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monograph entitled NekotorMve vouros*y azkosti rasplav-

lennykh metallov (Certain Problems Related to the Vis-
cosity of Fused Metals), by Ye. G. Shvidkovskiy, Moscow,
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for Technical and Theoretical Literature._

Annotation

This monograph examines the theory of the torsional oscillation8 method for measuring the viscosity of liquids, and experimental techni-

8 cal problems associated witb the use of this method, presents the re-
sults obtained during the measurement of the viscosity of fused metals
and alloys, and gives a theoretical interpretation of certain problems
concerned with the nature of the liquid state (structure of' the liquid,
mechanism of the viscous flow, kinetics of crystallization, the effect
of insoluble impurities on the viscosity, etc.).

The monograph includes original studies conducted by the author
and his associates.

This book is of interest to scientific workers, such as physi-
cists and engineers, engaged in a study of the problem of the liquid
state, and also to aspirants (post-graduate students) and senior stu-
dents, specializing in the field of molecular physics and physics of
metals.
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1

Certain Basic Designations

q -- Cyclic frequency of macroprocesses (torsional oscillations
of the suspension system, acoustic waves, external effects).

-- period of these processes.

vs Vr, v z -- Velocity components in cylindrical coordinates.

K -- Axial moment of inertia of the suspension system.

6 -- Logarithmic damping decrement of oscillations of the sus-
pension system.

F -- Relaxation time.

8
8 P -- Density.

-. Kinematic shear viscosity and bulk (second) viscosity, re-
spectively.

T,, TI -- Dynamic shear viscosity and bulk (second) viscosity, re-
spectively.

R -- Internal radius of the small bucket.

H -- Half of the height to which the small bucket is filled with
liquid.

0 -- Factor (multiplier) in the formulas used for calculating
the viscosity, which takes into account the effect exerted
by the bottom and lid of the small bucket; in Chapter V --
the stress.

c -- Relative deformation.

GO, Goo -- Moduli of rigidity during prolonged and instantaneous load.

-- Basic parameter in the theory of the method for measuring
V the viscosity.

VT = -- In Chapter V, the relaxation parameter.

T -- Absolute temperature.

to -- Temperature according to the Celsius (centigrade) scale.
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Preface

The study of the viscous properties of metallic liquids occupies
a prominent place in the elaboration of a theory of the liquid state.

Metallic liquids are characterized by a relatively simple struc-
ture, and therefore represent a favorable object of research from the
standpoint of the establishment of connections between the structure
and macroscopic properties. In addition, a knowledge of the viscous
properties of fused metals is also very important from an applied (prac-
tical) standpoint. In the Soviet Union, the problem involving a study
of the viscosity of metallic liquids was made necessary as a result of
the technical progress achieved during the first five-year plans. As
later years have shown, this problem became one of the most important
problems dealing with the liquid state. However, the experimental
study of the viscosity of fused metals is associated with considerable
difficulties, resulting from the actual lack of a method for measuring F
the viscosity, which would be sufficiently convenient during the course 8
of work with metallic liquids.

In addition, the absence of a monograph, describing the basic
laws and rules applicable to the viscous properties of metallic liquids
and their physical interpretation, represents a notable gap in the the-
ory of the liquid state. This book has been written precisely in order
to partially fill this gap, and also in order to make available to ex-
perimenting physicists the theory and practice of the torsional oscilla-
tion method for measuring the viscosity of fused metals. This book
does not pretend to give an exhaustive coverage of all the experimental
data in this field, since it is based primarily on work done by the au-
thor and his associates. During the course of this work, a number of
new problems have appeared, related to viscous properties of fused met-
als, and some of these problems are included in this book for purposes
of presentation and discussion.

The first half of this book (Chapters I-III) is devoted to the
theory of the torsional oscillation method for measuring the viscosity.
The second half (Chapters IV-VI) presents the results of the experimental
study of the viscosity of a number of metallic systems and also an at-
tempt to clarify the relationship between the viscous properties and
the structure of the liquid.

The author of this book wishes to express his deep gratitude to
A. S. Predvoditelev for his constant attention and valuable discussion
during the course of work on the development of this problem.

My students took part in the work dealing with individual prob-
lems, and their work represents a valuable contribution to the research
carried out in connection with the writing of this book. I extend my
deep gratitude to all of my students, and especially to G. I. Goryaga
and L. S. Priss, who have solved a number of independent problems re-
lated to the viscous properties of metallic liquids.
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The author also extends his sincere thanks to the late V. I.
Danilov, and to B. V. Deryagin and B. N. Finkellshteyn, who have criti-
cally reviewed the manuscript and have made a number of valuable re-
marks.

Moscow, October 1954 Ye. Shvidkovskiy

Introduction

The viscous properties of a liquid, which constitute the ex-
pression of a process involving the irreversible conversion of the
energy of macroscopic movements, are characterized by two factors: the

F shear or standard viscosity (1) and the bulk or second viscosity (T1).

8 It is assumed that the connection between the components of the
8 tensor of viscous stresses Oik and the components of the deformation

velocities is expressed by the following equation:

I OV, dv, 2 "-

where vi k 1 are the components of the flow rate of the liquid, and 6 ik
is the unit tensor, having components equal to unity Ahen i = k, and

equal to zero when i k.
This expression represents a generalization for arbitrary defor-

mations of Newton's well-known law of internal friction, which states
that the viscous stress under shearing conditions is proportional to
the deformation rate, i.e., in our recording system:

(k (1k).

Since in case of an incompressible liquid, )v1 - 0 (div v = 0), the

viscous properties of flows, in which the compressibility can be dis-
regarded, can be described to a sufficient extent by means of the single
factor T. However, we should not forget that the same liquid can ex-
hibit a different behavior in regard to compressibility depending upon
the process which takes place in the liquid. For example, water be-
haves as an incompressible liquid when it flows through a pipe, and as
a compressible liquid during the propagation of acoustic waves through
this water.

Further in this text, with the exception of Chapter V, we shall
be concerned only with the shear viscosity factor I, which will be often
designated, for the sake of brevity, simply as viscosity.
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Along with T, and ', the kinematic viscosity factors Vand V
also play a role in hydrodynamics, and these factors are determined oy
the following relations:

IV= IV/ = 7
p p

where p is the density of the liquid. In the literature, T and 1' are
frequently designated as the dynamic viscosity factors, thus pointing
out their difference from kinematic viscosity factors.

Based on the above relations, the dimensions of the viscosity
factors can be easily established:

[-11 = '11,7 g • cm-1 o sec-1,

m2 . sec-1 8
8

Liquids are designated as normal in regard to their viscous properties
if 11 and 11', and consequently also v and v, are independent of the
flow rate.

The experimental material available on the viscosity of metallic
liquids (pure metals and alloys) is rather limited, which is due to the
great difficulties associated with the conduct of corresponding research
studies. However, in view of the fact that the molecular mechanism of
a viscous flow constitutes one of the major aspects of the theory of
the liquid state of matter, the study of the relationship between vis-
cosity and the parameters expressing the condition of the liquid is of
great scientific importance.

Already D. I. Mendeleyev, in his "Foundations of Chemistry,"
wrote: "The connection which (already noted in part) exists between
the viscosity and other physical and chemical properties compels us to
assert that the magnitude (or value) of internal friction will play an
important role in molecular mechanics."

N. S. Kurnakov and A. I. Bachinskiy must be credited with the
important idea of a connection between viscous properties and the struc-
ture of a liquid. Since metallic liquids have the most simple structure
and have been more fully investigated from a structural standpoint than
other substances, these liquids constitute a suitable object for re-
search purposes.

On the other hand, the viscous properties of metals and alloys
play an important role in the casting technology of nonferrous and fer-
rous metals (metal teeming, ingot crystallization in casting molds, pro-
duction of continuous billets, etc.), and also in connection with new
problems in the field of metallurgy related to the production of heat-
resistant alloys. The importance of an experimental study of the proper-
ties of fused metals, including the study of viscosity, was pointed out
by the prominent Soviet metallurgist A. A. Baykov.
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The study of the nature and type of connection between the struc-
ture of a liquid and its viscous (and other) properties constitutes one
of the important problems forming a part of the general problem of the
liquid state. Apparently the physical properties of a liquid are de-
termined to the same extent by its structure as the properties of a cry-
stal are determined by the structure of the latter.

Any theory of the viscous flow is based (in an explicit or non-
explicit form) on the assumption made in connection with the character
of the structure of the liquid. For this reason, a study of the con-
nection between the structure and the viscosity can be conducted by
analyzing the extent to which a given viscosity theory can be experi-
mentally corroborated for liquids of different structures.

Certain attempts in this direction are presented in this book;
however, in view of the extremely rudimentary nature of all viscosity

8 theories and the still unclarified reasons for the wide discrepancies
8 in the experimental results on the viscosity of metallic liquids, these
8 attempts can be considered merely as a first step in this direction.

A medium, in which the product of the relaxation time and the
variation rate of the stress is much smaller than the stress itself,
when the "prolonged" modulus of rigidity is equal to zero, can be con-
sidered as a viscous liquid in the usual (Newtonian) conception. In
this case, q and n' represent the product of the relaxation time of the
stress and the instantaneous modulus of elasticity (in case of shear
deformations and a uniform manifold compression, respectively).

On this basis, it is possible to use the concept of viscosity in
the case of heterogeneous systems, which is essential for the understand-
ing of viscous properties of alloys in the field of solidification (or
setting).

The viscosity of a binary alloy, during the transition from the
state of a homogeneous liquid into the heterogeneous region of the fusion
diagram, increases several hundreds of times over a small range of a
temperature drop as a result of the formation and growth of solid phase
crystals of one of the components. It should also be noted that (during
the propagation of a wave process in a heterogeneous liquid system), a
maximum absorption is observed at a definite value of the viscosity of
the uniform liquid making up a part of the heterogeneous system.

Thus there is a definite connection between the crystallization
kinetics of a binary alloy and changes in its viscous properties, which
makes it possible to study the process involving the crystallization of
an alloy according to the temperature vs. viscosity curve. Moreover,
the existence of a relationship between viscosity and crystallization
not only in alloys, but also in pure liquids, is indicated by the fact
that, during the supercooling of tin, a characteristic branching in the
temperature vs. viscosity curve is observed, as well as a sharp increase
in the temperature coefficient of the viscosity below the crystalliza-
tion point. A study of this relationship also constitutes one of the
important tasks in connection with the problem of the liquid state.
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In connection with the already previously mentioned discrepan-
cies in the experimental results obtained during the determination of
the viscosity of fused metals, it should be noted that the addition of
insoluble impurities to the liquid results in a change in the viscosity
of the system: liquid + particles, considered as a single whole system.

In view of the fact that metallic liquids, unless they were sub-
jected to a special purification treatment, contain insoluble impuri-
ties, the viscosity of these liquids is determined to a considerable
extent by these impurities. For this reason, the presence of insoluble
impurities, mainly lower oxides, in a fused metal usually exerts a
greater effect on the viscosity than the contamination of this fused
metal with small amounts of another metal. As a rule, this particular
fact was previously disregarded during the measurement of the viscosity
of liquid metals. It is possible that this is the cause for the dis-
crepancies in the results obtained by different authors. However, the F
possibility is not excluded that the main reason for these discrepan- 8
cies is to be found in factors of an experimental and methodical nature. 8

For this reason, this book presents only data obtained with the
aid of the torsional oscillation viscosimeter, the theory of which is
examined in the first portion of the book, and the data obtained in this
manner are not compared with other data reported in the literature.

All the results dealing with viscosity listed below refer to
metallic systems, which were not subjected to a process involving the
removal of insoluble impurities, unless such a process is specifically
mentioned. Certain other problems outlined above are examined in this
book as part of an extensive formulation of the problem and may be
characterized as "working" hypotheses, which make it possible to clarify
to a certain extent the nature of a metallic liquid.

Chapter I

Experimental Methods for Measuring the Viscosity of Liquids

Experimental methods for measuring the viscosity of liquids are
described in a monograph by Marr (1) (1o: See bibliography at the
end of this chapter). Viscosimetric studies conducted up to 1939 are
systematically classified according to the measurement methods used by
M. P. Volarovich (2). Therefore, we shall refer to the available meth-
ods for measuring the viscosity only to the extent necessary for our
direct purposes.

All the principal methods used for measuring the tangential
(shear) viscosity can be divided into stationary and non-stationary meth-
ods. The first category includes the capillary outflow method, the ro-
tating cylinder method and the falling ball method. The second category
includes various methods which are based on the observation of the tor-
sional oscillations of a system connected with the liquid being studied.



1. Capillary Outflow Method

This method is based on the well-known Poiseuille law. The
theory of this method contains the problem (not yet fully clarified) cor-
cerned with the method for calculating the boundary (or marginal) ef-
fect near the ends of the capillary tube. The boundary effect includes
two phenomena: the change in the kinetic energy during the transition
of the liquid from zero velocity in the upper reservoir to a velocity
different from zero in the capillary tube (correction for kinetic
energy), and the effect exerted by the initial sector of the capillary
tube (correction for length). Various researchers estimate the magni-
tude of these effects in a different manner and differ in their opinion
concerning the necessity of introducing appropriate corrections. For
this reason, contrary to a widely held opinion, the capillary method
lacks a strict theoretical foundation. We shall examine below the in-

F fluence of the boundary effect on the results of viscosity measurements,
8 after considering first the characteristic features of a moving liquid
8 at the boundary of its contact with a hard wall.

The type of boundary conditions in the hydrodynamics of a viscous
liquid formed the subject of investigations of many scientists. Without
mentioning the history and content of these investigations (3), let us
note only their final result. It can be considered as an established
fact that, regardless of the degree of wetting of the hard wall by the
liquid, there is no slip at the boundary: liquid-wall. Therefore, the
boundary condition adopted in problems of hydrodynamics is based on the
assumption that the relative velocity of the liquid at the surface
where it comes into contact with a hard wall is equal to zero. The
basic significance of this condition for the theory of all viscosimetric
methods is obvious. If we did not adopt this condition, it would be
necessary to introduce into the computing formulas, used for calculating
the viscosity from experimental observations, a slip parameter, the
physical meaning of which could be established only with the aid of spe-
cial assumptions in regard to the slip mechanism. If the presence of a
slip of the liquid in relation to the wall were established in any kind
of test, this would require a revision and new interpretation of all the
experimental results on viscosity obtained so far. All conclusions de-
rived from hydrodynamics, reached in the assumption that the relative
velocity of the liquid at the boundary is equal to zero, were always
confirmed experimentally, and the capillary method for measuring the
viscosity gave a direct proof of this fact. For this reason, the ab-
sence of a slip at the liquid-wall boundary line will be adopted by us
as a firmly established experimental fact (Note: For further informa-
tion on this problem, see also # 12 in Chapter II).

As is well known, by solving equations for the hydrodynamics of

a viscous liquid, in case of a stationary flow through a capillary tube
and a laminar flow, without taking into account boundary effects and the
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consumption of pressure energy required to impart a velocity to the
liquid, we arrive at Poiseuille's law, which can be expressed by the
following equation:

Here Q is the volume of liquid flowing through the capillary tube per
unit of time, R is the radius of the capillary tube, T is the dynamic
viscosity, (P1 - P2) is the pressure difference at the capillary ends,
measured from the same constant level, and I is the length of the capil-
lary tube. By introducing the designation:

F
P P, - P2 , (1.2) 88

the latter expression can be written in the generally known form:

WR4P (1.3)
I- 8Q1

It is obvious, however, that equation (1.3) does not quite cor-
respond to the actual conditions which are found during the measurement
of the viscosity. Indeed, during all measurements performed by means
of this method, the capillary tube connects two or more wide reservoirs,
whereby the volume of the liquid which has traveled through the capil-
lary (Q) is determined on the basis of the cl.ange in the level of these
reservoirs. The velocity of a liquid in a wide bend is always several
score of times smaller than in the capillary itself, and therefore part
of the pressure difference P can impart to the liquid a certain amount
of kinetic energy.

At the same time, formula (1.3) was derived without taking into
consideration the nonlinear terms in the motion equation. The validity
of this consideration was acknowledged by all researchers, although there
was no general agreement among them as to the magnitude of the necessary
correction which had to be made to account for this fact (4).

Taking this correction into account, we arrive at an equation,
which, after elementary transformations, can be written as follows:

iWR4P( 1  mQ2 p (1.4)
c1JPR4 /"

In this equation, m is a numerical factor close to unity. By adopting
the expression given in formula (1.3) as a first approximation for Q,
forming a part of the correction member, the relation (1.4) can be ex-
pressed in the following form:



,cR4P I mPR (15

where -= is the kinematic viscosity.
P

The pressure difference P is usually created by the excess
column of the same liquid which is being studied. Under these condi-
tions, formula (1.5) can be written as follows:

= R4P ( mRHg (1.6)&Q' 641 'v )/'

where H is the excess height of the liquid in the inlet bend above the

8 outlet, and g is the gravity acceleration.

8 Let us make a numerical estimate of the correction term in the
viscosity expression (1.6), by selecting for this purpose one of the
recent studies dealing with the application of the capillary method to
the measurement of the viscosity of a metallic alloy (5). In this par-
ticular case, the measurements were performed under non-stationary out-
flow conditions (H variable), although, in its other features, the
theory of the method does not differ from a stationary case. In order
to calculate the correction term, let us use the data presented in thih
article. Let us adopt, as the average pressure of a column of metallic
liquid, a value equal to about 5 mm of a mercury column, which probabl)
was the case during the tests. In this case, the value of the correc-
tion term was equal to 10-15%. If the viscosity of water had been meas
ured with the same viscosimeter, the value of the correction would have
amounted approximately to 0.15%.

The correction for the kinetic energy of a liquid flowing throug
the capillary tube, entering into equation (1.4), depends to a signifi-
cant extent on the character of the inflow of the liquid into the capil
lary tube and its outflow from this tube.

Let us assume that the current line in the capillary is a straig
line, i.e., the movement of the liquid does not have a helical nature.
The equation of the energy of a unit volume of the moving liquid can
then be written in the following form:

TD 9 0(1.7)D- IU + ri + kv2= 0,(17

where U is the density of the potential energy, equal to th pressure p
T is the kinetic energy of a unit volume, equal to Pv2; kjv" is a dissi

2
pation function, in which k has the dimension [k = 1 i.e., does

not contain P and f; D is the operator of the substantial derivative.
Dt
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The representation of the dissipation function in the form of krv2 is
based on the assumption that the process involving the transition (con-
version) of the energy of visible movements into heat along the entire
cross section of the capillary takes place according to Newton's law of
internal friction. By the same token, the initial sector of the process
involving the formation of a parabolic velocity distribution is excluded
from our examination.

By carrying out a differentiation (with one geometrical coordi-
nate), we obtain:

W +T + T O" +" (1.8)

dU OT
If the movement is stationary, then-- - - 0, and, by substituting F

8

p for U and *pv2 for T, assuming that p = const, we obtain: 8

d2 (1.9)

By integrating this equation along the current line from x 0 to x = 1,
we find:

1 91
AP (v - V') + ki f vdx =. (1.10)

0

Let us designate:

P-P=P, Vj-v =Av', } vdx= , (1.11)

where v apparently stands for the average velocity on a sector of the
current line extending from 0 to 1. Now, equation (1.10) is transformed
into the following equation:

I p (1.12)

Let us select a point in which the true value of the velocity is equal
to V. Let us assume that the cross section of the current tube at this
point is equal to ds. Let us multiply the last equation by ds and let
us integrate this equation by the area of the surface normal to the cur-
rent lines and running through points in which v = we shall then ob-
tain:

- 10-



2Y

Ik V ds= P ds -- (40p Av9ds. (1.13)

Since the distributions of V, 6v2 and P on the surface s are unknown,
as a result of the integration, we can write the following expression:

ktk-qivs = k9Ps - pkAs (1.14)

where k1, k2, k3 are dimensionless factors, determined by the geometry
of the velocity and pressure field. Equation (1.14) can be written
differently in 'he following form:

F

8 IktkiqQ = k9Ps -- 1,46, s, (1.15)

where Q is the volume rate of discharge of the liquid per second through
any cross section of the capillary tube. By comparing this expression,
when Av2 = 0, with Poiseuille's law (1.3), we find:

8hs (1.16)

* tR4

Now, equation (1.15) can be written as follows:

71= RI (I 1 ka ,pt ) . (1.17)

The difference of the square velocities on the free surfaces of the
liquid in the inlet and outlet reservoirs of the viscosimeter v

2 - v2

can be considered as equal to: 1 0

= '-rv = tQ2.t2R ,  (1.18)

where k is a dimensionless factor, determined by the type of connection
of the apillary with the inlet and outlet reservoirs of the viscosi-
meter. The latter (last) equation will then be written as follows:

!R!P I k 4  pQI (1.19)
8QI 2 k2 'OR4 P'

coinciding with equation (1.4) when:

I kk4  (1.20)
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From this formula, one can see that the correction for the kinetic
energy is equal to zero when k4 = 0, equivalent to v1 = vO.

The fulfillment of this condition depends upon the structural de-
sign of the connections between the capillary section of the viscosimeter
and its wide reservoirs. However, during the construction of capillary
viscosimeters, this problem usually does not get the proper attention,
as a result of which the value of the correction for the kinetic energy
remains indefinite (undefined). The appearance of the correction term
in equations (1.5) and (1.19) indicates that the value of this term de-
pends upon the conditions under which the experiment is conducted and
upon the kinematic viscosity of the studied liquid. For this reason,
this member may play a substantially different role in different tests.

Since in case of an identical rate of discharge of a given liquid,
the pressure difference P is approximately proportional to 1, then ac-
cording to (1.5), the value of the correction member is approximately F
inversely proportional to 1. Consequently, the correction for the 8
kinetic energy can be practically reduced to zero, if a sufficiently 8
long capillary tube is used. However, such a solution of the problem is
unsatisfactory from an experimental standpoint.

The above calculations point to definite theoretical complica-
tions, arising during the application of the capillary method to the
study of the viscosity of fused metals characterized by small v values
(see formula 1.5).

At the sas time, it can be noted that A. Ya. Milovich (6), who
has developed the theory of the helical motion of a liquid, believes
that all motions of a viscous liquid are helical or vortex motions.
According to Milovich, only motions of a liquid near points where a
strong dissipation or absorption of energy takes place constitute an
exception to this rule.

Such a point of view, taken as a general concept, appears to us
as not sufficiently substantiated (unfounded). However, if a helical
motion will still take place during the flow of a liquid from a wide
opening into a capillary, then, according to Milovich, the following
relationship must take place, instead of Poiseuille's equation (1.3):

rRdP (1.21)
*=9,58QC

In this case, a capillary viscosimster must yield a viscosity value which
is 20% greater (higher) than the true viscosity value for any liquid.
Of course, the effect of a change in kinetic energy, examined above and
expressed by formulas (1.5) and (1.19), is not taken into consideration
in this case.

The reason for the appearance of a helical motion in a viscosi-
meter of the capillary type may lie in the type of connection between
the capillary and the wide bend of the instrument during the course of
glass blowing work.
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The second correction for the effect exerted by the initial sec-
tor of the capillary actually plays a significantly smaller role. In
order to account for this correction, a value of the order of several
diameters, determined experimentally, should be added to the length of
the capillary tube. In case of long capillaries used in viscosimetric
measurements, this correction is very small.

In spite of a certain amount of incompleteness of the theory, the
capillary method has found a wide field of application, which is quite
understandable if we consider its simplicity and convenience when used
at room and elevated temperatures. In addition to this fact, we can
also state that, in case of liquids possessing a value of kinematic
viscosity of about 1 centistoke and above (such as water, and many or-
ganic liquids) under normal experimental conditions, the correction for
kinetic energy is expressed in fractions of a percent. It is only
necessary to note that the accuracy of measurements, equal to four sig-
nificant digits in the expression of the dynamic viscosity, which is

8 frequently proposed by authors of experimental studies, must be gen-
8 erally considered as too high.

Much worse is the situation in regard to the use of the capillary
method for studying the viscosity of fused metals. As was already men-
tioned, in view of the small value of the kinematic viscosity of these
metals (of the order of decimal fractions of a centistoke), the value
of the correction member for the kinetic energy is sharply increased,
which in itself represents a sufficient reason for raising serious ob-
jections against the use of the capillary method in this field. The
main difficulties during the application of the capillary method for
studying the viscosity of fused metals, however, are of a purely experi-
mental nature. These difficulties are connected primarily with the
selection of an adequate material for the capillary, with its manufac-
turing technique, requiring a high degree of accuracy, with methods for
recording changes in the level of the liquid in case of opaque walls of
the instrument, and with other similar complications.

During the solution of many problems related to modern technology,
a knowledge of the viscosity of slags and other systems with a high vis-
cosity and high crystallization points is required. Here, the capillary
method was also found to be unsuitable, not only for the reasons men-
tioned above, but also in view of the fact that a substantial increase
in the diameter of the capillary is necessary in this case, which is
associated with a corresponding increase in its length, thus making the
instrument very unwieldy.

2. Rotatin, Cylinder Method

A widely used method for measuring the viscosity is the method
based on the use of rotating coaxial cylinders. The solution of the
corresponding hydrodynamic problem for an infinitely long cylinder, on
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which the theory of this method is based, is of elementary simplicity.
Boundary effects are usually excluded by means of experimental tech-
niques (7). The method of coaxial cylinders is particularly convenient
in the case of liquids with a high viscosity and is widely used during
the study of fused slags (see Note). It should be noted, however, that
when this method is used in the high temperature region, it becomes
necessary to install unwieldy units (Njj: The development and improve-
ment of this method, as well as its practical application on a wide
scale, are based to a considerable extent on work done by M. P. Volaro-
vich).

The method of rotating cylinders has practically not been used
at all in studying the viscosity of fused metals, and only a few(not
very satisfactory)studies have been published in this field (8). The
reason for this is the fact that, in view of the relatively small vis- F
cosity values of metals, the torque transmitted from one cylinder to 8
another is also extremely small. In order to increase the torque value, 8
the clearance between the cylinders must be sharply reduced, which causes
great experimental difficulties. In addition, the necessity of excluding
boundary effects makes the experiments exceedingly unwieldy and labori-
ous. A further disadvantage of this method lies in the large dimensions
of the instrument.

3. Falling Ball Method

The most perfect, from the theoretical standpoint, of all sta-
tionary methods is the falling ball method, which is based on Stokes'
problem. For a cylindrical vessel, the calculation of boandary effects
has been achieved theoretically, and since their influence can be made
quite insignificant, the theoretical aspect of this method must be con-
sidered as being in a highly perfected state.

The well-known formula of Stokes, derived for the stationary mo-
tion of a small ball in an unlimited viscous medium, when nonlinear
members in the hydrodynamic equations are disregarded, has the follow-
ing appearance

2r' (p' - p) g (1.22)

where v is the velocity of the uniform motion of a ball with the radius
re, p' and p are the densities of the ball and liquid, respectively.
The condition at which it is possible to disregard nonlinear terms is
expressed by the inequation:

r < _ (1.23)
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Experimental studies have shown, however, that the observance of a less
rigid (strict) condition is possible:

r 0,6 1.(1.24)

If the condition (1.24) is fulfilled, then, after taking into account
the corrections for the finite dimensions of the vessel, in which the
falling or floating of the ball takes place, we arrive at the following
expression for the viscosity (Note: see reference (4) in the bibli-
ography):

2r 2 (p'- p)r

9V(1+ 2,4r)(1 +3,1 L (1.25)

F
8 where R is the radius of a cylindrical vessel, along the axis of which
8 a ball is moving in the viscous liquid, and L is the length of the vessel.

The correction terms do not contain the viscosity and depend only on the
ratios r and r, thus making it possible to use the falling ball method

R L

as a relative method.
Strictly speaking, a relative method for measuring any kind of

physical value must be based on a theory having the same degree of ac-
curacy as an absolute method, i.e., the analytic dependence of the value
which must be measured on the values which are directly observed during
the experiment must be known. Only under these conditions is it possi-
ble to determine the relation between the values directly observed dur-
ing the experiment, which refer to a substance with an unknown charac-
teristic, and the same values referring to a substance with a known
characteristic. This factor is frequently overlooked, as a result of
which an excessively high accuracy is attributed to experimental data.
For example, if boundary effects are taken into account, the ratio of
the viscosities of two liquids will not be simply inversely proportional
to the outflow times (rates) of identical volumes, as is usually assumed
when using the capillary method for relative measurements.

In spite of the theoretical strictness of the falling ball
method, the application of this method is associated with considerable
experimental difficulties. The large dimensions of the instrument, re-
quiring large amounts of liquid for research purposes, the need for an
accurate manufacture of balls with a very small diameter, and the neces-
sity of observing the motion of these balls -- all these factors greatly
limit the possible application of this particular method, especially at
nigh temperatures and even more so in case of metallic liquids.
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4. Non-Stationary Methods of Viscosity Measurement

By means of non-stationary methods, it is possible to determine
directly the kinematic viscosity of a liquid, and not its dynamic vis-
cosity.

From a mathematical standpoint, the theory of non-stationary
methods is much more complex than that of stationary methods; precisely
for this reason, these methods are not as widely used as stationary
methods.

As a result of the study of the viscosity of liquids, especially
metals, at high temperature, which has become an extremely urgent prob-
lem during the past 10-15 years, and also in view of the great interest
in the study of the viscosity of liquefied gases, efforts have been made B
to overcome these serious mathematical difficulties in order to achieve
a maximum simplification of experimental techniques.

Vershaffelt (9) has developed a theory for a method of viscosity
measurement based on observations of the torsional oscillations of a
sphere submerged in the studied liquid (external hydrodynamic problem).
This method was used by E. B. Polyak and S. V. Sergeyev (10) for study-
ing the viscosity of fused metals. However, the use of the oscillating
ball method in metal research is associated with two serious difficulties.
First, the ball must be attached on a rod (stem), running through the
free surface of a metal having a high surface tension; in this case, it
is impossible to evaluate the effect exerted by the surface film on the
stem during the course of oscillations, especially in view of the fact
that the surface film may be oxidised. Second, the ball must sink in
the metal being studied, and this cannot always be achieved without
using an additional load in the upper portion of the stem. In case of
such a method of loading the suspension system, the center of gravity
of this system is raised and the system is subjected to precessional
movements and to a dynamic instability, which in turn results in dis-
torted values of the damping decrement.

The oscillating ball method was subjected to a thorough experi-
mental investigation by V. A. Konstantinov (11). The results of this
study point to a number of significant factors which complicate
somewhat the use of this method for measuring the viscosity of fused
metals.

Methods based on an internal hydrodynamic problem (liquid lo-
cated inside the oscillation system) are free of the above-mentioned
defects, but the mathematical theory of these methods is even more com-
plicated. However, precisely those viscosimeters which are based on an
internal problem can be most conveniently used within a wide range of
temperature and pressure variations.

The study performed by Helmholtz and Piotrowsky (12) contains a
theory of a viacosimeter consisting of a hollow spherical casing
(sheath), filled with the liquid being studied, and an elastic thread
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performing free torsional oscillations. The theory elaborated by these
authors makes it possible to establish a connection between the damping
decrement and the oscillation period, on the one hand, and the viscosity
of the liquid enclosed in the casing, on the other hand. However, the
experiments conducted by these authors were aimed rather at checking
the correct nature of the solution of the hydrodynamic problem, than at
the actual measurement of the viscosity. By the way, these experiments
allowed the authors to reach the conclusion about the presence of a slip
at the liquid-hard wall boundary, a conclusion which later could not be
confirmed,

Since the calculation performed by Helmholtz did not meet the
requirements imposed on the theory of the experimental method, this
calculation was later performed again in a sufficiently complete form.
The instrument built on the basis of this theory was used for measuring

8 the viscosity of water and hexane (13). However, this method did not
8 find a wide field of application, apparently in view of technical diffi-

culties involved in the manufacture of the instrument and the setting
up of experiments, which are not balanced by the results obtained.
Great difficulties are encountered during the manufacture of the hollow
spherical casing, which requires a high degree of accuracy, especially
in case the viscosity of metals in the fused state must be measured.
Ceramic products are the best material for this purpose, although the
use of ceramic products in the manufacture of a spherical casing is ex-
tremely difficult. Similar difficulties are experienced in connection
with the filling of the casing with the metal to be studied, the possi-
bility of ensuring a free expansion of this metal, the consideration of
this effect during the calculation of the viscosity, and other factors.

In view of the technical difficulties associated with the use of
a hollow spherical casing as a vessel for holding the liquid to be
tested, consideration has been given a long time ago to the possibility
of using a small cylindrical bucket for this purpose. A corresponding
calculation, relating the oscillation period and the damping decrement
of such a system with the viscosity of the liquid enclosed in the bucket,
was performed for the first time by Meyer (14). In order to simplify
the problem, Meyer used a number of limiting hypotheses, and specifi-
cally he assumed that the cylinder had a large radius and that its
height was small in comparison to this radius. With the aid of an in-
strument built according to these specifications, measurements of the
viscosity of salt solutions were performed (15), which showed that this
instrument could be conveniently used in the room temperature range.
Nevertheless, as in the preceding case, this method did not find a wide
field of application. The reason for this is the fact that the theory
of the method exhibited a number of defects, the calculating system was
not adequately developed, convenient formulas for processing actual ex-
perimental data could not be obtained, and the large dimensions of the
instrument made it unsuitable for work in the high temperature range.
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However, the idea of measuring the viscosity by observing the torsional
oscillations of a small cylindrical bucket, filled with the liquid to be
tested, no doubt deserves the most serious consideration from the stand-
point of simplicity of the experimental technique used during such meas-
urements. It was natural, therefore, that this problem again attracted
the attention of research workers.

A study published in 1936 (16) described the solution of the
hydrodynamic problem concerned with the motion of a liquid in a small
cylindrical bucket performing free torsional oscillations. This prob-
lem was solved without the limitations mentioned above. The article
also describes certain experiments which confirmed the correct nature
of the calculations. A second study (17) was concerned with the prob-
lem of obtaining calculating formulas for determining the viscosity on
the basis of actual experimental data. By means of rather complex cal-
culations, eight formulas were derived, with the aid of which the vis-
cosity can be determined. Final formulas can be used within a definite F
range of variation of a certain parameter, containing the viscosity. 8
The theory does not take into account the damping (attenuation) of the 8
system when the liquid is not present.

On the basis of the factors mentioned above, we are forced to
conclude that the above studies cannot be considered as representing a
theory of an experimental method for measuring the viscosity, but rather
as a solution of a certain theoretical problem followed by an experi-
mental checkup.

In view of the necessity of measuring the viscosity of fused
metals at high temperatures, there was an urgent need for a method which
would be satisfactory from an experimental standpoint and which would
be based on a well-developed theory, yielding convenient formulas for
processing the results obtained during observations.

The method based on oscillations of a cylinder filled with the
liquid to be tested satisfies the requirement involving simplicity and
convenient use, but the various modifications of the theory cannot by
any means be considered satisfactory.

For this reason, it was necessary to devise a completely new ap-
proach to the problem concerned with the oscillations of a hollow cylin-
der, filled with the liquid to be tested, involving the use of a method
for solving this problem which was different from the ones previously
used, and thus to obtain formulas, tables and graphs for processing the
results of direct observations, which would be acceptable from a prac-
tical standpoint, moreover in such a form that this method could be con-
sidered as an absolute method.
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5. Formulation of the Problem Related to the Theory
of a Non-Stationary Method of Viscosity Measurement

The solution of two different problems must be considered in
setting up the theory for a viscosity measurement method. The first
problem consists in finding a connection between the kinematic vis-
cosity, entering into hydrodynamic equations, and the parameters ex-
pressing the motion of the system connected with the liquid, which are
observed during the course of measurements. The second problem in-

F volves the development of a calculating system, which will allow us to
8 find in the most efficient way the viscosity value of the liquid according
8 to the observed parameters describing the motion of the system. The

following chapters will be devoted to the solution of both of these
problems; at this point, however, we have to make some preliminary re-
marks related to this particular problem.

Let us assume that a certain physical process is described by a
single differential equation consisting of partial derivatives in rela-
tion to an unknown function cp, which is determined by the time and the
coordinates. Let us further assume that a single constant (a) enters
this equation as a parameter.

Let us write this equation as follows:

L ia, ? (x, y, z, t)] = 0 (1.26)

A typical problem of mathematical physics consists in finding the field of
function q, when the initial and boundary conditions are given. Let us
assure that this problem has been solved. Then, if it is possible to de-
termine experimentally as a function of time in any given point, which
does not coincide with the boundary of the solution field, by the same token
it then becomes possible to determine the parameter (a) in a differential
equation. However in those cases when it is not possible to effect an experi-
mental determination of cp within the solution field, parameter (a) cannot be
determined without introducing supplementary conditions.

This is quite understandable from a physical standpoint. Indeed,
the field of cp values is formed at a given (a) in accordance with the
type of differential equation and the initial and boundary conditions.
By keeping the boundary conditions constant, it is possible to change
(a) in any way desired, and accordingly the field of cp values will be
deformed only within the solution range. Consequently to determine (a),
one more condition is needed. A supplementary equation for the boundary
value of the function may be used as such a condition, but this equation
should contain only known constants as parameters.

Let us assume that the solution of the differential equation (1.26),
satisfying the initial and boundary conditions is expressed by the formula:
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y, =f(a, x, y, z, t) (1.2'/)

and let the boundary value of this function be equal to P0. It is pos-
sible to determine (a) if the following supplementary equation is given:

M (qp0 (a, t)! = 0, (1.28)

where M is a certain operator.
All these considerations are also applicable when the problem is

set up (postulated) without an initial condition. Let us explain this
based on an example. Let us assume that it is necessary to determine
the thermal diffusivity of a rod insulated on the sides by the tempera-
ture wave method. This means that we are faced with the following
problem: F

8
=± (0 <x<oo, O<t<oo), (1.29) 8

p (0, t) = A cos qt, (1.30)

where q)(x, t) is the temperature, a is the unknown (sought) parameter
of the differential equation, i.e., the thermal diffusivity, q is the
given (prescribed) cyclic frequency of the temperature fluctuations at
the boundary, and A is the known amplitude of these fluctuations.

