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FOREWORD

This report was pr--pared by Julius S. Bendat, Lcoren D.
Enochson, G. Harold Kiein and Allan G. Pierso! of Ramo-
Wooldridge, a division o. Thompsor Ramo Weoldridge Inc.,
Canoga Park. California. It contains rcsuits obtained from
fuly 1960 tc June 1961 on s.- Force Contract No. AF33(610)-7434,
*The Application of Statistics to the Flight Vehicle Vibration Problem. *
The work was accomplisi.cd under Project No. 1370, *Dynamic
Troblems in Flight Vekicles,” Task No. 14004, '"Methods of
vibration Prediction, Control and Measurcment, " This rzport
was administered under O. R. Rogers, Chief, 3 eaicie-Kinetics
Secticn, Dynamics Branchk, Flight Dynamics Laboratory, Aero-
nra :ical Systems Division, with Robert F. Wilkas initially in
charge of the project. He was succeeded by Otto F. Maurer,

Professor William T. Thomson, Engineering Department
University of California at Los Angeles, participaied in physical
studies for the investigaiion and consulted on other phases of the
work.
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ABSTRACT

Thic repori presents a oritical analysis of the application of
statistics to flight vchicle vibration prodiems. The general problem
is discusscd irom many aspects, and rezulis xre zsplicable to masy
sther physical srexc besides vibration. Detailed analytical engi-
neering procedures are progosed for determining statistical proper-
ticy of a single vibratior record, and icr establishing the over-all
vibration environmernt fron: 2 colicction of vibration records. Jet
aircraft and several categories of missiles are broken down intn
definite operating ph:ascs as regards their vibration envirinment.
Simple statistical techniques are devéloped for reducing the amount
of data that n=eds to =e gathered for later processing.  This tech-
t-.qiue can provids= : ‘ow probability of missing ar unexpected event,
znd 3 high probability of covering the range of expected events.
Straight-forward statistical tests are developed for testing funda-
mental assemptions of randomness, stationarity, and normality,
Mathematical and ghysical distinctions are explained between
different iniormation obtzined by meas-:ring numerous imporiant
statistical parameters, such as an instantireous amplitude proba-~
Sility oensity function, or a mean sguare acceleration power
spectral density function, or an autocorreiztion function. An
engineering discussion iz given of related instramentation equipment
available today in many aboratorics, with emphasis on their statis-
tical accuracy in mexsuring desired information.  An experimental
laboratory and flight test program is outlined for verifying these
measurement accuracies and other theoretica: statistica! results
contained in the report, such as material on repeated ... 2riments
ané randem sampling techniques. [Important physical applications

e explored indicating how statistical informaticn can be helpful
in predicting the respense of coniinuous structures to random
«xcitation, and for evaluating loading effects on a structure. The
report conciudes with recommendations for future work.

PUBLICATION REVIEW
This repor: has been reviewed and is approved.
FOR THE COMMANDER

Helars . Wl

WILLIAM C. NIELSEN
Colonel, USAF
Chiei, Flight Dynamics Laboratory

£SD TR 61-123 H




1. introduction. . . . . . . - e e e e e e e e e e e e, t-
1.1 ChijecZvesofContract . . . . . . . - . - . .- .. .- t-1
$.2 Mstorr of Comtract . - - - - - - . - e e e e e e .. -2
.3 Personnelof Comtract . . - - . . . 0 - v - - s o - o . i-3
2. Sammaryof MainResults . . . . . . .. .. e r e e e 2-1
2.1 Mathematizal Analysis and Siatistical
Procedures . . - v - - « - - = = 2 = & s e e e 2-1
2.2 Theoretical Investigations . . . . . . . e e e 2-2
3 JestrumentatioaStudy - - - - - - - - - 0. a e - .. 2-2
.4 Esperimental Program - - . - - - - o - v s s e - - .. 2-3
2.5 Paysical Resallz . . . . . - - - . .- .. e r e 2-3
2.6 Sections of Report - . . . . . . .. ¢ e ooeo 2-4
3. Physical Discussion of Flight Vekicie
Vibration Froblems - . . . - . . . . - . e e e e e e e 3-1
3.2 Jotroduction - . . . . - . . . - - . e e 33
3.2 Flight Vehicles and their Operatiag
Characteristics . . - - . - . - - - . « = . « e .- 32
3.2.1 Vibrazicn Sources . . . . - . . . . 3.2
5.2.2 End Uscof Vibration Deta . . . . . .. .. .. 36
3.3 Respcase of Linear Structures o Periodic
and Random Excitation . . . . . . e e e e s e e 3.7
5.5.1 EKcsponse o Singie Frequenzy
Excitation . . - . - . ¢ = - ¢t e o ¢ = o = ¢ s s = 3.7
3.3.2 Response to Multiple Frequercy
ExCitation . . - = - - ¢ ¢« 2« ¢ o e s s o = o oo - 3-1:
3. ".3 Rezporseto Random Excitation. . . . . . . . . 3-14
3.4 Empirical Resuits from Existizg Fligh
Vehicles . . . . . .. .. e e e e c e s e e - 337
3.5 References . . . . ... .. f e e e e s e e e .. 3222

ASD TR 61-123 iv




1

CONTEXTS iCostinaed}

Mathematicai Backgroand for Amaiyzieg
Vidratioe Phescniena .

$.i Fsorm. of Vibratioe Pesscme=r _ _ . _ . _ ... ...
4§ E : Simosoidal Vibralioe . . - .. .. ... ...,
4.1 2 Periadic ¥ibratzoa
4.1 3 CompmexVibralioe . _ .. ... _ .. .......
4. 1.4 Rasdo= Vikratioo _ _ . ... _._...._.....
4.2 SimgiceAnxistem Beesrds . . ... .-ttt
4.3 Prcixbility Fasdamenisls Jor RXaadom Rocoxds . _
4.3 OncRondo Vazialle . . ... _ .. _......
4.3.2 TwoRamds— Variaes . . . .. __.._. ...
4. 3. > Special Frobability Distribatises _ . _ .. _ .
HKandoe Processes . . . . . . . .. i i iicecenn-

4 4.! Cazrrelation [Corarimmne] Streciure of
Waonkio e.--:..r.a. Bz i, Ficabis .

4. 4.2 Soeciral Decompasition of Siationary
Random Procezstez. . . . .. .. ... .. ...

4.4.3 Ergsdic Statisexrr Random Processes. . . .
Staiistical Propertes of Estimates . _ . . . _ . _ ...
Measuremernt: of Mean Yalwes,. . _ .. ... ... .-

Mzasurerme=r of Agstscorreiation asd Cross-
Correiatioms Fuactioas. . . . . .. .. _...._.....

4.3 DMeasurement of Power Spectss 324 Cross-
o e L .

4.3.1! Power Spectra Meazsremeats - ... .. ...

4.8.2 Axxdysis ofBilas . . ... .. ...

P T T e I

[0
a

LR
LU U]

4.8 3 axzysis ol Variagee . . ... ... .. .....
4.8 4 MeanSquare Exvor. . .. .. ... ... .....
4+.8.5 Frequescy Rzsolwtion . - - ... ... ... ..
4.8.6 Correciion of Me2= and Lincar Tread . _ . .
4.8.7 Cross-Power Specirz Measurcments. . . ..
4.8 8 Coafidence Limite and Design Relations. . .
4.8.2 Coaszant Pcrceatage " Filters .. .. ...

ADI) IR B - v




4.9

CONTENTS (Continwed)

Further Mathematical Analysis .. ... ........
4.9 1 insta~tizeocs Amplilede Distribstion. . . . -

4.9. 2 Meassremet of Amgpiitude Prebability
easity Femctica . - . - . . - . .- .- -....

4 % > Twreshoid Crossings ind Prak Valze
Distribefion . ... ..._ .. .ccccrreenns

4.9. 4 Miascremezt of Linear System Frecueacy
Kessemse Function _ . . . .. ... _.__....

4. 9.5 Coizdence Lizkits Based on Coharence

4. % & Sutistics for Extreme Vibinatien
Amilivebes . . _ . .- ... .. ...

458 Refererces . . . _ _ - .. ...t raeaan
Stadisiicsl Texhniques for Bvaiesting Deta . . .. . . _ . _ .

The Estimatica Probiet: and Hypothesis Testing . .

£ £ ¢ B S e T L .
- e ® e S e i B CF - L R R I ]

512 Hypothesis Testing . _ . . .. . ... .......
Special Probability Nistribations for
Statistical Tests ... . .. . ... i rncncnn

5.2.2 The Chi-Sqare Distridwisns . .- .. .....
$ 23 The Stwdeat "t~ Distribmtion - ... ... ...
3.224 The Flistribmtion - . . . . - . .. - .- .....
Sampling Thenry and Apnlicaticme e e -
5.3 1 Estimates of the Meax and Variance . . ...

5.3.2 The Chi-Square Cosdness of Fit Test as
aTestfor Normality .. ...... s e e

5.3.3 Appiications of Student's 1t~ Distribution . .
$.3.4 Applications of the F Distridation . - .. ...
Statistical Resuits from Repeated Experimsats . . .
5.4.1 ArxalysisforSingle Filght . ... .......
5. 4.2 AsalysisforSeverai Flights . . . ... .. ..

5.4.3 Seiection of Sample Size and Number
of Flights . . . . . . ... .. ... cunu--

ASD IR o1-i23 n

5-6
5-6
5.8
5-9
5-11
5-11
5-12

5-15
5-23
5-33
5-33
5-3i8
5-4t

5-49




i

5 &

57
Anzlyticai Procederes for Defrrmmining Vikzliza

Exvirommest

&

o

534

]

.\ﬂ

4

»
w Py

:U\

K.

»

t ‘.m ‘M Iw

o

L4

F

W

v M

"

»

2TEgse “.x-;-'css:ﬁ ;e{&sﬂzs .............

Ww ‘mw

[ i
r

& &

Ixspeciion Setaiing

i
g
STEG
1t
v ¥
135
:

H
oii
e d o
3l g
i?
3 4
;

Compotations! Zaamrgle . . . - o oo - - - - -
Caalstr Comire® Drecofares
Conzrol Charis_ .. .

----------------

---------------

Bimoemisi PsribeTes . . . . ... -

----------

-------

Compniations Examgie. . . .- - -..-..

i
7
1
’

----------------

----------------

Pracodere for Anaiyzing bndividsal Vikraliax

W"W“.”"!’"‘F"‘P*WF“W.‘"

e
-

[ Lad
L4

]
1

(L]

----------------

Vikrstion Tramsdetdsr . - . o o v v v o - - - ..

Fihratiiee Dt Q}M!r

o M
©
"3
.
i
N
|
i
g A
i’

W W owh P w d

. i2 Teri for Nosmasitly

TestforRamdomumess . . . . ... . -.....
Tests for Stationarily . - . .« - - cvacnoo-
Azaiysis of Mcan Sqcare Mezsuremeats. _ |
A T=st for Weak Self-Statiomarity . - . . . ..
Amplitede Prodakbility Dexsily Analvsis - _ .

5-50
- 34
5-5%
-3
539
.1
3.82
5-i5
5-4%
5.75
$-78
-9
§.&7
s-%1
st
5-%3
$-107




\|ua

& 5 1t
& £ 52
& I ¥
& £ 14
& 515
= i 1%
& 187

& 118

£ 5 1%

&i 3
& 5 25

COXTEXNTS (CZsaed)

Thresiugld Crussing Analysir . _ . . .. ...
Oscilining 3ran Ansliys:s aard Othe:r
Fazre Dela ARy$is . . - - o - o i e v n-
m&rﬁrﬁcm

6.2 Precobwe for Ansiviang Teilection of
XEREMAGE ReCEr S - - - .- e - si e mur-n-
e« 2.t mkﬁmm ......
£ 2.2 Przhability of Missing Fa-tcslar Events .
2.3 Prebadiizy of incculing Range of Evests .
¢ 2.4 Nemerical bxamyics of Raadom Sempling
o -
$.2. % Further Remzizis 2o Raadem Sampling. . .
$.2.& Boeck Disgram Spr Selection of Sumpling
Sheme. . _ .. .. i crer e
$.2.7 Biack Diagram for Anaiysis of 3
Collectionof Eccwrde . . . . ... .......
3 Referesces . _ ... ...
Instrumentzign 35 Measure Vibratisa Characteristics . .
7.1 TexsdeterConsiderations . .. . ... ..__.....
7.:i.3 Charaztaeristics of Piezselectric Crystal
Acceitromaiert. . & oot s nrcm b n e
2.5.2 Characieristize of Straia Gage
Accecrometers. - - - . ... ... bememe
7.1.3 Characreristics of Boaded Strain Gages . .
7.5.4 TrameducerAppiicatiose . . . .. ......_.
T® &2 133 i

&35
3%
&
&-37
&3
&-38

£-38
-2y

-4

&8s
&-7i

&7z

7-2
7-2
T-3




CONTENTS (Continued)

7.2 Transmission and Recording

7.2.1
7.2,2
.2.3

-}

7.3 Voltmeter Measurements of Random Data

7.3.1
7.3.2
7.3.3
7.3.4
7.3.5
7.3.6

7.3.7

7.4 Power Spectral Density Measurements of Random

Data ...

7.4.1

7.4.2

~3
- W

7.4.5

7.4.6

7.4.7

Telemetering Systems. . . ... ... ....

Magnctic Tape Recorders . ... .......

Calibration of Transducer-Telemetry-

Recorder Systems . . ... ...........

AC Rectifier Type Voltmeters . . ... ...

Vacuum Tube (true rms) Voltmeters . .

Statistical Accurccy of Measurements . .

Accuracy Using KC Filters . . ... .. ...

Physical Exsmple . ... ... .........

Further Remarks on Voltmeter

Measurements. . . ., . ... .. ... v.0ooe..

Summary of True rms Voltage Measuring
Instruments. . . ..................

General Technigques for Obtaining Power

Spectra Estimates . .. .. ...........

Statistical Accuracy of Power Spectra

Fstimates . . . . . ... v oo e e e e e

Resolution of Power Spcctra Estimates .

Constant Bandwidth Power Spectra
Estimates-Maximum Filter Sczn Rates

Constant Percentage Power Spectra

Estimzates-Maximum Filter Sean Rates . .

Powcr Spectra Estimates for Non-

stationary Random Data . ...........

Conclusions. . . . ... ..o i v v eennn

7.5 Probability Dznsity Measurements of Random

Data ..

ASD TR 61-123

Analog instrumentation . . .. ... . ... ..

Uistribution Functions of Instantaneous

Values and Peak vaiuas ............
ix

...............

7-3
7-3
7-4

7-4
7-5
7-6
7-8
7-9
7-11
7-14

7-25
7-27

7-28

7-35

7-37
7-39

7-4:




7.6

7.7

CONTENTS {Continced)

7.5.3  Statistical Relationships and Accuracy. .

7.5.4 Experimental Tests .. .. ....00.0...
7.5.5 Physical Exampie ... ....... .....
Correlation Measurements of Random Data , ...
7.6.1 Correiation Coefficient . . ., ... ... . .-
7.6.2 Correlation Functions . . . ..........

7.6.3 Mectholds for Cerrzlation Mexsurcments .

7.6.4 Errors in Correlation Measurements . . .

7.6.5 Physical Example of Vibration Source
Lecalization . . ......... ce et

References . . ... .......0cuoc...

Experiment:l Program to Verify Analytical Procedures .

8.1

o
o

8.3

8.4

8.5

Laboratory Test Program . . . . . ... ...0....
8.1.1 Basic Laboratory Instruments .. ... ..

Veriiication of Fundamental Assumptions. ... ..

8.2.1 Test for Randomness . .. ... e e e
8.2.2 Test for Stationarity. . ......... .-
8.2.3 Testfor Normality. . ......... e e
Verification of Statistical Accuracy of

Measuizments. . .. ..... f e e et s e oo
8.3.1 Root Mean Square Value Estimates . . . .
8.3.2 Power Spectral Density Estimates .. ..

8.3.3 Probability Density Estimates . .., ...
8.3.4 Autocorrelation Function Estimates. . . .

Statistical Considerations for Repeated
Experiments and Random Sampling . . .. ......

8.4.1 Selection of Sample Size and Number
of Flights . , . . .........

8.4,2 Data Collection Procedures . . . ......

= o 2 0 0 0 ¢ ¢

8.4.3 Verificaticn of Statistical Estimates . ..
8.4.4 Suggested Experimental Pian .. ......

Flight Test Program . ......c.c0c0000000

8.5.1 Generat Remarks ., .........c00..

ASD TR 6 2% x

7-47
7-49
7-49
7-52
7-53
7-55
7-59
7-64

7-69
7-71
8-1
8-1
8-1
8-2
§-3
8-6
8-9

8-10
8-10
8-10
8-13
8-15

8-17

§-18
8-20
8-21
8-22
8-23
§8-23




CONMTENTS (Continued)

8.5.2 Preparation for Flight Test ... .......

8.5.3 Direct Recordirg of Vibraticn Data . . ...

8.5.4 Telemetering of VibrationData . ... ... .

2.5.5 Fligit Conditions =znd Number of Flights . .

8.6 Referzucas ............... e s e ne e

9. Applications to Response of Structures . ....... e ee

9.1 Response of Linear Struciures to Random
Excitation ... ....... ccoesoeeececsones

9.1i.1 Singie-Degree-of-Freedom System . ....

9.{.2 Con:inuous System .. ....... e s e
3.2 Continuous Structures Excited by Corrclated
Random: Forces . ..... e e e s e e
9.2.1  Statistical Response and Cross-
Correlation Function .. ............
9.2.2  Selzcted Physical Examples ..........
§.3 Modification of Response Due to Loading .. ......

3.3.1 ERHavnonic Excitaiion - No Damping ... ..
9.3.2 Special Case of Rigid Attachment . ... ...

9.3.3 EffectofPDamping ............... ..
9.3.4 Undamped Primary Structure with
Damped Secondary Spring Mass . .. ... .

9.3.5 Response tc Raadom Excitation. .. ......
9.4 Vibration Induced Structural Fatigue . . . . ... . ...
9.5 Effect of Nonlinearities on Response Statistics ...

9.5.1 Nonlinear Transfer Characteristics

ofInstruments. . .. .....cc0 000, .
9.5.2 Nonlinear Transfer Characteristics
of Structures .. .. ......cc.c00c... ..
9.5.3 Mathematical Derivations . ........ ..
9.6 References ....... s s e e e e e e
10. Conclusions and Recommendations . . ....... e e re e
10,1 Reviewof Report . . .. .. .t eveveveesosensn
10.2 Recommendations for Future Work . . . . ........

Refarences (Complete List)

ASD TR 61-12: xi

9-1

9-9

9"1‘)




3.1
3.2
3.3

3.4
3.5
3.6
3.7
3.8
3.9
3.10

3.11
3.12
3.13
3.i%
3.15

3.16
.17

4.2
4.3

4.4

4.5
4.6

4.7

4.8

LIST OF ILLUSTRATICNS

Single D:grce System (Fixed Base) .. ......
Single Degre= System (Movable Base} ......

ime-History of Input and Output for
Single-Degree-of-Freedom System near

Resornance ....... e s e s s et e e ses e
Frequency Response Function Hw) .. ......
Magnitude R=sponss Functicn H{w) . .... ... .
Response to Multiple Frequency Excitation . .
Discrete Input Spectrum . .. ....... PR
Discrete Output Spectruss . . . .o oo 0 o v oo
Input-Output System . ....... .

Examples of Narrow-Band and Wide-Band
Power-Spectra and their Respective

Time-Histories .. .... st e s e s s
White Noise Spectrum .. .. .. ... .00 .o
Mean Square Response of Lightly Damped

System ........... e e e e s e .

Narrow-Band Response to Wide-Band
Excitation . .......

P o o 8 & o 0 o 0 s

Maximum Accelerations in Jet Fighter Aircraft
Maximum Accelerations in Jet Bomber Ai-craft
Maximum Missile Launch Accelerations .. ..
Maximum Missile Flight Accelerations .....

Three-Dimensional Plot of Different Vibration
Properties versus Time and versus Frequency .

Random Process .........cc000c0c0e5s

Constant Bandwidth Filter Device for
Measuring Power Spectrem  , .. ...,

Circuit for Removing Mean Value and
Linear Trend .. .....c0ccovevencs

Cross-Power Spectral Density Analyzer ....

Peak Prcbabiiity Density Function
w(z) versus z

I A A I Y I A S I A

@
Graph of Pp(z) =f w(z)dz versus z . ....
z

Probabilities of Normal Extremes .. .....

ASD TR 61-123 xii

-

.

3-7
3-7

3-8

3-9

3-1¢2
3-18
3-12
3-13
3-14

3-17
3-18
3-18
3-19
3-19

4-2
4-30

4-69
4-72

4-92
4-93

4-109




6.2
6.3
6.4
6.5
6.6
6.7
€.8
6.9
6.10
6.11
6.12
6.13

6.14

LIST OF ILLUSTRATIONS (cont‘d)

Illustration of Critical Region and Levei of
Significance {Type I Error} ..... .

Ilustration of Type i Error

Frequency iiistogram of Hypothetical Data . . .. ..

> o5

Tabulated Values of Figure 5.3 . . .. ........

Tolerance Factor Curve . .. .......
Computational Exampl=

Corntrol Chart for Mean Values ... ..........

Curve ior Singie Sainpling Plan .. ... e e
Q.C. Curves for Sampling Plans Computed
inText .. ...... .t enccena ...
O.C. Curve for Two-Tail=d t-Test ., ... ..

Selected O.C. Curves for Analysis of
Variance Test ... ... ...............

Hypcthetical True Quadratic jlelation and
Linzar Estimate Obtained from Restricted Data

Over-al]l Recommended Procedure for Analyzing

Individual Vibration Records .. ............

Categories for Single Records and Ensembics

TestforNormality ., .............. .....
Exampie of Random Sampling .............

Example of Range of Events . ., ........ ..

Common Power Spectrum .. ... ...........

Exponential-Cosine Autocorrclation Function . .

Flat Power Spectrum .. ........ e e et
One-Sided Test . ....... e e e e
Two-3ided Test . ... ... . ... .

Bimodal Sample Set . ... .. .. ... .........,
Bimodal Probability Density Function . .......

Over-all Recommended Procedure for Selection

of Sempling Scheme . ... .........c.0c0u..

Over-all Recommended Procedure for Analyzing

Collcction of Vibration Records . . . ... e e e

ASD TR 6i 1213 xiii

---------------

-----------------

5-69
5-70

5-73
5-75

5-86




8.1
8.2
8.3
8.4

8.5

9.4

LIST OF ILLUSTRATICNS (cont'c)

Mcan Square Cutput vs. Time
Ballantine Model 322 True rms Veltmeter |, ...

(Parailel) Filter Set Type Analyzer. .. ........
{Sequential) Fiiter Set Type Analvzer . . ... ....
Variable Center Frequency Filter Type Analyzer |
Het>rodyne Type Anaiyzer .......... e e e
Block Diagram Probatility Density Analyzer ... .

Block Diagram for Type A Correlation
Computer . ...... . .o s

Frequency Response Curve for Type A
Ccrrelztion Computer ce s ccscos s osnsre

Biock Diagram for Type B Correlation
Computer .......... ceeecscreresnseens

Equipment for Pandomness Test .. ..........
Equipment for Non-Randomness Test ........
Equipment for Stationary Test . ............

Equipment for Testing Power Spectra
Measuremisnt ACCUFaCY . .. ... .vvevoenoson

£quipmen; for Testing Probability Density
Measurcment ACCUTACY .. . .. cvvvevoeeson

Equipmeni for Testing Autocorrelation Function
Measurement ACCUTACY .. ....cceveeccones

Locaticn of Transducers for Fiight Test Program .
Hypothetical SpaceProbe .............. ..

Schematic Diagram of the Primary Structure
and the Attached Cemponent . .. .......c00..

Resorance of Structure with Rigidly
Attached Mass . ........ccoc:000-20sss

Gutput Probabiiity Density Function as Function

of Two Different Nonlinear Transfer Character-
istics (Uniform Input Probability Density

Function} . ... .....0cveeesencscscnccaes

Cutput Probability Density Function as Functior:

of Three Different Nonlinear Transfer Character-
istics (Gaussian Input Probakility Density
Function) . ... .... ... ceveececcsocecsa

ASD TR 6!-121 xiv

8-3
8-5
8-6

8-11

8-13

8-i5
8-26
8-3t

9-27

9-31

9-59

9-60




3.1
3.2

5.1
5.2
5.3
5.4
5.5
56

3.t

5.8

6.3

6.4
6.5

7.2

8.1
8.2

LIST OF YABLES

Types of Flight Vehicles . . . ... ..... e e e 3-3
Vibration Sources . ... ... .. ... e 3-6
Areasofthe Normal Curve . . . .. .. ... ... ..... 5-S7
v-percent Values of Nermal Distribution . . .. .. ... 5-99
The xz Distribation . ... .......... e e e e 5-100
p-percent Values of Student's "t* Distribution . . ... 5-101
FDistribution . . . .. .. ... ... ...t ren.. 5-102
Tolerance Factors . . . .. .. ... et ee e 5-163
Values for Variance Equality Test .. . ... ....... 5-104
Factors for Coenverting Sample Range to Sample

Standard Deviation . . . . ... .0 r e v evveonccenn 5-105
Factors for Computing Sampl> Size and Number

B 2 -3 LY -3 5-106
So:'.ﬁde:.cc Intervals for True Mean Square
Confidence Intervals for Measured Mear

Square Values . . ........ e et e e 6-24
Comparison of Normai, Camp-Meideli, and
TchebycheffResults . . .. .. ... ....... ....... 65-61
Flight Characteristics for Aircraft XXXX ... ..... 6-63
Flight Characteristics for ALBM YXXXX ......... 6-70

Specifications for Bzllantine Laboratories
Model 320 True rms Voltmeter ... ............ 7-92

Confidence Limits from Mean Square
Measurements as Function of Number of

Degreesof Freedom. . . . .. ................. 7-11
Sclection of Sample Size and Number of Flights. . . . . 8-20
Vibro-Acoustic Instrumentation . . . ... ......... 8-32

ASD TR 61-123 xv




bik:N, p)

"o 0w

cr

(9]

Cif)

[-%

" mmao

Y

G(f), G(w), S{f), S(w)
h(t}
b (z)

H(w), ¥(f)
Hn(z)

e

x o
-

ASD TR 561-123

CLOSSARY OF SYMBO:S

Binomia! rrobability density function
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Statistical defirvition: Number of flights;
or number of successes in Binomiat
distributiorn

Physical definition: Time constant of RC
circuit, K = RC

Statistical definition: Teclerance fac:sr
Mean time between samples

Lower conrtrof limit

Physical definition: Masz

Statistical definition: Sample mess value
Physical d=finition: Concentrsted mass
Statistical dcfinition: Size of population
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Number of runs ir “run test”

Sample correiation coefficient

Physical definition: Electrical resistance
Siatistical definition: Sample range
Sample multipie correlation coefficient
Ccrrelation functions

Sample variance {s = sampie standard deviation)

Paysical definitio=: Stress level
Statistical deimition: Total population size
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Power spectral density functicas

Physical definition: Time
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Student’s *t" distribution
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mean)

Any variable
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Mean square value of x{t)
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Level of significance {i. e., probability of
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Confidence coefficient
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. IXTRCDYCTION

CBJECTIVES OF CONTRAIT
The obJectives of (Bc contraci were 150
& Deterreine vibratsos respuasies at 2 singie point o2 x> structare of
a Sigkt vekicle durizg eatire operational lifc =istory 1o assist in
future f3izgue acd reliabilily investigaticas.
¢ Deterrsine vidration eavironment for cgipement moamted on
sITRCizres
s Determine wiirsiins sorirasmts! for bermas Tomfort problere ix
future space Oights.
Thcse objectives resslied frorm the need to:

& Improve design of fct aircraft and missiles to refuce strectsral

failcres duc o vidratisn.

1]

Establish Setter laboratory testing specifications for stracteres
aref cosipment.

¢ Develop over-all sciertific stalistical procedures 2> cpposed 2o
Iimited special-porpesc teck=igacs.

& Bridge gaps beluces Lnown theoretical ideas and practical methods.

Principal aztivitica of the contract were divided Inte 1Rree
ptases as follows
Phzze . Prelimizary Study of Apglication of Statistics to
Flight Vehicle Vibration Problems.

Phase II. Development of Techaiques for Estimating Desired
Statistical Characteristics of Vibratory Time Histories.

Praselii. Outiine of Expercimental Program for Evaluatisz of
Estimatics Procedures by {3} Laboratory Testing., and
{t) Fligat Testing-

Manuscript relecased by the aulbors 35 June 196! for publication as an
ASD T=cknical Report.
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The work wis desipact Weard the ilowing maiz poals:

e Provide rmateriil W aid ix saderstanding the proper application of
variozs progosed statistical techaiqecs threwg cossideration and
verification of basic asszmptions whick =t be salisfied.

% Erwptasii o= pracztical statistical procederes for estiziling vibration
responscs al & single soizt o= & irzeisre sodfer stesdy oporating
cosditions.

& Praparatic= of 25 exprrimental progran: copaizant of cquipment
instrerentztion prebioms and statistical sowrces of erser.

= aidition. Ihrre were mary olker imporisrt peils suck 25

* Orer-all phrsical descriptios of vibration exvirsament Sor
differeat categories sf jet sircrafl and missiles.

s Greater physical and mathematical ixsight inle the response of
strsctures io randos excilaticn.

#*

Exiantet spgiicaen of ths malsrial o oliver piysical appiicatiocs
involving statistical 2mal;sis of randen: pheacseexa.

& Clesrer apprecistion of limitations of these statistica® Sicknigacs

when dezliag with pheroncent failing %o satisfy basic 7+ —mptions.

1.2 HISTORY OF CONTRACT

This contract resalted fzom 3 Wrighkt Air Developmest Division
{WADD} Request for Proprsai P.R. No. %5:2%9, dated 30 December 1959,
axnd szhseqguent teckaical discsssions belween Dr. O.R. Rogers, WADD,
Mr. R_F.Wilkss, WADD, and Dr. 1. S. Beads:, Ramo-Wooldrilpe (R-¥).
oz Il March 19%0. Work commenced o= ! July 1%6.

Progress repsris were ssbmilied moatkiy do WADD degizaixy
10 Aagust 10, and isterim techeical reports were sabmitted whes compietes
on varions portions of the iavestigations. A preliminmary draft of this fismal
report was subaitted for a tzchuical and format review o= 4 May 1961
Briefin.s between WADD and R- % persszzne! on the sshject contrasl Baok
nlace at WADD o= § September 1950, a1t R-F o= 2] Desember 1953, and a1
WADD o= 4 May 191

tw
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i. ¥ PERSTHNEL CF COXTRACT

Prafect sx~agerr 62 22 Zoatractl wis Dr. 7. S Benisl. He was
resyensiliz for ceonfizating the eutire efiort. asd for xssigning ané revies-
izg varisxs wark weiertakex by 228rz Rame-Wosidridgs prrsonaet.
Blarber=aticai pertions «f Bix Tepurt wrre ¢f special cuncern 2 iz as weil
s proper sicghasis ef satiitical and enginirring seaterial,

Three mrembrrs of tor eckaical sl freex Rawme- Bovidridpe conris-
e greatiy Is 2 prefeoct: Moo L D Esschkisa. Mr. G- H. Koz, and
Mr. A. G. Piersel. Mr. Exm<iscs wii respe=siMe for mwch of the batic
sTxiislical provefisres: 2l Ivslis comldiced iz Ris sepurt, anf sssixied in
csige o the exprrirressal program. Mr- Kicis ais respexsibie fsT Scscrib-
ixg ths pipaical sihraizes Aspocts of b varisws calegeries = jat aircrafl
teckziger. Sxsirarmextxiieos prakiom. ani Right text pregram. Mr. Fiersst
wis respomsidle for fevratijalins sirncizral fatigae preficerss. zen-linear
effcels, ixsirsomentation prebliesrs. 7 e experimesial [absratery prograse.
A oyt smersber fram Rarrw- Waslicidge, M. R. & Socle zsckef briefly
s ixitial sEalistical euosiisns.

Prefesssr Wiilizm T. Themize Ingizeerizg Departmest. University
#f Talifernis at Las Axgelcs, wis eagaged i3 & conszitast a2 e starf &f
e oontracl. ifc pRrticipalz« aclively botk in growp discassions axd iz
perisaal stolics incarperaled ik (2is fini] repert dealizg wilk: the respocse
=% IIreciires e sanicm excilation amd the effccts of landing.

A serall s=hoosract was led te Merziz, a divisiox of Nortzrep Corpe-
raticn, Hawtberze. Califersis for assistance i fermmulatize ragineering
aspeels of Bizht wwhicies and reviewisg ceriain ether Nora:r material. This
wnork was Some principalliy by Mr. Willlam Rederts amd Mr. Rodert Wkite
of Norsizr. In additiss. Mr. Rey Musiaiz of Xorirenics, asciker division of
Nortkrep Corporatisa. was helipfal is estadlishment of the fisght test prograe
discasred = this reposi.

Ceafereztes wzre 2elf 3ise wilk maasy cagiseers {rom oliver cornpanies
ir the Las Asgrirs 32ve3 o survey Useicr vibraticn programs and a-cds. These
individuals provided wainadl. izformal:an on (ke cursest stile of vikritina
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analyzis and, although they will be nameless here, their advice is grate-
fully ackuowledged.

