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PREFACE

Optimum utilization of ACIC research and production requires
that the accuracy of source material, interim and final products be
considered. The accuracy is expressed by an error zlatement which
indicates whether the product 1s relisble and acceptable or should
be used with discretion. Therefore, the error statement must be
rcepresentetive of the product and have a sound statistical basis.
The purpose of this paper is to present and explain the theory
and procedures for providing a valid and meaningful crro-- statement.

The normal distribution of linear errors is explained in de=
tail because two and three-dimensional error dictributions ar:z
nore easily analyzed statistically _ individuel treastment of the
linear components, The principles of the linear error distribution
apply only to independent random errors, assuming that systematic
errors have been eliminated or reduced sufficiently to permit treat-
ment as random errors.

Although a truly circular or spherical error distribution seldom
occurs in a sample of observations, the concepts are desirable for
ease of computation and undersiending. Consequently, considerable
atweation is given to the computation of an approximate circular
or spnerical error distribution fr-m unequal linear componenvs of
a two or three-dimensional error distribution, yet retaining prop-
erties such as precision indexes of the truly circular and spherical
distributions. Some characteristics of circular and spherical
error distributions differ from those of the linesr error distri-
bution: however, the distinction is of an academic nature and
hence is not emphasized in the text.

Organizations using ACIC charting products should fird the
diccussion helpful in interpreting statements of cartograephic accu-
racy. The formulas and principles can also be applied to weapon
system accuracy evaluation and other purposus provided that the
assumption of a2 normal distribution of independent random varigbloes
is feasible.

Important functions and equalions are presented in the text,
vhile lengthy derivalions are relegated to appendixes. Liberal
muibers of references are inserted after major headings to facilitate
rurther study.

vii




ABSTRACT

Onc of the most useful contribvutions of error theory
5 the vrecision index vhich identifies the error distributicn

3o

and specifies the probatility that the true error in a quantity
deas not exceed a certain value. Thic situa“ion is applicable
to the evaluazion of map gnd geodetic information, in that it

makes possible meaningful accuvracy statements having unifora
interrrezation, and is compatitle with esvoblisled map accuracy
standards vhich specify limits of permissible error in var.ous
categories, Standardized procedures and supvorting theory lor
computing linear, circular, and spherical precision Iindexes

are presented. The recommended procedurc for computing the
circular or spherical standard error from linear standard
errors in X and ¥, or X, I, and Z directions, respectively,

is to average the linear standard errors. Other precicion

LR N 2 PR N s . .
indexes in the sene error distr;butlon are e35113 compused

the nost inmportant prezision indexes.




1. ONE-DIMENSIONAL (LINEAR) ERRORS

1.1. Introduction. Various aspects of the sciences of geodesy,
cartography, and photogrammetry involve the measurement of physical
quantities and the utilization of such measurcments. Repardless of
the precision of the instrumen:, no measurement device or method
gives the true value for the quantily measured. Mechuni.al lape:-
fections in instruments and the limitations introduced by human
factors are such that revcated measurements of the same quantity
result in different values. Variations among successive values
are caused by errors' in the observations.

While the theory of errors does not yield a true value
nor improve the quality of observations, it does provide s way of
estimating Lhe most probable value Tor the quantity and of deter-
mining the certainty attritutable Lo the estimate. Once this has
been established, a least squares adjustment can be used to remove
or distribute the observational errors to obtain a solution which
is relatively free of discrepancies.

1.2. Clasccs of Errors. (ref. 6, 19, 22 Errors fall into

three general classes which may be categorized bty origin as

{1 vieuucrs, (2) systemetic, and (3) random.

1The true error of each cbservation is the difference hetween
the true value of a quantity and the measur.é value.




Blunde:s ere mistakes caused by misreading scales, trans-
posing figures, erronecus computations, or careless observers. They
are usually large and esslly detected by repeated measurements.

Systematic errors follow some fixed law and are generally constant

in megnitude and/or sign within & series of observations. The
origin of systematic errors in gcodelic measurements is primarily
within the instrument or measuring device. Causes of systematic
error include faulty instrument celibration, errors inhere¢wt in the
graduation of scales, and changes in performance resulting from
variations in temperature and humidity. Systematic errors can be

eliminated or substantially reduced when the cause is known. Random

errors are tnose remaining after blunders and systematic e.rors have

been removed. Taey result from accidental and nnknown combinations
of causes beyond the contrecl of the observer. Random errors are
characterized by: (1) variation in sign — positive and negative
errors occurring with equel frequency, (2) small errors occurring
more frequently than large errors, and (3) extremely large errors
rarely cccurring.

The probebility that a random error will not exceed a
certain magnitude may be inferred from an analysis of the normal or
Gaussian distribution of an infinite number of rando.. variables.

1.3. Basic Concepts of Probability. {(ref. 2, 3) rrobability

is defined as the frequency of occurrence in proportion to the num-

ber of possible occurrences; or simply, the ratio of the number of




successes to the number of triamis., ILet A and B symbolize two
completely independent events. Denote P(A) as the probability of
the event "A" and P(B) as the probavility of the event "B". The
probability of any event happening must be between zero and one.’
That ic, zerc probability means that the particular event will
never take place, and u prcbability of one means that tw» partic-
ular event will occur each trial. For example, the probability
of rolling the number 7 with a single die is 0.0 (an impossible
event), but the probability of roliing a number from and in-

cluding 1 through 6 is 1.0.

Rule 1. The provebility of event A is equal to or greater than

0 but erul to or less than 1.
o S pa) S 1

Rule 2. The probshility of a failure, or the probability of an

event not ocecurring, is ] minus the probability that it will occur.

> - P(A) = failure of event A

Rule 3. The orobebiiity of either of two events A or B occurring

is equal to the sum of their Individual probabilitics.

P(A or B) = P(A) + P(B)

!Prorability is also denoted bty a percentage.




An example is the probabiiity of either & 3 or 4 occurring on the

egingle roll of a die:
P(3ork) = 1/6+1/6 = 1/3

Rule 4. The probability of two events accurring simuitaneousiy is

equal to the product of their individual probabiliiies.

P(A and B) = P(A) - ®(B).
An exemple is the probability of both & = 3 and B = % oceurring in

8 single roll of 2 dice:

P(3and b)) = 1/6 * 1/6 = 1/36

The probebilities of occurrence of the numbers summed from
each of 36 possibie combinations resulting from the single roll of
two dice are presented in Figure i. The probability of rolling the
number 7, for example, is 6/36 or 1/6 since there are six combi-
nations which heve a sum of seven. A histogram' of thte data
approximates the area under a superimposed smooth curve. If the
number of dice in a single rcll were increased, the histogram
would rapidly approach the smooth curve, called the normal probe-

bility density curve.

1A column is constructed for each number by block. each
representing an area equal to 1/36 probability.
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1.%. The Normel Distribution of a Continuous Random Variable.

(ref. 3, 2k) The ares under the normal probability density curve
(Figure 2a) represents the total probability of the occurrence of
the continuous random varickle x and is equal to one, or 100%.

The mathematical expression of the curve is the normal probability
density function, p(x):

(x -w)°

plx) = —+— e 2o (i-1)

where: the ranrdom variable

I
]

W = & parameter representing the mean value
of x

¢ = a parameter representing the standard
deviation, a measure of the dispersion
cf the random variable frcm tne meen,
#t. (The square of the standard devia-
tion is called the variance.)

Jor = 2.5066 . . .
e = the base of natural logarithms, 2.71828...

The s.rameters are computed from an infinite number of random

variables:

po= (1-2)




Jzn (2, - W)
i=1
o = n (1"3)

n = the number of random veriables, and

where:

n—r e .

