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FOREWORD

The thermodynamic properties of gases at high temperatures have been of increasing general

interest in recent years. With higher temperature, gases become more completely ionized and

require theoretical treatment different from that which is adequate at more moderate temperatures.

The present objective is to fulfill that requirement and thereby aid various practical calculations

for which there is a great need.

Acknowledgement is made of the assistance furnished by Guy G. Ziegler of the Applied

Mathematics Division for th, coding and performance of the second virial coefficient calculation

for the 12, 6, 4 potential for chapters 6 and 8.

Finally, it is desired to thank Mrs. Hattie N. Brown for typing the text in its final form.
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ABSTRACT

The calculation of thermodynamic properties of gases at high temperature
using ion solution theory is analyzed in regard to various details. Earlier
work based on rigid sphere ions Is enlarged on briefly. An extension to a more
general case of realistic pair interactions is also obtained. With Debye
screened ionic interactions, a study is made of effects of repulsions and both
continuum and bound stntes for ionic attractions; simple approximate repre-
sentations of the interaction effects for the two free particle interaction cases
are given. For the bound states, the finite number of states available for
occupancy as a result of Debye screening is explicitly indicated, and a numer-
ical method to adjust from an arbitrary state sum to the "Debye screened"
sum is explained. An extensive compensation between bound states just below
the continuum and a partial state paucity within the continuum are also noted.
Other details considered include the estimation of the dielectric constant up
into the region of high density and high temperature, the semi-empirical esti-
mation of nonbonding pair interactions involving neutral and ionized species,
and corresponding virial-type exclusion effects. A table of second'virials for
constituents of air up to 20, 000 0 K is included.
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THE CALCULATION OF THERMODYNAMIC PROPERTIES OF
GASES AT HIGH TEMPERATURES

Harold W. Woolley
National Bureau of Standards

Washington, D. C.

f SUMMARY

High temperature gas properties are important in stellar problems and also for man-made

processes of high intrinsic energy.

We cannot observe the deep interiors of stars, nor even their immediate sub-surface layers.

Our knowledge here depends on indirect inference, based on accepted rules of behavior of matter,

fields and radiation.

Even for man-made processes of rapid release of intense energy, direct observational

evidence of the temperature field produced may be difficult to obtain. There is then a need for a

broad phenomnenological description which will include details of local conditions as parametric

functions incidental to the prediction of quantities correlating with actual observables.

A genuinely high degree of success in the accurate description of high temperature proper-

ties should go even further. When predictions of behavior proceed directly with engineering-type

reliability, there can be a favored option of choice of the economy of theoretical calculations as

compared with the expense of cut-and-try experimentation. This well-established engineering

concept nust be expected to have application in new fields of endeavor, quite apart from any

difficult questions of gauging what the actual costs of such experimentation may be.

The present collection of discussions of various topics is intended to contribute to the

practical solution of some of the problems which occur in the calculation of thermodynamic prop-

erties of gases at high temperatures. It presents various considerations that have arisen in a

re-examination and extension of an earlier study of these p.-operties at such high temperatures

that ionic solution theory should be used. Some of the earlier work along this line at the

National Bureau of Standards has appeared in report form( 1 ) and in a research paper ( 2) and in some

other papers ( 3'4) of varying degrees of close connection with the present study.
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In the earlier work related to this project, as reported in the first two publications here

referred to 1 , a procedure of calculation was put forward which was somewhat arbitrarily chosen

with the objective of a particular type of simplicity. In order to employ the familiar technique of

the theoretical chemists in the use of tables of thermodynamic functions for single constituents

as components of the general mixture, it was desired to have so-called ideal gas functions that

depend on the single variable, temperature. If the properties of the constituent are actually

dependent on the state of the mixture as a whole, one must find a way to carry these adjustments

separately from the chosen fundamental main tables of properties of the single constituents. As a

result of the re-summing innovation of Mayer ( 5 ) and numerical work by Poirier (6 ) , there was a table

of ion solution properties available, primarily arranged for application to liquid solutions for which

Debye-Huckel theory had had a very extensive application. Our ideal-gas functions which were

arranged shortly thereafter for use with Mayer's ion solution theory were tailored to the Poirier

tables for the expected convenience which that might give. This means. among other details,

that the internal state sum was abridged to remove the classical phase space contribution outside

of a chosen rigid sphere size (which was taken with the collision distance a = 8So) but that the

state sum was also extended classically upward in energy throughout the continuum within the

same rigid sphere.

Except for some vary scant desk calculator computations by the writer and a few others,

very little actual use of the Poirier tables in this connection has occurred in our calculations.

Lack of urgent interest supporting such calculations and complexities of arranging items of the

programming may be among the principal reasons for this neglect.

Indeed, it could be claimed that the results of such calculations as may have been made

should have had at least a good measure of validity for over-all thermodynamic properties, since

the various immediately relevant regions of phase space were included in one form or another.

Nevertheless, it developed that there were some reasons for re-examining the calculation methods.

An important consideration in this regard came from the realization that the tables had had exten-

sive use as a basis for estimation of positive ion and electron concentrations. However, it is
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just here that it is most desired that occupancy of each and every state of a bound system for a

given constituent should contribute to the count of members of that particular constituent, while

the regions of phase space that do not at all involve states of the particular bound system may

best have their thermodynamic effect brought in in some other way. Thus, it is primarily the

general interest in concentrations of actual constituents, including freeelectrons, that suggests

that a revision should be made in the calculation method.

It is naturally of interest and generally desirable that proper tables be available to help in

making good estimates for the concentration of systems of particular stages of ionization. It is

only then that good estimates would be expected as to the response to either a static electric

field or to the impelling action due to relative motion across a magnetic field.

While it would be wished that the new formulation of methods of calculation would result in

fulfilling the needs for the determination of species concentration in all relevant fields, any such

hope must be recognized to be far too optimistic for actual realization. Many of the problems

actually occurring in practice do not refer at all to local thermodynamic equilibrium. Some cir-

cumstances may be concerned with moderate departures from equilibrium such that equilibrium

properties can be considered to be meaningful aL least for comparison. Other situations involve

ionized gases that are very far from such conditions. Our present efforts to improve the thermo-

dynamic function treatment for ionized gases are naturally quite irrelevant for extreme non-

equilibrium applications.

Reiterating that the intended principal application is to equilibrium thermodynamic properties,

we would indicate that our approach should be particularly appropriate in extending calculations

to higher densities and higher temperatures throughout the region in which a gas is appreciably

yet not totally ionized. Actual limits on the validity of the proposed treatment may be hard to

predict. Contributions that depend on empirical correlations have uncertainties which must

reflect the quality of agreement with actuality. Comparison with calculations by astrophysical

methods in extreme regions of high density and temperature could perhaps suggest that various

known small correction terms could readily be combined with the present formulas to give a more

extended range of application.
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A short preview of our present approach may be helpful at this point. Our study begins with

a consideration of a simple ionic assembly in that idealized condition of quasi-internal screening

which is used in Debye-HUckel solution theory. From one point of view, this could be considered

to recognize the propriety of diagram calculations of modern theory, since Mayer re-derived the

Debye-Huckel limiting law by a re-summing over closed loop diagrams. However, we would also

recall that of all possible power law interparticle potentials, the Coulomb 1/R potential is

uniquely the one for which the divergence of the gradient is zero everywhere except at the R = 0

singular point. Out of this comes the capability of defining a single general electrical potential

and of studying its local variations according to (1) the rules of statistical mechanics for occu-

pancy of states and (Z) the electrical requirements as specified by Poisson's equation. We do

not proceed to a full solution of this special quantum mechanical problem of the full assembly

here. Detailed consideration of some of its aspects have been considered by Plock( 7 ) with

(8)Kirkwood and also by Brittin . Without the effort to include all possible small quantum effects,

we still may hope to come to a very adequate treatment with the help of classical Debye-Hdickel

theory.

We note that in the range of low ion concentrations, the Mayer-Poirier treatment has been

represented by Haga ( 9 ) in a series expansion approximation which is here quoted in some datail

with minor corrections. This could be useful for calculations using the previously calculated

thermodynamic functions of reference 1. Also in Chapter 1, pursuant to our present approach, we

have tabulated the rearranged pair contributions for Coulomb repulsions with Debye screening.

For this, the close approach contributions (r.c a) are given analytically in reference Z, while for

larger distances (r -a) the contributions are obtained mainly with the help of the Poirier tables as

indicated in the same reference. Each of these combined repulsive pair contributions is propor-

tional to a single function of a single variable involving temparature, the product of ionic charges

for the pair, and the Debye screening parameter K- or its inverse, the Debye length. Thus, the

resulting functions no longer involve the a = 8a o radius which according to reference Z entered into

the computation oi their arbitrarily divided parts. In application of the tabulated functions to an
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I
actual ionic mixture, one will wish to find a net contribution obtained by summing over all major

repulsive pairs in the assembly. Each of these repulsive pair contributions is in principle

capable of further adjustment - cf. Chapter 7- to include the effects of short range repulsions

that may apply at very close approach between positive ions. We note that the principal negative

ions are the electrons, whose attractive interaction with the positive ions is the primal basis for

the intornal partition function for that pair as a single combined system.

As to the remaining topics here discussed, Chapter 2 treats the estimation of the dielectric

constant for a medium at elevated densities, an item particularly relevant in applying ion solution

theory to partially ionized dense fluids.

Chapter 3 examines some considerations affecting the choice of form of the potential energy

function for short range repulsive potentials, a point resolved in favor of making provisional

present estimates on the basis of the commonly used 1/R form.

In Chapter 4, actual estimates are arrived at for hypothetical non-bonding interactions

between ground state atom and atomic ion fragments predicted to be appreciably present in air at

somewhat elevated temperatur,;s. These are based on a combined extension of Kihara diatomic

core models to include heterogeneous pairs, with the pragmatic assumptions of additivity and

permanence of intermolecular atom-atom interactions and the acceptance, with minor extensions,

of the ordinary simple combination rules for interaction parameters.

In Chapter 5, we present formulas by which the second virial coefficient may be calculated

for general polyreciprocal potentials, or generalizations beyond the Lennard-Jones form to include

more than two potential terms.

In Chapter 6, the formulas of Chapter 5 are specialized to the case of a 12, 6, 4 potential

to treat the ion-neutral interactions. A computed table covering the corresponding second virial

coefficient and its first two darivatives ranging from the IZ, 6 case to the 12, 4 case is included.

Chapter 7 presents tables for the small high-temperature second virial effect of a short

range I/R repulsion potential when added to a Coulomb 1/R type repulsion. Parameters for the

effect are given for twelva positive ion pairs of moderately thermally ionized air when the 1/R

-5-
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potential is not diminished by a dielectric constant of more than unity. These are the pairs for

which potential estimates are shown graphically in Chapter 4.

Second virial coefficient tables for specific pairs in high temperature air are given in

Chapter 8.

General considerations pertaining to the application of these various segments of the treat-

ment and plausible approximations for its extrapolation to higher densities are principal topics

for a concluding discussion.

-6-



1. CONSIDERATIONS ON THE APPLICATION OF IONIC SOLUTION
THEORY TO HIGH TEMPERATURE GASES

The thermodynamic properties of matter at high temperatures involve the effects of interac-

tions among its mobile constituent systems, with this term referring to molecules and atoms and

their ions, the free elementary particles, and, by extension, even the quanta of radiation. In its

simplest form, -it is a many-body problem that must be dealt with. Even if the interactions

between separate molecule-like systems are well approximated ab the sum of single pair potentials,

there are very complicated effects of such a nature as would usually be associated with higher

virial coefficients.

A currently popular theoretical approach to multi-neighbor effects in such a many-body

problem involves attempts at the summation of diagrams as a solution method. We note that the

important neighbors in an assembly may quite usually be nearest neighbors, but if the assembly

is a gas at high temperature, there must be some extent of ionization. In that case, there are

important ionic forces of a long range type, so that interparticle effects between more remote

neighbors become important.

The present discussion is not for the purpose of suggesting that diagram techniques or their

formal equivalents be avoided altogether. However, it does present some items related to a tem-

porary expedient to furnish provisional estimates without theoretical study of elaborate diagrams.

The principal justification for attempting such approximations may be the directness and basic

simplicity of the approach.

(5)
We will make use of the well-known resulLs of Mayer , who summed ring graphs for the

long range Coulombic interaction effects and obtained the Debye-Htickel limiting law term. He

also included the pair-wise short-range pair potentials using a quasi- second-virial type

expression in which the Coulombic long range potential is in effect riplaced by a Debye-screened

Coulombic form.

For low or moderate concentrations of ionic constituents, Mayer's results for an assembly

of rigid sphere ions in a solution can be represented in an analytic series approximation such as

-7-



that given by Haga (9 ), carried to the 5th power of the Debye parameter K. We shall give such a

form presently for possible convenience of use. Poirier ( 6 ) has presented the results of Mayer in

fuller detail by means of extensive tables.

An indication has been given elsewhere ( 10 ) as to a plausible approach towaLd the empirical

estimation of higher virial effects by consideration of simple approximat 'heory and analogy with

observational evidence for somewhat similar systems. It involves the inference of the magnitude

of effective rigid sphere sizes or effective pair exclusion volumes taken as functions of tempera-

ture. Since this proposed exclusion volume is based on that part of a second virial coefficient

that is contributed by a pair potential in its close approach or positive energy region, it is

natural for the repulsion potentials to be of particular special interest. One of the topics to be

given early consideration will be the pair-wis.e effects due to Debye screened Coulomb repulsion,

which represents approximately the interactions between positive ions. Pair-wise effects arising

from Debye screened Coulomb attractions will also be considered in some detail.

1. A Series Expansion

The series expansion representing Mayer's results up through the fifth power of 0 or Ka can

be given in a previously used notation( 2) but based on a single collision radius a as accepted by

(9) (6)both Haga and Poirier , in the form

-A/RT = (V/VO)  C[(-A!/RT)s - L Q - J- n T/To - b (FCs)Z+ - -4+ 45

+ .,1-0,71 (Z()) [1.675828 +1 np- 34 + 1 0'2(Z(Z))Z[0.963510 +tno]

+ 104F -l)c~-v(Z (-Z 2 + _L5E(I - (Z' V ]} ()1)
12 v=4 v"(v-3) lZ v=4v(v-3)"

2w Noa 3

The notation here includes b = - -v--,o which is a rigid sphere second virial in amagat units,
0

d Z(n) F (zn+Z Cs)/(EZ ZCs). Other details of the notation include a = aDkT/C Z, with D as

dielectric constant, and KZ= 4w E'Z(No/o) ( Zs C,)/DkT. The numerical constants appearing in

these expressions include l+Jn3 = 0.577216.. + 1.098612.. = 1.6758Z8.. and 7+ Jn4-14.577Zl6

+ 1.386294.. - 1 = 0.963510.., where ' is Euler's constant.
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Related functions obtainable by differentiation include

E/RT ( (V/Vo) {(EO/RT) - b5 - 4+ + (Z()) [1.925828.. +Lno-

4-I 
I'.-p~- (2- 

2
4j " + ¢Sa-'(Z(')[1.163510 +Ln] + 10.L 4 (-1 - (z(V-

144 6" v=4 v.(v-3)
5 ((v

and

PV/RT= (V/Vo)J C + b("Cs)2 - b' - + + 4 Z [2.175828 +Jno- .2q

+L 4405cf(( [1.296843 +Ltrio + .L ~4 L~ir(.Z)
4v (v-3)

1-v - 211
+ i 5 EL- (Z '1)) (3)8 •= 13)-3

There is a further contribution to PV/RT z V[Z(-A/RT)/V]T, Ni arising from the dependence of the

dielectric constant on the density. Since in the present approximation the dielectric constant

D occurs in the ionic terms only and there D and T occur only in the product DkT, one finds that

the additional contribution is

V dD D b (-8 A/RT)inic V T (-A/RT i

D dV TT Dion dVonc

or

PLV -V dD I85E) 4
RT D dV RT (on4c

The Clausius-Mosotti relation

4 14 Nx D-_1-

3 V D+2

then leads to

6PV =_ D+2)(D-Ij_ ( Ei
RT 3D RTonic

(2)from which the 3 was inadvertently omitted in RP 2916 (
. However, a preferable formula, arising

from the work of Onsager ( I I ) and discussed in the next chapter,

-9-



4r N x = (D-1)(ZD+1)
T TV 9D

produces a simpler expression,

PV _ (D-1 1~ 1E)1 (5)
RT RT ionic

which should be more acceptable.

As has already been indicated, these series expansions may be considered as patterned

after Haga ( 9 ) though with a minor adjustment in his S? results affecting the first 0 5 term by a

factor of 2. It may be noted also that within the order of terms covered, Haga obtained two

additional 05 contributions which do not conform as contributions to an effective second virial

form, but which are identically zero due to net charge neutrality if only singly charged ions are

present. This points to the complexity which must be expected when more complicated diagrams

are included.

It may be worthwhile to make a few additional comments about the present Haga-type

expansions. The leading ionic term, which is 1;'0'/18 in the case of the free energy function,

may be recognized as the usual limiting law Debye-HUckel term. We may also note that the

quantity b enters into the expressions in just two ways -directly as a factor due to rigid sphere

exclusion volume for one term, and otherwise purely as a reciprocal factor multiplying all of the

ionic contribution terms. This reversed role of the b apparently arises merely as a peculiarity

of notation. It is of interest to note the behavior of these contributions as the collision radius a

is varied. In particular, the effect of letting a approach zero may deserve clarification. The

nature of the dependence may be more readily evident from the series expansion than in any other

way. ,ince both 0 and a contain a as a factor, the early terms of the 0 expansion are well

behaved in remaining constant or going to zero. Thus, terms that remain essentially constant

include those in bc 3 , b- f 4 a3, and 505a Z. The last two terms of the Haga expressions,

involving here b-104aZv and I;5a' - v for v m 4, become infinite as a goes to zero. There

can thus be a genuine problem of selecting a most suitable a if the functions are to be used

directly in a Mayer-type treatment.

-10-



2. Analysis of Phase Space EfLqcts with Debye ScreeninQ

As a foundation for a treatment of some generality, a review of some fundamental details

about pair effects in the ionic assembly should be appropriate. It may be noted first that the

measure of local density of quantum states in general is given semi-classically apart from spin by

Tj (h- dpi dqi) (6)

in terms of momenta pi and coordinates q,. In a simple binary encounter, in a case of dependence

on distance of separation only and with spin weights included, there is a local number of states

within the pair system

dN = ( )si Zs +) . 41TPZdP • 41rr 2 dr, (7)
h

where P2 = p + p 2 + pz, with px pk, etc., and where jA = mjmj/(m + mj) is the reduced

mass for the pair. The momentum factor of the measure of phase space can be expressed in terms

2
of the internal kinetic energy of the pair, K = P /z, in the form

47rPZdP = -2 / 2 •-

= CL-LE3/ 2 Kl/z dK. (8)nI3/2)

Three principal cases are to be examined: (a) repulsive pairs, (b) the continuum region for

attractive pairs, and (c) the bound region for attractive pairs. For the first two of these, we will

seek the contribution to the state sum, per pair, due to there being a potential energy U of pair

interaction rather than no pair interaction. For the third case, we will be interested in the full

number of bound states of the attracting pair.

For the repulsion case, (a), we have, including the temperature dependence of the Boltzmann

factor, /< -(U+K)kT -K/T 2

Qrep ((Si+1) (sV1) (h2 / ) 1j (eU e )K dK ° 41rr dr

r= 00

=2S 4Z1 ) )(2Sj +) 1) ( (e3/2ke - 1)* 4wr~dr. (9)

r- 0

For the continuum region of the attractive case, (b), for which -U >0, we have
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3/2r. Kr 0.(kV

V J 1 e-(U+KykTKI/ZdK - JeKATK]/2 dK• 4wr2 dr
Qcont (Zsi+ 1)(Zsj+ 1(j 00 0/z0J

o r F r ' z 2 1

\co ht / f (s0 2 [1/v( fe->fu2 u2 du - e u du " 4rr dr,

h =0 LV 0J

22
by use of u = K/kT and v -U/kT. By integration by parts, or otherwise, this becomes

3/Z :3/2

!cont (2si+1)(2sj 41)( I JJ(v) 41r 2 dr (10)
' \h- r= 0

; with v

J(v)= -v + eV (1- f e-U2 du)- I

. (11)M= 2 F(i + M)

For the bound region for attractive pairs, (c), we have the local measure of available states

as

3/2 K1/ZdK 2 d.(2
dN = (2s i + 1)(Zbj + 1) 2?IJU 3 4n. K (12)

h2  (3/2)

Our immediate detailed consideration of these three cases will be in regard to Debye

screened Coulomb interactions.

a) Tonic repulsion

For repulsion in case (a), and using reference 2, we note that eqs. 2. 9 and 2. 33 therein

may be used respectively, with the present 6Qrep identified with

Q e - ) 3 /Z bij

of the former equation and with a type of second virial coefficient indicated as Bij -Nobij by

the latter equation, giving

Bij N -  (1 - JU/T) 41r 2dr
0
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Irelevant to each iJ pair. The spin factors have been divided out since they are present as factors

£ also in the actual concentrations of the constituents I and J.

In his paper pointing out the second-virial-like form of Mayer's ionic solution formulation,

Meeron( 1 2 ) indicated that the formal second virial was able to account for a part of the limiting

law Debye-Htlckel term, and that a fractional part, namely 5/8 of the whole term, still needed to

be carried explicitly apart from the second virial contribution. In the hope of clarifying further

some details of our earlier presentation we quote the essence of Meeron's result. The Helmholtz

free energy A, per mole at standard conditions, is approximated according to

-A/RT = (V/VO) FCi -A!/RT)i - lnCi- lnT/Toj - iJ E CiCjBij/Vo + 15 b 31 (13)
1L i~l J=1 144 j

in the notation of eq. 1. Bij here represents a formal second virial

Bij ZrNof [1-exp Uij/kT] r'dr (14)

0

reduced by a factor of Z for Mayai's form with the full double sum over all constituents. We note

in the case of interionic repulsion that the integral for the pair effect converges even without the

help of stronger short range repulsion - though evaluation is another question- and we wish now

to let the distance of closest appioach become zero for such a pair so that no artificial exclusion

volume is required. ',Ve shall accordingly consider the integral

Bij/N o  Z7T [l- cxp (-ZtZj ].Tr ) Ir dr. (15)

0

If we tak.e Kr as a new variabk_ 2 the integral becomc~s

ZzK - 3 [1 - exp(- ,c,-/?f)pZdp (1 t-)

with

w - ZiZ C2IF/DkT. (17)

The integral is clearly ZTrK - 3 times a function of a single variable w xk ,vhure

x Xij -- ZiZj C"/a DkT and (V Ka. We can break up the original integral intO thQ -am , Cf U-,o



II
integrals, for r<a and for r -a, i.e., for p<¢and forp>O, and obtain

1 --27TK 3f exp 1 d f

n- 3

-Zn d/ (18)

For the first of these two integrals, all exponentials after the first may be expanded, after the

first may be expanded, after which integration gives

-ZTrK 3 [_3qn¢ ]+3 I

in which the qn s are functions of x defined in reference Z. For the second of the two integrals,

a more detailed writing as

z~r Ke '/)d/)-] e /D pP+ w(f_ -2j) 2 f~dp)
-Zr3 - e dp-Jp -ndp00 0 0

n=r3 n enf)e  n

followed by comparison with the functinns defined by Poirier shows that it is

2zTK - 3 (w -)M 2) -Z=rK- 3 _l- 4( + c)
4 0

The combined pair virial Bij from both regions 0</< and <]P<e-o is thus indicated by

BiJ/No- -2 4r-- qy4J, 3 1 + ZT'-3(w- -Z) - Z'Tr -3 E (-1KxnK(bn gn).  (19)n-0

It may appear debatable whether the terms ZrrK " 3 and -zTr/K - 3 . w2/4 should be retained as specif-

ically pair-wise properties. The net contribution of such linear terms in w vanishes exactly for

the assembly as a whole on the basis of its charge neutrality, a condition that is not modified in

any manner by any chemical reaction- including ionization reactions. The quadratic terms in w

are part of the contribution to the limiting law Debye-HUckel term. We should note later that an

additional contribution to the limiting law term arises from attractive ion pairs, so that ultimately

the ordinary net limiting law term may be restored.
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On this basis, one finds that the additional specific pair repulsion effect may be taken as

z TrK- L="ZrK-3 [nr= 0 qn-n+ + E (-lnxno(bn + gn) (ZO)

rhi% was the implication intended in RP 2 9 1 6(Z) , though the result may not have been clearly

spelled out there in the present detail. We are indebted to A. R. Hochstim(1 3) for an indication

that such a choice of extension into the close approach region has also been formally stated by

Meeron by the simple device of modifying the second virial pair inteqral in a way which can be

indicated as a change from

F[exp -P) - 1]/'} dp

to

[exp(EJ)P+ E wP- ( -P) _ 1lp 2 dp -L (Z1)

in our notation. Thus, there is agreement with our indicated procedure of reference Z, based on

Mayer's formulation.

The special function L for pair repulsion contributions has been evaluated on the present

basis, making use of values of bn and gn from th= Poirier tables, with b, and g, values and qn

values from the formulas in reference 2. An example of one such evaluation is shown in Table 1.1.

It will be seen that convenience of cvvaluation involves such a suitable choice of 9 and x as may

prove satisfactory for rapid convergence. A short list of values thus obtained is given in Table 1.Z.

Such evaluation by means of two infinite series involving tables can be somewhat tedious and we

may prefer a simplifying practical approximation. It is now well known that the excluded volume

for many simple power potentials can be approximated well by determining the collision distance

at an energy corresponding in some' way to the typical thermal excitation energy for the tempera-

ture in qu.stion. It is also known that this fails for power laws below the third, and the

Coulomb law is far beyond this limit. However, the source of this difficulty may be the large

radius at very low enerqi:s - a situation which is drastically modified by the Debye screening,

even without the suppression of the w anJ wz terms here assigned to the general solution proper-

ties. Me have accordingly examined the numerical values obtained for the integral L(w) on the
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basis that the exponent l-'shudbe of the order of unity whe )3 3(asL L) giea

measure of excluded volume corresponding through w to the thermal energy. Values of w 3/L are

accordingly listed in the third column of Table 1.2. A plot of (w3/L) against w appears

fairly regular over an extensive range of w, as shown in Fig. 1.1. The roughly approximating

curve is given by

L - w/(l + 3w + w + w/3/Z)

This is a form based on the rough trend of numerical values only, so there would be no justifica-

tion for expecting it to give accurate extrapolations. A better representation would naturally be

desirable.

b) Ionic attraction and the continuum

For the continuum region of case (b), for ionic attraction, for which -ZiZ 0, we will have

the potential

U ZiZjZ e-Kr/Dr

or

U - IzizjC 2 e;Kr/Dr.

We would note first that we may take the first four terms of eq. 11 as an approximating polynomial

for small values of v,

j(v) ~ v2 - V3 + _4 v5
3 1 2ir 2 5 3 1-

v2 - 0.752253v 3 , 0.5v 4 - 0.300901v 5 . (23)

Parenthetically, we would albo note that the full classical contribution including bound

states as well as continuum wou ld give ev - 1 here, 1o that J(v) has the same leading term as does

the expansion of ev - 1 e- U/kT - 1. This leading term nay be recognized as the relevant con-

tribution coming from the Boltzmann factor for both the attractive and repulsive interactions

comprlsing an essential part of the original derivation of Debye screening. It is especially worth

noting that no part of the bound states for the attractive interaction would be required for this
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inference of Debye screening. It therefore follows that all pair states below ionization may be

I. placed in their natural category of bound states in the somewhat separate problem of the internal

U sum of states for the combined pair. Such a separation off of the bound states will not contradicl

in any way the logical basis for the inference that Debye screening has some actual degree of

validity. On the other hand, one should concede that Debye screening is an idealization which

is but a reasonably good beginning at describing the actual ionic screening situation.

To prepare for the evaluation of eq. 10, one may introduce the variablep= Kr and so obtain

v _-U/kT = w ij e -

where w= i-ZZj Z 2 K/DkT. Then eq. 10 may be re-written as

3/2r )Qcot (Zsi +l)(Zsj + i) oZjhkT)  4,K-3 F(w) (24)

with

F( j__) 2 0 I p d().

0

With eq. Z3 as a polynomial approximation for J(v), integration gives
5

F(V) Z cwm/Z
r&2 m

where

rn- 3

Cm -(-I)'(~ F(3 (1 +lm)22

This implies that

- , w 3/2 1 2 8110 5/23/2 - 58 w

w - 0.181444 w3/2 + 0.25w2 - 0.337310w5 / 2
. (25)

o ,dditional terms can be carried to extend this polynomial in the same pattern, since only these

te-rms have linite coefficients according to the relation obtained. The terms in w and w Z are

closely related to thu similar terms in w and w2 which appaar in eq. 19 in the cognate repulsion

problem. As in the repulsion case, one obtains the corresponding second virial type contributions
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by reversing the sign and dividing out the internal momentum factor contribution, (--"uk) 3/ ? , the

spin factors (Zsi+ l)(Zsj + 1) and a factor of two to conform to 'he double sum over constituents in

final applicatton to the complete assembly. This gives the continuum contribution estimate here

as

bBij /No  -2iK 3 F(w)

3 1 6_ 3/2 +1 w2 8 VT 05/21
S - -- (26)

It is now possible to explicitly combine the w and w? terms with the w and w2 terms of

eq. 19 to obtain their combined incremental contribution to ZCiCjBij/No as

6T TCiC Bij/N0 , 2rK-3[ZZCiCi(wii -. w2)r E- ZCiCJ(wi + Lw2 )att

AZ zrK3  C Z - - 1(O 2 KZ(27)

-~

FT 4 IZD) (DKT)j

2
so that the first term vanishes by _CiZi H 0, while the second term reduces to -K 3 (VJ/No ) /32,r.

Then after multiplying by -VNo/V 0
2 to conform to aq. 13 for the Helmholtz free energy function,

one obtains (V/V)l; as the net pairwise contribution. By combining with the separate

(V/Vo1 'hI4- b-1;1 indicated by Meeron, one obtains the combined limiting law term (V/Vo){&b-lj)

as it occurs in eq. 1.

While it is pleasing that eqs. 25 and 26, based on eq. 23, are of such form as to provide

conveniently interpretable and usable terms, we can suspect that the polynomial obtained still

leaves something to be desired as a representation of the continuum contribution. With the w and

w_ terms absorbed into the general ionic assembly properties, we have only the w3/2 and w_5/

terms left from the original approximation. The first of these, except for sign, appears to

pertain to the number of accessible bound states, a quantity to be examined shortly in regard to

the internal partition function for the pair comprising a positive ion plus an electron. One sees

no reason to expect good approximation in regard to the remainder of the continuum contribution

from the w 5/Z term alone, especially since the series terminates as a polynomial just at this
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point. Accordingly, the function G(wf) F(w_) - w - LwZ has been examined directly numerically
4-

on the basis of a few values obtained by tabular integration. For this calculation, the tabulation

was made in 20 equal steps for e - Kr = 1 - u from 1 to 0. The function actually chosen for inte-

gration wasp M(v) =JYv) - v Z + 4~ v3,
for which the integrand, M(v)} 0d-, goes to zero at both ends of the tabulated region. J(v) is

du

defined by eq. 11. Then we have

G(ff 0'0LE 3/2 _12Glw) = IM(v)O)dO "w/ ___w

27 W 4

Tabulated values of M(v)p eP for various values of w may be found in Table 1.3, while corre-

sponding values o MrvO dp = Mv )P e/du and -G(w) estimated by numerical integration
Ii J0

are given in Table 1.4. Values are given also for estimates from

2 F6 w3/2' ? F6w3/2 + 8L 0w5/2 w !I3/2 +i 12+ 5'
7 27- 75 - 27 25w

and a geometric mean truncation,
1 .-- I/Z

27 - 11 25  j
which does not differ grossly from the numerical integration results in this comparison region.

Fig. 1.2 shows graphically how the continuum contribution varies over the tabulated range of the

variable w.

cL. Ionic attraction and bound states

We now come to the ionic binding region, case (c), for which eq. 12 is relevant. Our imme-

diate interest in this case centers on such systems as an ionic core or nucleus plus an interacting

electron. We can claim that in the dense level regions of large quantum numbers, particularly,

there will be a close correspondence between distributions of levels semi-classically and quantum

mechanically. We note that there have been perplexities about the calculation of atomic partition

functions due to an apparent divergence of the sum of states, arising when the intention is taken

-19-



to sum over all bound states since the weights contain a factor of 2n? from the outer electron,

where n is the electron's principal quantum number. For a single system in otherwise completely

empty infinite space, there would be no interference tending to limit the possible n values. With

Debye screening, the number of states is finite. It is sometimes supposed that the semi-

classical attractive ionic system is subject to just as serious a divergence difficulty due to the

exponential from the Boltzmann factor applied to the phase space region of extremely negative

energy near r = 0. We find that this is not actually a serious problem if we will consider the

semi-classical approach as a procedure for estimating the distribution of discrete states, the

lowest of which is the ground state for the single atom or atomic ion being described. The place-

ment of the lower atomic levels is usually in little doubt since they are generally well observed

spectroscopically.