The contents and recommended procedures of this report, of course,
are the responsibility only of the four authors and do not represent the

practices or views of any other individuals or companies.
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2. SUMMARY OF MAIN RESULTS

2.1 MATHEMATICAL ANALYSIS AND STATISTICAL
PROCEDURES
An over-2ll scientific anaiysis is presented of the vibration environ-

ment to be expected in various flight vehicles wherein:

* Proper emphasis is giver tc different types of statistical

information concerning the vibrations.

* Statistical techniques are explained in straight-forward
language so as to be readily comprehensible to individuals

concerned with analysis probiems of vibration phenomena.

#* Simple statistical tests are developed for verifying basic

assumptions instead of accepting them withocut proof.

* Analytical procedures are proposed for analyzing the
pertinent statistical properties of a single vibration time

history record.

# Analytical procedures are proposed for establishing the
over-all vibration environment given the statistical prop-
erties of each of a collection of vibration time history

records.

Mathematical material in the report explains from a broad view-

point:

Elementary ideas of probability theory.
Fundamental concepts of random processes.

General matters of statistical estimation problems.

To mention but a few tepics of interest, the presentation includes discus-
sions on:

* Probability density and distribution functions.

* Power spectral density functions.

% Correlation functions.

ASD TR 61-123 2-1




Threshold crossings.
Extrzme value properties.

Peak value distribution of wide-band and narrow-band noise.

* X * 0w

Measurement of linear system frequency response function.

Various statistical concepts, tables and curves are presented
including:
* Normai {Gaussian) distribution.
Chi-square distribution.
1 Jistribution and F 2istribution.

* #* »

Statistical results from repeated experiments.
Quality control procedures.
Operating characteristic curves.

Analysis of variance techniques.

* % # ®

Multiple regression technigues.

2.2 THEORETICAL INVESTIGATIONS

A number of significanttheoretical {mathematical and physical} results
have been obtained during the course of the investigation. These include:
* Preliminary study of a random sampling technique to reduce
the amount of data to be gathered.

* Establishment of simple quantitative statistical tests for
randomness, stationarity, and ncrmality.

* Physical applications of measurable statistical information
from vibration data for predicting the response of contiruous
structurss to random excitation, and for evaluating ioading
effects on a structure.

2.3 INSTRUMENTATION STUDY

* Statistical effects are analyzed fully for actual measurements
of various vibration characteristics such as mean square values,
power spectral density functions, amplitude probability density
functions, and correlation functions.

ASD TR 61-123 2-2




* A survey is presented of certain available instrumentation
equipment, with emphasis on their practical physical limita-

tions 2nd accuracy to perform desired measurements.

2.4 EXPERIMENTAL PROGRAM

An experimental program is outlined for verifying statistical proce-
dures developed in the report as appropriate to:

Laboratory Test Frogram
Flight Test Program.

Special attention is given to matters such as:

* Tests of basic assumptions for stationzrity, randomness, and
nor:nality.

* Measurement of various vibration characteristics.

#

Verification of random sampling procedures.
Increasing over-all prediction capability of the entire vibration

environment through repeated experiments.

% Statistical design of experimer.ts to minimize number of

experiments.

% Practical considerations in laboratory testing and flight

testing.

2.5 PHYSICAL RESULTS

Many physical topics on response of structures have been investigated

during the course of the contract. These include:

Response of linear structures «» random excitation.
Continuous structures excited by correlated random forces.
Modification of response due to loading.

Vibration induced structural fatigue.

Effect of nonlinearities on response statistics.

* ¥ % * »
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2.6 SECTIONS OF REPORT

Section 3 discusses the ilight vehicle vibration problem, reviews
czrtain well known resuits on the response of linear structures to periodic
and random disturbances, and summarizes some past experimental analyses
oi vibration data from flight vehicles. Sections 4 and 5 provide comprehen-
sive background theoreiicai material on mathematical and statistical funda-
mentais which are important for analyzing and evaluating vibration phenomena.
Section 6 contains analytical engineering procedures for carrying out a
sequerce of statistical tests to establish the complete vibration environment
(at an arbitrary point on a structure) on a sound statistical basis. Section 7
discusses instrumentation probiems relative to measuring desired vibration
characteristics, while Section 8 outlines an experimental program to verify
the analytical procedures developed in Section 6. The reader may prefer
to read Sections 6, 7, and 8 prior to Section 4 and 5, these earlier two
sections furnishing theoretical material for special study when needed.
Section 9 contains some advanced physical applications on the responseof
structures which indicate that, for certain problems, ctatistical information
is available from vibration data which is not presently being explored fully,
while, for other problems, more appropriate statistical information has
still to be developed. The final Section 10 gives a brief review of each
Section, 3 through 9, and concludes with some specific recommendations
for future work.
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3. PHYSICAL DISCUSSION OF FLIGHT VEHICLE
VIBRATION PROBLEMS

3.i INYRODUCTION

For many years, engineers have been aware of various problems in
flight vehicie performance due to the vibration environment. However, it
was not until the advent of jet-powered aircraft, rocket aircraft, and missiles,
that statistics and random process theory were found to be important for
these problems. The main emphasis to date has been to use statistical param-
eters only for the description of the vibration environment. However, even
in this area very littie has been done in establishing an accurate knowledge
of the errors of these parameters. Various fundamental assumptions have
been accepted frequently without proof.

In addition there has been an almost complete absence of application
of statistics to determine the number of reccrds that should be taken, the
length of each record, and when during a flight, the vibraiion should be
recorded. ‘This has often resuited in either too much data, or not envugh,
which in turn would produce an inaccurate or biased estimate about the
vibration levels of flight vehicles.

Statisticians have known for some time that a properly selected sample
can provide a very accurate picture of the entire population or process from
which it was taken, and that there is alsc a point of diminishing returns.
Namely, no matter how large the population or how big the process, there
exists a sample size, which results in obtaining a maximum amount of
information for a given confidence in the results. Increasing the sample
size beyond this number yields only an insignificant increase in accuracy.

{See Section 6.2.3, Figures 6.9 and 6. 10.)

One of the purposes of this report is to pl-ce the selection of samples
of vibration records in flight vehicles on a sound statistical basis. At the
same time it should be realized that this selection caanutl be placed entirely
on an objective basis. Engineering judgment and a basic knowledgs of the
over-all flight vehicle vibration problem will stiil be required. To aid
engineers in the process of dctermining the point where judgement leaves
off and the tools of statistics can be applied, a discuzsion of the various

factors involved are developed in an orderly fashion as foliows:
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3.2 FLIGHT VEHICLES AND THEIR OPERATING CHARACTERISTICS

The type of vehicle, aircraft or missile, large or small, and the
number of flights that can be made, help determine the answers to the follow-
ing main quesiions:

1. How many sampies should be taken?

2. How long should each sample be?

3. When should tiie sample be taken?

An answer to thesc questions requires a knowledge of the vehicle
mission, length of flight, length of various flight phases, and the various
sources of vibration excitation likely to occur.

Table 3.1 was prepared to provide an over-all piciure of the
various flight vehicles which are in service now, or will be in the near fuiure.
It is realized that not every single flight vehicle will fit exactly into one of
the four categories skown in Table 3.1. This breakdown mainly serves a
qualitative purpose to help the vibration engineer to prepare an exact chart
for the particular vehicle under consideration.

3. 2.1 Vibration Sources

The column headed "Vibration Sources" in Table j. 1 requires some
additional discussion since, for low measurement errors, sample length is
dependent upon the frequency range to be recorded (this is shown in later
Sections 4,6, 7, and 8).

The frequency content of the various sources of excitation generally
ranges from i to 10,000 cps. Without a detailed analys:s of the types of
vehicles being considered, providing information as to size, structural design,
weight, engine type and characteristics, velocity profiles, and launch condi-
tions, the excitations can only be estimated. This estimation would include
a prediction, in certain cases, of the probability of occurrence of various
frequency ranges, choosing only those which appear the most likely. &
should be noted, however, that other frequencies may also occur in practice
which may cause damage even though their probability of occurrence is low.

Keeping these Gualifications in mind, Table 3.2 can be used
with appropriate caution to estimate the frequency ranges of various flight

ASD TR 61-123 3.2




3-2

#1OTINIONY sty |
W -sexd aswq ‘aduNNY
=203 2eduy Axepunotl SOINUIN OF - € Azun-ey (3
(31920 X0) Ax0}
1 WUON dnuo ‘Ut g5 | ~oefex3 spastrreg
?.ouus?u.a
w sousnqany uo spu IB. iy
xedwy Azwepunog SNUIN H - suosaedng (o
(Ale vuugxozdde
H wpv A2t - Weo)
texooys Sune(tond ‘288 9 ~ 2 | Wy owosuway (p
sasn¥ pue
IEHL Y PUIM ‘eduBIhg
H «any 19dwp Axupuncqg
Isuwyxs 19xd0y ‘908 0 - 61 Wty dtuosqng (o ‘gaUIW
1IN2YY (0] doTuASD 0 uwy3 sy Arjenan
H O} SWUTY UMOP=PTOY {potaed 300530 Ty pezamod (v30L
SpUIM BDWING | "D8s 9 = 2 BEPNIOUL |punoal sapnyduy) (0 ‘INAIV ‘WNRDI ‘NENT)
Isneyxe iodoy ‘oeg Ot - § J3o-axel (q
W 7 - w sLsW L 7 - wsest g | (A[UO SUIOGITE) ¥OUIREIN D1ISITINY
'p LzoBniv)) ey 'y A10803wD) veg | uonivizodsuwal (v | '$2QO0X ‘SSIDIYSA #OWAE ‘2
ECITTED) T
H 105502 puw aduamy
213 29wt Atepunogy 088 61 ~ § i pexsmod (o
(uUo1IeItnXD 3152A1CT) | 3enay)y 1ing dotbAasp ‘D88 02 Uwyy swat ydiy
Sutuang ydnoy | 03 LU UMoOp proy {x9mooq paismod 1oL ‘punoas
H (edanos astaN) j2oys sapnroauf oYM X0 .Mwaﬂ_ﬂ%ﬂu uﬂn.m“‘vumﬁu
ISNRYXF 10yd0H 23F 2 vy} seen] Htm) Jyo-exey (¢ ‘posemod 35f 10 30%50
W 3 - ¢ saseyd J = wsasweyd | (Ajuo suxoqaiw)
'y AxoBuiun aag ‘py AzoBmw) 0es | uwojivizodsuexy (v SOIISBIN U122)-320US |
(¢ 910N 093) $00IN0§ UOTIWANC MUIL] sasnia WNId ST [IT )
At 0A0S UnpeIQIA »eeuixoaddy
DAlIRIN Y

ASD TR 61-123

SOIOIYSA WBILE JO sadAL | ¢ alqel




duIInNQans L sAw]

‘y AzoSviwn) sas

‘p AxoBein) aug

uoriwizodsuwal, (v

{¢ 9IO0N vO8) saaxnog uonwIn( sl seewyd Iy AzoBayen
ISTETYNT] uorIexqrA anuxoxddy
LISELICY

W Azepunog ‘vwduey
-nqxny djzeydrouisy sINUIN 61 - § wansaQq (8
epng ‘soulng
-any svhAvf Azepunoy {uotBez dtuosuRX) | ‘D18 ‘BINADAURM
H-W ‘esusIngany sxayd w spnpout yPuz) oy ‘uotsmiy
aolage ‘Isneyxe jef sanoj4 g - § puc asinad (3
asusnqany
2082wy Axwpunog
H-W tasusngany stxeyd
-sowIw ‘yenuyxe of SINUIN OF -~ € quito (e
sousnqany syxayd
H =3Ol ‘Jenwyxe Iap
‘unsuyinox Awmuny snutN ¢ = § Jjo-oxwl (p (z ‘oN
H snwyxs Jep senuUtiN 02 ~ 2 an«-uny (5 |e3oN s-n.. wxey-Juoy 1Y
I TR ‘239 ‘sxsquioq twIlqI0
‘rgouydnos Aemuny( ENINUIN T - § el (q ‘Pasamod 38{ puw 39320%
n gEnwyxa g SMINUIAL 6T = I dn-dizem (v PRIV 'y
aduBNgan]
x9Ael Azwpunoq
n ‘soushqany d>ixeyd
«SOWIIN IENUYXS -38 *8IH 01 ~'VIN Of WAy pexamog (o
B aous(nqiny
i straydeouriw({zeisooq
‘ Y3t IBNNYXS J8DO2 (283800q OYItM *939 ‘yawug
puw) Qsnwyxs-jaf spuodag o1 - ¢ | 10 Jitm)jzo-axel {q ‘aninday s yone
‘paxamod jof Arrenen)
W 3 - weeswyy ] - w soswyd (Ajuo auzoqaiw)

SS[ISSIN W2 -BUOT ‘¢

(P3ueD) wetorys A BLK Jo sedAY | ¢ arqel

3-4

ASD TR b1-123




(zoyBiy 20 swix #,8 0'01) 4MH - H
(swsz ¢,8 001 » 0°1) wnipay
(swiz 8 g 1 = ) mon

- N
loﬂ -ﬁ

UMOVR BNOYY W04} AlqeidpIsuod
20)31D AN JJRADAIR PAIEMOd-18%DOL 20 BIRGUIDG [NIGI0 20) saswyd yid ‘2

*Apmvavdan

POIDPIRUOD WY O) PAMY [T PRADLIY W02 sBULLY iRt 10 und supydew

OS]y 'PAATNDAL #¥ JUNOLOR OUT USNML Y O) SEY PUR SADANON UNIINIGIA JBPUn )
POIREL 20U N1 DIDIYNA Y UEHITM Judwdinbn BupIvIol 03 Ahp UOKIIIIXS 12T )

AT

{wd>

0% « 1) umopyanoy
AN OpOW (VIUaLY
“¥PUN} 3O UOLINIIOXD
‘rrauyinox Avmunyg

UIN 2 - 235 §

(29g2aud 20 Awm
“una) Buspuwy (1

144

{oouatnqany
oraaydeoutyw)
tund Yepng detg

MU g1 - 3

umop
sde(; ‘umop
1xad¥ Surpuwy (4

(panugiuod) ‘¢

(¢ »ION du8)
At anvg
DALIRIOH

$anIN08
UORIUNIGLA

uonwang sy,
svatixoxddy

roswyt ydyig

AzoBnen

(P1auoD) seopuA Mg Jo sadAy ‘1 'g squl

3-5

ASD TR 61-123




vehicle vibration sources. The natare of these exciting forces is predom-
inantly random.

Tabiec 3.2 Vibration Sources

i. Rockzt Exhaust Noise, Jet 40 - 10,000 cps
Noise and Basec Pressure
Fluctuatiors
Mcst Significant Region 190 - 2,000 cps
2. Boundary Layer Turbuleace 199 - 10,000 cps
Most Significant Region 300 - 5.900 cps
3. Wind Skear 0 -2Zcpe
Most Significant Regice 1-2cps
4. Atmospheric Turbuience 0 - 10 cps
Most Significant Regicn i-10cps
5. Surface Turbulence and Buffet 10 - 100 cps
{Oscillating Shocks)
&. Runway Roughness § - 50 cps

3.2.¢. Ewd Use of Vibration Data

Another important area in any stwdy of flight veh ..« vibratioas is
the purpose or end use for which the data is to be obtained. Geserally, there
are three main fields of application:

1. Structural fatigue azalysis and system ralisbility.
2. Establishing vibration environmest for equipment.
3. Human comfSHrt consideratioas.

The relationship of these fields to sample size, length, and timing, is
somewhat more subtle, and numerical results canmot be obtained directly.
For instance, scme specitic fatigue stady may require speciai data reduction
tquipment, which in lurn may impose cerfzin reguirements oa the samples.
Or, for some other applications, specific traacducers may have to be used
which then would again piace some restrictions on how tae samples should be
taken.

ASD TR 6i-i23 3-6




3.3 RESPCNSE OF LINEAR STRGCTURES TO PERIODIC
AND RANDOM EXCITATION

Hxving cblained & Gualitative picture of flight velicle operating
characieristics and excitation scurces of the vibration exvircrnent, the
Gueslion that now arises :s: How does the siruclurs witkia the vehicie
respeced  to these forces arnd =hil can be expected to oCcsur 3t a singie point
on that structare.

Advanced arajyses of structaril responses to persodic and random
excitations are presenicd in Section © of thzs reporz. Some basic relation-
ships will Bc reviewed below for the puspose of sumrmariziag some well
known resuits fu provide the reader with a simplified description of how
tincar slruciures respond G pefiveic & Tandsm Cisturianies. For 2 mers
compiete developmer! with extensive discussions and preofs. the setader is
referred to appropriate references at the ead of this scction {e.g. . Refere~ces

GL [ 54 0esd. L2o]. .

3.3.1 Response to Single Frequency Excitation

The simplest model of a vibratling system is the single-degree-of-
freedom system.  With Dropers interpretation the respoase of this system
212 be used o =stimate the response of many other more complex conlizx-
rations. Within certain !limitations, this also applies to the resporse in one
of the normal modes of zextinwius siructures.

Figures 3. | and 3.2 below show iwo possible configurations for tae

single-degree-of-freedom: sysiem.

£1{t)
}
i y(t)
- |1 m |
x{t} i
X E:‘ic , ;:——-3

L
w ‘h ¥

P —

-

L

n

Figare 3.1 Single Degrce System Figure 3.2 Single Degree System
{Fixed Base) (Movable Base}
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i=x Figese 3.1, the mass ot is supported tirough a spriag with spriag constant
¥, and cashpot =itk damping ¢, over i fixed foundation. The mass is sub-

je<iod W & force excitatica f{t). ]= Figure 3.2, the excitation is applied
a3 2 motion x{t} to == 2grable Sisc ol the systems.

In staadardized notation, the cquitions of metion for both systems

mybcna‘eil_cuial. i‘fr!’ignrcll. a siagle complex periedic exciting
force f(t} = A =™ |

i='?v’-; . Téduits in 3 complox frrquescy respe~se function,
(e Referesce[s] p- -3},

Bid = !

w2 -
!-(I-') *:zf-;:

3.1)

and an outpct response yit) = Hiud £{t). where w is the forcing frequeacy in
radians/sec., w_ = (k/m) is the nstural freewency of free undomped oocil-
lations. ant L= (c/c_ ) is the damping ratio with c‘tszf;u.-uu
the critical damping cocflicient. For the system of Figare 3.2, [{t) is
replaced by -mE(). and yi) by [ytd - xtu} .

A typical illustration of time -histories of 2 periodic japut excitetion
and oulpat response record for a single-degree-of-freedom system nesr
mhsu-)hdm.isﬁ;utl..liebu

- s"‘-‘
; . E v“___.m m
L4 = 'i !1
H E . H /lr?-t £
I ‘; H T
H » - *
L 3 =
3 /5\ s &
. H 3 H
r I 4 L )
f ] b I Y
/ - :
a4 |-.-0' i.
-

Figere 3.3 Time-History of Input sad Output for Siagle-Degree-
of-Freedom Systesn Near Reseonsace.
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For Figere 5. i, 12 frequeacy rasponse fanctive Hlul rmay be Ixter-
Ereted as the compiex ratis of the force i= the Priny ta the excitizgy force.
For Figare 3.2, il may e izferpreted as ke Comspliex ixilis of farce in
the spring to thr inertiz force that woslic be irnnossed o= the a5 if i were
sigdly attickes i the movizs foandatise.

Tee reai (Re) asd immagiexry (=) pazts of Hijuwi and its mageiteée
response ferction fHiul] are plotiet in Figare 5.4 for {2010,

: \ ol

i ; 1’9_ -%

g 7. kY

= i’ =

és./’/'f Re E
=3 N

H] T ;u - - e — $“
£ = Ehar -

i N s

H % i

: = F

% 17 igxre 3.4 Fregsescy Respense Fasnctios Hbsd

L

1= maxy >pplicatisns. Ubr magsitude response fanctior (Sl is of
Lrealest irepsriande since il pravides 2 messure of tir Fazeitade of vikralion
trazsmitied to the neiss for basr-excited systeres. For Ligia damping
;§ < G. C5) the resomance peak of ;Biidg SCTIATS pITEXIMmaleiy X1 -, wkere
B3t )] = (17201 tastead of £ the symbel O is sometimes intreduced as
define2 by Q = 1172} Then iMlu ] = ©. ané for 0> 10, the amplitade
falls ta (O 5)=S. 7970 at the points P, 23d P, witk frequencics w, sl /201
respeciisvely. 33 shown in Figure 3.5 below. These poiats arc called Zali-
gomcr poisis becausc the sower thiai is 3350rbed by 2 dasipot 21 2 give=
{requescy is propertions] o the sqguarce of the amplitsde. Tiwr frequency
differeace (u /C) between Uhe Ralf-powcs poimts P, aal P, is gemerally
referred 1o as Ube Mandwidth of the syster=.
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()|}

©/2) —n (un/ Q)

@«

Figure 3.5 Magnitude Response Function 'H(u),

In vibration work, phase information can often be ignored and the only
consideration will be amplitude. Convenient measures of amplitude are the
mean-square or root mean-square values. For a time-history of vibration
amplitude expressed by y(t), the mean-square value over a time interval T is

given by
. T
1 2
vz(t) = — \Y y (t) dt (3.2)
T %%

It can be shown (Reference 6], p-1-7), see also Section 9. 1.1, that the ratio
of a mean-square output y (t) of a single degree of freedom system to a mean
square input £ (t) is equal to IH(»'z » the square of the magnitude response

function

2,
2O - |nw)|? (3.3)
%)
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3.3.2 Response tv Multipie Frequency Excitation

if the input consists of a superposition of steady siinple harmonic
functions with different amplitudes, phases, and frequencies, it is conven-
ient to describe its mean square value in terms of a discrete spectral
density function, as defined below. By Fouricr Series Analysis, it can be
shown that if 5 real input £{t) is of pericd P, and has no constant terns {C. 5.,
no dc component), then it can be represented by the real part of the follow-

ing series, [Reierence 6, pp. 1-7 through 1-11],

Q0
< Nw,t
() = ) a e ° ,u(:,:-?';' (3. 4)

L it

a = — 1 f(t)e dt n=+1, +2,. ..)

n P() - -

0
a, =0

where the complex coefficients a,n(n =41, + 2, . . .) contain information
about the phases of the various components. A similar representation holds
for the output responsce function y(t) when f(t) is the inpu. .v a single-degree-
of-freedom system.

A typical time-hisiory of the response to multiple frequency excitation
is drawn in Figure 3.6 below. In part (a), the input wave consists of the sum
of two frequencies w and Zw. Part (b) illustrates a possible response output
with a natural frequency o, betwveen w and 2w.

> time

Output y(t)

\ /\ :timp

'

(b)

l;igure 3.6 Resporse to Multiple Frequency Excitation
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From Equation {3.4), if one deals here with mean square values,
there results

t

—_— N N
¢ = nz_l ‘; Z S¢(nwg) de (3.5)

where a: denotes the complex conjugate of 2, and Aw = (2«/P). The sum
runs theoretically from n = 1 to 2 = 00, but in actual practxce wilil stop at
some finite large value N. The quantity a; a‘ = |an] contains nc rhase
information. Equation (3.5) shows that the mean square value of a complex
wave is just the sum of the mean squares of the component frequencies.
The quantity 5 ¢{ r..;o) which equals (a 2 /2 Aw) is called a discrete cgectra.l
density function , and is commonly measured in units such as inch / rad/nec
for displacements or gz/ cps fcr acceleration.

For the mean square steady-state output, one obtains by extending
Equaticn (3. 3) for this case.

*

-z a I N 2 N
= n )
y (®)= nz:! 2 h!(ﬁuo)! nz;l Sf (“UO)AU 'H(nﬂo); = nZ:l sy(nuo)Ag 3.6

where fw = (2¢/P).

A pictorial representation of Equation (3. 5) and (3.6) are given in
Figures {3.7) and (3. 8), respectively. In these figures, the vertical lines
represent the contribution to the total mean square value of the individual
frequency components. Note from Equation (3. 6) that the individual spectral
lines S¢ (nuo) and Sy(nuo) are related by

L
S (ng) = [Hinwgil” Sg.tng) 3.7

The total mean square values for input or output are obtained by summing
all the individual spectral lines, as shown in Equations (3.5) and (3. 6).

ASD TR 61-123 3-12




Sf(u) J

\
Input
Spectral
Density
|
! L
| L
: L “
w, Zﬂo No
Figure 5.7 Discrete Input Spectrum
Sy(w) i
Response
Spectral
Density
I
1 | i > w0
w, Zuo Ne,

Figure 3.8 Discrete Qutput Spectrum
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3.3.3 Response to Random Excitation

A schematic representation of the input-output relation for any linear

system is shown in Figure 3.9.

£(t) Excitation __ ]

The mathematical nature of H{w) for a single-degree -of-freedom system :is

H(w)

Complex Frequency j—Response v(t)
Response Function

Figure 3.9 Input-Output System

shown in Equation (3. 1).

Important statistical properties of the excitation random process are

the mean valve, (whick for simplicity, as well as fact, may usually be

assumed to be zero), the mean square value, the power spectral density
Thexe and other topics are covered

function, and the autocorrelztion function.
in considerable detail in Sections 4, 6, and 7. Examples of narrow-band
and wide-band continuous power spectral density functions and their respec-

tive time-histories are pictured in Figure 3. 10.

One very important relationship which exists between the excitation

power spectral density function and response power spectral density function
for random excitation [Reference 6, pp. 4-! through 4-7] » see also Sections
4.9.4 and 9. 1. 1 of this report, is given by

2
5,0 = [Hi)" s o)

(3.8)

In words, the power spectrum of the response is equai to the power spectrum

of the excitation multiplied by the square of the system magnitude response

function.

ASD TR 61-122
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5‘ (w)

1t ZAnNOR-SaNT

&> FREQUENCY

s'(I)

(¢} WDE-BAND > FREQUENCY

i)

(4) WIBE-BAND THEE

Figure 3. 10 Examples of Narrow-band and Wide-band Power-spectra
and their Respective Time-histories

ASD TR 61-123 3-15




For a single-degre=-of-freedom system subjected to “white noise"”
(an input having a uniform power spectrum S, from zero frequency to infinity,
see Figuire 3.1i}, the mear square response is {Refereuce 6, p. 4-7},derive¢!

here in Section 4. 2.4,

Powy Zﬂ’fn (3.9)

S b——— -

9
Figure 3. 11 Wkite Noise Spectrum

F.ven though the result of Equation {3. 9} is valid only for an infinitely
wide-band input, it provides a good approximation for a lightly damped system
subjected to a continuous spectrum which is uniform in the vicinity of the
systemn natural frequency. This is illustrated in Figure 3. 12 below.

Hlw)

.
-

Figure 3. 12 Mean Square Response of Lightly Damped System -;o(oanso,’-#)
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One additicnal! important parameter of the response is the amplitude
prebabslity density function. For a lightly damped single-degree-of-freedom
system:, the narrow-band rzsponsc to wide-vand random excitation i¢ shown

in Figure 3. 13.

Ax /{ E: “f?'\ _,‘ 1 i“’\_i ’_/-,

Al FEan B ER STHET
Jlfiugil ,:;'e!?:i‘m ﬁu’li“f‘l{- 'HL{{ ot
r-'--.'_\-;’ -1 8 ::§§ H I H g!

Figure 3.13 Narrow-Band Respcnse to \-!/4*3""’ Excitation

The narrow-band response above is approximately a sine wave at
frequency w, with a2 random!y varying amplitude and phase. It can be shown,
(see Refe-ence {6} » pp- 4-11 through 4-13) that for many cases the proba-
bility density of the envelope is approvimated closely by 2 Rayleigh probabil-
ity density funciicn.

2,
A -AJ ZR,‘(!!)

plA) = ——— ¢ : A20 3. 15)

R,(0)

where R x(O) is the autocorrelation function of the ~esponse evaluated at zero.
A theoretical treatment of this matter which extends the above result to inzlude

wide-band response is discussed in Section 4.9. 3.

3.4 EMPIRICAL RESULTS FROM EXISTING FLIGHT VEHICLES

As mentioned before, a considerible amount of interpretation is
required to arrive at the actual vibration environment from a knowledge of
the vibration sources and analysis of the cespouse of structures. To help
bridge this gap, some actuil data on f1equency ranges and magnitudes will
now be presented, which has been observed in present day flight vehicles.

ASD TR 61-123 3-17




Figures 3.14 through 3.i7 show ievels of maximum accelerations
recorded in jet aircraft and missiles as summarized from References {1,
13, 14, Zt:: at th= cad of this secticn.

16.04
5-0] . No data abovk
/ 350 cps
-
E 2. oo
e
_*
.
. 1.0}
<
2
2 o054
L4
L3
2
<
0.2
0.1 . — M e >
10 20 50 100 260 500 1,000
Frequency cps
Figure 3. 14 Maximutn Accelerations in Jet Fighter Aircraft
i0.0 E Pt
i
L Y
5.01 X
i
H
s 20 } !
S ' ;
be H
- :
[ .
. f.0
e
2
-
e
¢ 0.5
®
4
1]
<
0.2%
0.1 p—
{62 % 160 200 500 1,000

Frequency cps
Figure 3. 15 Maximum Accelerations in Jet Bomber Aircraft.
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Acculaeration, g'8 s

Acceleration, g's rms

ASD TR 61-122

Note: Missiies with

T lower thrust
tave higher
vibrationlevekl

10.0 . .
i
£
H
5.8 i
Less tharn 15, 000 /
2.0 pounds thrust 3
\ -
\ Greater than 100, 000-F
) pou{tds thrust 7
1.6 5
/ ‘/
0.5} £
: i
0.2: '
0.t o . i ) :
Y 20 56 100 200 5006 1, 000

0.0 3

Frequency cps
Figure 3. 16 Maximum Missile Launch Accelerations

-

w
o

2.9

1.0~

(%1}

9.2

0.1

L2ss than 15, 2090 It
and greater than
100, 000 lbs thrust

10

20 50

100

200

Frcquency cps
Figure 3.17 Maximum Missile Flight Accelerations
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Upon examiring the referenzes, one finds very litile statistical analysis
and confidence in the absve curves. The various authors, for the most part,
do not state information regzrding the dat2 reduction methods used, location
2nc type of transducers, lengihs of records, and calibratiorn checks. Some
of the data was reduced to rms levels without regars o whether the data was
=andom:, sinussidal or a combiznalion cf the tae. Other data was proczssed
assuming randomness, stationarity, and normalily, without justifying these
fundamentai assumptions. Of coures=. on the basis of expediency, such methods
may sometimes be understood, as iong as ikese limitations are rot ignced
when conciusions are drawn or predictions are made. Some of the more receat
reports, such as Kennard [13], hkave shown an awarercss oi this probiem.
information regarding methods used for obtaining the records and data reduc-
tion techaniques are retained with the final presentation of the vibration data.

Figures 3. 16 and 3. 17 are representative only fcr certain classes of
missiles and the levels shown are an “average™ maxiczum. For specific
environments the reader is referred to the literature, some of which appears
in the references. For instance. there have been occurrences of acceleration
levels in excess of 100 g's rms, and some of the more recent data includes
frequencies above 2000 cps.

It is also interesting to note, in surveying the references that aexrly
ail flight vehicie vibration response datla are obtained in U -. S5rm of acceieraison
levels. No direct statements have been found as to why acceleration levels
are measured in prefereace to velocity, displacement, or strain levels. How-
ever, it is believed that acceleration data has been favored for many good
reasons including the following.

Piezoelectric crystal transducers, which produce voltage signals
proportional to applied acceleration, are the only commercially available
vibration transducers tiat bave a wide freguency response range (2 to over
20, 000 cps) wkile being small and light in weight (under | ounce). Velocity
signal generating transducers bave 3 more limited frequency response (nor-
mally 10 to 2000 cps) and are cousiderably heavier (some weighing several
ounces). True dispiacement signal generators applicable for flight test use
are not commercially available. In the days of propeller airplanes, the nature

ASD TR 61-123 3-20




of the transducer was of littie importance since the respunsc was predorminately
periodic and the dynamic energy was concentrated in th+ frequency range beiow
500 cps. The transducer output signal could easily be differertizted or
integrated during measurement to obtain a2 sigaal proportional to azr porameter
desired. Ir modern flight vehicles, where a broad band random response is
predomieate, the transducer outpul sigaals are not so easily manipuiated.

To date, most of the final preseatation of randon: vibratior data kas
been in the forr: nf power spectral deasity distridutions with assumed Gazssias
smplitudc distribctions. The actual 3malitede Jistribation of the structural
vibration response in modern vehicles has bees the iarget of investigation by

ma= - enginesrs only recest!y =% Izterasting sosults.

W. S. Shipley [21] determined the amplitade distribution of the vibration

environment in the Sergeant Missiie and cided up witk 2 sear perfect normal
distribution. R. W. Mustain [12] investigated the amplitwde distritutions of

the vilratios eaviroament in the SM-562 missile, 3ct did wot cbtain good adkerence
te the rormal distributise,

F. H. Eng [9] presents amplitude distribution results (distribution
=f zzak amplitades) from missile vibration data whizh 4« viate rather widely
froo: the expecied Ravleigh distribution. Of particular irferest is 3 paper
by Edwin Kamps (Ri who investigaled the distribution of peak pressures in
the near-field moise generated by the exhaust of a high perfcrmance jet engine,
a major source of structural vibraiion in piloted aircraft. The results
deviated substaatially frem a Rayleigh distribution. This deviation is noted
also by Kenaare {13]

Forms of vibration data presentation and interpretation other thaz
power spectra and ampiilude distributions have been developed primariiy in
association with the fatiguc problem. One suck development considers the
structural vibration 2avironment in terms of anintensity specirumand a
structural susceptibility function, Refcrence [I5].
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It may be of inlersst to mote that sample Icugtks Gkes for viSration
roezszrerseats bave gseally beea 2 ~ 12 zecomds Io=g. One reasos for this
is srobabiy that magneiic fape recoriisgs of tkis dxralion ks —onveniet
tipe loops for agalysiz. Few references sarveyed cousidered the statis-
tical errors asscciiied with sommrie length. Amother reascs for short
semolss may be I et prucnd 5o probles of roducizg dala wiick is met
siationzry.  Ose paper dealing with the problicm of spectral analysis of Sme
sargizg data is Refereace [24) .

