NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.
PASCUAL JORDAN

FINAL REPORT I, 1961

THE MATHEMATICAL THEORY OF QUASI ORDER, SEMI GROUPS OF IDEMPOTENTS AND NONCOMMUTATIVE LATTICES - A NEW FIELD OF MODERN ALGEBRA
PASCUAL JORDAN

THE MATHEMATICAL THEORY OF QUASI ORDER.

SEMI GROUPS OF IDEMPOTENTS AND NONCOMMUTATIVE LATTICES

- A NEW FIELD OF MODERN ALGEBRA.

The research reported in this document has been supported in part by the

AERONAUTICAL RESEARCH LABORATORY

of the OFFICE OF AEROSPACE RESEARCH, UNITED STATES AIR FORCE

through its European Office
About this Report.

The theory of skew lattices - a new chapter (or a new paragraph) of abstract algebra - is discussed here in such a manner, that 1) the greater part of known important results concerning this field is covered here; 2) no knowledge of the reader concerning already published parts of the theory is needed in order to understand what is said here.

Many of the details discussed here are already published in articles of the author, partly together with E. Witt and W. Böge. But only in this report the systematical trend of the new mathematical theory is clearly to be seen - so that the details find their appropriate frame. At the same time many proofs could be simplified considerably after the connections of the whole matter have been stepwise better understood - many details of the results, originally found by highly complicated considerations, at last could be proved in a very short and simple manner.

This process of concentration in the development of the theory allowed also a strong reduction of the length of this presentation of the theory. Additionally this length has been limited by omitting much material which to discuss here would have lead to far. In my mentioned papers as well as in unpublished manuscripts many further details are contained which till now did not allow to discern their systematical significance - these many still isolated statements may be reserved for further study. But also to evaluate and use the beautiful ideas, concerning our topic, developed by S. Matsushita, is a task not yet accomplished.

Naturally a considerable part of the theorems presented in this report here are new ones, not yet published anywhere. Several meaningful contributions to the theory made by W. Böge, to whom I am very much indebted indeed, could be included here.

Especially Lemma 16 and lemma 17, given by Böge, show how and why the new theory of skew lattices must be acknowledged as a necessary and unavoidable part of mathematical research.
CHAPTER I. THE CONCEPT OF SKEW LATTICES

§ 1. The mathematical theory of skew lattices - a new branch of abstract algebra - is a generalisation of the well known theory of lattices. Taking instead of the two commutative operations of the lattice theory two operations which must not be commutative, this new theory deviates from the usual lattice theory in a similar manner as the general theory of groups deviates from the theory of abelian groups: The theory of skew lattices is more complicated and more difficult, but also much rich and more interesting than the theory of lattices.

Groups as well as lattices occur in almost every chapter of mathematics, and their theory therefore is an indispensable tool of nearly all branches of mathematics. Skew lattices are not so common - examples of these must be detected or constructed instead of being seen at once in many mathematical problems. But great varieties of skew lattices do actually exist, and especially many of these arise from the study of lattices. Therefore the theory of skew lattices is not only a generalisation of the theory of lattices but to a certain extent also a part of this theory.

Close connections exist between the theory of skew lattices and the theory of semi groups. Especially the mathematical theory of those semigroups which contain only idempotent elements, is an essential part of the theory of skew lattices. But also other types of semi groups occur in the frame of the theory of skew lattices.

Definition: A set of elements $\ a, \ b, \ ...$ is a skew lattice, if from each ordered pair of elements $\ a, \ b $ two compositions of new elements $\ a \wedge b $ and $\ b \vee a $ can be made by operations $\wedge, \vee $ fulfilling the following axioms:

\begin{align*}
(1)(A) \quad \{(a \wedge b) \wedge c &= a \wedge (b \wedge c), \\
(a \vee b) \vee c &= a \vee (b \vee c)\};
\end{align*}

\begin{align*}
(2)(B) \quad (a \wedge b) \vee a &= a \wedge (b \vee a) = a.
\end{align*}
Therefore those skew lattices which are commutative with respect to each one of the two operations \land, \lor are the common lattices.

Instead of the signs \land, \lor we use often the signs $\cdot, +$ of multiplication and addition.

As a consequence of (2) — even without using the associativity (1) — we get

$$(3) \quad a \cdot a = a \cdot a = a.$$

All elements of any skew lattice are multiplicative and additive idempotents.

Therefore a skew lattice W is a semi group of idempotents with respect to addition and to multiplication. We shall see later that every semigroup of idempotents does occur as the multiplicative or additional semigroup of certain skew lattices.

Principle of duality: The axioms (1), (2) remain invariant if one 1) permutes the operations \land, \lor; 2) reads every line from behind.

Definition: The skew lattice W is a skew lattice with orthogonality, if there exists to each element a an element \overline{a} so that the following axioms are fulfilled:

$$(4) \quad \begin{cases} \overline{\overline{a}} = a, \\ a \cdot a = a \cdot a = a. \end{cases}$$

We have then from (2):

$$(5) \quad a \cdot a \cdot a = a.$$

Lemma 1: If in a (multiplicative) semi group H of idempotents an involutory relation $a \rightarrow \overline{a}$ fulfilling (5) exists, then the elements of H form a skew lattice, if the second operation (addition) is defined by the second line of (4).

The possibility of a non commutative generalisation of the theory of skew lattices has been emphasized at first by F. Klein-Barmen, who studied in this connection the free semi group of idempotents with two generating elements. A systematical study of skew lattices has been started by the author of this report, partly in collaboration...
with E. Witt and W. Böge who made important contributions to this enterprise. Independently of this author S. Matsushita studied the non commutative generalisation of lattices. The following is a complete list of the present literature of this topic:

P. Jordan:

1) Über nichtkommutative Verbände
Arch. Math. 1, 56 (1949)
3) Zum Dedekindschen Axiom in der Theorie der Verbände
4) Algebraische Betrachtungen zur Theorie des Wirkungsquantums und
5) Zur Theorie der nichtkommutativen Verbände
Akad. Main 1952, S. 61
6) Bericht über die nichtkommutativen Verbände.
7) Beiträge zur Theorie der Schrägverbände
Akad. Mainz 1956, S. 29
8) Über distributive Schrägverbände
Akad. Mainz 1958, S. 229
9) Quantenlogik und das kommutative Gesetz
10) Über nichtkommutative Verbände
Celebration di Archimede del XX. Secolo (in print).
11) Über distributive-modulare Schrägverbände
13) P. Jordan u. W. Böge, Zur Theorie der Schrägverbände II.
Akad. Mainz 1954, S. 79
14) F. Klein-Barmen, Über eine weitere Verallgemeinerung des Verbands-
begriffes. Math. ZS. 46, 472 (1940)
15) F. Klein-Barmen, Ordoid, Halbverband und ordoide Semigruppe
Math. Annalen 135, 142 (1958)
16) S. Matsushita, Lattices non commutatifs.
C.R. 1953, S. 1526 (1953)
17) S. Matsushita, Ideal in non-commutative lattices.
Proc. Japan Acad. 34, 407, (1958)
18) S. Matsushita, Zur Theorie der nichtkommutativen Verbände I.
Math. Annalen 137, 1 (1959)
19) I.A. Green and D. Rees, On semi groups in which \(x^r = x \).
CHAPTER II. SEMI GROUPS OF IDEMPOTENTS

§ 2. Definition: A semigroup of idempotents may be called a half skew lattice HSL.

In the following we write the half skew lattices as multiplicative semi half groups, denoting the product of x and y by $x.y$ or by xy. But the reader may please take in mind: If later we apply the results of our discussion in this chapter to skew lattices, we shall interpret xy as $x'y$ in the case of the λ-HSL in any W, as $y'x$ in the case of the ν-HSL in any W.

Special classes of HSL are defined by additional axioms. We mention the following examples of such axioms defining several important classes:

Commutativity

(6) $ab = ba$;

"Halfnest":

(7) $ab = a$;

"Antihalfnest":

(7,1) $ab = b$.

"Superflat HSL":

(8) $abc = acb$;

"Flat HSL":

(9) $aba = ab$;

Without special names:

(10) $aba = a$;

(11) $abc = ac$;

(12) $abac = abc$;

(13) $caba = cba$;

(14) $abcd = acbd$;

(15) $abaca = abca$.

Obviously (8) is a weaker consequence as well of (6) as of (7);
and (9) a weaker consequence of (8). The axioms (10) and (11) are equivalent; for as consequence of (10) we get:

\[(16) \quad abc = ab(ac)bc = ababc = ac.\]

The axioms (12), (13) and (15) too are consequences of (14).

The axiom (7,1) has a totally different meaning from (7) in the frame of the theory of skew lattices - owing to what has been said above about the interpretation of \(xy\) as \(x_A y\) or \(y_v x\) - though in the frame of a theory of semi groups of idempotents (7) and (7,1) are entirely symmetrical.

Fulfilment of the equation

\[(17) \quad ab = a\]

by two special elements \(a, b\) may be called an inclusion. In the case \(a_A b = a\) we say that the element \(a\) is included in \(b\); in the case \(b_v a = a\) we say that \(b\) is included in \(a\). In both cases this inclusion is transitive in consequence of (1), and reflexive in consequence of (2).

The same remarks are to be made about another inclusion, defined by

\[(18) \quad ba = a.\]

We call the case (17) weak inclusion, and (18) strong inclusion.

Lemma 3: In any skew lattice the halfnests are the equivalence classes of weak inclusion; the antihalfnests are the equivalence classes of strong inclusion.

Lemma 4: In any HSL the following three properties are equivalent:

A) There exists no antihalfnest with more than one element;

B) weak inclusion is a consequence of strong inclusion;

C) axiom (9) holds.
Proof: From C) we have B), that is ab = a as consequence of ba = a. From B) we have A), that is a = b as consequence of ba = a and ab = b. From B) we have also C): ba = a → ab = a gives xy = xy in the case a = xy, b = x. From A) we get C):
ab = b, ba = a → a = b gives xy = xy in the case ab, bxy.

Lemma 5: In any flat HSL the halfests are a system of congruence classes.

Proof: If a, a' is a halfnest, then in the flat case also the pairs of elements ab, a'b and ca, ca' are halfests. For we have aba'b = aa'ba'b = aa'b = ab and caca' = caa'ca' = ca' = ca.

Lemma 6: The commutative HSL are those in which weak and strong inclusions coincide.

Proof: From lemma 4 and its proof we see: If weak inclusion is a consequence of strong inclusion, then we have aba = ab. If strong inclusion is a consequence of weak inclusion, we have aba = ba.

From two HSL's H₀ and H₁ with elements a₀, b₀, ... and a₁, b₁, ... we can derive a new HSL called by definition the chain composition (H₀, H₁) of H₀ and H₁. Its elements are those of H₀ together with those of H₁, so that H₀ and H₁ are subsystems of (H₀, H₁); the composition of any element a₀ of H₀ with any element of H₁ being given by
(19) a₀a₁ = a₁a₀ = a₀.

Definition: An axiom characterising a certain class of HSL's is called conservative if its validity for H₀ and H₁ causes also its validity for the chain composition (H₀, H₁).
Lemma 7: The axioms (6), (9), (15) are conservative ones.

§ 3. We now proceed to determine for some of the classes of HSL defined by the additional axioms above the free system with \(n \) generating elements \(a_1, a_2, \ldots, a_n \).

1) In the case of a halfnest (or antihalfnest) the generating elements \(a_k \) are the only ones.

2) In the case of axioms (11) each element of the free system may be written as

\[
a_{kl} = a_k a_l
\]

with

\[
a_{kl} a_{hl} = a_{kj}'
\]

If we now take \(n^2 \) elements \(a_{kl} \) and define their composition by (21), then we see, that this definition fulfills associativity, idempotency \(a_{kl} a_{kl} = a_{kl} \), and the additional axiom (11). Therefore these are \(n^2 \) different elements of the free system.

3) In the case of axiom (8) - superflat HSL - each element can be written as

\[
a = a_{k_0}, a_{k_1}, \ldots, a_{k_m}
\]

with different index values \(k_0, k_1, \ldots, k_m \leq n \).

Let us use the symbol

\[
a = (k_0, K),
\]

where \(K \) is the set of values \(k_0, k_1, \ldots, k_m \). Compositon is obviously given by

\[
aa' = (k_0', K'K).
\]

Taking now (24) as definition of the composition of symbols (23), we see that this composition gives a HSL and fulfills the additional axiom (8). Therefore the
(25) \[U(n) = n^2 n^{-1} \]
different symbols (23) are indeed \(U(n) \) different elements of the free system.

4) In the case of flat HSL's, axiom (9), the general element again can be written as (22); we now use the notation

(26) \[a = (k_0 k_1 \ldots k_m); \]
the composition is defined by

(27) \[aa' = (k_0 k_1 \ldots k_m k'_1 \ldots k'_m) \]
with the additional remark that all those \(k'_r \) are to be omitted afterwards which equal any of the numbers \(k_s \).

Taking again this as definition of the composition of symbols (26), we get a HSL, fulfilling (9), and therefore the

(28) \[G(n) = n! \sum_{k=0}^{n-1} \frac{1}{k!} \]
different symbols (26) are different elements of the free system.

5) In the case of axiom (15) let us consider the elements

(29) \[a = a_{k_0} a_{k_1} \ldots a_{k_m} a_{h_1} \ldots a_{h_m}; \]
where all \(k_0, k_1, \ldots, k_m \) are different, and the \(h_0, h_1, \ldots, h_m \) are any permutation of the \(k_r \). We denote (29) by the symbol (30)

(30) \[a = (k_0 k_1 \ldots k_m | h_0 h_1 \ldots h_m); \]
we have then especially

(31) \[a_k = (k | k). \]

From (15) we get the following composition rule: We have to write down

(32) \[aa' = (k_0 \ldots k_m k'_1 \ldots k'_m | h_0 \ldots h_m h'_0 \ldots h'_m), \]
and afterwards to omit the common index values of \(a \) and \(a' \) among the \(k'_r \) and also among the \(h_j \).

To prove this rule we write, using (15):
\[a a' = a a' a a' \]

\[(33) \]

\[a_k \cdots a_h \cdots a_k' \cdots a_h' \cdots , \]

so that (32) is justified; and the rest in the formulation of our rule comes too from (15).

Again taking now the symbols (31) as elements, and our rule as definition of their composition, we get a HSL, fulfilling (15). Therefore the

\[(34) \]

\[P(n) = n! \sum_{m=0}^{n-1} \frac{(n-m)!}{m!} \]

different symbols (31) correspond with the different elements of the free system. We have \[P(2) = 6; P(3) = 51. \]

§ 4. Definition. A half skew lattice is called an ordered one if it fulfils the axiom

\[(35) \]

\[a b = a \text{ or } b, \]

so that each pair \(a, b \) of its elements is a sub system.