In our present case with the Debye screened ionic attraction specialized to the case in

which one particle of the pair is an electron, with spin factor Zsi+ 1 = 2 and Zi = -1, we find

that the number of levels locally is measured by

27W 3/Z Kl/Zd 2
dN = 2(ZsN + 1)( Yr ) dK . 41rr dr (28)

h F'3/z)

with K ranging from zero to Z E-Z eKr/Dr. The total number of bound levels available for

occupancy is readily estimated, since the integral over K is immediate, leading to

N 2 l~ N 1  .)( _ 1 O i
-K r 3/Z

h12  3 r(3/?) J Dr

16 IN3/z

-77 7/r (zsN + 1) Dao ,

0.57 9 08 4 (ZsN + 1)(Z/DKao)3/Z, (29)

where a o = A/7 is the radius of the first Bohr orbit for hydrogen and Z is the charge of the

atomic core in protonic units. It is clear that this result, by simply omitting the nuclear spin

factor 2 sN + 1 - here also a practical equivalent for number of core states - gives a basis for a

stopping point for the sum of the ZnZ pertaining to the weight factor for states due to the outer
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electron. For any electrons other than the outer one, the stopping point is essentially the same,

since it is natural to claim that n for them cannot be greater than for the outermost one. Some

small reduction in the total number of multi-electron states arises from the Pauli exclusion prin-

ciple, due to the applicability of FD statistics.

jThe ionic environment also provides a change of ionization energy and a corresponding non-

uniform change of placement of intermediate levels, particularly near ionization. To examine the

distribution of available levels in the circumstance of Debye screening, eq. 28 is used with the

kinetic energy expressed as K = E - U, so that the density of levels with respect to energy is

dN = 8W N+ 12 _ (E -U)I/Z rZdr, (30)

dE 7(32) h?

where rm is the rmax turning point corresponding to the given energy E. By taking Kr as a new

variable /3, one obtains

87PmZsN+ 1)/(/ 2
dN ) )3/2 (ZE/D) e-P - 1 ePml'p 2 dp. (31)

a- -- (37?) hz K5/ 2 0-o

By again introducing the Bohr orbit radius ao and by using the new variables y= I -p4"iA and

X =Pm' on finds
1

(K )dNd. 4 Z)3/X/2 Xy 1/2 3/2D - (--- )X J [y+ 1)] 1 -y dy.
0  0

The integrand may be expanded as a power series in X and integrated in terms of the Beta function

The result through the tenth power of the variable X is found to be

(KZE 2 ) dN F2 z 1 2 eX/2 [1+ X X/X 2 _XX1 y 47X 4 +
d--E- : e + - _ X--2 + X--3 - + 49X5 s z

D dE 4 DKao L1 2 32 32 3072 5120

6 8 9 10 1-2077X + 9162 - 4275289X + 3218221X - 511366339X0 (32)
327680 20643840 1321205760 1321205760 271790899200 "1 2

In the ionization limit, the value attained for the level density is indicated by

E zd_ N 2- 4 t Z .317 r!
(KZ ()3 = 13.54055 (Z 2  (33)

D dE/,, VT D-5-ao ~D Ta 0

obtained from eq. 31 with Pm =CO. The calculated results for the classical distribution of
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available bound states are to be found in Table 1.5. The first column lists values of e at 20

equal intervals from 1 to 0. This function was arbitrarily selected to give the table spacing.
The second column gives corresponding values of Kr m . The third column gives (Krm-l e-Krm

which is a dimensionless measure of the local depth of the potential energy, scaled to the Debye

{energy depression, KZE2/D. (This energy depression is the naive estimate for the decrease of

the ionization potential, to be examined later in greater detail.) Column four shows the density

of available states with respect to energy, calculated with numbers of states scaled to

(Z/DKao)3/2 and energy scaled to (KZE2/D). The numbers in column four are based on eq. 32, but

for the latter entries where the series becomes poorly convergent, or perhaps divergent, the

evaluation has been made using special summation techniques including the Euler transforma-

tion ( 14 , 15) The quantity in column five, obtained by mtiltiplying column four by [Krm)-Z

+ (Krm)-1 ], also represents density of states, but with respect to e -Krm for which the table is a

uniform tabulation. Tabular integration of column five with respect to increments of -e K rm,

using a 5-point Lagrangian integration formula, gives the function in column six, subject to two

exceptions, viz., (1) that the first four entries are from a series representation for the integral

3/2 F2 [/ 3-2 V .. ]
(DKao/Z) N = - x 3 - 4..•], (34)

3' 64

and (2) that the final entry comes from eq. 29 since the final increment is not given accurately by

the 5-point Lagrangian formula because of the exceptionally violent change of the integrand at

the end of the range. The quantity N, we wish to explain, is the estimated number of states

available for single outer electron occupancy up to an energy E designated as being below ioni-

zation by zm e -Krm
Dr~m

We now wish to consider a use that could in principle be made using these tabulated quanti-

ties. As a preliminary step, we examine the effect on equation 32 occurring if we let the Debye

screening parameter K go to zero as a limiting value. The series within the bracket then reduces
-X/z

to unity, as also does e . This leaves

(KZE'D) dNCoul - V 5/ 2 F 5/2

(Z/DKao)3 / 2  dE 4 K (
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here written in a form in which K5/Z occurs as a factor, on both sides of the equation. By

retaining this K5/2 factor, we can obtain a quantity corresponding via'Krm to that in column

four, but which now applies to the case of the Coulomb field without Debye screening. Obviously,

the energy for this Coulomb case is not identical with that for the case with screening at the same

Krm, as the Coulomb depression below ionization corresponds to (Krm)-1 rather than to the screened
-Krm Kr

Krm) -I e of column three. The conversion from dNCoul/dE to dNCoul/d(-e m) involves

(Km2 Krmmultiplication by (Krm)-Z e purely as an adaptation to the chosen variable of tabulation. The

result, whirh appears in column eight, gives a density of levels versus the table variable apply-

ing to the unscreened Coulomb case and corresponding via Krm to the values given in column five

for the screened case.

-Kr m
The integral of the values in column eight with respect to the tabulation variable, e is

a semi-classical measure of the number of available one-electron states up to the energy which

in this unscreened Coulomb case corresponds to the Krm value, or up to an energy KZEZ/DKrm

below ionization.

We now say simply that if the partition function for an atom or atomic ion has been obtained

by summing over all the states that are included by letting the quantum number n of the outer

electron take all values up to and including a terminal value nl, then an adjustment in the parti-

tion function may be in order, for which the following recipe may be worthy of consideration. We

define a fictitious number of available one-electron states for the outer electron as

ni

Nf - Z ZnZ - n l (n1 i l)(Zn I + 1)

n=13

Tnis corresponds to the NCoul of column nine in the table. By calculating (DKao/Z)3 / 2 Nf, based

on the K for the actual high temperature gas mixture and interpolating in column nine, a determi-

nation can be made of the endpoint in the table corresponding to the chosen sum of states. One

should now use the relevant e factors in each case and put in the integral corresponding to
- '/kT

the complete sum of gie values based on column five as a replacement for the integral
- E/kT

corresponding to the summation of gie values based on column eight up to the indicated
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special endpoint. This over-all adjustment appears as if in a factor pertaining to the states of

the outer electron only, in which case the sum of states for the core alone is a separate multi-

plier to be considered as a factor in an over-all weight of states, though here it is not a constant

factor such as would arise from nuclear spin in the one electron case.

[We can also point out that another tabulation should be possible for the Coulomb case,

arranged to have the same energy as for the screened Coulomb case. However, the correspondence

would end at the ionization energy of the screened Coulomb case and hence would apparently not

be convenient in the adjustment from sums carried to high n values. When the adjustment is

limited to the same energy region, the change would be in regard to density of states only, with
-EAT

values of e occurring singly, in common to the corresponding entries in the "screened" and

the " unscreened" columns.]

It is hoped that the procedure indicated may prove to be entirely reasonable as an approxi-

mate adjustment to take account of the principal mutual screening effects in the ionic solution

environment. It is but natural to regard the procedure as capable of analytic arrangement, at

least in approximate form, for the performance of actual calculations of adjusting for the particular

conditions of a given high temperature qas. The extension to the calculation of gas properties

other than the directly given Helmholtz free energy would follow as usual by differeriidtion. We

note that this may involve some contributions from the dependence of K, the Debye screening

constant, on other variables.

We should not close the present discussion without mentioning an item that appears worthy

of note. We may recall the observation, already touched on in section b), that the count of

available states for the Debye screened atomic ion is so closely matched by an almost compen-

sating deficiency in the count of states in the continuum. This fact influences our interpretation

of the effect on calculated thermodynamic functions.

We would first note that, at high temperatures, a conventional sum of states for an atomic

ion has a very sensitive dependence on the cut-off value of the quantum number n at which the

state sum is halted. In fact, the principal features of the specific heat can be indicated qualita-

tively by a modified Schottky curve based on two levels only -- a ground state of effective weight
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go and an excited state of effective weight gI and at an energy Ehigher. It is then but a simple

exercise to show that the maximum of the specific heat curve occurs at a given temperature Tm if

the weights are related by

go/g = e m( + 2kTm/c) (36)

(1 - ZkTm/e)

and that at this maximum the relation

(C°/R)m - + )2 (37). max -2- 4-kTm

must apply. A simple examination of thkse formulas indicates that by taking E as the ionization

energy and g, as the number of states counted near ionization, there is a possibility of obtaining

a specific heat peak of any arbitrarily chosen height, occurring then at a temperature that is some

.corresponding small fraction of the temperature equivalent of the ionization potential.

We can admit that we had expected that the Debye-limited number of states would give a

suitable control -- in effect by determining the g, -- now a variable, and indeed this expectation

can hP. regarded as fulfilled. However, we have encountered the interesting complication that when

we include the continuum for an electron with a positive ion, we have a negative contribution

arising from the existence of the region of bound states in which occupancy is allowed in the other

part of the treatment. The close relation of magnitude of plus and minus contributions is clearly

not due to use of Debye screening, except insofar as the comparison is possible for finite quanti-

ties and unclear for infinite ones. An improved representation of the effect involved here would

naturally be desirable.

Another item of some importance in regard to ionization equilibria is the effect of the ionic

environment in reducing the ionization potential of the atoms and atomic ions. We note that the

Schrodinger wave equation leads to radial elgenfunctions R (r) satisfying the differential equation

d(rR)_ + L(E - V) - tLL±.l 1)(rR) =0 (38)
*drZ tV r2

where V is the potential energy of the electron in the field of the atomic core or nucleus. If we
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assume the approximate validity of Debye screening, we may consider the potential energy to be

given by an ordinary unperturbed part

Vo = -01(t 
+ 1 _ z (39)

2 r

plus a perturbation potential

VI = Z (1 - e -  K (40)r

(161
so arranged that the potential is held unchanged by the perturbation at the r= 0 limit. Although

degenerate perturbation theory is applicable, the perturbation potential does not involve (0 and 0,

the coordinates associated with the degeneracy, and the secular determinant involved is diagonal

with respect to m and t as a consequence, thus implying that nondegenerate perturbation theory

may be used. Combining the energy eigenvalues of the unperturbed system with the contribution

of the first order perturbation, the perturbed elgenvalues are approximated as

E K z2E2  Kz' ( ) s rs-K (41)

Zan 2  s=l (s + l):

where ao = ? /MZ is the Bohr orbit radius. One notes that this energy formula is compatible with

a potential energy going to the value KZC Z at r =-. The ionization energy above a state with

an outer electron having quantum numbers n and )-in a nearly hydrogenic state is thus estimated

as

io Kz z _ Kz L- (- _is Ks rs  (42)
s0- (s + 1).

with I o as the corresponding ionization energy with K= 0. The terms in T and rZ are unaffected

- (17)
if higher order perturbation theory is used. By quoting from a listing of r functions, we obtdin

I oKzz 4-K Z [3nZ -L(+ 1)]- Ka2Z (5n Z + 1 - 3.(+ I)]

+ (-2) [35n (nZ-1)- 30n 2 (L+2)(L-l) + 3(1)( +1)X(L)]... (43)

We must note that actual ionic screening would not be strictly of the Debye type, even on the

average. There are several reasons for this, including the fact that the strongly screening free
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electrons of the ionized continuum are able to penetrate deeply into atomic ions and there to even

exceed their normal concentrations in free space, while neighboring positive ions are strongly

excluded from the close approach region and do not appreciably cancel any of the deep electron

screening. We note also that polyelectron atoms typically involve quantum defect corrections

with the quantum numbers.

In deriving the above ionization energy formula, the dielectric constant D has been left as

if equal to unity. If a constant value different from unity were to be taken, the derivations lead-

ing to Table 1.5 show that it would occur in combinations with KZE'2/D proportional to energy

differences and with DKao /Z associated with quantum numbers and hence numbers of states. For

distant separations of electrons from the atomic core, it is proper to recognize that the inter-

vening medium would have effects as shown by the work of Fermi( 1 8 ) and Amaldi and Segre. ( 19 )

The simple introduction of a uniform dielectric constant in our formulas must be regarded as only

schematic and subject to considerable refinement.

The problem of where to include the dielectric constant is not limited to the formulas imme-

diately preceding. Duclos and Cambel ( 2 0 ) have recently pointed out its presumed suitability in

eq. 3.1 of RP 2916,( Z) so that within the square bracket there the term would appear as

12r me DK2 T2

[An extra 1/Z which they accumulated is apparently due to a reduced mass factor].

We can suppose that the semi-theoretical estimates of other interaction effects of electrical

origin will also be affected by the intervening matter. This may be successfully allowed for in

the cases of interionic and ion-neutral interactions. These may provide additional corrections to

the second virial type estimates under certain high density conditions and so affect the projected

estimates of higher virial effects by resort to extensions of the rigid sphere equation of state.!1 0 , Z l )

Our eq. 1 may be re-written on the basis of the newly estimated pair effects involving the

function L of section a), the function G of section b) and the Debye screened internal partition

functions of section c) as
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-A/RT (V/Vo) C,[(-A'/RT), -JC., - L(T/o)] - - K3  g _ & , [Brs0 s 12W N o  r s VO B r

+ ZwNo { [(Z )4 + ZrZs rs .r2 A Tz1' /13/2
[1 + 3w +Wr + w

+K -3 z zs) - ZrZs DT- " 14 [1+ 1 - Wrs }/  (44

now with wrs = IZrZs1 ZK/DkT. The quantity Brs represents any pairwise, second virial type,

effects of ordinary origin.

One proposed high density extrapolation ( 1 0 ) and mixture rule might suggest that the higher

order virial type contributions to -A/RT be taken as

(V/VoJ (3n2 3n + iL ECs (be)s (45)n=3 ZZn-lI(n -l)Vn sJ

The excluded volume (be)ss between like pairs would be taken as roughly given by the bracketed

coefficient of CrCs with r = s in eq. 44, for regions in which the Bss's are strongly positive.

It is apparent that careful consideration is appropriate in attempting extensions of the cal-

culations to higher temperatures and higher pressures. At sufficiently high temperatures, the

approximations commonly used in regard to stellar interiors would presumably provide an adequate

continuation.
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Table 1. Z. Pair Effect of Debye Screened Ionic Repulsion.

w L (w) w3 /L (w)

0.01 0.0000007057 1.4171
0.04 0.00003140 2.038
.1 .00036029 2.7755
.2 .00217633 3.6759
.4 .0125249 5.1098
.8 0682764 7.4989

1.0 .116436 8.5884
2.0 .588321 13.5980
4.0 2.8125 22.756
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Table 1.3. Values of the Integrand M(v) Ze for Various Values of w

M(v)p 2 eP

ewr rn0.01 0.1 1 lo

1 0.00000 0.00000 0.00000 0.00000
0.95 0.37592x10-4  0.25632xi0 "2  0.12580 0.79294
.90 .38197 .28588 .15689 1.03078
.85 .37313 .29374 .17327 1.17404
.80 .35877 .29226 .18206 1.26593
.75 .34157 .28550 .18596 1.32294
.70 .32263 .27528 .18629 1.35339
.65 .30251 .26262 .18382 1.36208
.60 .28155 .24809 .17904 1.35199
.55 .25993 .23209 .17228 1.325.05
.50 .23780 .21487 .16377 1.28253
.45 .21524 .19662 .15366 1.22519
.40 .19233 .17748 .14209 1.15348
.35 .16911 .15755 .12912 1.06753
.30 .14562 .13690 .11482 0.96720
.25 .12188 .11560 .09920 .85206
.20 .09792 .09368 .08228 .72135
.15 .07375 .07118 .06403 .57387
.10 .04938 .04809 .04438 .40767
.05 .02481 .02440 .02319 .21937
.00 0.00000 0.00000 0.00000 0.00000
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Table 1.4. Residual Continuum Contribution for Attractive Ionic Pairs.

-2/

W0.01 0.1 1 101/

dp M(v)P ...0.2224xi0-4  0.1872xi0-2  .1297 .9827

-G ...1.842xi0-4  .6367xi0"2  .3017 2.538

27 -.. 814x10 4  .5738xi0-2  .1814 1.0203

2,,F 3/2 12,J1
27 (i ) .... 848x10 4  .6738x0 -2  .5188 7.0186

27 -25-- .3068 2.676
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Fig. 1. 2. A continuum ionic pair attraction effect of higher order than the
limiting law. Circles show results of numerical integration.
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2. THE DIELECTRIC CONSTANT OF A DENSE GAS OF PLASMA

The present discussion is addressed to the purely practical problem of estimating the

dielectric constant of a fluid mixture such as may occur in some applications involving Debye-

Hackel theory. The thermodynamic properties of an ionic solution are in some degree dependent

on its dielectric constant. If the system is a low density gas at such high temperatures that few

ions are present, a good approximation for the thermodynamic purposes may be obtained using the

assumption that the dielectric constant is unity. A more realistic estimate would be desired,

however, if the fluid is of a high density approaching or typical of that of a liquid.

For the purposes of our brief considerations, some available approximations relating the

dielectric constant of a fluid mixture and the properties of its constituent molecules will be

mentioned. According to the well-known Clausius-Mosotti relation(22)

4w NX= D-1,

the dielectric constant D may be obtained from the electric susceptibility X as

D (3 V ) .Z

For a mixture, the average susceptibility X depends on mole fractions and susceptibilities of its

individual constituents according to

X = xjXi, (3)

with
2

Xi +  (4)3kT

where a i is the mean polarizability and pi is the dipole moment for a molecule of the ith consti-

tuent. For gases at high temperature involving atoms for which Ai7 0 and with J4i/3kT negligible

for any molecules present, equation 2 reduces to

DI= 1+4w l (5)

as a beginning approximation. When D1 is estimated as equal to 4, then equation 2 gives infinity

for D. A fairly extensive literature deals with the inaccuracy of the Clausius-Mosotti relation.
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One of the objects of the present note is to point out that the Onsager relation 1 1)

4w N X = (D-I(ZD+1) (6)

3 V 9D

is not too complicated for practical use in routine calculations, while it is completely well-

behaved throughout the region of possible application. It can be put in the form

D = 1 + 1[3(DI-2) + (9D 1
2 - lZD1 + 12)1/2, (7)

where D1 is given by equation (5). An additional modification of Bbttcher ( 2 3 ) relevant to molecu-

lar volume can lead to

4ffr _ _ (D-1)(2D+1 -L1j ca3], 8

3 V 9D L (ZD+l) J

which gives

D ... 1 + 24(Dl-l) (9)4 1 - <a-3 > I - <aa-3>

-3
where <Ga > is the effective value of the ratio between polarizability and the cube of the

radius of the dielectric fluid cavity containing the polarized molecule. Table Z.1 gives extimated

values of 1/a3 for the rare gases, based on measured polarizabilities, with the quantity "a" taken

as half of the collision radius for the LJ 12, 6 potential. On the basis of the general trend in this

table, one may note that a/a 3 appears to be of the general magnitude of 0. 1 n, where n is the

outer shell principal quantum number.

The over-all behavior of the calculated dielectric constant according to the Clausius-

Mosotti and Onsager relations is shown in figure 2.1. As already noted, the former goes to

infinity at D1 = 4, and it also has a spurious branch of negative values coming in from -oo beyond

D 1 = 4. The Onsager relation gives a single curve beginning quite identically with the other and

becoming simply asymptotic with the dashed line D = 3D 1 - 1 at higher density. If a Bottcher type

-3relation with a 1 - <Ga > • correction factor is used, the asymptote becomes

D 3(DI+ 2) - Z(l - <aa-3> (10)
2(1 - <a 3 >)

An elaborate study of the dependence of experimental dielectric data over a wide range of

gas density might be in order for some purposes. The intent in regard to the present discussion

-37-



must be kept to the limited objective of providing estimation formulas that are not grossly in error.

Nevertheless, it seems appropriate to examine a fragment of data having some special relevance

to the question. As is well known, there is a connection between refractive index and dielectric

constant. On page 6-111 of the Handbook of Physics, ( 24 ) there is a convenient comparison of

some refractive index data (for the hydrogen F line) for water-ethanol liquid mixtures with data for

the pure vapors (for the sodium D line) using the Lorenz-Lorentz equation, which has the form of.

the Clausius-Mosotti relation. On page 6-126 of the same reference work, one may find in con-

nection with the discussion of the Ornstein-Zernicke theory of light scattering that it is helpful to

use a formula of the Onsager type. Figure 2.2 shows these two alternate formulations and also,

as a third, the Bttcher formula which includes the 1 - <aa correction, with <aa > taken

as 0.15. The estimated refractive indices shown for the F line (4861A) for the vapors are based

on data of Wust and Reindel ( 2 5) in the case of HZO and an extrapolation of data of Lorenz(2 6 )

(5893.k to 6708A) for CZH 5 0H. The values shown by arrows are the less relevant vapor values

for the sodium D line as indicated in tho Handbook figure. The Btttcher formula can be made to

give a close" fit by letting aa - 3  vary from 0.13 for pure water to 0.175 for pure ethanol.

We should also mention that there is a literature of a priori treatment of the dielectric

constant taking a more general point of view of statistical mechanics. In this connection,

Brown (27 ) in a critical analysis of Bottcher's theory has indicated that its success may be due to

compensation of errors.

It is possible that the discussion given may serve to support the view that simple estimates

of dielectric constants should be feasible up into regions of high gaseous density. There still

will be problems of finding acceptably estimated polarizabilities for the individual molecular and

atomic species which may be present.

In connection with a presentation of shock tube results, Alpher and White ( 28 ) mention two

forms for Kirkwood-type estimates of atomic polarizability. For N, and 01, they found that

a. -L(<riZ> z) (11)
9a0

quoted from Hirschfelder, Curtiss and Bird, (2 2 ) gives estimates roughly 30 per cent greater than
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Kirkwood's own equation!2 9 ) with n as the number of electrons in an atom,

4 [F<-r 2> 
(

while experimental indications favor values intermediate between the two sets of estimates. The

discrepancy becomes much larger for the heavier noble gases. The formula quoted from Hirsch-

felder et al, gives over 3 and 4 times the other in the cases of krypton and xenon, for which the

experimental values are of the order of Z/3 of the smaller estimates.

Some difficulties arise in extending polarizability estimates to such high temperatures that

there is extensive occupancy of higher atomic levels. It seems reasonable to assume that quite

* usually there is a single outermost electron for each atomic ion. Its principal quantum number

should give a meaningful indication of the general magnitude of the polarizability of the ion. The

2
strong dependence of the Kr > estimate on quantum number precludes a detailed analytical sum-

ming over the totality of thus sub-divided species. The difficulty in summing is especially

inevitable when the sum diverges due to regarding the outer electron as being in a Coulomb field.

We may improve the situation by accepting the modification due to Debye screening. A simple

estimate can then be made if conditions involve such high temperatures that the occupancy of

single states near the ionization limit and near the ground state are of the same general magnitude.

The estimate may be based on the classical density of states, using

h 47 p3 . rm. 47rr 2 dr
<rm> = r (13)

h3 f p3 . 4wrZdr

with P /ZA = (Z+l)(e /r)exp-Kr, where Z+l is the charge of the ion without its outer electron. The

result is

<rm> = (3 K) m  (im +-)/.() (14)2

by which for a one electron system equation (11) gives

C_ 100 (15)

ao 81(Kao
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An estimate for the dielectric constant using equation (7) with equation (5) could then be con-

sidered. However, with the Debye K given by

K 2 = 4rW AZj2 N . <I25<>Xi (16)
DkT V DkT V

where

<z> = ZNi/ENi Z 2N/N

there is an additional interrelation introduced in regard to D. This can be used in equation (6)

and the result can be put in the form

D 3(ZD+) I(D-l) -1 -> 4 -a'3ZX, (17)
aokT ,

in which ground state contributions to the mean polarizability are ignored. The estimate for D is

thus given by an implicit relation. A graphical representation of equation (17) is shown in

Figure 2.3. It may be noticed that it seems to predict two distinct regimes, involving approach

to the two asymptotes D = Zx- and D = 1. The intuitive line of argument leading to the result

seems to have been of a nature favoring acceptance of the high dielectric constant prediction in

preference to D-1 for a highly dense but incompletely stripped plasma. There must naturally be

a question whether there is any region of approximate applicability of (17) for actual physical

systems. It is clear that exact validity is not to be attributed to the result, since all items in its

schematic derivation are imprecise in one way or another. One may note, however, that the

assumption may sometimes have been made that unity for the dielectric constant was appropriate

for a dense plasma in the high ion density limit. On the basis of the present result, one may at

least ask whether there may not be dense plasma-type physical systems for which the dielectric

constant would be more like that for a liquid.
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Table 2. 1. Values of ca for the Rare Gases

He Ne Ar Kr Xe

0.09 0.15 0.31 0.42 0.46
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Fig. 2.1. Non-linearity of dielectric constant versus
its first order linear estimate.
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Fig. 2.2. Mean specific refractivity, 4TNX/(M> versus weight fraction
of ethanol in water-ethanol solutions, using D= n2 in equa-
tions 1, 6 and 8. Values marked F are for the pure vapors.
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3. CONSIDERATIONS ON INTERACTION POTENTIALS FOR THERMODYNAMIC
ESTIMATES AT HIGH TEMPERATURES

In estimating thermodynamic effects attributable to excluded volumes for high temperature

gases, one needs pair potential functions suited to the special needs of the problem. One

extreme might be to assume that atoms and molecules could be considered as rigid spheres of suit-

able sizes. An opposite extreme would be to suppose that much could be known as to very exact

details of the interaction potentials. We may recall that molecular orbital estimation of pair

energies is in principle possible for any physical system, but the large number of kinds of pairs

occurring simultaneously even in a relatively simple system would make such a program very dif-

ficult. In making estimates for large numbers of cases, it seems but natural to prefer to rely on

empirical and semi-theoretical expressions in the absence of direct evidence opposing such a

procedure.

In the relevant literature forming the immediate background as far as selection of pottentials

for high temperature calculation is concerned, we would mention in particular the interesting

papers of Amdur and Mason, ( 3 0 ) of Amdur and Ross, (31)and, especially, of Amdur, Mason, and

Jordan. ( 3 ) . In the last, special emphasis as to the softness of the potential for the NZ-N Z sys-

tem is given, on the basis of Ar and He scattering in Nz gas.

The one-exp-six potential resembles the exp-six potential in some ways, including the

detail of having a somewhat softer repulsion at close approach than do the Lennard-Jones type

potentials. ( 3 3 ) For a while, it was hoped that the new one-exp-six potential might prove useful

in the representation of these indirect scattering results. After a somewhat lengthy study, it was

inferred that this wa3 quite difficult of accomplishment, however. This conclusion was arrived

at somewhat indirectly, and in the following way.

The flexibility of the curve for equation Z of reference 33 was studied in the case of the

Ne-Ne interaction, with F1 as given there for equation 3, but with F. and F3 1 taken as poly-

nomials in r/r with positive coefficients conforming approximately to the united atom treatment

of Bingel. ( 3 4 ) The result, somewhat unhappily, seemed not completely successful for showing a
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capability for extensive adjustment of the potential curve. Actually, this should not be very dis-

appointing for the case of neon. since the estimated parameters either based only on thermal data

or modified to the proper Coulomb repulsion at close approach are in fairly close agreement with

scattering dat 3 3) and also with some preliminary MO calculations of Ransil ( 3 5 ) which give an inter-

mediate indication between the curves for the two estimated Y parameter values.

The indirect scattering results of Amdur, Mason, and Jordan for the Nz-Nz potential are shown

by the solid line in figure 3.1. The dashed and dotted curves show the one-exp-six and the Lennard-

Jones 12,6 curves, respectively, also reduced to virial data parameters! 36 ) Assuming that the

scattering results are essentially correct, one must interpret these curves as indicating that little

benefit can be gained from using the one-exp-six potential in preference to the LJ 12,6 potential

for the Ni-N2 interaction. As may be seen from the figure, the scattering data are in the general

range of U/F = 20 to 100, while even at U/9 = 1000 there is only a very moderate difference in the

r/rm prediction of the two other curves, particularly as compared with the indicated difference of

the indirect scattering potential curve. Under this circumstance, it has appeared proper to follow

the conservative course of using a I 2 th power repulsion potential with the usual 6th power attrac-

tion potential augmented by such other theoretical inverse power terms as the particular pair may

require.

The field of application recommended for present use of such potentials is somewhat limited.

The immediate objective is the estimation of excluded volume effects as they enter in thermody-

namic property calculations for gases at somewhat elevated temperatures. It turns out that pair-

wise effects are comparatively easily estimated in this field when such Lennard-Jones type poten-

tials and their extensions are available. It is naturally to be hoped that such estimates will be

adequate for the type of use envisioned. Even if questions of reliability must arise at the highest

temperatures of application, there still may be considerable usefulness for the simple magnitude

estimates which are thus provided.

In the somewhat different field of transport properties of gases, it is often recognized that a

more stringent requirement for accuracy of the potential function must apply. The entire transport

effect is governed by the cross sections that are appropriate to the process, so that uncertainties

about the potential function directly affect the whole result rather than some moderate or small

correction quantity contributing to the result. Nevertheless, it can be hoped that estimates of
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the proper general magnitude can be arrived at in the transport field, also, since realistic esti-

mates of sizes of atomic fragments are expected on the present basis.
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Fig. 3. 1. N2 -N 2 potential energy of interaction. The solid curve is based on
indirect scattering evidence. The other curves show one-exp-six
and Lennard-Jones 6-12 extrapolations based on virial and other data.
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II

4. ESTIMATES OF NON-BONDING INTERACTIONS IN HIGH TEMPERATURE GASES
AND PARTIALLY IONIZED PLASMAS

The interactions between the molecules, or molecule-like fragments, in a gas are of interest

in regard to various macroscopic properties. For many pure substances and for some mixtures,

there are observational data capable of indicating the approximate behavior of these interactions.

For the atoms and ions which may occur in a gas under conditions of high temperature or of other

special excitation, there may not happen to be similar data pertaining to interactions. Under

these circumstances, it may be useful, or at least of interest, to examine such predictions of non-

bonding interactions as may be based on sound theoretical and semi-empirical rules. It is

evident, of course, that effects of chemical bond formation would need to be taken into account

separately if omitted from the interactions directly included.

There is thus a problem of estimating intermolecular interactions well enough to permit

acceptable estimates of the associated macroscopic effects in question. This is a somewhat

complex problem. At extremely high temperatures, the only constituents significantly present are

electrons and atomic ions either singly or multiply charged, or even stripped to bare nuclei. At

intermediate temperatures, and particularly at high density, molecular ions may be present in ap-

preciable amounts. Further, in some range of modgrate temperature, neutral atoms and molecules

become sufficiently populous to require estimates for the interaction between charged and neutral

particles. Finally, one may note that in the lower regions of elevated temperature, the constitu-

ents to be considered may well be limited to molecules and atoms only. We shall find it

convenient to begin by considering the selection of interaction parameters for such a non-ionized

mixture first, then moving on later to more complex cases.

1. Interaction effects in a non-ionized gas mixture

Even though we bagin with a simplified problem of estimating interaction effects in the

absence of ionization, we cannot hope to make estimates that are highly precise and reliable. It

must be recognized that intermolecular interactions are of considerable complexity. In principle,

estimates of different quality or involving various degrees of approximation are possible. In the
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present case of negligible ionization, we shall be satisfied to begin with known empirical param-

eters for conventionally accepted potentials. Extension of estimates to unobserved pair

potentials will then follow from various "rules" which we hope are at least plausible.

A rule that is frequently used in estimating second virial coefficients for mixtures of gases

for which the Lennard-Jones 12, 6 potential,

(r) = 4 . [f/r)12 - (Cr/r)6], (I-1)

is adequate approximates interaction force constants by using a geometric mean rule for the

energy parameter

(t/k)i = /k (C/k)j, (1-2)

and an arithmetic mean rule for the collision distance, d'ij = + fj) or

(bo)Eij = (bo)I + i(bo)]j  (1-3)

A geometric mean rule has sometimes been used for b 0 also,

(bo) = (bo ) (bo) * (1-4)

One may note that a more elaborate potential function would require a correspondingly more

complicated set of mixture relations. Under this circumstance, it is of interest to observe that

some support for relatively simple combination rules can be found even when some effort is made

to take account of molecular shape.

