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ABSTRACT

Existing experimental results of hypervelocity impact tests have been
gathered from various sources and the composite data are presented and
discussed. The extrapolated results to higher velocities are seen to differ
with the theoretical prediction from the perfect fluid model proposed by
R, L, Bjork, Re-examination of his assumptions and the experimental results
indicate the desirability of including the effects of the viscosity and the yield
strength of the materials into the mathematical model. A visco-plastic model
for hypervelocity impact is then fornulated to meet these requirements. This
is accomplished by introducinc, a viscosity factor 0o and a yield stress To
into the perfect fluid equations.

The equations governing the visco-plastic model are then studied and
the characteristic features of the theory are deduced. Certain dimension-
less parameters are found which determine the relative importance of the
inertial, viscous and plastic effects during the various stages of the hyper-
velocity cratering process.

To exhibit quantitatively the imp)rtance of including the viscous and
plastic effects, a one-dimensional impact model was studied. In this study
the values of Ao and r o are varied since definitive data are available for
neither parameter in the hypervelocity range. Two distinct finite difference
schemes have been developed for performing the required calculations on an
IBM 7090 computer. These are described in detail.

The results of the calculations are related to the qualitative model of
crater formations that has evolved from experimental studies in which the
actual cratering process has been monitored. It is concluded that the viscous
and strength effects strongly affect the cavitation process which is the
essential mechanism of crater formation. Finally, experiments are suggested
which would provide the necessary data to verify and extend the theory.
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LIST OF SYMBOLS

PC crater depth measured from original target surface

Dc  crater diameter at original target surface

D diameter of sphere with mass equal to projectile

D strain-rate

Dik total strain-rate tensor

D*ik distortional strain-rate tensor

To  yield value of shear stress
ik components of stress tensor

7 *ik components of distortional stress tensor

72Z  von Mises flow statistic
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1-= p(D) strain-rate dependent viscosity coefficient

40 proportionality constant (viscosity factor)

/if second coefficient of viscosity

V (=1/P) specific volume of visco-plastic medium

Vc  crater volume below original target surface

Vp projectile volume

Pp mass density of projectile

Pt mass density of target

Po mass density of undisturbed visco-plastic medium

P density of visco-plastic medium

vo  impact velocity of projectile

v characteristic velocity of flow of visco-plastic medium

v* value of v at which inertial and strength effects almost equal
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similar flows
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M* generalized Mach number
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(r, 6 z) Eulerian cylindrical coordinates

prime denotes dimensionless value of quantity

q = qr 0, qZ) velocity of flow of medium in Eulerian formulation
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qi initial velocity of flow at interface of impacting bodies

p thermodynamic pressure

Pi initial pressure at interface of impacting bodies

U specific internal energy of medium
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t tim e

g any dependent variable

g value of g at time mesh n and space mesh j

Ax size of space mesh

At size of time mesh

£constant with dimensions of length
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Q artificial viscosity term
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V Poisson's ratio

E Young's modulus

c 0 speed of sound in undisturbed medium
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INTRODUCTION

For satellites and for manned space flight, the presence of meteoritic
material in space accounts for one of the important environmental hazards.
The velocity of the meteoroids is estimated to range from 0. 5 to 7. 2 cm/
microsecond. * A similar problem, potentially, is the damage that may be
inflicted on a ballistic missile by high speed particles produced and directed
by artificial means. For these reasons, increasing attention has been re-
cently focused on the problems attendant to the collision of a projectile and a
target in thk hypervelocity regime. The ultimate objective of these studies
is to determine the minimum hull taickness required to ensure that the space
vehicle is not pierced. More explicitly, the dependence of the minimum thick-
ness on the various parameters is the information sought.

Until quite recently, laboratory techniques were only capable of pro-
ducing velocities of less than about 0. 6 cm/microsecond. A great deal of data
are available describing the craters formed at these lower speeds. In the
past year a method has been developed for projecting hypervelocity pellets up
to 2 cm/microsecond. At present, however, little data are available in this
range. As an adjunct to such experiments, empirical formulas and cratering
theories have been proposed to extrapolate the experimental results to cover
the velocity range of interest. In the following both the data and the theories
are reviewed and the conclusions used as a basis for the formulation of a
visco-plastic model for hypervelocity impact which takes into account the
viscosity and strength of the projectile and target materials as well as their
compressibilities.

The visco-plastic model is proposed only for materials that behave in a
ductile manner when impacted. The phenomenon is quite different for brittle
materials such as rock. The survey of the experimental data is restricted to
thick metal targets impacted at normal incidence. The use of a target which
is essentially a semi-infinite body rules out geometrical complications such
as reflected shock waves at free surfaces, bending, etc. The large majority
of past investigations have been similarly restricted.

*The gram-centimeter-microsecond system of units is used throughout this

report.



REVIEW OF EXISTING DATA AND THEORIES

When velocity limits of power propellant guns were reached
experimenters provided the first hypervelocity impact data through
the utilization of light gas (hydrogen, helium) projectors. The first
light gas projector was developed and constructed at the New Mexico
School of Mines by Dr. W. D. Crozier and Dr. William Hume. Most
of the hypervelocity data presently available have been obtained by
use of light gas guns. The upper limit reported as attained by them is
about 0. 6 cm/microseconds.

(a) Survey of Data

The data which will be presented have been abstracted from the
reports of tests using both these high velocity, pingle particle impact
techniques, References I through 14. The particle properties are
therefore well defined. Our object is to analyze the data for charac-
teristic features of the impact phenomenon; results are not to be
included if the particular projectile and target material combination
has been studied in a single series of tests.

Changes in the crater profile as the velocity is increased over
the known range are illustrated by Figures 1 through 4. The ratio of
the penetration to the diameter of the crater, Pc/Dc, is plotted for
various projectil*e materials impacting massive targets of lead, copper,
steel, and aluminum respectively. The low velocity scatter is assoc-
iated with undeformed projectile penetration. At higher velocities,
depending on the strength of the projectile and target, the projectile
deforms plastically. As the impact velocity increases still further,
these data show that for most projectile materials the crater profile
p~rameter, Pc/Dc, approaches 0. 5, the value corresponding to hemi-
spherical craters.

For some material combinations the velocity at which the 0 . 5 level
is attained, if attained at all, is seen to be quite high, especially for
cases in which the yield strengths of the projectile and target are high.
This is demonstrated by Figure 3, which shows that tungsten carbide
and aluminum alloy projectiles impacting steel have not ttained Pc/Dc =
0. 5 for velocities up to 0. 5 cm/microsecond. In the former the ratio
is closer to about 0. 6, while it is closer to 0. 4 in the latter.
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In Figures 5 through 8 the penetration parameter, PC/Ds, has been

plotted as a function of the impact velocity for results where projectile and
target materials were the same. Here D s denotes the diameter of a sphere
having the same mass as the actual projectile. PC again denotes the depth

of a crater. The impact vel city is expressed in dimensionless terms through
division by the velocity of sound in the undisturbed target material, vo/C -

When both projectile and target are of low strength the log-log plot of the data
is seen to be well fitted by a straight line of slope 2/3, Figures 7 and 8. For
materials of greater strength the slope at low velocities differs but appears
to tend towards 2/3 at the higher velocities, Figures 5 and 6.

In Figures 9 through 12 the crater volume parameter, Vc/Vp, is plotted

against the dimensionless velocity for the projectile and target materials
corresponding to Figures 5 through 8 respectively'. Here Vc and Vp denote
the crater and projectile volumes respectively. A straight line of slop 2 is
seen to be in excellent agreement with the plot on log-log paper in all cases,
even at the lower velocities. This result is compatible with the variation of
Pc/Ds with (vo/co) 2 / 3 and with the tendency of the craters to approach a
hemispherical shape as described above.

(b) Empirical Formulas

Nearly everyone who has obtained experimental results has developed
empirical formulas that represent his observations to a fair degree of
accuracy. The formulas are not based on rational theoretical grounds and
generally are not valid for velocities and projectile-target material com-
binations outside the restricted regions covered by the tests. Recently,
Bruce (Ref. 15) has fitted formulas to the composite firing results which
are consistent with the .assumptions that in the hypervelocity range Pc/D c

0.5, Pc/Ds -(vo/c) 2 " and Vc/Vp , . ( vo/co) . His are probably one of the
two most reliable sets of engineering formulas presently available, but even
then extrapolation to other materials or to velocities greater than about 1. 0
cm/microsecond is hazardous.

More recently, Herrmann and Jones (Ref. 16) have also gathered and
analyzed the available data on cratering by high speed impact in semi-
infinite targets. They found that the penetration in the high velocity region
is best fitted by the dimensionless equation

(1) Pc/Ds = k (Pp/P) 2 / 3 H where H = Pt v 0
2 /ht.

Here k is a constant near 0. 36 for most materials; Op and Ptare the densities
of the projectile and target materials; ht is the Brinnell Hardness of the

target. The Brinnell Hardness is defined as the load applied to a spherical
stylus divided by the area of the resultant depression, and thus has the
dimensions of a stress.

3



There is an approximate dependence of indentation hardness on the
shear yield stress, "o" The relation is approximately

(2) h2 7. 2 To.

It would therefore appear that the strength of the target material is an im-
portant factor in the cratering mechanism. In fact Herrmann and Jones tried
various parameter combinations in which the material strength was
neglected, and found that none could fit the composite experimental data.

(c) Previous Cratering Theories

A number of simple theories of hypervelocity impact have been proposed
for the prediction of penetration (Refs. 17 through 23). Most of the theories
show little agreement with the experimental data; this is not surprising since
neither realistic compressibilities nor flow geometries are introduced into
any of the derivations.

The only serious attempt to calculate the phenomenology of hypervelocity
impact from basic physical equations has been made by Bjork (Ref. 24). He
uses a hydrodynamical model and treats the rotationally symmetric case of
two dimensional, unsteady, compressible flow in a semi-infinite target
under normal impact by a cylindrical projectile of the same material. In
setting up the mathematical model Bjork assumes that a) the elastic waves
can be neglected since the stresses and particle velocities carried by these
waves are much less than those caused by shock waves, b) the flow is strictly
adiabatic, c) the strength of the target and projectile material is negligible,
and d) the flow is inviscid.

The results of Bjork's calculations are summarized by the equations

Al onAl : Pc/Ds- 2.09 (vo/co)1/3

Fe on Fe: Pc/Ds= 1 69 (vo/co) 1 / 3 .

Within the numerical error of the computational procedure he found the
craters to be hemispherical and so, from geometry alone,

(4) Vc/Vp = 4 (Pc/D) 3.

Substitution of equation (3) into (4) yields

(5) Al on Al : Vc/V p = 36. 5 vo/co

Fe onFe : Vc/Vp = 19.3 vo/c o .

