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PROBABILISTIC INDEXING

A Statistical Technique For Document
Identification And Retrieval

(SUMMARY)

In August of last year, in an internal paper entitled ""Probabilistic
Indexing: A Statistlcal Approach to the Library Problem!'', one of
the authors propo ed a novel approach to the problem of indexing
and searching for documentary data in a mechanized library. 1 By
December 1958 so preliminary experiments with Probabilistic
Indexing had been executed and the results were published in a
Ramo-Wooldridge repgrt, entitled '"Some Experiments with Prob-
abilistic Indexing" 2 hi§ present report describes sewmwe recent
experiments that were made to evaluate the re-
trieval ef ctiveness of new method of literature indexing and

search1ng'B In addition several refinem and extensions of the
basic notions of Probabilistic Indexing 2 o

e

1"Probabilistic Indexing: A Statistical Approach to the Library
Problem', M. E. Maron, August 1958.

2"Some Experiments with Probabilistic Indexing'', M. E. Maron,
J. L. Kuhns and L. C. Ray, December 1958.
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PART I.

THE PROBLEM OF INFORMATION
IDENTIFICATION AND RETRIEVAL

(SUMMARY)

The basic function of a library computer is to accept as inputs, re-
quests for information, and to supply as outputs, a list of those
documents which are most relevant for each request. In conve-
tional systems the information content of each document is 7 :nti-
fied by assigning to it a set of index tags and the search co* ists of
finding those documents whose tags are logically compatiblie with
the tags of a request. Because there is no precise relationship be-
tween the tags and the subjects that they denote, the search ''strategy"’
which consists of matching essentially noisy tags causes the class
of documents selected by a request to contain irrelevant documents
and, even worse, to exclude relevant documents.

The technique of Probabilistic Indexing starts with the recognition
that index terms are noisy and then introduces the mathematics of
uncertainty (viz., the calculus of probability) in order to compute

a probable relevance number for each document selected by a re-
quest. Probablistic Indexing involves the assigning of weights to
the index terms that are used to tag the documents of a library.
These weights, in addition to statistical data concerning the library
usage, are then used by the library computer so that, given a re-
quest for information, an inverse statistical inference can be made
in order to derive a number (called the ''relevance number'') for
each document, which is a measure of the relevance of the document
for the requestor. The result of a search is an ordered list of those
documents which satisfy the request and ranked according to their
relevance number. The technique of Probabilistic Indexing is ex-
tended so that a request may be elaborated upon automatically, in
the most probable direction, so as to increase the probability of
selecting relevant documents, while the use of the computed rele-
vance numbers allows irrelevant documents to be rejected.

-1 -




1. INTRODUCTION

1.1 Initial Remarks About Information Retrieval

In recent years there has been increased attention given to the problem
of designing, building and using an automatic library system which can
accept and store large amounts of documentary data (as for example,
that contained in books, journals and pamphlets of all sorts) so that the
information may be retrieved rapidly upon subsequent request. The re-
quest for information might concern a single rather specific item of
data or it might concern a broad class of information relevant to some
desired subject matter. Regardless of the exact category that we might
consider, it is quite clear that the importance of the over-all problem
of information retrieval lies in the fact that information is the primary
nutrient without which science, government, industry {(and society itself)
cannot thrive and we are set back to the extent that valuable information

becomes inaccessible in our libraries.

1.2 Limitations and Extensions of Retrieval Systems

In what follows we have confined our attention solely to the considera-
tion of an information retrieval system. Once the basic conceptual
preblems of information identification, storage and retrieval have been
successfully managed one can turn attention to problems concerned with
extending the range of automatic information handling. That is to say,
when dealing with documentary data (expressed in ordirary language)
one might like not only to store and retrieve, but, in addition, to per-
form the following operations on the information: autornatic analysis

to detect and remove redundant information, automatic abstracting of
relevant information, automatic verification of information (i.e., given
some items of data, decide whether or not they are inconsistent with
any other data already in storage), automatic deduction (i.e., logical
derivation), automatic correlation of data so as to establish trends and
deviations . om trends, and so on. It appears that as a first step in the
direction of general purpose information handling, as typified by the
above examples, the problem of information identification and retrieval

must be met and dealt with successfully.

-2 -




1.3 A Major Difficulty

There are a number of obvious difficulties associated with the so-called
"library problem'" (i.e., the problem of information search and retrieval)
and the one usually cited relates to the fact that documentary data are
being generated at an alarming rate (the growth rate is exponential --
doubling every 12 years for some libraries) and consequently, considera-
tions of volume alone make the problem appear frightening. However,
the heart of the problem does not concern size, but, rather, it concerns
meaning. That is to say, the major difficulties associated with the li-
brary problem concern the identification of information content--the
problem of determining of two items of data which is '"closer' in mean-
ing to a third item --the problem of determining whether or not (or to
what degree) some document is relevant to a given request, etc. In or-
dinary language there are no rules which prescribe how words should

be selected and combined in order to express various kinds and shades

of meanings. It is because ordinary language is vague and ambiguous
and because there are no rules which allow us to manipulate the infor-
mation on the basis of its meaning that the problem is so complex. This
then is the heart of the problem and we shall have more to say about it

subsequently.

1.4 Levels of Consideration

The problem of an automatic library can be examined at several levels
ranging from the equipment frame of reference to a basic information
flow perspective. There have been a number of "hardware'' solutions
to the problem of library size (e.g., use of microfilm, microcards,
minicards, etc.) but since the major problem is logico-linguistic, we
shall cast the problem on the conceptual level. Thus, we propose to
make an analysis of the logic of the problem, to describe a technique
for dealing with the problem, to present some logical and experimental
data to support cur technique and to lay aside, at least for the present,
any considerations dealing with the physical implementation of the

technique.
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2. THE CONVENTIONAL APPROACH TO AN AUTOMATIC RETRIEV AL
SYSTEM

2.1 The Role of Indexes

Because, at least for the immediate future, no machine can actually
read a document and decide whether or not its subject matter relates to
some given request subject, it is necessary to use some intermediate
identifying tags; namely,an indexing system. An index to a document
acts as a tag by means of which the information content of the document
in question may be identified. The index may be a single term or a set
of terms which together tag or identify the content of each document,
The class of terms (whether it be a classification indexing system, co-
ordinate indexing, etc.) which constitutes the allowable vocabulary for
indexing documents in a library is the common language which bridges
the gap between the information in the documents and the information

requirements of the users.

2.2 The Assignment of Indexes

In principle, an indexer reads an incoming document and then selects
one or several of the index terms from the "library vocabulary' and he
coordinates the selected terms with the given document (or its acces-
sion number). Thus, the assignment of terms to each document is a go
or no-go affair--for each term either it applies to the document in ques-
tion or it does not. Furthermore, the process of indexing information
and that of formulating a request for information are symmetrical in the
sense that just asthe subject content of a document is identified by co-
ordinating to it a set of index terms, so also, the subject content of a
request must be identified by coordinating to it a set of index terms.
Thus, the user who has some particular information need identifies this
need in terms of a library request consisting of one or several index

terms or logical combinations thereof.




2.3 The Notion of Semantic Noise

The correspondence between the information content of a document and
its set of indexes is not exact because it is extremely difficult to specify
precisely the subject content of a document by means of one or several
index words. If we consider the set of all index terms, on the one hand,
and the class of subjects that they denote, on the other hand, then we
see that there is no strict one-one correspondence between the two. It
turns out that given any term there are rmany possible subjects that it
could denote (to a greater or lesser extent) and conversely, any parti-
cular subject of knowledge (whether broad or narrow) usually can be
denoted by a number of different terms. This situation may be charac-
terized by saying that there is '"'semantic noise'' in the index terms.
Just as the correspondence between the information content of a docu-
ment and its set of indexes is not exact, so also the correspondence be-
tween a user's request, as formulated in terms of one or many index
words, and his real need (intention) is not exact. Thus, there is se-
mantic noise in both the document indexes and in the requests for

information.

One of the reasons that the index terms are noisy is due to the fact that
the meanings of these terms are a function of their setting. That is to
say, the meaning of a term in isolation is often quite different when it

appears in an environment (sentence, paragraph, etc.) of other words.

The position and frequency of other words help to clarify and specify
the meanings of a given term. Furthermore, individual word meanings

vary from person to person because, to a large degree, the meanings
of the words are a matter of individual experience. This is all to say
that when words are isclated and used as tags to index documents, it

is difficult to pin down their meanings, and, consequently it is difficult to
use them as such to accurately index docurnents or to accurately specify

a request.




2.4 Conventional Stopgaps

Many workers in the field of library science have attempted to reduce
the semantic noise in indexing by developing specialized indexing sys-
tems for different kinds of libraries. An indexing system tailored to a
particular library would be less noisy than would be the case otherwise.
(In a sense, to tailor an index system to a specific library is to apply

the principle of an ideoglossary, as it is used in machine language trans-
lation, to remove semantic ambiguity.) In spite of careful work in the
developing of a '"best' set of tags for a particular library, the problem

of semantic noise and its consequences remain, albeit to a lesser extent.

Another attempt to remove the semantic noise in request formulations
has to do with the use of logical combinations of index terms. That is
to say, if two or more index terms are joined conjunctively, it helps

to narrow or more nearly specify a subject. On the other hand, the same
set of terms connected disjunctively broadens the scope of a request.
Thus, using logical combinations of index terms one would hope to either
avoid the retrieval of irrelevant material or avoid missing relevant
material. However, although a request using a set of index terms
joined conjunctively does decrease the probability of obtaining irrele-
vant material, it also increases the probability of missing relevant
material. The converse holds for a request consisting of a disjunction

of index terms.

2.5 The Selection Function and Some Consequences

We have said that documents are indexed by assigning one or several
index terms to each, and, similarly, a library request for information
is formulated by selecting one or several of those index terms which

most closely denote the desired information need. Given a request, the

e ; . . .

Strictly speaking, the terms ''intersection" and "union" should be used
instead of "conjunction'' and ''disjunction'', respectively, since we are
referring to classes and not propositions.




next step is to search and select all those documents (or their accession
numbers) whose sets of index terms are logically compatible with those
of the request. Thus, conventional machine searching consists of
matching the indexes and the requests exactly. The actual matching
procedure is a go or no-go affair--a set of index terms (associated with

a particular document) either satisfies a request pr it does not.

The fact that conventional selecting (searching) consists in deciding
whether an exact logical match exists between classes of essentially
noisy tags implies that the result of a search does not provide an opti-
mal list of doccuments. The fact that conventional searching consists

in matching noisy tags implies that the result of a search provides docu-
ments which are irrelevant to the real needs of the requestor, and, even
worse, some of the really relevant documents are not retrieved. If one
broadens a request (by using more general terms) so as to reduce the
probability of missing a relevant document, he increases the probability
of obtaining irrelevant material. Conversely, if he narrows his request
(by using rather specific terms) in order to avoid irrelevant material,
he increases the probability of missing relevant information. This un-
desirable situation is not helped by the fact that the list of documents
which results from a search appears in a random order; i.e., there is
no hint given to the requestor that some of the documents that have been

selected are less relevant to the request than others.

In the following section we shall present the basic notions of the technique
of Probabilistic Indexing and show that this approach to the library prob-
lem improves retrieval effectiveness both by reducing the probability of
obtaining irrelevant documents and by increasing the probability of sel-
ecting relevant documents. Furthermore, the technique of Probabilistic
Indexing provides as the result of a search an ordered list of those docu-

ments which satisfy the request, ranked according to relevance.




3. THE BASIC NOTIONS OF PROBABILISTIC INDEXING

3.1 The Probabilistic Nature of the Problem

To say that index tags are noisy is to say that there is an uncertainty
about the relationship between the terms and the subjects denoted by
the terms. That is to say, given a document indexed with its assigned
index term (or terms), there is only a probability that if a user is inter-
ested in the subject (or subjects) designated by the tag, he will find

that the document in question is relevant. This situation is analogous
to the case when a message is selected and transmitted over an elec-
trical communication channel which is noisy, and, as a result, there

is only a probability that the selected message will be received at the
other end of the channel. Thus, given any arbitrary received message
there is a distribution which describes the probability that it (i.e., the
received message) resulted from each of the possible transmitted mes-
sages. Communication theory tells us that the ideal receiver is one
that makes an inverse inference and computes, given the received mes-

sage, the most probable message that was transmitted.

Again, one may consider by analogy that the documents of a library are
the messages that are selected for transmission, that the indexer is the
noisy channel, and that the index terms are the messages that are re-
ceived after passing through the channel. By analogy, the ideal search-
ing systemis the one that makes an inverse inference and computes,
given the index terms of a request, the most probable document that is
relevant to the request. Given this analogy between searching a library
of documents and communicating in the presence of noise we see that
the real problem is to introduce the proper probabilities so that the

necessary inverse statistical inference can be computed.

3.2 The Notion of Weighting Index Tcrms

We have suggested that the ideal search system is one that computes the
distribution which describes the probability that a document will satisfy

a requesior. This means that given a request, a class of documents is




selected (namely those whose index terms are logically compatible with
the terms and logic of the request) and for each document in this class,
the system will have to compute a number, called the ''relevance num-
ber' which will be a measure of the expected degreec of relevance of the
document for the requestor. How should such a relevance number be
derived? Surely, it should be a function of the probability that if a per-
son is interested in the content of a given document then he will use the
tag (or tags) associated with the document in requesting information on

that subject. How to estimate this probability ?

As we have stated previously, conventional indexing consists in having
an indexer decide on a yes-no basis whether or not a given term applies
for a particular document. Either a tag is applicable to the document
or it is not--there is no middle ground. It is much more reasonable
and realistic to make this judgment on a probabilistic basis; i.e., to
assert that a given tag may hold with a certain probability or weight.
Properly scaled this weight can be used as an estimate of the above
probability; E , the probability that if an individual desires informa-
tion of the type contained in the document then he will use the tag in
question in requesting that information. The details are given in

Part 1I, 1.

Given the ability to weight index terms, one can characterize more pre-
cisely the information content of a document. The indexer may wish to
assign a low weight such as 0.1 or 0.2 to a term rather than to say that
the term does not hold at all for the document. Conversely, the indexer
may wish to assign a weight of 0.8 or 0.9 to a term rather than to say
that it definitely holds for a document. Thus, given weighted (probabil -
istic) indexing it is possible to more accurately characterize the infor-
mation content of a document. The notion of weighting the index terms
that are assigned to documents and using these weights to compute rele-
vance numbers is basic to the technique which we call "Probabilistic

Inde Aing” B




3.3 The APriori Probability Distribution

One of the major goals of the method of Probabilistic Indexing is to
compute a relevance number for each document on the basis of a given
request. The retrieved documents will be ordered according to their
relevance numbers and hence the outcome of a search will be a list of
those documents whose index terms satisfy the request; the documents
will be ranked according to the probability of satisfying the request,
thereby providing the user with an optimal search strategy in reading

the retrieved information.

We have indicated that the relevance number of some document D.1 should
be a function of the probability that if an individual desires information

of the kind contained in D, he will use the tags associated with Di in his
request for information. We have indicated further that this probability
can be estimated by an indexer, and in fact, the weight of a tag (i.e.,
the degree with which it holds for a document) is, when properly scaled,
an estimate of the above probability, (This will be discussed more
completely in Part 1I, 1 with an explanation of how the initial estimates
can be modified so as to approach the correct probability.) In addition
we assert that the relevance number should also be a function of the

a priori probability distribution of document usage. The a priori prob-
ability distribution of usage of documents in a sense describes the pop-
ularity of documents in a library. The justification for including the
statistics on the a priori probability of a document in the computation

for relevance number will be given in Part II, | also.