In initiating this special consideration of mixture rules, we shall examine pair excluded

volumes using some relations for rigid convex molecules. Kihara(37) has shown that for sphero-

cylindrical diatomic molecules the pair excluded volume is given by

bo= ['M-ro3 + rtro2 +R12ro] No, (1-5)

where I may be taken as the internuclear distance within the molecule and r o is the value of C,

the exclusion radius between atoms of separate molecules. For diatomic compounds for which the
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two atoms do not have the same radius, as illustrated in Figure 4.1, we make use of general rela-

tions for rigid convex molecules. The second virial between two differing molecules according to

a result quoted by Kihara is

BAB -(VA+VB) + -L(MBSA + MASB) NO. (-6)

We will take the exterior surface of the rigid convex model for either diatomic molecule as made

up of two spherical surfaces for its two atoms, joined by a tangent conical surface, with R, and

R2 as the radii of the individual atoms and with t as the distance between centers of the two

spheres. Then the evaluation of the theoretical relations gives for the particular molecule

__L Z

M = i t + RlE + R + Z+R + , (I-8)

andF1F1

One notes that in the case of like atoms the spherocylindrical case is regained and that with

r= R1 + R2 = ZR, the prediction agrees with equation (1-5).

Values of 2 have been obtained by taking values of re listed by Herzber4 3 8 ) and making an

approximate adjustment to the ground vibrational state given by 2.- re(l +I-). These are listed in4 Be

Table 4. 1 for various diatomif', molecules which can be formed from constituent atoms in high

temperature air. In the cases of N2 and Oz we have determined the atomic radii on the basis of
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the empirical exclusion volumes bo as obtained from the fitting of Lennard-Jones 12, 6 potentials

to actual gases ( . The radius as thus found for the bound atom has also been taken as radius

for the isolated atom and used in accord with the same fundamental formulas to estimate bo for

hypothetical atom-atom and atom-molecule second virials. The ordinary mixture rule for bo was

also tested on these numbers, in an estimate of the at~m-molecule bo from the atom-atom b o and

the molecule-molecule bo using

AA T MM] 3::0
(bo) AM -[(bo)v + I (bo)M] (-10)

Actual numerical results from this and ensuing considerations are summarized in Table 4.2. The

estimates in the present case are found to agree very well with (bo)AM values obtained directly

using formulas for the rigid-convex model.

A somewhat similar use of combination formulas was mada in obtaining a radius for the C

atom from the bo for CO, taking the radius for the 0 atom the same as in 02. Then with the

known internuclear distance for Cz and this C atom radius, the value of b o for C2 could be

estimated as 87. 5 cm3/mole. A very consistent value of 86. 1 cm 3/mole is obtained from the

value of 69. 22 cm3/mole for bo for CO and the value 54. 7 cm3/mole for bo for Oz0 using an

extended rule
1o 2o (bo. ,,-,,

One may note that the customary use of a rule of this form would be for the purpose of estimating

b o for the interaction virial between Cz and O molecules rather than between CO molecules!

We have been encouraged by this agreement to also apply the extended rule in making an

estimate for bo for the secund virial due to purely hypothetical non-bonding interactions between

GN's, taking the observed b o for N. and the estimated b o for C2 .

After bo's between like "molecules" have been estimated in this way, one may use the

similar regular combination rule to obtain bo's for all mixture second virial coefficients.

Other provisional extensions of combination rules have also been employed in seeking

estimates for the S/k parameters. If it be assumed that the attraction potential varies as the 6 th
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power of the distance as accepted for the dispersion energy term, and if the assumption be tried

that the long-range attraction potential between diatomic molecules can be approximated am the

sum of atom-atom attraction potentials,( 3 2 ) then the relation

(k)A(bo) A + (0 (b . + (8/k)AJA (bo-)I + (,C) (b 2

= (A)M M(bo)2 MI (1-12)

is obtained. Here molecule MI is made up of atoms Al and AI, while the molecule M? is made up

of atoms Az and All. The proportionality between b o and c3 has been used in obtaining this rela-

tion. We note that a discussion by Salem, ( 4 0 ) on short range repulsive forces, has indicated that

the forces are locally additive over pairs of atoms, one in each of two interacting molecules, if

their electron density is best described by localized orbitals and if the overlap of orbitals between

molecules is in one localized interatomic region.

With values of b. for the various pairs taken on the basis of mixture rules given earlier, this

rule furnishes a method for interrelating E/k values for atoms and molecules. Thus, from 02 , for

which lk = 116" empirically we now get C/k = 81.5 for 0 atoms and E/k = 95.1' for the 0-07

interaction. We note that the geometric mean rule between 1160 and 81.5" suggests that E/k for

the O-02 interaction might be near to 97.2Y. Similarly, the empirical 95.42 for N2 leads to

E/k = 58.3 between non-bonding N atoms and to 73.3 for the N-N 2 non-bonding interaction. The

geometric mean between 95.4Z and 58.3' suggests that /k for the N-N Z interaction might be near

74.6, which appears satisfactorily near to the 73.3' estimate.

In the case of CO molecules, the relation has the form

(c/k) ccbo c.c + + (,/).O(bo)0i. 0 = ( &A)COOo(bo'Co.co . (1-13)

Such a single relation alone could not determine both the (C/k)c. C and the (E/)c. O values. In

view of preceding apparent successes of simple regular relations, it seems reasonable to try the

tentative assumption that the C. 0 interaction term might be taken to be approximated as the cross

product term of a perfect square. Then with 0.0 constants inferred from OZ, one can arrive at

(/k)c.c = 54.70 and (C/k)C 00 = 65.4'. It Is an item of some satisfaction that the geometric

mean between this (CA) C0  = 54.7* and the (CA) 0 . 0  81.5 gives (CA)c. 0 as 66.8', in such

good agreement with the other provisional estimate.
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For molecular pairs in general, the ordinary geometric mean rule for &/k has been applied.

The estimates accepted are listed in Table 4.3. These values ignore permanent dipole effects.

No claim is made that the special combination rules of the present bootstrap operation are

exceptionally reliable. The situation is simply that resort to such rules has appeared appropriate

in the absence of direct data.

For non-bonding systems, the fact that these various combination rules give estimates

agreeing to within one or two percent is encouraging. We should not give too much credence to

these estimates for bonding systems, however. Indeed, it is to be noted that in the case of NO,

the geometric mean of i/k's for N2 and 02 is 105. 2, while an unpublished study of PVT data for

NO has suggested a value of 119 ° with large additional association effects due to weak chemical

bonding. Since CN also has an odd number of electrons, its mixture-type force constants would

certainly be of poor reliability unless corresponding adjustments for association could also be

made. For effect on the calculated over-all properties of air, this should be of small consequence

since so little CN would be present. For mixtures in which chemically inactive constituents are

the preponderant species, neglect of weak chemical association among trace species would appear

quite inconsequential.

2. Interactions involving ions

We come now to the estimation of interactions in gases in which there is some ionization.

We have already employed a model in which the interaction between two molecules is approximated

as the sum of interactions between their respective atoms. Accepting empirical interactions

between atoms as estimated on this basis, we wish to consider how the estimates of interatomic

interaction need to be modified if one or both of the atoms would happen to be electrically charged.

In the preceding approximate treatment of interatomic interactions, we used the conventional

L J 12, 6 potential. The empirical information concerning the repulsion potential is thus in a form

pertaining to a simple R- 1 function and appears likely to be most easily extended to other cases

if this form is retained.

Thus, in making our admittedly tentative estimates of non-bonding pair effircts due to atomic

tons or atoms, it is expedient to postulate a hypothetical potential energy of the form
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U = kR1 2R02 - k6i-6 - k4i-4 + kIR - . (2-1)

With U and R in atomic units (e/ao for U and a. for R) and with Z* as net ionic charge, we have

kI = Z (2-2)

by the Coulomb relation, and

k4 = l(ZaB + ZBaA) (2-3)

as the approximate induction energy! 22 The quantity a is used here to represent polarizability in

3units of ao . For k 6 , the relation

k6 = k? + Ak 6  (2-4)

is used, with k due to the London dispersion forces and Ak 6 due to induced quadrupole effects

(41)
as derived by Margenau, here with (hv)'s replaced by I's (but 21 has also been suggested),

,3 Z 2 1f *+ 2 -C l A]/ k6 8 A B H B + Z A IAIH-f . (2-5a)

4 H cj ae narlto fMrea(2)
We might also consider fi = (Ii/Ia, based on a relation of (4 for a collection of

harmonic oscillators, which would convert (2-5a) to

/k 6 = 3 [ZA*ZLBl IH + Z2 aAIAI IH] . (2-5b)

The ionization energy of atom A or B is 'A or IBO with IH used here to convert to atomic units via

e 2/a ° = 2 1H, The f values in Margenau's result have the meaning of oscillator strength as

obtained empirically from the index of refraction. Some f values given by Margenau (4 2 ,43) are

listed in Table 4.4. with some conjectured estimates based on hopeful assumptions of additivity and

regularity and presumed to be of the correct order of magnitude.

For k I there are various approximate expressions. With A and 'B as above, one may consider

ke 3 -1 1-1 -1(26k6 =j(IA 'B 'H)-lAaB0 (2-6)

1(44

which is closely related to an expression given by Hornig and Hirschfelder! 4 4 ) Another form is

-k; a (2-7)

whcre nA and nB are said to be the numbers of electrons in the outer shells of the two molecules

according to reference 22. This is also written as

(ao = 0.529172 x 10-3 cm, e 2/ao = 27.21 e.v. or 315,700K equivalent).
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LAB.r, + B ZAJ]

with n and n; now as the total numbers of electrons if based on the original Slater-Kirkwood

result reported by Kirkwood( 2 9 ). This becomes

k; = (2-9)

for like pairs, still with the sums Zr over the electrons expressed in atomic units when

equation (2-1) is so expressed. Estimates for Zr 2 can be made using the well known-rules for

Slater screening constants.

For miture constants, convenience of estimation has led to use of the well-known com-

bination rule

(kk) = ((Zk 12-10)
AB 6 A k6)

which is regarded as rather successful for practical estimation purposeq.

On the basis of equation (2-6), the Ak 6 due to Margenau can be written in the convenient

form

6 A (k;) 4 B + ZBo1")/A. (2-11)

At this point, it appears appropriate to turn to observational results for empirical details

for practical potential functions. One can take the L J 12, 6 potential

U = 41[(,/r)1 2 - (ro/r 6 ]

as used for the interaction energy between non-bonding neutral systems, and express the param-

eters in atomic units. One thus finds
12<212

k =JAR1 (2-12)12 = (hc/klPm

and

66 k- (2-13)
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where ROD is the Rydberg and Ro = ro/o. If the force constants bo and t/k are in units of

cm3/mole and degrees K, respectively, these give

k6 b(&/k)/(2759 cm 6dig mole- )

and

k12 = 104 k6boZ 349.5 cm 6mole- 2)

for practical calculations.

In Table 4.5, empirical parameters are listed for several atoms based on estimates from

various sources, including Table4.3. The values of k12 and k6 in Table 5 follow from these param-

eters. Values of (k6 )calc based on equation (2-9) are also given.

The short range repulsion is the major contribution to the interaction potential for which no

theoretical expression in an inverse power of the distance is at hand. It is often admitted that

an exponential repulsion potential is superior to the inverse power representation. Some merit

has been evident in a "one-exp-six" potential, also(3 3 1. For present purposes of convenient

estimation, it has appeared appropriate to examine the behavior of k12 empirically in a fairly

direct way. The repulsion interaction might be expected to show some relation to the wave

functions for the electrons of the outermost shell of the atom. It may be noted that the exponen-

tial factor in the wave function, according to the Slater screening constant system, is

exp(-Ze R/ri) where Ze = Z-S and S is the screening constant as given by well-known rules! 2 )

with n* representing the effective principal quantum number. This can suggest the hypothesis

that the interaction between outer shell electrons of different systems might be comparable at like

average values of Ze R/n*. If the hypothesis were true, then it might be possible to write the

-12 2 n*I1
repulsive potential k1 2 R as tn - , where tn is the number of outer shell electrons for

each of the two like systems, and m is an unknown parameter. The supposed relation can also

be written as

n*[k 1 Z t rn-V zen nkl tz'l= mZe.

On evaluation, values as listed in Table 4.5 are obtained, with outer shell Ze values as given by

the Slater screening rules listed in the next column. These are plotted in Figure 4.2, In which a
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linear relation indeed appears to be very good but with a non-zero intercept for the line. The

straight line shown is equivalent to the equation

n 12t 8 + . 128Z " (2-14)

The filled circles show the points for Kr and Xe if n is used rather than the Slater r in calculating

the ordinate. It might seem that improvements in screening rules for the effects of inner electrons

should permit n* to be replaced by n throughouL the range covered. Following such a hypothesis,

one finds that if 0.92 be taken as the screening due to each olectron with n less by two than n for

the valence electrons, the Kr and Xe can be plotted near the new straight line in Figure 4.3, for which

n[k12tn - I /0 2 = 0. 30 + 0.12 Ze.

However, this modification appears unnecessary for the more immediate purpose of making

estimates for atomic ions with n near 2 for the valence shell. Additional Ze values from Slater

screening constants for outer shell electrons for atomic ions ranging from negative to triply

positive and up to argon are given in Table 4.6.

A direct correlation of Lennard-Jones 12, 6 force constants for molecules has been given by

(45)
Brandt (

. He found that k 6 and (r (or ro) could be related empirically to the molecular polariza-

bility and that the relationships could be extended to interactions between segments of chain

molecules. We do no; use his correlation for the present estimates since we are interested in

atomic ionic systems fo which observed polarizabilities may not be available. Also, we would

not be able to take a- to be unaffected by the presence of R- 4 and R71 potentials which occur for

atomic ions.

In the present estimates of interactions between like atomic tons, equations (2-9) and (2-14)

have been used for k and kl 2 . In case an isoelectronic atom with more directly known

empirical k6 and kit values exists, the ratio between observed and calculated values for it is

used to obtain improved estimates for the atomic ion corresponding. Ratios of kk'6)calc based on

Table 4. 5 are thought to compire fav,.rably with the differing ratios of Table 13. 3-1 of reference

22. For the interaction between unlike systems, it is found convenient to use the geometric

-58-



usin rule not onlyfor k6 according to equation (Z-lO), but also for k 12 . This is equivalent to

using equations (1-2) and (1-4) as combination rules in the absence of ionic effects. For the

other kn's, equation (Z-2) has been used for k1 , (2-3) for k 4 and equations (2-4) and (Z-11) in

from k;. For values of polarizability to use in estimating k4 , theoretically conjec-

tured magnitudes for atomic ions and experimental values for molecules were mainly used.

In the various parts of Table 4.7, estimates for the various kn'S are given for constituents of

air present ( 4 ) to the extent of 1074 or more in mole fraction up to atmospheric pressure and up to

about 15,000"K.

The complete problem of estimation of pair interactions between molecule-like fragments in

an ionized gas would be quite formidable if no simplifications were introduced. For isolated

cases of interatomic and intermolecular interaction one might suppose it to be reasonable to study

the interactions by making use of recent developments in solving the Schroedinger equation by

means of high speed computing techniques. The calculation of even one pair potential by such

methods appears still to be a special problem of considerable magnitude. The practical impossi-

bility of introducing the complete a priori problem is made evident by counting the number of pair

interactions when every possible constituent is considered.

For a gas mixture involving nt elements of which nb are capable of bond formation, we

wish to count thq number of molecule-like constituents including atomic ions, atoms and diatomic

molecules and ions. For each constituent element of atomic number Zi, the number of possible

positive atomic ions is Zi. For each element there can also be the neutral atom and quite usually

a negative atomic ion, also. This makes Zi + Z mono-nuclear atomic ion typo species for each

element. For species with two nuclei, the diatomic molecules formed as all pairs between

neutral bonding atoms are included, with an equal number of positive molecular ions and an equal

number also of negative molecular ions formed :y removal or addition of an electron. The total

number of these species is evidently

nt

Nn =_(Z + Z) + 3-nb(nb + 1).
i=l
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The number of separate pair interactions among these Nn species is 1 Nn(Nn + 1). In this estimate,

we omit multiply charged molecular ions from the total.

If air is the gas mixture under consideration, the elements present may be listed in their

order of decreasing abundance as N, 0, Ar, and C, with H added as at least a trace element if the

occasional fiction of perfectly dry air is not adhered to. In some calculations, the rarer of the

rare gases are sometimes considered as included in the argon. This counting of constituants

would give nt= 5 as the total number of elements, with nb= 4 as the number that are bonding. The

values of Z1+2 are 9, 10, 20, 8 and 3, respectively for the elements as listed, giving -(Z+2)i= 50.

With .jnb(nb+ 1) = 10, one has Nn = 50 + 30 = 80 and the number of pairs among these is

jNn(Nn+ 1) 80' 81 = 3240. Of these, 120 are for neutral-neutral combinations, 975 are for

ion-neutral combinations, and 2145 are for ion-ion combinations. Even this is an incomplete

accounting since tr-atomic systems have been omitted.

For practical estimates, there is a useful simplification if interactions between trace

species are seen to be too trivial for inclusion. Thus, the number of distinct species included in

Table 4.7 is crly 19. Not all of the interactions among these are important for estimation of their

net thermodynamic effect. n Table 4.8, check marks are shown for the pair interactions for which

the product of mole fractions ( 4 ) for the two species of the pair exceeds 16- 4 . This includes 24

of the 45 neutral-neutral pairs listed, 15 of the 90 ion-neutral pairs, and 11 of the 55 ion-ion

pairs. For the neutral-neutral pairs, the L J 12, 6 force constants have already been listed in

Table 4.3.based an preferred combination rules. For the 15 ion-neutral pairs to be considered,

with another added for comparison, the equivalent force constants bin, £/k and 7 are listed in

Table 4.9. The parameter Yhere is the quantity in the interaction potential

=U ! 1(1 +7)(rm/r) 2 4Y(rm/r) 6 - 3(i - Y)(rm/r)4]

as written by Mason and Schamp! 4 6 )  The quantity bm is cm Norm3 and is not the same as the

usual bo . For 7= 1, the potential becomes the L J 12, 6 potential, for which bm= V_ b o . Tabu-

lated values of the second virial coefficient and its first and second derivatives, based on the

12, 6, 4 potential, given in Chapter 6. The analytic relations for cbtaining rm, CA and Y
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from k1 2 , k6, and k4 are also included in that discussion. For the ion-ion repulsions, the etimated

potentials are shown graphically in Figures 4.4 to 4. 15. It may be of interest in regard to these

to note how great the Coulomb repulsion energy Is when the short range repulsion provides signif-

icant exclusion from closer approach. The approximate exclusion radius at still greater energies

could presumably be based on these curves, also, with due consideration for uncertainties of

extrapolation.

Discussion

It appears likely that an overly optimistic view is required to even offer for consideration

such conjectural estimates of pair energies as are given here. In spite of the extreme uncertainty

of some of the semi-theoretical quantities employed, it is hoped that the numbers may permit a

meaningful extension of excluded volume effects into regions of high temperature.

It is desired to put very strong emphasis on a disclaimer as to completeness of solution ot

the practical problem of estimating interaction effects. The force constant estimates given here

are admittedly hypothetical. They are contingent on the assumption that chemical bonding may be

excluded from consideration for certain applications. There is theraforc also the cognate assump-

tion that such direct effects of chemical bonding as must be included can actually be taken into

account in some separate but compatible way.

An examination of the H-H hypothetical potential according to the LJ 12, 6 constants in table

4.5 has served to emphasize that it is inappropriate to assume that genuinely valid atom-atom poten-

tials applying strictly for isolated atoms have been obtained. Theoretical 3 potential estimates

are well known for the case of hydrogen and are found to differ very considerably from the 12, 6

potential of table 4.5. In any cases in which theoretical or observational curves are available, their

use is recommended in preference to the present hypothetical potentials.

It also appears well to point out that the force constants listed here are based on ground elec-

tronic states. At high temperatures, there is a large population of excited species, for each of

which, in general, the effective force constants would be appreciably different. One possible

approach would involve estimates of effective force constants including all excited states as func-

tions of the temperature. A logically more correct treatment, theoretically capable of application at

all temperatures, would subdivide the species' partition function so as to be based on groups of

states giving like interaction force constants. Such a treatment in detail would be very elaborate.

The modifications in equilibrium constants and composit.ons for the various sub-species would be

kept distinct according to such a procedure. The detailed application would be relevant to the high

energy cut-off in partition function calculations (4 7 , 48, 49)
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Table 4.1. Diatomic Bond Lengths

Molecule re() (A)

N2  1.094 1.0965

02 1.2074 1.2107

NO 1.1508 1.1538

CO 1.1282 1.1307

C 2  1. 3117 1. 3151

CN 1.1718 1.1745

H2  .7417 .7508

OH .9706 .9798

NH [1.04081 [1.05061

CH 1.1198 1.1301

-62-



Table 4. Z. Summary of Combination Rule Estimates

.-Force Constants Combination Rule
Molecular Pair bo S/k Based on (Equation numbers)

cm mole -1  deg K

0 -0 3Z. 6 02-02 (1-6) to (1-9)
81.S OZ -02 (1-12)

N - N 40.3 NZ - N z  (1-6) to (1-9)
58.3 (1-12)

C-C 54.2 0- 0, CO- CO (1-6) to(1-9)
54.7 O- O, CO- CO (1-13) ff.

H - H 21.54 H2 - H 2  (1-6) to (1-9)
20.0 Hz - H2  (1-12)

C2 - CZ  87.5 C - C (1-6) to (1-9)
86.1 Co - CO- 02 - 02 (1-11)

86.S C - C (1-12)

0 - 02 42.6 07 - 02 (1-6) to (1-9)
42.7 0-0, 0 - 0  (1-10)
42.2 0-0, O2-O2 (1-4)

95. 1 0 - 0 (1-12)
97.3 0-0, 02-02 (1-2)

N -N Z  50.8 N Z - N2  (1-6) to (1-9)
50.8 N - N, N2 - N2  (1-10)
50.4 N- N, N2 - N2  (1-4)

73 3 N - N (1-12)
74.6 N - N, N2 - Nz  (1-2)

C - C2 69.4 C2 - C2 (1-6) to (1-9)
68.9 C - C, C2 - C2  (1-10)
68.3 C-C, C 2- CZ (1-4)

67.7 C - C (1-2)
68.8 C- C, CZ-C 2  (1-2)

" CN" .CN" 74.0 Nz - N z , C z - CZ  (1-11)
91.9 C - C, N- N, C-N (1-12)
90.9 CZ - C2 , NZ - NZ  (1-2)

-7--
OH - OH 43.2 02 - OZ, H2 - H2  (1-6) to (1-9)

84.6 02- OZ, H2 - H2  (1-13)ff.

NH - NH 50.5 N2 - N2 , H2 - H2  (1-6) to (1-9)
64.0 N2 - N 2 , H2 - H2  (1-13) ff.

CH - CH 67.4 C - C, H2 - H2  (1-6) to(1-9)
54.4 C - C, H2 - H2 (1-13)ff.
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Table 4U3. Lennard-Jones 1Z, 6 Pair Potential Force Constants

bo  bm S/k bo bm C/k
Pair 3 Pair 3

(cm/mole) (cm/mole) (deg K) (cm/mole) (cm/mole) (deg K)

NZ -N 2  63 89.1 95.42 NO-CO 65.1 92.1 109.1
02-O2 54.7 77.4 116 NO-N 50.3 71.1 82.9
NO-NO 61.5 87.0 118 NO-O 45.6 64.5 98.0
CO-CO 69.22 97.9 100.8 NO-Ar 55.8 78.9 118.8
N-N 40.3 57.0 58.3 NO-C 57.8 81.7 80.4
0-0 32.6 46.1 81.5 NO-CN 67.6 95.6 104.0
Ar-Ar 50.5 71.4 119.5 NO-C 2  73.0 103.2 101,0
C-C 54.2 76.7 54.7
CN-CN 74.0 104.7 91.9 CO-N 53.5 75.7 76.6
C2 -C 2  86.1 121.8 86.5 CO-O 48.6 68.7 90.6

CO-Ar 59.4 84.0 109.8
NZ-0 2  58.8 83.2 105.2 CO-C 61.3 86.7 74.3
N2 -NO 62.3 88.1 106.1 CO-CN 71.7 101.4 96.3
N 2 -CO 66 93.3 98.1 CO-C 2  77.5 109.6 93.4
N Z -N 50.8 71.8 73.3
N2 -O 46.2 65.3 88.2 N-O 36.3 51.3 68.8
N?-Ar 56.5 79.9 106.8 N-Ar 45.3 64.1 83.5
N2 - C 58.6 82.9 72.2 N-C 46.9 66.3 56.5
N2 -CN 68.4 96.7 93.6 N-CN 55.4 78.3 73.2
N2 -C? 74.0 104.7 91.0 N-C Z  60.5 85.6 71.0

0 2 -NO 58.0 82.0 117.0 O-Ar 41.0 58.0 98.7
Oz - CO 61.6 87.1 108.1 O-C 42.5 60.1 66.8
0 2 -N 47.1 66.6 82.2 O-CN 50.7 71.7 86.5
0 2 -O 42.7 60.4 95.1 O-C 2  55.1 77.9 84.0
0 2 -Ar 52.-6 74.4 117.7
0 2 -C 54.4 76.9 79.6 Ar-C 52.4 74.1 80.9
0 2 -CN 64 90.5 103.2 Ar-ON 61.6 87.1 104.8
O2-C z  69.6 98.4 100.2 Ar-C 2  67.0 94.8 101.7

C-CN 63.5 89.8 70.9
C-C 2  69.0 97.6 68.8

CN-C 2  79.6 112.6 89.2

H 2 - H 2 31.67 44.8 37.00
H - H2  z6.3 37.2 27.2
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Table 4.4. Estimated f Values

*Substance f Substance f

He 1.1 NH3  2.72
Ne 2.37 C12  6.55

Ar 4.58 HCI 4.25

Kr 4.90 HBr 4.71

Xe 5.61 HI 5.30

H2P (1.5) Na 1

N2  4.61 K (1)

02 3.11 0 1.)

CO2  5.70 N (Z. 2) *

CH 4  4.60 C (2.7)*

*Conjturd.
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Table 4.5. Interaction Parameters for Hypothetically Non-Bonding Atoms

Atom bo £A -0 -4
Pair cm/mole deg K Ref. 10 k 12 k6n*)acr(k 1 2?tnj)4 (Ze)91ater

H- H 1.54 20.0 a 4.46 3.36 6 .41 1.0

He- He 21.07 10.22 b 2.09 1.644 0.99 .49 1.7

C - C 54.2 54.7 c 490. 58.2 54.3 .70 3.25

N- N 40.3 58.3 c 159.5 34.3 30.45 .79 3.90

0-0 32.6 81.5 c 95.4 31.4 18.3 .85 4.55

Ne- Ne 26.21 35.60 b 17.42 8.86 7.66 1.03 5.85

Ar-Ar 50.51 119.5 d 807 110.5 134 1.13 6.75

Kr- Kr 58.86 171 b 2128 215 430 1.28 7.25

Xe- )( 86.94 221 b 13093 605 677 1.19 7.25

a - Rigid convex model, plus bo and t/k for H2 in reference 5.

b - Parameters in reference 5.

c - Rigid convex model, parameters of NBS Circular C564. Also, see table 3.

d - Parameters in NBS Circular C564.
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Table 4.6. Values of Ze = Z - S, Based on Slater Screening Constants,
for Ground State Outer Shell Electrons

ze

Z Z-t: -1 0 ! 2 3

1 H 0.7 1

2 He 0.3 1.7 2

3 Li 0.95 1. 3 2.7 3

4 Be 1.60 1.95 2.3 3.7 4

5 B 2.25 2.60 2.95 3.3 4.7

6 C 2.90 3.25 3.60 3.95 4.3

7 N 3.55 3.90 4.25 4.60 4.95

8 0 4. Z0 4.55 4.90 5.25 5.60

9 F 4.85 5.20 5.55 5.90 6. 25

10 Ne 1.20 5.85 6. zo 6.55 6.90

11 Na 1.85 2.20 6.85 7.20 7.55

12 Mg 2.50 2.85 - 3.20 7.85 8.20

13 Al 3.15 3.50 3.85 4.20 8.85

14 Si 3.80 4.15 4.50 4.85 5.20

15 p 4.45 4.80 5.15 5.50 5.85

16 S 5. 10 5.45 5.80 6.15 6.50

17 CI 5.75 6.I0 6.45 6.80 7.15

18 Ar 1. z0 6.75 7.10 7.45 7.80.
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Table 4.8. Pairs with xixj >-10 ,up to 15,0009K

N2 AO AC 2 N N C C

O X K x X K x x K

No x x

CO

C

N+x x x x x x
0+ xK x K

N++ x

Ar+

Ar++

NO+

0
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Table 4.9. Estimated Force Constants for Some 12, 6, 4 Potentials

Pism E/k
Pairs (cm 3/mole) (dog K)

Nz - No+ 53.9 880 0.286

N2 - N+ 34.3 1480 .222

N? - 0' 30.0 1770 .222

NO - N+ 33.8 1610 .256

N - N2+ 41.9 810 .272

N - NO+ 41.8 800 .264

N - N+ 26.3 1380 .208

N- O+ 23.1 1640 .208

N - Ar+  33.8 1070 .270

N- O- 31.1 1220 .285

- NO+ 40.1 680 .370

0- N+ 25.8 1085 .291

O- O +  22.5 1300 .293

O- Ar+ 33.0 860 .358

Ar- N+ 23.4 5300 .114

Ar- O+ 20.6 6300 .114
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Fig. 4.1 Core models for diatomic molecules.
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Fig. 4.Z. Atom pair repulsion versus outer shell field for Slater screening.

Filled circles have ordinates based on n rather than n*.
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Fig. 4.4. Non-bonding pair potential for N+-N+.
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Fig. 4.8 Non-bonding pair potential for Ar++-N+.
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Fig. 4.11. Non-bonding pair potential for N++-O+.
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Fig. 4. 13. Non-bonding pair potential for Ar++-O+.
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5. SECOND VIRIAL COEFFICIENT CALCULATION FOR GENERAL POLYRECIPROCAL
POTENTIALS

Pair interactions in non-polar gases are often appioximmtqd by means of a two-term recipro-

cal form usually referred to as the Lennard-Jones potential. Such an energy of interaction had

been introduced by Gruneisen 5 0 ) in the theory of solids as a step beyond the reciprocal term for

repulsion only which Mie used earlier.(Sl)* While the 12, 6 potential is quite commonly used in

the study of second virial coefficients for simple-non-polar gases, we note that calculations have

also been reported for a 9,6 form 5 2 ) and that even a 28, 7 potential has been found useful for

large compact molecules. (5 3 ) It is conceded that theory and some empirical evidence, also, favor

an exponential form for the repulsion term. However, there are well-known advantages for the

simple power repulsion which have encouraged its continued use. For the attraction potential,

the inverse 6th power is theoretically indicated as due to instantaneous dipole-dipole ettects.

Higher multipole effects are also theoretically present and estimates of 8th and 10th power attrac-

tion potentials of such origin have been reported. (44, 54) In the interaction of ions with neutral

molecules or atoms, potential energy terms involving inverse powers of distance also appear.

The leading term for the induction energy varies as the inverse 4th power, while a higher order

term varies as the inverse 7th power. ( 5 5 ) In toto, a considerable variety of potential terms could

be taken into account in estimating contributions to the second virial coefficient. With this in

view, we shall consider the evaluation in the case of a general polyreciprocal potential.

The integral giving the second virial coefficient can be taken in a well-known form as
of 0 3_Uab/kT)

Bab = Nof (1 ) ZlrZdr (1)
0

with a factor of two to be brought in automatically for unlike particles (a:b) by including the pair

with reversed order in performing a double summation for the indices a and b. Integration by

parts in the style of Lennard-Jones ( 5 6 ) is not the only possible evaluation procedure. We find that

we have the option, instead, of directly separating out a factor due to the repulsive part of the

*There has also been a rumor that, several years earlier than Lennard-Jones, R. H. Kent as a stu-

dent at Harvard similarly applied this potential in the study of gas properties but that theoretical
work was not acceptable there for a degree at that time.
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potential. U r

pttl/NT (eU/kT (U-Ur)/kT) ar~dr. (2)
Bab=N of0

We will use the general polyreciprocal potential function in the form

U = kr - k( ) r -  (3
-6

in which the leading repulsion term, varying as r , is separated off while the other potential

terms are shown as having the form of attraction terms. Thus, in this case, we have

Ba No fe6 -) - k1YOry I )] ]Zwr 2 dr. 4)

The single term arising for s1 = 0 for all i may be considered to be only formally present, since

it is removed by the n = 0 term of the first summation. We now make a change of variable

according to r- 
= x kT/kj, obtaining

B ab =  N o k 3/6 0 t4.co(3A) • xI -t ..-1 N, 0 5-) c

from which it follows that

IL
3/W k3'6 3/- In! 6/6kT $1o •0 t,.o ,

To simplify the first summation, we make a formal binomial expansion of (1 - 1 obtaining

(1-1) 3  1+(3/6X 3/6 - 1 )(3/6 - 2) ........ (3/+l /n!

1 + (n-1-3/6) (n-2-3/6) ............ (-3/6) /n!