The solution is expressed in the following form:

y(X,t) =Ae Csq- qX)(1.31)

Let us assume that it is possible to measure the temperature at
point x, of the rod within the solution range. Obviously, the meas-
urement results will be expressed in the form of a known harmonic time
function: -

B cos (qt - =Ae 2a Cos (qt q X,) (1.32)

and from here:

-9nBX1n (1.33)In B = In A if I ,

In order to find (a) with the aid of this equation, it is necessary to
use the value of the amplitude A of the temperature fluctuations at the
boundary.
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In addition, we have:

x1. (1.34)

Consequently, after subjecting the temperature curve at point x1
to a harmonic analysis and thereby determining phase el from the last
equation, it is possible to determine (a), even without using the value
of the amplitude at the boundary. However, the situation is substan-
tially different in case the temperature can be measured only at the
boundary of the solution range (when x = 0). In this case, formula
(1.32) is satisfied at any value of (a), and consequently, the system
of equations (1.29), (1.30) and (1.31) is not sufficient to allow the
determination of (a). In this case, a supplementary equation is neces-
sary for the temperature at the boundary of the solution range x = 0.

8 The following expression of a heat flow can be used as such an equation:
8

L =At) (1.35)

Here it is assumed that X is a known parameter of equation (1.35). By
finding:

WXKX.= A )/ 21 (sina qt -cos qt) (1.36)

and inserting this expression into (1.35), we obtain an equation for
calculating (a), which is based on experimental data and which refers
only to the boundary of the solution range, i.e., to the boundary con-
dition.
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Chapter II

Theory of the Torsional-Oscillation Method

for Measuring the Viscosity of Liguids

1. Basic Theoretical Concepts of the Method

In a number of studies conducted by us (1), a mathematical theory
of a method for measuring the viscosity of liquids is given, which is
based on the observation of torsional oscillations of a small bucket
filled with the liquid to be tested and suspended on an elastic thread
coinciding with the axis of the bucket.

The theory of this method is based on the following concepts:
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1. There is no slip between the liquid and the internal surface
of the bucket.

2. The oscillations of the bucket are examined after a suf-
ficiently long interval of time following the start of such oscilla-
tions, when the initial velocity distribution does not exert any effect
on the movement (motion) of the liquid (regular regime).

3. The oscillations of the .bucket have a small amplitude.
4. The motion of the liquid in the bucket is described with a

sufficient degree of accuracy, without taking into consideration non-
linear terms in Navier-Stokes equations for an incompressible liquid.

In the following paragraph and further in the text (see # 11 of
this chapter), this particular problem forms the subject of a special

7 discussion, in order to find out to what extent the formulated concept
8 can be substantiated experimentally and theoretically and to what extent
8 it should be considered as an independent hypothesis.

The first concept (which has already been mentioned in Chapter I)
is generally recognized in viscosimetry and forms the basis of all meth-
ods for measuring the viscosity.

The second concept means, from an experimental standpoint, that
regular oscillations must be taken into consideration, which satisfy the
condition of a linear dependence between the logarithm of the amplitude
and the oscillation number. A linear dependence sets in after several
oscillations following the beginning of the process.

When the condition of a linear dependence is fulfilled, the third
condition must also be fulfilled, since the latter determines the con-
stancy of factors in the differential equation describing the motion of
the bucket.

2. Velocity Distribution

First we shall examine the hydrodynamic problem concerned with
the distribution of velocities in the liquid filling up the viscosimeter.

The working space of the viscosimeter and the arrangement of the
coordinate axes are illustrated in Figure 1.

We shall use the Navier-Stokes equations for an incompressible
liquid as a starting point. If an elementary ring 2r dr dz is selected
in the liquid, then this ring will perform a rotary motion with a tan-
gential velocity v. At the same time, the velocity components vr and v z
must be equal to zero; in this case, the following two conditions result
from the continuity equation and the axial symmetry of the motion:
6V (2.1)

where p is the pressure, p is the angular polar coordinate in a plane
perpendicular to the axis Oz. From here, one can conclude that the
only velocity -'omponent (tangential) is the function v(z, r, t).
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Thus, during an annular motion of the liquid, as one can easily
see, the nonlinear terms in the hydrodynamic equations are identically
converted to zero. The validity of this concept, in case of small am-
plitudes of the torsional-oscillation motion (equal to fractions of a
radian) was checked experimentally by Verschaffelt (see references 1
and 9 in the bibliography of Chapter I, pages 21 and 22).

The concept of the small size of the amplitude in this particu-
lar problem requires a special examination. At present, we shall base
our study on the fact that, in case of lcw .cillation frequencies,
when the motion proceeds at a slow rate, the liquid really moves in
concentric layers and nonlinear terms are identically converted to
zero.

Thus, when used in connection with this particular problem, the
Navier-Stokes equations assume the following appearance (2):

1 O=7 (2.2) F

8
-- *g, (2.3)

' + I OV_ + r V Ip v (2.4)

where p is the density, v = 3 is the kinematic viscosity, is the

dynamic viscosity, and g is the gravity acceleration.
During the course of measurements, the bucket performs a damped

torsional-oscillation motion, and therefore the boundary conditions for
the liquid, in accordance with the first concept (see # 1 of this chap-
ter), can be written in complex form as follows:

v(R. z, ) = IQRe-kt. (2.5)

v (r, ±H , ) = Lre - kt. (2.6)

Here,, 0 is the real initial amplitude of the angular velocity of the
torsional-oscillation motion of the bucket.

k = p + Lq, (2.7)

where V is the attenuation (damping factor) of the oscillations, and q
is the cyclic frequency.

The initial condition in the problem is absent, according to
concept No. 2 (see # 1 of this chapter). Therefore, a solution can be
sought in the form:
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v(r, z, t) =,(r, z)e - kt. (2.8)

The function /(r, z) satisfies the condition:

0 (k 1 \ (2.9)

Wri r Or Oz3j

and the conditions:

"(R, z)=IQR, (2.10)

,(r, -- ll) = 1r. (2.11)
F
8 Let us assume that:

8 t(r, z)= t(r)+ -,.(r, z). (2.12)

$i(r) satisfies equation (2.9) without the term and the condition:

(R) AM (2.13)

* 2 (r, z) satisfies the equation (2.9) and the conditions:

49 (R, Z) O, (2.14)

*,(r, -- ) = r-j(r). (2.15)

One can easily see that:

*t(r) = 1(, (2.16)

(= . (2.17)

here, J1 is a Bessel function of the first type and of the first order,
and

nan
(r. z) 41h&an) J, (tpnr) -ch (0,,z). (2.18)

n=1

The characteristic numbers A. are determined from the equation:

J, (jR) -- 0, (2.19)
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where an, the expansion factors of the function *2 (r, H), according
to J1 G2nr), are determined from the known formula:

A

a J r+9 (r, ±t H). J, (L,,r) dr[j; (,"R)I, f0 1(2 .20 )

k. (2.21)

F

Thus, by designating the complex angular velocity of the liquid 8

as W = v, we obtain the solution which we were looking for: 8

r

a(t, r, z)=

t:oR IP (2.22)

, I c h (8R7 *J1(nr)c h(Onz)
n-=1

3. Moment of Frictional Forces
on the Internal Surfaces of the Bucket

The internal friction force per surface unit is equal to:

f= r (2.23)

The moment of frictional forces, acting upon the internal sur-
faces of the bucket, can be expressed as follows:

+M

P 21rRs (dw)r=Rd2

R R (2.24)

+ 21rqj (L)_ r("dr rsdr.
0
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Let us introduce the complex angular displacement of the bucket,
a. Then, in accordance with the boundary condition (2.5), we get:

12Re-i= Ra (2.25)

By moans of appropriate calculations, we arrive at the following
expression for the moment of frictional forces on the internal surfaces
of the bucket, caused by the action of a viscous liquid:

P da (2.26)
di'

where:

8 L = -qRHP J2 + 8,111R3! 0 th (#H) (2.27)

The first addend in the right side of the equation describes
the friction which takes place on the side surface of an infinitely
long cylinder with a height of 2H. The second addend takes into ac-
count the friction occurring on the bottom and on the lid of the bucket,
and also the change in the side friction introduced by these end sur-
faces. The latter expression for the moment of friction forces is
generally applicable and can be used for any values of R and H.

4. Eauation Describing the Oscillations of the Bucket

Three types of moments of force act upon the suspension system,
consisting of the bucket filled with liquid and the attachments of the
bucket to the suspension thread.

First, an elastic (restoring) moment of torsion of the suspen-
sion, proportional to the torsion angle.

Second, a moment of internal friction forces, caused by the pres-
ence of the liquid in the bucket. These forces not only cause the ap-
pearance of an attenuation (damping) of the torsional oscillations of
the suspension system, but also increase the oscillation period in com-
parison to the period observed when the bucket is eupty. An increase
in the period takes place as a result of the fact that a certain amount
of liquid (combined mass) also takes part in the process of oscilla-
tions of the bucket, which results in a greater effective moment of
inertia of the suspension system. In view of this fact, this particu-
lar moment of forces consists of two terms: a term proportional to the
velocity, and a term proportional to the acceleration.
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Third, it is necessary to take i to account the effect of fric-
tion forces caused by the presence of the gaseous medium surrounding
the bucket and by defects of the suspension thread. It is obvious
that, in this case, the combined mass is vanishingly small, so that
the corresponding moment is simply proportional to the velocity.

Let us introduce the designation:

-- -la+f.  (2.28)

Then, the total moment of friction, caused by the gaseous environment
and defects of the suspension thread, can be assumed as being equal to:

dal (2.29)
- L0 - -.•

LO iF

8
The equation describing the motion of the bucket can be written in the 8
following form:

K d 4!a' (2.30)

where K is the moment of inertia of the entire suspension system with-
out the liquid, and N is the elasticity factor of the suspension thread.

The first member in the right side of the equation represents a
complex expression, and therefore yields addends which are proportional
to the velocity and acceleration. Let us designate:

L = Lf + IL. (2.31)

The actual (real) portion of _ L Lag apparently, can be expressed by
dt

the relation:

Re(L L - d+ LP de) (2.32)
(_ ) - - di

(Note: The symbols Re(X) and Im(X) are used to designate the real and
imaginary parts of the complex expression X.)

In this expression, it is necessary to exclude da", which can be
dt

easily accomplished. By differentiating (2.25), we get:

de' d2(+ Id+ do' (2.33)
-.-I =-( -Iq)i-+ - I
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from which, after dividing the real and imaginary parts, we get:

de l=d O p dal (2.34)
it- j W2+ q 'q qdt

Thus, the perturbing force caused by the action of the liquid

can be expressed as follows:

Re(-La) = - (LI - O (2.35)

F and the equation describing the motion of the bucket will assume the
8 form:
8

( L) d (~ pL L' + ) Ne"(2.36)(K-- ) d"" + (L'- +" L.)" -- , 0.

As will be shown below (see 2.45), L" is a negative value. For this
reason, the presence of an internal friction of the liquid affects the
increase in the moment of inertia of the system caused by the entrained
layers of the liquid, and also affects the appearance of an additional
attenuation (damping) L' - L" j which plays a predominant role in

q
comparison to LO . By substituting in equation (2.36) a', dA', d2 a',

dt
according to the expression:

a= = %e-ot cos (qt + ) (2.37)

and by equating to zero the factors at sine and cosine, we shall obtain
the following two equations:

L+Le =. (1-+N I ) (2.38)K K+,p, €

LO'  q(! - N (2.39)

Let us exclude from these equations the member 1 1. ConsideringK p2 q2
that the equation describing the motion of the bicketg, in the absence
of a liquid, has the followt-g appearance:

K d.-.,+ Lo La + Na= 0 (2.40)
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and consequently:

LO = 2K#, (2.41)

wherePo is the attenuation (damping factor) of the oscillations of an
empty system, we get:

L'+ L" = 2K( - Po).(242)
q

If the frequency of oscillations of an empty system is designated by
qo, then:

N (2.43)

8
and, instead of (2.38) and (2.39), we 

shall obtain:

K + 0' +  q1 2po,  (2.44)

-- q 1 - + . (2.45)

All three equations (2.42), (2.44) and (2.45), in their left
sides, contain the viscosity of the liquid, expressed by means of L'
and L", and in the right sides only the experimentally observed values,
and are suitable for the derivation of calculating formulas expressing
the viscosity by means of the attenuation (damping) and oscillation
period of the bucket.

However, from the standpoint of the requirements imposed on the
theory :,f the method, there is a substantial difference between the
first of these equations and the last two equations. The first equa-
tion, i.e., (2.42) is obtained by excluding N, and therefore this equa-
tion does not contain the condition specifying the independence of N
from the load and the temperature. This equation will later play a
major role. The last two equations, i.e., (2.44) and (2.45), are ob-
tained by replacement of N with the oscillation frequency of the empty
system qO, and the latter is determined by the load applied on the
thread and by the temperature of this thread (insofar as N exhibits
such a dependence). Therefore, qo must be measured over the entire tem-
perature range, in which the viscosity is measured, and precisely at the
load on the thread, at which the measurement of the viscosity is per-
formed. In view of this fact, equation (2.44) will not be used at all
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in our further study, and equation (2.45) will be used to a limited ex-
tent prdcisely in the viscosity range in which the logarithmic damping
decrement does not depend to a great extent on the viscosity of the
liquid.

5. First Approximation for the Friction Function L

Equation (2.27) is too complex to be used directly in viscosime-
try. Therefore, this equation must be reduced to a more simple form,
by using reasonable approximations. Let us assume that:

0= +10 (2.46)

With the aid of (2.7) and (2.21), it is possible to arrive at the fol-
F lowing expressions:

P_- -- V + 9 (2.47)

Let us examine th(Onfl). According to the well-known formula,

coupling a hyperbolic and simple (prime) tangent:

th (OnH) = - I tg (t0.tH). (2.49)

With the aid of this relation and the expression for tg(itnH), in case
of a high value of the imaginary part of the complex variable, i.e.,
when enH 111, one can obtain the following expression:

th (OnH) +- 1 + 2e-' sin (28.H). (2.50)

It can be easily seen, that, when4AH ; 5, the imaginary part has a
value smaller than 1 * i0-4i. Therefore, setting up the requirement
that:

./- >s (s =5) (2.51)

at any value of a, one can write accurately up to an addend not greater
than i2e-2s:

th (O,,/-) - 1 (2.52)
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It should be noted that it is not always permissible to leave out
(discard) the purely imaginary part of the expression, as compared to
the real part. In the case being studied here, this can be done because
unity is the main addend in the expressions for the real and imaginary
parts of L (equations (2.72) and (2.73)).

Thus, when the condition (2.51) is fulfilled, the following ex-
pression for L is obtained:

L=-4wsjqR9HP 4'3(p)+ 8XvjR2 3 ' i. (2.53)'

6. Physical Meaning of the Eirst ADvroximation
for the Friction Function F

8
The second addends in formulas (2.22) and (2.27) for w and L are 8

based on the effect exerted by the end surfaces of the bucket. The cor-
responding member in (2.22) can be written in the following form, with
the aid of the relations (2.7) and (2.46):

,b(t, r, z)= A5(r) j-+wnsi-'("-#") (.4
,,= -+ (2.54)

Apparently, this portion of the total (over-all) solution rep-
resents an infinite sum of waves, propagated in both directions of the
z axis with an amplitude determined by r and subject to an exponential
attenuation in space and in time.

The amplitude along the z axis in (2.54) can be transformed as
follows:

e'0 - b' L, (2.55)

where Ln is the wavelength corresponding to the wave number 9" Then:
*1n =

.= 2w (2.56)

is the logarithmic decrement of the spatial attenuation of the ampli-

tude. From a comparison of n and I1'O it follows that An > 27T. This
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means that the waves examined here are totally attenuated (damped) at a
distance equal to the wavelength and belong to the type of temperature
waves (3). At a distance z = H, the amplitude along the z axis is equal
to:

- H
A = (2.57)

if:

H =_s (2.58)

F where s is a whole number or a fraction, then the amplitude at a dis-

8 tance H will be reduced es times.
8 On the other hand, from (2.56) it is easy to ootain:

H oH (2.59)

and, according to the requirement of (2.51) must be equal to:

H S (2.60)

From here it is obvious that condition (2.51), at the fulfillment of
which th(nH) = 1, physically means that all viscous waves, arising
from the oottom and lid of the bucket, are damped es times at a dis-
tance H. When s = 5, this results in a ratio of the amplitude in a
medium plane of the bucket to the amplitude at the bottom or on the lid,

A1) = 0.006.
Consequently, in case the inequation (2.51) is fulfilled, viscous

waves propagated from the bottom and the lid of the bucket are unable
to reach the opposite surfaces, and are totally damped along their
propagation course, i.e., the effect of friction from the bottom and
the lid of the bucket is an additive effect. In case of a free surface,
L will be determined by the expression:

L =-- .rR&HP J2 + 4.rqRt ks Y. (2.61)

At the same time, the waves arising from the bottom of the bucket
are damped without reaching a free surface and are incapable of being
reflected from this surface.
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7. Second AiDroximation for the Friction Function L,
Low Viscosity Liacuids

The expressions for L, given by formulas (2.53) and (2.61), con-
tain the viscosity , complex arguments of Bessel functions, and are
therefore unsuitable for processing experimental results. In order to
simplify these expressions, it is possible to use either an asymptotic
representation for Bessel functions, or an expansion in a series, or to
draw up tables.

Let us make use at first of the first possibility. From the
theory of Bessel functions, it is known that an asymptotic representa-
tion with the aid of two members gives good results for values of an
argument higher than 8-10. According to (2.17), with an accuracy of

1, the modulus of the argument of Bessel functions is equal to:
0~F

(2.62) 8IP!I=RV-• 8

Let us set up the requirement that:

R 10. (2.63)

Liquids which comply with this condition will be designated by us as
low-viscosity liquids (Note: Obviously, this concept does not charac-
terize merely the physical properties of the liquid, but rather the
combination of physical properties and experimental conditions).

On the basis of recurring formulas, we have:

J (P) _ 2 Jo (p) (2.64)
i 5) P -T J(0)

dy using an asymptotic representation:

jf( ) (P T___ __ __ __ __ _ 4_ (2.65)

it sinp_-j)+ 3cos(s- .)
we obtain:

= 1+ 1  (2.66)

it (0) 5
By substituting into (2.64), we get:
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A (P) __ + (2.67)

Thus, when condition (2.63) is fulfilled, the expression for L
assumes the following appearance:

4vq'H. - 81'RJ (2.68)

According to (2.17):

8 R +j/ V I/ +Ii, (2.69)

8 +1 V-X±VI4rJ

where:

x = - (2.70)

Since x is a small value, py expanding 0 in series accordinI to the
power of x and discarding members of an order higher than x , we find:

2,( T X+. 2)].
From here, the following expressions are obtained for the real and
imaginary parts of L:

L" 2VpvR 3 +

2R 11'

+ R2 C RO ( k (2.72)
+ Re 3
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L"= 2 VpvR / X (.3
00ix2 y.I (k

r2 8 V3 2+2 , k
HIR _/';1 Inn

wnere V represents a volume of liquid in the bucket equal to 2nHR2 .

8. Equation for Calculating the Viscosity

Let us calculate the expression L' + L". By introducing, in-
stead ofOn, the value On according to the equation:

F02=O.R R2 k (2.74) 8

one can easily see that:

L'+ xL'-- 2VvR I , (2.75)

whe re:

3 - 3

(2.76)

By substituting the value of L' + xL" which we have found into (2.42),

we get:

VPRVIfO *= K(P-P). (2.*77)

By replacing in this equation qp,)O with the aid of the obvious re-
lations:

q = , (2.78)
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s --- (2.79)

0(2.80)o= To

where T and To represent, respectively, the oscillation period of the
bucket with and without the liquid, 6 and 60 -- the logarithmic decre-
meat of attenuation of these oscillations, we arrive at the following
formula for calculating the kinematic viscosity of the liquid filling
up the bucket:

i, ± K 2 - _ (2.81)8 ( VpR " ' -ga
8

Since in the last equation, VP = M represents the mass of the liquid in
the bucket, this equation can be written in the following form:

K t (2.82)

w 'ere 0 is expressed by the relation:

23 3.x_ 3

(2.83)

Let us introduce the following designations:

Q= IQ= R s'

*= plotI

+XM (2.84)
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1

and

1 = R(2.85)

00

Let us examine the series E Qn. We get:
n~l

( 2 0£ i.RI
1-- X3 3 -- 21- (1-X +x2

R IpR 4  8
+- - '--2 x+x 8

4(2.86)

The terms of the series (2.64) decrease in prokortion to 1,
2

and therefore, without the risk of a great error, one can limit oneself
to the first a terms of the series, which comply with the condition

2R2 4 70-80% of y.By expanding the radicals in series in (2.86), and by disregard-
iN.6during all transformations, terms of an order higher than x and

in comparison to unity, we obtain the following approximate formula

Y3

for the sum of the first m terms of the series (2.84):

'I(

5 0' 7 (2.87)

Sy2 (3--1X) 4 0 +(l -k )

However, the use of formula (2.87) is associated not only with
uwwieldy calculations, but also introduces a certain inaccuracy into
the calculation.
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It is more expedient to draw up a table and charts (grapi),
which make the calculation of a considerably more simple and accurate.
For this purpose, let us expand Qn(x, y) in series according to the
powers of x. Since x and the coefficient of x in Qn are small values
in comparison to unity, one can limit oneself to the first power of x:

Go CQ. (x, y) = Q. (0, Y) - - O (X. Y) I x = b -- cx. ( .8
s-I st-I fi -

Now, a can be written in the form:
883 34 (2.89)8 x'=1 8-- + -- b -2ex

Here:

3 (2.90)

The coefficients a, b, c are listed in Table 1 and are represented in
Figure 2 as functions of y. The range of variations of y between 100
and 3,500 is quite sufficient for working purposes. Since in case of
high values of y, all three coefficients vary very slowly, the values
of these coefficients can be selected directly from the table in the
region wnere y > 2,500, rounding off y to two significant digits.

Factor b, which plays a major role in 0, is calculated by direct
sumation of series (2.84). Factor c is calculated in an approximate
way according to formula (2.87). The values of b, calculated accurately
and by means of the approximate formula (2.87), exhibit a divergence of
up to 15% when y = 150, of up to 5% when y = 1,000, and of up to 1% when
y = 2,000. The figures mentioned above characterize the accuracy of
formula (2.87).

The calculation of v is conducted in the following order: first,
V is calculated by means of formula (2.82) when a = 1, then factors a,
b, c are determined with the aid of the curves illustrated in Figure 2,
when y = &- R2 , after which a is calculated by means of formula (2.89),

tv*
and finally, the final result is determined:

* V (2.91)

In case a differs considerably from unity, the second approximation for
V is determined in the same manner.
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Table 1

xY b Lu e y rLe
100 0,2121* 0,0466 0,1150 1700 0,0514 0,1032 0,1683
150 1732 587 1243 1800 500 1037 1688
200 1500 669 1312 1900 487 1042 1693
250 1342 725 1366 2000 474 1047 1697
300 1224 765 1409 2100 463 1052 1701
350 1130 798 1444 2200 452 1056 1704
400 1061 826 1472 2300 442 1060 1707
450 1000 850 1496 2400 433 1064 1710
500 947 870 1517 250 424 1067 1713
600 865 901 1552 2600 416 1070 1716 8
700 801 926 1579 2700 408 IC73 1718 8800 750 946 1601 2900 401 1076 1720 8
900 706 962 1618 2930 394 1078 1722

1000 671 975 1631 3000 387 1060 1724
1100 639 986 1642 3100 381 1062 1725
1200 612 995 1651 3200 375 1084 1726
1300 588 1004 1659 3300 369 1086 1727
1400 567 1012 1666 3400 364 1088 1728
1500 547 1019 1672 3500 358 1090 1729
1600 530 1026 1678

*In this and all other tables containing "commas",
these represent decimal points

It should be noted that, during the derivation of (2.29), the
constancy N was not used anywhere, which makes it possible to avoid any
limitations during the selection of a material for the suspension thread.

During calculations according to formula (2.82), an exact knowl-
edge of ' and 60 is not required, since the member containing these
values is usually quite small in comparison to 6.

Finally, we wish to emphasize that the expression for a, given by
formula (2.89), is obtained in the assumption that there are two end
surfaces of contact (tangency) between the liquid and the bucket: namely,
at the bottom and on the lid. In case a single contact surface (bottom)
and a free surface of the meniscus are present, the coefficient Q,

2H
adjacent to the last addend in the right side of formula (2.89), must
be reduced two times (i.e., made 2 times smaller).
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9. Second Approximation for the Friction Function L.
High-Viscosity Liauids

The previously obtained equations (2.27) and (2.42) are quite
general and do not contain any limitations, except for physical premises
of the theory, which were formulated in # 1. Computing formulas for
calculating the viscosity of low-viscosity liquids were obtained as
shown in # 5-8. The limitations introduced for this purpose are ex-
pressed by the inequations (2.51) and (2.63).

L. S. Priss has presented a modification of the theory, adapted
to the problem of measuring the viscosity of high-viscosity liquids.
The material presented in # 9-10 is based on the work of L. S. Priss (4).

Let us retain the first approximation for the friction function
F L, expressed by inequation (2.51) and the resulting condition (2.52).
8 Consequently, L can be stilft expressed as before by means of the equa-8 tion (2.53), or in a different form, considering that rR2 • 2Hp = M and

8 (2.64):

J=2o,, -- -- 0 (2.92)

Let us discard for the time being the last term in this equation,
which corresponds to an examination of an infinitely long column of
liquid, and let us insert the corresponding expression ror L into equa-
tion (2.42). By discarding I and . in comparison with unity, and

q
taking (2.17) into account), we shall obtain the following expression
for the attenuation decrement (damv.ing ratio):

"Re 21rMR& (" 1 JO ((") 2 (2.93)
I K J,('i Oa If J1

where:

The dependence of 6 on t is illustrated in Figure 3 in relative
units.

Since V is inversely proportional to y, it can be seen from the
figure that the attenuation decrement approaches zero at small and high
values of v, reaching a maximum value when t = 4.3. This result is
quite upderstandable from a physical standpoint, since in the first
case the properties of the liquid are such that it approaches the state
of an ideal liquid, and in the second case, that of a solid body.
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By introducing the limitation C > 10, we examined the failing
part of the curve 6(t) and obtained formulas for low-viscosity liquids.
It is obvious that the use of this sector of the curve for measuring
high-viscosity liquids with a high value of v yields values of R or q
which are too high, i.e., results in practically unacceptable experi-
mental conditions.

The ascending part of the 6(t) curve is quite suitable for cal-
culating the viscosity of high-viscosity liquids. The statements made
above in regard to the shape of the 6(t) curve help to clarify the con-
cepts of a low- and high-viscosity liquid: the former corresponds to
the falling part of the curve, and the latter -- to the rising part of F
the curve. 8

At values of 101 < 1.2, the function J(0) can be expanded in 8

series according to the powers of 0:

_' 1 1-1 , - ) (2.95)J,()8 192 3072 46-080 ""

Then, (2.92) assumes the following appearance:

L M 1 P LP L+ r 2UA (2.96)
\4'96 m 1 53 6 ~ 23040 /

where:

U H a (2.97)

After separating in (2.96) the real and imaginary parts L' and
L", forming the expression L' + 2 L" and substituting this expression

q
into (2.42), by means of r.ther cumbersome calculations, it is possible
to obtain the following formula:

(K+M)0- KP MR' [I -3
SR- 2(2.98)
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4Y

in which all members smaller than 10-3 are dropped in the bracket. By
designating this bracket as a and replacing , V and q by periods and
decrements, we obtain the following equation for calculating the vis-
cosity:

0,8225 MR-.2 (2.99)
K + -K-

where:

a I 0,250AO 0,07689 - 0, 16 450 0, 49 24 R (2.100)

8 and:
Z = R2 (2.101)

When only one contact surface (liquid with a free surface) is
present, the last member in a must be reduced (made smaller) two times.

As previously, the calculation of v is performed by the method
of successive approximations: first, the rough value v = v* at a = 1
is determined, which is then substituted into a, and the iinal result
is obtained by means of the formula:

V =. (2.102)

The criterion for the applicability of formula (2.99) is:

=R 1.0 1,2,

or, otherwise:

MRS-I > 2,2, 
(2.103)

Equation (2.99) differs substantially in its structure from equa-
tion (2.82). According to the former equation (2.99), at small 6 values,
the viscosity is inversely proportional to the attenuation decrement; ac-
cording to the latter (2.82), the viscosity is directly proportional to
the square of the decrement. This difference is based on sufficiently
obvious physical reasons.
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As was already mentioned, formula (2.99) covers the range of
variation 0 < C 4 1.2, while formula (2.82) covers the range 10 4 t < co,
and thus, there remains a range of variation in the viscosity (on the
given instrument), which corresponds to values of t, lying within the
range 1.2 < t < 10. This range, naturally, can cie spanned not by one,
but by two instruments, having appropriately selected ro, K, R and Y
characteristics.

In order to narrow down this range, L. S. Priss performed a cal-
culation of L, by representing this value in the following form:

2MR'q ( ), t) + 4R Qt(x 1, (2.104)

where P1 (x, C) corresponds to the first addend in the right part of F
(2.92) and QI(x, t) -- to the second addend. Then, the formula used 8
for calculating v with the aid of tables, in case of friction surfaces 8
at the bottom and on the lid, assumes the appearance:

O"( - -1ao .)_ 5 _ a + H( 4R (2.105)

The values of factors a, b, c, d, e, corresponding to the range 1.0 4
&< 4.2, rdpresented not as functions of t, but as functions of the
parameter vi in order to make the calculations more convenient, are

R
listed in Table 2. Calculation with the aid of this table is performed
in the following manner: at first, the numerical value of the following
quantity is determined:

IOK( '8)±(2.106)

and then the two closest values of A1 and A2 (Al < A < A2 ) are found in
the table, after which Vi, corresponding to the found value of A, is

determined by linear interpolation. In this connection, one should be
guided by the fact that the value of A is mainly determined by factor a.
For this reason, prior to performing an accurate calculation, it is
necessary to mentally appraise which line in the table corresponds ap-
proximately to the calculated value of A; usually, this line is located
slightly above the line with a value of A = a. With a little practice,
a rapid finding of Al and A2 does not present any difficulty.

Let us give an example of such a calculation. We shall assume
that A = 4.230, 6 = 0.2405, i = 9.433 sec, 2H = 5.0 cm, R = 1.296 cm,
R2 = 1.680.
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Table 2

a b e d e

0 5,363 2,495 0, 49 0,233 0,264
0 5,357 2,455 0,101 0,244 0,264
037 5,349 2,415 0,103 0,255 0,264
0:38 5,339 2,375 0,105 0,266 0263
039 5,327 2,336 0,107 0,277 0,263
0:40 5,313 2,297 0,o10 0,287 o63
041 5,297 2,259 0,113 0,296 0,262
0:42 5,279 2,220 0,116 0,305 022

8 0' 5,259 2,182 0,119 0,314 0,261

8 0:44 5,238 2,144 0,122 0,322 0,261
0,45 5,216 2,107 0,125 0,329 0,260
0:46 5,192 2,071 0,128 0,336 0,260
0,47 5,167 2,034 0,131 0,343 0,29
0,48 5,140 1,998 0,133 0,349 0,256
0,49 5,113 1,963 0,136 0,354 0,257

5,085 1,928 0,139 0,359 0255
0,0 5,027 1,859 0,144 0.369 0,252
0,5 4,966 1,793 0,149 0,377 0,248

0,56 4,902 1,729 0,154 0,384 0,243
0,58 4,837 1,667 0,159 0,390 0,238
0,0 4,771 1,607 0,163 0,394 0,233
0,60 4,704 1,549 0,167 0,398 0,228
0,64 4,636 1,493 0,171 0,400 0,223
0,66 4,569 1,439 0,175 0,402 0218
0,68 4,502 1,388 0,178 0,403 0,213
0,70 4.435 1,339 0,181 0,404 0,207
0,72 4,369 1,292 0,183 0,403 o,202

0,74 4,304 1,247 O,185 0,402 0,197
076 4,239 1,204 0,186 0,401 0,192
0,78 4,175 1,163 0,188 0,400 0,167
0,80 4,112 1,123 0,189 0,399 0,182

0,82 4,049 1,085 0,190 0397 0,177
0,84 3,988 1,049 .0190 0,395 0,172
0,86 3,928 1,014 0,191 0,393 0,168
0,88 3,869 0,960 0,191 0,391 0,163
0,90 3,811 0,948 0,191 0,388 0159
0,92 3,755 0917 0,191 0,386 0,155
0,94 3,699 0,888 0,191 0,383 0,151
0,96 3,644 0,860 0,190 0,380 0,147
0.98 3,591 0,833 0,190 0,376 0143
1,00 3,539 0,806 0,190 0,373 0,140
1,04 3,438 0,759 0,189 0,366 0,132
1,08 3,342 0,715 0,188 0,360 0,125
1,12 3,250 0,674 0,187 0,353 0,118
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(Table 2 continued)

a b c d e

1,16 3,162 0,636 0,186 0,346 0,112
1,20 3,078 0,601 0,184 0,340 0,106
1,24 2,996 0,569 0,182 0,333 0,101
1,28 2,922 0,532 0,180 0,327 0,096
1,32 2,849 0,511 0,178 0,320 0,092
1,36 2,779 0,485 0,176 0,314 0,088
1,40 2,712 0,461 0,173 0,308 0,084
1,44 2,648 0,439 0,171 0,302 0,080 
1,48 2,586 0,418 0,168 0,297 0,076
1,52 2,527 0,399 0,166 0,291 0,073 8
1,56 2,470 0,381 0,163 0,285 0,070
1,60 2,416 0,363 0,161 0,280 0,067
1,64 2,364 0,347 0,158 0,275 0,065
1,68 2,314 0,332 0,156 0,270 0,062
1,72 2,266 0,319 0,153 0,265 0,060
1,76 2,220 0,306 0,151 0,260 0,057
1,80 2,175 0,293 0,148 0,255 0,055
1,84 2,132 0,281 0,146 0,251 0,053
1,88 2,091 0,270 0,143 0,246 0,051
1,92 2,051 0,260 0,141 0,242 0,049
1,96 2,012 0,250 0,139 0,238 0,047
2,00 1,975 0,241 0,137 0,234 0,046
2.05 1,930 0,230 0,135 0,229 0,044
2.10 1,887 0,220 0,132 0,224 0,042
2,15 1,847 0,210 0,130 0,220 0,041
2,20 1,806 0,201 0,127 0,215 0,039
2.25 1,770 0,193 0,125 0,211 0,037
2,30 1,734 0,185 0,123 0,207 0,036
2.35 1,700 0,177 0,121 0,203 0,034
2,40 1.666 0,170 0,119 0.199 0,033
2,45 1,634 0,164 0,117 0,196 0,032
2.50 1,603 0,158 0,115 0,192 0,030
2,60 1,545 0,146 0,112 0,186 0.028
2.70 1,490 0,136 0,109 0,179 0,026
2,80 1,439 0,127 0,105 0,173 0,024
2,90 1,391 0,119 0,102 0,168 0,023
3,00 1,347 0111 0,099 0,163 0,021
3,10 1,305 0,104 0,096 0,158 0,020
3,20 1,265 0,096 0,093 0,153 0,019
3.30 1,228 0,092 0,090 0,149 0,018
3,40 1,193 0,087 0.068 0,145 0,017
3,50 1,160 0,062 0,066 0,141 0,016
3,60 1,129 0,078 0,063 0,138 0,015
3,70 1,099 0.074 0,061 0,134 0,014
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(Table 2 continued)

vj. j a b C de

3,80 1,071 0,070 0,079 0,131 0,013
3,90 1,044 0,067 0,077 0,127 0,013
4,00 1,019 0,063 0,075 0,124 0,012
4,20 0,971 0,057 0,072 0,119 0,011
4,40 0,927 0,052 0,069 0,114 0,010
4,60 0,887 0,048 0,066 0,109 0,009
4,80 0,851 0,044 0,063 0,104 0,008
5,00 0,818 0,041 0,060 0,100 0,008
5,20 0,787 0,038 0,058 0,096 0,007
5,40 0,758 0,035 0,056 0,092 0,006
5,60 0,731 0,033 0,054 0,089 0,006
5,80 0,706 0,030 0,053 0,087 0,0067 6,00 0,683 0,028 0,051 0,084 0,006

8 6,20 0,661 0,026 0,050 0,081 0,005
8

In Table 2, we find the line in which a = 4.239 f A, which cor-
responds to a value of v T = 0.76. We note the'factors b and d on this

line: b6 ft 0.300, IQ d . 0.400. Consequently, in order to obtain the
2H

value of A which we are looking for, we must pick a line in which the
value of a is greater than 4.239 by approximately 0.100 (since b6 is in-
cluded in formula (2.105) with a plus sign, and ARd- with a minus sign).

2H
We select a line in which a 4.309, and we calculate A1 = 4.369 +
1.2926 - Q (0.403 + 0.2026) = 4.401.

2H
We have obtained A1 < A. Now, we have to find A2 > A. For this

purpose, we select the next line above and we get: A2  4.435 = 1.3396 +
0.181 62 - Q (0./404 + 0.2076) = 4.275. Values of V -, equal to 0.72

2H1 R2
and 0.70, correspond to the values of A1 and A2. From here, we find
the value of VT which we are looking for:

=,70+ 0,02 AA =,712 and .,=0,712L 0,127.
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10. Liouids With an Intermediate Viscosity Value

As can be seen from the curve shown in Figure 3, the sector of
the 6(t) curve in the interval of 4.24 t 4 10 cannot be used for cal-
culating v, first, in view of the weak dependence of 6 on v near the
maximum (peak), and second, in view of the insufficient accuracy of the
asymptotic representation of Bessel functions when t < 10.

Thus, the calculations described above cannot be linked (tied)
together. The above-mentioned discrepancy in the calculations, upon
which the calculation of the kinematic viscosity is based, apparently
is of no practical significance in view of the considerations listed
below. The intervals within which the viscosity varies, corresponding
to the regions 0.4 4 t 4 4.2 and t ? 10, are quite sufficient for
studying the vast majority of homogenous liquids, which are character-
ised in general by a weak temperature dependence of the kinematic vi8-
cosity. In case of a strong temperature dependence of the kinematic
viscosity, on the other hand (as for example, in the case of glycerine), 8
the region where a discrepancy occurs is sufficiently narrow and the
transition from values of C > 10 to values of t < 4.2 in the continuous
process of viscosity measurements makes it possible to solve in a re-
liable manner the problem concerned with the temperature dependence of
the kinematic viscosity.

However, in case of necessity, it is possible to rft up calcula-
tion tables also for the region of discrepancy of 4.2 < t< 10. We
shall briefly point the method used for solving this problem. Let us
take formula (2.45) and let us plot for this formula the graph T2  - 1 =

0
T(t), using the same assumptions as those used during the plotting of
the graph for 1(t). We have:

0- 1 L ' -I =f(E) (2.107)
00 + 0K %'

This value is presented as I function of t in Figure 3.
A comparison of the f(t) curve with the 6(t) curve shows that,

precisely In the region where 6 is not greatly dependent upon the vis-
cosity, 2 1 exhiuits a sharply expressed dependence upon V.