3.4 The Schema for Computing the Relevance Number

Although the details of the logical and mathematical justification of
Probabilistic Indexing are presented in Part II we briefly summarize
the theoretical motivation behind our procedure, for the reader's con-
venience. Given the a priori probability distribution of usage of docu-
ments and the statistical indexing information for each document, the

actual search would involve an inverse probability calculation, so-called

- 10 -




Bayes' Theorem. This inverse probability calculation computes the
probability that a document satisfies the request. The situation can

be presented schematically as follows:

P(A, D)) » the a priori probability that the i'™

document will be retrieved.

P(A.D.,1,) = the weight with which the i'® docu-
r) ment is indexed with the jth index
term.
- . .th .
the probability that, if the j  index
term is requested, the ith document
will satisfy the request

]

P(A. lj, Di)

7
H

P(A.1.,D.) P(A, D) - P(A.D_,1.)
At 1 177j

P(A, 1.
(4.1

Thus the inverse prcbability calculaticn will be made for each document
which is indexed with the index word. For each of those a number will
be computed which will be a function of both the degree to which the
document is indexed by the given index term and also the relative fre-
quency of usage of the document. Once these computations have been
made these numbers and the associated dccument accession numbers
will be sorted so that the document which has the highest probability

of satisfying the request will appear first on the list, and that document
with the lowest probability of satisfying a request will be last on the
list.

3.5 Request Weights

Just an indexer may coordinate a weight to an index term (to indicate
the degree that the tag in question holds for a given document), so also,
the library systern should allow a user to coordinate weights to those
index terms that he uses in forrnulating his request for information.
Just as weighted index tags allow the indexer to characterize the infor -
mation content of a document more precisely, so also, weighted i'equest

tags provide additional precision to the formulation of a library request.
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Those subjects which are most important to a user's needs will have
high weights coordinated with their tags and conversely. The methods
of Probabilistic Indexing provide rules describing how request weights

are to be used in the extended computation for relevance number.

3.6 The Automatic Elaboration of a Request

Roughly speaking, we can say that the set of index terms (and their
weights) identify the information content of each document with which

1t is coordinated and, likewise, the request formulated in terms of
weighted index tags and associated logic identifies theuser's informa-
tion need. The next step in automatic retrieval is to match identifica-
tions in order to determine which documents are to be selected, re-
trieved and given to the user. Given the class of selected documents,
the computation of relevance number allows a library system to rank
the documents according to their probable relevance to the requestor. It
is clear however, that if the initial request is inadequately (or incom-
pletely) formulated, then the class of selected documents will not be
optimal and no arnount of ranking by relevance will correctthis difficulty.
As a remedy for this situation, Probabilistic Indexing includes methods
for automatically elaborating upon any arbitrary request so as to im-
prove its selectivity. That is to say, included among the methods of
Probabilistic Indexing are mechanical rules for automatically relating
index terms (and documents) so that given a request for a particular

set of index terms a computer can determine what other terms are

most closely related to the request and thereby automatically elaborate
upon it in the most probable direction, in order to improve the selection.
The rules involve the derivation of probabilistic weighting factors be-
tween index terms and a number of machine ''strategies'' for deciding how

to go from a given request to its proper elaboration.

- 13 -




PART II.
A THEORETICAL DISCUSSION

(SUMMARY)

The conceptual framework of the library which grows out of the basic
notions of Probabilistic Indexing allows us to divide the over-all prob-
lem of information searching and retrieval into two parts. The first
part relates to the problem of selecting an optimal class of documents
from the entire library in order to satisfy a given request for infor-
mation. We call this the selection problem. Once a class has been
selected each document in it is ranked according to its probable rele-
vance. We call this the problem of the relevance number.

Part II of this report contains the logico-mathematical analysis, ex-
planation and (a priori) justification of the methods of Probabilistic In-
dexing. In particular, section 1 discusses the notion of probable rele-
vance number and provides the detailed explication of this notion in
terms of the theorem of Bayes. We discuss the meaning of index and
request weights and the computational rules which allow the relevance
number to be computed. Section 2 provides the discussion of how an
arbitrary request may be automatically elaborated upon in its most
probable direction, in order to improve the selection of documents.
We describe various statistical measures for determining the ''close-
ness'' between the terms that constitute index space and indicate how
these measures can be used to elaborate on a request in order to pro-
duce an optimal selection of documents.

- 14 -
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1. THE DERIVATION OF THE RELEVANCE NUMBER

1.1 Initial Remarks

We can clarify the library proklem by considering the following two
fundamental questions: (1) Given the class of documents that satisfy

the logic of a request which of these is most probably relevant to there-
questor, next most probably relevant, etc? (2) Interpreting a request
as giving clues to the real information requirements of the requestors
how can the request be elaborated in order to improve the class of re-
trieved documents; or, more generally, how can the document selec-
tion prccess be improved? In this section we will discuss the first
question. In particular we will establish a measure of probable rele-
vance (the relevance number) and show how this quantity can be com-
puted. Our methods in establishing computational procedures involve

a priori considerations as well as experimental testing. The a priori
considerations play their role in the choice of schemata from the
theory of probability as models for our procedures and in the statistical
modification of various quantities which have been estimated initially.
The problem of justification of these procedures can be considered from
two aspects: (1) the experimental testing; (2) a theoretical development.
Since success is the only criterion upon which a retrieval system should
be judged, we see that a theoretical development is unnecessary; never-
theless it is not superfluous, for it enables us to isolate assumptions
and points the way for possible refinements in the procedure. The fol-
lowing sections (1.2 - 1. 14) present a theoretical development of the
computational procedure for requests formulated as Boolean functions

of the index terms.

1.2 Notational Matters

By "P(A, B)'"' we mean the probability of an event of class B occurring
with reference to an event of class A. We shall be interested in the

following classes of events:

a. Di : obtaining the ith document and finding it relevant.




b. I.: requesting information on the field of interest (subject,
area of knowledge) designated by the jth index term Ij. (We
use the same symbol for the event class and the index term.

but the proper meaning will be clear in context.)

c. A: requesting information from the library.

We use"wij" (also ”Wi(Ij)“) to denote ''the degree to which the th index
term applies to the ithdocumentl'Note that the values w.. define a matrix
called the ''probabilistic matrix', where the entry in the itl’1 row and the

jth column is the weight wij'

1.3 The A Priori Probability Distribution- -A Remark about the Class A

We call "P(A, Dl)” the a priori probability of the document Di' Although
this probability arises in the inverse probability calculation, to be dis-
cussed below, we prefer to introduce it on a more intuitive level as an
essential ingredient of Probabilistic Indexing. In a literature search,

if two documents are indexed identically then the document with the
greater a priori probability of being relevant should be read first. This
is the statistical analogue of ''recommendation' of texts. The calcula-
tion of P(A,Di) is obtained by the processing of library statistics. How
this is done will be discussed in section 1. 13, but for the present we
are concerned with only one restrictive condition. This condition re-
quires a qualification of the class A. For convenience in tabulating li-
brary statistics we will not consider A to be the class of z1l requests
but only those that yield a document relevant to the requestor. We de-
fine the termination of such an event to be when a relevant document is
obtained. Thus an event of class A will be followed by one and only one
event of class Di; if a request R produces two relcvant documents we
regard this as two instances of the request, etc. The assumption that

a request will produce a relevant document we can call 'the axiom of
completeness of the library with respect to the index terms''. In par-
ticular, this assumption allows us to normalize the a priori probability

distribution. Hence we assert
ZP(A, D))= L. (1)
i=1
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1.4 Statement of the Problem

Given a request R we want to rank the library documents according to
their probable relevance to the requestor. A function f on a set Di’
DZ’ 50ag Dn can be used to rank the set by means of the function values:

f(Dil)af(D.

12)% X ‘;f(Di ).

n

Thus we want to look for functions which somehow measure the prob-
able relevance of a document. If this is accomplished then a library
search can be represented as a transfer function from requests (the
input space) to a space of functions of the variable i{(i=1, ..., n) rep-
resenting the accession number of a document. That is to say, a
search by Probabilistic Indexing will lead to a function; the values of
this function give the probable relevances of the documents. (Those
i's for which this function is not zero give the accession numbers of

the documents that match the logic of the request.)

1.5 The Probable Relevance Function

We examine first the simplest type of request; viz., Ij' One measure

of probable relevance is given by the function

P(A' Ij’ Dl)’

because this is the probability that a library user, making the request
Ij’ will find the ith document relevant. We call this the probable rele-
vance function. Now, keeping IJ. fixed, this function should certainly
vary as the a priori probability P(A, D1) and also vary as wiJ Let us
assume that the probable relevance varies jointly as P(A, Di) and Wi

We obtain then

P(A.Ij, Di) = uj- P(A, Di)-wij (j fixed), (2)
where, because we have one such equation for each j, we indicate that
the constant of variaticon o.j can itself be a function of j. Thus, given

Ij’ we rank the documents according to the quantity
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P(A, Di)- wij'

Equation (2) can be regarded as the fundamental principle for Proba -
bilistic Indexing. Subsequent experiments are to be thought of as em-

pirical testing of this principle.

1.6 The Meaning of the Weights

The assumption {(2) allows us to give a simple interpretation to the

weights. From an inverse probability calculation we have

P(A, D;)- P(A.D;, 1)

P(A.1, D) (3)
J P(A, 1)
j
Comparing (2) and (3) we see that
., = J-j- e R W TV o T L (4)
+ 3 P(A,1) L]

Now the coefficient a. can be determined from (2). For, if we sum

both sides of (2) over the subscript i and note that

EP(A.IJ,Di) =1 (5)
1

by the axiom of library completeness with respect to the index terms,

then we obtain
i
—_ = P(A,D.)-w. .. (6)
: i ij
a, i
J
Thus, we have the result
> P(A,D,) w.,
3 i ij

w.. = .P(A.D_,1.). (7)
1 P(A, Ij) td
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We call the coefficient of P(A.Di,IJ.) "[3j” so that

.. = B.- P(A.D_,1.), 8]
g BJ ( i J) (8)

where

> P(A,D.) w..
I i ij

Jj
P(A, 1)

1.7 The Modified Weight

Our theory shows immediately the possibility of correcting, in a cer-
tain sense, the values wij given by the indexer. Let us modify the

weights by using the factor [Sj defined above; thus:
.. = w,./p. = P(A.D.,I1.). 9
wj; = wy;/B; = P(A.D, L) (9)

Now it is true that such a modification has no effect on the document
ranking for a single request Ij’ but the possibility of modification al-
lows us to justify our computational procedure for Boolean functions
of the index terms as well as to isolate certain prokiems in the proc-
essing of the library statistics. In a sense, modifying the weights ac-
cording to (9) is a smoothing operation, for an inspection of the num-
erator of B. shows it to be the weighted mean of the wij in the jth col-
umn of the probabilistic matrix (with weights given by P{A, Di))' Such

a smoothing is necessary in making weights assigned to different index

terms comEarable .

1.8 Further Remarks on the Meani% of the Weight

Formula (8) shows the weight, which we originally interpreted as the
degree to which the index term applied to the document, to be intimately
related to the probability P(A.Di, Ij)' This is a logical consequence of
assumption (2). The statistical meaning of this probability can be

clarified as follows: Suppose we presented to each member of a sampling




of potential library users the document Di and asked of them if they

would have used the term Ij in requesting it. The resulting relative
frequency in the sample would be an estimate of P(A. Di’ Ij). Now for-

mula (8) relates the semantic measure '"degree to which the index term
applies to the document' and the statistical measure of how the terms

will be used in retrieval requests; viz., P(A. Di’ Ij)' Since the statistics
required are not available and certain quantities must be estimated,

formula (9) tells us that the indexer would do better by estimating P(A. Di’ Ij),

thus bringing the coefficient Bj as close to unity as possible.

One might raise the following question at this point: If the indexer were
required to estimate P(A. Di’ Ij), why not estimate P(A. Ij’ Di) directly,
since this is the goal of the computations? Actually, this is not quite
correct. As we will show in the next section the goal of the computations
is the determination of P(A. R, Di) where R is any Boolean function of the
index terms. This quantity must be expressed in terms of probabilities
each involving one and only one index term. The only way to do this is

to transform P(A. R’Di) so that R goes into the attribute class, but then
the result involves the probabilities P(A. Di’ Ij)' In other words, we
always need the quantities P(A. Di’Ij) but hardly ever the quantities

P(A. Ij’ Di)' The second argument in favor of the estimation of P(A. Di’ Ij)
over P(A.Ij,Di) appears when we consider the consistency of the compar -
ative values. The indexer looks at each document, then runs through the
various possible index terms which apply. In general P(A. Di’Ij) will
vary over a much larger range than P(A. Ij’ Di) as j varies and therefore
it is easier psycholcgically for the indexer to correctly rank the values
over the larger range. Furthermore, errors in the weighting (due to

the estimation of P{A. Di’ Ij))will have a smaller effect on the final compu-
tation than if P(A.Ij, Di) is estimated initially and P(A. Di’ IJ) computed

subsequently.
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1.9 Requests as Boolean Functions

Before looking at the computational procedure for deriving the rele-
vance number given any arbitrary request R, we must explain the

meaning of the language of the request. We allow two logical opera-

tions between index terms; viz., '"and'" and "or''. We abbreviate "I1
(B (N1 1" 1t 1t T . 1 - 3 3 -
or 12 by I1 v I2 ) I1 and I2 by Ii'IZ ; the first is called a disjunc

tive request, the second, a conjunctive request. We now ask: If ”11”
and "IZ" are names of subjects, can "Ii' IZ” and "I1 v 12” also be names
of subjects? As a matter of fact it is convenient to answer this in the
affirmative. The different interpretations of the logical combinations

11.12, I1 v IZ’ as used in request formulations are shown in Table 1.

Request: Ii' I2 I1 v I2
Logical Meaning User requests informa- User requests infor-
tion on the ''subject" mation on the '"subject"
designated by Ii‘ I2 designated by 11 v I2
Retrieval Instruction | Search for documents Search for documents
Meaning indexed under I1 and indexed under I, and
I search for documents
2 ;
indexed under IZ
Class Meaning User obtains documents | User obtains documents
indexed under both I1 indexed under 11 or I2
land I, , or both

Table 1. Interpretation of Logical Connectives

Note how the 'v' inside a retrieval prescription becomes an '"and" in
the retrieval instructions. We can say that a disjunctive request is
actually several requests but the searches are to be conducted simul-
taneously. The class meaning defined above has a simple geometric

interpretation (a Venn diagram):
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Diagram 2. Venn Diagram

The circle on the left represents those documents indexed under Ii’
on the right those indexed under 12. The overlap gives all documents
obtained by requesting Ii'IZ’ and the entire area all those documents

obtained by requesting I1 viI,.

