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PROBABILISTIC INDEXING 

A Statistical Technique For Document 
Identification And Retrieval 

(SUMMARY) 

In August of last year,   in an internal paper entitled "Probabilistic 
Indexing:     A Statistical Approach to the Library Problem",   one of 
the authors proposed a novel approach to the problem of indexing 
and searching for documentary data in a mechanized library. 1    By 
December   1958 some preliminary experiments with Probabilistic 
Indexing had been executed and the results were published in a 
Ramo-Wooldridge rejtort entitled "Some Experiments with Prob- 
abilistic Indexing". ^   Thtipireaant report describes MMMM recent 
^■■iMMMMaaatwtoHtaMi experiments that were made to evaluate the re- 
trieval effectiveness "f yj^'" new method of literature indexing and 
searching?   In addition several  refinemegt^ and extensions of the 
basic notions  of Probabilistic Indexing " ..!*■■■«-  

1 

1 *eJäLJ ß^-r 

"Probabilistic Indexing:    A Statistical Approach to the Library 
Problem",   M.   E.   Maron,  August  1958. 
2 
"Some Experiments with Probabilistic Indexing",   M.   E.   Maron, 

J.   L.   Kuhns and L.   C.   Ray,   December  1958. 
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PART I. 

THE PROBLEM OF INFORMATION 

IDENTIFICATION AND RETRIEVAL 

(SUMMARY) 

The basic function of a library computer is to accept as inputs,   re- 
quests for information,   and to supply as outputs,   a list of those 
documents which are most relevant for each request.     In conv»- 
tional systems the information content of each document is  '     ;nti- 
fied by assigning to it a set of index tags and the search co-     ists  of 
finding those documents whose tags are logically compatible with 
the tags  of a request.     Because there is no precise relationship be- 
tween the tags and the subjects that they denote,   the  search "strategy" 
which consists of matching essentially noisy tags causes the class 
of documents selected by a request to contain irrelevant documents 
and,   even worse,   to exclude relevant documents. 

The technique of Probabilistic Indexing starts with the recognition 
that index terms are noisy and then introduces the mathematics of 
uncertainty (viz. ,   the calculus of probability) in order to compute 
a probable relevance number for each document selected by a re- 
quest.     Probabiistic Indexing involves the assigning of weights to 
the index terms that are used to tag the documents of a library. 
These weights,   in addition to statistical data concerning the library 
usage,   are then used by the library computer so that,   given a. re- 
quest for information,   an inverse statistical inference can be made 
in order to derive a number (called the  "relevance number") for 
each document,   which is a measure of the relevance of the document 
for the requestor.     The result of a search is an ordered list of those 
documents which satisfy the request and ranked according to their 
relevance number.     The technique of Probabilistic Indexing is ex- 
tended so that a request may be elaborated upon automatically,   in 
the most probable direction,   so as to increase the probability of 
selecting relevant documents,   while the use of the computed rele- 
vance numbers allows irrelevant documents to be rejected. 



1.      INTRODUCTION 

1. 1     Initial Remarks About Information Retrieval 

In recent years there has been increased attention given to the problem 

of designing,   building and using an automatic library system which can 

accept and store large amounts of documentary data (as for example, 

that contained in books,   journals and pamphlets of all sorts)  so that the 

information may be   retrieved rapidly upon subsequent request.     The re- 

quest for information might concern a single  rather specific item of 

data or it might concern a broad class of information relevant to some 

desired subject matter.     Regardless of the exact category that we might 

consider,   it is quite clear that the importance of the over-all problem 

of information retrieval lies in the fact that information is the primary 

nutrient without which science,   government,   industry (and society itself) 

cannot thrive and we are  set back to the extent that valuable information 

becomes inaccessible in our libraries. 

1. 2     Limitations and Extensions of Retrieval Systems 

In what follows -we have confined our attention solely to the considera- 

tion of an information retrieval system.     Once the basic conceptual 

problems of information identification,   storage and retrieval have been 

successfully managed one can turn attention to problems concerned with 

extending the range of automatic information handling.     That is to say, 

when dealing with documentary data (expressed in ordinary language) 

one might like not only to store and retrieve,   but,   in addition,   to per- 

form the following operations on the information:    automatic analysis 

to detect and remove redundant information,   automatic abstracting of 

relevant information,   automatic verification of information (i.e. ,   given 

some items of data,   decide whether or not they are inconsistent -with 

any other data already in storage),   automatic deduction (i.e. ,   logical 

derivation),   automatic correlation of data so as to establish trends and 

deviations ,   om trends,   and so on.     It appears that as a first step in the 

direction of general purpose information handling,   as typified by the 

above examples,   the problem of information identification and retrieval 

must be met and dealt with successfully. 

-  2  - 



1. 3     A Major Difficulty 

There are a number of obvious difficulties associated with the so-called 

"library problem"  (i.e. ,   the problem of information search and retrieval) 

and the one usually cited relates to the fact that documentary data are 

being generated at an alarming rate (the growth rate is exponential -- 

doubling every 12 years for some libraries) and consequently,   considera- 

tions of volume alone make the problem appear frightening.    However, 

the heart of the problem does not concern size,   but,   rather,   it concerns 

meaning.     That is to say,   the major difficulties associated ■with the li- 

brary problem concern the identification of information content--the 

problem of determining of two items of data which is "closer" in mean- 

ing to a third item--the problem of determining whether or not (or to 

what degree) some document is relevant to a given request,   etc.    In or- 

dinary language there are no rules which prescribe how words should 

be selected and combined in order to express various kinds and shades 

of meanings.     It is because ordinary language is vague and ambiguous 

and because there are no rules which allow us to manipulate the infor- 

mation on the basis of its meaning that the problem is  so complex.     This 

then is the heart of the problem and we shall have more to say about it 

subsequently. 

1.4     Levels of Consideration 

The problem of an automatic library can be examined at several levels 

ranging from the equipment frame  of reference to a basic information 

flow perspective.     There have been a number of "hardware"  solutions 

to the problem of library size (e.g. ,   use of microfilm,   microcards, 

minicards,   etc. ) but since the major problem is logico-linguistic,   we 

shall cast the problem on the conceptual level.     Thus,   we propose to 

make an analysis of the logic of the problem,   to describe a technique 

for dealing with the problem,   to present sonne logical and experimental 

data to support our technique and to lay aside,   at least for the present, 

any considerations dealing with the physical implementation of the 

technique. 



2.      THE CONVENTIONAL APPROACH TO AN AUTOMATIC RETRIEVAL 

SYSTEM 

2. 1      The Role of Indexes 

Because,   at least for the immediate future,   no machine can actually 

read a document and decide whether or not its  subject matter relates to 

some given request subject,   it is necessary to use   some intermediate 

identifying tags; namely.an indexing  system.     An index to a document 

acts as a tag by means of which the information content of the document 

in question may be identified.     The index may be a  single term or a set 

of terms which together tag or identify the content of each document. 

The class of terms (whether it be a classification indexing system,   co- 

ordinate indexing,   etc.) which constitutes the allowable vocabulary for 

indexing documents in a library is the common language which bridges 

the gap between the information in the documents and the information 

requirements  of the  users. 

2. 2     The Assignment of Indexes 

In principle,   an indexer reads an incoming document and then selects 

one or several of the index terms from the "library vocabulary"  and he 

coordinates the selected terms with the given document (or its acces- 

sion number).     Thus,   the assignment of terms to each document is a go 

or no-go affair--for each term either it applies to the document in ques- 

tion or it does not.     Furthermore,   the process of indexing information 

and that of formulating a request for information are symmetrical in the 

sense that just as the subject content of a document is identified by co- 

ordinating to it a set of index terms,   so also,   the  subject content of a 

request must be identified by coordinating to it a set of index terms. 

Thus,   the user who has some particular information need identifies this 

need in terms of a library request consisting  of one  or several index 

terms or logical combinations thereof. 

4  - 



2. 3     The Notion of Semantic Noise 

The correspondence between the information content of a document and 

its set of indexes is not exact because it is extremely difficult to specify- 

precisely the subject content of a document by means of one or several 

index words.    If we consider the set of all index terms,   on the one hand, 

and the class of subjects that they denote,   on the other hand,   then we 

see that there is no strict one-one correspondence between the two.    It 

turns out that given any term there are many possible  subjects that it 

could denote (to a greater or lesser extent) and conversely,   any parti- 

cular subject of knowledge (whether broad or narrow) usually can be 

denoted by a number of different terms.     This  situation may be charac- 

terized by saying that there is "semantic noise" in the index terms. 

Just as the correspondence between the information content of a docu- 

ment and its set of indexes is not exact,   so also the correspondence be- 

tween a user's request,   as formulated in terms of one or many index 

■words,   and his real need (intention) is not exact.     Thus,   there is  se- 

mantic noise in both the document indexes and in the requests for 

information. 

One of the reasons that the index terms are noisy is due to the fact that 

the meanings of these terms are a function of their setting.     That is to 

say,   the meaning of a term in isolation is often quite different when it 

appears in an environment (sentence,   paragraph,   etc. ) of other words. 

The position and frequency of other words help to clarify and specify 
the meanings of a given term.    Furthermore,   individual word meanings 

vary from person to person because,   to a large degree,   the meanings 

of the words are a matter of individual experience.     This is all to say 

that when words are isolated and used as tags to index documents,   it 

is difficult to pin down their meanings,   and,   consequently it is difficult to 

use them as such to accurately index documents or to accurately specify 

a request. 

-  5 



2 . 4     Conventional Stopgaps 

Many workers in the field of library science have attempted to reduce 

the sememtic noise in indexing by developing specialized indexing sys- 

tems for different kinds of libraries.     An indexing system tailored to a 

particular library would be less noisy than would be the  case otherwise. 

(In a sense,   to tailor an index system to a specific library is to apply 

the principle of an ideoglossary,   as it is used in machine language trans- 

lation,   to remove semantic ambiguity. )    In spite of careful work in the 

developing of a "best"  set of tags for a particular library,   the problem 

of semantic noise and its consequences  remain,   albeit to a lesser extent. 

Another attempt to remove the  semantic noise in request formulations 

has to do with the use of logical combinations  of index terms.     That is 

to say,   if two or more index terms  are joined conjunctively,   it helps 

to narrow or more nearly specify a subject.     On the other hand,   the same 

set of terms connected disjunctively broadens the  scope of a request. 

Thus,   using logical combinations of index terms one -would hope to either 

avoid the retrieval of irrelevant material or avoid missing relevant 

material.     However,   although a request using a set of index terms 

joined conjunctively does decrease the probability of obtaining irrele- 

vant material,   it also increases the probability of missing relevant 

material.     The converse holds for a request consisting of a disjunction 

of index terms. 

2.5     The Selection Function and Some Consequences 

We have  said that documents are indexed by assigning one or  several 

index terms to each,   and,   similarly,   a library request for information 

is formulated by selecting one or several of those index terms which 

most closely denote the desired information need.     Given a request,   the 

Strictly speaking,   the terms "intersection" and "union"   should be used 
instead of "conjunction" and "disjunction",   respectively,   since we are 
referring to classes and not propositions. 

6 - 



next step is to search and select all those documents (or their accession 

numbers) whose sets of index terms are logically compatible with those 

of the request.     Thus,   conventional machine searching consists of 

matching the indexes and the requests exactly.     The actual matching 

procedure is a go or no-go affair--a set of index terms (associated ■with 

a particular document) either satisfies a request or it does not. 

The fact that conventional selecting (searching) consists in deciding 

whether an exact logical match exists between classes of essentially 

noisy tags implies that the result of a search does not provide an opti- 

mal list of documents.     The fact that conventional searching consists 

in matching noisy tags implies that the result of a search provides docu- 

ments which are irrelevant to the real needs of the  requestor,   and,   even 

worse,   some  of the  really relevant documents are not retrieved.     If one 

broadens a request (by using more general terms) so as to reduce the 

probability of missing a relevant document,   he increases the probability 

of obtaining irrelevant material.     Conversely,   if he narrows his request 

(by using rather specific terms) in order to avoid irrelevant material, 

he increases the probability of missing relevant information.     This un- 

desirable situation is not helped by the fact that the list of documents 

■which results from a search appears  in a random order; i.e. ,   there is 

no hint given to the  requestor that some of the documents that have been 

selected are less  relevant to the  request than others. 

In the following section we shall present the basic notions of the technique 

of Probabilistic Indexing and show that this  approach to the library prob- 

lem improves  retrieval effectiveness both by reducing the probability of 

obtaining irrelevant documents and by increasing the probability of sel- 

ecting relevant documents.     Furthermore,   the technique of Probabilistic 

Indexing provides as the  result of a search an ordered list of those docu- 

ments which satisfy the  request,   ranked according to relevance. 



3.      THE BASIC NOTIONS OF PROBABILISTIC INDEXING 

3. 1     The Probabilistic Nature of the Problem 

To say that index tags are noisy is to say that there is an uncertainty 

about the relationship between the terms  and the subjects denoted by 

the terms.    That is to say,   given a document indexed with its assigned 

index term (or terms),   there is only a probability that if a user is inter- 

ested in the subject (or subjects) designated by the tag,   he will find 

that the document in question is  relevant.     This  situation is  analogous 

to the case when a message is selected and transmitted over an elec- 

trical communication channel which is noisy,   and,   as a result,   there 

is only a probability that the selected message     will be received at the 

other end of the channel.     Thus,   given any arbitrary received message 

there is a distribution which describes the  probability that it (i. e. ,   the 

received message) resulted from each of the possible transmitted mes- 

sages.     Communication theory tells us that the ideal receiver is one 

that makes an inverse inference and computes,   given the received mes- 

sage,   the most probable message that was transmitted. 

Again,   one may consider by analogy that the documents of a library are 

the messages that are selected for transmission,   that the indexer is the 

noisy channel,   and that the index terms are the messages that are re- 

ceived after passing through the channel.     By analogy,   the ideal search- 

ing systeni is the one that makes  an inverse inference and computes, 

given the index terms of a request,   the most probable document that is 

relevant to the request.     Given this analogy between searching a library 

of documents and communicating in the presence  of noise we  see that 

the real problem is to introduce the proper probabilities  so that the 

necessary inverse statistical inference can be computed. 

3. 2     The Notion of  Weighting Index Terms 

We have  suggested that the ideal search system is one that computes the 

distribution which describes the probability that a document will satisfy 

a   requestor.    This means that given a request,   a class of documents is 

- 8  - 



selected (namely those whose index terms are logically compatible with 

the terms and logic of the  request)    and for each document in this class, 

the  system will have to compute a number,   called the "relevance num- 

ber" which will be a measure of the expected degree of relevance of the 

document for the requestor.    How should such a relevance number be 

derived?    Surely,   it should be a function of the probability that if a per- 

son is interested in the content of a given document then he will use the 

tag (or tags) associated with the document in requesting information on 

that subject.    How to estimate this probability? 