As was pointed out above, the use of formula (2.45) is connected
with the assurance that N is independent of the load (constancy of To
at a given K and various loads on the suspension thread) and with the
measurement of To over the entire temperature range in which the vis-
cosity is measured. When these conditions are fulfilled, the utiliza-
tion of formula (2.45) is quite analogous to the utilization of formula

(2.42).
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Let us represent (2.107) in the following form:

*1 2MR p( R Q X, )]

+JK [ (2.108)

and let us perform calculations similar to those which were performed
in connection with formula (2.105). As a result, we will obtain the
following relation:

___--__=___-____ 4R%2 fR + & . + +  18).
+1 S' I f1a1h +2H11 I) (2.109)

The factors f, g, h, j, 1 must be incorporated into a table similar to
F Table 2; the drawing of such a table represents a solution of the prob-
8 lem concerning the setting up of a calculating system for liquids with
8 an intermediate viscosity of 4.2 < t < 10.

11. Evaluation of the Role Performed by Nonlinear Terms
in the Euuation Describinz the Motion of the Liquid

It was pointed out in # 2 that the assumption of an annular mo-
tion of the liquid in the bucket, as a result of which nonlinear terms
are identically converted to zero, is valid in case of small angles of
the torsional oscillation motion of the suspension system.

Let us attempt to present a theoretical evaluation of the role
played by nonlinear terms in equation (2.4), upon which the theory of
the method is based. Let us write an equation for the tangential
velocity v, retaining the nonlinear terms, but considering at the same
time the axial symmetry of the motion, as a result of which the (p deriva-
tives of the pressure and velocity components must be converted to zero:

OV f 2 ~V 0V PVc IOVl_! (2.110)t +-'}- " F "+ V= S- a -+ • " T-t-'+" -r i r- 1'J

This equation differs from (2.4) in that it contains, in its left side,
a sum of nonlinmar terms:

Q = V + +(2.111)

In order to evaluate the partial derivatives entering into the composi-
tion of 8 and the ratio v, let us utilize the fact that the flow takes

r
place in a layer adjacent to the wall, having a thickness of the order
of the length L of a viscous displacement wave, whereby L is equal to:
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L -- 2x -, (2.112)

which is propagated at a logarithmic decrement of spatial attenuation,
equal to 2TT. (Note: See # 6 of this chapter and reference 3 in the
bibliography of this chapter.)

The expression for the tangential velocity on the walls of the
bucket is given by the boundary conditions (2.5) and (2.6), and during
the calculation of the partial derivatives, it can be assumed that the
change in the velocity from zero to its value on the wall of the bucket
takes place over a distance equal to the length of a viscous wave. On
this basis, by making use of (2.5) and (2.6), we find:

6 L ' IQRe- h-- Ir*- r _ - __re- (2.113) 8
O7Vr L L r8

8
By substituting R for r in the right side (which will only increase the
value of 0), and after introducing the designation:

' = 19 Re- kt , (2.114)

we arrive at the expression:

However, we should'not be interested in the value 0 itself, but
rather in its relation to 2v, which will be designated as 0'. We get:

- kv', (2.116)

and consequently:

Oe, 3 ( Re Vr' (| -') -+ V. (2.117)

By calculating the product Lk with the aid of (2.112) and by introducing
the parameter y according to (2.85), the latter expression can be re-
written as follows:

0' W _ '4__T " (2.118)

14 (- I50R
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It is natural to assume that components vr and vz have the same
type of time dependence as the main component v. Therefore, we can
write:

Vr -' . IV' (2.119)

where y is a numerical factor (multiplier), indicating how many times
the initial amplitude of the radial (and axial) oscillations is smaller
than the initial amplitude of torsional oscillations. By designating
the former as k0, and noting that the latter, according to (2.37), is
equal to cR, we get:

8 - -e  (2.120)
8

After inserting into (2.118), instead of vr and vz, their ampli-
tude values according to (2.119) and (2.114), and assuming that L ft R,
we arrive at the expression:

3-e-Ot 7% YP* (2.121)

in which, in turn, we shall replace the initial amplitude of the angular
velocity 0 by the initial amplitude of the angular displacement GO, by
making use of the obvious relation:

2 - (2.122)

after which we shall get:

t

2 V2(2.123)

Since measurements are always initiated after a certain number of
initial oscillations (regular regime), we can assume that:

3-- 0. 
(2.124)

and thus we obtain the following estimated expression:

S(2.'25)
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or, in a different form:

o V 1 (2.126)
R V 100 *

The values of y, listed in Table 1, lie within the range 100
y 3,500, which yields the following range for O' within the limits of
this table:

co'l 6' < 6<1. (2.127)

Thus, when y varies within the limits given in Table 1, the F
variation in the value of 8' does not exceed the limits of one order. 8
For this reason, one can be certain that if, at a certain value of y 8
within the limits of Table 1, the value of O' will be very small, this
value will not increase under any other value of y used in viscosity
measurement tests.

As was stated above, the concept of an annular motion of the
liquid in the bucket proves to be valid in case of small angles of tor-
sional oscillations cx < 1. It can be seen from formula (2.125) that
such a case takes place naturally on the basis of the above examination
of nonlinear terms. We can note that, assuming ft 0.1 (measured in
degrees f 60), we get Of = 0. irV i.e., it would be possible to as-

sume that even when I s 1f, e' remains sufficiently small in case of a
maximum value of y.

Finally, it is useful to recall the tests performed by Townend
and Fudge (5), in which it was established that, in case of a stationary
flow of the liquid, ultramicroscopic particles in the boundary layer
move along a trajectory (path) similar to a sine curve (the amplitude
of displacements in the direction of a normal to the wall was of the
order of 10-4 cm). If it is assumed that in our case, l 0 is of the
same order of magnitude, then we find that the maximum value of e' f
10-3 (assuming that R f 1).

In summing up the results of our analysis of nonlinear terms, we
can note that, first, when the components vr and vz are strictly equal
to zero, the ratio 8' is also strictly equal to zero. Second, the vari-
ation of 8' within the limits of Table 1, in case vr and vz are differ-
ent from zero, barely exceeds the limits of one order. Third, in spite
of the absence of direct data on vr and vz, indirect considerations
based on experimental observations confirm the small size of the value
8' under actual viscosity measurement conditions. An estimate of the
Reynolds number, described in # 5 of Chapter III, also speaks in favor
of this conclusion.
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12. Thickness of the Liouid Flow (Stream)
Adjacent to the Wall of the Bucket

As was already mentioned above, the development of the process
involving a viscous flow of the liquid in the bucket takes place in the
layer adjacent to the wall near internal surfaces. The thickness of
this layer, according to the order of its magnitude, is equal to the
length of the viscous wave, which can be determined by means of formula
(2.112). One can easily see that the following relationship takes
place:

L = }/r8R (2.128)

8
8 When R = 1 and 0.4 4 /Y < 60 (possible range of variation of y

within the limits of the methods developed for calculating the viscosity),
L may vary within the range 0.15 4 L., 22, where L is given in cm. When
the radius is reduced two times, the lower limit of L will be equal to
0.07 cm.

Thus the experimental possibilities of the method easily allow
the realization of various types of motion, starting with flows (cur-
rents) typical for wide pipes and ending with flows corresponding to
extremely fine (thin) capillary tubes.

On the other hand, by varying the initial amplitude of torsional
oscillations, it is possible to vary within wide limits the gradient of
the tangential velocity in the vicinity of the wall, the maximum value
of which is expressed by the formula:

du IoqR __o__ (2.129)

Obviously, new possibilities are opened up here for studying the
behavior of a moving (mobile) liquid near the boundary of a solid wall.
In case of large gradients of the tangential velocity, when an extremely
thin layer of liquid takes part in the flow process, the thickness of
which can be reduced to several microns (by exceeding the limits of
y > 3,00, as a result of the application of forced oscillations), the
possibility that a boundary slide (slip) may arise is not excluded.
The correct nnture of the consideration of such a problem in regard to
colloids is &enerally beyond douot, following the work done by D. M.
Tolstoy, who has demonstrated the existence of a boundary slide (slip)
during the flow of a colloid liquid through capillaries, and who has
given a number of interesting theoretical calculations related to this
problem (6).

In the absence of wetting, such a slip under appropriate condi-
tions appears to be quite probable also in case of uniform (homophase)
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liquids. If we attempt to explain this idea by using model terminology,
we can make the following statements. In the absence of wetting, the
liquid moves together with the wall as a result of the existence of an
interaction similar to dry friction. If the molecular friction forces
in the liquid, proportional to the velocity gradient, are small, then
the boundary layer of the liquid is restrained (held back) by the wall.
In case of large velocity gradients, the molecular friction forces can
exceed the forces of "dry" friction on the wall, as a result of which
a discontinuity of the motion characteristics at the liquid-wall bound-
ary will take place at the given motion velocity. Probably, in the
presence of wetting, a slip (slide) of the moving liquid in relation
to the wall is impossible in view of the high molecular adhesive power
between the wall and the liquid.

An increase in the oscillation frequency also opens up new pos-
sibilities for studying the viscous properties of a thin boundary layer F
of the liquid, including those of a surface film on the liquid. 8

A study of the problems mentioned above is of great interest 8
both from the standpoint of molecular physics and hydrodynamics. How-
ever, a more detailed examination of these proLlems lies beyond the
scope of the various problems which are directly connected with the
clarification of viscous properties of metallic liquids.

13. Conclusion on the General Theory of the Method

The experimental method for measuring the viscosity of liquids,
based on the observation of the torsional oscillations of a cylindrical
bucket filled with the liquid being tested, the theory of which has been
presented above, allows us (aided by several formulas and ,tablcs) to
cover a thousandfold change in the viscosity by means of one series of
measurements performed on a single instrument. The basic parameter of
this method is the value:

Y-yRI (2.130)

If ) 10, then the viscosity is calculated by means of formulas (2.82)
and (2.89) with the aid of Table 1 or Figure 2, whereby the approximate
value of the viscosity is determined by means of formula (2.82) when
a = 1. For the region where t < 4.2, in which a change in the attenua-
tion decrement with a change in viscosity has a reverse character to a
change in the period, the viscosity is calculated by means of formula
(2.105) with the aid of Table 2 (when 1.2 4 t 4 4.2) and equations
(2.99) and (2.100) (when t < 1.2), when the approximate value of the
viscosity v* is determined by means of the same equation (2.99), in
case 1.
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In the region where 4.2 < < 10, no calculating system for
processing direct experimental results has been developed, since no
practical need for such a system has arisen so far.
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Chapter III

Theory of the Method (Continued)

1. flotting of T(E) and T() Curves

Let us consider in greater detail the problem of plotting the
6(e) and f(t) curves shown in Figure 3. We shall start with expression
(2.93) for 8(t), which we shall rewrite in the following form:

(t) -- R--e F- ) (3.1)
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where:

P ITjoe a if7) (3.2)
vJ(o if 7)

Expression (2.107) for the function:

M3- 1 f M (3.3)

will be written by us as follows:

M)=- I Im (L). (3.3')

8
By making use of (2.92) and adopting the same conditions under which 8
(2.93) or (3.1) were obtained, equation (3.3) can be represented in the
following form:

2MW3 (3.4)
f (6) = - Im (P).

The argument of Bessel functions will be written by us in a trigono-
metric form:

t/'7 = 4 ( +i)= te , (3.5)
Y-5-

and then F will assume the following appearance:

if Lo(e e ). (3.6)

VI (to 4)

Let us assume that:

JO(t.' 4 = A +18, (3.7)

=C+LD, (3.8)
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With the aid of these expressions, F can be written as follows:

P= V'[AC +BD+I(BC-AD)] (3.9)~C2 + D2

and by replacing:

Y7= ,+L (3.10)

we shall finally find the following formula:

8 P [(AC +BD)+I(BC- AD)] (311)8 t!' (C2 + D)
8

From here:

Re (P) = I AC+BD-BC+AD (3.12)
V-2 t (C2 +t D3)

1 AC+BD+BC-AD (3.13)Im()- )r- 9 (CV + D3)

By substituting the expressions for Re(F) and Im(F) found in this
manner into (3.1) and (3.4), we shall obtain 6() and f(). A, B, C
and D are listed in tables as functions of t (1).

The graphs shown in Figure 3 represent an image of the functions
found in this manner on a relative scale, designated as W(C) and f( ),
when the maximum values of 6(4.3) and f(O) are adopted as unity.

We will also be interested in an asymptotic representation for
f(t), which can be used in case of high t values. In this case, ac-
cording to (2.66) and (3.2), we will obtain the following formula:

from where:

Ir(M )= -1 (3.15)

and consequently:

2MfR2 1 (3.16)
l K 57"
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In order to coordinate the numerical values of f(t) with Figure 3, we
shall write:

f(t)= P.7(t), (3.17)
where. the constant E depends upon the scale of the dkawing and is de-
termined as a result of the combination of f(t) and f(t) at the point
wheret = 10:

2-R. =E. 0,277. (3.18)

Consequently:

E= 2MR3 0 2 5 6  (3.19) F

K _ 8

Thus, we have: 8

(=2MR . 0,2561(t) (3.20)
K

Let us examine the asymptotic expression for 6(t). From (3.14),
we will find:

Re(P) =- + -(3.21)

and by substitution into (3.1), we will get:

WWI 1 3 %3.22)

By comparing it with (3.16), we can see that the last expression
can be written in the following form:

() = - ) 1 W .(3.23)

In order to coordinate the numerical values of 6(t) with the
ordinates of the graph (Figure 3), we shall write:

- 58 -



jY

where the constant G depends upon the scale of the drawing and is de-
termined from the combination of 6(e) and 6(&) at the point where
= 10. Consequently:

2MR 1 [1 3 •vcMR 0,056  0 o 0,65. (3.25)
K 0 o 20 K O

From here:

S-- 0,086 • -MR (3.26)

F
8 and finally:
8

S0,0869 (E). (3.27)
K

Formulas (3.20) and (3.27) may be used in making a rough esti-
mate of the oscillation period and attenuation decrement of the sus-
pension system.

2. Rame of Variations in the Viscosity
Which Can Be Investigated

Let us determine the maximum range of variations in the kinematic
viscosity which may be investigated with one instrument in a continuous
experiment by using the calculating system of the theory developed above
(Tables 1 and 2 with the corresponding formulas, and formula (2.99)).

The maximum value of y, listed in Table 1, is equal to ya = 3,500
( a = 59). As a minimum value of y, up to which it is possible to con-
duct measurements, we shall adopt a value corresponding to &b = 0.4,
i.e., yb = 0.16. Consequently, the values of y will lie within the
range:

A -< Y < Y.. (3.28)

According to formuia (2.85), corresponding to the inequation (3.28),
the range of variat 4 ons in the kinematic viscosity will be determined
by the inequation:

R" <R 2x (3.29)

'o4ya %bYb

or, by adopting the minimum value of the kinematic viscosity as unity,
this inequation can be written in relative units as follows:
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'eI- (3.30)
-bY b

From formula (3.3), we get:

IC YTT-(o) O' (3.31)

Consequently, (3.30) can be rewritten as follows:

1 < l I + V' i)fea)Y:. (3.32)

Assuming, as was statedabove, that y = 3,500 and yb = 0.16, and se-
lecting from the graph f(b) f 1 and from expression (3.16):

f(..) = o,o12 - ! (333) F
K' 8

8
we find:

1 +, 0 1 2 2MRI

K V K 3500 (334)
I +02562MR' 0,161+K,256

The two extreme cases occurring here:

0,256 2,R_ << 1 (3.35)

and:

0,012 -MM >> l (3.36)
K

lead to the inequations:

1I < v 22000 (3.37)

and

1 4750. (3.38)

Thus, the range of variations in the viscosity, which can be
measured on one instrument, is determined in a continuous experiment
by the value of the expression 2R 2.

K
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The following range of variations in the kinematic viscosity
corresponds to the intermediate region where 4.2 4 . 4 10:

R2 2c _ ,' V RD 21 (3.39)

/1 + f(lO)" 100 < /YI +f( 4 ,2 )'y %18

or, when expressed in the previous relative units:

Y/'I +fV 1+f(59).3500 (3.40)

i/'I1+.-60) • 100 )f'I +f(4,2). 18

By substituting numerical values of f, we gpt:

1 + 0. 012 2_M _ 1 + 0,012 -- -

K~ K (.1

F 2MRS .194.
8 1+0,071 /K /1+0,166-

8
in the approximation of (3.35), for the intermediite region not being
calculated, we have:

35 v < 194 (3.42)

and in the approximation of (3.36):

14 < v < 52. (3.43)

Naturally, all this calculation has an approximate character,
since it does not take into account the friction on the bottom and lid
of the bucket.

In view of the fact that the above calculation was performed in
relative units (the viscosity, corresponding to a value of y = 3,500,
was adopted as unity), this calculation obviously refers merely to
this particular instrument. For this reason, the kinematic viscosity
values corresponding to each of the three regions may vary within a
wide range, if the parameters of the suspension system, R, To, and K,
are varied accordingly.

During the study of liquids, the viscosity of which varies with
the temperature several score of thousands of times, the intermediate
region cannot play a significant role in view of the fact that it is
relatively narrow. If, however, the kinematic viscosity changes slowly
with the temperature, as is the case for the majority of metals, it is
not difficult to select the parameters of the unit in such a way as to
avoid this region.

By using the torsional-oscillation method, one can observe how,
during the process of a uniform change in the viscosity, the attenuation
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decrement of the suspension system travels (passes) through a maximum.
The theory of the method makes it possible to calculate the viscosity
both on the ascending and descending (rising and falling) branches of
the decrement curve, but of course with the aid of different mathe-
matical relations which were mentioned above.

3. Height to Which the Bucket Can Be Filled With Liauid

According to the first approximation for the friction function,
inequation (2.51) must take place, which, after multiplication by R of
the right and left side with the aid of (2.47) and introduction of
according to equation (2.94), can be rewritten in the following form:

H S )r
RW+6 2+j (3.44)

where: 8

8
x* -- ,R (3.45)

represent the roots of the characteristic equation (2.19)% Obviously,
the right side of (3.44) exhibits a maximum value at a minimum of the
following function:

(x.:' -L vs)± + (3. 46)

The solution of the corresponding extreme problem, involving a
discarding of members of the order of (6)2 in comparison with unity,

iT

leads to the result:

- (3-47)

After substituting (3.47) into (3.46), we get:

= 2. (3.4$)

Consequently, the maximum value of the right side of inequation (3.44)
is equal to s . Thus, (3.44) will be fulfilled if:

Xn

H. S (3.49)

- 62 -



,The values of xn increase as n increases, and the first of these
values is equal to 3.83 (see in the table the values of roots of Bessel
functions). Therefore, if inequation (3.49) is fulfilled in case of x1,
it is also fulfilled in case of any values of n > 1. Consequently, the
condition of a first approximation for the friction function (2.50) will
be fulfilled, if:

H. S (3.50)

By adopting the extremely strict (rigid) requirement s = 5, we
will get the following condition for the total height 2H of the liquid
colurn 1: the bucket:

8 2H > 2,6R, (3.51)8

the fulfillment of which will guarantee a total attenuation (damping)
of viscous waves during their propagation from the bottom to the lid of
the bucket (and in the opposite direction). Let us recall that, accord-
ing to # 5 in Chapter II, the equality th#nH = 1 in this case proves to
be true (correct) with an accuracy of up to 10-4, and the presence of a
free surface, or the contact of this surface with the lid of the bucket,
is taken into account by doubling the corresponding factor in the ex-
pressions used during the calculation of the viscosity (see formulas
(2.89), (2.100), (2.105) and (2.109) in # 6 of Chapter II).

By adopting s = 3.5, we will get:

2H > 1,85R, (3.52)

and the equality tkhdnH = 1 will then be fulfilled with an accuracy of
up to 10- while the amplitudes of viscous waves in the medium plane
of the bucket (half-way of the total height) will be equal to 0.02 of
these values at the bottom and on the lid of the bucket. In case of
such an assumption, the structure of the formulas just mentioned will,
naturally, not be disturbed (violated), since it is obvious that vis-
cous waves, propagated from the bottom and from the lid, will not be
able to affect the distribution of velocities near the opposite sur-
faces. Therefore, inequation (3.52) can be considered sufficient
(satisfactory?) from an experimental standpoint.

4. Sensitivity of the Instrument to Viscosity Changes

By disregarding the term containing 60 in equations (2.82) and
(2.99), and taking the logarithmic derivative, it is easy to obtain the
following relations:
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S (3.53)

for low-viscosity liquids, and:

AV~ (3-54)

for small values of in the field of high-viscosity liquids.
Since in the first and third regions (see Note) of Figure 3, the

character of the dependence between the decrement and the viscosity is
identical, it is possible to state that the dependence of the attenua-
tion decrement upon the viscosity is the greater, the higher the
value of this decrement at the given viscosity (Note: Further in the P
text, for the sake of brevity, we shall use the terms "first, second 8
and third regions," respectively, to designate the regions of low- 8
viscosity, high-viscosity and intermediate viscosity liquids according
to Figure 3).

Let us designate as sensitivity of the unit the factor adjacent
to A in formulas (3.53) and (3.54); this factor is equal to -6 in the

V
first region and 6 in the second region (in case of small & values).
This means that a change in viscosity of 1% causes a change in the de-
crement of 1/200 6 in the first case, and a change of 1/100 6 in the
second case. Since 6 usually does not exceed several decimal fractions,
it is apparent that special attention should be given to a careful meas-
urement of decrements during the course of an experimental determina-
tion of the viscosity.

A different and more general approach can be used in analyzing
the sensitivity of the unit. By assuming that 6 is a complex function
6&(v7, the following formula can be easily obtained with the aid of
expression (2.94):

1 d A (3.55)

and, consequently, the sensitivity e(&) of the unit, i.e., the magnitude
of the change in the decrement in case of a change in the viscosity of
1%, will be determined by the relation:

.(3.56)

According to formula (3.27):
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A 2%MRI .0, 86A!) (3-57)

Since:

(4,2)= 2wMR .• 0,086 = am (358)
K

represents the-maximum value of the decrement, corresponding to the
vertex of the 6Z) curve, where 6 = 1, the expression for the sensi-
tivity can be written as follows:

I (3.59)

The derivative ) is selected directly from the curve shown in88 dt
8 Figure 3.

Let us assume, for example, that 6m = 0.400. Let us find the
sensitivity at the point wheret = 10. From the graph, we get dW(10)

dt
- 0.06, and from here e(10) f 0.1. Consequently:

O, 1-t (3.60)

i.e., a change in viscosity of 1% results in a change in the decrement
of 0.001.

Jor the medium portion of the second region in Figure 3, we find
that d6 and therefore in the point where = 2, the sensitivity

E(2) t - 0.16; consequently, when the viscosity changes by 1%, the de-
crement will vary by the value A6 f - 0.0016.

The above calculations show that decrements should be determined
with an accuracy of up to the third or fourth significant digit.

From the appearance of the curve shown in Figure 3, it follows
that d6 undergoes a change opposite to that of t, so that their product

d
can be considered as a value which does not vary to a great extent. For
this reason, the sensitivity is determined mainly by the value of 6m.

Nevertheless, this does not mean that one should strive to secure
the highest possible values for the attenuation decrement. A twofold
reduction of 6m will also result in a decrease of the sensitivity by ap-
proximately two times. Therefore, in order to detect a change in vib-
cosity of 1%, it will be necessary to secure an accuracy in the deter-
mination of the decrement, equal, for example, to 0.001, instead of the
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previously required accuracy of 0.002. In regard to experimental dif-
ficulties, these two cases are equivalent. However, in the second case,
when the decrement is two times smaller, the system will be present in
a state of oscillation for a considerably longer period of time, will
perform a greater number of oscillations, and will undoubtedly assume
the state of a regular regime. Under these conditions, one can be cer-
tain that the decrement is really measured in a regular oscillation
regime, and that this decrement is not distorted under the action of
the initial state. In the first case, however, when the attenuation
decrement is twice as high, the oscillations of the system will be
damped much more rapidly, and the system will be able to perform such
a small number of oscillations until it comes to a complete rest, that
it will be necessary to introduce the first or second deviation of the
system from an equilibrium state into the calculation of the decrement.
It is clear that the decrement values measured in this case can be dis-
torted under the influence of the initial state.

In practice, it should be possible to skip four or five oscilla-
tions of the system, and then to have a sufficient number of oscilla-
tions available for a reliable determination of the decrement.

5. Condition Specifvinr the Absence of Turbulence

During the course of measurements, no turbulent movements should
arise in the liquid, which are caused by torsional oscillations of the
bucket. In order to estimate the appropriate condition, let us calcu-
late the initial (maximum) amplitude of the angular velocity of the
liquid in the bucket in relation to a fixed coordinate system.

By designating, as was done previously, the angular displacement
of the bucket as c', we get:

a= ' - cos qt (3.61)

from which the initial amplitude v0 of the linear velocity of liquid
particles, adhering to the surface of the bucket, can be expressed as
follows:

= R 03+ q, qx't ) (3.62)
q

or, with an accuracy of up to x2 "

2za R (3.63)

By adopting in the Reynolds parameter, as a characteristic dimen-
sion, the length of a viscous displacement wave L f 2 - (see Note),
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and by designating the critical value of the Reynolds parameter at
which-a turbulence arises as Recr, we get the following inequation:

V Tit- (3.64)

(Note: In the same way as in the case of a plane temperature wave.
See reference 3 in the bibliography of Chapter II.)
By introducing again the parameter y = R2 2n, we get:

Re.,. (3.65)

An evaluation of the critical value of the Reynolds number is
7 difficult in our case; however, we can adopt as Recr a number correspond-

ing to the axial flow along a pipe. In this case, the latter inequation
8 will assume the following appearance:

, 1000 (3.66)

This condition makes it possible to estimate the initial angular dis-
placement of the bucket, at which the absence of any turbulence will be
guaranteed. It was found that, even in case of very high y values
( 4,000), the initial amplitude may amount to several radians and that
a turbulence does not arise in this case.

6. Value of the Initial Amplitude

The amplitudes of the oscillations of the bucket must be small.
From the motion equation (2.30), we can see that this condition is con-
nected, specifically, with the maintenance of a proportionality of the
restoring elastic moment and the deformation of the wire. In other
words, the deformation of the suspension wire during torsion must lie
in the region of Hooke's law. This fact determines the condition which
the wire material must fulfill. If we designate the length of the wire
as Z, and its diameter as d, then the maximum value of the relative de-
formation q during the course of oscillations:

(3 *67)

should not lie outside the scope of Hooke's law.
Naturally, it is not difficult to examine the problem of oscil-

lations of the bucket in case of a quadratic dependence between the
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force and the deformation, especially if we take into account the ob-
vious small value of the corresponding correction, although this is not
indispensable.

It is more correct to simply check, on the assembled instrument
filled with the liquid, the independence of the attenuation decrement
from the amplitude. By means of such a check, it is also possible to
establish other possible sources of deviation from the theory of the
method, according to which there must be an independence of the decre-
ment from the amplitude, provided the viscosity factor itself remains
constant during the oscillation process.

7. Conditions Causina the Appearance of Convection Inside the Bucket

During the measurement of the temperature dependence of the vis-
cosity, convective drifts may arise in the liquid, which are caused by F
a nonuniformity of the temperature field. 8

If the convection has a laminar character, then only additional 8

components of the velocities vr and vz may show up in the hydrodynamic
equations. It can be easily seen that the moments of friction caused
by these velocities cannot affect the torsional-oscillation motion of
the bucket, since the attenuation decrement is determined only by the
component of velocity v, which remains constant during the appearance
of a laminar convective drift.

Two different types of experiments were set up in order to con-
firm this fact. In the first group of tests, the liquid was heated at
a noticeable speed. In comparing the decrement values obtained in this
manner with the values found during a stationary thermal state, it was
found that the former are characterized by a greater random error, but,
in regard to the general temperature dependence, can be fitted well on
the curve obtained during measurements in a stationary thermal state.
The second group of experiments consisted in placing a small bucket
filled with fused metal in different zones of a long tubular furnace,
characterized by a different value of the axial temperature gradient.
In all cases, measurements were performed during a stationary thermal
state. It was found in this case that the value and temperature de-
pendence of the decrement remained constant.

Thus, the absence of an effect of a laminar convective drift on
the value of the attenuation decrement of oscillations can be con-
sidered as an experimentally established fact.

However, it is possible to assume that a turbulent convective
drift is capable of causing a change in the value of the decrement.
For this reason, one should strive to achieve a maximum uniformity of
the temperature field through the entire mass of the liquid being
tested.

Conditions for the appearance of convection in a metallic liquid
are extremely favorable. In the theory dealing with heat exchange, free
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convection is usually characterized as the product of Prandtl's parame-
ter:

Pr= (3.68)r=T'

where k is the thermal diffusivity of the liquid, and Grashoff's parame-
ter

Or = gm "AT (3.69)
'V2 I

where g is the gravity acceleration, I is the characteristic size, AT
is the characteristic temperature difference, and 0 is the volume coef-

F ficient of thermal expansion, i.e., the free convection is described by
8 the following parameter:
8

Pr. Gr= g' AT S (3.70)

Here, only the following value is determined by the properties of the
liquid:

(3.71)
Vk

In case of fused metals, 0 f 10-4. The product vk decreases with the
temperature. No experimental data on the thermal diffusivity of metal-
lic liquids are available. Therefore, we shall use values of k in the
solid phase in the vicinity of the melting point (2). We can adopt
k w 10-1. As the kinematic viscosity of fused metals, we can use the
value v p 10-3. From here, we get:

S' 1. (3.72)

It should be noted that Prandtl's parameter for metallic liquids is
approximately 100 times smaller than for air, and is of the order of
10-2.

Thus, the expression for S in case of metallic liquids can be
written in the form:

S l-IOSPB A T. (3.73)

If I is assumed to represent the height of a liquid cylinder in the
bucket (I = 2H), and AT the temperature difference corresponding to
this height, then the latter expression can be written as follows:
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S -, lO'HSAT, (3.74)

or finally, by assuming, as is done in most tests, that H - 1, we get
as a final result:

S; 10'. AT. (3.75)

This result indicates the extremely favorable conditions for the ap-
pearance of convection in a metallic liquid filling up the bucket, and
consequently, the necessity of securing to a maximum possible extent a
uniform temperature field in the working portion of the furnace.

An overheating of the upper lid of the bucket in relation to the
temperature at the bottom of the bucket constitutes a natural obstacle
for the appearance of convection. Such an overheating should always be F
provided during viscosity measurements of metals, especially in view of 8
the fact that this measure is required in order to avoid the condensa- 8
tion of metal on the lid of the crucible when working in a high vacuum
(see # 12 of this chapter).

8. Influence of an Off-Centering of the Suspension Device

The calculations upon which the theory of the method is based
have been made in the assumption that the thread of the suspension de-
vice coincides strictly with the axis of the bucket. However, when the
suspension system is assembled, it is possible that the point where the
thread of the suspension device is attached to the bucket is shifted
in relation to the bucket axis. Such a position will be designated by
us briefly as off-centering, and the value of the shift R will be
adopted as its quantitative characteristic.

The theoretical calculation of the effect exerted by an off-
centering on the value of the logarithmic attenuation decrement and the
oscillation period appears to be very difficult. For this reason, spe-
cial tests were set up for a quantitative determination of this effect.

The study was conducted with a bucket having an internal diameter
R f 1 cm, containing mercury filled to a height of 2H = 4 cm (test No. 1)
and 2H = 2 cm (test No. 2); in addition, a light metal disk was attached
to the bucket in test No. 1 in order to ih crease the oscillation period
of the suspension system.

The values of the attenuation decrement 6 and of the oscillation
period T were expressed approximately by the following figures: in test
No. 1, 6 a 0.2 and T f 2.5 sec, in test No. 2, 6 f 0.4 and T a 1 sec.

The results obtained during these tests are shown in Figure 4.
The logarithmic attenuation decrement and the oscillation period,

in case of a relative off-centering &, are designated as 6(2) and
R R
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respectively. Along the ordinate axis, the values 6(A_) and
R

are plotted in percent, and refer to the first and second

tests (marked by corresponding symbols):
The value of the off-centering AR-in an accurately designed in-

strument must not exceed several decimal fractions of a millimeter, i.e.,
AR should hardly exceed 5%.
R

From Figure 4, it can be seen that, in case of an off-centering
of' such a magnitude, the relative variation of 6 and T lies within the
limits of usual measurement errors. Moreover, it was found that, even

F when the relative off-centering amounts to 25%, the variation of 6 and T
8 apparently does not exceed 1%. It is obvious, however, that an off-
8 centering of such magnitude is not permissible and should not take place

in viscosity measurement tests.
If we consider that both tests refer to very different condi-

tions, we must conclude that, in case the design of the suspension sys-
tem is sufficiently accurate, the off-centering which actually takes
place is incapable of introducing a noticeable error into the experi-
mental results. The physical reason for this important fact lies in the
dynamic stability of the oscillating motion of the suspension system.

9. Measurement of the Moment of Inertia of the Suspension System

An important element in the measurement process is the correct
determination of the moment of inertia of the suspension system K. As
is known, an accurate determination of this value is far from being an
elementary experimental problem. A determination of K can be con-
veniently performed by means of the following two observations of the
oscillation period of the suspension system: in case of an empty
bucket without any kind of additional load -- 7 and oscillation period
r' of the suspension system, loaded with a standard load having a known
moment of inertia K'.

The standard must be light in comparison to the empty system, in
order that both measurements of the oscillation periods should be per-
formed under identical thread load conditions; at the same time, it
should possess a sufficiently large moment of inertia, in order that
the oscillation periods To and T' should greatly differ from each other.
For this reason, it is convenient to design the standard in the form of
a thin and light disk with a large radius.

The following obvious formula is applicable to K:
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K'- (3.76)

which is obtained in the assumption that the rigidity factor of the
suspension thread N remains constant.

10. Determination of 60 (t) and To(t)

The calculating formulas include the attenuation decrement and
the oscillation period of an empty system 60 and To. Both of these
values depend upon the temperature. This is so, because the suspension
thread may become heated, and its elastic properties may vary during the F
course of the test, and also, in view of the fact that the viscosity 8
of the gaseous medium surrouning the bucket increases with the tempera- 8
ture. Consequently, the above-mentioned values must be measured over
the entire temperature range in which the viscosity is measured.

It is necessary to recall that, when using the calculation meth-
ods applicable to low- and high-viscosity liquids, an accurate (exact)
knowledge of To and 60 is not necessary, since these values only form a
part of the small correction term. On the contrary, in case of liquids
with an intermediate viscosity, T enters into the dominant term of the
viscosity expression and therefore must be measured accurately over the
entire temperature range in which the viscosity is investigated.

Let us consider the problem of determining 60 and To, on the
basis of the requirement for obtaining the exact value of these magni-
tudes.

From equations (2.41) and (2.43), we get:

Le-4 (3.77)

c= 2w rW (3.78)

Here, L0 and N are functions of the temperature t.
In order to increase the measurement accuracy of 60 and To, it

is advisable to perform an auxiliary test, which consists in the follow-
ing: after placing into the bucket a solid sample with an axial moment
of inertia K" and creating in the unit a gas pressure similar to the one
present during the measurement of viscosity, the temperature dependence
of the attenuation decrement and of the oscillation period is measured.
Let us designate the values obtained in this manner as 6%(t) and T'(t).
Then from formulas (3.77) and (3.78), by means of an obvious transforma-
tion, we will obtain the necessary values of 60 (t) and To(t), correspond-
ing to the moment of inertia K, namely:
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t +_K11 (3.79)

These values must be incorporated into the calculating formulas
used for calculating the viscosity. A typical temperature dependence
of 60 is illustrated in Figure 5.

To

11. Calculation of the Attenuation (Damoirg) Decrement

The constancy of 6 in a given series of oscillations was fre-
F quently confirmed during tests.
8 The calculation of decrements can be performed by means of the
8 obvious formula:

f A'

where f is the number of oscillations in a given series, and AO and A£
are the initial and final amplitudes. The relative error in the deter-
mination of 6 according to this formula is equal to:

AA0 +AAf
at _ o A_ (3.82)

At

i.e., this error is mainly determined by the error in the final ampli-
tude Af and by the ratio AO, but does not depend upon the value of 6

f,
and the oscillation number f.

The calculation of 6 by means of formula (3.81) coincides with
an accuracy of up to 0.5% with the value of the decrement, calculated
by the method of least squares. The general theory of the method of
least squares gives the following formula for the calculation of the
logarithmic decrement (see Note):

S(f In Ai- 2 tin Ai (3.83)

=O - =
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(Note: This formula can be derived as follows. Let us assume
that the theoretical dependence between the logarithm of the amplitude
and the oscillation number has the following appearance:

InAim InA 0-1,

where i = 0, 1, 2, 3 ... , f. If the measurements were absolutely exact
(accurate), then this equality would be strictly fulfilled. However,
the experimental values of the logarithms of amplitudes contain a cer-
tain error, and therefore we will have the following, instead of the
equality written above:

In A - In A + St = v.

e shall require that the sum of the q'ures of deviations: F

i~r 8
V = (in A4 - In ,4o 81) = f(In 4, 8) 8

will be a minimum. We shall then have: Of .0 and Of-0 These

equations are designated as normal equations of the method of least
squares. The number of such equations is always equal to the number of
unknowns (in this case, there are two such equations, corresponding to
ln A0 and 6). Since:

4=o

i=0

from the normal equations, after excluding in AO, it is easy to obtain:

where summation extends from i = 0 to i = 1.
It is known that:

=f(f- 1) (fI)f( 2 f+ l)
i=O i=O

and from here we obtain formula (3.83).)
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6Y

During calculations, the following diagram of arrangement of op-
erations may be conveniently used. The following table is drawn up:

I In Aj i InAj

0 In An 0
1 In A1  I • In A,
2 InA 2.InA2
3 In A 3 In As

in Af

8 We find the sums P= InA and Q=YtInA t  and we draw

up the expression fP - 2Q= D. Then:

(11)6D (3 84)(.f+ 1) [(Y+ 0)3- j]

12. Accounting for the Condensation of Liquid
on the Lid of the Bucket

In tests conducted with a free surface of the metal under a
pressure of 10-  to 10-3 mm mercury column, individual liquid droplets
may sometimes be formed on the lid of the bucket. Apparently, this is
accompanied by a reduction in the mass of the liquid M with a simul-
taneous increase in the moment of inertia K. Naturally, this fact, if
it takes place, requires the introduction of an appropriate correction
into the viscosity values, calculated from the initial value K.