The normal probability distribution function determines
the probability that the random variable will assume a value
within a certain interval and is derived from the normal proba-
hllity density function by integrating between limits of the

desired interval. Letting the limits range from - e to X:

X
P(x) = p(x) dax
-
X 2
= (x - n)
1 Y
20
B(x) s e dx (1-4)
avN2n -
-

The value of ¥{x) ranges between 0 and 1, illustrated in Figure 2b.
As x approaches its upper limit, P(§) approaches 1; ay x approaches
its lower limit, P(x) approaches zero. This is true since X cannot

exceed nor be less then its defined limits.
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B
Figure 28

Normal Probability Density Curve
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Figure 2)b

Normal Probability Distributinn Curve
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i.5. Application of the Probability Density Funection to Random

Errors. (ref, 3, 15, 21, 22) The normal probability density curve
of an infinite number' of measurements of the unknown quantity X is
expressed hy parameters analogous to those of equation {(1-1}. The
true value My is the meen of the distribution of the obsgerved
velues xl, xa, X3 ton xn. The curve, illustreted in Fugure 3, =23

the mathematical form:

2
i (xg - ux)
ox) = == o 2° (1-5)
o Jox

[T Gy -
X; - u
mp X
whera: c ;\/ n

The normal probability dernsity curve of errors has a mean of zero

and is identical in form to that of the observed values. Illustrated

in Figure U, the curve 1s described by the function:
2

€
-]
ple) = —=— e % (1-6)

g ~/2n

where: € = the true error;
€ = X -y

o = the standard deviation of the errors, here-
after designgted the gtandard error;

s L

n

t The population or universe in statistics.

9




Since th2 trie value of a quantity cannot be measured end
an infinite number of measurements 1s impractical, estimated values
obtained from a finite number or sample' of measurements must be
substituted for the true value and the parameters of the density
furction. The most prokable value (i) approximates the true

value and is determined Irom the arithmetic mean® of observed veiies:

Zn
X
iml 1

X {1-7)
n
The true arror is approximsta2d by the residual "x"’, hereafter
designuted the error and defined as the difference between the
observed value and the most probable value:
X = Xi - ‘}-( (1‘8)

The stendard error computed from a semple (o, ) is identified by

a subscript’and computed from:

)2

I~ o 3
X, - X
Zi-l 1 L2
Oy n-1 = n-1 (1-9)

1As the number of measurements in the sumple becomes larger, the
reliability of the estimate incrcases. Often, 30 values provide an
edequate estimate.

1See Appendix B.
$ The residusl is represented by "v" in some texts.

4 The standerd error derived from a sample is designated in some

[ 1] (1 1}
texts vy "s' or "m".

1O




The normal probability density function of errors now becomes:

2
. X
1 2¢_2
plx) = —=— e X (1-10)
o, J2x

The parameters X and 0, mey assume different values as
various samples are selected from the same population and are,
therefore, random varisbles with dispersion expressed by similar
parameters. The standard error of the ncaun, o.}.{. » and the
standerd error of the standard error, Oy » indicate the

reliability of the estimate and help "round off" the comput-=d

values:
NGRS
ix) Ox
oi ;V n(n-1) = Jn (2-11)
Zi- B
= __(.’x_.__._ (1_12)
2(n-l J2(n- 1)

11
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1.6, Precision Indexes. (ref. 3, 22) A precision index reveals

hov errors are dispersed or scattered about zero end reflects the
limiting magnitude of error for various provehilities. For example,
50% of all errors in & series of measurements do not exceed %20
feet: 90% do not exceed 49 feet. Although different errors are
given, each expresses thc seme precision of the meacuring procer:
(Figure 5). The standard error and average error (n) are two
indexes with theoretical derivations. Common usage has included
three additional probability levels which are, in effect, preci-
sion indexes: (1) probable error (PE), (2) mep accuracy standard
(MAS), and (3) the three sigma error (30).

The standard error is the most importent of the indexes

and has the probability of:
ta.
Plx) = p{x) ax = 0.6827 (1-13)

- qx

Or, 68.27% of all errors will occur within the 1limits of % Oy
The average error is defined as the mean of the sum of the
absolute values of all errors:
n -
Zm lx, - %l 5

n = =
n n

(1-14)

The probability represented by the average error is 0.5751, or
57.51%. The average error is easily compuced from the standard error:

1 o= 0.7979 o, (1-15)

1k




The probable error is that error whizh 50% of all errors in

& linear distributicn will not exceed. Specifically, the true error
is equally likely to be larger or smaller than the probable error.
Expressed mathematically:
b
PE -L p(x) dax = 0.50 (1-16)

The probable error is computed from the standard error:

2
PE = o.67h5\/:2: = 0,6745 o (1-17)
n-1 x

The U,S. Naetional Map Accuracy Standards specify that no
more than 10% o. map elevations (a one-dimensional error) shall be in
error by more than a given limit., The standards are commonly inter-
preted as limiting the size of error of which g)_é of the elcvations

will not exceed. Therefore, the map accuracy standard is represented

by:

b
MAS -f o(x) dx = 0.0 (1-18)
a

or, computed from the standard error:
MAS = 1,6449 o (1-19)

The three sigma error, as the name implies, is an error
three times the megnitude of the standard error. The 3¢ error is
ased because it approaches near-certsinty — 0.9973 or 99.73%

probability.

pt
A )




L=

50% (PE) -3
68% (g, ) ——3

90% (MAS)
99.7% (30)

Figure 5

Probability Areas
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1.7. Conversion Factors. (ref. 20, 27) Since all precisi a

indexes are related to the standard error {Table I), factors
ccmputed from this relationship (Table II) will convert the

error at & given probabvility to the error at another probability.

Table 1

Summary of Linear Precision Indexes

Symbol Probability Derivation
PE .5000 0.6T45 oy
n 5T51 0.7979 oy
o, .6827 1.0000 o,
MAS .9000 1.6449 oy
30 9973 3.0000 oy

Teble II

Linear Error Conversion Factors

From 50.00% | 57.51% | €8.27% 90.00% 99.73%

50.00% 1.0000 | 1.1830 | 1.4826 2,4387 4, 4h7s5
57.51% 0.8453 | 1.0000 | 1.2533 2.0615 3.7599
68.27% 0.67T™%5 | 0.7979 | 1.0000 1.6k 3.0000
90.00% 0.4101 | 0.4851 | 0.6080 1.0000 1.8239
99.73% 0.2248 | 0.2660 | 0.3333 0.5483 1.0000

17




1.3. Propagetion of Errcrs. (ref. 5, 29) A quantivy f£; is

computed from two measured quentities a and b, where f(a,b) denotes
a function of a and b. The error Af of fy; is affected by the errors
in both a and b: Aa and &, Assuming & and b are independent, and
the errors Ma, Ab are randomly distributed, the combined erro:: AL

can be computed by the general equeticn:

2 2
VB oo e

where: o, = the standard error of f

Q
-
L]

g

a? °b = the standard errors of a and b

of of

S., .a... = 7nartial derivetives of f, with respect t-
s ob

a and b,
Application of the general equation to specific conditions produces

the following rules! for the function f(a,b):

Rule 1. Sum and Difference

f =~ (a+b) orf = (a-0b)

gp = 0.2 4 o.ba (1-21)

tDerivations in Appendix C,

18




Rule 2. Product of Factors

f = a®pd

RNV R

Rule 3. Simple Product or Quotient

f = ab or £ = afp

[+ [+] 2 Uba
RNV 2

;4
Indexes other than the standerd error can be used to

propesate errors. TFor example, using Rule 1:

(E), -\/(?mf + (PE),2

[ 2 2
IR VAR

(s =\/ (9),% + (mas),”
and (30), -\/(—30)32 + (3°)b2

However, note that the index must te consistent throughout the

formula. That is:

(PE), #/(PB),2 + o,

19




|

ng s‘~\/ (MA8),° + (30),°

. 2
o, ,"\/ Oy *+ nba

ete.

1.9. Examples of Linear Errors. The foregoing discussion demonstrates

the use of the normal distribution in the analysis of random errors.
There are numerous opportu-ities for the occurrence of random veriables
in cartographic und gecdetic work. For example, the bage 1lines and
measured angles, observed lengths of lines, elevatione, etec., resulting
from geodetic triangulation, traverse, and leveling all contain error.
The same is true of celestial and gravimetric observations as well ag
distances measured by trilateration. The principles of error theory
can be used advantageously to analyze the results in terms of the
specifications established for the survey.

In ACIC, the ncrmal linear error distribution has important appli-
cations with respect to evaluasting the accuracy of positional informa-
tion. In addition to the one-dimensional errors which exist in such
positional data as elevations above mean sea level, the linear error
components of two and three-dimensional positions can be analyzed by
applying principles of the normal lin2ar error distribution. The follow-
ing sections contain discussions of the utility of the linear standard

error for analyzing two and three-dimensional distributfors.

