UNCLASSIFIED

Reproduced
by the
ARMED SERVICES TECHNICAL INFORMATION AGENCY ARLINGTON HALL STATION ARLINGTON I2, VIRGINIA

UNCLASSIFIED

Best
 Available Copy

NOTICE: When govermment or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formiated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell agy patented invention that may in any way be related thereto.

273498

SMELD PENETRATION PROGMAS C. 17 AND L-63

U.S. AM FORCE

Nuclear Aerospace Research Facility Operated By

GIIIIIIID

SHIELD PENETRATION PROGRAMS C. 17 AND L. 63

D. M. PITERSON

SECTION I, TASK I, ITEM 6 OF FZM 2004 A

CONTRACT
AF 33(600) 38916
ISSUED BY THE ENGINEERING DEPARTMENT

Abstract

Two programs are described which have been coded for the IBM-704 (and are compatible with the IBM-7090). The programs calculate the neutron and/or gamma spectra, heat generation rate, and/or dose rate at each of a group of point detectors, due to each of a group of point sources. The sources may be divided into sets, with each set having a unique source spectra. In addition to the above calculation, the spectrum, heating rate, and/or dose rate for each detector, summed over each source-point set and over the entire source group may be computed. The two programs are similar, both computationally, and as regards input and output information, excepting for the complexity of the problem geometries acceptable to the programs.

TABLE OF CONTENTS
Section Page
ABSTRACT 3
LIST OF FIGURES 7
LIST OF TABLES 9
I INTRODUCTION 11
II PROGRAM LOGIC 15
2.1 Geometry Calculation 15
2.1.1 Simple-Geometry Routine 2.5
2.1.2 Complex-Geometry Routine 32
2.2 Calculation of the Gamma-Ray Number-Flux
Energy Spectrum, Dose Rate, and Heat Generation Rate 51
2.2.1 Spectral Calculation 55
2.2.2 Determination of the Spectrum, Dose Rate, and Heat Generation Rate 61
2.3 Calculation of the Neutron Number-Flux Energy Spectrum, Dose Rate, and Heat Generation Rate 68
III UTILIZATION 77
3.1 General 77
3.2 Library 1: Material Data 80
3.3 Library 2: Gamma Data 90
3.4 Library 3: Source Data 94
3.4.1 Library 3 for Simple-Geometry Program (C-17) 95
3.4.2 Library 3 for Complex-Geometry Program (L-63) 97

TABLE OF CONTENTS (cont'd.)
Page
3.5 Deletion and Listout Libraries for the Simple-Geometry Program 99
3.5.1 Library 4: Library Deletion List 99
3.5.2 Library 5: Deck Listout 99
3.6 Card Identification Field for Library Decks 101
3.7 Problem Deck 101
3.7.1 Problem Deck for the Simple-Geometry Program 102
3.7.2 Problem Deck for the Complex-Geometry Program 108
3.8 Card Identification Field for Problem Decks 119
APPENDIX A - Nomenclature and Symbolism for the Geometry Routine Flow Diagrams 121
A-1 Vector Notation and Logic Symbolism 1.1
A-2 Test Function and Nomenclature for the Simple- Geometry Routine ?.-
A-3 Test Functions and Nomenclature for the Complex-Gecmetry Routine 14
APPENDIX B - Nelitron Flux-to-Heat Conversion Factors 121
B-1 Elastic Scattering 133
B-2 Inelastic Scattering and the ($n, 2 n$) Reaction 185
B-2.1 The (n, n^{\prime}) Reaction 142
B-2.2 The ($\mathrm{n}, 2 \mathrm{n}$) Reaction 143
B-2.3 Average Value of the Degraded Neutron Energy 145
APPENDIX C - Neutron Reference Material Comparison 149
APPENDIX D - Program Library Data 157
REFERENCES 189
DISTRIBUTION 191

LIST OF FIGURES

Page
2-1 X-Plane Cross Sections 26
2-2 Simple-Geometry Overall Flow Diagram 27
2-3 Simple-Geometry Routine 29
2-4 Envelope Parameters and Coordinate Transformation Routine 39
2-5 Complex-Geometry Overall Flow Diagram 41
2-6 Complex-Geometry Routine 43
2-7 Boundary Determination Subroutine 45
2-8 Subvolume Impingement Subroutine 47
2-9 Element Determination Subroutine 49
2-10 Gamma Spectral Calculation 57
2-11 Gamma Routine 63
2-12 Neutron Routine 71
3-1 Library-Type 1 81
3-2 Library-Type 2 91
3-3 Library-Type 3 for the Simple-Geometry Program 96
3-4 Library-Type 3 for the Complex-Geometry Program 98
3-5 Library-Type 4 (Deletions) for Simple-Geometry Program Only 100
3-6 Library-Type 5 (Library Listout) for Simple-Geometry Program Only 100
3-7 Problem Deck for the Simple-Geometry Program 103
3-8 Problem Deck for the Complex-Geometry Program 109

LIST OF FIGURES (cont'd.)

Page
B-1 Average Neutron Energy Loss for Various Z Numbers 135
B-2 Average Neutron Energy Loss in Iron 137
B-3 Average Neutron Energy Loss in Oxygen 138
B-4 Average Neutron Energy Loss in Aluminum 139
C-1 Heat Deposition Rates in Lithium Hydride for Various Base Materials 150
C-2 Fast-Neutron Dose Rates in Lithium Hydride for Various Base Materials 1.51
C-3 Comparison of C-17 and 20om Spectra for Lithium Hydride 7.5?
C-4 Comparison of $\mathrm{C}-17$ and Zoom Spectra for Borated Carbon 153
C-5 Comparison of c-17 and 2oom Spectra for Borated Beryllium Oxide 1.54
C-6 Comparison of C-17 and Zoom Spectra for Borated Beryllium 1.55
C-7 Comparison of C-17 and Zoom Spectra for Borated Polyethylene plus Fiber Glass 1.56
Pa.ge
3-1 Neutron Energy Intervals and Histogram Factors for the First Four Neutron-Energy Modes 83
3-: Initial and Final Gamma-Ray Energies, Their Dependence on a and , and the Relationship to a and b of the Numerical Index in Library 2 on the Coefficients A and $h g$ 85
App. D Listout of Program Library Data 157

The two shield-penetration programs (C-17 and L-63) described here were coded to take advantage of the data given in Reference 1 as well as to allow the computation of the heat generation rates in a shield system due to the fast-neutron and gamma-ray reactor leakage spectra.

These programs are the latest generation in the continued development of moments-method shield-penetration programs conducted at the Nuclear Aerospace Research Facility (NARF) at General Dynamics/Port Worth (GD/FW). These methods were first used at NARF to analyze data from the Nuclear Test Aircraft flights. The methods were also used to code shield-penetration programs for the JBM-701 and IBM-704 in order to compute fast-neutron and gamma-ray spectra and dose rates in shleld systems described by a geometry system similar to the simple geometry routine described in Section II.

This family of programs has been developed around the following basic concepts:

Moments Method - This method is based upon the differential energy spectra calculated by the Nuclear Development Corporation of America (NDA) for a point isotropic source in an infinite medium (Ref. 2). The data represents a moments-method solution of the fast-neutron and gamma-ray transport equation. A detailed description of the use of these data is given in Reference 3. This method implies that the only portion of the system affecting dose rate (or spectra, or heat generation rate) at a detector due
to a point source a distance r from the detector is that portion of the system lying on the line of sight between the source and the detector; bence, the techniques discussed below are required in the use of this method.

The Stepping Point Method - This is an iterative method of determining the intercepted distances between two points. In this procedure, an iterative scheme is used to "step" a point through the volumes of the system, and, after each step, tests are performed to determine whether a boundary of the volume has been crossed. The intercepted distance is then determined by the number of steps and the length of each step taken in each volume. A discussion of the basic ideas and methods used in adapting this concept to computer programs is given in Reference 4.

Distributed Source - The moments-method data used in the calculations are for point isotropic sources; thus, it is necessary to approximate the leakage from a reactor or other scurce by a set of point sources. Each of these sources represents the radiation born in an elemental volume containing a point so that an integration of source points over the source volume must equal the total radiation generated by the source.

The new programs differ from the earlier versions principally in the following new features:

1. Direct computation of radiation heat generation rates,
2. Greater resolution of gamma-ray energy spectra,
3. Capability for testing more complex geometries.

The logic involved in the programed solution of the spectral and heat and dose equations as well as the equations themselves are described in Section $I I$, and the instructions and data formats required in order to use these programs are given in Section III. Four appendices contains

1. A list of the symbols used in the flow diagrams for the two programs.
2. Derivations for the neutron flux-to-heat conversion coefficients,
3. Tables of data for the materials libraries, and
4. Neutron reference-material comparison.

II PROGRAM LOGIC

Each penetration program is divided into three subprograms, namelys geometry, gamma, and neutron routines. The gamma and neutron routines are the same in both programs. The geometry routine of the first code (C17) is restricted to geometries composed of frustra of rectangular pyramids and coaxial cylinders and their annuli. The geometry routine of the second program (L-63) accepts a more general class of sclids, specifically, cylinders and their annuli which are defined about arbitrary axes, sectors of these cylinders, and frustra of pyramids whose bases are quadrilaterals. In addition, using the spherical option, spheres, hollow spheres or hemiapheres, spherical sectors, and spherical sectors with one or two ends cut off may be defined for L-63. This code also accepts regions within regions and regions within regions within regions in which the geometry types can be varied. These routines are described in the following sections.

2.1 Geometry Calculation

The intercepted distances in each material along the line-of-sight joining each source point with each receiver point are required in the gamma and neutron routines. The purpose of the geometry routine is to compute this information from data which describe the geometry of the system and the location of source points and detector pcints.

The method described here is not the classical method of determining the intercepted distances between two points, rather
it is an iterative method based upon the stepping-point concept. Using this method, a point is moved along a line in steps of known length. The stepping point \bar{P} (with components x_{p}, y_{p}, z_{p}) is originally coincident with the source point \bar{S} (with components x_{s}, y_{s}, z_{s}. A step along the line-of-sight toward the detector point is accomplished by adding a constant K times the direction cosine vector $\overline{\mathrm{L}}$ to the stepping-point vector. Thus,

$$
\overline{\mathrm{P}} \longrightarrow \overline{\mathrm{P}}+\mathrm{K} \overline{\mathrm{~L},}
$$

(The above expression should be read as:" $\overline{\mathbf{P}}$ is replaced by $\overline{\mathrm{P}}+\mathrm{KI} \bar{L}^{\prime}$.) Or component wise,

where l_{1}, l_{2}, l_{3} are the direction cosines of the source detector line-of-sight in the x, y, and z directions, respectively.

The stepping point must be identified as being in some particular geometric volume before the first step is taken. Then, after each step, the stepping point must be tested again to ascertain whether it is still in the same volume. Once a boundary has been crossed, a vernier effect may be achieved by taking one step back, reducing the step size, and repeating the procedure until the difference between the stepping-point position and the detectorside boundary of the volume is less than the boundary uncertainty parameter, $K_{m i n}$.

The method of defining the geometric volumes for these programs rests on the concept of an x-plane. As used here, for a given Cartesian coordinate system, an x-plane is a set of numbers sufficient to define a plane area perpendicular to the x-axis of the system plus the x -coordinate of this area, or the areas, depending upon the context. Two examples of x-planes are shown in the sketches below.

The first of these shows a rectangular area, bence the x-plane consists of the set $x, Y_{m i n}, Y_{\max }, Z_{m i n}, Z_{m a x}$, or, the rectangular area at x bounded by the last four of the above numbers. The second is a circular annulus, so that the x-plane consists of the set $x, R_{i n}, R_{0}$, or the annular area at x bounded by $R_{\text {in }}$ and R_{0}. For these programs, a volume is defined by two or more x-planes of the same type, and that portion of the volume surface which is not coincident with one of the defining x-planes is defined from either a linear interpolation or, for the spherical option, a particular second order interpolation between similar points of adjacent x-planes. A volume defined by rectangular x-planes is sketched below. This volume is defined by three x-planes of the type depicted in the first example above.

The class of "spherical volumes" acceptable to the complex-geometry routine consists of those whose centers lie on the x axis (see sketch). Thus, the equation for this class is

$$
(x-K)^{2}+Y^{2}+z^{2}-\rho^{2}=0
$$

where
K is the x-coordinate of the center, and
P is the radius of the sphere.
The interpolation formula is derived below.

Assume a portion of a sphere is to be defined with center at x_{c}, radius ρ, and truncated at x_{α} and $x \beta$. Then $R_{c c}=\sqrt{\rho^{2}-\left(x_{\alpha}-x_{c}\right)^{2}}$ and $R_{\beta}=\sqrt{\rho^{2}-\left(x_{\beta}-x_{c}\right)^{2}}$. Then, for some x_{p}, such that $x_{\alpha} \leq x_{p} \leq x_{\beta}$, the point R may be found in terms of $x_{p}, x_{\alpha}, R_{o c}, x_{\beta}$, and R_{B} by successive application of the Pythagorean Theorem:

$$
\begin{aligned}
& R^{2}=\rho^{2}-\left(x_{p}-x_{c}\right)^{2} \\
& R_{\alpha}^{2}=\rho^{2}-\left(x_{\alpha}-x_{c}\right)^{2} \\
& R_{\beta}^{2}=\rho^{2}-\left(x_{\beta}-x_{c}\right)^{2}
\end{aligned}
$$

Combining the above equations gives:

$$
R^{2}=\frac{\left(R_{\alpha}^{2}+x_{\alpha}^{2}\right)\left(x_{\beta}-x_{p}\right)-\left(R_{\beta}^{2}+x_{\beta}^{2}\right)\left(x_{\alpha}-x_{p}\right)}{x_{\beta}-x_{\alpha}}
$$

or

$$
R=\sqrt{\frac{\left(R_{\alpha}^{2}+x_{\alpha}^{2}\right)\left(x_{\beta}-x_{p}\right)-\left(R_{\beta}^{2}+x^{2}\right)\left(x_{\infty}-x_{p}\right)-x_{p}^{2}}{x_{\beta}-x_{\alpha}}} .
$$

A volume defined by cylindric x-planes of the type depicted in the second example is shown below. It should be noted that the axis of symmetry of this figure is coincident with the x axis of the coordinate system used to define the volume. This restriction holds for the definition of all volumes used in the programs, excepting those composed of x-planes of the type shown in the first example above and the complex Cartesian x-planes for the complex-geometry program. Different coordinate systems may be used for different sets of volumes in the defined region by defining them with respect to a reference system.

Examples of spherical volumes which may be defined by a coordinate type (CT) of -2 or -3 where the required x-plane parameters are:

1. Sphere with center at $x=a$, and radius $b:$

$$
C T=-2 \text { (simple cylindric x-planes) }
$$

$$
\begin{aligned}
\text { First } x \text {-plane: } & x=a-b, R_{\text {in }}=0, R_{0}=0 \\
\text { Second } x \text {-plane: } & x=a+b, R_{\text {in }}=0, R_{0}=0
\end{aligned}
$$

2. Sector of a hollow sphere or spherical shell with center at a, inner radius b_{1} and outer radius b_{2}, with the sector occupying the azimuthal anglular range (in the yz-plane)
\varnothing_{1} to ϕ_{2} (see sketch on next page) s $C T=-3$ (complex cylindric x-planes)

First x-plane:

$$
x=a-b_{2}, R_{i n}=0, R_{0}=0, \theta_{1}=\phi_{1}, \Theta_{2}=\phi_{2}
$$

Second x-plane: $\quad x=a-b_{1}, R_{i n}=0, R_{0}=\sqrt{b_{2}^{2}-b}{ }_{1}^{2}, \Theta_{1}=\phi_{1} \Theta_{2}=\phi_{2}$

Third x-plane s $\quad x=a+b_{1}, R_{\text {in }}=0, R_{0}=\sqrt{b_{2}^{2}-b_{1}^{2}}, \#_{1}=\phi_{1}, \#_{2}=\phi_{2}$ Fourth x-plane: $x=a+b_{2}, R_{1 n}=0, R_{0}=0, \oplus_{1}=\varnothing_{1}, \Theta_{2}=\phi_{2}$

Note: The primed coordinate system is shown to illustrate the method of measuring the azimuthal angles 0_{1} and 0_{2}. This system is merely a translation along the x axis of the unprimed system.

For clarity and conciseness, the following terms are used in describing both of the geometry routines, although those terms preceded by an asterisk are used for the complex geometry only. The symbols used in the geometry flow diagrams are described in Appendix A.

1. x-plane - this concept is defined above.
2. element - a volume defined by two adjacent x-planes.
3. volume - a set of adjacent elements defined by a consistent set of x-planes.

Three types of volumes are defined for the complex-geometry routine:
a. *subregion - a volume containing only one material and containing no other volume.
b. "region - a volume which may contain an arbitrary number of subregions of various materials and has associated with it a base material which occupies that portion of the region not occupied by subregions.
c. tmaster region - a volume which may contain up to 10 regions of various kinds and has associated with it a base material similar to that for regions.

Notes All regions should be contained in a master region, and all subregions should be contained in a region.

For the simple-geometry routine, only one type of volume is defined, and it is called a region. For this routine there is no volume containment.
4. dummy volume - the routine requires that every part of the problem space have some material associated with it. The dummy volume is not a defined volume in the sense that number of $x-p l a n e s$ are required to delineate this volume. Rather, it is assumed that the dummy volume occupies all space not occupied by other defined volumes. For the complex-geometry routine, the last master region defined in the geometric input must be the dummy volume, while for the simple-geometry routine, the last region is the dummy volume.
5. source-detector line - the straight line connecting a source point and a detector. (If this line has direction, as in computing the direction cosines of this line, the sense is from source to detector.)
6. segment - the penetration distance along the sourcedetector line through one volume multiplied by the density of the material of the volume, or for two or more volumes of the same material which are either adjacent, or separated only by void, the associated segment. is the sum of the products of the penetration distance through each volume and the density of the material therein. (No segment or portion thereof corresponds to a void volume.)

That is, if $M_{1-1} \neq M_{1} \neq M_{1}+1$, and M_{1-1}, M_{1}, and M_{i+1} are non-zero where M_{1} is a number used to icentify a material in the ith volume along a source-detector line and $M_{1}=0$ if the material is a void, the segment W_{i} is given by

$$
W_{1}=t_{1} p_{1},
$$

where ρ is the density of the material, and t is the thickness (along the source-detector line).

If $M_{1}=M_{1}+2$, and $M_{1+1}=0$ (void), then

$$
w_{1}=\left(t_{1} \rho_{1}+t_{1+2} \rho_{1+2}\right)
$$

7. detector-side boundary, source-side boundary (of a volume) - the two adjacent intersections of the sourcedetector line and the volume surface, the source-side boundary being closest to the source point.
8. *envelope - for cartesian voluren - the smallest rectangular parallelepiped which contains the volume in question. This envelope is described by two x-values, two y-values, and two z-values.
for cylindrical volumes - the smallest volume, described by two x-planes of the same type used to define the volume, which contains the volume.
9. *base material - for a volume - that material which fills the volume, except for the space occupied by subvolumes.

- for a problem - that material in which the system is assumed to be immersed. (This is the material associated with the duman volume.)
2.1.1 Simple-Geometry Routine
2.1.1.1 Volumes Acceptable to the Routine. Each volume used to describe the system being studied should be defined by a set of x-planes of one and only one of the following types (as illustrated in Figure 2-1).

1. Simple Cartesian. The defined area is a rectangle whose sides are parallel to the y and z axes. The numbers necessary to define the area are $X_{p}, Y_{m i n}$, $Y_{\text {max }}, Z_{\text {min }}$, and $Z_{\max }$ (Fig. 2-1). Restrictions: Orientation $-Y_{m i n} \leq Y_{\max }$ and $Z_{\text {min }} \leq z_{\text {max }}$
2. Simple Cylinder. The defined area is a circular annulus. The numbers necessary to define the area are $x_{p}, R_{i n}$, and R_{0} (Fig. 2-1).
Restrictions; Orientation - All cylinders must be defined to be coaxial with the x-axis of the coordinate system used to define the system and $R_{i n} \leq R_{0}$.
2.1.1.2 Method Outline. The segments W_{1} and the associated material identification numbers M_{i} are evaluated using the stepping-point described in Section I. The overall fiow diagram for the simple geometry code ($\mathrm{C}-17$) is shown in Pigure 2-2. A flow diagram for the geometry routine is shown in Figure 2-3. Nomenclature is given in Appendix A.

For a given detector point, all W_{1}, M_{1}, and the number of segments, $1_{\text {max }}$ are determined for each source point by the method

Cartesian:
a. simple-
b. complex-

d. complex

e. complex-rectilinear
f. Combination I

> g. Combination II

figure 2-1. X-PLANE CROSS SECTIONS

FIGURE 2-2. SIMPLE-GEOMETRY OVERALL FLOW DIAGRAM

outlined below. At this point, the neutron and/or gamma calculations are made, and this step is repeated until the calculations are made for each detector point.

1. A source point is chosen; then the source-detector distance, D, and the direction cosines of the line from the source to the detector are computed, and the stepping point is taken to be the source point.
2. The stepping point is tested against each region. to determine the region in which the stepping point lies.
3. If the stepping point is found to lie within one of the defined volumes, the detector-side boundary is found by the method outlined above and the stepping point 18 put past the detector-side boundary of this volume but within $K_{m i n}$ of the boundary. Then the distance between the source-side and detector-side boundaries is taken to be a tentative segment. The material number of this volume is found, and if it 1s non-zero (material number zero is taken to be void), the material number is tested against the last non-zero material number. If the material numbers are equal, the materials are the same, and the tentative segment is multiplied by the appropriate density and added to the last segment. If the material numbers are not equal, the materials are different, and the tentative segment is multiplied by the appropriate density and stored as a
segment W_{1}, along with the corresponding material number M_{1} and segment counter 1. If the material number is zero, the tentative segment is not used as a segment or a portion thereof.
4. Steps 2 and 3 are repeated until either
a. the stepping point is found to have passed the detector - In this case, the distance between the source-side boundary and the detector is called a tentative segment, which is treated as in Step 3 above, and the program goes to Step 1, unless the source points have been exhaus ted, or
b. the stepping point is found to be in an undefined region (the dummy material) by testing against all defined regions (Step 2) and finding the stepping point in none of them - in this case, the stepping point is taken to be at the detector, and the distance between the last detector-side boundary and the dectector is taken to be a tentative segment and is treated as in Step 3. Then the program goes back to Step 1 unless the source points have been exhausted.