R
Let us consider first the field of low-viscosity liquids. The

approximate expression for the viscosity according to (2.82) can be
written in the form:

K2 (3.85)

uhere 01 is independent of K and M. By making use of the identity:

dv OV Ov dK (3.86)i- = -I- + RK" dM

we get:
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dv 2K 2  2K dK (3.87)
+ WM

However:

dK= -- R. dM (3.88)
2

(the increase in the moment of inertia takes place at the expense of a
reduction in the mass of the liquid). Consequently:

d, 2 R (3.89)

d M M " ' -- K " -up 8

where V0 is the viscosity value calculated from the initial value K. 8
T

Thus, the true value of the viscosity V 0 + dv is expressed by the fol-
lowln' relation:

V = 10+6 = vo[ I ( +±R) dM]. (3.90)

During the course of transition of the liquid from the bulk mass
M to the lid of the bucket, dM < 0. Consequently, the true value of
the viscosity will exceed the value calculated from the initial K by the

M

following quantity:

where ldMlis the absolute value of the mass of the liquid, which has
collected in the form of droplets on the lid of the bucket.

For liquids with an intermediate viscosity, we have approximately,
according to (2.45) and (2.73):

_0__MII (3.92)

or, in a different form:

%3 -1 I- M (3.93)

This formula can be written in the following form:
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ly= Ks
Ai 08,(3.94)

where 03 is independent of K and M. The equation obtained in this man-
ner is similar to (3.85) in that respect that the viscosity is also
proportional in this case to .12. Consequently, equation (3.90) can

142
also be used in the third region.

For high-viscosity liquids, in case of small ' values, one can
write according to (2.99):

M
+AK )!. 2 (3.95)

F2
8 where 02 is independent of K and M. By making use of the identity
8 (3.87), we get:

am (3.96)

or:

=, NdM (3.97)
M

and finally:

V = O + ) -(3.98)

Consequently, in contrast to the first two cases, the true value
of the viscosity in this case is smaller than the value calculated from
the initial value l (dM < 0).

M
Such a difference in the effect of condensation is due to the

shape of the curve shown in Figure 3 and can be readily explained from
a qualitative standpoint.

The condensation of metal vapors on the internal surface of the
lid of the bucket will be the more intensive, the higher the vacuum and
the greater the overheating of the free surface of the fused metal
in relation to the lid of the crucible (bucket). However, it is possi-
ble that, in spite of the absence of a condensation on the lid of the
bucket (as a result of a certain overheating of the lid in relation to
the fused metal), the experiment will have to be interrupted in view of
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the condensation of metal vapors on the mirror and on other parts of the
optical system in the unit. A hermetic sealing of the bucket or the
conduct of the test under an inert gas pressure represents a logical way
of overcoming this particular difficulty.

Thus, metal evaporation exerts a negative effect in the following
two directions. First, the mass of the tested metal and the moment of
inertia of the bucket both undergo a change. Second, a reading of oscil-
lation amplitudes may be impossible as a result of the condensation of
metal on parts of the optical system of the unit.

In order to get a clear idea of the measures used for combatting
the above negative aspects of evaporation, let us examine in greater de-
tail the processes of metal evaporation and condensation.

The evaporation rate of a metal is expressed by Langmuir's well-
known formula:

=P If -T, (3.99)

where m is the evaporation rate in g/sq cm.sec, P is the vapor pressure
of the evaporating metal in dynes/sq cm, M is the atomic weight (in
case of a monoatomic vapor), R = 8.315 • 10- 7 erg/degree • mole is the
gas constant, and T is the absolute temperature.

The pressure of metal vapors P in mm Hg can be represented by
the following empirical equation:

A (3.99')
Ig P -- _ Ig T+C.

A table listing the values of factors A, B, C for different metals is
given in a monograph published by S. A. Vekshinskiy (3).

A curve showing the evaporation rate of bismuth from a surface
of rR2 = 3.14 sq cm is given in Figure 6.

If we start from the assumption that there is no reflection of
metal atoms from the lid, then the curve shown in Figure 6 allows us to
make certain statements on the rate of metal condensation on the lid
(of course, only in case of a stationary distribution of the vapor
density in the clearance between the free surface of the metal and the
lid).

Figure 7 illustrates the possible condensation rate on a surface
-R2 = 3.14 sq cm at different temperatures and temperature differences
AT z T - T' between the metal T and the lid T'. From Figure 7, it can
be seen that, in case of the assumptions made above, the condensation
rate is quite high. It is obvious that the presence of a foreign
(extraneous) gas between the metal and the lid will form a serious ob-
stacle to the establishment of an equilibrium condensation of metal
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vapors in the clearance, and consequently, under these conditions, the
actual' condensation rate will be much lower.

However, radical struggle with condensation must consist in
securing a higher rate of condensation from the lid than from the free
surface of the metal, and this is possible only in case T' > T, i.e.,
there must be an overheating of the lid in relation to the metal.

It is precisely this condition which must be achieved during the
conduct of an experiment, especially in view of the fact that an over-
heating of the lid will also prevent the appearance of convection.

13. Correction for a Protruding Column

If, at the time it is fused, the liquid completely fills up the
crucible (bucket) and is in contact with the lid, upon heating, it ex-

F pands and spills over into the free space over the edge of the crucible.
8 An appropriate design of the crucible is illustrated in Figure 8.
8 The excess of the expanded liquid, having a mass M', will protrude into

the cylindrical opening A.
Let us examine the correction for the protruding column of

liquid which must be introduced into formulas (2.82) and (2.89). We
shall designate the height of the liquid column in A as h, and its
radius as rO . In view of the small size of ro, which amounts to sev-
eral millimeters, the liquid meniscus in A can be considered as a fric-
tion surface, provided, of course, the oxide film formed on this surface
is sufficiently stable. Consequently, an addend, which determines the
friction on the side surface of the column, should be added to the right
side of expression (2.68):

- :~h( 3~+-) (3.100)

where:

P1 = roI/ i. (3.101)

In view of the obvious small size of this additional term, it can be
written in this form, although it is obvious that, in case of small r 0
values, an asymptotic representation of Bessel functions will express
the side friction in a very rough manner.

The expression (2.68) for L, containing a correction for the
protruding column of liquid, will assuie the following appearance:
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L= -4iR3[lp(I- +-2HR)+-2 ( + hr')J-- (3.102)

kII

From here, obviously, the following expression is obtained:

K TO (3.103)
VpR )( u-

when: F
8

00 (3.104)

3 4R

or, in a different form:

a = a + -R* a; (3.105)

Here:

a U3 r, 3
Ra -JR41 (3.106)

However:

M' = WrPp - Vp - 2uR/Hp, (3. 107)

Therefore:
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VpR31 VPR a+ - =O
2 W+ . -2 (3.108 )

(a + - M' a)

or:

VPRo- MRo[ I-( -_ .(I_ 2RP)(1 __ )]. (3.109)

By designating:

F _ __2_rRp_ ahp(|'9hr'oP (3.110)

8
8

.t shall write:

VpRt = MR*C, (3.111)

and from here, we finally get:

I(&-____0) 
(3.112)" - MR to*

It should be emphasized that the problem as to the adequacy of
introducing this correction must be carefully studied for each experi-
ment (naturally, if the latter is conducted with two end friction sur-
faces). Indeed, let us assume that measurements are performed in such
a manner that the formation of an oxide film on the surface of the
liquid, which could act as a friction surface, is completely excluded.
In this case, the lack of an end friction, resulting from the absence
of friction on the free surface of the protruding column, is partially
compensated by a side friction, whereby the degree of compensation will
be different according to the height of the protruding column. If, on
the other hand, a strong oxide film is formed, and it is precisely un-
der such conditions that it is advisable to perform measurements with
two end surfaces of contact, then one can be sure that the oxidized
meniscus of the protruding column forms a friction surface, and the in-
troduction of the above correction becomes indispensable. This is usu-
ally the case during the study of the viscosity of fused metals under
low vacuum conditions, or when the inert gas atmosphere in which the
measurements are conducted contains a noticeable amount of oxygen.
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14. Calculation of the Suspension System

Let us assume that a unit must be built for studying the tempera-
ture dependence of a kinematic viscosity smaller than v 1 , using a calcu-
lating system applicable to low-viscosity liquids. It is required that
the value of the kinematic viscosity V1 should correspond to a point
t= tI= 10, i.e., y = yl = 100.

The radius of the bucket can be assigned, by using the convenience
of the experiment as a guide, and primarily according to the dimensions
of the furnace.

In accordance with inequation (3.52), we can assume that:

2H= 2R, (3.113)
and from here, the volume of the tested liquid will be equal to: F

8

V= 2,xRS (3.114) 8

and the mass of the liquid:

M = 2wRsp, (3.115)

where p is the density. Let us assign to ourselves a maximum decrement
value, corresponding to the vertex of curve 6(t), which will be desig-
nated as 6m. Then, according to Figure 3, the value of the decrement
at the point where t = tI = 10 will be equal to:

81 = 0,658,,,, (3.116)

and, consequently, we will have to deal in the test with a decrement
6 < 0. 6 56m.

By substituting into the formula:

2%R2 (3.117)

the expression for T, given by equation (3.31), after first excluding
f(t) from the latter with the aid of (3.23) and using (3.116), we will
get:

o= RIYIVI + 3(3.118)

On the other hand, since 6 = 1, we will find from (3.27):
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0,086.2nMR' (3.119)

Equations (3.118) and (3.119) determine the oscillation period
and the moment of inertia of an empty suspension system. Since these
two values are connected by the relation:

1C = 2t T (3.120)

the necessary value of T) for the given K is secured by selecting the
suspension thread with tRe aid of the well-known expression:

N Cmd4 (3.121)

8
8 where G is the modulus of rigidity, I is the length of the thread, andd is its diameter. Substitution of N into (3.120) leads to the equa-

tion:

To (3.122)
19 1 28_K*

After selecting the material for the suspension thread (modulus
of rigidity G), it is possible to determine the required length of the
thread at a given diameter. When the suspension thread is twisted to a
maximum angle of twist, no residual deformations should be formed in
the thread. However, a final selection of the thread, which will secure
the necessary oscillation period at the given moment of inertia and
with no residual deformations present, is best performed experimentally.

Let us examine a numerical example. In studying most metals we
can adopt a value of v1 = 0.010 stokes. After assigning a value for
the radius R = 0.700 cm and a value of 6m = 0.400, we will find, by
means of (3.118) To = 3 sec.

According to (3.119) and (3.115), the moment of inertia will be
expressed by the formula K = 1.44P, and, by adopting a value for the
density p = 8 g/cu cm, we will get K = 11.5 g • sq cm. The volume of
the crucible cavity (inside area) will be equal to V = 2.13 cu cm, and
the mass of the metal M = 17 g.

A simple calculation by means of formula (3.16) shows that, for
the given suspension system at p = 8 g/cu cm:

o, (C)< o.15. (3.123)
Therefore, instead of (3.31), it is possible to adopt T a. To, and from

the expression:
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.Y (3.124)

to determine the minimum value of the kinematic viscosity V2, which can
still be calculated with the aid of Table 1. We will get:

As *(3.125)

Since yl = 100 and Y2 = 3,500, thenv 2 = 3 " 10-4 stokes.
After having determined the parameters of the suspension system

for the purpose which we had in mind, we can examine the reverse prob-
lem, namely to establish the values of the kinematic viscosity and 6m
which can be obtained if liquids of different densities are studied with
a given instrument. F

In this case, let us designate the values obtained in the calcu- 8
lation descriOed above as pO, 60,v o, and let us use the same letters, 8
but without the indices on top, to designate the values corresponding
to the ueasurement of the viscosity on the instrument examined above,
but using a liquid with a different density, differing from po. By
using formulas (3.119) and (3.118) on two liquids in the same instru-
ment, we will get:

L so (3.126)

and:

I-/ O,651 + 0,6aw (3.127)
N 1 -/ 2.47 2.47

Substitution into the last two formulas of the numerical values 60
0.400, v? = 0.01 stokes, po = 8 g/cu cm will give the following expres-
sions:

an = 0,05 (3.128)

and:

/ v 2,73 (3.129)"t=0,01 V2,47 +t 0,0325p"

With the aid of these formulas, we can find 6m and v1 in case of
liquids of different density, if we use the suspension system calculated
above.
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Figure 9 presents curves, plotted on the basis of the last two
equations, and alsc on the basis of the equations presented in # 1 and 2
of this chapter, for the suspension system examined here.

Since the sensitivity of the suspension system to a change in
viscosity at a given tis proportional to 6m (formula (3.59)), the 6m
curve simultaneously describes (characterizes) the change in sensitivity
in base of a change in density (this curve is calculated according to
(3.59)).

Thus, Figure- 9 represents an exhaustive (complete) characteristic
of the properties of the given suspension system and the possible limits
of its utilization.

15. Experimental Check of the Calculation System
Used in the Theory of the Method

8If the inequation y ) 100 is fulfilled, or, which is the same
8 thing, t 100, then, according to the theory of the method, the results

of the calculation of the kinematic viscosity according to equation
(2.82) must be independent of y. In order to confirm this concept,
measurements of the kinematic viscosity of water, isopropyl alcohol and
methyl alcohol were performed. All tests were conducted with the same
bucket, but with different suspension threads, which made it possible
to vary the oscillation period of the empty system within the range of
2.574 4 To % 9.270 sec. The temperature during the tests fluctuated be-
tween 17 and 19.50. The results of the processing of the experiments by
means of the calculating system, referring to low-viscosity liquids and
reduced to a single temperature, are illustrated in Figure 10.

Along the ordinate axis of this figure the value (yj is plotted,
V

in which v(y) is the calculated viscosity at the given y, and v is a
mean value, calculated from data of observations corresponding to a
region where y • 100. In the case of isopropyl alcohol, the region
where y • 100 was not reached, and the value of the kinematic viscosity
at a maxima. y = 82 was adopted as v. Values of y were plotted along
the abscissa axis.

Absolute values of v are listed in Table 3, which also gives the
kinematic viscosity, calculated on the basis of average tabulated data
of the dynamic viscosity and density.

In this case, from the standpoint of a check of the theory of the
method, the appearance (shape) of the curve shown in Figure 10 is of
greater interest than the absolute values of the kinematic viscosity,
since the degree of purity of the liquids tested was not clarified.
Figure 10 shows that the results of the processing of observations by
mans of the calculating system, referring to low-viscosity liquids,
are actually independent of y in the region where the values of y * 75,
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Table 3

V1

Centistokes v - v

0 v (tabulated v
Liquid t°-C Centistokes data)

Water 18.0 1.07 i.06 1.0

Isopropyl alcohol 19.5 3.09 3.07 o.6

Methyl alcohol 18.1 0.784 0.773 1.4

Mixture of liquids 18.1 0.764 ....

Thus, the fulfillment of the condition y > 100 ensures the neces-
sary accuracy of calculation for low-viscosity liquids.

In the tests described above, which were conducted with rela-
tively small values of y, it was necessary to make use of several suc-
cessive approximations during the calculation of v.

An example showing how the calculations coincide (converge) for
one of the points of the curve corresponding to isopropyl alcohol is
presented in Table 4.

Table 4

V
Approximation a Centistokes

Zero 1 1.84 134
(see Note)

First 0.819 2.74 91

Second 0.775 2.98 82

Third 0.762 3.09 79

(Note: According to the designations given in # 8-9 of Chapter II in
case of a zero approximation ( o = 1) v = V*.)

This table illustrates a calculation which exhibits the lowest
convergence. Its slow convergence is due to the fact that the values of
y correspond to the initial part of Table 1 and even extend beyond its
limits (small y values), where the dependence of factors a, b, c on y
is most strongly expressed.
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Table 5 gives an example showing the convergence of calculations
when computing the viscosity of water, which also corresponds to one
point of the curve.

The convergence in this case is more rapid than in the preceding
case, which is due to the higher values of y, where the variation of
factors a, b and c follows a slower course.

Table 5

y
ADroximation a Centistokes

Zero 1 0.817 303
(see Note)

F
8 First 0.887 1.04 239
8

Second 0.876 1.06 233

Third 0.873 1.07 231

(Note: See Note at bottom of Table 4.)

In general, the character of the curves given in Figure 2 shows
that the convergence of calculating operations should be the better,
the higher the values of y at which the experiment is conducted.

It is possible to estimate the degree of rigidity (strictness)
of the condition 2H > 1.85 R on the basis of the results obtained dur-
ing the measurement of the viscosity of mercury at temperatures of 16
and 260 C. In this case, the bucket is filled to a height of 2H = 1 cm
with a free surface of the meniscus. Measurements were performed in a
ceramic crucible (bucket), which was not wetted by mercury, having a
radius of 1 cm. The experiment was conducted in the region correspond-
ing to low-viscosity liquids.

The results of these measurements are listed in Table 6.

Table 6

V
to C Centistokes Method Name of Experimenter

16 0.115 Described above Author

26 0.110

15.7 0.116 Capillary Bernard
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(Taole 6 continued)
V

to C Centistokes Method Name of Experimenter

16.5 0.116 Capillary Plus

17 0.118 Warburg

17 0.114 Schmidt

26 0.111 " Plus

For purposes of comparison, the above table lists data obtained
by other researchers, using the capillary method (Note: These data were
extracted from Landolt-Bgrnstein, Physikalisch-Chemische Tabellen, Berlin,
1923).

The above table, of course, is not aimed at providing a further
evidence of the correctness of the theory of the torsional-oscillation
method, as should be perfectly clear on the basis of the contents of
# 1 in Chapter I. These results are of interest precisely from the
standpoint that these tests disclosed a coincidence of the data obtained
by the capillary and torsional-oscillation method for a metallic liquid,
namely mercury. It would not be at all surprising if the results ob-
tained were lower than those obtained by the capillary method.

L. S. Priss (see reference 4 in the bibliography of Chapter II)
has measured the viscosity of aqueous glycerin solutions, in order to
check the formulas and tables drawn up by him for high-viscosity liquids
(approximation of t % 4.2).

The measurements were performed without subjecting the unit to
constant temperature conditions, which, of course, affected the accuracy
of these measurements. The viscosity of aqueous glycerin solutions not
only is greatly dependent upon the concentration, but is also extremely
sensitive to temperature changes. For example, when the temperature
changes by 10 C, the change in the viscosity of a 95% glycerin solution
at room temperature is equal to 0.4 poises. In this particular test
series, the possible error in the determination of the temperature
amounted to 0.2-0.30 C. The concentration of the solutions was deter-
mined according to their density; the resulting accidental errors also
affected the viscosity.

The results obtained during the measurement of the viscosity of
aqueous glycerin solutions are listed in Table 7, which also contains
Shelley's data (1932), extracted from Landolt-Bgrnstein's tables, oo-
tained by the capillary method. The values of 6 and t give an indica-
tion of the magnitudes (quantities) with which one has to deal in such
tests. It is obvious that the results obtained by L. S. Priss are in
good agreement with Shelley's data.
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Table 7

R = 1.296 cm, 2H = 5.00 cm

Concen- Vmeas, Imeas, .tab, Tmeg - Ttab
tration, in in in 11tab
C to C stokes poises oises %6

93.38 18.2 3.84* 4.78 4.67 + 1.9 0.0232 0.516

90.29 20.0 1.98* 2.45 2.47 - 0.8 0.0343 0.714

79.76 19.2 0.496 0.602 0.610 - 1.3 0.0785 1.46

F 73.87 18.4 0.290 0.346 0.353 - 2.0 0.1231 1.92
8
8 68.98 18.2 0.195 0.230 0.228 + 0.9 0.1827 2.38

62.51 17.0 0.127 0.147 0.146 + 0.7 0.2405 2.97

57.36 18.5 0.0860 0.0987 0.0976 + 1.1 0.2949 3.50

51.65 18.4 0.0616 0.0698 0.0699 - 0.1 0.3252 4.14

R = 1.008 cm, 2H = 4.00 cm

94.85 19.8 4.71* 5.87 5.47 + 7.3 0.0206 0.456

93.38 19.6 3.32* 4.13 4.24 - 2.6 0.0226 0.554

90.29 19.8 1.95* 2.41 2.49 - 3.2 0.0272 0.716

83.30 18.6 0.806 0.982 1.007 - 2.5 0.0418 1.11

79.76 19.5 0.522 0.640 0.619 + 3.4 0.0558 1.37

73.87 19.2 0.294 0.350 0.340 + 2.9 0.0855 1.85

64.04 18.6 0.134 0.156 0.153 + 2.0 0.1568 2.76

57.36 18.5 0.0899 0.103 0.101 + 2.0 0.1927 3.34

51.65 18.3 0.0597 0.0678 0.0702 - 3.4 0.2129 4.14

* These results are calculated with the aid of formula (2.99), and the
remaining results with the aid of Table 2.

- 89 -



From all that has been said above, it is possible to conclude
that the cilculating formulas and tables referring to the fields of low-
and high-viscosity liquids are correct. In addition, it becomes obvious
that inequations (2.63) and (3.52) are not absolutely rigid (strict)
and that slight violations of these inequations are possible, although
this does not affect the accuracy of calculations.
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Chapter IV

Experimental Realization of the Method and the Results Obtained

1. Viscosity of Steels

During the measurement of the viscosity of steels in the high
temperature region (of the order of 1,500 C), the design of the viscosi-
meter is determined mainly by the selection of the heating furnace.
Since the study of the viscosity of steels is necessary primarily for
technical purposes, and in view of the fact that a particularly high ac-
curacy is hardly required in this field at the present time, the vis-
cosimeter can be built on the basis of any kind of open high-tempera-
ture furnace. As an example of such a type of unit, we shall give a
brief description of a viscosimeter built by us, which involves the use
of a Tamman furnace, as well as the results obtained with this unit on
the viscosity of steels (1). With the aid of this unit, it was possible
to conduct measurements approximately up to 1 ,8000 C with a degree of
accuracy sufficiently high for technical purposes.

A diagram of the unit is shown in Figure 11. The suspension sys-
tem (crucible and rod) must be made out of a material which is not sub-
ject to deformation at the above-mentioned temperatures and which does
not react chemically with the fused metal. Various types of aluminum
oxide, such as alumina (kaolin), alundum and corundum, may be used for
this purpose. It should be emphasized that the most serious attention
should be given to the problem concerned with a selection of a material
for the suspension system and its manufacturing technique.
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In view of the presence of carbon monoxide in the combustion
space of the Tamman furnace, the metal in the crucible is practically
not subject to oxidation. In addition, a small amount of deoxidizing
flux can be added to the crucible, which, after becoming fused, coats
the metal with a thin liquid film. This measure allows the use of an
open crucible without a lid, i.e., the test can be conducted in the
presence of a single end (face) friction surface.

The structure of the suspension system used in our tests is il-
lustrated in Figure 12. The suspension system is attached to a metal
wire, whose dimensions and elastic properties must be coordinated with
the moment of inertia of the suspension system, in order to secure the
necessary oscillation period. The length of the wire should preferably

p be equal to about 25-30 cm.

8 A ceramic cement, prepared from a fine kaolin or alumina powder,
8 diluted with water and containing a small amount of liquid glass, can

be used to connect (attach) metal to the upper section of the rod in the
suspension system.

A metal disk 4 (see Figure 12) acts as a radiator, which promotes
the cooling of the upper section of the rod and of the wire connected
to this rod. The end of the wire is clamped into a miniature three-
jawed chuck, which is firmly mounted on the rod with the aid of the
ceramic cement.

The temperature of the metal can be measured by means of an op-
tical pyrometer. A vertical beam (ray), coming out of the inside cavity
of the crucible, is transferred into a horizontal plane by means of a
total internal reflection prism or with the aid of' a mirror, and is di-
rected to the optical system of the pyrometer. The crucible is placed
in the region of a uniform temperature field of the furnace. A prac-
tically equilibrium radiation is therefore present inside the cavity of'
the crucible, and a free surface acts as the bottom of this cavity. In
this case, the temperature of' this cavity, determined by means of' the
pyrometer, can be considered (adopted) as the temperature of the metal
tested. The passage of a light ray through the prisms or mirrors may
introduce an error into the pyrometer readings. This error must be
taken into account, either by comparing the pyrometer readings during
the passage of the light ray through the prism and when this ray goes
around the prism (the pyrometer is installed along the vertical axis),
or by calculation (2).

In this particular series of tests, the viscosity can be meas-
ured not only in case of a stationary thermal state at the given tem-
peratures, but also in case of a slow heating or cooling at a rate of
temperature variation of - 1.00 C per minute.

Free torsional oscillations are imparted to the suspension sys-
tem by rotation of the knob 12 (see Figure 11) at a small angle fixed by
means of a plug (locking device). The oscillation amplitudes are re-
corded visually on a semi-transparent scale according to the position
of the beam (ray), reflected by the small mirror 8.
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The first count (reading) of the amplitude should be performed
after skipjing 3-4 initial oscillations. Simultaneously with the first
reading, a stopwatch is set into operation. After reading several full
oscillations, simultaneously with a fixation (recording) of the f-th
amplitude, the stopwatch is stopped. The equilibrium position can be
determined from the remaining oscillations in the same way as during
weighing on an analytical balance. On the basis of these data, both
the oscillation period and the logarithmic attenuation (damping) decre-
ment can be easily determined with the aid of formula (3.81). For each
temperature, several such measurements should be performed, and average
values of the period rnd of the decrement should be determined on the
basis of these measurements.

A fusion of the metal can be easily observed when the decrement
increases sharply and the period is reduced; the reverse phenomena take F
place during solidification of the metal. 8

In the temperature range above 1,500 ° C, a noticeable spontaneous 8
movement of the system was observed upon heating in certain tests, which
made observations extremely difficult. It can be assumed that the reason
for this movement consisted in the fact that an intensive evolution of
absorbed gases from the metal was taking place, which was even accom-
panied by an upward splashing (sputtering) of the metal, so that metal
droplets above the free surface of the metal could be observed in some
cases.

A measurement of the zero decrement (in the absence of a fused
metal in the crucible) must be performed over the entire temperature
range in which the viscosity is studied. As a result of the increase
in the viscosity of gases with the temperature and the slight heating
of the suspension wire, the zero decrement increases several times in
comparison to its value at room temperature. Steels having the composi-
tion given in Table 8 were investigated.

Table 8

Steel
Grade LI ALA Mn~ LI §A P Ni% Cr % Ylo

EUlO 1.00 0.35 0.30 0.030 0.040 -- .. .

1010 0.09 0.01 0.47 0.025 0.039 0.05 0.04 --

EKhTM 0.30 0.19 0.65 0.004 0.015 0.12 0.18 0.18

EYaZS 0.40 2.52 0.67 0.012 0.031 23.47 17.30 --

EKh12 2.10 0.24 0.19 0.015 0.024 0.30 11.75 --
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(Table 8 continued)

Steel
Grad gL1 gi Mn % A Ni % Cr % Mo

ShKh12 1.05 0.23 0.32 0.014 0.022 0.03 1.63 --

1045 0.49 0.31 0.66 0.026 0.042 0.07 0.18 --

Figure 13 shows the results of the measurement of the kinematic
viscosity of these steels, recalculated again on the basis of observa-
tions, starting from the assumption that a single friction surface is

F present on the end plane of the crucible, and assuming that T = To
8 during the calculation of the correction terms which is due to an at-
8 tenuation of the empty system, i.e., by substituting 6o for T 60.

TO

In these tests, the data of the unit had the following values:
R = 1.0-1.4 cm; M = 50-200 g, 2H = 2-6 cm, K = 110-550 g • sq cm,
6o = 0.005-0.012, ro = 2.5-5.5 sec.

The accidental (random) error in the determination of individual
values of the kinematic viscosity, according to the test conditions, may
be as high as 10%.

In addition, the viscosity of EU1O and 1045 steels was measured
in another unit, similar to the one described in # 3, under a vacuum of
the order of 10-2 mm Hg in a crucible of smaller size. These results
are also illustrated in Figure 13. The general character of the curves
indicates that the kinematic viscosity of steels does not depend to a
great extent upon their composition, varying approximately from 1 centi-
stoke in the vicinity of the liquidus point to 0.6 centistokes at a tem-
perature of 1,6000 C.

2. Viscosity of Cast Iron and Ferrochromes

Measurements of the viscosity of cast iron and ferrochromes were
performed in a similar unit. In this case, part of the tests were con-
ducted in alumina crucibles, and part of the tests in graphite cruci-
bles. In the latter tests, there obviously occurred a saturation of
the alloy with carbon up to a concentration which reached the hyper-
eutectic line in the phase diagrams of iron-carbon and chromium-carbon
alloys.

The following characteristic picture was observed during all
measurements in graphite crucibles. During the measurement of the vis-
cosity, no peculiar features were observed in the heating process.
However, when the metal was cooled 20-300 below the maximum temperature
achieved in the test, as soon as this temperature started to drop, it
was noticed that the value of the decrement started to drop sharply and
the oscillation period increased.
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This fact indicates a great increase in the viscosity of the
liquid (see Figure 3). The reason for this observed phenomenon lies in
the fact that the alloy becomes saturated with carbon during the process
of heating, and when it is cooled by 20-300 C, free graphite is sepa-
rated in the form of extremely thin plates, known to metallurgists under
the name of "refining foam," which were clearly visible in the samples
after the latter had cooled down. Apparently, in this particular case,
we are confronted, during the process of measurement, with a hetero-
genous system consisting of a liquid melt and "refining foam" suspended
in this melt.

In view of the great spread of individual decrement values, the
results listed below have an approximate and qualitative character, and
refer only to the heating process.

The viscosity was calculated not according to individual decre-
ment values, as was done in other cases, but rather in the following man- F
ner. Values of decrements and periods were plotted in a graph opposite 8
to the corresponding temperatures, on the basis of which smooth curves 8
were plotted; then, values of' the kinematic viscosity, which are graphi-
cally illustrated in Figure 14, were calculated on the basis of points
on these curves, located at a distance of 400 C from each other. The
error in the location of extreme points on straight lines may be as
high as 20%.

The composition of the studied alloys is given in Table 9.

Table 9

Composition of Alloy Prior to Vis-
cosity Measurement

Alloys % Cr %.. C ~~ 4, Mn1 i -

Alloy No. 1 Measurements in -- 3.7 2.17 0.97 0.019 0.018
No. 2 alumina crucibles 40.29 6.0 1.90 2.64
No. 3 47.90 7.0 0.35 2.50 0.14
No. 4 47.06 7.0 8.20 2.50 0.14

Alloy No. 5 Measurements in 29.70 5.04 0.78 1.25
No. 6 graphite crucioles 36.07 7.50 0.70 1.35
No. 7 47.50 7.00 2.58 2.86
No. 8 52.56 7.88 0.32 1.03 0.06 0.076

The crucibles used had an internal radius ranging from 0.75 to
1.3 cm, and the weight of the metal varied from 23 to 50 g.

In spite of their low accuracy, these results, together with
data on the viscosity of steels, point out a factor of great technical
importance, namely that the kinematic viscosity of the tested ferrous
metals does not depend to a great extent upon their composition arid is
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approximately equal to the kinematic viscosity of water. From here we
can draw the conclusion that the fluidity of ferrochrome alloys is not
so much determined directly by the viscosity of these alloys, as by the
liquidus point (Note: The concept of "fluidity" (fluid flow, flowability),
used in the technical field, does not have at all the same meaning as
the concept of "viscosity" (fluidity, consistency), which is expressed
quantitatively by the reciprocal dynamic viscosity. The term "fluidity"
(fluid flow) does not have a strictly established physical meaning, in
view of the fact that the experimental methods for determining this
value include the effect exerted by the surface tension and the process
of heat exchange between the sample of the liquid metal and the sur-
rounding medium. There is even no reason to assert that viscous proper-
ties in general play a dominant role in the determination (definition)
of the term "fluidity" (fluid flow)).

F
8 3. Viscosity of Lead, Tin and Bismuth (3)
8

With the aid of the unit schematically illustrated in Figure 15,
it is possible to perform viscosity measurements at temperatures of up
to 850-9000 C. Heat insulation is effected by means of a system of pol-
ished nickel screens. The instrument is placed under a vacuum hood, and
measurements are performed at an air pressure under the hood equal to
lo-3 - 10-1 mm Hg. The resistance furnace, containing a Nichrome wind-
ing, is heated by an alternating current through an autotransformer with
a smooth control (variac); the current was as high as 2.5 amp at a 40 v
voltage. The design of the suspension system used in this unit is il-
lustrated in Figure 16. The crucibles were made of graphite. Crucibles
made of electrode carbon must first be calcined (fired) in a vacuum,
otherwise the hood and the small mirror become coated with a film during
the course of operations, and the experiment must then be stopped. The
initial elastic pulse, which imparts a torsional-oscillation movement
to the system, is created with the aid of an electromagnet by turning
at a small angle the upper point of attachment of the suspension wire.
A diagram of this section of the unit is shown in Figure 17. Efforts
should be made to secure a minimum rigidity of the spring 6 and the
current in electromagnet 2, by pulling in its core. Otherwise, a sharp
blow of the lever 7 against the arresters (holding devices) may result
in a thrust which will set the suspension system into a swinging motion.

Figure 18 illustrates a second possible modification of a twist-
ing mechanism, which transmits a manual rotation through a vacuum cock,
and by means of which a smooth but rapid rotation can be achieved.

A small mirror is mounted on a porcelain stick (rod), coinciding
with the axis of the crucible. The amplitude of oscillations and the
period are measured according to the light beam reflected by this mirror.
A semi-transparent scale is mounted directly on the vacuum hood, which
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is installed in such a way that its axis coincides with the suspension
wire.

The temperature of the metal is measured with a thermocouple
installed between the furnace and the crucible. This method of meas-
uring the temperature of the metal requires a preliminary comparison
of the readings of this thermocouple with the readings of the thermo-
couple installed inside the crucible. Such a calibration was found to
be sufficiently stable, if the measurements are performed at a thermal
state of the furnace close to the stationary state.

A compensating (balancing) circuit, equipped with a PPTV po-
tentiometer is used for measuring the thermoelectromotive force of the
thermocouple.

The oscillation period of the system at a given temperature is
determined with a stopwatch as the mean value of 6-10 series of oscil-
lations whereby each series consists of 5-6 periods. F

The suspension wire must coincide with the axis of the crucible, 8
otherwise plane oscillations will be observed. Since in case of plane 8
oscillations, the liquid moves together with the crucible as a whole,
plane oscillations are almost undamped and distort the true values of
the attenuation (damping) decrements. In the instrument described
here, the suspension wire was fastened in miniature three-jawed chucks,
rigidly connected with the suspension system and the rotating mechanism.

The metal samples which must be tested can be calcultted and pre-
pared in such a way that, during the smelting of the sample, a contact
of the metal with the lid of the crucible is secured. Upon further heat-
ing, the metal expands and the excess metal flows out into the free
space of the crucible 6 (Figure 16), thus always ensuring a full contact
of the metal and the crucible on all surfaces of the latter during the
test.

The reading of the initial amplitude is effected with a simul-
taneous start of the stopwatch after several oscillations. Following
4-6 oscillations (depending upon the value of the decrement), a reading
of the final amplitude is made and the stopwatch is stopped at the same
time. At least 8-10 such measurements should be performed at each tem-
perature.

Naturally, oscillations can be recorded on a photographic film by
means of an appropriate scanning mechanism, connected to the viscosi-
meter. The time recording process can also oe automated in the same ran-
ner.

Numerous control tests have shown that, when the unit is care-
fully assembled, the logarithms of successive amplitudes, depending
upon the number of the oscillation, can be easily arranged (stacked) in
a straight line, and therefore the decrements can be calculated in re-
lation to the initial and final amplitude.

As was already mentioned above, the design of the suspension sys-
tem described above makes it possible to perform measurements in case
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of a slight oxidation of the metal surface and to work with an initial
vacuum (rough exhaust) pump, without using a diffusion pump. However,
oxidation can be avoided and measurements can be performed with a free
surface of the fused metal meniscus if a diffusion pump of the TsVL-100
or W-40 type is introduced into the vacuum system, or if the vacuum
hood is filled with pure argon gas.

It is possible to operate in the presence of a high vacuum only
with a limited number of metals, possessing a sufficiently low vapor
pressure at the temperature of the test. It is impossible to use under
a high vacuum metals which have a noticeable rate of evaporation, since
the conduct of the experiment is made difficult by metal vapors con-

F densing on cold parts of the system. The presence of a gaseous atmos-

8 phere at pressures which ensure the absence of a convection (in the

8 presence of convection, the shielding insulation does not fulfill its
purpose and the entire unit is subject to strong heating), i.e., at
pressures of the order of 10-2 to 10-1 mm Hg, greatly reduces the harm-
ful effect of evaporation.

The following order in which the experiment should be conducted
in the presence of a free surface of the fused metal meniscus can be
recommended. While the diffusion pump is being continuously operated,
the metal is heated for a long time below its melting point, in order
to effect a degassing of the entire unit and of the sample. After the
metal has been fused, the pumping unit is switched off, and the re-
quired amount of pure argon is introduced under the hood, until the
pressure under the hood reaches a value of about 10-1 to 1 mm Hg. It
is necessary to keep in mind that technical argon contains a small
amount of oxygen. After a stationary state has been established, the
viscosity measurement is performed. The gaseous atmosphere under the
hood should be periodically renewed by pumping out the gas while the
source of argon supply is connected to the unit, in order that during
this operation the pressure should not drop below the limit established
during the course of measurement. Otherwise, a metal film, which will
prevent the further conduct of measurements, will form rapidly on the
mirror and on the walls of the hood.

Both basic as well as auxiliary measurements, concerned with the
determination of the temperature dependence of the decrement and period
in case of an empty crucible, should be performed at a constant pressure
of the gaseous medium under the hood. In this manner, it is possible to
achieve a good reproducibility of the attenuation decrement of the empty
sybteni. The mean accidental (random) error in the viscosity values,
measured in such an instrument, amounts to t 1%.

In the case of tin and lead, the viscosity was calculaLed by taking
into account the correction for the protruding column 6 (Figure 16). The
magnitude of this correction at 8000 C amounted to 6% for tin, and 5% for
lead.
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In case of bismuth, the above-mentioned correction was not taken
into account, and this could have resulted in a reduction of the vis-
cosity values obtained at 8000 C of not more than 1.5%, as compared to
the true values. Experimental results on the viscosity of lead, tin and
bismuth are presented in Figure 19.

4. Viscosity of Aluminum

The viscosity of aluminum was measured in graphite crucibles by
means of the unit described in the preceding paragraph.