According to this model, therefore, the penetration at hypervelocities
actually increases with about the one-third power of velocity rather than with
the two-thirds power as extrapolation from the lower velocity tests would
indicate.

4



Since densities and velocities are the primary variables in the perfect
fluid model, equations (3) and (5) should apply equally well to other materials
of equal density. The predicted curves for the penetration parameter and
crater volume parameter are superimposed on the experimental plots of
Figures 5, 6, and Figures 9, 10 respectively. The mismatch even at the
higher velocities in the experimental range causes one to have reservations
in using the model to predict results in the upper reaches of the 0. 5 to 7. Z
cm/microsecond range. Therefore, this leads to examination of his four
basic assumptions. Since a) and h) are almost certainly justified attention is
focused an c) and d).

(d) Viscous and Strength Effects

As to neglecting the strength of the material, for dynamic conditions
where the duration of loading is very small (say in the order of microseconds)
the dynamic yield strength may rise by several orders of magnitude. Al-
though suggested by earlier workers (Refs. 25 and 26) and emphasized above,
this dependence of the cratering process on the material strength has recently
been directly illustrated by an experiment carried out at the Carnegie Institute
of Technology (Ref. 13). The experiment consisted simply of firing steel
pellets (0. 18 gram, 0. 5 cm/microsecond) into targets of lead, cadmium, zinc,
and copper and observing the craters produced by the impact as the target
temperature was varied over a wide range. The crater volume plotted
against temperature showed abrupt changes at certain temperatures that are
identified with similar discontinuities in tensile tests made on the metals as
the temperature was varied. The critical temperatures are the points where
certain metallurgical changes such as transition from brittle to ductile be-
havior or stress anneal occur.

That the viscosity of the target plays an important role in impact phenom-
enon may be seen from post mortem metallurgical examination of the micro-
structure surrounding a high velocity crater (Ref. 2). Practically no change
in the shape of the grains in the material occurs under the crater where the
strain rate is small. On the other hand, the grains are found to be elongated
considerably along the sides of the crater where the strain rate is greatest.
The distortion is caused by the shear stresses which result from the high
strain rate. Bjork's inviscid model allows only for hydrostatic pressure, and
thus does not take this effect into account. The viscosity is also important
from the point of view that without considering it there is apparently no way
of introducing anisotropic stresses into the flow. This must be done if a
strength effect, which is clearly essential, is to be introduced.

5



VISCO-PLASTIC MODEL

In this section the problem will be considered anew in order to formulate
a mathematical model which takes into account both the strength and viscosity
of the materials involved.

(a) Bingham Model

When an ultra-high-speed projectile strikes a target a strain-rate which
depends on the impact velocity is imposed on the projectile and target
materials. The plastic deformation will be resisted not only by the static
yield stress, but also by viscosity stresses with magnitudes dependent on the
strain rate. Both these effects seem to be important. Such a plastic solid
(exhibiting visco-plastic flow) is most simply represented by a Bingham
model. The material is considered rigid if stressed below its yield strength,
whereas above this value the material acts like a Newtonian viscous liquid;
a schematic representation of such a material is given in Figure 13(a). In
simple shearing flow, in which the velocity is q (y), and dq/dy is a constant
D, this means that

. "0T= A o D (Taro)

(6) T+1 0 = 0 D (75-.oTO)

D = 0 ( I1<To),

where To is the yield value of the shearing stress and Uo is a constant (if
temperature dependence and pressure gradient effects are neglected) deter-
mining the magnitude of the strain-rate effect.

Now the usual definition of the viscosity of a liquid is based on Newton's
assumption that the shear stress and the strain-rate are related according to

r"= 1D,

where the viscosity coefficient A is a constant at constant temperature. When
equations (6) are written in this form, the result is

(7) T= )(D) D,

where the strain-rate dependent viscosity coefficient M = A (D) is given by
TO ( II To)

(8) M(D)= U0o(IT-
'AO JDJ( Il I< 1.o).

=CO

This dependence of A on D is illustrated in Figure 13(b). The viscosity
coefficient decreases with increased strain-rate.

6



The use of the Bingham model is proposed to bridge the transition from
the plastic to the hydrodynamic regimes (Ref. 27). It is analogous to Malvern's
model which seems to have successfully bridged the transition from the elastic
to the plastic regime (Ref. 28). Malvern assumed that the strain-rate was
directly proportional to the difference between the instantaneous stress and
the static stress corresponding to the strain, so that for longitudinal stress
in a slender rod the relation takes the form

(9) -{EEC aE[a - F (C)

where E is the elastic modulus; a and Care the instantaneous values of
longitudinal stress and strain; and F (C) defines the static stress-strain curve.
These quantities are depicted in Figure 14. As C increases Obecomes negligible
compared to EC, and F (C) levels out and may be approximated by a constant
r.' When very large strains are involved ecuation (9) may therefore be
approximated by the relation

(10) a. a 0 (aa)

The similarity of equations (6) and (10) is obvious.

(b) Axisymmetric Stress to Strain-Rate Relation

In order to extend the idealized visco-plastic model to a material sub-
jected to hypervelocity impact the stress vs. strain-rate relations (7) and (8)
must be generalized. As formulated there, only the properties of the material
in simple shear flow are defined; corresponding relations for three dimen-
sional flow are required. The expressions will be somewhat simplified by
assuming that the projectile is axisymmetric in geometry, and that it strikes
a semi-infinite target normal to the axis of symmetry. Furthermore, the
angular momentum of the projectile is assumed to be zero at impact.

Under these assumptions the only non-vanishing components of the stress
tensor are the normal stresses Trr, Tee, z and the shearing stress Trz
Tzr. The tensor may be decomposed into two parts, a component pro-
ducing distortion and a component producing only a volume change:

(11) Tik= (Tik + P6ik) - P6ik

-
7ik - P6ik

where 6 ik is the Kronecker delta and

() ik = k + P~ik; 3= "Iii,

3

T ik is associated with the internal friction of the medium and p is assumed
equal to the hydrodynamic pressure. *

*This assumption is equivalent to setting the "second coefficient of viscosity"

1A -Z /3. See Ref. 29.
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Flow is assumed to occur whenever the von Mises criterion is satisfied,
i.e. whenever

( 1 3 ) r 2 > f r 2  w e e 2 = .. 2 + ( ,2 + r 2 + * 2z )
where 72* + (*+ 7*2 + T*Z

o rz 2 rr ee zz

T 2 is a measure of the magnitude of the components of the distortion stress
*

tensor, T k3 ik"

The non-vanishing, components of the strain-rate tensor are defined by

(14) D r D D 2 )D1141 69 2
Drr = 2 D6r r - r Dzz =

aq aqD =D = - --:X +  ' .. z

rz zr az ar

This tensor may be decomposed into a distortional strain-rate and a dilational
strain-rate:

D D 2id1

Dik Dik (P dt /ik

Here-(1/P) dP/dt is the volume strain rate, the factor 1/3 is required to obtain
the linear strain rate, and the 2 enters because of our definition of D.. The
continuity equation for compressible flow, ii

0I5)- t + P div 0 ,

may be used to write the above equation in the form

• 2

(16) Dik = Dik + -div 4 6ik.

To generalize (7), the distortional stress and strain-rate components are
related by

(17) T D (=( >T 2 )
ik =  ik =o

D - 0 (T 2 < T )
ik =o

where the dependence of 11 on the distortional rate of strain must generalize
(8) in a natural manner. Substituting (12) and (16) into (17) gives

8



(18) =+( ik -p 6ik +4D ik " div 4 6ik.

If Mwere a constant, equation (18) would reduce to the classical stress to
strain-rate relationship of the Navier-Stokes theory of hydrodynamics. On
the other hand, if one does not assume that the mean normal stress is the
thermodynamic pressure, (12), the relationship is complicated by the factor
-29/3 in the last term being replaced by the second coefficient of viscosity. '.

Since the viscosity coefficient AL depends on the distortional strain-rate it

must be a scalar function of the three invariants of the tensor D ik' i.e. 1

must be independent of the particular frame of reference. Now the first
invariant is zero and the dependence on the third invariant is small. There-
fore, the viscosity may be assumed to depend only on the second invariant:

(19) D2= D *2- (D*+ 2

rz 2 rr 66 D.)

2 2 2 2Dz + (Dr + D 6 + ) + D (div q)

Thus, the natural generalization of the Bingham model to the case of
axisymmetric flow is for the viscosity A to depend on the rate of strain
according to functional relation (8) with D given by (19):

T 2 2
/=/o+ o0r > 2

0 [2 1 2 2 2 2 1/2 o

(20) IDrz 2(D rr+Doe+ D ) -y(i4)2

p= () 
( 2 < r 2 ).

0

The generalization of the Bingham model to 3 dimensions has been formulatedby Oldroyd (Ref. 30) for the case of rectangular coordinates.

(c) Formulation of Governing Equations

Now that we have the expression for the dependence of the viscosity on
the strain-rate the principle of the conservation of momentum may be applied
to write the two equations of motion corresponding to the Navier- Stokes
equations for axially symmetric flow. The result is the same except for the
non-constancy of A. These two equations together with the continuity equation
(15), which results from the conservation of matter, give three equations in
the four dependent variables qr qz p, p. To write another equation some

assumption that specifies the particular type of flow must be introduced. An
assumption is made identical to that of Bjork, that no heat is transferred
between neighboring particles of the material. This leads to the well known

9



energy equation of hydrodynamics (Ref. 31). This equation, however, in-
troduces a fifth dependent variable, the internal energy per unit mass U.
This difficulty is circumvented by assuming that an experimentally determined
equation of state relates this thermodynamic parameter to the other state
parameters p, P. A discussion of our choice for the equation of state is
given later in the report.

The final five equations are as follows:

-1 - + P div 0 (Mass)
dt

dqF
(22) Pd- = " 1 (D) 2 a-- -r div q(Radial

dt r br 14 (r 3 (Raia
Momentum)

+q z ' + 2$A(D)aq r
+- (D)\or + r r - i_

Pdq Z=a q 2(23) _M+- (D) T div
(23 r a(Axial

Momentum)

r 'r (D) 6 az

(24) p= f (P, U) (State)

(25) p =d pI. = ID) D2 . (Energy)

The material time derivatives may be expanded according to the relation

d ( ) + grad( ),
d-t( )- at

and the divergence for the axially symmetric case is

div - ra (rq )+ a-
r ar r az

10



STUDY OF GOVERNING EQUATIONS

The introduction of the effects of viscosity and strength into the perfect
fluid equations has necessarily led to complication of the partial differential
equations governing the flow. As the next logical step these equations will
be studied qualitatively to determine the dimensionless parameters which
control the relative importance of the inertial, viscous and strength effects

(a) Characteristic Numbers

Consider two distinct projectile-target systems, both having projectile
and target geometrically similar. Choose the diameter, D., of the sphere

with mass equal to that of the projectile as the characteristic length. We may
set

(26) Ds2 = KI Dsl.

