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ABSTRACT 

Tests have been nade of the Runge-Kutta and (especially) Numerov 

methods of solving the reduced SchrÖdinger wave equation for a tabulated 

Morso potential. This is prelininary to nur.crical solution of the 

equation for a Klein-Dunhcn potential. 

Normalized wave fiinctionsfor N?, 3 H, of orders 0 and 5» given at 

an interval of 0.01A in internucloar separation, agree closely with those 

obtained analytically. 

A criterion fer goodness of wave functions generated numerically, 

depending on observed rotational constants, is described. 



1. IIWRODUCTION 

This report describes the first phase of a project to solve the 

reduced Schrödinger wave equation numerically, given a tabulated Klein- 

Dunham potential energy function (Klein 1932, Dunham 1932, Jarmain 1960, 

196l). The 'true' potential, as is well known, is not available ir 

closed form. 

For certain diatomic molecular transitions, Morse vibrational wave 

functions are inadequate for the calculation of Franck-Condon factors 

and other parameters. Therefore we wish to determine how large the 

discrepancies are that sometimes exist between Franck-Condon factors 

based on a Morse potential, and those based on a more accurate Klein- 

Dunham function. 

Such factors arc often useful in their own right in predicting 

approximate relative intensities of molecular bands, and of course have 

been used extensively in conjunction with good measured intensities to 

yield the shape of the electronic transition moment (see e.g. Hebert 

and Nicholls 1962) . 

The present summary deals only with the numerical solution of the 

wave equation for a tabulated Morse potential.  It was considered 

prudent first to verify that correct Morse wave functions could be so 

generated, especially when these were available for checking from 

earlier analytic work. 

2. Solution of the Differential Equation 

Neglecting rotation, the reduced Schrodinger equation satisfied by 

vibrational wave function ^(r), with v the vibrational quantum number, 

L " U(r) 

2, 
d > 0 2 

is»             v »Ti y 
2 2 

dr h 
4-  = 0 (1) 
v 
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where r is intemuclear separation, ^ is the reducod. mass of the molecule, 

E is the appropriate eigenvalue, and u(r) is the vibrational potential 

energy function. 

Tests of the r.othod described below were carried out on Np, B"TI for 

the following reasons. Firstly, ordinates of Morse wave functions up 

to order 12 had boon calculated previously for this state from formulae 

(jarmain and Nicholls 1952, I960).  Secondly, there is good agreement 

(mostly loss than 1?£ deviation) between the tabulated Morse and Klein 

energies at specific values of r.  Finally, if a theoretical rotational 

r 1 "I 
constant a .  3 = B - a  (v +•?-), is determined from Pekeris1 (1934) 

o 1 v   e   e    ^ 

relation „ 

e  L  c-    _ 

it agrees with the observed a to about 0.5^« Thus, anticipating the 

use of a Klein-Dunham potential to obtain wave functions, one would 

expect fairly good point by point agreement with corresponding Morse 

finctions.  This would provide a preliminary check on the validity of 

the procedure used to start the IQein-Dunham solution.  A later report 

will discuss that procedure. 

Solutions were first obtained using a Hunge-Kutta fourth order 

process as adapted for digital computers by Gill (195'0*  This cboice 

was made because it was available as a subroutine in the U.W.O. Computing 

Centre Librp.ry. because it is known to be very stable and requires 
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knowlodge of only one point and a slops at that point for starting. 

Theso values WTO determined fron analytic Morse expressions, on the 

extreme left side of-the wave function beyond which point ordinates 

are so small that they contribute nothing significant, for four figure 

accuracy, to an overlap integral involving a wave function of another 

electronic state.  Integration then proceeded from left to right. 

As anticipated, this method was effective "but relatively slow. 

It did, however, indicate sensitivity of the curve to choice of eigen- 

value and also a suitable sub-interval size for integration. For each 

of the two orders tested, a start was made with the experimental eigen- 

value, but minor adjustment in it was necessary to keep ordinates 

numerically small over a reasonable interval on the right hand side. 

At best, wave funotions remained unbounded at r = >♦ , but were simply 

cut off in the region of smallest ordinates. Not surprisingly, the 

subinterval had to be diminished as the order of the wave function 

increased. 

The Runge-Kutta-Gi11 routine wxs then abandoned in favour of a 

formulation due to Numerov (1933) a partial derivation of which follows. 

