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PREFACE

Optimum utilization of ACIC research and productiona requires
that the accuracy of source material, interim and final products be
considered. The accuracy is expressed by an error statement which
indicates whether the product is reliable and acceptable or should
be used with discretion. Therefore, the error statement must be
representative of the product and have a sound statistical basis.
Tha purpose of this paper is to present and explain the theory
and procedures for providing a valid and meaningpal crr,- statement.

The normal distribution of linear errors is explained in de-
tail because two and three-dimensional error distributions are
more easily analyzed statistically individual treatment of the
linear components. The principles of the linear error distribution
apply only to independent random errors, assuming that systematic
errors have been eliminated or reduced sufficiently to permit treat-
ment as random errors.

Althoujh a truly circular or spherical error distribution seldom
occurs in a sample of observations, the concepts are desirable for
ease of computation and undersuanding. Consequently, considerable
atcation is given to the computation of an approximate circular
or spherical error distribution fr )m unequal linear componezs of
a two or three-dimensional error distribution, yet retaining prop-
erties such as precision indexes of the truly circular and spherical
distributions. Some characteristics of circular and spherical
error distributions differ from those of the linear error distri-
bution: however, the distinction is of an academic nature and
hence is not emphasized in the text.

Organizations using ACIC charting products should find the
discussion helpful in Interpreting statements of cartographic accu-
racy. The formlas and principles can also be applied to weapon
system accuracy evaluation and other purposus provided that the
assumption of a normal distribution of independent random variables
is feasible.

Imprtant functions and eqaationz are presented in the text,
while lengthy derivations are relegated to appendixes. Liberal
numbers of references are inserted after major headings to facilitate
further sthdy.
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AB SRACT

One of the most useful contributions of error theory
is "6he precision index chlch identifies the error distributicn
and secifies the probaility that the true error in a quantity
uces not exeeed a certain valute. This situation is applicable
to the evalaation of map --id Geodetic information, in th.at it
makes possible .meaniagful accuracy statements having uniform
interrre.eation and is co-inatIble with establisler. man accuracy
standards uhich specify limits of permissible error in var_.ous
categories. Standardized procedures and Bupportinr, theory :,i
computing linear, circular, and spherical precision indexes
are presented. The recommended procedure for computi.ng the
circular or spherical standard error from linear standard
errors in X and Y, or X, Y, and Z directions, respectively,
is to average the linear standard errors. Other precision

-., ' ' te sar e error distriuti^n are easily c3.puq-cd
fron the linear, circular, and spherical stnndilrd errcrs --

the most important pre.ision indexes.
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1. ONE-DInENSIONAL (LINEAR) ERRORS

1.1. Introduction. Various aspects of the sciences of geodesy,

cartography, and photogrammetry involve the measurement of physical

quantities and the utilization of such measurcments. Reardless of

the precision of the instrumen-:, no measurement device or method

gives the true value for the quantiLy measured. Mechwi..s l impei.-

fections in instruments and the limitations introduced by human

factors are such that repcated measurements of the same quantity

result in different values. Variations among successive values

are caused by errors' in the observationb.

While the theory of errors does not yield a true value

nor improve the quality of observations, it does provide a way of

estimating the most probable value -for the quantity and of deter-

mining the certainty attritutable to the estimate. Once this has

been established, a least squares adjustment can be used to remove

or distribute the observational errors to obtain a solution which

is relatively free of discrepancies.

1.2. Clasces of Errors. (ref. 6, 19, 22, Errors fall into

three general classes which may be categorized by origin as

(, l r (2) systematic, and (3) random.

'The true error of each observation is the difference between
the true value of a quantity and the measuied. value.

.. .. ...... ... ...I



Blundei s are mistakes caused by misreading scales, trans-

posing figureb, erronecus computations, or careless observers. They

are usually large and easily detected by repeated measurements.

Systematic errors follow some fixed law and are generally constant

in magnitude and/or sign within a series of observations. The

origin of systematic errors in geodetic measurements is pripia]iy

within the instrument or measuring device. Causes of systematic

error include faulty instrument calibration, errors inherent in the

graduation of scales, and changes in performance resulting from

variations in temperature and humidity. Systematic errors can be

eliminated or substantially reduced when the cause is known. Random

errors are tonose remaining after bliunders and systematic e'rors have

been removed. They result from accidental and unknown combinations

of causes beyond the control of the observer. Random errors are

characterized by: (1) variation in sign - positive and negative

errors occurring with equal frequency, (2) small errors occurring

more frequently than large errors, and (3) extremely large errors

rarely occurring.

The probability that a random error will not exceed a

cer+.ain magnitude may be inferred from an analysis of the normal or

Gaussian distribution of an infinite number of randov. variables.

1.3. Basic Concepts of Probability. (ref. 2, 3) erobability

is defined as the frequency of occurrence in proportion to the num-

ber of possible occurrences, or simply, the ratio of the number of

2



successes to the number of trials. Let A and B symbo.ize two

completely independent events. Denote P(A) as the probability of

the event "A" and P(B) as the probability of the event "B". The

p-obability of any event happening must be between zero and one.'

That is, zero probability means that the particular event will

never take place, and a probability of one means that t';o paitic-

ular event will occur each trial. For example, the probability

of rolling the number 7 with a single die is 0.0 (an impossible

event), but the probability of rolling a number from and in-

cluding 1 through 6 is 1.0.

Rule 1. The probability of event A is equal to or greater than

O but e-a>l to or less than I.

0 - P(A) - 1

Rule 2. The probebillty of a failure, or the probability of an

event not occurring, is I minus the probability that it will occur.

- P(A) = failure of event A

Rule 3. The probability of either of two events A or B occurring

is equal to the sum of their individual probabilities.

P(A or B) = P(A) - P(B)

EProlabilit, is also denoted by a percentaee.

3



An example is the probabi.Aity of either a 3 or 4 occurring ou the

single roll of a die:

P(3 or 4) = 1/6 + i/6 - 1/3

Rule 4. The probability of two events occurrJng simultaneounly is

equal to the product of their individual probabiliLies.

P(A and B) = P(A) ' P(B).

An example is the probability of both A = 3 and B 4 occurring in

a single roll of 2 dice:

P(3 and 4) = 1/6 - 1/6 = 1/36

The probabilities of occurrence of the numbers summed from

each of 36 possibie combinations resulting from the single roll of

two dice are presented in Figure 1. The probability of rolling the

number 7, for example, is 6/36 or 1/6 since there are six combi-

nations which heve a sum of seven. A histogram' of the data

approximates the area under a superimposed smooth curve. If the

number of dice in a single roll were increased, the histogram

would rapidly approach the smooth curve, called the normal proba-

bility density curve.

'A column is constructed for each number by blozk, each

representing an area equal to 1/36 probability.



Number Pro'bability' Combinations

10
2 1,36(1)
3 2/36 (1,2) (2,.1)
4 3/36 (1,3) (3,l) (2,2)
5 4/36 (1,4) (4,1) (2,3) (3,2)
6 5/36 (1,5) (5,1) (2,4) (4,2) (3,3)
7 6/36 (1,6) (6,1) (2,5) (5,2) (4,3) (3,4)

5/3 (2,6) (6,2) (3,5) %";.3) (4,4)
9 4/6(3,6) (6,3) (4,5) 4: )
10 3/36 (4,6) (6,4) (5,5)
11 2/3r6 (5,6) (6,5)
12 1./36 (6,6)
13 0

Probability

6/336

Fig-ure 1

Probabilities of N~ubers from the Roll of Two Die

I Note that the sumr of the probabilities is 1.
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1.4. The Normal Distribution of a Continuous Random Variable.

(ref. 3, 24) The area under the normal probability density curve

(Figur-e 2a) represents the total probability of the occurrence of

the continuous random variable x and is equal to one, or 100%.

The mathematical expression of the curve is the normal probability

density function, p(x):

(x -

)- 1 e 202 (1-1)

where: x = the random variable

I& = a parameter representing the mean value

of x

a = a parameter representing the standard

deviation, a measure of the dispersion

of the random variable front the mean,

P. (The square of the standard devia-

tion is called the variance.)

q %- 2.5,066

e - the base of natural logarithms, 2.71828...