The same relation holds between all other pairs of corresponding points if
cratering flows are dynamically similar:

r. = K1 r 1  Z2 = K l z1

For two corresponding times t 2 and t1 set

(27) t 2 = K2 t1 .

Since velocity means traveling a certain length in a certain time, the charac-

teristic velocities (impact values) in the two systems are related according to

(28) K1

v2 = K. v

and hence

K1  K,
q r2 =K qrl qz2= 2 qZ1.

Furthermore, we may set

P( 9 K 3 P1  P2 =K 4 p I U2 =K 5 U 1

S 2 = K 6  =7 o1'

We now use relations (26) through (29) to express the magnitudes of the
variables of the second cratering flow in terms of those of the first. This is

11



done in each of the equations governing the visco-plastic formulation. The
K factors for the two terms in (21) are the same so that the continuity equations
for the two flows are identical. The viscosity M=A(D) which appears in the
momentum and energy equations is homogeneous in K only if

K 2(30) K -K 2 K7 or KK6 = K1 K7 2K

Then IA2 = K6  1 and all terms in (22) and (23) have the same factor provided

(31) K I K 3 _ 6 K4

2 K, K2  K,

The specific energy term (consisting of kinetic and internal energy com-
ponents) in (25) is homogeneous in K only if K5 = K4 /K 3 or, from (31),

2

(32) K5

K2

Then all the terms in the energy equation have the same factor provided

(33) K 3 K 5  K 6
K 2 K22*

K2

Upon substitution from (26), (27), and (29) the required K relations may
be rewritten in dimensionless forms. Relation (30) is equivalent to

D Tr D
si o1 92 o2DsPol I s Ao2

Relations (31) are equivalent to

D 8 1  Ds2 P2 v2 and P I v 2 2

ool A02 Pl P2

Relation (32) is equivalent to

U1 u 2

2 2V1  v2

and relation (33) gives nothing new.

12



Necessary conditions for dynamic similarity of the two systems are that
they have the same values for the dimensionless ratios, Reference 32

D " D P v
B D 0 R= 300B°o Vo o Ma

0 00 0 0

(34)

v U
M= N o v=2

0

Here the subscript o denotes that the quantity is evaluated in the un-
disturbed state. B and R are the familiar Bingham and Reynolds numbers

which ordinarily arise separately in the theory of slow visco-plastic flow and
the theory of viscous liquids respectively. Here both occur as the model in-
cludes the two types of flow. M* is the generalized Mach number which for
an ideal gas may be decomposed into two factors, the ratio of specific heats
ar-i the ordinary Mach number M. It is interesting to note that if the charac-
teristic pressure p0 is taken to be the Brinnell Hardness, see equation (1),

then

M /H*

The characteristic specific internal energy, Uo , may be taken to be the energy

required to melt or vaporize a unit mass of the medium.

Since the governing equations also include the equation of state, equality
of numbers (34) are not sufficient to ensure that two geometrically similar
flows are dynamically similar. The equation of state does not lend itself to
this type of investigation since it is an empirical formula.

(b) Relation to Perfect Fluid Model

The equations governing the flow can be written in dimensionless form by
setting

r =Lr' z =Lz' p= p p'
0

qr = vqr' qz Wvq' U=vUZ'

(35)

p =P v2 p' t =Lv It' R=LPoVA/oI

Io=LPo vvR = 0 2  - B= LT (Av

13



where the dimensionless quantities are indicated by a prime. The governing
equations then become

(36) dP'+ PIdiv.I 0
dt

Pe dqT + ap,

(38) 3'V ( zjz rs

+ z r~' ?j div' 4' +1-L r Dt\z

r r

where

''-A'd' 2  iv

-&.r ar /Prr ~ j~~3

t 6z,14



£he left side of (40) may also be written as

upon substitution from (36).

The quantities in the brackets in each of equations (37), (38), (40) will be
of order unity at each point in space and time' that L, v are truly representative
values. If z,, and if one of the three numbers R, 1, B is much greater than
the other twi, a single set of terms in each equation predominates, and the
motion may be approximately described by equating the coefficient of the pre-
dominant number to zero For example, if R3,1, B, the equations (37), (38),
(40) reduce to

P1 + -o
dt r'

(41) P, dq'z ' 0

dt'

dU' + p' div i'- 0,
dt'

respectively.

Actually, these combined with (36) and (39) are the perfect fluid equations,
and are seen to be valid when the inequalities R:ol, B hold, i. e. only when
the inertial effect predominates. This will be the case during those parts of
the cratering process when the characteristic velocity v appearing in R and
B is high enough, i.e., by (35),

(42) v so-maximum (VF7, o/L Po).

As the rate of flow decreases so does the characteristic velocity until
eventually, when the flow ceases, v - 0. Clearly, in the late stages of flow
the inequalities required for the perfect fluid approximation to be valid are
reversed, i.e., R4C 1, B. At other stages, two or possibly all three of the
groups of terms may be equally important.

It is seen that the strength terms are insignificant during the early stages
of flow but become predominant in the latter stages. The question arises as
to the importance of the viscous terms. Clearly, they would always be
negligible only if

(43) maximum (R, B) I

for the entire range of v, (0, v ). Since R and B are respectively, monotone
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increasing and decreasing functions of v the left side of (43) is attained when
R= B, i. e., when the flow velocity is given by

The required inequality for the viscous terms to be negligible throughout the

cratering process therefore becomes

(44) /1o40 LV oT .

At the instant of impact an exceedingly large strain-rate gradient is im-
posed at the surface of contact. The use for example, of the diameter of the
projectile, D8, for the representative length L cannot be justified; a much

smaller value is actually required. Accordingly, the inequalities (42) and (44)
are very restrictive. The viscosity is probably never really negligible in the
time interval immediately after impact.

(c) Choice of Parameter Values

The principal difficulty in testing these conclusions, and a real difficulty
in the application of the governing equations themselves, is in assuming the
viscosity coefficients for structural materials such as steel, copper, or
aluminum. The viscosity invoived here has little relation to ordinary creep
data. The choice of an appropriate value for the dynamic shear yield strength
7 is nearly as troublesome. It is known to increase with increasing strain-o

rate, but values are not known in the hypervelocity impact range. Therefore,
to check the philosophy used in the construction of the mathematical model
exploratory calculations had to be performed in which the values of Mo and T°

were varied over several orders of magnitude and the impact velocity v0 was

allowed to assume a set of values in the range of interest.

As a first step in choosing trial values for 1o the visco-plastic formula-

tion will be applied to the case of a long rod subjected to uniaxial loading
(along z - axis). Then

D =0 D De9 D div= 0

and the viscosity coefficient, (20), reduces to

T

1A +S= /3" b q

16



Hence, by (12), the uniaxial stress and strain-rate are related according to

aqz

Tzz- To = 3 o

This relation compares with (10) upon setting

(45) Ao _ aq/3.

Now, Malvern (Ref. 28) has applied his model, (9), to experimental
data obtained upon subjecting a long rod to a plastic wave. In this way values
for m in the elastic-plastic transition region were determined. His values
may be substituted into (45) to obtain approximate values of A0 for the plastic-
hydrodynamic transition region:

Steel: A 0 = 0. 8 gm cm- microsecond "l
0

Copper: A = 0.4 gm cm-I microsecond'l.

Others have also obtained approximately the same values, Reference 33. Our
calculations have all been for iron and A is assumed to be within a factor of
ten of 0.8.

For mild steel, Reiner (Ref. 34) quotes the static yield stress to be
approximately

-102 -m -2
T = 10 gm cm microsecond ,

i. e. ten kilobars. For our calculations the dynamic yield stress is pertinent.
The above value is assumed to be the lowest value likely, and T is varied up

to one hundred times as large, i. e. one megabar.

The various combinations of assumptions for of 7 0 and impact velocity,

vo, are displayed in Table I. The choices of v0 (=0. 5, 4, 7. 5 cm/microsecond)

represent the extremes and mean of the meteoroid velocity range. It will be
desirable to have further results for v 0 =. 0 cm/microsecond. The values of

the dimensionless parameters B and R are also listed for each combination

of Ao ro' v0 . They are seen to vary widely with the choice of combinations.
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TABLE I

Enumeration of parameter oambinatloa oosidered for iron-iron impact. The units me in the gram-oentimetor-miroecom d

system. P o . 7.8 9gm/cm3 De. 1. In oomputia the required nset ui for the mpicit sebsme, a to ohosen an 1.5,1 1.5A x.

No. Parameters BiMbam No Reynoids No. Sability Criteria Net 8i.e

D.y o  D a- o A t,/o (a: A -0.1
VO  O O  % . D a tt/A xat

2 0.5 0 6:10 ~0 48:10.7 .
1 0.5 0 0 C0 3.06 0.60 3.0x10-2

204. $a x 10 "7 .

3 0.5 0 810
1  

0 4.88 1.36 1.4 "
4 0.5 0 8 0 4.88 x 10-1 0.23 2.3 X 10- 3

5 0.5 10-2 0 CD O 3.06 0.60 3.0x 10-3
6 0.5 102 8x 10-2 2.5x10-1  4.88x10 2.70 2.7
7 0.5 102 8x10-1 2.5 210"_ 4.86 1.38 1.4
8 0.5 10-2 8 2.5 x 10- 3  4. 88 • 10-1 0.23 2.3 x 10

3

9 0.5 10-1 0 O 3.06 0.60 3. 0 x 10-2
10 0. 5 10-

1 8 x 10-2 2.5 4. 8810 2.70 2.7 "
11 0.5 10-1 8x 10-1 2.510 - 1 4.8 1.38 1.4 "12 O. 0o -  8 2.5 10- 488 101 0.23 2.3 x 10- 3

13 0.5 1 0 O O 3.06 0.60 3.0: 10-2
14 0.5 1 8x10

-2  2.5x10 4.88x10 2.70 2.7 "
15 0.5 1 8x 10- 1 2.0 4.88 1.38 1.4
16 0.5 1 8 2.5 _11 4.88: 10

1  0.23 2.3 x 10-
3

17 4 0 0. - 0 0 21 0.44 2.1 "
18 4 0 s10

-2  0 3.,: 102 
0.21 2.1

19 4 0 8 10-1 0 3. : x 10 0.18 1.8
20 4 0 8 0 3. 9 0.05 8.5 x 10-

4

21 4 10
2  0 C 0 0.21 0.44 2 x 10-

3

22 4 10
2 8-1 2  .13 x 10-2 3.9:x 102 0.21 2.1

23 4 10
"
2 8x10-1 3. 13x10-3  3. 9x10 0.18 1.