2.1.2 Complex-Geometry Routine

2.1.2.1 Geometric Ordering of Volumes. In order to facilitate the region-search routine, each volume should be contained in one of ten master regions. Further, if geometric complexity warrants, each master region may contain up to ten regions and each region an arbitrary number of subregions. This mode of categorization has the advantage of reducing the number of regions the routine must search at any particular boundary. Also, each master region and each region will have associated with it a base material (which should be either the predominant material therein or that material which would minimize the
geometry description), so that only those volumes containing materials other than the base need be defined.
2.1.2.2 Volumes Acceptable to the Routine. Each volume used to describe the system being studied should be defined by a set of x-planes of one and only one of the following types illustrated in Figure 2-1.

1. Cartesian
a. Simple. The defined area is a rectangle whose sides are parallel to the y and z axis. The numbers necessary to define the area are: x_{p}, $Y_{\text {min }}, Y_{\text {max }}, Z_{\text {min }}$, and $Z_{\max }$ (Fig. 2-1a).
Restrictions: Orientation $-Y_{\min } \leq Y_{\max }$ and

$$
Z_{\min } \leq Z_{\max }
$$

b. Complex. The defined area is a quadrilateral. The numbers necessary to define the area are: $X_{p}, Y_{1}, Z_{1}, Y_{2}, Z_{2}, Y_{3}, Z_{3}, Y_{4}, Z_{4}$ (Fig. 2-1b). Restrictions: On the points $P_{1}=\left(x_{p}, Y_{1}, Z_{i}\right)$,

$$
1=1,2,3,4
$$

 parallel to the z axis.

$$
\begin{aligned}
& \bar{P}_{1} P_{4} \text { and } \overline{P_{2} P_{3}} \text { are not parallel to } \\
& \text { the } y \text { axis. } \\
& \min \left(Z_{1} Z_{2}\right) \leq \min \left(Z_{3} Z_{4}\right) \text {, and } \\
& \min \left(Y_{1} Y_{4}\right) \leq \min \left(Y_{2} Y_{3}\right) \text {. } \\
& \text { Connectivity: } P_{1} \text { is adjacent to } P_{2} \\
& \text { and } P_{4} \\
& \text { Convexity: All internal angles less } \\
& \text { than } 180^{\circ} \text {. }
\end{aligned}
$$

2. Cylindrical
a. Simple. The defined area is a circular annulus. The numbers necessary to define the area are x_{p}, $R_{\text {in }}$ and R_{0} (Fig. 2-1c).
b. Complex. The defined area is a sector of a circular annulus. The numbers necessary to define the area are $x_{p}, \mathbb{O}_{1}, \mathbb{O}_{2}, R_{1 n}$, and R_{0} (Fig. 2-1d).
c. Complex rectilinear. The defined area is a quadrilateral, two of whose sides are on radil of a circle. The numbers necessary to define the area are:
$x_{p}, \circledast_{1}, \circledast_{2}, R_{1 n_{1}}, R_{1 n_{2}}, R_{0_{1}}$, and $R_{0_{2}}$ (Fig. 2-le).
d. Combination. The defined area is a generalized quadrilateral, two of wose sides are on radil of a circle. The third side is a circular arc, and the fourth, a straight line.
I. The arc forms the inner side. The numbers necessary to define the area are: $x_{p}, \otimes_{1}, \otimes_{2}$, $R_{1 n}, R_{O_{1}}$, and $R_{O_{2}}$ (Fig. 2-1f).
II. The arc forms the outer side. The numbers necessary to define the area are: $x_{p}, \Theta_{1}, \Theta_{2}$, $R_{i n_{1}}, R_{i n_{2}}$, and R_{0} (Fig. 2-1g).

The defined volumes using these x-planes may be defined in terms of any arbitrary coordinate system. The only restriction is that the y axis of a coordinate system used to define a cylindrical volume must be the axis of the cylinder.

Restrictions: Orientation - All cylinders must be defined to be coaxial with the x axis of the coordinate system used to define the cylinder. All azimuthal angles are positive and measured from the y axis.
$\oplus_{1}<O_{2}$ and $R_{1 n_{1}} \leq R_{O_{1}}, 1=1,2$.
All angles are to given in degrees.
2.1.2.3 Method Outilne. The segments W_{1} and the associated material identification numbers M_{1} are evaluated using a modification of the stepping-point method described above. Flow diagrams of the geometry routine are shown in Figures 2-4 through 2-9.

The general method of evaluating W_{1} and M_{1} is as follows:

1. The envelopes for all volumes are computed and the coordinate transformation matrices (to transform a point from the base system to the given system) are computed for all coordinate systems. (Note: since the matrix A represents a rotational transformation, it is orthogonal, i.e., its inverse, A^{-1}, equals its transpose, A^{\top}.) This procedure is shown in Pigure 2-4.
2. A detector point is chosen and its coordinates are transformed into Cartesian coordinates and into the base system as shown in Figure 2-5, and all W_{1}, M_{1}, and $1_{\text {max }}$ are determined for every source point by the method outlined in Steps 3, 4, and 5. At this point, the neutron and/or gamma calculations are made and this step is repeated until the calculations are made for each detentor point.
3. A source point is chosen and its coordinates are transformed into Cartesian coordinates and into the base system. Then, the source-detector distance and direction cosines are computed. The stepping point is taken to be the source point (Fig. 2-6).
4. The stepping point is tested against each master region to find the master region in which the stepping point lies (Figs. 2-7 and 2-9). The stepping point is transformed into the coordinate system of the volume and tested against the envelope. If the point is not within the envelope, a new volume is chosen and the procedure begins over. If the point is within the envelope, then the point is tested to see if it is in the volume (Fig. 2-9). If the stepping point is not in the volume, a new volume is chosen and tested. If the stepping point is in the volume, the detector-side boundary of this volume is found by the stepping-point method, and the distance t between this point and the last boundary point is determined (for the first boundary, the source point is used). The volume is then tested to see if it contains subvolumes. If it does not, t is multiplied by the material density associated with the volume and stored as the $1^{\text {th }}$ segment $W_{1} ; M_{1}$, the material identification number, is also stored. Then, with the stepping point barely beyond the last computed boundary point, this step is repeated. If the volume is found to contain a subvolume (Fig. 2-8), the stepping point is put on the source-side boundary point of the volume, and if the containing volume is a master region, this step is repeated, testing against the regions contained within this master region; or if the containing volume is a region, this step is repeated, testing against the
subregions contained in this region.
5. After the last step has been performed a number of times, one of two things will occurs Upon testing the volumes to find which volume the stepping point is in, it will be found, by elimination, that either the stepping point is in none of the volumes, or, if the set of volumes are master regions, it may be found that the stepping point has gone past the detector point.

In the first instance (Fig. 2-8), the stepping point is assumed to be in the base material and the portion of the source-detector line lying between the stepping point and the detector-side boundary point of the containing region (or the detector point if the stepping point is outside all master regions) is tested to see if this line passes through a volume (or volumes). If it does not, the stepping point is advenced to the detector-side boundary of the containing regions and the distance through the base material is taken to be a segment W_{1}, and W_{1} and the associated M_{1} are stored. If the volumes of the set being tested are the master regions, i_{m} is stored, and the program goes to Step 3. If the volumes of the set being tested are regions (subregions), then with the stepping point just past the detector-side boundary of the containing volume,
the set of master regions (regions) is considered. and the program goes to step 4.

If a volume (or volumes) lie on this portion of the source-detector line, then the source-side boundary point of the volume closest to the source is found, and the distance that the stepping point goes through the base material is cailed a segment W_{i}, W_{1} and the asscciated M_{i} are stored. The program then goes back to Step 4.

If the stepping point has gone past the detector, the segment W_{1} is taken to be the portion between the volume source-side boundary point and the detector. The program then goes back to Step 3.

FIGURE 2-4. ENVELOPE PARAMETERS AND COOR TRANSPORTATION ROUTINE

Computation of the $U^{* I s}$ and $V^{* I s}$.

Note: The symbol Δ denotes < if the extremum is to be a minimum, and $>$ for a maximum.

1. $U^{*}(N)=\operatorname{extremum}\left\{Y\left(X_{n}, N\right)\right\}$:

2. $U^{*}(N)=$ extremum $Y_{a}\left(x_{n}, N\right), Y_{b}\left(x_{t}\right.$

TURE 2-4. ENVELOPE PARAMETERS AND COORDINATE TRANSPORTATION ROUTINE

FIGURE 2-7. SOUNDARY DETERMINATION SUEROUTINI

FIGURE 2-9. ELEMENT DETERMINATION

2-9. ELEMENT DETERMINATION SUBROUTINE
2.2 Calculation of the Gama-Ray Number-Flux Energy Spectrume Dose kate, and heat ceneration hate

The gamma-ray number-flux energy apectrum at a point in space may be divided into two components, a direct-beam portion and a scattered portion. Thus, $F\left(E_{\mathrm{a}}\right)$, the spectral point for energy E_{a} at a point isotropic detector located at a point r in an infinite medium due to photons emitted from a point isotropic source located at the origin, and with source spectrum $\mathrm{S}\left(\mathrm{E}_{\mathrm{b}}\right)$, is given by

$$
\begin{equation*}
F\left(E_{a}\right)=\frac{s\left(E_{a}\right) e^{-\mu\left(E_{a}\right) r}}{4 \pi r^{2}}+\int_{E_{a}}^{\infty} s\left(E_{b}\right) I^{\prime}\left(E_{b}, E_{a}, r\right) d E_{b}, \tag{1}
\end{equation*}
$$

Where the first term on the right-hand side of the equation represents the direct-beam component, and $\mu\left(\mathrm{E}_{\mathrm{a}}\right)$ is the linear attenuation coefficient for photons with energy E_{a} in the material in question. The second term in Equation 1 represents the scattered portion of the spectrum; the function $I^{\prime}\left(E_{b}, E_{a}, r\right)$ is the scattered portion of the differential number apectra of the photon number flux in an infinite medium. The integration in the second term is over all initial photon energies greater than or equal to E_{a}.

The differential energy spectra of the gamma-ray number flux at a point isotropic detector resulting from a point isotropic source, in an infinite medium, as computed by the moments method (Ref. 2), have been used in determining the function $I^{\prime}\left(E_{b}, E_{a}, r\right)$. These differential energy spectra I_{o} may be defined as probabilities, per unit initial photon energy, that a quantum
of the gamma-ray erergy flux will be degraded from an initial energy E_{b} to an energy $E_{a}\left(E_{a} \leq E_{b}\right)$ by the time the quantum reaches a point isotropic detector at r. Hence, the differential energy spectra and the differential number spectra are related by

$$
\begin{equation*}
\frac{I_{o}\left(E_{b}, E_{a}, r\right)}{E_{a}}=I^{\prime}\left(E_{b}, E_{a}, r\right) \tag{2}
\end{equation*}
$$

The data tabulated in Reference 2 are in the form

$$
\begin{equation*}
f=4 \pi r^{2} e^{\mu\left(E_{b}\right) r} I_{o}\left(E_{b}, E_{a}, \mu\left(E_{b}\right) r\right) \tag{3}
\end{equation*}
$$

for discrete values of the three variables and for various materials. Thus, when the integral is approximated by a finite sum, the equation to be solved, from Equations 1 and 2 and the definition above (Eq. 3), is
$F\left(E_{a}\right)=\frac{S\left(E_{a}\right) e^{-\mu\left(E_{a}\right) r}}{4 \pi r^{2}}+\sum \frac{s\left(E_{b}\right) f e^{-\mu\left(E_{b}\right) r}}{4 \pi r^{2} E_{a}} h f\left(E_{a}, E_{b}\right)$,
where $h f\left(E_{a}, E_{b}\right)$ is a numerical integrating, or histogram, factor, and the summation is over initial photon energy E_{b}, and is from the energy E_{a} to the maximum value of initial photon energy.

Equation 4 defines the energy spectrum of the gamma-ray number flux in an infinite medium in terms of the spectrum at a point detector at a distance r from the point isotropic source.

In order to apply this method to determining spectra in and around reactor shield systems, it is necessary to assume that the spectra may be reconstituted at each boundary, and that the spectrum on the detector side of a boundary is equal to the spectrum on the source side of the boundary. ${ }^{1}$ As an example of this idea, consider a source and detector shown in the sketch.

Photons from the source S, whose spectrum is taken to be $S_{1}\left(E_{b}\right)$, penetrate the two slabs with thicknesses t_{1} and t_{2} and are detected at the receiver at D. The spectrum at D, as an application of Equation 4 ,is given bys
$P\left(E_{a}\right)=\frac{1}{4 \pi D^{2}}\left\{S_{2}\left(E_{a}\right) e^{-\mu_{2}\left(E_{a}\right) t_{2}}+\sum \frac{s_{2}\left(E_{b}\right) f e^{-\mu_{2}\left(E_{b}\right) t_{2}}}{E_{a}} n f\left(E_{a}, E_{b}\right)\right\}$,
Where D is the source-detector distance, and
S_{2} is the apectrum (excluding geometric attenuation) at the boundary between the two materials. S_{2} is given in terms of S_{1}, the source spectrum, by

$$
s_{2}\left(E_{a}\right)=s_{1}\left(E_{a}\right) e^{-\mu_{1}\left(E_{a}\right) t_{1}}+\sum \frac{s_{1}\left(E_{b}\right) f e^{-\mu_{1}\left(E_{b}\right) t_{1}}}{E_{a}} h r\left(E_{a}, E_{b}\right)
$$

1
The validity of this assumption, and the second assumption that follows, has been tested experimentally; the experiment and anaiysis are reported in References 5 and 6 .

A second assumption inherent in this method is that differential energy spectra for infinite media may be used to describe radiation transport in finite media. One way of estimating the importance of this finiteness of geometry, is to assume the correction to be independent of final energy and to multiply the differential energy spectra by the edge correction factors of Berger and Doggett (Ref.7).

These factors are defined as

$$
\begin{equation*}
g=\frac{\int^{E_{b}}\left\{I_{0}^{r}\left(E_{b}, E_{a}, r\right) / E_{a}\right\} d E_{a}}{\int^{E_{b}}\left\{I_{0}^{\infty}\left(E_{b}, E_{a}, r\right) / E_{a}\right\} d E_{a}}, \tag{5}
\end{equation*}
$$

where $I_{0}^{r}\left(E_{b}, E_{a}, r\right)$ and $I_{0}\left(E_{b}, E_{a}, r\right)$ are differential energy spectra for a finite slab and for an infinite medium, respectively. The function 8 may be rewritten as

$$
g=\frac{\int_{0}^{E_{b}} \frac{I_{0}^{r}}{I_{0}^{\infty}} \cdot \frac{I_{0}^{\infty}}{E_{a}} d E_{a}}{\int_{0}^{E_{b}} \frac{I_{0}^{\infty}}{E_{a}} d E_{a}}
$$

It is assumed that the ratio $I_{0}^{r} / I_{0}^{\infty}$ is independent of degraded energy E_{a} and, hence, that the edge corrections are just the ratio of the differential energy spectra for a finite medium and the spectra for an infinite medium:

$$
g=\frac{I_{0}^{r}\left(E_{b}, E_{a}, r\right)}{I_{0}\left(E_{b}, E_{a}, r\right)}
$$

Thus, if edge corrections are to be used, the function f in Equation 4 should be replaced by $f g$. This correction is optional in the codes.

It has been assumed that any source may be replaced by a set of point isotropic sources; hence, the spectrum from the total source is taken to be the sumg over all source points, of the spectra due to each point. The points of this total spectrum are then multiplied by either the flux-to-dose or flux-to-heat conversion factors and by the appropriate integrating or histogram factors, and summed, over energy, to give either dose rate or heat generation rate.

2.2.1 Spectral Calculation (for one source point)

The method used to evaluate the spectral equation (Eq. 4) is shown in pigure 2-10. This flow diagram shows the method for obtaining the spectrum at a detector from one source point, using the segments determined by the geometry routine.

The evaluation of the spectral points P_{a}^{γ} is as follows:

1. The spectrum S_{b} associated with the source pointl (from Library 3) is taken to be the working spertrum S_{j}, and the first segment W_{1} and the material number M_{i} for this segment are set up to be used. Notes the subscript 1, on W and M is used to denote segment number.
2. The subscript a, which denotes final energy (and, in a manner similar to b, increases as final energy decreases),

[^0]

is set equal to one. F_{a}^{*}, the scattered term of the spectrum is set equal to zero in order to initialize the summation over initial energy (Eq. 4).
3. The value of a is tested. If a is less than $13, b$ is set equal to a, if a is greater than or equal to 13 , b is set equal to 13 .
4. The values for the mass attenuation coefficient, μ, and effective atomic number, $Z_{\text {eff }}$, are taken from Library 1 for b and M_{i}. W_{1} comes from the geometry routine, and the number of relaxation lengths of material penetrated, $\mu_{b} W_{i}$, is calculated. The coefficients for the differential energy soectral function ${ }^{1}$
$$
\gamma=\ln \left\{\frac{f}{K_{b} w_{i}}\right\}
$$
are found (from Library 2) as a function of a and b, and the function $f e^{-\mu b^{W}}$ is evaluated using the variables $Z_{\text {eff }}$ and $\mu_{b} W_{i}$.
5. The parameter B is tested to see if edge corrections are required for this calculation. If B is greater than zero, the coefficients for the edge corrections ${ }^{2}$

1 The differential energy spectra have been fitted to a quadratic in $\mu_{b} W$ and $Z_{e f f}$ for each possible combination of and b (since degraded energy, for a particular case, must be less than or, at most, equal to the initial energy, $a \geq b)$. This representation has the form
$\gamma=\ln \left\{\frac{5}{\pi_{6} w}\right\}=A_{1}\left(\mu_{6} W\right)^{2}+A_{2}\left(\mu_{6} W\right)+A_{3}\left(H_{6} W\right) Z_{6 f f}+A_{4} Z_{\text {eff }}+A_{5} Z_{\text {enp }}^{2}+A_{6}$ It has been found necessary to section the curve fits in Z eff into three ranges $(0-26,26-74$, and $74-92)$ and to use different sets of coefficients for each range. See Reference 3. curve fits in $\mu_{b W}$ into two ranges ($0-4$ and $4-20$) and to use different coefficients for each range.
are found (from Library 2) as a function of b, and the function g is evaluated using the coefficients $Z_{\text {eff }}$ and $\mu_{b} W_{1}$. Then,

$$
J=f \cdot g e^{-\mu_{b} W_{i}}=\mu_{b} W_{i} e^{+\left[\gamma+\&-\mu_{b} W_{i}\right]}
$$

is formed. If B is less than or equal to zero, J is given by

$$
J=f e^{-\mu_{b} W_{i}}
$$

6. The histogram factor $h f_{a, b}$ and final energy E_{a} are found (from Library 2) and

$$
\begin{equation*}
F_{a}^{*} \rightarrow F_{a}^{*}+S_{b, 1-1}^{*} J \frac{h f_{a, b}}{E_{a}} \tag{6}
\end{equation*}
$$

is formed, where $S_{b, i-1}$ is the current value of the spectral point for b. Expression 6 has the form of the summation of Equation 4, except that the limits on the summation are from E_{a} to the current value of E_{b}.
7. The parameter b is tested, and if b is greater than one, the current value of b is decremented by one and the routine goes to Step 4. If the current value of b is one, Fit is now the scattered term of Equation 4 and the direct-beam term is to be computed next. First, the mass attenuation coefficient $\mu_{1 s}$ found (from Library 1) for a and M_{1}. Then $\mu_{a} \omega_{1}$ is computed and the new current value of the spectral point for $a, S_{a, 1}^{*}$, is given by

$$
S_{a 1}^{*}=F_{a}^{*}+S_{a, 1}=1 e^{-\mu_{a} W_{1}}
$$

Next, a is tested and if a is less than 14, a is incremented by one, and the routine goes to step 3. If a is equal to 14,1 is tested, and if 1 is less than $1_{\text {max }}$ (which is computed by the geometry routine), 1 is incremented by one, and the routine goes to Step 2; if is equal to $i_{\text {max, }}$ the function F_{α}^{γ} is computed from

where I is the source intensity (from Library 3),
D is the source-detector distance (from the geometry routine), and
$S_{\mathbf{a}}^{*}, 1_{\text {max }}$ is the new current value of the spectral point for a and for the last, or $i_{\text {max }}$ th, segment. The function F_{a}^{γ} is computed for each value of a, and is the evaluation of the photon number-flux spectrum at the detector due to the given source point.

2.2.2 Determination of the Spectrum, Dose Rate, and Heat ceneration liate

The method used to determine the spectrum, dose rate, and heat generation rate is shown in Figure 2-11. This flow diagram shows the method for obtaining these parameters from the spectra determined by the spectral routine (Sec. 2.2.1).