As we have  stated previously,   conventional indexing consists in having 

an indexer decide on a yes-no basis -whether or not a given term applies 

for a particular document.     Either a tag is applicable to the document 

or it is not--there is no middle ground.     It is much more reasonable 

and realistic to make this judgment on a probabilistic basis;   i. e. ,   to 

assert that a given tag may hold with a certain probability or weight. 

Properly scaled this weight can be used as an estimate of the above 

probability; viz. ,   the probability that if an individual desires informa- 

tion of the type  contained in the document then he ■will use the tag in 

question in requesting that information,     The details are given in 

Part II,   1. 

Given the  ability to -weight index terms,   one can characterize more pre- 

cisely the information content of a document.     The indexer may wish to 

assign a low weight such as 0. 1 or 0. 2 to a term rather than to say that 

the term does not hold at all for the document.     Conversely,   the indexer 

may wish to assign a weight of 0. 8 or 0. 9 to a term rather than to say 

that it definitely holds for a document.     Thus,   given weighted (probabil- 

istic) indexing it is possible to more accurately characterize the infor- 

mation content of a document.     The notion of weighting the index terms 

that are assigned to documents and using these weights to compute rele- 

vance numbers  is basic to the technique which we call "Probabilistic 

Indexing". 



3. 3     The A Priori Probability Distribution 

One of the major goals of the method of Probabilistic Indexing is to 

compute a relevance number for each document on the basis of a given 

request.    The retrieved documents will be ordered according to their 

relevance numbers and hence the outcome of a search will be a list of 

those documents whose index terms satisfy the request; the documents 

will be ranked according to the probability of satisfying the  request, 

thereby providing the user with an optimal search strategy in reading 

the  retrieved information. 

We have indicated that the relevance number of some document D.   should 

be a function of the probability that if an individual desires information 

of the kind contained in D . , he will use the tags associated with D. in his 1 . 1 

request for information.     We have indicated further  that   this probability 

can be estimated by an indexer,    and   in fact,   the  weight of a tag (i. e. , 

the degree with which it holds for a document) is, when properly scaled, 

an estimate of the above probability.     (This  will be discussed more 

completely in Part 11,    1 with an explanation of how the  initial estimates 

can be modified so as to approach the correct probability. )    In addition 

we assert that the relevance number should also be a function of the 

a priori probability distribution of document usage.    The a priori prob- 

ability distribution of usage of documents in a sense describes the pop- 

ularity of documents in a library.     The justification for including the 

statistics on the  a priori probability of a document in the computation 

for relevance number will be given in Part II,   1 also. 

3 . 4     The Schema for Computing   the   Relevance Number 

Although the details of the logical and mathematical justification of 

Probabilistic Indexing are presented in Part II we briefly summarize 

the theoretical motivation behind our procedure,   for the reader's con- 

venience.     Given the a priori probability distribution of usage of docu- 

ments and the statistical indexing information for each document,   the 

actual search would involve an inverse probability calculation,   so-called 

10 



P(A. D.,1.) = the weight with which the i      docu- 

Bayes' Theorem. This inverse probability calculation computes the 

probability that a document satisfies the request. The situation can 

be presented schematically as follows: 

P(A, D) the a priori probability that the i 
document will be retrieved. 

th the weight with which the i 
ment is indexed with the j      index 
term. 

P(A.I.,D.) = the probability that,   if the j      index 
^ term, is requested,   the i^*1 document 

will satisfy the request 

PCA.L.D.) - P(A,D.)   •    P(A. D.,I.) 

P(A(I.) 

Thus the inverse probability calculation -will be made for each document 

■which is indexed with the index word.    For each of those a number will 

be computed which will be a function of both the degree to -which the 

documenc is indexed by the given index term and  also the relative fre- 

quency of usage of the document.     Once these computations have been 

made these numbers and the  associated document accession numbers 

will be sorted so that the document which has the highest probability 

of satisfying the request will appear first on the list,   and that document 

with the lowest probability of satisfying a request will be last on the 

list. 

3 . 5      Request Weights 

Just an indexer may coordinate a weight to in index term (to indicate 

the degree that the tag in question holds for a given document),   so also, 

the library system should allow a user to coordinate weights to those 

index terms that he uses in formulating his  request for information. 

Just as weighted index tags allow the indexer   to characterize the infor- 

mation content of a document more precisely,   so also,   weighted request 

tags provide additional precision to the formulation of a library request. 

11  - 
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Those subjects which are most important to a user's needs -will have 

high weights coordinated with their tags and conversely.     The methods 

of Probabilistic Indexing provide rules describing how request ■weights 

are to be used in the extended computation for relevance number. 

3, 6      The Automatic Elaboration of a Request 

Roughly speaking,   we can say that the set of index terms  (and their 

■weights) identify the information content of each document with which 

it is coordinated and,   likewise,   the request formulated in terms of 

■weighted index tags and associated logic,   identifies the user's informa- 

tion need.     The next step in automatic retrieval is to match identifica- 

tions in order to determine which documents  are to be selected,   re- 

trieved and given to the user.     Given the class of selected documents, 

the computation of relevance number allows a library system to rank 

the documents according to their probable relevance to the  requestor. It 

is  clear however,   that if the initial request is inadequately (or incom- 

pletely) formulated,   then the class  of selected documents will not be 

optimal and no amount of ranking by relevance will correct this difficulty. 

As a remedy for this  situation.   Probabilistic Indexing includes methods 

for automatically elaborating upon any arbitrary request so as to im- 

prove its selectivity.     That is to say,   included among the methods of 

Probabilistic Indexing are mechanical rules for automatically relating 

index terms  (and documents)  so that given a request for a particular 

set of index terms a computer can determine what other terms are 

most closely related to the  request and thereby automatically elaborate 

upon it in the most probable direction,   in order to improve the selection. 

The rules involve the derivation of probabilistic weighting factors be- 

tween index terms and a number of machine "strategies" for deciding how 

to go from a given request to its proper elaboration. 
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PART II. 

A THEORETICAL DISCUSSION 

(SUMMARY) 

The conceptual framework of the library which grows out of the basic 
notions of Probabilistic Indexing allows  us to divide the over-all prob- 
lem of information searching and retrieval into two parts.     The first 
part relates to the problem of selecting an optimal class of documents 
from the entire library in order to satisfy a given request for infor- 
mation.    We call this the selection problem.    Once a class has been 
selected each document in it is ranked according to its probable  rele- 
vance.     We call this the problem of the  relevance number. 

Part 11 of this report contains the logico-mathematical analysis,   ex- 
planation and (a priori) justification of the methods of Probabilistic In- 
dexing.     In particular,   section  1 discusses the notion of probable rele- 
vance number and provides the detailed explication of this notion in 
terms of the theorem of Bayes.    We discuss the meaning of index and 
request weights and the computational rules  which allow the relevance 
number to be computed.     Section 2 provides the discussion of how an 
arbitrary request may be automatically elaborated upon in its most 
probable direction,   in order to improve the  selection of documents. 
We describe various statistical measures for determining the  "close- 
ness" between the terras that constitute index space and indicate how 
these measures can be used to elaborate on a request in order to pro- 
duce an optimal selection of documents. 
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1.      THE DERIVATION OF THE RELEVANCE NUMBER 

1. 1     Initial Rernarks 

We can clarify the library problem by considering the following two 

fundamental questions:    (1) Given the class of documents that satisfy 

the logic of a request which of these is most probably relevant to the re- 

questor,   next most probably relevant,   etc?   (2) Interpreting a request 

as giving clues to the real information requirements of the requestors 

how can the request be elaborated in order to improve the  class of re- 

trieved documents; or,   more generally,   how can the document selec- 

tion process be improved?    In this section we -will discuss the first 

question.     In particular we will establish a measure of probable rele- 

vance (the  relevance number) and show how this quantity can be com- 

puted.     Our methods in establishing computational procedures involve 

_a priori considerations as well as experimental testing.     The  a priori 

considerations play their role in   the choice of schemata   from   the 

theory of probability as models for our procedures and in the  statistical 

modification of various quantities which have been estimated initially. 

The problem of justification of these procedures can be considered from 

two aspects:    (1) the experimental testing; (2) a theoretical development. 

Since success is the only criterion upon which a retrieval system should 

be judged,   we  see that a theoretical development is unnecessary; never- 

theless it is not superfluous,   for it enables us to isolate assumptions 

and points the way for possible  refinements in the procedure.     The fol- 

lowing sections (1.2-   1. 14) present a theoretical development of the 

computational procedure for requests formulated as Boolean functions 

of the index terms. 

1. 2     Notational Matters 

By "P(A,B)" we mean the probability of an event of class B occurring 

■with reference to an event of class A.     We shall be interested in the 

following classes of events: 

a.       D.   :    obtaining the i      document and finding it relevant. 
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b. I.:    requesting information on the field of interest (subject, 

area of knowledge) designated by the j       index term I..     (We 

use the same symbol for the event class and the index term; 

but the proper meaning will be clear in context. ) 

c. A:    requesting information from the library. 

We use"w.." (also "w.(I.)") to denote "the degree to which the j " index 
1J .th1   J 

term applies to the i     document;'Note that the values w. . define a matrix 
1J     th 

called the  "probabilistic matrix",   where the entry in the i      row and the 

j      column is the weight w... 

1. 3      The A Priori Probability Di stribution- -A Remark about the Class A 

We call "PfA, D )" the a priori probability of the document D..     Although 

this probability arises in the inverse probability calculation,   to be dis- 

cussed below,   we prefer to introduce it on a more intuitive level as an 

essential ingredient of Probabilistic Indexing.    In a literature search, 

if two documents are indexed identically then the document with the 

greater a priori probability of being relevant should be read first.     This 

is the statistical analogue of "recommendation"  of texts.     The calcula- 

tion of   P(A,D.)   is obtained by the processing of library statistics.     How 

this is done will be discussed in section 1. 13,  but for  the present we 

are concerned with only one restrictive condition.     This condition re- 

quires a qualification of the class A.     For convenience in tabulating li- 

brary statistics we will not consider A to be  the  class  of all requests 

but only those that yield a document relevant to the requestor.     We de- 

fine the termination of such an event to be when a relevant document is 

obtained.     Thus an event of class A will be followed by one and only one 

event of class D.;  if a request R produces two relevant documents we 

regard this as two instances of the request,    etc.     The  assumption that 

a request will produce a relevant document we can call "the axiom of 

completeness of the library with respect to the index terms".     In par- 

ticular,   this assumption allows us to normalize the a priori  probability 

distribution.    Hence we assert 

^]P(A,D.)=1. (1) 
i=l 
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1. 4     Statement of the Problem 

Given a request R we want to rank the library documents according to 

their probable relevance to the requestor.    A function f on a set D. , 

D0)   . . . ,   D    can be used to rank the set by means of the function values: 
L n 

f(Di1^
f(IV^---^f(Din)- 

Thus  we want to look for functions -which somehow measure the prob- 

able relevance of a document.     If this is accomplished then a library 

search can be represented as a transfer function from requests (the 

input space) to a space of functions of the variable 1(1 = 1,   . . . ,   n) rep- 

resenting the accession number   of   a document.     That is to say,   a 

search by Probabilistic Indexing will lead to a function; the values of 

this function give the probable relevances of the documents.     (Those 

i's for which this function is not zero give the accession numbers of 

the documents that match the logic of the request.) 

1. 5     The Probable Relevance Function 

We examine first the simplest type of request; viz. ,   I..    One measure 

of probable relevance is given by the function 

P(A.I.,D.), 
J      ! 

because this is the probability that a library user,   making the request 

I.,   will find the i      document relevant.    We call this the probable rele- 

vance function.     Now,   keeping I. fixed,   this function should certainly 

vary as the a priori probability P(A, D.) and also vary as w. ..     Let us 

assume that the probable  relevance varies jointly as  P(A, D.) and w. .. 

We obtain then 

PfA.Ij.D.)   =  cyPfA.D.J.w.j    (j fixed), (2) 

where,   because we have one  such equation for each j,   we indicate that 

the constant of variation a. can itself be a function of i.     Thus,   given 

I.,   we rank the documents according to the quantity 
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P(A,D.).w... 

Equation (2) can be regarded as the fundamental principle for Proba- 

bilistic Indexing.    Subsequent experiments are to be thought of as em- 

pirical testing of this principle. 

1. 6     The Meaning of the Weights 

The assumption (2) allows us to give a simple interpretation to the 

■weights.     From an inverse probability calculation -we have 

P(A, D)P(A.D    I ) 
'    2-  . (3) 

(4) 

Now the coefficient a. can be determined from (2).    For,   if we sum 
J 

both sides of (2) over the  subscript i and note that 

2P(A.I    D.)   =   1 (5) 
i J 

by the axiom of library completeness with respect to the index terms, 

then we obtain 

J- =2 P(A,Di).w (6) 
a. i 

J 

Thus,  we have the result 

'2   P(A)Di)-wi. 
w      = ( -i ) - P( A. D    I ). (7) 

' P(A, I.) / J 
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We call the coefficient of P(A.D.,I.)   "ß." so that 
i    J J 

w..   =   ß. • P(A.D.,I.)) (8) 

where 

PS 

^PCA.D^-w.. 
t-T^       X 1 11 

1 J 

J P(A,Ij) 

1. 7     The Modified Weight 

Our theory shows immediately the possibility of correcting,   in a cer- 

tain sense,   the values w. . given by the indexer.    Let us modify the 

weights by using the factor  ß.  defined above; thus: 

«..   =   w../ß.   =   P(A.D.,I.). (9) 
ij ij     J !    J 

Now it is true that such a modification has no effect on the document 

ranking for a single request I.,   but the possibility of modification al- 

lows us to justify our computational procedure for Boolean functions 

of the index terms as well as to isolate certain problems in the proc- 

essing of the library statistics.     In a sense,   modifying the weights ac- 

cording to (9) is a smoothing operation,   for an inspection of the num- 

erator of ß. shows it to be the weighted mean of the w. . in the j      col- 

umn of the probabilistic matrix (-with weights given by P(A,D.)).     Such 

a smoothing is necessary in making weights assigned to different index 

terms comparable. 

1. 8     Further Remarks on the Meaning of the Weight 

Formula (8) shows the weight,   which we originally interpreted as the 

degree to which the index term applied to the document,   to be intimately 

related to the probability P(A.D.,I.).     This is a logical consequence of 

assumption (2).     The statistical meaning of this probability can be 

clarified as follows:    Suppose we presented to each member of a sampling 
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of potential library users the document D. and asked of them if they 

would have used the term I. in requesting it.    The resulting relative 

frequency in the sample would be an estimate of P(A. D.,!.)-    Now for- 

mula (8) relates the semantic measure "degree to which the index term 

applies to the document" and the statistical measure of how the terms 

will be used in retrieval requests; viz. ,   P(A. D.,1.).     Since the statistics 

required are not available and certain quantities must be estimated, 

formula (9) tells us that the indexer would do better by estimating P(A. D.,I.), 

thus bringing the coefficient ß . as close to unity as possible. 