24 4 10-
2  8 3. 13 x 10-4  3. 9 0.085 8.5:10-

25 4 10
1  0 O0 C 0. 21 0.44 2. 1 • 10-3

N 4 101 6:10-2 3. 13 x 10-1 3.9 102 0.21 2.1
27 4 10

1 8:x10-1 3.13:10-2 3. 9:x10 0.18 1.8
28 4 10-1 8 3. 13 x 10-

3  3. 9 0.085 8.5 . 10
-4

29 4 1 0 CD O 0.21 0.44 2. 1x 10- 3

30 4 1 8.:0 - 2 3.13 3. 9x 102 0.21 2.1
31 4 1 8 x 10"1  3.13x10-1 3. 9 x 10 0.18 1.8
32 4 1 8 3.13 10 =2 3. 9 0.085 8.510-

33 7.5 0 0 - 0.093 0.40 9.3
34 7.5 0 8x10

2  0 7. 3x 102 0.092 9.2

35 7.5 0 8x10- 1 0 7. 3x10 0.068 8.6
36 7.5 0 8 0 7. 3 0.051 5.1"

37 7.5 10-2 0 CD 2 0 0.093 0.40 9.3
38 7.5 I0 2 

8x10-2 1.67: Ix 2 7. 3x102 0.092 9.2
39 7.5 10

-
2 8x 10-

1  1.67x 10-3  7. 30 0,086 8.8 "
40 7.5 10

"
-2 1.67 10- 7. 3 0.051 "5.1

41 7.5 10-1 0 c O 0.03 0.40 9.3
42 7.5 1O'1 8x10-2 1.67x10-1 7. 3x 102  0.092 942
43 7.5 10-1 8x10-1 1.67x10-2 7 3x10 0086 8.6
44 7.5 10"1 8 1. 67 x 10

-3  
7, 3 0. 051 5.1

45 7.5 1 0 O 0 0.093 0.40 9.3
48 7.5 1 810-

2  1.67 7. 3x102 0.092 9.2
47 7.5 1 8X10-1 1.7 10-1 7. 3x10 0 086 8.6

48 7.5 1 8 67 :10-
2  

7. 3 0.051 5.1

49 1 0 0 - O 1.29 0.54 1.3 x 10-2
50 1 0 8 x 10-2 0 9. 8 x 10 1.22 1.2 "
51 1 0 8 x 10

"1  
0 9.8 0.80 0. 8 x 10-

3

52 1 0 8 0 9.8:10-1 0.18 1.8
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ONE -DIMENSIONAL PROBLEM

For the exploratory calculations we have considered the one-dimensional
impact of two semi-infinite bodies, Figure 15, and compared the results
obtained with those given by the perfect fluid equations. This is a problem of
"plane strain" and the problem of a long rod considered above is a problem of
"plane stress".

(a) The Eulerian Formulation

The visco-plastic equations for one-dimensional flow can be deduced from
the axisyrnmetric equations by equating to zero qr and all derivatives with

respect to r. Then, setting qz = q, the viscosity coefficient reduces to

T

(46) z

A= 00 (12 < r 02

The components of the distortional stress tensor are, by (17),

() * 1& 7 * 4n *
(47) = = -" ,rr i - z zz T rz

and the von Mises flow statistic therefore reduces to

(48) 72 JAM (z)Z

2 4 4 i Iqi4 2
0 ./3- 0 az 3 0\ -z/

The system of equations governing the flow reduces to

(49) dP+ P _a = 0
dt

(50) + Tg
;3z
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(51) p= f (P. U)

(52) pp+p % =14_dt 37 0 la/

In writing (50) we have used the relationship

To show that this is the case is equivalent to showing that the velocity gradient,
aq/az, never changes from just above zero to just below zero. From (46),
(47) we see that this situation cannot occur since, for example, T * would

have to change from just above %4-3 7, to just below -A7'3 700 involving an
impossible discontinuity of stress.

(b) The Lagrangian Formulation

The one dimensional formulation above is in the Eulerian form. The
Lagrangian form, however, gives more information (it keeps track of each
material particle) and has the virtue that conservation of mass is automatic
and exact, even in the finite difference approximations. Because of this
inherent greater accuracy the Lagrangian form is often preferred for problems
in one space variable.

In Lagrangian coordinates the motion is considered in terms of the in-
stantaneous position X of a section which is a function of time and a space
coordinate x which identifies the section. Here the Lagrangian coordinate x
will be taken to be the initial position of the section at time zero. The velocity
is then given by

(54) q= bX
at

The transformation from the Eulerian variables (z, t) to the Lagrangian
variables (x, t) is accomplished by the relations

(55) da .
t \ x 0 aj t

where g is any dependent variable. In writing the second of these we have
used the fact that the conservation of mass implies

ax Po0

ax P"
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In Lagrangian form the governing equations, corresponding to (49)
through (52) respectively, are as follows:

(56) = ( o\ ax Po
or

ax t ax x ax

(58) p = f (P, U)

(59) u+ la 4 p0 P2
+oat at P =.A-- 2  a., v 0-I6I

0

The viscosity coefficient becomes

Po o 2r > r z)(60) 1 = +  (2 Mo

0 4P aq 0

14 = O (2< T 2

The stress components become

Lq To )

T -2 P q o.
1"--T =789=P" ;A/4 ±-o sign 'q
rr 0.6 -- u.A- gn-

(61)

7. - 4 ±Pq + si /6q\
+3_ a ign .rz

and

(62 = 4 2 p 2  aq\ 2

0 x

4r2 ( 2 / 2

o V 00 xI 3Ao) c x
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(c) Necessity of Numerical Solution

Analytical methods for solving the governing equations are not available,
even for these one dimensional formulations. It was therefore necessary to
resort to finite difference techniques for the computations. To cover the
desired range of parameter combinations, listed in Table I, required the
development of two separate computational schemes. The first is an explicit
difference scheme based on the Lagrangian formulation. It allows the two
impacting bodies to be of different materials, and places no restriction on 1 0
For large values of Po and vo, however, it is advantageous to use an

alternate implicit scheme based on the Eulerian formulation. The latter
scheme then requires less machine time, but it is only valid for impact be-
tween bodies of identical material with A > 0. The two methods are there-
fore mutually complementary. 0

The next two sections describe these schemes in detail. They
may be omitted by the more casuat reader.
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EXPLICIT DIFFERENCE SCHEME

The explicit difference scheme represents an extension of a method
commonly employed for perfect fluids to allow for the additional terms which
occur in the visco-plastic model.

(a) Artificial Viscosity

In a perfect fluid shock waves occur as moving surfaces across which p,
U, p, q are all discontinuous. The differential equations (which makes no
sense on such surfaces) must then be augmented by jump conditions which
serve as internal moving boundary conditions and their occurrence vastly
complicates the solution. To avoid these difficulties von Neumann and
Richtmeyer (Reference 35) introduced a purely "artificial viscosity" which
has a smoothing effect so that the discontinuity surface is replaced by a thin
transition layer in which the dependent variables change rapidly, but not dis-
continuously. The purely artificial dissipative mechanism was chosen of such
form and strength that the required smoothness is achieved without affecting
the flow pattern.

In the equations which are being investigated here a true viscosity may
or may not be present. Such a smoothing mechanism must be included if all
the parameter combinations are to be considered. In fact, it was found neces-
sary to include such a device for certain cases where go is positive but small.
The real viscosity terms are proportional to the strain-rate whereas the arti-
ficial viscosity (as will be shown in (64) ) is quadratic in the strain-rate. The
latter is therefore more effective in smoothing extremely strong shocks. On
the other hand, the artificial viscosity, being quadratic, is extremely small
in the smooth part of the flow between shocks, where one wishes the true
viscosity coefficient to predominate.

When the Lagrangian equations are rewritten to incorporate the artificial
viscosity terms, they become

a X

6q I a(p+ Q+ S)
7t PO x

(63) U V
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(63) v= I ax

p f( , U) E g(V, U),
-1

where we have set the specific volume p =V and introduced the notations

4 g 6V
5= - 0 __ I

- V at

(6) at if aq/ax <-0.

0 if aq/ax 0.

Here I is a constant having the dimensions of a length.

(b) Difference Relations

Let 6x and At be small increments of the variables x and t. Then the set
of points in x, t-space given by x=jAx, t=n6t, where j, n=O, 1, 2, • is called
a net (or grid or lattice) whose mesh size is determined by Ax and &t. The
approximation to g(x, t) at the point (j&x, nA t) is denoted by g(j6x, nat) or
simply by

n(65) gj = g(jAx, nA t)

There will be a need to define some of the dependent variables at space mesh
stations midway between those corresponding to integral values of j. The
values at these substations are denoted by

(6 ) gn 1 =I gn + gin +(66) gn 1 lZ=-(gnj +l

For space differences the following notation will be used

(6g)jn =g((j + 1/2)Ax, nat)- g ((j - 1/2)Ax, nAt)

(67) n - n
=gj +l/," gj -1/2

Many finite difference systems have been devised for problems involving
perfect fluids, Reference 35. The one most used will be adjusted to accom-
modate formulation (63) and (64):
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(68) J j n+ 1
At

(69) qn+ - q n (6 p) n+ (f )n ni j i +(6 S)

At Po Ax

xn + 1 _ + 1

(70) V n + I= -1 j+l j
j + 1/2 Ax

(71) 1U' I n +1+1 Vn+1 yfn7t 1/+ Q3 + 1/2 + Si + 1/2 n+ n + 1 j + 1/2 j + 1/2

At/+2j + 1/2 + S + 1/

' 0 V + 1_At

+ n  
I n+1

j- At+ 
1/2

f?3 Sn  8 oVP j+ 1/2" jn+'J/z
(7) j + 1/2 3= -o A t

A) 2  (vn 2 Vn -

2 (ap j+1/2 j+l/'i n Vn- 1

V Vn+/ \ i+l/ 2 < j+1/2
(74) Qn j+ j+ 1

j+l/2 Otherwise

In (74) we have set I = aAx, where a is a dimensionless constant approxi-
mately 1. 5 to 2. 0.