The 7-rameters are computed from an infinite number of random

variables: n

= i~l (1-2)
n

6



n 1il =l ( x  ,
n (1-3)

where:

n the number of random variables, and

n-.e

The normal probability distribution function determines

the probability that the random variable will assume a value

within a certain interval and is derived from the normal proba-

bility density fanction by integrating between limits of the

desired interval. Letting the limits range from - s to x:

p( x) p(x) dx

x (_ -

e 2 dx (I-4)

The value of P(x) ranges between 0 and 1, illustrated in Figure 2b.

As x approaches its upper limit, P(x) approaches 1; az x approaches

its lower limit, P(x) approaches zero. This is true since x cannot

exceed nor be less than its defined limits.

7



Figure 2a

Normal Probability Density Curve

P(X)

0 x

Figure 2 b

Normal Probability Distribution Curve



1.5. Application of the Probability Density Function to Random

Errors. (ref. 3, 15, 21, 22) The normal probability density curve

of an Infinite number' of measurements of the unknown quantity X is

expressed by parameters analogous to those of equation (i-i). The

true value pX is the meen of the distribution of the observed

values XI, X2, X3 - Xn . The curve, illustrLted in Figure 3, '-zs

the mathematical form:

(xi - gx)2

p(X) e 2 (1-5)a 4, 2x

/ F .i (Xi -P
)2

where: yV n

The normal probability density curve of errors has a mean of zero

and is identical in form to that of the observed values. Illustrated

in Figure 4, the curve is described by the function:

2
2

1 2 (1-6)

where: e - the true error;
C = Xi -PX

a - the standard deviation of the errors, here-
after designated the standard error;

I The population or universe in statistics.

9



Since "ch. trte value of a quantity cannot be measured and

an infinite number of measurements is impractical, estimated values

obtained from a finite number or sample' of measurements must be

substituted for the true value and the parameters of the density

furction. The most pro)bable value (X) approximates the true

value and is determined from the arithmetic mean' of observed valIues:

i-l Xi

i Z1 (-7)
n

The true Brror in approximst.d by the residual "x"', hereafter

desigrwted the error and defined as the difference between the

observed value and the most probable value:

X = Xi -R (1-8)

The standard error computed from a sample (ax) is identified by

a subscript4and computed from:

iZ a (xi " X)

, ~ n-i - i (1-9)

'As the number of measurements in the sample becomes larger, the
reliability of the estimate increases. Often, 30 values provide an
adequate estimate.

2See Appendix B.

'The residual in represented by 'Y' in some texts.

4 The standard error derived from a sample is designated in some
t-xts by "s" or "mi".

10



The normal probability density function of errors now becomes:

2
X

___ 2a 2

p(x) e X (X- 2)

The parameters X and a x may assume different values as

various samples are selected from the same population and are,

therefore, random variables with dispersion expressed by similar

parameters. The standard error of the ncn, a. , and the

standed error of the standard error, ag , indicate the

reliability of the estimate and help "round off" the comput.d

values:
n (X 2

Sin ( i-I

(, : n (2

i=l 
ax (112)

2 (n 1) 12 (n



p( x)

x i 'IX Ii -o lAX + a XiIlX+ ei

Population

P(X)

Ii I

Sample

Figure 31

Normal Probabii4.ty Density Curve of Observed Values
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p( c)

(xi < tLx) (Xi 4x (Xj > P~x)

Population

p( x)

- x -0 0 +a

xx x x )(x

Sample

Figure 4

Normal Probability Density Curve of Errors
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1.6. Precision Indexes. (ref. ?, 22) A precision index reveals

how errors are dispersed or scattered about zero and reflects the

limiting magnitude of error for various probabilities. For example,

50% of all errors in a series of measurements do not exceed 120

feet; 90% do not exceed ±49 feet. Although different errors are

given, each expresses the o-ie precision of the meacuring procer--

(Figure 5). The standard error and average error (n) are two

indexes with theoretical derivations. Common usage has included

three additional probability levels which are, in effect, preci-

sion indexes: (1) probable error (PE), (2) map accuracy standard

(MAS), and (3) the three sigma error (3).

The standard error is the most important of the indexes

and has the probability of:

4

P(xj - p(x) dx - 0.6827 (1-13)-ox
Or, 68.27% of all errors will occur within the limits of + cx .

The average error is defined as the mean of the sum of the

absolute values of all errors:
i-,n

xI(Xi -11 - - (1-14)
n n

The probability represented by the average error is 0.5751, or

57.51%. The average error is easily computed from the standard error:

q - 0.7979 ax (1-15)

14



Te probable error is that error whi:h 50% of all errors in

a 1!near distribution will not exceed. Specifically, the true error

is equally likely to be larger or smaller than the probable error.

Expressed mathematically:

PE f p(x) dx - 0.50 (1-16)

The probable error is computed from the standard error:

PE - o.6745 . - 0.6745 a. (1-17)

The U.S. National Map Accuracy Standards specify that no

more than 10% o, map elevations (a one-dimensional error) shall be in

errox by more than a given limit. The standards are commonly inter-

preted as limiting the size or error of which 2 of the elcvations

will not exceed. Therefore, the m accuracy standard is represented

by:

Mis f p(x) dx a 0.90 (1-18)

or, computed from the standard error:

MAS - 1.6449 ax  (1-19)

The three sig error, as the name implies, is an error

three times the magnitude of the standard error. The 3a error is

ased because it approaches near-certainty - 0.9973 or 99.73%

probability.

j-,
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1.7. Conversion Factors. (ref. 20, 27) Since all precisi A

indexes are related to the standard error (Table I), factors

computed from this relationship (Table II) will convert the

error at a given probability to the error at another probability.

Table I

Summary of Linear Precision Indexes

Symbol Probability Derivation

PE .5000 o.6745 Ox

n .5751 0.7979 ax

0x .6827 1.0000 X

MAS .9000 1.6449 ax

30 .9973 3.0000 cx

Table II

Linear Error Conversion Factors

~F~rom 000 57.51 68.27% 90.0% 99.73%

50.00% 1.0000 1.1830 1.4826 2.4387 4.4475
57.51% 0.8453 1.0000 1.2533 2.0615 3.7599
68.27% o.6745 0.7979 1.0000 1.6449 3.0000
90.00% 0.4.01 o .4851 0.608o 1.0000 1.8239
99.73% 0.2248 0.2660 0.3333 0.5483 1.0000

17



1.8. Proagation of Errers. (ref. 5, 29) A quantity fi is

computed from tvo measured quantities a and b, where f(a,b) denotes

a function of a and b. The error Af of fi is affected by the errors

in both a and b: be and Ab. Assuming a and b are independent, and

the errors Aa, & are randomly distributed, the combined error Wt

can be computed by the general equatinn:

1~aa2 af (1-20)

where: Of M the standard error of f

aa, ob - the standard errors of a and b

f f
a, U . partial derivatives of f, with respect t-

a nd b.

Application of the general equation to specific conditions produces

the following rules' for the function f(a,b):

Rule 1. Sum and Difference

f " (a +b) orf - (a-b)

O 2 2 (1-21)

'Derivations in Appendix C.

18



Rule 2. Product of Factors

f- mq

a . (2 (1-22)
f

Rule 3. Simple Product or Quotient

f a'b or f u a/b

+l-23)
f

Indexes other than the standard error can be used to

prope.Sate errors. For example, using Rule 1:

(PE)f -+() (PE)b 2

2 2

Fa Cb

(MAS) - V (MAS)R + A

and (3a)f - (30)a + (3o)b 2

However, note that the index must be consistent throughout the

formula. That is:

i ' '\ja 2+ ab 2

19



Of \ I a + 7b

etc.

1.9. Examples of Linear Errors. The foregoing discussion demonstrates

the use of the normal distribution in the analysis of random errors.

There are numerous opportu-.ities for the occurrence of random variables

in cartographic and geodetic work. For example, the base lines and

measured angles, observed lengths of lines, elevations, etc., resulting

from geodetic triangulation, traverse, and leveling all contain error.

The same is true of celestial and gravimetric observations as well as

distances measured by trilateration. The principles of error theory

can be used advantageously to analyze the results in terms of the

specifications established for the survey.