Tae discussion that follcws In Seclions 4 througk ¥ of this repert will
previde improved methods Gir dealing witk Gight vehicle vibratios probizms.
These mer~£s will resall iz 2 belfter snderstianding of some of the probies
arezs of past measarerme=?, 2nd will provide the engincer with tools W
iscrease kis conlideace is meassremests vel lo be mede.
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4. MATHEMATICAL BACKGROUND FOR ANALYZING
VIBRATION PHENOMENA

4.1 FORMS OF VIBRATION PHENOMENA

Steady-state vibration phenomena may be divided naturally into
four main descriptive forms: (1} sinusoidai, (2} periodic, (3} complex,
and (4) random. Combinations of these forms, of course, occur also.
Historically the first three types of phenomena were studied mathematically
quite extensively, and only in recent years have mathematical techniques
been developed to properly evaluate random phenoinaena. This has led to
many separate investigations emphasizing various limited aspects of
vibration data analysis. It is the purpose of this section to look at the
over-all vibration analysis problem, and to 4iscuss in a broad way many
mathematical ideas that have been found to be appropriate.

A single vibration record, or a set of records, is usually described
in terms of its time behavior and its frequency characteristics. See
Fig. 4.1. For example, after suitabie processing, onc may plot instan-
taneous amplitude values versus time, the frequency being fixed at a
particular value. Or, one may plot mcan square amplitude values
{associated with a particular fixed record length) versus frequency, the
time being held constant. Various other vibration prcperties may similar.
ly be plotted versus time or versus frequency. Thus, a number of two-
dimensional plots may be generated. This can be displayed as a three-
dimensional plot provided one understands that the vertical scale repre-
sents different quantities, in general, when referred to the time and
frequency axes. For a fixed value of time, frequency characteristics
are displayed, while for a fixed value of frequency, time behavior is
displayed.

4.1.1 Sinusoidal Vibration

Sinusoidal vibration is defined mathematically by a time-varying

function satisfying the equation

x{t) = A sin (2Znft + 0) (4. 1)
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VIBRATION
PROPERTY (AMPLITUDE, MEAN SQUARE VALUE, ETC.)




where

A = constant amplitude factor
f = cvclical frequency (usually in cycles per second, cps}
© = initial phase angle with respect to the time origin

x(t) = instantaneous amplitude at time t (usually in seconds},
the izzgnitude of x(t) itself usually being in inches or
feet or g-value (to be defined later) for vibration data.

A complete description of x(t) for all t is known once A, f and 8 have
been specified. For single wave analysis. the phasc angle 0 is often
ignored. Thus, Eq. (4.1) may be characterized compleiely by A and £.
On setting 8 = 0, Eq. {4.]1) becomes

x{t} = A sin 2xft (4. 2)

Eq. (4. 2) can be pictured by an amplituGe-time plot, or by an amplitude-
frequency plot. See sketch Lelow.

"‘ft) Amplitude
Al Amrlitude
. oubl'e i g >
0| time v | Amplitude 0 f frequency
b —— - - T —— l- 2 3
i
-A k P >

SINGLE SINE WAVE
The period P equals the time interval for one full vibration (or cycle),
usually in seconds. The frequency f equals the number of cycles per
unit time, usually cycles per second (cps), and is related to P by
P=1/f (4.3)
The g-value equals the instantaneous acceleration magnitude expressed

in units of g= 32.2 lesecz. the acceleration due to gravity. From
Eq. {4.2)
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Bin |

Hence
i"i‘t)! = (th)zjx(t)[ = g-value (4.4)
& g

For example, if x{t) = 0.912 inches, and if f = 100 cps, then the
associated g-value is 12.3.

In order to describe for later analysis the superposition eifects of
two Or more sine waves, with relative phase angles which can be ignored,

it is sufficient merely to plot a discrete irequancy spectrum of amplitudes

versus {requency. See sketch below for a graphical plot of the sum of
three sine waves. The corresponding mathematical equation 2s a function

of time t is here

x(t) = A, sin szlt + A,sin thzt + A3$m th3t
Amplitude 2
C T
l e 2
I l .
fl fz f3 frequency

SUM OF THREE SINE WAVES
{PICTURED BY AN AMPLITUDE-FREQUENCY PLOT)

4.1.2 Periodic Vibration

Periodic vibration is defined mathematically by a time-varying
function x(t) whose wavefor:: is such thzt there exists a fundamental
period P having the property that

x(t} = x(t = nP) for all integersn=1,2,3,... andallt (4.5)
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The reciprocal of P, namely f = {1/P), is called the fundarnental frequency
of vioration. It may ve sheown that all frequencies present in x(t) are
constant ritiipics ol s lundamentat Irequancy.

A simpie sinusoidal function is a special case of a periodic function
with period P = (}/f} as car be seen direcily from the defining reiation

since
sin 2uft = sin 2=f [ti (n,’f)l for alln and cll t

The sum of three sine waves may or may not be periodic depending on
the commensurability of f,. f 2 and f3. For example, with three frequencies
expressed by rational numbers, say f; = 2/3 cps, £, = 3/4 cps and
£3 = 5/& cps, then P = 12 sec would be the fundamental period since 3,
4 and 6, the denominators ini;. f- and fS' respectively, would all divide
into 12 an integral number of times, and no smaller number than 1Z has
this preperty. However, if any one of the frequencies in questicn should
be expressed by an irrational number, e¢.g. \I? cps. while one or both of
the other frequencies are expressed by rational numbers, then no funda-
menizl period would exist.

if the time-varying function is periodic with period P, then with
few exceptione in practice, it may be expanded in & Four -, series

according to the formula

a 0 o]
x(i) ==2 + >, a cos2snft+ 2, b sin 2snft (4.6)
2 n=1 ° n=1
where i=1/P

2 P
a == f x{s) cos 2anf= ds ; n=0,1,2,...
n p J

P
J‘ x(s) sin 2unfs ds H n=1,2273,...

bn=E
P Y

A Fouricr series is determined completely through knowledge of the
amplitude coefficients a and bn at frequencies nf, and may be pictured

by plotting these coefficients as a function of frequency.
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4.1.3 Complex Vibration

Complex vibration will be defined here as non-periodic vibrztion
phenomena which may be described by some suitable analytic time-
varying function. The availability of such an analytic function means
that the entire time history of the vibration in question can be stated
completely. There are no probabilistic features associated with its
time behavior.

Three simple examples of complex vibration are:

x(t) = A, sin Z-flt + Azsin 2--Zi ; fl rational, fz irrational

Ae 2t sin bt ; t20
x(t} =

e
H t<O
{l ; jticC
xtt) = = 1
) ;. mi>cC < | ¢c

0

Observe that for complex vibration, as opposed to periodic vibra-

t. This is the distinguishing difference between complex vibration and
periodic vibratiorn. Both types of vibration are required to have explicit
anaiytic represenrtations. iIf a time-varying function has a Fourier Integral
representation, vut not a Fourier Series representaiion, then it would
belong to the ciass of complex vibrations rather tian the class of periodic
vibrations.

4.1.4 Random Vibration

Random vibration is that type of time-varying excitation which
consists of randomly varying amplitudes and frequenciee such that its
behavior can be described only in statistical terms. No analytical
representat.on cxiste for the complete vibration in guestion so that it
cannot be classified as 2 complex form of vibration. The motior. does
not repeat itself in finite time periode See sketch below for an example
of a single random vibration record.
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SINGLE RANDCM VIBRATION RECORD

A particular sbserved random vibration record is usually a unique
set of circumstances never likely to repeat exactly :n all its characteris-
tics. An observed record, in actual practicz, is merely a special example
out of a large set of possibie records that might hkave ovccurred. In order
to analyze this single record, it is necessary. in general. to analyze
statistically the entire ccilection of random records of which it is a part.
This ccllection (also calied ensemble) of rezurds, assuming it can be
characterized stat:sticaliy in ways stili tv be described, is known as a
rzndom prccess. The sketch telow is a picuire of 2 random process in
which the individua! records are laid one above the cther using some

common time base.

}3:7.,._.‘ O\ o~

RANDOM PROCESS
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In general, ne individual record is representative of any other
record, nor is any individual record in its time-wise behavicer at fixed
values of time. Ir general, statistical properties as averaged over the
ensemble of records vary with the time at vhick the measurements are
msde. Such random processes are called "non-stationary” to distinguish
them from otker special "stationary™ random processes, where statis-
tical propeciies as averaged over the ensembie of records are invariant
with respect to time. These matters wiij be fiscussed later in further
analytical detail.

FPresent consensus of information from qualified people doing
vibration data analysis for missile and space flight vehicles indicates
that the overwhelming portion of data falls in the random vibration
category. A limited amount of data under very special ceaditions is
better described as {a) sinusoidal, ({b) periodic, or {c¢; complex. For
this reason, the discussion to follow wili concentrate itseif on analyzing
random vibration phenomena, with some special attention devoted to

sinusoidal vibration.

4.2 SINGLE ANALYTIC RECORDS

The mean value of a single analytic record x(t) of length T will be
defined by

x!
n

T
f x(t} dt 4.7
0

The average absolute value of x{t} is defined by

T
Tx‘i:lj; Ix(v)] dt (4.8)

o

A function {not identically zero} with zero mean value will have a non-
zero average absolute value.
The mean square value of x({t} is defined by

I AT
=17 xFya (4.9)
T Yo
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By definition, the roct mezn square (rms) value, {usually dencted by &

if the mean vzlue is zero) is the positive square root of the mean square

value.

Exzmait: Sine Wave.

xitl = X sin 2=ft : o<t <7
(4. 1G)
T =nP=n/f wheren - integer ; P = period

The mean value, average absciute value, and mcoan square value, of a
sine wave; averaged cver a length T equal 22 an integral number of periods,
are given by:

A ~T
x== J sin 2zft d: = O
T (]

_— & l"T . i A (172f; 2A
[x]== J isin 2efiy dt = — ‘f sin 2=ft 4 = ~—g20. 636A
T (1] (1726 0 z
(4. 11)
—_— ?_ -!- 2 J\i’.s’{.‘ >
xZ=A f sinZ(2eft) dv = 2 sl = A%
T (1] {1/n

The rms value, o, for 2 sine wave is given by

= _ a

o X" = = m 0.797A (4.12)

N2

Note that in terms of o. the av=rage absolute value
ixi =22 (2a)¥2 o 9 6.960 o (4. 13)
4

For a single analytic record x(t). the {cumulative} probab:lity
distribution function P{x,) cefines the fraction cf time, cn the average,
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that the magritude of x{t} wiii be below xq- Ciearly, P{-o)} = C and
P{:) = 1, since the magnitudc will never be bekow (-} and will always
be beiow (+). For all other saluss of %g. P(xo) will be a non-decreasing
fenction of Xg between zéro and unity.

Tae fraction of time. on the average, that the magnitude of x(t) lies
botween x; and Xy where x; <x,. s given by P!xz) - P(xi). Define the

quantity

P{x,) - P{x,)
ﬂxi- Zi = _"_Z ‘
2%

= 4
arnd take tkr limit ci this quantity as ijl = l*; - x; | approackes zero.

Assaning this limit to exist, there resuils the derivative

plxj = dP(x} (£.14)

dx

with x
Pix) = J‘ pix) &x (4.15)

-a0

The quantity pix) is called the probability density furction. For small
4 x. the psobability that x(t) lies between x, s34 x_ + Ox is given by
?é_';o'; ax,

.xa*Ay
Pro&ixov:x(aiéxc réx] = f

%0

plx) dxcsplxg) 8x (4.16)

Example: Sine Wave.
x{t}) = A sin 2eil
The probability distribution function for the instantaneous ampiitude vaiues

of the above sine wave is giver by. see Ref. {!. p- llb] .
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Pix} = 172 igi[zgsm-i IxfA} (4.173

Wy

The correspaading crobabiiity density fencilion for the instantarsous
ampiitude values of the sine wave ig given by pix} = 2 for ix] DA, and

EPix} E
oix} = = : ixj<a i{$ I8
PRI P =

“ p {x}
' /)
gt
- 2 A
D ——

These resuits for a s:ngle sine wave should be well understood
because of their consiGerabie Zifference to 3 Gaussian {zormaij distri-
bution function which is associated freguently with random phenomena.
Thke Gaussian {cumulative} probabiity distribution and probability demsity
functions will be discussed in a later section.

The power spectral density function § {f) associated xith 2 single
amalytic record x{t) is defined as the limiling value of the mean square

. 4-11

-
e
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wajoe :zi-ag ccntained 1% an ideal bandpass filter with cester frequency f,
divided by the bandwidtk B. a5 the bandwidtk approackes zer~. Tkas,
the power specirai dexsily Sanction imdicaies the rate of charge of the
reear sqeare vaioe with freguency. The total mean square valwe in xit)
is obtained by istegrating {saumomung) S!(Ei over ali freguencies from
fz-002cfz o, (eqzivalent o integrating 25 _(f) from £ = O to f = w}.
whiie the meaz sqguire viiue of xit) between the frequencies {a and (b is
obtared by integrating 2Sif) frum E; aa!b- {The factor of & resalts Sxar:
mathematical iaclusion of negative freguencies.} In eguation form

2
u-xulsfg:sz!{‘sxma (4.39)
a
z T e NG
o =x(= j Sie=2] s«
-G o
Example: Sine Wave

xith = A sin hfgt

Since x{t) zontains power only at one freguency fy- and since the
total nean square vilae iz xit] is given by

2 o«
A f S0« (4. 20)
F 4 -0
it folsows thai
2
Sx(ﬂ = {ATI2) §If - ‘é) (821}

where ${f - fol is the usval Dirac delta fuaction as defined by

ME-1g) =0 for £, 16.22)
r Mf-i)ef=?
), St
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n words. the spectral demsity fanction of 2 sine mave of amplitade A at
1 receeacy fg 13 a deita function a2 £, mcipiied by the powes iactor
AT
The aztocorreiaiios fonciion R‘-;:. T} asyeciated with a2 single
+sxiviic recard xit} of fixed finite Izogth T w3il be &adined By

i p‘!’ot
l;:(r_. e Ei J 3t afteri &2 ¢ €r< T {(4.25
T-T [

»%ﬁfﬂf st efeeri ol i v T
]

For fixésl v. as T appraachkes infincly, the astocorrelaiion fonition
K!Q-.'i is Sefined by

34
n:!ﬂ - iif?)j. {2} xite~s &= 4. 2%}
T—va (]

in sarti-siar. the above definition (without passege te the imit) appiies
1o 2 periodic fanciion of period Pegrlts ¥

Esample Sine Wave
xit) = A siz Zeft . Period T = (i)
T .
R (7} *ﬁf'ﬂ_.f A" s 2eft iz 25ff1 ¢ ) &2
[

e ia%22) cos 2efx {£. 25)

= words. tke asloccrreiation fanclion of 3 sine ware of
ampiitede A a2 frequency { 15 a cosine wave of amplitude
b\zi 2} azd same frequency {. Thus, periodicilies preseat
in a fesslion are relained in its awtocorrelation foaztion.
Noge from: Eqs. {4 25)ané (4. 20) that

4-i3

.i”
Y
]
L)
wd
o
&
L.
in
LR




. ®
R (0)=a%/2y= [ snar (4.26;

-
One may, infact, prove a more general result

o
Rx('r) = f Sx(f) cos 2nfr df (4. 27}

-Q0

The above results may be cxtended easily to sums of sine waves
and to other analytic functions. The discussion to foliow will now concern
itself with establishing various fundamental probability and statistical
concepts which exterd the above treatment on single analyiic records to

the more important physical situations of random phenomena.

4.3 PROBABILI1TY FUNDAMENTALS FOR RANDOM RECORDS

The underlying concept in probability theory is that of a set, namely,
a collection of objects such that it is possible to determine of any particular
object whether or not it is a member of the set. In particular, the possible
outcomes of an experiment {or a measursment) represent a set of points
called the sample space. These points may be grouped together in various
ways, called events, and under suitable conditions probal‘lity measures
may be assigned 7 each event. These probabilities always lie between
zero and one, the probability of an impossible event being zero, of a
certain event being one. For sample spaces containing a finite number
of points, the probability of a particular event is simply the ratio of the
number of points in the event to all possible points. For sample spaces
containing an infinite number of points, 2 more sophisticated approach
is required.

The union of two events A and B is the set of sample points which
Lelong to A or to B or to both, and is denoted by

AlUB or BlJA

The int2rsection of two events A and B consists of the set of sample
points which belong both to A and to B, and is denoted by

INRE: or 8{la
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A probability measure may be assigned to the set of events of a
sample space 1t the tollowing axioms hold:
{1) To each event A, a probability P{A) is de“ined by a non-negative
real number depeanding on A such that 0 < P(A) < 1.
(2) £ A and B are events, then AUB and AN B are events.

(3} There is a mcst gencral event, say G, which includes all other
possible svents.

{4) For the most general event G, P{G) = 1.
{5) If A and B are different events with no po:nt in common, then

P(AUB) = P(A) + P(B) (4. 28}

For the above case, the probability measure is said to be additive. For

the general case where A and B may have overlapping points,
P(AUB)} = P{A) + P(B) - P(ANB) (4. 29)

4.3.1 Cne Randoum Variable

A random variable R(k) is defined as a real-valued point function of
k, where k is a point from the sample space. That is, a random variable
R{k) represents a real number between -oo and +o whicl "= associated to
each sample point k that might occur. Stated anothe: way, the outcome
of an exper: nent, namely k, can be represented by a real number, namely
R(k). For historical reasons, this ;umerical random outcome is called
a random variable.

Let R(k) denote a certain random variable, then for any fixed number
~, the random event, R(k) <@, is the set of possible outcomes k such that
R(k) <a. In terms of the u-;xderlying probability measure in the sample

space, one may definc a {first-order) cumulative distribution function

PR(a) as the probability which is assigned to the set of points k satisfying
the desired inequality R(k) La. Observe that the set of points k satisfying
R{k) <« is a subset of the totality of all poirts k which satisfy R(k) < co.

- -

In notation form

pR(a) = Prob [ R(k) <a ] (4. 30)
k : =
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Clearly

PR(a) < PR(b) if a<b
(4. 31)
PR(-G’) =0 H PR(co) =1

For example, let the sainple space consist of tosses of a single
coin where the two possibie outcomes, called heads and tails, are
assumed to occur with equal probability (1/2). Thke random variable
R/%) for this example takes on only two discrete values, R{heads) and
R(tails), to which arbitrary real numbers may be assigned, e.g., let
R(heads) = a and R(tails) = b where a and b are real numbers with, say,
b > a. With these choices for R(k), it follows that the distributioa function

. Pple)

] H a<a ir_._
Ppla) = 1/2 ; acach 1/2.'——'——".

- - ! 1 Y —

i ; e;b PY b T 4

As 2 second example, let the sample space consist of chcosing a point at

random in the interval [0, 1], including the end points. A continuous

random variable R(k) for this example may be defined b, the numerical

value of the chosen point. The corresponding distribution function becomes
Pp(a)

-»a

If the random variabie assumes a continuous range of values (which
will be assumed hereafter} then a (first-order) probability density function
pg(@) may be defined by the differential relation

pR(a) da = Prob{ a@ <R(k} <a + da] (4. 32)
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Note that

pgpley> 0
{4 33)
’ pR(a)da =1
-0
a dpP _(a}
R’ ‘s
P_la) = ,Jp pgplel o H = pglal
-w da

The probability density function pR(a) should rot be confused with the
{cumulative probability distribution function PR(Q).
Suppose K = R{k) takes on values in the range - to +. Then the

mean value (also called expected value, average value) of R is given by

the Limit of the sum of assumed values when each value is multiplied by

its appropriate probability of occurrence. That is,

N 2 _
E{R} = lim 2 a Prob [ Rk} =a;} =J‘ apn(ﬁ‘)dﬂ =R (4. 34)
Mo iz} ) : -3

Similarly. the exgected value of any real singie-valued continuous function

g{R) of the random variable R is given by
w
E [g(R}] = ,_r gia} pgla) da - g{R) (4. 35)
)

. 2 . .
In particular. for g{R) = R, the mean square value of R is given by

2 2 >z
E {R ] = -ma pR(a) dx = R {4.36)

and the variance of R is defined by the mean square value of R about its

mean value, namely by,

o%(R) = E (R - ®)°] = R® - ®)° (4.37)
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By definition, the standard deviation of R, deaoted by o, is the positive

square root of the variance. The standard deviation is measured in the

same units as the mean value.

4.3.2 Two Random Variables

Consider next two randorn variables R = £{uj aad S = §(v) where u
and v are points in a suitable sample space. Let PR(a) and PéB) be the

distribution functions associated with R and S respectively. The joint

(second-order) curnulative distribution function PR, s(R.B) is defined to
be the probability which i1s associated with the subset of combined points
{z. v) in the sample space satisfying the inequalities R(u) <@ and R{v)< 8.
The total set of cembined points {u, v) satisfies the inequalities R{u) < o
and R(v) € . In noiation form,

Pp s(a,B) = Prob {R(u) <@ and S(v)_<_B] (4. 38)
Clearly,
pR. s("mr B) =0= PR. s(al ’m)
Pp, gi-m.0) = 1
As before., assuming the random variables to be continuous, the
joint {cumulative) probability distribution function PR s(a. B) should not

be confused with the joint {second-order) probability density function
PR, g@ B) which is defined by the differential relation

PR s(a,B)cth = Prob [@ < R{u)<e+da and B <S(v)53+dﬁl {4. 39)

Note that
pg gl B) >0

J:: J:: PR, gl@B) dadb = 1
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nLH0

(oo ]
plB) = [ by garam

-on

Two random variables R and S are said to be {statistically} indepen-

dent if

P, gl@: 81 = pple) pgiB} (4. 40)

It follows that
PR' S(a' B) = PR(Q) Ps(ﬁ}

The expected value of any real single-valued continuous function

gi{R, S} of the twc random variables R = Riu} and S = Slv) i< given by

Qo ac
E[g(R, S5}] = f J‘ gla.B) P sia. Sida dd =glR, S) (4. 41)
- Q0 -a0

For example, if g(R,S) = (R -R)(S-S) where R and S are the mean values
of R and S, respectively, this defines the covariance pl(R, S) between R

and S, nramely,

p(R, S) = E[{R-RNS-S)] = E[RS] - E[R] E[S]

0 [+ ] - -
= f f {(a-R)B-S) Pr s(a. 8) da dB (4. 42
- QD -0 v
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A simple relation exists between the covariance of R zind S and the

standard deviations of R and S as expressed by the ineyuality
[p(R. S} | < ofR) o'(S) (4. 43)

Thus, the magnitude of the covariance between R and S ixs iuss than or
equal to the product of the standard deviation of R multiplied by the
standard deviation of S.

It follows from the above result that the normalized quantity

PR, S}
o{R) o{S5)

C(R.S5) = {4. 44}

known as the correlation coefficient, will lie between -1 and +1. Random

variables R and S whose correlation cceiiicient is zero are said to be
uncorrelated. This concept should not be confused with the previous
definition of independent random variables. Note that if R and S are

independent random variables, then

00 e vd
RS] = B @, B) d= dB
mrs) = [ [ aboy o
(e Qo
=f apR(a)dnf Bpg(B) 4B = E [R] E{S] (4. 45)
-0 -

Hence p{R, S} and, in turn, I['(R, S) equal zero so that independent random
variables are also uncorrelated. The converse statement is not true in

general; that is to say, uncorrelated random variables are not necessarily

independent. However, for physically important situations involving two
or more norr.ally (Gaussian) distributed randomn variables (to be defined
later), being mutually uncorrelated does imply independence.

The conditionai probability density function of R, given that § = 3,
(i.e., given that S is between B and B ¢ d8 for small df), is defined by

pR(G'S = B) do = Prob[a < R(u) <a + da| given that 8 < S{v) <B + dB]
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PR ia. 8} .
pR(a!S = e— assuming ps(f:») £O (4. 45)
PgB)
For independent random variables, this simplifies to
pgle} piB}
pglals = B) = RS Pgie) {4. 47}

P8l

in words, the conditional probability density function for R, given S. is

now ke same as the origina: probability density function for R alone.
These ideas may be extended in a straight-forwarc manner :0

handle situations of three or more random variables where higher-crder

probability distributions would be invclved.

4.3.3 Special Probability Distributions

By way of illustration, as well as because of the:r importance to
physical problems, some special probability distributions will now be
described.

{a) Uniform (Rectangular) Distribution

A random variable R is said to follow a uriformn {or rectangular)

distribution over the interval (a <@ <b) if its probability density function

is given by, Ref. [. p 86] s ¥ | PR(a'!
1 ;
pR(a) T em—— : ac<a 53 i
b-a b-af "~
{4. 48)
=0 : otherwise [ 2 —>

The corresponding (cumulative) uniform distribution function is

o Pp(a)
0 _a-a . 5 4
Pgle -J‘m P pl@) do = ;.  acacx

b-a

=0 ; otnerwise

0 a
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The mean value g and the .ariance o? {siandard deviation = o} of
the randern variable R become

ey 7 N _asib
B = [R} = aPR(ar&"b a da = 2
- -2 a

o 2
ol E(R-w = [ @ wlpparan- &2
~o0 12

Problem: Find the probability that R lies in the range[ p-Ao, ¥ Ao
where A is a2 positive numerical constant. The answer here is

Prob{u - Ao <R< g # Ao ] = Merip) (4. 49)

For example, if R is uniformly distributed in the range (0, b). then
p=(b/2land O = (b,l\!lZ)- Now, if A = .G, then

Prob[p - o <R<pu + O’I =57.7%

Orn the other harnd, the value of A suzh that the probability will be 95% is
obtained from

0.95=A(c/u) = k(ZI\,ri;) or Am1l.b65

Thus
Prob{p - 1.650 <R<p +1.65]1=0.95

These numerical vaiues for A are quite differert from values appropriate
to the r.orma! distribution whick follows.

{b) Normal {Gaussian)Distribution

A random variable R is said to foliow a normai (or Gaussianj
distribution if its probability density function is given by. Ref. [! P- 93] .
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where g 15 any rzal constant and o s any positive constant. It 1s verified
casiiy that g and o constitute the mean valuc 2nd standaréd deviation of the

random varizble R since

L+
E[R] :‘Jnm ap e} & =
Dao

» 2
E[(R - ui” ] = i la - p}z pglal da = o’
/-
Pn(a)
The normal distridution funciion is by definition 4
U § St
i E{Ht 2 2 o
Ppie) - ! expl-(@ - uj" /207 ] d
sy2r J-»
A 0.5
: Prob[ R< a] (4:-”/.

and 3 readily available in statistical tabies 0 -

Using simple numericai methods. or from tabies. it is now con-
ver.zen? luo determine the probability that the random variable R will

assume values in any desired range. In particular

P

Rﬁxi Ao} - pR(" - 10} =Prob[p— Ao <R<y + \c]

represents the probability (1. e.. confidence level) that R will be within
plus and minus A standard deviations of the mrean vaiue. For A =1, 2, and
3. the confidence results are 33. 3%, 95. 4% 3nd 99. 7%, respectively.
Working the other way. for B0O% confidence A = 1.3.

-
7
Ay
-
-y
‘2:
>
o
.
[
e




For « jJarge positive constant A. one may skow for 2 Gaussian
distribution that

Frob [R >g ¢ Ac]es i o 12

P

In particular, for X = 3.
Prob [R > + 3 jss 0.002.

The importance of the normal distribaution in physical probiems
may be attributed in part to the Central Limit Theorem which asserts
that this distribution is approximnited closely by the distribution of the
sem random variabie of 2 Isrge number of independent small random
variablzs acting togetker.

To be a bit more specific, letR,. R,, ..., Ry.be N metually
independent random variables whose individual distridutions are not
specified. Denste by u; and o’f the mean vaive and variance of each R,,
t=1. 2 .... N. Comsider the sum rardom variabie

N
R:= 2 ‘ini

i=}

where a. 2re arbitrary fixed constarts and assume that none of the ‘ini

contributes significantiy to the sum.

2

Now, the mean vaiue p and variance
o” of R become

N N
v =E{R] = E (‘?:"1 ‘ini) = i 3 B[R] =) am,;

i=1 ¢

ate

-

-

2l ot
1 T 1

N
2 2 2
o = E[{R - )] = Ef :4 aiR, -p)]° = 2
the jast result due to the mutual independence of R, with Rj fori#j.
The Central Limit Théorem states that under fairiy common conditions,
the sum random: variable R will be zormally distributed as N—» o with
the above mean value u and variance o*z. see Ref. {i. p. 977_
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Normal Distribation

& rzndomn vamable X 15 3218 10 £LlinT & truncated normal Srgiribetion

i the range @ < & if wis probabiiity deasity funciion i given by

. ?ggif
:"R'QE = exp f-te - g} £2071 - «<A 45
- i
7 Cy2s £ \
&
4358 } :
£ 0 : 2> A H
- / g *
3 A o—p
where
t Fa
Commee e i-"ﬂ'-,:°§.€r§&
sgiz o

The rexsos for irireducing the constant £ is 1o satisfy the sevsirement

Oy scrve that to the icfl 2f the salce @ = &, except for ko scale factor G,
the fruncaiced mormal diriribulion has the szmne shaze as the original
unirancated tormai distributlion. The zaramelers g 302 I here do st
represent the meas value and standard deviation of lhe truncated distrs-

bytien. but refer Dack o the underiyving untruncaied distribution.
{8} Rayleigh Disiribulion

A rardom variabie K which 15 restrictes (o nen-negative valu~s §

saié to follow a Rayicigh disiribulion :f :ts probability density funcuon 33

i -I -
gwven by Ref 8. p i3é!
»

rl

(X1

2 »
pylo) - iﬂ'.‘vg’! exp (-0 f2v") : >0

" ; o<t \_

5i o —>




Tke Rayleigh disiribation skould noi be coxfuses withk 2 Gavssiaz distri-
sutics wEors the random variabir mmzy take ox botk posilive and negative
rvzizes.

The carrespondicg Rayleigh &iatribation fesction is gives by

PFM
?aiaisyrﬁbgastlz E -cx?(_-.z;,zrz‘i i
{4.55%;
& )
Tor & Rayleigh distribatize. thi mean valut and mean spwmre valse are
P
. £ s . iz
EfR]=] eopyieide={=iZ} “wm]1 25
Eg
roo
2, _§ 2 2
EER l:éo & p‘pﬁﬁszv

Hezce the »ariance is pow expressed by

i- g‘i‘!‘?a = {‘;’} o= 0.0300

{e} N-Dimensiona! Normal Distribction

Let R,. iz. cnes !‘.ain N random sariabies defined over the same
sample space. Dezote their mear valzes, variacces, aad covariaaces by

By = H2]

2 z.
o, = H(R, -p])7}

L0
.y
(1]
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Thesr cormbined Sisiribgizer 1f s3:df I Be 2an N-Emmensronx] 2orrnal

i

£:384 tBstnee if thie associated M-falé probabiiny Semsily foociios iy
b oS
£ Fa

iS5 3
bt o ’-”f’, Bl

et b et i | . 588
-~ & .. . '; A - A

where (M is the covartzace matrix of the 5 facs s the determinant
of fiazjl. ams AL, s the cofactor of p; == étsg-m:szsg M. To brmore
expir,

z’;a Pz Pie
z_.z =z <
EMg - ?2 L T LA 3.5
i’ai oz " Pun
o tha cofretor B esf.;..— eizera s ;_; 13 Sclimed £0 Be the determminse:
wf erder -1 %ﬂﬁeéb-‘m-ﬁs:g the .!h rom awd Mk colume of i&l
£z

svlfniced By £- 85
Thr ocxtstaniing fextzre of tRe N -disnresional noremal diztlrihatiss
35 thal alf of 25 woperiics are determmed valelr {mom knoniedge of the

varsoms mean vaices g and covarnasces p . For & I e alcue reduces w

! 2,2 5
playp s ——== cxp|-w#, - g, iy (4.58
a‘g-é.!s

=iick 15 the sesai one-dimensional normal fistributzon deflined presio=siy.