20




2. TWO-DIMENSIONAL (ELLIPTICAL, CXRCULAR) ERRORS

2.1. Introduction. A two-dimensional errcr ig the error in a
quantity defined by two random verisbles. For example, consider
the true geographic position of & point referred to X and Y axes.
Each observaticn of the X and Y coordinates will contain the errors

"x" and "y". When assumed random and independent, eack error has a

probability density distribution of:

2
-
1 2¢.2
px) = ——— e %
o, Jax
and:
2
S
Tl 2
1
ply) = —E— e 2%
cry 'Jax

Applying Rule I of Section 1.3., the two-dimensional probebility

density function becomes:

1 6.2
p(x,y) = e x (2-1)
2x Oy oy
Rearranging terms:
2 2\
1 _ﬁg PR
2|\o,° 02
p(x,y) og0, 25 = e y

21




Therefore:

x2
-2 1n [p(x,y) o, Oy 21!] == + 5 (2-2)
Oy dy

For given values of p(x,y), the left side of equation ‘2-2) is a

constant 1(2
Then:
2. X, 2L
= T35 + 2 (2-3)
Oy Oy

For values of n(x,y) from O tow, & family of equal probability density
ellipses are formed with axes K oy and K oy.

When o, = J_, equation (2-2) becomes:

-20x2 1nTp(x,y) °x2 2:] - x4 ¥~ (2-4)

For a given value of p(x,y), the left side of equation (2-4) is a
constant which is the square of the radius of an equal probability
density circle.

The probability density function integrated over a certain region
becomes the probebility distribution function which yields the proba-

bility that x and y will occur simultaneously within that region, or:

P(x,y) = ffp(x,y) dx dy

However, since both positive and negative values of either "x" or "y"

will occur with equal frequency, the errors may be considered as radial

errors, designated by "r", where r = Jx2 + y-E.

22




2.2, Eiliptical Errors. (ref. 15, 20) Tie probability of an

ellipse 18 given by the distribution function:

s
Px,y) = 1L-e 2 (2-5)

The golution of equation (2-5) with values of K for different proba-
bilities yields the results shown in Table III. For a 39% probability,
the axes of the ellipse are 1.0000 0, and 1.0000 o.; for a 50% proba-

bility, the axes are 1.1774 oy and 1.1774 oy.

Table III

Values of the Constant K

Probability K
39.35% 1.0000
55,004, 1.1774
63.21% 1.4142
90.00% 2.1460
99.00% 3.034%9
99.78% 3. 5000

The use of the error ellipse is complicated by the problem
of eaxes orientation and propagation of elliptical errors. Therefore,
the ellipse is communiy replaced by a eircular form which is easier
to use and understand.

2.3, Circular Errors.

2.3.1. Circular Probability Distribution Function. (ref. i,

24k) The probability distribution functicn of the radial error
expressing the probtability that "r" will be equal to or less than
radius R, or the probability that the vector x» will be containesd

within a circle of radius R, 1s derived in Appendix D and stated as:
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R r2 02
-3 l+"z'2' 2
P(R) = T | y 1 2 " 1}1 dr (2-6)
Xy ho, " \o,
0 Yy

A special case of the P(R) function (2-6) is formed when r=R,

and o,=0,=c,, ® O¢. From Appendix D, part 2:

Y
2%2
HR) = P, = l-e (2-7}
Wwhere:
Pc = the circular probability distribution fnction, a special
case of P(R)
R = the radius of the probability circle
g, = the circular standard error, & special case of o, when
g, ™ Oy = Uy
When o, and g, ere not equal, the P(R) function, (2-6), is
(4]
modified by letting "a" equal the ratio F’-‘- where g, is the smaller
Yy
standard error of the twc. Then from Appendix D, part 3:
x
2
P(R) = 2 f eV I, (vk} av (2-8)
1+ a.a
(o]
vhere:
RS |1+4°
x = 0 -
2 2
lboy a

2k




v = r ]l +a
bg 2 a2
b

k =
1+ 8
Equation (2-8) can be solved' for different probabilities or values

of P(R) representing precision indexes of the error dietribution.

2.3.2. Circular Precision Indexes. (ref. 19, 20, 27) The

precision indexes illustrated in Figure 6 are measures of the disper~
sion of errors in & distribution and represent the error which is
unlikely to ve exceeded for a given probability. The preferred cir-
cular precision indexes, consistent with indexes used in the linear
distribution, are: (1) the circular standard error (o,), (2) the
circular probable error (CPE, CEP), (3) the circulsr map accuracy
standard {CMAS), and () the circular near-certainty error, three-tiv:
sigme (3.5 0,). The mean square positional error (MSPE), an additional
index which has been used at ACIC, is not recommended because the proba-
tility represented varies when gy and oy ere not equal.

The probebility of the circular standerd error is

found by solving equation (2-7) for P, when o, = R, thus:

t Described in Appendix D, part 4.
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l-e

0 i~

1 - 0.60653

.

0.3935 (2-9)

That is, 39.35% of all errors in a circular distribution are not
expected to exceed the circular standard error.

For a truly circular distribution, +the linear
standard errcrs are equal and identical to the circular standard
error (°x =0y m °c)° When oy £nd oy are not equal, & normal
circular error distribntion may be substituted for the elliptical
distribution. The substitution is satisfactory for error analysir
within specified Opy,/0may' ratios. Because nf distortion in the
error distribution? for low ratios, however, the circular concept
should be used with dis~reticn.

An approximate circular standard error is
determined from equation (2-8) by letting P(R) = 39.35% and R = o,.
Values of °c/°max for ratics of °m1n/°max from 0.0 to 1,0 are con-
tained in Table IV and plotted in Figure 7. For the Umin/°max ratio

between 1.0 and 0.6, the curve is e straight line with the equation:

! Where Omin is the minimum or smaller linecar standard error of the
iwo.

t See Appendix F,
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0g ~ (0.5222 gpyp + 04775 opay) (2-10)

A repid epproximation gives a slightly larger o, value for the same

Omin/Omex TEL1O:
g, ~ 0.5000 (g, + ay) (2-11)

As °min/bmax approaches zero, the 39.35% probability curve follows &
transition from circular, through elliptical, to the linear distri-
bution form.! The curve does not effectively represent a circular
standard error for °min/°hax ratios less than u.6 because it is not
compatible with other circular precision indexes. For example, the
factor 1.1774 converts a circular error at 39% probability to a
circuler error at 50% probability when °m1n/°max = 1,0, b:’ vhen
Opin ™ 0, the factor converting a 1inear error at 39% probability

to a linear error at 50% probability is 1.309h.' The circular stand-
erd error computed from equation (2-11), however, can be converted
to other circular precision indexes by congtant circular conversion
factors ! for Omin/Omax ratios between 1.0 and 0.2 and is, therefore,

the preferred method for approximating the circular standard error,

' When o, = O, the factor 0.5151 converts & linear error at 68%
probability to an error at 39.35% probability.

¢ The transition curves of conversion factors are shown in Figures
10 and 11.

$ Pregented in Section £.3.3.




Although it is not recommended because of limited
applicability and extra computation required, an approximate o, may be

computed by an alternate method:

(2-12)

when Opy;/Opay 18 betwsen 1.0 ond 0.8

The circular probable error is the circular error

which 50% of all errors in a circular distribution will not exceed, or
the value of R in equation (2-7) which makes P, = 0.5. The CPE (or CEP)

in a truly circular distridution (i.e. oy = uy ] ac) 13 computed by:

0.5 = 1-e ¢

1-005 = e ¢

In0.5 = .—_

s
]

0.69315 (20,°)

0
]

1.177h 9,

CPE

1.177% o, (2-13)
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When oy ana Uy are not equal, an approximate CPk is determined from
equation (2-8) by letting P(R) = 50.00% and R = CFE. Values of CPE/c, .,
for ratios of Opyn/Omay from 1.0 to 0.0 are tabulated in Table V, The
50% probability curve plotted in Figure 8 is approximated by a series of

straight lines for different ratios or °m1n/°max with the equations:

CPE ~ (0.6142 oy, + 0.5632 0y, ) (2-14)
when oy,,/0, ., 18 between 1.0 and 0.3

CPE ~ (0.4263 g, + 0.6196 opy,) (2-15)
when °m1n/° ey 18 between 0.3 and 0.2

A rapid approximation of the CPE plots as & straight line which inter-
sects the 50% probability curve at the point where °min/°max = 0,2 and

has the equation:

CPE ~ 0.5887 (ox + oy) (2-26)
when °m1n/°max 18 between 1.0 and 0.2

The CPE computed by equation (2-16) is compatible with the circular
standard error computed by equation (2-11) ' and is, therefore, the

preferred method for approximating the circular probable error within

the specified limits.