Taken from central difference theory, equation (3) (Hartree 1958) relates 

the second difference of a function to its second derivative and differ- 

ences of the latter, namely, 

*\  = (*r)2^'' + 4, ^'' - ^ *V} + 0 M8   ^ 
Equation (l) to be solved is of the form 

+ " = F (r) ^ ^    (4) 
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Neglocting the fourth difference in (3), we have 

It is also true that 

K*   + 12 *2 ^0 »] 

* ^0 = '^i ' 2*o + ^-1 

(5) 

(6) 

where the subscripts refer to consecutive values of (K  Again, by virtue 

of (4) 

'^o' Fo^o 

* ^0    1 M    0 ^0   -1 -1 

Therefore, combining equation^ (5), (6) and (7), 

(7) 

[l - -j^r)2 P]^ - 2 [1 - ^(*r)2 F0] ^ + [l - ^r)
2 P^^ = (*r)2 F^ 

(8) 

Finally, a formula for 4^ in terms of ^n and ^ . is 

[1 - h^2 F] ^i ■ [2 +1 (,r>2 Fo] *o - [1 -12^2 F-]\*.1 (9) 

Thus. Numerov's equation ',9) generates the functional value ^ if 

two starting values i/*  and i>   .  arc provided, and of course the calculated 

'•i>.   is needed together with +0, to produce .Jv at the next step, and so on. 

The technique is fast and sufficiently r.ccurate for the purpose, providing 

a suitably fine subdivision is used,  /is mentioned before, the observed 

eigenvalue does not give a wave function that is well behaved on the 

right hand side. This is probably mainly due to the approximate nature 

of the procedure. 

3.  RSSULTS 

Morse wave functions of order 0, 5 and 10 have been constructed using 



r(A) 

.02 

.03 

.04 

.05 

.06 

.07 

.08 

.09 

.10 

• 11 

.12 

.13 

.14 

•15 

.16 

.17 

.18 

J19 

.20 

.21 

.22 

Analytic 

1.011x10 

2.410x10 

5.430x10 

4.488x10£ 

1.418x10 3 

3.690x10" 

3 

1.446xiO- 

1 --827x10/r 

2.215x10'': 

2.582x10'' 

2.893x104 

3.122x10" 

3.245x104 
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TABLE I 

MORSE WAVE FUNCTION 

N2 B^n v = 0 

Numerical 

1.011x10 

2.410x10 

5.430x10 

1.158x10 1.158x10': 

2.340x102 2.340x102 

4-488x10' 

8.179x10^      »8.180x10" 

1.418x10 3 

2.342x10J      *2.343x10 3 

3.690x10 3 

5.5^9x10J 5.549x10 

7.977x10 7.977x10 

1.097x10'/f   1.097x10 

3 

3 

,■. 

3.254x10' 4 

1.446x10' 

1.827x10" 

2.215x10/' 

2.582x1 O*'- 

2.893x104 

3.122x1O4 

3.245x10/r 

3.254x1O4 

r(A) 

1.23 

1.24 

1.^5 

1.26 

1.27 

1.28 

1.29 

1.30 

1.31 

1.32 

1.33 

1.34 

1-35 

1.36 

1.37 

1.38 

1.39 

1.40 

1.41 

1.42 

Analytic 

3.149x10^        3.149x10 

2.944x10^ 

2.662x104 

4 

2.328x10 

1.973x10 

1.620x10" 

1.290x10'- 

9-975x10: 

7.491x10"' 

5.469x10-' 

3.883x10"' 

2.684x103 

2.888x10' 

I.72OXIO' 

1.002x10 

5.704x10 

.2 

Numerical 
4 

2.944x10^ 

*2.66lx104 

2.328x104 

1.973x1O4 

1.620x1O4 

1.290x104 

9.975X103 

7.49IXIO- 

5.469x10 

3.883x10-' 

2.684x10': 

3 

I.8O7XIO-5 1.807x10J 

1.186x10^ 1.186x10- 

7.586x102 7.586x102 

4.7 37x102 »4.7 36x102 

*2.885x10': 

*1.7l6x102 

*9.941x10 

»5-577^0 

Asterisks indicate where analytic and numGrical values differ. 



r(A) 

1.01 

1.02 

1.03 

1.04 

1.05 

1.06 

I.O7 

1.08 

1.09 

1.10 

1.11 

1.12 

1.13 

1.14 

1.15 

1.16 

1.17 

1.13 

1.19 

1.20 

1.21 

1.22 

1.23 

1.24 

1-25 

1.26 

I.27 

1.28 
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TABLE II 

MORSE tfAVS FUNCTION 

K 3. 

Analytic Numerical 

0 B n v = 5 

r(A) 

5.734x10^ *5.735x10': 

1.187X103 * 1.188x10" 

2.285X10
3
  *2.286x10- 

^.083x10J 

6.76OXIO 

1.034x10f 

1.455x1O4 

1.869X104 

2.167X104 

2.220x10''r 

1.921x10" 

1.244x104 

3 2.802x10" 

-7.524x10 

-1.564x10^ 

-1.887xic/ 

3 

/T.083x10
3 

6.76OXIO3 

1.034x1O4 

1.455x104 

1.869x10' 

2.167x10"' 

2.220x10- 

1.921x10"/' 

1.244x10' 

2.802xl03 

-7.524XIO 

-1.564x1O4 

-1.887X104 

-1.592x10^  -1.592x10 

-7.539xlOJ  -7.539xl0- 
3 

A 
3.481x10 

1.324x10 

1.817X104 

1.645x104 

,3 

3.681x10 

1.324x10 

I.8I7XIO'' 