The method is as follows

1. The following parameters are set to zero in order to initialize the various summations: $D^{\gamma *}, H^{\gamma *}$, and $a_{a}^{\gamma^{*}}$ the dose rate, heat generation rate, and spectrum,

FIGURE 2-11. GAMMA I

respectively-summed over all source groups. The source group index S^{*} is set to one.
2. The spectrum G_{a}^{γ}, summed over all source points in source group S^{*}, is set to zero in order to initialize the summation over source points. The source-point index S is set to one.
3. The spectral function F_{a}^{γ} for source-point s of sourcegroup S^{*} is found (Sec. 2.2.1).
4. The degraded-energy index a is set to one; then Q, the source-point print option is tested. If Q is one, dose rates and/or heating rates due to each source point will be calculated to be printed out in addition to the normal printout. If Q is two, only the normal printout will be made, and for each value of a, P_{a}^{γ} obtained in Step 3 will be added to the current value of a_{a}^{z}. If Q is one, the dose rate due to each source point will be calculated if $x \leq 2$ and the heat generation rate will be calculated if $x \geq 2$. In addition, for each value of a, F_{a}^{γ},obtained in Step 3, will be added to the current value of a_{a}^{γ}. The equations used to compute the dose rates and heat generation rates are:

$$
D^{\gamma}=\sum_{a=1}^{14} F_{a}^{\gamma} \delta_{a}^{\gamma D} h_{f_{a}} \text { and } H^{\gamma}=\sum_{a=1}^{M} F_{a}^{\gamma} \delta^{\gamma H} \rho h_{f_{a}} \text {, }
$$

where hfo are integrating or histogram factors from Library 2,
$\delta_{a}^{\gamma D}$ are flux-to-dose conversion factors from Library 2,

$$
\begin{aligned}
& \delta_{a}^{\gamma H} \text { are flux-to-heat conversion factors for } \\
& \text { material of unit density, and are a function } \\
& \text { of } M_{1_{\max }} \text { (from the geometry routine) as well } \\
& \text { as as they are listed in Library } 1 \text {, and } \\
& \rho \text { is the material density associated with } M_{1_{\max }} \\
& \text { from the problem deck. }
\end{aligned}
$$

5. S, the source point index, is tested; if S is less than $S_{m s *}$, the total number of source points in the $S^{* t h}$ source group, S is incremented by one and the routine goes to Step 3. If S is greater than or equal to $S_{m s *}, a_{a}^{\gamma}$ is now the total spectrum for group S^{*} and the dose rates and/or heat generation rate are calculated as in Step 4 with G_{a}^{γ} substituted for F_{a}^{γ}. If $X \leq 2, D^{\gamma *}$ is replaced by the sum of the current value of $D^{\gamma *}$ and D^{γ} the dose rate due to the $\mathrm{S}^{* t h}$ source group. If $\mathrm{X} \geqslant 2, H^{\gamma *}$ is replaced by the sum of the current value of $H^{\gamma *}$ and H^{8} the heat generation rates due to the S^{*} th source group. In any case, $G_{a}^{\gamma *}$ is replaced by the sum of the current value of $G^{x *}$ and G^{γ} in order to generate the total spectrum. S^{*} is then tested, and if S^{*} is less than S^{*}, the total number of source groups, S^{*} is incremented by one and the routine goes to Step 2. If S^{*} is greater than or equal to S_{m}^{*}, then the current values of $G_{a}^{\gamma *}, D^{\gamma *}$, and $H^{8 *}$ are the total spectrum, dose rate, and heat generation rate, respectively, at a detector due to all source points.

The data generated by this routine for program output are: a. G_{a}^{γ} and $G_{a}^{\gamma *}$ (for $a=1$ through 14) - the spectra of the gamma-ray number flux summed over each source group and over all source groups, respectively.
b. D^{δ} and $D^{\gamma *}$ - these are generated only if $X \leq 2 ;$ they are, respectively, the dose rate due to each source group, and the total dose rate. If Q is one, in addition to the above, the dose rate due to each source point is printed out.
c. H^{γ} and $H^{\gamma *}$ - these are generated only if $X \geq 2$; they are, respectively, the heat generation due to each source group, and the total heat generation rate. If Q is one, in addition to the above, the heat generation rate due to each source point is printed out.

2.3
 Calculation of the Neutron Number-Flux Energy Spectrum, Dose Rate, and Heat Generation Rate

The neutron calculation is based on the assumption that the moments-method dose rates and energy spectra of the fast-neutron number flux due to a point isotropic Watt fission source in an infinite medium of a few selected reference materials may be used to determine the spectra and dose rates in arbitrary combinations of arbitrary materials.

The method used to determine these fluxes and dose rates is based upon the concept of an equivalent segment $W_{\text {eq }}$. The equivalent segment for a material whose actual segment is W and whose removal cross section (per unit density) is Σ_{R} is given by

$$
\begin{equation*}
W_{e q}=\frac{\sum_{R}}{\sum_{R R}} W \text {, } \tag{1}
\end{equation*}
$$

Where $\Sigma_{R R}$ is the removal cross section (per unit density) for the chosen reference material. The total equivalent segment is the sum of the equivalent segments for each segment along the sourcedetector line. This total equivalent segment is used to determine the attenuation factors for the spectral points and dose rates, and these factors, when multiplied by the source intensity, and the geometric attenuation factor are taken to be the values of the spectral points and dose rate at the chosen detector due to one source point. Hence, the spectral points and dose rate at the detector due to the total source is the sum, over all source points of the spectral-point or dose-rate function per source point. The heat generation rate is computed from the total
spectral function by multiplying it by appropriate integrating or histogram factors and the fast-neutron flux-to-heat conversion factors (Appendix B) and summing over neutron energy. A comparison of the various reference materials in a given geometry is located in Appendix C.

The method used to perform the neutron calculations is shown in Figure 2-12. This flow diagram shows the method for obtaining these parameters from moments-method data for neutrons.

The method used is as follows:

1. The following parameters are set to zero in order to initialize the various summations: $D_{a}^{n *}$ (for $a=1$ to $a_{\max +1}$) - the first $a_{\max }$ of these are the neutron spectral terms, and the $a_{\max +1}$ term is the dose-rate function summed over source points; a is the neutronenergy index and increases with decreasing energy, i.e., $a=1$ for $E_{\max } ; H^{n^{*}}$ - the neutron heat generation rate summed over all source points. S^{*}, the sourcegroup index, is set to one.
2. The following parameters are set to zero in order to initialize the various summations: D_{a}^{n} (for $a=1$ to $a_{\max +1}$) the neutron spectral terms and dose rate and H^{n}, the heat generation rate summed over all source points in source groups S^{*}. S, the source point index is set to one.
3. The total equivalent segment for source point S of source group S^{*} is found from

$$
W_{e q}=\frac{1}{\Sigma_{R R}} \cdot \sum_{1=1}^{1} \sum_{R_{1}} w_{1},
$$

FIGURE 2-12. NEUTRON ROUTINE

> where $\begin{aligned} & i_{m a x} \text { is the number of segments on the source- } \\ & \text { detector line (from the geometry routine), }\end{aligned}$ $$
\begin{array}{l}W_{1} \text { is the } 1 \text { th segment as computed by the } \\ \text { geometry routine, }\end{array}
$$ $\sum_{R 1}$ is the removal cross-section (per unit density) for the 1 th material and is from Library 1 for material M_{1}, and $\sum_{R R}$ is the removal cross section (per unit density) for the reference material and sponding to the reference material.

$$
F_{\mathbf{a}}^{\mathbf{n}}=2.46 \cdot P_{\mathbf{a}}^{\mathbf{n}^{*}} \cdot I,
$$

is computed (I is the source-point fission intensity from Library 3 and 2.46 is the number of neutrons per fission). Then, the function D_{a}^{n} is replaced by the current value of D_{a}^{n} plus F_{a}^{n} and the detector print option X is tested.

[^1]If X is greater than or equal to 2 , the source-point option Q is tested. If Q is 1 , then $H^{n * *}$ is replaced by the current value of $K^{n^{* *}}$ plus the product of F_{a}^{n}, $\int_{a}^{n H}$ (the neutron flux-to-heat conversion factors from Library 1), and $h f_{a}$ the integrating or histogram factors from Library 1.
5. a is tested; if a is less than $a_{m a x}$, the routine goes to Step 4. If $a=a_{\max }, Q$ is 1 , and $X \geq 2$, the current value of $\mathrm{H}^{\mathrm{n*}}$ is the heat generation rate due to the one source point and this value is to be printed out by the program. If $a=a_{\max }$ and $x \leq 2$, the dose rate is to be computed; hence, a is set equal to $a_{\max }+1$ and Step 4 is repeated; then Q is tested, and if Q is 1 the dose rate for the source point, $\mathrm{F}_{\mathrm{a}_{\text {max }}+1 \text {, }}^{\text {is }}$ to be printed out by the program.
6. The source-point index S is tested. If S is less than $S_{\text {max }}\left(S^{*}\right)$, the number of source points in the S^{*} th source group (from Library 3), then S is incremented by one and the routine goes to step 3. If $S=S_{\max }\left(S^{*}\right)$, the current values of D_{a}^{n} (for $a=1$ through $a_{\text {max }}$) are the spectral points for the energy spectra of the neutron number flux due to the s^{*} th source group and the current value of $D_{a_{\max }+1}^{n}$ is the dose rate for this group. These numbers are printed out by the program. If $X \geq 2$, and $Q>1$ the heat generation rate due to this source group is calculated from

$$
H^{n}=\sum_{a=1}^{a \max } D_{a}^{n} n f_{a} \delta_{a}^{n H},
$$

where the parameters are as defined above.
7. S*, the source-group index, is tested; if S^{*} is less than $S_{\max }^{*}$ (from Library 3) $D_{a}^{n^{*}}$ (for $a=1$ through $a_{\max +1)}$ is replaced by the current value of $D_{a}^{n} p l u s D_{a}$ and $H^{n *}$ is replaced by the current value of $H^{n *}$ plus H^{n}; then S^{*} is incremented by one, and the routine goes to Step 2. If $S^{*}=S_{m a x,}^{*}$ the current value of $H^{n *}$ is the heat generation rate due to all source points, the current values of $D_{a}^{n^{*}}\left(a=1\right.$ through $\left.a_{\max }\right)$ are the spectral points of the energy spectrum of the neutron number flux due to all the source points, and $D_{a_{\max }+1}^{n^{*}}$ is the total dose rate.
The data generated by this routine for program output are:

1. D_{a}^{n} and $D_{a}^{n^{*}}$ (for $a=1$ through $a_{\max }$) - the spectra of the neutron number flux summed over each source group and over all source groups, respectively.
2. $D_{a_{\max }+1}^{n * *}, D_{a_{\max }+1}^{n}, D_{a_{\max }+1}^{n^{*}}$ - the dose rate per source point, per source grcup, and total, respectively.
3. $\mathrm{H}^{\mathrm{n}^{* *}}, \mathrm{H}^{\mathrm{n}}, \mathrm{H}^{\mathrm{n}^{*}}$ - the heat generation rate per source point, per source group, and total, respectively.

This section lists the required formats for library and problem input for both programs. The data and program-control parameters required for utilization of these programs are grouped into three libraries and a problem deck. In addition, there are two libraries peculiar to the simple-geometry program (c-17), one of which controls readout of information from the library tape, while the other allows deletion of decks from the library tape.

The input data for the program are input in blocks called data files. These data files contain the required computational and/or program-control data and an end-of-file symbol whicid consists of an asterisk (*) and an identification number. The first piece of data in a file must start on a new card and any alphabetics in the data file must be restricted to the columns shown in the formats (Figs. 3-1 through 3-8). The data is restricted to Columns 2 through 62 of the cards, and the end-of-file symbol should begin in Column 58. (This symbol may be put on a separate card if desired.)

Except for the alphabetics, the conversion digits (the 6, 7, or 8 which must be put in Column 1), and the end-of-file symbol, the data are not restricted to any particular columan within the data field; rather, only the order of the input is important, and more or less data can be put on a card, if desired, than is shown in the formats.

The conversion digit 7 is restricted to use as shown in the formats, and all numbers on a 7 conversion card must be preceded by a sign and must not have a decimal point; this conversion is used for control parameters. The 6 and 8 conversions are used for data input and may be used interchangeably from card to card. For 6, or fixed-point conversion, numbers are input in normal fashion with signs and decimal points. Signs must be input in all cases and occupy a column in front of their respective numbers. The decimal point is assumed to be to the right of the last digit if it is omitted. A fixed-point number may consist of up to 11 digits, with never more than 10 digits to the right of the decimal point.

For 8, or floating-point conversion, numbers are represented by the sign of the number, followed by from one to eleven digits representing the fraction, followed by the $s i g n$ of the exponent and one or two digits representing the exponent. Thus, the input number x is defined to be
where

$$
0.1 \leq P<1, \quad \text { or } P=0
$$

and

$$
-37 \leq E \leq 38
$$

The above restriction on E is approximate, since this restriction 1s, in general, dependent on the number of digits of the fraction F. The actual restrictions on input numbers are:

1. For any number $x,|x| \leq 1.7014118216 \times 10^{37}$.
2. The smallest number the program will accept is shown in the table below in terms of the number of digits in the fractional portions

Number of Digits in Fraction	Minimum Number		Number of Digits in Fraction	Minimum Number	
	Fraction	Exponent		Fraction	Exponent
1	± 1	-37	7	± 1000000	-31
2	± 10	-36	8	± 10000000	-30
3	± 100	-35	9	± 100000000	-29
4	± 1000	-34	10	± 1000000000	-28
5	± 10000	-53	11	± 1000000000	-27
6	± 100000	-32			
Thus, from the table it is seen that $+1-37$ (1.0×10^{-38}) and					

The error printout from the programs are self explanatory, but the errors found by the executive program (CF-109), are one of the following:

Error Number 1 - The program has found an undefined symbol, illegal double punch, or illegal blank column in the data field of some library or data card.

Error Number 2 - Exponent trouble in floating point.
Error Number 3 - Undefined control punch in Column 1 of some library or data card.

A detailed description of the library and data formats is given in the following sections.

Note: The Library 1 and Library 2 formats, and hence the data for these libraries, are the same for both programs.

Note: All libraries require 7 conversion for the first data file in the library, and 6 or 8 conversion for all other data files.

3.2 Library 1: Material Data (Fig. 3-1)

This library is composed of an arbitrary number of decks, each deck containing all of the data pertaining to one material. Two types of decks may be written into this library. The first of these, which is the type used for neutron reference materials, must contain a $* 15$ data file (neutron differential numberspectra curve-fit coefficients). For this type deck, $a_{m a} \neq 0$, and $E G \neq 0$. Each of the other data files of this library (Fig. 3-1) may or may not be listed. The second type of deck is that used for non-reference materials; this deck must contain a *13 data file (neutron heating coefficients). In this case, $a_{\max }=0, E G=0$ and no *14 or *15 data files may be put in the deck; each of the other data files of this library may or may not be listed. A non-reference material deck may be made into a reference material deck by an appropriate change in $a_{\max }$ and EG, and by adding a data file *15. Appendix D gives typical Library 1 deck lists for various materials.

$\underset{1}{\text { Columns }}$		60-62
First Card 7	LIBRARY DATA (LTYPE = 1) M EG A MAX	$\cdots 10$
3econd Card 6/8	Σ_{R}	${ }^{11}$
Photon $5 / 8$ Energy $6 / 8$ Data . $6 / 8$	μ_{1} $z_{\text {effl }}$ $\delta_{1}^{\prime 1}$ μ_{2} $z_{\text {eff }}$ $\delta_{2}^{\gamma H}$ μ_{14} $z_{\text {effl4 }}$ $\delta_{14}^{X_{H}}$	*12
Flux $5 / 8$ to $\overline{0} / 8$ Heat \vdots Factors $5 / 8$		*13
Histograms 6/8	$\mathrm{hf}_{1} \quad \mathrm{hf} \mathrm{C}_{2} \cdot \cdots \mathrm{hf} \mathrm{A}_{\text {MaX }}$	*14
$6 / 8$ Curve $6 / 8$ Fit \vdots Valves $6 / 8$ $6 / 8$ $6 / 8$ $6 / 8$ \vdots $6 / 8$	$\begin{array}{ll} c_{1,1} & c_{1,2} \cdot \cdot c_{1,5} \\ c_{2,1} & c_{2,2} \cdot \cdot c_{2,5} \end{array}$ $\mathrm{C}_{\text {AMAX }+1,1} \mathrm{C}_{\text {AMAX }+1,2} \cdots \mathrm{C}_{\text {AMAX }+1,5}$ breakp $\begin{array}{llll} c_{1,1} & c_{1,2} & \cdots & \cdot \\ c_{2,1} & c_{2,2} & \cdots & \cdot \end{array} c_{2,5}$ $C_{A M A X+1,1} C_{\text {AMAX }+1,2} \cdots C_{A M A X+1,5}$	*15

FIGURE 3-1. LERARY-TYPE 1

Each Library 1 deck may contain the following data files: A. Control Parameters (*10). This data file consists of one card (Fig. 3-1) containing the following:

1. Library type identification, i.e., LIBRARY DATA+1. (Columns 2 through 16)
2. M, the material number (a positive integer). This number serves as a deck identification number, and hence the decks should be numbered consecutively. This number is also used by the program to determine which material deck is to be identified with a given region for a particular problem (Figs. 3-7 and 3-8).
3. $E G$, neutron-energy-mode identifier. This number is input as an integer, $0 \leq E G \leq 5$. Each non-zero value of EG identifies a particular set of neutron energies, the first four of which are listed in Table 3-1. The number EG is non-zero only if the material deck contains a *15 data file (neutron differential number-spectra curve-fit coefficients) and, in this case, $E G$ refers to the set of neutron energies (from Table 3-1) to which the neutron curve fits correspond.
4. amax, the number of energies for which the neutron differential number spectrum is defined in the material deck. $a_{m a x}$ is non-zero for reference materials only and, in general, $0 \leq a_{\max } \leq 10$.
TABLE 3-1
Neutron Energy Intervals and Histogram Factors for the First Four Neutron-Energy Modes

$\begin{aligned} & \bar{E} \\ & (\mathrm{Mev}) \end{aligned}$	$\begin{gathered} h^{n} \\ (\text { Mev }) \end{gathered}$	$\begin{gathered} E_{\min } \\ (\mathrm{Mev}) \end{gathered}$	$\begin{gathered} \mathrm{E}_{\max } \\ (\mathrm{Mev}) \end{gathered}$	$\begin{aligned} & E \\ & (\mathrm{Mev}) \end{aligned}$	$\begin{gathered} h^{n} \\ (\mathrm{Mev}) \end{gathered}$	$\underset{(\mathrm{Mev})}{\mathrm{E}_{\mathrm{min}}}$	$\begin{gathered} E_{\max } \\ (\operatorname{Mev}) \end{gathered}$
MODE 1 (Standard)				MODE 3			
$\begin{array}{r} 0.33 \\ 1 \\ 2 \\ 3 \\ 4 \\ 6 \\ 8 \\ 10 \\ 14 \\ 18 \end{array}$	0.5650.825111.522344	0.1	$\begin{aligned} & 0.665 \\ & 1.5 \\ & 2.5 \\ & 3.5 \\ & 5 \\ & 7 \\ & 9 \\ & 12 \\ & 12 \\ & 16 \\ & 20 \end{aligned}$	$\begin{aligned} & 0.33 \\ & 0.734 \\ & 1.63 \\ & 3.64 \\ & 5.43 \\ & 8.1 \\ & 12.1 \\ & 18 \end{aligned}$	$\begin{aligned} & 0.432 \\ & 0.75 \\ & 0.853 \\ & 2.4 \\ & 2.23 \\ & 3.335 \\ & 4.95 \\ & 4.95 \end{aligned}$	0.10.532	0.5321.282
		1.5				1.282	2.135
		2.5				2.135	4.535
		3.5				4.535	6.765
		5				6.765	10.1
		7				10.1	15.05
		9				15.05	20
		12					
		16					
	ODE 2			0.33	0.43	0.1	0.53
	-			0.73	0.385	0.53	0.915
0.33	0.61	0.1	0.71	1.10	0.45	0.915	1.365
1.1	1.19	0.71	1.9	1.63	0.67	1.365	2.035
2.7	2.45	1.9	4.35	2.44	1.005	2.035	3.021
6.0	4.1	4.35	8.45	3.64	1.495	3.021	4.535
10.9	4.9	8.45	13.35	5.43	2.23	4.535	6.765
				8.10	3.325	6.765	10.09
				12.08	4.96	10.09	15.05
				18.02	4.95	15.05	20

B. Removal Cross Sections (*11)

Fast neutron removal cross sections are in units of $\mathrm{cm}^{2} / \mathrm{gm}$. (The cross sections for the various material decks are from Reference 8.)
C. Gamma Data (*12)

If a Library 1 deck contains a $* 12$ data file, then each of the elements listed below must be put in, even though these data are input as zeros. These data are input in order of descending energy and the energy sets used are listed in Table 3-2. The coefficients in this data file are:

1. μ_{1} through μ_{14}, gamma-ray attenuation coefficients or mass absorption coefficients in units of $\mathrm{cm}^{2} / \mathrm{gm}$. These coefficients have been interpolated from Reference 6.
2. $Z_{e f f}^{1}$ through Zeff $_{14}$, effective atomic number. For elemental materials, these are the atomic number of the material, hence, are independent of energy; but for mixtures and compounds, Zeff is found by first computing the absorption coefficient per electron (using the formulae below), then from the computed $\mathcal{\mu} e$ an interpolation of Z is made as a function of the absorption coefficient per electron for the elements. This Zeff is, in general, a function of photon energy.

The absorption coefficient per electron for mixtures and compounds is given by
TABLE 3-2
Initial and Final Gamma-Ray Energies, Their Dependence on a and b, and the Relationship
to a and b of the Numerical Index Used in Library 2 on the Coeffients A and hg.

*The coefficients hf $\mathbf{g 2}^{-h f_{10}} 105$ are used for the dose- and heating-rate integrations. **NO set of $A_{1 \cap h}$ is used.
$\mu_{\mathrm{e}}=\sum_{1=1}^{N} U_{\mathrm{ai} 1}=\mathrm{H}^{\mathrm{H}}$,
where
N is the number of elements in the material,
$H=\frac{1}{\sum_{i=1}^{N} \beta_{i} z_{i}}$,
$F_{i}=$ the weight fraction of the th element for mixtures
$=\frac{n_{1} A_{1}}{\sum_{i} n_{i} A_{1}}$ where n_{1} equals the number of atoms of the
(which has atomic weight A_{1})
in a molecule for compounds,
$U_{a i}$ is the absorption coefficient $\left(\mathrm{cm}^{2} / \mathrm{gm}\right)$, and
Z_{1} is the number of electrons per gram of the th material.
3. $\delta_{1}^{x_{H}}$ through din: gamma-ray flux-to-heat conversion

$$
\begin{aligned}
& \int_{a}^{\gamma H}=E_{1}\left(\mu_{1}^{-} \mathrm{e}\right. \text { sictors. These factors are given by } \\
& \int_{1}\left(1.602 \times 10^{-13} \text { watts } / \mathrm{Mev}\right),
\end{aligned}
$$

where
$E_{1}=$ the photon energy for which the coefficients are being computed (in Mev),
ρ_{e} is the material electron density (in electrons/gm),
$T_{\text {si }}$ is the Klein-Nishina scattering cross section as stated on page 25 of Reference 9 (in $\mathrm{cm}^{2} /$ electron) in hydrogen for the energy E_{1}, and $\mu_{1} \quad$ is the gamma-ray attenuation coefficient for the fth energy, as defined above.