The very first tests showed that, if' an air pressure of 10-1 to
1 mm Hg is maintained under the hood, there is no recurrence of the re-
sults and there is a general tendency of a growth in the viscosity with
an increase in the time during which aluminum remains in the fused F
state. This phenomenon is due to the fact that, in view of the high 8
oxidability of aluminum and the relatively low mechanical strength of 8
the oxide film formed on the fused metal, lower oxides are able to
penetrate inside the metal during the time the crucible is in motion,
thereby forming a heterogeneous system.

A number of special tests were set up in order to clarify this
problem. A sample consisting of 99.7% pure aluminum was cut out of a
solid olock (ingot) and was suoJected to an investigation at an air
pressure under the hood of 10-3 mm Hg.

At the same time, the crucible was filled with metal in such a
way that excess metal protruded into the free space 6 (see Figure 16).
The correction for the protruding column amounted to 31. On the basis
of the results thus obtained, curve 1, shown in Figure 20, was plotted.

A sample from the same piece of aluminum was then smelted in an
open furnace and the liquid metal was poured into a graphite crucible.
The height of the cast sample was selected in such a manner as to avoid
a contact of the free meniscus with the lid of the crucible. The
pressure of the air environment during the course of measurements was
maintained between 10-1 and 1 nun Hg. Curve 2 represents the result of
the calculation performed in the assumption that a rigid oxide film,
which constitutes the friction surface, is formed on top of th metal.
On the other hand, if we start from the assumption that no oxide film
is present, i.e., that there is no friction on the surface of the imetal
meniscus, then we get a curve 2' (see Figure 20).

Later, the same sample was kept for several hours in a fused
state at a temperature of 8000 C, and new measurements yielded the re-
sults illustrated by curve 3. 4hen the san.lle was further maintained
at the same temperature for 1 hour, a certain increase in the viscosity
was ooserved (curve 4 in Figure 20).

From here we can draw the conclusion that the visco3ity of alu-
mrdnum, exposed to an oxidizing atmosphere, increases under the, action
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of the oxidation process. The presence of insignificant amounts of
lower oxides, present in the metal and forming a heterogenous system,
is sufficient to effect such an increase in viscosity. This conclusion
is important from a technical standpoint, since it was found that the
viscosity of technical aluminum during the casting process is higher
than the viscosity of pure aluminum, present under conditions which
guarantee the absence of any oxidation. In this connection, it should
be noted that, according to measurements performed by E. V. Polyak and
S. V. Sergeyev (4), the kinematic viscosity of aluminum, measured by
the method involving oscillations of a small ball in an open crucible,
varies from 2.6 to 0.57 centistokes when the temperature varies from
670 to 8000 C. These figures are sharply contradicted by the results
of our measurements and this contradiction can be explained in the fol-
lowing manner.

F In the unit used by the above authors, the rod attached to the

8 small ball immersed into the metal ran through the surface of fused
8 aluminum, and dissipation effects resulting from the interaction of thesurface layer with the rod were noticeable during rotary oscillations

of the system. The authors point out that the viscosity data, ob-
tained by them in the presence of a flux (carnollite), were somewhat
lower than the data obtained without using a flux. This fact clearly
indicates the influence of an oxide film (see reference 11 in Chap-
ter I). In addition, however, the surface tension of the metal, caus-
ing additional dissipation effects during the rotation of the rod, must
exert an influence in these tests. It is natural, therefore, that at a
temperature of 8000 C, when the surface tension is small, the authors
obtained data close to the viscosity of oxidized aluminum and which co-
incide approximately with the ends of curves 3 and 4. At a temperature
close to the crystallization point, the viscosity of 2.6 centistokes,
obtained by E. V. Polyak and S. V. Sergeyev, does not correspond to the
actual value, and the figure obtained is caused by surface sources re-
sponsible for the dissipation of the oscillation energy.

5. Viscosity of Tin-Lead Alloys (5)

The viscosity of tin-lead alloys was studied in the unit de-
scribed in # 3. The air pressure under the hood was maintained at 10-2
mm Hg. Alloys, having the composition listed in Table 10, were studied.

Table 10

Alloy Number 1 2 3 4 5 6

X 3n 99.92 80.12 65.30 40.39 19.62 0.057

P P -- 19.90 34.66 59.59 80.44 99.87
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The probable error of individual measurements was equal to 2-3%.
Figure 21 shows a comparison of data for tin and lead with the

results given in # 3 of this chapter. From this figure it can be seen
that there is a discrepancy between these data in the temperature region
covering a range of about 1000 C near the melting point. The same fig-
ure also gives the results obtained by I. F. Golubev and V. A. Petrov (6),
Sauerwald and Topler (7) and Schott (extracted from Landolt-B8rnstein
tables), obtained by the capillary method and recalculated for the
kinematic viscosity. All these results are in good agreement with the
data presented in # 3, and discrepancies are observed only in the tem-
perature region near the crystallization point. Results of the measure-
ment of the viscosity of Sn-kb alloys are presented in Figure 22, and
viscosity-composition isotherms for the alloy being tested are presented F
in Figure 23. As can be seen from this figure, a weakly expressed spe- 8
cial point, represented in the figure by a dotted line, is observed near 8
the eutectic concentraticn of the alloy.

6. Viscosity of Tin-Bismuth Alloys (8)

The study of these alloys was conducted with the viscosimeter
described in # 3, the design of which was slightly modified. In the
upper section of the furnace muffle, instead of shields, a lid was in-
stalled, which was provided with an additional electric heating system,
in order to ensure a uniform temperature field along the height of the
muffle. This arrangement was dictated by the desire to reduce the con-
densation of metal vapors on the lid of the crucible. According to the
curve represented in Figure 7, a noticeable influence of condensation
phenomena can be expected, starting approximately at 5000 C. However,
since measurements were performed under a pressure of 5-9 • 10-3 m.1 Hg,
and the presence of air molecules prevents the establishment of a sta-
tionary distribution of the pressure of metal vapors in the space be-
tween the free surface of the metal and the lid of the crucible, thi6
temperature must oe considered as somewhat lower than the actual tem-
perature.

All measurements were conducted with a free surface of the fused
metal. At the air pressure indicated above, no oxidation of the samples
took place, and there was certainly no friction surface on the upper
base of the liquid cylinder (after the tests, the samples retained their
metallic gloss).

The second structural cnange in the unit was concerned with the
method for measuring the temperature (Figure 24). Although the inser-
tion of a thermocouple inside the crucible makes the handling of tne
viscosimeter more difficult, it offers a definite advantage in regard
to the accuracy with which the temperature of the metal is measured.
The study covered alloys having the composition listed in Table 11.
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Table 11

Alloy
Numoer 1 2 3 4 5 6 7 8 9 10

% Bi 100 89.43 78.97 72.31 56.72 46.44 28.46 19.72 9.96 --

% Sn -- 10.36 20.98 27.53 43.39 53.65 71.39 80.39 90.10 100

The vapor pressure of fused bismuth is slightly higher than that
of lead, and much higher than that of tin (at the same temperatures).
For this reason, in spite of the precautionary measures adopted, a con-
densation of metal on the lid of the crucible was observed to take place
to a limited extent. After the end of the tests, in the case of alloys

8 with a high bismuth content (Nos. 1-6), individual droplets of condensed
8 metal were observed on the inside surface of the crucible lid, which

were uniformly distributed over the entire surface. These droplets

form a combined mass for the crucible and a spnt mass for the sample.
Equation (3.90) gives an expression for the correction which must be
made on the viscosity values calculated in the usual manner, and it is
indispensable to introduce this correction in this case. The magnitude
of this correction, for individual viscosity values of' pure bismuth,
amounted to as much as 3.5%, and did not exceed 1 .5-2/0 in the case oi
alloys.

As a result oi the measurement of the vertical temperature dis-
tribution in the muffle, in the presence of a suspension system, it was
assumed that the temperature difference between the free surface of the
metal and the lid of the crucible did not exceed 3-50 C. Since bismuth
is primarily the evaporating component in the tested alloy, no notice-
able condensation can take place up to 5000 C, as was mentioned above.
Therefore, if the alloy had not yet been heated above this temperature,
no correction to account for condensation was introduced. If, on the
other hand, the alloy had been heated to a temperature above 5000 C,
and droplets of solidified metal were observed on the lid after com-
pletion of the test, then a correction in accordance with equation
(3.90) was introduced in all viscosity values obtained after the maxi-
mum test temperature was achieved.

For example, in the case of pure bismuth, the amount of metal
condensed on the lid was equal to 0.764 g, as compared to the total
mass of the sample of 50 g. This case represents the most striking
example of condensation. Following the introduction of an appropriate
correction, amounting to 3.5%, the resulting viscosity values of bismuth
coincided well over the entire temperature range with the results of
previous measurements, listed in # 3.

Figure 25 shows the temperature dependence of the kinematic vis-
cosity of Sn-Bi alloys. The accuracy of the results can be estimated
at 2%. Viscosity isotherms for all alloys are shown in Figure 26.
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In regard to all of the data on the viscosity o:' tin and Sn-3i
alloys listed above, it should be noted that these data were out~ained
either during the process of temperature increase of the saniple, start-
ing in each test with the solid state, or during the process of coolinr
of the sample, in case its maximu-. temperature did not exceed 6000 C.
Thus the graphs shown in Figure 25 do not contain any points which would
correspond to a measurement of the viscosity in the direction of' a tel-
perature decrease, in case tnis temperature was higher than 60 0 0 C in a
given continuous test. It should also be enjihasized that reference to
a heating or cooling does not mean a digression from a station'iry ther-
mal state of the system during the course of each individual measurement
at a given temperature.

7. Viscosity of Tin During Supercoolini (9)

Tin can easily be supercooled and therefore affords extensive
possibilities for studying the temperature dependence of physical proper-

ties of liquid metals, and specifically of the viscosity, durin- tne
process of supercooling of a metal. The result obtained is illustrated
in Figure 27.

It was found that, during the cooling of supercooled tin, the
curve showing the temperature dependence of the viscosity sranches off
into a region of lower values, in comparison to the "normal" curve (i.e.,
the curve obtained during the process of heating). This branching takes
place in an interval of' several score of degrees prior to the equilibrium
crystallization point. When the temperature drops further, the viscosity
increases, retaining, in the region wnere supercoolini, takes place, a
value of the same order as the one observed during the fusion proces..

A uranching of the viscosity curve was ouserved only in t hoze
cases when the met;.l was later subjected to supercooliij;. In those
cases when supercooling was not ouserved, there was also no branching
of the viscosity curve.

It should be noted that each value of the viscosity duri i" tthe
cooling process and in the region of supercoolini was deteri.iied at 'I
stationary temperature.

As the measurements perforred oy 5. I. Goryaga have snown, uin-
muth uehaves in the same manner as tin, since this metal is al:.o efily
suoJect to supercooling,.

Thus, the process involviiig a branching oi the temperature vs.
viscosity curve precedes a supercoolin,,. I, no branching is ouserved,
there is no supercooling.

The oraching of the viscosity curve and supercoolin represent
two sides (aspects) o. the same phenomenon.
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8. Viscosity of Lead-Bismuth Alloys.
Viscosity in a Heterogenous Region (10)

The viscosity of this type of alloy was studied with the aid of
a viscosimeter, designed on the oasis of an open tubular furnace of 1 kw
power with a maximum temperature in the comuustion space of 8000 C. The
furnace was 500 mm long and the diameter of the tube was 40 mm.

The diagram of temperature measurement is illustrated in Figure
24. The crucibles are made of graphite and are coated on the outside
with a ceramic paste (cement), which protects the graphiLe from burning
up. The structure of the crucible, containing 90 g of alloy, is il-
lustrated in Figure 28. The floating lid can be moved freely up and
down, out has no rotational degree of freedom in relation to the cruci-
ble. This lid always ensures the presence of an upper end surface of
the cruciole. As a result of such a crucible design, measurements can

F be performed at atmospheric pressure, and there is practically no evapo-
8 ration and condensation of metal on the lid of the crucicle.
8 By using the floating lid, the mass of the sample always remains

constant, and thus it is not necessary to introduce a correction for
the protruding column (see # 11 in Chapter III).

The instrument was equipped with a photographic recording of the
oscillations, with a simultaneous image of the scale for reading the
amplitudes and the time markings of the pendulum.

The measurements are performed at a constant growth o1 the tem-
perature with a speed of 10 per minute. The results of measurements
are shown in Figure 29.

During passaire through the liquidus line, the viscosity of the
heterogeneous alloy increases approximately 500 times in a temperature
interval o aoout 40 C. It can be easily seen (Figure 3) that, in this
case, a transition takes place from the first into the second region
(i.e., from the region of low-viscosity to hih-viscosity liquids), aid
a mathematical system corresponding to these regions was used in cal-
culating the viscosity. In view of the fact that, in the region cor-
respondint; to a heterogeneous state of tne alloy, the viscosity changes
with the temperature in an extremely -h-rp manner, the temperature must
be determined with a hilrh degree of accuracy. For this reason, the
readings of the thermocouple, mounted inside the crucible, were spe-
cially compared with the readings of a thermocouple inserted directly
into the metal. The corresponding correction did not exceed 1.50 C (at
the lowest temper'ature), and was rapidly reduced to zero when the tem-
perature w-,s increased.

The outained results on the viscosity of" a lead-bismuth alloy in
the heterogeneous region o: the fusion diagram confirm the onservations
nade during the measurement of the viscosity o: cast iron (see I# 2 of
this ch' pter) and indicate that, even in case oi a very insi:nificant
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shift in the temperature of the alloy below the liquidus line, the vis-
cosity of the system exhibits an extremely sharp increase. The reason
for this phenomenon lies in the deposition (precipitation) of crystals
of the solid phase of one of' the components. The hetero.:eneous medium
formed in this manner possesses a low fluidity, in spite o: the insig-
nificant number of solid small crystals present in this medium.

9. Viscosity of Zinc and Cadmium

Measurements of the viscosity of zinc and cadmium were performed
oy I. S. Kuznetsova during the course of her graduation work at the
khysics Faculty of Moscow State University in 1953.

Both of these metals are highly volatile, and it was therefore
necessary to use a hermetically sealed crucible. I. S. Kuznetsova
used a suspension system having the following design. The graphite F
crucible, containing the metal to be tested, was placed into a cylin- 8
drical quartz jacket (casing), which was drawn out at the top into a 8
thin tube and sealed during the course of evacuation with a vacuum
pump. The upper part of the quartz jacket (unsoldering) was inserted
into the bushing of the suspension system and fastened by means of a
ceramic paste (cement). During this operation, special attention should
oe given to an accurate alignment of the component parts of the suspen-
sion system. The soldered joint of the thermocouple was located on the
unsoldering of the quartz jacket of' the crucible, and the thermocouple
wires ran inside the rod of the suspension system, whereby this rod
consisted of a two-channel porcelain tube. The wires of the thermo-
couple extended into the upper section of the porcelain tuoe and
were twisted down in the form of short terminals (ends), running paral-
lel to the tube. Outside of the suspension system, a special mechanism
was installed, containing mobile mercury contacts which were placed
under the free terminals of the thermocouple at the time the tempera-
ture was measured, thereby closing a circuit used for measuring the
thermo-emf. During the course of oscillations of the suspension system,
the terminals of the thermocouple remained free. This method of meas-
uring the temperature was found to be very convenient. Heating was ef-
fected by means of an open tubular furnace.

In the tests performed oy I. S. Kuznetsova, the metals to be
tested were first purified uy removing insoluole impurities by repeated
recrystallization in vacuum. For this purpose, a unit for 4rowing single
crystals was used, by means of which it was possible to achieve a slow
cooling, starting from the lower portion of tne vacuum tuue. The pre-
pared sample, together with the graphite cruciole, was placed into a wide
vacuum tuue and was remelted into the crucible. The crucible containing;
the sample to be tested was placed in an almost uniform temperature zone
of the furnace, although there was a slight overheating ot 2-30 at tne
top of the quartz jacket. In tnis manner, it was possiule to avoid a
condensation of metal vapors on internal surfaces of the quartz jacket
duringl the stationary thermal state and duri:4 the heating process.
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The results of the measurement of the viscosity of zinc and cad-
mium, obtained by I. S. Kuznetsova, are shown in Figure 30. These data
refer to the heating process. As soon as the furnace started to cool
off, the temperature in the upper portion of the zone containing the
crucible dropped below the temperature of the metal, and an intensive
condensation of vapors took place in the upper section of the quartz
jacket, which resulted in a noticeable distortion of the results.

In the case of zinc, two types of measurements were performed.
The first type of measurements involved a sealing under vacuum of the
quartz jacket containing the graphite crucible, and in the second type
of measurement the jacket was sealed under atmospheric pressure. The
results of both measurements, calculated by taking the free surface of
the metal meniscus into account, agreed well with each other. Conse-

F quently, if air is not allowed to enter the crucible, it does not
8 matter whether the jacket containing the crucible was evacuated or not.
8 Both metals belong to the second group of the periodic system

and possess, in the solid state, a loosely packed hexagonal structure
with a ratio of axes c/a close to 1.9. In spite of this fact, a great
difference in the viscosity values of zinc and cadmium can be ooserved
upon comparing the curves showing the temperature dependence of the
kinematic viscosity of these metals.

10. Certain Remarks Concerning the Design of the Viscosieter

The viscosimeter is highly sensitive to vibrations. The plane
oscillations of the suspension system, arising as a result of external
influencesthave an extremely slow damping rate, since the absorption
of energy in these oscillations is very small. Plane oscillations may
act as a source of great errors during the determination of the damping
ratio. Serious attention must be given to this fact during the design
and assembly of the instrument. In order to reduce these influences,
it is desirable to use special anti-vibration supports, known in the
laboratory technique (11).

The suspension system is the most important part of the instru-
ment. The selection of its structure (design), of the crucible material
and of the method for measuring the temperature is determined primarily
oy the nature of the problems which have to be solved during the study
of the viscosity of metals. The entire system will be simple if one
can be satisfied with a low accuracy of the results obtained (equal to
several percent), and will be accordingly more complex in regard to
manufacture and assembly as well as in regard to the quality of the ma-
terials used, ii high requirements on the accuracy of' the results are
estaolished.

Unannealed copper can ue recommended as a readily available and
conveniently used material for the suspension wire. Unannealed copper
wires have a low natural damping ratio and a weak dependence of this
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ratio upon the amplitude. In the case of most metal wires, the natural
damping ratio under a load decreases with the course of time; after the
load has been thrown off, this ratio assumes its original value more or
less rapidly. In the case of unannealed copper wire, these variations
of the decrement (ratio) with time are practically independent of the
value of the amplitude. The stationary value of the damping ratio of
a loaded wire amounts to about 50% of the original ratio, and this value
is reached after approximately 2 days. In view of the above-mentioned
time dependence of the damping ratio, efforts should oe made to secure
a minimum value of tne damping rritio in an empty system.

Regardless of the conditions under which measurements of the
viscosity of metals are performed, it is necessary to achieve a certain
overheating of the lid of the crucible in relation to its bottom. This F
measure will, first, prevent the formation of convection in the cruciole, 8
and, second, will prevent the condensation of metal vapors on the walls 8
and lid of the crucible. The phenomenon of condensation requires the
introduction of a special correction (see # 12 in Chapter 3) into the
formulas used in calculating the viscosity; the practical consideration
of this correction at different temperatures is greatly complicated by
the complex nature of the condensation kinetics.

dhen studying the viscosity of highly volatile metals,
for example, cadmium, antimony or zinc, speciml measures should e
adopted to combat metal evaporation. Two different kinds of methods
can ue used for this purpose: either a hermetic sealing of the crucible,
followiLi; a preliminary degassing of its internal volume, containing the
metal sample (for example, by using methods commonly used in the vacuum
technique), or else (which, of' course, is a less radical measure), vy
conductin, the experiments under a normal and elevated pressure of the
gaseous atmosphere surrounding the sample. If this atmosphere had an
oxidizing nature (air), then it is indispensable to secure a contact
o:" tne upper surface of the metal with the lid of the crucible, in order
to create at this point a reliaule friction surface. If the atmosphere
around the sample is a neutral one, and the sample was not at first
noticeably oxidized, then its upper surface (meniscus) can remain free.

In order to record the damped oscillations of tne suspension sys-
tem, it is Eometimes convenient to use a device for the photographic
scannin:i of these oscillations. However, one should keep in mind that
the processing of photograms consumes additional time. I' the unit is
carefully assembled and a linear dependence between the logarithm of
the amplitude and the oscillation number is ensured, it is usually not
necessary to use a photorecordin. system.

The processing of' the results of ouservations, in spite of the
complex nature of tne formulas used for calculating the viscosity,
usually does not present any particular difficulties when using a cor-

rect calcul:iting system.
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Chapter V

Connection Between the Hydrodynamics of a ViLcous Liquid
and the Theory of Hereditary Media and Rheololgy

1. Tangential and Bulk Viscosity

The viscous properties of a liquid are characterized by tne
following two viscosity factors: the tangential viscosity 71, cor-
responding to the velocity of shear deformation, and the bulk vis-
cosity 11', corresponding to tne rate of deformation of a uniform volume

compression (or expansion).
Already Stokes, in the course of his derivation of equations

describing the motion of a viscous liquid, realized the necessity of
taking into consideration viscous properties with the aid of two vio-

cosity factors, nMting at tnE same time that, in those cases when the
density can be considered, without a noticeable error, as constant or
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varying slowly in time, it can be assumed that I' = 0. In addition,
Stokes pointed out that ' = O, if we assume that, in case of a uniform
expansion, the pressure in each moment of time depends only on the
density and the temperature, and not on the rate of expansion. Thus,
Stokes did not assume by any means that III is generally equal to zero
and may be disregarded in case of compressiole liquids (1). However,
later on, almost all authors excluded from hydrodynamic equations terms
containing 1)', referring usually in this connection to "Stokes' hypothe-
sis," whereoy they implied that the last portion of the above-mentioned
considerations proposed by Stokes constitutes such a hypothesis.

Both viscosity factors are introduced into hydrodynamics, start-
ing from the assumption made by Newton, which, in its present formula-
tion, states that the components of the tensor of viscous stresses are
linearly connected with the components of the tensor of the deformation F
rates. 8

There is a formal analogy between Newton's law of internal fric- 8
tion arid Hooke's law of elasticity, which consists in the fact that
viscous stresses are related in the same manner to deformation rates
as elastic stresses to the actual deformations. This analogy is mani-
fested, on the other hand. in the same relation between the energy of
elastic deformation and Rayleigh's dissipation function and elastic and
viscous stresses, respectively (2).

During the derivation of equations describing the motion of a
viscous liquid, it is assumed that only hydrostatic pressure forces are
present in the liquid, which manifest themselves during volume deforma-
tions, as well as internal friction forces, which exert their effect
both during shear and volume deformations, and which are proportional
to the corresponding deformation rates. Both of these forces are inde-
pendent of each other and are governed by the law of superposition.
The Navier-Stokes motion equation, obtained under these conditions,
when expressed in vector form, has the followir., aippearance:

S + __,, I _ , (), (5.1)

where u is the velocity vector of an elementary volume of liquid, p is
the pressure, P is the volume force, v. = 7 is the bulk kinematic vis-

P
cosity, V is the previously mentioned shear kinematic viscosity.

As can oe seen from equation (5.1), 11' drops out of the motion
equation in the approximation of an incompressible liquid. However,
the usefulness of this approximation depends essentially upon the na-
ture of the processes taking place in the liquid. If the liquid can
De considered as incompressible, in case of the torsional oscillations
of the bucket examined above or during its flow through a capillary,
the compressibility of the liquid plays a basic role during the course
of propagation o* acoustic waves.
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L. I. Mandel'shtam and M. A. Leonotovich (3) have shown that the
ooserved abnormally high, in comparison to the classical Stokes-Kirchhoff
theory, absorption of ultra-acoustic waves in liquids can be explained
in a natural way if the second (bulk) viscosity is taken into account.
The investigation of the damping (attenuation) of ultrasonic waves in
liquids has become the basic method for measuring the oulk viscosity
(4). Therefore, during our theoretical study of the connection exist-
ing between a viscous liquid and a hereditary medium, we shrill also
take into account the bulk viscosity, although this property does not
manifest itself in the experimental studies examined in this book.

2. Theory of Hereditary Media and Rheology (5)
F
8 From the standpoint of continuum mechanics, the laws of elasticity
8 and internal friction constitute maximum approximations of the properties

of physical bodies. In a certain sense, actual properties lie between
these extreme cases.

Elastic and viscous properties, which are manifested to a certain
extent in all physical bodies, are unified by the theory of hereditary
media and rheology, whereby the latter represents a specific case of
the former theory. Therefore, both the theory of hereditary media, as
well as rheology, which takes into account in a clear form the time as-
pect of processes involving variations in stresses and deformations,
may be considered as the mechanics of the actual properties of continuums.

Boltzmann (6) and Volterra (7) must be credited with the most gen-
eral approach to the solution of the problem concerned with the actual
properties of bodies in relation to the deforming (straining) process.
The oasic idea proposed by the above authors consists in the following.
The state of stress in a given moment of time t is determined not only
by the deformation existing at this particular moment, out also by the
entire previous deformation (straining) history of the body.

In order to account for this history, it is possible to examine
at first two consecutive deforming processes. Let us assume that a
deformatione (t) is present at the time moment t', the preceding dura-
tion of whica is equal to At'. Then, during the subsequent deforming,
the stress, present at the moment t and equal to c(t), is smaller than
the stress specified by the elasticity law by a value which depends upon
the irevious deformation e (t') in such a way that:

a (t) = (t) - (t - t")& (t') (5.2)

where x is a constant, while 0 and e stand for the stress and the de-
formation either of a uniform manil'old compression, or of a shear (ac-
cording to the possibility of breaking down an aroitrary small deforma-
tion into a uniform manifold compression and shear). cp(t - t') iL
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called the heredity function. Naturally, in the case of compression and
shear, both p(t - t') and x are different.

In view of the fact that the influence of the preceding deforma-
tion decreases in the course of time, p(t - t1) must be a monotonic de-
creasing function. This function is a characteristic of the medium un-
dergoing deformation in relation to the type of deformation being studied,
and constitutes a generalization of the representation of physical proper-
ties by means of material constants, which are encountered when describ-
ing processes by means of differential equations.

According to Boltzmann's concept, there occurs a superposition of
deformations to which the medium is subjected during different time mo-
ments. Consequently, during a continuous deformizig, the followinC re-
lation will take place:

F
8

o f t-- 1/t') (t') d'. (5.3)
-0

This equation accounts for the entire deforming history of the medium
at the given moment of time t.

If the resolvent of the kernel of the integral equation (5.3) is
designated as I(t - t'), then the expression for the deformation can be
written as follows:it
s(t)= 1 (t) - (t-t')*(i')dt'. (5.4)

-00

The determination of the mode of functions (t - t') and *(t - t')
constitutes an independent problem, and this problem can ce solved Oy
approaching it from two different standpoints.

First, one can attempt to clarify the mode of the heredity func-
tion by starting from atomic-molecular concepts about the structure of
the medium and the micromechanism of deformations. However, in view of
the complex nature of this mechanism and the absence of reliable informa-
tion on the mechanism of small deformations having a nonelastic charac-
ter, no progress at all has been achieved so far in this direction.

Second, by conducting experimental observations of the properties
of deformed media and systematically classifying the data obtained, it
is possible to establish the mode of the heredity function for various
bodies. Naturally, it is highly probable that individual properties of
the materials studied will exert a strong influence not only on the
constants entering into this function, but also on the actual mode of
the heredity function. Apparently those failures which accompany at-
tempts at setting up a single rheological equation for a large group of
physical bodies are connected with this factor.
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Nevertheless, in order to clarify certain general properties of
condensed media, one can attempt to introduce a universal heredity
function, containing the proper number of material constants, keeping
in mind the fact that individual properties of the medium will be re-
flected in these constants. Naturally, such an assumption constitutes
a sufficiently rough approximation, although there are serious reasons
for assuming that it is closer to reality than the law of elasticity or
of internal friction, taken separately.

Since cp must be a monotonic decreasing function, we can adopt
the followinL for this function:

.Iere A and a tre characteristic constants of the material. Such a
p representation of the heredity function is not the best one in all
8 cases.
8 Boltzmann himself demonstrated the unsuitability of an exponen-

tial heredity function for calculating the energy dissipation during
oscillatory processes in solid bodies. Boltzmann also proposed the use
of a heredity function inversely proportional to time. This function
was used by B. V. Deryagin in calculating the damping (attenuation) of
elastic waves in solid bodies on the basis of his general theory deal-
ing with the propagation of small disturbances in a hereditary medium

* (6).
On the basis of an analysis of extensive experimental data,

dealing with solid bodies, other expressions for r have also been pro-
posed, which describe the properties of these bodies in a more satis-
factory manner (9).

However, we wish to select expression (5.5), since our problem
consists in establishing the connection between the solid and liquid
state, and therefore all condensed systems must be examined from a
single viewpoint.

By substituting (5.5) into (5.3) and replacing the lower limit
of the integral by zero, i.e., by counting the time from the moment of
the first deformation, we get:

9a t)f Ae-, 6' (5.6)

0

After differentiating tnis relation according to t, which is
considered as a parameter, we arrive at the following linear rheological
differential equation:

o()--=xs()- ()+a(n- A) (). (5.7)
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in which the time derivatives are designated by dots.
By introducing the symbols:

1 A (5.8)

the last equation can be rewritten in the following form:

(t) a M(t)- (t)- (t) (5.9)

An investigation of this equation was conducted by A. Yu. Ish-
linskiy (10) and others (11). If the deformation is fixed, i.e.,
e = 0, the solution of equation (5.9) will appear as follows:

t F
@(t) = +-l (0)--e' -. (5.10) 8

8

Consequently, the stress relaxes toward the equilibrium value:
a (00) = %04, (5-11)

which is achieved after an infinitely long interval of time.
The constant 9 has a time dimension and represents the relaxa-

tion time of the stress. Equation (5.11) indicates that KO has the
same meaning as the modulus of elasticity, corresponding to the given
type of deformation during a slow deforming. The meaning of constants
xo and co can be clarified more fully, if we start from equation (5.6).
Assuming:

a (t) = aes' (5.12)

and suostituting this expression into (5.6), we get:

) --A + q ae91. (5.13)

+ Iq

By transforming the latter with the aid of (5.8), we get:

Q (t) = 4
4 (f+m (5.14)

where:

/- (5.15)
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and:

tg (5.16)

From (5.15) and (5.16), it can be seen that if * O and xoo are
of the same order of magnitude, then, when:

q202 < I (5.17)

the stress is connected with the deformation by the relation:

a(t) xo(t). (5.18)
F

8 i.e., the usual law of elasticity is applicable at a modulus equal to
8 XO. Thus, if the period of variation of the external influence is great

in comparison to the relaxation time of the stress, then, during the time
the external influence undergoes a change, the stresses are able to un-
dergo a complete relaxation, and the elastic properties of the medium
are characterized by the modulus of elasticity KO.

When:

q'9P (5.19)

the stress is connected with the deformation by the relation:

a(t) = us(). (5.20)

Consequently, if the period of the external influence is small in com-
parison to the relaxation time of the stresses, the latter heve no time
at all to relax, and the medium again behaves as an elastic medium, but
is characterized by a different modulus 'to.

As can be seen from (5.16), the phase shift is practically re-
duced to zero in both cases. These expressions disclose the physical
meaning of constants x O andwoo.

Thus, when the heredity function is represented in the form (5.5),
the arbitrary state of stress of the medium can be described by neans
of the rheolorical equation (5.9), which includes six materihl constants
SO, *Koo and 9-- of which three correspond to a deformation caused by a
uniform manifold compression, and three correspond to shear deformations
(it the medium is an isotropic one). This conception is applicable to
a certain extent both to solid bodies and liquids.
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3. Thermodynamic Derivation of a Linear Rheological EAuation

A thermodynamic substantiation (base) can be given, in case of
an exponential heredity function cp, to the linear rheological equation
(5.9) derived from the theory of hereditary media, which shows that the
relaxation of stresses may represent a secondary effect and may be the
result of relaxation processes of a finer nature.

If changes in the state of stress of the medium take place with
a finite velocity, then a deviation from the state of statistical equi-
libriumi is present in the medium in eaich moment of time. These deiia-
tions are the cause of the irreversible nature of the deforming process,
which expresses itself in the conversion of the energy of elastic de-
formation into heat, i.e., in the presence of viscosity effects. Such 8
concepts were evolved by M. A. Leontovich and L. A. Mandel'shtam (3)
in their theory of sound absorption in liquids. Starting from the same
concepts, B. N. Finkel'shteyn and N. S. Fastov (12) obtained an equa-
tion for the theory of hereditary media in case of an exponential
heredity function, and consequently, also the linear rheological equa-
tion (5.9).

In order to characterize the deviation of the system from the
state of equilibrium, B. N. Finkel'shteyn and N. S. Fastov have intro-
duced a relaxation tensor tik, without clarifying the meaning of" this
tensor in greater detail. In this case, in the presence of small de-
formations and slight deviations from the equilibrium state, the free
energy of the medium can be represented in the form of a linear combina-
tion of quadratic invariants of the tensors Eik and t ik. By separating
the deformations caused oy shear and manifold compression, we can write:

P(,, E)-- Po-+-ag-+-b---Ca., (5.21)

where F is the free energy of a unit volume, t is the scalar parameter
of relaxation. C and t refer either to a deformation caused by com-
pression, or one caused by shear.

If' the equilibrium value of & is equal to t0 , then:

Ot(5.21')

and from (5.21) we obtain:

c (5.22)to = - 9 a

Equation (5.21), by mean6 of the substitution:

t(5.23)
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and replacement of 0 according to (5.22), can be represented in the

following form:

FP=FO+(a-4)'s9 +b, 2. (5.24)

From here, the stress can be represented as follows:

MF 2 ) (5.25)

Since, according to (5.23) and (5.22):

Lt d =C (5.26)

8
8 the expression for the stress assumes the following alpearance:

a = 2(a - ±) + c. (5. 27)

The following relaxation law is adopted as an equation descrio-
ing the reaction of the medium toward an external influence:

r (5.28)

with the aid of which, after replacement of 0 according to (5.22), we
--e L:

t t-t'
()= ,-"Fi(t')dt' (5.29)

and after integration by parts:

Ib 't 80 1(-0~(t) = . {(t) - f-e-T-(t) dt'}. (.30)

By substituting the found expression for g(t) into (5.27), we
finally get:

- 115 -



,-% _ 9 t- r'( . 1

a(t) = 2a, W Sft (5.31)

i.e., an equation for the theory of hereditary media in case of an ex-
ponential kernel. By comparing this expression with (5.6), and taking
(5.8) into account, we get:

Y.=2a= ( d'F\ IO 2 SU O (5.32)
ag0 st~. F

Thus. all consequences resulting from the linear rheological
equation (5.9) which in turn results from the theory of hereditary
media in case of an exponential kernel, can ce deduced (derived) by
using as a base a relaxation mechanism for the establishment of a sta-
tistical equilibrium in the system, resulting in a relaxation of
stresses.

The primary process consists in a disruption (violation) of the
statistical equilibrium, which may arise in the formation of tempera-
ture nonuniformities, in the disruption of the equilibrium structure
of the medium, in a disruption of the equilibrium energy distribution
between internal and external degrees of freedom (as happens in the
theory of sound absorption in gases, developed by Knezer), and in other
similar processes.

4. Absorption of Energy in a Relaxing Medium

The process of energy absorption in a relaxing medium is marked
by certain characteristic features, which differentiaLe it from analo-
gous processes occurring in purely viscous media.

After rewriting the rheological equation (5.9) in the following
form:

(t) = xo (t) O (t)- o(t) (5.33)

and multiplying it by de(t) = idt, we will get the following, after in-
tegrati on:
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Jo =(t)ds(t)- . xo O oo/ dt- a"(t) (t)dt. (5.34)
0 0

The left side of this equation represents the work performed by ex-
ternal forces over the system. The first term of the right side ex-
presses the energy increase of the elastic portion of the deformation,
and the second term is the usual Rayleigh dissipation function, associ-
ated with pure viscous effects; the role of the viscosity factor (in
case the latter is always considered to be the factor preceding the
dissipation function) is performed by the following product:

OX2(o=1r. (5.35)
F
8 In regard to the third term, t it can be noted that its sign
8 1 5jdt,

depends on the beginning of the time reading and the value of the in-
terval t, since the stress does not follow immediately the deformation,
and in case of a periodic change of e in one portion of the period, the
signs of i and Q are identical, while in the other portion - they are
different. This particular fact is clearly visible if e = a cos qt
is inserted into equation (5.34) (then, according to (5.14), c =Wa cos
(qt -r m), and a calculation of the integrals is performed. The energy
dissipated during the period 2_i is equal in this case to:

q

-ala -bqa' cos m, (5.36)

and, since cos m > O, this quantity is always smaller th!rn th energy
dissipated as a result of purely viscous effects (i.e.,$K a n). This
phenomenon can be explained as being due to the fact trit relaxation ef-
fects reduce the stresses arising in the medium, and can be considered
as an illustration of the Le Chatelier-Braun principle. It is also oo-
vious that it is precisely the phase shift between the stress and the
deformation which is the cause for an elastic hysteresis, which mani-
fests itself to a smaller or greater extent in all solid bodies.

By retaining:

S'dt = D, (5.37)

as the designation of a dissipation function, the expression:
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f* ;;dt = D, (5.38)

can be called the relaxation function of absorption. It is obvious
that, during the deforming of relaxation media, the work of external
forces is equal to the sum of the elastic energy, the dissipation func-
tion and the relaxation function of absorption (it is assumed that the
kinetic energy of the elements undergoinig deformation can be disregarded).

5. Viscosity of a Liquid From the Standpoint
of the Theory of Hereditary Media

By introducing into the rheological equation the viscosity, ac-
cording to the relation (5.35), we will get:

+" 0 = i+ 's . 8(539)

By limiting ourselves only to such deforming processes, for which:

I1<c I* 1, (5.40)

the latter relation can be written in the form:

+ X+O. (5.41)

If, from the total stress, corresponding to a deformation of a
given type, it is possiule to separate the addend having the nature of
a hydrostatic pressure, in such a way that:

a = a/ p, (5.42)

where p is the hydrostatic pressure and 2' it the remaining part of the
stress, then equation (5.41) can be represented in the form:

o'-- P = 4 + xos. (5.43)

In case of an isotheridc uniform manifold compression of the
medium, the change in the pressure is entirely determincd by the change

in volume:

A-d_ dV)=x e (5-44)

and if the modulus is independent of' the deformation, then:
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P = 0.(5.45)

Consequently, in case of a uniform manifold compression, the rheologi-
cal equation breaks down into two parts: an equation, connecting the
viscous stress o, with the deformation rate:

I = q;, (5.46)

and an equation, connecting the hydrostatic pressure with the deforma-
tion (5.45).