Therefore each pair \(a, b \) of elements in an ordered HSL must correspond to one of the following four possibilities:

\[(36) \]

\[
\begin{aligned}
1) & \quad a, b \text{ form a halfnest;} \\
2) & \quad a, b \text{ form an antihalfnest;} \\
3) & \quad a \text{ is twofold included in } b; \\
4) & \quad b \text{ is twofold included in } a.
\end{aligned}
\]

There are these four possibilities only, because we have for \(ab \) and for \(ba \) two possibilities \(a \) and \(b \).

Lemma 8. The ordered HSL's are the chains of halfnests and antihalfnests.

Proof: Any element \(x \) in an ordered HSL cannot belong
to a halfnest as well as to an antihalfnest of more than one element. If x, y form a halfnest, and x, z an antihalfnest:

\[
\begin{align*}
xy &= zx = x, \\
yx &= y, \\
xz &= z,
\end{align*}
\]

(37)

this together with

\[
zy = yz = y
\]

(38)

would lead to $xy = y = x$; and (37) together with $zy = yz = z$

(39)

would lead to $yx = x = y$

We denote now any finite ordered HSL by a symbol as

\[
H = \Lambda(n_1, n_2, \ldots, n_r)
\]

(40)

meaning a chain composition containing a halfnest of n_1 elements (all its elements are weakly and strongly included in all other elements of H), an antihalfnest of n_2 elements, and so on.

For example

\[
H = \Lambda(3, 1)
\]

(41)

is a flat HSL with 4 elements, which may be denoted here as $0, u, v, 1$, with the following compositions:

\[
\begin{align*}
ox &= 0, \\
uu &= u, \\
vv &= v, \\
1x &= x.
\end{align*}
\]

(42)

With x we are denoting here the general element of H_4.

This example may be used to show how lemma 1 works. We define
in H_4, an involutional correspondence $x \rightarrow \bar{x}$ by:

\[
\begin{align*}
\sigma &= 1, \quad \bar{1} = 0, \\
\bar{\tau} &= \tau, \quad \bar{\bar{v}} = v.
\end{align*}
\]

(43)

The condition (5) obviously is fulfilled; for in each case at least one of the elements a, \bar{a} belongs to the elements z with the property $z_a x = z$. Therefore we get a skew lattice W_4 (with orthogonality):

\[
\begin{align*}
0_a x &= 0 & \bar{x}_\nu 1 &= 1 \\
\bar{x}_\nu x &= \bar{x} & x_\nu \bar{x} &= \bar{x} \\
\bar{x}_\nu x &= \bar{x} & x_\nu \bar{x} &= x \\
\bar{1}_\bar{x} x &= x & x_\nu 0 &= x.
\end{align*}
\]

(44)

CHAPTER III. BASIC LAWS OF SKEW LATTICES

§ 5. Let W be a set of elements who form in two ways a semi group of idempotents; one of these compositions being denoted by \wedge, the other one by $\bar{\vee}$.

Under what conditions will this system be a skew lattice, fulfilling (2)?

At first we see from (2) that in every skew lattice strong multiplicative (additive) inclusion of the element a in b has as its consequence weak additive (multiplicative) inclusion of a in b.

This may be expressed by the graphical scheme:

\[
\begin{align*}
\text{strong inclusion:} & \quad \begin{array}{cc}
\bar{b}_\wedge a &= a \\
\bar{b}_\bar{\nu} a &= b
\end{array} \\
\text{weak inclusion} & \quad \begin{array}{cc}
\bar{a}_\bar{\nu} b &= b \\
\bar{a}_\wedge b &= a
\end{array}
\end{align*}
\]

(45)

(46)
Only one of these two statements needs a proof: From

\[(47) \quad (b \wedge a) \vee b = b\]

we see, that \(b \wedge a = a\) has the consequence \(a \vee b = b\). The other statement is dual to this one.

But (46) gives not only a necessary, but also a sufficient condition for \(W\) being a skew lattice. For the element \(b \wedge a\) is multiplicatively strongly included in \(b\); therefore according to (46) it must also be additively weakly included in \(b\), as expressed by (47).

Lemma 9: Any set \(W\) of elements forming a multiplicative (operation \(\wedge\)) and at the same time an additive (operation \(\vee\)) semi group of idempotents is a skew lattice if and only if each case of strong inclusion is connected with weak inclusion of the other kind (multiplicative or additive).

Several special cases may be considered:

Lemma 10: If \(W\) is a multiplicative (additive) half nest and any arbitrary additive (multiplicative) HSL, then \(W\) is a skew lattice.

Lemma 11: If any skew lattice is a multiplicative (additive) anti half nest, then it is an additive (multiplicative) half nest.

Definition: A skew lattice being a multiplicative and additive half nest is called a nest.

Lemma 12: The nests are the equivalence classes of multiplicative and additive weak inclusion.

Lemma 13: Each equivalence class of multiplicative and additive strong inclusion contains only one element.

This is a consequence of lemma 11.-

The nests are those skew lattices which fulfil the axiom

\[(48) \quad a \wedge b = b \vee a\]

With (48) we get from (48) that \(a \wedge b = a\).
The other axiom

\[(49) \quad a\land b = a\lor b\]

is valid only in skew lattices with elements \(a_{1\mu}\) and \(a_{1\lambda}\) and

\[(50) \quad a_{1\lambda} \land a_{1\mu} = a_{1\mu}.\]

For (49) and (2) lead to (10) and therefore to (11) and to (20), (21), a special case of (50). The general case of finite skew lattices fulfilling (49) can be derived from the free systems (20), (21) by congruence relations; and congruence classes in a skew lattice of type (50) give skew lattices of this same type.

Proof: Let be \(a_{1\lambda} = a_{1\nu}\), where \(\lambda \neq \mu\). Then we have from (50):

\[(51) \quad \begin{align*}
 a_{1\lambda} \land a_{1\mu} &= a_{1\nu} \land a_{1\mu}, \\
a_{1\mu} &= a_{1\nu}.
\end{align*}\]

Therefore in the system of congruence classes all \(a_{1\mu}\) can be replaced by the corresponding \(a_{1\nu}\).

Obviously the skew lattice (50) is the direct product of a multiplicative antihalfnest (and therefore additive halfnest) \(\beta_{1}\) and an additive antihalfnest \(\alpha_{1}\):

\[(52) \quad a_{1\lambda} = \alpha_{1} \times \beta_{1}.\]

Lemma 14: The axiom \(a \lor b = a \land b\) is fulfilled only by all direct products of antihalfnestes.

Definition: The chain composition \((W_0, W_1)\) of two skew lattices \(W_0, W_1\), with elements \(a_0, b_0, \ldots\) and \(a_1, b_1, \ldots\) is that skew lattice which as a multiplicative and additive HSL is chain composition of the corresponding HSL's in \(W_0\) and \(W_1\):

\[(53) \quad \begin{align*}
 a_0 \land a_1 &= a_1 \land a_0 = a_0, \\
a_0 \lor a_1 &= a_1 \lor a_0 = a_1.
\end{align*}\]
That this indeed is again a skew lattice can be seen too from lemma 9.

Lemma 15: Those elements of a skew lattice which are additively weakly included in a certain element \(c \), form a sub system. The same statement holds for those elements which multiplicatively include weakly \(c \).

Proof: From \(c \wedge a = c; \ c \wedge b = c \) we get not only \(c \wedge a \wedge b = c \), but also \(c \wedge (a \vee b) = c \wedge b \vee (a \wedge b) = c \wedge b = c \).

Definition: Any set \(M \) is called a quasi ordered set, if for some pairs of (unequal or equal) elements of \(M \) a relation \(\leq \) is defined in a reflexive and transitive manner. (Special case: \(a \leq a \) for each element, but no other relation exists. Other special case: \(a \wedge b \) for each pair \(a, b \) in \(M \)).

Lemma 16 (W. Böge): If \(M \) is a quasi ordered set, and the elements of \(M \) are in two ways semigroups - with operations \(\wedge, \vee \) - having the following properties:

1) \(a \wedge b \leq a \),
2) \(a \wedge b = a \) in all cases \(a \wedge b \);
3) \(a \wedge b \leq b \),
4) \(a \wedge b = b \) in all cases \(a \wedge b \),

then \(M \) is a flat skew lattice. Every flat skew lattice can be described in this manner.

Proof: I. From 3) we have \(b \wedge a \leq a \), therefore from 2): \(a \wedge (b \vee a) = a \), and from 4): \(a \wedge (b \vee a) = a \vee a \). Dually symmetric to these statements are \((a \wedge b) \wedge a = a \) and \(a \wedge (b \wedge a) = a \wedge b \). - II. In any flat skew lattice we define \(a \wedge b \) so that it means twofold (multiplicative and additive) inclusion of \(a \) in \(b \):

\[
(a \wedge b) \wedge a = a \quad \text{and} \quad a \wedge (b \wedge a) = a \wedge b.
\]

(54) \(x \leq y \iff \begin{cases} x \wedge y = x, \\ x \vee y = y. \end{cases} \)
This indeed is fulfilled by \(x = a \land b, y = a \); therefore this relation (54) indeed has all properties (1), 2), 3), 4).

(The two special cases mentioned above both lead to a neat).

The connexion with lemma 9 and lemma 4 is this one: \(a \land b \) is additively strongly included in \(a \), and therefore has to be (in the flat case) twofold weakly included in \(a \).

From this lemma Böge derived the following example of a flat skew lattice: Let \(M = \{ a, b, \ldots \} \) be the set of all reflexive transitive relations \(\preceq \) in a set \(S = \{ x, y, \ldots \} \). Any element \(a \) of \(M \) means that in \(a \) a certain manner for every pair \(x, y \) of elements of \(S \) the relation \(x \preceq y \) is given or not given. In the former of these two cases we write \(x \preceq y \); in the latter case we write \(\overline{x \preceq y} \).

Now we define in \(M \) the relation \(\preceq \) by:

(55) \(a \preceq b \) means \(x \preceq y \Rightarrow x \preceq y \) for every pair \(x, y \) in \(S \).

This is a reflexive and transitive relation.

Secondly we define \(a \lor b \) by:

(56) \(x(a \lor b)y \iff x \preceq y \land y \preceq x \land x \preceq y \).

Using the Boolean distributive lattice of \(\land \) and \(\lor \), denoting \(\land, \lor \) by \(, + \), we can write (56) also thus:

(57) \(x(a \lor b)y = x \preceq y, (\overline{x \preceq y} + x \preceq y) \).

This is associative.

Proof: We have

(58) \[
\begin{align*}
x(a \lor (b \land c))y &= x \preceq y, (\overline{x \preceq y} + x \preceq y) (b \land c)y) \\
&= x \preceq y, (\overline{x \preceq y} + x \preceq y) (y \preceq x) + y \preceq x, (y \preceq x, (y \preceq x) \lor (y \preceq x)).
\end{align*}
\]

At the other hand we get:
\[
x((a,b)_A c)y = x((a,b)_A c)y = x((a,b)_A c)y = x((a,b)_A c)y.
\]

\[
(y(a,b)_A x + y(a,b)_A x, xcy)
\]

\[
= xay. (yax + yax. xby). (y(a,b)_A x + y(a,b)_A x, xcy); \\
y(a,b)_A x = yax. (xay + xay. ybx)
\]

\[
= yax + xay. (xay + ybx) = yax + xay. ybx;
\]

\[
x((a,b)_A c)y
\]

\[
= xay. (yax + yax. xby. (xay. ybx + y(a,b)_A x. xcy))
\]

\[
= xay. (yax + yax. xby. (ybx + (xay + ybx). xcy))
\]

\[
= a_A (b_A c).
\]

And \(\wedge \) has the properties 1), 2). For \(x(a,b)_A y \Rightarrow xay \) according to (56); and \(a_A b = a \) as soon as \(xay \Rightarrow xby \).

Lemma 17 (W. Böge): The reflexive transitive relations \(a, b, \ldots \) in a set of elements \(x, y, \ldots \) form a flat skew lattice if their compositions \(\wedge, \vee \) are defined by (56), (57) for \(\wedge \), and dually for \(\vee \).

This lemma 17 is especially interesting because it shows that at least the theory of flat skew lattices is an unavoidable part of the theory of quasi order.

As the last point in this paragraph we consider the ordered skew lattices, which, by definition, are those which have two ordered HSL's, so that each pair of elements \(a, b \) forms a sub skew lattice. (Any HSL of two elements is commutative or a half nest or an antihalfnest. A skew lattice of two elements therefore is a lattice \(V_2 \) or a nest \(N_2 \) or a halfcommutative halfnest (look at (65), §6), or an antihalfnest).

We discuss here only finite ordered skew lattices. Owing to the fact that each set of elements of an ordered skew lattice is a sub skew lattice, we can make from the elements a series so that the
following statements are correct, using the denotation from (46):

1) In the flat case the symbol

\[
W = \wedge(n_1, n_2, \ldots, n_r) \vee (m_1, m_2, \ldots, m_s)
\]

with

\[
\sum n_j = \sum m_k = \text{number of elements means especially that } \min(n_1, m_1) \text{ elements form a nest of elements strongly included in all other elements, and twofold strongly included in } n - \max(n_1, m_1) \text{ other elements. Omitting these } \min(n_1, m_1) \text{ elements there remains a skew lattice } W' \text{ of } n - \min(n_1, m_1) \text{ elements, namely in the case } n_1 > m_1:
\]

\[
W' = \wedge(n_1 - m_1, n_2, \ldots, n_r) \vee (m_2, \ldots, m_s);
\]

in the case \(n_1 > m_1 \):

\[
W' = \wedge(n_2, \ldots, n_r) \vee (m_1 - n_1, m_2, \ldots, m_s);
\]

in the case \(n_1 = m_1 \):

\[
W' = \wedge(n_2, \ldots, n_r) \vee (m_2, \ldots, m_s).
\]

Lemma 18: The symbol (59) with (60) represents in every case a possible structure of flat ordered skew lattices; and each such structure corresponds to a uniquely determined symbol (59).

Proof using lemma 9: In order to be multiplicatively strongly included in an element \(y \) belonging to the multiplicative halfnest (with \(n_j \) elements) denoted by \(n_j \), and to an additive halfnest denoted by \(m_h \), the element \(x \) must belong to any \(\wedge \)-halfnest denoted by \(n_1 \) with \(1 < j \); then it belongs to a \(\vee \)-halfnest denoted by \(m_1 \) with \(i \leq h \).

The general case, allowing also the presence of antihalfnests, can be described by symbols similar to (59), but with asterisks\(\ast \) at some of the numbers \(n_j, m_h \). Allowing also (superfluous) values 0 of these numbers, we can write for the general case:

\[
\Gamma \text{(meaning antihalfnests)}
\]
Lemma 19: The symbol (64) gives an ordered skew lattice if and only if the elements denoted by any \(n_j^* \) are entirely contained in those denoted by a certain \(m_h \), and vice versa.