Equations (68) through (74) are the formulas required to carry out the
stepwise computations. One starts the calculation by obtaining initial values
(i. e., for time t = 0 or n = 0) of all quantities at all stations (and substations
j + 1/2). The values of the quantities for the instant of time corresponding
to n = 1 are first obtained at all stations. These values are then substituted
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into the equations to evaluate the quantities at all stations for the instant of
time corresponding to n= 2, etc. The procedure used in going from the
instant n to the instant n + 1 is as follows:

n+ 1

a) Compute q from (69)

b) Compute Xn + 1 from (68)

c) Compute Vn +  from (70)

d) Compute Sn + 1 from (73)

e) Compute Qn from (74)

f) Compute Un + 1from(71)

n~ I
g) Solve (72) for p n

In all these calculations the values at the substations j + 1/Z are cdmvuted
according to (67). A flow chart describing the step-by-step numerical
procedure is given in Fig. 16.

(c) Initial and Boundary Conditions

To use the above scheme of calculation the initial values (i. e. at time
t= 0 and at all points of the mesh) of all the dependent variables must be
known. At the instant of impact their values are known everywhere except at
the interface between the impacting bodies. These initial boundary values
may be approximated by applying the Rankine-Hugoniot relations to the abrupt
pressure profiles which emanate from the impact interface.

The relations are derived from the conditions that mass, momentum and
energy are conserved across the shocks. The corresponding equations are,
Reference 36,

0oUo0 11U

2 2
u 0Po 0 P u + P

(75) pou 0 +p= P1 1+p

l/Z u° + Uo + Po V o = 1/Z u +U I +PI V

The equation of state of the material provides a fourth relationship. The
subscripts "0" and '1" refer to material in front of and behind the shock
wave respectively. Here u. is the flow velocity of the material relative to
the shock wave.
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Figure 15a illustrates the impact situation in laboratory coordinates
before impact and at the instant of impact. In Fig. 17a the nomenclature
used to depict the situation just after impact is illustrated. Since the two
bodies may be of different materials an additional subscript has been intro-
duced to make this distinction. The initial data is represented schematically
in Fig. 17b. In Appendix A there are presented the detailed algebraic manip-
ulations necessary to obtain the initial boundary data when the impacting
bodies are of different materials.

In the special case that the two impacting bodies are of the same material
dl= d2 = d and (A-17), (A-18) reduce to the single equation

1

(76) -2 -- d= f v°
4 o/d 8

Now (76) can easily be solved for d by a machine program, and the dependent
variables subsequently evaluated by (A-9) through (A-16),

Pi= v 0 d/4 p 1 /p 0 =(l - p/-q, = vo/ 2
1

(77) U= v 0/8 WI = (vo/Z) (2 -p Po ) (p/I / p o - 1) -

W2  (v 0/2o) (Pl / P 0 -1) -1

The calculations have been carried out for iron-iron, copper-copper,
aluminum-aluminum, cadmium -cadmium, tin-tin and lead-lead impact. The
results for pivs v , Uvs v andp I/p, vs v are plotted in Figures 18, 19

and 20 respectively. In Figure 21 the corresponding Hugoniot curves p, vs

V 1 (= 1/PI) are plotted.

(d) Stability and Convergence

Having formulated the governing differential equations as well as the
initial and boundary conditions in finite difference form, consider next the
choice of space-mesh size Ax and time mesh size At. Suppose that 6 x has
been assigned a value sufficiently small to allow a satisfactory definition of
the flow. If At is chosen too large the calculation will not converge but will
oscillate with increasing amplitude as n increases. This phenomenon, called
instability, has nothing to do with round-off error, but is a property of the
difference system (68) through (74). In fact, the error would only be made
worse by taking a smaller value of 6 r, unless 6t is also suitably reduced.
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In Appendix B a stability analysis of the explicit difference system is
presented in some detail; the essential results are contained in (B-Z2) and
(B-24).

To apply criterion (B-22) we recall that

aV I aq

0

and approximate 6q/ax by-v 0 /2Ax. Here v /2 represents the velocity of the

interface as calculated from the Rankine-Hugoniot conditions. In our calcu-
lations we have chosen 1=a Ax, a= 1. 5, so that the criterion reduces to

(78) <__ V
(x)2 8 +4.5 p v Ax0 00

The value for V = 1/pmay be approximated by the Hugoniot curve for the
particular material, Fig. 21.

Now, in regions away from the shock p Q Q + (4 T and condition (B-24)
becomes roughly 0

t _ Po0
Ax S~/ 2~~j

The adiabatic sound speed c is equal to *

c = V
Consequently, in regions other than those containing a shock,

(79) A I8 o (Ao =0)
,6x = VW8c 0 Z0

is the approximate stability criterion.

In an adiabatic process dU + p dV = 0. Since p = g (V, U) we may write
dp = dVag/ V + dU ag/aU. Elimination of dU between the two yields
dp =(g/ V-pag/ W) dV = V2 (pag/ U - ag/6V) dp, whence

2 2c = dp/dp=V (p~g/;3U-ag/aV).
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If the same size mesh is to be used throughout the flow the more severe
restriction on At must be observed, i.e. stability criterion (78). Both sta-
bility criteria have been calculated for each of the parameter combinations
considered. The results are listed in Table I along with the corresponding
value of 6 t for the choice 6x= 0. 1 cm.

The above conclusions have been substantiated by a number of machine
calculations; the results are displayed in Table II, (Reference 37). The cal-
culated requirement on At is seen to be a conservative estimate in each case.
It may 14e expected that the theoretical stability criterion is close to the re-
quired condition for all the parameter combinations. For the most severe
case, At = 5. 1 x 10" , this means that approximately 10, 000 cycles are
required for a 5 microsec. run. If 70 space mesh points are required this
means 700, 000 point calculations which would require approximately 1.4
hours on the IBM 7090.
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TABLE II

Summary of prcliminary runs testing stability of explicit difference scheme
applied to iron-iron impact. a= 1.5 1 =1.5 Ax, Ax =0. 1.

NO. NET SIZE RESULT

Theory Trial

1 0.03 0. 100 Unstable

1 0.03 0. 050 Stable

1 0.03 0.065 Stable

2 0. 027 0.05 Stable

3 0.014 0.02 Stable

4 0. 0023 0. 005 Unstable

4 0. 0023 0. 0025 Unstable

4 0. 0023 0. 002 Stable

13 0. 03 0. 05 Stable

17 0.0021 0.05 Unstable

17 0. 0021 0.025 Unstable

17 0.0021 0.01 Unstable

17 0. 0021 0. 005 Stable
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IMPLICIT DIFFERENCE SCHEME

In this section there is outlined an alternate computational scheme which
has been developed to reduce the machine time required for those parameter
combinations with large p 0 and v values. It is an implicit scheme based on

Eulerian formulation, whereas the original scheme is explicit and is based on
the Lagrangian formulation. The new scheme is only valid for impact between
bodies of identical material with AA 0Jo. Therefore it does not supersede the

explicit scheme, but serves as a desirable complement.

The difference scheme has been adopted upon the suggestion of Dr.
Herbert Keller, Institute of Mathematical Sciences, New York University.
In treating similar systems of equations, Dr. Keller has found the implicit
scheme to be unconditionally stable. Thus, no restriction on At and Ax is
involved, only the desired accuracy need be considered in choosing the incre-
ment sizes.

(a) Difference Equations

Since the two impacting bodies are identical the phenomena are symmetric
about the center of mass coordinates (Fig. 15b). The calculations will be
made only for body 2 where the fixed space coordinates are denoted by
(Fig. 22a) j=0, 1, 2, ... There aq/;z%0 and, consequently, the Eulerian for-
mulations of the governing equations, equations (49) through (52), reduce to

(80) 6 (Oq)

1 q  q I p 4 a-2
(81) + q = -+ o

tp 8zz 3 a

(82) u + q 2U i.L P Ta o 1
at az "P 3 Tz 1- ]

(83) p= f (P, U).

A centered difference scheme is used to provide more accuracy. To
illustrate the process the details will be carried out for equation (80). The
scheme is centered at point z=jAz, t=(n + 1/2) &t as shown
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- t0 points used in (80), (82)n+l ,-r-....

I I 9 points used in (8 1)at X X denotes center point

._ z' - 1 "'_ tL L------------------ 1,-T l j+l

DISTANCE

in the sketch. Equation (80) is replaced by

n+l n n+l n

1 Lj- if ! + 1 - + 1 P
2 At t

( n+l n+l

p q) n+l -(pq)j n (Xq) . (pq)n n 0+ "L ) +1 - - + - + z- Y= 0

Similar centered schemes may be written for (81) and (82). Upon simpli-
fication the system becomes

Pn + 1I n+ I n +Pn
Oj _ O + 1 =Pj. +j  +1

(84) + I l (q) n (p q) n q) + (pq)n
6 - - ' + j + 1

n + 1 n _ n n) -n+l n+ 1 n nq. -q. nA + +q) 1-qj + q + I -q j-1

(85) =.I 1 I n+l n+l n n
2 A z jn+lW nLj+I-Pj.l+p + 1 l -p jl

+- 1 Lo[qT + 11- 2q n+ + qj n _ + I+ q j n+ 1 q qj-1
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un+ 1 +U ln +n 1 +un 1
i -1 j +1 i- 1 + 1i

+i A qjn + qjn + I qf + 1 +qj- 1] +U. -u + +U 1 n -ln

n+l n+1 n n (At + l-j -1 + qj + 1 qj _1 _2 4

(86) ±3 1
4z n+ +n n 1 VP + +P + P

j-1 j + l +1 j -1

The required pressure values are computed from (83) according to

p. - 1  (j -1' 1j

(87) pjn + I f( Pin + I ,u n +1

nj + f f ( P j + 1 . U j n+ i1
+1' +j+

n

n =f ( Pin ujn 1)
P --1 (P -1 i , -

(b) Initial and Symmetry Conditions

The initial, n = 0, values of the dependent variables p. q, U, p are all
known from the Rankine-Hugoniot equations (Fig. 22b). To determine their
values at all other time intervals a method of computing the values at time
n + 1 from those known at time n must be made available. An iteration
technique will be devised for this purpose. The following relations, which
follow from the symmetry of the problem, will be utilized:

n n n n(88 P~ = jqj= -qf (hence qo =0O)

U n =u n pn =pjn

33



(c) Iteration Procedure

To start the iteration let

_n +1 n - + I n
(89) q (0) =q U

be zero-order approximations to qjn + 1 and Uj +1 respectively. Then

the first-order approximations are calculated in the following sequence:*

n+ 1 - nn +e(a-l) Substitute q j = q j (0) into (84) and calculate j + I from the
resulting two-term recurrence relation (n + I fixed, j varied):

-- n+1 _n + n + n at n F n + 1 +(q)
pj-1(1) + 0 j+(1) = Pj -1 +1 P + i + q- () ) - po ) i

S+ 1 _n + 1 )n i
(90) -L + I(1) qj + I(0) + (pq) j

Several methods of performing the calculations are discussed below in
section (d).

n + 1n + 1 _n +1(b-l) To obtain a trial value for p +  use (87) with n +. and
.n + I n +.