= l+ (n-l-U/6) (n-2-3/6) ............ (-3/6) F(-3/6)
,'i n! [ (-3/6)

1 + F(n -3)/ ! -3/6)
which by its origin is identically zero. Thus, it follows that f F.3$yn! -[.3IS) ,

with the final result that

k T

The first and second derivatives follow directly in the forms
T a/dT = AN O k(r,3/6, ,-.,,]-(:

No (--3/b~~~~~f-so , , - .-V j'x . ;8-3 S

and

T 2d ZB /MT2 
-- Z- N t 3/6 3bEo-OO[1 -1 /-1 J

ab 3 0  (t3/6) ."[IE,i's-/'L-l / .I1..3/8 9
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We note that these results are readily applicable to the case in which a I/r 4 induction

energy term is added to the 12, 6 potential. Results of calculations for the combined potential

are presented in Chapter 6, covering the second virial coefficient and its first two derivatives.
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6. TABLES FOR THE ESTIMATION OF SECOND VIRIAL COEFFICIENTS
FOR ION-NEUTRAL INTERACTIONS

The interaction of ions with neutral molecules and atoms includes an attractive potential

varying as r- 4 . For non-polar gases, the Lennard-Jones 12, 6 potential is commonly used in the

correlation and prediction of various thermodynamic and transport properties. By adding the r- 4

induction term to a Lennard-Jones 12, 6 form of potential, a useful approximation for the ion-

neutral interaction,

r-6 -4
U= k 2 r- 12 - k 6 r - k4 r 4 , (1)

is obtained.

Mason and Schamp 6 ) have used such a potential in discussing ionic mobility, pointing out

(41) -that Margenau derived an induced quadrupole contribution to the r 6 term. They wrote the

potential in the form

U 11 [+r)km/r)2- 47 (rm/r)6.- 3(l -Y)(rm/r (Z)

which reduces to the 12, 6 potential for 7= 1 and to the 12, 4 potential for 7= 0. The use of rm,

the separation at the energy minimum, rather than 0, the collision diameter, for the scale of

distance is appropriate for involved types of potential functions. C is the maximum binding

energy, corresponding to the distance rm.

We have calculated the second virial coefficients, B, and its first two temperature deriva-

tives, based on this potential. Values of 7at intervals of 0. 1 from 0 to 1 were used, with the

temperature variable taken as T* = kT/6. The quantity tabulated in Table 6. 1 is B*, where

*3bmB , with bm = &LNorm , and with No as Avogadro's number, 6.02322x 103 moleculesAmole.

The frequent custom of using bo  No  3 has not been followed in the present table. We note

that for the 12, 6 potential, bm/b o - 21I/ = 1.41421..., while for the 12, 4 potential,
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bm/b o = 33/8 = 1. 50980. These are special cases of the general LT-6, potential, for which

bm/ 81= f) The derivative functions tabulated in Tables 6.2 and 6.3 are, respectively,

B (1) T dB /dT* (3)

and

B* (2) T*ZdZB*/dT* Z . (4)

The formulas used in this evaluation may be obtained by specializing to the 12, 6, 4 poten-

tial from the general polyreciprocal potential function for which a derivation of the second virial

coefficient is given in Chapter 5. The formulas are

B*( (U/oT) 7 ( + ji +j--) (st V _ /kT)i (6)

S=o t

Here, u= 11 +T)l 1

v( 8(1 )" )8)

and w = 3J/ Z1(l 1-)/(I +1).

It is readily possible to convert from the doubly infinite summations to an arrangement with

one infinite and one finite summation, but with a more complex indexing. The form shown here

was more convenient for simple coding, making use of a rapid gamma function sub-routine and

halting the summations where further contributions were completely negligible.

In order to use the present tables, one needs values of the parameters t/k, bm and 7.

These may be obtained from klZ, k6 and k4 , which may be the more readily available from theo-

retical and empirical relations.
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If we set rdU/dr equal to zero to determine rm, starting with eq. (1), we have

12k 12r - 6k 6 r 6 - 4k 4 r 4 = 0. (9)

Taking k4 and k as most important in determining r , we find
3 k6 2

-8 (1 + -_r._
m k12  4i

J which, using the variables

t x (3k1 2/k 4) rm

and
3k 6 ( k 1/4

k 4  Z

becomes

x (I + qx)(/4 110)

This can be solved iteratively using multinomial expansion, or by binomial expansion of the right-

hand side followed by series inversion, giving

x 1 + q- qZ 7 q4 1 -q 5 .... (11

4 32 TM~C TM-~1  (

For the binding energy £, eq. (1) gives

- -6 -4
- C = k l r - kr m  - k r m

12 m 6 M 4 m
-12

We e!iminate k r from the expression with the help of eq. (9), obtaining
12

S= r-4 I + 3k 6 r-z

=2k 4 ( k4 x2 (1 + -1 qx).
3 3k1 2' 2

On substituting the series for x, one has

- I + q + 2 + q3  - q4 + q5  (12)
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)I
If one adopts this value of C, consistent values of "' and rm follow from the exact relationships

7 = 4'I+&)z -1 + F. (13)

where t5= k6 /16k 1 2 C, and

rm  [3(1-Y)klz/11 +Y)k 4] . (14)

Somewhat similarly, the equations may be solved to obtain a'. Setting U of eq. (1) equal

to zero,

-8 k( 14  k6 -Z

1 4

or or= (1 + py)1/4

1/4 -Z 3-1/'4
where y = (kIz/k 4 ) a and p k 6 (klzk4 ) /

. The solution for y in terms of p is

identically as for x in terms of q in eq. (11). Then one may obtain a' immediately as

7 = (kxIZ/41/8 Y-1/2

= (k /k )l/ 8  l + 5 _ 11 p3 + 51 p 4 + _ p 5 ... (15)12 - T+ - 1-24 3-T2 76r8 262144 .

by use of the multinomial theorem.

The code prepared for the calculation of Tables 6. 1, 6. 2, and 6. 3 involves

a difterent tormulation. It was prepared at a time when the use of another parameter X

instead of /"appeared preferable. The two are related by X Zf'/(I +Y) or Y= X/(Z -X). With

X, the relations

1 .[+)7.-I , (16)

rm [3(1-X)kZ/k 4]
I/8, (17)
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v (Z-.) £, (18)

and w [3(1 -X)]3/ 2(2- .1

obtain. The corresponding potential function using X is

U = [(rm/r) ( - Zrm/r) - 3(1 - )(rm/r)4].
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Table 6. 1. The Second Virlal Coefficient for the 12, 6, 4 Potential

S*

T* 7 =0 7 = 0.1 7= 0.2 7 = 0.3 7= 0.4 7 =0.5

(130 -3 19584 S -32 3 962 -3 0, S725 -29 35939 -27 89438 -26 46 0 9'0.35 -24:28699 -23:0)386 :21:92338 -20.77447 -19.64610 -18*93734
0.40 -18.79595 -17,82959 -16.87878 -15.94277 -15.02092 -14.11262
0:45 -15.28798 -14:47368 -13:67079 -12:87878 -12.09717 -11.22554
0 50 -12,8607 -12 15580 -11,4S965 :10,777188 -10,09212 -9*42007
0.55 -11.0831S -10*46081 -9.84551 -9*23692 "8*63471 -8*03870

0.60 -9.72528 -9.16769 -8.61588 -8006960 -7.S2857 -6.99260
0.65 -7 14856 :7:64801 -7.15210 -6.66061 -6.1728
0.70 7695-6.86624 -641195 -596146 -:.51461
007S -7.00065 -6 *6/4424 -6,2 2149 -5,80221 -5,38623 "4 97341
0.80 -6.46076 -6.OF305 -5,680S6 -5#29113 -4.90462 -4692089

0.85 -A.95582 -5,58654 -5.22017 -408S653 -4.49548 -4913692
r,490 -S.S1338 -5.16714 -4.823S3 -4.48239 -4014358 -308070o

0.95 -5.12779 -4e80182 -4.47823 -4.15690 -3.83769 -3,92049
1.0t) -4.78872 -4.48071 -4.17489 -3*87113 -3.S6932 -3*26935

1.10 -4.22005 -3094246 -3.66676 -3.39282 -312055 -2.84986
1.20 -3.76181 -3.50902 -3.25790 -3.00833 -2.76021 -2.51347
1.30 -3.38465 -3.15249 -2.92182 -2.69253 -2.46453 -2.23775
1.40 -3.06882 -2.85407 -2.64068 -2.42854 -2o21757 -2.00769
1.50 -2.80048 -2:60064 -2:40205 -2,20461 -2,00623 -1.81285
1.60 2.56971 -2.38277 -2,19700 -2.01229 -1.82857 -1.64576
1.70 -2.36Q13 -2.19348 -2,01892 -1.84536 -1.67271 -1.50091
1.8A -2.19322 -2.027M2 -1.86285 -1.69912 -1.53624 -1.37417
1.90 -2.03771 -1.88085 -1.72497 -1.56997 -1.41579 -1.26237
2.00 -1.89926 -1.75030 -1.60229 -1.45512 "1,30872 -1.16303
2.10 -1.77522 -1.63338 -1.49244 -1.35231 -1.21292 -1.07420
2.20 -1.66347 -1.528o7 -1.39354 -1.25977 -1.12672 -0.99432
2.30 -1.56229 -1.43274 -1.30402 -1.17606 -1.04877 -U*92211
2.40 -1.47026 -1.34605 -1.22264 -1.09997 -0.97795 -0.85653
2.50 -1.38619 -1.26667 -1.14834 -1.03052 -0.91333 -0.79672
2.60 -1.30911 -1.19430 -1.08025 -0.96689 "0085415 -0.74197
2.70 -1.23820 -1.12754 -1.n1763 -0.90839 -0.79975 -0.69166
2.80 -1.17274 -1.06593 -n.95985 -0.85443 -0.74959 -0.64529
2.90 -1.11214 -1.00890 -0.90638 -0.80450 -0.70320 -0.60241
3.00 -1.05588 -0.9597 -0.85677 -0.75819 -0.66017 -0.96266
3.10 -1.00353 -0.90672 -0.81061 -0.71511 -0.62016 -0.52572
3.20 -0.95468 -0.66078 -0.76756 -0.67495 -0.58288 -0.49129
3.30 -o.90942 -0.81784 -0.77733 -0.63742 -0.94804 -0.45915
3*40 -0.86623 -0.77761 -0.68965 -0.60228 -0.51544 -0*42906
3.50 -0.82606 -0.73985 -0.65430 -0.6931 -0.48485 -0.40085
3.60 -0.78829 -".70435 -0.62105 -0.53833 -U.45611 -0.27436
3.70 -0.75270 -0.67091 -0.58975 -0.50915 -0.42906 -0*34942
3.80 -0.71912 -0.63935 -0.56022 -0.48164 -0.40355 -0.32592
3.90 -0.68738 -0.60954 -0.51232 -0.4556S -0.37947 -0030373
4.00 -0.65735 -0.58133 -0.50992 -0.43106 -0.35669 -0.26275
4.10 -0.62808 -0.55459 -0.48091 -0.40778 -0.33512 -0.26290
4*20 -0.60186 -0.52972 -0.45719 -0.38569 -0.31467 -0.24407
4.30 -0.57619 -0.50512 -0.43465 -0.36471 -0.29525 -0.22620
4.40 -0.55177 -0.4S270 -0.41322 -0.34477 -0.27679 -0.20922
4.50 -n.52851 -n.46037 -0.39287 -0032579 -0.25922 -0019307
4.60 -0.50634 -0.43956 -0.37337 -0.30770 -0.24248 -0.17768
4.70 -0.48518 -0.41970 -0.35481 -0.29044 -0.22652 -0.16301
4.60 -0.46496 -04074 -0.33709 -0.27396 -V.21129 -0.14902
4.90 -0.44;63 -0.3)260 -0.37016 -0*25622 -0.19673 -0.13564
5.00 -0.42713 -0,365,'5 -0.30395 -0.24316 -0.18281 -0.12286
6.00 -0.27827 -0.22576 -0.17379 -0.12231 -0.07125 -002057
7.0 -n.17478 -0.128M2 -0.08359 -0.0373 0.00572 0004981
8.00 -0.09908 -0.0582 -0.01784 0.02207 0.06159 0.10074
9.00 -0.04160 -n00458 0.03193 0.06800 0.10367 0013900

10.00 0.00333 0.03727 0*07070 0010369 0.13629 0.16856
20.00 0.18674 0.20675 0.22630 0.24544 0926424 0.28272
3o.00 0.23430 0.24960 0.26445 0.27092 0.29305 0.30688
40.00 0.25202 0.26491 0.27737 0.28945 0.30121 001268
50.00 M.25924 0.77065 0.28164 0.29226 0.30256 0.31259
60.00 0.26189 n.27228 0.28226 0029189 0.30121 0.21025
70.00 0.26228 0.27193 0.28118 n.29008 0.29867 0.20700
80.00 0.26148 0.27056 0.27925 0.28759 0.29563 0.30342
90.00 0.26004 0.26867 0.27690 0.28480 0.29241 0.29976

10M.00 0.25824 n.26650 0927437 0.28191 0.28915 0.29615
200.0 0.23830 0.24470 0.25076 0.25651 0.26200 0.26727
30n.00 0.22300 0.22865 0.23196 0.23900 0.24380 0.24838
400.00 0.21154 0.21673 0.22162 0.22624 0.23063 0.23487
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Table 6.1. The Seoond Vrial Coefficient for the 12, 6. 4 Potential - Cont.

=.S 7 .0.6 7 =0.7 7 =0.8 7 =0.9 7 =1.0

0.30 -26.46058 -25.05668 -23*68126 -2233319 -21.01127 -19.71493

0.35 -10.53714 -17.44743 -16.37559 -15.32110 -14.28333 -13.26169

0.40 -14.11262 -13s21733 -12.33459 -11.46394 -10.60499 -9.75724
0.45 -11.32954 -10.56350 -9.81073 -9:06689 -8.33172 -7s60490

0.50 -9.42007 -8:75542 -8.09793 -7,44736 -6.80349 -6.16611

099 -6.03670 -7.44858 -6.86419 -6.28511 -5.71184 -5.14395

0.60 -6.99260 -6.46150 -9.93509 -5.41324 -4.89579 -4.38262

0.69 -6.17330 -5.69023 -5.21103 -4.73564 -4,26397 -3.79588

0.70 -5.51461 -5.07125 -4.63126 -4.19454 -3.76098 -3.33090

0.79 -4.97341 -4.56362 -4.15676 -3.75273 -3.35145 -2.99283

0.80 -4.S2089 -4.13983 -3076134 -3.36934 -3.01175 -2.64049

0.89 .4.13692 -3.78073 -3.42662 -3.07512 -2.72557 -2.37808

0.90 -S.80700 -3.47257 -3e14018 -2.80976 -2.48127 -2.19463

0.99 -3.52049 -3.20524 -2.89184 -2.58023 -2.27039 -1.96216

1.00 -3.26939 -2.97115 -2.67464 -2.37977 -2:08647 -1.79469
1.10 -2.64986 -2.58067 -2.31291 -2.04653 -1.78148 -1.51771
1.20 -2.51347 -2.26803 -2.02383 -1.78082 -1.53896 -1029821
1.3( -2.23775 -2.01212 -1.78759 -1.56411 -1.34164 -1.12013

1.40 -2.00769 -1.79885 -1.59099 -1.38406 -1.17804 -0.97287
1.90 -1.81285 -1.61841 -1.42487 -1.23216 -1.04027 -0,84915
1.60 -1.64576 -1.46382 -1.28269 -1.10234 -0.92272 -0.74381

1.70 -1.50091 -1.37992 -1.15967 -0.99014 -0.82130 -0.65310
1.80 -1.37417 -1.21284 -1.05222 -0.89226 -0.73292 -0.97419
1.90 -1.26237 -1.10964 -0.95758 -0.80613 -0.6S527 -0.50498
2.00 -1.16303 -1.01801 -0.87361 -0.72979 -0.98653 -0.44380
2.10 -1.07420 -0.93612 -0.79663 -0.66169 -0.52528 -U038936
2020 -0.99432 -0.86252 -n.73128 -0.60057 -0.47036 -0.34062
2.30 -0.92211 -0.79603 -0.67048 -0.54544 -0.42088 -0.29676

2.40 -0.85653 -0.73567 -0.61933 -0.49547 -0.37606 -0.2709
2.50 -0.79672 -0.60065 -0.56508 -0.44998 -0.33531 -0.22109
2.60 -0.74197 -0.61031 -0.51913 -0.4084 -U,29810 -0.18818
2.70 -0.69166 -0.98407 -0.47696 -0.37027 -0.26400 -U.15810
2.80 -0.64529 -0.54148 -0.43812 -0.33516 -0.23264 -0.13047
2.90 -0.60241 -0.50211 -0.40225 -0.30279 -0.20372 -0010501

3.00 -0.56266 -A*46563 -0,36902 -0.27281 -0.17697 -0.08148

3.10 -0.52572 -0.43173 -M.33816 -0.24498 -0.15217 -0.05969

3.20 -0n.49129 -A.40016 -0.10944 -0.21909 -0.12910 -0.03945
3.30 -0.4915 -0.37069 -0.28263 -0.19495 -0.10762 -0.02061

3.40 -0.42906 -n.34312 -0.25757 -0.17239 -0.08759 -0.00303
3.90 -0.40085 -0031728 -0.23410 -0.15127 -0.06878 U.01340

3060 -0.37436 -0.24302 -0.21206 -0.13146 -0.05118 0.02879

3.70 -0.34942 -0.27019 -0.19134 -0.11284 -0.03465 0.04323

3.80 -0.32992 -0.24869 -0.17183 -0.09931 -0.01911 0.09680

3.90 -0.30373 -0.22839 -0.15342 -0.07679 -0.00446 0.06957

4.00 -0.28275 -0.20921 -0.13603 -0.06319 U000935 0.08161

4.10 -0.26290 -0.19106 -0.11959 -0.04844 v.02241 v.09298
4.20 -0.24407 -m.17386 -0.10400 -0.03447 0.03476 0.10372
4.30 '-0.22620 -0.15754 -0.08923 -002123 0.04646 0011389

4.40 -0.2t922 -0n.142o4 -n.0752n -0.00867 0.0756 0.12352
4.0 -0.1917 -n012779 -0.06186 0.00326 0.06810 0.13267

4.60 -0.17768 -0.11375 -004916 0.01462 0.07811 0.14135
4.70 -0.16301 -0.09987 -0.03707 0.02543 0.06765 0.14960
4.80 -0.14902 -0.06711 -n0.2594 0.03573 0.09672 0.19745
4.90 -0.13564 -0.07492 -0.01493 0.04556 0.10538 0.16494
5.)0 -0.12286 -n.06327 -0.00401 0.05495 U.11364 0.17207
6.00 -0.02097 0.02978 0.07981 0.12957 0.17906 0.22833
7.00 0.04981 0.,4957 0.11704 0.18024 0.22320 0.26593
8.00 0.10074 0.13958 0.17814 0.21644 0.29450 0.29234
9.00 0.139n0 0.17402 0.20876 0.24324 0.27750 0031199
10.00 0.16856 0.20052 0.23221 0.26366 0.29488 0.32989
2000 0.28272 030092 0.31888 0.33662 0.35415 0.37190
30.00 0.30688 0032045 0.33379 0.34691 0.35984 0.37259

40.00 0.31268 0.32390 0.33488 0.34967 0.3S626 0.36669

90.00 0.31259 0.32217 0.33192 034128 U039046 0.39947
60.00 0.31025 0.31005 0.32764 033603 0.54424 0.39229

70.00 0.0700 0.31509 0.32297 0.33066 033617 0034593

60000 0.30342 0.31096 0.31830 0.32545 0.33244 0,33926
90.00 0.29976 0.30687 0.31379 0.32051 0.32707 0.33)48
100.(0 0.29615 n.30291 n.30948 031586 002208 0052815
200000 0.26727 0.27213 0.27721 0.28192 0.28649 0.2909
300000 0.24838 0.25277 0.25699 0.26106 0.26499 0.26879
400.00 0.23482 0.23883 0.24267 0.24637 0.24994 0.29339
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Table 6. 2. First Derivative of the Second Viial Coefficient for the 12. 6, 4 Potential

Be(l)• TD(B*(O) )/rT*)

T* 7. 0 7 =0.1 7 =0.2 7 =0.3 7 =0.4 7=0.5

(.30 79.52332 76,52927 73965334 70.88857 68e22840 65.66716
0.35 49,17297 47,19358 45,28075 43.43074 41,64033 59.90648
0.40 34.28169 32082614 31.41278 30.03942 28.70420 27.40527
0.45 25.83105 24o68666 23.57130 22.48355 21.42213 20938596
0.50 20.52379 19.58291 18.66318 17.76363 16,88337 16,02162
0.55 16.93565 16.13736 15.35516 14.58833 13.83624 13.09832
0.60 14.37144 13.67828 12.99778 12.32938 11.67262 11,02704
0.65 12.45861 11.84605 11.24371 10.65117 10.06803 9.49397
n.70 10.98241 10.43357 9.89317 9.36084 8.83631 8.31927
0.75 9.01149 9.31428 8.82416 8.34082 7.86403 7039355
0:8 886160 8.40706 7,95856 7.51585 7.07873 6.64699
0085 8.07641 7.65774 7.24428 6.83582 6.43218 6.03321
0.90 7.41700 7.i269(b 6.64536 6.26617 5.89119 5.52029
0.95 6.85570 6.4939i 6.13626 5.78239 5.43222 5.08564
1.00 6.37230 6.03357 5.69839 5.36662 5.03815 4.71287
1010 5.58262 5.282n3 4.98430 4.68931 4.39697 4.10721
1.20 4.96513 4.69490 4.42702 4.16141 3.89799 3.63668
1.3A 4.46920 4.22372 3.98022 3.73862 349886 3.26088
1.40 4.06221 3083730 3.61409 3.39249 3.17247 2.95395
1.50 3.72222 3.51469 3.30862 3.10395 2.90064 2.69863
1.60 3.43396 3.24130 3.04991 2.85975 2.67077 2.48294
1.70 3.18644 .00665 2.82798 2.65040 2.47386 2.29833
1.0 2.9715c 2.003n6 2.63552 2.46895 230331 2.13856
1.90 2.78334 2.62473 2.46701 2.31016 2.15414 1.99092
2.00 2.61704 2.46773 2031825 2.17004 2.02258 1.87585
2.10 2.46904 2.2712 2.18594 2.04547 1.90568 1.76655
2.20 2.33649 2.20166 2.06751 1.93400 1.80112 1.66884
2.30 2,217n7 2.08866 1.96087 1.83367 1.70704 1.58096
2.40 2.10893 1.98635 1.06434 1.74288 1.62194 1.50150
2.50 2.01054 1.928 1.77655 1.66033 1.54458 1.42931
2.60 1.92064 1.80825 1.69636 1.58494 1.47397 1.36343
2.70 1.81816 1.73026 1.62283 1.51583 1.40925 1.30307
2.80 1.76223 1.65848 1.55515 1.45223 1.34971 1.24756
2.90 1.692n9 1.59217 1.49266 1.39352 1.29475 1.19634
3.000 1.62711 1.53075 1.431477 1.33915 1.24387 1.14892
3.10 1.56673 1.47369 1.38100 1.28865 1.19662 1.10491
3.20 1.51049 1.42(54 1.3%092 1.24163 1.15264 1.06394
3.3 1.45797 1.37091 1.29417 1.19773 1.11158 1.02571
3.40 1.40881 1.32446 1.24042 1.15666 1.07318 0.98996
3.50 1.36770 1.28090 1.19939 1.11815 1,03717 0.9S645
3.60 1.319S6 1,23)96 1.16083 1.08197 1.00335 0.92497
3.70 1,27855 1.2014? 1.12454 1.04791 0.97151 0.89535
3.80 1.24007 1.16506 1.09031 1.01579 0.94150 0.66742
3.90 1.20370 1.13n72 1.05797 0.98545 0.91315 0,84105
4.00 1.16928 1.09821 1.02737 0.95675 0.88633 0081611
4.10 1.11667 1.P6741 o.

9
9
8
38 0.92955 0,86092 0079248

4.20 1.10o72 1.n?818 0.97086 0.90374 0.83681 0.77007
4.30 1.0763n 1.01n41 0.94472 0.87923 0.81391 0.74677
4.4n 1.04831 0.Q?3C8 0.91985 0.A5590 0.79213 0.72852
'.50 1.02164 o.9588 0.89615 M.83368 0.77138 0.70924
4.60 0.99621 n.3479 r.37356 0.81249 0.75159 0.69085
4.70 0.97193 0.91187 0.85198 0.79227 0.73271 0.67330
4.80 0.94872 0.88996 0.83137 0.77293 0.71466 0.65651
4.90 0.92651 0.86899 r.811 64  0.75444 0.69730 0.64049
5.00 0.90524 0084892 0.79275 0.75674 0.68086 0.62513
6.00 0.73341 0.6e674 0.64020 0.59377 0.54744 0.50122
7.0 0.61269 M.57283 0.53307 0.49341 0.45383 U.41434
8.00 0.52324 n,48844 0.45373 0.41910 0.38454 003!005
9.00 0.41412 0.47143 0.39262 0.16187 0.33120 0.300S8

10.00 0.39961 n.37181 0.34412 0.31647 0.28887 0*26134
2n.00 0.15800 n.14478 1.13080 0.11607 0.10297 0.08912
30.00 0.08139 0.07185 0.06236 0.05291 0.04350 0.03412
4r0.00 0.04379 0.03647 0.02919 0.02196 0.01476 0000760
S.o0 0.02185 n01n584 0.00989 0.00396 -0.00190 -I.00774
60.06 0.00762 0.00249 -0.00259 -0.00762 -0.01262 -0.01758
70.00 -0.00225 -00676 -0.01122 -0.01563 "0.02001 -0.02434
80.00 -0.00945 -6*01350 -0.01749 -602144 -0.02534 -0.02921
90.00 -0.01489 -0.01857 -0.02220 -0*02579 -0=02933 -0.03264

1n0.0 -0.01011 -0.2251 -0.02585 -0.02914 -0.03240 -0.03562
200.00 -0.03565 -0.03775 -0.03980 -0.04180 "0,04375 -0.04567
300.00 -0.03929 -0.04096 -0.04257 -0.04413 -0.0495 -0.04713
40n0.00 -0.04026 -A.04170 -0.04309 -0.04442 -0.04572 -0.04699
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JTable 6. Z. First Derivative of the Second Virial Coefficient for the IZ, 6. 4 Potential - Cont.

EP I() - T*D(B*(0))/D(T e )

T* 7-0.5 7 =0. 6 7 =0. 7 7 0.8 7-0.9 7 =1. 0

0030 65.66716 63*19936 60082011 58.52484 56.30927 54016945

00o 39.90641 3,22644 36.59740 35.01736 33.48388 31.9949-'0040 27.40527 26.14099 24.90991. 23071057 22.54169 21.40203
0.45 20.38596 19#37393 18038508 17.41853 16.47339 15054889

0.50 16.02162 15.17763 1405070 13054042 12.74596 11*96684
0.55 13.09t 12.37404 11.66290 10.96445 10.27830 9.60402
0.60 10002704 1.39226 9.76790 9.15364 8.54915 7.95413
o.65 9.49397 8.92867 8.37185 7.82324 7.28259 6.74969
0070 8031927 7.80950 7:30675 6:81082 6:32152
075 739355 6.92919 6.47075 6001807 5057099 5.12935
0:80 6.64699 6.22049 5.79904 5038253 4.97081 4:56376
0*85 6:03320 5.63875 5.24868 4.86287 4.48122 4.10362
0 90 5.52029 5.15332 4079020 4.43081 4.07506 3.72286
0.95 5.08564 4,74254 4*40283 4.06641 3.73320 3.40313
1.00 4.7128T 4.39068 4.07150 3.75524 3.44185 3.13125
1010 4.10721 3.81994 3.53509 3.25261 2.97244 2.69453
.20 3.63668 3.37743 3.12018 2.86488 2.61149 2.35996
1.30 3.26o88 3.02462 2.79004 2.55711 2.32577 2.09601
1.40 2.95395 2.73691 2.52131 2.30710 2.09426 1.88276
1*50 2.69863 2.49789 2.29840 2.10011 1.90300 1.70705
1.60 2.48294 2:29622 2.11058 1.92599 1.74244 1.55989
1070 2.29833 2.12379 1.95019 1.77752 1.60577 1.4349U
1.80 ?.13856 1.97469 1.81166 1.64946 1.48807 1.32747
1.90 1.99892 1.84449 1.69081 1.53788 1.38567 1.23416
2.00 1.87585 1.72982 1.58447 1.43980 1.29577 1.15239
2.10 1.76655 1.62805 1.49018 1.35291 1.21623 1.08014
2.20 1.66884 1.53713 1.40600 1.27541 1.14537 100158
2.30 1.58n96 1,45541 1033038 1.20586 1.08183 0#9582F
2.40 1.0S150 1.38156 1.26209 1.14309 1.02454 0.90644
2.50 1.47931 1.31449 1.20011 1.08616 0.97263 0085951
2.60 1.36343 1.25332 1.14361 1.03430 0.92537 0.81683
2070 1.30307 1.19728 1009188 0.98684 0.88217 0.77784
2.80 1.24756 1.14578 1.04435 0.94326 0.84251 0.74209
2.90 1.19634 1.09826 1.00052 0.90310 0.80600 0070920
3.00 1.14892 1.05430 0.95998 0.86597 0.77225 0.67882
3.10 1.10491 1.01350 0.92238 0.83154 0.74098 0.65070
3.20 1.06394 M.97553 0088740 0079953 0.71192 0.62497
3.30 1.02571 0.94011 0.35477 0.76969 0.68485 0060024
3.40 0.98996 n.907f0 0.82428 0.74180 0.65956 0057754
3.50 0.95645 0.87596 0.79571 0.71568 0.63588 0.5S629
3.60 0.92497 0.84642 0976889 0.69117 0.61367 0.53637
3.70 0.8953S .0.194fl 0.74366 0.66813 0.59279 0.51766
3.80 0.86742 n.79355 0.71989 0.64642 0.57314 0.50004
3.90 0.84105 0.76915 0.69745 0.62593 0.55459 0.48543
4.00 0.81611 0.74608 0.67623 0.60656 0.53707 0.46774
4.10 0.79248 0.72422 0.65614 0.58823 0.52048 0.45290
4.20 0.7707 n.70349 0.61709 0.57085 0.50476 0.43883
4.30 0.74877 0.69380 0.61899 0.55434 0.48984 0.42549
4.40 0.72852 0.66308 0.60179 0.53865 0.47566 0.41281
4.50 0.70924 0.64775 0.58541 0.52372 0.46217 0.40076
4.60 0.69085 0.61025 0.56980 0.50949 0.44932 U.38927
4.70 0.67130 n.61403 0.55491 0.49591 0.43705 0*37832
4.0 0.65653 0.59853 0.54068 0.48295 0.42535 0.36786
4.90 0.64049 0.58371 0.52707 0.47055 0.41415 0,35787
5.00 0.62513 n.56952 0.51404 0.45869 U.40344 0.34832
6000 0.50122 0.45510 0.40907 0.36313 0.31728 0.27151
7.00 0.41434 0.37492 0.33558 0.29631 0.25711 0.21797
8.00 0.35005 0.31563 0.2P177 0.24697 0.21272 0.17853
900 0.30058 n0.27001 0.23951 0.20905 0.17864 0.14828
1000 0.26134 0.23385 fl.20641 0.17902 0.19167 0.12436
20.00 0.08912 0.07529 0.06150 0.04773 0.03399 002027
30.00 0.03412 0.02477 0.01545 0.00615 -0.00312 -0.01237
40.00 0.0076n 0.00047 -0.00663 -0.01171 -0.02076 -0.02780
50.00 -0.00774 -0.01354 -0.01932 -0.02508 -0.03081 -0.03652
60.0n -0.01758 -n002251 -00n2741 -0.03229 -0.03714 -0004198
70.00 -0.02434 -0.02865 -0.03293 -0.03718 "0.04140 -0.04561
8000 -0.02921 -0003305 -0.03686 -0.04064 "0.04440 -0.04814
9000 -0.03284 -o0n3612 -0*03976 -0.04318 -0.04658 -0.04995

100.00 -0.03562 -0.03880 -f04196 -004509 -0.04820 -0.05128
200.00 -0.04567 -0.047S6 -004941 -0.05124 -0005305 -0.05481
300.00 -0.04713 -0.04858 -0.05000 -0.C5140 -0.05276 -0.05411
40000 -0.04699 -004821 -O.n4941 -005058 -0.05171 -0.05286
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Table 6. 3. Second Derivative of the Second Virial Coefficient for the IZ, 6. 4 Potential