§ 6. Definition: An axiom, characterising a class of skew lattices, is called an HN-axiom, if it is fulfilled in the case of every half nest (multiplicative or additive).

The axiom (2) is an HN-axiom according to lemma 19. An example of an axiom which is not an HN-axiom, is the following one, which is fulfilled especially if at least one of the operations \(\wedge, \vee \) is commutative:

\[
\begin{align*}
(a \wedge b) \vee (b \wedge a) &= (b \wedge a) \vee (a \wedge b), \\
(a \vee b) \wedge (b \vee a) &= (b \vee a) \wedge (a \vee b).
\end{align*}
\]

Definition: An axiom for skew lattices is called conservative, if its validity for \(W_0 \) and \(W_1 \) guarantees also its validity for the chain composition \((W_0, W_1)\).

The axiom (2) is conservative; the axioms (48) and (49) are not conservative ones.

Definition: A skew lattice is flat if both its HSL's are flat according to axiom (9):

\[
\begin{align*}
(a \wedge b) \wedge a &= a \wedge b; \\
(a \vee b) \vee a &= a \vee b.
\end{align*}
\]

Our former statement that (47) is equivalent with the law that strong multiplicative inclusion has weak additive inclusion as its consequence, can be applied with: Permutation of \(x, y \) in \(x \wedge y \); permutation of \(x, y \) in \(x \vee y \); permutation of \(\wedge, \vee \). Out of the
eight statements arising in this manner, only two have been discussed in § 5. Now we mention also the following three additional dually symmetric axioms (F), (C), (H), containing each one two equations which can be interpreted according to those eight statements:

(67) (F) \[a_\land (a \lor b) = (b \lor a) \land a = a; \]
thus: this axiom can be indicated the meaning of

(68) (C) \[a_\lor (a \land b) = (b \land a) \lor a = a; \]
this axiom means

(69) (H) \[a_\lor (b \land a) = (a, b) \land a = a; \]
this means

According to lemma 4 the axiom of a flat skew lattice means

From this it is to be seen that (G) for both operations \(\land, \lor \) is a consequence as well of (F) as of (C); for in all skew lattices (46) is valid.

Lemma 20: A skew lattice fulfilling one of the axioms (C), (F) is a flat one.

Combination of (H) with (2) gives

we see, that in the flat case (H) guarantees commutativity.

The axiom (C) is fulfilled already if
(70) \[a_A(a \land b) = (b_Aa)_\land a \]

is valid - we then have the consequence \((b_Aa)_\land a = a_A[(b_Aa)_\land a] = a \).

But the axiom

(71) \[a \lor (b_Aa) = (a \lor b)_A a \]

is weaker than (69). This axiom (69) obviously is fulfilled in the case (49) and in the commutative case. Other examples are not yet known.

All axioms written down above in this paragraph, (65) till (71), are conservative ones; but among them only (71) is an HN-axiom.

A further example of a conservative HN-axiom is this:

(72) \[
\begin{align*}
a \lor (a \land b) &= a_A(a \lor b), \\
(b_Aa)_\land a &= (b_Aa)_\lor a,
\end{align*}
\]

valid especially in the case that \((C) \) and \((F) \) both are fulfilled.

From lemma 5 we get now

Lemma 21: In a skew lattice fulfilling the axiom (C) the nests are congruence classes for both operations \(\land, \lor \); these congruence classes form a lattice.

Proof: In lemma 5 the HSL of the halfnests as congruence classes is commutative because \(ab \) and \(ba \) in the flat case (look at lemma 4) belong to the same halfnest.

§ 7. In this paragraph, evaluating something more about the ordered skew lattices, we often use the signs \(+, \land \) instead of \(\lor, \land \).

Definition: As the tolerant distributive law we denote the following axiom, consisting of two dually symmetric equations:

(73) \((D_0) \)

\[
\begin{align*}
a_A(b \lor c) &= a_A(b \lor [a \land c]), \\
(c_Ab)_\lor a &= ([c \lor a)_A b)_\lor a.
\end{align*}
\]
This notation is reasonable because in the commutative case each line of (73) gives the usual **distributive law**.

For from

\[a \cdot (b \cdot c) = a \cdot (b \cdot [a \cdot c]) \]

we get (putting \(a \cdot b \) instead of \(b \)) the usual **modular law**:

\[a \cdot ([a \cdot b] \cdot c) = [a \cdot b] \cdot [a \cdot c] , \]

and again using (74), we get the **distributive law**.

The axiom (73) is a conservative HN-axiom.

Definition: The following axiom is called the **modular law**:

\[(M) \quad [(a \cdot b) \cdot c] \cdot (a \cdot b) = (a \cdot b) \cdot [c \cdot (a \cdot b)] . \]

Lemma 22: This modular law can be formulated also in the following manner: If two elements \(x, y \) fulfill the relations

\[\begin{align*}
 x_a y &= x , \\
 x_y y &= y
 \end{align*} \]

(meaning that \(x \) is twofold weakly included in \(y \)), then for every element \(c \) it is:

\[(x \cdot c)_a y = x_y (c \cdot y) . \]

Proof: Inserting for \(x, y \) in (78) the expressions (77), we transform (78) into the relation (76), so that the property of modular skew lattices, formulated in (77), (78), indeed is a consequence of (76).

And the elements \(a \cdot b = x \), \(a \cdot b = y \) fulfil (77), so that (76) is a consequence of the law formulated in (77), (78).

The modular axiom (76) is a dually symmetrical conservative HN-axiom. The axiom (71) is a special case of (76).

Lemma 23: Any ordered skew lattice fulfills the tolerant distributive **axiom** (73) and the modular **axiom** (76).
Proof: The relation \(a(b+c) = (b+ac) \) is fulfilled in the case \(ac = a \). In the other case \(ac = a \) we have

\[
(79) \quad a(b+c) = ac(b+c) = ac = a = a(b+a).
\]

If \(xy = x \), \(x+y = y \), then in the case \(x+c = x \) (and therefore \(cx = x \)) we get:

\[
(80) \begin{cases}
(x+c)y = xy = x; \\
x+cy = x+cxy = x+cx = x+c = x.
\end{cases}
\]

In the other case \(x+c = c \) we have to prove \(cy = x+cy \), and this is valid, if \(cy = y \).

But if \(cy = c \) and \(x+cy = x \), therefore \(x = c \), then \(cy = x = x+cy \).

Lemma 24: In an ordered skew lattice the axioms (C) and (F) are equivalent. They express that the ordered skew lattice is a chain composition of nests.

Proof: In a chain composition of nests (C) and (F) are fulfilled, because they are conservative axioms, and valid in a nest. According to (F) two elements belonging to the same multiplicative halfnest cannot belong to different additional halfnests, so that one of these elements is additively strongly included in the other one. According to lemma (C) has the same meaning in ordered skew lattices.

Lemma 25: Any \(\Phi \)-axiom \(\Phi (a,b) = \varphi (a,b) \) valid also in \(V_2 \), the lattice with two elements, is fulfilled in every ordered lattice.

With \(\Phi (a,b) \) we denote here any well defined element of the free skew lattice with two generating elements \(a,b \).

Proof: In an ordered skew lattice any pair of elements is a subsystem, and therefore \(V_2 \) or a halfnest.
§ 8. Naturally the tolerant distributive law (73) and the modular law (76) are not the only possibilities to generalize - in a simple manner - for the noncommutative case the distributive and the modular axiom of the commutative theory. Other possibilities will be studied in the next paragraphs.

Before doing so we at first mention:

Lemma 26: In any modular lattice the elements which are twofold weakly included in the element \(y \) form a subsystem.

This lemma too - similar to lemmas 22, 23 - shows that (76) is a singularly simple and meaningful axiom.

Proof: If (77) and therefore (78) is fulfilled, and if \(z, y = z \), we have \((x_v z)_y = x_v z \). At the other hand \(x_a z, y = x_a z \): the elements \(x_v z \) and \(x_a z \) are multiplicatively weakly included in \(y \). The rest of lemma 26 is already expressed in lemma 15.

We formulate now another distributive law:

\[
\begin{align*}
(81) (D_9) & \left\{ \begin{array}{c}
(a_b) c = (a_b) c \\
(c_a) b = (c_a) b
\end{array} \right. \\
\end{align*}
\]

Obviously (73) is a consequence of (81).

Definition: A skew lattice fulfilling the axioms (73) and (81) may be called a distributive-modular one.

The rest of this paragraph will entirely be devoted to the task to determine and to discuss the free flat distributive-modular skew lattice with two generating elements \(a, b \).
Lemma 27: The free flat distributive-modular skew lattice with two generating elements a, b has 18 elements. It is superflat and doubly distributive.

The term "doubly distributive" means validity of (81) and also of:

\[
\begin{align*}
(a \land b) \land c &= (a \land c) \land (b \land c), \\
\lor (a \land b) &= (\lor a \land \lor b).
\end{align*}
\]

Obviously (73) is a consequence of (82) too. But (81) as well as (82) is stronger than (73), for (81), (82) are not conservative axioms. But they both are HN-axioms.

The 18 elements of the skew lattice from lemma 27 - it may be denoted in the following as W_{18} - are those of table 1.

TABLE 1

u_1 = a	v_1 = b
u_2 = ab	v_2 = ba
u_3 = b + a	v_3 = a + b
u_4 = ba + a	v_4 = ab + b
u_5 = a + ab	v_5 = b + ba
u_6 = b + ab	v_6 = a + ba
u_7 = ba + ab	v_7 = ab + ba
u_8 = a + b + ab	v_8 = a + b + ba
u_9 = a + ba + ab	v_9 = ab + b + ba

Proof: From the generating elements a, b we get at first the (superflat!) free flat HSL with elements a, b, ab, ba. These four elements generate an additive HSL which we show to be superflat. It possesses the 18 elements of table 1.

We shall prove:
(83) \[a + ab + b = a + b \]
(84) \[a + b + ba = b + a + ba; \]
from (83) we have (by substitution of \(b \) by \(ba \))
(85) \[a + ab + ba = a + ba; \]
from (84) we get, substituting \(ab \) instead of \(a \):
(86) \[b + ab + ba = ab + b + ba. \]

From (76)(M) we have
(87) \[(a + b)a = a + ba; \]
from (81), second line:
(88) \[(a + b)b = ab + b. \]

Therefore:
(89) \[
\begin{align*}
(a + b) &= (a + b)(a + b) = (a + b)a + (a + b)b \\
&= a + ba + ab + b = a + ab + b;
\end{align*}
\]
now (83) is proved to be correct.

Then from (81):
(90) \[a + b + ba = a + b(b + a); \]
from (76):
(91) \[a + b(b + a) = (a + b)(b + a) = (a + b) b + (a + b)a; \]
therefore from (87), (88):
(92) \[a + b + ba = ab + b + a + gb = b + a + gb. \]
now (84) is proved to be correct.

Therefore the additive HSL generated by \(a, b, ab, ba \) indeed is superflat:

We have to prove the relation \(x + y + z = y + x + z \) only for the case of three different elements;
if \(z = b \), only \(x, y \neq ba \) is to be looked for, and (83) answers this. If \(z = ba \), the three cases cleared by (84), (85), (86) are to be considered. Therefore the elements of table 1 form an additive (superflat) HSL.

Now we shall show that they form also a multiplicative HSL: It is sufficient, to show that each one of them gives another element of table 1 when multiplied with the element \(a \) from the right side.

The cases \(u_3, v_3 \) are cleared by (87), (88); the modular law clears all those cases where the sum \(u_k \) or \(v_k \) has as its first member \(a \) or \(ab \). The case \(v_5 \) is cleared by \(v_5 = bv_3 \); and at last we get:

\[
\begin{align*}
u_6 &= (b + a)b; \\
u_7 &= (b + a)ab; \\
u_6a &= (b + a)ba = u_7 = u_7a.
\end{align*}
\]

Here the dual relation to (84) has been used. RESUL T:\nAll elements of the skew lattice looked for are contained in table 1. It can also easily be seen now that both lines of the distributive law (82) are fulfilled.

In order to prove now that all these 18 polynomials in table 1 are different elements in our free system, we have to prove that they form indeed a flat distributive-modular skew lattice. After this proof, it is certain - in consequence of dual symmetry - that also the multiplicative HSL of these 18 elements is superflat.

To perform this last step of our proof we make use of the skew lattice \(W_4 \) described in (44). This skew lattice fulfills (76) according to lemma 23; and (81) obviously too. Now we construct the direct product of seven direct factors \(W_4 \); and we take from this direct product the following two elements:

\[
\begin{align*}
a &= (u | u0u1 | 01), \\
b &= (v | 0u1u | 10).
\end{align*}
\]
Showing that these elements a, b generate 18 different elements, we perform the rest of our proof. We get these 18 elements by calculating the 18 polynomials of table 1 resulting from $u_1 = a, v_1 = b$ according to (++); the results are summarized in table 2.

Table 2.

| $u_1 = (u|u0u|01)$ | $v_1 = (v|0u1u|10)$ |
|-------------------|-------------------|
| $u_2 = (u|0u0u|00)$ | $v_2 = (v|0uu|00)$ |
| $u_3 = (u|0uu|11)$ | $v_3 = (v|uu1u|11)$ |
| $u_4 = (u|0uu|01)$ | $v_4 = (v|uu1u|10)$ |
| $u_5 = (u|0uu|00)$ | $v_5 = (v|0uu|10)$ |
| $u_6 = (u|uuu|00)$ | $v_6 = (v|uuu|01)$ |
| $u_7 = (u|uuu|00)$ | $v_7 = (v|uuu|10)$ |
| $u_8 = (u|uuu|11)$ | $v_8 = (v|uuu|11)$ |
| $u_9 = (u|uuu|01)$ | $v_9 = (v|uuu|10)$ |

Lemma 28: The skew lattice W_{18} of Lemma 27 can be represented by (94) as a sub system of the direct product of seven direct factors W_4.

Apart from helping to prove lemma 27, the representation (94) leads to further valuable information about the skew lattice W_{18}.

1) Introducing as a further additional axiom that one formulated in (65), we get in W_{18} the congruences

\[(95)\quad u_6 \equiv v_9; \quad u_9 \equiv v_6; \quad u_7 \equiv v_7; \quad u_8 \equiv v_8.\]

They arise from table 2 by introducing $u \equiv v$ according to (65). Therefore:

Lemma 29: The free flat halfcommutative distributive-modular skew lattice with two generating elements a, b has 14 elements. It can be represented by

\[(96)\quad a = (u0u1|01); \quad b = (0u1u|10)\]
as a sub system of the direct product of six direct factors W_i.