In ACIC, the ncrmal linear error distribution has important appli-

cations with respect to evaluating the accuracy of positional informa-

tion. In addition to the one-dimensional errors which exist in such

ppsitional data as elevations above mean sea level, the linear error

components of two and three-dimensional positions can be analyzed by

applying principles of the normal linear error distribution. The follow-

ing sections contain discuszions of the utility of the linear standard

error for analyzing two and three-dimensional distributlops.

20



2. TnO-DIMENSIONAL (ELLIPTICAL, C.RCULAR) EHORS

2.1. Introduction. A two-dimensional error is the error in a

quantity defined by two randora variables. For example, consider

the true geographic position of a point referred to X and Y axes.

Each observation of tne X and Y coordinates will contain the errors

tox" and "y". When assumed random and independent, each error has a

probability density distribution of:
2

x
1 2a. 2

p(x) - e x

and:
2

y

p(y) 1 e 2 0y2

y

Applying Rule 4 of Section 1.3., the two-dimensional probability

density function becomes:

2+ 2
- i-

p(x,y) - e 2 a2 o2 (2-1)

eX aX y

Rearranging terms:

p(x,y) axy 2gi - e- y

21



Therefore:

-2 i P(xY) ax Oy2X] x2 (2-2)
0y

For given values of p(x,y), the left side of equation (2-2) is a

constant 12

Then:

X2 y2
~-2-- + -2 (2-3)
Ox Oy

For values of p(x,y) from 0 to w, a family of equal probability density

ellipses are formed with axes K C5 and K a.

When Ox i ., equation (2-2) becomes:

-20X lntp(x,y) J 2.] -x 2 (2-4)

For a given value of p(x,y), the left side of equation (2-4) is a

constant which is the square of the radius of an equal probability

density circle.

The probability density function integrated over a certain region

becomes the probability distribution function which yields the proba-

bility that x and y will occur simultaneously within that region, or:

P(x,y) - ffp(x,y) dx dy

However, since both positive and negative values of either "x" or "y"

will occur with equal frequency, the errors may be considered as radial

errors, designated by "r", where r - 47 +Y.

22



2.2. Elliptiral Errors. (ref. 15, 20) Tue probability of an

ellipse is given by the distribution function:

P(x,y) - i e (2-5)

Mhe solution of equation (2-5) with values of K for different proba-

bilities yields the results shown in Table III. For a 39% probability,

the axes of the ellipse are 1.0000 a. and 1.0000 ay; for a 50% proba-

bility, the axes are 1.1774 a. and 1.1774 Oy.

Table III

Values of the Constant X

Probability K

39.35% 1.0000
50.00% 1.1774
63.21% 1.4142
90.00% 2.146o
99.00% 3.0349
99.78% 1 3.5000

The use of the error ellipse is complicated by tne problem

of axes orientation and propagation of elliptical errors. Therefore,

the ellipse is conmmuniy replaced by a circular form which is easier

to use and understand.

2.3. Circular Errors.

2.3.1. Circular Probability Distribution Function. (ref. 1,

24) The probability distribution function of the radial error

expressing the probability that "r" will be equal to or less than

radius R, or the probability that the vector xy will be contained

within a circle of radius R, is derived in Appendix D and Rtated as:

23



r 2 2

0

A special case of the P(n) function (2-6) is formed when ruR,

and a X-y-O r a c . From Appendix D, part 2:
R
2

P(R) a Pc = 1-e (2-7)

where:

PC a the circular probability distribution function, a special

case of P(R)

R a the radius of the probability circle

cc - the circular standard error, a special case of or when

0r 0 X -Y.

When a. and ay are not equal, the P(R) function, (2-6), is

modified by letting "a" equal the ratio L where a. is the smaller
lay

standard error of the two. Then from Appendix D, part 3:

x
_2a -Vi o v (2-8)

P()e k v (28
+ a2J fk

0

where: R2 +2

401 2L a2]J
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V

y

k + a2

Equation (2-8) can be solved' for different probabilities or values

of P(R) representing precision indexes of the error dietribution.

2.3.2. Circular Precision Indexes. (ref. 19, 20, 27) The

precision indexes illustrated in Figure 6 are measures of the disper-

sion of errors in a distribution and represLnt the error which is

unlikely to be exceeded for a given probability. The preferred cir-

cular precision indexes, consistent with indexes used in the linear

distribution, are: (i) the circular standard error (ac), (2) the

circular probable error (CPE, CEP), (3) the circular map accuracy

standard .a, rd (4) the circular near-certainty error, three-fl-:.

sigma (3.5 ac). The mean square positioral error (MSPE), an additional

index which has been used at ACIC, is not recommended because the proba-

bility represented varies when ax and a. are not equal.

The probability of the circular standard error is

found by solving equation (2-7) for Pc when a. W R, thus:

2
ac

2ac
2

P =l-e
c

'Described in Appendix D, part 4.
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1

,- l-e 2

-1 - o.6o653

Pe 0.3935 (2-9)

That is, 39.35% of all errors in a circular distribution are not

expected to exceed the circular standard error.

For a truly circular distribution, the linear

standard errors are equal and identical to the circular standard

error (a x - y a.). When ax  nd ay are not equal, a normal

circular error distribution may be substituted for the elliptical

distribution. The substitution is satisfactory for error analysis

within specified Omin/insx ' ratios. Because of distortion in the

error distribution' for low ratios, however, the circular concept

should be used with dis-reticn.

An approximate circular standard error is

determined from equation (2-8) by letting P(R) - 39.35% and R - ac.

Values of c/arax for ratios of Omin/Omax from 0.0 to 1.0 are con-

tained in Table IV and plotted in Figure 7. For the Umin/amax ratio

between 1.0 and 0.6, the curve is a straight line with the equation:

I Where amin is the minimum or smaller linear standard error of the
two.

tSee Appendix F.
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ac - (0.5222 Gmin + 0'47("O amax) (2-10)

A rapid approximation gives a slightly larger c value for the same

anin/cmax ratio:

ac ~ 0.50 (rx + vy) (2-11)

As min/cmax approaches zero, the 39.35% probability curve follows a

transition from circular, through elliptical, to the linear distri-

bution form.1 The curve does not effectively represent a circular

standard error for Cmin/cmax ratios less than u.6 because it is not

compatible with other circular precision indexes. For example, the

factor 1.1774 convei s a circular error at 39% probability to a

circular error at 50% probability when amin/amax M 1,0 b,.' vhen

amin ' 0, the factor converting a linear error at 39% probability

to a linear error at 50% probability is 1. 3094.' The circular stand-

ard error computed from equation (2-11), however, can be converted

to other circular precision indexes by constant circular conversion

factors ' for amin/amax ratios between 1.0 and 0.2 and is, therefore,

the preferred method for approximating the circular standard error.

'When cin n 0 O, the factor 0.5151 converts a linear error at 68%
probability to an error at 39.35% probability.

' The transition curves of conversion factors are shown in Figures
10 and 11.

'Presented in Section 2.3.3.
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Although it is not recommended beause of limited

applicability and extra computation required, an approximate cc may be

computed by an alternate method:

OC 2
qao (2-12)

vhen Omin/Omax is betw,=en 1.0 and 0.3

The circular probable error is the circular error

which 50% of all errors in a circular distribution will not exceed, or

the value of R in equation (2-7) which makes Pc P 0.5. The CPE (or CEP)

in a truly circular distribution (i.e. ax - a ac) ij computed by:

R
2

0.5 a e 2c- 
2

R
2

1-0.5 - e"  C

R
2

lnO.5 - -
2ac

R2  , 0.69315 (2a c)

R = 1.1774 ac

CPE - 1.1774 a (2-13)
c
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When Ox anti y are not equal an approximate UPk is determined from

equation (2-8) by letting P(R) - 50.00% and R - CPE. Values of CPE/c.,

for ratios of Gkin/ai- from 1.0 to 0.0 are tabulated in Table V. The

50% probability curve plotted in Figure 8 is approximated by a series of

straight lines for different ratios ce U.in/amax with the equations:

cS - (o.6142 min + 0.5632 amax) (2-14)

when Oain/inax is between 1.0 and 0.3

CPS - (0.4263 amin + 0.6196 aeax )  (2-15)

when in/amax is between 0.3 and 0.2

A rapid approximation of the CPE plots as a straight line which inter-

sects the 50% probability curve at the point where amin/amax - 0.2 and

has the equation:

CP - 0.5887 (ax + oy) (2-16)
when Omin/amax is between 1.0 and 0.2

The CPI, computed by equation (2-16) is compatible with the circular

standard error computed by equation (2-11)1 and is, therefore, the

preferred metthod for approximating the circular probable error within

the specified limits.