1.10 The Extension of the Weight Function

By extending the notation for a request to include logical combinations
of tags, we can consider every request R (i.e., every Boolean function
of index terms), as an event class. For example R =Ij, R =Ij°Ik’

R =Ij v Ik’ etc. By the development in section 1.6, we see that if it is
possible to compute P(A. Di’ R) then we can rank documents according

to probable relevance by taking the relevance number to be
P(A, Di) -P(A. Di’ R);

for, by the inverse probability calculation

1

P(A.R,D,) =
! P(A,R)

. P(A, D,)- P(A. D, R), (10)

so that P(A.R, Di) is proportional to P(A, Di)- P(A. Di’ R}). Now we note
that by (9), P(A. Di’ R) is an extension of the modified weight function

in the sense that:

If
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then,

T 5 wi(R) = P{A. Di’R)' (11)
Thus the problem is to extend the function wi(Ij), whose values are given
only for IR In’ to any Boolean function of these terms. We denote
this extension by "wi(R)" and we require this extension to satisfy the rules
of probability since we intend for it to be an estimate of P(A. Di’ R). In

particular, we require:

o\swi«R)§1, (12)
wll, v L) + il L) = w(l,) + ol,). (14)

We note the important fact that (14) allows us to compute the weight of
a disjunction if the weight of a conjunction is known. Successive appli-
cations of (14), combined with logical transformations, allow the weight
of any request to be written as additions and subtractions of weights of
single terms or conjunctions. Thus the problem of the extension of the
weight function is reduced to the extension to conjunctions. For these
weights we also have certain restrictive conditions. If we letp = wi(li)
and g = wi(Iz), then it can be shown that w, (11. IZ) must be less than or
equal to the minimum of the two numbers p and q and must be greater
than or equal to p + q - 1 if this is positive, otherwise it must be greater

or equal to 0. We write this condition as:
r .
max LO,p +q - 1] \S wi(11.12)§ min [p,q_l : (15)

We have decided to take as the initial w-value of a conjunction its inde-
pendence value; i.e.,

cw, . (16)

Wl L) = wy-w,




The relevance number for a conjunction 11. I2 is then given by

P(A, D) @ 4" @5,

and the relevance number for a disjunction ILv I2 becomes by (14)

P{A, Dy)- E"n T @ - “’11""12]

Several remarks need to be made about use of the independence value.
Note that we do not say that the tags are independent--in fact they are
not--but the word 'estimate' is useful to avoid making a false assump-
tion. First, we estimate wi(li' IZ) by wil'wiZ' Second, we use the in-

dependence value relative to the class Di’ that is, we take
P(A.D;.1;,1,) = P(A. D;, 1), (17)

but not

P(A'Il'IZ) = P(A, 1 (18)

2)

We believe the former estimate is more accurate than the latter. In
Part II, 2.6 we discuss a coefficient of association between index terms.
This coefficient which we call Q lies in the interval [ -1, 1 | with Q = 0
being the point of independence. The joint occurrence of two events

will have a probability in excess of its independence value only.if the
corresponding value of Q is positive. We have two intervals to sche-
matize this situation: (p and q are the probabilities of the separate

events and Q their coefficient of association)

0 Q> i

Interval of Positive Association

P’ q/]\ Probability— > Tmin[p, q:l
Corresponding Interval of Probability Value
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An investigation of the statistical correlation between tags via the com-
putation of Q and then a subsequent study of which pairs of tags were
used in requesting shows that Q had positive values for almost all of
these pairs. This indicated that computations were called for with

estimates of wi(Ii. IZ) taken at the upper end of the scale; i. e., where

w,(I,.1,) = min Em“,wi?_]. (19)
The results were not as successful as using the independence value.

A possible explanation lies in noting that independence is a three term
relation as formulas (17) and (18) show. It could well be that the prob-
ability value for tags I1 and I2 relative to the reference class A lies
closer to the maximum value (min [p, q:' ); while the probability value
for I1 and I2 relative to A. Di lies closer to its independence value.

For our initial estimates we assume this to be the case.

1.11 Estimation and Correction

We have given a formal clarification of the notions behind Probabilistic
Indexing. We see that the computation of a relevance number requires
for the single request the quantities P(A,Di), Wij; for Boolean func-
tions the quantities P(A, Di)’ wij’ and the w-values for conjunctions.

The next problem is to obtain these quantities and this, in turn, involves

two problems; viz.,

(a) the initial estimation; i.e., the estimates before library

statistics are obtained;

(b) the correction of the initial estimates as library statistics
are accumulated and subsequent periodic revisions via a feed-

back computation.

These two problems are called the ''problem of estimation'' and the "'prob-
lem of correction''. Note that a solution of the second problem must be

qualified by two requirements: (1) the effects of the initial estimates must
die out as library statistics are accumulated, (2) the solution must not in-

volve an impractical amount of computation.
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1. 12 The Problem of Estimation

Consider first the estimation of P(A, Di)’ For real libraries where
no statistics are available we are confronted with this problem (as for
example, in the cases when the library has not yet been used or when
new documents are added). One possibility for setting the library

system in motion is to take all initial values equal; i.e.,
P(A, Dl) = P(A, DZ) = ...

Alternately we can construct a more realistic distribution (""'more re-
alistic' because our method leads to a distribution which corresponds
more nearly to the actual distribution for some large libraries; viz.,
a non-linear (hyperbolic) distribution). The considerations used in
such a simulation are: 1) that a correlation exists between the prob-
ability that a given tag will be used in indexing and the probability that
it will be used in requesting; 2) if document D1 has a higher a priori
probability than document DZ then D1 probably has tags that DZ does
not have and that are used more frequently in requesting. Thus

P(A, Di) should depend on the extent that Di covers the subjects desig-
nated by the library tags and also on the scope of its individual tags;
i.e., on the relative frequency with which the tags are used in indexing.

We therefore take as initial value of P(A, Di):

a? N.-w..,

—
where N. is the number of documents to which the jth index term is
applied with non-zero weight, w.. is the weight with which the jth in-

dex term applies to the ith document. and ¢ is the normalization fac-

tor (i.e., the value that gives
E, P(A,D.) = 1.)
; i
i=1
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By an argument similar to the above we find that

> P(A,D.) w,.
1 i ij

is a plausible estimate of P(A,LJ). This estimate also has the virtue
of forcing the initial value of the factor Bj in (8), section 1.6,to equal

unity. Thus, initially,

W., T W, .. (20)

The only problem that remains is the estimate of the w-values for con-

junctions. We have decided to choose the value
w (L) w(I5)
for wi(li'IZ)’ for reasons described in section 1. 10.

1.13 The Problem of Correction

Consider now the correcticn of P(A, Di)' Let Po be its initial estimate.
(The subscript "i'" will be fixed throughout the discussion.) After n
uses of the library, let r. be the number of times that the ith document
has been used. The empirical estimate of P(A,Di) is therefore n/n.
We want to combine this with P0 in some way. Let us do so by the
following device: Annex to the sequence of events of class A(i.e., A1,
AZ’ cees An) a fictitious initial sequence of length ng and suppose

that this initial sequence has given the relative frequency Po’ then the

total sequence of length n,+n will give the relative frequency

D Bee—e——=_© (21)

Thus by a suitable cheoice of n  we can control the effect of Po on the
nth estimate, Pn' For example, if n_ = 0 then Po has no effect on the
computation (Pn = n/n); while if n_ = oo then Po has its maximum effect

—_ \
(P_=P_). )
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Formula (21) gives a satisfactory estimate of P(A, Di) in a stationary
system; i.e., when the reference class A does not vary with time so

that

P(A,D,) = lim P (22)

n
n—>» oo

holds. But in reality this will not be the case since the popularity of
documents will vary with time and therefore we must look for a pro-
cedure in which the most recent statistics have the most important
influence on an estimation of P(A, Di)' We present a method that takes
this consideraticen into account as well as being suitable for machine

computation.

First, it will be convenient to

(a) compute P‘n periodically; i.e., after sequential blocks of

fixed size, say m;

(b) store only statistics on the block presently occurring and the

previous estimate of P(A, Di)'

We propose the following computing schema: 1et;1k be the number of

times that the ith document was used in the kth block of length m, then

take as the first estimate of P(A, Di)

m, +n P
p“):_i_‘l__o_ (23)
m+n0

and as the kth estimate

-— -1
(k) mk+ n - P(k )
P = (24)
m +n
o
Let us see how the '"block'' relative frequencies are involved in P(k).

Let "A' stand for "no/ (m + no)”. Then it can be shown that
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™ mo ) E\ n P
plk) o (m \laf k) o 423 k-1 +.,.+Ak(—l~ s AK[ 2 91 (25
no Imi m Km) m

Thus P(k) is, what is called, a convex linear combination of the rela-

tive frequencies

mk/m, mk_i/m, C s mi/m, P
with weights
T PN (10 - (-
n n n
o o o

That the linear combination is convex, i.e., that the sum of the weights

is one, is seen from the fact that

F x
rom

] > ad =1 . Ak

(26)
K“o/ j=1

We see that the sequence of weights diminishes so that the more recent
relative frequencies more strongly influence the value of P(k). We

also see that

lim Ak = 0O
k>0

(27)

so that the effects of the earlier statistics die out as k increases. As
an example we note the special case where n, =mj then A = 1/2 and

we have the weights:

k

1/2, 1/4, ..., 1725, 1725,

As a final remark on the computation of P(A,Di) we emphasize that

caution is required in the use of our computing schema as given by

(23) and (24). The possibility exists that the instances of use of the
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library may attain a large number (relative to the number of documents)
during a period of time when conditions are sufficiently stationary to
enable us to say that (22) holds. In this case it can be shown that the
recursive procedure is assured of working only if we take m so large
that each value P(k) closely approximates P(A,Di). But in that case

we would not like to be committed to Po while the first sequential block
is occurring. Thus it is suggested that, for libraries of this type, we
revert to some form of (21) with computations performed at shorter

intervals.

The correction of P(A, Ij) follows lines similar to the foregoing dis-
cussion of P(A, Di)' There is, however, a rather subtle question in-
volved in the processing of the relative frequency data. That is to
say, all the probabilities are determined if we know the probabilities
of conjunctions; but many requests will be given as disjunctions and
thus if a library user requests information on the subject designated
by 11 v I2 then this should affect the relative frequency of the requests
I, and the requests I

1 2
must therefore be established. The best possibility seems to be to

A counting procedure for distinctive requests

‘give partial '"credit' to each disjunct in an instance of a disjunction.

The best way to do this is still open.

The next item is the modification of the w-values. In principle, if per-
fect accuracy were required, we would need the determination of
P(A,R) where R is any conjunctive request; for, if wi(k)(R) is the kth

estimate of wi(R) and P(k)(A,R) is the kth estimate of P(A, R) then

wi(k+ D(R) - ™Ry XA, R) > P(k)(A,Di)-wi(k)(R) (28)

1

The w-values for any request would then be obtained by the extension
of formula {(14) mentioned in section 1.10. However, because even
for a small number of index terms, the number of possible conjunc-
tions is enormous and therefcre, practical considerations would prob-

ably limit the application of formula (28). Suppose therefore, we
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settle for accuracy for only the w-values for single terms, This should
be sufficient for the following reasons: (1) if we use some reasonable
computational procedure-~-perhaps even incorporating coefficient of
association data--we should obtain a sufficiently accurate relevance
number to both order the documents and to execute the search strategy
program of Part II, section 2, (2) the w-value and the number of docu-
ments retrieved rapidly diminishes as the number of conjunctive terms
increases--in either case accuracy in the relevance number is not

required,

1.14 Weighted Requests

The request language is still rather limited even though we allow all
combinations of index terms by means of the connectives "'and' and
"or'. However, when we consider the retrieval instruction meaning
of the request 11 vi, (Table 1. p.21)an obvious extension of the re-
quest language presents itself. That is to say, when the requestor
asks that two simultaneous searches be made, one under l1 and one
under IZ’ let himm now indicate which search he regards as more im-
portant. Tc incorporate such information into a computational proce-
dure we allow him to give this comparative data in the form of numeri-

cal "request weights''. We will use the expression:
(O)Il v (ﬁ)lz»

where a and 8 are the request weights, to represent this new type of
request. More generally, we note that conjunctions will occur in place
of I1 and I2 in this expression, each conjunction prescribing a search
and having an assigned weight. We can conceive of the weights, then,
as indicating the degree to which the conjunction describes the infor-
mation requirement of the requestor. This is suggested when we go
from the retrieval instruction meaning of a request to the logical mean-
ing (Table 1, p.21). The highest level of specificity that the requestor
can attain is by means of conjunctions. The conjunctions are (artificial)

names of sub-subjects and since the requestor is uncertain about his




—

use of tags in forming these names, he will try to avoid possible loss
of relevant information by using disjunctions. Thus when we permit
him to weight each of these names; i. e., conjunctions, we can treat
the weight as being an indication of either the degree of the requestor's
interest in the subject designated by the conjunctive set of terms or
how closely it matches his information requirements. For example,

if the conjunctions reduce to single terms, then the;xpression
(. 7)11 v (. 3)I2

means the requestor is interested in I, to the degree 0.7 and in I2 to

the degree 0. 3.

Given this interpretation for the notion of request weights we must now
provide a set of rules for computing the relevance number of weighted

requests. This means that we need to evaluate

w f (@) v (p)lzj .

Two methods appear to be reasonable:

(1) o [(@Iv (B, |= (@)l +(Bloy(I,) - (P, - L)

(2) wiDu)I v(p)12]= (@) () +(Bho, (L) - minEx,ﬁ]-wi(Il.Iz)

Method (1) has the advantage of computational simplicity as well as a
certain appeal in being a direct modification of the weights in the prob-
abilistic matrix through multiplication of the request weight with the
corresponding tag weight {(recall that initially we take wi(Il.IZ) equal to

wi(Ii)-wi(Iz)). Method (2) has the virtue of giving:

W, [((.‘L)I1 v (a.)IZ:] = (a)mi(l1 v IZ).

thus reducing to the case of the unweighted request when a = B (up to
multiplication by a constant). In our work on the weighted request we

have used formula (1).
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To complete the discussion we look at further possibilities of general-
ization. The most obvious extension is the assignment of request
weights, not just to conjunctions, but to each index term. We could

explicate the meaning of
(o)1

as a ''quantitative assertion' of I1 (analogous to the ''quantitative ne-
gation' in Probability Logic). The number a would be the degree of

assertion given to the tag 11. In this interpretation we have:

(0) 11 = not Il’

]

(01, =1,.

The computational procedure which would be best to use here is still

open.

Another possibility is a statistical or probabilistic explication of re-
quest weights; i.e., an explication of the type as given for Wij' There,
the logic was to go from a comparative notion to a quantitative notion,
then to explicate the latter. We have a similar explicative problem

with the request weights but no simple solution presents itself.
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2. THE AUTOMATIC ELABORATION OF THE SELECTION PROCESS

2.1 Initial Remarks

The technique of Probabilistic Indexing, as we have seen, allows a
computing machine, given a request for information, to make a statis-
tical inference and derive a relevance number for each document. The
result of a search is an ordered list of those documents which satisfy
the request, ranked according to their probable relevance. We would
prefer to have a technique which not only decides of a given class of
documents, which among them is most probably relevant, next most
probably relevant, etc., but which also decides whether the class it-
self of retrieved documents is adequate (at least in the sense of deter-
mining whether or not it excludes some documents which are relevant

to the user's information needs). That is to say, if we consider the

request as a clue which the user gives to the library to indicate the
nature of his information needs, then we should raise the following
question: Given a clue, how may it be used by the library system to
generate a best class of documents (to be ranked subsequently by their
relevance numbers)? Thus given the clue, how can we elaborate upon

it automatically in order to produce a best class of retrieved documents?

Let us turn our attention to this problem.

2.2 Search Strategies and the Notion of Distance

A library request (a clue) is a Boolean function whose variables are
index terms, which, in turn, selects a class of documents via a logical
match. That is to say, all of those documents whose index terms are
logically compatible with the logic and the tags of a request R consti-
tute the class of retrieved documents C. Our goal is to extend the
class C in the most probable ''direction' and this can be done in two
ways. One method involves the transforming of R into R' where R!' in
turn will select a class of documents C*, which is larger than C and
contains more relevant documents. A second method does not modify
R but, rather, it uses the class C to define a new class C'"', A set of

rules which prescribe how to go from a given request R to a class of
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retrieved documents is called a strategy. 1A strategy, in turn, in-
volves the use of several different techniques for measuring the '"dis-
tances"2 between index terms and between documents. Before pro-
ceeding, let us introduce some further notations to make more pre-

cise what we have been saying.