2) Introducing additionally the axiom $(68)(C)$ - according to lemma 24 the axiom $(67)(F)$ would lead to the same result - we have to consider that (C) is valid in nests and in lattices, but not in a halfcommutative halfnest. Therefore in table 2 we must omit the letters between the strokes in order to get the skew lattice of the congruence classes in W_{18} corresponding to (C):

$$a = (v \mid 01); \quad b = (v \mid 10).$$

Lemma 30: The free system with two generating elements among the distributive-modular skew lattices fulfilling (C) is the direct product of two direct factors V_2 and one direct factor N_2 (n nest with two elements).

3) Introducing the "supermodular" axiom

$$(98) \quad x \vee (c \wedge y) = (x \wedge c), y$$

in W_{18} - the modular axiom (M) is a weaker consequence of (98) - into W_{18} we have to omit from (94) the two direct factors V_2, because V_2 does not fulfill (98). But (98) is an HN-axiom. Therefore we get in W_{18} from (98) the following congruence classes:

$$\begin{align*}
\{ & u_1 = (u\mid uu1) & v_1 = (v\mid 0u1u) \\
& u_2 = u_5 = (u\mid uu0u) & v_2 = v_5 = (v\mid 0uuu) \\
& u_3 = u_4 = (u\mid uuu1) & v_3 = v_4 = (v\mid uu1u) \\
& u_6 = u_7 = u_8 = u_9 = (u\mid uuuu) & v_6 = v_7 = v_8 = v_9 = (v\mid uuuu)
\end{align*}$$

Lemma 31: The free flat supermodular distributive skew lattice with two generating elements $a = u_1$, $b = u_2$ has 8 elements. It fulfills every HN-axiom $\varphi(a, b, c, \ldots) = \varphi(a, b, c, \ldots)$.
Proof: This W_8 is a sub system of direct product of halfnests. Immediately from lemma 27 and lemma 28, together with lemma 25, we get:

Lemma 32: All those HN-axioms $\varphi(a,b) = \psi(a,b)$ which are valid also in V_2, are fulfilled in all distributive-modular skew lattices.

§ 9. We discuss now the special ordered skew lattice W_4 from (44). This W_4 and the direct products of direct factors W, fulfill a series of meaningful axioms. These we shall summarize (as far as they are known) and then discuss their connection or independencies.

0) W_4 is flat.
1) Every HN-axiom $\varphi(a,b) = \psi(a,b)$ which also holds in V_2 is valid.
2) The distributive law (D_1), (81) is valid.
3) The modular law (M), (76) is valid.
4) A second modular law

\[(100) \quad [(a,b)_c, (b,a)_c] = (a,b)_c (b,a)_c\]

is valid. This is again a dually symmetric HN-axiom, but not conservative.
5) The HN-axiom

\[(H^*) \quad \{ (b + c)(a + c)a = (b + c)a,\]

\[(101) \quad a + ca + cb = a + cb \]

is valid. - Proof: Its second line is fulfilled in W_4 in each one of the cases $c = 1$ and $c \neq 1$. Obviously (H^*) is a weaker consequence of (H), (69).

6) The axiom

\[(C^*) \quad (b + c)a(a + c) = (b + c)a,\]

\[(102) \quad ca + a + cb = a + cb \]

is valid. - Proof as for (H^*). - This is a consequence of (C), (68), and a weaker one: It is not an HN-axiom, but it is valid in every flat skew lattice which is a halfnest. -(In the following we use for such a case the denotation HN*-axiom).
7) Any sub-system generated by three elements \(bc, ac, ab \) is doubly distributive and superflat.

Proof: In \(W_4 \) in the case \(a = 1 \) and in the case \(a \neq 1 \) this sub-system is generated by only two elements.

8) Any sub-system generated by three elements \(bc, ca, ab \) is doubly distributive.

Proof: In \(W_4 \) such a sub-system is generated by only two elements, if one of the elements \(a, b, c \) equals 1. In the other case it is a halfnest.

9) The following axioms are valid:

\[
\begin{align*}
(103) & \quad (b_{\lambda},c_{\lambda})(a_{\lambda},b)_{\lambda}(a_{\lambda},c) = (b_{\lambda},a)_{\lambda}(c_{\lambda},a)_{\lambda}(b_{\lambda},c), \\
(104) & \quad (b_{\lambda},a)_{\lambda}(b_{\lambda},c)_{\lambda}(a_{\lambda},c) = (b_{\lambda},a)_{\lambda}(b_{\lambda},c)_{\lambda}(a_{\lambda},c), \\
(105) & \quad (b_{\lambda},c)_{\lambda}(b_{\lambda},a)_{\lambda}(a_{\lambda},c) = (b_{\lambda},a)_{\lambda}(a_{\lambda},c)_{\lambda}(b_{\lambda},c), \\
(106) & \quad (a_{\lambda},b)_{\lambda}(b_{\lambda},c)_{\lambda}(a_{\lambda},c) = (b_{\lambda},a)_{\lambda}(b_{\lambda},c)_{\lambda}(c_{\lambda},a), \\
(107) & \quad (c_{\lambda},b)_{\lambda}(a_{\lambda},b)_{\lambda}(a_{\lambda},c) = (c_{\lambda},a)_{\lambda}(b_{\lambda},a)_{\lambda}(b_{\lambda},c), \\
(108) & \quad (a_{\lambda},b)_{\lambda}(a_{\lambda},b)_{\lambda}(a_{\lambda},c) = (c_{\lambda},a)_{\lambda}(b_{\lambda},c)_{\lambda}(b_{\lambda},a).
\end{align*}
\]

Each one of these six relations is a dually symmetric distributive law; (106), (108) are \(\text{HN}^\lambda \)-axioms; the other four ones are \(\text{HN} \)-axioms.

10) The following \(\text{HN}^\phi \)-axiom and the dual one are valid:

\[
(109) \quad cb + ab + ac = ab + cb + ac.
\]

This is a special case of 7). It has the consequence that (107) and (108) are equivalent.

11) The left hand sides of (103), (104), (105), (106) are equal; and the corresponding right hand sides are equal. Therefore the four axioms (103), (104), (105), (106) are equivalent.

We write separately:

\[
(110) \quad bc + ba + ac = ba + bc + ac;
\]
this is an HN-axiom, and again a special case of 7).

And:

\[(111) \quad bc + ab + ac = ab + bc + ac;\]

this is an HN*-axiom, and again a special case of 7).

And:

\[(112) \quad bc + ab + ac = bc + ba + ac.\]

This curious relation is an HN-axiom.

We now give some further remarks about the connection between these axiomatic properties of direct products of direct factors \(W_4\).

A first contribution is given by lemma 32: The properties 0), 2), 3) have 1) as consequence. We prove now, that 0), 1), 2) lead to 4), or more precisely:

Lemma 33: The distributive law \((D_4)\) together with the two conservative HN-axioms

\[
(113) \quad \begin{cases} (a + b)(a + b + ba) = a + b + ba; \\ (a + b + ba)(a + b)ba = (a + b + ba)ba \end{cases}
\]

leads to the second modular law \((100)\).

Proof: From \((D_4)\) we have:

\[
(114) \quad \begin{cases} (a + b)(c + ba) = (a + b)c + (a + b)ba \\ = [a + b + (a + b)ba][c + (a + b)ba] \\ = (a + b)[a + b + ba][c + (a + b)ba]; \end{cases}
\]

and then from \((113)\) and \((D_4)\):

\[
(115) \quad \begin{cases} (a + b)(c + ba) \\ = [a + b + ba][c + (a + b)ba] \\ = (a + b + ba)c + ba = (a + b)c + ba. \end{cases}
\]

By quite a complicated proof the author has shown in his last paper about skew lattices:
Lemma 34: Property 7) above is a consequence of the combined axioms
0), 2), 3), 5), 6).

The proof may be omitted here. -

In this combination (M) is independent. For the case (12) (12)
violets (W), but fulfills the other face axioms.

The property 8) has not yet been studied; it is unknown which axioms

Under 10), 11) the four axioms (109), (110), (111), (112) and the
dually corresponding ones are special cases of 7), as mentioned
already above. But among these (110) can be derived already from 1), 2);

Using our results concerning W18, we have

\[
\begin{align*}
bc + ba + ac &= b(c + a) + ac = (b + ac)(c + a + ac) \\
&= (b + ac)(a + c + ac) = b(a + c) + ac = ba + bc + ac.
\end{align*}
\]

Also the distributive law (103) is a consequence already from 1), 2):

\[
\begin{align*}
bc + ab + ac &= bc + a(b + c) \\
&= (bc + a)(b + c) = (b + a)(c + a)(b + c).
\end{align*}
\]

The distributive law (107) is a consequence of 0), 1), 2): In a
flat skew lattice (M) gives also

\[
\begin{align*}
bc + ab + ac &= bc + a(b + c) \\
&= (bc + a)(b + c) = (b + a)(c + a)(b + c),
\end{align*}
\]

because cb is twofold weakly included in b + c. Similar as in
(117) we come from (118) by (D1) to (107).

The axiom (112) and the dual one remain as probably independent of
the other ones.

§ 10. The supermodular skew lattice Wq, defined by (99), is an
example of a class of skew lattices which we shall study more closely
in this paragraph.
Lemma 35: In the supermodular case we have

\[
\begin{cases}
bc + ba = ba; \\
(a + b)(c + b) = a + b.
\end{cases}
\]

(119)

Proof: According to (98) and (2) we have

\[
bc + ba = (bc + b)a = ba.
\]

Lemma 36: In the supermodular case also the second modular axiom (100) is valid.

Proof: From (119) we get:

\[
\begin{align*}
(a + b)c + ba &= a + bc + ba = a + ba; \\
(a + b)(c + ba) &= (a + b)(c + b)a = (a + b)a = a + ba.
\end{align*}
\]

Lemma 37: In the supermodular case each one of the axioms \((D_0), (D_1), (D_2)\) is equivalent to

\[
\begin{cases}
ab + c = a + c, \\
ac = a(b + c).
\end{cases}
\]

(120)

Proof: From \((D_0)\) we get now:

\[
a(b + c) = a(b + ac) = a(b + a)c = ac;
\]

therefore (120) is a consequence of \((D_0)\). With (119) we get as well:

\[
(a + b)c = a + bc = ac + bc.
\]

Lemma 38: Any superflat supermodular skew lattice is distributive.

Proof: From (119) we have in the superflat case:

\[
ba + x = bc + ba + x = ba + bc + x = bc + x,
\]

and with \(a = b:\)

\[
b + x = bc + x.
\]

Lemma 39: Any distributive supermodular skew lattice fulfills every \(HN\)-axiom \(\Phi(a, b, c, ...) = \Psi(a, b, c, ...).\)
Proof in the following.

Lemma 40: The skew lattices (studied above) with \(a \land b = a \lor b \) are distributive and supermodular.

For they fulfill \((120) \) and also the defining axiom \((98) \) of supermodular skew lattices. Generalising this type of skew lattices - analysed in lemma 43 - we can say: Let the skew lattice \(W_1 \) be a multiplicative halfnest, and the skew lattice \(W_2 \) be an additive halfnest. Then the direct product \(W_1 \times W_2 \) is a distributive supermodular skew lattice, because it fulfills every HN-axiom.

Lemma 41: The free (or free flat, or free superflat) distributive supermodular skew lattice with \(n \) generating elements is a sub
system \(U \) of the direct product of two skew lattices \(W_1, W_2 \) thus
that \(W_1 \) is a multiplicative, and \(W_2 \) an additive halfnest.

The additive HSL of \(W_1 \) and the multiplicative HSL of \(W_2 \)
is the free (or free flat, or free superflat) HSL of \(n \) generating
elements. The sub system \(U \) is the set of those elements in \(W_1 \times W_2 \)
in which the last summand in HSL \(W_1 \) (one of the generating elements)
is the same as the first factor in HSL \(W_2 \).

Proof: The looked for skew lattice \(W \) being doubly distributive,
each of its elements is an element of the additive HSL generated
by the elements of the multiplicative HSL generated by the generating elements \(a_1, a_2, \ldots, a_n \). But in any such sum only the last term
has to contain more than one factor \(a_k \) - the other ones, according to
\((120)\), can be written as single elements \(a_j \). Therefore the general
element \(a \) of \(W \) can be written as \(\alpha' + A \), where \(\alpha' \)
is an element of the additive HSL generated by the \(a_k \), and

\[A \]

an element of the multiplicative HSL generated by the \(a_k \).

If the first factor of \(A \) is \(a_j \), then

\[a = \alpha' + A = (\alpha' + a_j)A, \]

so that \(a \) may also be written as \(\alpha A \) where the last summand
The operations then take the form
\[
A + B = (A + B),
\]
\[
A^* B = AB.
\]

This proof of lemma 41 gives also the proof of lemma 39.

Let us now construct according to lemma 41 the not flat generalisation of W_8.

Lemma 42: The free distributive-supermodular skew lattice with two generating elements a, b has 18 elements, as given in table 3:

TABLE 3.

$S_1 = a$	$T_1 = b$
$S_2 = ab$	$T_2 = ba$
$S_3 = aba$	$T_3 = bab$
$S_4 = b + a$	$T_4 = a + b$
$S_5 = b + ab$	$T_5 = a + ba$
$S_6 = b + aba$	$T_6 = a + bab$
$S_7 = a + b + a$	$T_7 = b + a + b$
$S_8 = a + b + ab$	$T_8 = b + a + ba$
$S_9 = a + b + aba$	$T_9 = b + a + bab$

From table 3 we come back to W_8 by upsetting the following congruences:

\[
\begin{align*}
S_2 & \equiv S_3 \\
S_4 & \equiv S_7 \\
S_5 & \equiv S_6 \equiv S_8 \equiv S_9
\end{align*}
\]
According to lemma 41 the free distributive supermodular skew lattice with \(n \) generators has \(\frac{1}{2}B(n)^2 \) elements, if \(B(n) \) is the number of elements in the free HSL with \(n \) generating elements. Therefore we get \(18 = \frac{1}{2} \cdot 6^2 \) elements if \(n = 2 \). In the case \(n = 3 \) we should get \(\frac{1}{3} \cdot 159^2 \) elements.

For free flat or superflat skew lattice of this type we get as number of elements:

\[
(124) \quad n \cdot 2^{n-2}, \text{ respectively } n!(n-1)! \left(\sum_{k=0}^{n-1} \frac{1}{R!} \right)^2.
\]

CHAPTER V. CONSTRUCTION

OF

SKEW LATTICES FROM LATTICES.