- j(0)

( n +1 /fn #n+ in
(91) P j(I 1) = f  (1) Uj(0)

(c-i) To obtain a first-order approximation for U.n +  use (86) witha
n-i n l nl bn+1 -n+l -,,n+l

q Pj ,pj replaced yqj( 0 ) P j (1) Pj (1') respectively:

n+l n+l _n

j -1(1) j+l (1) j-1 + U n
i + (1) 11F j+

n +j -U nnl
j + qj+q L (1 j-jl+]+

..,n +1 n+l n n

(92 j q~ ( 0 ) _qj _ (o) + q -q(92) _ +i+l -qj-1 2u -4 (continued)Az _n~l .n +l n n I- 3o
Pj-l (1) + Pj+ (1) + Pj+1 +j -I

* This procedure is adopted upon the suggestion of Dr. Herbert Keller,
Institute of MathematicalSciences, New York University.
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n + + p jn+l n n
P 1 - () + I (I') + Pj.l + PjoJ

2 jo 4n+l ..n+l n ql+ - j+l (0) - qj_1 ( 0 ) + q -1  -3 EzI

As with p, we have here a two-term linear recurrence relation for Un+l
Its solution is also discussed in section (d). j(1)

(d-l) A first-order approximation for pjn+l is now computed from (87) with

n +1 l n + 1 and unIl -n +1
j = Pj (1) - j (1)

(9 ) n+l ./.,n +1 Un+l

(93) pj (1) = ~Pj(1) (I

(e-l) To calculate a first-order approximation for qn+l use (85) with

P = n+(1 ) pn+l =pn+(1 ) and replace q n+1 in the difference expression

for q 6 q/6 z by q (0) . The latter substitution linearizes the equation for
. n+l
qj (1) * giving

.- n+l n+1 At /.,n+l n[ n+l -n+l n niqj(1) - qj 8 A qj( 0 ) + q. Lq +1((0) - qj 1  qj-1

(94) -1 At 1 ffn +I .n+ I n n1
2 Az , n .1 n j + 11) Pj (1) * Pj 1 , - li

P j (1) - P -z 1

8 o 1 -2q qj I qj + Zq qj-
3 -Az k l (1) ()-1() +

n +1
This is a three-term linear recurrence relation for q j (1) (n + 1 fixed, j

varied); a method of solution is discussed below in section (e).

The second-order approximations are calculated by merely repeating the
iteration process: (a-2), (b-2), ... , (e-2). The resulting equations differ
from the corresponding equations of the first iteration only in that the sub-
scripts (1), (2) replace the subscripts (0), (1) respectively.

In general, to proceed from the k-order approximation to the (k+l) - order
approximation we go through the above iteration process (with subscripts (0),
(1) replaced by k and k+l respectively). The process is repeated until a rea-
sonable convergence criterion is satisfied. Usually, only a few cycles are
required in such schemes.
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Assume that it has been decided that K iterations are sufficient. Then
set

j n + I n 4. 1 n + 1 . n 1 u n 1n + I , j n + ' n -
jj (K) , qj = qj (K)' j U j (K)'Pj (K) pj (K)'

and proceed to the n + 2 time step. A flow chart describing the numerical
procedure is given in Fig. 23.

(d) Two-Term Recurrence Relations

It is a consequence of the symmetry relations (88) that when j-O the two-
term recurrence relation (a-i) simplifies and yields the explicit formula

n9 +  -- n At n.
(95) Pl1 +n z .z

Now (a-1) may be used to compute - (+1) at all the odd j space-mesh points:

(96 pn" A t "-n+o1 , n +~ 1 qt n +

( Ij + 2 2-- qj .2(0 +Pj l) -- q( 1 ) J

=oh [ii ~ ~± ]t [i+ ok o]q ]on m n n [ + i -t qn
j+2 2'6 j + 2 1 2&

Thus, set j - 1 and compute Pn + i n + I(1) trms of1 (1) set j -3 and
compute 5 n +I in terms of Z I , etc.

The ~j 1 at even j are determined by the continuity of p - for
n+l

sufficiently large j,p. = PO (the density of the undisturbed medium,

which has not yet been reached by the shock wave). Let J denote such a

large even integer at time t= (n + 1) 6t. Then n +I1 =p and the recursion

formula is used to calculate from right to left. Thus, set j = J - 2 and
,n + I n + I .- or n +1compute p-j _2(1) in terms ofj() set j = J - 4 and compute

in terms of pj _ 2 (1) , etc.

A suitable value for J may be found by first making the calculations for

the odd valued mesh points until n 1 has decreased to the value p . Thisj (1)
value is then taken to be J - 1. This left-to-right-to-left technique is depicted
in the sketch.
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Calculate Odd Stations X

j =0 1 2 3 4 J-4 J-3 J-2 J-1 J

[ X " W : 1

Calculate Even Stations o

Alternatively, the choice for J may be made from a knowledge of the
propagatiop velocity of the disturbance. Then the calculations for both the
odd and the even stations may be performed from right-to-left. The advantage
of this procedure is that equation (95) may then be reserved to check the cal-
culations.

The remarks made above are also applicable to the two-term linear re-

currence relation for U n (- 1 Here the symmetry relations together withj (1)•
(92), with j-O, yield the explicit equation

n~l n

U n + 1 n at 1 (0) q . 4
(97) n n +

1 (1) 1 oZ n + 1 n
- P1 (1) p 1I

1~~~~~~~0 [_ n 1+ ]+ o[' 0

By replacing the word "density" by "specific internal energy" the remainder
of the discussion on solving the recurrence relation also carries over.

(e) Three-Term Recurrence Relation

Relation (94) may be rewritten in the form

(98) -A. In -n + 1C .- nj + D.

8 - 1 (1) 4 Bj qj (1) j j ( 1) j

where Aj, Bj, Cj, Dj are known quantities:

A =} o t I____

3 n n
Oj (1) + j

B. -71 + 2A. C.= A.
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D q - + 1 n) n ~ , 1 n n + 1 ( nn 1 .q j n 1
S 3 (0) + q j [4i, 1 ( 0 ) -q -(0) I

A _n (Fn n + i -n 1 n+ n1
(100) 2 6z , n + 1Pj 1(1) - P3  - I () Pj-+ 1 "P+- 1JP~i (1) P

8 MAo j 2qn jn+3 &Az I + I - Ij +q- I

A method for solving such a three-term linear recurrence relation which is
particularly suitable for machine calculations is taken from Richtmyer,
(Reference 35, p. 101)

The required inequalitiesA j0' B.>0, C'>0 and B.>A. + C. are all seen to

be satisfied. The only other requirement is that q.n + I be specified at the left

and right hand boundaries of the space mesh, j-0 and j-J:

0 n41 -n+l
(101) qO(l 0 qj (i), -vo/Z
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NUMERICAL RESULTS

The various combinations of assumptions for got r and v° for which
0 0

calculations have been made are displayed in Table I. In computing the values
for dimensionless parameters, B and R , shown there the characteristico 0

length is taken as unity. This choice is meaningful only after a stable wave
has been established. In Figures 24 through 35 the results of the calculations
are illustrated by pressure profiles for a number of typical parameter com-
binations. Some additional profile plots have been presented elsewhere
(Reference 38).

To check the accuracy of the program the calculations for cases
No. 1 (v o = 0.5, T = 0, go = 0) and No. 49 (v o = 1.0, r = 0, go = 0) have

000 0

been examined in detail. The computed pressure profiles are depicted in
Figures 24 and 34. The figures show that a stable shock front is quickly
established. For comparison, the Rankine - Hugoniot solutions, applicable
since here o = To =0, are also shown at t = I and t= 5 microseconds. The

other calculated dependent variables behind the stable shock may also be
compared with the corresponding Rankine-Hugoniot values for those cases
where uo=To= 0. This is done inTable III for cases No. 17 (Vo= 4.0,'o= 0, Lo= 0) and

No. 33 (vo=7. 5, to=O, 9to=0) as well as Nos. I and 49. The computed quantities

represent mean values aboutwhich there are small oscillations at the various mesh
points behind the front. The agreement is seen to be quite satisfactory.

The effect of viscosity on the anplitude and duration of the transient
pressure profile which occurs immediately after impact is illustrated by
comparing Figures 24a, 25a, 26a and 27. For all these cases, Nos. 1, 2,
3 and 4 respectively, the impact velocity and yield strength are the same
(vo= 0. 5, r = 0). When A 0= 0 (No. 1) the interfacial pressure builds up

0 0
to the final stable profile amplitude. For 1 0>0, however, the material

near the interface is seen to be subjected to very large pressures in the first
few tenths of microseconds. Subsequently, the interfacial pressure decreases
from the original higher magnitude to the final stable profile amplitude. For

A O= 0. 08 (No. 2) the duration of the overshoot is less than 0.4 microsecond;

for 11o= 0.8 (No. 3) the duration is less than 0.8 microsecond; for 0=8.0 the

duration of the overshoot persists for 5 microseconds. The amplitude of the
transient pressure pulse also increases with an increase ing o"

The effect of viscosity on the characteristics of the stable pressure
profile is illustrated by comparing Figures 24b, 25b, 26b and 27. These
again correspond to cases Nos. 1, 2, 3 and 4 respectively. When 0 = 0

and g. o :0. 08 the thickness of the stable profile is about 0.2 cm. This is due
to the artificial viscosity term. But for o the thickness becomes 0. 7 cm
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TABLE III

Rankine..Hugoniot values compared with finite-difference calculations for one-
dimensional iron-iron impact (1o 0 T = 0). VP denotes velocity of stable
profile relative to the interface. 0

p 1/P U VP

Case I Hugoniot 1. 565 0. 0873 0. 0312 0. 5466

(vo= .5) Computed 1.541 0. 0867 0.0265 0. 534

Case 49 Hugoniot 4.646 0. 0734 0. 125 0. 682

(vo= 1) Computed 4.601 0.0734 0. 122 0. 673

Case 17 Hugoniot 49.62 .04662 2.0 1.157

(vo= 4) Computed 48. 5927 .046869 2.02275 1.159

Case 33 Hugoniot 154.2 .03601 7.031 1.481

(v0 = 7.5)1 Computed 153. 6917 .036368 7. 1429 1.462
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and when . = 8. 0 it is greater than 5 cm. In the latter case, R o & Bo < 1

and it might be anticipated that the viscous terms would predominate. The
amplitude and velocity are only slightly increased by increasing 11' The
time required for the stable profile to be established varies from less than
2 microseconds for M 0= 0 to approximately 10 microseconds for io= 8.0.