We understand by ""basic selection process'' the rule which uses the
request to select the class of documents whose tags are logically com-
patible with the logic and tags of the request, and we denote this basic
selection process by the functional notation '"f'"". Thus f is the transfer
function from inputs {(requests) to output (class of retrieved documents)

and we write
f(R) = C (1)

where, again, R is the request and C is the class of retrieved docu-
ments. The problem is to enlarge C so as to increase the probability
that it will contain relevant documents and to decrease the probability
that it will contain irrelevant documents. This can be done in the fol-
lowing way: Suppose R' is a request similar in meaning to R, then we

can take as a possible modification of f, say f',
f'{R) = {(R) v f(R') = C v C". (2)

(As before ''v'' designates class union. )

1 . : .

We mean here search strategy from the viewpoint of the library com-
puter. The requestor also has a search strategy which is given by the
relevance number of the documents that he is given.

2We use ''distance' in an informal sense; i.e., it may not satisfy all

the axioms of distance (e.g.. the triangle inequality and symmetry).

The reason for this is that it is frequently necessary to preserve nat-
ural logical structure and forego artificial metric structure. Indeed,
in one case we violate positiveness of distance functions.
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This modification can be made precise if we are able to invent a metric
or ''distance'' function on the request space to measure dissimilarity

in meaning. Since we are not sure what meaning is, much less being
able to assign a numerical quantity to it, this is rather difficul:; but

we shall show later that statistics can provide such measures. For
the present, suppose we actually do have such a metric, then we can
generate a modified selection function f' by defining f'(R) to be the
union of all classes f(R') where the distance between R and R' is less

than some specified number, say €. Symbolically this written

f'(R) = kj f(R"). (3)
[d(R,R‘)<e]

Analogously, if we have a ''distance'' function in the document space

which gives '"nearness' as a numerical measure of similarity of infor-
mation content, then a completely different modification ' of f arises
via

f(R) = C" (4)

where C'" consists of all documents whose distance from C = f(R) is
less than e. (We remark in passing that '"distance'' notions seem to
present a surprisingly fruitful approach to the library problem; e.g.,
the relevance number itself can be thought of as giverﬁthe nearness

between documents and requests.)

Thus, we see that a machine strategy can elaborate upon the basic se-
lection process in order to improve the search in one of two different
ways. The first is to establish a metric for distance in request space
so as to formulate R', given R. The other way is to use the class of
documents C, obtained by the initial request R, to define a new class

C"". Both of these methods are discussed below.

2.3 The Notion of Index Space

Geometrically speaking, one may think of the set of n index terms

which constitute the library catalogue ''vocabulary' as points in an
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n-dimensional space. The points in this space are not located at ran-
dom, but rather, they have definite relationships with respect to one
another depending on the meanings of the terms. For example, the
term "'logic' would be much closer to '""mathematics' than to ''music''.
One always finds when looking up index terms in the catalogue of a
conventional library, other terms listed under '"'see' and ''see also''.
This cross-indexing (''see/see also') aspect of a library indicates
some of the relationships that index terms have for one another; i.e.,

it indicates some of the relationships between points in index space.

The ''distances' between index terms can be made explicit by formu-
lating probabilistic weighting factors between them. Once numerical
weighting factors are coordinated with the distances the cross-indexing
aspect of a library can be mechanized so that given a request involving
one (or many) index terms, a machine could compute other terms for
which searches should be made. That is to say, a request places one
at a point, or several points, in index space and once the distances be-
tween points are arithmetized, a machine could determine which other
points to go to in order to improve the request. Thus, the elaboration
of a request on the basis of a probabilistic '"association of ideas' could

be executed automatically.

2.4 Automatically Groping in Index Space

There are at least two different kinds of relationships that can exist
between the points in index space; viz., semantical relationships and
statistical relationships. The most elementary semantical relation-
ship is that of synonymity,. but in addition to synonymity there are other
semantical relationships such as '""partially implied by' and ''partially
implies''. Such relationships between terms are based strictly on the
meanings of the terms in question--hence, the word ''semantical'.
Another class of relationships are statistical; i.e., those based on the
relative frequency of occurrence of terms used as indexes. The dis-
tinction between semantical and statistical relationships may be clari-

fied as follows: Whereas the semantical relationships are based solely
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on the meanings of the terms and hence independent of the 'facts'' de-
scribed by those words, the statistical relationships between terms
are based solely on the relative frequency with which they appear and
hence are based on the nature of the facts described by the documents.
Thus, although there is nothing about the meaning of the term ''logic"
which implies ""switching theory'', the nature of the facts (Xi_z_. , that
truth - functional logic is widely used for the analysis and synthesis of
switching circuits) '"causes' a statistical relationship. (Another ex-
ample might concern the terms '"information theory'' and ""Shannon''--

assuming, of course, that proper names are used as index terms.)

Once the various ''conrections' between the points of index space have
been establishec rules must be forrmulated which describe how one
should rmaove in the rmaze of connected points. We call such rules
"heuristics'. They are general guides for groping in the "maze' in
the atternpt to create an cptimal output list of cocuments for any arbi-
trary request. The heuristics would enable a machine to decide, for

a given set of request terrms, which index terms to !'see' and ''see
also', ana how deep this search shcould be and when to stop, etc.
Generally speaking, the heuristics would decide which index terms to
look at next, on the basis of the semantical and statistical connecticns
between terms. and the heuristics would decide when to stop looking,
on the basis of the nurmber of documents that would be retrieved and
the relevance nuribers of thecse documents. (Remember that each peoint
in incex space defines a class of documents; viz.. all of those docu-
ments which have been assigned the index term in question with a non-
zero weight. ) Given this understanding of heuristics, we see that an
over-all searchstrategyi1s made up of components some of which are
heuristics; i.e., the sequence of devices, rules, heuristics, etc.,
which lead from inputs {requests) to outputs (classes of retrieved docu-

ments) is the strategy.
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2.5 Some Elementary Heuristics

In order to clarify the notion of developing heuristics which would de-
termine how a ccmputer should '"grope' in index space, consider the
following exarnple. Assume that we compute the frequency, N(Ij)’
with which each terr: is used to tag a document, and also that we com-
pute the frequency, N(Ij. Ik),with which pairs of termms are assigned to
documents. We can then cormpute the conditional probability P(Ij,Ik)

| that if a term lj is assigned to a document, then 1k

N(I..1,)
LA (5)

also will be assigned:

Pl -
(2. L,) NG,

We do this for all pairs 1j_ *

11‘,

Assume ncw that I.J,‘ is the index term which has the highest conditional

prcbability giver I.; 1. €., IJ.‘ is the index term fcr which P(I, ’lk) is a

maximuri. Then given a request. R = 1,, for all documents tagged

t
with EJ, we form a new request, R' = lj \ IJ,‘, which searches for all
documents taggeo with either ! or 1.'. Thus. the rule 1s now to con-

J
sider R' instead c¢f R

, This heuristic tells us which tags are closest (in one sense) to given
ones, but we still have nc measure of the ''closeness' {hereafter written
without quotes) anc such a measure 1s needed as a part cf the associated
computation rule. That is to say. we elaborate upon R and obtain R'
by searching for documents indexed under tags closely related to those
in the original request, but. clearly, the relevance numbers that we
derive for these "additicnal' documents should be weighted down some-
what in order to indicate that they were obtained only from tags which
are close to those in the original request. We measure the closeness
as follows: Let pj = P(Ij. Ij'}» and normalize pj over the set of tags used

in the request so that

P.
P (6)

J‘ij
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Now, instead of using wi(lj') {the weight assigned to Ij‘ for the xth doc -
ument) in the search computation, we replace it by pj- w. (Ij'). The
extended search that we have just described is an elementary form of
only one of a class of possible heuristics based on the statistical re-

lationships between tags.

:;-Dli
i

= ol
S

F )

-
S T
.r"'-_,.-
s
o
l.o re~———_ B 3
N ]t 1‘:"
e, = —= L)Ik
"
~
~
~
~
S ol
m

(Ij implies I, to the greatest degree)

k

A second elementary heuristic which looks even more promising is

called the "inverse conditional'' search and it measures closeness of
tags to Ij in terms of the conditional probability from Ik to IJ. (instead
of conversely as with the heuristic described above). That is to say

we compute that P(lk, IJ.) which is maximum as I, varies and this pro-

vides the tag which most strongly implies the gz(ven tag Ij. Thus, in-
stead of asking for that tag which is most strongly implied (statistically)
by an arbitrary tag in the request, we ask for the tag which most
strongly implies (statistically) the given tag. Using this method to de-
termine the closeness of tags we establish a rmeasure for the closeness

by normalizing the probability as before. That 1is,
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. = P(I.,I.
P; (J J)

— p.
p. =—-—l——

J ZPJ

and, again, the corresponding computation rule is now —I;j. wi(‘Ij),

where 'Ij is the 1k which makes P(Ik, lj) a maximum for a given IJ..

(Ij implied by Ik to the greatest degree)

2.6 A More Sophisticated Heuristic

We have just discussed two possible measures of closeness; viz., the

k), and the inverse condition probability

P(Ik,lj). Now we consider a third statistical measure which appears

conditional probability P(IJ_, I

the most promising of the three. This is one of several possible co-

efficients of association between predicatesi. The particular coefficient

1G. U. Yule, '""On Measuring Association Between Attributes'', Journal
of the Royal Statistical Society, Vol LXXV, 1912, pp 579-642.
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we have chosen arises in the following way. Consider the tags Ij and

Ik and partition the library by four classifications; viz., documents

indexed under both Ij and I those indexed under 1. but not Ik’ those

k!
indexed under Ik but not I,, and those not indexed under either. Let-

ting 'I_j' denote the complement of the class Ij’ etc., these four classes
are given by Ij' Ik’ Ij' Ik’ Ij' Ik’ IJ Ik’ respectively. The classification

and the number of documents is shown most conveniently in a table:

X x
Ij x = N(Ij' Ik) u = N(IJ.Tk) N(Ij)
—I—J. v = N(I—j' Ik) y = N(I_j'I_k) N(I_j').
N(Ik) N(i—k) n

We have adjoined to the table the row and column sums and n (the to-

tal number of documents).

Now, using the notation of section 2.5, we say that Ij is statistically

independent of Ik if
P(IJ.,Ik) = P(Ik). {7)
This can be shown to be equivalent to:
P(IJ.,Ik) = P(Ij)-P(Ik); (8)

so that rewriting in terms of frequencies we have an additional

equivalence:

N(L. L) = N(L): N(L,) /n. (9)
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We can infer also that the following are equivalent:

(a) Ij is statistically independent of Ik;

(b) Ik is statistically independent of IJ.;

{c) Tj is statistically independent of I ;

(d) _Ik is statistically independent of Ij;

(e) T:] is statistically independent of 'I—k.

For any pair Ij, Ik (9) suggests that we look at the excess of N(Ij. Ik)

over its independence value; i.e., the quantity
6(IJ., Ik) = N(Ij' Ik) - N(Ij)~N(Ik)/n. (10)
It can be shown that this function 6 has the property

and thus 6 is associated with the differences over independence values

in all four classifications.

Having discussed independence let us now consider what properties
would be suitable for a coefficient of association between Ij and Ik'
We call this coefficient "Q(Ij,Ik)". (1) Q(Ij' Ik) should be zero when
6(Ij, Ik) = 0 and, moreover, Q(lj,Ik) should vary as 6(IJ., Ik) for fixed

n and fixed row and column totals; (2) the maximum of Q(Ij,lk) should
occur when I. is contained in Ik_ (u = 0), or Ik is in| contained I, (v = 0),
or Ij and Ik give the same class (u = v = 0); (3) the minimum of Q(Ij,Ik)

should occur when I, is contained in T_] (x = 0), or I_J is contained in Ik

k
(y =0), or Ij is the complement of Ik (x =y = 0); (4) it should have a
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have a simple range cf values, say from -1to 1. A coefficient1 that

has all of these properties is:

Q(Ij,lk) = (xy - uv)/(xy + uv). (12)

(The intimate connection with & is indicated by the fact that the numer-

ator of Q is nb.)

The generation of a heuristic now proceeds by the plan of section 2. 5.
Given R = I, we select the term Ik (different from I.) with the maximum
coefficient Q(Ij’ Ik)' This value will be between 0 and 1 or no term

will be selected. Then R is extended to

and in the search computation we multiply the weight wi(Ik)by Q(Ij, Ik)'

2.7 Heuristics in the Document Space

It seems that the modification of the selection process by means of a
concept of closeness, or distance, in the request space holds the best
promise for the generation of satisfactory heuristics. However, so
that no possibility is overlooked, we now examine other notions of
distance. Turning our attention to the modification by distance no-
tions in the document space (equation 4, section 2.2) we see that the
procedure is to go from the given request R to C, the class of docu-
ments retrieved by the basic selection process f. We then obtain C'"
by applying the distance function in the document space to C. In a

sense then, this two step procedure uses C as a representation of R

1The coefficient recommended by Yule loc. cit. is not Q, but

Z= (\I Xy - \luv)/\lxy + m)

The range of variation of both Q and Z is the same and since both lead
to equivalent heuristics we have chosen Q for its computational sim-
plicity. For refined work we might adopt Z.
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and extends this representation.
those discussed previously which extend R directly.

ways of looking at R, the extensional and intensional interpretations.

This situation is clarified if we look at the probabilistic matrix;

We distinguish such heuristics from

I, I, I R
o Wiy Y2 Y i{m w4(R)
D, W21 W22 ¥2m w,(R)
Dn Wni Yn2 Ynm Wn(R)

We call these two

We have adjoined to the matrix a column giving the w-values for a

given request R. Since the non-zero values in this column characterize
the documents that are retrieved this represents the extensional in-
terpretation of R. The values themselves in the R-column can be
thought of as a measure of closeness between R and the documents.

The matrix [wij } itself gives a representation of the document space
and the index space. Toget the intensional interpretation of R into the
schema we use the following device: Write R in so-called ''distinguished
disjunctive normal form' --this is a disjunction of conjunctions in which
either Ij or its negation occurs. For example, in the space of three

tags 11,12,13 the request R = 11. I2 can be written

- 45 -




Having done this, we can represent each conjunction that occurs in R
by a vector whose jth component ej is 1 if Ij is in the conjunction, and
0 otherwise. Thus R is represented by a bundle of such vectors and

we have a matrix whose rows are these vectors:

€11 €12 €1im

€21 €22 €2m
B =

es1 eSZ o o o esm

where s is the number of conjunctions that occur in the normal form.

We now adjoin this matrix to the probabilistic matrix:

Vit W2 Yim

W2t W22 Wam

Wn1 an o o o an

€11 €12 ®im intensional rep-
resentation of r

esi eSZ o o o esm

A simple heuristic can be generated from this schema by replacing

the non-zero w-values by 1's, thus obtaining the binary library matrix.
The square of the Pythagorean distance between rows gives the num-
ber of positions in which the rows differ. We say two rows are 0-away,

i-away, etc., 1 depending on the value of the square distance. We see

1The notion of distance between documents is analogous to the notion
of distance between codes as discussed in the theory of error correct-
ing codes.
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that R will retrieve document D1 if and only if there is a row in B that
is O0-away from the D1 row of the binary matrix. (In fact, there will
be at most one such row.) In this case we say that D1 is 0-away from
R. We can enlarge the class of retrieved documents by considering

also documents that are 1-away from R, 2-away, etc.

Enlarging the class by this method is not completely satisfactory. We
would really like to introduce these notions into a (generalized) rele-
vance number computation. That is to say, we would like to combine
heuristics in such a way that documents with associated ranking num-
bers are retrieved, not just classes of documents. We would also like

to use the values Wi(R) in the computation.

