at Mach numbers above M = 1,4 the
cambered wing with & design 1ift cceffiocient of 0,05, and a straight
trailing edge, appears to develop more non-linear 1lift than the uncambered
wing, whereas the wing with (CL)d = 0,1 develops no non-linear lift,

(4) Camber causes a forward moment of the wing ocentre of pressure
position at subsonic and transonio speeds; this shift is most marked near
M = 1,0, At supsrasonic speeds the effect of camber on centre of pressure
position is small, .

(5) Both the camber shapes designed for C;, = 0,05 have alightly
lower drags than the plane wing at positive CL, but the drag of the camber
designed for CL = 0,10 is greater than that of the uncambered wing at 1ift
:;ﬁﬁ:::imts below about 0.4 at subsonic speeds and 0.15 at supersonio

(6) Changes in spanwise caaber, without changes in the camber
inoidence distribution, do not alter the force characteristios when the
flow is attached, but with separated flow the wing with the straight
trailing edge develops the most non-linear 1ift,

-4 -
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TABLE 1
Details of models

Dimensions (all models)

=g ZfooX
Flanform ¥y = 8g o (2 °n>
Centre-line chord (co) 20 inches
Span (2 sT) 10 inches
Aerodynamio mean chord (3) 15 inches
Area (8) 133,3 8q inches
Distance of ﬁ aft of apex 8.75 inches
Volume (= 0,009 02 ) 72 ou inches

Thickness distribution (without sting falring)

Area distribution
s(s) = 100.8 (E) (1 = (2))(1 -3 (&) + (&) -1 (Z)) sa tooes.
Centreline semi-thickness

Lo @060 @)

Camber distribution (Ref.2)

On all the cambered wings the local incidence distribution is given by

dz
S =C (constant) for 0 < |n| < no(x)
2
. x(|n} - n) . () < Il <1
= 4 - or n(x) € |n] <1,
' (]
(1+ 2'n§) cos 1'00 =gy 1 - ni
where n = y/s(x) no(x) = 2—%8;73' .
[+

The constant C is equal to 0,0956 for wing 2 and 0,0478 for wings 3 and 4,
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