D. Neutron Flux-to-Heat Conversion Factors (*13)

As stated above, if the Library 1 deck pertains to a nonreference material, the deck must contain a *13 data file (this may be simulated by a card containing one or two zeros and the end-of-file symbol, *13). This data file consists of from one to five sets of fast-neutron flux-to-heat conversion factors and an identifying symbol a $a_{\max }$ as defined below.

1. $a_{m a x E O_{1} \text {, the number of energies for which the neutron }}$ differential number spectrum is defined for neutron energy mode 1.
$a_{m a x E G_{2}} \ldots a_{m a x E G_{5}}$ are similarly defined for neutron energy modes 2 through 5.
2. $\delta_{a}^{n H}$ through $\delta_{a_{\text {max }}}^{n H}$. fast-neutron, flux-to-heat conversion factors. These factors are proportional to group-averaged neutron elastic-scattering cross sections (or other applicable fast-neutron cross sections), and are given by

$$
\delta_{a}^{N H}=\epsilon a_{1} \bar{\Sigma}_{\mathrm{H}_{1} a_{1}},
$$

where
$\bar{\Sigma}_{H_{1}} a_{1}$ is the neutron scattering cross section per unit
density averaged over a energy group of the
neutron energy mode 1 , and
$E_{a_{1}}$ is the fraction of the initial neutron's energy

dissipated as heat.

A more thorough treatment of these coefficients, and the coefficients for other neutron reactions is given in Appendix B.
 Fast-neutron flux-to-heat conversion factors for neutron energy modes 2 through 5, respectively. The units of $\delta_{i, 66}^{n H}$ will be watt $\mathrm{cm}^{2} /$ neutron-gm, i.e., the heat in watts, generated by one neutron in traveling one centimeter in a material of unit density.
E. Neutron Reference-Material Data (*14 and *15)

The last two data files (*14 and *15) shown in Figure 3-1 must be listed for all reference materials.

The first of these data files (*14) consists of the neutron histogram factors; these are the numerical integration factors used in the integration over neutron energy required for the neutron heating calculation. This data file consists of:
hf_{1} itthrough inf $\mathrm{a}_{\text {max }}$, neutron histogram factors. These factors are listed only for reference materials, and the energy mode used to derive these factors is that mode used to define the neutron differential number spectra for the material for which the deck is defined.

The second data file (*15) contains the curve-fit coefficients for neutron differential number spectra. In general, it was not possible to fit these spectra to one set of coefficients and, hence, two sets are required along with a break point
$B P$ (if the equivalent thickness $t_{e q} \leqslant B P$, the first set is used, and if $t_{e q} \geq B P$, the second set is used). This data file consists of:

1. $C_{1,1}$ through $C_{1,5}$, the set of curve-fit coefficients for the neutron differential number-spectra point for the highest energy. Two sets of these coefficients are needed for each energy; one set for $0 \leq t_{e q} \leq B P$, the second for $B P \leq t_{e q} \leq 250 \mathrm{gm} / \mathrm{cm}^{2}$. The coefficients are for the function
$4 \pi t^{2} F(t)=\exp \left(c_{1} t^{4}+c_{2} t^{3}+c_{3} t^{2}+c_{4} t+c_{5}\right)$
where t is to be in $g m / \mathrm{cm}^{2}, c_{2,1}$ through $c_{2,5}, c_{3,1}$ through $c_{3,5}, \ldots, c_{a_{\max , 1}}$ through $c_{a_{\max , 5}}$ are the sets of curve-fit coefficients for the remainder of the neutron differential number spectra and are in order of decreasing energy. The set of coefficients $C_{a_{m a x+1,1}}$ through C_{a} fit the fast-neutron dose rate in the same $a_{\text {max }}+1,5$ manner as for the neutron spectra.

Note: All of the neutron dose-rate curves were computed using the flux-tn-dose conversion factors set forth in NYO-6269 (Ref. 10). The curve-fit coefficients must be input such that the independent variable t will have units of $\mathrm{gm} / \mathrm{cm}^{2}$ and the function $P(t)$ will have units of neutrons $/ \mathrm{cm}^{2}-\mathrm{sec}-\mathrm{Mev}$ per incident neutron for the spectral curves and millirem/hr per incident neutron for the dose-rate curves. The data from which these coefficients were generated are given in References ll, 12, and 13.
2. $B P$, curve-fit break point. This number is used to indicate which one of the two sets of curve-fit coefficients for the neutron spectra are to be used to generate the spectra for a particular value of t, since one set of coefficients is defined for $t \leq B P$; and the second for $t \geq B P$. Note that $B P$ has the same units as t; namely, $\mathrm{gm} / \mathrm{cm}^{2}$.

3.3 Library 2: Gamma Data (Fig. 3-2)

This library is composed of one deck which contains gammaenergy values, flux-to-dose conversion factors, coefficients for the curve fits to the differential energy spectra, histogram factors required for both the gamma spectral integration and the integration over energy required in the gamma heating and dose-rate calculations, and the coefficients for the curve fits to the edge corrections of Berger and Doggett (Ref. 7).

Appendix D gives the Library list presently in use at GD/FW.
Library 2 is required to have a data file *20 (edge corrections) and may contain the following data files:
A. Control parameters (*16)

Library-type identification; i.e., LIBRARY DATA +2
(Columns 2 thru 16)
B. Gamma-ray initial/final energies, and flux-to-dose conversion factors (*17)

1. $E_{a l}$ through $E_{a 14}$, degraded gamma energies. The fourteen values are listed in Table 3.2.
2. $E_{b l}$ through $E_{b l 4}$, initial gamma energies. These are the same as the degraded energies with the exception of the lowest energy (0.25 Mev), which is deleted. 90

NPC 14,525
3. $\delta_{1}^{\gamma D}$ through $\delta_{a_{\text {max }}}^{\gamma D}$, flux-to-dose conversion factors. These are listed in Appendix D.
C. Gamma-ray differential energy spectra coefficients (*18)

1. Kef($\left.\max _{1}\right)$, break point between set $A_{1}, x x$ and set $A_{2, x x}$ of the $A>s$.
2. $A_{1,1}^{1}$ through $A_{1,6}^{1} \ldots, A_{104,1}^{1}$ through $A_{104,6}^{1}$, the coefficients for the curve fits to the gamma-ray differential energy spectra for the case $0 \leq z \leq 26$. These coefficients are for the function

$$
\frac{\ln f}{\mu_{b} r}=A^{\prime}\left(\mu_{b} r\right)^{2}+A^{2}\left(\mu_{b} r\right)+A^{3}\left(\mu_{b} r\right) Z+A^{\prime} Z+A^{5} Z^{2}+A^{6},
$$

where
is the gamma absorption coefficient at energy E_{b}, and
$f(T) \quad$ is the gamma-ray differential energy spectra as defined in Reference 2.

The dependence of the A's (as shown by the second subscript) on the energy indices a and b (or equivalently on degraded and initial energy) is as shown in Table 3-2.
3. Zeff(max2), break point between set $A_{2, x x}$ and set $A_{3, x x}$ of the A's.
4. The sets of coefficients $A_{1,1}^{2}$ through $A_{1,6}^{2} \ldots$, $A_{104,1}^{2}$ in rough $A_{104,6}^{2}$ and $A_{1,1}^{3} \ldots, A_{104,1}^{3}$ through $A_{104,6}^{3}$ are similarly defined for the ranges $26 \leq 2 \leq 74$ and $74 \leq 92$, respectively.
5. Zeff(max3), a value as large or larger than any Ref to be used.

Note: There are three *18 files, one for each set Zeff(max) and A's.
D. Histogram Factors (19)
bf y y_{1} through hf rem, histogram factors for the spectral
integrations and for the integration over degraded photon energy required for the gamma heat generation rate and dose-rate computations. These factors are input in the same order (as regards initial and final energy indices data) as the differential energy spectra (*18) file.
E. Edge Corrections (20)

1. $\mu_{r}(\operatorname{maxl})$, breakpoint between set $B_{1, x x}$ and $B_{2, x x}$ of the B's.
2. $B_{1,2}^{4}$ through $E_{1,6}^{4} \ldots, B_{13,1}^{4}$ through $E_{13,6}^{4}$, the coefficients for the curve fits to the edge corrections to the gamma-ray differential energy spectra for the case $0 \leq \mathcal{L} \leq 4$. These coefficients are for the function

In,$B^{\prime}\left(\theta_{3} r\right)^{2}+B^{2}\left(\mu_{6} r\right)+B^{3}\left(H_{6} r\right) Z+B^{*} Z^{2}+B^{5} Z^{2}+B^{6}$, where
\mathcal{N}_{b} is the gamma-ray absorption coefficient at energy E_{b},

$$
g(T) \text { is edge correction of Reference 7, i.e., }
$$

$$
g(T)=\frac{B(t, t)-1}{B(t, \infty)-1}
$$

with the buildup factors in an infinite medium, $B(t, \infty)$, and for a slab, $B(t, t)$, as defined in Reference 4.
3. $E_{1,1}^{5}$ through $E_{1,6, \ldots,}^{5}{ }_{13,1}^{5}$ through $E{ }_{13,6}^{5}$ are similarly defined for $4<\mu_{r}<20$. The first subscript on the B's refers to initial photon energy and is the energy counter b, as used in (C) above.
4. $\mu r(\max 2)$, a value larger than any μ_{r} to be used.

3.4 Library 3: Source Data

This library is composed of an arbitrary number of decks, each deck containing the source data for a specific problem. Each deck contains from one to six source groups and the required deck-control data. Each source group contains the source-group gamma spectrum (13 quantities which define the gamma spectrum at each source point in the group) and four quantities for each source point in the group, namely, 3 source-point coordinates and the source intensity. Each deck is limited to, at most, 6 source groups and to a total of 500 source points which may be divided among the source groups in any manner. This library is required to have a data file *22.
3.4.1 Library 3 For Simple-Geometry Program (Fig. 3-3).

Library 3 for the simple-geometry program ($\mathrm{C}-17$) contains the following data files:
A. Control parameters (*21)

1. Library-type identification, i.e., LIBRARY DATA +3
(Columns 2 through 16)
2. N_{c}, the number of source groups, $1 \leq N_{c} \leq 6$.
3. $\mathrm{N}_{81}, \mathrm{~N}_{82}, \ldots, \mathrm{~N}_{\mathrm{sNc}}$, number of source points in the

1st, 2nd,, N_{c} th source group, respectively.
B. Source data (*22). There must be N_{c} of these fields, one for each source group.

1. $S_{1}, S_{2}, \ldots, S_{13}$, the gamma-ray spectrum, tabulated in order of decreasing initial photon energy (from

10 Mev to 0.5 Mev).
2. x, y, z, I, the x, y, and z coordinates of the source point and the source intensity; one set of these four numbers must be input for each source point in the source group.

Note: For reactor radiation problems, or any other problem where the neutron portion of the program is to be used, the gamma spectra should be noxmalized to the number of photons per fission-Mev so that the source intensity may have units of fissions per watt of reactor power. If the program is to be used for secondary-gamma calculations, or calculations of a similar nature where the neutron portion of the program is not used, the normalization of the spectre is arbitrary, since the gamma spectra multiplied by the source intensity must result in units of photons/sec-Mev for a given power level.

3.4.2 Library 3 for Complex-Geometry Program (Fig 3-4)

A library 3 for the complex-geometry program (L-63) contains the following data files:
A. Control parameters (*21)

1. Library-type identification, 1.e., LIBRARY DATA +3 (columns 2 through 16).
2. N_{c}, (defined in Section 2.4.1, A)
3. $\mathrm{N}_{\mathrm{s} 1}, \mathrm{~N}_{\mathrm{s} 2}, \ldots, \mathrm{~N}_{\mathrm{sNc}}$, (defined in 2.4.1, A)
4. $\mathrm{CT}_{1}, \mathrm{CT}_{2}, \ldots, \mathrm{CT}_{\mathrm{N}}$, coordinate type If $C T=1$, the source points are to be input in cartesian coordinates.

If $C T=2$, the source points are to be input in cylindric coordinates.
5. $\mathrm{CS}_{1}, \mathrm{CS}_{2}, \ldots, \mathrm{CS}_{\mathrm{Nc}}$, coordinate system identification number. Each of these numbers must be zero (base coordinate system) or must correspond to the COORN in the problem deck which defines the coordinate system in which the source points for the particular group was defined.
B. Source Data (*22). There must be N_{c} of these fields, one for each source group.

1. $S_{1}, S_{2}, S_{3}, \ldots, S_{13}$, (defined in 3.4.1, B)
2. X, Y or θ, Z or R, I, the x coordinate, and either the Y and Z coordinates (if $C T=1$ for this source group), or the θ and R coordinates (if $C T=2$ for
NPC 14,527

Column		60-62
$\begin{aligned} & 7 \\ & 7 \end{aligned}$	library data (LTYPE = 3) $\quad \mathrm{N}_{\mathrm{C}} \quad \mathrm{N}_{\mathrm{S}_{1}} \quad \mathrm{CT}_{1} \quad \mathrm{CS}_{1}$ $\begin{array}{lllllll}\mathrm{N}_{\mathbf{S}} & \mathrm{CT}_{2} & \mathrm{CS}_{2} & \cdots & \mathrm{~N}_{\mathrm{SNC}} & \mathrm{CT}_{\mathrm{NC}} & \mathrm{CS}_{\mathrm{NC}}\end{array}$	*21
$\begin{gathered} 6 / 8 \\ 6 / 8 \\ \vdots \\ 6 / 8 \end{gathered}$		*22
$\begin{gathered} 6 / 8 \\ 6 / 8 \\ \vdots \\ 6 / 8 \end{gathered}$	$\begin{array}{llll} S_{1} & s_{2} \cdot S_{13} & \\ \left(x_{1}\right) & \left(x_{1} \text { or } \theta_{1}\right) & z_{1}(R) I_{1} \\ \left(x_{\text {NS2 }}\right) & \left(y_{\text {NS2 } 2} \text { or } \theta_{\text {NS2 }}\right) & z_{\text {NS2 }}(R) & I_{\text {NS2 }} \end{array}$	*22
$\begin{gathered} 6 / 8 \\ 6 / 8 \\ \vdots \\ 6 / 8 \end{gathered}$		*22

FIGURE 3-4. LIMRARY-TYPE 3 FOR TNE COMPLEX-
this source group), and the source intensity. One set of four numbers must be input for each source point in the source group. All source points in the source group must be in either cartesian or cylindric coordinates, but not both.

The note above for the simple geometry program also applies here, giving the relationship between the $S_{b}^{\prime} s$ and I's.
3.5 Deletion and Listout Libraries for the Simple-Geometry Program

The two libraries described below are used with c-17 only.
3.5.1 Library 4: Library Deletion List (Fig. 3-5)

The use of this library is optional, and it is used only to list those decks which are to be deleted from the libraries. The numbers listed in this library are those which appear in Columns 63 through 69 of the decks to be deleted. (The numbers must have plus signs associated with them). The alphabetic DELETE must appear in Columns 2 through 7 of the first card of this library. Fifty or less decks may be deleted by using one Library 4.
3.5.2 Library 5: Deck Listout (Fig. 3-6)

The use of this library is optional, and it is used only to list those decks which are to be printed out from the library tapes. The numbers listed in this library are those which appear in Columns 63 through 69 of the decks to be printed out (the numbers must have plus signs associated with them).

Card Columns

7 7	

FIGURE 3-6. LIERARY-TYPE 5 (LLERARY LIST OUT) FOR
sumple-ceometry mocranm onky for
 SIMPLE-GEOMETRY PROCRAM ONLY
ficure 3-s.
*
-

The alphabetic LPRINT must appear in Columns 2-7 of the first card of this library. Fifty or less decks may be listed using one Library 5.
3.6 Card Identification Field for Library Decks

1. Columns 63 through 66 are left blank. (These are to contain the job number specified by the Computing Laboratory).
2. Column 67 contains the last digit in the year, i.e., o for 1960, 1 for 1961, etc.
3. Columns 68 and 69 contain the deck number; starts with $O 1$ for any given set of library input.
4. Columns 70 'hrough 72 contain card numbers; starts with 001 in any given deck.
5. Column 73 contains an L.
6. Columns 78 through 80 contain C 17 or L63.

3.7 Problem Deck

This deck contains the program options and that data peculiar to the problem at hand, namely, the parameters required to define the problem geometry, the detector coordinates, the material numbers of the neutron reference materials to be used, and, for L-63, the coordinate systems used to define the geometry, source and detector points.

The geometry for these programs is defined by using a consistent set of x-planes to represent each region in the problem after the method set forth in Section 2.1. In this context, for
the simple geometry program, an x-plane is taken to be an x-value and, for the Cartesian-geometry option, two Y and two Z values (these five numbers are sufficient to determine a particular rectangle with respect to the assumed coordinate system), or, for the cylindric geometry option, two R values (these 3 numbers are sufficient to determine a particular circular annulus with respect to the assumed coordinate system). Thus, two adjacent x-planes, assuming linear interpolation or circular interpolation for the spherical option in L-63, between analogous Y and Z values or R values. form a volume element, and each region is built up of these volume elements. Similar definitions hold for the complexgeometry program.

3.7.1 Problem Deck for the Simple-Geometry Program (Fig. 3-7) The problem deck for the simple-geometry program (C-17)

 contains the following data fields:Note: In this deck the *6 and *8 data files require 7 conversion; all other files use either 6 or 8 conversion.
A. Control parameters (*6)

This file contains the following:

1. Deck identification, i.e., the alphabetics PROBLEM

- DATA must appear in Columns 2 through 13.

2. ID_{2} and $I D_{3}$, the identification of the decks of Libraries 2 and 3 to be used in this problem. These are the numbers contained in Columns 63 through 69 of these libraries.

HEVER 2-7. MAOBLEM DTCX HOR TWE sMmLL-GOOMETRY PROGRAM
3. N_{R}, the number of geometric regions defined for the problem. This includes the dummy region which must always be defined and must be the last region.
4. $N_{R M}$, the number of neutron calculations to be made or, equivalently, the number of neutron reference materials listed (by material number M) in the problem deck. $N_{R M}=0$ if no neutron calculation is to be made, and, in general, $0 \leq N_{R M} \leq 10$.
5. U, gamma calculation option.

$$
\begin{aligned}
& U=1-\begin{array}{l}
\text { differential energy spectra for an } \\
\text { infinite media used }
\end{array} \\
& U=2-\begin{array}{l}
\text { edge-corrected differential energy spectra } \\
\text { used }
\end{array} \\
& U=3 \text { - both calculations (1 and } 2 \text {) made. }
\end{aligned}
$$

B. Volume Parameters (*7)

This field contains all of the parameters required to define one volume of the geometry. Each of these fields, excepting the last one (which defines the dummy region), must contain the following:

1. Region identification. The alphabetics REGN must appear in Columns 2 through 5 of the first card in a * 7 field, and Columns 6 and 7 of this card must contain a two-digit region identification number (the N_{R} regions must be numbered in sequential order as they appear in the deck, 1.e., 01, 02, \ldots, N_{R}.
2. M, material number. The number of the Library l deck which corresponds to the material for which the region is defined.
3. ρ, the density of the material M in the region $\left(\mathrm{gm} / \mathrm{cm}^{3}\right)$.
4. N_{x}, the number of x-planes used to define the region.
5. K, geometry-type parameter.
$K=1$ - region is cylindric
$K=2$ - region is Cartesian
6. $K_{\text {min }}$, boundary uncertainty parameter (cm). The stepping-point method precludes an exact determination of the points at which the "source-detector line" intersects the region bounds. Hence, it is necessary to input a number to define the greatest allowable error in the boundary determination. Since the stepping-point method is an iterative technique, an excessively small value of $K_{m i n}$ will require a large number of iterations and, hence, will increase the machine time required to run the problem. On the other hand, too large a value for $K_{m i n}$ will result in excessive error in the boundary determination and, hence, the final results will be in error due to these uncertainties in the determination of the boundaries.

One method of determining $K_{m i n}$ is to require that it be smaller than some fraction, say 0.01 , of the smallest relaxation length (either neutron or photon) of the particies in the materials of the system being considered. For example, consider a system composed of the GTR and a shield of water, aluminum, iron and Portland concrete. From Reference 8, the removal cross sections for the above are: $0.0949 \mathrm{~cm}^{-1}$, $0.101 \mathrm{~cm}^{-1}, 0.0788 \mathrm{~cm}^{-1}, 0.1688 \mathrm{~cm}^{-1}$. and $0.0801 \mathrm{~cm}^{-1}$, respectively. From Reference 14, the largest values of the photon attenuation coefficients (in each case for a photon energy of 0.25 Mev) are: $0.225 \mathrm{~cm}^{-1}$, $0.126 \mathrm{~cm}^{-1}, 0.302 \mathrm{~cm}^{-1}, 0.918 \mathrm{~cm}^{-1}$, and $0.270 \mathrm{~cm}^{-1}$, respectively. The largest of these numbers (the attenuation coefficient for $E=0.25 \mathrm{Mev}$ in iron) is $0.919 \mathrm{~cm}^{-1}$ which corresponds to a relaxation length of 1.089 cm . Hence, if $\mathrm{K}_{\mathrm{min}}=.01 \times 1.089=$ 0.01089 cm , then the boundaries will be determined so that the error involved in determining the sourcedetector path length in any region will be less than 0.01 of a relaxation length for either photons or neutrons in this region.
7. The following data (in cm) must be entered for each of the $N_{x} x$-planes used to define the region:
a. x_{p}, the x-plane x-coordinate

Note: the x-planes for a given region must be listed in order of increasing x_{p}.
b. Either $Y_{\min }, Y_{\max }, Z_{\min }$, and $Z_{\text {max }}$, the x-plane bounds for a cartesian region (if $K=2$), or $R_{\text {in }}$ and R_{0}, the x-plane bounds for a cylindric region (if $K=1$).