!That is, the conversion factor of 1.1774 for converting ac to
CFE is conbtant for ratios of stmin/emax between 1.0 and 0.2. No,:e that
l.1774 (0.5000 (ax + ay)] -0 .5887 (ax + ,y).
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Although a circular error concept is not recommended for Omin/CmSX

ratios less than 0.2, a v:ear-Zinear 50% probability error may be

computed to represent a CPB for lower ratios when a comparison of

circular errors derived from different sources is required:

oPE - (0.2141 gra n + 0.6621 amax)

when amin/rmax is between 0.2 and 0.1

CPE - (0.0900 gain + 0.6745 ama x ) (2-18)

when gmin/amax is between 0.1 and 0.0

CPE - 0.6745 arax  (2-19)

when amin - 0

The following aternate methods of computing an approximate CPE are

not recommended because of limited applicability:

CPE - 1.1774 v --- r-  (2-20)

and CPE - 0.8325 Ox2  (221

when amin/amax is between 1.0 and 0.8

The mean sguare positional error (ref. 1, 11) is

defined as the radius of the error circle equal to 1.4142 ac and has

little significance in a truly circular error distribution. However,

when ux ani ay are approximately equal, the DOP, defines the error in

a gcograp po..ton and ic computcd:
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MSPV = \F U2 (2-22)
when I is between 1.0 and 0.8

The probability represented by the MSPE can be found by solving equa-

tion (2-7) for Pc, when R - MSPE and a. is approximated by equation

(2-11)) thus:

R
2

P C " 1 - e " 2 a 
2

(a x2 + a y)

PC 1- e 2ae2 (2-23)

When Ox  - ay"

PC M 1 - e-1.0

= 1 - 0.3679

P = 63.21% (2-24)

When ax  a y the solution of (2-23) yields values of PC (plotted in

Figure 9) ranging from 64% when amin/amax = 0.8 to 77% when amin/

- 0.3. Because of the variation in probability, the MSPE is n-t

recommended for use as a m,'eaision index.

The circular map accuracy standard is based on the

poreentage level in use by the U.S. National Map Accuracy Standa.ds
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which specify that no more than 10% of the well-defined points in a

map ,ill exceed a given error. The standards are commonly interpreted

as limiting the size of error which 90% of the well-defined points

will not exceed. Therefore, the circular map accuracy standard is

represented by the value of R in equation (2-7) when Pc - 0.90, and

is computed:

Oms 2.146o Ge (2-25)

or CMAS = 1.8227 CPE (2-26)

The three-five sigma error, representing a

circular probability of 99.78%, approaches near-certainty in a circular

distribution and nas a maUitude 3.5 times that of the circular st.": -

ard error.
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Figure 6

Normal Circular Distribution
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Table IV

Solution of P(R) Function for P(R) 39.35%

07min01

amax cmax

1.0000 1.0000

0.8165 0.9063

o.6547t 0.8197

0.5000 0.7323

0.3333 0.6327

o.2294I 0.5727

0.1005 0.5274f

0.0 0.5151

Note: When P(R) a39-35%, R -
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Table V

Solution of P(R) Function for P(R) -50.00%

"minm CP!E

1.000 1.1774

0.8..65 1.0683

0.6547 0.9690

0.5000 0.8707

0.3333 0.7696

o.22941 0.7174

0.1005 0.6635

0.0 0.6745 J
Note: When P(R) -50.00%, R CPE
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2.3.3. Cirtular Conversion Factors. (ref. 20, 27) The

relationships of the circular standard error to other circular pre-

cision indexes are summarized in Table VI. Conversion factors (Table

VII) computed froom thpse relationships convert a circular error at a

given probability to a circular error at another probability. When a

circular error cdstrii)iicn i rubr.ituted for an eilipi lual 01 -

tion, the circular conversion factors are retained.

Table VI

Suniiary of Circular Precision Indexes

_Symbol Probability Derivation

cc  • 3935 1.0000 oc
urs, CEP .5000 1.1774 c

MSPE .6321 1.4142 cc

CMAS .9000 2.3]460 c

3.5 ac .9978 3.5000 cc

Table VII

Cirrular Error Conversion Factors

Fro 3935% 50.00% 63.21% 90. 99.78%

39.35% 1.0000 1.1774 1. 4142 2.1460 3.5000
50.00% 0.8493 1.0000 1.2011 1.8227 2.9726
63.21% 0.7071 0.8325 1.0000 1.5174 2.4749
90.00% O.4660 0.5486 o.6590 1.0000 1.6309
99.78% 0.2857 0.3364 o.4o4o 0.6131 1.0000



2.3.4. P__paf.ation of Circular Errors. (ref. 5, 29) A two-

dimensional quantity derived from a nmber of independent variables has

a circular error resulting from the errors in each variable. The total

circular error is determined by propagating the linear components in

each of the two dimensions by methods described in Section 1.8., and

competing the circular form by the procedure shorm in Section 2.j.2.

For example, the total circular error o' a quantity CT, derived from

CT a CI l C2 + ... Cn, is found by:

2 2 2i . +

a l a'2 ... n= T -Vyl2 + 2 + Gx

a yT  -VG,2+ a y2  "" ' yn2

acT 0.5000 (a +a ) (2-27)

An alternate approximate propagation method combines the circular error

of each Independent variable directly, thus:

acT 0
nc Oc 2+. 2 (2-28)

Precision indexes other than the standard error mey

be used; however, the index must be consistent throughout the computs-

tions.
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3. THREE..DI,4ENSIONAL (ELLIPSOIDAL. SPHERICAL) ERRORS

3.1. Introduction. A three-dimensional error is the error in a

quantity defined by three random variables. Expanding on the example

in Section 2.1., a point is referred to X, Y, and Z axes which esteb-

lish the spatial position of the point. When random and independent,

th- c7rorn x, y, and c" ha'-e a "ne-r probability rihuton.

Thp three-dimensiona3 probability density function is expressed by:

-2L + -2

p(x,y,z)2 1 e 2 y 2 (3-1)

(2-,) 2 ax Oy az

Similar to Section 2.1., the probability density function can he written:

2 x2  y2 z2

w + (3-2)
(y 2 + y2  + a z2

where:

W2 2 in ( p(x, y, z) ax oy az (2x )2]

For values cf the constant W2 from 0-. a, the density function defines

a family of ellipsoids of equal probability density.

3.2. Ellipsoidal Errors. (ref. 15, 20) The probability of an error

ellipsoid is given by the probability distribution function:

W 12

P(s) = t2e 2 dt (3-3)

0
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where: s = the radial error; s - z2

t =

rs2

Ors = standard error of the radial error "s"

The solution of equation (3-3) for W yields the values giver in Ta'Je

VIII.

Table VIII

Values for the Constant W

F Probability W

19.9% 1.000

50 1.538

6o. 1.732

90 2.50c

99 ?.368

99.89 4.ooo

3.3. Spherical Errors.

3.3.1. Spherical Probability Distribution Function. (ref.20)

When "x = = Ors %, equation (3-1) becomes the spherical prob-

ability density function:

s 
2

p(s) 0 1 . (3-4)

(2n)' as3
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whe~'c a. $p! Orica) stanO rd error

IntegratinC p( s) front s = tc =s, uqilion (3-4) beomoies the srpheri-

cal proba-ility IiSt'i bUIon !i met-on: 2

P( S) \T - U S IS215

where: S =radiu~s of' t~rC probatilijy sphere

Eqi~ation (3-') can be sol ved 1)y In WappruXination Crrnula (ref, ij,

C

P( S) ~/ l253 - Cee2 1
LC 0.8 C J

S
where:, C a

s

3.3.2. SphericalPrecision Indexcts. (ref. 20, 27) A sphe-i-

cal error distriPtion is represented by indexes zsr:nilar to those in Sec-

tions 3.6. and 2.3.2. Pref'eried sphef-irai rclsion indjexcs include:

(1) the spnerical standard error (a.), (2) tte spherical proball Ac rror

(SPE), (3) tie spherical accuracy standiard (SAS), and (4) the snheri-

cal. near-certainty error, four si~ma (140) Tio -neen radial sdherical

error (IRSE), ayi index wliich has beeon used at. ACTO, is not rcco'r~r'eci

because the prolhaility cepi'esentcdI f _.Ies whun 0 a n am , a,'c riol,

equal.