Consequently, a viscous liquid is a medium which, in regard to
deforming processes, fulfills the condition (5.40), and, in regard to
properties, allows the isolation of an additive stress, corresponding
to the hydrostatic pressure during bulk (volume) deformations, and which
has a modulus of rigidity equal to zero during a slow deforming.

8 By separating manifold compression and shear deformations, drop-
8 ping the accent in the viscous stress and adopting tensor designations,

we will now get the following expressions instead of the former equa-
tions:

For the manifold compression deformation:

= " (5.47)

where 1' is the bulk viscosity:

71 = k0', (5.48)

in which #1 is the relaxation time during manifold compression, koo is
the modulus of manifold compression during instantaneous deformation.

For the shear deformation:

CIA C(e. - 1 I 8.8) 
(5.49)

where ' is tne shear viscosity, 6ik is the unit tensor.

,q = 0D, (5.50)

where 4 is the relaxation time during the shear, Goo is the modulus of
rigidity during an instantaneous deformation.

For all known liquids, as long as there -ire no restoring forces
in these liquids during slow shear deformations, there is no reason to
consider that Go is different from zero. The modulus of elasticity of
volume during an instantaneous deformation koo always differs from zero,
and in an extreme case has a minimum value equal to kO . For this reason,
the bulk viscosity factor becomes equal to zero in those cases when the
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relaxation time *' is equal to zero and when the elastic state of the
liquid during manifold compression is wholly determined by the modulus
ko, corresponding to a slow deformation.

This particular conclusion agrees with the opinion held by Stokes
that the bulk viscosity is equal to zero in those cases when the pres-
sure during a uniform manifold compression depends only on the value of
the deformation and the temperature, but not on the rate of deformation.

On this basis, one can also understand the fact that the bulk
viscosity of monoatomic gases is equal to zero, since in this case not
one of the above-mentioned mechanisms of a relaxation process can take
place. The disruption of the statistical equilibrium caused by the
formation of temperature nonuniformities should not be taken into con-
sideration, since in this case, as was shown by Kirchhoff, the absorp-
tion of energy is accounted for, not by means of the viscosity, but by 7
the heat conduction of the medium. On the other hand, it is obvious 8
that, for liquids having a structure of a short-range order (even mono- 8
atomic metallic liquids), I)' must be different from zero. We believe
that the measurement of the bulk viscosity of metallic liquids, for
example, by the acoustic wind method (13), is one of the most important
experimental problems in the field of the theory concerned with the
liquid metallic state.

6. Certain Experimental Results

A study of the modulus of rigidity of liquids during rapid de-
formations is of great interest both for rheology and for the theory of
the liquid state.

We shall now examine certain studies conducted in this field,
without attempting to give a full description of this work and limiting
ourselves only to an illustration of a number of concepts, dealing with
the relationship between the hydrodynamics of a viscous liquid and the
theory of hereditary media.

First of all, we shall examine in somewhat greater detail the
properties of a continuous medium, in which Go = 0, and which, there-
fore, starting at certain rates of deformation, behaves like a viscous
liquid. Let us assume that this medium is subjected to a periodic ex-
ternal influence with a frequency q. If the period of this influence,
2r Tis much smaller than the relaxation time of shear stresses, then,
q
according to (5.19), the medium will behave as an elastic medium with a
modulus G,. The condition (5.40), which, in case of a periodic external
influence according to the law c = Goeiqt can be represented in the form:

S(5.51)
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of course, cannot be fulfilled in this case, since it directly contra-
dicts (5.19). After determining Goc and having at our disposal the
values of viscosity q, obtained for our medium during a slow flow, it is
possible to determine the relaxation time of shear stresses 'by means
of equation (5.50).

The values Geo, I and 9 from the standpoint of the conception
on which a linear rheological equation is based, are material constants.

During a reduction of q, after inequation (5.19) has been dis-
turbed, the medium will retain its elasticity properties, but when:

0 % 0, (5.52)

as follows from formula (5.15), when the action has a zero frequency,
the medium will completely lose its shear elasticity. Somewhere during
the course of this transition the condition (5.51) will begin to be

8 fulfilled, and the medium will start behaving like a viscous liquid.
If the flow is stationary, then in any point of this flow, 6 = 0,

and in this case the inequation (5.40) is satisfied identically, i.e.,
the stationary flow can be described by equations of a viscous liquid
independently (regardless) of the value of the viscosity (of course,
when Go = 0).

Let us examine now certain experimental results from the stand-
point of the concepts described above. It has been established experi-
mentally (14) that a number of thick liquids (such as paraffin, salol,
byposulfite, rosin, etc.) have a modulus of rigidity of w 106 in case
of external action periods of w 0.5 sec (q f 10). By using data ap-
plicable to rosin (Goo = 1.45 • 108 and t= 1.5• 1014 at a temperature
of 300 C), the authors of the work mentioned above have found that the
relaxation time of shear stresses in rosin is equal to % 106 sec. Thus,
the product 4q o 10 P1, i.e., the modulus Goo was actually measured in
this case. Apparently, the flow of the medium examined here can comply
with Navier-Stokes equations only in case of very small deformation fre-
quencies q f 10 - 7 to 10-8.

Of considerable interest is the work done by M. Kornfel'd (15)
on the study of the temperature dependence of the modulus of rigidity
of rosin at different frequencies (I = 2.8 * 103, 1.3 - 1o5 and

IT
2.9 * 105 cycles per second). These studies have shown that the modulus
of rigidity in the above range is independent of the frequency and is
approximately equal to 1.2 • 1010 dys/sq cm at 00 C, dropping with an
increase in temperature to 0.2 • 1010 dynes/sq cm at 600 C.

By using the data on the temperature dependence of the viscosity
of rosin listed in M. Kornfel'd's monograph, we can calculate the re-
laxation time of shear stresses according to formula (5.50), assuming
that in all cases the measured values of the modulus of rigidity are
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really equal to G0. The corresponding data are listed in Table 12,
which should be considered as a characteristic of the order of the re-
laxation time of shear stresses of rosin In the temperature variation
range of" 56-68 ° C.

Table 12

Temperature Viscosity,
0 in poi s es G dnes/so cm 4sec

56.5 1.30 " 106  0.6 " 1010 220 * I0-6

58.5 1.06 106 0.4 . 1010 270 . 10 "6  F

861.0 3.00 105  0.3. 1010 101. 10 6  8

64.0 1.55 . 1o5 0.2 . 1010 78. 10- 6

68.5 4.75 " 104  0.1 • 1010 48. 10 6

The high value of the modulus of rigidity, which is close to
the values characteristic for crystalline bodies, is worthy of atten-
tion. In regard to the discrepancy in the values of * obtained (106
seconds at 300 C and 10-5 seconds at 680 C), the reason for this dis-
crepancy is mainly due to the extremely great temperature dependence
of the viscosity of rosin (16). By selecting the maximum frequency

1= 2.9 • io5 cycles per second (q - 18. i05) and the maximum relaxa-

tion time 0= 220 e 10- 6 seconds, we get 4q = 400, i.e., Goo was meas-
ured in this case.

The situation is different in case the frequency of the external
influence (action) 1 = 2.8 • 103 cycles per second (q = 18 • 103) at a

T

temperature of about 700 C, when 0 r, 48 • 10-6 sec. In this case,
q r- 0.13, and the elastic properties of rosin are no longer character-

ized by the modulus Goo, but, according to (5.52), by the modulus
G _ Gooq9, which, with the aid of (5.50), can be written in the follow-
ing form:

0 q <CI., (5.53)

By substituting into (5.53), I= 4.75 • 104 and q = 18 • 103,
we get G - 0.85 * 109, as against the observed value 1 109 (see
Table 12).

If we take into account that, for the two other frequencies used,
the measured modulus is Go, the above examination of experimental data
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does not contradict the assumption that Go = 0 for rosin in the tem-
perature interval studied. Consequently, we can assert that, at these
temperatures, the stationary flow of rosin must be governed by Navier-
Stokes equations. ?Yoreover, it can be stated that the same equations
will describe the flow of rosin at frequencies of q < 104.

In regard to metallic liquids, no measurement of the modulus of
rigidity GOD was performed on these liquids. However, it is still pos-
sible to make a certain rough estimate in this case.

Condition (5.51), with the aid of (5.50), can be written in the
form:

0.. (5.54)

8 and, by taking into consideration thnt T .- 10- 2 poises represents a
8 typical value for the viscosity of metallic liquids, we can note that

the concept of viscosity will retain its meaning up to frequencies de-
termined by the following inequation:

If the value 1010 - 1011 dynes/sq cm is adopted for the modulus of
rigidity (obtained at low frequencies for metals in the crystalline
state), then the concept of viscosity and the equations of hydrodynamics
for metallic liquids must retain their meaning up to frequencies of the
order of 1012 - 1013 cycles per second. The relaxation time of shear
stresses will then have a value of the order of 10-13 sec.

Condition (5.40) can be considered to a certain extent as the
limit of the applicability of hydrodynamic equations on the part of
media having a high viscosity, regardless of the nature of this vis-
cosity, which may depend on the heterophasic character of the medium.
This factor is significant for our further study, which will be con-
cerned with an examination of the results obtained during the measure-
ment of the viscosity of alloys in the heterogeneous region of the fusion
diagram.

The experimental study of the problems discussed here must greatly
increase our knowledge and understanding of the nature of the liquid
state.

Bibliography (Chapter V)

1. L. I. Mandel'shtam, Comrlete Collection of Works, Vol. 2, No. 43,
1947, published by Akademizdat (see article by M. ., Leontovich
and L. I. Mandel'shtam).

2. Rayleigh, Teoriya zvuka (Theory of Sound), 2, No. 345, 1944, pub-
lished by Gostekhizdat.

- 123 -



3. L. I. Mandel'shtam, Complete Collection of Works, Vol. 2, Nos. 42
and 43, 1947, published by Akademizdat; M. A.'Leontovich, Izvestiya
AN SSSR& Seriva fisiheska-Va (News of the Academuy of Sciences
USSR, Physics Series)p Vol. 8, No. 1, 1944.

4. See the following monographs in connection with this problems
I. G. Mikhaylov, Raanrostranenive ul' trazyukov-vkh voln v ahid-
kostvakh (Propagation of Ultrasonic Waves in Liquids), 1949,
published by Gostekhizdat; B. V. Kudryavtsev, Primeneniye ul tra-
akustiqaskikx metodov v oraktikp gisiko-khinicheskikh issledo-
yaI (Application of Ultra-Acoustic Mehods in the Practice of
Physical-Chemical Research), 1952, published by Gostekhizdat.
See also the bibliography listed in these monographs.

5. See the following monographs in connection with this problem: 8
L. M. Kachanov, Mekhanika Plasticheskikl sred (Mechanics of 8
Plastic Media), 1948, published by Gostekhizdat; A. R. Rzhanitsyn,
Nekotoryy voprosy mekhaniki sistem deformirayushchikhsyva vo
vrmn (Certain Problems Concerned With the Mechanics of Sys-
temus Undergoing a Deformation in Time), 1949, pualished by Gos-
tekhi zdat,

6. L. Boltzmann, Wdien. Ber., Vol. 70, 1874, p. 274.
7. V. Volterra, Theory of Functionals and of integral and Integrodif-

ferential Equations, London and Glasgow, 1931.
8. B. V. Deryagin, B-9itrage zur Angewandten Geophysik, Vol. 4, No. 4v

1934.
9. See A. F. Bronskiy, Prikladnaya matematika i mekhanika (Applied

Mathematics and Mechanics),, Vol. 5, No. 1, 1941; G. L. Slonim-
skiy, Zhurnal tekhnicheskoy figiki (Journal of Technical Physics),
No. 20, 1939. See also tne bibliography given in this source.

10. A. Yu. Ishlinakiy, Doklady AN SSSR (Reports of the Academy of Sci-
ences USSR), Vol. 26, No. 1, 1940.

11. K. Hohenmeser und W. Prager, Zse angews Math, u. Mech.9 Vol. 12,
No. 4. 1932.

12. B. N. Finkel'shteyn, N. S. Fastov, Dold A S (Reports of the
Academy of Sciences USSR), Vol. 71, No. 5, 1950.

13. C. Eckart, Phs e~ Vol. 73, 1948, p. 6d; L. N. Lieberman,
Phys. Rev., Vol. 75, No. 9, 1949.

14. B. V. Deryagin, A. A. Leontlyeva, MI. P. Volarovich, Acta Physico-
Chilica URS Vol. 5, No. 5, 1936.

15. M. Kornfeltdo Upruost' i prochnost' zhidkostey (Elasticity arnd
Stability of Liquids), 1951, published by Gostekhizdat.

16. See, for example, P. P. Kobeko, Amorfnyyve veshchestva (Amjorphous
Substances), 1952, p. 272, figure 158, published oy the Academy
of Sciences USSR.

- 12/4-



Structure and Viscous Properties of Nbtallic Liguids

1. A. I. Bachinskiy's Viscosity Ecuation

In 1913, A. I. Bachinskiy (1) proposed his formula for the vis-
cosity of simple (non-associated) liquids:

C (6.1)

where C and b are constant values, v is the specific volume.
Organic liquids, with the exception of alcohols and organic acids,

are well described by means of formula (6.1). As M. P. Volarovich (2)
8 has shown, the viscosity of certain salts also satisfies this equation.
8 We shall write Bachinskiy's formula as follows:

C (6.2)

or, in a different form:

I _ (6.3)V=  -ffP,

where P is ViO density.
Bach::ikiy's formula is based on the assumption that the viscosity

of a liquid is determined by the interaction of molecules. As the inter-
molecular 3istance increases, and consequently, as the forces of inter-
molecular interaction are reduced, the viscosity decreases. On the
basis of an analysis of a large volume of experimental data, A. I.
Bachinskiy assumed that the fluidity 1 of a liquid is proportional to

1
the difference v - b. The constant b, in the opinion of Bachinskiy,
must be close to the natural (eigen) volume of the molecules, i.e., to
the correction for the specific volume in the Van der Waals equation of
state. A. I. Bachinskiy himself believed that b = 0.307 vcr, where vcr
is the critical volume, whereas the constant b, entering into the Van
der Waals equation of state, is connected with the critical volume by
the relation b = 0.333 Vcr. Thus, the difference v - b is close to
the free volume of the liquid.

The concepts held by A. I. Bachinskiy represented a new step in
the development of the theory of the liquid state. They attracted the
attention of researchers to the determining role played by the free
volume in processes causing a viscous flow, and exerted a considerable
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influence on the development of theoretical concepts related to the
viscosity mechanism. According to the concepts held by Bachinskiy, the
temperature does not affect the viscosity directly, but rather through
the effect of thermal expansion. Consequently, the formula of this ef-
fect must be considered as an approximate formula, since an increase in
the temperature of the liquid increases the mean kinetic energy of' the
nolecules and therefore must increase the mobility of these molecules.

A. I. Bachinskiy associates the value b with the critical volume,
which constitutes an absolutely natural approach, if we start from the
idea of' the continuity of the liquid and gaseous state, inherent in Van
der Waals equation. However, a different approach is possible, namely
from the side of the solid state. In that case, it is possible to con-
sider as a basic (starting) concept the fact that the fluidity of a
crystal is vanishingly small, even in the vicinity of the melting point,
in comparison to the fluidity of the liquid. By assuming that the
fluidity is equal to zero when v = vs, where vs is the specific volume
of the solid phase near the melting point, we get:

b-m, vat(6.4)

and, therefore, the constant b it- L.'Acninskiyls formula can be inter-
preted as the specific volume of the solid phase at the melting point.

The fact that the viscosity of organic liquids does not comply
with formula (6.1) is usually ascribed to their association. Indeed,
almost all organic liquids exhibiting an abnormal behavior in regard
to Bachinskiy's formula have a tendency to form a hydrogen linkage,
discovered in 1877 by N. N. Beketov, and exhibit anomalies also in con-
nection with a number of other properties.

These deviations from Bachinskiy's formula are of two different
types: either the function 1 (P) is expressed by a curve, whose con-

vexity is directed toward tne density axis, or by a curve whose con-
cavity is directed toward the density axis. A deviation of the first
type is exhibited by alcohols and organic acids, while a deviation of
the second type is exhibited by water and fused metals. The first type
will be designated as deviations of the alcohol type, and the second as
deviations of the water type.

The action of the hydrogen linkage (bond) in the first group of
liquids manifests itself in an actual aggregation of molecules. In
regard to water, it can be stated that, according to x-ray diffraction
analysis data and the structural theory of Bernal and Fowler (3), a
hydrogen linkage (bond) in this case results in the formation of dif-
ferent structures of water. In the vicinity of the crystallization
point, approximately up to 40 C, "water I" has the structure of ice-
tridymite (a hexagonal silica). When the temperature is increased,
"water II" is formed, having a quartz structure, which is retained
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almost up to the critical temperature. Further, in the vicinity of
the critical region, the structure of water becomes tightly packed.
With a change in the temperature, the structures are constantly (con-
tinuously) converted into each other, so that only on an average does
the mutual arrangement of molecules come close to a smaller or greater
extent to the structures mentioned aoove. On the basis of a comparison
of x-ray diffraction analysis data with the degree to which experi-
mental results on the viscosity of organic liquids and water comply
with Bachinskiy's formula, we are led to the conclusion that devia-
tions from this formula are associated to a certain extent with struc-
tural transformations in the liquid phase.

A. I. Bachinskiy and N. S. Kurnakov have stressed that the vis-
cosity constitutes a structurally sensitive characteristic of a liquid.
N. S. Kurnakov has selected the viscosity as one of the basic indices of
physical-chemical analysis. For this reason, it can be expected thht

F a study of the viscosity, as well as of other macroscopic properties,
8 for example, heat conduction and electrical resistance, can yield
8 valuable information on structural changes occurring in a liquid. It

is known that the study of precisely macroscopic properties of solid
alloys constitutes the principal method of studying the phase conver-
sions taking place in these alloys.

2. Structure of a Liouid

The theory of the scattering of x-rays by a system consisting of
atoms of one type leads to the equivalent expressions (4), (6.5) and
(6.6), by means of which it is possible to get an idea of the structure
of a monoatomic liquid on the basis of a study of the angular distribu-
tion of the intensity I(s) of scattered x-rays:

0

I(s)=N4Pt1+4= 1'r'I (r)-mIn sr dr (6.5)

0

From (6.5), by means of a Fourier transformation, the following rela-
tion can be obtained:

00

4:rvm-(r)=4wr9m±. + j S [I(-)- I sin sr . ds; (6.6)
0

where 4" sin,' Ais the scattering angle, X is the wavelength,

N is the number of atoms in the scattering volume, 4 is an atomic factor,
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m(r) is the density of atomic distribution, selected in such a way that
in a spherical layer r, r + br there are r+Ar atoms present,

! 41r 2m(r)dr
r

m(oo) = mo . Formulla (6.5) makes it possible to select such a function
of the density m(r), which will yield a distribution of the intensity
that agrees with the one obtained during a test. By using the second
equation, one can ootain the intensities I(s) directly according to the
distribution which has been found. Thus, both of these relations allow
the determination of the density of atomic distribution m(r) for a
monoatomic liquid.

In order to describe the arrangement of atoms, a function of
atomic arrangement n(r) is introduced, which is selected in such a way
that the expression r+Ar represents the number of atoms located

I n(r)dr F

r
in a spherical layer r, r + dr. From here, it is obvious that: 8

= (r) = 4:r'm (r). (6.7)

In case of an ideal crystal lattice, the expression lim
A-9O

ri+A

j n(r)dr = Ni gives the number of atoms lying on a sphere with a
ri-A
radius rip constructed near any arbitrary atom adopted as the center.
From this standpoint, the crystal lattice can be characterized by means
of a system of numbers Ni and ri (i = 1, 2, 3, ... ). The function of
the atomic arrangement for the entire crystal lattice will be a discon-
tinuous function, different from zero for a series of discrete values
ri < r 2 < r 3 ..., and accordingly equal to N1 , N2 , N3 , .... If this
is the case for any kind of values, then the arrangement of atoms rep-
resents an ideal crystal lattice. By designating the minimum distance
oetween two atoms as r 1, the dependence between the coordination number
Ni and the ratio ri can be calculated geometrically for each type of

ri
crystal lattice. For example, in case of a face-centered cubic lattice,
we shall have: ri 1.41; 1.73, and accordingly Ni = 12, 6, 24 when

i = 1, 2, 3.
The same results can be interpreted from the standpoint of the

probability law. The probability that atom 1 is located in a fixed
volume dv 1 , while atom 2 is located in a volume dv2, can be represented
in the form: W(r)dvldv 2 , where r is the mutual distance of volumes dv 1
and dv 2 , and W(r) is the probability factor. Since the probability of
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the fact that atom 2 is located at a distance r from atom 1 is propor-
tional to the average number of' atoms in a unit volume, located at a
distance r from atom 1, then, obviously, m(r) = moW(r), where m0 is the
uniform density of a chaotic (random) distribution (in case of a com-
pletely random orientation of atoms W = 1). In reality, the atoms of
a crystal are not stationary (motionless), but vibrate near equilibrium
positions. For this reason, W(r), and consequently, also m(r) must be
continuous functions of r with sharply expressed maxima (peaks) at
values r = ri (i = 1, 2, 3, etc.). Values of ri, at which n(ri) has a
clearly marked maximum (peak), are apparently not limited by anything,
except by the natural boundaries of a crystal.

Such a distribution (orientation), which can be naturally derived
from an ideal crystal lattice when the thermal agitation of atoms is
taken into account, will be designated by us as a structure of a long-

8 range order. This definition of' a long-range order structure reflects
B the presence of a correlation in the arrangement of atoms to in-

finity (5). However, it expresses a more rigid (strict) requirement
from the standpoint of the order of the atomic arrangement. From a
physical viewpoint, this definition of a long-range order structure
makes it possible to effect a direct comparison of the spatial arrange-
ment of liquid particles with the arrangement exhibited by these parti-
cles in the solid state and with an ideal crystal lattice.

The probability of the displacement of an atom from the equili-
brium position, as a result of thermal motion, by a magnitude ti = r - ri,
can be expressed by the formula:

-' -~(6.8)

dP = (Y2F9Y e 'N dr;

in case of any value of i.

-j .T (6.9)

where f is the quasi-elastic linkage factor in the equation describing
the oscillatory motion of the atom, and T is the absolute temperature.

The idea underlying considerations leading to the concept of a
short-range order consists in applying the expression (6.8) to the case
of a statistiral scattering of atoms. In other words, it is necessary
to find for t an expression which depends on r.

By me:Ats of the method used in the theory of the Brownian motion,
it is possible to establish a connection between 2 and r for a sta-
tistical scattering having the following form:

= 2D'r,. (6.10)
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where D' is a constant known as the structural diffusion factor (see
Note).

Note: Formuln (6.10) can be derived in the following manner.
Let us examine an atomic chain, in which the coordinates of the i-th
atom in a state of ideal order (equal interatomic distances) are equal
to ri, while the actual coordinates are equal to ri. By designating
the atomic displacements as ui, we will get, obviously:

ri = r + O, rJ - r + u,. ri -J = r '- +  "i-J"

In case of an equal probability of positive and negative displacements,
Ui = Uj = 0 (mean values are designated by a straight line on top of
the symbols). In case of a statistical independence of displacements: F8

~ , j. 8

By combining the first three equations, we find:

di + riJ - ri - (r, + ri_j) - r, + us + U"_i- U,.

However, since ri = rj + ri-j, t ,en ui uj + ui-j, and consequently,
by squaring and taking the mean, we get:

This is a functional equation of the form:

f(U,) = f (U) + f (U,_ ).

the solution of which is a linear function of r:

(u5 ) =i~ =- 2D'r,. (**)

By checking, one can easily see the identical nature of the relation:

2Dr, = 2D'r- + 2D'r , -J

Consequently, (**) represents the solution of equation (*) which was
sought.

Therefore, in case of a maladjustment (disarrangement) of an
ideal crystal lattice, due to a statistical scattering of atoms, ri
formally plays the same role as the temperature T during a derangement
of the lattice caused by thermal motion, or as the time t in the phe-
nomenon of the Brownian motion.

Expression (6.8), when (6.10) is substituted into this expression,
has the meaning of the probability of the fact that an atom, which in
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an ideally ordered lattice must possess a coordinate ri, possesses a
coordinate r as a result of a statistical scattering. By multiplying
(6.8) by N1 and summing up all i values, obviously, we shall find the
function oi the atomic arrangement of particles, in the presence of a
statistical scattering having the following form:

(r-rI
d= N,(.(6.11)

Here, n(r) is a continuous function of r, but its essential feature
consists in the fact that the n(r) maxima, corresponding to values
r = ri, become rapidly blurred (washed out) when i increases. Since
any atom may act as the origin of the radius-vector r, then conse-
quently, in the vicinity of any atom, the first coordination sphere
will be clearly expressed (marked), the second one will be weaker,

F the third one will be still weaker, the fourth and following spheres
8 may yield an equally probable arrangement of particles, i.e., a com-
8 pletely disorderly (random) arrangement. Such an arrangement of atoms

is called a structure of a short-range order.
It should be noted that if only the first two n(r) maxima are

clearly expressed, giving, for example, Ni = this type of coordina-

2 =

tion is met both by a face-centered cubic structure as well as by a
closely packed hexagonal structure. Already from here we can see that
a knowledge of the short-range order is not always sufficient for de-
termining the type of crystal structure, which is understandable, since
the type of crystal structure is associated with the concept of long-
range order.

The discussions presented above, which substantiate the concept
of a short-range order and which belong to krins (6), can still not be
considered as a theory of the structure of a liquid, in view of the
fact that the problem concerned with the applicability of a relation of
the (6.10) type to a three-dimensional arrangement of particles still
remains unclear. Ya. I. Frenkel' (7) criticizes Prins' conception and
agrees with the fact that t is independent of r in a three-dimensional
system. However, this problew requires additional research. Therefore
the derivation of relationship (6.10) given here should be considered
only as a model illustration of a certain type of arrangement of parti-
cles.

Figure 31 presents a typical experimental picture of the scat-
tering of x-rays by a monoatomic liquid, obtained with fused aluminum
at a temperature of 7000 C. As is known from the theory, the zero in-
tensity at small scattering angles and the oscillating dependence of
the intensity on the parameter s indicate the presence of a certain
order in the arrangement of particles. For purposes of comparison,
the same figure shows a curve corresponding to a scattering from
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aluminum in the gaseous state (uniformly dropping line). It should be
noted that, in case of large scattering angles, the intensity curve for
liquid aluminum can be fully superimposed on the intensity curve for
chaotically distributed atoms, and thus the arrangement of atoms in
liquid aluminum exhibits both orderly and chaotic features.

Figure 32 shows the result of processing of the I(s) curve given
in Figure 31 according to formula (6.6). In this figure, the discon-
tinuous function of the atomic arrangement for the face-centered lattice
of crystalline aluminum is represented by means of vertical lines. The
factor (multiplier) 4-r2mo, where m0 is the uniform density of the ran-
dom distribution of particles, is represented by a curve of the parabolic
type.

Thus, a comparison of the atomic arrangement functions for the P
same substance in the crystalline and liquid state shows the presence 8
in the liquid of a coordination in the arrangement of atoms, similar to 8
the one observed in a crystal. However, in a liquid, the orderly na-
ture of the atomic arrangement is observed only in the vicinity of an
arbitrarily selected atom and disappears upon moving away from this
atom. The arrangement of atoms becomes disorderly (random) over
a range of several interatomic distances.

From a local standpoint, the structure of a liquid is close to
the structure of a crystal; however, at great distances, there is no
correlation of individual quasi-crystalline regions in regard to their
orientation. Regions, in regard to which one may speak about an orderly
atomic arrangement in the liquid, cover an area equal to a score of
angstroms. Consequently, experiments lead us to conclude about the
presence in the liquid of a short-range order structure in the arrange-
ment of particles.

From the standpoint of the probability law, the results of the
study of the distribution of the intensity and position of diffraction
maxima (peaks), and of x-rays scattered by the liquid, indicate the
presence of a set of preferential distances between atom pairs. Whereas
certain atomic distances are encountered most frequently, others may not
be observed at all or may be equally probable, if they exceed a certain
value.

For purposes of illustration, Figure 33 shows the curve of the
probability factor:

W(r) = n (r) (6.12)

obtained for the amorphous modification of arsenic As1. The most proba-
ble interatomic distances are aproximately equal to 2.5; 2.8; 5.5 R.
Distances of less than 2 and 3 X are not encountered at all. W(r) = 1
corresponds to a uniform distribution of particles in a volume.
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The studies conducted by G. V. Stuart and his associates, V. I.
Danilov and his school, P. Debye, Tsernik and Prins, and Ya. I. Frenkel'
represent a particularly valuable contribution to development work on
the problem concerned with the structure of a liquid. In the work done
by these authors, as well as in the studies performed by other re-
searchers, one can find the necessary details on the experimental re-
sults dealing with the study of the structure of liquids and the physi-
cal interpretation of these results (8).

The experimental studies illustrated in Figures 31-33 may be due
to a different mode of arrangement of particles in a macroscopic volume
of the liquid. The question as to which type of arrangement is actually
encountered in reality represents a basic problem of the theory of' the
structure of a liquid, which is still unsolved at the present time.

P We shall not present here again a description and critique of
8 the various concepts dealing with the structure of a liquid, which have
8 been expressed at different times, since it can be stated that the in-

adequacy of these concepts has already been established. For this
reason, we believe that it is more expedient to attempt to present a
new description of the structure of a liquid, based on experimental
data, and to retain those elements of the concepts which have been pre-
viously evolved, which, in our opinion, appear to be correct. Such an
attempt represents a statement of the problem.

Using the picture of the diffraction of x-rays as a basis, we
can assume that a liquid contains ordered groups of scattering centers
(atoms, molecules, ions), covering an area of several score of angstroms.
However, such quasi-crystals cannot be considered as a continuous fill-
ing of crystalline lattice points. During the process of fusion (smelt-
ing), the volume of the vast majority of liquids increases by approxi-
mately 10%, and this increase corresponds to 100 unsubstituted (vacant)
points in the crystal lattice of a cube with an edge length equal to 10
average interatomic distances. The presence of unsubstituted points
must necessarily result in a statistical disarrangement of the atomic
distribution (in relation to an ideal order of the crystal lattice), and
consequently, will result in local decreases in the height of the pot-
tential barrier of interactions between particles. (Note: The above
discussions on the structure of a liquid are also applicable to abnormal
substances such as bismuth, which undergo a contraction during fusion.
Although these substances are subject to a denser packing of atoms
during the fusion process, as a result of a change in the structure
type, the presence of unsubstituted points in this new lattice is just
as necessary in abnormal substances as in normal liquids.) This factor
in turn causes an increase in the probability of particles breaking
away from equilibrium positions as a result of thermal fluctuations, as
compared to the probability of a break-away, which is characteristic for
the solid state. A particularly favorable environment for the formation
of particles, which are not connected with any equilibrium position, is
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found at former boundaries of mosaic units (blocs) and on microfissures,
and especially at the boundaries between individual crystalline grains
present in the solid phase.

Thus, in accordance with the concepts being developed here, at
any moment of time, all particles of a liquid can be divided into two
groups. The first group includes particles performing oscillating move-
ments in the vicinity of oscillation centers, coinciding with a sta-
tistically disturbed (deranged) structure of' the crystal lattice (an
arrangement which can be characterized by one distribution function,
i.e., the structure of a quasi-crystal); the second group includes par-
ticles moving according to laws of random walks and which are not con-
nected with any equilibrium positions (structure of a random arrangement).

For this reason, the picture of the thermal motion in a liquid
includes simultaneously features of the thermal motion of a solid body F
(oscillations near equilibrium positions) and of a gas (random wander- 8
ings). Any particle may transfer from the first group into the second, 8
and vice versa, so that the entire picture of the structure of a liquid
represents the result of a dynamic equilibrium between particles of the
first and second group. However, whereas in a crystal the duration of
the coupling of a particle with a given center of oscillation is prac-
tically infinitely great, in a liquid, this duration has a value of the
order of the oscillation period.

Let us now examine the problem concerned with the nature of the
spatial arrangement (distribution) of particles of the first and second
group. Let us assume that 6 is the height of the potential barrier,
which the particle must overcome in order to switch over from an oscil-
lating state into a state of random wandering. The probability of such
a transition is proportional to _ e and therefore, the number of

e kT de,

particles present in a state of random aandering will be proportional to
00 £ i.e., to the value of E while the number of particles

ek T dgekT

remaining in a state of oscillations will obviously be proportional to
the value of - r_

(1 -e kT).
It is natural to assume that, immediately after fusion, areas of

the liquid which are located far away from any interfaces present prior
to fusion (boundaries of mosaic blocks, crystalline grains, microfis-
sures) contain a relatively larger number of high potential barriers £
than areas corresponding to former interfaces. Therefore, we can intro-
duce a value £ = ej, which is a mean value for a local microvolume of
the liquid, and in that case, the number of particles which have broken
away from the equilibrium position in this volume will obviously be
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proportional to _ L where to is a certain nonmonotonous function of

voe kT,

the radius-vector r, which determines the position of the given micro-
volume v in relation to an arbitrarily selected point in space.

TRe concentration of wandering particles, the maximum number of
which are formed near former interface boundaries and in general near
structural defects, shows a tendency to level off over the entire micro-
volume of the liquid by means of a self-diffusion mechanism. However,
such a leveling off cannot take place until the effect exerted by former
defects in the structure of the crystal will no longer be felt in the
liquid, and until £0 will become a constant value no longer dependent
on r.

Thus, during the initial post-smelting stage of existence of the
liquid, the latter apparently consists of ordered quasi-crystals and

F individual particles present in a state of random wandering.
8 Quasi-crystals, as a possible form of structure in the region of
8 pre-crystallization temperatures, have no clearly expressed interfaces

and therefore cannot be considered as a phase from a thermodynamic
standpoint. The central region of a quasi-crystal exhibits a maximum
order of atomic arrangement, which decreases toward the periphery.
From the standpoint of a quantitative formulation of the concept of a
short-range order (formula (6.10)), this means that, in the region of
a quasi-crystal, the structural diffusion factor D'(r) must be an in-
creasing function. The structure of a quasi-crystal is illustrated in
Figure 34.

It is natural to assume that, in the course of time and with an
increase in temperature, defects in the structure of the solid phase
nvAst be deprived of their determining role in the structure of a liquid.
In this state, the liquid probably represents a continuous structure of
a short-range order of the dense (compact) packing type, in which wan-
dering (stray) particles are distributed, having an energy greater than
CO.

Unfortunately, it is at present impossible to state which role
the time and the temperature play in the process of transformation of
£0 into a value independent of r. There is no doubt, however, that two
processeL can take place simultaneously when the temperature is increased:
an increase in the number of particles present in a state of random wan-
dering, and a change in the type of short-range order structure of quasi-
crystals in the liquid.

In connection with the above statements, it appears reasonable to
mention the recent tests conducted by Honig (9) on the mass-spectrometric
analysis of vapors of metals belonging to the fourth group in the peri-
odic system (germanium, tin, lead). It was found that vapors of' these
metals contain polyatomic ions. Thus, at a temperature of 1,3OO-1,7OO C,
molecular ions of germanium contain from 1 to 7 atoms per ion. At the
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same time, the results of the mass analysis are independent o' the pres-
sure within the limits of' the variation of the latter, which takes place
during tests (from 5 * 10

- 6 to 5 " 10-4 mm Hg). This fact speaks in
favor of the assumption that molecular ions are formed not in the vapor-
ous phase, but rather during the course of evaporation, i.e., these ions
are probably present in the liquid. It is possible that these ions are
fragments of quasi-crystals.

Both individual atoms and complex molecules may act as the struc-
tural units of a liquid. Various researchers have observed the presence
of polyatomic molecules in simple nonmetallic liquids (see the review
article published by Gingrich, cited under reference 8 in the oibliography
to this chapter), for example N2, 02, 03, P4 , S8 (open chains and rings).
The existence of such molecules can be detected on the basis of the
presence of isolated maxima (peaks) in the atomic arrangement function
in case of minimum values of the interatomic distance r. It is known, 8
for example, that the coordination number of pho phorus is equal to 6-8
at an average interatomic distance of about 3.9 , although the struc-
tural unit in thin case is the P4 molecule with an internal interatomic
distance of 2.25 A.

W[hen the temperature is increased, not only can a change occur in
the degree of the short-range order, which involves a decrease of this
order, but also a change in the type of this order. The general ten-
dencies observed in this field consist in the fact that a substance,
having a close-packed structure in the solid state, retains a correspond-
ing type of coordination also in the liquid state. A substance having
a loosely packed structure, during fusion and in the course of further
heating, undergoes a structural change and assumes a close-packed struc-
ture. A further increase in the temperature results in all cases, in
view of an increase in the mean interatomic distance, in a loss of
structural traces and in a transition of the liquid into a state of
random distribution of particles and into a vapor state (10). This
process takes place in the critical region. It is necessary to point
out that the above-mentioned character of temperature changes in the
structure of a condensed system during fusion and in the liquid state
represents merely an expression of the most typical tendency prevail-
ing in this case, and so far cannot be considered as a universal rule
for temperature transformations of the structure in view of the insuf-
ficient amount of experimental data available in connection with this
problem.

The concept stated above, namely that the closer the te.-
perature of the liquid to the crystallization point, the greater the
similarity between the structure of a liquid and the structure of a
crystal, should not be understood in an excessively simplified manner.
For example, the study of the structure of salol in the liquid state
(11) has shown that, although there is an ordered arrangement of atoms
in this liquid, this arrangement has an entirely different character
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from the one which is observed in the solid state. Such a difference
in the type of structural order found in the liquid and solid phase is
also ooserved lthough to a lesser extent) in certain metals such as
bismuth.

On the other hand, it has been established that in metals the
character of the structure observed in the vicinity of the solidifica-
tion point of the liquid phase may be retained when the liquid is over-
heated by 100-3000 C above the melting point. When the temperature of
the liquid is reduced, the effect of intermolecular forces becomes more
and more apparent, and these forces are striving to aggregate the en-
tire complex of molecules into a crystalline structure, characteristic
for these particular forces at the given temperature. For this reason,
there is a natural similarity between the structures of a liquid and a
crystal near the solidification point.