B*(Z) = T*ZDZ(B*(0))/D(T*)Z

T* 7 = 0 7=0.1 7=0.2 7=0.3 7=0.4 7 =0.5

0.30 -347.75459 -335.9'607 -324.81946 -314.18604 -304.06019 -294.41000
n.35 -190.83807 -1d,9'1 -177.43068 -171.16187 -165.16024 -159.40988
0.40 -121.13211 -112.41Q1 -132.1210 -107.89276 -103.81421 -99.60789
0.45 -84.73507 -31.37?15 -78.12771 -74.99534 -71.96916 -69.04407
n.0. -63.43581 -6rI 666 -s8.28069 -5582352 -S3.44140 -51.11073
0.:5 -49.88134 -47,75171 -45.68235 -43:67181 -41.71688 -39.81510
0.60 -40.68759 -38.H9925 -37.15789 -35.46127 -33.80746 -32.19463
0.65 -34.13358 -32.19569 -31:094e9 -29.62952 -28.19806 -26.79915
0.70 -29.27234 -27.92495 -26.h0758 -25.31892 -24.05780 -22.82314
0.75 -25.54862 -24.35053 -21.17725 -22.02773 -20.90098 -19079616
0.80 -22.61054 -21.54139 -26.48407 -19.44671 -18.42853 :17.42683
0.85 -20.26379 -19.28397 -13.32189 -17.37683 -16.44813 -1.53523
0.90 -18.33328 -17.43545 -16.55295 -15.68510 -14.83140 -13.99134
0.95 -16.72569 -15.89775 -15:08215 -14.27984 -13.48989 -12.71163
1.00 -15.36836 -14.59037 -13.84211 -13.09613 -12.36099 -11.63636
1.10 -13.20678 -12.53432 -11.87116 -11.21691 -10.57127 -9.93396
1.20 -11.6630 -10.968RI -10.37886 -9.79617 -9.22048 -8.65156
1.30 -10.28134 -0.74376 -9.21242 -8.68710 -8.:!6758 -7.65371
1.40 -9.24901 -8.76036 -8.27700 -7.79871 -7.32532 -6#85668
1.50 -8.40219 -7.95430 -7.51092 -7.07190 -6.63706 -6.20630
1.60 -7.69543 -7.28200 -6.87248 -6.46672 -6.06461 -5.66601
1.70 -7.C9689 -6.71?97 -6.33248 -5.95529 -5.58128 -5.21036
1.80 -6.58362 -6.22527 -5.86995 -5.51754 -5.16795 -4.82108
1.90 -6.13869 -5.80271 -5.46943 -5.13874 -4.81055 -4.46480
2.00 -5:74937 -5.41312 -5.11929 -4.80779 -4.49853 -4.19145
2.10 -. 4058h -5.10717 -4.81064 -4.51621 -4.22380 -3.93336
2.20 -5.10060 -4.81758 -4.53653 -4.25740 -3.98010 -3.70458
2.30 -4.82750 -4.55859 -4.2915n -4.02614 -3.76246 -3.50040
2.40 -4.58176 -4.32563 -4.07116 -3.81827 -3.56693 -3.01707
2.50 -4.35947 -4.11495 -3.87106 -3.63043 -3.39032 -3.15138
2.60 -4.15743 -3.92351 -3.69101 -3.45986 -3.23Utl -300143
2.70 -?.97799 -3,74671 -3.52591 -3.30428 -3.08386 -2.86461
2.80 -3.80395 -3.58870 -3.37467 -3.16180 -2.95006 -2.73940
2.90 -3.64846 -3.44147 -3.23561 -3.03084 -2.82712 -2.62441
3.00 -3.50495 -3.30561 -3.10732 -1.91006 -2.71377 -2.51843
3.1n -1.37209 -3.17985 -2.98860 -2.79830 -2.60892 -2.42043
3.2n -3.24874 -3.06311 -2.87841 -2.69461 -2.51167 -2*32936
3.10 -1.13191 -2.95444 -2.77587 -2.59813 -2.42121 -2.24506
3.40 -1.02674 -2.850n5 -2.68020 -2.50814 -2.33685 -2.16629
3.50 -?.Q2650 -2.75873 -2.59074 -2.42400 -2.25799 -209268
3.60 -2.83253 -2.66914 -2.50690 -2.34517 -2.18412 -2.02374
3.7n -2.74426 -2.585A6 -2.4'817 -2.27115 -2.11478 -1.959U4
3.80 -2.66110 -2.50730 -2.35409 -2.20152 "2.04956 -1689621
3.90 -2.58787 -2.41325 -2.28426 -2.13589 -1.98811 -1.84090
4.00 -2.5.9 -2.36331 -2.21833 -2.07394 -1.93010 -1.78681
4.1n -?.43803 -2.29717 -2.15598 -2.01536 -1.87526 -1.73569
4.20 -2.37265 -2.23451 -2.09693 -1.95988 -1.82334 -1.66729
4.30 -2.3")77 -?.17507 -2.04091 -1.90726 -1.77410 -1.64140
4.40 -2.2?003 -2.11861 -1.98771 -1.85729 -1.72734 -1059784
4.50 -2.19321 -2.0640I -1.93710 -1.80977 -1.68281 -1.55642

4.60 -2.13q09 -2.n1377 -1.88892 -1.76452 -1.64056 -1.31700
4.70 -2.08749 -1.965n1 -1.84299 -1.72139 -1.60021 -1.&7943
4.80 -2.03923 -1.91847 -1.79914 -1.68023 -1.56172 -1.44359
4.90 -1.09117 -1.37401 -1.75726 -1.64091 - .52495 -1040936
5.00 -1.94615 -1.83147 -1.71720 -1.60331 -1.48979 -1.37663
6.00 -1.58432 -1.1097? -1.39541 -1.10138 -1.20762 -1.11411
7.n0 -1.33205 -1.25154 -1.17125 -1.M9118 -1.01131 -0.93161
8.00 -1.1460q -1.07601 -1.n0611 -0.93638 -0.86681 -0.79740
9.0)O -1.nn32 -M.q4127 -n.87937 -0.81762 -0.75599 -0069430
l1.00 -0.89n26 -h*31459 -0.77904 -0.72362 -0.66830 -0061310
20.00 -n.39406 -n.1664' -0(.31898 -0.31152 -0.28411 -0.25674
3n.00 -0.23369 -A.21525 -9.19685 -0.17850 -0.16018 -0@14190
40.n -0.15490 -0.14096 -0.12706 -0.11321 -0.09939 -0003560
50.00 -0.1032 -9.09706 -n.08584 -0.07466 -U.06351 -0.05240
60.00 -n.07770 -0.06871 -0.05876 -0.04936 -0.03998 -0.03065
70.00 -0.05613 -0.04790 -n.C3971 -0.03156 -0.02345 -0.01538
80.00 -0.04n17 -0.n3288 -0.02563 -0.01843 -0.01126 -0.00413
9n.00 -0.02794 -0.02117 -0.01485 -0.00638 -0.00194 US00446
lo.mo0 -0.nl128 -0.01pln -0.00636 -0.00047 0.00539 0.01121
200.00 0.92746 n02586 002971 0.03251 0.03577 0.03899
3000 0.03194 0,0649 0.01898 0.)4143 0.04381 0.04619
400.00 n.01869 (.04n2 n.04288 0.4490 0.04687 0.04880
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Table 6. 3. Second Derivative of the Second Viriai Coefficient for the 12. 6. 4 Potential - Cont.

8*12) - T*2DZ2(Ba(0))/b(T*)Z

T* 7-0.5 7-.0.6 7.0.7 7-0.8 7-0.9 7
1 . 0

0030 -294,41000 -28b,20679 -276.42295 -260.03388 -260.01639 -252.34955

0.35 -159.40908 -153,89711 -148,60854 -143,S3220 -138.65689 -133.97205
0,40 -99.88789 -96010585 -92,46099 -88,94636 -85,55570 -82,28307

a.45 -69.04407 -66,21512 -63,47779 -60.82785 -58.26152 -55.77507
(',*SO -51.13073 -48,88841 -46,71139 -44,59684 -42.54224 -40,513
0,55 -39.81510 -37,96420 -36.16206 -34.40679 -32,69651 -31002955
0.60 -32.19463 -3n.62109 -29.08540 -27o58607 -26.12174 -2469122

0:65 26:79915 -25,43155 -24.09406 -2278559 -21.50S2e -20.25187
0,0 TO 22,82314 -21,61396 -20.42937 -19.26050 -18.1305a -17,014855
0.75 -19.79616 -18,01250 -17.64927 -16,60580 -15,58143 -14,57566

0.80 -17.42883 -16,44698 -15.48238 -14.53450 -13.60280 -12.68682
0*85 -15.53523 -14,63758 -13.75470 -12,88613 -12,03145 -11.19028
0.90 -11.99134 -13,14440 -12.35040 -1154873 -10.75910 -9.98120
0.95 -12.71183 -11,94531 -11.18997 -10.44548 -9.71155 -8.93789
1.00 -11.63636 -10.9:188 -10.21726 -9,52223 -8.83652 -8,15990
1.10 -9.93396 -9.30472 -8.68333 -8.06958 -7.46326 -6.86419
1020 -8.65156 -8.08923 -7.53328 -6.98357 -6.43991 -5,90221
1.3o -7.65371 -7.14529 -6.64218 -6.14427 "S.65141 -5.16349
1.40 -6.85668 -6.39267 -5.93315 -5.478C1 -5.02715 -4.58047
1.50 -6.20630 -5.77950 -5.35654 -4.93734 -4.52182 -4.10988
1.60 -5.66631 -5.27085 -4.87903 -4.49046 -4.10508 -3.72281
1.70 -5.21036 -4.84243 -4.47744 -4.11530 -3.75594 -339933
1.80 -4.82108 -4,47687 -4.13523 -3.79613 -3.45949 -3.12527
1.90 -4.48480 -4.16140 -3.84031 -3:52146 -3.20481 -2.89U32
2.00 -4.19145 -3.88649 -3.58359 -3.2827U 2.98379 -2.68680
2.10 -3.91,16 -3.64484 -1.35817 -3.07332 -2.79024 -2.50891
2.20 -3.70458 -3.43080 -3.15870 -2.8826 -2.61942 -2.35217
2.3o -3.5004M -3.23992 -2.9809 -2.72355 -2.46750 -2.21306
2.40 -1.31707 -3.06867 -2.82166 -2.5760 -2.33176 -2.08880
2.50 -3.15158 -2.91416 -2.67804 -2.44319 -2.20957 -1*97717
2.60 -3.0nl3 -2.774n8 -2.54702 -2,32293 -2.09908 -1.87635
2.70 -2.86461 -2.64649 -2.42948 -2.21355 -1.99868 -1.7848!
2.80 -2.73940 -2.52980 -2.32121 -2.]1367 -1.90708 -1.70146
2.90 -2.62441 -2.42268 -2.22102 -2.12209 -1.82317 -1.62515
3.00 -2.51A43 -2.32400 -2.13048 -1.93782 -1.74603 -1.5507
3.10 -2.42043 -2.2328C -2.04601 -1.86CO4 -1.67486 -1.49047
3.20 -2.32956 -2.14826 -1.96775 -1.78801 -1.60902 -1.43076
1.30 -2.24506 -2.06096 -1.89504 -1.72113 -1.54792 -1.3754.
3.40 -2.16629 -1.9964 -1.827 1 -1.65886 -1.49107 -132392
3.50 -2.09268 -1.928M5 -1.76407 -1.60074 -1.41804 -1.27595
3.60 -2.02374 -1,84n0 -1.70488 -1.5463P -1018846 -1.23113
3.7o -1.95904 -1.8n392 -1.64937 -1.49541 -1.34201 -1.16t17
3.8n -1.89821 -1.74743 -1.59721 -1.44754 -1.29540 -1.14970
3.90 -1.84090 -1.69423 -1,54810 -1,40249 -1.25738 -1.11278
4.00 -1.78681 -1.644n4 -1.50178 -1.36001 -1.21873 -1.07792
4.10 -1.73569 -1.59661 -1.45802 -1.3199n -1.18224 -1.04501
4.20 -1.68729 -1.55172 -1.41661 -1.20195 -1.14771 -1.01395
4.30 -1.64140 -1.50916 -1.37737 -1.24601 -1.11506 -U.98453
4.40 -1.597864 -1.46877 -1.34013 -1.21191 -1.08408 -0.95665
&.S0 -1.55642 -1.43018 -1..30475 -1.17951 -1.05466 -U.93018

4.60 -1.51700 -10313e5 -1.27101 -1.14870 -1.02669 -n.9050'
4.70 -1.47943 -1.359n4 -1.23902 -1.11936 -1.00005 -0.8811u
4.80 -1.44359 -1.32583 -1.208W3 -1.09138 -0.97467 -0.85829
4.90 -1.40936 -1.29412 -1.17973 -106467 -0.95045 -0.83654
5.0f -1.37663 -1.26381 -1.15132 -1.03916 -0.92731 -0.81577
6.00 -1.11411 -1.02085 -r.92783 -0.83503 -0.74246 -0.65011
7.00 -0.93163 -0.85214 -0.77284 -0.69370 -0.61474 -0.53594
8000 -0.79740 -0.72813 -0.65901 -0.59003 -0.52118 -0.45246
9.0A -0.69450 -0.63312 -0.57187 -0.51072 -0.44969 -0.38876
10.00 -0.61310 -0.55800 -0.50300 -0.44809 -0.39327 -0.33855
20.00 -0.25674 -0.22941 -0.20213 -0.17488 -0.14767 -0.12049
30.00 -0.1419n -n.12365 -'.010542 -0.08723 -0.06906 -0005092
40.00 -0.08560 -0.07184 -0.05810 -004440 -0. 3071 -0.01705
50.00 -0.05240 -M.04132 -0*03026 -0.01923 -0.00821 0.00278
60.00 -0.03065 -0,02134 -0.01205 -0.00279 0.00644 0.01566
70.00 -0.01538 -0.00733 N.r0069 0.00869 U.01666 0.02462
.O.00 -0.00413 0.00298 0.01006 0.01711 0.02414 0.03115
90.00 0.00446 n.004 001718 0.02351 0.02981 0.03608

10000 N1,01121 f01710 M.02276 n02850 0.01421 0.03991
200.00 0.03899 0.04217 0.04533 0.04846 0.05157 0*09466
300.00 0.04619 0.04852 0.05082 n.r5309 0.05533 0.05756
400. n 0.04880 0.05070 n.05257 0.05441 0.05623 0.05802
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7. THERMODYNAMIC EFFECTS OF SHORT RANGE REPULSIONS
BETWEEN POSITIVE IONS

Short range repulsions between positive ions must have very small thermodynamic effects

up to moderately high temperatures since close approaches are very infrequent because of the

strong Coulomb repulsions. Nevertheless, it may be useful to have estimates of such effects,

even if only for purposes of a survey of general orders of magnitude.

The thermodynamic effects of repulsion between positive atomic ions may be estimated on

the basis of their pair-wise contribution to the Helmholtz free energy

A(-A,/RT) =Z C (e (ei/kT _ 1)Zwrzdrj 1
V0- V0 Cijij0jjij

A(-ART) Vo Vo I j I j

0

where C I, or Cj, indicates the concentration of the species I, or J, relative to that of a pure ideal

gas at standard conditions

C i = NjV,/NoV. (2)

N1 is the number of atomic ions of species I in the volume V. and N o is the number of molecules

of an ideal gas in the standard molar volume Vo at standard conditions. Uij is the pair potential

between two individual atomic ions. For the present purpose of estimating the effect of short

range repulsions only, it will be convenient to omit the r-4 and r-6 attraction potentials, so that

the interaction potential between two isolated ions would be taken as

U = ar-1Z + ZiZjeZrij . (3)

We now note that we can re-write the integral in equation (1) according to

S(eU/kT-l)Zwr dr = f exp(-arlzizje'r4l/T)- exp -ZiZjeZ-l/kT] Zwr 2dr

0

The second of the two integrals on the right hand side of equation (4) represents the negative

of the pairwise virial based on the Coulomb potential, which diverges, as is well known. Mayer

showed, ( 5 ) however, that a re-summing technique involving the whole ionic assembly removes the
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divergence difficulty in a way which demonstrates the validity and equivalence of Debye type

screening.( )

The first of the two integrals on the right hand side of equation (4) represents the pairwise

effect of the presence of the short range repulsion potential. The corresponding contribution to

the Helmholtz free energy can be indicated as

A(- A A ZCiCjABij (5)

V0
and to PV/RT as

_T) = V CC ABIj, (6)
RT V0

where &B is a second virial -type contribution

AB = Z1Noao3f ek/RkT [1 - e-klZ/RlZkTIRZdR, (7)

0

in which atomic units have been introduced, with k I = ZiZj and R = rij/a o . [The Boltzmann

-6
constant k is 3.168 x 10 atomic units of energy per degree K, since one atomic unit of energy

(27.21 e.v. ) is equivalent to 315700 degrees K].

Integration by parts permits the second virial contribution to be written in an equivalent

form,

21rNoac" f 3 3) -ukT
AB 3T (R3 - Rc e dU, (8)

0

where R and Rc are separation distances as a function of U for the actual and the Coulomb poten-

tials, respectively.

For purposes of evaluation by approximate numerical integration, there is some convenience

in calculating the integral using values of U and of T spaced evenly on a logarithmic scale. We

re-write the potential energy expression in the form

U/Uo = (RO/R) + (R/R) (9)

where Ro = (klzkI ) I/ I I indicates the separation at which the two terms of the potential are

equal and Uo = k121/11 k1 2/11 is the contribution of each of the two terms at this separation.
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AB and its derivatives follow from

(-T)"S da (ABkT/Uo)/d(T-I = bf [(R )3 (Uo/U)3] (U/kTiSeU/kTd(U/o), (10)

(R/Ro) 3 -[/[(R/Ro -iUI/U(],0

the increment in (R/Ro) due to the (Ro/R) 1 2 term in the repulsion potential, are listed in Table 7.1

for values of U/Uo that are positive and negative integer powers of 100.1 = 1.25892541, ranging

from 10- 1 to 104. [To about eight digits, these are 1.25892541, 1.58489320, 1.99526230,

2.5118864, 3.1622776, 3.9810717, 5.0118723, 6.3095734, 7.9432823, 10.00000000, times various

powers of 10]. For small values of U/U o ,

m(R/R0) 3 3(U/U 0 )8 IOUU)I+ 26Uo -31(UO3 +73458( U/U) ..J (11)

is readily evaluated, particularly since all powers of U/U o required are given numerically by the

U/U 0 listing, with the appropriate negative power of 10 evident by inspection. For quite large

values of U/U o , it is possible to use

(R/Ro)3 1 (Uo/U) / [1 ", 13 (U/U 22/12 1 U33 (12)

,( =i U/  96 + ..(Uo/'1)

This equation, like equation (11), can be obtained using a specialization from

) 3  L Lk-, . (u/U -(k[(
3k=0 k

which represents the potential

U/U o = (Ro/R) O  - f (Ro/R) , (14)

using t= 1 and alternative identifications of T and 0 with 12 and 1. For t= 0 and with both 7and

5 greater than 3, direct integration gives the ordinary Lennard-Jones second virial coefficient in

its familiar form except for the detail of the C to Uo ratio.

For intermediate values of U/Uo, equation (9) was solved by iterating with an arrangement

of Newton's method
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I + tr/at, I

for which each later iteration roughly doubles the number of correct digits.

The integrals required for equation (10) can also be indicated by

(-1fT* - s - ' d5 (T*&B/b9)

d(T* -l)a

(0. 1 In1 O)f A*(R/Ro)3 (U/kT)s+' eU/T dn (15)

0

with U/U o  e(0.1 In 10)n. and for which T* represents kT/U o .

The remaining factor in the integrand of equation (15), (U/kT) + l e is listed in

Table 7.2, for s= 0, 1 and 2, for the same type of U/kT= x values as used for U/U o in Table 7.1.

Approximate values of the integrals indicated by equation (15) were obtained as

0.1 nlO = 0.23026 times the sum of integrand values at integer n's, for which a cumulative prod-

uct can. be used. These are given as P0, P1, and P. in cohmns 2, 3, and 4 of Table 7.3. We note

that &B/b o = po. In columns 5 and 6 are values of

T*d(&B/bo)/dT* = P1 " 0

and

T*ZdZ(&B/bo)/dT*z = P2 - 4P, + ZP0,

which could be of possible convenience for thermodynamic estimates.

While the interval of tabulation used in the numerical integration is somewhat larger than

might be desired for accuracy, the resulting final table is clearly adequate numerically for'a

survey of approximate magnitudes. More serious objection may be made to the use of the R- 12

potential over wide ranges of energy. The course of the values obtained for P0' P1 and P, as

functions of T* may be seen from the log-log plot in Fig. 7.1.

Estimated values of k 12 , in atomic units, have been given in Chapter 4 for various pairs

of atomic ions in their ground states. Some of these are listed in Table 7.4, with corresponding
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JI
values of Ro , bo and Uo , with the last quantity expressed in alternative units, namely. in atomic

units, equivalent degrees Kelvin, and electron volts.

It may be of interest to note from the Uo values of Table 7.4 that the present P. tabulation

to logloT* = 2 in nominally up to 9 million degrees K for the Ar+ - 0 + pair and up to over 40

millica degrees K for the N++ - N++ pair.
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Table 7. 1. Increase in (R/Ro) Versus U/U o , Due to Adding (Ro/R)1Z
to the RO/R Coulombic Potential.

m+log 10 U/U0  (R/Ro)' - (Uo/U) 3

m=1 m = 0 m = -1 m = -2 m = -3

0 3.0000.10 -8 .61376 0.57952 0.31740 0.17791

0.1 1.8929'10-  • 80455 .54414 .29943 .16794

0.2 1.1943.10 .87417 .51134 .28252 .15854
0. 3 7. 5357" 10 -6 87520 .148091 .26659 14966

0.4 4.7547"10- 5  .84374 .45261 .25159 .U128

0. 5 2.9999" 10- 4  .'9922 .42621 •.23744 • 13337

o.6 1.8921,'10 - 3  .75121 .40155 .22410 .12591

o.7 0.011884 .70402 .37847 .21153 .11886

0.8 .071043 .65942 .35682 .19966 .11221

0.9 .29882 .61794 .33650 .18847 .10593
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Table 7. 2. The Integrand Factors, xs + I - x .

loglo x x e- x x2 e- x  x, e- x  log1 0 x x e - x  x2 e- x x3 e- x

- 2.6 0.00251 6.3'10- 6  1.6.10-8 - 0.5 0.23050 0.07289 0.02305

- 2.5 .00315 1.00.10 - 5 3.2-10.-8 - .4 .26736 .10644 .04237

- 2.4 .00397 1.58.10-5 6.3.10-8 - .3 .30362 .15217 .07627

- 2.3 .00499 2.50-10-5 1.25.10-7  - .2 .33572 .21183 .13365

- 2.2 .00627 3.94'10-5 2.50.10-7  - .1 .35894 .28512 .22648

- 2.1 .00788 6.25-10-5 4.96.10- 7  0.0 .36788 .36788 .36788

- 2.0 .00990 9.90"10-4 9.90"10-6 0.1 .35748 .45004 .56657

- 1.9 .01243 1.565"10-4 1.970.10-6 .2 .32486 .51486 .81600

- 1.8 .01560 2.472"10-4 3.9185.10-6 .3 .27131 .54134 1.08011

- 1.7 .01956 3.902"10-4 7.786.10-6 .4 .20375 .51180 1.28559

- 1.6 .02450 6.353-104 1.5456-10 -  .5 .13386 .42329 1.33857

- 1.5 .03064 9.689'10 4 3.0638"10-5  .6 .074/30, .29 1.17772

- 1.4 .03826 0.001523 6.063.10-5 .7 .033371 .16725 0.8382)

- 1.3 .04767 .002389 1.1974"10-4  .8 .011476 .072408 .45686

- 1.2 .05924 .003738 2.3583-10-4 .9 .002820 .022401 .17794

- 1.1 .07337 .005823 4.629"10-4 1.0 4.540"10- 4  .004540 .04540

- 1.0 .09048 .009048 9.048"10-4  1.1 4.291"10- 5 5.402"10-4 .006801

- 0.9 .11100 .01397 0.001759 1.2 2.074.0 -6 3.288"10-5 5.211"10-4

- .8 .13526 .02144 .003398 1.3 4.312"10- 8 8.604-10-7 1.717"10-5

- .7 .16344 .03261 .006506 1.4 3.098.10- 13 7.78"10-9 1.95-10-7

- .6 .19539 .04908 .01233 1.5 5.84"10- 13 1.85.10-11 5.8.10-10
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Table 7. 3. Second Virial Contribution Due to Short Range Repulsion
Between Positive Ions.

logl 0 T* o = 2/b T d(A/bo)/T* T*2 d2(AB/bo)/dT*2

-1.4 7.6 "1- 7  6.8 10- 6  6.7 '10- 5  6..1 - 6  4.1 10- 5

-1.2 2.6810- 5  2.2510 - 4  2.05"10 3  1.98lo-4  - 3

-1.0 5.90"10 4  4.10"10- 3  .0304 3.51"10-  0.0152
-0.8 6.2410- 3  0.03318 .1894 0.02694 .0692

-0.6 0.03312 .1321 .5762 .0990 .1140

-0.4 .1033 .3102 1.0556 .2069 + .0214
-0.2 .2190 .5044 1.3885 .2854 - .1911

0 .3541 .6421 1.4942 .2880 - .3660

0.2 .4740 .6985 1.4393 .2245 - .4067

0.4 .5568 .6903 1.3132 .1335 - .3344

0.6 .5978 .6455 1.1718 .0477 - .2146

0.8 .6038 .5862 1.0384 - .0176 - .0988

1.0 .5851 .5249 0.9195 - .0602 - .0099

1.2 .5513 .4673 .8153 - .0840 + .0487

1.4 .5098 .4153 .7239 - .0945 .0823

1.6 .4655 .3690 .6435 - .0965 .0985

1.8 .4216 .3281 .5726 - .0935 .1034

2.0 .3798 .2918 .5097 - .0880 .1021
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Table 7.4. Estimated Short Range Repulsion Parameters for Atomic Ions
in Their Ground States.

Pairs 10k 1 2  R0 b U0(u) au)(.u)(cc/mole) (a.u.) (OK) (~.

N+ - N+  0.669 1 3.39 7.3 0.295 93000 8.03

0- N+  0.47 1 3.28 6.6 .305 96000 8.31

N - N 0.366 2 3.01 5.1 .665 21Q000 18.1

Ar - N 1.48 1 3.64 9.0 .275 87000 7.49

Ar - N 1.02 2 3.30 6.7 .606 192000 16.5

0 N+  0.283 2 2.94 4.8 .680 215000 18.5

0+ - 04+  0.33 1 3.18 6.0 .314 99000 8.55

N - 0+  0.257 2 2.92 4.6 .685 216000 18.6

Ar+ - 0+  1.04 1 3.53 8.2 .284 90000 7.73

Ar - 0+  0.71.3 2 3.20 6.1 .625 198000 17.0

N +
- 0.20 4 2.67 3.6 1.50 474000 40.8

0 - 0+  0.199 2 2.85 4.3 .702 222000 19.1

2" N a3 = 0.1870 cc/mole
30 0
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Fig. 7.1. Thermodynamic contributions due toR
potential between positive ions.
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8. SECOND VIRIAL COEFFICIENTS AND THEIR DERIVATIVES FOR CONSTITUENT PAIRS

INVOLVING NEUTRAL SPECIES IN HIGH TEMPERATURE AIR

The procedures of calculation of second virial coefficients which have been given should

be capable of use either with the values of potential parameters suggested or with values improved

by better empirical rules or by improved theory. It is natural to suppose that, in the main,

improved theory will be relevant to other forms of potential function than those used in the present

second virial study. Under this circumstance, the interesting end product of the present work,

theoretically as well as practically, may be the actual magnitudes and trends of the numerical

estimates obtained for the second virials and their derivatives. A table of computed values of B,

TdB/dT and TZdZB/dTZ is accordingly given for neutral-neutral and ion-neutral pairs present

appreciably in air up to 15,000"K. The parameters used in their computation are given in Chapter

4 and the calculation procedure is that given in Chapter 6.
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Table 8. 1. Second Virial Coefficient and Derivatives for Pairs
in High Temperature Air.

T Pair B T dB/dT TZ dZB/dTZ

"K cm 3 mole 1l cm3 mole-I cm 3 molI 1

1000. A A 21.427 11.889 -30e496
2000. A A 26.146 2o856 -11.566
3000. A A 26o684 0.011 -5.556
4000. A A 26o480 -1.348 -29625
5000. A A 26.089 -2o125 -0.903
6000o A A 25.655 -2.618 0.222
7000. A A 25,225 -2s951 1*008
8000. A A 24.814 -3.187 1.584
9000. A A 24.429 -3.360 2.023

10000. A A 24.067 -3o490 2o365
11000. A A 23.730 -3.589 2o638
12000. A A 23.414 -3.665 2.860
13000. A A 23,119 -3.724 3.042
14000. A A 22o841 -3.771 3.194
15000. A A 22o579 -3.808 3322

1000. CO A 26o317 12.217 -32.155
2000. CO A, 31o008 2.532 -11.868
3000. CO A 31.371 -0.514 -5.409
4000. CO A 31,003 -1.962 -2.261
5300. CO A 30.469 -2.786 -0.415
6000. CO A 29.912 "-3.305 0.789
7000. CO A 29,374 -3.654 1.628
8000. CO A 28.870 -3.900 2.242
9000. CO A 28,399 -4.078 2.707
1000. CO A 279963 -4.210 3.070
11000. CO A 27.556 -4.309 3.358
12000o CO A 27.178 -4.385 3.591
13000. CO -- 26.825 -4.444 3o782
14000. CO A 26.494 -4.488 3o940
15000. CO A 26.183 -4o523 4.073

1000. N A 22,118 5.724 -16.997
2000. N A 23o949 0.250 -5.500
3000. N A 23.679 -1.452 -1.825
4000. N A 23.140 -2.246 -0.042
5000. N A 22o587 -2.687 0.996
6000. N A 22,071 -2,958 1.666
7000o N A 21.601 -3.135 2.128
8000. N A 21o174 -3e255 2.463
9000. N A 20786 -3.338 2.713
10000. N A 209431 -3397 2905
11000. N A 20.105 -3.438 3.056
12000. N A 19.805 -3.467 3.176
13000. N A 19o526 -3o487 3.273
14000. N A 19.267 -3*501 3.353
15000. N A 19.025 -3.509 3.418
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Table 8. 1. Secoond Virial Coefficient and Derivatives for Pairs
In High Temperature Air. (Cont.)

jT Pair B T dB/dT TZ dZB/dTZ

&K cm 3 molerl cm 3 molerl cm 3 molge1

1000. N2 A 25.34? 11.104 -29.499
2000. N2 A 29o558 2.166 -10e779
3000. N2 A 29o824 -0.643 -4.815
4000. N2 A 29.437 -1.975 -10909
5000. N2 A 28.907 -2e733 -0.205
6000. N2 A 28.364 -3.209 0.904
7000,, N2 A 27o844 -3.528 1.677
8000. N2 A 270357 -30752 2o242
9000. N2 A 26e905 -3.914 2@670
10000. N2 A 26.486 -4.034 3.003
11000. N2 A 26*098 -4.124 3.267
120000 N2 A 259736 -4e192 3.481*
130009 N2 A 25.398 -4.244 39656
14000. N2 A 25.082 -4o283 3.800
15000. N2 A 24*785 -4.313 3o922

1000. NO A 239755 13.017 -33.445
?0000 4N1o A 28.910 3.100 -12e663
3000. NO A 29.486 -09024 -6.063
4000. NO A 29e253 -1e515 -2.844
5000. NO A 28e816 -29368 -0.954
6000a NO A 28o333 -2*908 0.281
7000. NO A 27o855 -3o274 1.144
80000 NO A 27.400 -3o533 19777
9000. NO A 26.971 -lo722 2o258
10000. NO A 269573 -3o864 2.633
110000 NO A 26.199 -3.972 2o933
12000o NO A 25.850 -4.055 3o176
13000. NO A 25o523 -4e120 3.376
14000o NO A 25e216 -4.171 3.542
15000. NO A 24o926 -4.211 3.682

1000. 0 A 18e995 7.051 -19o297
2000. 0 A 219562 1.100 -6o829
3000. 0 A 21o601 -00765 -2.850
40009 0 A 21.247 -1.646 -0.913
5000. 0 A 20o821 -2e144 0.220
6000e 0 A 20.401 -2.454 0@956
7000. 0 A 20.006 -2o661 1.468
8000. 0 A 19e641 -2.805 1.841
9000. 0 A 190304 -2.908 2.122
10000. 0 A 18o994 -29983 2.340
110000 0 A 180706 -3*038 2.013
12000e 0 A 18o440 -3o080 2.652
13000e 0 A 18*192 -3.11 2.765
14000o 0 A 17*961 -39134 2.859
15000. 0 A 179744 -3*151 2.937
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Table 8. 1. Second Virial Coefficient and Derivatives for Pairs
in High Temperature Air. (Cont.)