One might raise the following question at this point:    If the  indexer were 

required to estimate P(A. D.,I.),  why not estimate P(A. I.,D.) directly, 

since this is the goal of the computations?   Actually,  this is not quite 

correct.    As we will show in the next section the goal of the computations 

is the determination of P(A. R,D.) where R is any Boolean function of the 

index terms.     This quantity must be expressed in terms of probabilities 

each involving one and only one index term.     The only way to do this is 

to transform P(A.R,D.)  so that R goes into the attribute class,  but then 

the result involves the probabilities P(A. D.,I.).     In other words,   we 

always need the quantities P(A.D.,I.) but hardly ever the quantities 

P(A. I.,D.).    The second argument in favor of the estimation of P(A. D., I.) 

over P{A.I.(D.) appears when we consider the consistency of the compar- 

ative values.     The indexer looks at each document,  then runs through the 

various possible index terms which apply.     In general P(A. D.,I.)  will 

vary over   a much larger range than P(A.I.,D.) as j varies and therefore 

it is easier psychologically for the indexer to correctly rank the values 

over the larger range.     Furthermore,   errors in the weighting (due to 

the estimation of P{A. D.5I.))will have a smaller effect on the final compu- 

tation than if P(A.I.,D.)  is  estimated initially and P(A. D.,I ) computed 

subsequently. 
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1. 9     Requests as Boolean Functions 

Before looking at the computational procedure for deriving the rele- 

vance number given any arbitrary request R,   we must explain the 

meaning of the language of the request.     We allow two logical opera- 

tions between index terms; viz. ,   "and" and "or".     We abbreviate  "I. 

or I2" by "I. v 1   ",   "I. and 12" by "I   .I2"; the first is called a disjunc- 

tive request,  the  second,   a conjunctive  request.    We now ask:   If "I." 

and "I-," are names of subjects,   can "I..I-" and "I.  v I-," also be names 

of subjects?   As a matter of fact it is convenient to answer this in the 

affirmative.    The different interpretations of the logical combinations 

I,. I,, I. v I-,   as  used in request formulations are  shown in Table   1. 

Request: li.l2 h^2 
Logical Meaning User requests informa- 

tion on the "subject" 
designated by Ij-I? 

User requests infor- 
mation on the  "subject" 
designated by I.  v I2 

Retrieval Instruction 
Meaning 

Search for documents 
indexed under I.   and 

h 

Search for documents 
indexed under I,   and 
search for documents 
indexed under I., 

Class  Meaning User obtains documents 
indexed under both I, 
and I2 

User obtains documents 
indexed under I,   or I2 
or both 

....     -     -            - - 

Table   1.     Interpretation of Logical Connectives 

Note how the "v" inside a retrieval prescription becomes an "and" in 

the retrieval instructions.     We can say that a disjunctive request is 

actually several requests but the searches are to be conducted simul- 

taneously.     The class meaning defined above has a simple geometric 

interpretation (a Venn diagram): 
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Diagram 2.    Venn Diagram 

The circle on the left represents those documents indexed under I., 

on the right those indexed under I?.    The overlap gives all documents 

obtained by requesting l..I?)   and the entire area all those documents 

obtained by requesting I.  v Ip- 

1. 10     The Extension of the Weight Function 

By extending the notation for a request to include logical combinations 

of tags,   we can consider every request R     (i.e. ,   every Boolean function 

of index terms),   as an event class.    For example R =!.,   R =I..I, , 
J J    k 

R=I. v I, ,   etc.     By the development in section  1.6,   we see that if it is 

possible to compute  P(A. D. , R) then we can rank documents according 

to probable relevance by taking the relevance number to be 

P(A)D.)-P{A. D.,R); 

for,   by the inverse probability calculation 

P(A.R,D)-(  i    1 . P(A, D ).P(A. D    R), (10) 
\P(A,R) 

so that P(A. R, D.) is proportional to P(A, D.)- P(A. D., R).    Now we note 

that by (9),   P(A. D. , R) is an extension of the modified weight function 

in the sense that: 

If 

R   =  I., 
3 
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then, 

ui     - w.(R) = P(A.Di)R). (11) 

Thus the problem is to extend the function w.(I.),   whose values are given 

only for I.,..., I  ,   to any Boolean function of these terms.     We denote 

this extension by "w.(R)" and we require this extension to satisfy the rules 

of probability since we intend for it to be an estimate of P(A. D., R).    In 

particular,   we  require: 

O^oUR^i, (12) 

«^.I^«.^), (13) 

«.(^ v I2) + ^iilil2) = w.d^ + W.(I2). (14) 

We note the important fact that (14) allows us to   compute   the weight of 

a disjunction if the -weight of a conjunction is known.     Successive appli- 

cations of (14),   combined with logical transformations,   allow the weight 

of any request to be written as additions and subtractions of weights of 

single terms or conjunctions.     Thus the problem of the extension of the 

weight function is reduced to the extension to conjunctions.     For these 

weights we also have certain restrictive conditions.     If we let p = w.(I,) 

and q = ia.{l-),   then it can be  shown that w. (I. . I?) must be less than or 

equal to the minimum of the two numbers p and q and must be greater 

than or equal to p + q -  1  if this is positive,   otherwise it must be greater 

or equal to 0.      We write this condition as: 

max   j 0,p + q -  ij ^ w.(I.. I_)^ min rp,q  j   . (15) 

We have decided to take as the initial w-value of a conjunction its inde- 

pendence value;  i. e. , 

(*i{Iih'> ="ii'"i2- (16) 



The relevance number for a conjunction I,, ly is then given by 

P(A,Di)-«il.u,i2, 

and the relevance number for a disjunction I-  v I-, becomes by (14) 

P(A'Di)-   Bl+aJi2 -Uil-Wi2]    • 

Several remarks need to be made about use of the independence value. 

Note that we do not say that the tags are independent--in fact they are 

not--but the word 'estimate' is useful to avoid making a false assump- 

tion.     First,   we estimate oj.(I.. I.,) by oo     • to Second,   we use the in- 
11     2'     !     il      i2 

dependence value relative to the class D.,   that is,   -we take 

P(A. D^Ij,!^ = P(A. D.,I2), (17) 

but not 

P(A.I1,I2) = P(A,I2). (18) 

We believe the former estimate is more accurate than the latter.   In 

Part II,   2. 6 we discuss a coefficient of association bet-ween index terms 

This coefficient which we  call Q lies in the interval     -1,1     with Q = 0 

being the point of independence.     The joint occurrence of two events 

will have a probability in excess of its independence value only-if the 

corresponding value of Q is positive.     We have two intervals to sche- 

matize this  situation:   (p and q are the probabilities of the separate 

events and Q their coefficient of association) 

-> 

Interval of Positive Association 

p-qy Probability-—     > Yminfp, ql 

Corresponding Interval of Probability Value 
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An investigation of the statistical correlation between tags via the com- 

putation of Q and then a subsequent study of which pairs of tags were 

used in requesting shows that Q had positive values for almost all of 

these pairs.     This indicated that computations were called for with 

estimates of w.(I,.I?) taken at the upper end of the scale; i. e. ,   where 

«.(Ij.l^ =min Q-.^w.J. (19) 

The results were not as  successful as using the independence value. 

A possible explanation lies in noting that independence is a three term 

relation as formulas (17) and (18) show.    It could well be that the prob- 

ability value for tags I,  and I? relative to the reference class A lies 

closer to the maximum value (min   | p, q ] ); while the probability value 

for I.  and I,  relative to A. D. lies  closer to its independence value. 12 i r 

For our initial estimates we assume this to be the case. 

1.11     Estimation and Correction 

We have given a formal clarification of the notions behind Probabilistic 

Indexing.     We see that the computation of a relevance number requires 

for the single request the quantities P(A,D.),   w..; for Boolean func- 

tions the quantities P(A,D.),  to..,   and the w-values for conjunctions. 

The next problem is to obtain these quantities and this,   in turn,   involves 

two problems; viz. , 

(a) the initial estimation;  i. e. ,   the estimates before library 

statistics are obtained; 

(b) the correction of the initial estimates as library statistics 

are accumulated and subsequent periodic revisions via a feed- 

back computation. 

These two problems are called the "problem of estimation" and the  "prob- 

lem of correction".     Note that a solution of the second problem must be 

qualified by two requirements:     (1) the effects of the initial estimates must 

die out as library statistics are accumulated,   (2) the solution must not in- 

volve an impractical amount of computation. 
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1. 12      The Problem of Estimation 

Consider   first the estimation of P(A, D.).     For real libraries where v i 

no statistics are available we are confronted with this problem (as for 

example,   in the cases when the library has not yet been used or when 

new documents are added).     One possibility for setting the library 

system in motion is to take all initial values equal;  i. e. , 

P(A)D1) = P(A>D2) -  . . .   . 

Alternately we can construct a more realistic distribution ("more re- 

alistic" because our method leads to a distribution which corresponds 

more nearly to the actual distribution for some large libraries; viz. , 

a non-linear (hyperbolic) distribution).      The considerations used in 

such a simulation are;     1)  that a correlation exists between the prob- 

ability that a given tag will be used in indexing and the probability that 

it will be used in requesting;  2) if document D.   has a higher a priori 

probability than document D?  then D,   probably has  tags  that D, does 

not have and that are used more frequently in requesting.     Thus 

P(A, D.) should depend on the extent that D. covers the  subjects desig- 

nated by the library tags and also on the  scope of its individual tags; 

i. e. ,   on the   relative frequency with which the tags are used in indexing. 

We therefore take as initial value of P(A,D.): 
i 

a   y .      N.- w.., 
j =1        J      1J 

where N. is the number  of documents to which the j      index term is 
J th applied with non-zero weight;   w.. is the weight with which the j      in- 

th 1J 

dex term applies to the i      document;   and a is the normalization fac- 

tor (i. e. ,   the value that gives 

2 P(A.D ) =  1.) 
1 1 
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By an argument similar to the above we find that 

P(A, D.)-w. . 
.        v    '     i'      ij 

is a   plausible   estimate   of P(A, L).     This estimate also has the virtue 

of forcing the initial value of the factor ß. in (8),   section  1. 6,to equal 

unity.     Thus,   initially, 

w .   -  w. .. (20) 

The only problem that remains is the estimate of the co-values for con- 

junctions.     We have decided to choose the value 

f or w. (I . . I? ),   for reasons described in section 1. 10. 

1.13      The  Problem of Correction 

Consider now the correction of P(A, D.).     Let P    be its initial estimate. 
i o 

(The  subscript "i" will be fixed throughout the discussion.)    After n 

uses of the library,   let n be the number of times that the i      document 

has been used.     The empirica] estimate of P(A, D.) is therefore n/n. 

We want to combine this with P    in some way.    Let us do so by the o 
following device:    Annex to the sequence of events of class A(i.e. ,   A., 

A-,,   . . . ,   A  )     a fictitious initial sequence of length n    and suppose 

that this initial sequence has given the relative frequency P   ,   then the 

total sequence of length n     + n will give the  relative frequency 

P       r 
n 

n + n   • P o      o 

n + n o 

(21) 

Thus by a suitable choice of n    we  can control the effect of P    on the 
th 0 0 

n      estimate,   P   .    For example,   if n     =0 then P    has no effect on the n     _ r o o 
computation (P    - n/n); while if n     -co then P    has its maximum effect 

(P     = P   ). no 
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Formula (21) gives a satisfactory estimate of P(A,D.) in a stationary 

system; i.e. , when the reference class A does not vary -with time so 

that 

PCA.D.) =lixnP 
n n—> oo 

holds.    But in reality this will not be the  case  since the popularity of 

documents will vary with time and therefore we must look for a pro- 

cedure in which the most recent statistics have the most important 

influence on an estimation of P(A, D.).    We present a method that takes 

this consideration into account as well as being suitable for machine 

computation. 

First,   it -will be convenient to 

(a) compute P    periodically; i.e.,   after  sequential blocks  of 

fixed size,   say m; 

(b) store only statistics on the block presently occurring and the 

previous estimate of P(A)D.). 

We propose the following computing schema:    let rn   be the number of 
th th 

limes that the i      document was used in the k      block of length m,   then 

take as the first estimate of P{A, D.) 

, .,       m .   + n   • P 
P^)-. _i 2__^ (23) 

m + n o 

and as the k      estimate 

.. ,         m,  + n   ■ P1 

pW  .   .     k     -2  (24) 
m + n o 

(k) Let us see how the "block" relative frequencies are involved in P       . 

Let "A"  stand for "n   / (m + n   )".     Then it can be shown that o o 
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,(k)  _     m 

>(k) 

,      n   • P .k /    o      o 

m 
.    (25) 

Thus  P        is,   what is called,   a convex linear combination of the rela- 

tive frequencies 

m, /m,   m,     . /m,   . . . ,   m. /m,   P 
K K- 1 1 o 

with weights 

m     '   A, /^UZ. m   \  AkjAk 

Tliat the linear combination is convex,   i.e. ,   that the sum of the weights 

is one,   is seen from the fact that 

1  - A (26) 

o /     j=l 

We see that the sequence of weights diminishes  so that the more recent 
(k) relative frequencies more strongly influence the value of P      .     We 

also see that 

lim   A 

kr^oo 
(27) 

so that the effects of the earlier statistics die out as k increases.    As 

an example we note t 

we have the weights: 

an example we note the special case ■where n     = m;  then A =  1/2 and 

i/2,    1/4,       l/2k,    l/2k. 

As a final remark on the computation of P(A,D.) we emphasize that 

caution is required in the use of our computing schema as given by 

(23) and (24).     The possibility exists that the instances of use of the 
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library may attain a large number (relative to the number of documents) 

during a period of time when conditions are sufficiently stationary to 

enable us to say that (22) holds.    In this  case it can be shown that the 

recursive procedure is assured of working only if we take m so large 
t'k) that each value P       closely approximates P(A,D.).    But in that case 

we would not like to be committed to P    while the first sequential block 

is occurring.    Thus it is suggested that,   for libraries of this type,  we 

revert to some form of (21) -with computations  performed at shorter 

intervals. 

The correction of P(A, I.) follows lines similar to the foregoing dis- 

cussion of P(A,D.).     There is,   however,   a rather subtle question in- 

volved in the processing of the relative frequency data.     That is   to 

say,   all the probabilities are determined if we know the probabilities 

of conjunctions; but many requests will be given as disjunctions and 

thus if a library user  requests information on the subject designated 

by I.  v I? then this should affect the relative frequency of the requests 

I.  and the requests I?.     A counting procedure for distinctive requests 

must therefore be established.     The best possibility seems to be to 

give partial "credit" to each disjunct in an instance of a disjunction. 

The best way to do this is  still open. 