§ 11. In any HSL -we write it here as an additive one,- denoting the composition by \(\cup \) - a function \(fa = a' \) of the element \(a \) may be defined, having the properties

\[
(125) \quad \begin{align*}
fa \cup a &= a; \\
\text{ } & \\
\text{ } & f(fab) = fa \cup fb.
\end{align*}
\]

Then we get a new HSL with the same elements, but with a new composition, defined by

\[
(126) \quad a \cup b = fa \cup b.
\]

Proof: From (125), (126) we have

\[
(127) \quad \begin{align*}
a \cup a &= fa \cup a = a; \\
a \cup (b \cup c) &= (a \cup b) \cup c.
\end{align*}
\]

Lemma 43: The two elements \(fa \) and \(ffa \) form a halfnest in \(W \).
Therefore in a commutative W we have

\[(128)\quad ffa = fa.\]

Proof: From (125) we have

\[(129)\quad \begin{cases}
ffa \circ fa = fa, \\
ffa = fa \circ ffa.
\end{cases}\]

Lemma 44: Weak v-inclusion of a in b is equivalent with weak w-inclusion of fa in fb. Weak v-inclusion of a in b has the consequence of weak v-inclusion of a in b.

Proof: $a \circ b = b$ means $fa \circ b = b$, therefore

\[f(fa \circ b) = fb = fa \circ fb.\]

At the other hand from $fb = fa \circ fb$ we get $fa \circ b = b$. From $a \circ b = b$ we have $fa \circ b = a \circ b = b$.

Remark: Sufficient (not necessary) conditions for the second line of (125) are:

\[(131)\quad \begin{cases}
ffa = fa, \\
f(a \circ b) = fa \circ fb.
\end{cases}\]
Lemma 45: In the case $W = V$ (= commutative) and (131) we have

$$f(a \land b) = f(fa \land b) = f(fa \land fb).$$

Proof: From Lemma 44 we have

$$f(a \land b) \supseteq f(fa \land b);$$

this together with

$$f(a \land b) \subseteq fa \land fb \subseteq fa \land b,$$

$$f(a \land b) = ff(a \land b) \subseteq f(fa \land b)$$
gives

$$f(a \land b) = f(fa \land b).$$

Obviously $ffa = fa$ is a special case of (132).

Lemma 46: Replacing in a skew lattice W with compositions denoted by \lor, the composition \land by \lor according to (126), with a function fa having the properties (125), we get a new skew lattice W' possessing the same elements as W, but the compositions \lor, \land.

Proof: Additionally to the remarks made above we see that replacing $\land \lor$ by \lor we lose no case of additive weak inclusion (according to lemma 44), and we win no new case of additive strong inclusion:

$$fa \lor b = a \rightarrow a \lor b = a.$$

Lemma 47: If the \lor-HSL in W is flat (or even superflat), then the \land-HSL in W' is also flat (or even superflat).

Proof: From the axiom $a \lor b \lor a = b \lor a$ we get $a \lor b \lor a = ffa \lor fb \lor a = fa \lor fb \lor a = fb \lor fa \lor a = fb \lor b \lor a$. From the axiom $a \lor b \lor c = b \lor a \lor c$ we get $a \lor b \lor c = b \lor a \lor c$.
All these facts are valid in dual symmetry for \(\land, \lor \) instead of \(\land, \lor \); and we may also replace both \(\land, \lor \) by \(\land, \lor \) according to (126)

and

\[
(133) \quad a \land b = a \land \land b
\]

with

\[
(134) \quad F(a \land b) = F_a \land b, \quad a \land F_a = a.
\]

The new skew lattice with \(\land, \lor \) may be called \(W' \).

Together with \(W \) the new \(W' \) is flat or even superflat.

Therefore we can by this construction derive from commutative lattices only superflat skew lattices, even if we make repeatedly such a replacement.

Lemma 48: If \(W \) fulfils the axiom (C), then \(W' \) fulfils (C) if and only if

\[
(135) \quad fF_a \land a = Ff_a \land a = a.
\]

Proof: From (135) we get with (2) that

\[
\begin{align*}
(b \land a) \lor a &= f(b \land F_a) \lor a \\
&= f(b \land F_a) \lor fF_a \land a = f(f(b \land F_a) \lor F_a) \lor a \\
&= f(f(b \land F_a) \lor (b \land F_a) \lor F_a) \lor a \\
&= f[(b \land F_a) \lor F_a] \lor a = fF_a \lor a = a.
\end{align*}
\]

At the other hand any element \(a \) with the property \(fF_a \lor a \) would give \((F_a \lor a) \lor a = fF_a \lor a \neq a. \)
Lemma 49: If \(W \) fulfills the axioms (C) and (M), then \(W' \) too fulfills (M).

Proof: It is sufficient to discuss the case \(Fa = a \), which means that only replacement of \(\cup \) by \(\vee \) is performed. If (M) is valid in \(W \), the case \(x_\wedge y = x \) and \(x_\vee y = fx_\wedge y = y \) gives:

\[
(x_\vee a)_\wedge y = (fx_\wedge a)_\wedge y = fx_\wedge (a_\wedge y) = x_\vee (a_\wedge y).
\]

(136)

Now from (C) we have \(fa_\wedge a = fa \) as consequence of \(fa_\wedge a = a \), and therefore:

\[
fx_\wedge y = fx_\wedge x_\wedge y = fx_\wedge x = fx.
\]

Lemma 50: If \(W \) fulfills (C) and (M), then the definitions

\[
fa = a_\wedge s; \quad Fa = s'_\wedge a
\]

with two arbitrary constant elements \(s, s' \) fulfills (125) and (134). Therefore (138) gives then a modular skew lattice \(W' \).

Proof: Validity of (134) is to be seen from

\[
F(a_\wedge Fs) = s'_\wedge [a_\wedge (s'_\wedge b)]
\]

(139)

\[
= (s'_\wedge a)_\wedge (s'_\wedge b) = Fa_\wedge Fb;
\]

for \(s' = x \) is twofold weakly included in \(s'_\wedge b = y \). And we have

\[
a_\wedge Fa = a_\wedge (s'_\wedge a) = a.
\]

Lemma 51: In the case of a distributive lattice \(W = V \) we get by (138) a skew lattice fulfilling the two distributive laws \((D_1) \) and \((D_2) \).
Proof: Writing
\[
fa = as, \quad Fa = s' + a
\]
we get
\[
\begin{align*}
&(140,1) & c_m[b_v a] &= c(s' + bs + a), \\
& & (c_m b)_v(c_m a) &= [c(s' + b)]s + c(s' + a) \\
& & &= c(s's + bs + s' + a) ; \\
&(140,2) & [b_v a]_m c &= (bs + a)(s' + c) , \\
& & (b_m c)_v(a_m c) &= b(c + s')s + a(c + s') \\
& & &= (bs + a) (c + s') .
\end{align*}
\]

Lemma 52: If \(W \) is a distributive lattice \(V \), and \(FF \)
fulfil (131) and the dually corresponding relations
\[
(141) \quad \begin{align*}
&FFa = Fa, \\
&F(a_m b) = Fa_m Fb ,
\end{align*}
\]
then \(W' \) is tolerantly distributive.

Proof: We have also the dual relation to (132), which means:
\[
(142) \quad F(a_m b) = F(a_m Fb) = F(Fa_m Fb) .
\]

Now the relation
\[
c_m(b_v a) = c_m[b_v(c_m a)]
\]
wins the meaning
\[
\begin{align*}
&c_m F(fb_v a) = c_m F[fb_v(c_m Fa)] \\
&\quad = c_m F[(fb_v c)_v(fb_v Fa)] = c_m F(fb_v c)_v F(fb_v Fa) \\
&\quad = c_m F(fb_v c)_v F(fb_v a) ;
\end{align*}
\]
and this indeed is fulfilled in consequence of
\(F(fbc) \supseteq Fc \supseteq c; \)

according to lemma 44 and the dual statements.

At last we discuss some possibilities to construct functions \(f, F \) in certain special cases of commutative \(W = V \); in these cases the second line of (125) will be fulfilled in the special form (131).

Construction I: The lattice \(V \) may consist of those pairs \(a = (A_1, A_2) \) of elements \(A, B, \ldots \) of a lattice \(V_0 \) which fulfill the condition

\[
(143) \quad A_1 \leq A_2;
\]

and \(V \) may be a sublattice of the direct product of two direct factors \(V_0 \).

Definition:

\[
(144) \quad fa = (A_1, A_1); \quad Fa = (A_2, A_2).
\]

Construction II. Again we take a lattice \(V_0 = \{A, B, \ldots\} \), and we form a direct product of three direct factors \(V_0 \). We define \(V \) as the sublattice of this direct product consisting of those \(a = (A_1, A_2, A_3) \) which fulfill

\[
(145) \quad A_1 \leq A_2 \leq A_3.
\]

Definition:

\[
(146) \quad fa = (A_1, A_1, A_3); \quad Fa = (A_1, A_3, A_3).
\]

In this case axiom (C) is valid, according to lemma 48.
Construction III, including and generalising the constructions I, II: Again we take a direct product of direct factors \(V_0 \); the elements can also be denoted as functions \(a = A(k) \) of an index \(k \), the \(A(k) \) being elements of \(V_0 \). In the set \(M \) of index values \(k \) any quasi order (as defined above) may be given; and we consider now the sublattice of those functions \(A(k) \) with

\[
A(k) \leq A(l) \quad \text{in each case} \quad k \leq l.
\]

In the set \(M \) there may be defined two functions \(\varphi(k) = \varphi k, \phi(k) = \phi k \) with values out of \(M \) fulfilling with respect to the mentioned quasi order the relations

\[
\varphi \varphi k = \varphi k \leq k \leq \phi k = \phi \phi k.
\]

Definition:

\[
\begin{cases}
(fA)(k) = A(\varphi k), \\
(FA)(k) = A(\phi k).
\end{cases}
\]

Sufficient for \((C)\) is

\[\varphi \phi k \leq k \leq \phi \varphi k;\]

and \((150)\) is also necessary for \((C)\), if \(V_0 \) has more than one element.

The following example includes the constructions I, II:

\[
k = 1, 2, \ldots, n;
\]

\[
1 \leq i, j \leq n;
\]

\[
\varphi k = \begin{cases} 1 & \text{if } k \leq i + k, \\ 1 & \text{if } i \leq k; \end{cases}
\]

\[
\phi k = \begin{cases} j & \text{if } k \leq j, \\ n & \text{if } j \leq k + j. \end{cases}
\]
Lemma 53: If \(V_0 \) is a distributive lattice, then construction I leads to a skew lattice \(W' \) fulfilling the distributive law (\(D_2 \)).

It may have some methodical interest to give two different proofs of this remarkable lemma.

At first we consider the simplest special case: \(V_0 \) may be the lattice \(V_2 \) of only two elements. Then \(W \) is the ordered lattice of 3 elements:

```
1
 z
0
```

We have

\[
(151) \begin{cases}
 f(0) = f(z) = 0; f(1) = 1, \\
 F(1) = F(z) = 1; F(0) = 0.
\end{cases}
\]

That this case fulfills the relation

\[
(151,1) \quad (a \land b) \lor c = (a \lor c) \land (b \lor c)
\]

(and the dual one), can be seen easily by direct verification.

At the same time we see that this is an ordered skew lattice, corresponding to the symbol

\[
(152) \quad \land (12) | \lor (21).
\]

Now we proof lemma 53, using the fact, that every distributive lattice is a sublattice of a direct product of direct factors \(V_2 \).

Therefore the \(W \) of our construction is a sublattice of another \(W' \) which may be described thus: We apply the construction I to a Boolean lattice (= direct product of direct factors \(V_2 \)). Now, to apply construction I to a direct product \(W' = W'(1) \times W'(2) \) means to apply it to each one of the direct factors \(W(1), W(2) \), getting \(W'(1)'' \) and \(W'(2)'' \), and then forming the direct product.
Therefore the validity of (151,1) in the case (152) means also that (151,1) is valid for \(W^{**} \) and then for \(W'' \).

A second proof of lemma 53, to be represented now, does not make use of the fact that each distributive lattice is a sublattice of a Boolean one. (This fact naturally allows also another proof of lemma 51).

We simply calculate, using again \(* ; + \) instead of \(\wedge, \cup \) :

\[
\begin{align*}
(a \cdot b) \cdot c &= (A_1 + B_1, A_1 + B_2)(C_1, C_2); \\
(a \cdot b) \cdot (a \cdot c) &= (A_1 C_1, A_1 C_2) + (B_1 C_1, B_2 C_2).
\end{align*}
\]

Remark: If a \(f,F \)-construction, applied to a skew lattice with orthogonality, fulfils

\[
(fa = F\bar{a},
\]

then also

\[
(154,2) \quad \overline{a \cdot c} = \overline{c \cdot \bar{a}}.
\]

The results of this paragraph show that we can get by the \(f,F \)-construction a rich material of skew lattices fulfilling the tolerant distributive law (D\(_0\)) as well as the modular axiom (M). But the skew lattices constructed in this manner from commutative lattices are quite special ones in a certain respect: They all are superflat ones.

Therefore we shall proceed in the next paragraph to study another construction leading to examples which are still flat ones, but not super flat ones. The resulting new skew lattices have been partly already discussed above, for after having been detected these new examples showed themselves to be accessible also independently of the construction method of the following
paragraph. But in spite of this the following considerations will lead us to some new aspects of the theory of skew lattices.

§ 12. At first the concept of skew lattices with orthogonality may be discussed a little more thoroughly.

An orthogonality \(a \to \bar{a} \) with

\[
\begin{cases}
\bar{f} = a, \\
a \cdot c = c \cdot \bar{a}
\end{cases}
\]

exists in every lattice which can be represented by a graph symmetrical to an horizontal rectilinear line. For instance:

![Graph representation]

We define \(\bar{a} \) as symmetrical to \(a \). In the case of the free lattice with two generating elements \(u, v \) we get thus:

\[
\begin{cases}
\bar{0} = 1; \\
\bar{u} = u, \bar{v} = v.
\end{cases}
\]

But we can also use the fact that this free lattice with two generating elements is a direct product \(V_2 \times V_2 \), so that the orthogonality \(\bar{0} = 1 \) in \(V_2 \) gives the orthogonality:

\[
\begin{cases}
\bar{0} = 1, \\
\bar{u} = v; \bar{v} = u.
\end{cases}
\]

In the general case of a skew lattice \(W \) possessing an
orthogonality it may be an involuromial automorphism:

\[
\begin{align*}
\text{AAa} &= \text{Aa}; \\
\text{A}(\text{a}_\text{A}\text{b}) &= \text{Aa}_\text{A}\text{Ab}, \\
\text{A}(\text{a}_\text{V}\text{b}) &= \text{Aa}_\text{V}\text{Ab}; \\
\text{AA} &= \text{AAa}.
\end{align*}
\]

(158)

Such an automorphism exists especially in the case that \(W \) is a direct product with two isomorphic direct factors.

