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ABSTRACT

Tests have been nade of the Runge-Kutta and (especially) Numerov

o

methods of solving the reduced Schrédinger wave cquation for 2 tabulated
Morse potential. This is preliminary to numericzl solution of the

equation for = Klein-Dunham potentiznl.

Normalized wave functiorsfor NQ' B3H, of orders O and 5, given at

an interval of 0.014 in internuclezr separation, agree closely with those

obtained analytically.

4 criterion fer goodness of wave functions generated numerically,

depending on obsorved rotationzl constamts, is described.




.  INTRODUCTION

This report describes the first phase of a project to solve the
reduced Schrédinger wave equation numerically, given a tabulated Klein-
Dunham potential energy function (Klein 1932, Dunham 1932, Jarmain 1960,
1964). The 'true' potential, as is well known, is not available ir
closed form.

For certain diatomic molecular transitions, Morse vibrational wave
functions are inadequate for the calculation of Franck-Condon factors
and other parameters. Therefore we wish to determine how large the
discrepancics are that sormetimes exist between Franck—Condon factors
based on a Morse potential. and those based on 2 more accurate Klein-
Dunhan function.

Such factors arc often useful in their own right in predicting
approximate relative intensitices of molecular bands, and of course have
been used extensively in conjunction with good mecasured intensitics to
yield the shape of the clectronic transition moment (sec ce«g. Hebert
and Nicholls 1962).

The present summary deals only with the numerical solution of the
wave cquation for a tabulated Morse potential. Tt was considered
prudent first to verify that corrcct Morse wave functions could be so
generated, cespecially when these were available for checking from

carlier analytic work.

2. Solution of the Differential Equation

Neglecting rotetion, the reduced Schrodinger equation satisfied by

a vibrational wave function ¢_(r), with v the vibrational quantum number,
) v
dd
v
—_— 4+

2

iss 8n p 5 - ‘] o = 1

> ) (uv U(I‘) ¢V—O (l)
dr h _ -
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where r is irternuclear separation, u is the reduced mass of the molecule,
Ev is the appropriate cigenvalue, and U(r) is the vibrational potential
energy function. -

Tests of the rmethod described below were carricd out on N, B3H for
the following rcascons. Firstly. ordinates of Morsc wave functions up
to order 12 had becn calculated previously for this state from formulae
(Jarmair and Nicholls 4952, 1960). Secondly. there is good agreement
(mostly less than 4% deviation) betwson the tabulated Morse and Klein
energies a2t spccific values of r+ Finally., if & theorctical rotational
constant o . [Bv =B, - a, (v + %)]. is determined from Peckeris' (1934)

6B2 ) X
% T 0 - u% = - :} ()

C c

relation

it agrees with the obsecrved a, to zbout 0.5%. Thus, anticipating the

i

usc of a Klcin-Dunham potenticl to obtain wave functions, one would
expect fairly good voint by point a2grecment with corrcsponding Morse
finctions. This would provide a2 preliminary check on thc validity of
the procedure used to start the Klcin-Dunham solution. A later report
will discuss that procedurc.

Solutions were first obtaircd using 2 Runge-Kuttz fourth order
process as adapted for digital computers by Gill (4954). This choice
was made because it was available as a subroutine in the U.W.0. Computing

Centre Library. becausc it is known to be very stable and requircs

it

bl
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knowledge of only onc point and a slope at that point for starting.
Thesc values wrre determined from znalytic Morse expressions, on the
extrene left side of-the wave function beyond which point ordinates
are so small that they contributec n&%hing significant, for four figure
accuracy, to an overlap integral involving a wave function of another
electronic state. Integration then procceded from left to right.

As anticipated, this method was cffective but relatively slow.
It did, howcver, indicate sensitivity of thc curve to choice of cigen—
valuc and also 2 suitable sub-intervzl size for integration. For each
of the two orders tested, a start was madce with the cxzperimental eigen—
value, but mirnor zdjustment in it was nccesszary to keep ordinates
numerically sm2ll over a reasonablc interval on the right hand side.
4t best, wave funotions rornined unbounded a2t r = 38, but were simply
cut off in the region of smzllest ordinztes. Wot surprisingly, the
subinterval had to be diminished zs the order of the wave function

increascd.