! That 48, the conversion factor of 1.1774 for converting 0, to
CFE is constant for ratios of Omin/opax between 1.0 and 0.2. Nowe that

12774 [0.5000 (oy + 0y)] = 0.5887 (o, + 0,).
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Although a c¢ircular error concept is not recommended for Umin/“mex
ratios less than 0,2, & rear-linear 50% probability error mey be
computed to represent & CFE for lower ratios when a comparison of

circular errors derived from different sources is required:

CPE ~ (0.2141 opy, + 0.6621 opay) (2.37)
when g, /0, ., 18 betwsen 0.2 and 0.1

CPE ~ (0.0900 dpqy + 0.6745 opgy) (2-18)
when oy /Opg, 18 between 0.1 and 0.0

CPE ~ 0.6745 oy, (2-19)
vhen Opyy = O

The following alternate methods of computing an approximate CPE are

not recommended because of limited applicability:

.2
o, + 0,
cPE ~ Lt/ 2 . L (2-20)
and CPE ~ 0.8325 3\ [o° + 0,2 (2-21)

when 0, /0p0y 18 between 1.0 and 0.8

The mean square positional error (ref. 1, 11) is

defined as the radius of the error circle equal to 1.4142 g, and has
little significance in a truly circular error distribution. However,
when uyx and oy are approximavely egual, the MSP7” defines the error in

a geographic position and ic computed:
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Oy y
when o, /0pq, 18 between 1.0 and 0.8

MSFE = - [0,® + 0,2 (2-22)

The probability represented by the MSPE can be found by solving equa-

tion (2-7) for Py, when R = MSPE and o, is approximated by equation
(2-11), thus:

Ra
- 2
P, = 1-e 2%
( 2 ‘o 2
- ox y
2
P, = 1-e 20¢ (2-23)
When oy ™ cy:
~1.0
Pc = ] -8
a 1 - 0.3679
P, = 63.21% (2-24)

When o, ¥ 0, the solution of (2-23) yields values of P, (plotted in
Figure 9) ranging from 64% when a4, /0p0, = 0.8 to 774 when opyp/Omay
= 0,3. Because of the variation in probability, the MSPE is n~t

recommended for use ae a piecision index.

The circular map accurecy standard is besed on the

pereentage level in use by the U.S. National Map Accuracy Standa''ds

La)
et




which specify that no more than 10% of the well-defined points in s
nap will exceed & given error. The standards are commonly interpreted
as limiting tle size of error which 90% of the well-defined points
will not exceed. Therefore, the circuliar map accuracy standard is
reprecented by the value of R in equation (2-7) when P, = 0.90, and

is computed:
CMAS = 2,1460 o, (2-25)
or CMAS = 1.8227 CPE (2-26)

The three-five sigma error, representing e

circular probability of 99.78%, approaches near-certainty in a circular
distritution and nas a magnitude 3.5 times that of the circular ste:r®-

aré error.
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Figure 6

Normal Circular Distribution
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Table IV

Solution of P(R) Function for P(R) = 39.35%

Tmax Tmax
1.0000 1.0000
0.8165 0.9063
0.6547 0.8197
0.5000 0.7323
0.3333 0.6327
0.2294 0.5727
0.1005 0.5274
0.0 0.5151

Note: When P(R) = 39.35%, R ~ o,
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Table V

Solution of P(R) Function for P(R) = 50.00%

e mex
1.000 1.1774
0.8165 1.0683
0.6547 0.9690
0.5000 0.8707
0.3333 0.7696
0.229% 0.7174
0.1005 0.6635
0.0 0.6745

Note: When P(R) = 50,00%, R ~ CPE
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2.3.3. Cliyeular Conversion Fectors.

(ref. 20, 27) The

relationsiiips of the circular standard error to other circular pre-

¢ision indexes are cummerized in Table VI.

Conversion factors (Table

VII) computed from these relationships convert & circular error ut a

given probability to A circular error at ancther probability.

circular error distributicn i5 subs.ituted For un ellips‘cal diltzllu-

tion, the circular conversior factors are retained.

Table VI

Summary of Circuler Precision Indexes

Symbol Probability Derivation

o, .3935 1.0000 o,

eps, CEP -5000 117714 o

MSPE 6321 1.h1k2 0,

CMAS ,9000 2,140 9,

3.5 o, .9978 3.5000 o,

Table VII
Cirecular Error Conversion Factors

To |
From 39.35% 50.00% 63.21% 90.00% | 99.78%
39.35% 1.0000 1.1774 1.h1k2 2.1460 | 3.5000
50.00% 0.8493 1.0000 1.2011 1.8227 2.9726
63.21% 0.7071 0.8325 1.0000 1.517h | 2.47%9
90,00% 0.4660 0,5486 0.6590 1.0000 1.6309
99.78% 0.2857 0.3364 0.4o 0.6131 J..oooo—J

S|
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2.2.4, Propagation of Circular Errors. (ref. 5, 29) A two-

dimensional quantity derived 1rom a numher of independent variables has
a8 circular error resulting from the errors in each variable. The total
circular error is determined by propagating the linear components in
each of the two dimensions by methods described in Section 1.8., and
computing the circular form by the procedure showm in Sectioan 2. 3.2.
For example, the total circular error of a quantity CT’ derived from

Cp = Cy 02 + ... Cyy is found by:

- 2 2 2
%o -\/ayl Oy, e Oy

= 0.5000 + g 2.27)
g . (uxT yT) (

An alternate approximate propasation method combines the eircular error

of each independent vaeriable directly, thus:

2 2 2 ;
] = ] +0 + ... 0 (2-28)
°p -\/ ‘1 % °n

Precision indexes other than the standard error mey
be used; however, the index must be consistent throughout the compute-

tions.
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3. THREE-DI#ENSIONAL (ELLIPSOIDAT, SPHERICAL) EPRORS

3.1. Introduction. A threc-dimensional error is the errcr in a
quentity defirned by ihiree random wvariables. Expanding on the example
in Section 2.1., a voint is referred to X, ¥, and Z axes which estab-
1ish the svatial nosition of the point. When random and independent,
the evrora %

s
L

s vy, and 2 each heve e )Yineur preobabllity :loiritwtion.

The three-dimensional probability density function is expressed by:

2 2 2
JEilx v, 28
1 elo? o2 42 (31
P(X)Y)Z) = 3 e X Y 2
(2:1)2 o, Oy 9z

Similar to Section 2.1., the probability density function cen be written:

o
. x2 e 22
W 3 B 2 + 5 2 + s 2 (3"2)
X y 2
where: 3
2 PR
We = -2 1n | p(x,y,2) Oy Oy Oy 2x) ]

For values c¢f the constant W2 from O —» ®, the density function defines
a family of ellipsoids of equal probability density.

3.2. Ellipsoidal Errors. (ref. 15, 20) The probability of an error

ellipsoid is given by the probability distribution function:

1
- =y
P(s) =~\/-%_ t2e 2 ds (3-3)
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where: s = the radial error; s =0\ [x° + y© + 2
t = S
3
=
2
Ors
0.g = standard error of the radial error "s"

The solution of equation (3-3) for W ylelds the values giver in Ta%le
VIII.
Table VIII

Values for the Constant W

Provability W
19.9% 1.000
56 1.538
0.4 1.732
90 2.500
99 2.368
99.89 4,000

3.3. Spherical Errors.

3.3.1, Cpherical Probability Distribution Function. (vef.20)

When o, = ay = 0, T 0.5 2 0g, equation (3-1) becomes the spherical prob-

ability density function:

1 2
) = T e 205 (3-4)
(2x)2 053



whe~e: g, = spierical stenderd error
7

Irtegrating p(e) from s = O tc 5 = §, vquation (3-4) hecomes the spheri-

cal probatility distribulion tunction:?

2
(2 - =
- S g 2
. 2| [s 2 e S ] ‘
Ps) =\[ | |ez] ¢ %% + % 2 | (3-5)
O

where: 8§ = radius of tre probalili'y sphere

v

Eqration (3-3) can be solved by an approxination formula (ref. 11,

13): CQ
o -
C 2
- _ -2 e 1
P(S) ~ "\ = |1.253 - Ce - ¢k (3-6)
n L C+0.8e¢
S
where:; € = 3‘
S

3.3.2. Gpherical Precision Indexes. (ref. 20, 27) A sphewi-

cal error distril-ition is represented by indexes similar to those in Sec-
tions 1.6, and 2.3.2. Prefer:ed spherlea) recision indexcs include:

(1) the spherical standard error (0g), (2) the spherical probatle orror
(SPE), (3) the spherical accuracy stendard (sAS), and (%) the snheri-
cal near-certainty error, four signa (hcs). The rean radial syherical
error (MRSE), an index which has been used at ACTC, is nol rccorrended
because the wnrobebility cepcesented veries whun Oys O,; &nd 0, &re nol

equal.