First we note that the Pythagorean distance between two rows of the
probabilistic matrix gives a measure of dissimilarity of information
content (as well as dissimilarity of distribution of information) between
documents corresponding to these rows. Call this distance "A(Di,DJ.)”.
We can use this distance function to compute the distance of any docu-
ment from the class C of documents retrieved by the basic selection
process. This is all the theory required to implement formula (4)

(section 2. 2). ;

Next is the problem of computing the (generalized) relevance number.
There are infinitely many possibilities here and which is '"best' is

still an open problem. However, an extremely natural one arises as
follows: We have pointed out that the values wi(R) in the R-column of

the probabilistic matrix can be considered as a measure of closeness

1Another measure of dissimilarity is to take, not the Pythagorean dis-

tance but the sum of the absolute values of the differences betweencor-
responding entries; i.e., zlwik - ij
k
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between R and the documents. To combine these values withA(Di, Dj)
we convert closeness to ‘'distance'' by some device such as consider-

ing the negative of the logarithm of wi(R). We define

d(R, Di) = - log wi(R). (13)

Di will be retrieved by R if and only if d(R, Di) is finite; thus this char-
acterizes the class of retrieved documents. Now take that document
Di in the class of retrieved documents such thatA(Di,Dj) is a

minimum,

Then we take

g(®,D)) =\’A2(D1,Dj) + log®w,(R) (14)

as the measure of "distance"2 between R and Dj' Note that if Dj is a

retrieved document, thenA(Di, Dj) is zero and
g(R,D)) = - log w,(R).
Furthermore, if Dj has not been retrieved (initially)
g(R,Dj) > - log w;(R),

where i is the accession number of the document nearest to Dj' Thus
the ranking by the g-function will always put an adjoined document be-
low its associated document in the class C. We may now finish the
computation by subtracting the logarithm of the a priori probability
of a document from its g-value. (Analogous to multiplying wi(R) by
P(A, Di) to obtain the relevance number.) The final heuristic then, is
to choose a suitable cut off point in the list of adjoined documents--
taking only those with (generalized) relevance number less than some

specified value.

1If Di is not unique choose the one in the minimal set with the largest
w.l(R).
2Again (see note 1, p 47) it might be preferable to take

g(R,Dj) = A(Di,DJ-) + d(R, D)

- 48 -




Although simple in theory the above heuristic leads to laborious com-
putations. Considerable simplication results if we restrict all com-
putations to the columns of the probabilistic matrix corresponding to

those index terms mentioned in R.

2.8 Further Remarks Concerning Search Strategies

We have presented some of the heuristics that appear to have the best

possiblity of being useful components of a search strategy. We also

have formulated some principles for a general approach to the prob-
lem of automatic elaboration of the selection process. Let us now

illustrate these ideas by constructing an over -all search strategy.

First we list the variables involved:
1. Input

(a) The request R
(b) The request weights

2. The Probabilistic Matrix [w.lj:]

(a) Similarity measures between documents. (e.g. , A\ -values)

(b) Significance measures for index terms (An index term
applied to every document in the library will have no sig-
nificance, while an index term applied to only one doc@u—
ment will be highly significant. Thus significance
measures are related to the '""extension number'" for each

o term; i.e., to the number of documents tagged with the

term--the smaller this number, the greater the signifi-
cance of the index term.)

(c) ''Closeness'' measures between index terms (e.g., Q-

values)
3. The A Priori Probability Distribution

4. Output (by means of the basic selection process; i.e., the
logical match plus Bayes' schema with all of its ramifications and

refinements).




(a) The class of retrieved documents; call this 'C'.
(b) n, the number of documents in C.

(c) Relevance numbers.
Control Numbers

(a) n_, the maximum number of documents that we wish to
retrieve.

{(b) Relevance number control; e.g., we may ignore docu-
ments with relevance number less than a specified value.

(c) Generalized relevance number control. (Similar to the
above but this applies to the computation described in
section 2.7)

(d) Request weight control; i.e., we elaborate on index terms
in the request if their request weight is higher than some
specified value.

(e) Significance number of index term control; i.e., we give
index terms of certain significance (defined in terms of

their extensions) special attention.
Operations

{(a) Basic selection process, denote this by '"'f",

(b} Elaboration of the request by using '"closeness''in the
request space. Denote this by "H'"". Thus the operation
H will transform the request R into a new request R',
More precisely H is the heuristic: elaborating the index
terms in R with request weights greater than the request
weight control number and/or index term significance
greater than a specified value.

(¢} Adjoining new documents to the class of retrieved docu-
ments by using ''distance'" in the do;‘ument space. De-
note this by '""h'"'. Thus the operation h will transform the
class C of retrieved documents into a new class, say D.
Move precisely, h is the heuristic: trim C to documents

having relevance number greater than the control number
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and then annex to C all of the documents with generalized

relevance number in a certain range.

(d) Merge: any merging operation between two classes;
e.g., forming their intersection, their union, trimming

by using relevance number and then forming union, etc.

Next we combine these to obtain the strategy shown in diagram 3.
This strategy is to be regarded as a particularly simple example, its
goal to obtain a specified number of documents (say no) having the
best chance of satisfying the request. Thus the decision to elaborate
centers on answering the question: Is the number of documents se-
lected greater than or equal to no? In the diagram we refer to the
heuristic H as simply '"elaborate the request'. The actual transfer
function H involves using control numbers to limit the elaboration.
Furthermore these control numbers can be varied from one applica-
tion of H to the next. Similarly we refer to the heuristic h as simply
"extend the class''; but we point out that this too involves control num-
bers. Finally a word about the classes C, C', D, etc. These are
actually lists of documents ranked by relevance numbers. Thus the
instructio‘n "trim C to no” means ''cut/off the list to the ng documents
with highest relevance number'., The output of the system will be an

ordered list of document accession numbers.
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PART III,
THE EXPERMENTAL RESULTS

(SUMMARY)

In Part III we describe some experiments that were designed and
executed in order to provide data for evaluating the effectiveness
of the techniques of Probabilistic Indexing. The discussion of
Part II indicates that there are two basic hypotheses that we wish
to verify. The first hypothesis asserts that the relevance number
that we compute for each document, given a request is, in fact, a
measure of the probable relevance of the document. The second
hypothesis asserts that the automatic elaboration of the selection
process does, in fact, produce relevant documents which are not
selected by the original request.

Section 1 discusses the experimental set-up; i.e., the library,

the indexing system, the weights, the testing procedure, etc. Sec-
tion 2 provides the data and discussion in support of the hypothesis
concerning the relevance function and we find that the results do
support the hypothesis. Section 3 provides the data and discussion
in support of the hypothesis concerning the selection process and
we find that the results do support the hypothesis.
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1. THE EXPERIMENTAL SET-UP

1.1 Initial Remarks

The jumping off point for our approach to automatic information retrieval
was the recognition that the core of the problem is that of adequately
identifying the information content of documentary data. There is an un-
certainty in the relationship between the tags that are used to index docu-
ments and the subjects that they denote and this is the cause of inadequate
retrieval of desired information. Using the analogy of going from an in-
coming document to its set of index tags as going from a selected mes-
sage to a received message over a noisy channel, we recognized the ef-
fect of semantic noise and accordingly a technique for handling it statis-
tically. Given this analogy the problem was to select the proper schema
from the calculus of probability to allow for the inverse inference from
requested index terms to most probakly relevant document. This line of
reasoning thus led us to the notion of weighting index tags and using Bayes'
Theoremto provide a function to measure the degree of relevance between
an arbitrary request and any of the documents selected by the request.
Further analysis led us to the notion of automatically elaborating upon
the request in the most probable direction so as to improve the selection

of relevant documents.

Given the fundamental notions of Probabilistic Indexing and a logico-
mathematical explication (presented in Part II) with which to back up our
intuitive understanding of the problem, let us now raise the question of
justification. That is to say, to what extent does our probabilistic ana-
lyses of the library problem guarantee that retrieval effectiveness will
be improved. Clearly, the only real justification for Probabilistic In-
dexing is success; i.e., if the technique improves retrieval effectiveness
then the system is justified and if not, not. Therefore, given the basic
methods of Probabilistic Indexing a natural next step is to conduct some
actual library experiments in order to measure its degree of success in
improving retrieval effectiveness. In the following sections we shall de-

scribe the design, execution and results of some actual experiments.
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An evaluation of these empirical results provides good evidence in favor

of the '"'theory' of Probabilistic Indexing.

Let us point out at this time, that the value of actual library experiments
goes beyond a mere campaign to evaluate the techniques of Probabilistic
Indexing. Actual library experimentation provides an excellent tool by
means of which we can refine and extend the methods and techniques that
constitute Probabilistic Indexing. We have formulated already what we
feel are excellent approximate solutions to some of the major problems
and these notions now must be verified and refined, where necessary, on
the basis of actual experience. Just as the physicist requires such tools
as, for example, a linear accelerator in order to empirically verify and
suggest new notions relative to nuclear physics, so also the ''library
scientist'' requires the counterpart of the linear accelerator; m , ali-
brary with which he can work and control. Just as an experiment in phy-
sics represents a set of questions that a physicist asks of Nature, so also
the library scientist needs an experimental library to which he can ask
questions about the nature of information identification indexing, 'searching,
etc.; and thereby to obtain answers on the basis of which to refine his
original questions and provide insights into the evidence relative to library
problems and their solutions. Hopefully, our explications can be refined
so as to provide us with a good first approximation to a fundamental theory

of literature identification,indexing, searching and retrieval.

1.2 The Experimental Library

A collection of articles from Science News Lett:er1 formed the library

for our experiments. The Science News Letter is a weekly summary of
current events in science and the articles cover a wide range of subjects
ranging from Archaeology to Astronomy, Physics to Physiology, and Med-

icine to Meteorology. In previous tests made in October of last year we

1Published by Science Service, Inc., 1719 N Street, N.W., Washington, D.C.
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selected 200 articles at random and this collection constituted the experi-
mental library. For the present tests we discarded 90 of the original

200 documents in order to restrict the library to articles dealing with the
Physical Sciences. Although 110 is not a large number we feel that our
experimental library presented us with most of the relevant and basic
problems that would be found in a '"real' library and yet still be of a man-

ageable size.

Our choice of articles from Science News Letter for inclusion in the ex-
perimental library was dictated to a large extent by the fact that these
articles are relatively brief, pithy, clearly written, interesting, timely,
uncomplex and easy to index by non-experts. This made not only the in-
dexing but the subsequent evaluation of retrieval documents a reasonably
uncomplicated task. Since this experimental library was one without a
previous history of usage there were no statistics on the a priori prob-
ability of document usage and consequently these statistics had to be simu-
lated as discussed in Part II, 1.12., Graph 1 shows the simulated non-

linear distribution.

1.3 The Indexing System

The indexing system, again, refers to the class of tags that are used to
identify both the content of the documents and the requests and thus it is
the language common to both ""sides'' of the library. Since the methods
of Probabilistic Indexing are applicable to any indexing system we were
not limited in our choice of a set of tags to be used for the experimental
library. The only constraint was that the number of tags in the index list
be comparable with the size of the library. Instead of '"truncating'' an
existing index system and using its tags to index the documents of the ex-
perimental library, we adopted the following procedure: Each document
of the library was read and the key content bearing words were selected
and listed. There were a tatal of 577 different keywords in the list. These
words were sorted into categories on the basis of their meanings. It
turned out that the keywords (as they are called) could be sorted into 47

fairly well-defined categories. In many cases a particular keyword would
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belong to more than one category, consequently there were 919 occur-
rences of the keywords in the 47 categories. The names of the 47 cat-
egories are listed in Table 2 and these names became the tags that con-

stituted the index term list for the experimental library.

These 47 index terms were then assigned to the documents by working
backwards as follows: For each category we determined which keywords
it contained and each document which contained the keyword in question,
was coordinated in the corresponding category. That is to say, given the
categories, the keywords in each category and the documents associated
with each of the keywords, we then were able to determine which docu-
ments should be coordinated with each category and thus the documents
were indexed by assigning to each the names of the corresponding cat-
egories. This is clarified in Diagram 4 which shows the relationships
between documents and keywords, keywords a_nd categories, and, there-
fore, documents and categories. Table 3 shows the number of keywords
that were associated with each of the 47 categories and also the number
of documents associated with each of the 47 categories. Graph 2 shows
the distribution of the frequency with which the index terms were used,

plotted against their rank.

1.4 The Assignment of Weights

Having assigned the index terms to the documents, Probabilistic Indexing
requires that we indicate the degree with which each tag holds for the doc-
ument by assigning weights to the index terms. In order to assign the
corresponding weight each document was reread and then the indexer de-
cided for each of the tags coordinated to each document, the degree with
which it held. We had decided previously that a reasonable range of values
for the weights was eight, ranging from 1/8 to 8/8. In order to aid the
indexer in obtaining a consistent assignment of weights, rough weighting
rules were formulated and these are shown in Table 4. Table 5 shows

the distribution of weights for each of the 47 index terms. A portion of

the Probabilistic Library matrix is shown in the Table p. 65,

- 58 -




w N

11.
12.
13.
14.
15.
16.
17,
18.
19.
20.
21,
22,
23.
24,

© ~N o U h

Aerodynamics and Aviation
Agriculture

Animals (including birds,
fish, and reptiles)

Arcnaeology
Astronomy
Atmosphere
Atomic Physics
Biology
Chemistry
Communications
Computers
Defense and Warfare
Electronics
Engineering
Engines

Food

Geography
Geology
Geophysics
Health and Safety
History
Machinery

Man

Materials

25,

Mathematics

26. Measurement

27. Missiles and Rockets

28. Mystery, Myths and Problems

29, Nature

30. Navigation

31, Paleontology

32. Physical Quantities

33. Physics

34, Plants

35, Political or government groups
or functions

36. Power

37. Predictions

38. Psychology

39. Research

40. Satellites

41. Social Sciences

42. Space Travel

43, Teaching - Education

44, Time

45, Tools

46. Transportation

47. Weather

TABLE 2

INDEX TERMS
DERIVED FROM KEYWORDS
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0 N O O b

11
12
13
14
15
16
17
18
19
20
21
22
23
24

Aerodynamics and Aviation
Agriculture

Animals (including birds,
fish, and reptiles)

Archaeology
Astronomy
Atmosphere
Atomic Physics
Biology
Chemistry
Communications
Computers
Defense and Warfare
Electronics
Engineering
Engines

Food

Geography
Geology
Geophysics
Health and Safety
History
Machinery

Man

Materials

17 30
8 12
13 § 27
8 12
13 § 29
13 } 22
14 | 35
11 19
15 § 23
10 | 25
7 12
11 21
14 16
11 14
8 15
7 11
21 36
8 12
10 11
13 i5
10 |21
24 {29
20 29
24 {38

29
30
31
32
33
34
35

36
37
38
39
40
41
42
43
44
45
46
47

Mathematics
Measurement
Missiles and Rockets

Mystery, Myths and
Problems

Nature

Navigation
Paleontology
Physical Quantities
Physics

Plants

Political or government
groups or functions

Power
Predictions
Psychology
Research
Satellites
Social Sciences
Space Travel
Teaching - Education
Time

Tools
Transportation
Weather

USE OF INDEX TERMS
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WEIGHT

8/8

7/8

6/8

5/8

4/8

3/8

2/8

1/8

DESCRIPTION

Major Subject

Major Subject

More Generic Subject

Other Important
Terms

Less Generic Subject

Minor Subject

Other Subjects

Barely relevant

TABLE 4

WHEN USED

The term is highly specific
and covers an entire major
subject of the document,

The term is specific and cov-
ers most of a major subject
of the document,

The term is too broad and
covers a major subject.