See AppendIix E.



The probability of an error sphere oi" radius equal

to the spherical standard error is computed by equation (3-6) for the

condition C =aps = 1 as follows.
as

=0.7978846

1

e2 0.60653

C -o - O.67032

0 o.4
C. - O  = 0.53626

P(S) 0.79788 (1.253 - 0.6065 - 0.394,)

* P(S) 0.20 or 20% ' (3-7)

For a truly spherical distribution, the linear stand-

ard errors are equal and identical to the spherical standard error

(ox = ay = az - as). When ax, Gy, and a. are not equal, the spherical

standerd error is approximated by:

as - 0.3333 (ax + ay + CZ) (3-8)

when amin/aOs x is between 1.0 and 0.35

The substitution of a spnerical form for an cllipsoidal distribution is

not recommended when the ain/aIax ratio is less than 0.35.

The following alternate wethod of approximating as

is not recommended because of jimited applicability:$

I A more accurate value is dctermined by, an expansion !n series to
be 19.9% probability.

2 Figure 12 compares curves computed from equations (3-3) and (3-9).
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x2 + y2 + 
(z2

when Omin/amsx is between 1.0 and) 0.'

The ., harlcal prubable error Is defined as the

magnitude of the spherical radius S when the function P(S) = 0.5 or

50%. Expressed in the form S a C as, the spherical .r' bale e;-ror jb

computed by:

SPE - 1.5382 as  (3-10)

The P(R) function for two-dimensional errors is solved by the use of

Grad and Solomon's tables.' Expanding this method into the spherical

distribution, the radius S for a 50% probability sphere (3 50% ) was

computed in terms of max for ratios of amin/Omax and amid/omax and

tabulated in Table IX.2 Utilizing these values, an approximation oP

the spherical probable error can be computed:'

SPE -0.5127 (ox + Oy + 0z ) (3-1)

when Omin/Omax is between 1.0 and 0.35

The mean radial spherical error is the radius of

the error sphere equal to 1.732 os, or
4rT os, in a truly spherical

distribution. When ax 9 ay 9 a., the MRSE is computed by:

'See Appendix D.

twhere: orin = the minimum sigma, or smallest standard error of
the three,

"max the maximum sigma, and

ami d  the rw:i'dle sigma.

:Note that 1.)j32 [0.3333 (a x + ay 4 Oz) ] = 0.5127 (ax  a 0

47



V _ 2 2 2 (3-12)
S y z

when aminm ax is between 1.0 an 0.9

The probabilities represented by the MSE are computed I- equation

(3-6).' Because of the variation in probability,2 the MRSE is not

recommended for use as a precision index.

The spherical accuracy standard is defined as

the magnitude of the spherical radius S when the function P(S) -

0.9 or 90%. Expressed In the form S = C os, the spherical accuracy

standard is computed by:

SAS - 2.500 as  (3-3)

The four sigma error, representing a spherical

probability of 99.39%, approaches near-certainty in a spherical

distribution and has a magnitude four times that of the spherical

standard error.

' Illustrated in Figure 13.

SWher. ax = ay a oz, the probability is 60.82%; when ax 
= 10,

Oy = 3, and az = 6, the probability is 69.36%.
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Table IX

Solution of.P(S) Function for P(S) - 50.00%

mi-d min SPE- S SPE- 0.9127 (ax + Oy + 0o)

°max 50% Letting %ax

o.866 o.866 1.4o16 amax 1.4007

1.0 0.707 1.3892 omax 1.3879

0.775 0.632 1.2341 arax  1.2341

0.577 0.577 i.io16 area x  .1o44

0.894 o.447 1.2104 amax  1.2002

0.707 0.408 1.0894 amac 1.08'"

0.535 0.378 0.9791 amax  0.9808

0.354 0.354 0.8689 arax 0.8757
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3.3.3. Sph_,ical Conversion Factors. (ref. 2O, 27) The

relationships of the spherical standard error %o other spherical pre-

cision indexes are summarized in Table X. Conversion factors (Table

XI) computed from these relationships convert a spherical error 8t a

given probability to a spherical error at another probability.

Table X

Summary of Spherical Precision Indexes

Symbol Probability Derivation

as  .199 1.000 as

SPE .50 1.539 as

NRSE .(08 1.732 as

SAS .90 2.500 as

4 as  .9989 4.000 as

Table XI

Sphcrical Error Conversion Factors
To

From 19.9% 50% 60.8% 90% 99.89%

19.9% 1.000 1.538 1.73? 2.500 4.00

50% 0.650 1.000 1.]26 1.625 2.600

6o.8% 0.577 0.888 1.000 1.443 2.309

90% 0.400 0.615 0.693 1.000 1.6co

99.89% 0.250 0.385 j.433 0.625 1.000
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3.3,4. Propagation of Spherical Errors. (ref. 5, 29) A

three-dimensional quantity derived from a number of independent

variables has a spherical error resulting from the errors in each

variable. The total spherical error is determined by propagating

the linear components in each of the th,.ee dimensions by methods

described in Section 1.8., nnd computing the spherical fuin by the

procedure shown in Section 3.3.2. For example, the to';al spherical

error of a quantity ST, derived from ST o S! + S + . Sn is found

by:

22
XT = ~ +a x2  + .Xn

YT... 0

aZT V a=1
2 + ? z22 + " aZn 2

as 0.3333 (a.. i a + a) (3-14)

T JT YT zT

An alternate approximate propagation method combines the spherical

error of each independent variable directly, thus:

o2 2 2 (-5
+ +... a (3-2

T I  2 n

Precision indexes other then the standard error ,nay

be used; however, the index must be consistent thiougnout the coviput.a-

tions.
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4. A PLICATION OF ERROR THEORY TO POSITIONAL INFORMATION

4.!. Positional Errors. By the use of error theory in the eval-

uation of ACIC positional information, it is possitle to establish a

mcaningful accuracy statement subject to .,nform interpretation. To

provide a logical and occeptablc basis for computation and comparison,

positional errors are assumed to follow a normal distiibution. Th.;

assumption is valid becausc positional error components generally

follow a normal distribution pattern when sufficient data is avaiLable.

The statistical treatment of errors is applied to measurable quanti-

ties found in the sources of positioning information. The d fferences

between the surveyed coordinaLes of ground control and the scaled co-

ordinates of the same control symbolized on maps are considered to be

the errors in the geodetic base of the map. Analysis of the linear

components - latitude and longitude or grid Northing and Easting -

provides a two-dimensional expression of the accuracy of the geodetic

base. When all the linear standard errors occurring during map con-

struction are combined and converted to a circular distribution, the

final map accuracy statement is expressed in terms of circular errors.

Among the positioning errors in maps, there are often Those which

are not measurable and which must be estimated by empirical methods.

When this is necessary, an additional assumption must be made to the

effect that such data is compatible with computed data and that empiri-

cally derived error data will also follow the tnecoreicai error dis-

I -iULo..
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Variou- types of points requ.ire differcnt parameters to e!tablibh

p"?ise positions. These havo been discussed as one, two, or three-

dimensional coordinates. For example, a vortical position (elevation)

requires only a one-dn.,,, -nnrrflnate - the height of tue point

above a reference datum; a geodetic position is expressed by two-

dimensional coordinatts - lacitudo and longitude rcvovn'crI",- t,

specific datum; and spatial positions require three-dimensional coor-

dinates such as the x, y, z coordinates in a rectangular system. '"ho

errors accunujated In he pro.ccss of determining the various positions

mast be evaluated in the same dimensions required to express the pCji-

tion. Errors for vertical positioning can be assumed to follow a normal

linear distribution; those for a -,eodetic position - a circular dis-

tribution; and the errors for a spatial point can be assumed to follow

a normal spherical distribution.