! See Appendix E.
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The prehability of an errur sphere o1 radius equal

to the epherical stendard error is computed by equation (3-6) for the

condition C = éi = ] as follows:
5

-\/_%—= 0.7978846

1

e 2 = 0,60653

e'o'b' - 0.67032
.90t = o 53026

P(S) ~ ©.79788 {1.253 - 0.6065 - 0.3942)
.. P(8) ~ 0.20 or 20% ! (3-7)
For a truly spherical distribution, the linear sitand-
aré errors are equel and identical to the spherical standard error

(o0, =0,=0,30,). Wheno

v s %2 oy, and g, are not equal, the sphericsl

standerd error is approximeted by:

cs ~ 0'3333 (ox + cy + Oz) (3-8)
when °m1n/°max is vetween 1.0 and 0.35

The substitution of a spuerical form for an ¢llipsoidal distribution is
3 / o
not recommended when the Ouin’ “max ratio is less than 0.35.
The following alternate metiod of approximating og

16 nct recommended because of jimited applicability:?

! A more accurate value is determined by an expansion in series to
be 19.9% probability.

t Figure 12 compares curves computed from equations (3-3) and (3-9).
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2. 2. 2
o + 0 + O
o ~ xr Yy = (3-9)

0

when opy /0., 1s between 1.0 and 0.5

—

The spherleal probeble error is defined as the
megnitude of the spherical radius S when the functicn P(S) = 0.5 or
50%. Expressed in the form S = C 05y the sphericel ,r beble evror 1o
computed by:

SPE = 1.5362 o, (3-10)

The P(R) function for two-dimensional errors is solved by the use of
Grad and Solomon's tables.! Expanding this method into the spherical
disiribution, the radius S for & 50% probability sphere (SSO%) was
computed in terms of Opgy fCr ratios of oOpy,/dpay &nd o, :q/0. . and
tabulated in Table IX.'! Utilizing these valuec, an epproximetion of
the spherical probable error can be corputed: !

SPE ~ 0.5127 (oy + oy + 0,) (3-11)
when Oy ,/0pa, 18 between 1.0 and 0.35

The mean radial spherical error is the radius of

the error sphere equal to 1.732 og, or~f§-os, in a truly spherical

distribution. When oy ¥ oy ¥ o, the MRSE is computed by:

1 See Appendix D.

twhere: Opig = the minimum sigme, or smallest standard error of
the three,

o] = the maximum sigma, and

max
Opdd = ithe niddle sigme.

*Tote thav 1.»3s02 [0.3333 (o, + 0y + 0,)] = 0.5127 (0, * 0, + 0,).
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2 2 2
MRSE -\/;x v o, + 0, (3-12)

when °min/°max is between 1.0 and 0.9

The protabilities represented by the MRSE are computed t" equation
(3-6).‘ Because cf the variestion in protability,” the MRSE is not
recommended for use as & precision index.

The spherical accuracy standard is defined as

the magnitude of the spherical radius S when the function P(S) =
0.9 or 90%. Expressed in the form S = C dg, the spherical accuracy

stendard is compuied by:

SAS = 2,500 o (3-13)

The four sigma error, representing a spherical

probability of 99.39%, approaches near-certainty in a spherical
distribution and has a magnitude four times that of the spherical

standard error.

1 Tllustrated in Figure 13.

*Wher 0, = 0y = 0z, the probability is 60.82%; when oy = 10,
oy, = 3, end o, = 6, the provatility (s 69.36%.
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Table IX

Solution of.F(S) Funetion for P(S) = 50.00%

i min SPE ~ S SPE ~ 0.5127 (g, + o, + G,)
Omax Onax 50% Letting ax =-yl z
mex
0.866 0.866 1.4016 o . 1.%o007
1.0 0.707 1.3892 Opgx 1.3879
0.775 0.632 1.2341 opay 1.234
0.577 0.577 1.1016 9 ax 1.104k
0.89k 2. 447 1.210k o 1.2002
0.707 0.408 1.089% apq . 1.084k
0.535 0.378 0.9791 Opay 0.9808
0.354 0.35k 0.8689 opax 0.8757
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3.3.3.

Sphic.ical Conversion Factors.

(ref. 20, 27) The

relationships of the spherical standerd error .¢ other spherical pre-

cision indexes cre summerized in Table X.

Conversion factors (Teble

XI) computed from these relationships convert a spherical error at a

given probebllity to & spherical error at another probability.

Table X

Summary of ESpherical Precision Indexes

Symtol Prob;;;lity ﬁ;;ivatisn
Og .199 1.000 ¢
SPE .50 1.538 og
MRSE .€08 1.732 o,
SAS .90 2.500 og
b oo .9989 4,000 o

Table XI

Spherical Error Conversion Factors

From © 19.9% 50% 60.8% 90% 99.89%
19.9% 1.000 1.538 1.732 2.500 | 4.c0C
50% 0.650 1.000 1.126 1.625 | 2,500
60.8% 0.577 0.888 1.000 1.4k2 | 2,509
90% 0.400 0.615 0.693 1.000 | 1.6CO
99.84% 0.250 0.385 0.k33 o égé_J 1.000

| B —_ —

52




3.3.%. Propagation of Spherical Errors. (ref. 5, 29) A

three-dimensional quantity derived from a rumber of independent
variables hos e spherical error resulting from the errors in each
variable. The total spherical error is determined by propegating
the linear components in each of the tiree dimensions by methods
described in Section 1.8., and computing the spherical furm by the
procedure shown in Section 3.3.2. For example, the to:al spherical
error of a quantaty ST, derived from ST - sl + 82 + e Sn is found

by:

(o] ='WV/; 2 +0 2 + 0442
xT xl xe K xn
' 2
o S‘WV/G,AQ +0, %40, °
yT N l y2 yn

2 2 2
6. =-~fo,%+qg,24+.,..0,
Zp _\/f*ZI Zy z

3-14
% * GZT) (3-1%)

s 0, 3 .. i
Iy 3333 (U“T

An alternate approximete propagation method combines the spherical

error of each independent variable directly, thus:

A 2 2
) -18
o, = "\/;S +O O (3-15)

Precision indexes other then the standerd errcr may

be used; however,the index must te consistent throughout the cowpuisa-

tions.

R |
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k. APPLICATION OF ERROR THEORY TO FCSITIONAL INFORMATION

4,1, Positional Errors. By the use of error theory in the eval-

“~v

uation of ACIC positional information, it is possitle to estaublish a
weoningful accuracy statement subjeet Lo aniform interpretation. To
provide a logical and occeptable besis for computation and comparison,
positional errors are assumed to follow a normal distiibution, The
assumption is valid “ecausc positional error components generally
follow a normal distribution pattern when sufficient data is avaiiable.
The statistical treatment of errcrs is applied to measurable quanti-
ties found in the sources of positioning information. The @ {ferences
between the surveyed coordinales of ground control and the scaled co-
ordinates of thc same control symbolized on maps are considered to be
the errors in the geodetic base of the map. Analysis of the linear
components ~— latitude and longitude or grid Northing and Easting —
provides a two-dimensional expression of the accuracy of the geodetic
base. When all the linear standard errors occcurring during map con-
struction are ccmbined and converted to a circular distribution, the
final map accuracy statement is expressed in terms of circular errors.
fmong the positioning errorsin maps, there are often those which
are not measurable and which must be estimated by empirical methods.
When this is neressary, an additional assumption must ve made to the
effect that such data is compatible with conputed data and that empiri-
cally derived error data will also follow the tnecretical error dis-

Lrivutadii.
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Vuriou~ types of points require differcnt parameters to ecsiablish
p—~rise positions. These have been discussed as one, two, or three-
Jdimensional coordinates. For example, a vertical position (elevation)
requires only a one-diwensions] ~oordinate -- the height of ihe point
above a reference datum; a geodetic position is expressed by itwo-
dimensional coordinates — lacitude and longitude retovenced 4o »
specific datum; uand spatial positions require threce-dimensional coor-
dinates such as the x, y, z coordinates in a rectangular system. 'he
errors accumulated in the prucess of determining the various positions
must be evaluated In the same dimensions required to express Lhe posi-
tion. Errors for vertical positjoning can be asgumed to follow a normal
iigggs distribution; those for a reodetic vosition ~— & girgg&g{ dis-
tribution; and the errors tror a spatial point can be assumed to follow
a normal spherical distribution.