These facts are important from the standpoint that they indicate
P the presence of a preparatory stage of crystallization and its influence
8 on the mechanism of structure formation. In other words, the properties
8 of a crystal are already present to a definite extent in the liquid

phase. Therefore, the kinetics of crystallization must be studied in
close relationship with phenomena taking place in the liquid, and in
connection with the structure of the liquid in the pre-crystallization
temperature range.

At elevated temperatures, when the energy of the thermal motion
is high, the mean interatomic distance is large, the effect of inter-
molecular interaction forces is extremely small (minimal), and thermal
motion predominates over intermolecular forces. For this reason, it be-
comes clear why the structure of a liquid strives toward a random dis-
tribution of particles.

The study of combination scattering in alcohols and water (12)
in the critical region has shown the existence of a spectral band,
typical for the liquid state, in scattered light at a temperature nota-
bly higher than the critical temperature, and vice versa, the presence
of scattering lines typical for gases at a temperature lower than the
critical temperature. 'hen the temperature is increased near the
critical region, the scattering bands become narrower, which indicates
a continuous transformation of liquid into vapor. It is also known
that, with an increase in temperature, a gradual destruction of the
short-range order structure takes place in the critical region, which
is retained to a certain extent in the vaporous state region. These
facts, as well as others, definitely indicate the continuous nature of
changes in the properties of the liquid in the critical region. As can
be easily seen, this continuity also agrees well with the picture of
the structure of a liquid outlined above. From the standpoint of this
picture, a system of noninteracting molecules up to the critical tem-
perature (scattering lines), and a system of interacting molecules
above the critical temperature, represents a natural result of tempera-
ture changes in the structure of a liquid.
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It should be noted that the critical "point" does not differ in
any way from neighboring states, either in regard to the structure,
or in regard to the combination scattering or the density. All three
of these properties, with a change in the state of the system, pass
through the critical "point" without any distinctive features.

In conclusion, it should be emphasized that insofar as the re-
sults of an x-ray study of liquids make it possible to establish un-
ambiguously only the existence of a short-range order structure in a
liquid, to the same extent, the picture of the structure of a liquid
outlined above is a hypothetical one.

The question concerning the expediency of introducing this pic-
ture in the capacity of a working hypothesis can be answered in the
affirmative in view of the fact that this picture makes it possible to
clarify physically a number of facts which will be discussed below.

83. The Phenomenon of Crystallization of Liauids 8O

As a result of the work done by V. I. Danilov and his associates
(13), it has been shown that insoluble admixtures (impurities) exert a
decisive influence on the kinetics of crystallization of liquids.

Certain liquids, for example, salol, would not crystallize at
all in the absence of impurities. In contrast, ortho-chloronitrobenzene
and metals crystallize after a most thorough purification and removal
of impurities. According to this symptom, liquids can be subdivided
into those which crystallize only as a result of the presence of impuri-
ties, and those which crystallize spontaneously.

As is known from thermodynamics, a solid phase nucleus with a
mean radius a is in equilibrium with the surrounding liquid at an abso-
lute temperature T, which is determined by the equality:

T 2ovTo (6.13)

where a is the mean surface tension of the nucleus, v is the volume of
the solid phase, calculated for one molecule, To is the temperature of
the phase equilibrium in case of a negligibly small value of the surface
energy in comparison to the internal energy, Q is the latent melting
heat, calculated per molecule.

The difference

To- T= Q (6.14)

represents the supercooling depth of the liquid. According to formula
(6.13), it is obvious that, if at a given supercooling depth, a nucleus
with a mean radius a1<a is formed in a fluctuating manner, this nucleus
can oe present in a state of equilibrium only when the liquid is subjected
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to a deeper supercooling; consequently, in relation to the given tem-
perature, the nucleus ill be overheated and must again pass Into the
liquid state. If, at the same supercooling depth, the nucleus formed
will have a mean radius of a2 > a, then, in relation to the given tem-
perature, this nucleus will be additionally supercooled and will grow.

It was noted above that a spontaneous crystallization was not
observed in certain liquids. However, it is possible that the time in-
tervals, during which observations were conducted, were too short to
allow the spontaneous formation of nuclei of the required size, which
would be capable of growing. We should recall that common glass is a
supercooled liquid, present in a metastable state, but which is capable,
after a long period of time, to switch over into a stable state, i.e.,
to crystallize.

It is possible to assume that the reason for such a behavior of'
F a liquid lies in the small size of individual quasi-crystals, the di-
8 mensions of which are not sufficiently large to allow the formation
8 on their basis of a nucleus at a given supercooling rate. Then, after

a sufficiently long, and possibly very long, time lag, as a result of
fluctuations, a reorientation of adjacent quasi-crystals may take place,
which will result in the formation of a large quasi-crystal, capable of
acting as the initial onset of a crystallization center.

Such an approach eliminates the difference between crystallizing
and non-crystallizing liquids, since the only difference between these
two types of liquids consists in the average period of time required
for the formation of' a nucleus.

If the crystallization sets in and proceeds at a temperature TO,
then in this case all atoms must be combined in the form of quasi-
crystals, which are converted, during the course of solidification,
into solid phase crystals. Thus, from the standpoint of the picture of
the structure of a liquid outlined above, the crystallization process
consists in the conversion of a short-range order into a long-range
order in each quasi-crystal.

In the narrow range of temperatures near the solidification
point, the mode of arrangement of scattering centers in quasi-crystals
is very similar to the one present in the solid phase of the given sub-
stance near the melting point, while the number of particles present
in a state of random wandering is small in comparison to the number of
particles combined in the form of quasi-crystals.

Regardless of the fact as to whether the onset of crystallization
centers takes place on impurities or these centers arise spontaneously,
there is a definite connection between the depth of supercooling and
the rate of onset of crystallization centers w. The nature of this re-
lationship is illustrated in Figure 35. This type of curve characterizes
both the process of spontaneous crystallization as well as the crystal-
lization on insoluble impurities.
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In the case of salol, this complete curve can be obtained experi-
mentally (14).

As was noted above, the crystallization of salol is based pri-
marily on the presence of impurities, and in this case, the curve shown in
Figure 35 also reflects the rules governing crystallization on impuri-
ties. In case of metals, the peak and the falling branch of the curve
shown in Figure 35 cannot be obtained experimentally. In this case, a
spontaneous crystallization certainly takes place, and the initial sec-
tor of the curve (in case of a slight supercooling) at least reflects
the rules governing spontaneous crystallization.

From the standpoint of the concepts being developed here, the
process of spontaneous crystallization takes place in such a way that,
as the depth of supercooling is increased, an ever greater number of
quasi-crystals per second are converted into crystallization nuclei.
This process grows in intensity like an avalanche and is interrupted a
when the entire mass of the liquid solidifies. The linear velocity of 8
crystal growth is expressed to a minimum degree, and as a result a
finely dispersed metal structure is obtained. When the crystallization
process proceeds in this manner, it is indispensable that the dimensions
of the quasi-crystals should be so small that their number is very
large; on the other hand, the dimensions of these crystals should be
large enough so that each quasi-crystal may cause the onset of an inde-
pendent crystallization center. If, on the other hand, a single crystal
is obtained as a result of cooling, this indicates that the liquid con-
tained crystals of an excessively large size near the crystallization
point, so that the latter could not act as centers for the onset of
nuclei, and only as a result of accidental reasons did one of these
crystals act as a foundation for the formation of a nucleus of a new
phase. During the further process of crystallization, the linear
velocity of the growth of the nucleus plays a major role. This fact
plays such a dominant role that the bulk of the metal crystallizes be-
fore the appearance of any other new nucleus.

4. Viscosity of Metals and A. L. Bachinskiy's Formula

A study of the viscosity of metallic liquids in connection with
Bachinskiy's formula is of interest in view of the fact that metallic
liquids have a simple structure in comparison with polyatomic organic
liquids.

The extent to which metals comply with Bachinskiy's formula is
illustrated in Figures 36 and 37. Figure 36 is derived from Figures
19 and 30 on the basis of our data, and Figure 37 is based on data ob-
tained by other researchers, with the exception of the bismuth and lead
curves, which were obtained during the study of the viscosity of a lead-
bismuth alloy. The presence of water-type deviations from Bachinskiy's
formula must be considered as a typical property of metals.
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In case of many metals, deviations in the viscosity from Bachin-
skiy's formula are not expressed in a particularly striking degree. Among
the m. tals listed in Figures 36 and 37, the greatest deviations are ex-
hibited by gallium and mercury; however, in this case, one should keep
in mind that the study of the viscosity of these metals covers a maximum
wide range of temperature variations in view of the extremely low melt-
ing points of these metals (Hg: - 38.90 C, Ga: + 29.80 C).

According to their type of structure in the solid phase, the
metals listed in Figures 36 and 37 can be classified as follows. Pb and
Al have a highly close-packed face-centered cubic lattice with a coordi-
nation number of 12. K and Na have a body-centered cubic lattice with
a coordination number of 8. Cd and Zn are characterized by a hexagonal

F loosely packed lattice with a coordination number of 6 + 6. A lattice,
8 which, in the first approximation, represents a simple cube with a co-
8 ordination number of 6 is characteristic for Bi and Sb. The tetragonal

cell of Sn has a coordination number of 4 + 2 (two atoms are located at
a somewhat greater distance than the other four atoms). Ga has a rhombic
structure and its coordination number is expressed oy the sum 1 + 1 +
1 + 1 + 1 + 1 + 1. Finally, the structure of Hg is related (similar) to
a face-centered cube and has a coordination number of 6 + 6.

By examining Figures 36 and 37, it is possible to draw the con-
clusion that these metals can be arranged in approximately the same se-
quence if one attempts to arrange them in an order of growing deviations
from Bachinskiy's formula. And the same sequence must be adopted if,
after excluding mercury, the metals are arranged in order of decreasing
compactness of atoms (packing density).

In case of all metals, the greatest deviations from Bachinskiy's
formula are observed primarily in the narrow temperature range near the
solidification point. These deviations are clearly observed in those
cases when, during the course of the viscosity measurement, it was pos-
sible to come very close to the solidification point.

In addition, a slight bend (inflection) of the curves 1 ( is
V P0

apparently typical for all metals. It should be noted that in most
cases. the character of this bend is such that points can be lined up
rather easily even on straight lines. Straight lines are plotted in
Figure 36, and this curvature is especially emphasized in Figure 37.
It follows from the statements made above that Bachinskiy's formula for
metals is an approximate formula, aut at the same time this formula de-
scribes rather well the behavior of the viscosity, particularly if the
temperature range in which the viscosity is studied is not too wide.

If we disregard the narrow pre-crystallization temperature region,
we can see that the extent to which the viscosity complies with Bachin-
skly's formula is determined mainly oy the behavior of the curve 1 W

v
in tne region of high temperatures (7000 C and above). For example, in
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case of bismuth (Figure 19), the shape of the viscosity curve was found
to be somewhat different in two tests with different samples. The bi-
furcation of the upper part of the bismuth curve shown in Figure 36
corresponds to this bifurcation of the viscosity curve, which is ob-
served at 7000 C. Whereas a linear dependence of 1 on the density was

V
obtained in one test, the second test can be described only by neans of
a clearly expressed curvilinear dependence of 1 The bismuth curve

V W

shown in Figure 37 also exhibits a concavity toward the abscissa axis
as a result of a bend in the high-temperature region.

A comparison between the structure of liquids and the degree to
which the viscosity of these liquids complies with Bachinskiy's formula
is certainly of great interest. Unfortunately, in view of the insuf- F
ficient experimental data available, we are forced to limit ourselves B
here to certain considerations which are qualitatively supported by
experiments.

The close-packed structure of lead and aluminum is preserved in
the liquid state. The structure of these metals, while undergoing a
gradual destruction, probably remains unchanged over the entire tempera-
ture range in which their viscosity is studied.

Zinc, cadmium, potassium and sodium possess an almost close-packed
structure (although of a different type), and even if changes in this
structure do take place during the heating process, these changes are
insignificant.

In regard to bismuth and tin, although their structure in the
liquid state is far from being close-packed, nevertheless, according to
the study conducted by V. I. Danilov and V. Ye. Neymark (15), it can be
stated that this type of structure is retained during strong overheatirs
of about 100-3000 C above the melting point, i.e., the structure of bis-
muth and tin remains unchanged in a rather wide range of temperature
changes. Probably the same thing happens in the case of antimony since
the structure of the latter in the solid state is identical with the
structure of bismuth.

?ercury and gallium retain their type of structure over the en-
tire temperature range in which their viscosity is studied. In any
case, it is known in regard to mercury that the latter has a close-
packed structure in the liquid state, except for an interval of several
degrees near its solidification point, where its structure undergoes a
change and assumes a structure corresponding to the solid phase (16).
A similar phenomenon, apparently, is observed in the case of' gallium.

Thus, if we limit ourselves to regions where metallic liquids
are not subject to an excessive overheating, the viscosity of these
liquids, provided there is no structural change in the liquid ph:se,
complies sufficiently well with Bachinskiy's formula. The deviations
which are observed occur in the pre-crystallization temperature range.
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In this connection, it is interesting to note that deviations
from Bachinskiy's formula are much more strongly expressed in water
(Figure 36) than in metals. These deviations occur in a more narrow
temperature range, in which a change corresponding to the type of struc-
ture of liquid water takes place, as was mentioned in # 1 in this chap-
ter.

Consequently, it is possible to assume that deviations in the
viscosity from Bachinskiy's formula are smaller when the structure of
the liquid remains unchanged (constant), and greater when this struc-
ture undergoes a change. Specific deviations from Bachinskiy's formula
near the solidification point, in this case, are not taken into account.

In addition to points taken from Figure 19, 3 points from Fig-
ure 21, obtained during the cooling of the metal, are also plotted on

B Figure 36 (tin). These 3 points fit well on the straight line drawn.
8 A comparison of the results shown in Figure 21 with those shown in Fig-

ure 27 indicates that in this particular case we are dealing with the
phenomenon of supercooling.

Thus, during the supercooling of tin, the rectilinear dependence
of 1 on P continues all the way up to the equilibrium crystallization

V
point. This fact can be interpreted as a delay in the process involving
the formation in the liquid phase of a short-range order structure ac-
cording to a type corresponding to the crystalline state. In other
words, the supercooling is determined by a delay in the preparation of
the crystalline structure in the liquid phase, leading to the formation
of a metastable state of the liquid.

The phenomenon of supercooling takes place with great difficulty
in the case of lead, which in the solid phase has a close-packed struc-
ture. Possibly the reason for this lies in the fact that a short-
range order structure, corresponding to the structure of a crystal, in
this case is present in the liquid phase practically at any temperature.
Consequently, the liquid always possesses structural elements capable
of paving the way for the structure formation of a crystal, provided
the temperature conditions are suitable for this purpose.

As was already pointed out above, Bachinskiy's formula accounts
for the temperature dependence of the viscosity only by means of thermal
expansion, and does not account for this dependence in an explicit form.
If, on the other hand, this factor is taken into consideration in the
form of an additional addend in the right side of equation (6.3), then,
on the basis of physical considerations, it becomes clear that 1 must

V
necessarily increase in relation to the fluidity, which is due only to
a thermal expansion. At the same time, the fluidity curves of metallic
liquids in the high temperature region are actually deflected not up-
wards, but rather downwards, from a straight line corresponding to
Bachinskiy' s formula.
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Further, it is obvious that the temperature dependence of the vis-
cosity cannot also be accounted for by means of the factor b in Bachin-
skiy's formula. Indeed, if we assume that b depends on the temperature,
then, since b is a quantity proportional to the intrinsic (eigen) volume
of molecules, it can only decrease when the temperature increases (ac-
cording to the decrease in the effective molecular diameter during heat-
ing), and this in turn results in higher values of the fluidity in re-
lation to the straight line 1() in the high temperature region, which

contradicts experimental data.
Thus, the temperature dependence of the viscosity cannot be ex-

plained in explicit form either in the form of an additional term in
the fluidity expression (6.3), or by means of the temperature dependence
of factor b. Consequently, only the modulus of viscosity C remains,
which must increase with the temperature, in order that a change in vis-
cosity may be properly expressed by means of a Bachinskiy-type equation. 8

Values of the constants found in Bachinskiy's formulas, according 8
to Figure 36, are presented in Table 13.

Table 13

C 10 6, _.. 10_6
Metal so cm/sec b. cu cm/ o v __

Bismuth 95 0.095 1.04 0.100 0.102

Lead 99 0.091 0.92 0.094 0.091

Tin 125 0.136 1.09 0.143 0.137

Aluminum 545 0.364 o.67 0.407 0.392

Zinc 148 0.140 0.95 0.144 0.134

Cadmium 124 0.120 0.97 0.125 0.119

Here, C and b are constants in Bachinskiy's formula (6.1), vi
and vs are the specific volumes of the liquid and solid phase at the
melting point, respectively. If we disregard bismuth, which exhibits
an abnormal volume change during fusion, we find that, for the remain-
ing metals, the value of b is close to that of vs .

It can be stated that, to the extent to which Bachinskiy's formula
is in general suitable for describing the viscosity of liquids, b is a
constant quantity and coincides with the value of the specific volume of
the solid phase at the melting point.
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The rectilinear dependences of 1 (,) shown in Figure 36, are
V

preserved when using data on the density of metals obtained by various
authors (naturally, in case of slightly different C and b values). This
fact served as a basis for the expression of definite statements con-
cerned with the possible use of Bachinskiy's formula for metallic sys-
tems, without measuring the density of these systems. It is difficult
to check Bachinskiy' s formula for metal alloys in view of the lack of
density data, corresponding to the required concentrations of the tested
alloys. However methods are known by means of which it is possible
to overcome the difficulty arising at this point.

For alloys, the densities of which are known, it is possible to
F obtain values of p(t), corresponding to the necessary interpolation
8 concentrations. This method has been used on bismuth-tin systems. In
8 case the viscosity-composition isotherms do not clearly point out

the existence of a chemical compound, the additivity rule may be used
to determine the density of alloys. This method has been used in con-
nection with the tin-lead system. Finally, it is known that the den-
sity of metals and metal alloys linearly depends, with a high degree
of accuracy, on the temperature, within a wide range of temperature
variations. For this reason, I for metal alloys, according to Bachin-

V
skiy's formula, must be a linear function of the temperature. This
method has been used for lead-bismuth alloys.

The results of a corresponding processing of the data shown in
Figures 25, 22 and 29 are presented in Figures 38, 39 and 40. An
examination of these figures allows us to conclude that the alloys
studied yield deviations from Bachinskiy's formula of the water type.
For different alloys, these deviations are expressed in a different
degree.

According to V. I. Danilov and I. V. Radchenko (17), who per-
formed an x-ray diffraction study of the structure of Pb-Bi, Sn-Bi,
Sn-Pb and Sn-Zn alloys in eutectic concentration, these alloys in a
liquid state consist of individual regions, the structure of which is
closely related to the structure of pure components. A complete molecu-
lar mixing was not observed in the above studied alloys, and individual
regions exhibit a predominant concentration of one or another component,
i.e., the alloy constitutes a system similar to a solid eutectic. This
conclusion on the structure of liquid alloys was confirmed on the basis of
the eutectic alloy lead-bismuth in a study conducted by A. I. Danilova
and V. I. Danilov (18).

The absence of a molecular uniformity in the structure of liquid
mixtures is observed not only in metallic systems. For example, the
systems acetone-water and nicotine-water also exhibit a nonuniform mo-
lecular structure (19). The above statements concerning the structure
of binary systems refer to such systems, in which, according to other
data, chemical compounds in the liquid phase are absent.
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An entirely different structure is observed in binary systems
which are capable of forming an intermetallic compound, for example
TI2 Hg5. In this case, the diffraction picture obtained from liquid
TIHg15 differs sharply from the diffraction pictures formed by thallium

mercury in the liquid state.
As in the case of pure metals, deviations of the water type from

Bachinskiy's formula, established for metallic alloys, are associated
by us with the phenomenon involving an alignment of the atomic arrange-
ment with the crystalline structure of the solid phase.

From the standpoint of the concepts developed here, deviations
from Bachinskiy's formula must be greater in alloys, which do not con-
tain a component having a close-packed structure, than in an alloy, one
or both components of which have a close-packed structure. In struc-
tures which are close-packed in the solid state, the process involving
an alignment of atomic arrangement extends over a narrower temperature
range than in the case of loosely packed structures. In temperature F
regions with a constant type of short-range order in the liquid, the 8
viscosity complies with Bachinskiy's formula. Therefore, the following 8
arrangement of the studied alloys according to the degree of increasing
deviations from Bachinskiy's formula can be expected: lead-tin, lead-
bismuth, bismuth-tin. An examination of Figures 38, 39 and 40 shows
that experiments do not contradict such a sequence.

V. A. Konstantinov (20), while measuring the viscosity of eutectic
alloys Sn-Zn and Sn-Bi near the crystallization point by the oscillating
ball method, noted that when the alloy is held at a temperature several
degrees higher than the liquidus, crystallization may take place on the
steel surface of the ball.

The reason for the phenomenon noted above may consist in the fact
that a heat removal (cooling) from the liquid metal was taking place
through the ball and the rod connected with this ball, and therefore
the surface of the ball assumed the crystallization temperature before
this temperature was established in the entire volume of the liquid.
In addition, it can be assumed that the author was confronted with the
phenomenon of settling of quasi-crystals on inhomogeneities at tempera-
tures somewhat higher than the crystallization temperature. Under these
conditions, the quasi-crystals, being close to crystals in regard to
the strength of their interatomic linkages, exert a noticeable effect
on the torsional oscillations of the ball, and, naturally, are immedi-
ately converted into solid crystals as soon as the ball is taken out of
the liquid.

As a rule, a discrepancy is noted in viscosity measurements of the
same metals near the solidification point (see Figure 21). If, in the
tests performed by V. A. Konstantinov, a settling of quasi-crystals actu-
ally takes place on inhomogeneities (wall of the ball), then discrepan-
cies of the type shown in Figure 21 can naturally be explained as being
due to a different influence of quasi-crystals during different tests.
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5. Mechanism of the Viscous Flow of Liquids

The presently known theories of the viscous properties of liquids
lead to a number of interesting results. The monographs published by
Ya. N. Frenkel', Green, Eyring, and co-authors, G. M. Fanchenkov, and
the studies of Andrade may serve as a good illustration of the progress
achieved in this field (21).

We are not concerned with a critical discussion and examination
of the existing concepts on the viscosity of liquids (Note: A review
of the theories of the viscosity of liquids is presented in Panchenkov's
monograph, cited under reference 21 in the bibliography of this chapter).
Such a task would lead us too far away from our main topic and in gen-
eral hardly appears to be advisable. Indeed, the principal defects of
the existing theories on the viscosity of liquids are sufficiently

F8 clear, and none of these theories contain any kind of fine elements
8 which are hard to detect. Therefore, we shall limit ourselves to a

very brief description of the physical picture of the mechanism of vis-
cous flow, which lies at the base of certain viscosity theories of in-
terest to us in connection with the picture of the structure of a liquid
outlined above.

Let us start our examination by considering the concepts which
lead to an exponential formula showing the dependence of the viscosity
on 1, where T is the absolute temperature. A model of a liquid is based

T
on the concept of a quasi-crystalline structure, exhibiting a derange-
ment in the order of' its atomic arrangement. This derangement of the
atomic arrangement (in relation to an ideal crystal lattice) results in
the fact that, for certain atoms, the potential barrier of the energy
of interaction with the closest neighboring atoms is reduced. As a re-
sult, by applying a small tangential force, it is possible to effect a
transition of an atom from one equilibrium position into a neighboring
position, and, as a resulting effect, to effect the movement of one
layer of the liquid in relation to another, i.e., to create a viscous
flow. Therefore, the assumption concerning the appearance of vacant
spots in a disrupted crystal lattice of the liquid plays a basic role
in this particular scheme of' a viscous flow. This assumption is based
on data obtained during the x-ray analysis of the structure of liquids,
and also on the determining role of a free volume in phenomena involving
the presence of a viscous flow.

Such is the mechanism of a viscous flow, sketched in the most
general and schematic features, which leads to an exponential dependence
of the viscosity on 1.

T
The most strict application of this conception is found in the

works of Eyring and his associates, although it was first formulated by
Ya. I. Frenkel'. According to these concepts, the viscous properties
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of a liquid are intimately associated with the statistical theory of'
absolute velocities of chemical reactions. According to Eyring (21),
the free energy of activation of a viscous flow, calculated per mole
of liquid, Fvis, can be expressed by means of the following relation:

&i (6.15)F, ~ ~ riM -RTn- -RTn -.

where 1 is the molecular weight of the liquid, v is the kinematic vis-
cosity of this liquid, N is the Avogadro number, h is Planck's constant,
V is the molecular volume, T is the dynamic viscosity, and R is the gas
constant.

Expression (6.15) obviously is a somewhat different form of
recording the well-known exponential expression for the viscosity 8
Note: From (6.15), with the aid of (b.17), the following formula can 8

be obtained:
(t \ 8 ris

The temperature dependence of FVi s for metallic liquids (assumed
to be monoatomic liquids) is illustrated in Figures 41, 42 and 43. From
these figures it can be seen that Fvi s is an increasing linear function
of the temperature (steel 1010 represents an exception), with a certain
disturbance in the linearity near the crystallization point in the case
of bismuth, lead and tin, approximately in the same region where a devi-
ation from Bachinskiy's formula is observed.

The consequence resulting from experiments:

s = A+BT. (6.16)

where A and B are positive constants, when compared with the thermo-
dynamic formula:

Pvis = Fis - Tis (6.17)

leads to the following relations:

Ev z = A -- const,

S.is = - B = coast.

Consequently, the change in the entropy, when an atom partici-
pates in the viscouL flow process, does not depend on the temperature
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and is a negative change. In other words, the entropy of an activated
atom is smaller than the entropy of an atom present in the original state
of stable equilibrium.

Over 100 nonmetallic liquids have approximately the same ratio
between the evaporation energy Eev and the free energy of viscous flow
Fvis"

--Ms, 2,45. (6.19)

In addition, the following inequation applies to these liquids:

8Eev (6.20)
3 3< yw< 4.

In the case of metallic liquids, the last ratio lies predomi-
nantly in the range of 10-30. If, in the case of metals, we take the
following function:

Eev rim ,
Zvi s \ 7=,.

where ron and r to stand for the ionic and atomic radius of the given
element, respect vely, then the value of this function will be close to
3 or 4.

From here, Eyring concludes that an ion, freed of its valence
electrons, acts as the individual structural partible which takes part
in the viscous flow process in metals. A neutral atom acts as a similar
particle in the evaporation process.

As far as it is possible to judge on the basis of the available
experimental data, there is no correlation whatsoever between Fvis and
other physical characteristics (atomic and ionic radii, valence, atomic
numbers, etc.).

Table 14 gives the values of the energy Evis and of the entropy
Svis, calculated from the rectilinear dependencies shown in Figures 41-43.

As Ya. 1. krenkel' has shown even earlier, the exponential formula
of the (6.15) type can be derived with the aid of the rheological con-
cepts presented in Chapter V.

According to these concepts, the viscosity is expressed by the
formula: I= GOD4. The condition 10014 I indicates that the medium
under study is a liquid which complies with Newton's internal friction
law. Thus, in order to obtain a formula which will express the vis-
cosity, it is necessary to find the expression for the relaxation time.
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Table 14

Eev Evi Key Svi
Metal cal/mole calmole Ts mole • deree

Tin 86,000 1,280 65 - 6.2

Bismuth 39,000 1,800 22 - 6.0

Lead 45,000 2,240 20 - 6.4

Aluminum 59,000 2,010 29 - 5.0

Zinc 30,000 2,550 12 - 4.6 8

Cadmium 26,000 2,550 10 - 4.6 8

Iron 72,000 .. ..

Steel, grade 1045 -- 9,700 - 4.0

It EKh12 -- 6,300 - 5.1

" ShKh12 -- 7,600 - 4.8

t " EYaZS -- 13,800 1- .1

o " 1010 ....

of EKhTM -- 10,800 - 3.3

" EUIO -- 14,000 - 1.3

Ya. I. Prenkel' assumes that the relaxation time can be identi-
fied with tnc time during which an atom in the liquid is connected with
a given constant equilibrium position. In that case, the probability
that an arbitrary atom will overcome the potential barrier during a defi-
nite time interval will, obviously, be proportional to the value of

Evis

e RT• It is obvious, further, that the time during which the atom
will remain in the vicinity of the given equilibrium position is in-
versely proportional to the probability of the transition of this atom
into a new equilibritun position; consequently, by taking into account
the assumption made by Ya. I. Frenkel', we can write:
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Y= 00(6.21)
S= t So.

By rewriting (6,15) with the aid of (6.17) and comparing it with
(6.21), we get:

avis
-re w= " (6.22)

By making use of somewhat different viscous flow mechanisms,
Andrade and G. M. Panchenkov have obtained results on the temperature
dependence of the viscosity of' liquids, which are of a similar nature
(content).

8 Andrade (21) bases his analysis of the process of viscous flow of
8 a liquid on the concept of a structural affinity between a liquid and

a solid body, which manifests itself in that the molecules of a liquid
at rest, on an average, oscillate for quite a long time near their
equilibrium positions. The extremely small value of the self-diffusion
factor in a liquid confirms this assumption.

During the course of the relative movement of liquid layers, the
exchange in quantity of motion (momentum), which causes the appearance
of viscosity forces, takes place during the collision of molecules in
different layers with a duration of the collision event differing from
zero. By taking into account the effect of thermal expansion, and
adopting Van derWaals' expression for the energy of intermolecular at-
traction forces, Andrade arrives at the formula:

1/ (6.23)

4here A and B are constants. This formula describes well the change
in viscosity with the temperature for many liquids, including fused
metals.

G. M. Panchenkov (21) starts from the concept, according to
which the process of internal friction of liquids is caused by the
temporary combination of two moving molecules, as a result of the
formation of a short-lived bond (linkage) between these molecules.
According to the author of this theory, the nature of this phenomenon
lies in the fact that, in the presence of a short-range order, there
exists a certain average distance between molecules in the liquid,
similar to the equilibrium distance between atoms in a crystal. Then,
in case of a relative motion of these molecules, if the distance be-
tween these molecules is smaller than the equilibrium distance, the
molecules repel each other and the formation of a bond (linkage) is im-
possible, and consequently, an exchange in quantity of motion (momentum)
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is also impossible. If, on the other hand, the distance becomes greater
than the critical distance, an attractive force arises and a bond
(linkage) is formed, and consequently, an exchange in quantity of motion
takes place. As a final result, G. M. Panchenkov obtains a formula for
the viscosity, which is close (related) to the exponential type and
which contains, as constants, the value of the entropy change during
the formation of the bond and the binding energy. In case of an ap-
propriate selection of these values, the formula agrees well with ex-
perimental results for a considerable number of liquids.

A trend which differs considerably from the one outlined above,
is developed in a theory of condensed media by A. S. Predvoditelev (22),
who combines molecular and phenomenological concepts in his research
on the kinetic properties of liquids. F

According to A. S. Predvoditelev, thermal motion in a liquid as- 8
smes a dual form. First, it involves accidental (random) wanderings of 8
atoms (molecules). The state of each atom is characterized by a set of
three geometrical coordinates and the conjunction of these states forms
a Markov chain. Second, thermal motion in a liquid includes oscilla-
tions of atoms (molecules) near the changing positions of temporary
equilibrium. Such oscillations can be considered as a superposition of
elastic waves of the Debye type.

Random wanderings are described by Fokker-Planck equations, and
oscillations are described by equations of elastic oscillations in an
isotropic medium.

Differential equations, describing macroscopic processes, such
as, for example, the flow of a viscous liquid or heat conductance, are
extrapolated "up to such space-time variations, which can be considered
as elements determining the macroscopic properties of a substance* (23).
By making use of certain additional assumptions, A. S. Predvoditelev
obtains the following formula:

0= W YA (6.24)s(I-p)

wherey lt LLe specific heat ratio c k is the thermal diffusivity of

v
the liquid, a is a certain factor, determined by the nature of inter-
atomic forces, b is a constant value, and p is the density.

It can be easily seen that the above expression is similar to
Bachinskiy's formula, and that it differs from this formula in that
the modulus of viscosity:

C (6.25)

depends in this case on the temperature, since k depends on the tempera-
ture. Formula (6.24) is justified for a large number of liquids with
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complex molecules. This formula will correctly describe experimental
results, provided that:

o(I=bP (6.26)

drops with the temperature. However, the volume of data available so
far is insufficient to allow a further analysis of this problem. A. S.
Fredvoditelev considers that equation (6.24) can be used all the way
up to the critical state of the liquid, as a result of which it seems
possible to find the values of indeterminate constants a and b by
switching over to a "degenerated" state of matter, whereby the gaseous
or critical state can be adopted as such a "degenerated" state.

8While considering the thermal motion in a liquid as a superposi-
8 tion of Debye waves, M. F. Shirokov (24) assumed that the absorption of

these waves by a moving plane layer of the liquid causes the appearance
of a dissipation force, directed against the movement. The viscosity
expression obtained by this author depends upon the maximum Debye fre-
quency. In order to exclude this frequency from the final result,
M. F. Shirokov derives a formula for the heat conductance factor X of
the liquid and obtains the following expression:

T (6.27)

where a is the sound velocity in the liquid at the temperature T. A
comparison of this formula with certain experimental data shows that it
yields a result which, on the average, is higher by one order. However,
the work of M. F. Shirokov is of definite interest, since he is able to
obtain an equation which does not contain any empirical constants.

In a previously published work (25), M. F. Shirokov has attempted
to derive Bachinskiy's formula on the basis of a concept involving the
same mechanism of internal friction as the one which occurs in gases,
but using Van der Waals corrections during the derivation of correspond-
ing formulas.

In summing up to a certain extent the theoretical structures
examined above, we are forced to conclude that none of them can be con-
sidered as a theory of viscosity, which draws its conclusions from a
clearly formulated mechanism of viscous flow with the aid of a small
number of physically clear hypotheses.

6. Viscosity - Comiposition Isotherms of Binary Alloys

The information available on the structure of tin-lead and bis-
muth-tin alloys indicatesthe absence in these alloys of intermetallic
compounds in the solid phase (26). However, an examination of the
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viscosity-composition isotherms illustrated in Figures 23 and 26 forces
us to consider this statement with a certain amount of caution.

As N. S. Kurnakov has established, and as A. I. Bachinskiy has
also frequently pointed out, the viscosity is a structurally sensitive
characteristic of a liquid. According to opinions forming a part of
the basic ideas of physical-chemical analysis, developed by N. S. Kurna-
kov, if special points are observed on composition-property isotherms,
this fact indicates the presence of structural transformations in the
system.

Consequently, the presence of special points on viscosity-
composition isotherms must irkicate the presence in the system of inter-
molecular interactions having a chemical nature.

When an intermetallic compound is present in the liquid phase,
x-ray photographs indicate the presence of an individual structure of F
such a compound. If no intermetallic compound is present in a binary 8
system, then the x-ray photograph is a simple superposition of the 8
x-ray pictures of the components (taking into account the percentage
composition of the alloy).

As was noted above (17, 18), a complete molecular displacement
is not observed, according to data obtained in an x-ray diffraction
study, in lead-tin and bismuth-tin alloys, and the system represents a
mixture of regions with a predominant concentration of one of the two
components. Thus, data on the structure of lead-tin and bismuth-tin
alloys indicate the absence in these alloys of intermetallic compounds,
both in the solid and liquid state. Nevertheless, we have to admit the
presence of certain peculiar features in the viscosity-composition
diagrams.

The lead-tin and bismuth-tin binary systems belong to the group
of alloys of the eutectic type with a limited solubility of their com-
ponents. In Figure 23, which refers to a lead-tin alloy, the eutectic
concentration of which is equal to 64% (by weight) of tin, at a concen-
tration of 60% tin, a weakly expressed special point of such a type is
ooserved, which must arise during the formation of a chemical compound.
A reduction to an atomic concentration shows that this may be a com-
pound of an intermetallic type Pb2Sn5.

Similarly, an examination of Figure 26 makes it possible to as-
sume the presence in the liquid phase of compounds of an intermetallic
type Si3Snjo, and possibly, Bi5Sn at low temperatures, and in addition,
of BiSn3 and BiSn, which are preserved even at high temperatures. The
eutectic concentration of this alloy is equal to 42% (by weight) of tin.

The peculiar features of the viscosity isotherms, observed on
Figures 23 and 26, are expressed rather weakly, and it would sem that
the most simple way of explaining these features would be to consider
them as the result of experimental inaccuracies. Indeed, the study of
a lead-tin system was conducted in different types of crucibles, and
therefore the constants of the oscillating system with alloys of various
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concentrations were different. It can be assumed that the somewhat higher
viscosity values of the alloy near the eutectic concentration were ob-
tained as a result of an error introduced during the determination of
the constant of the oscillating system for this alloy. However, such
considerations are quite unsuitable as an explanation of the curves
shown in Figure 26, in view of the fact that the tin-bismuth alloy was
studied with the aid of a constant oscillating system in such a way that
an error in the determination of the constant of the instrument could
not affect the nature of the isotherms.

Similar isotherms were observed by Sauerwald and Bienias (27) in
copper-antimony and copper-tin alloys, for which, as a result of x-ray
diffraction studies, the intermetallic compounds Cu3 Sb, Cu2 Sb, Cu6Sn,

8 Cu3Sn, Cu6Sn5 and Cu31Sn8 were established in the solid state, and the

8 character of viscosity-composition isotherms confirms the presence of
some of these compounds in the liquid phase. Alloys of copper-antimony
and copper-tin systems possess complex equilibrium diagrams in the
presence of intermediate phases in the solid state. For this reason,
the peculiar features observed on viscosity-composition isotherms ap-
pear to be natural, and the existence of certain intermetallic compounds
in the liquid phase also appears probable.

Gekhbardt and Bekker (29) have recently studied the viscosity of
alloys of the gold-silver system by the torsional oscillation method,
using relative measurements. The instrument built by these authors
duplicates to a considerable extent the unit based on the use of a
Tamman furnace described above. The suspension system was first cali-
brated with the aid of three liquids (mercury, tin and zinc) (Note: It
should be noted that the method involving torsional oscillations of a
small bucket has recently found an extensive application for the purpose
of measuring the viscosity of fused metals. See, for example, M. R.
Hopkins and T. S. Toy, Proc. Phys. Soc., B 63, No. 370, 1950 (viscosity
of zinc); A. I. Blum and A. R. Regel', Zhurnal tekhnicheskoy fiziki
( Journalof Technical Physics), Vol. 23, No. 6, 1953 (viscosity and
electric conductivity of a selenium-tellurium alloy).).