The next item is the modification of the co-values.     In principle,   if per- 

fect accuracy -were required,   we would need the determination of 

P(A, R) where R is any conjunctive request; for,   if ui.       (R) is the k 
(IrS fh 1 

estimate of w. (R) and Pv   '(A, R) is the k      estimate of P(A, R) then 

,_(k+l)(R)   -, J
k)(R) .'pW^Rj/^ P^fA.D.J-w.^fR) (28) w 

The w-values for any request would then be obtained by the extension 

of formula (14) mentioned in section 1. 10.     However,   because even 

for a small number of index terms,   the number of possible conjunc- 

tions is enormous and therefore,   practical considerations would prob- 

ably limit the application of formula (28).     Suppose therefore,   we 
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settle for accuracy for only the co-values for single terms.    This should 

be sufficient for the following reasons:    (1) if we use  some reasonable 

computational procedure--perhaps  even incorporating coefficient of 

association data--we should obtain a sufficiently accurate relevance 

number to both order the documents and to execute the search strategy 

program of Part II,   section Z,   (2) the CJ-value and the number of docu- 

ments retrieved rapidly diminishes as the number of conjunctive terms 

increases--in either case accuracy in the relevance number is not 

required. 

1. 14     Weighted Requests 

The request language is  still rather limited even though we allow all 

combinations of index terms by means of the  connectives  "and" and 

"or".     However,   when we consider the retrieval instruction meaning 

of the request I.  v 1^  (Table   1,   p. 2 1) an obvious extension of the re- 

quest language presents itself.     That is to say,   when the    requestor 

asks that two simultaneous searches be made,   one under 1. and one 

under I-,   let him now indicate which search he regards as more im- 

portant.     To incorporate such information into a computational proce- 

dure we allow him to give this comparative data in the form of numeri- 

cal "request weights".     We will use the expression: 

(a)^  v (p)I2, 

where a and ß are the request weights,   to represent this new type of 

request.     More generally,   we note that conjunctions will occur in place 

of I.  and I? in this expression,   each conjunction prescribing a  search 

and having an assigned weight.     We can conceive of the weights,   then, 

as indicating the degree to which the conjunction describes the infor- 

mation requirement of the requestor.    This is  suggested when we go 

from the retrieval instruction meaning of a request to the logical mean- 

ing (Table   1,   p. 21).     The highest level of specificity that the requestor 

can attain is by means of conjunctions.     The conjunctions  are (artificial) 

names of sub-subjects and since the requestor is uncertain about his 
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use of tags in forming these names,   he will try to avoid possible loss 

of relevant information by using disjunctions.    Thus when we permit 

him to weight each of these names; i. e. ,   conjunctions,   we can treat 

the weight as being an indication of either the degree of the requestor's 

interest in the subject designated by the conjunctive set of terms or 

how closely it matches his information requirements.    For example, 

if the conjunctions reduce to single terms,   then the expression 

(.7)^ v (.3)I2 

means the requestor is interested in I ,   to the degree 0. 7 and in I, to 

the degree 0.3. 

Given this interpretation for the notion of request weights we must now 

provide a set of rules for computing the relevance number of weighted 

requests.     This means that we need to evaluate 

coi|ja)I1v(P)l7]. 

Two methods appear to be reasonable: 

(1) w. |ja)I1v(p)l£]=    {a)Wi(I1)+(p)cüi(I2)-(ap)a)i(I1 . I2) 

(2) u.|ja)I  vfp)!.^   (a)coi(I1)+(p)oJi(I2) - min Qi,p^]-co.C^.^) 

Method (1) has the advantage of computational simplicity as well as a 

certain appeal in being a direct modification of the weights in the prob- 

abilistic matrix through multiplication of the request weight with the 

corresponding tag weight (recall that initially we take u>.{l..I~) equal to 

w. (I. )• to. (I?)).     Method (2) has the virtue of giving: 

a.  [ja)^ v (a)I J -     (cOw.dj v I.,). 

thus reducing to the case of the unweighted request when a = ß (up to 

multiplication by a constant).     In our work on the weighted request we 

have used formula (1). 
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To complete the discussion we look at further possibilities of general- 

ization.    The most obvious extension is the assignment of request 

weights,   not just to conjunctions,  but to each index term.     We could 

explicate the meaning of 

as a "quantitative assertion" of I. (analogous to the "quantitative ne- 

gation" in Probability Logic). The number a would be the degree of 

assertion given to the tag I..    In this interpretation we have: 

(0) l1  = not li, 

(DI,  =1,. 

The computational procedure which would be best to use here is still 

open. 

Another possibility is a statistical or probabilistic explication of re- 

quest weights; i.e.,   an explication of the type as given for w. ..     There, 

the logic was to go from a comparative notion to a quantitative notion, 

then to explicate the latter.    We have a similar explicative problem 

with the request weights but no simple solution presents itself. 
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I 
2.      THE AUTOMATIC ELABORATION OF THE SELECTION PROCESS 

2. 1     Initial Remarks 

The technique of Probabilistic Indexing,   as  -we have  seen,   allows a 

computing machine,   given a request for information,   to make a statis- 

tical inference and derive a relevance number for each document.     The 

result of a search is an ordered list of those documents which satisfy 

the request,   ranked according to their probable relevance.    We would 

prefer to have a technique which not only decides  of a given class of 

documents,   ■which among them is most probably relevant,   next most 

probably relevant,   etc. ,   but which also decides whether the class it- 

self of retrieved documents is adequate (at least in the  sense  of deter- 

mining whether or not it excludes some documents which are  relevant 

to the user's information needs).     That is to say,   if we consider the 

request as a clue which the user gives to the library to indicate the 

nature of his information needs,   then we should raise the folio-wing 

question:    Given a clue,   how may it be used by the library system to 

generate a best class of documents (to be ranked subsequently by their 

relevance numbers)?    Thus given the clue,   how can we elaborate upon 

it automatically in order to produce a best class of retrieved documents? 

Let us turn our attention to this  problem. 

2. 2     Search Strategies and the Notion of Distance 

A library request (a clue) is a Boolean function whose variables are 

index terms,   which,   in turn,   selects a class of documents via a logical 

match.     That is to say,   all of those docunnents whose index terms are 

logically compatible with the logic and the tags of a request R consti- 

tute the class of retrieved documents C.    Our goal is to extend the 

class C in the most probable  "direction" and this can be done in two 

ways.     One method involves the transforming of R into R' where R' in 

turn will select a class of documents  C,  which is larger than C and 

contains more relevant documents.    A second method does not modify 

R but,   rather,   it uses the class  C to define a new class  C" .    A set of 

rules which prescribe how to go from a given request R to a class of 
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I 
retrieved documents is called a strategy.       A strategy,   in turn,   in- 

volves the use of several different techniques for measuring the "dis- 
2 

tances"    between index terms and between documents.     Before pro- 

ceeding,   let us introduce  some further notations to make more pre- 

cise -what -we have been saying. 

We understand by "basic selection process" the rule which uses the 

request to select the class  of documents whose tags are logically com- 

patible with the logic and tags of the  request,   and we denote this basic 

selection process by the functional  notation "f".     Thus f is the transfer 

function from inputs (requests) to output (class of retrieved documents) 

and we write 

f(R)   -   C (1) 

where,   again,   R is the request and C is the  class of retrieved docu- 

ments.     The problem    is to enlarge  C so as to increase the probability 

that it will contain relevant documents and to decrease the probability 

that it will contain irrelevant documents.     This can be done in the fol- 

io-wing way:    Suppose R' is a request similar in meaning to R,   then we 

can take as a possible modification of f,   say f, 

f'(R)   =  f(R)   v  f(R')   ="   C   v   C. (2) 

(As before "v" designates class union.) 

We mean here search strategy from the viewpoint of the library com- 
puter. The requestor also has a search strategy which is given by the 
relevance number of the documents that he is  given. 

2 
We use "distance" in an informal sense; i.e. ,   it may not satisfy all 

the axioms  of distance (e.g. ,   the triangle inequality and symmetry). 
The reason for this is that it is frequently necessary to preserve nat- 
ural logical structure and forego artificial metric structure.    Indeed, 
in one case we violate positiveness of distance functions. 
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This modification can be made precise if we are able to invent a metric 

or "distance" function on the request space to measure dissimilarity 

in meaning.     Since we are not sure what meaning is,   much less being 

able to assign a numerical quantity to it,   this is  rather difficult;   but 

we  shall show later that statistics can provide  such measures.     For 

the present,   suppose we actually do have  such a metric,   then we can 

generate a modified selection function f by defining f'(R-) to be the 

union of all classes f{Rl) ■where the distance bet-ween R and R1  is less 

than some specified number,   say e.     Symbolically this written 

f'{R)   =        vJ      f(R'). (3) 
[d(R.R')<e] 

Analogously,   if we have a "distance" function in the document space 

which gives "nearness" as a numerical measure of similarity of infor- 

mation content,   then a completely different modification f" of f arises 

via 

f"(R)   =   C" (4) 

where C" consists of all documents whose distance from C  = f(R) is 

less than 6.     (We remark in passing that "distance" notions  seem to 

present a surprisingly fruitful approach to the library problem; e.g. , 

the relevance number itself can be thought of as given; the nearness 

between documents and requests.) 

Thus,   we see that a machine  strategy can elaborate upon the basic se- 

lection process in order to improve the search in one of two different 

ways.     The first is to establish a metric for distance in request space 

so as to formulate R',   given R.     The other way is to use the class of 

documents  C,   obtained by the initial request R,   to define a new   class 

C" .     Both of these methods are discussed below. 

2. 3      The Notion of Index Space 

Geometrically speaking,   one may think of the set of n index terms 

■which constitute the library catalogue "vocabulary" as points in an 
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n-dimensional  space.    The points in this  space are not located at ran- 

dom,   but     rather,   they have definite relationships with respect to one 

another depending on the meanings of the terms.     For example,   the 

term "logic" would be much closer to "mathematics" than to "music". 

One always finds when looking up index terms in the catalogue of a 

conventional library,   other terms listed under "see" and "see also". 

This cross-indexing ("see/see also") aspect of a library indicates 

some of the relationships that index terms have for one another; i. e. , 

it indicates some of the relationships between points in index space. 

The "distances" between index terms can be made explicit by formu- 

lating probabilistic weighting factors between them.     Once numerical 

weighting factors are coordinated with the distances the cros s-indexing 

aspect of a library can be mechanized so that given a request involving 

one (or many) index terms,   a machine could compute other terms for 

which searches  should be made.     That is to say,   a request places one 

at a point,   or  several points,   in index space and once the distances be- 

tween points are arithmetized,   a machine could determine which other 

points to go to in order to improve the  request.     Thus,   the elaboration 

of a request on the   basis of a probabilistic "association of ideas" could 

be executed automatically. 

2. 4     Automatically Groping in Index Space 

There are at least two different kinds of relationships that can exist 

between the points in index space; viz. ,   semantical relationships and 

statistical relationships.     The most elementary semantical relation- 

ship is that of synonymity,,   but in addition to synonymity there are other 

semantical relationships  such as "partially implied by"  and "partially 

implies".     Such relationships between terms are based strictly on the 

meanings  of the terms in question--hence,   the word "semantical". 

Another class of relationships are  statistical; i.e. ,   those based on the 

relative frequency of occurrence of terms used as indexes.     The dis- 

tinction between semantical and statistical relationships may be clari- 

fied as follows:    Whereas the  semantical relationships are based solely 
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on the meanings  of the terms and hence independent of the  "facts" de- 

scribed by those words,   the statistical  relationships between terms 

are based solely on the relative frequency with which they appear and 

hence are based  on the nature of the facts described by the documents. 

Thus,   although there is nothing about the meaning of the term "logic" 

which implies "switching theory",   the nature of the   facts (viz. ,   that 

truth -functional logic  is widely used for the  analysis and synthesis of 

switching circuits) "causes"  a statistical relationship.     (Another ex- 

ample might concern the terms  "information theory" and "Shannon"-- 

assuming,   of course,   that proper names are used as   index terms.) 

Once the various  "connections" between the points of index space have 

been establishec. rules  must be formulated which describe how one 

should move in the maze of connected points.     We call such rules 

"heuristics".    They are general guides for groping in the "maze" in 

the attempt to create an optimal output list of oocuments for any arbi- 

trary request.    The heuristics would enable a machine to decide,   for 

a given set of request terms,   which index terms to "see" and "see 

also",   ana how deep this  search should be and when to stop,   etc. 

Generally speaking,   the heuristics would decide which index terms to 

look at next,   on the basis of the semantical and statistical connections 

between terms,   and the heuristics  would decide when to stop looking, 

on the basis of the number of documents that would be retrieved and 

the relevance nurnbers  of those documents.    (Remember that each point 

in inoex space defines a class of documents; viz. .   all of those docu- 

ments which have been assignee; the index term in question with a non- 

zero weight. )   Given this understanding of heuristics,   we  see that an 

over-ail search strategy is made up of components some of which are 

heuristics; i.e.,   the sequence of devices,   rules,   heuristics,   etc., 

■which lead from inputs  (requests) to outputs   (classes of retrieved docu- 

ments) is the  strategy. 
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2. 5     Some Elementary Heuristics 

In order to clarify the notion of developing heuristics which "would de- 

termine how a computer  should "grope" in index space,   consider the 

following example.     Assume that we compute the frequency,   N(I.)) 

with which each term is used to tag a document,   and also that we com- 

pute the frequency,   N(I.. I, ), with which pairs of terms are assigned to 
J     K 

documents.     We can then compute the conditional probability P(I.,1, ) 

that if a term I. is assigned to a document,   then 1,   also will be assigned: 

N(l    1   ) 
P(T    L)   .  LJL. . (5) 

J u' 
N(] ,) 

J 

We do this for all pairs I.   I, 
J     ^ 

Assume now that I.'  is the index term which has the highest conditional 

probability given I.;  i.e. ,   I.' is the index term for which Pfl   , 1. ) is  a 

maximum.     Then given a request,   R   =  I.,   for all documents tagged. 

■with I.,   we form a new request,   R1    =   1. v !.',   which searches for all 

documents taggeo with either 1    or I.'.     Thus     the rule is now to con- 
J J 

aider R'  instead  of R. 

This heuristic tells  us which tags are closest (in one  sense) to given 

ones,   but we  still have no measure of the  "closeness" (hereafter written 

■without quotes) and such a measure is needed as a part of the associated 

computation rule.     That is to say    -we elaborate upon R and obtain R' 

by searching for documents indexed under tags closely related to those 

in the original request,   but,   clearly,   the  relevance numbers that we 

derive for these  "additional" documents  should be weighted down some- 

what m order to indicate that they ■were obtained only from tags which 

are close to those in the original request.     We  measure the closeness 

as follows:    Let p.  - P(I.. I.1) and normalize p. over the set of tags used 

in the request so that 

Pi p    = _!_    • (6) 
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1" Vi 
Now,   instead of using w.(I,') (the weight assigned to 1.' for the i      doc- 1    J _J 
ument) in the search computation,   we  replace it by p  • w. (!.')•     The 

extended search that we have just described is an elementary form of 

only one of a class of possible  heuristics based on the  statistical re- 

lationships between tags. 