The last region (or dummy region) contains only Items 1,2 , and 3 above.
C. Neutron reference material numbers (*8)

This field contains $N_{R M}$ material numbers, each of which corresponds to a material deck containing a *15 data field. (This field must contain the alphabetic REPMAT in Columns 2 through 7 of the first card of the field).
D. Detector and program option parameters (*9)

This data file contains the following:

1. Field identification. The alphabetic DETECT must appear in Columns 2 through 7 of the first card of this field.
2. N_{D}, the number of detector points for the problem.
3. The following data are input for each of the N_{D} detector points:
a. X_{d}, y_{d}, and z_{d}, detector point coordinates
b. X, the detector option $X=1-S p e c t r u m$ and dose will be calculated. $X=2$ - Spectrum, heat, and dose will be calculated.
$X=3-$ Spectrum and heat will be calculated. 107
c. Y, the radiation-type option
$\mathrm{Y}=1$ - Geometry print. The source-detector distance and penetration distance through all non-void materials will be printed for each source-detector pair.

Y = 2 - Gamma-ray data only will be computed.
Y $=3$ - Gamma-ray and neutron data will be computed.
$Y=4$ - Neutron data only will be computed.
d. Q, the source point option
$Q=1$ - Data for each source point as well as data summed over each source group and over all source groups will be printed.

Q = 2 - Data summed over each source group and over all source groups will be printed.
3.7.2 Problem Deck for the Complex-Geometry Program (Fig. 3-8)

The problem deck for the complex geometry program (L-63)
contains the following data file:
A. Control parameters (*6)

This field contains the following:

1. Deck identification (as defined in 3.7.1-A)
2. $I D_{2}$ and $I D_{3}$ (as defined in 3.7.1-A)
Columns

3. $N_{M R}$, the number of master regions defined for the problem. This includes the "dummy volume" which must be listed as a master region and also must be the last master region.
4. $N_{R M}$ (as defined in 3.7.1-A)
5. U (as defined in 3.7.1-A)
6. $\mathrm{CS}_{\text {max }}$, the number of coordinate systems used to define the problem geometry (the base system is not counted).

Note: This data file requires 7 conversion.
B. Volume parameters (*7)

This field contains all of the parameters required to define one volume of the geometry. Each of these fields excepting the last one (the dummy volume which must be listed as a master region) must contain the following:

1. The alphabetic identification

MASTER for master regions,
REGION for regions, or
SUBREG for subregions
in Columns 2 through 7 of the first card of the file.
2. N_{R}, the volume number, which must be preceded by a plus sign. Volumes must be numbered consecutively by type; that is, the first master region is numbered +1 , the second +2 , etc. Further, if some master region contains regions, the data files for
these regions must follow the data file of the master region in which they are contained, and these regions are numbered starting with +1 . If some region contains subregions, the same procedure is followed, that is, the data files for the subregions foliow the data file for the region and they are numbered consecutively, starting with +1 .
3. M (as defined in 3.7.1-B)
4. N_{x} (as defined in 3.7.1-B)
5. CT, the coordinate type used to define the volume. This parameter is as defined in Section 2.3.2, or 10 b below. A recapitulation of the values for $C T$ is: $C T=0$ Simple Sartesian cross section, $C T=1$ Complex Cartesian cross section, $C T=2$ Simple cylindric cross section, $C T=3$ Complex cylindric cross section, $C T=4$ Rectilinear cylindric cross section, $C T=5$ Combination I cylindric cross section, $C T=6$ Combination II cylindric cross section.
6. $C S$, the number of the coordinate system used to define the volume. CS must correspond to one of the COORN of problem data file *10.
7. NREG or NSUB, the number of volumes contained in the volume being considered. If the volume is a master
region, then NREQ is the number of regions contained in the master region; the subregions, if any, contained in one of these regions are not counted. If the volume is a region, then NSUB is the number of subregions contained in the volume. In any case, $0 \leq N R E Q \leq 10$, and $0 \leq N S U B \leq 10$. If the volume is a subregion, this item is omitted.

Note: The above items require 7 conversion and, hence, must not appear on the same card as any of the following items (which may have either 6 or 8 conversion).
8. ρ, the density of the material M for the volume ($\mathrm{gm} / \mathrm{cm}^{3}$).
9. $K_{m i n}$ (as defined in 3.7.1-B)
10. The following data must be entered (in cm) for each of the $N_{x} x$-planes used to define the volumes: a. x_{p}, the x-plane x-coordinate

Note: the x-planes for a given volume must be listed in order of increasing x_{p}.
b. Set of numbers required to define an x-plane cross section. These numbers, for each case, are listed below in the order in which they are to appear in the program. Along with each set of numbers there is also shown a sketch of a typical cross section which they are to represent, the required value of $C T$, and the restrictions on these numbers.

Note: For all of the figures below, the positive x-direction is assumed to be out of the paper. Simple cartesian $(C T=0)$

Input values for each x-plane:

$$
Y_{\min }, Y_{\max }, Z_{\min }, Z_{\max }
$$

Restrictions:
The defined area is a rectangle
whose sides are parallel to
either the y or z axis;
$Y_{\min }<Y_{\max }$, and $Z_{\min }<Z_{\max }$

Complex Cartesian (CT $=1$)
Input values for each x-plane:

$$
\begin{aligned}
& Y_{1}, Z_{1}, Y_{2}, Z_{2}, Y_{3}, Z_{3}, \\
& Y_{4}, Z_{4},
\end{aligned}
$$

Restrictions:
(On the points $P_{1}=\left(X_{p}, Y_{1}, Z_{i}\right)$ for $1=1,2,3,4$, and the sides $\overline{P_{1} P_{j}}$ which is the side with end
 points P_{1} and P_{j})
 the z axis
Neither ${\overline{P_{1} P_{4}}}_{4}$ nor ${\overline{P_{2} P_{3}}}$ is parallel to the y axis

$$
\begin{aligned}
& \left(\mathrm{Z}_{1} \mathrm{Z}_{2}\right)_{\min }<\left(\mathrm{Z}_{3} \mathrm{Z}_{4}\right)_{\min } \\
& \left(\mathrm{Y}_{1} \mathrm{Y}_{4}\right)_{\min }<\left(\mathrm{Y}_{2} \mathrm{Y}_{3}\right)_{\min }
\end{aligned}
$$

Connectivity: P_{1} is adjacent to P_{2} and P_{4} in the sense shown in the figure above.

Convexity:
All internal angles must be less than 180°.

Note: For all of the cylindric regions defined below, the following restrictions apply:

1. The cylinder must be coaxial with the x axis of the coordinate system in which it is defined.
2. All angles are to be measured in degrees and

$$
0^{\circ} \leq \theta_{1} \leq O_{2} \leq 360^{\circ}
$$

Simple cylinder ($C T=2$)
Input values for each x-plane:

$$
R_{\text {in }}, R_{0}
$$

Restriction:

$$
R_{\text {in }} \leqslant R_{0}
$$

Input values for each x-plane:

$$
R_{i n}, R_{0}, \omega_{1}, \omega_{2}
$$

Restriction:

$$
R_{1 n} \leq R_{0} .
$$

Rectilinear cylinder (CT = 4)

Input values for each x-plane:

$$
R_{1 n_{1}}, R_{1 n_{2}}, \theta_{1},
$$

$\omega_{2}, R_{01}, R_{02}$.
Restrictions:

$$
\begin{array}{ll}
R_{I n_{i}} \leq R_{01} \quad 1=1,2 \\
& \underline{\text { Combination } I(C T=5)}
\end{array}
$$

Input values for each x-plane:

$$
R_{01}, R_{02}, \omega_{1}, \omega_{2},
$$

$$
R_{1 n}
$$

Restrictions:

$$
\begin{aligned}
& R_{1 n} \leq R_{01} \\
& R_{1 n} \leq R_{02}
\end{aligned}
$$

$$
\text { Combination II }(C T=6)
$$

Input values for each x-plane:

$$
\begin{aligned}
& \mathrm{R}_{1 n_{1}}, \mathrm{R}_{1 n_{2}}, \theta_{1}, \theta_{2}, \\
& \mathrm{R}_{0} .
\end{aligned}
$$

Restrictions:

$$
\begin{aligned}
& R_{i n_{1}} \leq R_{0} \\
& R_{i n_{2}} \leq R_{0}
\end{aligned}
$$

If CT is preceded by a plus sign, the program will use linear interpolation between x-planes, and cylinders and rectangular pyramids will be generated.

If CT is preceded by a minus sign, the program will generate portions of spheres with the cross sections above.
B^{\prime}. Volume parameters for the dummy volume (*) The last volume defined for a problem must be the dummy volume, the data field for this volume must contain

1. Alphabetic identification, MASTER, in Columns 2 through 7
2. The volume number which must be $N_{M R}$ (see $A, 3$ above)
3. M, (defined in 3.7.1-B)
4. P, (defined in $B, 8$ above)

The parameters above are all that is required to define the dummy volume, but it should be noted that, while 7 conversion is required for the first card of other volume data file, 6 or 8 conversion is required for the dummy volume.
C. Neutron reference material numbers (*8)

This data file is the same as the one for the simplegeometry program (3.7.1-C).
D. Detector and program option parameters (*9)

This data file contains the following:

1. Alphabetic identification, DETECT, in Columns 2 through 7 of the first card.
2. $d^{*}{ }_{m}$, the number of detector groups
3. $D_{1}, D_{2}, \ldots, D_{m}^{*}$, the number of detector points in each detector group.
4. $\mathrm{CT}_{1}, \mathrm{CT}_{2}, \ldots, \mathrm{CT}_{\mathrm{d}_{\mathrm{m}}}$, the type of coordinate used to define the detectors of the various groups, i.e., $C T=1$, Cartesian coordinates $C T=2$, cylindric coordinates
5. $\mathrm{CS}_{1}, C S_{?}, \ldots, C S_{d_{m}}$, the coordinate system used to define the detectors of the various groups; each CS >0 must correspond to some COORN of data file *10 below.

Note: The above listed parameters compose the first *9 data file in a problem and this file requires 7 conversion. In addition to this file, a_{m} additional data files are required per problem; these files require 6 or 8 conversion and contain the following for each detector:

1. Detector coordinates (in cm):
$x, Y, Z \quad$ if $\quad C T=1$, or
$x, \theta, R \quad$ if $\quad C T=2$.
2. Program option parameters X, Y, and Q (as defined in 3.7.1-D)
E. Coordinate system parameters (*10)

This data file requires 6 or 8 conversion, and contains
the following parameters:

1. Alphabetic identification, SYSTEM, in Columns 2 through 7 of the first card of the file)
2. The following data must be input for each of the coordinate systems (except the base system, 1.e., $C S=0$) used to define source points, detectors, or volumes.
a. COORN, coordinate system number
b. X_{0}, Y_{0}, Z_{0}, coordinates of the origin of the system (in cm) in terms of the base system.
c. X_{X}, Y_{X}, Z_{X}, coordinates of a point on the $+x$ axis of the system 10 cm from the origin in terms of the base system.
d. X_{y}, Y_{y}, Z_{y}, coordinates of a point on the $+y$ axis of the system 10 cm from the origin in terms of the base system.

3.8 Card Identification Field for Problem Decks

\therefore Columns 63 through 66 are left blank. (These are to contain the Computing Lab job number as specified by the Computing Lab.)
E. Columns 67 and 68 contain the problem deck number, beginning with 01 for any given set of problems.
3. Columns 69 through 72 contain the card number, starting with 0001 for any given problem deck.
t. Column 73 contains che last digit of the year, i.e., 0 for 1960, 1 for 1961, etc.

シ. Columns 78 through 80 contain $\mathrm{Cl7}$ or L63.

APPENDIX A
 NOMENCLATURE AND SYMBOLISM FOR GEOMETRY ROUTINE FLOW DIAGRAMS

A-1 Vector Notation and Logic Symbolism

Vector Notation

1. All vectors are (3×1) column vectors except \bar{A}_{x}, \bar{A}_{y}, and $\overline{\mathrm{A}}_{\mathrm{z}}$ which are (1×3) row vectors.
2. All primed vectors are in terms of the base coordinate system; unprimed vectors are related in the coordinate system of the volume being tested.
3. For two vectors: $\bar{A}=\left[\begin{array}{l}x_{a} \\ y_{a} \\ z_{a}\end{array}\right]$ and $\bar{B}=\left[\begin{array}{l}x_{b} \\ y_{b} \\ z_{b}\end{array}\right]$,
$|\bar{A}-\bar{B}|=\sqrt{\left(x_{a}-x_{b}\right)^{2}\left(y_{a}-y_{b}\right)^{2}\left(z_{a}-z_{b}\right)^{2}}$
$\bar{A} x \bar{B}=\left[\begin{array}{l}y_{a} z_{b}-y_{b} z_{a} \\ z_{a} x_{b}-z_{b} x_{a} \\ x_{a} y_{b}-x_{b} y_{a}\end{array}\right]$

Logic Symbolism

1. \rightarrow is read as "is replaced by", i. $e \therefore$ " $a \rightarrow b$ is read as "a is replaced by b."
2. Branching relationship is defined as in the figure below:

If $a<b$, the program goes to block A $a=b$, the program goes to block B $a>b$, the program goes to block C

A-2 Test Function and Nomenclature for the Simple-Geometry Routine

Test Function

The element test function Ψ used in this routine is a linear interpolation on one variable. This function, for the argument R_{0}, has the form

$$
\begin{equation*}
\Psi\left(R_{0}\right)=R_{0, N-1}+\left\{R_{0, N}-R_{0, N-1}\right\} \frac{x_{P}-x_{N-1}}{X_{N}-X_{N-1}} \tag{A-1}
\end{equation*}
$$

where x_{n} and $R_{0, n}$, and x_{n-1} and $R_{0, n-1}$ are the x-value and outer radius associated with the $n^{\text {th }} x$-plane, and the $n-1^{\text {st }} x$-plane, respectively.

The function Ψ for arguments $R_{i n}, Y_{\min }, Y_{\max }, Z_{\min }, Z_{\max }$ is similar to Equation A-1 with the exception that the new argument is substituted for R_{0}.

Nomenclature
B 18 gamma differential energy spectra control number
C is index: $C=0$, volume search: determination of volume in which P lies
$C=1$, element search: determination of element
in which P lies
$C=2$, boundary search: determination of boundary intercept B^{\prime} for the volume

D is source-detector distance
d is subscript - refers to detector or detector-side boundary of a volume
d is index of detector point in set
f is index: $f=0$, stepping point is on an x-plane
$f=1$, stepping point is not on an x-plane
$f=2$, stepping point is in base material

1 is index of non-void segments such that $M_{1} \neq M_{f_{1}}{ }^{1}$, numbered so that the closest non-void segment ${ }^{1}$, to the source point has $1=1$.
$\overline{\underline{K}}$ is geometry type number: $\underline{R}=0$, cylindric $\underline{\underline{Z}}=1$, Cartesian
K is stepping-point increment
I is direction cosine vector for P
l_{1}, l_{2}, l_{3} are components of I, and P direction cosines for the x, y, and z directions, respectively.
M is material number ($M=0$ is void)
Mis reference material number (listed in *8 data file)
m is subscript for maximum
N is volume number (input data)
$N_{R M} 1 s$ number of reference materials (see Sec. 3.1.7-A4)
n is index of x-planes of a volume ($n=1$ denotes x-plane with smallest x value)
P is stepping point
\bar{P} is coordinates of stepping point
$R_{\text {in }}, R_{0}$ are x-plane bounds
r is coordinate, cylindric geometry $\left(r^{2}=y^{2}+z^{2}\right)$
\bar{S} is source-point coordinates
s is subscript - refers to source point or source-side boundary of a volume
s is index of source point in set
s* is index of source set in group
T_{1} is accumulated source-to-1 ${ }^{\text {th }}$-boundary-intercept distance
t^{\prime} is void thickness between stepping point and last completed segment

```
        U is gamma calculation option (Sec. 3.1.7-A5)
        V is reference material counter
        W is segment length
    Y,Z are x-plane bounds (F1g. 2-1)
x,y,z are Cartesian coordinates and vector elements
    \rho is material density
    \Psi is element test function
```

Test Functions and Nomenclature for the Complex-Geometry Routine

Test Functions

1. For cylindric and rectilinear volumes: The element test functions used in this routine are linear interpolation formulae. Ψ represents an interpolation on one variable, and E represents an interpolation on two variables. These formulae are shown below for representative argumints.
$\Psi\left(Y_{1}\right)=Y_{1, \infty}+\left\{Y_{1, \beta}-Y_{1, \alpha}\right\} \frac{x_{p}-x_{\infty}}{x \beta-X_{\infty}}$
$=1,2\left(\alpha_{i} Y, Z\right)=Y_{1, \alpha}+\left\{Y_{2, \alpha}-Y_{1, \alpha}\right\} \frac{Z_{p}-Z_{1, \alpha}}{Z_{2, \alpha}-Z_{1, \alpha}}$
2. For spherical volumes: The element test functions used in this routine represent a second order interpolation. The functions for a typical argument (representing R_{0}) are:

$$
R_{0}=\sqrt{\frac{\left(R_{0, \infty}^{2}+X_{\infty}^{2}\right)\left(X_{p}-X_{p}\right)-\left(R_{\rho, \beta}^{2}+x_{\beta}^{2}\right)\left(x_{\infty}-x_{p}\right)}{x_{p}-X_{\infty}}-X_{p}^{2}}
$$

Nomenclature

A is coordinate transformation matrix (see Fig. 2-4 for elements of A)
\bar{B} is coordinates of the boundary intercept being found
\bar{B}_{s} is coordinates of the source-side boundary intercept of the volume being considered
$\bar{B}_{d q}$ is coordinates of the detector-side boundary intercept of the volume containing the volume being considered
C is index: $C=0$, volume search (determination of volume in which P lies)
$C=1, \begin{aligned} & \text { element search (determination of element } \\ & \text { in which } P \text { lies) }\end{aligned}$
$C=2$, boundary search (cetermination of boundary intercept of the volume)

CS is coordinate system identification number (CS $=0$ denotes the base coordinate system) input data

$$
\begin{aligned}
& C T \text { 0, Simple Cartesian } \\
& \text { 1, Complex Cartesian } \\
& \text { 2, Simple cvlinder } \\
& \text { 3, Complex cylinder } \\
& \text { 4, Complex-rectilinear cylinder } \\
& \text { 5, Combinauion I cylinder } \\
& \text { 6, Combination II cylinder }
\end{aligned}
$$

D is source-detector distance
D is coordinates of detector point (input data)
d(as subscript) refers to detector or detector-side boundary of a volume
d is index of detector point in set
d* is index of detector set in group
E is element
f is index: $f=-1, P$ was in the base material but found a point in a defined volume
$f=0, P$ not known to be in the base material
$f=1, \begin{aligned} & P \text { is in the base material, } \ell_{1} \neq 0, \phi\left(\bar{P}^{*}\right) \\ & \text { being found }\end{aligned}$
$f=2, \begin{aligned} & P \text { is in the base material, } \ell_{1}=0, \phi\left(\bar{P}^{*}\right) \\ & \text { being found }\end{aligned}$
$f=3, P$ is in the base material, $l_{1}=0, \phi\left(\bar{P}^{* *}\right)$ being found
$f=4, \underset{\text { being found }}{P}$ is in the material, $l_{1} \neq 0, \varnothing(\bar{P})$
$f=5, \frac{P}{}$ is in the base material, $L_{1}=0$, either (\mathcal{X} means" does not correspond to")
$f=6, \begin{aligned} & P \\ & \varnothing \\ & \varnothing\end{aligned} \frac{1}{P}$ in the base material, $l_{1} \neq 0$, either
g is index: $g=0, P$ is not known to be on an x-plane

$$
\mathrm{g}=1, \mathrm{P} \text { is on an } \mathrm{x} \text {-plane }
$$

1 is index of non-void segments such that $M_{1} \neq M_{1-1}$ numbered so that the closest non-void segment of the source point has $1=1$.
J is index: $J=0$, no volume imbedded in the base material impinges upon the source-detector line
$J=1$, some volume imbedded in the base material impinges upon the source-detector line
K is stepping point increment
\bar{L} is direction cosine vector for P
ℓ_{1}, l_{2}, l_{3} are components of \bar{L}, and P direction cosines for the x, y, and z directions, respectively
M is material number ($M=0$ is void)
m is subscript for maximum
N is volume number (input data)
n is index of x-planes of a volume ($n=1$ denotes x-plane with smallest x value)
$\overline{0}$ is coordinates of the origin of a coordinate system in terms of the base coordinate system (input data)
P is stepping point
\bar{P} is coordinates of stepping point
$\bar{P} *-\overline{P^{* *}}$ is points used in determining whether the source-detector
line passes through a subvolume
q is volume type: $q=0$, master region
$q=1$, region
$q=2$, subregion
R_{r} is element test function (spherical option)
$R_{1 n}, R_{0}$ are x-plane bounds (Fig. 2-1)
r is coordinate, cylindric geometry ($r^{2}=y^{2}+z^{2}$)
S is source-point coordinates
s (as subscript) refers to source point or source-side boundary of a volume
s is index of scurce point in set
s* is index of source set in group
T is accumulated source-to-boundary intercept distance
t is material thickness (along source-detector line)
u is test parameter: $u=y_{p}, C T<2$

$$
u=r_{p}, C T>1
$$

u_{1}, u_{2} are element test parameters $U_{1}{ }^{*}, U_{2}$ * are envelope test parameters
v is test parameter: $v=z_{p}, C T<2$

$$
v=\tan ^{-1} z_{p} / y_{p}, C T>1
$$

```
        v
        V **, V2* are envelope test parameters
            W is segment length
            x* is element test function (spherical option)
            Y,Z are x-plane bounds (Fig. 2-1)
            x,y,z are Cartesian coordinates, and vector elements
\infty,\beta,\gamma,N}\mathrm{ are x-plane numbers
            \Gamma ~ i s ~ x - p l a n e ~ t e s t ~ f u n c t i o n
            |s containing-volume test function; }\mp@subsup{\Delta}{q}{}\mathrm{ is the portion of
                source-detector line bounded by the source point and
                the detector-side boundary intercept of the contain-
                ing volume( ( }\mp@subsup{|}{}{+}&D
\(\mathcal{F}\) is index: \(\mathcal{E}=0\), element test function being computed for \(X_{\infty}\)
\(f=1\), element test function being computed for \(X_{\beta}\)
\(\theta\) is coordinate, cylindric geometry: \(\theta=\tan ^{-1} \mathrm{z} / \mathrm{y}\)
\(\nu\) is index: \(N=0,|\bar{B}-\bar{s}|<\Delta_{q}\)
\[
\omega=1,|\bar{B}-\bar{s}| \geq \Delta_{q}
\]
- is element test function
(1) is \(x\)-plane bounds (Fig. 2-1)
\(\rho_{\text {is material density }}\)
\(\phi\) is index:
```


Cylindric Geometry

Cartesian Geometry

```
Working on \(Y\) or r:
\[
\begin{array}{lll}
\phi_{1}=0, \min \left(R_{1 n}\right) \leq r_{p} \leq \max \left(R_{0}\right) & \min (Y) \leq Y_{p} \leq \max (Y) \\
\phi_{1}=1, & r_{p}<\min \left(R_{1 n}\right) & Y_{p} \leq \min (Y) \\
\phi_{2}=2, & r_{p}>\max \left(R_{0}\right) & y_{p}>\max (Y)
\end{array}
\]
```

\[

\]

APPENDIX B

NEUTRON FLUX-TO-HEAT CONVERSION FACTORS

The neutron flux-to-heat conversion factors used for these programs must be the heat generated per incident neutron in a material of unit density, and, hence, these factors will have units of Joules-cm ${ }^{2} / \mathrm{gm}$.