Feor XK= 2 there ressits

L= — }
3 »

= a\2 ) i AT

IS ot Sk WPPRN o Sl o - WO i S A B D

o*Pr T ii e ¥ 1 }n ii H

M, @, {4 -500 5 A\ Ao/ e /)

3 . - £ -

it S~ >
3 -
rid ¥ b rh,

(4.59)




%12
where [0, ., = ~——o
er o o

is the correlation coefficient between R1 and RZ‘
172

Observe that when R1 and R2 are uncorrelated sc that ri?. = 0, one obtains
playa,) = p(x,] ola,) (4. 60)

which shows that Rl and R2 are also independcat.
Similar formulas may be written down for highe: order cases
where N = 3,4,5,... etc. For arbitrary N, it follows quite easily that
if all different pairs of normally distribution random variables are mutually
uncorrelated, (i.e., rij = 0 whenever i # j), then these random variables

are mutually independent in the probability sense, that is
- 1
p(al azr LICIR ] aN) = P(al) P(Qz) e P(QN) (4- 6‘)
The importance of the N-dimensional normal distribution in physical

problems, analogous to the common one-dimensional normal distribution,

is due in part to the Multidim=2nsional Central Limit Theorem. This theorem

yields the result that the vector sum of a large number of mutually inde-
pendent N-dimensional random variatles approaches an N-dimensional
normal distribution under fairly general conditions. Particular applications
of this theorem, relative to zero crussing properties of random records
and expected number of maxima values, for example, may be used to justify
an assumption that a random record x(t) and its succeeding time derivative
x#(t) will follow a two-dimensional normal distribution, and that x{t), x(t)

and ¥(t) will follow a three-dimensional normal distribution.
(f} Distribution of Suins of Independent Randcm Variables

Suppouse R1 and Rz are independent random variables with probability
density functions pRl(al) and pRz(a 2.) respectively. Let

R = alRl + azRZ (4. 62)
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be a typical compos:ite sum record of Rl with RZ where ay # 0 and
2, # 0 are arbitrary fixed constants {usuaily known in engineering probiems).

Ther the prcbability density function pR(a") associated with R is given by
®
pR(a) :f pRI(al} PKZ[ (@ -a, al)/aZ] de; 14. 63)
-

For the speciai case where R = R1 + RZ' that is, a; =a, =1, one cbtains

s o
pR(a) =£m pRI(al) pnz(a - al) e.ar1 {4, 64)

From the 2bove relaii:on, one may verify that the sum o1 iwo
independent uniform distributions is no longer 2 uniform distributisn.
Hcewever, the sum of two independent normal distributions remains a
rormal distribution, with mean and variance equai tc the sum cf the
individual means and variances. The latter result may be extended to

the sum of N independent normally distributed random variables.

4.4 RANDOM PROCESSES

A random process{kx(t)} , o<t <cw, k=1,2,3,..., is an ensemble
of functions of time which can be characterized through its statistical
properties. See Figure 4. 2. In the physicz! world, each particular kx(t).

t variable, k fixed, represents the result of a single observation or

experiment, and constitutes a sample function of the random process.

For example, each kx(t) might represent vertical wing loads on an
airplane as a function of time t, the superscript index k denoting
different airplanes; or each kx(t) might represent runway roughness at
different locations k as a function of distance. the distance variable
taking the place of time.

A particular sample function, in general, would not be suitable for
representing the entire random process to which it belongs. Under certzin
conditiong to be described later, however, it turns out that for the class
or ergodic random processes, it is possible to derive desired statistical

ir.formation about the entire random process from appropriate analysis
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Figure 4.2 Random Process

of a single arbxtrar)' sample t'uncnon For the situation of a pair of
random processes ! x(t); and y(t) . the corresponding problem is
to estimate joint statistical properties of the two random processes
Irom proper analysis of an arbitrary pair of sample functions k:t(t)
and y(t)

Consid:r two random processes{ x(t)} and {ky(tg . The first
statistical quantities of interest are the mean values at arbitrary
fixed values of t, denoted by

p.x(t) =<x(t> Av over k H t fixed

;‘y(t) =<V“) Av over k : t fixed
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Note that k is averaged out in computing these ensemble averages which
are indicated by angular brackets. In general, these mean values are
different at different times, that is,

ﬂx(:—l) £ Fx{tz) if ty # t,
py(tl) 2 py(tz) oty f t,

The next statistical quantities of interest are the covariance functions

at arbitrary fixed values of rand t,

-

ptr 1 = (50 - u 0] [Mxte s 1) - ge 2]

7 Av over k

k .y rk ;
py,(-r. t) =<{ y(t) - py(l’] [ yit+7)- py(! # 1-)]> {4. 66)

Av over k

N\
Pyt 0 [ xtt) - 0] [ “yit+ 1) - p (s ]>

Av cver k

In general, these quantities are different for different combinations of
T and t. Observe that at 7 = 0, (omitting the index k for simplicity in

notation, but still retaining angular brackets to imply ensemble averages)

p00.0 =(fxtn - n 015y = 0B
r 2
pyl0. 1) =/[ ylt) - p(v)] >_w =0t (4. 67)

B ,10- 11 = xtth - p L[y (0 - w0 2‘ e

Thus the covariance functions px(O. t) and p (0,t) represent the ordinary
variances of {x(t)} and {y(t)} at a fixed value of t, while pxy(O. t)
represents the covariance between {x(t}} and {y(t)}. As before, different

results would generally be obtained for difterent values of t.
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Other stalisticai quantities can be defined over the ensembie which
involve fixing three or more times, and in this way, the random processes
can pe described in finer and finer detail. However, if {x(t)}. 1y{t)} form
a two-dimensicnal Gaussian distributicn a2t a fixed value of t, then { x(t)}
2ud {y(t)} are separately Gaussian. The mean values and covariance
functions listed above then provide a complete description of the under-
lying probability structure. For this reason, tiie main emphasis in this
sectin is concerned only with these two statistical quantities and their
relationships to power spectral density functions.

If the mean values (t) and py(t), tcgether with the covariance
functions Py {r.t), Py (7. t), pr‘T' t}), yield the same results for ali fixed
values of t \that xs. are independent of time translatxons\ ., then the
random processes { x(t)} and ‘y(t)} are said to be weakly stationary.
if ail possible probability distributions involving {x(t)} and {y(t)} are

independent of time translations, then the processes are said to be
strongly stationary. Since the mean values and covariance functions
are consecuences only oi the first-order and second--order probability
distributions, it follows that the class of strongly stationary random
processes is a subclass of the class of weakly stationary rarndom proc-
esses. For Gaussian random processes, however, weak stationarity
implies strong stationarity since all possible probability distributions
may be derived from the mean values and covariance functions. Thus,
for Gaussian random processes. these two stationary concepts coincide.

Random processes which are not stationary are said to be nonstationary.

4.4.1 Correlation {Covariance) Structure cf Weakly Siationary
Random Processes

For weakly stationary random processes, {x(t)}. {y(t)}. which will
be considered from hencefcrth, the mean values beccme constants inde-
pendent of t, namely,

(4. 68)
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For simplicity, and without loss of generality, it will be assumed
from henceforth {unless stated otherwizc! that these mean values
are zero,

The csvariance functions for weakly stationary random proc-
esses are also independent of t, and with zero mean values, may
be designated by

Rx(ﬂ = <:(t) x(t + ﬂ>

Ry(f) = Q(t) yit + 'r)> ; ny(o) = a': (4. 69)

R, (7} = ét) ylt + ﬂ> i R (0=p_

where R is introduced instead of p to agree with engineering usage,

R (O} = o=°
x x

For non-zero mean values, R is different from p. The quantities

Rx(r) and R (1) are called the autocorrelation furctions of [x(t)]

and { y(t)}. respectively, while R_ {7) is called the cross-correlation

funct‘ion between {x(t)} and {y(t)]!.
For arbitrary values of B and “y' the covariance functions

are related to the correlation functions by the equation-

2
Px('r) =R (1) - B

2
= - 4,70
py( 7) R’y( Hn-g y { )

ny(f) = ny(f) T e By
Thus, correlation functions are ider‘ical with covariance functions
when the mean values are zero, The reader should be careful not

to confuse these un-normalized correlation functions with the corre-
lation coefficient defined in Equation (4. 44).
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Frem the siationary hypothesis, it follows that the autocorre-

iation functions Rx(f) and Ry( 1) are even functions of v, that is

R (-7} = R_[7)

14.71)
R.(-7) - R {7}

while the cross-correlation funclion is neither odd nor evern, but

satisfics the relation

{-<) - v. ('r) (%.72)

XV

An upper bound for the cross-correlation {(autocorrelation)

function is given by the incquality
Inxym' < 2_(0) R_(0) (+.73;
the cqual sign scurring only if the two processes are identically

cqual to cach other and to a constant, a trivial case. Hence, a

ncrmatized correlation coefficient r'xy(ﬂ may be defined by

R (<)
[T L. SR (4.74)
" xy V‘ R (0) R_(0)

such that I“ (f) lics Yetween -1 and +5i. The coefficient I™ (1')
measures 'hc degrece of lincar dependence between {x(t)} and
[y(l)] for a displaccment v 1n ly(l)}rehtw: to lx(!)}. The reader
is cautioned not to confusc this concept with the previous definition
in Equation (4. 44).

ir summary, the covariance structurc of weakly stationary

random processcs {x(l)} . {y(l)}. assuming zero mean values,
rd
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may be described by the four correlation functions Rx(r). Ry(ﬂ,
R‘yi 7} 3nd Ryx"" These need be calculated only for vaiues of

T > 0 since s;mmatry properties listed above, Equatione (4. 71)
and (4. 72), yield resuits for v <0,

4.4.2 Sgectral Decomposition of
HAalionary Random Proccsses

The spectral decomposition of arbitrary random processes
[x(t)} , a collection of time functions, (the superscript index k
oritted for simplicity in notation), depends upon the requirement
that each particular member of the random process x(t), a sample
time function, have a complex Fourier transform X{f), where {
denotes the frequency, (usually cps), such that

w0 .
X = f x()e 1Pt & =V (4.758)

and conversely.

[+ ] -
(Y) = f x(neI* ™ o (4. 750)

A sufficient set of conditions for this tc occur is that x{t) and its
derivative x(t) be piecewise continyous in every finite interval (a,b)
and that | x(t)| be integrable over (-, ).

Similarly, every y(t) from an arbitrary random process
[ y(t)] must have a complex Fourier transform Y({f) where

[+ ] -
(s = f yl)e 32" g (4. 76a)
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» QO -
HOE f (e iy (4. 76b)

-G

Tkus, the original pair of real random processes {x{t)},{y(t)} may be
described in terms of two new compiex random processes { X{(f}}, { Y(0}.

Exampls: Speciaf c2ses of a constant and a periodic function. I x{t} = i,
a constant, then its inverse Fourier transform relation

L J .
i =uf‘ X(ﬂe)z‘ﬁdf

Xify = 8(f)

where 6(f) is the usual Dirac deita function. Also, if x{tj = 2708, 4

compicx-vaiued periodic function. then

jest t E -
e 9] . f X{ﬁe’zﬂtﬂ
-

Hance

®  2x(f-f)
i-= f Xifje e
-0

r® jeept
’i.,,’“"”o”’ du p-f—fo
which yields
X{u + toi = §{g)
or
Xif) = &(f - foi &
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Now for
° jlmigr  -j2eft
xc€=§ = ¢cos Ixf,: =(E;’Z§[e L ]

it follows tat

X_(£) =(iF 21 84f - £g) = BUf = £}
Stmiiarly st -j2sfyry

xsl,’:) = sin zziat =(!!Z{: -e j
anc

X_i6) = 2inf
This concludes the exampic
i { x{t;} and { yit}} Bave zero mean values, whick is assumed kere.

it foliows that the ensomble averagses

Gy -0+ Gy

Sirce x{t} is real, i may be expressed 1n terms of the compiex

conjugate Xif) by .

xine | xne T 4
S
Now. the sguarc value
F (&,m -o‘ _m -
= - | Xifie et 4 f Xig)ed 278" 4¢

-IXp -

~ao o EX3 - -

I 7 50 a0 o o

aO -

using a variabie of integralion g instead of f in the second integral to

avoid confusion The ensembie averaged value of xz(!! is thus given by
A : ~
GO /35 xig)y S og «
Voo Y s’

From separate considerations. the power spectral density function

Sx(z'} associaled with the random process {x{ﬂ}. where { ranges over
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{-oo. ®@). may ko dofinet by the relxticn

o
> f S0 & (4.78

whick indicates how 4:2(:> is distributed over the doubly-infinite
frequexcy range (-00, oj. Iz particelar, Sx(!) di represemts the
amouart of "power” i xz(“> Ivirg ir the frequency range if, { + &f)
scthat S (ﬂ is real and ron-negative for all f.

S-ng these [ast tw0 cC:ations for <x (!)> must be equivaient,

one obtains
oo .
si- | é('nx(>e"2""“ -
AL N (4] & (%.79)

wirick is satisficed by the requirement that

<x'it') X(:> :S 0 81 - g) (4.30)

where f - g} is a delia function defined by

Bf -gl= O mhenifpg

- (4.81)
f e -g)dg =1
-

The above discussion helps to justify the fact that one may
prove irom a deeper direct 2ralysis (noi deveioped here) that pairs
of complex randou: variables Xif). X{2). Y(f). Y(g) satisfyr the re-
lations
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G x> = s 0 s -
@ Yig)) = 5. 8if - g (+.82)

écm ‘-'!&.> z Sx,ﬂ! f - 22

where Sx(l) and Sr(n are c::luf the power specisal densivy fanctizss
of the random: processes (x(t)! and {y(t)}. respectively, while
S__(f) is calied the cross-power spectral deasity function of {-m}
s {ﬂli}_ The irequency varizhiz { ranges over (-, @).

it is now guile simpie to drerive the correspondence between
these spectral deasity functions and the statioxary cerrelation fenc-
tioas Rx(ﬂ. R!jﬂ. l“(v). The resuits are

L -2 -
_ i i
R (7 = I 5 i &

re j2ut
R!(f} = J.@ S"(Gt’ Taf (4.83}

. j2eir
R, (- Ln s,,me’ o

proving that the concepts are Fourier traasforms pairs. Cease-
quertly. the inverse relations yield

[ -
sx“) s f Rxh'k."""ft dr
-~
484
. . ¢ )
5.if - f R (e 2% 4y

: o
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* o j2=fr
S!}_gﬁ = ) Rx?!‘.')t 2 (4. 836}

No suck simple reiationships exist for ncnstationary correlation
functioes.

From the symmetry proporizcs of staticnsry correlation
functions, it foliows that

s -9 =540
S -0 :5 @0 (4.85)
s U053 =5 0

Simce Sxif) and S}_(‘) are also real and mom-megative for aii f, this
proves thal power spociral dessity fenctions are real, aca-acgative,
even funct:ons of {, while czoss-power speciral density funclions
are complica-vatued fonctions ef £,

T =" -

TR ZWirr relations for the reai-valued power speciral density
fanclivns Sx(ﬂ a=d S;:f) niay be simpiified 1o

s .
sx(n g ’ Rx(ﬂ cos 2rivdr =z 2 R;‘Zﬂ cos 2eir dr
-

Je
(4. 35}
D Al
S (f} = KR (1) cos 2efrdr = 2 R (1) cos Zxfrdr
¥ > ¥ Jo ¥
while
R(ﬂ¥2‘ S if) cos 2ufr di
x x
b

{4.37)

!‘m
R (7= IJ S {f) cos 2=fv &f
¥ o ¥
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This fast resalk showns that [or the physically reziizable positive
{remmency ramge ahere f varies ocly orer (8. oo}, the guantities G‘(Q
Py Gy“:‘ Zefized by

> ifs = - [ ] §
Gin=25(0 : @ Cim

{4-83)

4]
S
"
[
th
L
-

6 f{

represest the physicaily reajizablie power spectrai densitly functisns
associated with [ et} 226 [5{0)] respactively. For math-matical
caicaistions. the wse of two; fod power speciral density fonctions
Sx!ﬂ. Sr!(), defined over (-, @i, 224 expiaeatizls wilk inagisary
exponeets, frreaestly smmplifics the analysis. ix acteal practice,
ofz measares Gxtﬁ md G y(!). defined over {5, i, Thr reader s
castioned not 1o confuse these guaststies. iz terms of the physically
realizable power spectra; Jrasity fenctions G!(ﬂ and G!(ﬁ. the
zorrespondance with the stationary corrciation fsnciions K '!ﬂ asad
i.!j!% becomes

-
Gx(ﬂ s "i R;(ﬂ <os Zvir dr

- 4.2
G“)=4j R {7} cos 2wiv dr
¥ [y ¥
while
o0
l‘(f) =J; me cos 2vfs &
Nes (4.99
arm = Je G (D) sin 2ef+ o
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For the complex-valued cross-power spectral density functicn

Sxy(f). and the cross-correlation function ny('r). one finds

@ ao
Sxy(f) = J:‘ ny( 1) cos 2nfrdr - j I ny(‘r) sin 2%fr dr

o) a
{4.91)
o) ‘oo
Ry (7 = I Syl cos 2ntr i+ 5 I L Seyll vin 2eir s
Now, define the real and imaginary parts of Sxy(f) by
S =C_ (% -i
xy(f) xym 3 Qxy(f) (4.92)

where ny({) is called the co-spectrum of x to y and Qxy(n is called
the quad-spzctrum of x to y. Observe that

[0 ¢]
G, 10 = f R, (") cos 2xfrdr = C, (-0

w

- (4.93)
Q, (0 = f nym sin 2xfr dr = -Q_ (-1

@

so that ny(f) is a real-valued even function of f, while Qx"(ﬂ is a
Y

real-valued odd function of £, From the symmetry reiation

ny( 1) = R_ix(-r), it follows that

(D ¢ b
- ® =1 .
ny(f) —u 0 LR"Y( 1)+ .;yx(-r)‘ cos 2nfy dr = z[Sx)_(f) + sxy( f)]
{4. 94)
M , 1 .
Qxym =u o bRx,i,(‘r) - Ryx('r)- sin 2nfv dv = -%[Sxy(f) - Sxy(-i)]

These relaticas will be nceded later in Section 6, 2.
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From the above discussion, ore sees that the spect-al de-
composition of the stationary random processes may be described
by the three functions S (f), {£), sxy(ﬁ’ or by the four functions
S (f). S (f). C (f) and Q (f'), which need be calculated only for
f ) 0, sxnce the symmetry properties, Equations (4. 85) and(4. 93),
yield results for £ <0.

Analogous to the definition of the normalized correlation co-
efficient, Equation (4. 74),the coherence function y:y(f) is defined
by
| Sy
v f) == {4.95)

’ 5.(f) Sy(f)

Since the cross-power spectral density function sxy“) may be shown
to satisfy the inequality

2
'sxy(ol < S () S, (0 (4. 96)

it follows that the coherence function lies between zero and one,
and is a measure of the linear relationship between {x{a’)} and
{y(t)} at frequency f.

Certain authors prefer tc use angular frequencies w = 2vf
in place of cyclical frequencies as is being followed in this report.
This can lead to considerable confusion in factors of {2s). A
desire to preserve

o0 [+ o] ~
R (0) = f . S (D df = I . 5 (w) dw

shows that for consistency, one must have

S () = 2% S_(w) (4.97)
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Sirmilarly,

fj= 2% S lw
Sy{ ] Sy_u}

Sxy(f) =2 S’ !(a)

4.4.3 Ergodic Staticnary
Random Proce<ses

Consider two weakly stationary random proccsses {kx(t)}

and ky(t)] » k vaciable. and two arbitrary sample fenctions

x{t} and “7{t}. k fixed. These stationzry random processes are
said to be ergcdic if the mean values and covariance {(correlation)
functions, {(or spectiral density functions), which are defined by
certain ensemble averages, see Section 4.4.1.may be calculated
by performing corresponding time averages on the arbitrary
sample pair of functions. In this way, the underlying statistical

structure of the weakly stationary random processes may be de-
termined quite simply from an available sample pair without the
need for coliecting a considerable amount of dzta.

T2 be more specific, it is necessary to intrc-:2e some
m:athematical notation. The mcan values of k:c:(t) and ky(t).
k fixed, when computed by a time average are given by

T/2
ky = lim 1 f ko(t) at
x
T—woTUT/2

T/Z
Ky, = lim 1f kytt) dt
Y TeaTuU.T/2

Observe that the answer is no longer a function of t since t has

(4.98)

been averaged out, In gencral, however, the answer is 2 function
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of the particular record chosen — hence, the usc of the param-
ater k.
. . k k
The cross-covariance function betwesn  x(t} and "y(t + 1)

when computed by a time average is defined by thc expression

T/Zr 1
k . 1 k A

p._{1) = lim —f o x(t) i
4 T2 L ““j

T —» @

i

r k
i yit + 7) - py]dt

(4.99)

while the autocovariance functions are d=2fined by

T/2
k _ . 1 k k k , k
px(r)-Tlmme;/z {x(t)- “x}[ xit + 1) - px]d!

(4. 190)

T/2 :
k - 1 k k k k
(= Iim - [ (v) - ][ {t+ 1) - ]dt
Py T o T J1/2 Y ¥ ¥] ¥ T vy

These quantitics should now be compared with the previously
defined ensemble mean values p < M and casen :I: covariance
functions pxh)' py( 7). pxyh) for stationary rarndom proccsscs,
Equations (4.68) and (4.70).If it turns out ti:at independent of k,
{with the possible cxception of a sct of sample functions of zero
probability)

. (4. 101)
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%o (1) = p_(2
k =

Pyl7) = p (1) (4.102)
kpxy(f) = Pryl?

then the random processes { x(t)} and (y(t}] are said to be weakl
ergodic. If all ensemble a:eraged statistical properties of | x{(t)},
[y(t)} , not just the mcans and covariances, are deducible from
corresponding time averages, then the random processes are faid
to be strongly ergodic. Thus, strong ergodicity implies weak
ergodicity, but not conversely. No distinction between these con-
cepts exists for Gaussian random processes.

For an arbitrary rancom process to be ergodic, it must first
of all be stationary. Secondly, each sample function must be re-
prezentaiive of all the others in the sense described above so that
it doesn’t matter which particular sample function is used in the
time averaging calculations. This restriction serves to eliminate
many stationary random processes from being ergodic. To repeat,
a stationary random process may or may not be ergodic.

There are two important classes of random processes which
one can staie in advance will be ergodic. The first ergodic class
is the class of stationary Gaussian randora processes whose power
spectral density functions are continuous. That is, no sharp lines
(delta functions) appear in the power spectra corresponding to finite
amounts of power at discrete frequencies. The second ergodic
class (a special case of the first class) is the class of stationary
Gaussian Markoff processes, a Markoff prccess being defined as
one whose relationship to the past does nc! extend beyond the im-
mediately preceding observation. The autocorrelation function of
a stationary Gaussian Markoff proces« may be shown to be of 2
simple exponential form.
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4.5 STATISTICAL YROPERTIES OF ESTIMATES

Consider, first of all, the statistical properties that should be

possess=d by any set of estimates. Let {kx(t:l}. -00<t<w, be a real sta-
tionary random process where k=1, 2, 3, . . . , (perbaps even

uncountable) denotes the differcnt numbers of the random process.
Suppose that z is the true value of an unknown parameter of the
random: process lkx(t) s €.g., its mean va.iue Or its power spectrum.
Suppose *that z(T) is an estimate of z obtained from a mez*»rement
made on a particular finite sampie kx(t) of the random process ex-
tending only over 2 finite time period from 0 £ t { T. How should
these different possible kzl_t) be related to z. For esse of notation,
the superscript index k will henceforth be omitted, and expected
values (averages) are tacitly understood to be taken over this index.
It seems fairly obvious to start with that, on the average,
2({T) should yield the trve value 2. in other words, for fixed T, if
one takes an ensemble average over all of the possible z(T) that
might occur, then this procedure should pivi z without any error.
A set of estimates having this property s -4id to be uabiased.
To be precise,

Definition 1. A set of estimates {zm} is said to *7 , hiased if,
indepradent of T, the expezted value is the true value, that is,

Ez(T)=2 {4.103;

When this occurs, z(T) is also said to be an unbiased estimate
of 2.

For a fixed T, the mere fact that the expected value of a set
of estimates [zm} is unbiased does not imply that any particular
z(T) will lie close to the true value 2. There may in fact be wide-
spread deviations from the true value. Furthermore, it may
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happen that these deviations do not decrease as T is increased.
To analsze these cases, for 2 fixed value of T, the mean square
error is dziined as the expected value over the set of estimates
f the square of the deviations from the true value, naniely,

—r s 2
E|=Ti - z} (4. 154)

The expected value above represerts an ensemble aver<ge
over the various possible [z(‘n - z]z occurring from different
finite sam;-lcs z(T) of the random process. It appears highiy de-
sirable, iror- a physical point of view, to require that this mean
square error should approach zero as T kecomes large. Thes,
for large T, any particular estimate of z{T) would necessarily
'nd to closely approximate the true value z. Estimates having
this desired property are said to be consistent. in more precise
terms, one writes

Definition 2. A set of estimates [z(‘l‘)} is said to be consistent
if

tim E[(T) - z]" =0 (4. 105}
T

When this occurs, z(T) itself is alsc said to be 2 cunvistent esti-
mate of z.

Observe that the mean square error

E[sm - z]"' =E[«T - ExT) + E =T - z]z

2
(1) - E2)) + [E uT) - 5] (4.106)
since the usual middle term has a facter equal to zero, namely,

E[z(‘l‘) -E t{’l‘)]: 0
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Thus, the mean square error is the sum of two parts: thar variance

for square of the random error) of the estimate as given by
2 2 4 2
o [z(T)] = E{z(T) - EzT)] = E[2(T}] - [E 2(T)] (4.107)

and the square of the 2ias (or systematic crror) of the estiznate as

given hy
[b z(T)Ez = [E z(T) - zlz {4.108)

It wili be demonstrated ix Sections 4. 82 and 4. 383 that great care is
required to insure that both the variance and ike bias wili approach
z:ro as T becomes large when estimating (i. ., measuring) the power
spectrum and cross-power spectrum.

4.6 MEASUREMENT OF MEAN VALUES

The following discussion is now concerned with estimating the
mean valuespx. p_ of 2 pair of (weakly) stationary random processes
{x(t)}. { y(t)} by performing a finite iime average cn arbitrary continuous
sample funciivns xitj and y(t}), which are known only for a finite time
interval 0 <t < T. By assuming certain commonly satistied conditions
for the autocorrelation functions of the random processes, it is shown
that the estimates in guestion are unbiased and consistent.

The same analysis covers measurements of either B, OF Py
Consider z(t) as representing x(t) or y{t). Suppose that a single sample
record z{t) from a staticnary random process { z(t)} is averaged only
over a finite time T. Define the sample mean value estimate by

T
m('r)zl.r‘f; 4.0 dt (4.109)
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Then

e

- pr . 0T
s:::m:s[ z{t) dt =ff E 3(t) &
vo o

-

T
p&E=g (4.110)
(8]

where the true mean value ; = E z(t} is independent of t. Hence,
m(Tj 15 an uazbizsed estimate of & .

For simplicity and without loss of generality, it will be
assumed unless stated otherwise that the mean value i =0,
Now, the mean square error over the set of *stimates {m(‘r)]
becomes

E[mr) - |7 = E[mm)}? - w2 = Efmum] (4.111)

where
T T
2 1
Efmin)]? = ff Efz(w) 2(v)] du &v 12
)= 2y Jo ] (- 112)

By definition, the autocorrelation function R{v) for a stationary
random process | zm] is defined by

Ri(7) = Efzlt) 22¢ +r)] (4.113)

From the stationary hypothesis, it follows thit R{v) is independent
of v, and an even funclion of r with 2 maximum at v = 0. It will be
assumed that R{7) is continuous and firite for all values of r, and
that all periodic components in Riy) have been removed at the
outset.
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ndditioral integrability properties satisfied by R(1), waich
will be acede” later, are assumed 1o be

Ioinmlu(o : -P‘u‘mu<.

® J-w

(4.114)
s o 2

f I+] IRI})] dr < f [+l (D ér< ®
- 0D -

Theve conditions are geaerally satisfied in nature, ¢.g., consider
the xponentisl function R(1} = exp (-b] v]) wherep > O.

In terms of an arbitrary astocorrelstion function Rv), the
mean square error, FEguations (4.111) and (4.112), becomes

T T
spumft= % [ e 0 ae
T
={=J; (n-lil,uvur (4.115)

The second expression ov.urs from the first by substituting
rzu-v, dr = du. and reversing the orders of integration be-
tween v and v. Now,

i 'l's[an(‘r)]z f. Ry dr<om 14.214)

provided that R{r} and vR({7) are aboslutely integrabie over (-, @)
to justify passage to the limit inside the integral sign. In particular,
Equation (4. 1]15)ehows that, for large T, the mean sQuare errer
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Bt} I memtes .17

-

Hence H| z:s(ﬂtz approaches x¢ro x5 T azprosches infinly. praving thst
T} is 2 consistent estimale of p.

Example Jwastizing Amplitude Levels.

Seppose pz 0 : M ze ™ aperen:z23>0 4.118
Ther
P -
ol Bl [ Ml 2. L 6. 119
: T > »T =BT

The sarameter B can be shown [Ref. [Eg. Chapter 7} to be ihe positive
rezlizable bandwidth i= cycles per s:cond of 2 Jow-pass (RC type} filter.
wkile Rit] car be interpreted as the normaiized ostput astocorreistion
function from this filter 1o 3 banizifth-limiled while noise input.

From kmowledge of ke sormalized standard devistion or. one may
now decide 1o what egree of refinesrent amplitude leveis should bt quan-
tized. In pariicular. ont cam estimale bow 3ccurately varioss amplitude
valees should be measured. With 68% conflidence. (assumiag 2 normal
distribwtion). mer ‘remasts of a desired mean valwe will be within
& o waits o either side of the true mean valse. Hence, the plus and
mimzz 2llcusaic cquais U fur ¢d% confiCence. Thus. for 8% conlidence,
the sumber of perceptible amplitude values wanld be gives by (1/20)
where & is the normalized standard deviation. For this example where
0% = (1/«BT). aseume BT={15%2). Ther o2as(1710%) and o-as(17100).
Here then. the number of quantized amplitede levels should be {1/ 20050
This concludes the example.

AST TR 614123 4-52




4.7 MEASCREMENT GF AUTOCORRELATION AND
CROSS-CORRELATION FUNCTIONS

The sext statistical guantities of interest are the astocerreistion
femeticas i‘iﬁ- R }_E!?, 2 the cross-correlation famction X_ 73, As
is Section £, & the mran ﬁEats;x -*uﬁépy are zssarmied 1o br zers. For
contizzozs dxtx xft). ¥t} wkick exists cxiy for 0 €1 < T. the sample

Tross-correfation fomctios estimmale RSF(!. T} wiil 3¢ Sefimed by

—
F -F
-—%—,E wxfe) vlc & vF &2 : 0<r<T
L
= (. Tis i i4. 129
T
Eg )
A i amisviEr  :  -T<r<o
kT—Fi ;ﬁ

To 394 cse of absoiste valve signs. v will be comsidered posilive
from: kenceforik ard the reider shezid swpply reguivred simnllar separate
prosls for pegative T  The sarele yswtacrsrreislion fusction estimates
l:!‘!’. T and R‘jf. T3 ars reereiy special cases whea the twe recocds
coincide. mamesiy,

T
x:{r_ﬁi-f—-}g ) xfte it :  d<Tr<T
-t

13 121

N 4
Rir.TD:—— [ Hosrena . oe<rer
¥ T-vr Y0

Thas. by amalyzing the cross-correlation funciion cst:mats. ans derives
resaits aiso for the astocorreistion funclzon ostimates. inm particuiar,
measurement of mesn squire Talwes are preseat in E4. (4. 121} when

r = 0. mamely.

T,
in?-. ey j; x{1) e (4122
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Az cierilir Jrrrige ever the 3¢l of possiblc eslinates
I St T'ii rieids
xy

-
2

1

EIR_ (2T} -5 fr-'r:-( &
fr, - g ¥it + o)
[nt I g 252 P [ ]

' .
ol Ry7T®=R_(% (s.223;

Hence R (v.T) is an axbiased eslimme of K {v)_
¥ _—— x¥

The mean squdre erree here i given by

. -‘£
;ix:!h.n -r_( §

=

. E[l:!!t.ﬂ]- ’x:!(ﬁ

= - 'r" - ‘ z :;
= (T—.v_l!- A \igi [E[!!ﬂ Fize o) x7v) ¥irs ilj- l,!_hljiv ]

(4.12%)

A this pric. o erdsr Stk 19 sierplify thre Inter rathematical
analysis and 37 <0 (= agroe witk mam physicat cases of interest, 2
will be sismned that the randen: proccises i :(a)‘! . ! ﬂs)! are joemtiy
Gaxss:an for azy set of fixed limes. Thes r;nn::ﬁé az; br rraered
by zubstifzting coriaa isteprability sesditions on the sor-Ganssian
> - ~f thke rasdem pracisses withss: Allering in any cssential way
the resaits 1o be dersred. Whea {:gg)]. {fm;- are joimly Gaussian.
it folienrs that | ;m] and [ g{l!; are separateiy Gaussian.