1.645x10' 

& 

8.723x10J        8-723x10 

-2.175x10 

-1.231x10 

-1.814x10 

*-2. ^6x10 

-1.231x10 

41.814x10 A 

-1.779x10f     -1i779x10 A 

-1.154x10^ 

Asterisks indicate 

1.29 

1.30 

1.31 

1.32 

1.33 

1.34 

1.35 

1.36 

1.37 

1.38 

1-39 

1-40 

1.41 

1.42 

1.43 
4       A A 

1.45 

1.46 

1.47 

1.48 

1.49 

I.50 

1.51 

1.52 

^.53 

1.54 

1.55 

Analytic 

-1.600X10
J 

Numerical 

-1.600x103 

8.854xlOJ     *8.855x10" 

1.677x10^ 

2.011X104 

1.83lx104 

1.215xl04 

3.308xl03 

-6.2l6x10J 

-l^öSxlO4 

-2.091x10" 

-2.442x10" 

-2.530x10" 

-2.406x10° 

-2.139x10 

-1.797x10 

-1-438x10 

-1.102x10 

1.677x10" 

2.011x10 

1.83lx104 

A 

1.215x10r 

3.308x103 

-6.2l6x103 

-1.468x104 

-2.O9IXIO4 

-2.442x104 

-2.53OXIO4 

-2.406xlO/r 

-2.139X104 

-I.797XIO4 

-1.438x104 

-1.102X104 

.3 -8.114x10J -8.114x10- 

-5.765x10^ -5.765XIO3 

-3.96IXIO3 -3.96IXIO3 

-2.638xl03 -2.638x10J 

-1.706xlOJ -I.7O6XIO- 

-I.O73XIO3 -1.073x10"' 

-6.577XIO2 *-6.576x10£ 

-3.93OXIO2 *-3.929x10' 

-2.293xl02 *-2.290x10' 

-1.308xl02 *-^,2,02x^Oc 

2 

-1.154X104 

where analytic and numerical values differ. 



-7- 

an I.B.M. 65O, with detailed results given for the first two. The 

tenth order is still under study, with indications that a sub-interval 

of less than O.OO5A is needed.  Intervals used for the others were 

0.01A and O.OO5A respectively. 

Table I shows a comparison between normalized ordinates obtained 

analytically to four figures and those from the present method, for 

v = 0. The final eigenvalue was 863.44468 cm  compared with the ob- 

served 863.438 cm-'.  Starting values at 1.02A and 1.03A were 10.110 

and 24.097 respectively, with r measured in cm.  Table II gives a 

similar comparison for the fifth order, with eigenvalue of 9098-3955 cm 

against the observed 9099«888 cm" . Starting values at 1.010A and 

1.0l5Aw3re 5.7332 x 102 and 8.3259 :c 10 respectively.  In general, 

agreement is perfect to four figures except on the extreme right. 

/..  B Test 
v  

It was felt from the beginning that is many checks as possible 

should be provided for the normalized Klein-Dunham wave functions 

eTOntually to be constructed numerically.  Otherwise it would be un- 

safe to claim that these functions are necessarily an improvement on 

Morse. One tost that is immediately available is of course orthogonality 

between wave functions of different order.  A second one, which depends 

on observed rotational constants, was devised by Dr. P.A. Praser. 

According to Herzbcrg (1950)» P« ^06,   it is plausible to use a 

mean value for the rotational constant B in the vibrational state con- 

sidered, that is 

(10) B =  h 
v   0 2 

1_ 
2 
r 
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whero —s- is the moan value  of -— during tho vibration.     Soe  also^00 „ 
r r -- (Pv^n 

Hylloraas (1936) for justification. But -^ is given as well ty I  ~| dr, 
r -Ü 

which can be evaluated numerically for any tabulated wave function over 

the significant range of r.  Note that the Morse wave function is not 

zero at the origin» although cxtreinoly snail, and thoreforo the integrand 

is infinitely groat at the lower limit.  In practice, howevor, we in- 

tegrate no nearer to the origin then cay O.5A (more in this case), because 

ordinatos arc then trivially small. ?or purposes of the tost, one can 

assurae over the remaining interval a sogmont of the true wave function 

which will be of a high enough order of smallnoss (zero) at the origin 

to overcome the effect of r  in the integrand. Thus, comparison of the 

right hand side of equation (l0) with the experimental B should give a 

good indication of the correctness of the wave function ^   . 
v 

Results of applying this test to the Morse functions above were 

30 = 1.6290 cm ' compared with 1.6288 cm  observed, and 3 = 1.5362 com- 

pared with 1.5368.  The wave function of lower order is evidently more 

nearly correct on the basis of the above criterion.  It is hoped that 

further tests can be developed as work continues. 

5.  FUTURE PROGRAM 

The next report will deal with construction and testing of Kloirr- 

Dunham wave functions obtained by the present method for Np, B H and 

possibly other molecular states. This work is already under way but 

subject to revision and therefore not ready for publication. 
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