The heat source due to neutron reactions with nuclei of the target material may be grouped according to the manner in which heat is assumed to be generated by the various reactions. Por these programs it is necessary to consider two modes of heat generation, namely, heat generated by secondary (or induced) gamma radiation and heat generated by all other reactions or portions of reactions. (As an example of this grouping, consider the inelastic scattering of neutrons. It is assumed that the recoil energy of the scattering nucleus is dissipated as heat by the second mode and the de-excitation photons generate heat by the first mode.)

The heating rates due to secondary-gamma radiation cannot be computed directiy. Using these programs, rather, it is necessary first to detemine the neutron $f l u x$ at a representative number of points in the system and, considering all possible sources of secondary photons, convert these neutrons into secondary-gamma-ray sources using the methods of Reference 1 . One may then use these sources together with one of these programs to compute the heat generation rate due to this phenomenon.

The heat generation rate in a given material due to the second mode may be caused by any one or all of the following reactions:

- elastic scattering,
- charged-particle reactions (usually (n, p) or (n, α),
- particle emission from the decay of activated residual nuclei (usually β^{+}or β^{-}),
- inelastic scattering, and
- $(n, 2 n)$ reaction.

The flux-to-heat conversion factor per incident neutron, as required for the programs, is given by where $\delta^{H}=\bar{E} \bar{E}$,
\sum is the group-averaged neutron cross section for the reaction (in $\mathrm{cm}^{2} / \mathrm{gm}$), and
$\overline{\mathrm{E}}$ is the average energy dissipated as heat per reaction (in Joules).

For the charged-particle reactions (from Ref. 9),
$\bar{E}=E_{n}+Q-\mathcal{E}$
where E_{n} is the initial neutron energy,
Q is the Q value of the reaction, and
\mathcal{E} is the energy given off as secondary photons.
The heat generation rates due to elastic and inelastic scattering and the $(n, 2 n)$ reaction are derived in the following sections.

Elastic Scattering

The average energy loss per elastic scatter, \bar{E}, as derived In Reference 9, is for isotropic scattering in the center-of-mass coordinate system. This assumption of isotropic elastic scattering is not valid for high neutron energies or for materials of mediumto high mass numbers. Hence, a more exact determination of the average energy loss \bar{E} is required in order to predict heating rates due to fast neutrons.

The derivation of \bar{E} is given in Section 1.2.1 of Reference 9 ; from this derivation E is given by

$$
\begin{equation*}
\bar{E}=\frac{\int_{0}^{2} \int_{1} E P(E) d E}{\int_{0}^{25 E} P(E) d E} \tag{B-1}
\end{equation*}
$$

where E_{1} is the initial neutron energy,
$\xi=2 A /(A+1)^{2}$ (where $A=$ atomic weight), and $p(E)$ is the energy-10ss distribution of the degraded neutrons.
The energy of the nucleus after collision is related to the suattering angle, θ, by

$$
\begin{equation*}
\left.E=E_{1}\right\}(1-\cos \theta) \tag{B-2}
\end{equation*}
$$

Hence, the angular distribution of the scattered neutrons may be used in the moments equation to replace $p(E)$; or, since \bar{E} is the quotient of two moments, $p(E)$ may be related to the angular distribution of the neutron scattering cross section. Certain of these distributions for various neutron energies and target materials are given in Reference 15.

The equation for $\overline{\mathrm{E}}$ (Eq. B-1) may be rewritten in terms of the scattering angle θ and the elastic scattering cross section $\sigma\left(E_{1}, \theta\right)$ as .

$$
\bar{E}=\left[\frac{\int_{0}^{\pi}(1-\cos \theta) \sigma\left(E_{1}, \theta\right) \alpha(\cos \theta)}{\int_{0}^{\pi} \sigma\left(E_{1}, \theta\right) \alpha(\cos \theta)}\right] \xi E_{1}
$$

or

$$
\bar{E}=\left[1-\frac{\int_{1}^{\prime} z \sigma\left(E_{1}, z\right) d z}{\int_{1}^{\prime} \sigma\left(E_{1}, z\right) d z}\right] \xi E_{1}
$$

where $Z=\cos \theta$.
The cross sections of Reference 8 were plotted against Z and Equation $B-3$ was used to evaluate \bar{E} from this data. For the elements of lithium, zirconium, tantalum and bismuth, the integral was evaluated numerically using Legendre-Gaussian quadrature. The results are shown in Figure Bel.

Reference 16 is a compendium of cross sections for iron, silicon, aluminum, and oxygen. Among other things, this report lists coefficients for Legendre expansions of the scattering cross sections; these expansions are of the form.

$$
\sigma\left(E_{1}, \theta\right)=\frac{\sigma\left(E_{1}\right)}{4 \pi} \sum_{L=0}^{\infty}(2 L+1) f_{L}\left(E_{1}\right) P_{L}(\cos \theta),
$$

with f_{L} defined by

$$
f_{L}=\frac{2 \pi}{\sigma\left(E_{1}\right)} \int_{-1}^{1} \sigma\left(E_{1}, \theta\right) P_{L}(\cos \theta) d(\cos \theta) .
$$

By definition, $f_{0}\left(E_{,}\right)=1$ so that

$$
\sigma\left(E_{1}\right)=2 \pi S_{1}^{\prime} \sigma\left(E_{1}, \theta\right) d(\cos \theta)
$$

and

$$
f_{1}\left(E_{1}\right)=\frac{\operatorname{L}_{1}^{\prime} \sigma\left(E_{1,} \theta\right) \cos \theta d(\cos \theta)}{\Omega_{1}^{\prime} \sigma\left(E_{1}, \theta\right) d(\cos \theta)} .
$$

FIGURE E-1. AVERAGE NEUTRON ENERY LOES FOR VARIOUS Z NUMERES

This is the integral term of Equation B-3 where
$h=\frac{\bar{E}}{\xi_{E_{1}}}=1-f_{1}\left(E_{1}\right)$.
Values of h for iron, aluminum, and oxygen, computed from data in Reference 16 , are shown in Figures B-2 through B-4.

The computed values for \mathcal{L} show that the actual heating rates due to elastic scattering may be down by a factor of 10 from those computed assuming isotropic scattering, and, further, the effect is most noticeable at high energy and Z number, as expected from the cross sections.

B-2 Inelastic Scattering and the ($n, 2 n$) Reaction
The kinetic energy transfer to the residual nucleus during an $\left(n, n^{\prime}\right)$ or $(n, 2 n)$ reaction is derived from energy and momentum conservation. The final expressions are in terms of the initial neutron energy and either the excitation energy of the residual nucleus or the degraded neutron energies. The expressions in terms of initial neutron energy and excitation energy should be used in al? possible cases, 1.e., whenever the energies of the resulting photons are known. If the excitation energy is not known, it must be approximated, and this is done by approximating the energies of degraded neutrons (Sec. B-2.3) and finding the recoil energy from an application of the conservation of energy.

Section B-2. 4 shows that for the energy range of interest, the excitation energy (and also mass) is essentially the same in both the laboratory and center-of-mass coordinate systems.

FIGURE R-2. AVERAGE NEUTRON ENERGY LOSS IN IRON

figure b-3. aviance miutron emirey loss in oxyern

FIGURE E-4. AVERAGE NEUTRON EMERGY LOSS IN ALUMWUM

From conservation of energy and momentum in the CM system, $1 / 2 \ldots\left(v_{1}-V_{c_{m}}\right)^{2}+1 / 2 M V_{i m}^{2}=1 / 2 m v_{a}^{2}+1 / 2 M V_{n c}^{2}+\mathcal{E}_{\text {, }}$, and $m v_{a}=M V_{n c}$, where m is the mass of the neutron,
M is the mass of the nucleus,
ϵ is the excitation energy left with the nucleus, and the r's are as shown in the sketch.

The momentum of the neutron before the reaction, as measured In the L system, must be equal to the momentum of the $C M$ system as measured in the L system; hence,

$$
r i m=(M+r) V_{c m} .
$$

The velocities v_{2} and v_{a} are related by the cosine laws

$$
\begin{equation*}
U_{2}^{2}=V_{c m}^{2}+U_{a}^{2}+2 v_{a} V_{c m} \cos \theta . \tag{B-6}
\end{equation*}
$$

This relationship is shown in the sketch below, which is a superposition of significant portions of the L and $C M$ diagrams sketched above.

Solving Equations $B-4, B-5$, and $B-6$ for $\sqrt{2}$ in terms of $\sqrt{2}_{1}$ gives

$$
\begin{equation*}
U_{2}^{2}=U_{1}^{2}\left\{1-\xi-\frac{E}{E_{0}} \cdot \frac{A}{A+1}+\left\{\sqrt{1-\frac{A+1}{A} \frac{\varepsilon_{2}}{E_{0}}} \cos \theta\right\},\right. \tag{B-7}
\end{equation*}
$$

for $E_{0} \equiv \frac{1}{2} m \mathcal{V}_{1}^{2}$,

$$
\begin{aligned}
& A \equiv \frac{M}{m}, \text { and } \\
& \xi \equiv \frac{2 A}{(A+1)^{2}}
\end{aligned}
$$

Energy is conserved in the L system and, therefore,

$$
\begin{equation*}
E_{0}=E^{\prime}+E_{K}+\varepsilon, \tag{B-8}
\end{equation*}
$$

for

$$
\begin{aligned}
& \left.E^{\prime} \equiv 1 / 2 m v_{2}^{2}\right) \\
& E_{K} \equiv 1 / 2 M v^{2}
\end{aligned}
$$

And from Equations $B-7$ and $B-8$,

$$
\begin{equation*}
E_{K}=E_{0} \xi\left\{1-\sqrt{1-\frac{A+1}{A} \frac{\varepsilon_{1}}{E_{0}}} \cos \theta\right\}-\frac{\varepsilon}{A+1} \tag{B-9}
\end{equation*}
$$

From Equation B-9,

$$
\frac{d \theta}{d E_{k}}=\frac{\operatorname{coc} \theta}{E_{0} \xi \sqrt{1-\frac{A+1}{A} \frac{E_{0}}{E_{0}}}}
$$

$$
\begin{aligned}
& \delta_{1} \equiv E_{k \text { min }}=E_{0} \xi(1-\eta)-\frac{\varepsilon}{A+1}, \text { and } \\
& \delta_{2} \equiv E_{k \text { max }}=E_{k \text { min }}=2 E_{0} \xi \eta,
\end{aligned}
$$

for $\eta=\sqrt{1-\frac{A+1}{A} \frac{E}{E_{0}}}$.
The average value of E_{k} is taken to be

$$
\bar{E}_{K} \equiv \frac{\int_{\alpha_{1}}^{\delta_{1}+\delta_{2}} P(\theta) \frac{d \theta}{d E_{K}} E_{K} \sin \theta d E_{K}}{\int_{\sigma_{1}}^{\delta_{1}+\delta_{2}} P(\theta) \frac{d \theta}{d E_{K}} \sin \theta d E_{K}}
$$

where $p(\theta)$ is the angular scattering probability function or, equivalently (for this purpose), the angular dependent cross section.

If isotropic scattering in the center-of-mass system is assumed,

$$
E_{k}=\frac{\int_{d}^{4+\delta_{2}} E d E}{\int_{\delta_{1}}^{4+\varepsilon_{2}} d E}=\delta_{1}+1 / 2 \delta_{2},
$$

or

$$
\begin{equation*}
\bar{E}_{k}=E_{0} \xi-\frac{\varepsilon}{A+1}, \tag{B-10a}
\end{equation*}
$$

or, in terms of E_{O} and E,

$$
\begin{equation*}
\bar{E}_{K}=\frac{A-1}{A(A+1)} E_{0}+\frac{E^{\prime}}{A} \tag{B-10b}
\end{equation*}
$$

B-2.2 The ($n, 2 n$) Reaction

The equations describing the emission of the first neutron are similar to those describing the (n, n^{\prime}) reaction, so that it may be assumed that the kinetic energy of the nucleus before emission of the second neutron, as measured in the L system (see sketch) is given by Equation B-10.

L' system:

CM' system:

From the conservation of energy and momentum in the $C M$ system,

$$
\begin{equation*}
D+E=1 / 2 M^{*} V_{R C}^{2}+1 / 2 m v_{b}^{2}+E^{\prime}, \quad M^{*} V_{R C}=m v_{b} \tag{B-11}
\end{equation*}
$$

where M^{*} is the mass of the residual nucleus and, to a good approximation, is given by $M^{*}=M-m$ (except for calculating $\left.D\right)$; \mathcal{E}^{\prime} is the excitation energy of the residual nucleus; D is the mass defect and is given by $D=\left(M-M^{*}-m\right) c^{2}$, and all other parameters are as defined above.

By superimposing portions of the L^{\prime} and $C M^{\prime}$ diagrams sketched above, it may be seen $\sqrt{3} \& \sqrt{4}$ are related by

$$
\begin{equation*}
U_{3}^{2}=V^{2}+U_{b}^{2}+2 V \Gamma_{b} \cos \phi \tag{B-12}
\end{equation*}
$$

Solving for $E^{N} \equiv 1 / 2 m v_{3}^{2}$ in terms of $E_{0}, \varepsilon_{\text {, and }} \eta^{\prime} \equiv D+\varepsilon-\varepsilon^{\prime}$ gives

$$
\begin{equation*}
E^{\prime \prime}=E_{0} \xi-\frac{\varepsilon}{A+1}+\frac{A-1}{A} \eta^{\prime}+2 \sqrt{\frac{A-1}{A} \eta^{\prime}\left\{E_{0} \xi^{6}-\frac{\varepsilon}{A+1}\right\}} \cos \phi \tag{B-13}
\end{equation*}
$$

Conservation of energy in the L^{\prime} system requires that

$$
\eta^{\prime}=E^{\prime \prime}+E^{\prime}-E_{k}
$$

for

$$
E_{K}^{\prime} \equiv 1 / 2 M^{*} V^{\prime} 2
$$

and, therefore,

From Equation (B-14)

$$
\frac{d \phi}{d \varepsilon_{k}}=\frac{c a c}{2 \sqrt{\frac{1-1}{A^{2}}}\left\{\left\{\left\{\xi \varepsilon_{0}-\frac{\varepsilon}{A+1}\right\}\right.\right.} .
$$

Also, for constant $E_{0}, \varepsilon_{\text {, and }} \eta^{\prime}$,
$\delta_{1}=E_{K_{\text {min }}^{\prime}}=\frac{\eta^{\prime}}{A}-2 \sqrt{\frac{A-1}{A} \eta^{\prime}\left\{\left\{E_{0}-\frac{E}{A+1}\right\}\right.}$, and
$\delta_{2} \equiv E_{K^{\prime} \text {, mat }}-E_{K_{\text {min }}^{\prime}}=4 \sqrt{\frac{A-1}{A} \eta^{\prime}\left\{\xi E_{0}-\frac{\varepsilon}{N+1}\right\}}$.
Analogous to \bar{E}_{k}. for isotropic scattering, the average value of

$$
{ }^{k_{K^{\prime}} 1 \mathrm{~s}} \bar{E}_{k^{\prime}}=\frac{\int_{\delta_{2}+\delta_{1}}^{\delta_{2}} E d E}{\int_{\delta_{1}}^{\delta_{2}+\delta_{1}} d E}=\delta_{1}+1 / 2 \delta_{2},
$$

or

$$
\begin{equation*}
\bar{E}_{k^{\prime}}=\frac{\eta^{\prime}}{A}=\frac{D+\varepsilon+\varepsilon^{\prime}}{A}, \tag{B-15a}
\end{equation*}
$$

or, in terms of E^{\prime} and $E^{\prime \prime}$, the energies of the first and second neutrons emitted, and E_{0} the initial neutron energy,

$$
\begin{equation*}
E_{k}=\frac{1}{A-1}\left\{E^{\prime \prime}-\frac{E^{\prime}}{A}\right\}-\frac{E_{0}}{A(A+1)} . \tag{B-15b}
\end{equation*}
$$

B-2.3 Average Value of the Degraded Neutron Energy

Where a large number of closely spaced energy levels are involved, the methods of statistical mechanics may be used to determine the value of the degraded neutron energy. Thus, this theory will not represent the high end of the degraded neutron spectrum very well since this corresponds to leaving the nucleus in a low excited state where the levels are few and far apart. Further, in lead, iron, and most light elements, the level spacing is large so as to make this method a rough approximation at best.

The differential probability of emission of a neutron with energy E ' from a compound nucleus with energy E is

$$
d P\left(E, E^{\prime}\right)=K \frac{E^{\prime}}{\theta} e^{-E / \theta} d E^{\prime}
$$

where Θ is the nuclear temperature and
k is a normalization constant.
The average value of E^{\prime} is taken to be

where, for the $\left(n, n^{\prime}\right)$ reaction,
E** is the initial neutron energy and
E* is zero;
for the ($n, 2 n$) reaction, and for the emission of the first neutron,

E** is the initial neutron energy and
E* is the energy such that the second neutron is emitted with zero energy and the nucleus is left in the ground state (this is the binding energy of the remaining neutron in the nucleus after the first neutron has been emitted) ;
for the emission of the second neutron,
E** is the initial neutron energy less that energy required to emit the first neutron with zero energy and leave the nucleus in the ground state (this is the initial neutron energy less the binding energy of the last neutron in the compound nucleus) and

E* is zero.
Therefore,

$$
E^{\prime}=\theta \frac{(\alpha+1)^{2}+1}{\alpha+1} \cdot \frac{1-\frac{(\beta+1)^{2}+1}{(\alpha+1)^{2}+1} e^{\alpha-\beta}}{1-\frac{\beta+1}{\alpha+1} e^{\alpha-\beta}},(B-16)
$$

for

$$
\alpha=E^{* *} / s \quad \text {, and } \quad \beta=\Sigma \bar{y} \theta .
$$

APPENDIX C

NEUTRON REPERENCE MATERIAL COMPARISON

To assist in the selection of base materials to be used in these IBM programs, a series of problems have been run using c-17 in a simple cylindrical geometry. The reactor core was composed largely of carbon, and various shielding materials were placed adjacent to the end of the core. For a shielding material of lithium hydride, detector points were located at various distances from the face of the reactor in the lithium bydride. Eight different base materials were used in computing the dose rate, spectra, and heating rate.

Figure $C-1$ shows a comparison of heating rates as calculated for the different reference materials. Figure C-2 shows a comparison of dose rates as calculated for the different reference materials.

In order to get some idea as to the reliability of the data calculated by these IBM programs additional calculations have been made of the neutron differential number spectra and compared to those calculated by a multigroup multiregion diffusion code. These comparisons are shown in Figures $C-3, C-4, C-5, C-6$, and $C-7$. It is apparent that for " 0 " distance from the core face the nonhydrogenous reference materials differential number spectra calculations do not agree with those calculated by the diffusion code. This is due to the inability to fit the moments data accurately for penetration distances of less than $10 \mathrm{~cm}^{2} / \mathrm{gm}$.

FIGURE C-I. HEAT DEPOSITION RATES IN LITHIUM HYDRIDE FOR VARIOUS BASE MATERIALS

FIGURE C-2. FAST-NEUTRON DOSE RATES IN LITHIUM HYDRIDE FOR VARIOUS BASE MATERIALS

FIGURE C-3. COMPARISON OF C-17 AND ZOOM SPECTRA FOR LITHIUM HYDRIDE

FIGURE C-4. COMPARISON OF C-17 AND ZOOM SPICTRA FOR EORATED CAREON

FIGURE C-5. COMPARISON OF C-17 AND ZOOM SPECTRA FOR BORATED EERYLLIUM OXIDE

FIGURE C-6. COMPARISON OF C-17 AND ZOOM SPECTRA FOR BORATED BERYLLIUM

FIGURE C-7. COMPARISON OF C-I7 AND ZOOM SPECTRA FOR BORATED POLYETHYLENE PLUS FIBER GLASS

APPENDIX D

PROGRAM LIBRARY DATA

The Library-Types 1 and 2 currently being used with programs C--1? and L-63 are presented in this appendix. The data are listed directly from the data cards; however, captions have been added to each Library-Type 1 material deck. The formats for the LibraryType 1 decks and the Library-Type 2 deck are shown in Figures 3-1 (Sec. 3.2) and 3-2 (Sec. 3.3), respectively.