For Gacszias staticadry randomn processes with Tere rmean
aizes, Ihe STMISGICaI cXpression
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E{iﬂﬂiiﬂﬂvjﬂv*ﬂ]:l’z’h’& Riv-dR (-
i!.,:v--*ﬂl“(v—u~ﬂ (6.12%)

Heace, the smean sqguare errvor

T-v T-v
il i [ [ s

- iq{v--i- ] R"{?-i-ﬁ}*k

T-v
|
=3 AN (B (VUL TERT WP
(s.128
The second enpression eccurs from the first by lestingy = v - w.

dy = dr, and thea reversing the evder of ategration betmeen y 3od »_
Neow,

tim TEIR_(r.7)-R mlz
T-om | B 4

=Jc:[gx|,;x'hn1"hoqxnh-ﬂ]q<- (s.127)

;u—igl'h)l Iﬂa—tﬂ‘(ﬂl {y) are aboslstely integrable
{-=, @), ‘lhsmtul (r.nuatmmmd

(._’(d-ﬁdnratptbai—a-wtrmmb’
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2

2 S thed .
E[R (nT) - R ()] = Im [R IR (vi+ R (y+ TRy 7)]dy  (4.128)

Example: Qutput Autocorrelation Fuction of Low-Pass Filter to White
Noise Input
As shown in Chapier 7 of Ref.[1], the normalized output auto-
correlation function Rx{T) of a low-pass {RC type) filter to a white poise
{bandwidth-limited constant power spectrum) input is given by an expon--
ential function

-b |7l

R(T)=e b = 2vB = (1/RC) (4.129)

The parameter b is in angular frequency units of w (rad/sec), while B is
a realizable measurable positive frequency bandwidth in units of cycles
per second {cps).

From Equation (4. 126), one can prove for large T that
200 T) = B[R T) - R wie  ; l<k<z  (4.130)
olr.T) = E[R (7, T) - (1] 5T ; <k< .

Thus, the output signal-to-noise amplitude ratio, as defined by the ratio
of the mean value to the standard deviation, becomes here

Y
R (7} [br 1/2 bl
oy (. T) k

At v = 0, where Rx(O) equals the mean square value, this ratio is

R_(0) /2
—x T ; bz2sB ; 1<k<2 (4.131)
o (0.T) \k

To consider another important idea, suppose many measurements
of Rx(‘f, T) are made at a given fixed value of v, using different sampl - ot
length T from a stationary random process { x(t)}. Then, to a reason:z e
order of approximation, these different measurements may be assumed
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to be normally distributed about the mean value Rx('r). Hence, 95% of
these values will, on the average, lie within + 20 of the mean value.
Thus, for 95% certainty that an arbitrary measurement lies within p

percent of the true mean value, it is necessary that

0.0l p Rx(ﬂ = Zcrx {r, T)

Rxl?) - 200 (4.132)

o, {(r. T} P

Note that if p = 5% or 10%, then (R/0) must equal 40 and 20, respectively.

For the low-pass filter example described above, onz can now
determine the size of (bT) required tc guarantee in advance that an
arbitrary correlation measurement will be within p% of the true mean
value. To illustrate, letting p = 5% and k = 2, one obtains for the max-
imum poiat 7 = C,

bT = ZxBT 3200 or BT= 500

This concludes the example.

To summarize the work thus far, the analysis in Sections 4.5 and
4. 6 has stated commonly satisfied mathematical conditions such that:

{(a) A set of estimates {m{T)}. see Eq. (4.109), for measuring
the mean value from continuous data is both unbiased and consistent,

with mean square error for large T given by Eq. (4.117).

{b) A set of estimates {ny('r, T)}. see Eq. (4.120). for measur-
ing the cross-correlation function from continuous data is both unbiased
and consistent, with mean square error for large T given by Eq. (4. 128).
Autocorrelation function estimates are obtained by merely letting x(t) = y(t),

and mean square values by then setting v = 0.

Power spectra and cross-power spectra measurements wiil now be
developed in the next section.
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4.8 MEASUREMENT OF POWER SPECTRA
AND CROSS-POWER SPECTRA

For stationary random processes with zero mean values,
the real-valued cross-corrciation function R (1) 2and the two-sided
complex-valued cross-power spectral density function S_ (f), which
is defined for -0 € f £ o, are related by Equations (4. 83), (4. 24)
and (4.92), namely,

® -j2ufr
S, 0 = I o R, (e dr=C, () -jQ, in

[ ] . (4.133)
R (1-) :\f Sxy(f)e}Zl'f‘rdf

xy @©
As special cases of the above, the real-valued autocorrelation

funciions Rx(r). RV(T) yield the real-valued two-sided power spec-
tral density functions S x“)' Sy(f) through the relations

oo .
540 = f Rx(f)e’-'z"' dr

[+ 0]

[+ o] -
s (0 - R () 12T 4,
y o Y

The probiem at hand is to estimate Sxy(f). Sx(f) and Sy(f) from

(4.134)

data which is known only for a finite time interval., In order to
estimate in a physical device the complex-valued function S__ {f),
it is nccessa:zy to estimate its real-valued components, namely,
the co-spactrum nym and the quad-spectrum Qx y(f). Since Sx(f)

and Sy(f) are recal-valued functions, their estimation is easicer to
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accomplish and to expiain than Sxy(f). Consequently, the discus-~
sion to follow begins with power spectrum measurements, after
which crosg-power spectrum measurements will be taken up in
Section 4. 8.7.

4_8.1 Power Spectra Measurements

A schemaiic pictur~ of 2 general filter device for estimating
the power spectral density function associated with a single randomn
record, say x(t), is displaycd in Figure 4.3 below.

Squarer,
Tunable Narrowband Integrator
x(t) ——af Filter Centered at f, [-2(t) f and —S {f , T,B)
{Bandwidth B) Averager xc

Figure 4.3 Constant Bandwidth Filter Device for
Measuring Power Spectrum

The input random record x{t) is assumed to be of finite time-length T,
and to be crawn from a stationary random process with zero mean
value. The tunabie narrowband discriminating filter is assumed to
have a finite nonzero constant bandwidth B centered at a frequency
fc which may be varied over the frequency range of interest. It
turns out that in order to obtain a consistent estimate of Sx(f;. one
must introduce a filtering procedure which averages over a band of
frequencies, ‘rhe final filter output quantity S (f T, B) describes the
time average of x (t) in terms of its frequency components lying
inside the frequency band f_ - (B/2) to £+ (B/2), divided by the
bandwidth B. Analog equipment of this type appears in Refermce{“].
The output quantity S (f 1, B) is a smoothing-over-frequzncy
estimate of the true power spectral density function Sx(f) atf=f,
which would be associated with input records of infinite length and
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bandwidths of zero width. The quannty S (f) df is the infinitely
long timc average of the product x {t) x’rom frequeuacies lying be-
tween f and {f + df). The total time average of xz(t) over all
frequencies is obtained by integrating S‘(ﬂ df from - to 400,
Because of its relationship to power dissipated in a unit resistance
by a current x(t), the time average of x?'(t) may be considered as
the "average power” in x(t), and is the main justification for call-
ing Sx(i) a power spectral density function,

In an actual physical device, the bandwidth B is not z2r0 and
the record lengths T are not infinite. It is important to be able
to predict within established levels of confidence how closely an
actual measurement Sx(f. T. B) will approximate the desired true
measurement Sx(!). This problem will now be discussed and some
of the main analytical results will be stated.

Let the frequency response function of the narrowband filter
centered at fc be of an idealized form (see sketch below)

NN = V1/2B for j£+ fc' < B/z

=0 otherwise {4.135)

where the full bandwidth B = B{T) is a function of T to be specified
later. For definiteness, assume that f_ > (B/2).

¥(n
4

s e e e . - -

H ]
s ¥
: :
pr 4 b —  §
C [+

Ideal Narrowband Filter
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The inverse Fourier transform of M{f) is the weighting function of
the filter dencied by h(t), that is,

Q0 .
ao = [ WS ur
loo

For a fiiter to be physically realizable, it is necessary that hit) = 0 for
t<O0.

In terms of an arbitrary h(t), the corresponding frequency response
function

0o .
Wi = j‘w h(t)e-’z'ﬂ dt = H(2xf)

o .
When using « = 2xf, N becomes M/ 22) =H ()= ‘y h(t)e." de.
.

It follcws for real h(t) that }{-f) = £}, the complex conjugate of {f).
This is the reason why the ideal narrowband filter has a theoretical
pass-band in the negative frequency region withpf{-f) = }f(f). Note also
that J{f) is defined so that

Q0
f Mol af =1
o0

2
In words, m(f)g has unit arez over the doukbly infinits frequency range
for any bandwidth B.
For an input x{t), the filter output a(t) is given by

T r\m
a(e) = J; x{uj} h{t - u) du = J x(u) h(t -u)du ; t>0
Lo

since x{u) is zero outside thc range {0, T). This output is now squared,
then integrated over all positive tim.e and average by T, to yield as a
smoothed estimate for the time average of x (t) in the bandwidth B,
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AT
i a™(t) dt for large T {4.136)

%
o

Lo o]

2 1
a~(t) d’ﬁ:,—.

3
S {f_. T.B) = 15;

By tuning the filter to different center freguencies f.. one obtzins
Sxii. T,B} for all f.

Further analysis {not given kore) shows that

;,w

i ey f2 .
S Af. T.B} = ] . iHin! S . T3 & (4.137)
where
o - T -
sdtD = RinDe T ar o {0 Rir, 12 41 {5.138)
J x L) x
~ o0 T
@ .
R AT} = j‘ s_(f. IS E™ af
x x
o
} f‘-‘r‘ 7. - . .
= 2 x(t) x(t + ’Ti,dt far g-rff_ T {#-139)
i 1] (otherwise zerc)
On setting v = 0, one derives the relations
- o0 1 OF :
Rx(o' T) = fm Sx(f. T) df = T‘f; x(t) de {3.140)

which showshow S {f. T) disiributes the "power” in xz(t) over the doubly

infinite frequency range from -oo to i .
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4.8.2 Analysis cf Bias

For the bias problem, one may prove that sx“c' T.B).
(as obtaimed from Figure 4. 3), provides an asymptotically un-
biased estimats nf -Sx(!c) as T-eo0 if the bangwidth B+0 as Teoo.
This condition on B as a function of T is therefore assumed.
Frcm Equations (4. 137) and (4.128),

S (i . T.B) = J?: 1] 2 [ C_ T‘i,(r. 1)e 32T dr}df
(4. 241)
By definition, Equation (4.108)zhe bias term is givea by
b[S 6. T.B)] - E[S (.. T. B)] - S (1) (4.142)

At this point, some detailed mathematical analysis must be
carried out which is not developed here. The final result is expressed
in the important asymptotic formula below which assumes that Rx(f).
TR‘(T) and rsz( <} are all absolutely integrable funct’:=* over (-, o).
This result is that at any frequency f,

lim n‘zlb[sxit.'r.n)l
T-s00 ] e

ci‘;!s;m! (4.143)

where S';(f) is the second derivative of S‘(ﬂ with respect to f as
given by

an .
S0 = -4x f 2R iv)e 32T g, (4. 144)
x -00 x

From the ab .ve, it follows that the bias term approaches zero
as T approaches infinity provided that B app-oaches zero.
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In fact, for large T,

hd
B | o ,
! bfs 1. s)]! -~ S;‘f)% (4. 145)

No apparent limitation cxists from the above formula on how rapidly
B shouid approach zero as T approaches infinity. It will be shown
in the next section that B may not approach zero 0o rapidly if the

variance in the estimate is to be small.

4.8.3 Analys:s of Variance

For the variance probicm, onc may prove that the estimate
szfc. T, B). {as obtaincd from Figure 4.3)., has a variance which
apyroaches zero as T-sw if the product BT-em. Since the bias
approachzs zcro as T-e»m only if B-+0, these iwo statements taken
together imply that B should approach zero sjower than T approaches
infinity.

By definition, Equation {4.107)the variance is given by

ol [sx(fc. T. B)] = s[ SJMf.T.B} - ES(f.T. B)] 2 (4.146)

After a considerable amuunt of carefu; mathematical analysis,
one may derive the following important rescl:. At any frequency f,

lim BT ol[s(T.B)|~s%n : ffo
x x
T

(4.147)
=2s0): =0
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Thus, for large T

ot [s6.T.8)]~ (1/BT) sha : ffo
(4. 138)
~@/BT)ISH0) : f=¢

These equations shew that the variance 2pproaches zero as
T-»o0 provided that BT-eon. This result combincd wiltk the previows
resuit for the bias term gives the two parts required for a mean
Square error analysis of power specirum {and Cross-power specirum)
measurements. Observe that at the zero frequency point, f = 0, the
right-hand side is increased by a factor of two over the geaeral result
which is valid for f £0. In the sequel, formulas will refer to cases
where f # 0, and should be modified by this factor of two if f = 6.

4.8 4 Mean Square Error

The mean square error of the power spectrum estimate
sx(t’. T,B) at any frequency f 7 0 is given by the expression, see
Equation (4. 108},

E[s (£.T.B) - sx(olz S [sde.T.1]+ o’ [s,46.7.8]

s? 82| sl |’
~ x“) . ' x !‘ for iarge T (4.149)

BT 24 ]

using Equations{4.145) and (4. 148). It is clear that the mean square
error approaches zerc as T-e if B, considered as 3 functionof T,
is restricted so that B+0 and BT-ew.
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For example, suppose
B=c™! . >3 o<ac: (4.150)

Here, B—~9%as T—m, and BT-—-o> 23 T—00.

Equatine (4. 149) above is one of the more important siatistical
results ix this report since it indicates the mean square error to be
expected in estimating S‘(ﬁ[or Sy(!)] using any given finite B and finite
T. Further amalysis of this result will be taken wp in Section 4. 9.

4 8 5 Freguerncy Resolstion

Another important practical qguestion ia power spe<trum mezsure-
memts is 1o determine how closely estimnates s5ould be taken along any
frequency range of interest. R is ciear that if these poiats are spaced
too cicsely icgether. the resuits would be highly correlated and consider-
able exira usnecessary work would be involved. Om the other haal, for
points spaced too far apart, considerable information may be jost. =
is importamt to detesmince the smallest frequency interval Af that can be
rezolved in power spectrum measurements in the sense that estimates
taken at this frequency interval apart wiil be essemtial:~ uacorrelated.
For idealized narrowband filters, a choice of Af = B represeats the
minimum resolution attainable. Two differest peaks in a sower spectrum
which are less than B cps apart may be blurred together and not distin-
guished from omne another. Two peaks which are further than B cps apart,
however, would he separated.

In actual practice, since realizable filters do not have sharp cut-
olf edges. a more reasomable figure to use for the resolution is 2B ¢ps.

Thus, for high resolution, the bandwidth B should be made as
small as possible. This is also desirable, as stated earlier. in order
for the estimates to have & iow bias. Low bias and high resolutioe
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are conseguently complemeniary properiies, 3=tk being consequences
of rxrrowband Glitering. From the point of view of redacizg the var-
fznce i the estimates, however. for i given record Jengtk T. the band-
wifth B shocié be made as large as possibie since the variance is in-
versely properiional o the BT preduct. Thes, the choice of B is guite
crizical. X T s not restricted in jengtl. thex it is possible to attain
arburarily high resoistior and srall 3ias as weil as arbitrarily low
var:acce. To accompiisk ikss objective. one skouid jet B approack
zero ant T approack infipity. bt im swck a way that B appreackes
zero at a siower rate thax T apprcsches infiaity.

The s=amiity

= = 28T 4. 1852

represer’s the number of statistical degrees of freedom aseociated with
a firite record T secands losg and r cstricted 15 & {reguency bandwiéth
§0. B} zps wide. iz the sense that the record cax be reconstructed from
itz samples taken {1728} seconds apart on the ime scale. Thus, 2BT
mumrbers complielely determze sk 2 rxcord. Rei. i!. P- 5‘?1.

4.8 & Cor rectCon for Mear and Lincar Trend

Te previvas anslyzis has azswned that Uw ixput sandom record
x{1} 15 2 sample member from a statiorary rasdom process witk zere
mzan value. M the mmean valee is a0t Zevo, then the jmwwr apeciral
density fanction will exhi:bit a farge peak [theoretically izfinite) at zero
fregueney. Considerable distortions will occur in measurements of
the power speclra curve at low frequencies by fecding the record directiy
snio the analog device of Scctron 4. 8. 1 without corrccling for thas noa-
zero mean value.

A second correction may be necded o subtract oul a slowly
varying linear trend Ii . non-zero slope of x{t} with respect to
tirme} about which the random record may be osciliating. This may
be due o the recording equipmenl, or (o an acluzl change iz the

random record over » long ohservation lime  Whalever the cause,
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i is clear that 2 betiir c3tivnate of the pover spectry 2xove <22
he obizimed by takizg proper 2ccount of this acar trend in the
£2tn.

2t 33:) represent an inpuet randamn recerd from 3 randocn
process g Ege};? which 2y need fo be corrected for 5 non-zere
mers vibse ané for 3 iinear tresd.  In particaiar, seppese that

Ties0 : egicr {4.15

Hgsom ~ e f' -
wiere m dezotes the maaszred mran valee of {{1) over its besge {0, TL,
ks parameier @ doesles the Sverage slope of the record £fr) with
respecs 3o tirec 1. and the Ex3l term:  x{lj represents a sampie
recsrd Irommn a SUionsTy random grocess és(q} with Zero rocan
rilze and rero siope. Observe that if = and :‘ equal xero, thex
£51) Secomes x{t).

Tie paranders ™ ané & may be estimated from £t} by the
casiiy derived formcias

. T
m = %I sy & (4.153)

1 T r{!‘[h
o T f £lsh & - &
* op/er/mlJerin Je

Thesc relations Jead 1o a simplic analeg device for detcrmining xft)
from {1} as sketched in Figure 4. 4.  This outpet x{t) can ze= be
fed into the power spectral analyzer circuit of Figure 4.3 so as te
¥icld estimates of S_{f).

E—— |

{s.154)

[ e
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Ampiifier with
Time-Vacying

Tapped X e - (/2
- it -{T/G
*7 Estegrator m_ L _§
i
';(t;—- L"
_§ Addes
> and e xi)
}-l-
i

Figere £.§ Circcit for Remoring Mesz Valoe azd Lizcar Trend

The aztocor-eiation foncliics estimite =cw becomes,

1 T
- e (3 ] " o -
RET e ) dxite P& : 6<+LT
« OT-r 2 2
“Tej, HHEAE-= -pMeTie (4155
wkere
MrT) =T {i - Ax/T) - 2!?.”!)?'] 4. 156}
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Similarly, let %(t) represent an input random record from

a second random process {n(t)} such that
Mty =m_+ ¢« t-zlry(t) : 0<tLT 4,157
‘ R R : (4.157)

where my denotes the measured mean value of n{t) over its length [0, T],the
parameter o _ denotes the average slope of the record n(t) with re-

spect to timg t, and the final term y(t) represents a sample record

from a stationary random process { y(t)] with zero mean value and

zexo slope. As before,

1 T
my = T 0 n{t) dt

1 fT N(T/3)
. ___ nlt) dt - nlt) a
% Tz | Jar /) Jo

(4. 158)

' T-r
R(T,T)=-,.—-—f yidy(t+ndt  ; 0<+LT
y -=TJo

I A (Nt + 1) dt - m2 - % \Mr, T} a°
Trj, OnrDd-mo-GMnTa (4159

where \{7, T) is given by Equation (4. 156).

Finally, a cross-correlation function estimate ny(r, T)

is piven by
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{ T-v
nyh. T) = T 0 x(t)y{ft ++)dt ; 0£+<t

T-r
. | T
== J; £{¢) n{t + 7) at - mxmy -3 (mxay-myax)—)\(r. T,“x"‘;

(4.160)

This formula includes the autocerrelation finction estirnates Rx('r. T)
and R (7, T} as special cases, and reduces to the usual expression in-
volving caiculation of only the first term on the right-hand side when
the quantities m_, my, a, and “y equzl zero. Other situations when
some but not all of these quantities equal zexro are also readily cb-
tainable.

4.8.7 Cross-Fower Spectra Measurements

A schematic picture of a fiiter device for estimating the cross-
power spectral density function associated with two random records
x(t) and y{t) is displayed in Figure 4.5 bejow. Physically realizable
real-valued estimates are obtained of the co-spectrum <__ {f) and
the quad-spectrum Qxy(f) whiclk can later be combined to yield the
cross-power spectrum Sxy(f) from the defining relation

Sxy(f) = ny(f) - jQxy(f) (4.161)

The input random records x(t) and y(t} are assumed to be of
finite time-length T and to be drawn from stationary random proc-
esses with zero mean values, The two separate identical tunable
narrowband filters are assumed to have a finite nonzero constant
bandwidth B centered at a frequency fc whkizh may be varied over the
frequency range of interest. To estimate the co-spectrai density
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function, nytf),the in-phase frequency compoanents in the filter
outputs are multipiied together, then irtegrated and averaged,
This is completely analogous to what was done previcusiy in in-
dividual power spectra measurements, the multiplier circuit now
performing the same roie as the previous squarer circuit. To
estimate the quad-spectral density function, Qxy(f), one of the
filter outputs is passed through a 90° phase shifter before being
muitiplied by the output of the other filt2ar. The product is then
integrated and averaged as before, This yields the average prod-
uct of the 90° out-of-phase frequency components ir the two random
functions, a proper physical interpretation of the quad-spectrum.
The absolute value and phasc angle of the créss-spectrum may be
determined by vectorially combining the co-spectrum and quad-

3pectrus.

Tunable Narrowband Multiplier,

x{t}pd Filter centered at Integrator }—eC_(f ,T,B)
f. (Bandwidth B) and xy ¢

] Averager

Tunable Narrowband 90° Multiplier,

y{t}~»f Filter centered at —l-o4 Phase Integrator HQ (fc. T, B)
f (Bandwidth B) Shifting and xy
< Network Averager

Figure 4.5 Cross-Power Spectral Density Analyzer
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A complete analysis can now be carried out which will in-
dicate the bias and variance to be associated with the estiinates
ny{f.T,Bi and Qxy(fc' T, B) that would be obtained using Fig-
ure 4.5 Many parts of the analycis are quite similar to what was
sketched previously for individual power spectra estimates. Since
a detailed mathematical analysis of this type is not deemed to be
appropriatie {or ihis report, only the main conclusions wiil be sum-
marized below.

The bias terms for any frequency f are bounded above by

f s a1} -Bz S ¢ !
bfC, (. T.B)] < 3l 59|

(4.162)

2
B "
b{Qxy(f.T.B)!(——‘z |s ml

where S* {f} is the second derivative of sxym with respect to f, and
is related to ny(r) by the expression

Q0 .
S¥ (f) = -4x° PR (g)e 32T 4 (4.163)
xy o xy

The variance terms for any frequency f ¥ 0 are bounded

above by
S (1) S ()
ol [Cyytt: T B)| < =2 —X—
Y BT
(4.164)
5 () s (N
Ly BT

At f = 0, the right-hand sides above should be multiplied by a factor
of two.
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Thus, one finds thal a mean square error analysis for co-specirum
and quad-spectrum estimates is closely analogous te a mean square crrer

- o eha Aanfiatias

o T o b
L35 PR A LELCtALL p  wash LVessascannp
~

analvsis of individue: puwe: specivam.
demands on B to be small for low bias {(and high resolution), and to be
largze for low variance are the same &> previocusly.

Furthermore, if the actual available records are not x(t} and y{t},
but £(t)} and n{t), respectively, where £(t} and r{t} have non-zerc mean
values and non-zero slopes during the time of observation then prior
corrections must be made as indicated in Section 4.8. 6.

This completes the main discussion on how to cstimate power
spectra and cross-power spectra from continuous data, and how to
evaluate the expected mean square error of the measurements. Some

further statistical error analysis will be developed in the next section.

4.8.8 Confidence Limits and Design Reilations

From Eq. {4.149) for continuous data, the mean square error of
the estimate S{f, T, B), {which will be taken as representative of Sx’ Sy.
ny and Qxy as well), is given by

2
E[SI£. T. B - S0} -l%}r’-i- 4\!234/! [s"th | (4.165)

s . z .
The mean square percentage crror of the estimate, denoted by € , is

defined by the mean sguare error divided by the square of the true value.

Hence

E[S{f. T, B) - S(fﬂz

2 2
¢ =¢ [Sif, T,B)] =
[ ] szm

ls"“) (4. 166)

Let the quantity

Ao = |32 (4.167)
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Then A({) has units of frequency {cps), and is called the "spectral
bandwidth" of the random process {x(t)} under consideration. In terms
af 1),

2 1 1 B %
¢ 37575 [xm] . (4-168)

The quantity e itself is cailed also the "standard exror”. This equation
enabies one to make quantitative statements about the mean square per-
centage error eZ in measuring a power spectrum S${f) for given values of
B, T and A{f). The latter guantity A({f) demands some apriori knowledge
of the spectrum which one is trying to measure.

I ez is large, then any particular individual measurement S{f, T, B)
would not be likely to fall ciose to the true value S{f}. However, if ez is
small, then all individual measurements of S{f, T, B} would tend to ciosely
approximate S{f). Thus, to guarantee in advance that an arbitrary measure-
ment represents well the true measurement, one should try to make ez
as small as possible through prior choice of E and T.

Returning to Eq. (4.168;, suppose that the "spectral bandwidth"

A{f) is known (or can be reasonably estimated} for the random process
under consideration. Suppose also that the bandwidth B of the discrimin-
ating filter, and the record length T, can be set to any desired design
values. Then, in order to nearly always be able to separate peaks in

the true snectrum S{f) which may be a spectral bandwidth A(f} apart, it

appears reasonable to select B so that

B < MO (4. 169)

This choice of B (together with a proper T as found below) will then
guarantee, with a low probability of error, that if S{f) has two distinct
peaks which are \f) cps apart, then these two peaks ca2n be resolved by
taking measurements <f S{f) at intervals of B cps apart. Another way

of looking at this statement is to say that measuremeats of S(f) at intervals
of B cps apart will practically always distinguish peaks which are 2B cps

apart.
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Assuming B to satisfy B < A\{f)/2, the second term in Eq. {4.168}

becomes negligible and Eq. (4. 148) reduces to the simple relation

€ M — {4.170)

In particular, for e = 0.10, corresponding to 2 roct mean square per-
centage error of 10%, the value of the product BT should be

BTe 100 or T (100/B) (4.171)

To illustrate these last formulas, suppose that A(f) > 40 cps. First,
from Eq. (4.169), choose B = 20 cps. Then from Eq. (4.171), choose
T = 5 seconds. It foliows that different measurements of S(f) taken 20 cps
apart will now resolve peaks which are 40 cps apart, and thke rms per-
centage error in the measurements will be at most 10 percent.

If B is not small compared to A{f), then the original formula of
Eq. (4. 168) must be used to calculate the rms percentage error. For
example, suppose that B = 2\(f) at 2 particular value of f. Tlen, for
B =20 cps and T = 5 sec, the same two values considered in the previous
paragraph, it now follows that ezdo. 038 and e¢,,19.5 percent. It is clear
from this example how important it is to have B < 0.7Z \(f) for all f, if
this is possible.

Suppose that the tunable filter (see Fig. 4.3) is tuned in a uniform
continuous faskion over some wide frequency interval B in the time T.
Then, the averaze amount of time T that the input record x(t) spends
within the narrow discriminating filter bandwidth B (for any center
frequency fc) satisfies the relaticn

af
s.R. = —= =(B/T)=(8/T) (4.172)
de

where 5. R. is the sweep rate (cps/sec). Solving for T, and substituting
.2 - .
ine = (1/BT)., one obtains

e = == (4.173)
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S 2 . .
which indicatcs how the mean square error ¢ varies as = function of
S.R. and B. Observe that for an rms error « < i0%, S R. chouid
satisfy

2
S.R. <0.01 B” cps/sec (B in cps) (4.174)

For example, if B = 20 cps, then S.R. < 4 cps/sec in order to keep the
rms error below 10%.

4.8.9 Constant Percentage Q Fiiters

The previous analysis involved using a constant bandwidth filter.
For purposes of comparison, as weli as for its own phxsical interest,
similar results will be written dc»n for constant percentage Q filters.
By definition, a constant percentage Q filter is defined by the relation

£
Q =—< = constant (4.175)
B

Thus, as the center frequency f < increases, the bandwidth B must
increase also to maintain Q constant.

As shown earlier, the spectral resolution is proportional to B.
Hence, the fractional resolution for different center frequencies f c 18
proportional to (Blfc). For a constant bandwidth filter (i.e., B = constant),
the fractional resolution will decrease as f c increases. However, for
a constant Q filter, the iractional resolution will not change as {. increases
since (Blfc) = (1/Q) = constant. The actual spsctral resclutios will be
poorer for the constant Q filter as fc increases. N

For constant Q filters, the mean square error ¢ becomes

2

e -9 {4.176)

_ 1
BT Tf
c

and, hence, decreases as f c increases, for constant Q and T.
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The maximum scan rate S. R. becomes

af
S.R. =—S = ¢?B% : (crq)? s’ 14177
Gt

One may now 3olve for f_ as 2 function of time for the two situztions
where B = constant o= Q = ccnstant. Let fl = minimum frequency of
interest and f, = maximum frequency of interest.

Case l: B = constant

£, -1 =€ B (4. 178}

Now, the number of filters ng required to cover the frequsncy
range (f, - f}) in a constant bardwidth system is given b

£, - £ [Jf. £

,,B=_7-__}_=_L 2 _1)s g2 (4.179)
B B \f, f
£ £

if Q=— and = >>1
B £,

Case 2: G = constant

e \@
£, df, ot g 2
AR

(4. 180}
£, - £ = (/@) f,6,t = BE (/0 if Q= (f,/B)
2 1- | S A 2'°1 1/
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Thus the frequency range is covered more quickly by a set of constant
Q fiiters. The number of filters aq required to cover the frequency

range mzxy be estimated from the formsi;iz

£
P Qm(f—f) i Q> andf, > (4.13)

This resuit shows that a considerzble reduction in the number of required
tilters may be achieved by using constant Q filters.

4.9 FURTHER MATHEMATICAL ANALYSIS

4.9.1 Instantanecus Amplitude Distribution

Consider a random vibration record x{t) which is a representative
member of 2 siationary ergodic Gaussizn random proziss with zero mean
value. From the ergodic property, the time-wise behavicr of xit) over
a long period of time will exhibit the same statistical characteristics as
corresponding ensemble averages at various fixed times. As a2 conse-
quence, it follows that the probability density function associated with the
instantancous arsplitude vaiues of x(t) that will occur over a long time
interval is given here by the Gaussian formula for zero mean value,

aamcly,

2,, 2
pix) = —pumr eX 127 {4.182)
r\ix
where the variance o'z equals
2 2 .
o = < (t)> A H independent of t
1 T 2
o TI x {t) dt for large T
L]
. 0
s swma-2f sma (4.183)
x x
~o0 0
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Note that

crop = L, ©:399
0'423 o
pled = plo) e~ 12050, 567 plo)

the guantity Sx{ﬂ dencting the two-sided power spectral density function
of x(tj as defiz>d over {-wm. ®}. Statisticai procedures for estimating
Sx(ﬂ from finite data were developed in tho previous section.

Thus, the probability demsity Sunction p{x) is completcly character-
ized through xnowleige of Sxt.’ﬁ since .‘Zz(ﬂ aione determines o. This
imporiant resull pizces knowledge of S {f) at the forefront of much work
in analysis ¢f random rzcords obeying 3 normal distributics.

if the mean value of x{t) is not zero, ther the underlving probability
density function is given by the general Gaussian formela

1 e-(x-p}ziarz

pix) = —— {4. 184}
cr\i?.z
where the mean value
B =<{:} Av ; independent of t
i I
= . r x{t) 4t for large T {4. i85)
T\re
and the variance
o =¢x{l) "B Jae
(Y
= f 3;(:; of (4. 185}

the quantity gx(ﬂ denoting thic power spectral density associated with the

zero mean value pertion f ={t).
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Sappose that a Iong record xft) of length T mzy B s-parated inio
distinct independent shases (). k=L, 2. .... B, cach fasting fer a
time T =hicl is locg ennagh to sxhibit sixtisnary mlalisiical properiies
for each phase.  Scppose, Ilso, for the sake of simplicity, tkar eack
x (1) is normaliy Cistributed witk mean By = 0 and rariarce s’i whiick
may differ from: one phase to anotker. How may ooe exlimate an over-
ail Sistribution for the entire recesd xii}?

One approack to this prodiem mmay be formslated as e superpositice
of a sumber of independert random variables x. {Section 4.3b} provided
cark randormn rariable is weighted according o its refative time of occur-
rence § Ti:i T} Thus. = comsider a specific caze, even though say

xi2} = xala‘s ﬁ_c_ts's'!
{4.:859}
;x;_i;; rzsaffﬁ‘rz:r

one may coansider x{t} ts de given by ihe scm of suitable portions of both
:l(t! and x,{*} spread out over the emlire time T. Tae ressiting xli}

wouid not reflect the acissl ime bebavior of the original x{t). but it wouid
reflect the relative proportisas of time that x{t) spends in various ampli-
tade Ieveis. From this point of view. by the supergosilio. .uecsrem for
indepe=dert randormn variables, if xz(!) and xz(li are each norr:aiiy éis-
tributed as hypothesized above, then xii} will also be normally distributed,
with mean zero, and variance

o (."_!) o (E),

T AT

[\

{4.190)

>
Note that the final variance o~ weights each individual variance af;

according to its relative time iaterval (T, /T). This rescit is generalized
easily to many variables.
To chi <k this resglt for an obvious case. suppose xﬁﬁ = xz(ii and

T, = T2 = {Ti2). Thereupon o’ = a-f = u'i which agrees with the formula.
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4.%.2 Measarersent of Am=iitcde Probabiiity Dexsity Fanctioe

Consider z statiomary random sigeal, x{t). The zrobability that
x) assmmes policmiar ampiivade vafacs betneen x 3nd x # OHx i= 2 tolal
time T secozds may be estimated by,

M

Pix, x:axp =+ S, 8T (4. 195}
T S T

ol
]

*zcriisthﬁmwiyﬁemu&emgegx. x # 8x) during ihe
ithemtry 1o the rasge. See skeich beiow.

o
-
- .-..-BIILI-II

<

Note that 8%/T is tke total fractional portion of the time spent by
the sigral iz the range {x. x #+ 8x). The hat over P, nmdy(h. in
Eg. (4.191) signifies the equatica is only az estimate of probability smce
the total sampling time T will always be fixite ir. practice. Egq. (4.191)
will approach an exact probability statement as T approaches iafinity.
The probability density funcliom if given by.

plx) = lim DX x?dx {4.192)
&x—~0 Ax
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The probaSility density fosction. pix} e defizes the probability. P, of
Fcpiileles ooariing betweer a3y two armplitade mits, xg ant x,. &5

o =
o B e,
E=ie g o

-

Pix, <x <x,} gfz pixj Ex THT )
Xe

E Eq. {4.£92). ke procedsre of txaing tir lirmic as x approaches
Zero is beyond e capebility of physical instromanis. Howerer, the
ohability demsicr miy be sporonirmites 25 follows

F.
Binj P x2 B2 o enzex (. 196
Hx
Sststitoing Eg. {4. [92) =ts Eg. £4. i)
’ %
B e 87}  for st ax (4.195)
Axi

The gzantity $ixj is a= estimate of Ube true probubility density Zomction
pix) becasse the sampling tinee T is nst infinite and the amplitade window
Bx is mot mfizitesimat.