The Runge-Kutta~Gill routinc was then abandoncd in favour of a
forrul-tion due to Numerow (1933) a partizl derivation of which follows.
Taken fror central difference thecory, aguztion (3) (Hartree 1958) relates

the sccond differcnce of = function to its sccond derivative and differ—

ences of the latter, narely,

A _ Ne [ e d 2 _4d 4,y 8
8y = (87) {#O + =, 874 570 87"y + 0 (61) (3)
Bquation (1) to bc solved is of thc form

b= T (1)

(4)

N




_4_

Neglecting the fourth differcnce in (3), we have

2 2, L1 52
4y = (Ar) [4;0 + 13 8 nbo] (5)
Jt is also true that

2 ; A
$4g = b, = 2y + b_

1 1 (6)

wnere the subscripts refer to consecutive values of ¢. Again, by virtue
of (4)

by = Fy ¥

070

2||_—1, - 2 m
3UE = F b, = 2Ry by + b, (7

Therefore. combining equation- (5), (£) a2nd (7),

[1 - L050)° F:] ¢, -2 [1 - —(8x)° FO] Yo + E - L(57)° F_Jq»_, = ()% 7,
(8)

Pinally, a formula for &1 in terms of bo and &_1 is

[ - %(h)Z W] ¢1 = [2 +§ (") Fo] o - [. - -}2-(61*)2 F_;]¢_1 (9)

Thus. Numerov's equatior ‘9) gencratce the functional value b1 if
two starting valucs bo and ¢_1 arc provided, and of course the calculated
¢1 is needed together with &O, to produce $2 at the next step, and so on.
The technique is fast and sufficicntly accurate for the purpose, providing
a suitably fine subdivision is used. As mentioned before, the observed
eigenvalue does not give a wave function that is well behaved on the

right hand side. This is probably mainly due to the approximate nature

of the procedurc.

3. RESULTS

Morse wave functions of »rder O, 5 and 10 have been constructed using




r(4)

1.02
1.03
1.04
1.05
1.06
1.07
1.08
1.09

1.10

Analytic
1.011x10

2.410x10
5 .430%10
1.158x10°
2.340x10°
4.488%10°
8.179%10°

1.418x103

" 2.322510°

3.690}{103

5.5£95%10°
7.977}:103
1.097x10"
1.426%40"
1.827x10°
2.215x10%
2 .582x10"
2.893x10"
3.122x10%
3.245x1o4

3.254x10%

T

MORSE WAVE FUNCTION
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N, Bl v = 0
Numerical r(4)
1.041x10 1.23
2.410%10 1.2
5.430%10 1.25
1.158x10° 1.26
2.340x10° 1.27
448810 1.28

*8.,180x10° 1.29
1.218%10° 1.30

*2,343x10° .39
3.690%10° 1.32
5.540%10°  1.33
7.9773{103 1.34
1.097x10" 1,35
1.006%10" 1.36
1.827x10 1.37
2.215%10" 1.38
2.582x10" 1.39
2.893x10% 1.40
3.122x10% 1.4
3.245x10" 1.42
3.254%10°

Analytic

3.149x%10%
2.944%10%
2.662x10%

2.328x104

1.973x10%

1.620x10%

1.290x10"

9.975}(103

7.491x103

5-469x103

1
3.883x10”

2.684x103

1.807x103

2
1.186x10~
7.586%10°

4.7371102

2.888x10°
1.720x10°
1.002%10°

5.704x10

Numerical

3.149%10%
2.944x10"

x2 ,€64x10%

2.328x10%

1.973%10%

1.620x10%

1.290x10%

9.975x103

3
3

7+491x10

5469x10

3.883%10°

2.684}[103

1.807x10°

2
7.586x10
*4.736x102
*2.885x10°
*1.716x102
*9.941x10

*5.577x10

Asterisks indicate where =nalytic and numcrical valucs differ.




r(4)
1,01
1.02
1.03
1.04
1.05
1.06
1.07
1.08
1.09
1.10
1.1
.12
1.13

14
1.15
1.18
1.17
1.18
1.19
4.20
1,21
1.22
1.23
1.24
1.25
1.26
1.27
1.28

Analytic

n

5.734x10
1.187x10
2.285%10
£.083x10
6.760x10
1.034x10"
1.455%10"
1.869%10°
2.167%10"
2.220x10"
1.921x10"
1.222%10"
2.802x10
—=7.+524x10
-1.564%10
-1.887x10
-1.592x40
-7.539x10
3.481x10
1.324x107
1.817x10"
1.645%10"
8.723x10
-2.175x10
-1.231x10
-1.844%10"
-1.779%10%
~1.154x10"

W oW W W
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MORST WAVE

N
2

Numerical

*5.735x102
*1.188x10
*2,286x10
£ .083%10
6.760x10
1.03/310"
1.455x10"
1.869x104
2.167x1o4
2.220x10"
1.921x210"
1.24:%10"
2.8023-:‘103
=7.524x10
-1.564210
~1.887x10"
~1.592%10
-7.539x10
3.481x10
1.324%10"
1.817x10%
1.645x1oi
8.723x103
*—2.1763{103
-1.234x10%
41.814%10"
~1i779210%
-1.154x10"

(V]