4.2, ‘Yhe Accuracy Stalement., Two major groups of da*a fall within

Air Force positioning requirements: (1) maps, charts, and other graphics;
and (2) specific poinis. By the use of error thcory, a horizontal ac-
curacy evaluation of the graphic as a whole can be obtained, i.e., a
specified probapbility that the true errors in well-defincd planiteiry
will not exceed the piven quantity. Map accuracy can also be inter-
preted as percentsge — the percentage of well-deiined points which

will not contain errors exceeding the given magnitude. Similarly,
vertical accuracy is stated as a given prohability that the linpear

1

errors In vervicuzl pusition are nol likely

P

O €acewd & svecifled ralue,




The eccuracy of a specific point is expressed also by a statement of
probability and error magnitude. 'The accuracy statement does not mean
that the error in position is exactly ihc value shown, rather it ex-
presses the probability that the true error in position will not be
larger than the error given.

Positional error should be expressed by precision indexes whicl
immediately iden%tify the form and probavility represented by & given
error. For example, let the circular probable error (CPE) of & geodetic
position equal 100 fe=t. Then the form is circular. The magnitude 100
feet and the probability (505 by detrinition of CPE) arc derived from a
staetistical treatment of known or estimated error components comprising
the tcotal positionAal error. The statement infers a 50-50 chance that
the jeodetic position in question does not very more than 100 feet from
the true geodetic position, ‘hen the error magnitude is increased by e
statistical factor, greater probability is achieved. Multiplying 100
feet by 1.8227 yields a 90% probability that the positional error will
not exceed 182 feet,

Errors in differenl forms are more easily understood when precision
indexes common to linear, circular, and spherical error distributions are
used. Precision indexes suitable for expressing positional error in-
clude (1) the linear, circular, and spherical standard errors represent-

ing 58.21%, 39.35%, and 19.9% probabilities, respectively, (2) the

-

inzar nrobaovle error, circular provehle er.or, and spheri~al protable
errcr representing 5U% provabilily 1a ecaen arstribution, (3) the nap

accuracy standard, circular map accuracy stardard, and spherical accuracy
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standard representing a 9¢% rrovability level, and () a protability
level approaching near-certainty for each distribution which the
positional error is theoretically unlikely to exceed; (a) three
sizma (Linear, 99.75%), (b} three-iive sigma (circular, 29.78%),

and (c) Lour sigme (sphericul, 99.89%). Gince error volues are
easily converted irom one nrecision index to another in Lne sane
distribution, the use of any index is largely a matter of choice.
Hovever, in presenting positional). information, thc positional errcr
is best cxpressed by either the L0 or 90% proububility preeision

index or both.




%.3. Summary of Formulac and (onversion Factors.

Linear Error Foraulas

Percentage
Precision Tndex Symbol |Probabilivy Tcmula
Staadard Error o! 68.21% 2
Z(xi'x)
°= S ————
X n-1
where: Xi = a8 measured value of the
quantity X; Xl, ) CREE xn
¥ = the moc: probable value
(arithmetic mean) of X
- Tz X
X =2 —
n
X = the error; x = Xi - X
n = number of measu-ements
Probable Error FE 50% PE = U.6T55 oy
Map Accuracy MAS 90% MAS = 1.6k4k9 o,
Standard
Near-Certainty 30 99.73% 3.0000 g,
Error (Three sigma]

Linear Error Conversion Factors

To
From 50% 68.27% 90% 99.73%
50% 1.0000 1.4826 2.4387 iy, 475
68.27 0.67L5 1.0000 1.6449 3.0000
90 0.%101 C.608" 1..0000 1,8259
L 59.73 0.22:8 0 3333 0.5483 1.0002

'Subscripts deaote the standard error ccmputed irom & sample (ox, uy, 07).
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Circular Error Formulas

Percentage
Precision Index Symbol| Provability Formula
Circular ] 39.35% Ga = 0.5300
Standard Error ¢ e 5000 {oy + %y ) Al
when °m1n/°ma.x > 0.2 i
Circular CPE, 50% CFE = 1.1774 ¢.
Probable Error CEP -
CPE = 0.5667 (UX P Uy)
vhen omin/omax > 0.2
CPE ~ (0.205) ¢ min * O 6621 "max)
when 0.1 < Omin/Omax <o.2t
~ 9
CPE ~ (0.0900 ¢ min * G.6745 oma.x)
) 4
vhen 0.0 < omln/ max S 0°1
Circular Map CMAS 90% CMAS = 2.1460 e
Accrracy Standurd
—_ 77 I'4
CMAS = 1.0730 {0, + o)
vhen Omin/ Omax = 0.2
Circular Near- 3.50c 99.78% 3.5005 ¢
Certainty Error ¢
(Three-five sigms)
Circular Error Conversion Factors
To
From 3¢.35% 50% 63% 90% 99.78%
39.35% 1.0000 11778 1.h1k2 2.1460 3.5000
50 0.38492 1.0000 1,2011 1.8277 2.972%6
63 0 7071 0.8325 1.0000 1.51Th 2.47ky
90 0. 4665 0.5486 0.6590 1.0000 1.6309
99.78 0.28y¢ 0.3364 G.50k0 0.6131 1.0000

' Where Omin is thz minimuam or smaller linzar standard error of the twn.

‘A circular error ccneept is not iuvcommended for Omin/ omax ratios less
than 0.2. However, a near-linear 90% probability error may be computed
tu represent a CPE for lover ratics when a comparison of circular errors
derived from different sources is required.
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Spherical Error Formulas

Percentage
Precision Index Symbcl] Probability, Formula
Srherical g 15.9% g. = 0.2333(0, * 5, + )
Standard Error S S ten o ta Ys 05e
°D Gpip! Tmax 2 0-33
Spherical SPE 50% SPE = 1.5382 g4
Probable Error
SPE = 0.3127 (°x < oy * oz)
when omin,-’a > 0.35
Spherical SaS 90% SAS = 2.5003 og
Accuracy Stardard
SAS = ©.8332 (o, + oy + g,)
/ 0.
vhen Tnin’ Ymax 2 0.35
Spkerical Near- |4 o 99.89% 4.0000 qg

Certainty Error

(Four sigma)
Spherical Error Conversion Fuactors
To
From 19.9% 50% 61% Q0% 99.89%
19.9% 1.000 1.538 1.732 2.500 4,000
50 0.650 1.000 1.126 1.625 2.600
61 0.577 0.888 1.000 1.h43 2.309
90 0.500 C.€15 0.693 1.000 1.600
v¥9.89 0.250 0.385 0.433 0.625 1.000
! i t i 2y ' i
A spherical ccncept is not recommended when omin/omax ic less than 0.35.




Apperdix A
PERCENTAGE PROBABILITY FOR
STANDARD FRROR INCREMENTS !

The following table presents the increments of linear (°x)’
circuler (oc), and spherical (os) standard errors for intervals ol
one percent probabiliily. Percentage levels correspondina o pre-
cision indexes are underlined.