Terms that would be used in
a binary indexing but not a
major subject,

The term relates to but is too
narrow to cover a major
subject.

Includes such terms as relate
to results of experiments, in-
termediate methods, possible
uses, etc,

Other relevant tags.

Subjects classifier would not
want to use but feels that some
users might consider them
relevant.

A GUIDE FOR THE ASSIGNMENT OF WEIGHTS
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Aerodynamics and Aviation 1
Agriculture

Animals
Archaeology
Astronomy
Atmosphere

Atomic Physics
Biology

Chemistry
Communications
Computers

Defense and Warfare
Electronics
Engineering

Engines

Food

Geography

Geology

Geophysics

Health and Safety

~
(%)
w
~
«©
w
~
[#¢]
(%]
~

Machinery

Man

Materials
Mathematics
Measurement
Missiles and Rockets
Mystery, Myths and Problems
Nature

Navigation
Paleontology
Physical Quantities
Physics

Plants

Political or Government etc.
Power

Predictions
Psychology
Research

Satellites

Social Sciences
Space Travel
Teaching - Education
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DISTRIBUTION OF WEIGHTS FOR EACH INDEX TERM
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Given the 47 index terms we computed all the conditional probabilities;
i.e., the probabilities that given a document tagged with Ij' it will be

tagged also with Ik

This conditional probability matrix is shown in the
Table p. 67. The Table p. 68 lists for each of the index terms the term
for which it has the highest forward conditional probability; i.e., for

k
show more graphically the connections between these terms we have in-

each Ij it shows that I, which makes P(Ij’lk) a maximum. In order to
cluded the ""map' in Diagram 5. The Table p. 70 shows the most highly
correlated inverse conditional probabilities; i.e., for each I, it shows
that Ik which makes P(Ik, Ij) a maximum. The Table p. 71 is the matrix
which shows the coefficients of association that each index term has for
every other term and in the Table p. 72 the most highly correlated terms
(in the sense of coefficient of association) are shown for each of the 47

index terms.

1.5 The Testing Procedure

Our procedure for empirically testing the notions of Probabilistic Index-
ing was rather straightforward and unsophisticated and can be described
as follows: At random we selected 34 documents from the experimental
library and from these ''selected'' documents, we formulated 40 different
questions. These questions were not so narrow that they demanded some
specific piece of data for the proper answer, but, rather, they were
more general and of the type; "Find information on the use of atmospheric
energy for satellite propulsion', rather than, '""Find the specific gravity

of beryllium"'.

We then chose five intelligent cooperative technical members of the Com-
pany and asked them to act as test subjects. Each was given a list of eight
questions and a list of the library index terms. They were briefed as to
the nature of the library and they were asked to formulate a library re-
quest for information on each of the eight questions. We requested that

they attempt to have the ''correct'' document retrieved and as little else

- 66 -




P e e p————————— ——

L s RIT B - - S o naciewycp - Ty - {zzz|ann | ctssscf - LN i K50 k2 I AL A R kX LN A Il N E A TR IR R IR S - - ez - - < |RII999 | v s3meIn

S2v t v Jz9oc) - ] - T290-fues[szifszs |sew fews TasvTsav | - Tsza Josz ] - [eorJe90 fszr [een ] - | - Tz90 [osz [sz9] - [are|z9o [ - 290 - [zve [szv [z90 1 o5z [290J 290 {290 | - | szt Josz | - | - |z9o| - |9 |9 uopwiodsurit

99v fo9r | v f99u-] - Tegn-[ - V- foaw | - - [ - Toegufoae-[ - Joou-foar ] - | - Joon| - 1 - Toos Joor [99vfoos-foor-T - Toor [ - | - Toos | - [ossfoon| - [eccf - | - | - [oor eee| - |991 |99 991 [a9s]sr OrzE

cobm o v s LU - s fsez [avifzwic - [ - Temelawi | - T - {avvleer [avi [osd Towi f - 1 -1 - {vis-[ay [z [soz | - | - | - [ - | - 1 - |zvt [zvv [avs | 2ws | 2vi-suz |es1 | ¥ awir

Sl Ty - - - 1T+ Joeoefooe| - Jooz | - |- - -1 -1--Joow|-1]-1-1-1T-1"-1-1T-1-T-1T~-"TFT<-T7T=T-T1T°-7T< feozclooe] = [~ - 1-1-1- (e uotieonpy Bunpdeol

EIREEEE ) s w1 (o Jemilese ] - Boy o fese| - [eey [ - - Tese [ - Jawv [wvi[ewi Tavic| - Jevi| - et 2w [evi|zvi| - o | - S - [eev ey e | - [ - T - v |2 toavey wowds

N R - - - [ - - Joszc] - - |sa] - - - - szt - e - Jsu] - - [oszlosz sz ] - S - Jesz | - g = EREDE S S S S - - - S - szi]ar DEECELR {MEAAS

o0¢ joozf - | - ¢t - Tooz'd - T v Joos[ - ooz Toozfoos | - Jooe Joor |- Jooz | - | - Jooz[oor | - - qeoz| - p - 1 - Jooz] - Joos | - Joezf - toeor | - | - fooz-| - | - |oos |ooc [oor | - = - ooz |ov LU

Hscisez [zwec| - S 2 (IR AR - sz - - B R EGEEE - jeevy fev) Jsezofevr | - [eszTevi[ - Tsez | - - - RN - BN AR ETE R CRLLLCE]

A1 - - - lege| - - 1 - S99 - 99 [99r | - - 9 oo | - - N - |eeef99r) - fege) - - - - - < 1991 [991f99s ] - - - - - - - 199 | - [991 | 8¢ Adoroydind

008 10097 - - - {ooz | - Toor[o0z| - ¥ - ooy [ - looz| - - Jooz| - - - - - - - [ooz'} - jooz'f - - = - S - Toog | = ooz fooz ! - 5 - ooz fooz | - - - Joov |6 AuonpaId

coqrer - teee fureteco| - Twsrp - - T - Ty Tese] - tvew[wer - lie | - [ver [ez | - B0 [1g2 16z} - [v617)wed Twsi |62 | - |vov | ¥si | st |80t | - | - |mo¢ | - [ vev|ze0 | - |£20 | - | - |v8€ |9t 43mod

¥LO [ L0160 K20 [440°) #40°[250° 681 [ LE0 [Leo [vzo [sor] 1 [1riierl [ve0[Lto{vioc| L0 [2€0 [8¥1 |0 722697 | 9%1 (81" |Lc0 |5i0 |#i07|sss | - |vL0 | Lt0 9%t |72z | Li0 | 8% [vie |0 | tee |vie |11 [sai | zeo |vi1 Jert | s¢  wsthassog a0 pwmied

jyea’} - 160 281 7] - - - - S S - IR 160 160" | - - 160 | - 3 - coteziiee’t - 160 [160 [ 160 [J60 [Z8r feiz | - - - - - = [z8y jwec {160 | - - +60 | 281 |SS¥ 160 | ¥E siuerg

0s¢ [voy'| - 1050 loso |ogi | - Tosi | - [oso-|oso |oot o0z Joso | 1 |ost | - |osi {001 [050 |05t |00 | 001 . 0sc |0t J oot | - JouI |05 |05z |00z-| - | 650705t |oor [0or | - |est fesi | - | oot |05y |ooz |o0s0 050 |0%6 | 007 | €€ sa1ahud

2y (0527179071290 - Jszi | - 790 [szicjz9e | - dsaicfsziclegofaee [ 0 | - {290 [s2v [290 [ 8 |7ve (290 Tozv fusi | st [eeo {sz1 [imv[szi[osz | - [szv|ie1|osz | - |sav | szl (290 | - | szt |osz |szi | - Je90-|z90 [z1¢ | 2% saunuenp [eatesyd

- L - - - - - -1 [ Teer T - - =W - jooz fooz [ - - B - {ooz{ - Joow | - a0z | - [oov | - - - - - B - - Joor |- B - [ooB'foos | - o ABojoquoarey

S 5. LA N C sy jzvb lssrcl - - jEFiciTEicpsezc] - 187% 2wl _ - + - - - Cojevc| - e8| - vy [e82 | - qevic| - [zviclewy [ - Tewe | - = | sez Jexr [sez | - P - |iis]of uondiaen

NIRORENEERE = E S - - M ER IR EE -~.;q_, - (S zze | - [wvovlze [wee [evv uww [ vee [3en | - [dir| - N - BRI R R R LS 2amIEN

oy Jevi |- - el - aw [oe |- sz en | - IR DN R R N RS L A R A R N N B A I B R L I B L A S A A LA R DA

- - s ojrv| - i - - JEEECpERRCl - feRecfeee ) - L e |- RN - ez - fesecf - HREIE N - - - Pevy [ese | - 5 - -t ez CERF] (it DO

Sl po - o qseyqsmvcisay V- 1o 1 - fsavn |- Yemvfsa9 [ - - Tezt) - ¥ezv T v | - [sav | - [szv |sev | - |sev [sev jeos | - [ - | - |ese] - szv | - sai| - | - { - |esz ] - [sev | - [szt |92 wawaznerary

%1 |Tvi jsRZ (2% | - - Jee] - > lzvijevel - Tesz jzer | - S =ttt |- v |ewy Jevicfssz - [zvi (e | - = S g - [ssz fevr 82y | - 5 < Jexyievr| - S S - - 114 eINTWINTR

frof€80 1 - Tivo [ - [ - [wveT - ) - [99vfosz {sei (16T €80 | - | - liso| - w0 | ¢ Wwo | 1 [807 s [€B0 [1v0 Gzd 52k {997 [Sz1 €80 [80Z €80 |Szi | - | V%0 |9)F [5BO | 057 | €80 |1¥0 | €8O | S21 |BOZ | STV | #2 IR PITH

060 j0S0 ] - | 090 1001 ‘jooi ‘joso josz | - Josi 1os¢ Jooy [osi Josi Joso | - 1 Tooz |00y | - 050 [0sZ | 7 [0i [osi |00t 051 | - {01 |00V |06i | 003 | 041  60¢ | 050 {05z [007 [0s0 | 001 [001 | - | 091 | 003 050|050 | €2 UEN

ST1_[1%0 | - 14y f€80 | - |99 |wwo [1p0 [S2i°(99) | - fosz fosz | - w7 |1v0 [€80°[ €8O | ik0 | €80 |Sic |Seb | V| - |991|5es |iw0 | €80 - |99+ | 16z |08z | s2v |sz1 1991 |#91 | - |80z {993 [s¥0 | sk0 | b0 | - |ei¥ |2z (HOSRE]

gov joovty - - Jees [ - f - |-} - [- joos Joor | - TJooiJoar [ - ooz Jooi | - foor | - jooz [oeel - |+ |- loo | - leoz’| - | - |- - | - [ - [ooz [oos ooy Joor ] - | - |ooz jook [o0i | - |7 Aaoret

- - jewo |- 1 - 1 - Tess [eeo[ws Teeo [azoTusz tvsi | - |wsy |20 |cio [wsi] - | izo lizo | w¥sr |sec | - Vo L taeores Jrefae] - vwer |- Taao [ - Py ymez fuze [ - [ - [esi [ - wee Jor Ajajeg pur wiTIH

o0V, - 4 - [ - |- teoz Jooc | - | - [ooz'[00z ioor feoc (oot [3ov | - [oos| - | - |ook| oot |oof |oot |oor |oor | - 1+ Toot |oov [oo1-| - |ooz [oov | ool |00z | oot |ooz |00t | oot |oos | - |00z | ooz |out looz | satsdydoan

c oy |- iseyiyc b - fsevc) - b- josz |osz jszicisz9tiosz | - dszr ek [szd | - Jeaw [ - feus [ - Teav |- |- Tare [ v fsee | - |- |- [|sevisavc| - | - sz | - losz | - |sf | - | - [szv {sev | 4% R

T [OBET) - (&¥0°|S6O [e¥iCiSe0 ) -} - [€¥) | ¥iL'[S60 061 [Ghi |560 1560 |06b [560 |s60 |06F | - | 063 | vl | 66D |£€€ |L¥O 061 [£¥F | T |c¥0 |S60°|S60°| - |60 | - | 660 |ZvQ |50 | 063 | - |60 | 982 | 560 [L¥0 [S69 | L} Aqdesdosg

- N KL AT K3 A0 N LA e - N LR EEE N EE - - ee g8 | - RN RN EEE B EEE N E - - fesat - fani [ - [ - Jeszfemvcl - e pood
s21 wed | - qszicl - sz |- josz | - - |- foest joesz § - [ezi josz'| - [szv[ - [osz |sit | - - tesz [esz Toos | - Jezv | - [ -"Tosz | - vofsee | - Tesz| - - fsev| - Josz [esz| - b e st |9 souul gy

k4] 281 [ 160 |281 | - - o - | e - ofesicpeo | - peezcleez | - - 160 | 160 | - - - lss¥ [z81{Lf9°] - 160 |28} = |28 (1607 [€2Z | V [287 }ie0 | k60 - [28E°p - [28F [2R°} - S S 160 [ oPS | w1 Bursasuiduy
¥1z |50 [wo g - c [ MO |- (98710 |iLo {¥i2-feRbc( 982 - a7y 987 | - [HGC| - 5 - ey [svr Tewt [z ey | - - JgszlbLo| - - = {eve [ v [eer|ese |98z |1z IR - - eyt |61 moaas [
e 0 - - - Jveo | - - 6o | - lwgec|ows | - femr | - C qto87) - |60 [281°] - (160 l€LZ [¥9€ (€22 | - [28F 1160 |360°fzei [ - lzed (160 [281 [ 1 [je0-{zer ze1 [ - &5k | - - - M - o jeez | dawjaem puE 2suIQ o
$82 12qi |87 | - - - - - |ssz lzva fze | - [zni | - - gz - - = oy - pavi ey [ - e[y | - - fesz | - E S S ey iwie len [ Jeviy - e EREIEE 5 s -y n saamdwion '

001 joot | - - - - - fooz | - - foor | - Joor [ - Toot Jooz | - foor-| - = = S - [oov-[oos [oor [oo0z [oov {ooi| - ooz | - 5 - oov [ocz [o0r ] ¥ S =1 - Toor Toor Jooz | - - [ooz 1o SEOURIHTRINCD

gty - e e e pm b f - b- fesefees [een Jooz Jego [ [ - Teer [eev | - (190 | - [e99 |€€r |19z [£90 | - €y |190 [£90°] - (190 |eeb 1290 | €€ | - | - | 3 .92 | 490 |eer |e9¢ | - | Ls0 |eer (€l |6 LRI

N C g Jieo ) - - op - b b e f - Jveo (w9ec| - b - qees | - feev [ - [ - [ - [ - Test[vea | - [ve0 285 [veo | - |z81|z83 | - | - | - S e [y - [esy jreafesy [ieo | - e Auororg

- jEwr e fuo[uo teie |- e | - |- [sevclevg reocleer qevy | - tevbof - |- fesz | - [y20 [ezy [evi |use [ico [vi2 [1Lo[evd |98z | - [evd [€¥5 | 120 | 288 ] - | - [bL0°| - 3 Tem [ - - TOIT LB Bt

bsl |8t 1¥syclezocf - Jiez | - |sez-fest | - Jeeoc[eco [t - Tiee Jgoc | - |rzo |zzo | - [vez | - |iio |vst {#s3 [sox | - Jezo [sez | - | - |cfo |wsic|wst |vez | - lito |czcc|ves | - [ io BRI R 33audsouny

- - = fezo | - Jiez |- [eoecy - = leeo f - paee | - isoc[wst [ - fwsr{ri0 | - - fwse] - fee ] - feeo - 5 B IGREORE o < Jrez | - - Jeee Jeeo Twsifesy fiez [ - S 5 < s Awovonsy