^ ol 
m 

(I.  implies I,   to the  greatest degree) 
J K 

A second elementary heuristic which looks even more promising is 

called the "inverse  conditional"  search and it measures closeness of 

tags to I. in terms of the conditional probability from I,   to I. (instead 

of conversely as with the heuristic described above).     That is to say 

we compute that P(l,, 1.) which is maximum as 1,   varies and this pro- 
le     J K 

vides the tag which most strongly implies the given tag I..     Thus,   in- 

stead of asking for that tag which is most strongly implied (statistically) 

by an arbitrary tag  in the  request,   we ask for the  tag which most 

strongly implies (statistically) the given tag.     Using this method to de- 

termine the closeness of tags  we establish a measure for the closeness 

by normalizing the  probability as before.     That is, 
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f 

P(,VV 

1   2pi 

and,   again,   the corresponding computation rule is now p.'w. ('I.), 

where 'I. is the I,   which makes P(I, , I.) a maximum for a given I.. 
j k ' k'   j' 6 J 

1^ 

I2o^ 

^ 

p^l.  .10 
ol. 

I    o 
m 

(I. implied by I,   to the greatest degree) 
J K 

2. 6     A More Sophisticated Heuristic 

We have just discussed two possible measures of closeness; viz. ,   the 

conditional probability P(1.,I, ),   and the inverse condition probability 
J     k 

P(I, ,1.).     Now we consider a third statistical measure which appears 

the most promising of the three.     This is one of several possible co- 

efficients of association between predicates   .     The particular coefficient 

G.U.   Yule,   "On Measuring Association Bet-ween Attributes",   Journal 
of the Royal Statistical Society,   Vol LXXV,   1912,   pp 579-642. 
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we have chosen arises in the following way.     Consider the tags I. and 

I,   and partition the library by four classifications; viz. ,   documents 

indexed under both I. and I, ,   those indexed under I. but not I, ,   those J k j k 
indexed under I.   but not I.,   and those not indexed under either.     Let- 

_ k J 
ting  'I.' denote the complement of the class I.,   etc. ,   these four classes 

are given by I,.I. ,   I.. I,,   I..I, ,   I..I, ,   respectively.     The classification 
JiCjKjlCJK 

and the number of documents is  shown most conveniently in a table: 

I. 
J 

x=N(I..Ik) u = N(i..rk) N(I.) 

r. 
J 

v = N(r..ik) y = N(r..rk) N{r.) 

N(Ik) N(rk) n 

We have adjoined to the table the  row and column sums and n (the to- 

tal number of documents). 

Now,   using the notation of section 2. 5,   we say that I. is statistically 

independent of I    if 
  k 

P(IrIk)   =   P(Ik). (7) 

This can be  shown to be  equivalent to: 

P{I.,Ik)   =   P(I.).P(Ik); (8) 

so that rewriting in terms of frequencies we have an additional 

equivalence: 

N(I..Ik)   =   N(I.)-N(Ik)/n. (9) 
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We can infer also that   the following are equivalent: 

(a) I. is  statistically independent of I,; 

(b) I,   is  statistically independent of I.; 

(c) I. is  statistically independent of I, ; 

(d) I,   is  statistically independent of I.; 

(e) I. is  statistically independent of I,. 

For any pair I., I,   (9) suggests that we look at the excess of N(I..I, ) 
j    Je J    *; 

over its independence value; i.e. ,   the quantity 

t>{Iylk)   =   NCIj.y   -   N^I-N^/n. (10) 

It can be shown that this function 6 has the property 

6(1.,ik) = 6(1...ik) - -ödj.y = -sdj.y, (ID 

and thus  5 is associated with the differences over independence values 

in all four classifications. 

Having discussed independence let us now consider what properties 

■would be suitable for a coefficient of association between I. and 1, . 
J k 

We call this coefficient "0(1., L)".     (1)    Q(I.,I, ) should be zero when 
J        K J        ^ 

6(1., I,)  = 0 and,   moreover,   Q(1.,I, ) should vary as 6(1., 1,) for fixed 
J       K J        K J       k 

n and fixed row and column totals;  (2)    the maximum of Q(I.,I, ) should 
J 

occur when I, is contained in I,   (u - 0),   or I,   is in, contained I. (v = 0), J k k l j v ' 
or 1. and 1,   give the same class (u = v = 0);  (3)   the minimum of Q(I.,I, ) 

should occur when I,   is contained in 1. (x = 0),   or I. is contained in I, 
k J J k 

(y = 0),   or 1. is the  complement of I,   (x = y = 0); (4)    it should have a 
J K 
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have a simple  range of values,   say from - 1 to   1.     A coefficient    that 

has all of these properties is: 

Q(I..Ik)   -   (xy   -   uv)/(xy   +  uv). (12) 

(The intimate  connection with 5 is indicated by the fact that the numer- 

ator of Q is n5. ) 

The generation of a heuristic now proceeds by the plan of section 2. 5. 

Given R   =  I. we  select the term 1.   (different from I.) with the maximum 
J k v y 

coefficient Q(I.,I, ).     This value will be between 0 and   1  or no term 
J     k- 

will be selected.     Then R is extended to 

R   =   1.   v   I. 
J k 

and in the  search computation we multiply the  weight w^l, )by Q(I.,I, ). 
ik J     "^ 

2. 7     Heuristics in the  Document Space 

It seems that the modification of the  selection process by means of a 

concept of closeness,   or distance,   in the  request space holds the best 

promise for the generation of satisfactory heuristics.     However,   so 

that no possibility is overlooked,   we now examine other notions of 

distance.     Turning our attention to the modification by distance no- 

tions in the document space (equation 4,   section 2.2) we see that the 

procedure is to go from the given request R to C,   the class of docu- 

ments retrieved by the basic  selection process f.     We then obtain C" 

by applying the distance function in the document space to C.     In a 

sense then,   this two step procedure uses  C as  a representation of R 

The coefficient recommended by Yule loc.   cit.   is not Q,   but 

Z   =   (\J~xy   -   \J uv) / Sj xy   +   \|uv), 

The range of variation of both Q and Z is  the same and since both lead 
to equivalent heuristics we have chosen Q for its computational sim- 
plicity.     For refined work we might adopt Z. 

44 



and extends this  representation.     We distinguish such heuristics from 

those discussed previously which extend R directly.     We call these two 

ways of looking at R,   the extensional and intensional interpretations. 

This  situation is  clarified if we look at the probabilistic matrix: 

R 

D2 

D 

wil W12 •   •   • w , 1m ^(R) 

: w2i W22 2m w2(R) 

•   •   • • 

; 

w
ni Wn2 

.   .   . w nm vR) 

We have adjoined to the matrix a column giving the w-values for a 

given request R.     Since the non-zero values  in this column characterize 

the documents that are retrieved this  represents the extensional in- 

terpretation of R.     The values themselves in the R-column can be 

thought of as a measure of closeness between R and the documents. 

The matrix  [w. .   1 itself gives a representation of the document space 

and the index space.     To get the intensional interpretation of R into the 

schema we use the following device:    Write R in so-called "distinguished 

disjunctive normal form"--this is a disjunction of conjunctions in which 

either I. or its negation occurs.     For example,   in the space of three 

tags I   , I.,, I    the  request R   =   I1 • I? can be written 

R lVIZ'h  V   VW 
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Having done this,   we can represent each conjunction that occurs in R 

by a vector whose j      component e . is   1 if I. is in the conjunction,   and 

0 otherwise.    Thus R is represented by a bundle of such vectors and 

we have a matrix whose rows  are these vectors: 

B   = 

11 

'21 

'si 

12 

'22 

's2 

e 
1m 

e 
2m 

e 
sm 

where  s is the number of conjunctions that occur in the normal form. 

We now adjoin this matrix to the probabilistic matrix: 

Wll W12 

'21 

nl 

11 

'si 

'22 

n2 

12 

's2 

1m 

2m 

nm 

1m intensional rep- 

resentation of r 

A simple heuristic can be generated from this  schema by replacing 

the non-zero w-values by  I's,   thus  obtaining the binary library matrix. 

The square of the Pythagorean distance between rows gives the num- 

ber of positions in which the  rows differ.     We  say two rows are 0-away, 

1-away,   etc. ,      depending on the value of the  square distance.     We  see 

The notion of distance between documents is analogous to the notion 
of distance between codes as discussed in the theory of error correct- 
ing codes. 
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that R will retrieve document D, if and only if there is a row in B that 

is  O-away from the D,   row of the binary matrix.     (In fact,   there will 

be at most one such row. )   In this case we say that D,  is O-away from 

R.    We can enlarge the class of retrieved documents by considering 

also documents that are   i-away from R,   2-away,   etc. 

Enlarging the class by this method is not completely satisfactory.     We 

■would really like to introduce these notions into a (generalized) rele- 

vance number computation.     That is to say,   we would like to combine 

heuristics in such a way that documents  with associated ranking num- 

bers are retrieved,   not just classes of documents.     We would also like 

to use the values w.(R) in the computation. 

First we note that the Pythagorean distance between two rows of the 

probabilistic matrix gives a measure of dissimilarity of information 

content (as well as dissimilarity of distribution of information) between 

documents corresponding to these  rows.     Call this distance " /\,{D. , D.)" 

We can use this distance function to compute the distance of any docu- 

ment from the class C of documents  retrieved by the basic selection 

process.     This is all the theory required to implement formula (4) 

(section 2.2). 

Next is the problem of computing the (generalized)  relevance number. 

There are infinitely many possibilities here and which is "best" is 

still an open problem.     However,   an extremely natural one arises as 

follows:    We have pointed out that the values w.(R)  in the R-column of 

the probabilistic matrix can be considered as  a measure of closeness 

Another measure of dissimilarity is to take,   not the Pythagorean dis- 
tance but the sum of the absolute values  of the differences bet-ween cor- 

k 

responding entries;  i.e.,   ^Iw-^,   -   w.. 
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between R and the documents. To combine these values withA(D.)D.) 

we convert closeness to "distance" by some device such as consider- 

ing the negative of the logarithm of w.(R).    We define 

d(R,D.)   =   - log w.(R). (13) 

D. will be retrieved by R if and only if d(R)D.) is finite; thus this char- 

acterizes the  class  of retrieved documents.    Now take that document 

D. in the class of retrieved documents such thatA(D.,D.) is a 
i ■■■-.,' 

minimum. 
i i'    J' 

Then we take 

g(R,D.)   =\  ^(D^D.)   +  log2w.(R) (14) 

as the measure of "distance"    between R and D..    Note that if D. is   a 
J J 

retrieved document,   thenA(D.,D.) is zero and 
i      j' 

g(R)D.)   =   - log w.(R). 

Furthermore,   if D. has not been retrieved (initially) 
J 

g(R,D.)   >   - log w.(R), 

where i is the  accession number of the document nearest to D..     Thus 
J 

the ranking by the g-function will always put an adjoined document be- 

low its associated document in the class  C.     We may now finish the 

computation by subtracting the logarithm of the a priori probability 

of a document from its g-value.     (Analogous to multiplying w.(R) by 

P(A, D.) to obtain the relevance number. )    The final heuristic then,   is v i ' ' 
to choose a suitable cut off point in the list of adjoined documents-- 

taking only those with (generalized) relevance number less than some 

specified value. 

If D.  is not unique choose the one in the minimal  set with the largest 
w.(R)1. 

Again (see note   1,   p 47) it might be preferable to take 
g(R.D.)   =  A(D.,D.)   +   d(R)Di) 
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Although simple in theory the above heuristic leads to laborious com- 

putations.     Considerable simplication results if we  restrict all com- 

putations to the columns of the probabilistic matrix corresponding to 

those index terms mentioned in R. 

2. 8     Further Remarks Concerning Search Strategies 

We have presented some of the heuristics that appear to have the best 

possiblity of being useful components  of a search strategy.     We also 

have formulated some principles for a general approach to the prob- 

lem of automatic elaboration of the selection process.     Let us now 

illustrate these ideas by constructing an over-all search strategy. 

First we list the variables involved: 

1. Input 

(a) The request R 

(b) The request weights 

2. The Probabilistic  Matrix pw. .     | 
L. ij_J 

(a) Similarity measures between documents,    (e.g. , A-values) 

(b) Significance measures for index terms    (An index term 

applied to every document in the library will have no sig- 

nificance,   while an index term applied to only one docu- 

ment will be highly significant.     Thus  significance 

measures are  related to the "extension number" for each 

term; i.e.,   to the number of documents tagged with the 

term--the smaller this number,   the greater the  signifi- 

cance  of the  index term. ) 

(c) "Closeness" measures between index terms  (e. g. ,   Q- 

values) 

3. The A Priori Probability Distribution 

4. Output (by means of the basic  selection process;  i.e. ,   the 

logical match plus  Bayes'   schema with all of its  ramifications  and 

refinements). 
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(a) The class of retrieved documents; call this 'C'. 

(b) n,   the number of documents in C. 

(c) Relevance numbers. 

5. Control Numbers 

(a) n   ,   the maximum number of documents that we wish to v   '       o 
retrieve. 

(b) Relevance number control;  e. g. ,   we may ignore docu- 

ments  with relevance number less than a specified value. 

(c) Generalized relevance number control.     (Similar to the 

above but this applies to the computation described in 

section 2. 7) 

(d) Request weight control;  i.e. ,   we elaborate on index terms 

in the  request if their request weight is higher than some 

specified value. 

(e) Significance number of index term control; i.e. ,   we give 

index terms  of certain significance (defined in terms of 

their extensions) special attention. 

6. Operations 

(a) Basic  selection process,   denote this by "f". 

(b) Elaboration of the  request by using "closeness" in the 

request space.     Denote this by "H".     Thus the operation 

H will transform the request R into a new request R'. 

More precisely H is the heuristic:    elaborating the index 

terms  in R with request weights greater than the request 

weight control number and/or index term significance 

greater than a specified value. 

(c) Adjoining new documents  to the class of retrieved docu- 

ments by using "distance" in the document space.     De- 

note this by "h".     Thus the operation h will transform the 

class C of retrieved documents   into a new class,   say D. 

Move precisely,   h is the heuristic:    trim C to documents 

having  relevance number greater than the control number 
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and then annex to C all of the documents with generalized 

relevance number in a certain range. 

(d)    Merge:    any merging operation between two classes; 

e.g. ,   forming their intersection,   their union,   trimming 

by using relevance number and then forming union,   etc. 

Next -we combine these to obtain the   strategy shown in diagram 3. 

This strategy is to be regarded as a particularly simple example,   its 

goal to obtain a specified number of documents (say n  ) having the 

best chance  of satisfying the request.     Thus the decision to elaborate 

centers on answering the question:   Is the number of documents se- 

lected greater than or equal to n   ?   In the diagram we refer to the 

heuristic H as simply "elaborate the request".    The actual transfer 

function H involves  using control numbers to limit the elaboration. 