4.2. The Accuracy S.atement. Two major groups of data fall within

Air Force positioning requirements: (1) maps, charts, and other graphics;

and (2) specific points. By the use of error theory, a horizontal ac-

curacy evaluation of the graphic as a whole can be obtained, i.e., a

specified probability that the true errors in well-defincd plmaniauLry

will noc exceed the given quantity. 161 auturacy can also be inter-

preted as percentae - the percentage of well-defined points which

will not contain errors exceeding the gtven manitude. Similarly,

vertical accuracy is stated as a given pro-ability that the linear

t-rrors Th vi .ici usoui art: nrt• IJI-e.. to e .t.vd a secified ?aiue.
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The accuracy of a specifi,, point is expressed also by a statement. of

probability and error magnitude. The eacitracy statement does not mean

that the error in position is exactly 'he va?.ue shown, rather it ex-

predses the probabil!+y that the true error in position will not be

larger than the error given.

Positional error should be expressed by precision indexes whicl,

immediately identify the form snd probability represented by a given

error. For exanple, let the circular probable error (CPE) of a geodetic

position equal 100 feat. Then the form ts circular. "Ae magnitude 100

feet and the probability (50k by definition of CPE) arc derived from a

statistical treatment of known or estimated error components comprising

the total positional error. The statement infers a 50-50 chance that

the geodetic position in question does not vary more than 100 feet from

the true geodetic position. Wfhen the error magnitude is increased by a

statistical factor, greater probability is achieved. Multiplying 100

feet by 1.8227 yields a 90% probability that the positional error will

not exceed 182 feet.

Errors in different forms are more easily understood when precision

indexes common to linear, ci'cular, and spherical error distribut-.ons are

used. Precision indexes suitable £fo expressing positional error in-

clude (I) the linear, circular, and spherical standard errors represent-

ir0g 68.(, 39.35%, and 19.9% probabilities, respectively, (2) the

linear probaole error, circular probcble erior, and spheri.al probable

errcr reprosenti.G )04 pro iabiliLy ia eaen QlsLrihutcn, (1) the map

accuracy standard, circular map accuracy starciard, and spherical accuracy
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qtandarO representinr a 9(4 probability leveL, and (h) a probability

level approachirZ near-certainty for each distribution which the

positional error is thcorptically unlikely to exceed; (a) three

sizn;a (linear, 99.73%), (b) three-'ive sigma (circular, %781P),

and (c) oIoor sigma (spherical, 99.89). Since error voa.ues are

easily converted irom one Drecision index to another in ine same

distribution, the use of any index is largely a matter of choice.

However, in presenting positional. information, the positional error

is best cxpresscd by either the 5O% or 90% prubability precision

index or both.
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4.3. Summary of Formulae and Conversion Factors.

Linear Error Formulas

Percentage
Precision Index jSymbl Probability FC.'"ula

Standdrd Error 68. 27% 2
S(xL - x) -.I

S n-In-i

where: Xi = a measured value of the

quantity X; X,, X, ... X_

the most probable value
(arithmetic mean) of X

E X.
X

x = the error; x = Xi - X

n = number of measu:ements

Probable Error PE 50% PE u.6745 ax

Map Accuracy MAS 90% MAS 1.6449 ax
Standard

Near-Certainty 3 a 99.73% 3.0000 ax
Error (Three sigma

Linear Error Conversion Factors
50% 68.27% 90% 99.73%

50% 1.0000 1.4826 2.4387 4.4475
68.27 o.6745 1.0000 1.6449 3.0000
90 o.41o O.6o8n 1.000o i.8239
99,73 0.2 -L8 0 3333 0,5483 1.00

'3ubscripts denote the standard error ccmputed from a sample (ax' 0y, o0).

58



Circular Error Formulas

Percentage

Precision Index Symbol Probability Formula

Circular E c  39-35% ae= 0O." ax + ay)
Standard Error

when amin/Omax 0-2.

Circular CPE, 50% CPE = 1.1774 oc
Probable Error CEP

CPE = 0.5887 (ux *' Oy)
when amin! max > 0.2

CPE - (0.2141 min + o.6621 max)

when 0.1 < Omin/Omax _< 0.2'

CPE - (0.0900 amin +.
6 74 5max)

when 0. 0 <5 a min/am .ax <.

Circular Map CMAS 90% CmAS = 2.46o 0c
Accuracy Standard

CMAS = 1.0730 (ox  a Y)

when Omin/Omax> 0.2

Circular Near- 3 .5ac  99.78% 3.5000 a
Certainty Error

(Three-five sigma) I

Circular Error Conversion Factors

From 3'.35% 50% 63% 90% 99.78%

39.35% 1.0000 1.1774 1. 4142 2.14,60 3.5000
50 0.8493 1.0000 1.2011 1.82 q 2.9726
63 0 7071 0.8325 1.0000 1.5174 2.4749
90 O.4660 0.5486  0.6590 1.0000 1.630999-78 O. 28. 7 0. 3364 O. 4040 o.6131 1.000

'Where amin is thz mnniriam or smaller lin.-ar tandard error of the two.

A circular error concept is not ieco-mmended for cmirn'max ratios less
than 0.2. However, a near-inea:" 501 probability error may be computed
tu represent a CPE for lower ratios when a comparison of circular errors
derived from different sources is required.
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Sphurical Error Formulas

Percentage
Precision Index Symbol Probability Formula

S;herical 'a 19.9% as = 0.3333(× , ay + az )
Standard Error when min/omax > 0 35 '

Spherical SPE 50% SPE = 1.5382 as
Probable Error

SPE = 0.5127 (ox , ay * a)

when o ia > 0.351 Slherica•

Sjherieal SAS 90% SAS = 2.5003 as
Acciacy Standard

SAS = 0.8333 (ox + oy + jz )

when am//omax > 0.35

Spherical Near- 4 a 99.89% 4.0000 as
Certainty Error
(Four sigma)

Spherical Error Conversion Factors

From 19.9% 50% 61% 90% 99.89%

19.9% 1.000 1.538 1.732 2.500 4.000
50 0.650 1.0o 1.126 1.625 2.600
61 0.577 o.888 1.000 1.h4 3  2.309
90 0.400 c.615 0.693 i.0C0 1.600
99.89 0.250 0.385 0.433 o.625 1.000

'A spherical concept is not recommended when a minimax iL less than 0.35.
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Appendix A

PUICENTAGE PROBABIL17f FOR
SANDARD FROR TINCREMENTS1

The following table presents the increments of linear (Ox) ,

circular (ac), and spherical (as ) stand.-rd errors for intervals or

one percent probabiliLy. Percentage levels correspondiz,, to pre-

cision indexes are underlined.