The effect of impact velocity is illustrated by comparing Figures 27, 35
and 31. These correspond to cases No. 4 (v o = 0.5, T=0, M =8), No. 52

00 0
(vo=l.0, r=0, g=8) and No. 20 (v =4. 0, ro=0, M=8) respectively. The

0 9P 0 0 0 0
duration of the transient pressure pulse is observed to decrease from about
5 microseconds for v =0.5 to about 1 microsecond at v =1.0, to less than

0. 6 microsecond at v =4. 0. The stable profile becomes steeper as the

impact velocity is increased. Naturally the amplitude and velocity of the
wave are increased when v is increased.

To illustrate the effects of varying po and vo , results for cases where
T =0 have been cited, i. e. results for viscous liquids; the same effects are
0
produced if 7o is held equal to some reasonable positive value. To under-
stand the behavior of such a visco-plastic medium refer to equation (62) and
observe that in front of the disturbance aq/ x=0, in the disturbance 6q/6x<0
and, finally aq/)x drops back to zero after the disturbance passes. Conse-

2 2 2 2quently, T> r in the disturbance, but 7- drops to r after it passes. This
0 0

means, in terms of our visco-plastic model, that there is flow only in that
part of the medium through which the disturbance is currently passing; it
again becomes rigid behind the disturbance. Thisphenomenonis illustrated

in Figure 36 where the value of 72 (which is a measure of the distortion of
the medium) is shown at various time intervals for two typical parameter
combinations (Nos. 14 and 15). At each instant T2 >7"2 is seen only in a finite

0
region which represents the current position of the disturbance. Only in this
moving region of disturbance does the medium behave as a viscous liquid.
The region is more spread out the greater the value of go.

Comparison of Figures 26b, 28 and 29 (casesNos. 3, 7, 11 respectively)
shows that even with an impact velocity as low as v = 0. 5 cm/microsecond

there is little change effected on the stable profile by inclusion of the yield
stress if it is as low as T = 0. 01 or r =0. 1. Only small increases in the

0 0

pressure and in the disturbance velocity are apparent. This might be ex-
pected since for all these parameter combinations the ratios B 0 : R and l:R
are small, i. e. , the inertial terms predominate. A condition to keep in
mind is that in an actual cratering process the flow velocity must always
decrease to the point where r is important.

0
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On the other hand, comparison of Figure Z6 (case No. 3) with Figure
30 (case No. 15) shows that both the amplitude and the velocity of the pressure
pulse are significantly increased by the inclusion of the strength term if it is
as large as 7o= 1. 0. The shape of the pulse, however, is apparently not

strongly affected, nor is the tini required for the profile to be stabilized.
For these cases the inertial and trength terms are both important,
R :B = 1.97.

o 0

The characteristics of th- stable profiles for all the various cases are
depicted in Figures 37, 38 and 39. There p denotes the pressure behind the
disturbance; 6 P and VP denote the thickness and velocity (relative to the
interface) of the stable pressure profile, respectively.
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REMARKS ON THE EQUATION OF STATE

In our model the medium is considered to act as a viscous liquid rather
2 2than a solid, provided r >7 o . It is therefore consistent with ordinary viscous

fluid theory that the equation of state be given in terms of a hydraulic pressure
p, equal for all directions. We have, as usual, taken p =- (T +" 9+rzz)/3
as the thermodynamic pressure.

The particular equation of state employed in the calculations, p = f (p, U),
was determined by the Los Alamos group from measurements on pressure
pulses induced by high explosive. The method is indirect in that the observed
quantities are the pulse velocity and the free-surface velocity produced by
normal reflection of the pulse from a free boundary. Pressure (strictly,
stress normal to the wave front, - r zz) and corresponding values of internal

energy and density were computed from these measurements by means of the
Rankine-Hugoniot relations. An equation of state based on the assumption that
go= r = 0 has thus been employed to calculate the behavior of a model for the0

material which assumes that these parameters are not zero. This certainly
leads to errors but they are of second order and would not be expected to
mask the effect of including the viscous and plastic terms in the other equa-
tions governing the model. The results have borne this out since, as physical
reasoning would imply, M 0 chiefly affects the shape of the stable disturbance

and 7 has its main effect on its amplitude. At lower velocities, T would
o 0

also affect the shape.

Other remarks on the equation of state are also relevant. In converting
the measured velocities to pressure-energy-density states it was tacitly
assumed that a stable, abrupt disturbance was obtained. Verification by
direct measurement of the pressure profile has not been possible, and justi-
fication for the assumptions is based on the reasonable agreement with extrap-
olation of hydrostatic data. This should not be construed as proof that the
viscosity and strength effects are negligible, however, since even with vis-
cosity factors as large asM = 0.8 and yield stress as great as T0 =0. 1, when

Vo = .5, the differencesin the velocity and amplitude of the stable pressure

would be difficult to observe by such measurements.

The fact that - 7"zz and not p is the actual pressure reflected from the

free surface in the experiments may not greatly affect the equation of state
calculations since the shape, velocity, and amplitude of the stable p and -Tz

profiles are nearly identical. To see this compare Figures 26b, 27 and 30b
with Figures 40, 41 and 42 respectively; these show the two corresponding
profiles for three typical cases, Nos. 3,4, 15.

Prior to the establishment of a stable profile, however, the components
of the deformation stress tensor, of which Tz + p is one, are not small. At
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the instant of impact between the two bodies a very large velocity gradient is
imposed on the material near the interface. As the front of the disturbance
propagates into the body the gradient at the interface decreases, and the
gradient at the front of the disturbance also decreases because of the smear-
ing action of the viscosity. From (48) is seen that the von Mises statistic,

2
r , which is a measure of the magnitude of the components of the deformation
stress tensor, must act similarly. Thus when viscosity is present the
material near the interface is subjected to a much greater distortion than
material away from the interface. This is illustrated in Figure 36 by the

2envelopes of the r distributions.

These latter observations are consistent with experimental evidence that
internal structural changes in a metal can be related to the distribution of
stress that existed in an impulsively loaded body by plotting contours of equal
hardness on sections of the body, Ref. 39. Contours were found to coincide
with the isochromatics obtained in photoelastic studies, i. e. , the contours
lie along lines of maximum shear stress. Recent microhardness studies
of one dimensional impacting plates have shown that indeed the microhardness
near the impact interface is maximum, the value decreasing rapidly outside
the interfacial zone, Ref. 40.
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CONCLUSIONS

A visco-plastic model for hypervelocity impact has been proposed which
takes into account the inertial, viscous, and plastic effects. This was ac-
complished by introducing a viscosity factor go and a dynamic yield stress To
into the perfect fluid equations. From an examination of the resulting system
of equations several dimensionless parameters were found which control the
relative importance of the three effects at the various stages of the cratering
process. The inertial effect was found to be important throughout the early
stages while the strength of the medium is dominant during the final stages.
Immediately agter impact the viscous effect is very large in the zone near the
contact interface. Its magnitude decreases as the strain-rate gradient decreases,
but it may remain important throughout the flow process. The viscosity also
has the important function of introducing anisotropic stresses into the flow
which are essential if the strength effect is to be included.

In the absence of definitive data for 4o and To in the hypervelocity impact
regime, computations were performed on a one-dimensional model in which
the values of these two parameters were varied. The above qualitative con-
clusions were verified. Specifically, the following was found.

1) The assumption U0 > 0 results in large initial values for the pressure
and deformation in a zone near the impact interface. As Uo is increased the
effect becomes greater and the disturbance propagates a greater distance be-
fore reducing to its stabilized shape and amplitude. For impact velocity
vo =0.5 cm/ sec., the time the disturbance propagates before a stable pro-
file is obtained varies from about 2 to 3 microseconds for Po =. 08 to more
than 10 microseconds for go = 8. The required time is less the greater the
impact velocity; the value of To has little effect.

2) The amplitude and velocity of the stable pressure profile are only
slightly increased as go is increased, but its width (shape) is significantly
larger. Increasing the yield strength has little effect on the shape of the
stable pressure wave; it significantly increases its amplitude and velocity
only if T is as large as one megabar. The latter conclusion is valid for
particle velocities of 0.25, 0. 5 cm/microsecond and larger. At lower
velocities To has a more significant effect on the viscosity coefficient, see
(8), and thus more effect on the pressure wave.

These conclusions may be related to the qualitative model of crater
formation that has evolved from experimental studies in which the actual
cratering process has been monitored, Ref. 41. The discovery was made that
though only five to ten microseconds are required to use up the projectile,
the crater continues to enlarge for several hundred microseconds. The
mechanism of crater formation is therefore essentially one of cavitation, the
size and shape of the final crater being determined by (a) the shape and
amplitude of the pressure wave established during the first five to ten micro-
seconds by the action of the projectile on the target, and (b) the resistance of
the target material to flow. (c) The flow continues until the amplitude of the
wave decreases below the intrinsic yield strength of the material.
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The calculations presented in this paper show that the shape and amplitude
of the pressure wave, (a), are in turn strongly dependent on the viscosity of the
medium, This is especially true during the first microsecond after impact when
the strain-rate gradient is largest. Also, the resistance of the target material
to flow, (b), depends on the viscosity factor JAo and, to a lesser degree, on the
strength factor T0 ; the viscosity coefficient becomes larger and more dependent
on To at the smaller strain-rates. Finally, (c), the strength factor To controls
the instant when the flow ceases.

Thus, buth Uo and To are important in determining how long the crater
continues to expand. This may explain why a crater in Lucite stops expanding
earlier than one in aluminum despite the relative magnitudes of their yield
strengths.

To establish the validity of this hypothesis will require experimental
data which are currently not available. The necessary definitive experiments
for the evaluation of Uo and r o should be performed. They are likely to be
one-dimensional in character. The dependence of both on the temperature of
the medium should be studied, since this effect must eventually be incorporated
into the refined visco-plastic model. Meanwhile, the theoretical program may
be pursued by developing a numerical scheme for the calculation of the visco-
plastic model under axial symmetric impact conditions.
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APPENDIX A

In Fig. 16a the notations used to describe the wave fronts in the impacting
materials are depicted. The particle velocities qmk and wave velocities Wm

are with respect to fixed laboratory coordinates. The pressure and particle
velocity must be continuous across the interface so that

Pll =P 2 1 = Pi u 1 0 =Vo + W1 u20 = -W 2

qii = q2 = Ull = qi + W u 2 1 
= q W2

'1 ii 11 W

and application of equations (75) to the two discontinuity surfaces yields

(A-I1) P10(Vo0 + WI ) =Pll (q i+Wl1)

(A-2) P1 0 (Vo +W 2 ) = a l (qi +W 1 )2 + Pi

( -Z) -(Vo0 +W 1)2 =y(qi + W1)2 + U I + pi/ill

(A-4) -P2 0 W2 = P2 1 (qi - W2 )

(A-5) = ( 2 W2)2 + P

(A-6) W2 = 1 (q 2 W2 + U +

2 2 T q 1 - 2 ) U2 p~IP 2 1.
To these six equations in the eight unknowns pi' qi. WIt W2 , P1II P2 11 UI.
and U2 we may append two more,

(A-7) pi = f I (PII1. UI)

(A-8) pi = f2 (P2 1' U2 )

the equations of state for the two materials.