Caesider now the s13iistical accuracy of prohebifity demsily estimiles
ohiained by physicaily acconplisking the furcticns of Eg. (§. [%3). TYowards
ikis goal asrume that repealsd mecarzrerserss of A7 for a gives amplitade
wizdow Ax orer 2 fixed record feagth of T will be disiribated abou? oe
expeciad valuce of AT By some distribution fanilion not yet defined. The
egsivaien] musrber of statistical degrees of freedom (the effeztive number
of chservalizas) for each measzrement is = = ﬂr!§ . Eg- (3.5 wkere 2¥
i» éefined belom: Froom Eq {4.195). Ar = Ax T B (x). Thea. the number
of degrees of frecism for 3 measarement of pixj =il 2=,

n ¢ Hax) T By, Pixd (4. 196)

[
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The facter By is the equivalent ncise bandwidth of the input signal

o]
B =X
N U,

where #(f) is the frequency response function of a iiiter which may be

and is given by,

-

HAD |b df (4.197)

#max

associated with the input signal.
In accordance with common statistical practice, th: mean square

percentage error ez of the measurement P(x) will be defined as follows:

2
2 _$
oo (4. 198)

where o-g is the measurement variance. In terms of the true population

variance crp ,

ol o
ez = ——Pz-—— since °7§ = ——ﬁ—- (4. 199)

Assuming oif = ’ﬁz(x), a conservative estimate, one now obtains

i i
em— ={Z(Ax) 5 B0 ] (4. 200)

The normalized standard deviation, e in Eq. (4.200), is often called the
standard error of the measurement.

It will be worthwhile to discuss in more detail the meaning of ¢.
It has been stated that the measurement of Ar, now reduced to ﬁ(x), will
be distributed in some manner about the true probability density p(x).
It is often assumed the distribution of P(x) will be normal with a standard
error of e. 1If the original random variable that was sampled to determine
ﬁ(x) had been normally distributed, then indeed ﬁ(x) must be normally
distributed about a mean of p{x). But it is obvious that the original
random variable, namely time T, in Eq- (4. 191), cannot be normally
distributed since time cannot physically take on negative values. A
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normally distributed random variable must theoretically be atle to attain
very large positive and negative values about the mean with equal probability.

However. from the central limit theorem, under fairly general
conditions, the distribution of Q(x) will approach a normal distribution
about p(x) as *he number of degrees of freedom, n. of the measurement
becomes large, regardless of the distributicn of the original random
variable. This is to say that if the value of ¢ is much less than one, then
Q(x) may be considered to be normally distributed about a mean of p(x)
with a normalized standard deviation of e.

Specific statistical confidence statements can now be associated
with ¢ by using a standardized norrnal distribution table. For example,

. . A
in any given mezasurement of p{x)},

Prob [p(x) - O'Q(x)< ’p\(x) <pix) + o-a(x)] = 0.68

A {4. 201}
where o'ﬁ(x) = ep(x)

Then, if a value of lp\(x) were measured with a € of 0. 1), one would expect
with 68% conlidence that the true p{x) is between 0.90 P(x) and 1. 10 ${x).
In other words, if the measurement of S(x) were repeated many times,

it would be expected that ’p\(x) would fall within 10% of the true value p(x)
approximately 68% of the time.

Note in Eq. (4. 200) that the standard error of the measurement
becomes larger as Q(x) becomes smaller. It should be no surprise if
this equation fails for small values of S(x), as will be demonstrated
later in numerical examples. A good rule of thumb to determine if
Eq. (4. 200) is a valid estimate of a normal distribution standard error
is that e should never exceed 0. 3.

The standard error of an estimate Q(x) is defined in Eq. (4. 200)
in terms of the noise bandwidth BN for the signal being analyzed, which
in turn is 2 function of the power spectral density of the signal. The
power spectral density of the signal may be thought of ag the shaping of
white noise (flat power spectrum) by a particular fiiter with a given
transfer function}(f}. BN is then determined directly from Eq. (4. 197).
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Consider three cases as foilows:
1. Reciangular (Idealized) Low Pass Filter

i
fommmm e
_fg. ! 40
2 ! <1,
| -
(V] otherwise
f0
By =§ df = f, (4.202)
B 0

2. Rounded Low Pass Tuned Filter

- — ey
- -

2=z % }
.‘fo C lo {half ~_--er point)
el - —1
13 (flfo)
' % 203)
B A == f (4.
N dy T (i/fo)z z 0

3. Gaussian Low Pass Filter

f""
e m= s 4 | -
“% )
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2 -£% Zc'g

o] =e

BN _-S:g e daf =\J.2- S {4. 204)

where oy is the standard deviation of the Gaussian fiiter characteristic.
The above three examples definc the noise bandwidth in Eq. (4.200)
for three very simple frequency spectra. It is obvious that the noise
bandwidth for signals with complex power spectral density functions
would be very difficuit to determine. For simplicity, it will frequently
be necessary to assume the signal being analyzed is band limited white
noise with a sharp cut off at fo cps as in case 1. The standard error €

of a probability density estimate Q(x) is then simply,

. 1/2
w3 I, T @0)

(4. 05)

Numerical calculations may now be carried out as desired for physical
examples. This is done for a hypothetical example in Section 7.5.5 of
this report.

4.9.3 Threshold Crossings and Peak Value Distribution

Consider a random record x{t) whose behavior over a long period
of time exhibits manv random oscillations The expected number of
zero crossings per unit time (usually seconds) of the record, denoted by
NO' gives an indication of its “apparent frequency”. For example, a
60 cps sine wave has 120 zeros per second. For a random record, the
situation is, of course. more complex but still knowledge of NO' in
addition to other quantities, helps to characterize the random record.
This typs of information and certain of its extensions discussed below
is particularly useful for fatigue analysis and reliability prediction o1

structures under random loading and vibratinn.
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At un arbitrary level, say, x = a, the expected number of
crogsings per unit time through the interval (@, o + da}, where
da is arbitrary small, wiii be dencied by Na’ It follows that the
expected number of times per unit time that x(t) exceeds the value o
(i. c., crosses the line x = o with positive slope) is given by (1/2) N,
since x(t). on the average, passes the value a half cf the time with
positive slope and kalf of the time with negative slope. Whena =0,
Na reduces to No, the expected number of zero crossings per unit
time; the quantity {(1/2) N represents the expected number of zero
crossings per unit timc with positive or negative slopes,

General probability formuias may be written down for evalu-
ating Na’ In practice, however, useful simple formulas have been
obtained which apply only to situations where the random record
x(t) is assumed to be a sample member from a stationary ergodic
Gaussian random process with zero mean value, governed by
Equation(4.}182). Analysis of this important case is due to Rice
[Ref.n':]. and yields the following result:

. -o*f20
Na = Z(ri/rx) e (4. 206)

where

2 {’\oo @
o, =b - Sx(f) df = Zj; Sx(f) daf (4. 207)

[+ 4]
ol - f s i af = 2 ’o s 1 & (4. 208)
-
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Physically, c-x represents the rmns value of x(t), and o"-c represents the

rms value of x(t}. Thus, settinga =G,
N = Z(o‘ilcrx) (4. 209)

These formulas depend upon knowledge of the power spectrum Sx(i) ina
surprisingly simple manner.

For example, for an ideal band-pass filter whose pass band extends
from fa to fb cps, the expected number of zeros per second for a "whiie"

random noise input is shown in Ref.[!?», p- 611 to be given by

i fé - fi
NO =2
3(fb-f 2
As special cages,
Nocu 1.585 fb if fa = 0 {low-pass filter)
Na-o Zfb if fa- fb {extreme narrow-

band filter)

By an analogous but more complicated analysis,R-¢ {13', p- 79]derives a
further property about the expected number of maxima (or minimaj of
x{t) per second, denoted by?%. Since the quantity?% represents either
the number of positive peaks or the number of negative peaks, which
may be expected to occur equally often on the average, the expected
number of both positive and negative peaks per second is given by 2m.
The expression for turns out to be simply

M= (=, /o) (4.210)
where
00
ol = j‘ 5.6 df=2ynf45{f)df (4.211)
x x x
-0 0
Physically, o represents the rms value of x(t).
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The probability that a positive peak wiil fall between (@, a + &)
can also be calculated. In terms of a standard variable z with zero
mezn and unit variance,

a
z=ldo)  : of=[ senar (4.212)
-

the probability density function w(z) that a positive peak will fall between
z and z ¢ dz is expressed by the formula, Ref. [8. P- ZZ?] 3

k., -z IZk N 2
=\f__i <—°’ze“ fz (1 - P_(z/k)] (4.213)

wizre
- , 2
K NO .
Ko = 1 —_—= X {4.214)
2 - N,2m 2M o o
and
o0 2
P (z/k,) = = f eY /2y, (4.215)

\rz-; z/k,

Nole that Pn(zl kz) is the probability for a standard normali distribution
with zero mean and unit variance that the value (z/ kz) will be exceeded.
This integral is readily available in statistical tables.

The shape of w{z) is determined by the parameter (Nol M. It
can be shown from basic considerations that (Nol 2M) always falls between
zero and unity.

This results from the fact that (No/ 2W = 05/, o). and from the
Schwartz inequality

—1/2 —1/2

wi:I:fzsx(ﬂd<r smdf; rffsm.j =5 oy,
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0 < (Ng/2M = ("’i-""x“'se)é i (4 216)

If (Nol ZM) = 0. then w(x} reduces o a standardized normal

{Gaussian) probability density functicrn,

-zZIZ S R
w(z) = e when (!\OIZ,N =0 (4.217)

1
=

This case occurs i practice for wide-band noise where the expected

number of maxima and minima per second, 2, is much Iarger than the
expected number of zero crassings per second, No. so tkat (Nol 2m
approaches zero.

If (N,/2M) = 1, then w(z) becomes a standardized Rayleis'. prob-
ability density furctios,

sz/Z
wlz) =z e when (Nglm =1 (4.218)

Chis case occurs in practice for narrow-band noise where the expected

number of maxima and minima per second. 2M, is approximately equal to
the expected number of zero crossings per second, N, = “hat (Nol 2
approaches unity. The general form of w(z) from Eg (4. 213) is thus
something between a Gaussian and a Rayleigh probability density function,
and is plotted in Figure 4.6 below as a function of z for three values of
the dimensionless parameter (NDI 2M equal to 0, 0.5 and 1. 0.

In terms of w(z} the probability Pp(z) that a positive peak chosen
at random from among all the possible positive peaks will exceed the

value z is given by the formula

@
P_'(z) =j‘ w(z) dz
: z

NO -zzla.r 2
= pn(ZIkl) + ,—"-‘c ll - pn(ZIkZ)I (4- 19)
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/ N, /2M) =

Rayleiza

(8,/2+) =

Gaussien
(NO/.Z?:_) =0 3

Figure 4.6 Peak Probability Density Function w(z) versus =

ASD 1R 61-123 4$-92




using the Pn of Eq. {4.215). A graph of PP(z} as a function of z is plotted
in Figure 4.7 beiow for three fixed values of (N./2%) equal 10 0, 0.5 and
LI

A Y
w\C\ [T
.?5-- \\‘ '
\
L9545
(N, /2%)=0.5

"‘90-1- \ J ’

NN

i \ \‘
. 704 \ \\

P_(2) \
P .50} \‘\
- 304
(Ny/2%) =0

. Gaussiar.
. 104
.01+

i >y A 'y -y .

-3 -2 -1 [] { 2 3
x
)
Figure 4. 7 Graph of Pp(t, = - wiz) 42 versus z
z
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From the above. it should k- noted that the actwal nmmber of
positive peaks per second which would exceed ike value @ = 20, demdted
3y .\¢°. may be esturated by the formuia

M, =MPP(¢I¢r) Mp p"’ (4. 220

For iarge values of @ relative to 0. vst may verify

?
2,, 2
M, (N 200" 12 14 221)

showing tast for large ®. the expected number of maxism per second
iying above the line x = @ :35 equal o the expected aumber of times per
second that x{t) crosses the hine x - & with positive slope.

The expected number of peaks whick exceed the value & in time
‘!‘! is given by

H.Tg "Ti P’{m'r!_l {e. 222)

This can 2¢ setl equal 1o the expected rumber of peaks which exceed the
valr: @ mmrzbymminad;fknumus@-.cmwi

sach that

M T, T, P;alcg. 9.‘!:??@[9!)

Now,
T, P iala,)
fl. i 5 (4.223)
i P’itlcz:

m&tmnmnuknisnd;&uvfmvoxwumen

followed by o' for time T,. What should be the equivalest o for tine
T:‘rlotzi!quinlmeisbaMuhﬂqﬁcmmdpm
excooding @7 The expected number of peaks which exceed the valne ¢

inum‘l’iiﬂithtnlu ¢ intime T, is given by
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M, ‘l'i * M, ‘:z x“l“ P’(iltilem‘ ?,h!'é’
iRz above should now be set equai to
n.'f :.‘IP’(‘fﬁ
yickding the relation

P (eio ;] P (el )}
2 YViy . ...2_......‘331. 4. 229

T.if’piv) 3 ! Pieier § *

n general. fsc N dastinct mean square values ia X tine prrisids.
one shouid set

N P /el
T 2“ T, wherec ¢ E 1 (4. 225}
sz P'hiti

The geaeral solution for P’!i! o) s
P’Pld s gﬂif n ???I'i) (4. 228)

Thus., knowirdge of all quantities en the right-hand sile of E§. {4- 226)
enables one to selve for P,h!ﬁ- and 1n turn for the paramete s jo/ o)
andx He:0 bowever. Ej (4. 228} becomes on sienlity and o can

4.9.4 Measurement of Lincar System. Frequenc) Response Feaction

For a constast parameter linear system. r 15 well-known that
suck 2 system cas be characleszed by 2 werghiing function h(r).
which. by definition. yields the response of a sy>iem te 2 wnit wn-
puise function T Lme umts after the impulse occurs. See shetch.
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}

. o

T e o
v

xgg)—_&; S;S;r::: E—W—-’fgg‘
P Bir) :
i H
| SO ——

Limear Systemn

For the syster.: 1o e physicaliy realizable ol is recessary that
) & for =70 (2. 420

simce & I—slern: cas M rospoad 1o o= impuise Defore o occwrs.
I dt) o5 am izpt to this system, and y{I) tive resuiting oslput,
thex the oulpst &5 giion a3 & woghted iiacar sam oxer the enlsre

{:xfiniir) past kislory of ke 1225t 43 cxpressed by

o
1) ‘J" M) xft - v dr (4. 22%)
o

L

f tirc tysterns operates o= x{t) oniv for 3 iinite fixed tz. . T, then
T
¥z j Rie) x{- - 7} £+ {3 49
Je
§f x{1) exists ~niy for ? 20, then

s - | x5y (4. 230

instead of using {Mr). the system rmay 5S¢ characterized by iis

frisency response fanrtion HZzfhwhich > defined a5 the Fourser
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transforsn of Biei. sarnely.

»ie -
ve

asssrmang b{+l * & for v €0 a5 needrd for piysical realizability Ter
freguenmcy respumsy fonction shozid ot e cocfased witl the tramsier
fsmci:on of the system as Sefined by the Laplace transform of M1,
256 dewoted Ly

el 3

£ -
sdig) - j My e P ds (5,232
¢

Notr thit }f (£} orficrs formally from 3{p} by mmerciy repiacing ¢
= Hiph by 12xf.

The fregerscy respoesc foeciion 15 2 omicx-valved foncticn
Gf f sk tha

[}

¥ - 13n] ST (. 233}

where [¥ (] |, the absoiste valze of T mrassres the amplitude
resposse {gasn]} of (ke system to 2 1npet sieuscadal caxiting fregquencs

£. while ¢{f) indicates the correspondiag phase sheit.

Consider 2 compicx-vaizrd sinssoidal iepst

xt) « S™ot (4.234)
rom: Equations {$.225)and (4. 23il.the respomse yitl is
e = ?Ht,)eiz'i“* (4. 235)




For a real-valued sinusoidal input
x{t) = sin (Zﬂfot + d) (4. 236)

the real-valued output is given by
v(t) = [N ] sin [z«fot +d+ .p(fo)] (4.237)

These relations show how knowledge of both the gain factor and the

phase shift term are needed to describe the system's operation,
From physical realizability requirements, the frequency

response function, the gain factor, and the pkase shift term satisfy

the symmetry properties

¥(-0 = (D
v u -ol= Iyl (4. 238)
ol-f) = -o(f)

1f one 1incar system, described by ﬂi(f), is foilowed by a
second linear system, described by }Z(f), then the overall system

may be described by ¥ {f) where

¥ 10y G X0 (4. 239)
Hence

1% o = 1¥,0 | 1¥0 |

B() = 9, () = 9,(0

Thus, on cascading two linear systems, the gain factors multiply and

the phase shift {actors add togcther.
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Assume now that the input x({t) is 2 representative member from a
stationary random process with zero mean valiue. Then, the same
property is true for y(t), and the ordinary powcr spectral density func-
tions S (f) and S (f) are related to [W(f) | by the simple (real-valued)
formula, Ref.[l, p. 72}'

2
S,40) = Wl s (o (4. 240)

This is an important result and is frequently quoted. At any fixed
frequency f, knowledge of two of these quantities determines the third.
The phase shift term ¢(f), however, is still in doubt since this formula

involves only the gain factor.

Example: Single-Degree-of Freedom System Output Response

For the frequency response function governing a single-degree-oi-
freedom system, see Eq. (3.1),
1

#(“’/Z") = H{w) = 3 i J=-l, w=2xf
1 -(w/wn) +jZ(u/un)
I=(1/2Q)

Suppose that the input power spectral density function is "white noise:,
see Fig. 3.11, where Sx(f) = SO' a constant, 0_<_ f <. From Eq. (4. 88},
this corresponds to Sx(f) = {SOIZ) when -o< f L. Now, from Eq. {4.97),

on changing to angular frequency w,
Sx(u) = [Sx(f)/Z'n‘ ]: (50/41:) ; ~0<w €

Analogous to Eq. (4. 240), the output power spectral density function

Sy(u), in terms of angular frequency w, is now given by

(Sy/ 4%)
?

Rt

2
S (@) = [HW] 5 (e =

n
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Finally, similar to Eq. (4.19) or (4.183), in terms of angular frequency

w, the mean square value of the output becomes

2

) -3 _ s o] _ f
o—y =y {t) = Jm Sy(o') de = 2 o Sy(w) d-

f— w S0 . Qunso

This is the derivation of Eq. (3.9) in Section 3. 3. 3. Ead of example.

Recall from Section 4. 9.1 the fact that a stationary Gaussian
random process with zero mean value ig known completely from its
powsr spectral density function. It can be shown that the response of
a linear system to a stationary Gaussian input is also stationary and
Gaussian. Thus, the gain factor Dl(f) i of the frequency response function
of a linear system characterizes the output system resporse to any
stationary Gaussian input. This provides one of the main physical
motivations for measuring as accurately as possible the gain factor of
system frequency response function of a linear system. IHowever, if
the system response to an arbitrary given input is desired, it is required
to measure not only the gain factor of the system but also ita phase shift
term.

By a straight-forward approach. one may verify that the enti
frequency response function§{f) is related to the input power specl.rai
density function § (f). and to the cross-power spectral density function
S__{f) between the input and the output, by another simple {complex-valued)

formula, Ret.[1, p.75],

S, =#H 5. (D (4. 241)

Thus, if

Sxy(f) = lsxym kjﬁ(f) ; WO = WD ’ejG(f) (4. 242)
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one obtains two relations which involve beth the gzin factor and the
phise shift.

Is, 0] = 0] s (4. 243)
olf) = olf) (4. 244)

Note that the coherence function becomes here, Eq. (4.95)

2
S_ (D
2, _ x _
'-xy(f) = —IZTX——LSX } Sy(f’ =1 {4. 245)

indicating complete linear dependence between x and y at every frequency.
The vaiue of the coherance function will be less than unity if additive
noise occurs either in the input or output of the linear system.

The main limitations in 2pplying the above formulas are due to
failing to satisfy requirements that the system is of a constant parameter
lirear tvpe, and that the input random process is stationary. No such
simple relation exists for time varying lincar systems, for non-linear
systems, or for nonstationary random processes.

4.9.5 Confidence Limits Based on Coherence Function

For cases where additive noise occurs in the input or output of the
linear system, an estimate of the trus frequency response (£} may be
obtained by measuring S (f) and S (f) To distinguish between the true
vaiue of $/f) and a parncular estimate of the true value which would be
measured in practice, let

A
(
oHie) = (f) - Bho )e”“’ (4. 246)
X

A
represent the estimate in question where )W(f)' denotes the estimate of
the true gain factor W(f) [, and lg\(f) denotes the estimate of the true phase
shift term ¢(f).
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Results of Geodman Ref. [ 8], quoted by Katz Ref. 9] and partially
displayed grapbically by Press Ref. [3], demonstrate that to a very close

approximation,

A
Prob [Mi)!b[;fl)lw(ﬂi <sine andl :(f) - ﬁﬂ‘(%
‘_1 B Yazcy(ﬂ _En

] -
1 -yg lf)cos”e |

(4. 247)

where Y:Z:ym is the coherence functicn and n is the number of degrees cf

freedom, see Section 4.8.5.
n = 2BT (4. 248)

with terms as defined previously.

Formula (4. 247) is of considerable practical importance in deter-
mining the confidence level at which the gain and phase can be estimated
to within a desired error, for a given value of y and n. For example,
suppose one wants to estimzte the pkase ¢ to within 0.1 radian (e = 0.10)
and the gainljif)| to within 10% error {sin e~ 0.10) at a 90% confidence
level (Prob = 0.90). The table below shows the required aumber of
degrees of freedom n corresponding to various assumed values for the
coherence function -,-Z.

vl o9] 08| 07| 06| 05 e=0.10

n 27 58.5 |100 156 232 Prob = 9.90

In practice, one will not know in advance what the cohe-ence function
will be, and can only roughly estimate it irom the measurements. This
restricts the application of the above work tc some extent. However, a
conservative choice is usually desirable, and the above formula (4. 247)
shows clearly that accurate measuvrements of a frequency response func-
tion is strongly dependent upon the value of the coherence function.
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4.9. 6 Statistics for Extreme Vibration Amplitudes

Consider samples of size n, drawn independently and at random
from an underlying distribution described by its probability density!
function f{x), or aliernatively by its distribution function F(x} = f fly)dy.

-ati 1 -®
Let the cbservations drawn be {xl. Myy weee XKf.

Define the siatistic
z, = max{xl. X5 --ns xn} (4. 249)

The problem is to find the probability density ard distribution function of
z . <ad to consider their asymptotic behavior when n becomes large.

A good discussion of these matters appears in Ref. [5]
The distributior of z, is obtained as follows:

D:zfine
Hn(z) = Prob (z|_l <z) = Prob {aii x; <z)

= Preb(xlsz, X< 2, -..0 X < z)
= {F(z)]n (4. 250)

The quantity Hn(z) is the distribution function of z - The corrcsponding

density function hn(z) is found by differentiating Hn(z). This gives
: . — -1
b (<) = H_(2) = ni(z) [F=)]" (4. 251)
Thus Hn(z) and hn(z) are determined entirely from n, f{z) and F(z}

A special case for which one can obtain an exact distribution of z

for any n is provided by an underlying uniform distribution.
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Exame!e i: Unéerlying Uniform Distribution over {0, A).

Fix; = ¢ : <G
=X 0Ocx<A (4. 252)
o <x< 4.
=1 H x>A
Now
H@E=[Fza'=0 ; .co0
z\n
(_) :  O<z<A (4. 253)
A %z
=1 H zZ>A
and -1
< e’ . hz N
n;(z)-Hn(z)- - ; OszsA
A
(4. 254)
=0 ; z2<0 orz>A
Note that for any value of =,
~00 - A
Z = zh _(z}dz = = J\ zndz=ci—r_‘- A
n Jm n AP Jg +1
'a':_ "m 2 _n ntl.,  /n 2
z, = ) z hn(z)dz -F‘ ‘r: z  dz -(m)A
ol - :f - @2 s —p A? (4. 255)
‘ {(n+1)° (n+2)
Hence, for large n,
in“‘ A
A

ASD TR 61-123 4-104




In words, for large n, tne expected value of the maxirmum from a
sample of size n equals the right-hand 2nd point of the underlying
unifsrm distribution governing the original samples. The standard

deviation in this estimate approaches zero inversely with n.

Example 2: Oanderlying Normal Distribution with Zero Mean and Unit
Standard Deviation.
The case of 2n underlying normal distribution does not lead to
closed-form answers. Numerical methods must be employed to approxi-

mate desired results.

X 2,
Fix) = — JF Y 2y 4. 257}
\‘r.’:; =3C
-xf
fix) = e /2 (4. 258)
V2w

Here x is 2 normal random variable with unit standard deviation.

Let y-pu+ox and dy = o dx

2 2
e-(‘.f'l-l) {20 dy

Then g () dy = fix) dx = ——
o2z

1 e-(&'-u)‘:’ 26°

g(ﬂ:a{i:

Now ¥ 15 a normal random variable with mean value g and standard

Hence (4. 259)

deviation o. This procedure shows how to modify the underlying

distribution to cover an arbitrary mean value and standard deviation.

Similarly

2,, 2
-(y 20
G(y) (yw) 720 gy

__ 1 J‘"
oize Yoo

=le? i‘f& e-vzl.’. dv = F(%:E)
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¥-p

Hence, ietting x = *——
o

Gly) = F(EY) = Fix) (4. 260)

Thkas, the ¢isiribution function F{x), associated with zero mean value
and unit standard deviation, may be generalized to the distribution
function G(y}. xkere ti:e mean value is ¢ and the standard deviation ic
o. by replacing x by (y—x}/o. For simplicity, F(x) wili be used instead
of G{y} in further cajculaticns.

From Eq. (4. 250), for samples of size n from an underlying
normal population. with zero mean and unit standar-d deviation,

o
-yzl z i

H (2) = [Flzgfﬁ ‘Eg}- J_" ; e d,j (4. 261)

and
—r 1

dy
-t

g 2
hn(z) = m(z}[?{:h‘ v 12

=

(4. 262)

2,0 7
i= n -z i% 1 "'e-
g | ¥l

Clearly. these equations can now be analyzed by referring to readily
availabie statistical t2bles of the normal distribution. See Table 5.1 at
end of nex: Section 5. Figure 4.8 at end of this section displays H,(z)
as a function of the normal variate z for fixed values of n equal to 5,
10, 100 353 1082, Tis cesc wihdre i = | cOrresponds o Higz} = F{z).
To illustrate how to apply Figure 4.8, concider the curve where
n = 10. The mode value of z is defined as that value of z for which
Hn(z) =0.50. For n = 1§, the mode vaiue is seen to be approximately
1.50. In words, there is 2 50% probability that in samples of size 10,
the largest value z will be less than or equal to 1. 5. This result
assumes thaty = 0 and & = 1. Note that for n = 1, the mode value is
equal to zerc, while for n = 1000, the mode value becomes 3.2. At the
95% probability point, for n = 10, the largesi value will be atr most egual
to 2. 7, while for n = 1000, the Jargest value will be at most equal to 4. 0.
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For n - ! therc is 2 95% probability that the Iarges: value will be at most
equal to . 7. These exampies shew kow th2 extreme value statictics for
zn underlying normal popuiation change with increases in sample size.

For arbitrory g and &, there is & S0% piobabl.iiiy i i sanpies
of size 10. the largest value z will be less than or ecual top 2 1. 50,
zad & 95% probabiiity that the [argest value wiii be less than or egezl to
g ¢ 2.70. Simiiar statements apply to other sample sizes for arbitrary g
and -

it shrould also be realized ihat in samoies of small size, comsider-
able uncerizintly exists in estimates of p and o Az an illustration of
materiai to be explained in Section 5 of this report, for samples of size

n, the true mean vaise p  is bounded by
Prcb{u __<_§ t, s(@i] =1-a (4. 263}

where @ = Zesired level of significance (e g.. 1% or 5%} and L, is taken
from the “t distritution with (n-1} degrees of freedom, ses Sections
$.2.3and 3.1.3. The quantity (I -2} is a confidence coefficient of 160il-2}
percent {(#.g., 99% or 95%). For samples of size n. the true standard
deviation o is bounded by

Probfo < sinix’j=1-a (4. 264)
where xi is taken from the chi-square distribution with (n-1) degrees of
freedom at the o level of significance. see Sections 5.2. Zand 5.4.1. In
paracuiar, {or o = 5%,

Probfyu <x ¢ s 6 s&?]: 0.95

Prob[o < s\!nlxs_ g] = 0.95

Then, since bolh extremes will not occur simultaneously, in general,
for A standard doviations from the mean value,

Prob f Ao <X ¢ 312, iJ?:) + A\!:aix» "']} >0.95 (4. 266)
&‘ = *75.0 5.0 ;=
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For example., for n = 10, corresponding o § d2grees of freadom.,

one finds fron: TiStes 5.3 and 5.3 21 end of Section 5 that ts ¢’ 1.8
) -
acd X5 9 ° 13, Hence, for oo = I8,

Prob [g + Ao <X ¢ s{e.57 ¢ 0.820)] > 0.95

Also, as shown carlier, for samples of sizc 10, i z eguals the maximum
valive, then

Hence.

This completes the discussion in this section of the report.
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5. STATISTICAL TECHNIQUES FOR EVALUATING DATA

5.1 THE ESTIMATION PROBLEM AND HYPO. ESIS TESTING

Two broad areas exist in the generai area of statistics which are

problems of estimation and testing of statistical iypotheses. Estimation

can be further broken down into that of point estirnates and interval

estimates of the parameters ot a distribution of interest.

5.1.1 Estimation Theory

The general theory of estimation is quite an involved subject and no
attempt will be made to discuss it in any detail here. However, there are
three qualities desirable to have in any estimate. First, one wants an
estimate to be unbiased, that is, the expected value of the estimate should
be the true value. Second, the variance of the estirmate should be a min-~
imum, as compared to other possible estimates, and third, the variance
of the estimate should approach zero for iarge sample size. An estimate
with the second property is said to be efficient; an estimate with the third
propsarty is said to be consistent. The first and third concepts have been
defined and discussed in Section 4.5.

Examples of efficien: estimates are the arithmetic inean of a sample
of N observation

N

e
n
o
»e

(5.1)
N

as an estimate of the population mnean 1, and the sample variance
N 2
Z (x; - %)
2 [ S
N

s {5.2)

: . . 2
as an ustimate of the population variance o©° The expected value of the
sample mean is

E(x) = p (5.3}
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and x is an unbiased estimate of p. However, in Section (5. 3. 1) it will
be shown that

E(s?) =(N—‘-!-\ o (5. 4)
N

Therefore, sz is a biased estimate of U'Z. The corrected sample variance
to remove the bias would te

-l“-) eI © B (5.5)

[
\N-1

Several methods exist for cbtaining formulas to compu.: gparameter
estimates from sarple data. One procedure commonly used is the method
of maximum likelikood {see Reference [2], pp. 68-71). This method gives
estimates which are often biased, but are consistent, asymptotically

efficient and asymptotically normal under general conditions. Also the
bias may often be removed easily as for the sample variance in Equation
(5.5). Most of the statistical estimates in this report are of this type.
Besides the point estirmates of a parameter, it ig u:=eful to be able
to give an interval in which the parameter cf interest probably lies. That
is, an indication of the precision of the estimate is desirable. This leads
to the concept of a confidence interval. To be specific, given a parameter
8, and a small predetermincd probability o, an interval (e';, e;) is desired
such that

Prob (e’l"<5<o;)=1 -a (5. 6)

The probability {1 - a) is called the confidence coefficient of the confidence
interval (e’;, 6;). The confidence intervals so computed in a series of
repeated experiments could be expected to contain 6 in (1 - a) percent of
the cases.
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5.1.2 Hypothesis Testing

The simplest situation is the test of a2 hypothesis against a single
alternative. To be more specific, suppcse that the variable in questionr
has a probability density function p(x, 8), while under the aliernative
hypothesis it has a probability density function p(x, 89). That is, the
density functions are completely specified and if the parameter of interest

is not ® then it is 60. This is known as a simple hypothesis. If any other

parameters exist in the density functions which are n. * known, or if the
aiternative to 2 is not completely specified, then the hypothesis is called
a composite hypothesis. This is the more common situation and would

be illustrated by the hypothesis that the mean of a2 normal distribution is

g with the alternative hypothesis teing that :t is either Bg > K OF By £p.
That is, y, is not completely specified.