- i R A N - - - - - {521 fszerisay [szr | - oos| - - leav | - - - oSz lsLe |s21 |se8 | - |osz ) - {osL [ - - g = = = losz | - [szv |ose | - 5 T 1S | - 1y ABojosryaly

Cjeeo Jeeojarerp s | - - 1 - - Teeo [T - Fedoc]esv[zro [uza66e | - ez |e20 | - | k0| - [ige |wst [ieo [vez |ver Jwev | - vt (vsr | - | - 1 - | - | - | - |zto [see | - S e [ [eo Jueot|e spruy

sevp - qsmjose |- - |- [ - feen |- - b= Vsie Jseo[swi[sav | - | - [are| - |- [ - | - Tswe Jsev | - [eey | - [sev [sav [sev [see ] - Jsev [ - 1 - | - | - lesz jsai | - | - [ - |- fsai |3 [sav |2 samimondy

£2f | 9v9 fes0 f6s0 | - [6s0" feso feiy [9e1 [6so [eit [vez [orz [6s0 [9ez [v62 | - |97 |60 [u11 |9ty |eso- 901 |50 | 685 = {sii[eso {810 | - et [esc {801 [ouy [esc it [ov1 | - Lwis 962 | - | - | 650 |650°] T |} vonmay puv adjweudposay

LA A LT O 6 8T 2t 96 S€ ¥E €€ € K€ Of 62 87 Lz 92 S v € w@ iz 02 & @ L1 9 s v ¢ 21 o 6 8 ¢t 9 s v ¢ z
umoye wisy
wiea am
Qs waeL xopu]

s gayjdug




2y 0 A13sTIIayD ¢ sTeIaIely  ¥7
suonyouny 1o sdnoil
GE 0 jusurazaaod Io Tesnrod G¢ wew €2
uonjelzodsuexl of
19°0 uohery pue sdrweudpolay IdyqIeI M LH v 0 uoTIeIAY pue sorureudpolray | Lasumysew 22
69°0 UOWTIAY PUE $OTWeRwApoIsy 1 uonierzodsuesy gy AydeaSoan 1
. A
050 Azsumysew 77 s001 o 0L°0 ASoroeeyo1y 101STH 12
. uonejzodsuri] 9§
L0 AydesBosn .1 ARIHL vy 8¢ 0 UOHEIAY Pu® 5oTwreuipoisy | Ajayeg pu® YiresH 0z
U SOMRWIMEN 7 wonesnpy - SUMIESY ¢y AydexBoony 1
so1sdud  ¢¢ 0% 0 sOTUOIIVTH €1 sorshydosny 61
woneSwueN 0O¢ X
so15hyg onmoly 2 £€9°0 so1sdyg  €¢ A3o103n 81
sxsydsouny g suonouny 30 sdnoid
£y 0 dwmouonysy ¢ 19ARa], 90edg 7y 1270 juswruzdao8 10 TEdIITO  GF AydexBoen 11
8€ "0 uonejzodsuell 9% S§3DUIIDG TEID0S 19 sjueld ¢
H STRIISIBN  $7
suonIuny 10 sdnoif .
050 1wswuIsA0d 10 [ESUIOL  §¢ s9IIT918S 0% €% 0 sinmotaly 7 poog 91
asmesm Ly GL°0 UOnRMAY puU® mudumg.”o_wwn% wm sourfuy g1
LS'0 KAzoumyoely 77 yoxessay ¢ net T .w
£8°0 TEW €2 £3otoysheg g ¥9°0 Arsumgoey 22 furzoourBug ¥l
: sosdgg  gg
080 Iqmed L SUORDIPIIF LE -0 Azourgoe 72 £9TU0I309TT 1
Mwwwwmm & suonyouny 20 sdnoxf
Ll | 660 JusuIuIaA08 I0 TeOMINO  GE aIejIRM PUR 95U z1
9% 0 s21sdyg orwoly 1omogd  9¢ o o siomdwon 11
SUOIIUN] 10 R
950 Aqdesfoary sdnoa$ jusuruzaacd 10 TeOBIOg € 050 Uew €2 SUOEIAMUNUO] 01
%0 ammopfy 2 siwelg ¢ 19°0 STRIIIBN  $T Anstwagd 6
ERURvEND) TEXWAYg  7i s¥ "0 STEWTUY | Afoto1g 8
§¢°0 FRIINTN 7 sotsdgg  ¢¢ suonomng o sdnozf
%0 saming  £f semnueny restshug  z¢ $9°0 jusurmmassnf 2o ronmog 66 §o18Ayg dTWIOIY [
dreeryg g7 ooneodrURI]  OF
Afopoavy v % nvﬂﬂndﬁm reotedg  zE
: e ISUMOvE] 77
080 L sy L - 4300309 1€ 1£°0 DOTIVIAY DUV fiTmEuApoIay | arsydsounty 9
L5 °0 uoQEAY puE ganmeudpossy uoneSueN o¢ SuikiE i
vy o iqdesfoeny 1 sIMIEN 67 1€°0 E3pEAGd  §f Awouoaisy
PAI] oER  E7 SwITqoag pue sUMW ‘Axaishiy g7 880 AI038TH 12 4AB8oro9eydry b
SUOTIUN] 10 sdnosd (s@#mdaa pue
Twsumrasod 2o eapnied o 8€ *0 A8or01g 8 ys1y ‘spirq Surpnrour) STRWIIUY
is & = ¥
4 .o EATRiLY w0y f §393D0Y PUR SITISSIW L7 Seot o6
£9°0 EIRATEN]) TENEAYS 7 JUSWRIMSBIN g7 €9°0 STRIISI®N  $7 smymotady 7
€% 0 exogndemosy 11 sonjewayje 59°0 uoneilodsuex % uonelAy PUR SOTUrRukpoiay 1
T qIEW ST 9 L 9
£
rna g 2 rfna ki i

(sTeuoOI3TPUOY) pilemJIog)

SIYEL XAGNI ALV TIYYOD XTHOIH LSON J0 LSIT

. b8




DIAGRAM 5. A MAP OF INDEX SPACE
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as was reasonable. They were told the meaning of the logical connec-
tions (conjunction and disjunction) andthey were allowed to use these
connectives as desired. Having formulated a library request for each

of the eight questions they were asked to repeat the process, the second
time weighting (as desired) the index tags used in the requests. We took
their library requests searched, computed, ranked theretrieved documents
and evaluated the results with the aid of the individual who originally

made the requests. The results are described in the following sections.
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2. THE MEASURE OF RELEVANCE

2.1 Initial Remarks

In this section we describe our attempts to evaluate empirically the
goodness of our function which gives a relevance number. That is to
say, in Part II, 1, we explicated the notion of probable relevance via
Bayes' Theorem and in the present section we shall describe and inter-
pret the results of a test to evaluate empirically the goodness of our
relevance function. Thus, again, the problem which we shall now con-
sider is: '"How well does our function perform in ranking documents
according to relevance' ? Only in section 3 shall we examine the other

major question; viz., ''How good is the selection process"?

2.2 Some Clarification

Let us briefly review the notion of relevance. Ewactly what is it we wish
to measure? First, we must be careful to distinguish a user's informa-
tion need N from his request formulation R. In our experiments we can
think of N as the particular information item desired, R as the formulation
of this item in the request language. Thus, in the example question given

in Table 12, p83, we have

N: Turbojet engines for commercial air travel,

R: Transportation and (Aerodynamics-Aviation or Engines).

In a real library system N will never be known, only its description R

in a rather artifical language. The library indexing system only relates
documents to this request language. But we want to relate documents to
information need. We see then that a bridge between request language
and information need is through statistical data relating library users
with the utility they derive from documents. Such statistical data is
given by the a priori probability distribution. This is shown by the theo-
retical development which states that the probability of a document sat-
isfying the request, i.e., the probability of a document giving the desired
information item N, is proportional to the product of the a priori prob-
ability (P(A, Di)) and the value (wi(R)) of the extended weight function for

the request describing that need. In a sense then this quantity is a measure
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of the degree of relevance of a document for the information need of the
requestor. We say ''in a sense'' because of its unavoidable probabilistic

nature. It is a probabilistic estimate of the relevance of a document for

the information need of the requestor. With this qualification in mind we
call this quantity ''relevance to information need" or '"'probable relevance''.

We have:

{relevance to information need)~UP(A, Di)-wi(R) (1)

2.3 An Experimental Result

If we examine again Table 1 {p. 21) which gives the various interpreta-
tions of the request language we see that it might be fruitful to look for
a quantitative measure of relevarce with respect to the logical meaning
of the request; i.e., a measure of ''relevance to request'' as opposed to
""'relevance to information need''. We conjecture that our computational
procedure for computing the values of the extended weight function is
such a measure. We will present the supporting data in subsequent sec-
tions, but in anticipation of this we state the result: Bayes' Theorem

plus experimental data implies:

{relevance to information need)f\/P(A,Di)- (relevance to (2)
request formulation).

2.4 The Result Predicted by Bayes' Theorem

The content of Bayes' Theorem {formula (1)) can be illustrated by the fol -
lowing hypothetical experiment: Consider a document in the experimental
library. It consists of many information items. Select one of these.

Let a library user formulate this item in the library request language.
Let the library system now operate on the request, producing a collec-
tion of documents. (If the library indexing system is adequate and the
formulation of the request is accurate, the origiral document from which
the information item was derived should appear in this retrieved collec-

tion.) We now ask the library user to prepare a list:
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L1: the retrieved documents ranked according to relevance to the
information item.

We ask another person to prepare a second list:

LZ: the retrieved documents ranked according to relevance to the
request formulation.
To facilitate the processing of this comparative data we ask that the docu-
ments be classified into five categories: I, Very Relevant; II, Relevant;

III, Somewhat Relevarnt: IV, Onrly Slightly Relevant; V, Irrelevant.

Suppose now we simulate an a priori probability distribution, and repeat
the above experiment many times, each time selecting a document by

using the simulated distribution. For each request we obtain lists L1

[EN————

and L, and a third list L,%:
.L.3: the retrieved documents ranked according to the magnitude
P(A, Di)- wi(R).

Bayes' Theorem now tells us what we may expect to find; namely, that

the list L3 will agree with list L., in the long run. More precisely, for

1
each request R there are many information items (or needs) that would

be formulated by R, one for each requestor who uses R. If, for each
list L1 that originated with these requestors, we computed the mean
relevance evaluation for each document in L1 by using the category num-
bers I, II, III, IV, V, then the resulting ranking should agree with list
L3.

2.5 The Experimental Design

The result predicted above is difficult to test empirically because it would
require such a large sample, but, an experiment designed on a much
smaller scale can give us some valuable information. Such an experi-

ment is the one described in section 1.5 and the following sections. Since
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it is designed primarily to test both the basic selection process and the
search strategy by elaborating the request, as well as the computational
schema for wi(R), a flat a priori probability distribution is assumed, i.e.,
all P(A,Di) are taken to be equal. The significance of this for the prob-

able relevance concept is clear by looking at formula (1):
(relevance to information need)r\_,wi(R). (3)

The interpretation of this by the phase ''in the long run'' still holds how -
ever. That is, we would not expect a single list of type L1 to compare
with its corresponding list of type L3 (this last being the ranking of docu-
ments by the values wi{R) in the case of equal P(A, Di))’ This can be seen
by noting that as the information need becomes more specific the evalua-
tions in a list of type L1 would tend to split into the two classifications of
Very Relevant or Irrelevant, but the ranking by the values of wi(R) al-
ways varies gradually. On the other hand a list of type 1.‘2 might con-
ceivably be expected to agree with the list L3 in a single case. This is
the content of the experimental result stated in 2. 3. To bear this out we
selected eight of the 40 requests and obtained for each of these requests
a list of type LZ' In addition v - had control lists of types I..,1 and LZ
prepared for these same requests (i.e., each evaluation done twice by
different persons). The lists of type LZ had, as expected, a more ever.
distribution of documents throughout the five categories I {Very Relevant)

to V {Irrelevant).

The processing of this evaiuation data was accomplished on the following
lines: We saw what comparative data was reflected in the scale of values
wi(R) and compared this with the evaluations of the L2 lists. The details
of the experimental data and its analysis are presented in the following

sections (2. 6-2. 8).

2.6 The Hypotheses to be Tested

We can formulate our goal as that of attempting to confirm that the value

w, (R) that we compute for each document selected by a given request is,




in fact, a measure of relevance with respect to the request formulation.
If our basic notion is correct it implies the following hypothesis which

we call Hi'

Hi: if a document is relevant to a request, then a high number
wi(R) will be derived for it.

How to verify, confirm, test this hypothesis empirically? We did the
following: A number of documents from our experimental library were
selected at random and, for each document, a question was formulated
which could be answered by readirg the corresponding document. Sev-
eral persons who acted as test subjects were briefed as to the nature of
the library, the indexing system, etc., given a set of questions and asked
to formulate a library request for information on the basis of which,
hopefully, relevant docume nts would be retrieved (so as to answer the
question). Given the library requests that these test subjects formulated
we proceeded to search and select the accessiorn numbers of those docu-
ments satisfying the logic of the request. For each request a list of
documents (i. e., a list of the corresponding accession numbers) was
generated and the documents in the lists were ranked according to the
number wi(R) that was computed for each. We then examined each list

to determine whether or not the so-called '"answer' document was on

the list and if it was, we recorded its relative position on the list. We
made the {natural) assumption that the answer document (i. e., the docu-
ment on the basis of which the question was formulated) would be rele-
vant to the request. We then determined the number of times that the
correct answer document was retrieved associated with a high number
wi(R). The results can be summarized as follows: Forty library requests
were made and in 27 cases the answer document was retrieved. The
number of documents on the output lists ranged from a minimum of 1

(in four cases) to a maximum of 41. In the majority of the 23 cases which
contained more than a single docume nt, the answer document appeared

towards the top of the list.
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The results showed that if the answer document was on a list, then it
was computed to have a highnumber wi(R) inmostofthe cases. This evidence
thus supports the hypothesis Hi’ which asserts that if a document is
relevant a high value wi(R) will be computed for it. However, it was not
always the case that the answer document was computed to have the high-
est number; i. e., there were documents other than the answer document
for which a high number was derived. Thus. the question arises: "'If

a document has a high number wi(R), is it relevant to the request''? This
represents the converse of the original hypothesis Hi. We shall form
this as an hypothesis and call it HZ'

HZ' if a document has a high number wi(R), then it is relevant to

the corresponding request.

If we can confirm I—I2 as well as H1 we will have, in fact, confirmed an

hypothesis Ha4 which is stronger than each.

£

the methods of Probabilistic Indexing will derive a high number
wi(R) for an arbitrary docuntent if and only if the document in

question is relevant to the request.

In order to determine if there were relevant documents, other than the
answer document on a list we had to have evaluation data of the type de-
scribed in 2. 5. We obtained a sample of this information from the test
subjects in the following way: Four of the five test subjects were given
the actual documents corresponding to the retrieval lists and they were
asked to read each document and decide whether they considered it to be

Very Relevant, Relevant, Somewhat Relevant, Only Slightly Relevant,

Irrelevant. Thus for each document retrieved they would judge to which
of these five categories it belonged and we, in turn, compared their judg-
ments with the numbers wi(R) which we had computed for each document.
A fifth person prepared control lists, i.e., evaluations for the same

requests.
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In order to facilitate the comparison we standardized the values wi(R);
i.e., we multiplied each value by the reciprocal of the highest value to
force the numbers on each list to vary from 1 to 0 - 0 being the value
assigned to unretrieved documents. We also divided the numbers into
three categories: high (value equal to or greater than 0.75), medium
{(value between 0.75 and 0. 25) and low (value equal to or less than 0. 25).
The results show quite definitely that if a document has a high number
wi(R) that document was judged by the evaluator as Very Relevant or
Relevant, in most cases. Conversely, if the number wi(R) was low the
evaluators rated the corresponding document as either Only Slightly

Relevant or Irrelevant in most cases.