T Pair B T dB/dT TZ dZB/dTZ

OK cm 3 mole - I  cm 3 mo1e 1  cm 3 mo1e 1

1000. 02 A 22.513 12.096 -31.162
2000. 02 A 27.288 2.840 -11.766
3000. 02 A 27.804 -0.076 -5.604
4000. 02 A 27.571 -1.467 -2.599
5000. 02 A 27,151 -2.262 -0.834
6000. 02 A 26,691 -2*765 0.318
7000. 02 A 26.238 -3.106 1.123
8000. 02 A 25807 -3346 1714
9000. 02 A 25.402 -3.522 2.162
10000. 02 A 25.023 -3e654 2e512
11000. 02 A 24.670 -3.754 2.791
12000. 02 A 24.340 -3.831 3.017
13000. 02 A 24.031 -3.892 3.204
14000. 02 A 23.741 -3938 3.359
15000. 02 A 23,468 -3.975 3.489

1000. N A+ -147.050 203e868 -504704
2000. N A+ -55,951 81.282 -180.859
3000. N A+ -29.880 50.049 -108.848
4000. N A+ -17.654 35.764 -77e418
5000. N A+ -10.627 27.569 -59.810
6000. N A+ -6.101 22.254 -48.546
7000, N A+ -2.966 18.526 -40.718
8000. N A+ -0.681 15.769 -349961
9000. N A+ 1.049 13.646 -30*548
10000. N A+ 2.396 11962 -27.058
11000. N A+ 3o470 10.594 -24.229
120009 N A+ 4.341 9.461 -21.889
13000. N A+ 5e060 8,508 -19921
14000. N A+ 5.660 7.691 -18.243
15000. N A+ 6.166 6.992 -16.796

1000. 0 A+ -98.778 138.096 -327.799
2000o 0 A+ -35.733 57.319 -126.048
3000. 0 A+ -17.287 35o486 -77.114
4000* 0 A+ -8,622 25.314 -55.146
5000. 0 A+ -3*658 19.427 -42*664
6000. 0 A+ -0.477 15*588 -34o611
7000o 0 A+ 1711 12e888 -28.984
8000. 0 A+ 3.295 10.885 -24.829
9000. 0 A+ 4,485 9.342 -21.636

10000. 0 A+ 5*403 8.117 -19.104
11000. 0 A+ 6.129 7.122 -17.048
12000. 0 A+ 6,712 69297 -15.346
13000. 0 A+ 7.188 5e602 -13.913
14000. 0 A+ 7e581 5.010 -12.690
15000. 0 A+ 7.909 4.499 -11.635

-118-



Table 8. 1. Second Virial Coefficient and Derivatives for Pairs
in High Temperature Air. (Cont.)

T Pair B T dB/dT T2 d2 B/dT2

*K cm 3 mole, cm 3 mole cm 3 mole 1

1000. C02 AR 22*976 23*336 -56.429

2000. C02 AR 32.911 7350 -22o734
3000. C02 AR 34794 2.312 -12.176
4000. C02 AR 35.091 -0.116 -7.030

5000. C02 AR 34.902 -1.522 -34998

6000. C02 AR 34.539 -2*427 -2.010

7000. C02 AR 34.115 -3.049 -0.611
8000. C02 AR 33.677 -3.498 0.421

9000. C02 AR 33o245 -3o833 1.211
10000. C02 AR 32.827 -4.090 1.832
11000. C02 AR 32o428 -4*291 2.332

12000. C02 AR 32.047 -4.450 2.741

13000o C02 AR 31*686 -4o579 3*081

14000. C02 AR 31.342 -4.683 3366

15000. C02 AR 31.016 -4o768 3.609

1000. N20 AR 30.959 27o660 -67.521

2000. N20 AR 42.607 8380 -26.950
3000. N20 AR 44.681 2.300 -14.195

4000. N20 AR 44o899 -0.626 -7.977
5000o N20 AR 44.562 -2.317 -4314

6000. N20 AR 44.037 -39402 -1913
7000. N20 AR 43o454 -4o147 -0.226
8000. N20 AR 42o863 -4.683 1*018
90000 N20 AR 42.287 -50081 1.969

10000. N20 AR 41o736 -5.385 2.716
11000. N20 AR 41.211 -5o622 3.316
12000. N20 AR 40.713 -5.810 3*806
130000 N20 AR 40.242 -5.960 4.212
14000. N20 AR 39.796 -6.081 4o554
15000. N20 AR 39.373 -6.180 4.843

1000. A C 25.771 6,212 -18e802
2000o A C 27.692 0.100 -5o957
3000. A C 27.318 -1.796 -1.850
4000. A C 26.667 -2.678 0.140

5000. A C 26.0i2 -3.167 1.298
6000. A C 25.406 -3.466 2.044
7000. A C 24,56 -3o660 2558
8000. A C 24.358 -3.791 2.929
90000 A C 23.906 -3.881 3.206

10000. A C 23o494 -3.944 3.419
11000. A C 23.16 -3.988 3.586
12000. A C 22.767 -4.018 3.718
13000. A C 22o445 -4.039 3.825
14000. A C 22.145 -4.052 3.911
15000. A C 21,865 -4.059 3.982
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Table 8. 1. Second Virial Coefficient and Derivatives for Pairs
in High Temperature Air. (Cont.)

T Pair B T dB/dT T2 d2 B/dT2

OK co~ mo16e1  cm3 moler- cm3 mole-I
1000. C C 289322 2e281 -10.771
2000e C C 28.302 -1.805 -2.034
3000. C C 27.301 -3.026 0.740
4000. C C 269348 -3o566 2.061
5000. C C 25.519 -3o848 2o813
6000. C C 24e802 -4&007 3o287
7000. C C 24.176 -4.100 3.605
8000. C C 239625 -4.155 3.828
90000 C C 23.134 -4.185 3.989
100000 C C 22o692 -4*201 4.108
11000. C C 22o291 -4e205 4.197
12000. C C 219925 -4.203 4o264
13000. C C 21.589 -4o196 4.316
14000. C C 21.278 -4,185 4.355
15000. C C 20*990 -4.172 40385

1000. CO C 30.720 6.071 -19.495
2000. CO C 32.386 -0*439 -5.080
3000a CO C 319769 -2.446 -1*397
4000e CO C 30.924 -3.372 0.722
5000. CO C 30e112 -3o881 1.949
6000. CO C 29o375 -4.188 2.737
7000. CO C 280714 -49384 3o278
8000. CO C 28o119 -4e514 3.667
9000. CO C 27o582 -4*602 3.956
lOOCO. CO C 27o094 -4o661 4.176
11000. Co C 26*648 -4.701 40347
12000. CO C 26o237 -40727 4.482
13000. CO C 25*858 -40743 4.590
14000. Co C 25o507 -40751 4o677
15000. CO C 25e179 -4.754 40748

1000. C02 C 30e853 13o278 -35.381
2000. C02 C 35.869 2.539 -12.887
1000o (02 C 369163 -0.835 -5.719
4000. C02 C 35*679 -29435 -2o227
50000 C02 C 359030 -3.344 -0.180
6000. (02 C 340366 -3.915 1.153
7000. C02 C 330732 -4.298 2.081
8000. C02 C 33*139 -49566 2.759
90000 C02 C 32e590 -40760 3@273
10000. (02 C 32.080 -4e902 3.672
11000. C02 C 31o608 -5.010 3o989
12000. C02 C 319168 -5.091 4.245
13000. C02 C 309758 -5*152 4o454
14000. (02 C 30.375 -5.199 46o628
15000. (02 C 304015 -5*235 40773
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Table 8. 1. Second Virial Coefficient and Derivatives for Pairs
in High Temperature Air. (Cont.)

T Pair B T dB/dT T2 d2 B/dT2

*K cm 3 mole 1  cm3 mole-I cm3 molel
1000. N C 24.414 2.213 -9.819
2000. N C 24.513 -19451 -1.999
3000. N C 23.683 -2.551 0.486
4000. N C 22o874 -3.040 1,672
5000. N C 22.166 -3o296 2349

6000e N C 21.550 -3*443 2o776
7000. N C 21.013 -3o530 3.063
8000. N C 20o538 -3.582 3*265
9000. N C 20.114 -3,612 3,412
10000. N C 19.732 -3.628 3.521
11000. N C 19.386 -3o635 3*603
12000. N C 19.070 -3.635 3.666
13000. N C 18.779 -3.630 3.714
14000. N C 18.510 -3.622 3*751
15000. N C 18e261 -3.612 3*779

1000. N2 C 29.535 5.443 -17.883
2000. N2 C 30.952 -0.587 -5.167
3000. N2 C 30.308 -2.443 -1.104
4000. N2 C 29.475 -3.296 0.858
5000. N2 C 28.685 -3.762 1.993
6000. N2 C 27.972 -4.043 2.721
7000. N2 C 27.334 -49221 3.220
8000. N2 C 26.763 -4.339 3.578
9000. N2 C 26.247 -4.417 3.843
10000. N2 C 25.778 -4.469 49045
11000. N2 C 25*351 -4.504 4.201
12000. N2 C 24.958 -4.526 4.324
13000. N2 C 24.595 -4.539 4.423
14000. N2 C 24.258 -4.544 4.501
15000. N2 C 23.945 -4o545 4.565

1000. N20 C 409266 15*461 -42.045
2000. N20 C 45.946 2*544 -14.983

3000* N20 C 46.094 -1.507 -6.350
4000. N20 C 45370 -3.422 -2.146
5000. N20 C 44.479 -4.505 0.314
6000. N20 C 43.594 -5.183 1.914
7000. N20 C 42.759 -5,634 3.026

8000. N20 C 41*985 -5.949 3.837
9000. N20 C 41.270 -6.174 4.449

10000. N20 C 40.611 -6.339 4.924
11000. N20 C 40.001 -6*462 5.301
12000. N20 C 39o434 -6.554 5e604
13000o N20 C 38.907 -6.623 5.851
14000. N20 C 38.414 -6.674 6.056
15000. N20 C 37,952 -6.712 69226
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Table 8. 1. Second Virial Coefficient and Derivatives for Pairs
in High Temperature Air. (Cont.)

TPair B T dB/dT TZ dZB/dTZ

*Kcm 3 M01071  cm 3 mole 1l cm3 mole 1l
2000. NO C 28.456 6.764 -20.551

7000. NO C 303 -4.043 2.841
3000o NO C 26.332 -42830 3.5585
8000. NO C 26.83 -4.175 3.247

000 NO C 28o5.8 -4354 3.783
60o NO C 27.458 -4.400 3.965

12000. NO C 275305 -4.043 241
13000. NO C 269719 -4e185 4.225
14000. NO C 24.339 -4.468 4350
1000. NO0 C 245876 -4.476 3973

11000. 0O C 25e469 .9470 311.58
12000. 0O C 22.394 -0.736 43107
13000. 0O C 21.827 -19451 -0370
14000. 0O C 24.o789 -2.528 4.334
15000. 0O C 240580 -2.822 1.685

6000. 0 C 209648 -3o001 .1645
7000o 0 C 19.397 -3.113 23497
8000. 0 C 219156 -391 2.074
9000. 0 C 218e178 -3o21 2.96
1000. 0 C 18.536 -3o82 3.06
11000. 0 C 180148 -3.20 3.164
12000. 0 C 17.838 -3*290 324
13000. 0 C 17e155 -3.295 32662
14000. 0 C 18773 -3o295 3.315
1000.0 0 C 1781036 -3.292 3.326

11000. 02 C 1264 6.o287 319.07
12000. 02 C 178739 03o00 3e294
13000. 02 C 18.319 -1o295 31o786
14000. 02 C 279329 -3292 3025
15000. 02 C 26791 -3.318 1934

6000. 02 C 26o308 36237 .107
7000. 02 C 289733 -3.816 2.*7
8000. 02 C 28*215 -31948 3.082
9000. 02 C 2762 -2o08 3.344
1000. 02 C 26931 -*.11 3.482

11000. 02 C 23.922 -3.15 3.708
12000. 02 C 235601 -3.175 382

13000. 02 C 23.225 -4.195 3.990
14000. 02 C 22*914 -4.207 4.077
15000. 02 C 22*623 -4e214 4.149
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Table 8. 1. Second Virial Coefficient and Derivatives for Pairs

In High Temperature Air. (Cont.)

T Pair B T dB/dT TZ dZB/dTZ
OK cm3 mole 1l cm3 mole 1l cm3 moler-

1000. A C2 30.693 12.134 -32o819
2000. A C2 35.184 2s083 -11.764
3000. A C2 350341 -1.070 -5o048
4000. A C2 34.806 -2,563 -1.778
5000. A C2 34.135 -3e408 0*137
6000. A C2 33o464 -3.037 1.382
7000. A C2 32o829 -4.290 2e248
8000. A C2 32o239 -4*536 2.880
9000. A C2 319694 -4*713 3.358
10000. A C2 31.190 -4.843 3e729
11000. A C2 300724 -4o940 4.022
12000. A C2 30e291 -5.012 4.259
13000. A C2 29o887 -5.067 4o453
14000. A C2 29o510 -5.108 4*613
15000. A C2 299157 -5.139 4o746

1000. C C2 35o064 59720 -19.614
2000. C C2 36.400 -1.009 -50398
3000. C C2 35o539 -3.071 -0.858
4000o C C2 34.511 -4.014 1.330
5000. C C2 33o555 -4o526 2.592
6000. C C2 320701 -4*832 3.400
7000. C C2 31e940 -5.024 3.952
8000. C C2 31e261 -5o149 4.346
9000. C C2 30*649 -5o231 4o638
10000. C C2 30.095 -5*284 4o859
110000 C C2 29.590 -5.318 5.029
12000. C C2 29.126 -5o338 5.163
13000. C C2 28.698 -50349 5o269
14000. C C2 28.302 -5o351 5.353
15000. C C2 279933 -5.349 5.421

1000. C2 C2 41e629 11*648 -33.910
2000. C2 C2 459484 0.834 -11.216
3000. C2 C2 45.087 -2.534 -3.962
4000. C2 C2 44.117 -4.110 -0.440
5000. C2 C2 43.097 -49990 19613
6000e C2 C2 42.136 -5*532 2.939
7000o C2 C2 419255 -5o887 3.857
8000. C2 C2 40.452 -6o129 4*522
9000. C2 C2 39*719 -6.299 5.020
100009 C2 C2 39.049 -6.420 5.404
11000o C2. C2 38o433 -6o506 5.706
12000o C2 C2 37*864 -6.568 5.947
13000. C2 C2 37o337 -6.611 6.142
14000. C2 C2 36o846 -6o641 69301
15000. C2 C2 369387 -69661 6.'433
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Table 8. 1. Second Virial Coefficient and Derivatives for Pairs
in High Temperature Air. (Cont.)

T Pair B T dB/dT T2 d2 B/dT2

*K cm 3 mole -1  cm3 mole 1  cm3 mole -1

1000, CN C2 38.144 11.412 -32@694
2000o CN C2 42.021 1.071 -11.006
3000* CN C2 41e750 -2.155 -4.075
4000o CN C2 40.900 -3.668 -0.707
50000 CN C2 39.982 -4e515 1.257
6000, CN C2 39.109 -5.039 29529
7000. CN C2 38.305 -5.383 3.409
80000 CN C2 37.570 -5.619 4.048
90000 CN C2 36,898 -5.786 4.528
10000. CN C2 36,282 -5.905 4.898
11000. CN C2 35.715 -5.991 5.189

12000. CN C2 35.190 -6.053 5.422
13000. CN C2 34.704 -6.098 5.611
14000. CN C2 34.251 -6.129 5.766
15000. CN C2 33.827 -6.150 5.894

1000. CO C2 36.595 12.085 -33.869
2000. CO C2 40.843 1.499 -11.680
3000. CO C2 40.728 -1.811 -4.592
4000. CO C2 39.970 -3.368 -1.146
5000. CO C2 39.116 -4.244 0.868
6000. CO C2 3.8.290 -4.788 2e173
7000. CO C2 37.523 -5.148 3.079
8000. CO C2 36.819 -5.396 3.737
9000. CO C2 36.172 -5.573 4.233
10000. CO C2 35.578 -5.700 4.616
11000. CO C2 35,030 -5793 4,919
12000. CO C2 34.523 -5.862 5.161
13000. CO C2 349052 -5.912 5.359
14000. CO C2 33.613 -5.948 5.521
15000o CO C2 33.201 -5.974 5.656

1000. C02 C2 33.904 23.765 -59.310
2000. C02 C2 43*656 6.536 -23.147
3000. C02 C2 45.123 1.102 -11.716
4000. C02 C2 45.045 -1.503 -6.140
5000. CO2 C2 44.535 -3.002 -2.859
6000. C02 C2 43.897 -3.959 -0.712
7000. CO2 C2 43.235 -4.612 0.794
8000. C02 C2 42,587 -5,078 1.901
9000. C02 C2 41.968 -5.422 2.745
10000. CO2 C2 41.382 -5o683 3.406
]1000. CO2 C2 40,831 -59884 3.936
12000. C02 C2 40.312 -6.041 4.367
13000. C02 C2 39.823 -6.166 4.724
14000. CO2 C2 39.363 -6.265 5.022
15000. C02 C2 38.928 -6.345 5.274
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Table B. I. Second Virial Coefficient and Derivatives for Pairs
in High Temperature Air. (Cont.)

T Pair B T dB/dT TZ dZB/dTZ
*K cm 3 mole 1  cm 3 mole 1  cm3 molel
ICCO0 N C2 309589 5.407 -18.019
2000* N C2 31e950 -0.705 -5.123
3000. N C2 31.252 -2o583 -1.003
4000* N C2 30.378 -3o445 00985
5000* N C2 29554 -3925 2.135
6000. N C2 28813 -4.197 2.871
7000. N C2 28152 -4o376 3.75
8000o N C2 27559 -4493 3*736
9000. N C2 279025 -4571 4*003
10000. N C2 269541 -4,622 4.207
11000. N C2 26098 -4656 -1364
12000. N C2 251692 -4677 4488
13000 N C2 250317 -4688 4586
14000o N C2 24970 -4693 4.665
15000. N C2 24646 -4o693 4728

6000. N2 C2 35.252 4.011 -31237
2000. N2 C2 39051 -983 -0629
3000. N2 C2 38860 -1,887 -4.45
4000o N2 C2 38098 -3328 -Oo845
50000. N2 C2 37260 -4o137 1.023
6000. N2 C2 36459 -4o638 29234
7000o N2 C2 35717 -4o968 3972
8000. N2 C2 35038 -5.195 3681
9000. N2 C2 34.416 -5.356 4.139
10000. N2 C2 33846 -5.471 4.493
11000. N2 C2 33.320 -5555 4.771
12000. N2 C2 32834 -5616 4994
13000. N2 C2 32382 -5661 5176
14000. N2 C2 31962 -5o692 50.25
15000. N2 C2 3.568 -59714 5448

1000. N20 C2 449175 27o537 -69618
2000. N20 C2 55*300 7023 -26.88
3000. N20 C2 56786 -,687 -13o244
4000o N20 C2 56.516 -6.392 -6.628
5000 N20 C2 5577 -4163 -2.738
6000. N20 C2 54912 -5o284 -0.194
7000o N20 C2 54036 -6048 5.58680000 N20 C2 53*191 -6*592 2o895
9000o N20 C2 520391 -6o991 3,890
10O00 N20 C2 51o638 -7o293 49669
110000 N20 C2 500931 -79524 59292
120009 N20 C2 50,269 -7,703 59798

13000. N20 C2 49*646 -7.845 6.216
14000a N20 C2 49.061 -7.957 6*565
15000. N20 C2 48.509 -8*045 6*859
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Table 8. 1. Second Virial Coefficient and Derivatives for Pairs
in High Temperature Air. (Cont.)

!

T pair B T dB/dT TZ dZB/dTZ

*K cm 3 mole -I  cm 3 mole 1  cm3 mole I

1000. NO C2 33.503 13.055 -35.402
2000. NO C2 38.317 2e195 -12.653
3000. NO C2 389464 -1.211 -5.3964000. NO C2 37i871 -2.822 -1.863

5000. NO C2 37.134 -3734 0.206
6000. NO C2 36.399 -49305 1.551
7000. NO C2 35*705 -4o685 2.486
8000, NO C2 35.061 -4.951 3.168
9000, NO C2 34.467 -5.141 3.684
10000. NO C2 33.917 -5o281 4*084
11000. NO C2 33.409 -5.384 .4e401
12000. NO C2 329937 -59462 4.656
13000. NO C2 32.497 -5o521 4*864
14000. NO C2 32,087 -5o564 59037
15000. NO C2 31.701 -59597 5.181

1000. 0 C2 26o837 7.039 -20*828
2000. 0 C2 29.103 0.342 -6*766
3000. 0 C2 28.787 -1.741 -2o270
4000. 0 C2 289138 -2e713 -00089
5000. 0 C2 27*469 -39253 1.180
6000s 0 C2 26*845 -3.586 2.000
7000o 0 C2 26.274 -3.802 2o566
8000. 0 C2 25.756 -3o950 2o976
9000. 0 C2 25.285 -4.052 3.283

10000. 0 C2 24o854 -4.124 3e519
11000. 0 C2 24.458 -4.175 3*703
12000. 0 C2 24*094 -4.212 39851
13000. 0 C2 23o755 -4.237 3e970
14000. 0 C2 23.441 -49253 4o067
15000. 0 C2 23.147 -4o264 4,147

1000. 02 C2 32.043 12.279 -33.401
2000o 02 C2 36.551 2.014 -11.898
3000. 02 C2 36.666 -1.205 -5*037
4000. 02 C2 369088 -2o726 -1.697
5000. 02 C2 35.379 -3o587 0.258
6000. 02 C2 34.674 -4.125 1.528
7000. 02 C2 .34009 -4o484 2e412
8000. 02 C2 33.393 -4734 3.056
9000. 02 C2 32o824 -4,913 3.543
10000. 02 C2 329300 -5*044 3.920
11000. 02 C2 31.814 -5.141 4e219
12000. 02 C2 31.364 -5*214 4.460
13000. 02 C2 30,944 -5.269 4s657
14000a 02 C2 30.552 -59309 4.819
15000. 02 C2 30,185 -5.340 49955
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Table 8. 1. Second Virial Coefficient and Derivatives for Pairs
in High Temperature Air. (Cont.)

T Pair B T dB/dT TZ d2 B/dT2

OKcm 3 mole 1I qm3 molerl cm3 molen-
1000. A CN 27.856 11.729 -31.-370
2000. A CN 32.265 2.185 -11.380
3000. A CM 32.497 -0.812 -5.009
4000. A CM 32.048 -2.233 -1.905
5000. A CM 319455 -3.039 -09086
.6000. A CM 30o853 -3o545 lo097
7000. A CN 30e280 -3*884 1*922
8000. A CN 29.745 -4*121 2.524
9000. A CN 299249 -4.292 20980

10000. A CN 28.790 -4*418 3o333
11000. A CM 28o364 -4e512 3e614
12000. A CN' 27.968 -4o584 3*841
13000. A CN 27*599 -4o638 4.027
14000. A CM 279254 -4.679 4.181
150000 A CM 26o930 -4.710 40309

1000. C CN 32.098 5o654 -18.864
2000. C CN 33.516 -0.748 -59356
3000. C CM 329782 -2*715 -1.040
4000, C CN 31.863 -3e617 1*042
5000. C CN 30*998 -4.110 2o246
6000e C CN 30.220 -4.405 3.017
7000o C CM 29e526 -4.592 3.545
8000. C CN 28.905 -4*714 3.923
9000. C CN 28*344 -4o796 4.203
10000. C CN 279836 -4*850 4.416
11000. C CN 27*372 -4*885 4.580
12000. C CN 26o946 -4.906 40710
13000. C CM 26.553 -4.918 4.813
14000. C CN 26.188 -4.923 4.895
15000. C CM 259848 -4o923 4.962

1000. CN CN 35o143 11.211 -31.656
2000. CM CM 39.039 1*276 -10.827
3000. CN CN 38o878 -1*828 -4.173
4000. CN CM 38e.30 -3*287 -0.938
5000. CM CM 37e301 -4.106 09951
6000. CN CM 36e504 -4e614 2.175
7000. CN CM 35.766 -4.950 3.023
dOOO6 CN CN 35.089 -5.180 3.640
9000. CM CM 34.469 -5.344 4e103

10000. CN CN 33.899 -5*462 49462
11000. CM CN 33e575 -5e547 40744
12000. CM CM 32.889 -'5.610 40971
13000o CN CM 32*438 -5.656 5e15,5
14000. CN CN 329018 -5.688 5.306
150000 CN CM 319624 -50711 5.431
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Table 8. 1. Second Virial Coefficient and Derivatives for Pairs
in High Temperature Air. (Cont.)

T Pair B T dB/dT T2 d2 B/dT2

OK cm 3 mols 1  cm3 mole "1  cm 3 mole -1

1000. CO CN 339505 11.806 -32.648
2000. CO CN 37.740 1,680 -11o426
3000. CO CN 37.729 -1.491 -4o650

4000. CO CN 37.073 -2.986 -19353
5000. CO CN 36.308 -3e829 0.574
6000. CO CN 35.560 -4.354 1.826
7000. CO CN 34.861 -4.703 2o694
8000. CO CN 34o216 -4o944 3327
9000. CO CN 33.623 -5o117 3.804
10000. CO CN 33.077 -5.242 4.173
11000. CO CN 32.573 -5.334 4o465
12000. CO CN 32.106 -5.402 4.700
13000o CO CN 31e671 -5o453 4.891
14000. CO CN 31o266 -5o490 5.048
15000. CO CN 30.886 -5.517 5e179

1000. C02 CN 30.808 23.092 -57.247
2000. C02 CN 40e360 6o547 -22.496
3000. C02 CN 41.878 1.328 -11.527
4000. C02 CN 41.880 -1.177 -6.177
50009 C02 CN 41.449 -2.621 -3.027
6000. C02 CN 40.884 -3.544 -0.965
7000. C02 CN 40.287 -4,174 0.481
8000. C02 CN 39.699 -4.625 1.546
9000e C02 CN 39o134 -4o959 2.358
10000o C02 CN 38,598 -5o213 2.995
11000. C02 CN 38.091 -5.409 3.506
12000. C02 CN 37*614 -5o563 3&922
13000. C02 CN 37.164 -5.685 4.266
14000. C02 CN 36.738 -5.783 4.555
15000. C02 CN 36.337 -5.862 4.799

1000. N CN 27.824 5.304 -17.231
2000. N CN 29.242 -0.479 -5.042
3000. N CN 28.658 -2.261 -1.147
4000. N CN 27e882 -39081 0,735
5000. N CN 27.142 -39530 1.625
6000o N CN 26o472 -39801 2.524
7000. N CN 25.872 -3o974 3.003
80000 N CN 25.334 -4.088 3o347
9000. N CN 24.848 -4.164 3.602
10000o N CN 24.406 -4o216 3797
11000. N CN 249003 -4o250 3.948
12000o N CN 23o632 -4,272 4.067
13000. N CN 23.289 -4o285 4.162
14000. N CN 22o971 -4,292 4*239
15000. N CN 229675 -4.293 4.300
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Table 8. 1. Second Virial Coefficient and Derivatives for Pairs
J .in High Te mpartature Air. (COnt.)

T Pair B T dB/dT T2 dzB/dT2

OK cm3 mole 1l cm3 molerl cm3 mole1l
1000. N2 CM 32.265 10i.704 -29o969
2000o N2 CM 36.033 1.342 -109346
3000. N2 CM 35o§38 -1.586 -4.078
4000. N2 CN 35o272 -2o963 -1.030
5000. N2 CM 349520 -3o738 0.751
6000. N2 CN 33.793 -4o220 1.905
1000. N2 CM 33e117 -4*533 2.706
8000. N2 CM 32e495 -4.758 3.289
9000. N2 CN 31.925 -4.914 3.727

10000. N2 CM 31e402 -5.027 4e067
11000. N2 .CN 300918 -5o110 4e334
12000. N2 CM 30*471 -5e170 4.549
13000. N2 CM 309055 -5.215 4.724
14000. N2 CM 29o668 -5o247 4o867
15000. N2 CM 29.305 -5o270 4#987

1000. N20 CN 40o431 26o873 -67o448
2000, N20 CN 51.384 7.198 -26.1693000o N20 CM 529951 00994 -13e107
4000. N20 CM 52*786 -1.978 -6.735
5000. N20 CM 52.146 -3o686 -2e987
6000. N20 CM 51e371 -40775 -0&535
7000o N20 CM 509576 -5.516 1.182
8000. N20 CM 49e803 -6.045 2.445
9000. N20 CM 49e067 -6*434 3.407
10000o N20 CN 48.373 -6*729 4*161
11000. N20 CM 47.721 -6o955 4.763
120009 N20 CN 47.108 -7*132 5.25413000. N20 CM 46o531 -7o272 5.659
140009 N20 CM 45o988 -70383 5.998
15000. N20 CM 45o476 -7e471 6.284

1000. NO CM 30e673 120709 -349086
20009 MO CM 359432 2.322 -12.329
3000. NO CM 35o662 -0.940 -503934000o MO CN 35o156 -2o485 -2.01*4
5000. NO CM 34o499 -30362 -0.0346000. MO CM 33o834 -3.911 1.253
7000. MO CM 33o202 -4*279 2.150
8000. MO CM 32.613 -4o537 2.8059000. NO CM 32.067 -4.722 3.300

10000. MO CM 31*562 -4.858 3@685
11000. MO CM 31.094 -4.960 3.99012000. MO CM 30*659 -5.037 4.237
13000. MO CM 30.254 -5.095 4.438
14000. MO CM 29.874 -5.140 4.605
15000. MO CM 29.518 -5.173 4.744
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Table 8. 1. Second Virial Coefficient and Derivatives for Pairs
in High Temperature Air. (Cont.)

T Pair B T dB/dT T2 d?-B/dT?-

*K cm 3 mole" cm 3 molel cm3 mole 1

1000, 0 CN 24e506 69857 -19.962.,2000o 0 CN 26*775 0491 -6e602
it'3000a 0 CN 269541 -I,492 -2*332

4000o 0 CN 25@971 -2o420 -0,259
.50000 0 CN 25o370 -2o937 0*949

60009 0 CN 24e804 -3.256 1*730
7000, 0 CN 24.285 -3.466 2o270; 80000 0 CN 23,813 -3e608 29662

9000, 0 CN 23.382 -3*708 2955
100000 0 CN 22o987 -3.779 39181
110000 0 CN 22.624 -3.830 3o359
12000o 0 CN 22.289 -3o866 3.501
13000o 0 CN 21979 -3.892 3,615
14000* 0 CN 21.690 -3.909 3709
150009 0 CN 21.420 -3921 3.787

10000 02 CN 29*129 11.876 -31.941
2000* 02 CN 33.558 2e125 -110518
3000* 02 CN 33o752 -0,936 -5*006
4000. 02 CN 33.262 -2.385 -1.834
5000, 02 CN 32.634 -3.207 0.024
6000* 02 CN 32.001 -3o722 1.2337000, 02 CN 31.399 -4.067 2o074
8000, 02 CN 30.840 -4.307 2.688
90000 02 CN 30.322 -49480 3.153
100000 02 CN 29.843 -4.608 3.513
110000 02 CN 29.399 -4.703 3.799
12000o 02 CN 28*987 -4.774 4.03013000* 02 CN 28,602 -4*828 4.219
14000 02 CN 28o243 -4.869 4o375
15000o 02 CN 27.906 -4e900 4*505

1000. CO CO 31,807 12*342 -33.496
2000. CO Co" 36.353 2.063 -11.962
3000o CO CO 36o486 -1161 -5.092
4000. CO CO 35.920 -2.686 -1.748
5000. CO CO 35.220 -3.549 0.2116000. CO CO 34.522 -4.089 1*483
7000. CO CO 33,863 -4.449 2.369
80UO. CO CO 33o251 -4.700 3.0149000. CO CO 32*687 -4.880 3e502

10000. CO CO 329166 -5.012 3e881
11000. CO CO 31.683 -5.110 4.180
12000. CO CO 319235 -5.183 4e422
13000. CO CO 30.818 -5.238 4.61914000o CO CO 30.428 -59280 4.782
15000. CO CO 30.063 -5.310 4.918
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Table 8. 1. Second Virial Coefficient and Derivatives for Pairs
in High Temperature Air. (Cont.)

T Pair B T dB/dT T? dZB/dTZ

1 *K Cm3 mol 1  cm 3 mole-I cm3 mole'1
1000: C02 CO 28741 23o875 -58:63620009 C02 CO 380725 7*052 -23*262

3000. C02 CO 40.429 1.745 -12.122
4000a C02 CO 40e544 -0.806 -6.690
5000. C02 CO 40e193 -2.279 .-3.491
6000. C02 CO 39.688 -3.222 -1.395
7000. C02 CO 39.140 -3.869 0.077
8000, C02 CO 38.592 -4.333 1.161
90000 C02 CO 38.060 -4o677 1.989
10000. C02 CO 37o553 -4*940 2e640
11000. C02 CO 37.073 -5.144 39161
12000. C02 CO 36.618 -5.305 3.587
13000. C02 CO 36.188 -5.433 3.940
14000. C02 CO 359782 -5.536 4.237
15000. C02 CO 35.397 -5o620 4.488

1000. N2 CO 30.624 11.223 -30.791
2000. N2 CO 34.695 1.714 -10.867
3000. N2 CO 34.740 -1.266 -4.508
4000. N2 CO 34.161 -2.673 -1.413
5000. N2 CO 33.472 -3.467 0.398
6000. N2 CO 32.793 -3.963 1.574
7000. N2 CO 32.156 -4.Z93 2.391
8000. N2 CO 31.567 -4o521 2.986
9000, N2 CO 31.024 -4*685 3o435
10000. N2 CO 30.524 -4.805 3.783
11000. N2 CO 30o062 -4*893 4.059
12000. N2 CO 29.633 -4o959 4.280
13000, N2 CO 29.234 -50008 49461
14000. N2 CO 28.862 -5.044 4.610
15000. N2 CO 28.513 -5.070 4.734

10000 N20 CO 37o975 27*960 -699434
2000, N20 CO 49.516 7.865 -27.236
30009 N20 CO 51.325 19527 -13.912
4000. N20 CO 51.303 -1.514 -7@412
5000. N20 CO 50.761 -3e267 -3.587
6000o N20 CO 50.059 -4.386 -1.083
7000. N20 CO 49o322 -5.151 0.674
8000, N20 CO 48.597 -5.698 1.967
9000. N20 CO 47.901 -6.102 2*953
10000, N20 CO 47.242 -6.409 3*726
110000 N20 CO 469620 -6.646 4.34512000. N20 CO 46.033 -6.832 4.850
13000. N20 CO 45.480 -6.980 5o268
14000. N20 CO 44.958 -7.098 5.617
15000. N20 CO 44.465 -7.194 5.913
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Table 8. 1. Second Virial Coefficient and Derivatives for Pairsf in High Temperature Air. (Cont.)