Lemma 54: If (158) is fulfilled, we get a new orthogonality \(a \to \text{Aa} \) by the definition

\[a' = A\text{Aa}. \]

(159)

Proof: We have

\[
\begin{align*}
\text{AAa} &= \text{Aa}; \\
\text{A}(\text{a}_\text{A}\text{b}) &= \text{Aa}_\text{A}\text{Ab}, \\
\text{A}(\text{a}_\text{V}\text{b}) &= \text{Aa}_\text{V}\text{Ab}; \\
\text{AA} &= \text{AAa}.
\end{align*}
\]

(160)

Now any distributive lattice \(V \) with operations \(\cap, \cup \) and with orthogonality may be given, and we make the

Definition:

\[
\begin{align*}
a\text{A}\text{b} &= a(\text{b} + \text{A}) = ab + a\text{A}, \\
b\text{V}\text{a} &= \text{ab} + a = (a + a\text{A})(\text{b} + a).
\end{align*}
\]

(161)

Lemma 55: With these definitions (161) the elements of \(V \)
form a skew lattice \(W \).

Proof: Indeed we have at first:

\[
(a_\land b)_\land c = (a_\land b)c + (a_\land b)(a_\land b)
\]

\[
= abc + a\bar{abc} + (ab + a\bar{a})(\bar{a}b + \bar{a})
\]

\[
= abc + a\bar{abc} + a\bar{ab} + \bar{a}ab + \bar{a}ab + \bar{a}c
\]

and

\[
\begin{align*}
\land (b_\land c) &= a(b_\land c) + \bar{a}a \\
&= abc + a\bar{ab} + \bar{a}a.
\end{align*}
\]

Therefore the compositions \(\land, \lor \) are indeed associative ones.

Secondly we see, that replacing \(\land, \lor \) by \(\land, \lor \) we loose no case of weak inclusion, and we win no case of strong inclusions:

\[
\begin{align*}
\land b &= a \rightarrow a_\land b = a; \\
\lor a &= b \rightarrow a_\lor a = b.
\end{align*}
\]

For \(ab = a \) gives \(a_\land b = a + a\bar{a} = a \); and

\(b_\lor a = \bar{a}b + a = b \) gives \(a_\lor a = b \).

Lemma 56: \(W \) fulfills all axioms \(\varphi (a, b, c, \ldots) = W \)

\(\psi (a, b, c, \ldots) \) which are fulfilled by \(W_4 \).

We shall see later that in all these cases \(W \) can be constructed as a sub skew lattice of a direct product of direct factors \(W_4 \).
Then lemma 56 is an obvious consequence. But we prefer to show here at first by direct calculation that lemma 56 is correct. According to § 9 we have to prove the following statements:

\[W \text{ is flat. For from (163) we have } a \wedge b \wedge a = a \wedge b. \]

\[W \text{ fulfills (M). If } x \text{ is twofold weakly included in } y, \text{ we have } xy + x\bar{x} = x, \bar{y}x + y = y. \]

Then

\[
\begin{align*}
\{ & x_\wedge (c_\wedge y) = (c_\wedge x + (c_\wedge y) \\
& = (c_\wedge y + c)x + c(y + \bar{c}) \\
& = \bar{c}x + cy + cc;
\}
\end{align*}
\]

\[
\begin{align*}
\{ & (x_\wedge c)y = (x_\wedge c)y + (x_\wedge c)(\bar{c} \wedge \bar{x}) \\
& = (\bar{c}x + c)y + (\bar{c}x + c) \bar{c}(\bar{x} + c) \\
& = \bar{c}x + cy + cc.
\}
\end{align*}
\]

\[W \text{ fulfills } (D_t). \text{ We have} \]

\[
\begin{align*}
a_{\wedge} (b_\wedge c) &= a[(b_\wedge c) + \bar{a}] \\
&= a[\bar{c}b + c + \bar{a}]; \\
(a_\wedge b)_\wedge (a_\wedge c) &= (\bar{c} \wedge a)(a_\wedge b) + (a_\wedge c) \\
&= (ac + \bar{c})a(b + \bar{a}) + a(c + \bar{a}) \\
&= a[(c + \bar{c})(b + \bar{a}) + c + \bar{a}] \\
&= a[\bar{c}b + c + \bar{a}].
\end{align*}
\]

\[W \text{ fulfills } \mathcal{H}. \text{ We have, using also (163):} \]

\[
\begin{align*}
\{ & (b_\wedge c)_\wedge a = (b_\wedge c)[a + (\bar{c} \wedge b)] \\
& = (\bar{c}b + c)[a + \bar{c}(b + c)]
\}
\end{align*}
\]
\[(167)\] \[a = (\overline{ab} + c)a + \overline{c}(b \overline{b} + c)\;\]
and
\[(168)\] \[\begin{align*}
(b \cup a)(a \cup c) & = (b \cup a)((a \cup c)\overline{a} + (\overline{a} \cup c)) + (b \cup a)(\overline{a} \cup b) \\
& = (\overline{ab} + c)(\overline{c}a + c)(a + (\overline{a} \cup c)) + (\overline{ab} + c)\overline{c}(b + c) \\
& = (\overline{ab} + c)a + (\overline{ab} + c)\overline{c}(b + c) \\
& = (\overline{ab} + c)a + (b \overline{b} + c).
\end{align*}\]

W fulfills \(C^*\). We have according to \((163)\):
\[(169)\] \[\begin{align*}
(b \cup a)(a \cup c) & = (b \cup a)((a \cup c)\overline{a} + (\overline{a} \cup c)) + (b \cup a)(\overline{a} \cup b) \\
& = (\overline{ab} + c)(\overline{c}a + c)(a + (\overline{a} \cup c)) + (\overline{ab} + c)\overline{c}(b + c) \\
& = (\overline{ab} + c)a + (\overline{ab} + c)\overline{c}(b + c) \\
& = (\overline{ab} + c)a + (b \overline{b} + c).
\end{align*}\]

equal too to the expression \((167)\).

W fulfills \((112)\). From \((163)\) we have:
\[(170)\] \[\begin{align*}
(c \cup a)(b \cup a)(c \cup b) & = (c \cup a)[(b \cup a)(c \cup b) + (\overline{a} \cup b)] + (a \cup \overline{c})
\end{align*}\]

Here we have:
\[(171)\] \[\begin{align*}
(b \cup a)[(c \cup b) + (\overline{a} \cup b)] & = (\overline{ab} + a)[b \overline{c} + b + \overline{a}(b + a)] \\
& = \overline{ab} + a[\overline{b} + b + \overline{a}].
\end{align*}\]
At the other hand:

\[
(172) \quad \begin{cases}
(c, a) (a, b) (c, b) \\
= (c, a) \left((a, b) \left[(c, b) + (\overline{c}, \overline{b}) \right] + (\overline{c}, c) \right)
\end{cases}
\]

with

\[
(173) \quad \begin{cases}
(a, b) [(c, b) + (\overline{c}, \overline{b})] \\
= (a, b) [(c, b) + (\overline{c}, \overline{b})] \\
= (b, a + b) [b + b(\overline{a} + b)] \\
= (b, c + b + \overline{a}) + b
\end{cases}
\]

Therefore (170) equals:

\[
(174) \quad \begin{cases}
(a, c + a) [\overline{a} b + a[b + a] + a(c + a)] \\
= a [b + a + \overline{c}] + a [b + \overline{a}] + \overline{a} [b + a + \overline{c}]
\end{cases}
\]

and (172) equals

\[
(175) \quad \begin{cases}
(c, a) [\overline{a} b + a[b + a] + a(c + a)] \\
= \overline{a} [b + c + a] + a [b + \overline{a} + a] \\
= \overline{a} [b + \overline{c}] + a [b + \overline{a}]
\end{cases}
\]

Applied to the case (156) our definition (161) gives the skew lattice W_4. Therefore our proof of lemma 56 gives also a new proof of the discussed properties of W_4.

At last we mention still another possibility to define in a
distributive lattice with orthogonality a certain semi group.

Let us consider

\[(176) \quad a \pm b = \overline{ab} + a\overline{b} + \overline{a}b.\]

\textbf{Lemma 57: This composition (176) is an associative one.}

\textbf{Proof:} At first we see that

\[(177) \quad \begin{cases}
 \overline{a} + \overline{b} = (a + \overline{a})(b + \overline{b})(\overline{b} + a) \\
 = a(b + \overline{a}) + \overline{a}(\overline{b} + a) \\
 = a \pm \overline{a} = a \pm b.
\end{cases}\]

Therefore

\[(178) \quad \overline{a} + \overline{b} = a \pm b.\]

And:

\[(179) \quad \begin{cases}
 (a \pm b)(a \pm \overline{b}) \\
 = (\overline{ab} + a\overline{b} + \overline{a}b)(\overline{ab} + ab + a\overline{a}) \\
 = \overline{a}b\overline{b} + a\overline{b}\overline{b} + \overline{a}a\overline{a}.
\end{cases}\]

Now we have

\[(180) \quad \begin{cases}
 a \pm (b \pm c) = \overline{a}(b \pm c) + a(b \pm \overline{c}) + \overline{a}\overline{a} \\
 = \overline{a}(bc + b\overline{c} + \overline{b}c) + a(b\overline{c} + bc + b\overline{c}) + \overline{a}\overline{a};
\end{cases}\]

\[(181) \quad \begin{cases}
 (a \pm b) \pm c = (a \pm \overline{b})c + (a \pm b)c \\
 + \overline{a}b\overline{b} + a\overline{a} \\
 = abc + \overline{a}bc \\
 + a\overline{a}b + \overline{a}b\overline{c} \\
 + \overline{a}b\overline{b} + ab\overline{c} + a\overline{a}.
\end{cases}\]
From (181) we have also

\[(182) \quad a + a + x = a + x + a\]

Proof: both sides of (182) equal

\[(183) \quad (a + \bar{a})x + \bar{a}a.\]

Therefore

\[(184) \quad a + a + b + b = a + b + a + b;\]

that means: The "singular" elements \(a \neq a\) form a sub semi group.

As one sees from (176) we have

\[(185) \quad \begin{cases} a + a = \bar{a}a; \\ a + \bar{a} = \bar{a} + a. \end{cases}\]

From the expression (183), equal to (182), we learn also that

\[(186) \quad a + a + a = a.\]

Therefore this semigroup is not an HSL, but a generalization thereof. But the sub semi group of the singular elements

\(a \neq a\) is an HSL.

A simple calculation shows that the definition (176) may also be written thus:

\[(187) \quad a \neq b = (a \neq b) \vee (\bar{a} \neq b).\]

The constructions of this paragraph can be generalized in such a manner that instead of a distributive lattice a superflat doubly distributive skew lattice is used. But then the calculations become so awfully complicated that I prefer to omit them here.
§ 13. In the theory of lattices we have the well known

Lemma 58: Each distributive lattice is a sublattice of a
Boolean one.

It is the chief aim of this chapter to explore possibilities
of a non commutative generalisation of this lemma. This surely is
quite a hard problem. Being still far from any solution of it,
I can give here only some preparatory remarks. But these already
seem to show that this indeed is a highly interesting mathematical
problem.

In order to get at least a well defined question, let us make
the following

Definition: A skew lattice \(W \) belongs to the class \(D \),
means that it is a sub skew lattice of a direct product of ordered
skew lattices.

A skew lattice \(W \) belongs to the class \(D' \), means that
\(W \) has the structure of a certain system of congruence classes
in a skew lattice belonging to class \(D \).

Hamburg) it is probable that the class \(D' \)
can be characterized by some axioms valid in each skew lattice
of type \(D' \). How are these axioms to be found out? Surely the
tolerant distributive law \((D_0) \) and the modular law \((M) \)
belong to them; but are they already sufficient?
Another question arises: Are the classes D and D' identical, or can we find examples of skew lattices belonging to D', but not to D?

In the commutative case the answer is contained in lemma 58; we formulate:

Lemma 59: If V is a lattice of congruence classes in a lattice V_0 which is a sublattice of a Boolean one, then V is also equivalent to a sublattice of the product of direct factors V_0.

The proof of this lemma is not interesting in the frame of lattice theory, because it is only a special case of lemma. But we give here a proof which is independent of lemma 58.

The elements of V_0 may be represented as functions

$$f(x), g(x), \ldots \text{ of } x = 1, 2, \ldots , m \text{ with values } f = 0 \text{ or } 1.$$

We have

$$\begin{align*}
 f \cdot g &= fg; \\
 f \cdot g &= f + g - fg.
\end{align*}$$

Two special elements f, g may be congruent, and we consider the system of congruences generated by the congruence $f \equiv g$.

The two functions $h_1(x), h_2(x)$, belonging to V_0, may have the property that $h_1(x_0) \equiv h_2(x_0)$ has the congruence $f(x_0) \equiv g(x_0)$. Then we have $h_1 \equiv h_2$.

(Sequa)
For if
\[
(189) \begin{cases}
(h_1 \land h_2)(x_0) = 0, \\
(h_1 \lor h_2)(x_0) = 1
\end{cases}
\]
has the congruence
\[
(190) \begin{cases}
(f \land g)(x_0) = 0, \\
(f \lor g)(x_0) = 1,
\end{cases}
\]
then for all values of \(x \) we have:
\[
(191) \begin{cases}
f \land \land h_1 = f \land \land h_2, \\
f \lor \lor h_1 = f \lor \lor h_2,
\end{cases}
\]
Now the congruence \(f \equiv g \) gives
\[
(192) \begin{cases}
f \land h_1 = f \land h_2, \\
f \lor h_1 = f \lor h_2,
\end{cases}
\]
and \(h_1 = h_2 \) follows from the

Remark: In any distributive lattice from
\(a \land c = b \land c \) and \(a \lor c = b \lor c \) we have \(a = b \).

Proof: We have
\[
(193) \quad (a \land b) \lor (a \land c) = a \lor (b \land c) = a \land (a \lor c) = a;
\]
and by permutation of \(a, b\) in this relation we get \(a = b\).

Therefore: The congruence class of any \(h_1(x)\) is determined by the values \(h_1(x')\) for these \(x'\) in which \(f(x') = g(x')\).

Lemma 60: If a skew lattice \(W\) with two generating elements \(a, b\) belongs to class \(D'\), then it is doubly distributive. If a flat one, it is also superflat.

Proof: In any \(W\) of class \(D'\) every \(HN\)-axiom

\[
\phi(a, b) = \psi(ca, b)
\]

valid in \(V_2\) is fulfilled, as we know.

Any \(HN\)-axiom

\[
\phi(x, y, z, \ldots) = \psi(x, y, z, \ldots) \tag{195}
\]

valid in \(V_2\) is then fulfilled in \(W\). For inserting any special elements \(z(a, b), y = y(a, b), \ldots\), we get

\[
\phi(x(a, b), y(a, b), z(a, b), \ldots) = \phi(a, b), \tag{196}
\]

and the validity of (195) for these \(x, y, z, \ldots\) is given by one of the characterised axioms (194).