Thus the data supports the following: "If a document is relevant to a re-
quest, then there is a strong probability that the document will have a

a high number wi(R) computed for it." Furthermore, the data supports
the converse: viz., "If a document is computed to have a high number
wi(R), there is a strong probability that it is relevant to the request''.
Thus the data supports both H1 and H2 and taken jointly v;/e see that the
data does support and confirm the stronger hypothesis H , viz., a high
number wi(R) will be derived if and only if the document in question is
relevant to the request. The details of the analysis are presented in the

following section. S

2.7 Analysis of the Data

The eight lists involved in the evaluation with respect to request relevance
had a sum total of 69 documents. First we examine how the values

wi(R) associated with these documents were distributed among the five
categories. Computing the average value and the variance in each of

the five categories, we obtained the following results.
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DOCUMENT RATING MEAN VARIANCE

I. Very Relevant 0.81 0.043
II. Relevant 0.72 0.053
I1I. Somewhat Relevant 0.54 0.043
Iv. Only Slightly Relevant 0. 40 0.110
V. Irrelevant 0.18 0.013

Thus we see that the values of the numbers that we computed decrease,
on the average, as we go from Category I (Very Relevant) to Category V
(Irrelevant). .

b/
Although this result tends to confirm our hypotheses Hi’ H,, H we pre-

fer to look deeper into the situation. lL.et us denote the claszs of all docu-
ments with numbers wi(R) greater or equal to 0.75 by '"High''; those with
numbers less than or equal to 0. 25 by ""Low''. Let us also call categories
I or II simply "Relevant' and category V, as before, 'Irrelevant''. Note
that Relevant and Irrelevant are not negations of each other since we

have the intermediate categories III and IV consisting of documents neither

£
H,, H say

totally Relevant nor Irrelevant. Now the hypotheses Hi’ 2!

two things:

(1) Relevant is equivalent to High,

{(2) Irrelevant is equivalent to Low,
and imply two weaker statements:

(3) Relevant implies not-Low,

(4) Irrelevant implies not-High.

The statistical confirmation of these statements can be accomplished by
using the theory of the coefficient of association between predicates as
outlined in section 2. 6. That is to say, each of the statements above
calls for a study of a matrix of the kind defined on p. 42; i.e., a sorting

of the 69 documents according to the properties:
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(1) Relevant and High,
(2) Irrelevant and Low,
(3) Relevant and Low,
(4) Irrelevant and High.

We would expect to find the Q-values in (1) and (2) to be near +1 (maxi-
mum positive association), the Q-values in (3) and (4) near -1 (maximum

negative association). These values are in fact:

Q {(Relevant, High) =+0.70,
Q {Irrelevant, Low) =+0. 90,
Q (Relevant, Low) = -0.92,
Q (Irrelevant, High)= -1. 00.

Since these values are fairly sensitive we introduce a control on the

study by assuming that these predicates are statistically independent,
then computing the probabilities of the Q-values having been as close

or closer to the anticipated values by chance. For the four distributions
we calculate these control probabilities to be 0. 041, 0.006, 0.010, 0.059,

respectively. !

2.8 A Note on other Data

We have still to consider the weighted request. Recall that we have two
types of inputs to consider; viz., the conventional request (an affirma-
tive Boolean function of the index terms) and the weighted request. These
lead to two different output lists. On page 83 we include a typical data
tabulation sheet for one of the questions that we used in our experiments.
The conventional request in this case was expressed formally by the

expression

Ty 0y v Igs)

1That is to say, if Relevant and High are independent then the probability
of their Q-value having the property 0. 7b§ Q g 1.00 is 0.041. Simi-
larly for the other classifications. T
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and the computation by Bayes' schema resulted in the listing shown in
column P. The corresponding weighted request was expressed formally

as

(0.8)L,. [(o. 3)Iiv(0.9)115:|

and the results are shown in column W. For completeness we did cal-
culations using a simulated non-linear a priori probability distribution.
The resulting relevance numbers are shown in the two columns labelled
P' and W'. The answer document for this particular question was docu-
ment 92 and, quite by chance, it appears in the second position on each

of these four lists.

The results for the case of the weighted request (flat a priori probability
distribution assumed) do confirm the basic thesis which asserts that the
number w.l(R) is, in fact, a measure of relevance with respect to request;
however, the data are not as confirmatory as for the case when the re-
quest is an affirmative Boolean function. The reason for this is that

the evaluations of document relevance were oriented toward the unweighted
request. 1 However a consideration of the variation of the mean value of

wi(R) is still of interest. Analogous to the table on p. 81 we have:

DOCUMENT RATING MEAN VARIANCE
1. Very Relevant 0.87 0.031
I11. Relevant 0.53 6. 095
III. Somewhat Relevant 0. 39 0.076
IV. Only Slightly Relevant 0. 45 0.123
V. Irrelevant 0. 33 0.073

1For example: An evaluation of document relevance with respect to the
request '"Psychology or Teaching' would give quite different results than
when evaluated with respect to the request ''(. 7) Psychology or (. 3) Teaching''.
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3. ELABORATION OF THE SELECTION PROCESS

3.1 Initial Remarks

The basié aim behind Probabilistic Indexing has been the obvious one; v1_z ,
to improve retrieval effectiveness. The fundamental notion has been to
introduce arithmetic {as opposed to logic alone) into the problem of in-
dexing and thereby pave the way for the use of mathematical operations

so as to compute probable relevance. Thus the fundamental notion which
acts as a wedge to drive an opening into the basic problem of retrieval
effectiveness is that of the relevance number (as explicated in terms of
the theorem of Bayes). The relevance number, as we have seen, provides
a means of ranking documents according to their probable relevance.
However, the solution to the problem of retrieval effectiveness involves
more than ranking by relevance--it involves the proper selection of those
documents which are to be ranked. Before we describe the results of the
experiments that were conducted to test our methods for improving the
selection process, let us take one more look at the relevance number as

a filter to eliminate low relevance documents. In particular. let us con-

sider the usefulness of the relevance number on unelaborated requests.

In our experiments, 40 different library requests were made and a total
of 379 documents were retrieved (using the basic process of selecting
those documents whose tags are logically compatible with the logic and
tags of the request). Let us compare the results of profnabilistic; search-
ing and so-called "'birary' or conventional searchinrg. We can do this by
assuming that all the tags which are assigned to documenrts with a non-
zero wéight are, in fact, assigred to the corresponding documents in the
conventional system. Thus when the basic selection process is the same
(viz., the unelaborated logical matching process), the same documents
will be retrieved in both cases; however, in the conventional system the
retrieved documents.avre not ranked by any criteria of relevance. For
each of the retrieval lists if n documents have been retrieved and the an-
swer document is present, then using the conventional search technique

the requestor must read, on the average -1—1—;—1 documents. If the answer
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document is not present, then all of the retrieved documents must be read
(in order to determine that ro relevant information was retrieved). These
considerations (inadequate though they be, since they presuppose that

only an answer document produces a satisfactory search result} give us

a criterion with which to compare the probabilistic and binary searches.
This criterion is the total number of documents that would have to be read
for all 40 searches in order to find the answer documents. The results

are as follows:

Total Nuraber of Total Number of Documents
Type of Search Documents Retrieved that would have to be Read
Binary 379 235
Probabilistic ! 379 181

Thus we see that a conventional system would require the user to read
approximately 30 percent more retrieved documents to obtain the same
number of answer documents. These two different searches, each using
the basic selection process. produced 27 answer documents out of a pos-
sible 40. (Note that the binary search as defined above is more extensive
than might be expected in the sense that we have used all the tags with
non-zero weights as binary tags. In an actual conventioral system those
tags with a low weight would probably not be ccordirated with documents.
That is to say, the use of weighted tags encourages more tags to be ap-
plied to & given document than would be the case if weights were not al-
lowed. 1In a previous study where documents were indexed independently
by two different indexers, one using probabilistic indexing, the other us-
ing binary indexing (i. e., either a tag holds for a document or it does not),
it was found that 70 percent more answer documents were retrieved in
the probabilistic search and only 32 percent more documents had to be

read.)

1A flat a priori probability distribution was used.
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The above comparison presupposes that the user is looking for some
specific information (viz., the answer document) and that he knows when
he has found it. It might be more realistic to make no such assumption;
therefore, let us consider the following comparison. Given a request for
information a probabilistic search is made but, beforehand, we tell the
user to read only those documents which have a computed relevance num-
ber greater than 0.5. That is to say, '"'before the facts'' we give the re-
gquestors a guide to use in reading the 40 lists presented to them. It turns
out that of the 379 documents in the 40 lists there are only 225 which have
a relevance number greater than 0. 5. Furthermore, it turns out that if
the users had adopted the strategy of reading oriy those retrieved docu-
ments which have relevance numbers greater than 0.5, then they would
have found 25 of the 27 arswer documents. ! Now compare this with the
case of conventional retrieval where the users would have to read all of
the 379 retrieved documents (since there is no way to distinguish bétween
any two documents in the same list). In this latter case the users, of
course, would find all 27 answer documerts, but again at the '"cost'' of
reading all 379 documents. Thus we see that a conventioral system would
require that users read 68.5 percent more documents than for the prob-
abilistic system and they would gair onjy 7.4 percent in increased num-

ber of answer documents.

These considerations indicate that the relevance number can be used to
filter out irrelevant material. That is to say, if we use the relevarce
number associated with documents to separate the relevant from the ir-

relevant, we are providing the user with a valuable tool.

3.2 The Automatic Elaboration

We have described twomethods for automatically eiaborating upon the

selection process which is involved in information searching. One method

1 -

In one of the two remaining cases the relevance number of the answer
document was just under 0.5 and in the other case the answer document
had a rather low number but it was third irn a list of only three.
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establishes a measure of closeness in document space and the other
method involves measures of closeness in request space. We shall not

consider the former since, as yet no expe_rimental tests have been com-

pleted which would enable us to evaluate the notions of distance as de-

scribed in Part II, 2.7. We measure closeness in request space by de-

termining certain statistical relationships between the index terms of a

request and other terms. Specifically, we have described three different

statistical relationships, viz. , forward conditioral probabilities, inverse

conditional probabilities, and coefficients of association. We now raise v
the questions: ""How good are the proposed statistical measures of y
closeness in elaborating upon a request?'" and '""Which of the three

measures that have been discussed is the best?' Again, in the case of

the automatically elaborated request we generate the new request R'

given the initial request R by formulating the following type of disjunc-

tion for each tag ir R:

if R =1,, ther R' =1, via)I.'
) J J

where o is the measure of closeness between Ij and Ij' and Ij' is the term
that gives maximum «a with respect to Ij We would like to be able to es-

tablish the following:
1. That the elaborated request catches relevant documents which
are not selected by the origiral {(unelaborated) request.

2 That, although the elaborated request catches more documents,
the relevance number can be used as a guide for eliminating

the ones with low probable relevar.ce.

3.3 Some Testing (Evaluvation) Problems

Since we are really interested in the over -all retrieval effectiveness of
the selection process, we would like to know how many of the relevant

documents in the entire library have beer. caught by the elaborated re-
quests. In order to determine this it would be necessary for us to pre-

sent to the requestor the ertire library so that he, in turn, could judge




which relevant documents, if any, were not retrieved. That is to say,
in order that a user properly judge whether or not he did, in fact, re-
ceive all relevant documents as the result of a search, he would have
to be familiar with the entire contents of the library. Because of this
difficulty, we see that such an evaluation would be impractical to con-
duct. We must, therefore, lower our sights and look for a substitute
type of evaluation. The substitute that we have adopted consists in, a-
gain, using the answer documents as a measure of retrieval effective-
ness. That is to say, since we know that the answer documents are
relevant, we can automatically elaborate upon those original requests
which did not catch the answer documenrt in order to see whether the
elaborated request succeeds in retrieving it. Such a test would allow
us to establish some measure of the retrieval effectiveness of the auto-
matic elaboration procedures. We can compare the total number of
documents for the elaborated requests with what would be the case for
the unelaborated request. This we have dore ard the results are dis-

cussed in the following sectior.

3.4 Some Results

Of the 40 requests that were made the answer document was retrieved
in 27 cases and it was not retrieved in 13 cases. We corducted three
different types of elaborated requests for each of the 40 cases. The

results are as follows:

1. Using the method of request elaboration via forward conditional
probabilities between index tags, we retrieved the correct an-

swer document in 32 cases out of the 40.

2. Elaborating the requests via the inverse ccnditioral probability
heuristic we retrieved the correct document in 33 of the 40

cases.

3. Using the coefficient of association to obtain the eiaborated re-

quest we obtained success in 33 cases of the 40.
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Thus we see that the automatic elaboration of a request does, in fact,

catch relevant documents that were not retrieved by the origiral request.

We now raise the question: ''Because of the small size of the library

and the large percent of the total library that is selected by the elaborated
request, are the above results statistically significant?'" That is to say,
what is the probability of doing as well or better just by selecting at
random, for each of the 13 requests fcr which the answer document was
not originally retrieved, a sample of size equal to that given by the
elaborated requests. We have made the corresponding calculations and

it turns out that probability of doing as well or better by chance is less
than 0. 034 for both the forward ard inverse conditional probability elab-
orations and less than 0.001 for the coefficient of association search.

Thus the above results are indeed statistically significant.

Could the number of answer documents have beer improved; i.e., could
40 out of 40 answer documents have been retrieved. We looked at the
seven cases for which the answer document was not retrieved when
elaborating via the coefficient of associatior and in three cases the in-
dexing was at fault. That is to say in three of the seven cases the an-
swer document was poorly indexed {a fact of life that must be faced by
all libraries). Ir one case the request formulatior was vexry poor and
no reasonable elaboration would help. Ir one case the answer document
was caught by a different heuristic (viz., the forward cornditional) and

in the remaining two cases, again, the requests suffered by being poorly

formulated

Now consider the factthat, although the automatic elaboration of a re-
quest does catch relevant documents that would not otherwise have been
selected, it also increases the total number of retrieved documents.

{We point out at this time that of the three heuristics which we considered,
the one which elaborated via the coefficient of association gave the greatest
ratio of answer documents to total documents retrieved.) In order to

have the advantages of an elaborated request (namely, the relevant
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documents that it obtains) and in order to avoid the disadvantages
(namely, the larger number of total documents) we now introduce the
relevance number to truncate the output lists. That is to say, we use
the relevance numbers to separate out the highly relevant from the less
relevant documents, by adopting the following rule: Only those docu-
ments which are selected by the elaborated request and which have a
standardized relevance number greater than 0.5 are to be retrieved.
Our experiments with the coefficient of association heuristic show that
of a total of 661 documents that were selected by the elaborated requests
only 446 (or 67.5 percent) have a standardized relevance number greater
than 0. 5. ! Furthermore, if we adopt this rule, then 32 out of the 33

(or 97 percent of the) answer documents which are selected by the auto-
matic elaboration would still be retrieved; i.e., 32 of the 33 answer

documents had relevance numbers greater than 0. 5.

We conclude by observing that, to a very large degree, the procedures
for automatically elaborating upon a request are empirical; i.e., their
development and refinement must rest on further empirical testing and
experimentation. Hopefully the results of further tests will shed light
on and provide new insights into the difficult and exciting problems of

information identification, search and retrieval.

1 . 9~
For these computations we used a flat a priori probability distribution.
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