Furthermore these control numbers can be varied from one applica- 

tion of H to the next.     Similarly we  refer to the heuristic h as simply 

"extend the  class"; but we point out that this too involves control num- 

bers.     Finally a word about the classes  C,   C',   D,   etc.     These are 

actually lists of documents ranked by relevance numbers.     Thus the 

instruction "trim C to n   " means  "cut/off the list to the n    documents o o 
■with highest relevance number".     The output of the  system will be an 

ordered list of document accession numbers. 
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PART III, 

THE EXPERMENTAL RESULTS 

(SUMMARY) 

In. Part III we describe  some experiments that ■were designed and 
executed in order to provide data for evaluating the effectiveness 
of the techniques of Probabilistic Indexing.     The discussion of 
Part II indicates that there are two basic hypotheses that we wish 
to verify.     The first hypothesis asserts that the relevance number 
that we compute for each document,   given a request is,   in fact,   a 
measure of the probable relevance of the document.    The second 
hypothesis asserts that the automatic elaboration of the selection 
process does,   in fact,   produce relevant documents which are not 
selected by the original request. 

Section  1 discusses the experimental set-up; i.e. ,   the library, 
the indexing system,   the weights,   the testing procedure,   etc.     Sec- 
tion 2 provides the data and discussion in support of the hypothesis 
concerning the relevance function and we find that the results do 
support the hypothesis.     Section 3 provides the data and discussion 
in support of the hypothesis concerning the  selection process and 
we find that the results do support the hypothesis. 
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1,      THE EXPERIMENTAL, SET-UP 

1. 1     Initial Remarks 

The jumping off point for our approach to automatic information retrieval 

■was the recognition that the core of the problem is that of adequately 

identifying the information content of documentary data.    There is an un- 

certainty in the relationship between the tags that are used to index docu- 

ments and the subjects that they denote and this is the cause of inadequate 

retrieval of desired information.     Using the analogy of going from an in- 

coming document to its  set of index tags as going  from a selected mes- 

sage to a received message over a noisy channel,   we  recognized the ef- 

fect of semantic noise and accordingly a technique for handling it statis- 

tically.    Given this analogy the problem was to select the proper schema 

from the calculus of probability to allow for the inverse inference from 

requested index terms to most probably relevant document.     This line of 

reasoning thus led us to the notion of weighting index tags and using Bayes1 

Theorem to provide a function to measure the degree of relevance between 

an arbitrary request and any of the documents  selected by the request. 

Further analysis led us to the notion of automatically elaborating upon 

the  request in the most probable direction so as to improve the  selection 

of relevant documents. 

Given the fundamental notions of Probabilistic Indexing and a logico- 

mathematical explication (presented in Part II) with which to back up our 

intuitive understanding of the problem,   let us now raise the  question of 

justification.     That is to say,   to what extent does our probabilistic ana- 

lyses of the library problem guarantee that retrieval effectiveness will 

be improved.     Clearly,   the  only real justification for Probabilistic In- 

dexing is  success; i.e.,   if the technique improves retrieval effectiveness 

then the system is justified and if not,   not.     Therefore,   given the basic 

methods of Probabilistic Indexing a natural next step is to conduct some 

actual library experiments in order to measure its degree  of success in 

improving retrieval effectiveness.    In the following sections we  shall de- 

scribe the design,   execution and results of sonne actual experiments. 
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I 

An evaluation of these empirical results provides good evidence in favor 

of the "theory"  of Probabilistic Indexing. 

Let us point out at this time,   that the value of actual library experiments 

goes beyond a mere campaign to evaluate the techniques of Probabilistic 

Indexing.    Actual library experimentation provides an excellent tool by 

means of which we can refine and extend the methods and techniques that 

constitute Probabilistic Indexing.    We have formulated already what we 

feel are excellent approximate solutions to some of the major problems 

and these notions now must be verified and refined,   where necessary,   on 

the basis of actual experience.     Just as the physicist requires such tools 

as,   for example,   a linear accelerator in order to empirically verify and 

suggest new notions relative to nuclear physics,   so also the "library 

scientist"  requires the counterpart of the linear accelerator; viz. ,   a li- 

brary with which he can work and control.    Just as an experiment in phy- 

sics represents a set of questions that a physicist asks of Nature,   so also 

the library scientist needs an experimental library to which he  can ask 

questions about the nature of information identification indexing,   Searching, 

etc. ; and thereby to obtain answers on the basis of which to refine his 

original questions and provide insights into the evidence  relative to library 

problems and their solutions.     Hopefully,   our explications can be refined 

so as to provide us with a good first approximation to a fundamental theory 

of literature identification, indexing,   searching and retrieval. 

1.2      The  Experimental  Library 

A collection of articles from Science News Letter    formed the library 

for our experiments.     The Science News Letter is a weekly summary of 

current events in science and the articles  cover a wide range of subjects 

ranging from Archaeology to Astronomy,   Physics to Physiology,   and Med- 

icine to Meteorology.    In previous tests made in October of last year we 

Published by Science Service,   Inc. ,   1719 N Street,   N.W.,   Washington,   D.C. 
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selected 200 articles at random and this collection constituted the experi- 

mental library.    For the present tests we discarded 90 of the original 

200 documents in order to restrict the library to articles dealing with the 

Physical Sciences.     Although 110 is not a large number we feel that our 

experimental library presented us with most of the relevant and basic 

problems that would be found in a "real" library and yet still be of a man- 

ageable size. 

Our choice of articles from Science News Letter for inclusion in the ex- 

perimental library was dictated to a large extent by the fact that these 

articles are relatively brief,   pithy,   clearly written,   interesting,  timely, 

uncomplex and easy to index by non-experts.     This made not only the in- 

dexing but the  subsequent evaluation of retrieval documents a reasonably 

uncomplicated task.     Since this experimental library was  one without a 

previous history of usage there were no statistics on the  a priori prob- 

ability of document usage and consequently these statistics had to be simu- 

lated as discussed in Part II,    1. 12.     Graph 1  shows the  simulated non- 

linear distribution. 

1.3      The Indexing System 

The indexing  system,   again,   refers to the class of tags that are used to 

identify both the content of the documents and the requests and thus it is 

the language common to both "sides" of the library.     Since the methods 

of Probabilistic Indexing are applicable to any indexing system we -were 

not limited in our choice of a set of tags to be used for the experimental 

library.     The only constraint was that the number of tags in the index list 

be comparable with the size of the library.    Instead of "truncating" an 

existing index system and using its tags to index the documents of the ex- 

perimental library,   we adopted the folio-wing procedure:    Each document 

of the library was  read and the key content bearing words were  selected 

and listed.     There  were  a total of 577 different keywords  in the list.     These 

words were  sorted into categories on the basis of their meanings.     It 

turned out that the keywords (as they are called) could be  sorted into 47 

fairly well-defined categories.     In many cases a particular keyword would 
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belong to more than one category,   consequently there were 919 occur- 

rences of the keywords in the 47 categories.     The names of the 47 cat- 

egories are listed in Table  2 and these names became the tags that con- 

stituted the index term list for the experimental library. 

These 47 index terms were then assigned to the documents by working 

backwards as follows:    For each category we determined which keywords 

it contained and each document which contained the keyword in question, 

was coordinated in the corresponding category.     That is to say,   given the 

categories,   the keywords in each category and the documents associated 

with each of the keywords,   we then were able to determine which docu- 

ments  should be coordinated with each category and thus the documents 

were indexed by assigning to each the names of the corresponding cat- 

egories.    This is clarified in Diagram 4 which shows the relationships 

between documents and keywords,   keywords and categories,   and,   there- 

fore,   documents and categories.     Table 3  shows the number of keywords 

that were associated with each of the 47 categories and also the number 

of documents associated with each of the 47 categories.    Graph 2 shows 

the distribution of the frequency with which the index terms were used, 

plotted against their rank. 

1. 4     The Assignment of Weights 

Having assigned the index terms to the documents,   Probabilistic Indexing 

requires that we indicate the degree with which each tag holds for the doc- 

ument by assigning weights to the index terms.     In order to assign the 

corresponding weight each document was reread and then the indexer de- 

cided for each of the tags coordinated to each document,   the degree with 

which it held.     We had decided previously that a reasonable  range of values 

for the weights was eight,   ranging from  1/8 to 8/8.     In order to aid the 

indexer in obtaining a consistent assignment of weights,   rough weighting 

rules were formulated and these are  shown in Table 4.     Table 5 shows 

the distribution of weights for each of the 47 index terms.     A portion of 

the Probabilistic Library matrix is  shown in the Table p.   65. 
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1. Aerodynamics and Aviation 25. Mathematics 

2. Agriculture 26. Measurement 

3. Animals (including birds, 27. Missiles and Rockets 
fish,   and reptiles) 28. Mystery,   Myths and Problems 

4. Archaeology 
29. Nature 

5. Astronomy 
30. Navigation 

6. Atmosphere 
31. Paleontology 

7, Atomic Physics 32. Physical Quantities 
8. Biology 33. Physics 
9. Chemistry 

34. Plants 
10. Communications 35. Political or government group 
11. Computers or functions 

12. Defense and Warfare 36. Power 

13. Electronics 37. Predictions 

14. Engineering 38. Psychology 

15. Engines 39. Research 

16. Food 40. Satellites 

17, Geography 41. Social Sciences 

18. Geology 42. Space Travel 

19. Geophysics 43. Teaching - Education 

20. Health and Safety 44. Time 

21. History 45. Tools 

22. Machinery 46. Transportation 

23. Man 47. Weather 

24. Materials 

TABLE 2 

INDEX TERMS 

DERIVED FROM KEYWORDS 
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1 Aerodynamics and Aviation 

2 Agriculture 

3 Animals (including birds, 
fish,   and reptiles) 

4 Archaeology 

5 Astronomy 

6 Atmosphere 

7 Atomic Physics 

8 Biology 

9 Chemistry 

10 Communications 

11 Computers 

12 Defense and Warfare 

13 Electronics 

14 Engineering 

15 Engines 

16 Food 

17 Geography 

18 Geology 

19 Geophysics 

20 Health and Safety 

21 History 

22 Machinery 

23 Man 

24 Materials 

17 

8 

13 

8 

13 

13 

14 

11 

15 

10 
7 
i 

u 
14 

11 

8 

7 

21 

8 

10 

13 

10 

24 

20 

24 

30 

12 

27 

12 

29 

22 

35 

19 

23 

25 

12 

21 

16 

14 

15 

11 

36 

12 

11 

15 

21 

29 

29 

38 

25 Mathematics 

26 Measurement 

27 Missiles and Rockets 

28 Mystery,   Myths and 
Problems 

29 Nature 

30 Navigation 

31 Paleontology 

32 Physical Quantities 

33 Physics 

34 Plants 

35 Political or government 
groups or functions 

36 Power 

37 Predictions 

38 Psychology 

39 Research 

40 Satellites 

41 Social Sciences 

42 Space Travel 

43 Teaching - Education 

44 Time 

45 Tools 

46 Transportation 

47 Weather 

9 

7 

5 

16 

20 

11 

27 

9 

10 

9 

28 

30 

28 

43 

13 21 

5 6 

6 9 

7 8 

10 17 

8 17 

7 7 

5 17 

7 12 

6 9 

16 27 

9 21 

USE OF INDEX TERMS 
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WEIGHT 

8/8 

7/8 

DESCRIPTION 

Major Subject 

Major Subject 

WHEN USED 

The term is highly specific 
and covers an entire major 
subject of the document. 

The term is  specific and cov- 
ers most of a major subject 
of the document. 

6/8 

5/8 

More Generic Subject 

Other Important 
Terms 

The term is too broad and 
covers a major subject. 

Terms that would be used in 
a binary indexing but not a 
major subject. 

4/8 Less Generic Subject The term relates to but is too 
narrow to cover a major 
subject. 

3/8 Minor Subject Includes such terms as relate 
to results of experiments, in- 
termediate methods, possible 
uses,  etc. 

2/8 

1/8 

Other Subjects 

Barely relevant 

Other relevant tags. 

Subjects classifier would not 
want to use but feels that some 
users might consider them 
relevant. 

TABLE 4 

A GUIDE FOR THE ASSIGNMENT OF WEIGHTS 
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WEIGHTS 

8/8 7/8 6/8 5/8 4/8 3/8 2/8 1/8 Totals 

1. Aerodynamics and Aviation 1 5 3 1 2 3 2 0 17 
2. Agriculture 1 2 2 0 2 1 0 0 8 
3. Animals 1 3 6 1 3 1 1 1 13 
4. Archaeology 1 2 4 0 0 0 0 1 8 
5. Astronomy 3 4 4 1 1 0 0 12 
6. Atmosphere 0 1 2 4 1 2 4 0 14 
7. Atomic Physics 3 3 3 0 2 2 1 0 14 
8. Biology 0 3 5 0 3 0 0 0 11 
9. Chemistry 3 1 4 1 2 2 2 0 15 

10. Communications 3 2 2 1 0 1 0 1 10 
11. Computers 2 1 2 1 0 1 0 0 7 
12. Defense and Warfare 3 1 1 0 1 2 0 3 11 
13. Electronics 0 1 2 1 3 4 3 0 14 
14. Engineering 0 2 4 1 1 1 0 2 11 
15. Engines 2 3 0 0 2 0 1 0 8 
16. Food 0 1 3 1 1 1 0 0 7 
17. Geography 0 1 0 4 2 5 4 5 21 
18. Geology 1 2 1 0 0 2 0 0 8 
19. Geophysics 0 2 1 0 2 0 1 4 10 
20. Health and Safety 0 2 3 1 4 1 0 2 13 
21. -   History 3 0 4 1 i 1 0 0 10 
22. Machinery 1 0 6 1 3 6 4 3 24 
23. Man 0 2 4 3 0 3 5 3 20 
24. Materials 3 5 3 2 3 5 2 1 24 
25. Mathematics 0 0 3 2 0 2 0 0 7 
26. Measurement 0 1 1 0 1 2 2 1 8 
27. Missiles and Rockets 2 1 1 2 0 2 1 0 9 
28. Mystery,   Myths and Problems 0 0 1 2 1 2 1 0 7 
29. Nature 0 1 4 1 2 0 1 0 9 
30. Navigation 2 1 0 0 0 2 1 1 7 
31. Paleontology 3 1 0 0 1 0 0 0 5 
32. Physical Quantities 0 1 2 1 0 4 7 1 16 
33. Physics 0 0 4 0 1 6 5 3 19 
34. Plants 6 4 0 0 0 1 0 0 11 
35. Political or Government etc. 1 2 2 3 2 4 4 9 27 
36. Power 2 2 1 4 3 0 1 0 13 
37. Predictions 1 0 1 2 0 0 1 0 5 
38. Psychology 3 0 2 1 0 0 0 0 6 
39. Research 1 0 2 2 0 0 2 0 7 
40. Satellites 3 4 3 0 0 0 0 0 10 
41. Social Sciences 2 2 3 1 0 0 0 0 8 
42. Space  Travel 2 0 1 0 0 2 2 0 7 
43. Teaching  - Education 2 1 1 1 0 0 0 0 5 
44. Time 0 1 0 0 0 1 4 1 7 
45. Tools 0 1 0 1 1 1 2 0 6 
46. Transportation 1 2 2 2 3 2 2 2 16 
47. Weather 6 1 0 1 1 0 0 0 9 

Totals 65       73      103 51 55       76 66 
TABLE 5 

DISTRIBUTION OF WEIGHTS FOR EACH INDEX TERM 

46 535 
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Given the 47  index terms we computed all the  conditional probabilities; 

i. e. ,   the probabilities that given a document tagged with I.,    it will be 

tagged also with I, .     This conditional probability matrix is  shown in the 

Table p.   67.     The Table p.   68 lists for each of the index terms the term 

for which it has the highest forward conditional probability;  i. e. ,   for 

each I. it shows that I,   which makes P(I.,I, ) a maximum.     In order to J k ' J    k' 
show more graphically the connections between these terms we have in- 

cluded the  "map" in Diagram 5.     The Table p.   70 shows the most highly 

correlated inverse conditional probabilities;  i, e. ,   for each I.  it shows 
J 

that I,   which makes P{I, ,1.) a maximum.     The Table p.   7 1  is the matrix 
K ^      J 

which shows the coefficients of association that each index term has for 

every other term and in the Table p.   72 the most highly correlated terms 

(in the sense of coefficient of association) are shown for each of the 47 

index terms. 