Therefore \(W\) is doubly distributive, so that \((D_1)\) and \((D_2)\) are fulfilled.
In the axiom

\[(197) \quad x + y + z = y + x + z\]

of a superflat \(W \) we again insert:

\[(198) \quad x(a,b) + y(a,b) + z(a,b) = y(a,b) + x(a,b) + z(a,b),\]

giving a relation \(\varphi(a,b) = \gamma(a,b) \), fulfilled in the case of an additive halfnest. But in the case of a multiplicative halfnest, and a flat \(W \), each one of the elements \(x, y, z \) reduces itself to one of the elements \(a, b, a + b, b + a \); and then again (198) is fulfilled.

Knowing lemma 60, we immediately can write down the elements of the free skew lattice of class \(D' \) with two generating elements: Thus we come to our skew lattice \(W_{18} \) studied above.

Lemma 61: If the class \(D \) (or the class \(D' \)) of skew lattices can be characterised by axioms which are \(\text{HN-axioms} \), then the following consequence is given:

Lemma 62 (hypothetical): Each \(\text{HSL} \) is a sub system (or equivalent to a system of congruence classes in a sub system) of a direct product of ordered skew lattices.

We make a little test concerning this hypothetical lemma 62:

The following statement - an extremely special case of lemma 62 - at least can be proved:

Lemma 63: The free flat \(\text{HSL} \) with \(n \) generating elements is a sub system of the direct product of direct factors \(\gamma(12) \).
Proof: We take the direct product of \(\frac{1}{2} n(n+1) \) direct factors \(W_k \). Any one of the generating elements \(a_k \) may be represented by a series of \(\frac{1}{2} n(n+1) \) elements out of \(W_k \); this series may divided into shorter series containing \(n, n-1, \ldots, 1 \) elements. We write:

\[
\begin{align*}
\mathbf{a}_k &= W_{k1}^{(n)} W_{k2}^{(n)} \cdots W_{k_n}^{(n)} W_{k1}^{(n-1)} W_{k2}^{(n-1)} \cdots W_{k_{n-1}}^{(1)} W_{k1}^{(1)} \\
&= W_{k1}^{(2)} W_{k2}^{(2)} W_{k1}^{(1)}
\end{align*}
\]

with

\[
\begin{align*}
W_{kk}^{(1)} &= u; \\
W_{kj}^{(k)} &= v \text{ if } j < k; \\
W_{rs}^{(1)} &= 0 \text{ in all other cases.}
\end{align*}
\]

For instance we have, if \(n = 4 \):

\[
\begin{align*}
a_1 &= (u000|u00|0u|u) \\
a_2 &= (0u00|0u0|vu|0) \\
a_3 &= (00u0|vv|00|0) \\
a_4 &= (vvvu|000|00|0)
\end{align*}
\]

Or for \(n = 5 \):

\[
\begin{align*}
a_1 &= (u0000|u000|u000|u0|u) \\
a_2 &= (0u000|0u00|0u00|0u0|0) \\
a_3 &= (00u00|00u0|vvv|00|0) \\
a_4 &= (000u0|vvvu|000|00|0) \\
a_5 &= (vvvu|0000|0000|000|0).
\end{align*}
\]
All elements generated by these a_k belong to a multiplicative HSL because $0, u, v$ form a multiplicative HSL in W_k. Additively these a_k generate a flat \vee-HSL with elements

$$a = a_{k_1} + a_{k_2} + \ldots + a_{k_m},$$

$$b = a_{l_1} + a_{l_2} + \ldots + a_{l_n}$$

which are different: $a \neq b$, exactly if the corresponding elements of a free additive flat HSL are different, according to our discussion above. For in

$$a = (z^{(n)}_1 \ldots z^{(m)}_n | z^{(m-1)}_1 \ldots z^{(m-1)}_{n-1} | \ldots | z^{(1)}_1)$$

we see from the elements $z^{(p)}_x$, what elements a_k are contained in the sum (203) for a. If a_b belongs to them, then $Z^{(h)}_h = u$; if not, then $Z^{(h)}_h = 0$. At the other hand, if a_p and a_q occur in the sum a, then we can see from (202) whether a_p stands left and a_q right, or vice versa. If $p > q$, and a_p at the left side of a_q, then $Z^{(p)}_q = u$; otherwise $Z^{(p)}_q = v$.

It would be nice if we could now generalise lemma 63 so that for all flat HSL it would be shown that representation as sub system of direct products of ordered HSL must be possible - by a further step similar to lemma 59. But I cannot yet say whether this generalisation is possible.

From the last considerations and results we gather the impression, that the tolerant distributive law (D_0) alone is to weak in order to characterise - together with (N) - the class D or D'. Therefore the question arises whether there exist other distributive laws valid too in all ordered skew lattices.
A contribution to answering this question is

Lemma 64: The following relations (each one of these four lines) are conservative HN-axioms giving common distributivity in the commutative case; and they are fulfilled in every ordered skew lattice:

\[
(204) (D_1^*) \begin{cases}
ca + c(a + b) + cb = ca + cb, \\
(b + c)(ba + (a + c)) = (b + c)(a + c);
\end{cases}
\]

\[
(205) (D_2^*) \begin{cases}
ac + (a + b)c + bc = ac + bc, \\
(c + b)(c + ba)(c + a) = (c + b)(c + a).
\end{cases}
\]

It is not necessary to say anything about the proof of this lemma; its correctness is obvious as soon as it has been formulated.

But the consequences of this statement are not yet known.

§ 14. The conviction that it might be possible to reduce distributive skew lattices - if properly defined axiomatically - to direct products of suitably chosen ordered skew lattices gains strong encouragement by a fact detected by W. Böge:

Lemma 65: Each skew lattice constructed from a distributive lattice according to (164), is a sub system of a direct product of direct factors W_k.

Proof (W. Böge): We start
from a lattice V. Let h be a system of exactly two
congruence classes in V; and H the set of all these
h. We can describe h as a function of the elements x
of V, possessing the values 1 and 0 according to the
two congruence classes: From $h(x) = h(y) = 1$, $h(z) = h(t) = 0$
we have
\[
\begin{cases}
 h(xy) = h(x + y) = h(z + x) = 1, \\
 h(zt) = h(z + t) = h(zx) = 0.
\end{cases}
\]

With $\varphi(x)$ we denote another function of x, having as
values sets of elements h of H, in such a manner that
$\varphi(x)$ is the set of those h which fulfil $h(x) = 1$.

We ask now under which condition the subsets φ of H form
a lattice (if composed as subsets of H by \cap, \cup) which shows
isomorphism to V.

Lemma 66: This isomorphism is equivalent with distributivity
in V.

For at first it is trivial that this lattice of the φ
is distributive. But at the other hand distributivity in V
is also a sufficient condition. Two elements $a \neq b$ of V
have $\varphi(a) \neq \varphi(b)$; that means: It exists surely an h
with $h(a) \neq h(b)$. One of the elements a, b - say b
may not be included in the other one. We take from V two
subsets of elements:
\[
\begin{align*}
 V_0 &= \{x \text{ with } x \leq a\}, \\
 V_1 &= \{x \text{ with } x \geq b\}.
\end{align*}
\]
These \(V_0, V_1 \) are an example of pairs \(U_0, U_1 \) of subsets of elements of \(V \) with the following properties:

\[
\begin{align*}
\alpha) & \quad U_0 \supseteq V_0 \quad ; \quad U_1 \supseteq V_1 \\
\beta) & \quad U_0 \cap U_1 = \emptyset \\
\gamma) & \quad y \subseteq x \in U_0 \quad \Rightarrow \quad y \in U_0 \\
\delta) & \quad y \supseteq x \in U_1 \quad \Rightarrow \quad y \in U_1 \\
\varepsilon) & \quad U_1 \cdot U_1 \subseteq U_1 ; \quad U_0 \cap U_0 \subseteq U_0.
\end{align*}
\]

Here \(. \) may denote the compositions in the lattice \(V \); we prefer here to use \(\cap, \cup \) for the combinations of sets.

Assuming \(V \) as finite (or otherwise using Zorn's lemma) we can find a maximal pair \(U_0, U_1 \); that means that from

\(U_0 \supseteq U_0 ', \quad U_1 ' \supseteq U_1 \) \quad and \quad validity \ of \ \alpha) - \varepsilon) \) also for

\(U_0 ', U_1 ' \), it follows that \(U_0 ' = U_0 \); \(U_1 ' = U_1 \).

In the case of such a maximal pair \(U_0, U_1 \) we have

\[
(208) \quad U_0 \cap U_1 = V.
\]

For if the element \(C \) of \(V \) would not be contained in

\(U_0 \cup U_1 \), then we have the following consequences: Let \(U_1 ' \) be the set of those elements of \(V \) which include any element of \(C \). \(U_1 \). We have \(U_1 ' \supseteq U_1 \) and \(U_1 ' \neq U_1 \), because \(C \in U_1 ' \). The pair \(U_0, U_1 ' \) fulfils \(\alpha), \gamma), \delta) \), and therefore \(U_0 \cap U_1 ' \) cannot be empty.
From \(\gamma \) we have then that \(U_0 \cap c \cdot U_1 \) too cannot be empty; and correspondingly \(U_1 \cap (c + U_0) \) cannot be empty. If now \(u_0 \in U_0 \), \(u_1 \in U_1 \), with \(cu_1 \in U_0 \), \(c + u_0 \in U_1 \), and according to \(\gamma \) the element \(u_0 u_1 \) belongs to \(U_0 \), we have from \(\beta \) a contradiction to \(\beta \):

\[
(209) \quad u_0 u_1 + cu_1 = (u_0 + c)u_1
\]

belongs to \(U_0 \) as well as to \(U_1 \). Therefore (208) is correct.

From (208) at last we see: By

\[
(210) \quad h(U_0) = 0, h(U_1) = 1
\]

an element \(h \) of \(H \) with \(h(a) \neq h(b) \) is defined. Therefore the proof of lemma 66 is completed.

Continuing now the proof of lemma 65 we denote by \(\overline{\cdot} \) the replacement of a subset by its complementary subset. The general case of any orthogonal correspondence in a lattice or skew lattice denoted in our former discussions by \(\overline{\cdot} \), may now be denoted by \(Z \); by definition we have

\[
(211) \quad ZZ(x) = x; \quad Z(x + y) = Z(y) \cdot Z(x).
\]

Such a \(Z \) may exist in our lattice \(V \); we have then, according to our former considerations, a certain permutation \(\pi \) in \(H \) of the order 2 so that

\[
(212) \quad \phi Z = \overline{\pi \cdot }.
\]

This means that \(\phi (Z(x)) \) results if one performs
the permutation π in $\varphi(\mathcal{X})$ and then takes the complementary set. The permutation π obviously is the transformation $h \mapsto hZ$.

Lemma 67: Every distributive lattice with orthogonal correspondence \mathcal{Z} can be represented as a sub-system of a direct product of direct factors

\begin{align*}
1 & \quad u & d \\
& v & 0
\end{align*}

with

\begin{align*}
Z(u) &= u, \\
Z(v) &= v, \\
Z(o) &= 1.
\end{align*}

With the proof of this lemma 67 obviously also the proof of lemma 65 will be completed.

With respect to π, the set H consists of realms of transitivity T containing one or two elements. The lattice V is isomorphic to the lattice of the φ, which is a sublattice of the lattice $P(H)$ of the subsets of H; and $P(H)$ is a direct product of direct factors $P(T)$ belonging to the different T. In the case of a T with one element, $P(T)$ is equivalent to V_2 with $Z(o) = 1$. If T has two elements, $P(T)$ is equivalent to $(214), (215)$. This completes our proof.
CHAPTER VII. SUPPLEMENTS.

This chapter contains a series of additional considerations, partly scarcely connected, but contributing to the theory of skew lattices. Some of these additions here seem to show new promising paths of research, not yet explored sufficiently.

1) **Definition.** A^Λ-HSL with the property

\begin{equation}
A^\Lambda b^\Lambda a = b^\Lambda a
\end{equation}

may be called an **antiflat** one.

Lemma: If a skew lattice W is multiplicatively antiflat, then it must be flat additively.

Proof: Look at

The dotted arrow is a consequence of the other arrows.

2) **The free** HSL with n generating elements is finite.

This has been shown by T.A. Green and D. Rees, Proc. Camb. Phil. Soc. 48, 35, 1952.

They proved a theorem containing this lemma as a special case. Their proof, reduced to the case interesting us, will be reported in the following.
Independently W. Burch stated and proved this theorem. His unpublished proof is not so simple as that of Green and Rees, but it contains statements which have a more general meaning and therefore may be shortly indicated here. They are apt to give important additions to the theory of skew lattices.

If two special elements a, b fulfil the relation

$$(217) \quad bab = b,$$

eas equivalent to the fact that there exist u, v with the property

$$(218) \quad uav = b.$$

Proof: From (218) we get

$$bav = b \quad \text{and} \quad bab = babav = bav = b.$$

The relation (217) between a and b is a reflexive and transitive one; writing $a|b$ we have

$$(219) \quad a|b, \quad b|c \quad \Rightarrow \quad a|c.$$

Proof: From $bab = b; \quad cbc = c$ we get

$$c = uav \quad \text{with} \quad u = cb, \quad v = bc.$$

If $a|b$ and $b|a$, then we have an equivalence relation which may be denoted by $a \sim b$. The equivalence class to which an element a belongs may be denoted by \bar{a}.
Such an equivalence class \tilde{a} is obviously also a sub-HSL, and we know already from considerations above that it is the direct product of an halfnest and an antihalfnest. But more is to be said:

Lemma: The equivalence classes a form also a system of congruence classes:

$$a \sim a', \ b \sim b' \Rightarrow ab \sim a'b \sim ab'. \tag{220}$$

Proof: From a/b or $bab = b$ we have, putting $u = bcb$, $v = bc$:

$$u. ac \cdot v = b. cb \cdot a. cb \cdot c$$

$$= b. cb \cdot a. cbab \cdot c$$

$$= b. cb \cdot bc = bc \cdot bc = bc;$$

therefore $ac|bc$. Correspondingly (in these considerations strong and weak inclusion play symmetrical roles!) we have $ca|cb$.

Our lemma 5 is the specialisation of this lemma for the flat case.

Lemma: The HSL of these congruence classes \tilde{a}, called $H/\tilde{\sim}$, is commutative; and each commutative HSL of congruence classes in the original HSL is a HSL of congruence classes in $H/\tilde{\sim}$.

Proof: We have

$$xy, \ yx \ \text{xy} = xy; \ \text{xy}|xy. \tag{221}$$
At the other hand \(xy \mid yx \), therefore \(xy \sim yx \).
And by the congruence \(xy \equiv yx \) each halfnest and each antihalfnest gives only one congruence class.

Before continuing we indicate some considerations showing what high interest these ideas of Böge's are meriting.

3) In words we may read \(a \mid b \) thus: "b is superweakly included in a" in the additive case, and "a is superweakly included in b" in the multiplicative case.