LIBRARY－TYPE 1

MATENIMI 1 WATFP NFIITRON FNFRGY

71 PRAAEV nATA＋1＋$+1+10$	＊ 10	48131 n2nn1L	C17
$6+a 1 \cap 1$	H19	4813102 กn？	C17
$8+710 \cap-1+7+1+7642-13+779 n-1+7+1+7437-12$		48131020 3 3 L	C． 17
$8+74 \cap \cap-1+7+1+7218-13+756 \cap-1+7+1+7 \cap 18-13$		48131 ヘフn 4 L	C17
		48131＾2ヘヘ5L	C17
Q $+220 n-1+7+1+1265-13+2960-1+7+1+11>n-12$		$48131020 \cap 6 L$	C17
9＋497n－1＋7＋1＋9476－14＋597n－1＋7＋1＋63nn＝14		4813102 not	C 17
			C17
	＊ 17	48121ヘ2n ${ }^{\circ} \mathrm{L}$	C17
		48121nつ01กL	C17
	H13	48131ヘフロ19．	r97
A $+4+4+^{2}+2+9+1.5+1+1+875+655$	＊ 14	46131nフn1？	C 17
		4812102013L	C17
		4813102014 L	C 19
		4813107015L	C 17
		4813107016 L	C17
		481310フロ17L	C17
		48）210701RL	C17
			C17
		48131n2n？nL	C17
		$48131 \cap 7 \cap 71$	C97
			C19
			r 17
$\mathrm{R}+6 \mathrm{n}$		48931ヘフヘフ41．	r9 9
		43121020251	C17
		4812102026L	C］ 7
		4813102n27L	C 17
		48131連2月L	C17
		48）3102029L	C． 17
			C17
		4813102031 L	C17
		4813107039 L	C17
		4813103033 L	C． 9
		48171ก2034L	C17
	＊ 15	48121～2n35L	C17

LIBRARY－TYPE 1

MATERIAI．\quad WATFR

71 TRAABY ПATA $+?+9+9+5$
$A+a 1 \cap 1$
$8+719 n-1+7+1+264^{2}-1^{2}+779 n-1+7+1+7437-1^{2}$
$a+74 \cap n-1+7+1+7919-1^{x}+756 n-1+7+1+7018-13$
 ค＋220n－1＋7＋1＋1365－13＋396n－1＋7＋1＋117n－13 9＋1 9 ？$\cap-1+7+1+84 ?^{\prime}-14+597 \cap-1+7+1+63 \cap \cap-14$ ก4．7n6n－1 $+7+1+4987-14+7090-1+7+1+3750-14$ ค＋ク66n－1＋7．1＋2635－14＋1263＋n＋7＋1＋1250－14 $8+1 n+7+411-17+215-1 ?+132-1 ?+778-13$ $2+461-13+4 \cap 7-12+22 \pi-13+749-13+157-13$＊13 $6+4.0+4.1+7.45+1.10+.61$

 8－27694385－5＋4536974i－2－17777A／ヘn－1＋10773136－0－11560156＋1
 $6+6 n$
R－17894974－9＋17266011－太ーフ7176n51－4－877R7190－1－76697872＋1

NFUTRON FNFRGY MODE？

LIBRARY-TYPE 1

MATERIAL 3 LITHIUM HYDRIDE NEUTRON ENERGY MODE 1

LIBRARY－TYPE 1

$A+, 1 C A$

$n+161 n=1+2+1+1475=12+9 r 1 n=1+2+1+1207=12$

 $a+52 n \cap-1+2+1+2755=14+5$ nのn－$+7+1+1000=14$ $a+7><n-1+2+1+1102-14+0 \times 5 n-1+2+1+19$（5－15
 $A+4005+4005+2.225+? .70+2.4+0253+075+0427$

 $R+$ \＆n

＊in 4R131のรヘロ1L
＊19 4R121n5002L 4R121の5の日3し 4813105nn4L 48131の50ก5L 4813105nORL 48121のらのヘ7L 4月121の5の日タレ
＊ 17 48121n5nn9L 4813105nlnL
$+124813105011 \mathrm{~L}$
+12
$* 14$
4H93105017L 48121の5012L 49131nラのリ4L 4R121n5ก15L 4ค921n4n1RL． なの・21のムの17し
 4912105010L 4R121の5nวnL
 49171ก5n3フL 4312！n5023L 4812105024 L 4R13105のフ5L 4カ171日Gの7AL 49121ヵ5n77L 49121n5のプ

 4ッリン1の5のタ1し

017
C17
r17
$r 17$
$r 97$
C17
C17
C17
C17
C 17
$C 17$
C17
C17
C17
C97
$C .17$
$r 17$
e17
$C 17$
Cl7

P17

LIBRARY－TYPE 1

MATFRIAI． 5 OIL $\left(\mathrm{CH}_{1.7}\right)$

MFUTRON FMERGY MONE 1

71 YPRAPY MATA＋$+5+1+1$ a	＊10	48131 ¢6nヘ11．	C17
A＋al 11	＊11	48131n6ヘn）	$r 97$
		48931～6ヘヘ3L	－97
$9+727 n-1+5+1+71 n 9-12+95 n \cap-1+5+1+1017-12$		48131＾6ヘヘ4L	－97
$9+77 \cap \cap-1+5+1+177 n-1^{x}+200 \cap-1+5+1+15 x ⿴-13$		$4813106005 L$	C17
$a+270 n-1+r+1+1222-13+209 n-1+r+1+1 \cap 0 R-12$		4R131n®AnkL．	$r 17$
$8+490 n-1+5+1+832 n-14+6 n 0 \cap-1+5+1+6778-14$		48131ヘ6ヘ妌L	$r 17$
$a+715 n-1+5+1+4854-14+81 ? n-1+5+1+2666=14$			C17
$a+070 n-1+5+1+7573-14+1>7 n+n+5+1+1117-14$	＊17		C17
$9+10+7+7 ? 5-13+7 \cap \cap-12+617-12+6 n 4-12+570-12$		481310601 NL	C17
$9+519-12+471-12+299-12+990-12+170-12$	＊ 13	48131ヘKの11L	C17
$\mathrm{A}+4+4+3+9+?+1.5+1+1+025+565$	＊14	48131n A1）$_{\text {L }}$	C17
		48121n6年12L	C17
			P17
		48131日BC15L	C17
			C17
		4R121令の17L	C17
		4R121nR自19L	C17
		48171 ARO10L	0.17
			C． 17
			$C 17$
a		48131 n6nフ？L	P17
			C． 17
		4R12106024L	$C 17$
		4R1910日のつ\＆L	C17
		49191060 PRL	017
		48191 ¢6n？7L	0.17
		4R121n6の7日L	P17
		48131n6の20L	＋17
		48131n6n3nL	$r 17$
		48131n6031L	C17
		4R171n6037L	C17
	＊15	4813106037L	C17

LIBRARY-TYPE 1

LIBRARY-TYPE 1

RFRYLILIIM OXINT * -OI ROPON (RY WITGHT)

NEUTRON ENFPGY MONF 4

LIBRARY-TYPE 1

LIBRARX-TYEE 1

LIBRARY-TYPE 1

LIBRANY-TYP: 1

MATFEIAI 14 FOIVFTHYIFNE (OH2) MFIITRON FAFRCIY MADF A

LIBRARY-TXPE 1

MATERIAL 15 CARAON
NEITRON ENERGY MODF 1

LIBRARY－TYPE 1

MTEFIAI it ROROA

＊ 10	4813117001 L	017
＊11	4812117nnフL	C19
	4R13117nO3L	C17
	4813117004 L	P17
	48171170 OFL	C17
	4917117906L	c97
	4813117 AATI．	C17
	4812117AORL	P97
＊1？	4893117007 L	C17
	481319701 nL	C17
＊13	4812117011L	C^{17}

```
ilionagy Mata +1 +17 +n +A
A+0「のロ-
```



```
Q+21\cap\cap-1+12+^+1900-12+352n-1+12+?+1N10-12
```



```
0+514N-1+12+7+4241-14+A\cap4A-1+17+?+3,AO-14
Q+7ム\capA-1+12+?+72nO-14+11+A+N+12+7+11N1-1L
A+1N+? +17&-12 +177-12 +714-14 +5NA-1/
0 +799-14 +14?-14 +995-15 +E57-19 +? 5-19
```

＊10 481311R 0 OIL ＊11 4813118nnフ1． 48：3118nn2L 4812118004L 481211RO日5L 481211ROnRL 4813118007 L 481211ROORL ＊17 4912118Ancl 4817118日1月L 489ス17RA11

C17
C17
C17
C．17
$r 17$
817
r17
r17
r9．
「••
－．＂

MATFPIA！Iq IPAN

```
7I PRRAPY nATA +1 +1R +n +n
G+:\capつ14
0+794n-1+7n+?+309n-12+794n-1+76+?+25.18-13
8+795n-1+?6+?+7n64-12+707n-1+76+2+2.623-17
9+2n4n-1+7n+7+7?7n-13+2,3n-1+76+7+1318-13
9+33nn-1+7.6+7+1435-13+36nn-1+76+2+1n76-13
8+474n-1+26+2+74n1-14+5n7n-1+26+2+5441-14
9+595n-1+26+7+472?-14+6?7n-1+26+7+3269-14
8+978n-1+76+?+2755-14+1170+n+76+7+1494-14
8+1n+2+?A6-14 +969-14 +775-14 +977-15
A +2タn-15 +2N7-19 +718-15 +104-19
```

$* 10$	$4813119001 L$	$C 17$
$* 11$	$4819119 n 01 L$	$C 17$
	$4813119003 L$	$C 17$
	$48131190 n 4 L$	$C 17$
	$4813119005 L$	$C 17$
	$48131190 n B L$	$C 17$
	$4813119007 L$	$C 17$
	$48131190 n A L$	$C 17$
$* 12$	$4813119009 L$	$C 17$
	$4813119010 L$	$C 17$
$* 13$	$4813119011 L$	$C .17$

LIBRARY-TYPE 1

MATFRIAL 19 ZIRCONIUM

MATFRIAL ?
NIARIIM
71. TRPARY OATA $+1+3 n+n+n$

6401153
$8+3450-1+41+2+4822-13+34 A A-1+41+2+4196-13$
$8+336 n-1+41+2+3615-13+333 n-1+41+2+3 n 49-13$
$8+3320-1+41+2+2509-13+333 n-1+41+2+1994-13$ $8+330 n-1+41+2+1512-13+3550-1+41+2+1$ n72-13 $9+4030-1+41+7+6921-14+4780-1+41+2+4957-14$ $8+56 n n-1+41+2+3813-14+652 n-1+41+2+3077-14$ $8+874 n-1+41+2+2443-14+127 n+n+41+2+1986-14$ $6+n$

$\cdots 10$	48131200016	C17
*11	4813120003 L	C17
	4813120003 L	C17
	4813120004 L	C17
	4813120003 L	C17
	4813170006 L	C17
	4813170007 L	C17
	4813120008 L	C17
*12	4813170009 L	C17
\#13	481312001 LL	C17

*10	4813171001 L
*11	4e131210n?L
	$4813121003 L$
	$4813121004 L$
	4813121005 L
	4813121006 L
	48131210074
	4813121000 L
-12	48131210094
*13	$4813121010 L$

10	$4813122001 L$	C17
-11	48131220024	C17
	48191220034	C17
	40131220041	C17
	43191220051	C17
	48131220961	C17
	48131220072	6.17
	481912700 LL	C17
*12	48131220092	617
	48131220104	C17
*13	48131220112	C17

LIBRARY－TYPE 1


```
6anN1"
```



```
\primen
```

$\because 1$		$r i \cdots$
$\because 11$		r17
		C17
		Cil
		－17
		－17
		－97
		$r 97$
$\because 17$	4 $\therefore 1=1$ フ2nnol	r17
$\because 12$		－17

$\begin{aligned} & \because 1 n \\ & \because 11 \end{aligned}$	
	1939，12AnA1．
	45.129 .4 ¢nal
	$4 \cdot 1=1) \angle \cap n=1$.
	4－1－1，M，Arit
	4＇リ：
$\because 19$	
$\because 1$ a	$\therefore: 1: 10 \times n$

310		－17
$\cdots 9$		P17
	4912）＞Knn2	CP7
		C＇7
	4R121つ5nnt	1.7
	491？125nna	197
		$r 17$
	4R1：？¢ ¢nne	r97
$\because 19$	431719：nnot	r97
	4＊129－6nlol	177
$\because 1 ?$	49129？¢017	c17

LIBRARY－TYPE 1

＂Atrnal	manal	
	roncetitle：Ite	（pu 1．15PGut）
	onnconi Camotme：	
		.77

		$\because 90$		$r 97$
		＊11	4497176nn ${ }^{\text {a }}$	－17
				C17
				P17
			191297annel．	$r 97$
				P17
			A8121フAAA？	$r 17$
			4812！TAAM2！	r17
		$\because 17$		C17
	＋172－12			C17
	＋？？1－1 5	812	4 412176ヘ111．	197


```
<山.^E19
```



```
&.*
```

$\begin{aligned} & * 19 \\ & * 12 \end{aligned}$	$4212127 \mathrm{nn} 21$
	$4919177 \text { nค31. }$
	409 177nnıL
	1ड12？${ }^{\text {¢ }}$ 70n51．
	4¢1317TAnRL
	4がス1フフロペ！
4．7？	48121970 not
＋12	4912177nl

xin 4ig1219世nnt
$r 17$
$\because \therefore$ のーのノ

$r 17$

YPE 1

```
GHT
90
```



```
n4
```


HTI	
ON	03135
ER	0012
$51 U M$	0192
JM	00826
	00122

*10	48131910016	C.19
*19	48171aln	C17
	4813131003 L	C17
	4813191004 L	117
	4813131005 L	C17
	4813131006 L	017
	4813131007 L	C17
	4813131008 L	C17
$\cdots 12$	$48131310 n 92$	C17
*13	4813131n1nL	C17

.105
.045
.044
.446

*10	4813132 mlL	17
*11	4817137mnc	$C 19$
	4813132009 L	Cl 17
	4819127004L	P17
	4819132 mst	P!7
	4813132006 L	Cl7
	4813132007 L	C17
	481313200 AL	c17
*17	4813137009 L	P19
*13	4813197010L	P. 17

LIBRARY-TYRE 1

MATFRTA1 27	MAGNFTITF RON	RETE	
	CONSTITIFNTS	(RY WFIGHT)	
HYOROTIFN	- OnR	ALIMMINUM	0014
CARRON:	- $0 \rightarrow 1$	SII.ICON	. 176
OXYPGN	-305	POTASSIUM	- 004
SODIIM	- 005	CALCIUM	0020
MACAMESTIJM	- 801	IRON	-407

	*10	4813133001 L	P17
$A+9 n 3>0$	*19	4813133 nnst.	C97
$8+763 n-1+16+2+3460-13+2670-1+16+2+3115-13$		4813133003 L	C17
$8+775 n-1+16+2+2782-13+285 n-1+16+2+2466=13$		4813133004L	C17
$8+298 n-1+16+2+2143-13+3170-1+17+7+1876-13$		4813133005L	C17
$8+3450-1+18+2+1512-13+3910-1+16+7+1702-13$		481313300 LL	C17
$8+475 n-1+19+2+8843-14+5770-1+19+2+5875-14$		4819133007 L	C17
$9+6740-1+2 n+2+5319-14+765 n-1+19+?+4135-14$		4813133008 L	C17
$8+9780-1+18+2+3020-14+133 n+n+17+7+2030-14$	*12	4813133009 L	C.7
$6+n$	$\because 13$	481313301 nL	C. 17


```
71. IRRARY DATA +1 +23 +n +n
6+0\cap?71
8+275n-1+24+2+3664-13+276n-1+74+2+3307-13
8+28nn-1+24+7+2872-13+7R5n-1+? 4+7+7477-13
8+294n-1+24+2+2115-13+3n60-1+24+2+1754-13
8+326n-1+24+2+14n3-13+361n-1+24+7+1^7A-13
8+4310-1+24+2+7593-14+514n-1+23+7+5 c.52-14
8+6070-1+22+2+4373-14+6920-1+23+2+3378-14
8+8410-1+23+2+2427-14+1250+0+23+2+1786-14
6+0
```

*10	4813134 nnlt	919
*11	4R131340021.	9
	4813134002L	017
	4813134004 L	997
	4813134005 L	C97
	4813134 nnbl	C17
	4813134007 L	C17
	4813134008 L	C17
*12	4813134009 L	C17
*13	4819134010 L	C17

LIBRARY-TYPE 1

LIBRARY-TYPE 2

LIBRARY－TYPE 2 （cont＇d．）

$2352-3+1$ n3459－1＋173711－2－448225－2＋218679－4－1 $13785+1$	4893101057 L	C17
78537－2＋339787－1＋11199A－2－407451－2＋385340－4－836957＋0	481310105 L	c． 17
	4813101059 L	6.17
－1637n9－10＋814907－9－7n吹9－1n＋129731－3－972n75－5＋79880n－1	48131010601	C17
	4813101061 L	－17
＋571．426－3－677155－14427244－7－57A974－2－1673 7－7－15317541	48121010B2L	C17
	4R12101062L	C17
＋167769－3－468876－1＋355690－7－509303－2－120719－3－136178＋1．	4893101064L	C17
	4813101005 L	C． 17
－148655－3－181919－1＋27146H－7－732874－2－683507－4－116517＋1	4813101066L	C． 17
－597393－3＋770＠n4－7＋174158－？－70？497－2－331142－4－102558＋1．	4813101067L	C． 17
117 na6－7＋312610－1＋117109－7－417761－2＋764568－4－856781＋	4813101068 L	$r 17$
	48131010¢9L	$e 17$
	48131010701	19
	4813101071L	C． 17
	$481310107 ?$ L	C17
	4812101072 L	C17
		P17
	4813101075 L	C17
	4813101076L	C17
267170－7－716944－1＋7 75971－2－907314－7－771754－4－103902＋1	48131 ก1077L	C17
	4312101078 L	C17
	4813101079 L	C17
	$4813101080 L$	C17
		C17
	48131 108）L	C17
	4813101083 L	C17
	48121 1n84L	C17
	48191 1085L	C17
	48191 AIARRL	C． 17
	48121n1年1	C17
915532－2－514n1n－1＋265334－2－149565－1＋722769－3－967185＋n	4813101088 L	C17
	$4813101089 L$	C17
＋13571？－3－214303－1＋177770－？－479170－2－731508－4－77346840	4813101090 L	C17
490561－3＋？ 0 ¢ $071-7+1 \cap 9176-9-14-998-7-921741-4-648747+0$	48131010916	C17
	4813101097L	C． 17
	48131 11n93L	C17
？$\cap 38+1-2+1274764 \cap-14 n 719-2+136755-7-837775-4=797799+0$	4813101094L	C 17
	48131 11095L	C． 17
178n57－9－31665n－7476？790－$-477 n 37-4=323 n 75-4+571 n 8 n+n$	48131 n1n98L	e17
235672－7－1110？n＋n＋7456n？－9＋？5301n－1－572257－3－126274＋1	48131 1n97L	C17
	48131n1n98L	C17
	4813101 ¢90L	C17
＋101143－2－6．5．6451－1＋204． $64-7-200758-1+340291-3-853985+0$	$481310110 n \mathrm{~L}$	C17
＋697 7 13－3－6n7661－14263718－2－156265－1＋606404－4－502493＋0	48131 11n1L	617
279？71－？－3n5n76－1＋171599－2－242153－1＋598641－3－647823＋0	48131011 ¢2L	C17
＋31073n－5－2436？3－1415 5 4 0－2－153681－1＋961991－4－264863＋0		C17
＋257854－3－110973－1＋036735－3＋756537－7－453993－3－147698＋	48131 1194L	C 17
$112291-2+443530-1+677611-4+212409-1-833555-3-223587+0$	4812101105L	C． 17
	4813901106L	C17
	4813101107 L	C17
－29048？$-7+121991+n-44 n^{2} 55-7+754801-2-746986-2-137619+0$	$48131 \mathrm{n1101}$	C． 17
3n1779－？＋16225？＋n－1n？1n0－7＋7n2787－1－97756？－2＋18！ $761+n$	48131 11＾9L	117
\＃ 18	481＊1＾111成	P17

4813101057 L C17
10105AL 48131n10GAL 4813101061 L 4812101062L 4ำ101062L フ10 $4813101066 L$ 4813101067L 4813101068 L 48131n1069L 481310107nL 48931n1071L 4RI31n1n7？ 489ワクローグムし 4812101075 L 481210107KL 48131 月1077L （2101078L 4813101080L 48121n1n81L 48171月1n8）L 4B131010R3L 48131n1n84L
 481？1A1n87L 4813101089 L 4813101089 L 481310109 nL 489า10109ア 4891 1n10991 4813101094L 48131 11n95L 48131n1n98L 31n1n9 48T31ningal 48131 ningol 48131n11n1L 48131日11n2L 48131n11n9L 48131n1104L 4812101105L 12）01106L 4813101104L 48131n11n9L 48121ヘ111月1．

C． 17
6.17
$C 17$
817
C17
617
C17
C． 17
6.17

617
$r 17$
$C 17$
C17
C． 9
C17
817
817
C17
Cll
$C 17$
C17
C17
$C 17$
C17
C17
C17
C17
C17
e． 17
C17
C17
C17
$C 17$
C17
$C .17$
C17
C17
0.17
$C 17$
C17
C． 17
C17
C17
$r 17$
C17
C17
C17
． 17
C17
C17
C17
$r 17$