Faclors for converting the error at one percentage probability
to another within the same distribution are derived by dividing the
standard error inecrement of the new percentage probability by the
standard error increment of the given percentage probabili‘y. An
examnle is Lhe conversion from the circular mep accuracy standard

(90%) to vhe circular probable error (50%):
CPE = 1,177k Ce
CMAS = 2.1%0 g,

12774
- CMAS
2.1460

Q
1
)

. CPE = 0.5486 cMAS

e ——— - e e e ——— - U —

% Oy 9, 9
0C 0.0G,00 0.0N0¢ 0.06000
Cl 0.0125 0.1413 0.3235
ve 00,0251 0.2010 0.4%299

| Reference 27. A-1
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1.4758
1.51k1
1.5543
1.5982
106"}1*

1-3952
1.7507
18119
1.5808
1.9600
2.0537
2,1701
2.3263
2,5758
3.0000

3.2905
3.8905

1.9830
2.0200
2.0593
2.1011
2.1460
2.1 55
2.2k5
2,3062
2.3721
2. b7
2.5373
2.6432
2.7971
3.0349

jo

- 5000
3.7169
k., 2919

2. 3404
2.3767
2,4153
2,4563
2,500
2,563
2.6571
2.7216
2.7955
2.8829
2.9912
3.1365
3.3683

4.0000

50355

4. 609k
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Appvendix B

THE MOST PROBABLE VALUE

Since the true value of a measured quantity is never known, the

observed values.
the quantity:
bols:
X =
Xl =
X =
x; =
Proof:
xl =
x =
2
X, =

most probable value of the quantity must be determined from the
The following proof (ref. no., 5) will =how that the

arithmetic mean of the observed values is the most probable value of

an unknown quantity

the observed values of the unknown quantity;
X, = Xy Xp, X3 000 Xy (1)

the arithmetic mean of the cbserved values;

T NG @
X = —_—,o0rnX = X 2
1I='1 n i=1 1

the error in an observation;

x, = X -X (3)




'__._

From equation (2};

n n Tt
Lox o= ) %) X¥o=o0 (4)
i=} i=1 i=]1

This shows “hat the sum of the differences sbout the mean is zero,

which was expecied, but 1f equation (2) 1s squared and then summed:

2 -— 2 v {r
x, -xl-axlxn'ce ()
2 2 =
x2 =x2 -2x2x+x

n Il
{-‘- 2 ﬁ 2 =

%2 = %2 . 2% }5 X, + n¥ (6)
=1 e 1t

n
The mcst probable value will be found when Z xi2 = (O,or the
i=)

n
most probeble value of X will ve that which mekes Z xia = a minimum,
i=1

In order to find this minimum, differentiate equation (6) with respect

to X and equate to O:

4 = 1
il 2 _ T =
d'}fZ X --2T Xi+2nx 0
Sl
i=1 i=]
. n x
.X = A (1)
i=] N

Equation (7) proves that the mean value X is the most probable
value of a set of independent observations. Therefore, in the determi-
nation of the residual velue it is correct to use ihe mean value for
an approximation of the true vealue.
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Aprendix C

PROPAGATION OF ERRORS

A quantity fi is computed frecm two measured quentities a and b,
vhere t(a,b) denotes & function of & and b. The error Af of fi is
affected by the errcrs in both a and b: As and &b, Assuming a and
b are independent, and the errors Aa, Ab are randomly distributed, the
combined error Af can be computed. (ref. nos. 5, 15)

Let:

f, = f(a.l,b

1 l)

£, = f(az, bz)

£, = f (an, b,) (1)

The measured vaiues of a and b may be averaged, obtaining the values

e and ©. The most probable value of f is ?, (from apperdix B), where:

Y

= f (E) E)

ano:

af, = £, -7 (2)

In crder to find the value of Afy, teke the partial derivative of fy:

of of
ar, = — Lay + 2 5 (3)




N
From Appendix B, Afi
ia]

Computing the sum of the squares of equation (3):

3.2 dr. 3r,1 2
- (—-l oo oo [
3, 3, 3,
af;
(af, )2 = Aa + 2 —_ Aa Ab +|—] & 2
2 v, 2

af, af \ I3 Aty
(Af‘n):2 (-——2 Aan2 + 2 (____n) (—El Lo, &by + (—E- Abn2
day, A,

by
Since: 3 3 3
T f f
3 L] —£ = —— = g constant;
'éal d8p da,
als0: 5 3 3
f f f
._l = —2- - —2 a a constant:
abl ab2 abn
- )
f
IR = DIt [ DI
i=] i=1 im]
B
* \aw, jgg%i *)
in]
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NMviding through by n:

<y Z o ) =
n laa Bai Bbi

afi
* abi) Z (5)

n

i=]

By definition:

n 5 n n
:-1 2 2
af JaY:) A
om0 0 Fro= 0,2 T = 0% (6)
fi 1_0 & ed b
i=1 i=1 i=1

Since 2 and b are independent.:

( afi\ - s Ab
da, abi}Z no =0 (7)
i=1

Therefore:
2 afi 2
Afy > —_
g = — g + a 0. 2 (8\'
£, / 13e, a by, b -

Equation (8) is the general form for the propagation of independent
errors, and can be expanded to cover any number of quantities (&, b, c;
dy ....). It is imperative that each element represent the same preci-

sion index in the equation.
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Special Rules for Error Propagation

Rule 1. Sum and Difference: f=(a+b+ ...)orf=(a-b- ,..)

ot of (9)

= ], — = ]

da -

Plecing (9) in the general e=quation (8):

o, = “l°a.2*°b?+' .. (10)
The absolute standard error of & quantity computed from the sum or
difference of measurcd quentities is equal to the square root of the

sum of ihe squared standard errsrs of the measured quantities.

This is the form most frequently encountered.

Rule 2. Product of Fectors Raised To Various Poweig: £=a"1"

of - of -
s - me™ 1 13 ana 5 - a" qp31 (11)
Placing (11) into equation (8):
I -
o - '\/7m2 aem v 032 + 8..Qm q2 .b2q 2 °b2 (12)
. 5-
Dividing through by £ =\/2® v .
o, _\/ma g2 20 ; 2 a2n 2 120-2 0,2
= 2 +
f aam b2q a2m baq

2 oy 2
2 ;\A‘E (f&) + qQ ‘_‘i (13)
f a b I
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Rule 3. S.mple Procuct or Quotient: From the preceeding rule,

£ = a"bl letm = 1, q = % 1.
Then, f = &b, or f = a/fb.

From Equation (13):
2 2
o G g
T ’\ﬂj) ’ (b)
t a b

where of/f is the fractional standard error.




Appendix D
DERIVATION AND SOLUTION OF THE TWO-DIMENSIONAIL
PROBABILITY DISTRIBUTION FUNCIION
3. Derivation. (ref. mo. 24) The probubility density functions of

the independent errors "x" and "y" cre:

2 2
X
\ 1 - aoxz 1 " 202
P) = —~TTe » and p (y) = ~——=e
o Jor o Nex
X y
Using Rule l&, Section 1.3.:
1 Ixe _ﬁ
- - ...._2 + 5
1 2 \“x ay
r(x,y) = — e ’
2n Oy ay
1 x2 y2
- =5 t=5
1 2 1o o, =
P (x,y) = ———— re x YJd ax ay (1
2n Oy cy J
Xy
Using polar coordinates:
x° = r2 cos2 @
y2 = rE sin® @
where r is the radial error and r = «~x2 + y2

P(r) = P‘ r = *le+F < H) = P {xy < R) (2

where K is the radius nt the probabiiity circle,

D-}

)
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The two-dimensional prooability distribution function is:
sin® @ 2082 ﬁ]

R 2n r2
LA
P(ﬁ)-——l-— e ° 9y oy ar do
2x gy Oy

=0 =0

d
r:::: réa

r
2

r 40 dr (small increment resulting
fromn 4X and @)

Using identities: sin® o = % (1 - cos 20)

cos2 0 = % (1 + cos 20)

[

lL-cosR 1+ cos 29]

R 2x 2
P(R) 1 ‘/P ‘/' — 3 + 5
=
E;—'-'—; e r dr a9

™0 ©=0

Rearranging terms:

R 2 z
I D SRS W IR < i N B F
1 N 02 °x2 )y h cv2 02
P(R) = —=—— re y e - y dedr
Pt 0, O
XYy
=0 o=0
let ¢ = 20,
af = 2ae:




Thet:
2 2 .
e c

R _rij1 1
4 |62 4.2 4 ta o
1 vy %4y X v
O - S o
2n Oy oy
™0 G0
Rearranging terms: .
arranging c 5 o9 - 2 0"2 k! .1
R S S g 2 - —5 |~ ~1cos ¢
¢ 2 2
Lo c o "o
.1 y XxdJdji y LX 2
P(R) = re e agy ér
o, O "
X ¥
=0 -0
L¢“ .
let - 5 1
2 o, .
% ;;-5 =5 - 1| cos ¢ o g
g r =
1 yL¥ = I -1
; e d¢ o l} 2 2
] a, g,
0

where I, is a Bessel Function, zero order, modified first kind.

Thereflore:
R 2
2 [ o
- = lj + =5 0 »
bo ~ Ox r a
P(R) = —x— | re ° IL| T35 —YE-l) dr (3)
x %y hoy 0y
r=0

2.

Special Case of Two-Dimeznsional Probability Distribution Function.