The hypothesis tested is often the null hypcthesis. This would be
something such as: The parameters 6 and 90 are the same. Stated in

another equivalent way, there is no conclusive evidence that parameters
€ and 00 are not equal. After selecting a null hypothesis, the next step
is to seiect a region such that if the observation falls within this region the

hypothesis is accepted This is the region of acceptance. Tiie comple-

mentary region where the hypothesis is rejected is the critical region or
region of rejection.

To choose these regions one first decides upon a small probability
a such that the kypothesis will be rejected a percent of the time when
it is really true. This error a whick can be made is known as the
Type I error. The numerical value @ is known as the level of significance
of the test and is usually chosen to be 0.05 or 0.0l (5% or 1%).

Suppose the random 'ariable under consideration has a probability

density function p(x, 0), associated with a hypothesized parameter 6. Then
the critical region would be to the right of a value x_ determined by

fmp(x. 0) dx = a (5.7)

X
[+
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Figure 5.1 below illustrates these concepts.

I\

pix, )

Area = a = Level of significance
Area=1{ - a a5 HFeeEa : 8

Region of Acceptance Critical Region

[

Figure 5.1 illustration of Critical Region and Level of
Significance (Type I Error)

Another type of error may be committed when testing a hypothesis.
Namely, if the hypothesis is really false, it still might be accepted. This
error is known as the T Il error. For instance, suopose instead of
pix, 8), the random variable actually has a probability density function
pix, 8y), where 6, £ 0, located somewhat to the right of p(x, 8) as illus-
trated in Figure 5.2. Then there is a certain probability B that the
observation may {aii to the left of x, and be accepted. This Type i1

errorf, see Figure 5.2, is given by
Xc
 Cptxog) ax=p (5.8)
- 00 °

The probability (1 - B) is called the power of the test. Clearly, for
a given value of @, it is desirable to have B very small. However, B is

generally made small only at the expense of increased sample sizes.
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pi(x,9) '/All-ea = f8 = Type Il Error

pix, 90)

Figure 5.2 Illustration of Type lI Error

Two variations for a statistical test often arise. A test in which
the critical region is located only at one tail of the distribution as in

Figure 5.1 is referred to as a one-tailed test. In many situations,too

large 3 devistion in either the positive or negative directions would be
damaging to the hypothesis. In these cases the critical region would be
divided into two parts, one at each tail of the distribution, and the region
of acceptance would be the interval between these two points. The left
and right critical points would then he selected such that the area under
the probability density function tor each critical region is @/2. This
maintains the level of significance at @, and is referred to as 2 two-tailed
test.
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5.2 SPECIAL PROBABILITY DISTRIBUTIONS FOR STATISTICAL TESTS

Four probability distributions arise very frequently in the application
of classical statistical techniques. These are the normal distributicon,
the chi-square distribution, the "t distributicn, and the F distribution,
They will be discussed belew in this order. Section &, 2 will ernphasize

their mathematical properties and Section 5.3 their physical applications.

5.2.1 The Normal Distribution

The most important distribution arisirg in both applied and theoretical
statistics is given by the probability density funciion

_fx - w?
ul
20-
—_—— (5.9)
=
or the correspording distribution function
2
Uit -
dat {5.10)

ofx-p)-__1

o=
The distribution was originally deduced in £733 by the mathematician
DeMoivre as the limit of the binomial distribution. The distribution is
often credited to Gauss who did muck work with it at a later date, As a
resuit, a random variabie having a distritution function given by Eq. {5. 1C}
is often referred to as having a Gaussian or normal disiribution, see
Section 4. 3, 3(b).

The mean and variance of the distribution are

Q0 x -
E(x) = x¢( “) dx = {5.11)
-~ 00 o
@ 2 Ix - 2
Var(x) = (x - p) ,(—E) dx - o~ (5.12)
-0 o
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Wien a random variable has a normal distribution with mean p and
standard deviation (s d4.) o, it is cften spoken of as being normal (u, &)

for the sake of brevity. The standardized variable

=Xk (5.13)

z 2
&(z) = L J‘ et /2 g (5.14)
\5@ - QD
zZIZ

The density function ¢{z) = (l!\!l:) '
having points of inflection at #1.

is unimodai and symmetric

Equation (5. !4} is well tabulated for mary values of z. However,
due to the symmetry, 8(z) = #{-z), the tabulaticn is frequently givea oniy
for positive values of z. Also, the tabulation often only goesuptoz = 3
since the probabilities of exceeding this value is very small. Sece Table 5.1
at the end of Section 5 for a fairly comprehensive tabulation of the normal
distribution in this way. In Table 5.1, for z 20, the area of the normal

curve is defined by

z 2
Area = (11\5.:;f 2 g
(1]
For z > 0, the distribution function $#{z), 2s defined in Eq. {5.14}, is now

given by &{z} = 0.50 + Area.
A useful definition is that of the p percent value of the normal

distribution. This is the unigue root kp of the equation.

Prob(lx-p§>hp0‘)=p {5.1%}

than xp times its s.d. See Table 5.2 at end of Section 5 for a tabulation
of this type.
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For later applications, one should note that a linea~ funciionax + b
of & variable x which is normai (z, o} wiil be normally distributed
{az + b, lajo).

The normal distribution derives much of its usefuiness because of
the weil known *Central Limit Theorem™, see Section 4.3.3{b}. This
essentially =x2tes that sums of independent random variables under fairly
generai conditions will be 2gproximately normally distributed, regardless
of the underlying distributions, when the sample size is large. Since many
physically observed variables may actually be the sums of many less
obvious variables, or when the mcans of large numbers of cbservations

are considered, the normal distribution often applies in unexpected areas.

5.2.2 The Chi-Sguare Distsibution

Let x;. X,. ..., x_be n independent random variabies, each of

which kas the same normal distribution with z¢ro mean and unit variance.

The sum of their squares

2
ce- v X (5.16}

is cilled chi-square with n degrees of freedom {d.f.} Tre number of

d.f.. 1. represents the number of independent or "free’ sguares enter-
ing into the expression for xz.
The variable y has the probability density fuaction

1 [(a/2)-1] -{¥/2)
y)=—275—— ¥ e
Pn 2V il ) iy>o0
{5.17)
=0 ¥y<o

where [(n/2) is the weil known Gamma function. (See Reference [4] for
discussion of the Gamma Function). Forn=1andn =2, pn(y) isa
monotcnicaily decreasing function for posizive y. For n >2, the function

is unimodal anc non-symmetric.

ASD TR 61-123 5-8




The mean and variance =f this distribution are

Ex) = n (5.18)
r ’ 2 - -
Var{y } = 2a (5. 19}
The probability that the random variable y = xZ assumes a value
2
exceeding a given quantity y _ = x; is given by
. -
Prob{y > yo) =J pn(y) dy {5. 20)
Yo

Cecnversely, if one wants to find a quantity yp = X; such that the probability
takes a given value, say p. then the following equation must be solved:

405
Probly >y )=1 plvidy=p (5.21)

\"YD

The unique root x: = Yp of this ecuation is called the p perceri value of

!Z for n d.f. Essentially the same definitions wilibe ~..dfor the t
anéd F distrib:tions which are discussed belvw. A tabulation of some
of these values of -"p for the chi-square distribution appears in Table 5.3.

5.2.3 The Student't" Distribution

Let ¥ and Z be independent random variables such ikat ¥ is rormal
{0.l}ard Z has a xz distribution with n d.f. The variable Z wiii therefore

always be positive, and a variable t can be defined as

-~ Y
f =un
“

where the positive square root is taken. The distribution of the variable

{5- 22}

t is known as Student's “i** distribution with n d.f. It was first studied

by the statistician W. Gosset who wrote under the pseudonym "Student™,
hence the name.
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The probability dexsity function of t is given by

Pplti =—— 51 (5.23)

where

{5.24)

The mean is finite for oo D! and the variance is finite for n > 2. These
2re given by

E{:j =0 a>l {5.25)

n-2

Var{e) =

a>2 {5.26)

As in the previous section a2 p percent value of the t distribution
is defined, where p is expressed in percent, by the root tp of the
equation

N

Prob(t)tp) = J p i) &=p {5.27)
t
4

Also, as for xz. the parameter n is the number of d.f. A tabulation of
vaiues of t as a function of n and p is given in Table 5.4. Some care
must be taken iz using other availablie tables of the "t distribution in the
same manner as Tabie 5.4, Some texts vill have Prob{|t] > tp) = pin-
stead of Prod{t> :p) = p, Eq. {5.27), since the “'t" distributioz is sym-
metric, i.e. pa(t! = ;:ﬂ(— t). iz this case a value for p in Tabie 5. 4
would correspond to a value for 2p in other tables constructed con-
sidering deviaticns in both tails of the probabtiiity deasity function.
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2.2.4 The F Distribetion

Given two independent variabies U and ¥ =hich have xz

distribetions 2ith m and © é.f. respectively, the distrioaticn of the
variabie

F:E!;’—n.: (‘_m
¥v/e

- o

e
m

is krown as the F distribution with i, )} d.f. Since F is positive, the
density function of F is zers for F< 0, =hile for F> 0, the dexsity

function is given by

1F-1
r - - 4
Py, aiﬂ =C mees ° £>9 (5.29)
{mF + =} 2:

where C is an appropriate constarnt depending only on m and n.
As for xz ard t, where p is expressed :: percent, 2 p percemt
value of the F distridution is defired by the rosk FP of ine eguatien

ac
Prob{F>F ) = r Py, {FISF = p {5. 30)
? JF’ e

Some values of F as a functios of m and n and p are given in Table 3.5,

5.3 SAMPLING THEORY AND APPLICATIONS

The distributions defined and discussed in Section 5. 2 wili now
e illzsrated 35 sampling distributions. They wili be discussed in the
context of their most usual applications, with additiorna areas »f appli-
cation indicated whicr are particularly appropriate for anaiysis of vibra-
tion data.

A sampling distrilrtion may be defined in general as follows:
Let X be a random variable with a distribation function Fix). Let

ASD TR 61-123 5-11




Xyo Xpo oo- X z= 2 samyple of X observed values of X. Aany well
z &

Cefined funciios of shese variztles, s2r gix., Xye woes x.:‘,) wili be
2 sampie of the randor: variable gix xz. ek x,; where exth Xi
bas the same Estribution frction Fix). The prodabulity disiribution
of ggxl. XZ. ceee xh.; is czil=d the sampling distiribotion of the
guantity g{xi. Xy onn x}:i.

If sanples of X values ire repeatediv drawr, aad if the c:5r-
acteristic ;‘:,. Xpe cnes x,:} is computed for cack snpie, & seqaence
is cotaized of the observed valzes of the razdess variakbie ¢x,. I,.

e gj}- In ikis w3y every sample characlerisiis is Issocisted ‘l’xﬂ:
2 certain raadom variztie. Ore may then taik of tke sampling disri-
butions of qeaniities such as the arithmelis res2s 2f 2 sumile gives
by Eq. {3} 326 the Saomple varidnce given &y Eq. {5 2.

Ia principle. the sampiing characieristic rmay be determised
by the distribution funclioz Fix) of the tasic ra=don variake X.
Iz practice. however, it may be difficuit 5 ind 2r explicit expression

for the resuis.

3. 3.1 Estimates cof the Mesn and Varisnce

As khas bee= implied in prectaing discussions, i and o il
denote the trus mean and standard deviation (5. 4.} 0. &« distridation
correspo=ding 1> 2 random variabie. The estimates of thess viizzs
as computed from 2 sampie of size X will be 2encted by X (or m)
a=d s respeclively. The Greek ietters i arns o will oftean be re-
ferred 16 as tke popsiation or universc vaiues as opposed 5 their

sampie estimates x and s. It is imporiast o understand s keep

in mind this distinctiorn. between true values axd samplie sstimates.

Any true population value is some fxed real aumber whereas iis

estimate computed from a sampie wiil kave & sampling distribatios,
Cornsider first the sampie mean

x.

- i1 ¢ P

K T ey i5. 31)
N
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Br abgervime 123z the Sonpie mean is 2 lircar oormSinaticT of X
virisbies %. and apgiying the weil keocz zddition theorern Sor means
sxd variances of inéspendent randons varizbics, cae dedaciex

. 3 < z
"x):r;.-si 2 Eixj=—iXgj > g %3
N t oo
Aiso,
- Z < ¢ i 9"2
\:u;x)-'-‘i““?'“;s ey < T 1530
H 3 x

e =
=

=09

Thes. the expectad vaive of the sample charicteristic x is
cgeil 10 e Irse ma2e value 2. Movesver, since the staadsrd devia-
tox is inversely proportiodi te v';i—. the sampiz mean X is 2 very
presise estimate of w {ar iarge N. Tksi is, the Estzibution of x
will be concestrated in the vicisity of ¢ since it will £ 2. 3 very
wpaii s & fer iarge K. Alse, it folises from the cent=al fimit
theorem, that for laver N the distesbution ef x wili be approximately
ncymal ix, o/ \!;'}.

Coryiler 24x1 tha Lampie vaziance

2 _i - ] -2
s =Lzbi-ﬂz=—2(¥;-s*ﬂ-x}
N i X °
D M A R P KL RS 3 -
L ] i X i
. » - - s - »
R A AT N R v I T
X 1 N N
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.g!

s’h‘; i,sx;-.dz-ﬁ—si" :5.3%
ace
Ex W zc’  and ::'i-ﬂzsf—:» is. 1%
St Sekioncs thas
o’ =Lo I BT 5. ¥
% i x

This e tbe Tveail mestsened in Sactice 5.1.i. Tais blas may S re-
Moved 2x Selicabed vy Enestied (5. 3. bt astice st foc Jarge W the
biss ie imsigmbicar:.

The a2sadesrd devisiios of & ie wasll fow invge N. {Ses xef. (5]
£. 183, Therefore, 3" i} bz 2 yrecise sotimate of o for Jarge X.

in Yhoe sberve discwesies. the abdorvations ased in caltuinting the
mede Are impiicitly assamed i 332 be taben ‘rem the s3'we pepuistion
in the sanse woy., an€ therelsre, wouid have Sdeptical .oviances. Sup-
pest & Jiffcres sitadtiod: vxiots witere the weaa of 2 populstion is 98 be
estimnated from Chiircaiions daviag diflerest variances. This cowid
arise if 2 mear. was % be 2tiimated fram seversl sainple mnesss oich
having &iffc ort sampie sizes. ot if the shectvaziess were pessibly
taben with ixstruments of varying precisies. [t is then desiralie to
knon Ohe acses ix whica these shesr vatiocs shouid be weigited ia
ordar ta give 3= astimate of 5 with miniwum vacisace. The derivation
o e resmK i4 tairly inroived and the reader is referred to Ref. [2] for
3 proti., Howpver. the €a3i rersh is to weight the skservalions ia-
verdiy te thair variancee. That is. for

3

= 3 e i5 2
3
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choose

o
a, = - (5. 38)
2w
=
where
w, o= {5.39
i~ 2 °
i
The variance of the distribution of X then is
Var(x) = (5. 40)

W,

5.3.2 Tne Chi-Square Goodness of Fit Test as a Test for Normality

{2} General Remarks

In certain situations such as comparing a normal distribution
with a frequency histogram of some observed data, it is desirable to
be able to evaluate the discrepancy between the observ.u and expected
frequencies, It is customary in such problems to compute a statistic
which measures this discrepancy and study its sampiing distribution.
A good statistic at hand for this problem is xz, or chi-square (see
Section 5, 2.2).

For subseguent discussion, the following notation will be
adopted:

fi is the frequency observed in the ith class,

Fi is the expeccted frequercy in the ith class,

Then define the statistic xz by the sum of weizhted squares

2
k_(f. - F.)
2
= 22—t (5. 41)

i=1 F.
i

where there are k class intervals,
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Since Zfi = ZFi, the quantity Z(fi - Fi) cannct be used as a
measure, and the square must be used. It is apparent that xz will
give some ineasure of the difference in frequencies as compared to
the expected frequencies. Obviously, a large value for xz indicates
a larger probability of genuine difference from the 2xpected distribu-
tion.

The limiting distribution for xz depends on one other parameter,
the number of independent squared variables in xz. called the number
of "degrees of freedom (d.f.)." There exists a family of curves, one
for each number of dcgrees of frzedom. Each independent linear
restriction imposed on the observations decreases this parameter by
one. For instance, with k class intervals and a sample size N, one
can always compute the {requency in the last class interval after the
first k - { are known. So in this case one is left with (k - {) d.{.
Also in the present case of interest, the normal distribution must be
fitted to a frequency histogram which required the computation of
the mean and variance, This imposes 2 additional restrictions re-
ducing the number of d.f. to (k - 3) d.f. For each parameter esti-
mated from the asbservations, an additional restriction is imposed,
and in general there are (k - a - 1) d.f., where a i» the number of
estimated parameters,

Tables for the )(Z distribution normally give the value of xz
that will be exceeded p% of the time for (n) d.f. The percentage p
is often selected as 5% and the null hypothesis (i.e., there i3 no
conclusive evidence that the observed values were selected from a
non-normal distribution) is accepted if the computed xz value is
less than the appropriate table value,

(b) Applying the Test

The null hypothesis, as nientioned above, is always considered,
If this hypothesis can be accepted at the p% level of significance, then
one may reasonably conclude that the parent population is indeed
normal, if supported by other evidence, There is at most a p% prob-
ability of rejecting the hypothesis when it is true (Type I éxzor).
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ke first step is to group the observations in some selected
class intervais. These may or may not have been previously
The choice of
the number of intervals affects the sensitivity of the test and com-

selected, but may have to be modified for this test.

mon practice has indicated 10-25 equal class intervals is a desir-

able seiection, subject to certain restrictions.

For the 5% level of significance the follc-ving tables below have

becn developed to assist in selecting the number (k) of class intervals

as a function of the sample size N and the expected frequency in each

class, see Ref. g&}

Minimum Optimum Number {k) of Class Intervals

(5% Level) for Sample Size N

N 200 400 600 800 1000 1500
k 16 20 24 27 30 35

Recommmended Expected Frequencies

for Each Class Interval

N = Sample Size 200 400 600 800
* Minimum F, 5-16 5-10 5-10 5-10
*k . .

Maximum ).-‘i 12 20 25 29

2000

5-10

19

*The end irtervals may have an expected frequency as
small as one, pool (if necessary) to obtain

Do not pool to obtain Fi >5,

**Maximum F. may be exceeded slightly but in no case

should Fi exceed 59.

Experience has also suggested the follewing practical rules of

thumb.

1. If there are two or more d.f, and the expectation in each
cell is more than 5, the chi-square table assures a2 good

approximetion to the exact probabilities.
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2. If more 2pproximate probabilities are acceptable, an
expectaiion of 2 in each cell is acceptable.

3. With more than 2 d.f. an expectation of one in the tails
of the distribution i3 satisfactory if the interior intervals
have an expectation of 5 or more.

The sample mean

_ N x;
x= o, = (5. 42)
i=f1 N
and the standard devaation
Z(xi - ;)2
$ = |—— {5.43)
N\ N

must be computed and the normal distribution can now be “fitted" to the
histogram. The class interval end points should now be converted into
standard deviations from the mnean, i.e., where x, is the ith end point
compute z. = (x, - x)/s. The leftmost interval should be considered to
be from (-, z.) 2nd the rightmost ( Zyge ) when reading tables of
areas under the norma! density function to compute tk * cxpected fre-
quencies. Proportions of N expected to lie in each class interval may
now be found in 2 table of areas under the normal density function.
Merely multiply these by N to obtain the expected frequencies. Some
intervals may have to be pooled in order to meet the previously sug-
gested expected frequency minimums. Now compute

2
(f. - F.)
I P ik (5. 44)
i Fi

Then compare xz with the chi-square table value, xﬁ. under n = (k - 3)
d.i. at the 5% (normally used) level of significance. If xz is less than
x: one may conclude there is no zood reason for believing the data
comes from a non-normal distribution, and a hypothesis of normality

ASD TR 61-123 5-18




is therefore accepted. if xZ) x;, the hypothesis of normality would be
rejected at the p% levsl of significance.

It is sometimes convenient to remember that the expected value
of );Z is n, so if the computed value for xz is less than the number of
d.f. it is unnecessary to coasuit the xz table and it may be concluded
that the discrepancies between observed and expected frequencies is
negligible.

When n > 30, x§ may be computed via the normai distribution
since f2x  is approximately normal with mean \,‘ 25 - 1 and standard
deviation 1. Then

2 1 - z
2 -;(f?;—l . xzp) (5.45)

where xzp is the 2p% value for the normal distribution, i.e., :xzp

wouid be the number of standard deviations containing (100 - 2p)%
of the 2rea under the normal density function. As before, the prob-

ability that xz> x:. a on=-sided interval, is given by p%.

{c) Compgutational Examples

Case 1. Less than 30 4.f.

Corresponding to the frequency hisisgram (Fig. 5. 3) there are
the following set of hypothetical voltages. (See Fig. 5.4.) Computa-
tions may be made from the grouped data with a negligible loss of
accuracy, i.e., consider all obscrvations in an interval to be located
at the midpoint.

The formulas used for x and s are equivalents of the definitions
used for computational purposes. "fx" indicates f observations at the
point x. The fcrmula for s is obtained as follows.

‘Z - Zf(x - -;)Z - foz ; Z&fx . N§Z
N N N N

2 2
fo _EZ+;£=2fx 'EZ

N N

(5. 46)
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After the z; are computed using tke formula 2 = (xi - x}/s,
the proportion of the area, O A, under the normal de=sity function
Iying in eacl: interval is found from Table 5.1. Note that since the
normal curve is symmetric tie tavie gives only the values for
€ z< and the arecas for the icft haif are found using the same
tzble. For example, for the interval (1.5, 2.5) th: corresponding
z vaiucs are (.56, .92). From Table 5.1, one finds . 3212 and

2122 57 .92 and . 56 respectivcly. Subtracting and rounding,
A A = .10 is obtained.

As srowr in Fig. 5.4, the expected frequencies Fi are cal-
culated by muitipivirz these arcas by N = 159. The computed value
of chi-sguare comes out ts be 17,0,

Looking at the chi-square tadle (Table S_3) under n = iU degrees
of {reedor:, one finds

X

v v

= 18.3 and xip=16.0

if the 5% Ievel of significance is being used, the data would be accepted
33 being from a normal distribution. However, if one had decided to
work at a 10% Ievel the null hypothesis would be rejected asd non-
normality assumed. In this case, other factors prcbably should be
considered when deciding whether or not to assume normality.

Case 2. More than 30 d. f.

7o illustrate the co:nputation of approximate values of 2

which may be used when n > 30 use the above value n = 10, Then
for the 55 level, one has from Eq. (5. 45),

2
x§=-12-(\’2° “1s 1.64) = 18.0

where .64 = kzp is found irom Table 5.2 for 2p = 10. Iz this case
the agreement is quite close to the previously calculated xg =18.3,
but the method is ot generally reliable unless n > 30,
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{d} Cther Applications of xz

——e

Chi-square tests may be employed to compare any set of
observed frequencies with some set of theoretical frequencies. The
distribution 1o be compared against need not be the nermal distribu-
tior: but may be any one of icterest. For example, this test may be
applied to 2 Rayleigh: distribution, or to a2 combined Rayleigh-Gaussian
distribation as illustrated by Eq. {4. 213 ) in Sectio= 4.9_3_

{e) Limitations cf the Test

The xz curve is oniy an approximation o the true distribution
$0 care must be exercised that the xz test is employed only when this
approcimation is good. The previcusly mentionsd rules for minimum
expectations and ciass intervais should be adhered to, and sampie
sizes should be of the order of 200 or larger.

Since there can cxist distributions sther than the normal that
would give similar expected freqguerncies for intervals. it must be
borne in mind that desired resulls with the xz test do not com:pletely
Justify assuming the parent population to be normal. If possible, the

xz test should be supported by other conclusions.

5.3.3 Applications of Student™s 't Distributior

(a) Introduclion

In making inferences about the mean u of 3 populatior, it is
necessary to take into account the standard deviation (s.d.) o of that
population. In most practical situztions neither u nor - are known
and their sample estimates x for g and s for 0~ as calculated by

N
£
x = {5.47)
N
and
N
> -t
$ = (5. 48)
1‘ N
\

ASD TR 6i-i122 5-23




must be used. Relztionshbips of x and 5 to g and o~ will be investi-

zazed iz this section.

{b)} Specizl Case Where o~ is Known

In the specisal case where o is known and g is unkanown, one
can apply the nermai distributics, rathis thee the “t*-distributios to
be described, in making inferences about g from sampiec mears.
Using Eq. {5. 32) ard (5_3]) from Section 5_2_1, the mean of the
distribution of the sample means is

L~ (5.49)

258 the variance of the distribution of the sample meacs is

2 cr?'
og=— (5. 50)
N
The s_d. of the distribution of the sample nmeaas is then
o
== — {5.51)
x V‘g

One can now “staadardize™ the observations by subtracting the
mean ard dividing by the standard deviatior which gives the following
normally distributed variabie, z, with mean zero and s.d. of umity,
namely.,

z:h =.(—‘.-_"ELE (5.52’
o~ o
-73
Thus, given 3 sampie of N observations from 2 normal population
with s.d. o with which to test the hypothesis that the meaa is i, one

computes x from Eq. {5.47) and then z from Eq. {5.52). Next, com-
szt the table of the normal distribution to obtain the perceat of time the
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sampic vaive wiil lic outside the raxge =z, If this percentage is greater
than some arbitrariiy selected i=vei of sigrificance ¢. s2y 5%, onc
wouid accept the hypothesis that the mean is ;.

For exampie. assume 2 sampie of size N = ¥ ‘rom whick x = 12.3
is computed. Suppose farther that the sopulation i.d. is o = 2.2 and
one wants tc test the hypethesis p = 13, Compating z from: Eq. {5.52).
one ottains

z= Vr=-£05

12.5-13

2.¢

i= 2 tablie of ke normmal distribation (sece Tabie 5. 1) one finds that
+1.05 comtaiss 70.6% of the area ander the normal deasity funclion.
Altermatively, the sampie raise wozld Jie cutside the range +1.05
spproximately 29.4% of the time. Therefore, working at the 5% level
of significance one accepts the hypothesis that g = 13,

{c} Gezneril Case Where o is Unkaown

For the more common case when both 0 and u are uaksowsn,
consider the following statistic of the gezeral form

Y
t: YAt (5.53)
\f:’_z

where ¥ and Z are independent random variables. The variable ¥
is normally distribuied with mea: zer~ ard s. 4. of unity while Z has
a xz distribution withk n degrees of ireedom. The distritution of =t
is known as the “Studeat” or " distritx=tion. (See Section 5.2.3.)
The "Student-t” distribution is acteally a family of curves de-
pending on 2 parameter n. the aumter of "degrees of freedom™ {d.£.).
A graph oi the t-&Estribution even for small a, closely resembles the
normal deasity function aithough actualiy having muck "thicker™ tails.
In other words, the probabilily of large deviations fror: the mean ;s
higher thaz in the case of the normal distribution. The expeciation of
t is zero for n > 1 and the variance is n/fin - 2) for n>2. For n€!
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the mear is not finite, while the varizace is oot finite for n€ 2. Hew-
ever, procadij:ties can stili be crwputed for n = | and tabies of the
t-distribation usuaily range 2o a = | tc = = 125, (See Table 5.4.)

Thke rariabie t is asymptotically rormal with mean serc sad
uait s.d. for large n. in most practical situaticas = > 3> is a suifi-
ciertiy iarge value to fustify use of the ::ormal approxsmatios.

Some specific forms of Eq. {5. 51} will now be gives for testing
hypotheses about means. Is samples of size N from a normal Jepu-
iztion with mean p 32d 5. 4. 0~ “he estimites x aad .Z are isde-
pendent. The sample cstimate x is normal with meas g aad 5.3
o /YK. while xszfc- azs 3 xz distributiona wth (¥ - 1} 4d.f. A
somewhat intuitive justification for Ns2/o~ having 2 x° distribetien
is as foilows: Chi-sguare is essentialiy the sum of squared deviations
from some fixed number - the expected freguency - then these squarss
divided Uy some fixed ncuber - agaia tre expected frequency.

For Chi-square with k ciass intervals one kas

(5.54)

Feor the variarce, uy rewriting Eq. {5.48), one obtains

x -5 {5.55

w
[}
~
"
Mx

Dividiag both sides by the population variance, a fixed mumber,

2

M=

,..F

x( - x)
= {5. 56)
oF

2

.
1)

xs
c_z

The resemblance between Eg. (5. 54) and Eq. (5. 56) is appsremt.
As in xz. £q. {5.56) is 2 sum of N squared variables, but with an
additional restriction. Ia this case
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2 -%<6 is.57}

Nezze Ns ic- comtaies saly (X - i} izfependert squaved viriabies and
isilews « x distribatisa vtk IN - 5P 4. L
Lensider the iwp indepesdent variadice

For <
Y YN ;"’ t (5. 58)
v T
and
Fd
z - X5 £z 59
P

Note that ¥ is cermal w:ths2ig xeto sud =nit 5 =, while Z aas &
x% disteibution with IN - 1; &€, whick falSii; the requirements for
the variable § in Ey. (5. 25, OUse 2ax pow spits
- - ;‘
¥y rr— -

) 4 = ’
tzYUN - § —— T ————— J}u‘-i:
JZ ;‘.‘-:‘;

{560}

ks
]

whick has the t distribuition wite: {X - 1) d.{. and provides z iest for
comParing a2 sampic mean X against some Erpethetical popaiation
meas a.

Asother imporiast applicaties of the 2 distributian is as follows.
Coasides twe :-deyudcﬂ sampies of size K, and N, with means x
and ¥ and variances s and s"' rcspec::u.r. if the two parent popula-
tions Zave means #, u:d L7 u&awva z£.d. of F. e following
hoids.

The varisble

x-F -lwy -5y (5.61)

is morrnal with inean yers and 5.4,
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£ i 2 g,_g: i .
s :‘Ec- g- =5 T . o g_g_ - £5 £33
i gﬁ k?— ‘,éﬁ; sz

wioek o5 obtacned ssing the previcssiy menticnsé 3ddizion thecrem far
TEFIADCe 4G the fact thatr the 5. £ of the Sistridation of meaes i3
o i . o

Aixe, the rasiabie

2 .2
X.s, §§€z$)
_'..T_" 5.3
o
ks 2 x dsribotioz with (N, ¢+ ¥, - B & 1.
One cax write
RN, o Ny - 28 x -5 - lmy -mpt -
[ 3K - - > > £EZ o6
% : < H
N NN, N¥Sy ¢ NS,

tﬁch&:s:ﬁse:—diﬂ:ihﬁanﬁ:‘sgsisﬁz-aé.!. This prov:des 2
test for comparing twe zample meass. The usaal cas~ wiil be the
=yp.xhts=$;:! By OF @s. a}:ﬁ.aaﬁt&etm‘iﬁbeforegdﬂy
of x ad ¥. Tmenesa-ucsli;kamw&em:meﬁiﬁt
=iil be noted in the section on appiicaticns beigw,

(d) Appiicatiors
Sexzral siightly different situstivaé eadst in appiyiag tke -
distribation to tests abou® means. Each case has 3 different approzsh

for “large™” or "small” «>~pies. T2e main cases are:

Case 1. Tests aboat g »hen o is 20w,

Case 2. Tesws abcmt g - 7,
)} Wheas o, and rz AT Kmowa,
i} WTher o4, aad oy arc askecwn 5ot
gresumed 2qual.
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iii} When o, and o, are unknown and
unequal. =

Czse 3. Confidence intervals for estimates of o,

The general procedurc for all cases is as follows. First, the
mean x and standard deviation s, as given by Eq. {5.47) and (5. 48),
are compuied from a sample of N observations, Then t is computed
as given by Eq. {5.£0) or (5. 64), whichever is appropriate. Assuming
one is working at a given level of significance, s2y a = 5%, one then
looks in Table 5. 4 under the approprizte number of d_f. for tp' where
p = {a/2). This is for a “two-tailed" test, which is correct assuming
tha sample mean can vary to either side of the hypothesized population
mean, In other words, 2. 5% of the t-distribution iies to the right of
t, 5 and also 2. 5% lies to the left of -t, g giving a total of 5% of the

area in the two tails. Therefore, if [t]|> t it can be concluded

that only 5% of the time will a valuc this !arzg.es be obtained if the means
are reaily equal and therefore there exists a statistically significant
difference, i.e., there is a 5% chance of rejecting the hypothesis of
equality when it is really true {Type I error}.

A "onz-tailed" test is acceptable if the logic of the problem in-
dicates the difference in the means could be in oniy nne direction.
Then for the 5% level of significance, one looks in Table 5.4 under
ts o since one is concerned about a deviation in only one dir;ction.
Note that values of t are tabulated in the same manner as ¥ . For
n degrees of freedom, t_ gives the proportion of area p under the
density function for t in the interval (t , ). However, the t
distribution is symmetric whereas xz is not. The entries for n = o
are values for the normal distribution. In most practical siiuations
as previously mentioned, for n > 30, the value for t is close enough
to that of the normal to justify using normal tables, and n > 30 will
be considered a "large" sampie.
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(e} Computaticnal Examples

Case 1.