Factors for converting the error at one percentage probability

to another within the same distribution are derived by dividing the

standard error increment of the new percentage probability by the

standard error increment of the given percentage probability. An

examnle is the conversion from the circular map accuracy standard

(90%) to the circular probable error (50%):

CPE = 1.1774 c

CMAS = 2.1460 ac

1.1774
CPF = - - CMAS

2. i46o

• CPE = o.5W36 cvMs

% 0x  0a 0s

00 0. 00, 0. 000C 0.0000
01 0.0125 o.141 O. 33c)
U,.0 C". 025 1 0.2010 O. 4299

'Reference 27. A-1



03 0.0376 O. e468 o.4951
04 0.0502 0.2857 0.5479
05 0.0627 0.3203 0.5932
06 0. 07 >3 0.3518 o.6334
07 0.0878 0.3810 0.6699
08 o.ioo4 o. 4084 0.70!35
09 0.3130 o.42'3 0.734,t
10 0.1257 o.4590 0.7641,
Li 0.1383 o.4828 0.79p4
12 0.1510 0.5056 0.8192
13 0. 1637 0.5278 o. 8447
14 o.1764 0. 5492 o.8694
15 0.1891 0.5701 0.8932
16 0.2019 0.5905 o.9162
17 0.2147 o.6105 0.9386
18 0.2275 o.6300 0.9605
19 0.24o4 o.6492 0.9818
9.9... 0000

0.2533 0.6680 1.0026
21 0.2663 o.6866 1.0230
22 0.279J3 0.7049 1.0430
23 0.2924 0.7230 1.0627
24 0.3055 0.7409 1.0821
25 0.3186 0.7585 1.1012
26 0.3319 0.7760 1.1200
27 0.3451 0.7934 1.1386
28 0.3585 0.81o6 1.1570
29 0.3719 0.8276 1.1751
30 0.3853 o.8446 1.1932
31 0.3989 o.8615 1.2110
32 0.005 0.6783 i.P288
33 o.4261 0.8950 1.2464
34 o.4399 o.9116 1.2638
35 0.4538 0.9282 1.282
36 0.4677 0.9448 1.2985
37 O.4817 o.9613 1.3158
38 0.4959 0.9778 1.3330
39 0.5101 0.9943 1.3501
39.35 1.0000

0.5244 770-1,67 1.3672
41 0.5388 1.0273 1.3842
42 0.55=34 .o438 1.4o13
43 0.5031 1.o6o3 1.4183
44 0.5323 1 .076
5 0.5978 1.0935 1. 4524
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% ox cc °'s

46 o. 6L28 1.1101 1. 4695
47 o.6280 1. 1268 1. 4866
48 o.6433 1.1436 1.5037
49 0.6588 i.1605 1.5209
50 o.6745 1.1774 1.5382
5 0.6903 1. 194 1.5555
52 0.7063 1.2116 1.5729
53 0.7225 1.2288 1.5904
54 0. 7388 1.2462 1.6080
55 0.7554 1.2637 1.6257

.6 0.7722 1.2814 1.6436
57 0.7892 1.2992 1.6616
57.53 0.7979
5 -0.--" 1. 3172 1.6797
59 0.8239 1.3354 1.6980
60 o.8416 1.3337 1.7164
60.82 1.7321
lr - 0.8596 1.3723 1.73

62 0.8779 1.3911 1.750
63 0.8965 1.4101 1.7730
63.21 1.4142

0.9154 1 4294 1.7924
65 0 9346 1.449o 1.8119
66 0.9542 1.4689 1.8318
67 0.9741 1.4891 1.8519
68 o. 9945 1.5096 1.8724
68.27 1.0000

1r91LO 1.5305 1.8932
70 1.0364 1.15518 1.9144
71 1.0581 1.5735 1.9360
72 1.0803 1.5956 1.9580
73 2.1031 1.6182 1.98o4
74 1.1264 1.6414 2.0034
75 1.1503 1.6651 2.0269
76 1. 1750 1.684 2.0510
77 1.2004 1.7145 2.0757
78 1.2265 1.7402 2.1012
79 1.2536 1.7667 2.1274
80 1.2816 1.7941 2.1544
81 1.3106 1.8225 2.1825
82 1.34o8 1.8519 2.211.4
83 1.3722 1.8PP5 2. P4i
84 1.4051 1.9145 2.2730
85 i,.4395 1,9,79 23059
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ax a c cr

86 1.4758 1.9830 2.34o4
87 I.5141 2.0200 2.3767
88 1.5548 2.0593 2.4153
89 1.59082 2.3011 2.4563
.o 1 2.1460 2.5o03

92 1.7507 2.2475 2.59,',
93 1.8119 2.3062 2.6571
94 1.8808 2.3721 2.7216
95 1.96oo 2.4477 2.7955
96 2.0537 2.5373 2.8829
97 2.1701 2.6102 2.9912
98 2.3263 2.7971 3.1365
99 2.5758 3.0349 3.3683
93.0005
99r 4.oooo3. 5o00

99.9 3.2905 3.7169
99.99 3.8905 4.2919 4.6094
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Appendix B

THE MOST PROBABLE VALUE

Since t'ie true value of a measured quantity is never known, the

most probable value of the quantity must be determined from the

observed values. The following proof (ref. no. 5) Vill ihow that the

aritraetic mean of the observed values is the most probable value of

the quantity:

X - an unknown quantity

XI  M the observed values of the unknown quantity;
Xi a X1' X2 , X3 ... Xn (1)

X - the arithmetic mean of the observed values;

n ni- i , ,ornX = x (2)
i-L n 1

xi  the error in an observation;
x, -x (3)

Proof:

xI  xi -x
1, 1

x = x -x
2 2

Xn  = Xn - X

n n-

13-1



From equation (2);n x n n(4

i " F. x- = (4)
i-i i-l i-l

This shows that the sum of the differences about the mean is zero,

which was expected, but if equatin (?) is squared and then summed:

*1= X 1
2 -2X 1 X +k

2 2
2 = 2 2X2 R + "92

x 2  
2 2n 2 n 2

i X 2 - x xi + 5 (6)
i-i i-I

n
The most probable value will be found when . 1i2 0,or the

i-i
n

most probable value of X will be that which makes . 1i2 . a minimum.
inl

In order to find this minimum, differentiate equation (6) with respect

to X and equate to 0:
n n

d = -2 Xi +2nX = 0

i=l i=1

.'. = xii=J -
(7)

Equation (7) proves that the mean value X is the most probable

value of a set of independent observations. Therefore, in thp determi-

nation of the residual value it is correct to use h'.e mean value for

an approximation of the true value.
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Appendix C

PFOPAGATION OF ERRORS

A quantity f i is computed from two measured quantities a and b,

where f(a,b) denotes a function of a and b. The error Af of fi is

affected by thp errors in both a and b: ba and bb. Assuming a and

b are independent, and the errors 6a, b are randomly distributed, the

combined error Af can be computed. (ref. nos. 5, 15)

Let:

f, M f (a,, bl)

f2 " f (a2, b2)

f (a, b ()

fn =  f an' bn)(i

The measured valies of a and b may be averaged, obtaining the values

a and b. The most probable value of f is Y, (from appendix B), where:

=f (a, b)

ano:

-f (2)

In order to find the value of 6fi, take the partial derivative of fi:

= fi 3fi3i= aa i h 6 bi



n
From Appendix B, z M i - 0

Computir the sum of the squares of equation (3):

12 i\)
2 j ~2 + 1A ) a + &b

2 2

(Since' ( :( e

2 2 2)

-- = -- - --a cosan t
n 2 n

1 2 I fn

+l- (I)a 2 2 11 ---

5I I~ I
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Dividing through by n:

rj n n

n 2Zil 2Z n_

il i nl iWI n

n

2Z'
+ i. n (5)

i-i

By definition:

n n n

' - y f 27- a -f- Ob  (6)

i-l ini i-l

Since a and b are independent:

n

i=1

Therefore:

6 
2

Equation (8) is the general form for the propagation of 
independent

errors, and can be expanded to cover any number of quantities (a, b, c;

d,. ). It is imperative that each element represent the same preci-

sion index in the equation.
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Special Rules for Error Proaation

Rule 1. Sum and Difference: f (a + b + ... ) or f (a - b -

1 1 (9)ab

Placing (9) in the general equation (8):

f a 2 + alP + (10)

The absolute standard error of a quantity computed from the sum or

difference of measurad quantities is equal to the square root of the

sum of the squared staldard errors of the meacured quantities.

This is the form most frequent)y encountered.

Rule 2. Product of Factors Raised To Various Powers: f = am bQ

r- qf m q-(
=ma b and a qb (1

Placing (11) into equation (8):

f =Vn a2 m-2  2q 2 + a~ q2 b 2 q- 2 va2U (12)

Dividing through by f =V a 2 :

_f m2 a2m-2 b2q 2 a2m q2 b2q-2 Yb2

S a2m b 2q a2m b2q

2 + q2 - 1 (13)
f b
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Hule 3. m 'mpie Procuct o" Quotient: From the preceeding rule,

f = a b, l t m I, q = I I,

Then, f ab, or f = a/b.