Our graphical representation of types of inclusion may be completed thus:

\[
\begin{array}{c|c|c}
\text{type} & b \wedge a = a & b \vee a = b \\
\hline
\text{strong} & b \wedge a = a & b \vee a = b \\
\text{weak} & a \wedge b = b & a \vee b = a \\
\text{superweak} & a \wedge a = a & b \vee a \wedge b = b \\
\end{array}
\]

We have in the general case the consequence-relations

\[
(223)
\]

In the flat case we have additionally

\[
(224)
\]
so that the whole picture in the flat case is this:

(225)

4) A new construction of HSL's from already given HSL's arises in the following manner: Let H be a HSL fulfilling the axiom (15). Then we make the definition

(226) \[a \star b = aba. \]

This makes from H a new HSL, which is a flat one:

(227) \[
\begin{align*}
(a \star b) \star c &= (a \star b)c(a \star b) \\
&= abac aba = abcba,
\end{align*}
\]

\[a \star (b \star c) = abcba; \]

\[a \star b \star a = aba = a \star b. \]

The idempotency

(228) \[a \star a = aaa = a \]

(as well as the associative law) is even then fulfilled, if our starting point is not a HSL, but a more general semi group with \(a^3 = a \), as we studied already above, in (186).

The associative combination \(a + b \) defined in (176) has not the property (15). But in spite of this fact even from the composition \(+ \) we get by (226) an HSL. For in this case we have from (182):
Returning to the case of an HSL as the starting point of our construction, we get also

\[a + b + a + c + a + b + a = a + a + a + b + c + b = a + a + b + c + b; \]
\[a + b + c + b + a = a + a + k + c + b. \]

Lemma: If in any skew lattice \(W \) we replace the composition \(\wedge \) by the composition \(\ast \) according to (226), we get a new skew lattice.

Proof: Replacing \(\wedge \) by \(\ast \) we lose no case of weak inclusion, and we win no new case of strong inclusion:

\[\begin{align*}
 ab &= a \implies a \ast b = a; \\
 a \ast b &= b \implies ab = b.
\end{align*} \]

The new classes of examples which can be constructed in this manner give an extensive new material for the study of the skew lattices.

According to Green and Rees, also the semi groups with \(x^3 = x \) have the property that the free one generated by a finite number of elements is finite.

5) The proof that the free HSL with \(n \) generating elements is finite has been given by Böge in the continuation of his considerations presented above. Instead of following further his line of discussion we prefer only to give a sketch of the direct approach to the problem given by Green and Rees.
The element x may be given by a product $X = a_{k_{1}} a_{k_{2}} \cdots a_{k_{r}}$ of elements belonging to the generating elements $a_{1}, a_{2}, \ldots, a_{n}$. This product may be called a word. Two words certainly correspond to the same element x if they can be written as AZB and $AZZB$:

\[(231)\quad AZB \sim AZZB.\]

If it is not possible to change the word X by a finite number of steps according to (231) into the word Y, then Y represents an element $\neq x$. With $S(x) = S(X)$ we denote the set of generating elements used in any word X representing x; obviously $S(x)$ is uniquely determined by the element x.

The word X may have $S(X) = a_{1}, a_{2}, \ldots, a_{n}$.

We write with other words X^{*}, A, B:

\[(232)\quad XX = AX^{*}B,\]

so that

\[(233)\quad S(A) = S(B) = S(X),\]

and so that A, B have the possible minimum lengths (= number of factors in the word).

Lemma: Then $x(AX^{*}B) = x(AB)$;

Proof: If $X \not\subset A$, then

\[(234)\quad X = X_{1}a_{x}\]

with a_{x} belonging to $S(X)$; therefore
(235) \[X = Y_{a_f} Y'_{a_f}; \]

and the word \(XY' \) is equivalent to (means the same element as) the word

(236) \[X'_{a_f} = Y_{a_f} Y' \]

which according to (234) is shorter than \(X \) itself.

Therefore in (232) the word \(A \) is equivalent to a certain word \(XZ \):

(237) \[x(A) = x(XZ). \]

Now we see: The elements equivalent to words \(AZ \ B \) form a group. Surely they form a semi group; and if \(X^*, Y^* \) are given elements, we can find \(Z^* \) so that

(238) \[AX^* B, AZ^* B \sim AY^* B. \]

For at first there exists \(W \) so that

(239) \[XW \sim AY^* B, \]

and especially

(240) \[W = XZ Y^* B = AX^* B Z Y^* B. \]

In the same manner we can solve

(241) \[AZ^* B, AX^* B \sim AY^* B, \]

so that in the semi group of elements \(AY^* B \) also division,
right and left, is possible.

Any HSL being a group contains only one element. Therefore

\[(242) \quad x(AX \star B) = x(AB).\]

From these considerations we see that the number of elements \(B(n)\) in the free HSL with \(n\) generating elements is

\[(243) \quad \begin{cases}
B(n) = \sum_{k=1}^{n} \binom{n}{k} C(k); \\
C(1) = 1; \\
C(m) = m^2 \left[\sum_{k=1}^{m-1} \binom{m-1}{k} \right]^2; \\
C(m) = m^2 (m-1)^3 (m-2)^8 \ldots 2^{m-1}.
\end{cases}\]

One gets

\[(244) \quad B(1) = 1; \quad B(2) = 6; \quad B(3) = 159; \quad B(4) = 332380.\]

As a consequence of the theorem of Green-Rees-Böge we have also the following

Lemma: The free doubly distributive skew lattice with \(n\) generating elements is finite.

But the number of its elements, certainly \(\leq B(B(n))\), must be enormous already in the case \(n = 2\).
6) There are possibilities to construct special skew lattices from matrix skew rings. These possibilities are interesting, especially because they give us skew lattices with elements which are functions of continuous parameters. New types of skew lattices are to be found this way.

At first we discuss certain rings of matrices. In such a ring the axiom

\[(245) \quad xyz = xzy\]

may be fulfilled. The general case of matrix rings with (245) is not yet known; but there exist examples which are not commutative.

The more tolerant axiom

\[(246) \quad xy^2 x + yx^2 y = x^2 y^2 + y^2 x^2\]

is valid in all rings fulfilling (245); and also in rings fulfilling

\[(247) \quad xyz = yxz\]

instead of (245).

Other interesting generalisations are defined by the following axioms:

\[(248) \quad xyz + yzx + zxy = xzy + zyx + yxz;\]

\[(249) \quad xyzt = xzty.\]

But these cases (248), (249) will not yet be discussed here further.
In a matrix ring R with \((246)\) we consider the idempotent elements $x^2 = x$, $y^2 = y$. For these we define:

\[
\begin{align*}
(250) & \quad \begin{cases}
 x_A y = xy; \\
 x_v y = x + y - yx.
\end{cases}
\end{align*}
\]

The set of idempotents in R form a skew lattice according to \((250)\).

Proof: From \((246)\) we get now:

\[
(251) \quad xyx + yxy = xy + yx;
\]

and therefore $x_A y$ and $x_v y$ again are idempotents:

Multiplying \((251)\) with y we get

\[
(252) \quad xyxy + yxy = xy + yxy;
\]

Therefore $\ (xy)^2 = xy; \quad$ and

\[
(253) \quad \begin{cases}
 (x_v y)^2 = (x + y)^2 + (yx)^2 - (yx + yxy + xyx + yx) \\
 \quad = x + y + xy - (yxy + xyx) = x + y - yx.
\end{cases}
\]

Associativity of the composition \vee is shown by

\[
(254) \quad x_v y_v z = x + y + z - yx - zx - yz - xy + zy.
\]

And we have

\[
(255) \quad \begin{cases}
 x(y_v x) = x(y + x - xy) = x; \\
 xy_v x = xy + x - xy = x.
\end{cases}
\]
Therefore this indeed is a skew lattice; obviously the direct proof of idempotency was not necessary.

Our new skew lattice is modular.

Proof: Twofold weak inclusion of x in y means:

(256) \[xy = x; \quad x_v y = x + y - yx = y, \]

or

(257) \[xy = yx = x. \]

This has indeed the consequence

(258) \[(x_v z)y = x_v zy, \]

or

(259) \[(x + z - zx)y = x + zy - zyx. \]

This skew lattice fulfills the tolerant distributive law:

\[
\begin{align*}
 c[a_v cb] &= c[a + cb - cba] = c[a_v b]; \\
 (b_v c)a_v c &= (b_v c)a + c - c(b_v c)a \\
 &= (b + c - cb)a + c(b + c - cb)a \\
 &= ba + c - cba = ba_v c.
\end{align*}
\]

In the more special case (245) this skew lattice fulfills
\[(261) \quad x_v y_v x = x_v y.\]

It is therefore an example of the antiflat lattices discussed above, according to (216).

Proof: From (254) we have

\[(262) \quad x_v y_v x = x + y - yx - xy + xyx,\]

and with (245) this gives

\[(263) \quad x_v y_v x = x + y - yx = x_v y.\]

In this case (245) also another construction is possible:

\[(264) \begin{cases} x_A y = xy, \\ x_v y = x + y - xy. \end{cases}\]

We then have

\[(265) \begin{cases} x(y_v x) = x(y + x - yx) = xy + x - xyx = x; \\ xy_v x = xy + x - xyx = x. \end{cases}\]

This other skew lattice too is modular.

Proof: In this case \(x\) is exactly then twofold weakly included in \(y\), if \(xy = x\). We have then \((x_v z)y = x_v sy\) from

\[(266) \quad (x + z - xz)y = x + sy - xyz.\]
Again the tolerant distributive law is valid:

\[
\begin{align*}
\{ & c_{[a \cdot cb]} = ca + cb - cacb = c[a + b - ab]; \\
& (b \rightarrow c)_{a \rightarrow c} = (b \rightarrow c)a + c - (b \rightarrow c)ac \\
& \quad = (b + c - bc)a + c - (b + c - bc)ac \\
& \quad = ba + c - bac = ba \cdot c.
\end{align*}
\]

This skew lattice is a flat one — other than that defined by (250), (245): For we get from (262) — a relation obviously still valid — now the consequence

\[(268) \quad x_{\cdot y}x = y_{\cdot}x.\]

At last let us assume the existence of an element \(\varepsilon\) with the property

\[(269) \quad u \varepsilon = u\]

for all elements (not only the idempotents) of \(R\). In this case we can make a curious application of the \(f, F\)-construction:

\[(270) \quad fx = Fx = \varepsilon x.\]

Here \(Fx\) and \(fx\) are the same function of \(x\). Indeed we have

\[
\begin{align*}
& f(x) = \varepsilon x; \\
& F(x, y) = Fx \cdot FY = \varepsilon xy; \\
& f(x, y) = fx \cdot fy = \varepsilon x + \varepsilon y - \varepsilon xy; \\
& fx \cdot x = x; \quad x \cdot Fx = x.
\end{align*}
\]
The new skew lattice, resulting from the \(f,F \)-construction, has

\[
\begin{align*}
\{ & x, y = xy, \\
& x, y = y + x - xy. \\
\}
\]

Appendix:

If \(x^2 = x \) and \(y^2 = y \), then from (248) it follows that also \(z = xy = z^2 \).

Proof: From (248) we have for \(z = xy \):

\[
\begin{align*}
(273) \quad 2xyxy + yxyx &= xy + yxy + xyx; \\
\end{align*}
\]

from there:

\[
\begin{align*}
2xyxy + yxyx &= xy + yxy + xyx \\
\text{or} \\
(274) \quad xyxy + yxyx &= xy + yxy.
\end{align*}
\]

Therefore by permutation of \(x \) and \(y \) and subtraction:

\[
\begin{align*}
(275) \quad xyxy - yxyx &= xy - yx. \\
\end{align*}
\]

Adding (274) and (275) we get:

\[
\begin{align*}
(276) \quad xyxy &= xy.
\end{align*}
\]

Inserting (276) in (273) we get:

\[
\begin{align*}
(277) \quad xy + yx &= yxy + xyx.
\end{align*}
\]
Therefore: Also \(x + y - xy \) becomes idempotent, in consequence of (248), if \(x^2 = x, y^2 = y \).

Another consequence of (248): Replacing \(x \) by \(xy \) we get:

\[
(278) \quad yzyxy = yxyzy.
\]

7) Another example of skew lattices: The right ideals of a semi simple skew ring with minimal chain condition form a skew lattice with respect to addition and multiplication.

8) Taking any constant element \(a \) we define a product of \(x \) and \(y \) as \(xay \). This gives a semi group with the property \(x^3 = x^2 \).

9) We study a system of 4 elements \(u, v, x, y \) with the composition table

\[
\begin{array}{cccc}
 u & v & x & y \\
 u & u & u & y \\
 v & v & v & x \\
 x & x & x & x \\
 y & y & y & y \\
\end{array}
\]

(279)

meaning for instance that \(uv = u \).

The following permutation \(A \) of the elements obviously is an automorphism:
therefore in order to prove that (279) is associative, it suffices to prove the case \(a(bc) = (ab)c \) with \(a = u \): Indeed \(u(bc) = (ub)c \) is to be verified at once for the cases \(b = u, v, x, y \). Therefore (279) defines an HSL.

Now we use (279) as definition of \(a \land b \) and we construct \(a \land b \) in the following manner. The permutation

\[
P = \begin{pmatrix} u & v & x & y \\ v & u & y & x \end{pmatrix}
\]

has the property

\[
P^2 = A.
\]

We define

\[
a \land b = P(P^{-1}b a P^{-1}),
\]

so that we have

\[
P(a \land b) = Pb \land Pa.
\]

The definition (283) makes from the HSL (279) a skew lattice.

Proof: The composition (283) is associative:

\[
(a \land b) \land c = P(P^{-1}c a P^{-1}(a \land b))
\]

\[
= P(P^{-1}c a P^{-1}b a P^{-1}c)
\]

\[
= a \land (b \land c).
\]
And (2) becomes equivalent to

\[
\begin{align*}
\text{(286)} \\
&\left\{ \begin{array}{l}
\text{P}_a \cdot \text{P}(a,b) = \text{P}_a, \\
\text{P}^{-1}_a \cdot \text{P}^{-1}(a,b) = \text{P}^{-1}_a.
\end{array} \right.
\end{align*}
\]

In consequence of (282) these two relations are equivalent; and we see that in our example the first line of (286) indeed is fulfilled.

We have here a generalisation of the concept of orthogonality as discussed above. Orthogonality is the special case with \(A = \text{identical permutation} \).

The table for the additive composition in the case of our example here obviously is:

\[
\begin{array}{ccc}
\text{u} & \text{v} & \text{x} & \text{y} \\
\hline
\text{u} & \text{u} & \text{v} & \text{u} & \text{v} \\
\text{v} & \text{u} & \text{v} & \text{u} & \text{v} \\
\text{x} & \text{u} & \text{v} & \text{x} & \text{y} \\
\text{y} & \text{u} & \text{v} & \text{x} & \text{y} \\
\end{array}
\]

(287)