W W

[ VY

W

™~

BBH

11

FUNCTION

v=>5

r(4) Anzlytic

1,29 =1.600x10°
1,30 8.854%10°
1431 1.6"{73{10[r
1.32 2.011x10%
1.33 1.831x10"
1.34 1.215x10"
1,35 3.308x10°
1,36 -6.216x10°
137 =1.468%10"
1,38 -2.091x10"
1,39 -2.02x10”
1,20 =2.530x10"
1.2 ~2.106210"
1,42 -2.439xz10%
1.43 —1.797x104
1064 =1.438x10°
1,45  -1.402x10"°
1,06 -8.114x10°
1,47 =5.765%10°
148 =3.961x10°
1,49 -2.6%8x10°
1.50 —1.7O6x‘103
1.5¢  =1.073x10°
1.52 —6.577x102
1.53  -3.930x10°
1,54  =2.293x10°
1.55  -1.308x10°

Numerical
3
3

-1.600x10
*8.855%10
1.677x104
2.011x10%
1.831x10"
1.215x10%
3.308%10°
~6.216310°
-1.468%10°
-2.094x10"
—2.:02x10"
~2.530x10"
—2.4065{‘10fr
—2.139x10%
-1.797x104
—1.438:(104
-1.102x10%
-8.114x10
-5.765x10
-3.961x10
~2.638x10
-1.706x%10
-4.073%10
*_6.576x10
*-3,929x10
#*-2,290%10
*~4,302x10

RN wow e W W W

NN

n

Asterisks indicate where znalytic and numerical values differ.
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an T.B.N. 650, with detailed results given for the first two. The

tenth order is still under study, with indications that a sub-interval
of less than 0.0054 is ncoded. Intervals uscd for the others were
0.01A and 0.0054 respcetively.

Table I shows o comparison betweon normalized ordinates obtained
anelytically to four figures and thosc from the precsent method, for
v = 0. The final cigenvaluc was 863.44468 cm | comparcd with the ob-
served 863.438 cm—1. Starting values at 1.024 and 1.034 were 10.110
and 24.097 respectively., with r measurcd in cm. Table IT gives a
similar comparison for the fifth ordcr, with cigenwvelue of 9098.3955 \::m"1
against the obscerved 9099 .388 cm_1. Starting velues a2t 1.0410A and
1.0154 were 5.7332 x 102 and 8.3259 x 102 respectively. In goneral,

agreement is perfect to four figurcs cxzeept on the extreme right.

It was felt from the beginning that os rany checks as possible
should be provided for the normelized Klein-~Dunham wave functions
eventually to be constructed numerically. therwise 1t would be un-
safe to claim that these functions are nccessarily an improvement on
Morse. One test that is immediately available is of course orthogonality
between wave functions of different order. & second one, which depends
on observed rotational constants, wos devised by Dre P.A. Fraser.

According to Herzberg (1950), p. 106, it is plausible to usc a

mean valuc for the rotztional constant B in the vibrational state con—

h 1
S ( 2] (10)
8n ey LT

sidered, that is




-a-
i
2
T
Hyllereas (1936) for jus

is the mean valuc of 15 duri

»

where
tification.
which can be evaluated numecrically fo

the significant range of r. DNotc tha

zero et the origin, although extrcmel

is infinitely grecat at the lower limi

+1

a’e!
Uiz i

i

tegratc no ncarcr to the origin
ordinates arc thern trivially small.

~

(9

assume over the rcmaining irterval
which will be of 2 high crnough order

to overcome the effcct of r—Z

in the
right hand side of cquation (10) with

good indication of the correct

=

) (e}

(¢}
[6]
0

Pesults of =

@]
[&]
ot
ot
(o}

B = 1.6290 cm |

o =
parcd with 1.53A8.

compzred with 4.6289

wave

Thre

nearly corrcct on the basis of the =D

function

ng the vibration. See also =@
- (r)1°
1 ¢v,r

But = is given as well by = dr,
o

Q
r any tobulated wave function over

t the Morsc wave function is not

¥ small, and thcreforc the integrand

t. In practicc, howcver, we in-

say 0.54 (more in this case), because

r'or purposcs of the test, one can

-

TMCNAv

-

SCg

of the true wave function
of smallncss (zero) at the origin

integrand. Thus, comparison of the

the cxperimental BV should give a

the wzwe function ¢V.

the Morsc functions above were
-1
cn obsecrved, and B

5

lowcr order is evidently more

= 105362 com—
of
oV

criterion. It is hoped that

further tests cn e developed 2s work continucs.

‘:‘

5. ZULURE ?

ROGRAM

The next report will dezl with c

Dunhar wave functions obtzincd

by the
posgsibly other molcculer states. Thi

subject to rcvision and therefore not

onstruction and testing of Klein~

present method for N B3H and

29
s work is alrcady under way bdut

rcady for publication.
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