T Pair B T dB/dT TZ dZB/dTZ

*K cm3 mole-1  cm 3 mole -1  cm3 mole 1

1000. NO CO 28.940 13.256 -34.963
2000* NO CO 34.016 2,711 -12*875
3000. NO CO 34392 -0.605 -5.842
4000* NO CO 33o979- -2.180 -2.414
5000* NO CO 33*388 -3.077 -0.404
6000. NO CO 32.773 -3.641 0.906
7000. NO CO 32.181 -4.021 1.820
8000. NO CO 31.626 -4.287 2.488
9000. NO CO 31,109 -4.481 2*994
10000. NO CO 30*629 -4.624 3*388
11000. NO CO 30.183 -4.732 3.701
12000. NO CO 29.768 -4.814 3.954
13000. NO CO 29.380 -4.877 4.162
14000. NO CO .296017 -4.925 4.335
15000. NO CO 28.676 -4.962 4.479

1000. 02 CO 27.483 12.348 -32.670
2000. 02 Co 32.193 ?o475 -11.991
3000. 02 CO 32.519 -0.628 -5.405
4000* 02 CO 32.115 -29102 -29195
5000* 02 CO 31.548 -2.940 -0.313
6000* 02 CO 30.962 -3,467 0*913
7000. 02 CO 30.399 -3.822 1.768
8000. 02 CO 29.872 -4.070 2.393
9000* 02 CO 299381 -4.250 2.866
10000. 02 CO 28*926 -4.383 3*234
11000. 02 CO 289504 -4.484 3.527
12000. 02 CO 28o110 -4.560 3*764
13000* 02 CO 27*743 -4.618 3957
14000o 02 CO 27.399 -4o663 4.118
15000. 02 CO 27.076 -4.697 4*253

1000. C02 C02 19.648 43*311 -101e200
2000. C02 C02 38.827 15.605 -42*080
3000e CO2 C02 43.267 6.934 -23.933
4000. C02 C02 44.627 2o740 -15.132
5000. C02 C02 44*954 0,292 -9.946
6000. C02 C02 44.857 -1.297 -6.538
7000. C02 C02 44,570 -2.402 -4.134
8000. C02 C02 44.193 -3.209 -2.353
9000. C02 C02 43.779 -3.818 -0.984
10000. C02 C02 43351 -4,292 0.098
11000. C02 C02 42.924 -4.667 0*973
12000. C02 C02 42.504 -4.970 1.692
13000. C02 C02 42.096 -5,218 2*294
14000. C02 C02 41,702 -5.423 2*802
15000a C02 C02 41.322 -5.595 3.237
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Table 8. 1. Second Virial Coefficient and Derivatives for Pairs
in High Temperature Air. (Cont.)

T Pair B T dB/dT TZ dZB/dTZ
*Kcm 3 mole1l cm3 mole 1l QM3 mol071

1000. N20 C02 27o537 50e621 -118.909
2000. N20 C02 49.814 17.865 -49o223
3000o N20 C02 54o822 7o593 -27o730

5000o N20 C02 56.503 -0.270 -1.141
4000. N20 C02 56.254 -2e127 -7.292

9000. N20 C02 5475 -5.115 -0.518
100000 N20 C02 54o187 -5.669 0.762
11000. N20 C02 53*625 -6.108 1.796
12000o N20 C02 53o078 -6.461 2.646
13000. N20 C02 52*549 -6.750 30355
14000. N20 C02 52.040 -6*988 3e954
15000. N20 C02 51o550 -7o186 4.466

1000. Co N 26o655 5.665 -17.782
2000o Co N 28o287 -0.215 -5.408
3000o Co N 279802 -2.032 -1*453
4000. Co N 27.089 -2.872 0.461
5000. Co N 26.394 -3o336 1.571
6000. CO N 25o759 -3o617 2o285
7000. CO N 25,187 -3.797 20776
8000o CO N 24o671 -3*918 3*129
9000. CO N 249205 -4.000 3o392
10000. CO N 230780 -4.056 3.593
11000. CO N 23o392 -4.095 30750
12000. CO N 23o034 -4.120 3o874
13000. CO N 220704 -4*136 3o973
14000. C0 N 22o397 -4*146 4o054
15000. CO N 22.111 -4*150 4o119

1000. C02 N 26o592 12.228 -32.231
2000. (02 N 31.278 2.510 -11o877
3000o C02 N 31.630 -0.546 -5.396
4000. C02 N 31o252 -10998 -2o237
5000. C02 N 309710 -29824 -00385
6000. C02 N 30o146 -30344 09823
7000o C02 N 29e602 -3o694 1.664
8000. (02 N 29e092 -3o940 2*280
90000 C02 N 28*617 -4e118 2.747
10000. C02 N 28.176 -4o250 3.110
11000. C02 N 27.766 -40350 3.399
12000. C02 N 270384 -4o426 3.632
13000. (02 N 27.028 -4*484 3.824
14000. (02 N 26o694 -4o528 39983
15000. C02 N 26.380 -4o562 4e116
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Table 8. 1. Second Virial Coefficient and Derivatives for Pairs

in High Temperature Air. (Cont.)

T Pa ir B T dB/dT TZ d2B/dT2

OKcm3 mole-1  cm 3 mole1l cm3 mole1l
1000. N N 20.926 2.112 -8.880
2000. N N 21.112 -1e153 -1.927
3000. N IN 20.429 -2.136 0.284
4000. N N 19.747 -2.575 1.342
5000. N N 19.145 -2o808 10947
6000. N N 18.620 -2o941 29329
7000. N N 18.160 -39021 2o587
8000. N N 179753 -3o070 2o770
9000. N N 17o390 -3.100 29902

10000. N N 17o062 -3o116 3.001
11000. N N 160765 -3o124 39076
12000o N N 16.493 -3.125 3.133
13000. N N 16o243 -3o'123 3o178
14000o N N 16.012 -3.117 3e212
15000. N N 150797 -3.109 3.238

1000. N2 N 25.508 4o879 -15.832
2000o N2 N 26o815 -0.432 -4.638
3000. N2 N 26o282 -2o069 -1.061
4000o N2 N 25o571 -29822 0.667
5000o N2 N 24.893 -3.235 1.668
60009 N2 N 24o280 -3*484 2.310
70009 N2 N 230730 -3*643 2o750
80000 N2 N 239236 -3*748 3e066
9000. N2 N 220790 -3.818 3.301

10000. N2 N 229385 -3o865 3.480
11000. N2 N 22.015 -39897 39618
12000. N2 N 21.675 -3*917 3o728
13000. N2 N 210361 -3o929 3o815
14000. N2 N 21.070 -3.935 3.885
15000. N2 N 200798 -3o937 3.942

10000 N20 N 359188 14.463 -38.845
2000o N20 N 40*593 2*615 -14o029
3000. N20 N 40.842 -lol04 -6.'117
4000. N20 N 40e257 -2o866 -2.263
5n000. M20 N 39*501 -3*865 -0@005
60000 N20 tN 33o136 -4.492 1.464
7000. N20 N 38.011 -40911 2.486
8000. N20 N 37o335 -5o204 3.233
9000. N20 N 36.709 -5.415 3*797

10000o N20 N 36.130 -5o570 4.236
11000. N20 N 35o593 -59686 4.584
12000. N20 N 35o095 -5o773 4.864
13000. N20 N 34-.65-p -5o839 5o094
14000. N20 N 34o195 -5e889 54284
15000. N20 N 33o788 -50927 5*44.3
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Table 8.1. Second Virial Coefficient and Derivatives for Pairs
in High Temperature Air. (Cont.)II

T Pair B T dB/dT T2 d2 B/dTZ

"K cm 3 mol1e cm 3 mole-I cm3 moldl
1000. NO N 24o578 6.260 -18.666
2000. NO N 26o567 0.235 -6.012
3000. NO N 26.253 -1.637 -1.967
4000. NO N 25.649 -2e509 -0.005
5000. NO N 25.032 -29994 1.137
6000. NO N 24.458 -3.292 1.874
7000. NO N 239935 -3.485 2382
8000. NO N 23o461 -3e616 2o750
9000. NO N 23.029 -3o707 39025
10000. NO N 22o635 -3o771 3o236
11000. NO N 229273 -3,817 39402
120009 NO N 21940 -3.848 3.534
13000. NO N 21*631 -3,870 3*640
14000o NO N 21.343 -3.884 3o727
15000. NO N 21.075 -3.893 3.798

1000. 02 N 23.072 5.765 -17e279
2000a 02 N 24.887 0.175 -5.534
3000. 02 N 24.578 -1*562 -1779
4000. 02 N 249006 -2.370 0.041
5000. 02 N 23,424 -2.819 1.100
6000. 02 N 22o884 -3.094 1,784
7000, 02 N 22392 -3o273 2.255
8000. 02 N 219947 -3.394 2.596
9000. 02 N 21e542 -3*478 2,850
10000. 02 N 21o172 -3.537 39046
11000. 02 N 209833 -3o578 3,199
12000. 02 N 209521 -3e607 3*321
13000. 02 N 20e231 -3o627 3.419
14000. 02 N 19,962 -3.640 3.499
15000. 02 N 19710 -3*647 3.565

1000. A N+ -3241.661 13555.480 -88529.130
2000. A N+ -462.108 889o548 -3288e198
3000. A N+ -2329275 354.680 -1036.092
4000e A N+ -152.736 214.162 -5599092
5000, A N+ -112e356 152.316 -3739681
6000e A N+ -87.892 117e893 -278.395
7000. A N+ -71,474 96.029 -221.108
8000. A N+ -59.693 809923 -183.078
9000. A N+ -50.832 69.864 -156.063

10000. A N+ -43o927 61.418 -135.908
11000. A N+ -38*397 54.755 -120.306
12000. A N+ -7.33e872 49.365 -107.875
13000. A N+ -30,102 44.914 -97.740
14000o A N+ -26914 41.176 -89.318
15000o A N+ -24*184 37,992 -82o211
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Table 8.1. Second Virial Coefficient and Derivatives for Pairs
in High Temperature Air. (Cont.)

I

T Pair B T dB/dT TZ dZB/dTZ

"K cm3 mole 1  cm3 mole -1  cm3 mole -1

1000. N N+ -170.916 244.485 -649o879
2000. N N+ -65.802 90.469 -206.310
3000. N N+ -37.018 54.871 -120.515
4000, N N+ -23o642 39.071 -84e715
5000. N N+ -15.965 30.138 -65.101
6000. N N+ -11.012 24.393 -52.719
7000. N N+ -7.570 20e386 -44.191
8000. N N+ -5o050 17.432 -37o957
9000. N N+ -3.133 15o165 -33.201
10000. N M+ -1.631 13.369 -29*453
11000. N N+ -09428 11.913 -26*423
12000. N N+ 0.555 10.707 -23*922
13000. N N+ 1,371 9.694 -219823
14000. N I1+ 2*057 8,830 -20.036
15000. N N+ 2*640 8.084 -18.497

1000. M2 N+ -244*295 356.200 -971.673
2000. N2 N+ -93,396 128.029 -294o884
3000o N2 N+ -52e802 77.134 -170.280
4000. N2 N+ -349024 54.790 -119.118
5000e N2 N+ -23.263 42.225 -91.312
6000e N2 N+ -16,324 34,169 -73.843
7000. N2 N+ -11*502 28*561 -61.847
8000. N2 i'+ -79971 24.433 -53.100
9000. N2 N+ -5.283 21.268 -46.438

10000. N2 N+ -3.177 18.763 -41.194
11000. N2 N+ -1.487 169732 -36.958
12000s N2 N+ -0.106 15.052 -33.466
13000. N2 N+ 1.042 13.640 -30.536
14000. N2 N+ 2.008 12*436 -28.044
15000, N2 N+ 2*829 11.398 -25*897

1000. NO N+ -266*560 400o220 -1131.071
2000. NO N+ -100.500 138.034 -322*458
3000. NO N+ -56.952 82.351 -183.196
4000. NO N+ -36*943 58.274 -127.265
5000. NO N+ -25e508 44.834 -97.200
6000. NO N+ -18.144 36.253 -78e437
7000. NO N+ -139028 30.298 -65,609
8000. NO N+ -9o282 25.923 -56.284
9000. NO N+ -6.430 22o572 -49.198
10000. NO N+ -49194 19*924 -43.630
11000. NO N+ -2.399 17o778 -39.139
12000., NO N+ -0,931 169004 -35.440
13000. NO N+ 0.290 14.514 -32e341
140009 NO N+ 1,318 13e244 -29.706
15000. NO N+ 2e193 12.150 -27o438
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Table 8. 1. Second Virial Coefficient and Derivatives for Pairs
in High Temperature Air. (Cont.)

T Pair B T dB/dT T2 dzB/dTZ

K cm 3 mola 1  cm 3 mole 1  cm3 mole I

1000. 0 N+ -112.638 156.868 -390.106
2000. 0 N+ -42.715 62.235 -138.744
3000, 0 N+ -229766 38.269 -83.326
4000. 0 N+ -13e421 27.329 -59.2095000. 0 N+ -8.053 21*059 -45.718
6000. 0 N+ -4o596 16.995 -37.095
7000. 0 N+ -29202 14.146 -31.1068000. 0 N+ -0.457 12.038 -26.703
9000. 0 N+ 0.863 10.416 -23@330

10000. 0 N+ 19891 9.130 -209662
11000. 0 N+ 2.711 8.085 -189500
12000o 0 N+ 3.376 7e219 -16.712
13000. 0 N+ 3e924 6.491 -15.208
14000. 0 N+ 4*382 5.870 -139027
15000. 0 N+ 4.768 5.334 -12.821

1000. C02 N2 28.097 21*964 -54.235
2000. C02 N2 37o225 6*337 -21.398
3000. C02 N2 38721 1.407 -11.043
4000o C02 N2 38.766 -0.960 -5.993
5000. C02 N2 38393 -2*326 -3.020
6000. C02 N2 37.887 -3e199 -19072
7000. C02 N2 37.346 -3.797 0*294
8000. C02 N2 36.809 -4.225 10301
9000. C02 N2 369292 -4.543 2.069
10000. C02 N2 35.801 -4.784 2.672
11000. C02 N2 35o336 -4.971 3.155
12000. C02 N2 34.897 -5.118 3.549
130*0. C02 N2 3.482 -5.235 3.876
14000. C02 N2 34o091 -5.329 4e!49
15000. C02 N2 33.720 -59405 4e381

1000. N2 N2 29o535 10e208 -289337
2000. N2 N2 339175 1.398 -9.874
3000. N2 N2 33.140 -19359 -3o979
4000, N2 N2 32.551 -2o659 -1.111
5000. N2 N2 31.873 -39391 0.566
6000. N2 N2 31.?11 -3.846 1.654
7000e F42 N2 30*594 -4e149 2.409
8000. N2 N2 30.026 -4358 2.958
9000. N2 N2 29.503 -4e507 3o373
10000. N2 N2 29.023 -49615 3.693
11000* N2 N2 28.579 -4.694 3e946
12000. N2 N2 289168 -4.753 4.150
13000. N2 N2 27.786 -4e796 4.315
14000o N2 N2 27.429 -4o828 49452
15000. N2 N2 27,095 -4.850 4o565
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Table 8. 1. Second Virial Coefficient and Derivatives for Pairs

in High Temperature Air. (Cont.)IT Pair B T dB/dT T d B/dTZ
*ic cm3 molel, cm3 mole'l cm3 mo,64

1000. N20 N2 37,181 25o762 -64.373

7000. N20 N2 47.2138 -506 -5091
8000. N20 N2 46.503 -5.567 .1217
9000. N20 N2 45.824 -59686 3.038
1000. N20 N2 45.643 -6.222 -3.756
11000. N20 N2 47o580 -64405 4.3316
12000. N20 N2 479012 -. 61 40919
13000. N20 N2 43.477 -5o67 5.126
140000 N20 N2 42o973 -6o840 5.010
10000. N20 N2 45e187 -6o939 3.783

11000. N2 N2 -12406 17o01 - 3370
12000. N2 N2+ -4461 76o18 -157399
13000. N2 N2+ -234775 -696.5878
14000. N2 N+ 4112973 31.88 -95
15000. N2 N2+ -5o017 24o578 -5.857

6000. N N2+ -0.9912 173981 -39739
7000. N N2+ 145781 716.330 -36.6329
8000. N N2+ -2o3.78 1430 -31.819
9000. N N2+ 511297 11.98 -27.390
10000 N N2+ 6.4637 10o503 -24.194
11000. N N2+ 70384 19o044 -2159
12000. N N2+ e8.1 8.*3006*5
13000. N N2+ 8.729 1282 -31.639
14000. N N2+ 95297 61373 -176.08
1000.0 N N2+ 96463 1230 -14.753

11000. N2 N20 379384 58.190 -171
120009 NO N20 6*2.75 2003 -19i.623
13000o N2 N20 68e23 8086 -1.5634
140009 N2 N20 69*723 2.298 -1963088
15000. N0 N20 969.43 -1.727 -12.17

6000. N20 N20 69.414 -3253 -73791
7000. N20 N20 68214 24.763 -56*653
8000o N20 N20 689109 -5086 -31.64
9000. N20 N20 6973 -6268 .1947
10000 N20 N20 6663 -le72 1683
11000e N20 N20 69074 -7o283 2.8859
12000. N20 N20 68o827 -84264 3.872
13000. N20 N20 68*535 -5865 4.*695

140009 N20 N20 63.907 -8*836 3907

15000. N20 N20 63.272 -9e061 5.982
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Table 8. 1. Second Virial Coefficient and Derivatives for PairsI. in High Temperature Air. (Cont.)

T Pair B T dB/dT TZ dZB/dTZ

*K cm3 mole(1  cm3 mold-1  Cm3 mole 1I
1000. C02 NO 26.092 22o767 -55o683
2000. C02 NO 35.659 6o843 -22.182
3000. C02 NO 379340 1.821 -11.645
4000. C02 NO 37.497 -0.595 -6.507
5000. C02 NO 37.202 -1.991 -39481
6000. C02 NO 360754 -2.887 -1.497
7000. C02 NO 36.260 -3*501 -0.104
8000e C02 NO 35.763 -3.942 00923
9000. C02 NO '35o278 -4.27() 1.708
10000. C02 NO 34.815 -4o521 20325
11000. C02 NO 34.375 -4*716 2e819
12000a C02 NO 33.957 -4*870 3.224
13000. C02 NO 33.563 -4.993 3o559
14000o C02 NO 33,189 -5.092 39841
15000. C02 NO 329835 -5e173 4.079 1

1000. N2 NO 28.028 120110 -32.248
2000o N2 NO 329607 2.326 -11*754

3000e N2 NO 329880 -0.748 -5o224
4000. N2 NO 329443 -2.206 -2.042
5000o N2 NO 319854 -3*034 -0e177
6000. N2 NO 31e251 -3.555 1.037
7000*o N2 NO 30e676 -39904 1.883

8000. N2 NO 309137 -4.148 2e501
9000. N2 NO 29.638 -4*325 2.969
10000. N2 No 29.175 -4o455 3.332
110000 N2 NO 28.746 -4e5531 3o621
12000o N2 NO 280347 -4*627 3.854
13000. N2 NO 27o974 -4.683 4.046
14000o N2 NO 27o625 -4.726 4e204
150000 N2 NO 27.298 -4o759 49336

1000. N20 NO 33o865 290784 -72*798
2000o N20 NO 46o390 8.976 -299019
3000. N20 NO 48e600 2.414 -15*251
4000. N20 NO 48.816 -09743 -8.538
5000o N20 NO 48*438 -2*568 -4o584
6000. N20 NO 47.859 -3.738 -1.992
7000. N20 NO 47e219 -49541 -0.172
8000o N20 NO 469573 -59119 1.170
9000. N20 NO 45.944 -5o548 2.196
10000. N20 NO 45o342 -5.875 3o002
110000 N20 NO 449769 -6*130 3.649
12000. N20 NO 449227 -69332 4.177
13000o N20 NO 43.714 -6.493 4o616
14000o N20 NO 43.228 -6*623 4.984
15000. N20 NO 42.767 -6.729 5o296
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Table 8. 1. Second Virial Coefficient and Derivatives for Pairs
in High Temperature Air. (Cont.)

T Pair B T dB/dT T2 dZB3/dTZ

OKcm 3 mole 1l cm3 mole 1  cm3 mole 1

1000. NO NO 26o290 14e202 -36.560

2000. NO NO 31.901 3.347 -13o814
3000. NO NO 32.513 -0e072 -6o589
4000. NO NO 32.245 -1.703 -3.066
5000. NO NO 319756 -2.635 -0.996
6000. NO NO 31e220 -3*226 00355
7000o NO NO 30.691 -3o626 1*299
8000. NO NO 30*187 -30908 1.992
9000. NO NO 29e714 -4.115 2.518
10000. NO NO 29.272 -4o269 2&928
11000. NO NO 28.859 -40387 3.255
12000e NO NO 28o474 -4*478 3.521
13000. NO NO 28e112 -49549 3.740
14000a NO NO 27o773 -4e604 3.922
15000. NO NO 27.454 -4.647 4.075

1000. 02 NO 24o892 13*207 -34.083
2000. 02 NO 30.094 3.071 -12.845
3000. 02 NO 30.644 -0.121 -6.097
4000. 02 NO 30*378 -1*643 -2.806
5000. 02 NO 29e910 -29513 -0.873
6000. 02 NO 29.400 -3.064 0.388
7000. 02 NO 28.898 -3o436 1.269
8000. 02 NO 289421 -3*699 1.915
9000. 02 NO 27.973 -39891 2.406

10000. 02 NO 27o556 -4.035 2.789
11000. 02 NO 27.166 -4.144 3e094
12000o 02 NO 26*801 -49228 3.342
13000. 02 NO 26*460 -4o294 39545
14000. 02 NO 26e140 -4.345 3*715
15000. 02 NO 259839 -4o384 3*857

1000. N NO+ -122o429 168.445 -393.233
2000. N NO+ -44o845 71.148 -155.380
3000. N NO+ -21.894 44.257 -95o783
4000. N NO+ -11.077 31.638 -68o730
5000o N NO+ -4.868 24.308 -53.274
6000. N NO+ -0.887 199520 -439269
7000o N NO+ 1.855 16e147 -369262
8000. N NO+ 3*840 13.6';4 -31.081
90000 N NO+ 5.331 !Ie714 -27.094
10000. N NO+ 6*483 10.181 -23.931
11000. N NO+ 7e393 8.935 -21.361
12000e N NO+ 8.124 7.902 -19e231
13000. N NO+ 8.722 7.033 -17.438
14000. N NO+ 9.215 69291 -15.008
15000. N NO+ 9.627 59652 -14e586
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Table 8. 1. Second Virial Coefficient and Derivatives for Pairs
in High Temperature Air. (Cont.)

T Pa ir B T dB/dT TZ dZB/dT2

*K cm 3 mole 1  cm3 mol( 1  cm3 molW1

1000. N2 NO+ -176.826 243o756 -579.088
2000. N2 NO+ -65.552 1019226 -222.299
3000. N2 NO+ -32.953 62.779 -136.056
4000. N2 NO+ -17.610 44.876 -97.373
5000. N2 NO+ -8.801 34.516 -75.402
6000. N2 NO+ -3e144 27762 -61.232
7000. N2 NO+ 0.759 23.011 -51331
8000o N2 NO+ 3.591 19s489 -44.021
9000. N2 NO+ 5*724 16.774 -38.404
10000. N2 NO+ 7.375 14.619 -33.951
11000. N2 NO+ 8.684 12.866 -30.335
12000o N2 NO+ 9.739 I.414 -27.341
13000. N2 NO+ 10e603 10.192 -24.820
14000o N2 NO+ 11.319 9.150 -22,670
150000 N2 NO+ 11*919 8o251 -20.814

1000. 0 NO+ -85*270 1219823 -279.065
2000. 0 NO+ -28*672 52.230 -113.861
3000. 0 NO+ -11.828 32.429 -70.609
4000e 0 NO+ -3o921 23e051 -50e692
5000. 0 NO+ 0.588 17.580 -39o230
6000. 0 NO+ 3e456 13e998 -31.779
70009 0 NO+ 5.414 11.472 -26.546
8000. 0 NO+ 6.817 9.596 -22.669
9000, 0 NO+ 7e860 8e149 -19.681
10000. 0 NO+ 8.657 6999 -17.309
11000. 0 NO+ 9o279 6,065 -15.379
12000. 0 NO+ 9.773 5o291 -13780
13000. 0 NO+ 10.170 4.640 -12.433
14000. 0 NO+ 10.493 4.084 -11.283
15000. 0 NO+ 10758 3.606 -10e290

1000. CO 0 23.163 7.166 -20.374
2000. CO 0 25.627 0.749 -6.917
3000. CO 0 25.493 -1.255 -29617
4000. CO 0 24.989 -2,196 -0.527
5000. CO 0 24,437 -2,723 0.693
6000. CO 0 23.909 -3,050 1,483
7000. Co 0 23.422 -3.265 2.030
8000. CO 0 22.975 -3.413 2.428
9000. CO 0 22.567 -3.518 2726
10000. CO 0 229192 -3o593 2.957
11000. CO 0 21.847 -3,647 3.139
12000. CO 0 21e528 -39687 3.284
13000. CO 0 219232 -3,716 3.402
14000. CO 0 20.956 -3736 3.499
15000. CO 0 20,697 -3.750 39579
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Table 8. 1. Second Virial Coefficient and Derivatives for Pairs
in High Temperature Air. (Cont.)

T Pair B T dB/dT T2 d2 B/dT2

OK cm 3 mole 1  cm 3 mol 1  cm 3 moli 1

1000. C02 0 22e148 14.549 -36.564
2000. C02 0 28068 3.873 -14167
3000. C02 0 28.906 0.507 -7.079
4000. C02 0 28e807 -1.105 -3.621
5000. C02 0 28o452 -2.032 -1#587
6000. C02 0 28.026 -2.622 -0.257
7000e C02 0 27@590 -3.024 0.675
8000. C02 0 27.166 -3.310 19360
90000 C02 0 26764 -39521 1.882
10000. C02 0 26*384 -3.680 2*291
11000. C02 0 26.027 -3.803 2.618
120009 C02 0 25.692 -39899 2.883
130000 C02 0 25,377 -3o974 3.103
14000. C02 0 25.080 -4.034 3*287
15000, C02 0 24*800 -4.082 3.442

1000. N 0 18.430 3.007 -10.310
20000 N 0 .19.132 -0.530 -2.837
3000o N 0 18,680 -1.614 -0.451
4000. N 0 18.140 -2*110 0.699
5000. N 0 17.637 -2.379 1.363
6000. N 0 17.188 -2o540 1.787
7000a N 0 16.788 -2.641 29077
8000. N 0 16.431 -2*706 2*284
9003. N 0 16.110 -2.749 2.438

1000GO N 0 159818 -2.778 2o554
11000o N 0 15.553 -2.795 2.643
12000+, N 0 15.309 -2.806 2.714
130004 N 0 15.084 -2.811 2.769
.14000. N 0 14.876 -2.813 2e814
15000. N 0 14e682 -2.811 2.849

1000. N2 0 22.195 6o480 -18*671
2000. N2 0 24.376 0.557 -6.246
3000a N2 0 24,198 -1.290 -2*274
4000* N2 0 23,695 -2.155 -0.346
5000. N2 0 23,157 -2o639 0.779
6000. N2 0 22.648 -2.938 1.507
7000. N2 0 22.179 -3,135 2.011
8000. N2 0 21751 -3.269 2376
9000, N2 0 21.360 -3.363 29650
100000 N2 0 21.002 -3,431 2*862
11000, N2 0 20.673 -3o479 3,028
12000o N2 0 209368 -3.514 3.161
13000. N2 0 20,086 -3o539 3.269
14000. N2 0 19.823 -3.557 3*357
15000. N2 0 19.577 -3.568 3.430
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Table 8.1. Second Virial Coefficient and Derivatives for Pairs
in High Temperature Air. (Cont.)

T Pair B T dB/dT TZ dZB/dTZ
*K cm 3 mol e cm3 mole -  cm3 mole -

1000. N20 0 29.796 17.427 -44.400
2000. N20 0 36*771 4.337 -16960
3000. N20 0 37.631 0.212 -8o256
4000. N20 0 37.392 -1.760 -4.010
5000. N20 0 36.86a -2o889 -1.515
6000. N20 0 36.273 -3e607 0.115
7000. N20 0 35.679 -4.093 1.256
8000. N20 0 35.108 -4.438 2*0 3
9000. N20 0 34.570 -4.692 2.730
10000. N20 0 34.065 -4,882 3.227
11000. N20 0 33.593 -5.027 3.625
12000. N20 0 339151 -5,140 3.948
13000. N20 0 32.736 -5.228 4.214
14000. N20 0 32.345 -5.298 4.436
150009 N20 0 31978 -5o353 4,623

1000. NO 0 21.179 7.745 -21.258
2000. NO 0 23.987 1.178 -7.499
3000. NO 0 24.015 -0.879 -3.108
4000. NO 0 23.615 -1.851 -0.970
5000. NO 0 23.138 -2.399 0.280
6000. NO 0 22.668 -2.741 1.092
7000. NO 0 22.227 -2.969 1.656
8000. NO 0 219819 -3.127 2.067
9000. NO 0 21.444 -3.240 2.377
10000. NO 0 21.098 -3.322 2.618
11000. NO 0 20.779 -3.383 2.808
12000. NO 0 20.482 -3.428 2.961
13000. NO 0 20.207 -3.462 3.086
14000. NO 0 19.949 -3.487 3.188
15000. NO 0 19.708 -3.505 3.274

1000. 0 0 16.004 3.923 -11.819
20009 0 0 17.227 0.089 -3.763
3000. 0 0 17.003 -1.101 -1.188
4000. 0 0 16.602 -1.654 0.060
5000. 0 0 16.197 -1.962 0.786
6000. 0 0 15e822 -2.150 1.254
7000. 0 0 15.480 -2.272 1.577
8000. 0 0 15.171 -2.354 1,810
9000. 0 0 14.891 -2.411 1.985
10000. 0 0 14.634 -2o451 2.119
11000. 0 0 14.399 -2.479 2.223
12000. 0 0 14.183 -2.499 2.307
13000. 0 0 13.982 -2.512 2.374
14000. 0 0 13.796 -2.520 2.428
15000. 0 0 13.622 -29525 2*473
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Table 8. 1. Second Virial Coefficient and Derivatives for Pairs
!| in High Temperature Air. (Cont.)

T Pair B T dB/dT TZ dZB/dTZ
SK cm 3 mole -1  cm 3 mole -1  cm3 mole 1

1000. 02 0 20.045 6.879 -19.123
2000. 02 '0 22,492 0.928 -6.653
3000. 02 0 22.462 -0.934 -2.671
4000. 02 0 22.060 -1.811 -0.734
5000* 02 0 21.598 -2.305 0.399
6000. 02 0 21.149 -2.612 1.133
7000. 02 0 20.730 -2e816 1.643
8000. 02 0 20.344 -2.957 2.014
9000. 02 0 19.990 -3.058 2.294

10000. 02 0 199664 -3.130 2e510
11000, 02 0 19.363 -3.184 29681
12000a 02 0 19.084 -3.223 2.818
13000. 02 0 18.825 -3.252 2.930
14000. 02 0 18.583 -3.273 3*022
15000. 02 0 18.356 -3.289 3.098

10009 A 0+ -6440.021 33972.100 -258244.799
2000. A 0+ -581.908 1301.352 -5466.581
3000. A 0+ -268.998 445.038 -1420.652
4000. A 0+ -172.217 252.535 -701.860
5000. A 0+ -125.347 174.044 -447.282
6000. A 0+ -97*650 132.259 -323.749
7000. A 0+ -79.340 106.469 -252.293
8000. A 0+ -66.331 89.003 -206.144
9000. A 0+ -56.613 76.400 -174.027
10000. A 0+ -49.078 66.879 -150.441
11000. A 0+ -43.067 59.434 -132.410
12000. A 0+ -38.161 53.451 -118.189
13000. A 0r -34.082 48.539 -106.690
14000. A 0+ -30.640 44.433 -97.202
15000. A 0+ -27.696 40.949 -89.242

1000. N 0+ -193.261 290.212 -824.283
2000. N 0+ -73.171 99.592 -232.926
3000. N 0+ -41.761 59.386 -132.112
4000. N 0+ -27.331 42.031 -91.734
5000. N 0+ -19.082 32*352 -70.056
6000. N 0+ -13.767 26.175 -56.537
7000. N 0+ -10.072 21.889 -- 47.299
8000. N 0+ -7.365 18*741 -40.585
9000. N 0+ -5.302 16.330 -35.485
10000. N 0+ -3.684 14.425 -31.478
11000. N 0+ -2.384 12.882 -28.246
12000. N 0+ -19320 11.606 -25.585
13000. N 0+ -0.434 10.534 -23.356
14000. N 0+ 0.312 9.621 -21.460
15000. N 0+ 0.949 8*834 -19.829
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Table 8. 1. Second Virial Coefficient and Derivatives for Pairs
in High Temperature Air. (Cont.)