Whern oy = o, = O, (ref. nos. 18, 24), rror equation (3):

D=3




L
1l 2°r2 rﬂ
P(R) = -;-g re IO m —-é - l dr
r <% r
r2
R - —
2q.2
i O
P(R) = — re 1, (0) ar
o (34
r
0
I(0)= 1
R N z"a
r 2°r2
P(R) = e ar
o
0 r
Since:
2 L
-5
g 2o r 208
—_ e = -7 e
dr O
Then: -
r2 X
T2 T2
r 2°r 20r
e dr = - e
]
r R
2
r? R
20 2 ?oi
P(R) = -e s = L-e
R
. 25r‘
.. PR) = 1-e (&)

3. Modified Form of the Two-Dimensicnal Probabiiity Distrivuticn

Function. (ref. no. 28} To solve equation (3) by the use of tables,

the equation wust be modified. From S.0. Rice's “Properties of Sine
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Weve Plus N~ise"” Bell Systazm Technical Journsl Val, 27 No. 1, Januery,

1948, pp 109-157:

x
I, (kx) = f eV I, {vk) dv (5)
0
Modifying equation (3): 2
R g ,3’_"'
- }..:v 2 - 0. 2J 2 g 2
ol re Y x Inla(_!;-; ar
a N
XY 2o 4ay g, /]
Step A
Intting: 2
r2 °y
v T3 1+ 5
hay ax
2
2 o
dv = r2 1+ v ar
LFO °X2
Y
2
2 %
boy"av = or |1+ Jar
Ox
2
5 Qcy .
rdr 3 ——%~ dv
g2
1 Y
b —
o 2
X
Steg B 2
r2 %
To get the quantiZy ™3 |77 - l) in the form of (vk):
hay o,




r el
v = 1+
2 2
hay 0,
. 2 p 2
R Y T
(] 2 b} 2
X X
o @
J 1l
v .k =
oy2
1+ -3
O
9
Jet a = -a"- where Oy is the smaller of the two:
y
2 2
o, Oy
- X 1o, i-e
a - -
X x 32 R l-a
kK = > - 0 (6)
g (] 2 1+ a2 1+ 32
X y 1+
= a2 a2
2
Oy Oy
Step C
Gretting 0y and Uy in terms of a:
1l 20,,2 1 o 2 ] 1 o 20 2
L] (4 Fa Y e . y . x y
2, "¢ 2. 2 J'a 2, 2
Oy oy ay Oy Oy 0~ + oy Oy Oy + cy J
14— .
2 2
Ox Ox




T

1 9. 9 % % % 'l
- > —
G. 1 4/ c 2a
L 9cf + oy 0x~ + 0Oy oy J 8t + 1
c —— - +1
v 1 02 o 2
Yy Yy
Step ©
2 2,
2, .2 g+ 0
. . . ._15 Ux C'y X 5 Y .
1 + 2 = 2 = ]_ 2 = o 2 82
oy o, = Ox %
o a— —
¥ 1 2 J
Y

Combining Steps A, B, C, D and equation (3):

¥ (1482

h/_' 2 8.2 -——'—ra [1‘22}
28 ¥ Lg 2 a2 2 a2

PR} = — e 7V 1| = (E-a-j (l a) av.  (9)
1+a hoya 32 1+a2

0

Rewriting equation (Q):

X
2 -
PR) = -———3—2— e’ 1 (vk) av {10)
l+a
where
-
R2 !1+&2 2 1+ a2 (1-&2
X - = - v = H k =
hg, 2 L 2 ’ hoy2 L 22 A1 a2




4, Solution of Mcdified Function., (ref. nos. 12, 23) To compute the

CFE (CPE & R when P(R) = 0,5) for values of gy = V.6 and o, = ¥ .b,
two methods are aveilahle:

Tc determine the value for x by Riece's table of Ig (vk) dv, enter
the table with values of k and tne required probabillity.

P(R) = 5C% probability; a = X = 0.8165; a2 = 0.6667; k = 182 .02
o 2
Yy l+a

s X
PR) = f eV 1, (vk) av

v

X
.50 (1 + a°) j
8 - a g e~V I, (vk) av

X

0.5103 =f e’ 1, (vk) av
0
Enter the tables with k = 0,2 and intervolate for ¢.5103 to get the
value of x.
L o= byyy
5103
8 = 5516

.ox o= 0.71732

2 .2
x = B rl“‘]a 0.71732
g 2 L e
y
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= 1,071%

R

¢

J
The radius of the 50% probability circle (CPE) resuliing from oy, 3y is

R = 1.0713 Oy-

Method 2:

Using tabies computed by Arthur Grad end Herbert Soiumon:

From equation (2):

P(R) = P (Jx’d+y2 < R) = P(x2+y2 < Ra)
Sirce x and y have unit standard errors, they can be written as:

X3 gy X and y = uy Y.

Therefore:
P(R) = P |a 2 y2 + a2 x2 S R
Y X

2 2

o}

'PV+%£S %) (11)
g a.“
Yy ¥

From Gred and Solomon Tables:

2 2<
P (al yl P8y Yy - t) al + 82 = ]
&
2. 1 2 < t
P v, + 7 ¥ © a 12
( 2 fiy 1 52) (12)

Correlation between equatiors {11) and (12) will permii use of the

tabled values.

2 I j‘-.l . ﬁ - 5\/;
\’ ; A
) %2

N y

(=
Q




Enter the tables «ith values of 8), & and the required prohability.

R
Then inlerpclace for values of Z- = A

°. Ve

= 48, thern a, = Ry 8, = .6

Since

S

t = .6 = U559
5000
T 5080

2 |
u
-:ﬁ;1
=
c\lggl
&
=
=
o
3

R = 1,068 ¢
y
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hAppendix &

DERIVATION OF THE SPHERICAIL PROBABILITY DISTRIBUTION FUNCTION

The combined probability density distributioa function of the

independent crrors X, v and z are:

r 2 R

1 " 20,2 1 20,2 1 " 20,2

P(x:}':z) ® - e e — e Yy i —_— e z
o, Jon o Van 0, Vor

In the spherical case where g, = gy * O, N ggt

L 8
p(x,y,2)dx dy dz = ————— ¢ dx dy az
0.3 (21()%
8
Converting to 3-dimensional coordinates:

x2 52 0052 ¥ cos

2\

y = 52 t:ozs2 ¥ -'.in2 A

2.2 = 132 sin2 ¥

2 2

X +y© +2° = g% cos \!/cosax*rsacose\lfsin?

‘k+sesin2W

= 62 cos? v (cos A + sin A) + 52 sia® ¥

(1)

(2)




Let S = radius of sphere, replacing redial error s.

ST IR
/ SCSW \\

/ R

()
YA

¥

\‘}
\\\ ) /

AN /
R

Then: dS Sa¥ S cos ¢ d\ = S° cos ¥ ay aA ds

/’ N T 50l
20, o
P(8) = J — e B- cos ¥ a¥ dn 4S
?

2 (2x) o
S 32
1 32 -2082
P(s) = —— (2) (2x) 3 e das
3 A
( )2
en S0
82
s -—
32 20&
. B(8) -'\/?[ — ¢ £ as
% 0.3
B8
0

E-2
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Integra’ ing by perts: Q-

et u=;s—, dve—5 e ° as
s Us
&£
- 2
S 20
du = -d--, v =-e s
O
2
2 s
S S -5
2 20
295 as (5)

2RI

»(s) =-f (0_3) -
s

In order tc use apvroximation formula Mathomatica. Tables arnd Uther

[ -
+J;;:
-~

G

Aids to Computations, Vol. XI, No. 60, Octobver 1957, pp 265, "A For: ila

for the Approximation of Definite Integrals of the Normal Distritution

.t /2
Function"), P(S) must be transformed to the integral of e " at.
5
letting C = — , 48 = a_ dC, where ¢, = constant:
og 8 5
L) Lal
...._a. rc= ;S_ [
=[ 2 [ % "3
P(s) = = - Ce + e ac (6)
" J
C=0
From sbove reference when x 2 0:
2 2
- — -2
pat 2
e = at ~ : (1)
- hx
x + 0.8 e
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. P(g) = -i- [-Ce + 1,253 . e-—-——l:—:] (8)
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Appeniix F

SLESTITUTION OF 'THE CIRCUTAR FORM FCR ELLiPT..AL ERROR DISTRIBUTIONS

AT
( °m1n\\

Smin _ o ‘min _ oo
Omex Omex
C_——\ \
%min
ﬂma_x
\_//
Omin “min
Opax = 0.7 Opax = 0.6
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