1, 5     The Testing Procedure 

Our procedure for empirically testing the notions of Probabilistic Index- 

ing was  rather straightforward and unsophisticated and can be described 

as follows:    At random we selected  34 documents from the experimental 

library and from these "selected" documents,   we formulated 40 different 

questions.     These questions were not so narrow that they demanded some 

specific piece of data for the proper answer,   but,   rather,   they were 

more general and of the type;  "Find information on the use of atmospheric 

energy for satellite propulsion",   rather than,   "Find the specific gravity 

of beryllium". 

We then chose five intelligent cooperative technical members  of the Com- 

pany and asked them to act as   test subjects.     Each was given a list of eight 

questions and a list of the library index terms.     They   were briefed as to 

the nature of the library and they were asked to formulate a library re- 

quest for information on each of the eight questions.     We requested that 

they attempt to have the "correct" document retrieved and as little else 
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32       27 

DIAGRAM 5.       A MAP OF INDEX SPACE 
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as was reasonable.     They were told the meaning of the logical connec- 

tions (conjunction and disjunction) and they were allowed to use these 

connectives as desired.    Having formulated a library request for each 

of the eight questions they were asked to repeat the process,   the second 

time weighting (as desired) the index tags used in the requests.    We took 

their library requests searched, computed, ranked the retrieved documents 

and evaluated the results with the aid of the individual who originally 

made the requests.    The results are described in the following sections. 
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2.      THE MEASURE OF RELEVANCE 

2. 1     Initial Remarks 

In this section we describe our attempts to evaluate empirically the 

goodness of our function which gives a relevance number.     That is to 

say,   in Part II,   1,   we explicated the notion of probable relevance via 

Bayes1 Theorem and in the present section we shall describe and inter- 

pret the results of a test to evaluate empirically the goodness of our 

relevance function.    Thus,   again,   the problem which we  shall now con- 

sider is:    "How well does our function perform in ranking documents 

according to relevance" ?   Only in section 3 shall we examine the other 

major question; viz. ,     "How good is the  selection process"? 

2. 2     Some Clarification 

Let us briefly review the notion of relevance.     Exactly ■what is it we wish 

to measure?    First,   we must be careful to distinguish a user's informa- 

tion need N from his request formulation R.     In our experiments we can 

think of N as the particular information item desired,   R as the formulation 

of this item in the request language.     Thus,   in the  example question given 

in Table  12,   p83,   we have 

N:    Turbojet engines for commercial air travel, 

R:    Transportation and (Aerodynamic s-Aviation or Engines). 

In a real library system N will never be known,   only its description R 

in a rather artifical language.     The library indexing system only relates 

documents to this request language.     But we want to relate documents to 

information need.     We see then that a bridge between request language 

and information need is through statistical data relating library users 

with the utility they derive from documents.     Such statistical data is 

given by the a^ priori probability distribution.     This is shown by the theo- 

retical development which states that the probability of a document sat- 

isfying the request,   i. e. ,   the probability of a document giving the desired 

information item N,   is proportional to the product of the a priori prob- 

ability   (P(A, D.)) and the value (w.(R)) of the extended weight function for 

the request describing that need.    In a sense then this quantity is a measure 
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of the degree of relevance of a document for the information need of the 

requestor,     "We say "in a sense" because of its unavoidable probabilistic 

nature.     It is a probabilistic estimate of the  relevance of a document for 

the information need of the requestor.     With this qualification in mind we 

call this quantity "relevance to information need" or "probable relevance". 

We have: 

(relevance to information need)^X^P(A, D.)-w. (R) (1) 

2. 3     An Experimental Result 

If we examine again Table   1 (p. 21) which gives the various interpreta- 

tions  of the request language we see that it might be fruitful to look for 

a quantitative measure of relevance with respect to the logical meaning 

of the request; i. e. ,   a measure of "relevance to request" as opposed to 

"relevance to information need".     We conjecture that our computational 

procedure for computing the values of the extended weight function is 

such a measure.     We will present the supporting data in subsequent sec- 

tions,   but in anticipation of this we state the result;    Bayes1 Theorem 

plus experimental data implies: 

(relevance to information need)''V^P(As D. )• (relevance to        (2) 
request formulation). 

2. 4     The Result Predicted by Bayes1  Theorem 

The content of Bayes' Theorem (formula (1))  can be illustrated by the fol- 

lowing hypothetical experiment:    Consider a document in the experimental 

library.     It consists of many information items.    Select one of these. 

Let a library user formulate this item in the library request language. 

Let the library system now operate on the request,   producing a collec- 

tion of documents.     (If the library indexing system is adequate and the 

formulation of the request is accurate,   the original document from which 

the information item was derived should appear in this retrieved collec- 

tion. )    We now ask the library user to prepare a list: 
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Li,:    the  retrieved documents ranked according to relevance to the 

information item. 

We ask another person to prepare a second list: 

Li?:    the  retrieved documents  ranked according to relevance to the 

request formulation. 

To facilitate the processing of this comparative data we ask that the docu- 

ments be classified into five categories:    I,   Very Relevant; II,   Relevant; 

III,   Somewhat  Relevant;     IV,   Only Slightly Relevant;  V,   Irrelevant. 

Suppose now we simulate an a priori probability distribution,   and repeat 

the above experiment many times,   each time  selecting a document by 

using the simulated distribution.     For each   request we obtain lists L, 

and L-, and a third list L-: 

ij-,:    the retrieved documents  ranked according to the magnitude 

P(A, D.^.CR). 

Bayes1 Theorem now tells us what we may expect to find; namely,   that 

the list L„ will agree with list L,   in the long run.     More precisely,   for 

each request R there are many information items (or needs) that would 

be formulated by R,   one for each requestor who uses R.     If,   for each 

list L,  that originated with these  requestors,   we computed the mean 

relevance evaluation for each document in L,  by using the category num- 

bers I,   II,   III,   IV,   V,   then the  resulting ranking should agree with list 

2. 5      The Experimental Design 

The result predicted above is difficult to test empirically because it would 

require such a large sample,   but,   an experiment designed on a much 

smaller scale can give us some valuable information.    Such an experi- 

ment is the one described in section 1. 5 and the following sections.    Since 
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it is designed primarily to test both the basic  selection process and the 

search strategy by elaborating the request,   as well as the computational 

schema for a).(R),   a flat a priori probability distribution is assumed,   i. e. , 

all P(A,D.) are taken to be equal.     The significance of this for the prob- 

able relevance concept is clear by looking at formula (1): 

(relevance to information need)^v^<J-(R) ■ (3) 

The interpretation of this by the phase  "in the long run" still holds how- 

ever.     That is,   we would not expect a single list of type L    to compare 

with its corresponding list of type L., (this last being the  ranking of docu- 

ments by the values GO.(R)  in the case of equal PfA.D.)),     This can be  seen 

by noting that as the information need becomes more specific the evalua- 

tions  in a list of type L.  would tend to split into the two classifications  of 

Very Relevant or Irrelevant,   but the ranking by the values of w.(R) al- 

ways varies gradually.     On the other hand a list of type L., might con- 

ceivably be expected to agree with the list L^ in a single case.     This  is 

the  content of the experimental result stated in 2. 3.     To bear this out we 

selected eight of the 40 request« and obtained for each of these requests 

a list of type L-,.     In addition v,     had control lists  of types L     and I_,? 

prepared for these same requests  (i.e. ,   each evaluation done twice by 

different persons).     The lists  of type L-, had,   as expected,   a more even 

distribution of documents throughout the five categories I (Very Relevant) 

to V (Irrelevant), 

The processing of this evaluation data was accomplished on the following 

lines:    We saw what comparative data was reflected in the scale of values 

OJ.(R) and compared this with the evaluations of the L    lists.     The details 

of the experimental data and its analysis are presented in the following 

sections (2.6-2.8). 

2. 6      The Hypotheses to be Tested 

We can formulate our goal as that of attempting to confirm that the value 

w.  (R) that we compute for each document selected by a given request is. 
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in fact,   a measure of relevance with respect to the request formulation. 

If our basic notion is correct it implies  the following hypothesis which 

we call H ,. 

H,:    if a document is relevant to a request,   then a high number 

(jü.(R) will be derived for it. 

How to verify,   confirm,   test this hypothesis empirically?    We did the 

following:    A number of documents from our experimental library were 

selected at random and,   for each document,   a question was formulated 

which could be answered by readirg the  corresponding document.     Sev- 

eral persons who acted as test subjects were briefed as to the nature of 

the library,   the  indexing system,   etc. ,   given a set of questions and asked 

to formulate a library request for information on the basis of which, 

hopefully,   relevant documents would be  retrieved (so as to answer the 

question).     Given the library requests that these test subjects formulated 

we proceeded to search and select the accession numbers of those docu- 

ments  satisfying the logic of the request.     For each request a list of 

documents (i. e. ,   a list of the corresponding accession numbers) was 

generated and the documents  in the lists were ranked according to the 

number a>.(R) that: was computed for each.     We then examined each list 

to determine whether or not the so-called "answer" document was on 

the list and if it was,   we recorded its relative position on the list.     We 

made the (natural) assumption that the answer document (i. e. ,   the docu- 

ment on the basis of which the   question was formulated) would be  rele- 

vant to the request.     We then determined the number of times that the 

correct answer document was retrieved associated with a high number 

ti).(R).     The results can be summarized as follows;    Forty library requests 

were made and in 27 cases the answer document was retrieved.     The 

number of documents on the output lists  ranged from a minimum of  1 

(in four cases) to a maximum of 4 1.     In the majority of the  23 cases which 

contained more than a single document.,   the answer document appeared 

towards the top of the list. 
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The results showed that if the answer document was on a list,   then it 

was computed to have a high number co. (R) in most of the cases      This  evidence 

thus supports the hypothesis H,,   which asserts that if a document is 

relevant a high value co.{R) will be computed for it.     However,   it was not 

always the case that the answer document was computed to have the high- 

est number;  i. e. ,   there were documents other than the answer document 

for which a high number was derived.     Thus,   the question arises:     "If 

a document has a high number <JO.(R),   is it relevant to the request"?    This 

represents the converse of the original hypothesis H   .     We shall form 

this as an hypothesis and call it H?. 

H?:     if a document has a high number a!.(R),   then it is relevant to 

the corresponding request. 

If we can confirm H, as well as H,   we will have,   in fact,   confirmed an 

hypothesis H     which is stronger than each. 

H        the methods  of Probabilistic Indexing will derive a high number 

co.(R) for an arbitrary docurrrent if and only if the document in 

question is  relevant to the  request. 

In order to determine if there were relevant documents,   other than the 

answer document on a list we had to have evaluation data of the type de- 

scribed in 2. 5.     We obtained a sample of this  information from the test 

subjects in the following way:    Four of the five test subjects were given 

the actual documents corresponding to the retrieval lists and they were 

asked to read each document and decide whether they considered it to be 

Very Relevant,   Relevant,   Somewhat Relevant,   Only Slightly Relevant, 

Irrelevant.     Thus for each document retrieved they would judge to which 

of these five categories it belonged and we,   in turn,   compared their judg- 

ments with the numbers co. (R) which we had computed for each document. 

A fifth person prepared control lists,   i. e, ,   evaluations for the same 

requests. 
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In order to facilitate the comparison we standardized the values w.(R); 

i. e. ,  we multiplied each value by the reciprocal of the highest value to 

force the numbers on each list to vary from  1 to 0  - 0 being the value 

assigned to unretrieved documents.    We also divided the numbers into 

three categories:    high (value equal to or greater than 0. 75),   medium 

(value between 0. 75 and 0. 25) and low (value equal to or less than 0. 25). 

The results show quite definitely that if a document has a high number 

co.(R) that document was judged by the evaluator as Very Relevant or 

Relevant,   in most cases.     Conversely,   if the number w.(R) was low the 

evaluators rated the corresponding document as either Only Slightly 

Relevant or Irrelevant in most cases. 

Thus the data supports the following:    "If a document is relevant to a re- 

quest,   then there is a strong probability that the document will have a 

a high number a).(R) computed for it. "   Furthermore,   the data supports 

the converse:    viz. ,   "If a document is computed to have a high number 

co.(R),   there is a strong probability that it is relevant to the request". 

Thus the data supports both H,  and H^ and taken jointly we see that the 

data does  support and confirm the stronger hypothesis H    ,   viz. ,   a high 

number OJ.(R) will be derived if and only if the document in question is 

relevant to the  request.     The details of the analysis are presented in the 

following section. -    - 

2. 7     Analysis of the Data 

The eight lists involved in the evaluation with respect to request relevance 

had a sum total of 69 documents.     First we examine how the values 

CJ.(R) associated with these documents were distributed among the five 

categories.    Computing the average value and the variance in each of 

the five categories,   we obtained the following results. 
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DOCUMENT RATING MEAN 

I.          Very Relevant 0. 81 

II.         Relevant 0.72 

III.       Somewhat Relevant 0. 54 

IV.       Only Slightly Relevant 0.40 

V.         Irrelevant 0. 18 

VARIANCE 

0. 043 

0.053 

0.043 

0. 110 

0. 013 

Thus we see that the values  of the numbers that we computed decrease, 

on the average,   as we go from Category I (Very Relevant) to Category V 

(Irrelevant). 