4813101111 L 481310111？L 48131 A1113L 48131 A1114L 48131 Al119L 48131A111．6L 48131 O1117L 48131A111AL 48131n1119L 4813101120 L 48131 11121L 4813101129 L 4813101172L 4813101174 L 4813101125 L 481310112 AL 48131 11127L 48131月117RL 48121A1179L 48131n113nL 4R121日1171L 48131n1132L 4813101133L 4813101134 L 4813101135 L 4813101136 L 4812101137L 48131 Al 13 AL 48131 11139L 481910114 nL 4813 1月1141L 48131A1147L 48131 111432 48131n1144L 48131 ก1145L 4813101146L 48131n11472 48191 A114RL 4813101149 L 48131 n115nL 4813101151 L 48131n1157L 48131 11153L 4813101154 L 4813101155 L 48131月1156L 4813101157 L 481310115 AL 48131 11159L 4813101160 L 4813101161L 48131 11169L $48191 n 1168 \mathrm{~L}$ 48131月1164L 48131n1169L 48131A116RL

C17
$C 17$
C17
C17
$C 17$
C17
C17
C17
C．17
C17
C 1.7
$C .17$
C） 7
C17
C17
C17
Cl 7
6.9
r97
$C 17$
C17
$C 17$
C？ 7
Cl7
C17
C． 17
617
C17
C． 17
C17
$r 17$
P17
C 9
017
C． 17
C17
C17
0.17

C． 17
C17
$C 17$
617
C17
$C 17$
C17
C17
C17
C17
$C .17$
C17
6.17

C17
C17
C． 17
P17
$r 17$

LIBRARY－TYPE 2 （cont＇d．）

$-873 \cap 84-4-23 \cap 667-7+278361-7+371416-1-55057.5-3-252417+1$ $-485666-3+221465-3+778496-2+276940-1-397935-3-21497 n+1$ $-305379-3+376724-3+240958-2+261435-1-427595-3-207447+1$ $-420365-3+946297-2+194448-7+232616-1-377645-3-187966+1$
 $-847662-3+367945-1+787954-3+184766-1-79$（1819－9－14R047＋1 $-987534-3+616279-1+775997-5+731538-1-314976-3-136154+1$ -1 n5n75－7＋819578－1－623562－3＋7n2979－1－267497－3－1 NA34541 $-2867 \cap 4-2+376949-1-356 \cap 69-2+156964-1-227538-3-44 \cap 4 \cap 9+n$ $+138243-9-647467-8+691216-1 n+557776-2-1 n \cap 694-3+1 n 6348+n$ $+14171 \cap-3+3 \cap 4939-7+26 \cap 871-2+40 \cap 94 \cap-1-691$ 月28－3－278895＋1 $+148896-3-292038-7+757974-2+3$ 月 $2763-1-60 \cap 768-3-246547+1$ $+25645 \cap-3-46 \cap 726-2+233180-2+369991-1-569712-3-231961+1$ $+319928-3-160423-1+737388-7+277240-1-488041-3-195827+1$ $-168970-3+967157-2+172180-2+231772-1-403170-3-181323+1$ $-278393-3+929667-2+134697-2+272453-1-395504-3-155801+1$ $-543366-3+34779 A-1+592548-3+209355-1-352193-3-143568+1$ $-65962 n-3+611734-1-215777-3+276657-1-396876-3-139953+1$

 $+1 \cap 29 \cap \cap-2-118 \cap 46-1+242 \cap 72-7+50296 R-1-804000-3-261216+1$ $+993850-3-152 n 33-1+727776-2+531369-1-827677-3-254314+1$ $+114515-2-176677-1+21$ n $215-2+485204-1-773647-3-233148+1$ $+821790-3-136527-1+188289-2+332558-1-668746-3-207.940+1$ $+852874-3-140489-1+156612-?+377868-1-585810-3-173578+1$ $+438636-3-206865-7+108278-7+772797-1-544430-3-150314+1$ $+337 \cap 69-3+157714-1+416126-3+754917-1-49 n 778-3-127963+1$ +4942 ก $6=5+474854-1-443172-3+327147-1-543300-3-127130+1$ $-801397-4+699983-1-103748-7+75574 n-1-459874-3-86479+0$ $-556399-3+176777+n-18$ An 15－7＋74n574－1－4137n7－3－746365＋n $-1 \cap 3134-2+14 \cap 7 n 1+n-1982 R 8-7+316 \cap \cap n-1-480676-3-7447 \cap 4+n$
 $+96 \cap 476-9-244 \cap 53-7+174623-9+736457-7-19 n 1 \cap 4-3+485 n 37+n$ $+353567-2-877778-1+257736-7+474301-1-104300-2-166457+1$ $+148637-2-2 n 7425-1+2 n 674 n-2+577457-1-799333-3-228524+1$ ＋242n13－2－543171－1＋2n8263－2＋7n228n－1－123539－2－21（87441 $+198284-2-195 n 59-1+11977 n-2+763629-1-117743-2-248921+1$ $+246511-2-579988-1+130600-2+368899-1-862943-3-123306+1$ $+227813-2-3446 \cap 9-1+7 n 7772-7+4666 \cap 7-1-8687 n 3-3-147648+1$ $+157437-2=1956 \cap 6-1+282 \cap R 7-3+413383-1-931534-3-1$ nn930＋1 $+186852-2-552125-2-346 n^{2} 30-3+44500^{2}-1-944658-3-89834040$
 $+118483-3+137 n \cap n+n-343770-7+978446-2-226175-3-3377 n 4+n$ －764361－348731n7－1－2n3546－7－281716－1－724588－3＋1n日844＋1 $-75 \cap$ ？ $1-4-1 \cap 5123+n-149712-7+79 ? 557-1-555347-3-355375+n$

4813101167 L 4813101168 L 4813101169 L 48171 1117nL 48131＾1171L 4813101172L 48131ヘ1173L 48131 N1174L 48131 11175L 48131 A1176L 48131 ค1177L 48131 N117PL 48131n1179L 481310118 LL 4813101181L 4813101182 L 48131 11183L 48131 11184L 48131 11185L 48121月1186L 4812101187 L 48131 11188L 48131 A1189L 4813101190 L 48131 11191L 4813101192 L 4813101199 L 4813101194L 48131 11195L 4813101196 L 4813101197 L 481310119 AL $48131 n 1199 \mathrm{~L}$ 48121A17nAL 48131A17n1L $4813101702 L$ 48131 n12n3L $48131 n 12 n 4 L$ 48131012 त5L $48131012 n 6 L$ 48131n12n7L 48131 112n8L 4813101209 L 48131 1121AL 48131A1？11L 4813101212 L 48131 A1213L 48131 1n1214L 48131 11215L
$C 17$
C17
C17
C17
C． 17
C17
e． 17
C17
C17
$C 17$
8.17

617
C17
C17
$C 17$
C17
C17
C17
C17
6.17
$C 17$
617
C17
C17
C17
$C 17$
C 17
C17
C． 17
C17
C 17
C17
P17
P17
0.17

C17
$C 17$
C17
C17
C17
P17
C17
C17
C17
C17
P17
017
C17
C17

 8．\quad 141247－4＋13651n－1＋464276－4－461857－1＋74nR71－3－614147－1
 $8 \quad+1$ n5754－3＋183R44－1＋15n613－3－6973R1－1＋36545R－3＋86ヘ974＋n R．$\quad+174706-3+572161-7+75$ n257－4－67364n－1＋361n74－3＋1n373n＋1
$-595812-8-13262 \cap-5+167648-7-3 \cap 6796-1+142982-3-784679+0$ $+253794-4+474491-1+5485 ? 1-4-77 \cap 561-1+419655-3+108175+1$ $+447872-3+43577 n-1-147648-7-760751$－ $1+1 / 71774-3+179788+1$ $+876847-4+194155-1+201343-4-365521-1+179788-3-181519+0$ －710133－8＋277167－5－716650－7－315749－1＋138339－3－110737－1 + 218183－3＋732385－1＋7n6737－4－8：5919－1＋449984－3＋12？436＋1 $+2869 n 4=3+573858-1+368338-4-517579-1+76687 n=3+147639+0$ $+185284-3+381518-1+1$ nのn77－7－1R1n3？－1＋63n58n－4－1n7987＋1 $+739 \cap \cap 8-3+174688-1+974596-4-5494 n 4-1+787943-9+775664+0$

 $+146171-3+665738-1+21 n 614-2+39382 n-1-743117-3-327487+1$ $+141936-3+729060-1-897476-4+1$ A911n－1－133n79－3－245566＋1 +2 24335－3＋594n73－1－？5？399n－3＋175937－1－115683－3－191058＋1 $-131549-7+22697 n-5-297487-7-73803 n-1+44 n 747-3+184667+1$ ＋6191？n－4＋132665＋n＋230954－？＋237323－1－199114－3－32732R＋1 $-127271-3+175476+0+176575-3+515707-1-756650-7-434115+$ ？ $-690472-4+174562+n+60831 ?=4+504747-1-350345-2-410345+1$ $-333684-3+1731$ n $7+n-69414 n-4+40 n 5 n 3-1-339 n 73-3-386.005+1$ －1745n4－2＋1n2175＋n－159n27－？＋197454－1－157781－3－735061＋1 $+7377 n 1-2+8$ n4n95－1－77537n－2－75n94R－1＋534345－2＋770910＋1 $-291038-9+175915-5-144255-7-190717-1+74831 n-4+43478 n-1$

 $-597112-3+191744+n-15777 n-3+$ K2n63n－1－437719－2－469R77＋1
 $-477766-3+179146+n-5$ n5R12－？－775760－3－377589－4－1697R1＋1 $-370330-3+153571+0-653777-3-921226-1+51476 n-3+73059 R+1$ $-325957-3+1$ n7678 + n－576n54－3－6．73804－1 $+333803-3+157$ 794＋1 $-738651-8+346457-5-349746-9-77 n 431-1+876 n 89-4+5 n 7446+n$ $-778941-3+77 n 7 n 3+n-593690-3+771197-1-63 n 79 R-2-657 n 09+1$ $-7765 n 6-3+763739+n-6 n 1800-3+10 n^{2} 2 n+n-651705-3-651707+1$ $-783985-3+751897+n-618 R 73-2+1 n \cap 13 n+n-651 R 74-2-6371 R 6+1$ $-834899-2+935176+n-581617-2+$ RANAN1－1－46244R－2－479195＋1 -8561 n6－3＋739867＋n－0n1757－3＋797794－1－78337n－3－346531＋1 $-485574-3+1936 n 7+n-7 n 2361-3-373556+n+71 n 5 n 4-2+142795+$ ？ $-9457 n 5-3+17377 n+n-937686-3-777419-1+11758 n-3-766956-1$ $-687618-3+8$ n5139－1－317516－3－176114－1＋56n787－4－1 11714－1 $-296859-8+862405-6-966747-9-114670-1+767410-4+373854+0$ $+12 n 675-3+282999+0-11 n 427-2+134077+0-868537-2-790890+1$ $+675793-3+295225+0-147657-7+1 n 1719+0-658357-3-647734+1$ $+419661-3+308727+0-17$ ПRフ7－7＋734818－1－494320－3－518805＋1 $+365259-3+751793+n-110865-2+135781+n-888978-3-74568 n+1$
 $-1469 \cap 7-2+744 n 19+n-16644 n-7-5749 n 7-7-769 \mathrm{R} 7 n-4-119819+1$
 $-6455 n 1-3+176490+n-925497-3+242495-1-719572-3-176974+1$ $-228561-3+919677-1-959656-3+77280 ?-1-225318-3-146508+1$ $+119326-8-142497-6+139698-8+724937-2-681 \cap 16-4+624731-1$ $+1517 n 2-2+774 \cap 88+n-1534 n 4-2+15 \cap 174+n-996 n 39-3-835425+1$

481210191 AL 48131n1717L 481910！71RL 48131 の1719L 48131n172AL 48131n1721L 48131n1727L 48131n1773L 4813101724L 4813101775 L 48131017261 4813131227L 48131n172RL 48131n1？29L 48131 ค173 nL 48171n1731し 4813101737L 48131～1733L 48131～1734L 4813101735 L 48131n173 KL 48931017371． 481310173 AL 4813101739L 48121月174nL 4813101241L 4R131永747L 48191n1742L 48131017441． 48131n1746L 48191n124KL 4817101747L 481910174 AL 48131n1249L 4819101730 L 48131月17811． 48131 11759L 4813101753 L 48121 n 1354 L 48121n175月L 48131の125RL 48131～1257L 48131 n125RL 48131 n1259L 4813101760 L 4813101761 L 4813101767L 4813101262L 48131 11264L 48131～1265L 48191の176月L 48121n1767L 48131 N1268L 48131 n1269L 4813101770 L 48131n1771L

C17
0.19
6.9 C97 017 6.17 C． 17 C． 17 e17 C17 017 C． 7 617 C17 C17 $r 17$ C17 e） 7 C17 C17 C． 17 C17 C17 C17 617 6.17 r97 P97 C97 C17 C． 7 C17 C． 17 C． 17 CIT 817 C17 C． 17 P17 P19 $r 17$ $r 17$ 617 C17 $C 17$ C17 C17 $C .17$ C17

LIBRARY－TYPE 2 （cont＇d．）

$+175515-?+$ ？ $555 \cap 8+\cap-1929 \cap 6-7+10 \cap 16 \cap+0-686869-2-622698+1$

 $+1 \cap \cap 754-2+747 n 11+n-175941-7+1 \cap 2644+$ n－727721－3－579754＋1

 $+5 \cap 3496-9-1119 \cap \cap-6+1 ? \cap 49 \cap-7+79 \cap 939-1-7 \cap 9675-3-596 \cap 12+n$ $+28797 ?-7+75623 n+n-1 R \cap 4 \cap n-?+11 ? 274+$ n－9n4034－3－667537＋1 $+277036-2+366684+0-198 ? 9 ?-7+4 \cap 7772-1-773698-3-258100+1$

 $+339413-7+179 n 96+\cap-770776-3+576 ?, 5-1-5 R 3566-3-959210+1$ $+3617 \cap 9-7+142 R 96+\cap=142127-7-524778-1+105578-3+105757+1$

 $+375703-7+10077^{2-1-165 \cap つ 4-?-712 つ A-1-945447-4+117465+1}$
 $+296158-2+872429-7-101735-7-755067-1-52135 n-4+171798+1$ $+177533-8-61281 \cap-6+607671-8-21 \cap 128-2-119537-3+799078+0$ $+585991-2+977715-1-798751-2-654917+n+369684-7+246517+7$
 $+360564-2+171646+0-75000 ?-3-32740240+158670-7+122484+7$
 $+668893-2+671 n 69-1-135977-7-736729+6+117939-7+808617+1$

 ＋478162－7－487560－1－05c71n－2－7n9ヘ224n＋137252－7＋11651547 ＋53268R－？ $+549999-2-667417-1-120172-2-17851 n+n+789137-3+7$ An211＋1 $+5 \cap 9166-2+3617 n 5-1-2 n 1479-7-9301 \cap 7-1+362424-3+4 \cap 5887+1$ $+777.692-2-159597+n-115351-7-56 R 7 ? 1-1+166 n 26-3+241887+1$

4813101277 L
$C 17$ 4817101772L C17 4819101274L 48131～1775L 48131n177RL 4812101777L 48121A1770 48121A1770L 49121日リプAL 4813101981 L 48121n1787L 4912101782L 4813101784L 4R12101785L 48121 11 2 ARL ． 4897191787L 49121A1790L 4R121A17ROL 48121月179日L 4R121A17911． 48191月1709L 48121n1292L 48131A1794L 4812101795L 4813101796 L 4813101297L 491210170RL 4812101709L 48191013nnL 48129n13n1L 48リスリア13nクL 48121n13n2L 48121nl3n4L 48131n1305L 48131013 nfL 48131 131307L 48131013 nRL 4812101709 L 4819101？1nL 48171 13111 48191n171～L 48131ヘ1319L 48131＾1314L 4812101319 L 48191 Al 31 RL 48121n1317L 48131n131月L 48131 1319L 48131n132nL

C17
$C 17$
e17
C． 17
817
e97
C17
C17
$C 17$
C17
6.17
$C .17$
C17
C17
P17
C17
C．17
P17
C． 17
6.17

C． 17
6.97
0.17
6.17

C97
6.17

C17
el7
$C .17$
P17
C． 17
C17
C． 17
$C 17$
6.17
el 17
C17
C17
6.17
$C 17$
P17
$P 17$
C17
C17
617
（17
C17

LIBRARY-TYPE 2 (cont'd.)

1. Babb, D. D., Keller, J. W., and McCray, E., Curve Fits of Gamma-Ray Differential-Energy Spectra. Convair-Fort Worth Report MR-N-251 (NARF-59-36T, November 1959). U.
2. Goldstein, H., and Wilkins, T. E., Calculations of the Penetration of Gamma Rays. Nuclear Development Associates Report NYO-3075 (NDA-15C-41, June 1954). U.
3. Beissner, R. L., et al., Shield Design Methods. ConvairFort Worth Report FZK-9-135 (NARF-58-44T, October 1958) (Section II). SRD.

An unclassified syncpsis of this reference appears in:
French, R. L., "Calculating Gamma Spectra from Reactors." Nucleonics 18 (March 1960), 114-117.

French, R. I.,g and Eggen, J. B., "Fast-Neutron and Gamma Spectra for BSR." Nuclecnics 18 (March 1960), 117-120.

Eggen, J. B., French, R. L. and Reetz, A., "Past-Neutron Spectra and Dose Rate Calculations." Health Physics 5, 119-125.
4. Frerch, R. L., Qecmetries Aspects of Reactor Shield Penetration Calculations. Convalr-Fort Worth Report F2M-1806 (June 1959). U.
5. Kloster, R. L., Analysis of the Moments Method Experiment. conva1r--Fort Worth Report FZK-9-138 (NARP-59-33T, September 1959). U.
6. Babb, D. D., and DeWames, R. E., An Experiment to Test the Extension of the Moments Method of Calculation to Finite Media. Convair--FCrt Worth Report MR-N-228 (NARP-59-9T, March 1959). U.
7. Berger, M. J., and Doggett, J., "Reflection and Transmission of Gamma Radiation by Barriers: Semianalytic Monte Carlo Calculation." Journal of Research of the National Bureau of Standards 56. (February 1956). 89-98.

* All GD/FW reports putilshed prior to July 1961 are referenced as Convair-Fort Worth reports.

8. Chapman. G. T , ard Storris, C. L., Effeotive Neutron Removal Crose Secticns For Snieiding. Atomic Energy Commission $\overline{\text { K.eument AECD } 3978 \text { (September 19, 1955). U. }}$
9. Petersor, D. M. Radiaticn Heating Methods. Convair-Fort Worth Report MR-N-240 (NARF-60-5'. a Jine 1960). U.
10. Aronson, R_{0} et 22^{2}. P Penetration cf Neutrons trom Point Isotropic Moroenergetic Srumses ir Water. Nuclear Development Association

11. Krumbeir. A. D., Summary of NDA Unclassified Results of Moments Caloulations for the Penstration of Neutrons Through Various Materials. Nunlear Develcoment Ccrporation of America Report NDA-92.2 (Augus 1957).
iE. Gcidstein, H_{0}, ard Krimesin, A. D. Mcments Method Calculation of the Penetration of Neut.rons from a Point Fission Source Thrcigh Berylilum and Beryllium Qxide. Nuclear Development C:rpozation of Amer1 a Repcrt NDA 2124-1 (May 1960). U.
i3. Herderson, B. J., and Gerardo, H. A., Penetration of Veutrons from a Piint Fissicn Scurce Through Lithium Hydride. General Electric Report DC-50~7-14 (iuly 1960).
12. Grudsteir, Giadye Write, X-rav Atteruation Coefficients from jo kev ic $\mathbf{j 0 0} \mathrm{Mev}$. $\mathrm{Na}: 1 \mathrm{c} 7 \mathrm{al}$ Bureau if Standards Circular 583 ADril 195\%. !.
jう. Hughes. D. J.g and Carter. R. So, Neutron Cross Sections: Angular Distributicns. Brcck National Laboratory BNL-400 (Jure 1956). J .
13. Troubetzkcy, E. Sos Fast-Neutron Cross Sections of Iron Silicon, Aluminum, and Oxygen. Nuclear Development Associates Repcrt NDA 2:11-3, Vol. C (Ncvember 1 1959). U.
RectrentNo. Copies
RSE NI 2
ASPAT: 2
$\operatorname{ARHE} \mathrm{T}$2
ASTMPE-Z 2
ASBHP:STM.22
mi.2.ETDNO 3
ANPRI2
GD/ernvatr 1
 1
TIS 20
Ioohern-Ga. 1
Braine AFPR 1
Doucias. Dept 426 1
North Arerican 1
Pratt and Whitney 1
ORNL 1
NDA 1
Naval Ord Lab. 1
Battelle-REIC 1
Air Univ. Lib. 1
Radionlane 1
Rorubilo Avia. 1
Vought-icro. 1
AFSWC (Tech. Inf.) 1
NASA-MSFC 1
NASA-iash. 1
AFSC-NPYO 1
AFRDC-AE 1
ASRSMX- 1
ASRKMA 1
TRG 1
ASTIA 10
Sandia 1
Bureau of Ships 1
DOFL (Chier-230) 1
aD/Astro 1
Aeroject - General Nucleonics 1

[^0]: 1 The subscript b denotes initial energy, and b increases as initial energy decreases; 1.e., $b=1$ denotes 10 Mev, $b=2$. denotes 9 Mev , etc.

[^1]: 1 The moments-method attenuations for neutrons have been fitted to a polynomial of the form $4 \pi r^{2} P_{2}^{n}=\exp \left[C_{1} W^{4}+C_{2} W^{3}+C_{3} W^{2}+\right.$ $\left.C_{4} W+C_{5}\right\}$ and the coefficients for this polynomial are insted in Library 1 in order of descending energy; the last set is for the dose-rate curve. It has been found neceasary to section these curve fits in order to obtain a better fits hence, two sets of coefficients are shown in Library 1 , one for $W \leq B P$, and one for $W \geq B P$ (BP is an arbitrarily chosen segment, and for the data shown in Appendix C the most comon value is $60 \mathrm{gm} / \mathrm{cm}^{2}$).