From Equation (13):

(- )2+ b k4)

where f/f' is the fractional standard error.
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Appendix D

DERIVATION A11D SOLUTION OF THE TWO-DIMENSIONAL
PEOBABILITY DISTRIBIION FUNCTION

1. Derivation, (ref. no. 24) The probability density functions of

the independent errors "x" and "y" r.re:

2

x y

p - e , and p(y) - e Y
Ox

Using Rule 4, .Section 1.3.:

p (x,y) - e X - )2g ax Oy

(xy)e X2 Y] x dy (1)

2 v x  ay Y f
x y

Using polar coordinates:

x2 . r Cos2

Y2 =r 2 sin2 9

where r is the radial error and r = r +y2

P1r r =( r 1 X2+ P (x m < R)(2

where R is the radius of the prubtbbLIty circle.
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The two-dimensional prooability distribution fNnetion is:

1 J j 2 a 2  2
PO 21t aOr7f fyCF r

rnO G-0

dr

rd r dO dr (small increment resulting

.,ono dx ard d:,-)

Using identities: sin2 9 2 (1 - cos 29)
2

Cos 2 0= (1+ cos 29)

R 2w r 2 [1 - cos 29 1 + cos 29]

] - e r dr dQP() 2x, ox a,

r-O @-0

Rearranging terms:

R r2 _Ly2 + ] L r 2 2 1o2

P(R) - _ r r e "" d~dr

r-O Gin0

Let 29,

d - 2dG:
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Ther.:

r t 2 Cos4x c x "

P( rp edr

r-O 90

Rearranging terms:

R re y 21 2x 2  Cos

P(R) = f re do dr

e- O xr e ayd

where 10 is a Bessel Function, zero order, modified first kind.

Therefore:

H 2 rF~
. - I+ -
4a y r

P(R) re 4 1 -CT dr (3)cfx a yj 0 X

r=O

2. Special Case of Two-Dimensional Probability Distribu-ton Function.

When ox  a ay = ar (ref. nos. 18, 24), from equation (3):
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R r2

S o  r -

2r2  __
P(R) re 10 2 r)1 dr

oCy
0

2 r
P(R) - I- r e 2 0 (0) dr

ar
0

10(0) - 1

R

r 2Lar 2

P(R) -f G-rj c dr
r

Since:

d 2Or r 2(7r2

dr Or2

Then:

r2  
r2

f r 
2 ar d 20r2

r r

2 r2 2a2

e r = - c
R2

•.P(,R) 1 -e r (4)

3. Modified Form of the Two-Dimenbional Probability Distribution

Function. (ref. no. 2h) To solve equation (3) by the use of' tabips,

the equation .,st be modified. From S.O. Rice'3 "Properties of Sine
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Wove Plus N-ise" Bell Systerm Technical JournI Vnl. 27 No. 1, January,

194, pp 109..157:
x

Ie (kX) f e-  iO kv.) dv (5)

0

Modifying equation (3):

R r.2 a

y r,,O ay x

Step A

I'tting: r2  1 2

dV = 2r 1 + y)d

4a y2 ax 2

4ay2 dv - 2r i + -Y dr

Ox 
2

rdr = 2 dv

Step B a2 2

To get the quantity _z . 1 )] in the form of (vk):
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I+ a_ k

a 2
y

(cr2)

Let a where is the smaller of the two:

(8 -a 2

ay2+2 a 1 a2

. . .. - I +2 "a 2...

c 2z + x2/ 2

Getting a and in [es of a

II2
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r.2 te 2 B , e a ( 12

2 2 2
y- +

_~ r .Y ____ F 1 '8-

a~ Ca2 LO .-1+ 2 O2 + a?022 R2+

y

Combining -Steps A, B, C, D and equationL (3):

F2 [2+a 1 'I
11" r 2 1 a

2a y c 2 r rI 2 1 -2)
e Io +a2 IJ

0

RewitinG equation (9):

x

PR 2 eV 1I0 (vk) dv

where:

x R [~2]+a r2j21+ a21 (ka2

412 L YJ P4~ a

_____________



4. Solution of Mcdif±ed Function. (ref. nos. 12, 23) 2o compute the

CPE (CPE a R when P(R) = 0.5) for values of ay = q.6 and ax 
=

two methods are aveilable:

Method 1:

To determine the value for x by Rice's table of le (vk) d-, enter

the table with values of k and tnn rtquired probability.

P(P) 50% p-robability; a - x = 0.8165; a2 = 0.6667; k - -2  0.2

ay l+a 2

P(H) 2a e-v  10 (vk) dv

x

.502a a2 ) =1 ev I o (vk) dv
0

x

0.5103 - J e-v  10 (vk) dv

0

EnLer the tables with k - 0.2 and interpolate for 0.5103 to get the

value of x.

5103
.8 - 5516

. x = 0.71732

R2  1a 0.71732

y0
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R 1.0713

Y

The radius of the 50% probability circle (CPE) resulting from a., uy is

a = 1.0713 Cy.

Method 2:

Using tabies computed by Arthur Grad and Herbert Soom.on:

From equation (2):

P(R) - (P ~ 7 J-= y R) - x(2 + 2 $R2)

Since x and y have unit standard errors, they can be written as:

x= ox x and y - ay Y.

Therefore:

P(R) - P (0 y2 + U2 x2 <R2J

ay2 ay

From Grad and Solomon Tables:

P al y 2 a Y2 < t) al + a. 1

p Y 2 +L Y i - I (12)

Correlation between equatiors (i) and (12) will permil use of the

tabled values.

y 2 OY
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Enter the tables with values of a1 , a2 anct the requi. Fd probabi]ity.

Then interpolace for values of .. -t.

a 21

Sinee CTx " then a -x .4; a.2= .6y .2

t .6 = 4559
5000

.7 5080

_t_ o.6864 = R2

R T!L,.68464. o6
a V .6

R ' i.o68 a

y
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Appendix E

DERIVATION OF THE SPHERICAL PROABILITY DISTRIBUTION FUNCTION

The combined probability density distribution function of the

Independent. errors x. y and z are!

22  -2z

1 2" x 1 2ay2  1 ."
p(x*y,z) -- e e e (i)

ax 5 yz

In the spherical case where ax  ay ', a as:

X2 + Y2 + z2

p(x,y,z)dx dy dz I e" 2s dx dj az (2)

a 3 (2r)

Converting to 3-dimensional coordinates:

2 a 2 2 c o5 2 X

2 82 ,in2y co 2~ n2

Z 2  . rS 2 sin 
2

x2 + y2 + z2  . a 2 cos2 COS2 X + S2 COS2  sin2  + s2 sin 2

= S2 cos" ;t ( os
2 X + sjn 2 k) + s2 sin 2

E-2
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Let S = radius of sphere, replacing radial error s.

Then: dS Sd S cos dX S2 cos d# dX dS

it
S 2x 9S

P( S)f f f e a 2 Bcos$ * dXS (3)

P(S) _3 edS

(2(w))

2 2

)" -vJ fas (

0
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IntcGra' ing 'by pe rts :

Lt U , - v- e2 dS
as 2

ass

s2

S 2 d S 
d J

in order to use approximation formilla (Mathmaticai Tables and Other

Aids to Computations, Vol. XI, No. 60, October 1957, pp 265, "A For 1la

for the Approximation of Definite Integrals of the Noiinul DistrilU"tion
-t" ,/2

Function"), P(S) must be transformed to the integral of e dt.

S
Lettinig C -a , dS sa r d C, where a. constant:

2s S

c c-- S C 1
P(S) = + e dC (6)

L C=O

From above reference when x 0:

4.2 
x2

2 e
dt 7. (y)

-.4x
x + 0.8 e

x
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F 2
J e dC - 1.253

0

x c

0 0

c 2  c 2

P(s) -- - Ce + 1.253.. 2

C + 0.8 e"  J
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Appeniix F

S',l."r'ITTJTTON 0?t T1hE CIRCj.ATI F?0l,' FOR EL1'LA ERHOR DISTHIBUTIONS

~min ai

amin Omin
-m-n = 0.90.

c'min ai

amax =0.7 Umax o.6

F-i



0nn 0.3 0 .4f
.rax max

"min ail
07max = 0.3 %a 0.?

0'min
a . .

max
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