« 
Although this result tends to confirm our hypotheses H, ,   H;,,   H    we pre- 

fer to look deeper into the situation.     Let us  denote the class of all docu- 

ments with numbers to.(R) greater or equal to 0. 75 by "High"; those with 

numbers less than or equal to 0. 25 by "Low".    Let us also call categories 

I or II simply "Relevant" and category V,   as before,   "Irrelevant".     Note 

that Relevant and Irrelevant are not negations of each other since we 

have the intermediate  categories III and IV consisting of documents neither 

totally Relevant nor Irrelevant.     Now the hypotheses H,,   H,,   H     say 

two things: 

(1) Relevant is equivalent to High, 

(2) Irrelevant i« equivalent to Low, 

and imply two weaker  statements: 

(3) Relevant implies not-Low, 

(4) Irrelevant implies not-High. 

The statistical confirmation of these statements can be accomplished by 

using the theory of the coefficient of association between predicates as 

outlined in section 2.6.     That is to say,   each of the statements above 

calls for a study of a matrix of the kind defined on p.   42;  i. e. ,   a sorting 

of the 69 documents according to the properties: 
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(1) Relevant and High, 

(2) Irrelevant and Low, 

(3) Relevant and Low, 

(4) Irrelevant and High. 

We would expect to find the Q-values  in (1) and  (2) to be near +1 (maxi- 

mum positive association),   the Q-values  in (3) and (4) near  -1  (maximum 

negative association).     These values are in fact: 

Q (Relevant, High) =+0.70, 

Q (Irrelevant, Low) =+0.90, 

Q (Relevant, Low) = -0. 92, 

Q (Irrelevant,   High)=-1.00. 

Since these values are fairly sensitive we introduce a control on the 

study by assuming that these predicates are statistically independent, 

then computing the probabilities of the Q-values having been as close 

or closer to the anticipated values by chance.     For the four distributions 

we calculate these control probabilities to be 0. 041,   0.006,   0.010,   0.059, 

respectively. 

2. 8     A Note on other Data 

We have still to consider the weighted request.     Recall that we have two 

types of inputs to consider; viz. ,   the conventional request (an affirma- 

tive Boolean function of the  index terms) and the weighted request.     These 

lead to two different output lists.    On page 83 we  include a typical data 

tabulation sheet for one of the questions that we used in our experiments. 

The conventional request in this case was  expressed formally by the 

expression 

That is to say,   if Relevant and High are  independent then the probability 
of their Q-value having the property 0. 70<C Q -SC   1. 00 is  0. 041.    Simi- 
larly for the other classifications. 
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and the computation by Bayes'  schema resulted in the listing shown in 

column P.     The corresponding weighted request was expressed formally 

as 

(0.8)I46. [10.3)1^(0.9)1^]] 

and the results are shown in column W.    For completeness we did cal- 

culations using a simulated non-linear a priori probability distribution. 

The resulting relevance numbers are shown in the two columns labelled 

P' and W.     The answer document for this particular question was docu- 

ment 92 and,   quite by chance,   it appears in the second position on each 

of these four lists. 

The results for the case of the weighted request (flat a priori probability 

distribution assumed) do confirm the basic thesis which asserts that the 

number ".(R) is,   in fact,  a measure of relevance with respect to request; 

however,   the data are not as confirmatory as for the case when the re- 

quest is an affirmative Boolean function.     The reason for this is that 

the evaluations of document relevance were oriented toward the unweighted 

request.       However a consideration of the variation of the mean value of 

co.(R) is still of interest.    Analogous to the table on p.   81 we have: 

VARIANCE DOCUMENT RATING MEAN 

I. Very Relevant 0. 87 

II. Relevant 0. 53 

III. Somewhat Relevant 0. 39 

IV. Only Slightly Relevant 0. 45 

V. Irrelevant 0. 33 

0. 031 

0. 095 

0. 076 

0. 123 

0. 073 

For example:    An evaluation of document relevance with respect to the 
request "Psychology or Teaching" would give quite different results than 
when evaluated with respect to the request "(.7) Psychology or (. 3) Teaching". 
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3.      ELABORATION OF THE SELECTION PROCESS 

3. 1      Initial Remarks 

The basic aim behind Probabilistic Indexing has been the obvious one; viz. , 

to improve retrieval effectiveness.     The fundamental notion has been to 

introduce arithmetic (as opposed to logic alone)    into the problem of in- 

dexing and thereby pave the way for  the use of mathematical operations 

so as to compute probable relevance.     Thus the fundamental notion which 

acts as a wedge to drive an opening into the basic problem of retrieval 

effectiveness  is that of the relevance number (as  explicated in terms of 

the theorem of Bayes).     The  relevance number,   as we have seen,   provides 

a means of ranking documents according to their probable  relevance. 

However,   the solution to the problem of retrieval effectiveness involves 

more than ranking by relevance --it involves the proper selection of those 

documents which are to be ranked.     Before we describe the  results  of the 

experiments that were conducted to test our methods for improving the 

selection process,   let us take  one more look at the  relevance number as 

a filter to eliminate low relevance documents.     In particular.,   let us  con- 

sider the usefulness  of the relevance number on unelaborated requests. 

In our experiments,   40 different library requests were made and a total 

of 379 documents were retrieved (usirg the basic process  of selecting 

those documents whose tags are logically compatible with the logic and 

tags of the request).     Let us compare the results of probabilistic: search- 

ing and so-called "binary" or conventional searching.     We can do this by 

assuming that all the tags which are assigned to documents with a non- 

zero weight are,   in fact,   assigned to the corresponding documents  in the 

conventional system.     Thus   when the basic selection process is the  same 

(viz. ,   the unelaborated logical matching process),   the same documents 

will be retrieved in both cases; however;   in the conventional system the 

retrieved documents are not ranked by any criteria of relevance.     For 

each of the retrieval lists if n documents have been retrieved and the an- 

swer document is present^   then using the conventional search technique 

the requestor must read,   on the average   —=— documents.     If the answer 

SS 



document is not present,   then all of the retrieved documents must be read 

(in order to determine that no relevant information was retrieved).     These 

considerations (inadequate though they be,   since they presuppose that 

only an answer document produces a satisfactory search result) give us 

a criterion with which to compare the probabilistic and binary searches. 

This criterion is the total number of documents that would have to be read 

for all 40 searches in order to find the answer documents.     The results 

are as follows: 

Total Number of Total Number of Documents 
Type of Search Documents Retrieved that would have to be Read 

Binary 379 235 

Probabilistic1 379 181 

Thus we see that a conventional system would require the user to read 

approximately 30 percent more retrieved documents to obtain the same 

number of answer documents.   These two different searches , each using 

the basic selection process,   produced 27 answer documents out of a pos- 

sible 40,    (Note that the binary search as defined above is more extensive 

than might be expected in the sense that we have used all the tags with 

non-zero weights as binary tags.     In an actual  conventional  system those 

tags with a low weight would probably not be coordinated with documents. 

That is to say,   the use of weighted tags encourages more tags to be ap- 

plied to a. given document than would be the case if weights were not al- 

lowed.     Ina previous  study where documents were indexed independently 

by two different indexers,   one using probabilistic  indexing,   the other us- 

ing binary indexing (i. e. ,   either a tag holds for a document or it does not), 

it was found that 70 percent more answer documents were retrieved in 

the probabilistic search and only  32 percent more documents had to be 

read. ) 

A flat a priori probability distribution was used. 
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The above comparison presupposes that the user is looking for some 

specific information (viz. ,   the answer document) and that he knows when 

he has found it.     It might be more realistic to make no such assumption; 

therefore,   let us consider the following comparison.     Given a request for 

information a probabilistic search is made but,   beforehand,   we tell the 

user to read only those documents which have a computed relevance num- 

ber greater than 0. 5.     That is to say,   "before the facts" we give the re- 

questors a guide to use in reading the 40 lists presented to them.     It turns 

out that of the  379 documents  in the 40 lists there are only 225 which have 

a relevance number greater than 0. 5.     Furthermore,   it turns out that if 

the users had adopted the strategy of reading only those retrieved docu- 

ments which have relevance numbers greater than 0. 5,   then they would 

have found 25 of the 27 answer documents.       Now compare this with the 

case of conventional  retrieval where the useis would have to read all of 

the  379 retrieved documents (since there is no way to distinguish between 

any two documents  in the same list).     In this latter case the users,   of 

course,   would find all  27 answer documents,   but again at the "cost" of 

reading all 379 documents.     Thus we see that a conventional  system would 

require that users  read 68. 5 percent more documents than for the prob- 

abilistic  system and they would gain only 7.4 percent in increased num- 

ber of answer documents. 

These considerations  indicate that the relevance number can be used to 

filter out irrelevant material.     That is to say,   if we use the  relevance 

number associated with documents to separate the relevant from the ir- 

relevant,   we are providing the user with a valuable tool. 

3.2     The Automatic Elaboration 

We have described two methods  for automatically elaborating upon the 

selection process which is involved in information searching.     One method 

In one of the two remaining cases the relevance number of the answer 
document was just, under 0. 5 and in the other case the answer document 
had a  rather low number but  it was third in a list of only three. 
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establishes a measure of closeness in document space and the other 

method involves measures of closeness in request space.     We shall not 

consider the former since,   as yet no experimental tests have been com- 

pleted which would enable us to evaluate the notions of distance as de- 

scribed in Part II,   2. 7.     We measure closeness in request space by de- 

termining certain statistical relationships between the index terms of a 

request and other terms.     Specifically,   we have described three different 

statistical relationships,   viz. ,,   forward conditional probabilities,   inverse 

conditional probabilities,   and coefficients  of association.     We now raise 

the questions:     "How good are the proposed statistical measures of 

closeness  in elaborating upon a request?"    and "Which of the three 

measures that have been discussed is the best?"   Again,   in the case of 

the automatically elaborated request we generate the new request R' 

given the initial  request R by formulating the following type of disjunc- 

tion for each tag in R: 

if R  = I.,   then R'   = I. v(a)l.' 
J J J 

where a is the measure of closeness between I. and I.1 and I.' is the term 
J J J 

that gives maximum a with respect to I..     We would like to be able to   es- 
J 

tablish the following: 

1. That the elaborated request catches relevant documents which 

are not selected by the original (unelaborated) request. 

2. That,   although the elaborated request catches more documents, 

the relevance number  can be used as a guide for eliminating 

the ones with low probable relevance, 

3. 3     Some Testing (Evaluation) Problems 

Since we are really interested in the over-all retrieval effectiveness of 

the  selection process,   we would like to know how many of the relevant 

documents in the   entire library have been caught by the elaborated re- 

quests.     In order to determine this it would be necessary for us to pre- 

sent to the requestor the entire library so that he,   in turn,   could judge 
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•which relevant documents,   if any,   were not retrieved.     That is to say, 

in order that a user properly judge whether or not he did,   in fact,   re- 

ceive all relevant documents   as   the   result of a search,   he would have 

to be familiar -with the entire  contents of the library.     Because of this 

difficulty,   we see that such an evaluation would be impractical to con- 

duct.     We must,   therefore,   lower our sights and look for a substitute 

type of evaluation.     The  substitute that we have adopted consists in,   a- 

gain,   using the answer documents as a measure of retrieval effective- 

ness.     That is to say,   since we know that the answer documents are 

relevant,   we can automcttically elaborate upon those original requests 

which did not catch the answer document in order to see whether the 

elaborated request succeeds in retrieving it.     Such a test would allow 

us to establish some measure of the  retrieval effectiveness of the auto- 

matic elaboration procedures.     We can compare the total number of 

documents for the elaborated requests     with what would be the case for 

the unelaborated request.     This we have done and the  results are dis- 

cussed in the following section. 

3. 4     Some Results 

Of the 40  requests that were made the answer document was retrieved 

in 27 cases and it was not retrieved in  13 cases.     We conducted three 

different types of elaborated requests for each of the 40 cases.     The 

results are as follows: 

1. Using the method of request elaboration via forward conditional 

probabilities between index tags,   we retrieved the correct an- 

swer document in 32 cases out of the 40. 

2. Elaborating the requests via the  inverse conditional probability 

heuristic we  retrieved the correct document in 33 of the 40 

cases. 

3. Using the coefficient of association to obtain the elaborated re- 

quest we obtained success in 33 cases of the 40. 
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Thus we  see that the automatic  elaboration of a request does,   in fact, 

catch relevant documents that were not retrieved by the original request. 

We now raise the question:     "Because of the small  size of the library 

and the large percent of the total library that is selected by the elaborated 

request,   are the above results  statistically significant?"    That is to say, 

what is the probability of doing as well or better just by selecting at 

random,   for each of the  13 requests for which the answer document was 

not originally retrieved,   a sample of size equal to that given by the 

elaborated requests.     We have made the corresponding calculations and 

it turns out that probability of doing as well or better by chance is less 

than 0. 034 for both the forward and inverse conditional probability elab- 

orations and less than 0.001 for the coefficient of association search. 

Thus the above  results are indeed statistically significant. 

Could the number of answer documents have been improved;  i.e. ,   could 

40 out of 40 answer documents have been retrieved.     We looked at the 

seven cases for which the answer document was not retrieved when 

elaborating via the coefficient of association and in three cases the in- 

dexing was at fault.     That is to say in three of the seven cases the an- 

swer document was poorly indexed (a fact of life that must be faced by 

all libraries).     In one case the  request formuiatior was very poor and 

no reasonable elaboration would help.     In one case the answer document 

was caught by a different heuristic (viz. ,   the forward conditional) and 

in the remaining two cases,   again,   the requests suffered by being poorly 

formulated. 

Now consider the fact that, although the automatic elaboration of a re- 

quest does  catch relevant documents that would not otherwise have been 

selected,   it also increases the total number of retrieved documents. 

(We point out at this time that of the three heuristics which we considered, 

the one which elaborated via the coefficient of association gave the greatest 

ratio of answer documents to total documents retrieved. )   In order to 

have the advantages of an elaborated request (namely,   the relevant 
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documents that it obtains) and in order to avoid the disadvantages 

(namely,   the larger number of total documents) we now introduce the 

relevance number to truncate the output lists.     That is to say,  we use 

the relevance numbers to separate out the highly relevant from the less 

relevant documents,   by adopting the following rule:    Only those docu- 

ments which are selected by the elaborated request and which have a 

standardized relevance number greater than 0. 5 are to be retrieved. 

Our experiments with the coefficient of association heuristic show that 

of a total of 661 documents that were selected by the elaborated requests 

only 446 (or 67. 5 percent) have a standardized relevance number greater 

than 0. 5.       Furthermore,   if we adopt this rule,   then 32 out of the 33 

(or 97 percent of the) answer documents which are selected by the auto- 

matic  elaboration would still be retrieved;  i. e. ,   32 of the 33 answer 

documents had relevance numbers greater than 0. 5. 

We conclude by observing that,   to a very large degree,   the procedures 

for automatically elaborating upon a request are empirical; i. e. ,   their 

development and refinement must rest on further empirical testing and 

experimentation.     Hopefully the results of further tests will shed light 

on and provide new insights into the difficult and exciting problems of 

information identification,   search and retrieval. 

For these computations we used a flat a priori probability distribution. 
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