Pair B dBCdT T2 dBdT
K cm3 mole-1  cm 3 molW1 cm3 mole 1

10000 N2 0+ -279o414 432,196 -12719157
2000o N2 0+ -104e299 142e214 -337o290
3000e N2 0+" -59o671 83o976 -188o231
4000, N2 0+ -39.305 59e213 -129e807
O00. N2 0+ -27,694 45.501 -98.776

6000* N2 0+ -20.222 36.787 -79.548
70009 N2 0+ -15.029 30.758 -66o464
8000e N2 0+ -11.225 26331 -56o984
90000 N2 0+ -8.326 22o957 -49798
10000, N2 0+ -69051 20e289 -44.163
11000, N2 0+ -4.222 18.129 -39.625
12000. N2 0+ -2.723 16.345 -35.891
13000* N2 0+ -1.476 14e846 -32.766
140009 N2 0+ -0*424 13*570 -30.111
15000e N2 0+ 0.474 12*470 -27.827

1000. 0 0+ -126.534 180.812 -473.405
2000. 0 0+ -48.166 67.933 -154.263
3000e 0 0+ -26*524 41,292 -90.626
4000. 0 0+ -16.459 29.396 -63o827
5000. 0 0+ -10.685 22.651 -49.079
6000. 0 0+ -6o965 18305 -39744
7000. 0 0+ -4*384 15.272 -33.304
8000. 0 0+ -2.498 13.033 -28.590
9000. 0 0+ -1.066 11,314 -24.991
10000. 0 0+ 0.053 9.953 -22o153
11000. 0 0+ 0*948 8.848 -19.856
12000. 0 0+ 1.678 7.933 -17.960
13000e 0 0+ 2.281 7.164 -16.369
14000. 0 0+ 2*788 6.508 -15.013
15000. 0 0+ 3.217 50942 -13.845

1000. N 0- -160.745 226.941 -582.457
2000* N 0- -61.293 87.122 -196.379
3000. N 0- -33.468 53.211 -116a376
4000. N 0- -20e487 37o938 -82.257
5000. N 0- -13,034 29.243 -63.362
6000. N 0- -8,232 23,628 -51.358
7000. N 0- -4.901 19.701 -43.054
8000* N 0- -2.468 16,801 -36.966
9000, N 0- -0.624 14.572 -32.311
10000. N 0- 0.817 12.806 -28*637
11000. N 0- 1.968 11372 -25o662
12000. N 0- 2.905 10,184 -23.204
13000. N 0- 3o680 9.185 -21.139
14000. N 0- 4.328 8334 -19.380
15000e N 0- 4*878 7.599 -17.864
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Table 8. 1. Second Virial Coefficient and Derivatives for Pairs
in High Temperature Air. (Cont.)

T Pair R T dB/dT T2 dZB/dTZ

c3 molarl cm3 molerl qm3 mole 1l

100,0. C02 02 24'9116 23.743 -57.538
2000. C02 02 34*199 7e413 -23.132
3000. C02 02 36.084 29265 -12.342
4000. C02 02 36.360 -0.214 -7@083
5000. C02 02 36.145 -1.650 -3o984
6000. C02 02 35.757 -2o573 -1.952
7000. C02 02 350310 -3.208 -0.523
8000. C02 02 34.850 -3.666 0.531
9000. C02 02 34.397 -4*007 1.338
10000. C02 02 33.961 -4o268 10972
11000. C02 02 33.544 -4.472 29482
12000. C02 02 339148 -4*634 2.899
13000. C02 02 32*772 -40764 3o246
140009 C02 02 32*415 -4*870 39537'
15000. C02 02 32.076 -4o956 3e784

1000. N2 02 26.566 11.275 -30.116
2000. N2 02 30*812 2.121 -109941
3000o N2 02 31.045 -00754 -4.830
4000. N2 02 309621 -29118 -1.853
5000. N2 02 30.058 -2.891 -00109

6000. N2 02 29.485 -3.377 1.027
7000. N2 02 28.938 -3*703 1.818
8000. N2 02 28o428 -3o931 2.396
90000 N2 02 27o955 -4o095 2.833

10000. N2 02 27e517 -4e216 3.173
11000. N2 02 27.111 -40307 3.443
12000o N2 0? 26o733 -4o376 3e660
13000. N2 0? 26.380 -4.428 3e839
14000o N2 02 269051 -4.468 3.986
150000 N2 02 259741 -4o497 4*110

1000. N20 02 32o255 27.834 -68o140
2000o N20 02 43o939 8*334 -27.120
3000. N20 02 45o979 2.184 -14.214
4000. N20 02 46.158 -09774 -7*921
5000. N20 02 459787 -2o483 -4*214
6000. N20 02 459230 -3o579 -1.785
7000. N20 02 44o619 -40331 -0.079
8000m N20 02 44o003 -49871 1.178
9000. N20 02 43e405 -59272 29139
10000. N20 02 42o833 -59578 2o894
11OU00 N20 02 42o290 -5e816 3.500
12000o N20 02 41.775 -6*004 3o995
13000. N20 02 41.289 -6.155 4*405
14000. N20 02 40*828 -6e276 4.749
15000. N20 02 400391 -60375 5.041
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Table 8.1. Second Virial Coefficient and Derivatives for Pairs
in High Temperature Air. (Cont.)

Pair B T dB/dT T' dZB/dTZ

*K cm 3 mole 1  3 3 -1
1000o 02 02 23e602 129298 -31.816
2000* 02 02 28.431 2e820 -11.959
3000* 02 02 28.924 -0.164 -5o648
4000* 02 02 28.660 -1.587 -2.570
50009 02 02 28.211 -2o399 -0.763
6000, 02 02 27e725 -2913 0.416
7000o 02 02 27.249 -3o261 19240
80004 02 02 26796 -39506 1,844
90000 02 02 26.372 -3o685 2302
100000 02 02 25e977 -3.818 2o660
11000, 02 02 25*608 -3.920 2o945
12000o C? 02 25e264 -3o998 3.176
M000 02 02 24.941 -49059 3,366
14000o 02 02 24o638 -4,106 3,524
1500 02 02 249354 -4.143 3.657
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DISCUSSION

In the preceding several chapters, a method has been given for estimating thermodynamic

properties of gases in the high temperature region of partial ionization, not only at quite low

pressure but also for higher pressures where isolated short range pair interactions are important,

and on even to where multi-neighbor exclusion effects become significant. Further comment on a

number of the topics covered may be in order.

In the interest of clarity we mention again that the type of partition function taken here for

atomic ions and atoms has been strongly influenced by considerations of dynamic response of the

ion in electric or magnetic fields. For the sake of obtaining realistic information in regard to

concentrations of ions and free electrons in a gas mixture, it has appeared reasonable to count

as single systems those which have actual stability when in a small electric field. Thus, for a

particular ion, we do not include in its population any of the systems composed of the next higher

stage of ionization with the previous outermost electron still considered in it even though

promoted to the continuum. The thermodynamic effects of such continuum electrons in local ionic

fields are nevertheless included in the over-all estimates for the complete assembly. To obtain

correct compositions, we must adjust for the number of available atomic states as influenced by

Debye screening.

Naturally, there are various numerical uncertainties and deficiencies in theory which affect

our proposed density dependent corrections. This affects the range of validity or the accuracy of

the resulting thermodynamic property predictions.

The difficulty of estimating the dielectric constant satisfactorily has been mentioned in

Chapter 2. The dielectric constant affects various quantities that depend on electric field, even

though no formula may be at hand for estimating these effects. These dependent quantities

include the I/R 6 d.sp3rsion potential commonly present and the I/R 4 induction potential for

neutrals near an ion. For both dispersion and induction energies, the complexities of the situa-

tion imply that pairwise additivity of energy may not be perfectly valid. In the case of the 1/R 4

induction potential term, at least nominal care is appropriate to avoid including the same induction
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energy in duplicate in the stored electrical energy in the gas considered as a dielectric medium.

The 1/R short range repulsion effects between atomic ions, discussed in Chapter 7, are also

affected by the dielectric constant, since its introduction as D Into the k1 /R repulsion energy

3/11 1- 12/1 1leads to factors of D and D-  , respectively, in the bo and Uo estimates of Table 7.4.

Thus, the short range ionic repulsion effects outlined there may not be negligible if the dielectric

constant is large.

Our high density extrapolation, as suggested at the end of Chapter 1, would employ a rigid

sphere virial approximation of Reiss, Frisch and Lebowitz (see reference 5 of the Appendix) for the

system of numerical coefficients predicting the higher virials. We suppose that the slightly high

pressures as compared with computer results for a collection of rigid spheres in a box as shown

graphically in Fig. 1 of the Appendix may be an advantage in the present use, in view of the fact

that near-neighbor repulsions produce a static pressure contribution in the high density region for

non-rigid-sphere molecules. Another feature of the mixture rule proposed for the higher virials

is its automatic generation of the theoretically correct dependence on composition, as may be
/

seen in the Appendix. We may add that in the high pressure limit, the mixture rule indicates

additivity of species volumes, which is close to Amagat's law of volume- for rnixtures of perma-

nent gases. There is still the latent empirical problem of echieving a suitable join with data at

high temperature and high pressure for such single substances as are involved and with Lhe best

available theoretical estimates accepted for thc extreme high energy region. ( 5 7 )

No apology may be needed for the present simplification of including chemical bonding

effects only within the individual molecular species. Since non-bonding states also occur, they

should be allowed for with their suitable complementary weights, and not with the full weight of

all possible states. In general, we would suggest that non-bonding effects be treated on the

basis of explicit repulsion estimates where available, since they are preferable to our over-all

1/R correlation. The complete detail of distribution of quasi-bondings in the dense gas at high

temperature would be quite complex. Under such conditions, it is hoped that a model of Cou-

lombic interactions may give an acceptable high temperature mean of bonding and antibonding
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effects, ,iince electric fields are basic to all significant interactions in the system, in the present

I non-nuclear sense.

We would also allow freedom to correct the present omission of various explicit effects from

our incomplete outline. Thus, recent results by diagram summing or an equivalent technique

should give a more suitable representation of electron-electron effects in the electron gas part of

the mixture than do-as our rcpresentation of pair repulsion effects for positive ions. Similarly, the

radiation and relativity effects can be incorporated into the treatment as needed in accord with

well-known high temperature astrophysical procedures.
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APPENDIX

4Effects of Intermolecular Interactions on
Thermodynamic Properties of

. Gases at High Temperatures
!and Pressures

: Harold W. Woolley
National Bureau of Standards
Washington, D. C.

It is proposed that non-ideality effects for gases at high temper-
ature may be analyzed and estimated using an effective rigid sphere
volume depending on pair potential energy and temperature. Empirical
type estimates for higher virials for the rigid sphere gas are proposed.
Some theoretical values of second, third, and fourth virials and some
experimental fourth and fifth virials for non-polar gases are examined
on this basis. A simple mixture rule for higher virials at high temper-
atures is shown to be supported by theoretical calculations of mixture
third virials while exactly conforming to theory in regard to composition
dependence for all orders of higher virials.
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EFFECTS OF INTERMOLECULAR INTERACTIONS ON
THERMODYNAMIC PROPERTIES OF GASES AT

HIGH TEMPERATURES AND PRESSURES

Harold W. Woolley, National Bureau of Standards
Washington, D.C.

INTRODUCTION

When we try to estimate thermodynamic properties for gases at
very high temperature and pressure, we encounter a two-fold difficulty.
As a result of partial dissociation and other reactions arising at the
very high temperature, the gaseous fluid involves many constituents for
which direct experimental interaction data are lacking. But further, as
a result of the high gas densities of interest, these interactions are
important not only for effects of separate pairs of molecules, but also
for virial coefficients of higher order, pertaining to larger groups.
Even if the pair interactions were accurately known, we would not have
exact numerical values for the higher virials, because the mathematical
expressions for all but the first few of the virials involve multidimen-
sional integrations which have never been performed.

We note that in the ordinary thermal collisions involving two par-
ticular molecule-like systems, the mutual approach of colliding
molecules can be closer when the collisions are more energetic. We
can thus think of a pair exclusion-volume which decreases as the tem-
perature is raised. It seems natural to consider applying the idea of a
pair-exclusion volume to the study of higher virials. For this purpose,
we shall make the arbitrary assumption that these virials may be approx-
imately compounded empirically in terms of effective rigid--sphere
volumes plus an additional part which brings in effects arising from van
der Waals binding energies. Accordingly, we shall first examine
estimates concerning higher virials for a rigid sphere gas. We shall
then come to the question of estimating exclusion-volumes for realistic
potentials and we shall next examine the behavior of the virials for pure
gases on the basis of such exclusion-volumes. Finally, we shall con-
sider the problem of virial coefficients for mixtures, since gases at
very high temperatures are typically mixtures of products of dissociative
reactions.

THE RIGID SPHERE GAS

For a rigid-sphere gas, the virial coefficients are known exactly
through the fourth, while a Monte Carlo estimate Il] is available for the
fifth, giving
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PROPERTIES OF GASES

PV/RT = 1 + b/V + 0.625b2/V + 0.28695b/V + 0.115b4/V 4 . (1)

We shall take as an axiom that the true function for PV/RT would be an
infinite series rather than terminating as a polynomial. It may then be
plausible to speculate about the probable law of variation of the numeri-
cal coefficients. The function

PV/RT , exp[b/V + 0.125b/V 2 j

expands into

PV/RT = 1 + b/V + 0.625b2/V 2 + 0.2917b3/V 3 + 0.112b/V 4

+ 0.0370b5/V 5 + 0.0108b/V 6 +.... (2)

A similar equation,

PV/RT = exp[B/V + (C - 0.5B2 )/V 2

has previously [2] been used for hydrogen at ordinary temperatures and
above.

Another set of coefficients of proper general magnitude may be
obtained by the following scheme. If n is the power of b/V in the
general term of the series and if 1 + 0.6n is taken as the ratio of the cor-
responding coefficient to the next one, the resulting series is

PV/RT = 1 + b/V + 0.625b /V + 0.2841b3/V 3 + 0.1015b4/V 4

+0.0298b/V +0.0075b/V + 0.00162b/V

+ 0.000312g/V 8 + 0.0000538b9/V 9 + .... (3)

We also note that no account has been taken of the limiting density at
which no space would be available for rigid-sphere molecular motion.
A reasonable limiting density can be made by introducing a suitable
choice of the ratio of coefficients in the limit of large n. This choice
effectively defines the region of series convergence. This has been
done while arranging; other details by replacing the previous ratio 1 + 0.6n
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PROPERTIES OF GASES

by
1 + (0. 6 + 1.6a)n + dc n(n- 1)

1 + an + dn(n- 1)

with the coutants a, c and d to be suitably chosen. This fixes the lim-
iting density at b/V equal to c. Then a and d can be adjusted to give a
close approximation for the fourth virial and to give satisfactory over-
all agreement with recent Monte Carlo [3] and equation of motion
calculations [4] for a collection of spheres. With c taken as 3 to
approximate the strict close packing value of 2.964... and with a= 0.15
and d = 0.092, the series becomes

22 33 4
PV/RT = 1 + b/V + 0.625b2/V + 0.28697b3/V + 0.11100b4/V 4

+ 0.03912b5/V + 0.01310b6/V 6 + 0.004263b7 /V7

8 8 9 010+ 0.001365b /V + 0.000433b9/Vg+ 0.000137b10/V

+ 0.000043b/V I 1 + 0.000014b 2/V12 + ... . (4)

A very good equation of state for rigid spheres has been obtained
recently by Reiss. Frisch and Lebowitz [5] on the basis of physical
principles. They used an approximating polynomial for the distribution
function. The limiting value of b/V in their equation is 4. We note
that a fenral umerical coefficient can be written from their results
as 2 (3n + 3n + 2), giving the series

PV/RT =1 + b/V + 0.625b2/V 2 + 0.296875b3 /V 3 + 0.121093b0V 4

+ 0.044921b /V 5 + 0.015625b6/V 6 + 0.005188b7 /V 7

+0.011663b 8 /V 8 +... . (5)

Their fourth virial is slightly too large and we may see in Fig. 1 that
their function, shown as curve 5, is slightly high as compared with
electronic computer results for collections of rigid sphere molecules.*

*[Note added after presentation of paper]. This departure has also been

commented on recently by Rice [see J. Chem. Phys. 32: 1277 (1960)].
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Fig. 1-Equation of state for hard spheres. Solid curves 1 to
5 refer to Equations 1 to 5. Dashed curve and filled circles
show results of Alder and Wainwright for 108 and 32 molecules.
Open circles show Monte Carlo results of Wood and Jacobson.
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From curve 1, we may see that the use of virial coefficients only
through the fifth is insufficient in the region of density used in the
present comparison. The exponential form indicated by curve 2 shows
some merit, as it agrees fairly well with the Monte Carlo result. The
simplest numerical ratio rule tried for numerical coefficients gives the
results shown by curve 3. They fall considerably below the computer
results. The set of coefficients given by the more complex ratio-rule
quoted permits closer agreement with the computer estimates for rigid
spheres. This is shown by curve 4.

PAIR EXCLUDED VOLUME

If we apply the rigid sphere coefficients just obtained to an actual

gas, we need a method of estimating effective sphere sizes for the mole-
cules as a function of the temperature. Examining the expression for
the classical second virial coefficient in case the pair potential can be
considered as a function only of intermolecular distance,

B = 2wNJ[l-exp(-U/kT)]r2dr,

we note that we can separate a portion of the integral from r = 0 to r 0,
the collision radius at zero energy. Calling this part of the integral be,
we have

B = be + 2wN[-[l - exp(-U/kT)jr 2dr (6)

with Go

beNf 3 -U/kT

Uuo

For repulsion potentials varying as an inverse power of r, this gives
the result obtained by Hirschfelder and Eliason [6] that the rigid sphere
radius may be obtained from the potential function by taking the energy
at a fixed fraction 0 of the value of kT for the particular temperature
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occurring. For a repulsion potential varying as the inverse 6 power of
the distance, they indicate that the fraction 0 has the value

rF;C-3 -6/3
= L t -)I-s/ giving 012 a 0.4434, 99 - 0.4027 and 9 - 0. 3183.

For more realistic potentials involving attraction at larger sep-
aration and repulsion at cl.ose approach, we may rewrite the be as

be e-U/kTb(U)dU

where b(U) - 2i Nr 3 . We can consider b(U) to be expanded as a Taylor
series in U at r - o', and integrate term by term to obtain be as a power
series in kT. Then considering this be to be representable by the
original Taylor series using an effective value of U, we may equate the
two representations of be and solve for the appropriate effective value of
the potential, Ue , by series inversion. The result can be written as

Om-I.I1(2 - u -Ul) ( k T i u l )
kr 2 2u1 )k~ 1

+ .(12u2 2 U- 2 _5 - 18Uu- 1I 2)(kT/Ul)2
+. l u u -5u 3 u I

1  - 18u2 u I  -2)k / ) +.

where un rndnU/drn at r 0 1. For a Lennard-Jones £-- potential,

U S-/('S )Y/(Y-S) -l r -(W/r)7] (8)

which gives

o ; 1+ 1(3+8+t)(kT/uI)+ 6(78 2 +77 2 +l9y8+27-vi27S +18)(kT/u?+...

In'the case of a 12, 6 potential 0 = 1 - 0.4375 kT/r. + 0.90625(kT/ ) +...
Urtrtunately, this form does not give a satisfactorily convergent repre-
sentation in that the known terms oscillate and become large for large
kT. Howeyer, the closed approximation
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1

e [1 - 4(2 - u2 u1
1 )(kT/u 1 l)] 8

when expanded gives the linear term in kT correctly and approximates
the quadratic term fairly well. Still, no tendency to approach 8 at
high temperature has as yet been provided. This may be remedied for
the Lennard-Jones potentials in an ad hoc manner by using the approx-
imation

1+ 48 8(1 -j 8)-1(3 + + 7 /('-r /(6-7)(kT/&) 11/8

I ~ ,-1 S(y-E y/(-y)(9)

1+ 4(1 -8) (3 + ) (kT/,)

When applied to the 12, 6 potential, with 8 = 0.4434, equation 9 gives

1/8

e = [1 + 0. 005237 kT/g.]
L1 + 3. 505237 kT/&]

which expands for small kT/ into e a 1 - 0. 4375(kT/C,)
+ 0. 863906(kT/F )2 + ... . Then using Ue/C, as 8 - kT/&, the solution
with the 12, 6 potential gives

be/bo = [2/(1 + J'1+Ue/9)]1 / 2 . (10)

For the 9, 6 potential, with 09 = 0. 4027, we have

[ + 0. 002461kT/ II/8

1+ 3. 558016 kT/,J

and

be/bow 3/ +(I+2Ue/L + 2 /21+U )I/3

+(2/2 Ue/+ U- 1/31

+ (I++ 2Ue/&U- 2 e e/6)I /3 . (11)

For the 12, 4 potential, which is somewhat representative of the inter-
action effect between an ion and a neutral molecule, the approximate " --
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is

I1 + 0. 005471 kT/ ,118
[1+ 3. 662023 kT/J

with the effective rigid-sphere volume indicated by

be/bo" 33/8 [2Ue/C +.3(Ue/ + 4U 2l)113 + (e- e2 - 1)13]. i4

(12)

Another procedure for calculation of be/bo for Lennard-Jones potentials
will be shown in connection with the second virials.

Fig. 2 shows values of be/bo for the three potentials obtained in the
range of T* or kT/& from 1 to 200. The fourth curve shown and marked
"exp," represents the corresponding result for both the exp-six potential
for a = 13.5 and for a one-exp-six potential at a corresponding y of 12. 3.
This latter potential as recently proposed [7] has the form

U 1 +y [6 - 8y(ey- L)lr - r/rm)]
& y - 5 + 8y(e'-l) I +

/rm i - exPl-TYr/rrr)/"1 -7  (13)

and is close to the exp-six in behavior near its potential valley if Y is
taken about 1. 2 less than the corresponding value of a for the exp-six
potential. For the exp-six potential, a graphical solution to obtain be/bo
based on an estimated e was used. For the one-exp-six, direct tabular
integration was used to evaluate the equation defining be. The resulting
points when plotted appeared as a singlc curve for the scale of the graph
used here.

VIRIAL COEFFICIENTS

For the present discussion, we shall assume thatjthe equation of
state can be written in a virial development as 1
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PV/RT = 1+ BVln,
n=2

th
representing one mole of gaseous substance, with Bn as the n virial
coefficient. We shall assume further that a practical approximation
for the virials for a pure non-polar substance may be based on the form

dbn-1i n-1 Z
B =b n- eenm(& / kT)m  (14)Bn =l dn e  b

m=l

with the coefficients dn essentially as taken earlier for the gas of rigid
spheres. In Fig. 3, this relation is shown for n=2. The quantity
(be - B)/b is plotted as a function of &/kT for the 12, 6, the 9, 6, and an
exp-six potential for a : 13. 5. The simplicity of behavior of these
graphs could be expected on the basis of the defining equations.

For potential functions for which the second virial is available, the

pair excluded volume may be obtained from

be/bo = B/b o +(be - B ) / b

since
(be - B)/b o = 2wN [cxp(-U/kT) - 1Ir 2 dr

can be evaluated directly for some potentials. For the Lennard-Jones
y, y potential

(be - B)/b o = - e 2 n( &/kT)n, (15)

n=l

with the coefficients

e, 3[,
$/($ -,Y ) 7/,(,-)]J

n n

e = [ [n - 3 - s(S-)].

s=O

For the 12, 6 potential, equation 15 reduces to

3
(be-B)/bo ( + 357 + 5..9oll

4
+ 8.888 1 + (17)

7.9-11.13.15 "'
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and for the 9, 6 potential it is

(be - B)/bo 1 27 + ( 7 E + 1 (27 L
1.2 4 3.4.5 4 k 5.6.7.,k4k

4
1+ (18)+ 7.8.9.10.11 4 .. ,(8

In the case of the 12, 4 potential the result is

(beB)/bo 3 (12 3 (12 \
1° 9 kT 5"13"21 kT

+ 3 (12 \ " + 3 (12 -)
9.17.25.33 kT 13.21.29.37.45 kT

+ .... (19)

For the third virial, the potential functions for which calculated
virials are available include the Lennard-Jones 12, 6 [8], the 9, 6 [9],
and the single exp-six potential function for a = 13. 5 [10]. These third
virials are plotted directly in Fig. 4. In Fig. 5, the same third virials
are shown by means of the difference (0.625 be2 - C)/bo . It is thought
that the curves of Fig. 5 sho Y a systematic behavior more clearly than
do the direct graphs of C/b o in Fig. 4. The coefficient 0.625 was taken
for use in this difference on a basis of expected practical utility.
Kihara [11] has reported, however, from theoretical third virial calcu-
lations based on inverse power repulsion potentials that a better coef-
ficient would be somewhat lower than this.

For the fourth virial coefficient, no theoretical values based on
Lennard-Jones potentials have been available until very recently.
Early this year, theoretical results for the case of a 12, 6 potential at
eight temperatures were published by Boys and Shavitt [12]. Their
treatment included the use of the sum of from 3 to 6 Gaussian functions
in representing the pair distribution function. The mean of the four
values based on the different representations has here been accepted for3 3r 3
the D/b o in calculating (0.287 be - D)/b o . This quantity is shown in
Fig. 6 as a function of 1/T*, and includes the range of the four values
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where appreciable. Experimental indications as to this difference quan-

tity are also shown, based on observational data as reported by Michels
for argon [13] and xenon [14]. The data were reduced to dimensionless
form using accepted values of Lennard-Jones parameters. The failure
of the experimental fourth virials to agree closely with calculated values
is naturally not surprising in view of the well known similar failure in
the case of the third virial coefficient. Of particular interest is the
closeness with which the difference appears to approach zero even for
values of I/T* that are only moderately small. The solid curve in Fig. 6,
approximating the calculated values of Boys and Shavitt, is given by

(0.287b 3 - D)/b 3 . 2.8T* - 3.9T* - 4

It seems uncertain whether the function should be slightly positive rather
than negative near T* - 10. The sign of the deviation in this region could
be affected by a 5 per cent change of the virial coefficient itself. In view
of the large uncertainty in experimental fourth virials, this uncertainty
may be quite tolerable for the theoretical prediction. A dashed curve is
also shown for the trend of soms of the valmes reportel for argon. It is
represented by (0.287be -

3 D)/b o = 7.2T* - - 13.8T* -'. In Fig. 7 are
shown the similar fifth virial differences based on the reported virials of
Michels for argon and xenon. The dashed curve is represented by

(0.11lbe - E)/b4 = 7.5T- 5.

No theoretical values are available for comparison.

GAS MIXTURES

Problems in extrapolations to high temperatures arise because of
the many new constituents that are added by chemical decomposition of
the gas at the high temperature. With a large number of constituents,
the full number of interaction virials theoretically present becomes
enormous, particularly when higher order virials are taken into consid-
eration. The virial equation of state for one mole of a gas mixture of s
constituents may be indicated in beginning form in terms of mole
fractions, x i , as

PV/RT = I + Z- 2- xaxxB a/V + Z - -x xxC apy,/v 2

a-'- 0l=l a~l 0=i "y=l

+ ... . (20)
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or completely by

1-n
PV/RT 1 + n! B BV (21)

where the interior summation is over all combinations with -n. n and
the quantity Bn(i) is the interaction nth virial for the particular set of
molecules enumerated by the indices a of the multiplier. The number
of these interaction virials is evidently the same as the number of cross
terms in the corresponding multinomial expansion, since in fact the mul-
tipliers of the virials are precisely identical with these. This has
suggested the use of a very simple mixture rule for those higher order
virial coefficients that have become positive in the high temperature
domain. For these, it is proposed that the general term in the series
for PV/RT be taken as

1-n l/n n 1-n
B nV = Vxa(Bna) I V

It is not proposed that this rule be used for second virials, for which
well established combination rules exist for the estimation of molecular-
pair parameters.

For virials that are of much higher order, it seems certain that
verification would not be readily feasible either from theory or from
the study of presently available experimental virials. In the single case
of third virials, in 1943 I made some interaction virial calculations that
appear relevant to this question. The results were regarded as failing
to accomplish their intended purpose of predicting hydrogen-nitrogen
interaction third virials accurately, but this failure can be adequately
explained by the following: no quantum corrections were introduced, a
large tabular interval of 0.2 in r/ was used, the experimental third
virials with which they were compared are difficult to infer from exper-
imental data, and it seems uncertain that the Lennard-Jones 12, 6
average-force potentials are applicable. The portion of the results
that pertained to pure substance resembled the later more accurate
results of Bird, Spotz, and Hirschfelder [8] in that they indicated a dif-
ferent high temperature trend than had been given graphically by
Montroll and Mayer [15]. In spite of the appreciable inaccuracy in my
results, it seems likely that relative magnitudes are significant for
questions of practical mixture rules.
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The computational problem was to evaluate

2 0fp 2 A
C/bo = - (22)

2 /011

in which

f.~expf4C~jp*12 p-611  1exp f- -k- i

with representing ri/! i where ¢i is a paraneter selected to be con-
sisen with the appropriate (bo)= (2w/3)NOr . In the evaluation, the
integral of f 3/03 with respect to0 from 0 to was calculated tabularly
at close intervals and tabulated t 0.2 intervals for negative as well as
positive values of o ' Values of f 2A0, (here taken the same as the function
f 3/3 since only a binary mixture wag being considered) were tabulated
on a separate computation sheet for the same positive /2 arguments as
had been used for /03. Then this second computation sheet was placed
adjacent to thec 3f3jo3 d/03 table at such a level that the/0 2 - 0 entry in a
first placement was adjacent to a forthcoming value for fl and, in a
second placement was adjacent to the negative of the same forthcoming
value for/0 1 . For each placement the product of the adjacent functions
was formed and numerically integrated from pd = 0 to a region of negli-
gible further contribution at large o2 . The difference between the two
integrals gave

Y() =0 f 2( 2 d 2 / f 3f 3dp 3 •

Products of y( i} with f 1 were then formed and numerically integrated
taking f1 A either identicaS with f 3 / 3 and f 2f 2 to treat three like mole-
cules or suitably modified but for the same r values to pertain to the
interaction between two like molecules when f 3103 and f 2/02 pertain to the
two identical interaction functions between the unlike molecule and either
of the two like molecules.

The force constants used for H2 and N2 were based on numbers
reported by Lennard-Jones [16] in 1931. For the N2-H 2 interaction the
usual pair mixture rule gave 46 cm 3 /mole for bo ana 54.3K for £/k, but
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the latter was changed to 560K in improving the fit of the rather irregu-
lar experimental results for the interaction second virial. The
evaluations were made with kT/e for the two like interactions at 1, 1.5,
2, 2.5, 3, 4, 6, and 10. This gave so-called interaction third virials from
56 to 560°K and so-called hydrogen and nitrogen third virials from 30.8*K

to 308°K and 96*K to 960*K, respectively.

The calculated results are shown in Fig. 8. No experimental
points are shown. The dashed lines indicate the predictions of the pro-
posed mixture rule

C C 1/3 1/3 1 1/3 (23)
ijk ii iii kkk(

The dotted lines show predictions of a more complicated rule* recently
recommended by Amdur and Mason [17]. Though their rule may be more
reliable in general, we wish to make the following points in favor of the
rule here proposed. In the region of comparison in the present instance
it appears to predict about as reliably as the other rule; it is a much
simpler rule; and it is easily extended to all higher order mixture virials
in the high temperature region; and finally, it gives the dependence of
complete higher virials on mole fraction composition in such a simplified
form as to even eliminate completely the need for explicit evaluation of the
interaction virials themselves.

* 1 r 6  6 6 2 2 2 3 3 3 3 3 3
Cijk - 1T j + 0 ik + qk +l iSk k+16(k)

4 2 2 4 . 2 2 4 2 2
- 9 'ij ( 01"ik + Tjk) - 9 0ik ( ij + (r"jk0 - 9 Cr5k ( fij + W'ik)

where U 1/6 1/6 1/6 1/6whre 1j 2 (Ci i + Cjjj ),ik j (Ciii + Ckkk.)

and (rkj/6 1/6

kj (Ckkk + C ).

For a binary mixture the 13 terms reduce to 3.
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