Alloys of the gold-silver system exhibit an unlimited solubility
of their components in the solid state without any kind of intermediate
phases. No peculiar features of any kind are observed on viscosity
isotherms, which would indicate the presence of intermetallic compounds
in the liquid state. Results of research work agree well with Andrade's
formula, expressing the viscosity at the melting point:

= 5,1 • 1O'A'I'7' 1 'V-, (6.28)

where A is the atomic weight, T. is the absolute melting point, V is
the atomic volume. Pure gold and silver and their alloys comply with
the formula expressing the exponential dependence of the viscosity on
the temperature.
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After comparing all the data presented above, we must come to the
conclusion that products of the Pb 2 Sn5 type and similar products, possess-
ing a bond (linkage) strength characteristic for true intermetallic com-
pounds, are not present in tin-lead and tin-bismuth alloys. At the
same time, however, the possible existence of atomic complexes is not
excluded, resulting from collective interactions and having an atomic
concentration expressed by the formula Pb 2Sn 5 , whereby these compounds
are much less stable than intermetallic compounds. Such complexes, the
dissociation heat of which is small in comparison to the heat required
for the dissociation of molecules into the component atoms, will still
be sufficiently stable in order to act as independent units in viscous
flow phenomena, during the course of which tangential forces are im-
measurably smaller than the forces necessary for the destruction of a
chemical compound. Quasi-crystals with a predominant concentration of
one or another component may represent such compounds or complexes. 8

The second possible explanation of the character of the viscosity 8
isotherms which is observed consists in the assumption of the existence
of certain processes in alloys, which result in a change of the viscous
properties depending upon the previous history of the sample. Such
phenomena of a rheological nature may take place as a result of the
presence an the metallic liquid) of insoluble impurities, arni also as a
result of structural characteristics of the liquid (Note: This problem
deserves the most serious attention and study).

7. Viscosity of Heterogenous Systems
and Sound Absorption in Such Systems

As was already pointed out in Chapter V, the concept of shear
viscosity is introduced into rheology as the product of the instantaneous
modulus of rigidity and the relaxation time (formulas 5.35 and 5.50).
Such a definition of the viscosity coincides with Newton's definition,
if processes involving a deformation of the medium satisfy condition
(5.40). These two statements are equivalent to the fact that the ab-
sorption of energy in the medium is determined only by Releigh's dis-
sipation function, and the factor (multiplier) preceding the squares of
the deformation rates represents the viscosity factor (formula 5.37).

The rheological conception makes it possible to expand the con-
cept of viscosity and to apply it to systems which are not subordinate
to Newton's internal friction law. However,. it is apparent that, in
order to allow an experimental determination of the viscosity factor
in case of such a broad definition, it is also necessary that the theory
of the measurement method should be elaborated on the basis of a cor-
responding rheological equation. This constitutes an independent prob-
lem, which will not be examined here.

We shall start from the concept that the viscous properties of
a heterogenous medium are formally determined by Newton's internal
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friction law. The analysis of experimental results, presented at the
end of the preceding chapter, gives us a reason to assume that condition
(5.40) is fulfilled in case of the observed viscosity values obtained
with the heterogeneous systems which have been investigated. Conse-
quently, the viscous properties of a heterogeeous system may be charac-
terized by means of a viscosity factor, determined with the aid of
Newton's internal friction law.

The damping (attenuation) of the oscillations of a heterogeneous
medium exhibits certain specific characteristics, which may be suffi-
ciently fully clarified with the aid of Figure 3. The curves showing
the logarithmic decrement of attenuation (or damping) and the period,
given in this figure, constitute a reflection of the fact that a rela-
tive movement (motion) of the liquid and of the solid wall is taking

F place in the instrument, i.e., a reflection of the fact that the bucket-
8 liquid system is a heterogeneous system. Figure 3 shows that, if, dur-
8 ing the relative motion of the liquid and solid wall, the viscosity of

the liquid is very high (y is small), then the absorption of the oscil-
lation energy, characterized by 6, remains small and the oscillation
period T remains high. The reason for this lies in the fact that, in
this case, the angular velocity gradient is small precisely in view of
the high velocity of the liquid, as result of which the entire liquid
as a whole moves together with the bucket. Such a type of motion is
responsible for the low energy absorption and the high oscillation
period, corresponding to the moment of inertia of the suspension system,
which is approximately equal to the sum of the moments of inertia of
the bucket and of the solidified liquid inside the bucket.

If the viscosity of the liquid, which fills up the bucket, starts
to decrease, for example, as a result of heating, this will result in
an increase of the angular velocity gradient in the vicinity of the
oucket wall, which will result in a higher absorption. At the same
time, the oscillation period will decrease, since a steadily smaller
amount of liquid will take part in the movement (motion) of the bucket.

After a certein time, the effect of a decrease in viscosity will
predominate over the increase in the angular velocity gradient, and the
absorption will start to decrease parallel to the change in the viscosity
factor of the liquid. The oscillation period will remain practically
constant in view of the small mass of the liquid carried along (en-
trained) during tne motion.

These basic features of the oscillating motion of the bucket
filled with liquid can be briefly formulated in the form of a statement,
according to which the absorption of energy during the oscillating mo-
tion of a heterogeneous medium exhibits a maximum at a certain value of
the viscosity of the pure liquid.

From what has been said aoove, it follows specifically that
during the propagation of acoustic waves in a medium consisting of
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liquid and solid particles of macroscopic size (see Note) distributed
in this liquid, the damping of waves will be sniall in case of a very
high viscosity of the liquid; then, when the viscosity drops, the damp-
ing will increase up to a certain maximum value, after which it will
start to drop parallel to the drop in the viscosity of the pure liquid
(Note: In this case, the macroscopic size of the particles must be
interpreted in the sense that their streamline flow can be described
hydrodynamically with a sufficient degree of accuracy).

Indeed, the relative motion of the liquid and of solid particles
can be described by means of the same hydrodynamic equations as in the
preceding case. In regard to changes in the character of flows in the
vicinity of each particle, which take place during changes in the vis-
cosity of the liquid, the same considerations which have been described F
above can be repeated. Therefore, the 6(t) curve shown in Figure 3
simultaneously represents a direct charac eristic of the damping in-
tensity of acoustic waves in a heterogeneus medium depending upon the
viscosity of the pure liquid. These conclusions can be used as a basis
for a hydrodynanic theory of sound propagation in heterogeneous media
at any concentrations of solid macroparticles (Note: An abnormal ab-
sorption of the type described above was observed by I. G. Mikhaylov
and A. A. Shagalova, Doklady AN SSSR (Reports of the Academy of Sci-
ences USSR), Vol. 89, No. 5, 1953. A theory of sound absorption, based
on considerations similar to those presented here, is given by M. V.
Vol'kenshteyn and Yu. Ya. Gotlib, Doklady AN SSSR (Reports of the
Academy of Sciences USSR), Vol. 89, No. 5, 1953).

In a numoer of practically interesting cases, during the course
of appropriate calculations, it is possible to start from the assumption
of an ordered distribution of particles having approximately the same
size and shape.

A macroscopically heterogeneous medium can be easily achieved dur-
ing the course of fusion of a binary alloy in those states of the alloy
which lie between solidus and liquidus lines. It can be assumed that,
in this case, the viscous properties of the medium in the oscillation
process will be mainly determined by the concentration and dimensions
of the suspended particles. Here, the possibility is afforded to as-
sociate the kinetics of the solidification process of the alloy with its
viscous properties.

Figure 44 illustrates the temperature dependence of viscous losses,
obtained on a torsional oscillating viscosimeter, for an alloy having the
composition 15% Pb - 85% Bi, from the beginning of its fusion (smelting)
through the region of heterogeneous equilibrium and the liquidus point,
and further into the region of a homogeneousliquid (Note: Experimental
observations were performed oy N. K. Rakova during the course of her
graduation work at the Physics Faculty of Moscow State University in
1953).
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It can be easily seen that the general character of the tempera-
ture dependence of the logarithmic decrement of damping (damping ratio)
is similar to the dependence of the damping decrement on the parameter

= \' (Figure 3), which is quite natural, in view of the fact that a
change in t follows the same course (i.e., proceeds in the same direc-
tion) as tue change in temperature.

Figure 29 shows the result of the processing of a curve similar
to the one shown in Figure 44 (namely, of its ascending branch), rep-
resented in the form of values of the kinematic viscosity as a function
of the temperature for the alloy: 75% Pb + 25% Bi. Attention is di-
rected to the very high values of the viscosity in the heterogeneous
region, caused by the presence of solid phase crystals.

The results of these and previously cited studies constitute a
proof of the great influence exerted by insoluble impurities on the
viscous properties of liquids. Strictly speaking, all metallic liquids,
unless they have been suojected to a very thorough purification, are
heterogeneous systems. The concentrations of insoluble impurities in
different samples of the same metal may vary within a wide range.

Specifically, the system of curves shown in Figure 20, charac-
terizing the viscosity of aluminum in different tests, can be explained
as being due to a different, but significant, concentration of insoluble
impurities. The absence of any kind of regularity (rule) in the rela-
tive arrangement of viscosity curves of steels and ferrochrome alloys
can also oe explained as being due to the influence exerted by insoluble
impurities.

When the amount of insoluble impurities in the studied metal re-
mains constant, these impurities will rise to the surface (since in most
cases they consist of light lower oxides) as the metal is held in the
fused state, and a purification of the metal will take place. As a re-
sult of this process, the viscosity will change with the course of time,
striving to reach a certain limit, corresponding to an ideal pure metal.
Specifically, such a phenomenon may take place during the actuRl process
of viscosity measurement, if the conditions for the rising of impurities
are favoraole (such as the absence of stirring).

For this reason, the degree of purification of metals from in-
soluLle impurities durin6 viscosimetric studies plays the same important
role as during the study of crystallization processes. In experimental
viscosimetry, it is advisable to introduce the concept of the viscosity
of a metallic liquid, which in its original state corresponds to the
presence of insoluble impurities, as well as the concept of a viscosity,
which in its final state corresponds to a complete removal of insolu-
ble impurities from the fused metal. There are serious reasons to as-
sume that, practically in many cases, the effect of insoluble impuri-
ties eresent in the fused metal on the viscosity is greater than the
contamination of the metal with other chemical elements present in the
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fused state. All of the experimental results on the viscosity listed
above refer to fused metals in the original state. Observations have
shown that, in the case of lead, tin, bismuth and certain other metals
with similar melting points, the original state is preserved when these
metals are heated to approximately 6000 C. Above this temperature, the
process involving a separation of impurities and of the liquid phase
takes place with a noticeable speed (rate).

The theory of the viscosity of suspensions, elaoorated by Ein-
stein (30), is not applicable in many cases to metallic liquids con-
taminated with insoluble impurities, since this theory covers a region
of low concentrations of solid particles, in which an increase in vis-
cosity amounts to several percent. Even more so, this theory is inap-
plicable to an analysis of the viscosity of binary alloys at tempera-
tures lying below the liquidus line, since in this region, in case of a F
slight cooling, an increase in the viscosity amounting to entire orders 8
is observed (see Figure 29). 8

Consequently, in order to establish a connection between the e- 8
havior of the viscosity in the hcterogenous3region of the fusion diagram
of alloy and the kinetics of the growth and formation of particles, it
is necessary to create a new theory of the viscosity of heterogeneous
systems# free of limitations in regard to the concentration of solid
particles.

8. The Viscosity and Critical Temperature of Liouids

On the basis of an analysis of experimental data and an examina-
tion of theoretical connections between critical parameters, the struc-
ture of the molecular field and the macroscopic properties of liquids,
A. Z. Golik (31) has established the presence of a certain rule in the
arrangement of J(T) curves in the case of liquids possessing a similar
structure and type of interactions between particles. The higher the
critical temperature of a given liquid, the higher lies the curve showinb
the temperature dependence of the viscosity (i.e., the higher is this
curve located in the region of high values). This statement applies to
normal alcohols, paraffins, a numoer of metallic liquids (sodium, potas-
sium, zinc, cadmium, mercury), and also to certain solutions. In case
of metals, the critical temperature is estimated by means of Guldberg-
Hewey(?)Is rule (Note: According to this rule, the absolute critical
temperature is proportional to the aosolute boiling point. The factor
of proportionality is equal to 1.55p, if the boiling point is selected
at a normal pressure, and is equal to 2, if the boiling point is selected
at a pressure of 20 mm Hg). According to this rule, the critical tem-
perature of aluminum and lead is equal to 2,470 and 2,0280 K, respectively.
In case of zinc and cadmium, this temperature is equal to 1,820 and
1,b100 K respectively, and in case of tin and bismuth, 2,540 and 1,83u° K
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respectively. The first two metals have a close-packed structure with
a coordination number of 12, the next two metals have a loose-packed
hexagonal structure with a coordination number of 6 + 6, and the last
two metals have lattices with a coordination number of 6. By taking
the equality I = p v into account, one can see that the arrangement
(disposition) of the viscosity curves for zinc and cadmium, tin and
bismuth is indeed in agreement with Golik's rule; this does not apply,
however, to aluminum and lead. The deviation from the typical order of
arrangement of the viscosity curves exhibited by the last two metals Is
possibly associated with a very high difference in density, or maybe is
due to an inaccurate determination of the critical temperature. In this
connection, it is interesting to note that the kinematic viscosity

F curves for all six metals listed above comply with this rule.
8 The rule established in this manner is of great practical ir-
8 portance. Indeed, let us assume that we have a liquid, having a cer-

tain (known) critical temperature, molecular structure and nature of
intermolecular forces,the viscosity of which is expressed by the func-
tion 1(T), and that it is necessary to obtain another liquid with the
same viscosity function J(T). In that case, this second liquid must be
selected in such a way that it will have the same type of molecular
structure, nature of interaction forces and critical temperature. It
was found that this can be achieved in many practically important cases
by making use of liquid mixtures.

A. Z. Golik has given a theoretical interpretation of this estab-
lished rule, starting from very general considerations on the connection
between the intermolecular potential, on one hand, and the internal
energy of the liquid and its macroscopic properties, on the other hand.
An exponential formula showing the dependence of the viscosity on 1 is

T
used as a basis. Briefly stated, the essence of the point consists in
the following. The deeper the potential well of intermolecular in-
teractions and the greater the binding energy, the higher the
latent heat of evaporation and the critical temperature of the substance.
However, in case of an identical molecular structure, the deeper the
potential well, the steeper are its edges. During a relative displace-
ment of molecules, tangential forces make their appearance; the value
of these forces is the greater, the steeper the slopes of the po-
tential well, i.e., in the final analysis, the higher the value of
the critical temperature. An examination of this problem clearly dis-
closes the role of the nature of intermolecular forces, since the shape
of the potential energy curves, in case of the same type of molecular
structure, is determined by the nature of the bonding forces.
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Conclusion

In this chapter, an attempt has been made to describe the connec-
tion between the structure, the viscosity and the crystallization
kinetics of metallic liquids. A solution of this problem lies, on one
hand, in the further accumulation of experimental data on the properties
of liquids, and, on the other hand, in the development and application
on liquids of general theoretical methods for analyzing a system of in-
teracting particles. A number of encouraging results in this direction,
obtained by N. N. Bogolyubov, M. Born, and A. A. Vlasov, are available
to us.

So far, however, the theories mentioned above are still far from
yielding results which may be quantitatively compared with experimental
results. Therefore, the attempts of many scientists, working in the
field of physics of condensed media, are understandable; these attempts F
are directed at the solution of experimental and theoretical problems 8
concerned with the theory of the liquid state. 8

Bibliography (Chapter VI)

1. A. I. Bachinskiy, Vremenaik obshchestva imeni Ledentsova (Annals
of the Society imeni Ledentsov), Appendix No. 3, 1913.

2. M. P. Volarovich, Izvestiya AN SSSR. Otdeleniye matematicheskikh
i yestegtvennykh nauk (News of the Academy of Sciences USSR,
Division of Mathematical and Natural Sciences), Series VII, No.
10, 1933.

3. J. D. Bernal and R. H. Fowler, Journ. Chem, Phys., Vol. 1, 1933,
p. 515; Uspekhi fizicheskikh nauk (Progress of Physical Sciences),
Vol. 14, 1934, p. 5d6.

4. A. I. Kitaygorodskiy, Rentgenostrukturnyy analiz melkokristalli-
cheskikh i amorfnykh tel (X-Ray Diffraction Analysis of Fine-
Grained and Amorphous Bodies), 1952, published oy Gostekhizdat.

5. In regard to the concept of a long-range order structure, see
Ya. I. Frenkel', Kineticheskaya teoriya zhidkostey (Kinetic
Theory of Liquids), Chapter 3, 1945, published by Akademizdat.

6. G. A. Prins, Naturwissenschaften, Vol. 19, 1931, p. 435; Prins
and Peterson, Physica, Vol. 3, 1936, p. 147.

7. Ya. I. Frenkel', Kineticheskaya teoriya zhidkostey (Kinetic Theory
of Liquids), 1945, pp. 122-123 (see reference 5).

8. The basic literature on the problem considered here is found in
the following summary and review works: V. I. Danilov, Rasseyaniye
rentzenovskikh luchey v zhidkostyakh (Scattering of X-Rays in
Liquids), 1935, published oy ONTI; UsDekhi fizicheskikh nauk
(Progress of Physical Sciences), Vol. 14, No. 4, 1934; Izvesttia
AN SSSR. Seriya fizicheskaya (News of the Academy of Sciences

- 162 -



USSR, Physics Series), Vol. 7, No. 1, 1941 (Other works by V. I.
Danilov are cited during the discussion of correiponding prob-
lems); N. S. Gingrich, Uspekhi khimii (Progress of Chemistry),
Vol. 15, No. 3, 1946; Ya. I. Frenkel', Kineticheskaya teoriva
ahidkostev (Kinetic Theory of Liquids), 1945; P. P. Kobeko,
Amorfnyye veshchestva (Amorphous Substances), published by the
Academy of Sciences USSR, 1952; G. W. Stewart, Uai kiii
(Progress of Chemistry)# Vol. 1, No. 5, 1932; P. Debye, Useh
fizicheskikh nauk (Progress of Physical Sciences), Vol. 14,
No. 7, 1934; Ibid., Vol. 21, 1939, p. 120. The following works
might also be mentioned: G. W. Stewart, Journ. Chem. Phivso,
Vol. 2, 1934, p. 147; Ibid., Vol. 2, 19341 p. 558; K. P. Mamedov,
N. A. Aliyevo Trudyir nstituta fiziki i matematiki Azerb. AN,

7 Seriya fisicheskaya (Transactions of the Institute of Physics
8 and Mathematics of the Azerbaydzhan Academy of Sciences, Physics
8 Series), 1953 (see also reference 32). On the results of a neu-

tron diffraction study of the structure of liquids, see the
review article in Uspekhi fiicheskikh nauk '(Progress of Physi-
cal Sciences), Vol. 42, No. 1, 1950, and P. C. Sharrah and
P. Smith, Journ. Chem, Phys.,1 Vol. 21, No. 2, 1953.

9. R. E. Honig, Journ. Chem. Phys., Vol. 21, No. 3, 1953.
10. A. I. Danilova, V. I. Danilovq Ye. Z. Spektor, Dokiady AN SSSH

(Reports of the Academy of Sciences USSR), Vol. 82, 1952, p. 561.
11. V. I. Danilov, M. A. Levashevich, Zhurnal eks-perimental'noy i

teoreticheskoy fiziki (Journal of Experimental and Theoretical
Physics)# Vol. 10, No. 7, 1940.

12. G. S. Landsbergv Izvestiya AN SSSR. Seriya fiaz.cheskaya (News of
the Academy of Sciences USSR, P'hysics Series), No. 3, 1938;
S. A. tikholinp old NSS (Reports of the Academy of Sci-
ences USSR), Vol. 16, 1937, p. 403; G. S. Landsberg, S. A.
Ukholin, Ibid., Vol. 16, 1937, p. 399.

13. V. I. Danilovp Problemy metallovedeniva i fiziki metallov (Prob-
lems in the Field of Metal Science and Physics of Metals), Col-
lection of' Works, p. 7, 1949, published by Hstallurgizdat;
Sbornik nauchy'kh rabot Laboratorii metaflofiziki (Collection
of Scientific Works of the Laboratory for the Physics of Metals),
p. 95, 1944, puulished by the Academy of Sciences Ukrainian SSR.

14. V. I. Danilov, 0. D. Kozachkovskiy, Zhurnjal eksierimental'noy i
teoreticheskoy fiziki (Journal of Experimental and Theoretical
,Fhysics), Vol. 11, No. 2, 1941.

15. V. I. Danilovp V. Ye. Neymark, Ibid., Vol. 8, No. 10, 1937.
16. V. I. Danilov, Rasse-ianiye rentnenovskikh luchev v zhidkostvakh

(Scattering of X-Rays in Liquids), pp. 106-111 (see reference 8).
17. V. I. Danilov, I. V. Radchenkoq Zhurnal eksperimental'no-Y i

teoreticheskoy fiziki (Journal of Experimental and Theoretical
Physics), Vol. 7, No. 9-10, 1937.

- 163 -



18. A. I. Danilova, V. I. Danilov, Problemy metallovedeniya i fiziki
m (Problems in the Field of Metal Science and ihysics of
Yetals), Second Collection of Works, p. 31, 1951, published by
etallurgizdat.

19. A. M. Zubko, Problemy metallovedeniya i fiziki metallov (Problems
in the Field of Metal Science and Physics of Yetals), Collection
of Works, p. 106, 1949, puolished by Metallurgizdat.

20. V. A. Konstantinov, Zhurnal fixicheskoy khimii (Journal of Physical
Chemistry), Vol. 24, No. ., 1950.

21. Ya. I. Frenkel,, Kineticheskaya teoriya zhidkostey (Kinetic Theory
of Liquids), 1945, published by Akademizdat; H. S. Green, Molecu-
lar Theory of Fluids, Amsterdam, 1952; S. Glasstone, K. Leydler,
G. Eyring, Teoriva absolyutzykh skorostey reaktsii (Theory of
Absolute Reaction Rates), 1948, published by State Publishing
House for Foreign Literature; G. Y. Panchenkov, Teoriya vyazkosti 8
zhidkostey (Theory of the Viscosity of Liquids), 1947, published 8
oy Gostekhizdat; Zhurnal fizicheskoy khimii (Journml of Physical
Chemistry), Vol. 24, No. 11, 1950; R. N. C.-Andrade, Phil. Mag.,
Vol. 17, 1934, pp. 497, 698; Proc. Roy. Soc. A 215, No. 1120,
1952. Mac-Leod also worked on the theory of the viscosity of
liquids, and he obtained a viscosity formula of the Bachinskiy
type. See Trans* Farad. Soc., No. 6, 1936; Proc. Phys. Soc.,
Vol. 50, No. 5, 938.

22. A. S. Predvoditilev, Zhurnal eksDerimentallnoy i teoreticheskoy
fiziki (Journal of Fxperimental and Theoretical Physics), Vol. 3,
No. 3, 1933; Ibid., Vol. 4, No. 1, 1934; Ibid., Vol. 4, No. 8,
1934; Izvestiya AN SSSR. Otdeleniye tekhnicheskikh nauk (News of
the Academy of Sciences USSR, Division of Technical Sciences),
No. 4, 1948; Zhurnal fizicheskoy khimii (Journal of Physical
Chemistry), Vol. 22, No. 3, 1948.

23. A. S. Predvoditelev, Zhurnal eksperimental'noy i teoreticheskoy
fisiki (Journal of Experimental and Theoretical Physics), Vol. 4,
1934, p. 69.

24. M. F. Shirokof, "Conference on the Viscosity of Liquids and Col-
loidal Solutions," Doklady AN SSSR (Reports of the Academy of Sci-
ences USSR), Vol. 12, 1944, p. 35.

25. M. F. Shirokov, Zhurnal fizicheskoy khimii (Journal of khysical
Chemistry), Vol. 3, 1932, p. 175; Zhurnal eksperimental'noy i
teoreticheskoy fiziki (Journal of Experimental and Theoretical
Physics), Vol. 3, 1933, p. 237.

26. M. Khansen, Struktury binarnykh splavov (Structures of Binary
Alloys), Vol. 1, pp. 313, 326; Vol. 2, p. 947, 1941, published
by etallurgizdat.

27. F. Sauerwald, A. Bienias, Zs. Alliemi. Chem., Vol. 161, 1927, p. 51.
28. D. Bernal, Metallofizika (Physics of Metals), Collection of Arti-

cles edited by S. T. Konobeyevskiy, 1933, published by GTTI.

- 164 -



29. E. Gekhbardto M. Bekker, Problemr sovermermov metallurizii. Sbornik
sokrashchannykh perevodov i obzorov inostrannoy Periodicheskov
lieau- (Problems of Modern Metallurgy, Collection of Con-
densed Translations and Reviews of the Foreign Periodical Litera-
ture), No. 3, 1952.

30. A. Einstein, M. Smolukhovskiy, Brounovskove dvizhenive (Sbornik
statev) (Brownian Motion, Collection of Articles), 193$, p. 43,
published by ONTI.,

31.* A. Z. Golik, Soveshcharaive o, Mvaakosti xhidkostev i kolloidnvkh
rastvorov. Doklady (Conference on the Viscosity of Liquids and
Colloidal Solutions, Reports), Vol. 2, 1944, p. 110, published by
Akademizdat; Ukrainskiy khimicheskiv shurnal (Ukrainian Chemical
Journal), Vol. 14, No. 2, 1949; A. Z. Golik, S. D. Ravikovich,
A. V. Orishchenko, Ib~id., Vol. 17,, No. 5, 1951; A. Z. Golik,
Ibid., Vol. 18, No. 5, 1952; A. Z. Golik, Dokiady AN Ukr. SSR

8 (Reports of the Academy of Sciences Ukrainian SSR), Fo. 1, 1952.
8 32. See Str-vnive i fizicheskive svovstva veshchestva v zhidkom

8 sostogvanii (Structure and Physical Properties of Matter in the
Liquid Stat.), Proceedings of Conference in Kiev, published by
Kiev University imeni T. G. Shevchenkoq 1954.

Apedi

List of Books Published by the State Publishing House
for Technical and Theoretical Literature (GTTI)

The following books are available for sale:

1. Ambartaunyan, V. A., et al... Teoreticheskaya astrofizika (Theo-
retical Astrophysics), recommended by the Ministry of Higher
Education USSR as a textbook for state universities, 636 pages.
Price: 15 rubles,

2. Kedrovp B. M., Razvitiye rPonyati-ya elementa ot Mendele-yeva do
nashikh dney (Development of the Concept of an Element from the
Days of Msndeleyev to the Present Time), Philosophical problems
in the field oi modern natural sciences, 247 pages. Price:
8.15 rubles.

3. Kuznetsov, V. D., Kristally i kristallizatsiva (Crystals and
Crystallization), 412 pages. Price: 19 rubles.

4. Lewes, W. B., Metody elektricheskago scheta. al'fa i beta chastits
(Methods for the Electric Count of' Alpha and Beta Particles), 2d
edition, Translated from the English, G. D. Latyshev, editor,
164 pages. Price: 3.85 rubles.

5. Meshcherskiy, 1. V., Habotyv Po mekhanike tel s pereffennoy niassoy
(Studies on the Mechanics of' Bodies With a Variable Mass), 2d

-165 -



edition, with a preface and introductory article by Prof. A. A.
Kosmodemyanskly, 280 pages. Price: 6 rubles.

6. Morse, F., Kolebanlya i zvuk (Oscillations and Sound), Translation
from the English, edited by Prof. S. N. Rzhevkin, 496 pages.
Price: 18.60 rubles.

7. Sena, L. A., Stolknoveniya elektronov i ionov s atomami gasa
(Collisions of Electrons and Ions With Gas Atoms), Series "Modern
Problems of Physics," 216 pages. Price: 6 rubles.

These books are sold in bookstores and are also shipped by mail
C.O.D. without a down payment by all republican, kray and oblast sec-
tions of "Kniga-Pochtoy" (Books by Mail). TRANSLATED BY U.S. JOINT PUB-

LICATIONS RESEARCH SERVICE FOR F
Figure Apendix NATIONAL AERONA!UTICS AND SPACE 8

ADMINISTRATION 8

1P
Nd

49.

-A

Figure 1. Working space of viscosimeter and arrangement of coordinate
axes.
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8 Figure 2. Graphs used in the determination of factors, a, L and c in
8 formula (2.89).
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F~igure 3. Dependence of the dam'pi lcent6(f) and function
T2 =R Arbirr units are plotted

T2 f 1 = t() on
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0
along the ordinate axis, and for this reason 6(t) and f(t)
differ from their true values by constant factors (multi-
pliers).
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Figure 4. Effect of a relative off-centering of the bucket on the

,values of the damping decrement 6 and the oscillation period
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Figure 5. Dependence of 60 for various suspension systems. Experi-
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mental resuats.
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Figure 6. Evaporation rate of bismuth from: a free surface depending

upon the temperature.
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Figure 7. Condensation rate of bismuth vapors on the lid of the bucket
depending upon the temperature of the metal and the tempera-
ture difference between the metal and the lid, in the absence
of a foreign gas in the clearance between the free surface of
the ietal and the lid.
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F-igure 8. Sketch of' the bucket filled with liquid, in case of two end
surfaces of' contact.
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Figure 9. Range of kinematic viscosity values which can be investigated
by means of the suspension system, calculated in # 14. v 1
and 0.65 6max are, respectively, the values of the viscosity
and of the damping decrement when y = 100. v 2 corresponds
to the viscosity value when y =3,500, V3 when y = 16, Vma
when y = 0.*16, 6ma is the maximum value-of the damping
decrement (see Figure 3).
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Figure 10. Effect exerted by the value of parameter y c,. ?, numerical
value of the kinematic viscosity, calculated according to
the theory of the m~ethod for low-viscosity liquids.
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figure 11. Sketch of the unit used in =easurii, Lie viscosity of
steels and ferrochrotiie alloys: 1 -- metal tested, 2 --

crucible, 3 -- cerardc bar, 4 -- rod, 5 -- pris., 6-- opti-
cal pyrometer, 7 -- alumidnum disk-radiator, 6 - small
mirror, 9 -- small chuck for fastening the wire suspension,

10 -- suspension wire, 11 -- attachment of the upper point
of the suspension device, 12 -- twisting mechanisnm with

limited angle of rotation, 13 -- graphite heating cylinder
of Tamman furnace, 14 -- fillinC of Tamman furnace, 15 --
heat insulating stopper (plug), 16 -- heat insulating plug
with an opening for the outlet of the light ray, 17 -- water
cooling, 16 -- illuninator, 19 -- scale.
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e'igure 12. Striucture of the suspension system: 1 -- crucible, 2 --

rod, j -- holding bar (all these parts are made of ceramic
lmaterial), 4 -- aluminum shield (disk-radiator), 5 -- small
mirror, 6 -- small cnuck for fastening the suspension device.
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Figure 1j. Kine::aatic viscosity of steels. (0) -- measurements in a
Tarm:tin furnace with a large crucible, (.) -- repeated meas-
urements in a vacuunm viscosimeter 0-1O mm. Hg) with a
smaller crucible.
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ifigure 14. Kinem~atic viscosity of cast iron and ferrochrome alloys.
The length of the straight lines corresponds to the studied
viscosity range.
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Figure 15. Structure of a vacuum viscosimeter: 1 -- small wire of the
suspension device, 2 -- rotating electromagnetic mechanism,
?-- three-jawed chuck for clamping the suspension wire,
4 -- small mirror, 5 -- porcelain rod, 5 n in diameter,
6 -- free space for excess metal, 7 -- graphite lid of
crucible, 8 -- crucible space filled with the metal to be
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tested, R = 1.00 cm, 2H = 2.45 cm, 9 -- graphic crucible,
with a wall thickness of 0.4-0.5 cm, 10 -- alumina muffle
with a bifilar nichrome heating winding, 11 -- nine re-
flector shields, made of nickel, 12 - instrument rack,
13 -- polished section, 14 -- marble plate, 15 -- base of
the instrument, 16 -- coordinate system, in relation to
which the equations are written, 17 -- Chromel-Alumel
thermocouple, 18 -- glass hood.

8
8

ig"
Figure 16. Structure of the suspension system: 1 -- three-jawed chuck

for fastening the suspension wire, 2 -- small mirror, 3 --
aluminum disk-radiator, 4 -- porcelain rod (bar), 5 --
graphite lid of crucible, 6 -- free space for excess metal,
7 -- steel bars, for attaching the lid to the crucible,

-- graphite crucible.
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Figure 17. Rotating electromagnetic mechanism (plane view): 1 -- 8
electromagnet core, 2 - electromagnet, 3 -- base, 4--
regulated arresters (holding devices), limiting the angle
of rotation of the lever 7, 5 -- attachment of the small
spring to the base, 6 -- small spring, 7 -- lever, ro-
tating axis 8, 8 -- axis, attached to the upper three-
jawed chuck.

Figure 18. Modification of the rotating mechanism: 1 -- vacuum hood
with a ground section in the upper section, 2 -- glass
stopcock-plug, 3 -- vacuum ground section, 4 -- picein (?),
5 -- three-jawed chuck. The stopcock-plug must be provided
with arresters (holding devices), which limit the angle of
rotation.

-180-



an,

'I*

Figure 19. Kincw-uLic viscosity of bismuth, lead and tin. The crystal-
lization point is represented by means of vertical lines.
The various signs correspond to different series of experi-
ments.
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Figure 20. Kinematic viscosity off aluminum. Curve 1 indicates the
most probable data on the viscosity~ off pure unoxidized
aluminum. The other curves are explained in the text
(see # 4).
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Fi gure 21. Kinematic viscosity of tin and lead near the crystallization
point. The solid lines are transferred from Figure 19; the
results from # 5 are represented as (9); measurements per-
formed by Golubev and Petrov as (+); measurements performed
by Sauerwald and Taylor as (J); measurements performed by
Schott as ()
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Figure 22. Kinematic viscosity of Sn-Pb alloys. For the composition
of the alloys, see Table 10. Shaded areas correspond to
region& of a heterogeneousequilibrium of the phase diagram.
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Figure 24. (a) Measurement of the temperature of the metal with a
thermocouple: 1 - crucible, 2 - lid of the crucible, 3
seal (junction) of the thermocouple (at be protected from
the action of metal vapors), 4 -- two-channel porcelain
tube, 5 -- thermocouple wires. One of these wires serves
as the suspension wire, the second wire is led out from the
channel near the small mirror 7 and is coiled in the form
of a spiral around the first (suspension) wire, as is done
in mirror galvanometers. This wire must be very thin,
having a diameter of several score of microns. 6 - shield
(radiator), 8 - three-Jawed chuck. (b) Measurement of the
temperature of the metal with a thermometer: 1*- crucible,
2 - lid of the crucible, 3 -- thermometer, 4 - suspension
wire.
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Figure 26. Isotherms of the kinematic viscosity-composition of Sn-Bi
alloys.
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Figure 27. Effect of supercooling of tin on the kinen~atic viscosity
(o) -- change in viscosity during the process of heating
from the solid state; (+) - change in viscosity during the
process of cooling from 8500 C. The arrow indicates the
equilibrium crystallization point.
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Figure 28. Structure of crucible with floating lid: 1 -- crucible,
2 -- lid of crucible, 3 - floating graphite lid lies on
the surface of the fused metal, due to guide pins 4, enter-
ing into grooves 5, 6 -- protective hub of thermocouple
(against the action of metal vapors), 7 -- thermocouple
seal (junction), 0 -- thermocouple wires, 9 -- two-channel
porcelain tube.
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Figure 29. Kinematic viscosity of an alloy containing 75% Pb and 25%
Bi. In the right upper corner, the viscosity of this alloy
in the heterogeneous region of the fusion diagram is plotted
along the ordinate axis on a reduced scale. The liquidus
line is indicated by an arrow.
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Figure 30. Kinematic viscosity of cadmium and zinc. The crystalliza-
tion point is indicated by means of vertical shaded lines.
The points shown on the zinc curve correspond to a crucible
sealed-off under vacuum (x), and in the atmosphere (o).
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Figure 31. Distribution of the intensity I(:) of x-rays scattered by
liquid aluminum.
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Figure 32. Function of the atomic arrangement n(r) for liquid aluminum,
as a result of the processing of the curve shown in Figure
31 by means of the formula (6.6).
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Figure 33. Curve of the probability factor of atomic distribution in
amorphous Asi.
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Figure 34. Structure of a quasi-crystal. Degree of short-range order8
x as a function of the distance from the center of the 8
quasi-crystal r. The falling branch of the curve in the
region r1 < r < r 2 corresponds to a clearly expressed in-
crease in the structural diffusion factor with the distance.

II 0

Figure 35. Rate of onset of crystallization centers w as a function
of the depth of supercooling 6, determined by expression
(6. 2)
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Figure 37. Reciprocal of the kinematiC viscosity 1 sec as a function
Y sq cm,

of the relative density g_ (P0 is the density of the liquid

at the fusion point). 0O
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Figure 38. Dependence of (P) for tin-bismuth alloys. No. 1 -

bismuth, No. 10 -- tin. The composition of the alloys is
listed in Table 11 (the concentration of tin increases with
a growing number of the alloy). Liquidus lines are rep-
resented by vertical shaded straight lines.
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Figure 39. Depenence of 1+ fr tin-lead alloys. The composition of _

the alloys is listed in Table 10 (the concentration of lead 8

increases with a growing number of alloy). Liquidus lines
are represented by vertical shaded straight lines.
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Figure 40. Dependence of 1(t) for bismuth, lead and a 75% Pb + 25% Bi

alloy according to data given in # 8 of Chapter IV.
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Figure 410 Temperature dependence of the free energy of activation of
the viscous flow Fvi s for lead, bismuth, tin and aluminum.
The crystallization point is represented by means of ver-
tical shaded lines.
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Figure 42. Temperature dependence of1 the free energy of activation of
the viscous flow F~i. for steels (the composition is listed
in Table 8).

-199 -



- Zn

2f.2 .r W 4L07 SW2 AW W WO IV

Figure 43. *Temperature dependence of the free energy of activation of8
the viscous flow for cadmium (g3) and zinc (+) and (o). The8
crystallization point is represented by means of vertical
shaded lines.
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Figure 44. Temperature dependence of the damping decrement and period
in a suspension rotary-oscillating viscosimeter, during the
study of the viscosity of a 15% Pb + 85% Bi alloy. The
solidus and liquidus points (teuperatures) are represented
by mans of vertical lines. The difference in the manner
in which points on the curves are represented is due only
to their different density of distribution on the line.
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