Equations (A-l), (A-3) may be solved for Wit W2 and substituted into the

remaining six. The new equations corresponding to (A-2), (A-5) may then be
solved for p, qi" These manipulations give the following relations:

(A-9) WI = (Vo - qi P /Pl 0 ) (O 1 1 /P 1 0 -1) 1
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(A-10) W 2 = (qi P2 1 /P 2 0 ) (P 2 1 /P 2 0 1) 1

(A-li) P1 1 /P1 0 - (I - P1 o/dj)" where d I = 1 1 (P 1 1 /P 1 0 . 1 I

(A-12) P2 1 /P2 0 =0 - P2 0 /d 2 ) 1 where d2 = a 2 1 (021/D20.1)' 1

(A-13) qi = V (l V -1

(A-14) pi =v, 2 d d ?-

Equations (A-3), (A-6) may be solved for U, U2 and the above relations used'
to give

(A-15) U =. 2 +Id 2 ) -2

(A-16) U2 =. v 2 d(/ 1 /)

If (A-Il), (A-12), (A-15) and (A-16) are substituted into (A-7), (A-8) there
finally result two equations in the two unknowns di, d2 :

dld2  / P 0  o_ d/

- ( f d I +i, 2) 12  10 - 0 fd 2 . 2 (- + f 2

(A-18) 
2  d 2  f ( 20 v0

2  d )
" (f,+f2) 2 f2  1 "P 2 0 /d 2  - I + "

Once d I and d2 have been determined the quantities qi, pi. P1i. P 2 1 . U1 , U2
may be computed from equations (A-i) through (A-16). The required initial
data are then available for the finite-difference calculations as displayed in
Fig. 16b.

Since the functions f 1 . f. are too cumbersome for explicit solution for d
or d2 to be practical, a numerical method must be used. One such method of
successive approximation is as follows:

a) Guess a value for dl, e.g. d I (1)
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b) Substitute dl(1) into (A-17) and compute the corresponding estimate of

d2 , say d2
1 ), by trial-and-error.

c) Substitute d (1) d2 (l) into the two sides of (A-18).
(i) I equlityhold d - (1) 2

1

(i) If equality holds d1 = dl( d2 = d2  and process is completed.

(ii) if equality does not hold d 1 'dl(1), dZ d2(1) and a second guess
for di, say d (2) must be made and the process repeated, etc.

The method is simple but involves extensive calculations. A program hastherefore been written to carry out the computations on a high speed digital
computer.
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APPENDIX B

The explicit difference equations are given by (68) through (74) of the
Second Quarterly Report. They are as follows:

n+l n At n n dn Qn +n n
q j q j+1 j+1/j-I i _1-/2+Sj+ 1/2 -1 /2

n+l n At n+l n+l
j+l/2 j+I/2 +oX Lqj+l -qj

g1 _ 8 Po 1 n+1 I n
j+l/Z 3 At n+l Vn [J+1/2 j+l/ZJ

j+l/Z j+1/2

n+l un F n+l n n n+l n+l
U U -V. -V.,ip Q +S
j+1/2 j+l/- j+l/2 +L1/2/[pJ +1/2 +1j/+I/Z j+1/2

(B-i)

3 To L jn+l1 jl1n. ['vn+1I.V

3 Jf [+ 1/2 j /2
Qn+l (PO )2  1 n+l n 2

j+1/2 2 n+l n j+1/2 j +I/2J
(AtI V + V.

j+IIZ j+1/2

n+I /vn+l _n+lI \
jg g +1/2 ' u+/ jl 2 )

where we have eliminated X from (68) and (70) to obtain the second equation
and the equation of state is rewritten as p - f(V- , U) N g(V, U). Here C is a
parameter with dimension of length which essentially determines the magnitude
of the pseudo-viscosity.

The analysis of the stability of this system follows the method outlined by
Richtmyer (Reference 35). The equations of first variation of (B-l) will be
obtained in which quantities of the second and higher order are dropped.
This will give us linear equations for the first order variations 4J, V, t, , ,
j5 (the dot does = indicate time derivatives) in which the zero order quantities
appear as coefficients. The equations obtained are
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n+l n at nn nn

n~l 4n + at [,n+ I.n+l'I
3J+1/2 j1/ p x Llj+l "j lZ

0

j+l/2 T+/ j +1/2j+lJ
n+l 4 jn 1 n+n 1
j+l/Z 3 t V j+l/Z j+ 1/2J

on+ 1nol )n

1/ 2V t t LJ+ l/ 2 j~l

.tV n+l *n
+ v-Vi[v+,

.n+l V n+ I -g _n+1

Pj +l/2: aV j+l/Z aU j+l/2

The zero order quantities are considered constants and, consequently,
superscripts and subscripts denoting net points are omitted from them.

The first order quantities are assumed to have the Fourier representations

A' X n ikx nZB ikx

kk kk

n=-3 ~ n ikx jri =IDn ikx(B-3) An x iC~ e n  D e

J k k k

xl-- l< k e x~ F i~

k k

where x = jAx. The vonNeuman stability criterion is, essentially, that the
coefficients An,_ ... , F remain bounded as the calculations proceed from
t a ntt to t = (n+1) 6t, t = (n+2) at, etc. To investigate this substitute
representations (B-3) into (B-2) and set like harmonics equal to zero to
obtain the relations
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n+ An _iB~t(Fn+En+Cn\
(B-4) Ak + Ak k Ck

( n+l n + i rAt A:+ I
(B-5) B k =B Bk  t~

k k
n+l 4 o r n+l I

(B -6) Ck = " i V "t B -B

(B-7) D +  D n Bk + I n

k = V~ L kP0

(B-9) D V k 8U Bk

where
(B 1B) 2 sin(k Ax/21

k 2 V "-iI~k

This may be substituted into (B-4) to obtain

n+la 4~ At)fl~

(B-11) Ak + I = (1-4 -v k BA t [Ek+ n

k~Vk k

If (B-1) is substituted into (B-5)the result is

(B-b n 2 sinZktnx/n)

(B~~~ -2 i 0 A t (I-±L 2A)A+e(t

k 3V 3k

Now (B-12) may be used to eliminate B + from (B-?) and (B-) with the results
k

(B-13) D D -p+Q+S + T o) [19At ( I M4 -° 
2 t) A + 92 (At) 2 (Ek+Fk) ]

o3 V
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n~ l 0 a 2 n4 1 2 ? ,, 2 n+ n]
E 2B + 4 $A -i-V A(k 2V 2 t / k7t k ) k  kk

(B -14) 2

o ~~k 92V t) 4 0~)nZ2(n n)v-- ,t l --- n

Finally, substitution of (B- 12), (B- 14) into (B-9) yields
kl. n 1B_.t4o 2At) n+B2(t),(E n+Fn)

It BV k 1  3 V 1k kkl k
(B-15)

Upon introduction of the notations

2 sin (kx/2) 4 2

0

(B-16) A=P+Q+S +I 6 " a 4

I av (PO ') a2v at -v a

the relations (B-li) through (B-15) may be written in the matrix form

(B-17) yn+l = GYn

where

n n+l

n B n+lBk k

n n n+l n+1Y Dk Y Dk

En En+ l

Ek k

n Fn+l
Lk k5
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and the "amplification matrix", which depends on pand T is given by
0 0

Y 0 0 -ioat -i~A

iOy At 1 0 ?(&t)z 0 (At)

(B-l18) Gm -iOYAAt 0 1 -ho~t), -0 2 At 2

iO C ~ ) -?cc 0 ?C(At)2 (j c) wCt)2 (., -C.)

Now, expansion of the determinant IG - XII and setting tche result equal
to zero shows that the eigenvalues, X, of G satisfy the equation

(B-1) X(X-) {X-l 2 -(l eAt[6At + C(Z-cat) o.. -] + O2 (At) 2 (2C-6}

If Lg constant and At/(Ax) 2= 0(l) as At. A x-.0, then 0 At 0(l) and the
secular equation reduces to

(B-20) ),(X ) XI 0At 2 C~ -A P xAt

Thus, the von Neuman requirement for stability

is satisfied provided

2 2P t (~ 2

A t V + V t

where we have used the fact that aV/Bt < 0. The inequality Will hold provided

P2V

(B-22) At o .802a
(Ax)2 ~po+ 4(p -1)2 II

It may be noted from (B-22) that in the limit as the viscosity tends to
zero the stability criterion reduces to

(B-23) at 2 2V (o = 0)
(Ox) 4,CIa

which is the value givers by Richtmyer (Ref. 35, p. 220) for this case.
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In the case gt - 0 it is also possible to derive a stability criterion from (B-19)
and (B-Z) under the condition that = a Ax, where a is some constant, instead
of holding t constant. Then the restriction in found to be relaxed to

0

(B-24) At

Criterion (B-23) holds in the region of the shock, and criterion (B-24) is valid
in regions away from the shock. Iowever, if true viscosity is present (1 1 0)
then we must always have At/(Ax) z 0(l) for stability; if At/ Ax = 0() one of
the eigenvalues goes to infinity. This results since in this case the V term
in (B-19) does not have a factor of order (&x) 2 but of order unity.
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Figure 5 Penetration parameter vs impact velocity for steel target and
projectile.
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Figure 6 Penetration parameter vs impact velocity for aluminum alloy
target and projectile. 66
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Figure 7 Penetration parameter vs impact velocity for lead target and

projectile.
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Figure 8 Penetration parameter vs impact velocity for copper target

and projectile.
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Figure 9 Crater volume parameter vs impact velocity for steel target
and projectile.
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Figure 10 Crater volume parameter vs impact velocity fo'r aluminum
alloy target and projectile.
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Figure 11 Crater volume parameter vs impact velocity for lead target

projectile.
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Figure 15 Illustration of impact situation in (a) laboratory coordinates and
(b) center of mass coordinates.
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Figure 17 Display of (a) impact situation immediately after impact and (b)
the nomenclature used to describe the initial and boundary data.
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Figure 20 Rankine -Hugoniot densities calculated for two semi-infinite
bodies of indicated material impacting at velocity vo.
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