Case 2.

Tests about g when o~ is unknown,

Suppose a sample of N = 6 cbservations has x = 12.3
and sZ = 4,8, and it is desired to test the hvpothesis
that pu = 15 at the 5% level of significance with a two-
tailed test. Compute t by Eq. (5. 60).

e=yEi23-15

jas

In Table 5.4 for 5 d.f. one finds t, 5= 2.57. This
value implies that +2. 57 wr 1d contain 95% of the area
under the density function. Therefore, working at the
5% level of significance. the hypothesis is rejected
since 2,756>2.57.

For the case when N :ic large, say 37, compute t

as in the above example but now refer to tables of

the normal distribution rather than the t-table,

Assume the same mean and variance. To test the
hypothesis p = 13, compute

t= vgu: -1.94

\M.B
The Z, 5% value for the normal distr:ibution is i, 9%
8o in this case the hypothesis u = 13 is accepted.

i) When L and o, are known,

Here is a special case similar to that described in
Section 5. 5. 3(b). As explained previously, one need
only refsr to the table of the normal distribution
after computing

(5.65)
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to find the percentage of time the variable lies outside

the range +z.

ii) When oy and o, are unkrown but presumag equal.

Assume two samples of size Nl =11 and !~EZ =12
with means 82.1 and 72.5 and variances 275, 16 and
320_24% respectively. The hypothesis to be tested is
that of cquality of means. Leiiing (""i - pz) =0,

compute from Eq. (5. 64j,

¢ = luzmmzu ) 82.1 -72.6 =136
23 Vi11){(276. 16) + (12)(320. 24)

Looking in Tabie 5.4 under (N1 + NZ -2y=214d.f.
one finds t, 5= 2.08. The value 1,26 is within the
region of acceptance so accept the hypotheses that

By =R,
It should be noted that when samples 2re small and

variability is large the observed difference muzt tc
very large to appear significant. The failure to £ind
a significant difference may be due to the small
number of cases examined rather than to the equality
of popuiation means.

For large saraple sizes compute t from the same
formula, Ec. {5.64), but one may use tables of the
nermal distribution rather than tables of t ii con-

venient,

iii) When L and o, are unknown and unequai.

Discussion of this case for small sampies is fairly
complicated and will be left for cutside study.

Case 3. Confidence intervals for estimates of .

Given a sample estimate x of a population mean u
it is possible to compute an interval about x which
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kas a given probabilitly of tontaining the popuiation

mezn . Choosing some small level of significance

a in percent, usuaily 5% or {5, a confidence coefficient

(f - @) ic obtained. Now consider the expression

— _ 'E .
P:ob[—t{a/?-)<’—‘———§¢§ -t t(a/Z)!= I -a {5.66}
3

5

This is rzad a5 the probability of the expression in the
parenthesis is squal to {f ~ ). By a simple mznipula-
tion of the above inequality one finds

& confidence interval corresponding to the sample
estimate X of i has now bees obtained. For exampie,
choosing @ = 5 there is a 9535 probability that g is

included in the interval

eS¢
N-1

2.5 {5.68)

where Y 5 is obtained from Table 5.4 under (N -~ 1} d.£f.

Using the hypothetical values from Case 1: N =6, x=12.3,
$s=2.19 and 1t 257 2. 57 one can compute a confidence
interval using Eq. (5.68). The result is

=12.3+ 219 5 572134

X+ — ¢
Vn-1 3 5
and

— 5

2
<. 2.19

=12,3-——= 2,57T=11.2

—_t

{_—N 1 25 5

Thare is a 95% confidence that the true pepulaiion mean
g lies in the interval (11.2, 13.4).
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{f) Other Applications

The t-distribution arises fraquently in statistics. Another im-~
portant appiication is for testing regression coefficients for significance
{see Section 5.&6.2D).

5.3.4 Applications of the ¥ Distribution

{a) Iatroduction

In applying the "1 distribution as 2 test for equivzlence of means
fror: twe samples, it is necessary to know whether or not the variances
of the two samples should be considered equal or not. The F distri-
bation, described in Section 524, exists for making this test bdased
on computing the ratio of the twe variances.

Consider two independent variables U and V¥V which nave xz
distributions with m znd n degrzzs of frecdom respectively. The F
distribation as defined by the varizbie

el 5] t5.69

leads to a2 useful test about the ratio of two variances.

From previcus considerations pertinent to the t-distribution
ons recalls that in samples from a normal distribution, the random
variable Ns2/a-% has 2 x° distribution with {N - 1) d.f. Let s?
and s% be sampie variances based ;ponzra-:dom samp!es of size

N, and N, -cspecuvel--. Since N3 1,0* and N, /a-z possess in-
dependent x distributions with { - 1) and (k - 1) degrees cf
{reedom respectively,

le':’

U -
— = —— {5.70)
m ‘Ni - l)a'i

and
N 2
r s’
v__"22 5 (5.71)
n !NZ - l)rz

satisfy the requirements for Eq. (5.69).
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czn be made where & is

N

. - 2>
In geaeral the hypothesis o"!' =co

some constant. E£q. {5.59) would ther becamne

2
N,s,/a(N, - )
P O Vs
4 3
N, s,/AN, - 1)

whaich possesses the F distribution with (N, - 1} and (Nz - 1) d.£.
A more usual situation is the hypothesis o = o, and Eq. (5.69)
is then

:."s‘;'/'(r:! - 13 5.7
R -
K,52/(N, - 1)

which also possess the F distribution with (k‘l - 1) and (NZ -1}a.f.
This distribution is wsil known and tabulated, and provides a test for
comparirg sampie variances. (See Table 5.5.) For the special case
of equal sample sizes N. Eq. {5.73) reduces to <. simpler form

{5.74)

"
"
NN

with iN -1, N- 1) d.f.

The general random variable F defined by Fq. {5.69) 18 a
mean value and variance given by

E(F) =—2— for n>2, independentof m
n-2

an(m +n-2)

Var(F) =
min - Z)Z(n - 4)

for n>4

For the special case of Eq. (5.74), where n=m = (N - 1), the above
becomes
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E(®) LI PUrYy large N
N-3

e -~ 3 z -
Yar(F} =_§_(§_¢2_€£’-__ak_4 for large N
(N-3)"(N-5) N
Thus. for large N, the value of ¥ should be close to unity for equiva-
lences of vzriances,

The unique reot Fp of the eguation
Prob{F~> Fp) =p (5.76)

whers p is a yiven percentage, is called thic p parcent value of the
F distribution, and is tabulated in Tabie 5.5 for differen: percentage
values of p. From the definition of F, it may be showi: directly that

1 -
Fi -p = -F— {(5.77)
P

so that given the value of F_ for one side of the distribution, one can
immediately find the value for the opposite side. Thus, the {1 - p)
percent value of the F distribution equals the (i - p) nercent value
of the {1/F) distribution.

The F cdistribution aiso bezars interesting relationships to the
t and xz distributions under certain conditions. When n = 1, for
exambdle,

F =1t 7> {5.78)
where F has (I, m)d.f. and t has m d.f. This relation is not
easily shown but can be found in the available literature, When
m—;oo, sg—otrz and F will approach s;'/crz. But nsf/o-z has
a x~ distribuiion with n d.f. Hence,

Y4

ns
__% = 2 {5.79)
[+ ad

ASD TR 61-123 5-35




and

sz 2
Feot_X 8
== {5.80)
o n

Therefore, when m approaches infinity, F has (n, oo} d.f. and F

follows 2 xz/n distribution.

(b) Applications

Taoulating the F distribution is more complex than t and xz
since there zre tyc degree-of-freedom (d.f.) parameters. This would
regquire 2 three way tabie so in the interests of economy of space, the
different percont values given are iimited. Tablz 5.5 is in four parts
fcr the 5, 2.5, 1.9, and 0.5 percent values with ¢ and m d.£, for
numerator and derominator respectively. By the reciprocal relation
of Eq. (5.77) one aiways has the 95, 97.5, 99, and 95. 5 percent values
also.

To test for the equality of variances frem two samples of size
3 { , one must first compute sf and s‘;'. zlt is cu;tomary to
compute F from Eq. {5.73) with tre larger of s and 5, in the
numerator. This is allowable due to the reciprocal property. Under

and N

normal! circumstances, a two-tailed test must be used. Since the
hypothesis is that the variance estimates sf and sg come from popula-
tions with the same variance, too great a discrepancy between sf

and sf is damaging to this hypothesis regardless of which is larger.
The r;gion of rejection must include :cth tails of the distribution so
that the hypothesis will be rejected if either

sf/sg is very small or s‘:'/sg is very large
which is the same as if
2
s;/sf is very lar:e or l;/lf is very small.

Therefore, working at some given level of significance a, rejzct the
hypothesis of variance-equality if F >F( a’2)"
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Conceivadly, the logic of the probiem couid indicate 2 snc-tailed

test. In this czse one should reject if F 7 Fa’

{c} Computational Examples

>
Assume twc samples of size N, = 21 and N, = 1 with s, =250.6

and ’; = 63.8 and oz wants to test the hypothesis o~ = o=, at the 5%

ievel of significince using 2 two-tailed tast. Computing from Eq. {5.73).

one obtains

20{250, &i
20

11{&3. %)
10

¥F= = 3.75

in Table 5.5b under 2 = 20 3nd m = 10 &.f. one finds 1-‘2_ 5= 3.42.
Thereior=, one can discard the hypothesis of o =0 at the 5%
fevel of significance.

Ira si:npie; case of equal izmp:e sizes, S3y ;\'-l = s’z = 31,
with variances sy = 26G.5 and 35 = 2I7.1 one computes from

Eq. (5.74)

F-ZSO.S

= =1.2
217.1

Working again at the 5% level of sigaificance, one finds from Table 5. 535
under {34, 30} ¢. 1., F, 2= 2.07_ In this case, accept the hypothesis
of cquality of varianc;;.-

Application of Eq. {5.72) under the hypothesis o g =35, would
be identiczl to the above computationai procedures except for inciuding

the factor a.

18} Cther Applications

The F distribulion is applied extensively in the area of analyvsis
of variance. Variances for severai interactiig f2ctors can be studied

simultancously using these techniques. (See Scctions 5.4.2 and 5. 5.7(b).)




5.4 STAZISTICAL RESULTS FROM REPZATED EXPERIMENTS

In samples of vibration data taken froo: 2 single £k of somte
vekicle. one caz ouly make estimites of parameters of interest con-
cerning that oae fligkt. Some confidence, in the form of 2 probhahility

tatement, mzy be attaicked 1o thetse esimalss based cpoe certain
starisriisl considerations sach 2 the form of 2 probaility dexsity
furcrion and samole sizes,. [t is desirable to Be 2bie e make some
sratermests as to how réprzsamtative one Nigkx is of otker flights of
t=e same or similar vehicles under similar conditions. This cazmot
b done withozt repesting the experiment, i e., the fiigh, whkick in
tora can thes give some estimates of variation betwenn Lights 35
opposed 1o variztion witki=z & Gight. Statistical tests can be performad
to determice whether or =of the variability is the save from fiighk to
fiight, 3n€ wihetEer & ol In avErige ribrasfon level {e.g. rms
acceleration) is the same from ffight 1o Rlight. Givex the same vari-
ability and arerage vibratios level from fiight to fiight fwithix the
limits of ailowed random variztion]. 23vim:zres can be obtaized of the
over-ail mean and variaace Iwirk » specific confidexce) of the estire
poplation of these figizs,

This secticn cf the report discusses certais increased informa-~
wion and coniidence to be gained in takisg vibration samples fromm several
wifferost flights as opposed 1o o=fy one fifght. Statistizal axalysis of
the data from 2 siagle flight ic described in detail as well a3 stitistical
analysis for da:a samples from several flights. The distinction is ex-
pidined betweer 2 large sample estimate from a single fight, as
cpposad to a5 estimate obtaired froem combining a aumber of smalier
samples frwn several fiights. It is abown IE: meaningfal resaits may
5¢ obtained from: repeated éxperiments due to simultaneous verifica-
tion of important assumptions conceraicg the whole class of fiights.

5.4.1 Analysis for Ie Flight

Assume N cbservations of some parameter exist for a singie
fiight {(experimernt). Ose cax ther compule, for this “ith™” Gight, tke
mean
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!ﬁ&éiﬁke&:&%ﬁfxﬁ:?&%ﬁi!sﬁiﬁtiﬁﬁid; Note that
the p-Frroest ssive Selianitica for the sorrmal Estriintion considers
the 2Srolrie vaiue of Leviaticns fremm the »udax. Hewerer, the def-
inczions o ;z.ﬂiﬁrﬁﬁ!'méﬁr‘m:lﬁtm
m:as.ssztbq;g{ms'iza.&‘rm:hﬁk"znhtge
SLPie IPPrecEieas,

However, iz geseral, c&‘g&em%a@%gg&e

{5.8%

1]

x. %k =
i

[}

and shocid &= L3¢t depené ox the sampic s5re X, fgﬁz’ﬂgﬁ.iﬁ

% 2Ks 15.86)

a=d tabatazed vaizes of tolersace faciors K a5 a fanctiec of X, 2 aad
{1 - @) may e Gond 5= Talle 2.1 of Ref_[6] (see 55, 5.5 Txiie S &
of this report). As az Sizstraicn for &= 5%, i = 1.3 @) contains
5% £ 2 zory 2l Esrrilcties. Hewerer, whes 5 23ai ¢ are zot kneows,
for exaempie where XN = 0, P = .95, and x cpalidescr cocificiest of
(I -8i= S5 fidisires, GacEas fooem Taile S5 22 M= 2 MR, Thee
!kiﬁtlﬂig%zlsli)miiéﬂESEftﬁﬁW’s;
of the tisce. for sampies of size 12,
iaﬂ&ctiﬁt&ﬂ&gwkm&&wm
Tor smwa™ samples, XL, recals :sg&.:,‘&;sfr h:;x Eprribe-
tiar, e Sosired reidiice is

2 wd
?:g%{—fii- cate B2 E cf-a {5.5%

LR P Nty

ASD TR &5-123 -8




mhere x is obtaized frocn £28328 of the x° distriSuriom with EN - £
drgraes of Irgtdsen. For XD 65 oo o= maie e of the facr thax
¥ Ix - "m@%&zn&gﬁ@&m;zﬁm
a—-.ﬁéﬁrjiﬁ Thex

a5 i

bas 3 prebadility of {1 - a) of cencadsiag the pupnlitisn stamiard
deiariss o

of "raalzyie of vhaivecy™, ‘hgﬁ&*ﬁsahgﬁgﬁ&&&m
saAlors of saee g FRrriostar prameter frams Sipht ve LighL are mat ¥ig-
2ifienacly Effrreae. I will e assmntd thi X sdsorvaisns asez of
TS sarTiesiir pariooifer Gt otk af &k Effrrewr i, awml 2f

Time, Amathir Ics? £5 Seforibed iz Serzisa §.1. 50,  Sxueming maemaiity.
the prefess Ezczssise will precend By serling Ser reoiiny of warizaces.
32 then perfersing o 22W0rsEs 1o 1053 far opaility of meaxs,

§31} YVasizzoe Egealite Tois

3
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Assumz N observations are obtained from each of k fiights

and one wishes to test the hypothesis of equals means.

That is
hy SRy T ... TR TR {5.90)

1f this hypothesis is ¢rus 2nd the assumption of normal populations with
equal variances is justified, then all the obser«-ations may be regarded
as random observations from a single normal population with mean u
and variance o-'Z. The means of the samples would then be random

observaiions from a normal poptlation of sample means for which

E(X)=n {5.91)
and
2
et (5.92)
* N

The unknown variance 0"2 can be estimated from the variation between
the k sample means {between groups). It can also be estimated from
the within flight variances (within groups). Thke ratio of these two

estimates provides the statistic for testing the hypothesis.

{b) Estimate of 0_2 from Variation Between Groups:

Let ;i be the estimate of the mean from the ith sample. First com-

pute the mean of the means

x = 221 (5.93)
k
and then
k. _ _2
N (X - %)
Ns_f; .=l (5.94)
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since No-.,z? = cr-z. Equaticn {5, 94} is the estimate of 0_2 from the
between gvoup variation. Note that this estimate i3 based on the
random variation expected in sample means oif size N plus any addi-
tional variation due to real differences in these means if the kypothesis

of equal means is false.

{c) Estimate of a-z, from Within Group Variations:

Next peel and average the variancc estimates from each flight to ob-
tain the second estimate of c-z, the mean square within groups. In
general, weight each sample variance according to its number cf de-
grees of freedom and divide by the total number of degrees of freedom
which: gives

2 (N -0sZa (N, -1)sZe s - )8l

s< = (5.95)

N1+NZ+... +Nk-k

In the casc of 2qual sample sizes Eq. (5.95) reduces to

ko, X o,
N - 1) Z 5y 2.8;
SZ - i=1 - i=1 (5.96)
Nk - k k

Alternatively, one may write

}: Z (x;; - %°
= i=1 {5.97)
Nk

2
s

for computing directly from the original data, Note that this estimate
will not be affected by any variation due to different means.

(d) The Variance Ratio: Twc independent estimates of

the population vanance have now been computed, namely, Ns.z., which
has (k- 1) d.£f. and s which has (Nk - k) d.f. To form the deszred
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ratio recall that k(Ns_’_Zc)/’a-z and Nkl_sz)/o-2 have xz distributions
with {k - 1) and {Nk - k) d.f. respectively. Taking for the rumerator
the term with the greatest expectation, k(Ns%)/o"z. the F ratio then
is

.2, 2
KNSR k hnsdy 2
2 2 (NE-K)
(k-1 _lk-1 _%5
F= > = == - — {5.98)
Nk(s“)/o~“ { Nk }(sz) s (k- 1)
Nk - k) Nk - k
or
x 2
N2 (x. - %) Nk - k)
i=t *
F-= .
k N {k - 1)
>0 30 ix,, - %)°
izt j=1 ¥ O *

Since a onc-tailed test can be applied, F is comparegd with Fa with
[(k - 1), (Nk - k)] d.f. The hypothes=is is rejected :: ihe a percent
level of significance if F>Fa'

{3) Parameter Estimation.

{2)" Mean Vibration Confidence Interval: Assuming,

that at a given level of significance, equal variances and means from
flight to flight exist, statements can be made about the probability

of exceeding certain values within a flight, and the over-all mean
vibration level can be located more precisely. For instance, supposc
an interval with a certair probability of containing the true mean p

is desired. Assuming k flights of N observations each with means
;i and variances of s?’, the over-ali sample mean X can be computed
by Eq. {5.93). Then compute the variance of the distribution of mcans

of samples of size Nk by computing the population variance estimate
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from Eq, (5.96) and dividing by the total sample size Nk. This
ives for the standard deviation of the means

k
2

S rd .
s—= xhere s = (5.99)
x YNk k

To obtain a confidence interval that has a probability ¢f {i - a) of

including the true maan g, use ihe folloswing equation:

Prob[i - (5. 100)

t —2_ cp<x+t —= _l=(1-a)
(0/2) - x (@/2) i x

or

{5.101}

= s
“e/n J

where the value t(a /2) is obtained from the tablcs of the t distribution
with (Nk - k) d.f.; that is, the vaiue defined by the equation

3
Prob[t > te /z”! = (af2) (5.102)

If (Nk - k} > 30 the t distribution approximates the normal distribution
closely enough so that one may use

+

_QJ——

where ka is obtained from the tables of the normal distribution,

{5.103)

To illustrate the two cases, suppose the zample size is Nk = 16
and one seeks an interval that has a probability of {1 - a) = .99 of
containing g. If k = 2, it is scon fzom the tablcs of the t distribution

under 14 d.f. that ty 5= 2.98. Using Eq. {5.10f;
x;t—_to's ( )s-x+(8)s
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With Nk = 36 aand using Eq. (5. 103), Al 6 is found to be 2_58 and the

interval is

= &}
Zin!-o

{b} Indivicd:2al Vibration Confidence Interval: To make

2 similar statement about the individual values rather than the mean
value of a flight, a tolerance interval may be computed using Eq. {5.86)
and the procedure described in that paragraph. Note that now the
sample size is cffectively considerably increased from N to Nk and
as a result the interval will be significantly smaller. Figure 5.5

gives an indication of the dependence of K on the sample size for 2
constant proportion P and confidence cocfficient (! ~ o). The data

in Fig. 5.5 is a plot of the speciz! case in Table 5.6 {at end of section)

where P = 0.95,
10

P=_95
{(t-e)=.95

for N = o0

5 K=1.96

p—

S
T gy P g

I 1 1 1 .
246810 26 30 L 4] % w

N

Figure 5.5. Toieriance Factor Curve
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{c} Population Variance Confidence Interval: One can

also obtain an interval zstimate of the population varianée, An estimate
of ‘2 with (Nk - k} d.f. may be computed {from Eq. (5.96). The=x the
procedure described in the analysis for a2 single flight will give the
corfidence interval for the population variance. Depending on the sam-~
ple size, either Eq. (5.87} or (5.88) is applied.
An estimate of the populaticn variance with {Nk - 1) rather than
{Nk - k) d.f. may be obtained at the expense of recomputation of an
s¢ directly from the original data posled, that is
Nk _
ix. - xj
1 } 3
e —— {5.104)
Nk

2

The danger in using this method is that the flights may actually not
have the same mean but by chance the differences failed to be caught
by the test. In this case this estimate of the variance will contain
the flight to flight variance and will be larger thar it should be.

{d) Results if Means are Unequal: Equation (5. 96)
still gives a iegitimate unbiased estimate of the within flight variance

whether or not the means from flight-to-£light are equal. Therefore
toleraace irtervals may still be computed for the individual values
within a flight in the manner described in {b) above.

One can also estimate the variance of the distribution of the
flight-to-flight means in the following manner. The between group
varizace estimate Nsé is an estimate of the within group population
variance plus the additional variance due to the flight-to-flight varia-

.- < 2 _ o2
tion. Letting Ve h"i'

Z\’U

w2 . 2 Y-
=~ o +P¢a'"_ H O;L’EL“i u) (5.105)
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-
Since s as computed from: Eq. [5.96) is an estimate of o, the
relation
2.2 .
= = Estimate of o (5. 1C6)
N |

is obtained. 1If the flight means 3are normaliy distributed, one may
again compute toierance intervals using k as the sample size. Ncte
the mears are being considered as individual observations from some
population in this situation. Averages of N measurements of the
heights of k men would be an anaiogous situation.

For the cver-zii mean x as computed from Eq. (5.93). a con-
fiderce interval can be computed with aid of the normazl distribution
by the following relation:

~

- M
Probjx +A ————1 =1 -0 {5.107)

P~ & Nk - 1

where la is taken from Table 5.2.

5.4.3 Selection of Sample Size and Number of Flig..iy

Methods exist for the selection of sample size N and number
of fiights k so as to minimize the totai number of observations Nk
if some additional assumptions are made. Equation (5. 105) indicates
two components of variance in the estimate of variance determined from
the variation between means. If the second of these, o‘z , is zero,
then the meansare egual and the hypothesis is accepted ¥ (1 - a) per-
cent of the time when working at the a level of significance. In this
case the Type I error is ¢ percent. That is, the hypothesis is re-
jected a percent of the time when it is really true. For selection of
N and k cne must also consider the Type Il error B. That is, the
probability of accepting the hypothesis when it is really false. Tables
8.3 and 8.4 i Ref. {6}. based on pages 311-314 of the text, determine
N and k as a function of a and B.
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An alterpative wiy of considering the orobjem is given on
pages 527, 5285 of Ref, [SI. Here the “operaiing characteristic*
{O.C.) curve of the tost is considered. To obtain on O.C. curve
the probability of acceptance of the hypothesis is plotted versus
some measure of the deviation from the desired value. Then, the
N and k that gives the O_C. curve with the steepest siope, con-
sistent with economically feasible sizes of N and k, is selected.

kis would De the test that discriminates mosi effectively against
values that are considered acceptable and values that are considered
unacceptable, Thes2 O.C. curves, or “"'power™ curves as tney are
sometimes called, will be discussed more fully in the next section
on quality control procedures.

There is no real advantage in taking ik samples of size N
over one large sample cf size Nk if ii is known for surc that ail
the flights will have the same vibration levels. However, if one
i:as any reservations as to the vibration levels from flight to flight
{as oz certainly should), sa2veral flights must be sampled to verify
the assumptions, This is thie real worth of the repeated experiments
while 2¢ the same time allowing the computaticn of better estimates
of the mean and variance of the population due to the effectively in-
creased sample size. When the hypothesis of equal means holds,
one is still able tc pooi samples while kaving the assurance of 2
Ziven probability that some of the assumptions have been verified.

Estimating vibratior levels for another flight from 2 sampl=s
of a single flight, even though the sample of data is large, is at best
a somewhat tenuous procedure. However, collecting smaller amounts
of data from several flights will still allow the use of the final, large,
combined sample size with the corresponding narrower confidence
intervals while having much greater sssurance that the estimates
to other flights arc reasonzble.

5.4.4 Computational Example

Assume the hypothetical data in Fig. 5.6 below has been ob-
tained from 5 flights with sample sizes of 15,
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right Mmber

——— e —————— —— __________ __ ___

1 z 3
x 1 4 r 4
3 1
4 2 r4 1
1 ; 4 S 2
o 2 3 >
k 2 3

3 1 2 2 k

i 1 2

i5 15 i5 ;5 i5

(¥ =15, k= 5)

Figurec 5.6. Computational Exampie

First. computc the estimates of the mean and variance, x; and

iZ. from Eq. (5.81) and {».84), for exzh fIighe.

- - - - = . _ o7 = ..
x, = .47 X,y = .07 Xy = .0? xg = .07 xg .93
2. 2 . are 2. 2 2, o
s = 2.109 s, = 1.925 s3 ® 1.525 s = .995 sg = 2.065
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Aiso compute the over-ali mean x from Eq. {5.92).

—
x.
E

X= s - 27

K

{i) Variacce Equality Test
The Cxt= =3 be acsomned 1o b taken from a scrmal
- - - - . z o_z 2 a_z _. 2
pozalatics so the Zrst Eypothesis fo be tested is T, EOSEI = s o,
FTor this, use £6. {5.£9) a=d compule

sz 2,685
F L s =2 68
- sZ .535
min

inTable5.7for k=5 and n=N-{zci4d.f, F:r.uk 4.7 is fosrd
for the 5% Ievel of significasce. Since (b computed value is 2. 08,
accept the kypothesis of 2 comumon variazce 5t the 55 Ieve! of sig-
sificance.

{2} Equality of Means Test
The next kypothesis o test is By Sy~ --- TRy =R
To do this £irs: compte the esiimate of the variance irom the between
group variatica from Eq. (5. 94).

i _151.7463)

=15 146} = 2. 24
x k 5

k — —
Qx_‘"( -%)

The second estimate of the variance from withir groap variatioe is
cemputed from Eq. {5.35). Tnis gives

k, 2
5,
,22 i 22716‘94- 1.925 + 1.525+.99§-}2.055=L?Z
P 5
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Nexx the F ratio is compated froes . {5,550

= g€_£§? r{=] =353
fi.72) =
2 =Rics Sl the F Gstrilstisaenler (B - Il = F 28 [Nk - E) 5 70
&£ ==e finfs for the 3% lovel of sipnifica~ce F, @54— 6= 2.38.
Siace thé cornpzied walze i3 [eFs, Reces? the kg—;-i;ﬂ:saf o2l
rmeEss,
£33 Blexm Vrafios Confidernce [mterval
To olaiiz 3 confidence faterval that ks 2 prodabilin
of [f - o} = .99 of conzalning the Irne over-xl mez= . 85 (51585
iz ored sizce N> 35,
-~ s »re o w 2z Lo31 _o 5 2
Teh, ——F{-.2Tj 2 - T (.39
= L0 £.&5 -

wkire X 3nd 5 Ire compnied fromm Sg. 1593 324 {5, %2) respeciivdy.
The Ecsived interval i thes, (- &8 3122

{3} Iadividesi Vitraios Cocliidemce Izterval
A 2ferasee iRlerval may Se compsied for the in-
gividaal walnes for = fight. The interval tha will cocuaiz P = 995
of tke valzes {1 - a) = 955 of the tirme i5 oX2ined using E4. {5.
In Talle 5.6 15 factor K for2 sapicsizeof k=75 is 3.@2.
Usisg x from: Eg. (5.93) a=€ s froem Eq. {3.98).

{x £ Ks) = {-.27) = {3.03: L. 31) = {-. 27) 2 {3.97

TEat is, ke interval {-4. 20, 3.48) =31l coniain 5% of 1the values in
9% out of 12D suck intervals 1h3: zre commpuiad,

{5) Popslation Variznce Confidence Intervsl
For an intercal estimale of the population standard
deviation o £q. {3.28) is ured =ith K& 25 the sample 3izc. For

a2 confidance of 95%

ASD TR 51-122 5-53




5 538 e g2 5%y 15230
=% - 12 2

&k, G =535+ 2%
— F ¥ —

2= cheog 2Ry intervad B (0,02, 27D TEIs comeiadts ke sxammple.
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Figure 5.7, Control Chart for Mean Values (k = 12, N = 5)

{b) Applicatior: to Flight Vibration Data

The control chart's application to flight vibration data
should be as a rough visual aid to obtaining indications of a drift of the
mean vibration level over a flight phase or as an indication of some
unusual cccurrence if 2 measured mean value were to exceed the
control limits. Flight-to-flight means could also be plotted this way,
but it is doubtful if enough "flights™ would be conducted other than in
laboratory experiments.

The contral chart may also be used as a vrough test for random-
ness of data, since non-random effects shculd be caught as point outside
of the control limits on the chart. It should be noted that with fairly
large sample sizes, say N 212 or preferably N 330, the coatrol charts
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are safely applied whether or not the underlying distribution is normal,
On this basis the control chart may often be usefui when other tech-
nigues are not.

The control chart for mean vibration measurements is only one
of many differcnt variations of this technique, See Ref. [5] for a more

exhaustive discussion.

{c} Comparison with Analysis of Variance

The analysis of variance technique described in Sec-
tion 5.4 concerning repeated experiments is comparable with a meéan
and standard deviation coniro! chari in many ways. They are not
exactly equivalent; however, they both give a test for equaiity of
several means. The control chart has some advartages in thatit
gives a visual picture, it more or less pinpoints the exact positicn
of the offending mean values, and is of course somewhat simpler to
apply and understand,

However, the control chart is most useful where observations
are easy to obtain; that is, not time consuming, reasonably inexpensive,
and plentiful. The analysis of variance technique iz much more use-
ful when the maximum amount of information muct be obtained from
the minimum amount of data. This indicates that ifor limited flight
vehicle vibration data, the analysis of variance will probably be the

necessary technique,

5.5.2 Inspection Sampling

The situation may arise where it is convenient to measure some
vibration parameter in terms of whether or not it exceeds some safe
or acceptable level. In this situation the observation may be interpreted
either as acceptable! or as a''defect””. Under these conditions sam-
ples of N observations could be considered as coming from an accept-
able or unacceptable population having a certain percentage of defects p.
This is assuming for instance, that if some vibration level is exceeded
only a certain small percentage of the time, then no damage will be
done,
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Under these conditions the application of inspection samgling
techniques may be useful. These tzchaiques basically consist of in-
specting the sample of N items, and rejecting the population as ex-
ceeding some percent defective if the number of defective items is
larger than some predetermined number of allowable defects ¢. With
the sample size N and "acceptance number® ¢ determined, an C. C.
curve may be plotied to indicate exactly the probabilities of accepting
or rejecting a population with a given percent defective, To discuss
these sampling plans and consider methods of computing various
0O.C. curves, it is necessary to first review briefly three important
discrete probability distributions: the binomial, Poisson, and hyper-

geometric distribations,

5, 5.3 Binomial Distrioution

The binomia! distribution is 2 discrete distribution arising
from an expansion of (p + q)N where p may be thought of as the
probability of a success arnd q = 1 - p the probability of a failure.
The “experiment” having these two possibie resuits is repeated N
times, and the outcome of the experiment is always independent of

the past results. Thesec repetitions arc known as Bern-wili trials.

That is, repeated independent trials with only two possible outcomes
for each trial and their probabilities remain the same throughout
the trials, Writing S for success and F for failure with p the
probability of S and q the probubility of F, it is clear, cince the
trials are independent, that the probability of any given sequence

of successes and failures 1s

Prob{(SSFS... FS)} = pPPQP ... 9P (5.113)
P

where § and F are just replaced with p and q respectively.
If N is the total number of trials and k the number of successas

the probability of any one sequence of k successes in N trials is

phgik (5.114)
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To consider the probability of the toiaZ number of successzs k out
of N trials, the number of different ways of disiributing k letters
S ir N places must be computed. This is just the number of com-

biraticns of N things taken k at c time. That is,

-

(N} (5.115)
ik =N - k)'

Then the probability b{k; N, p) that N Bernoulli trials with probabilities
p for success and g for failure result in k successes {0 k{ Nj is

ka

bl{k: N,p) = ( ) (5.116)

That is, multiply the total number of possible favorable events by the
probability of cnie favorable event. In particular, the probability of
no successes in N triais is qN, and the probability of at least one
success is (I - qN). Equation (5. 116) represents the kth term of the
binomial expansion of (g + p)N, therefore the name.

In the application of the binomial distribution to inspection sam-
pling it is convenient to rewrite Eqg. {5.116). Let £(c/N) stand for
the probability of ¢ defective items in a sample of size N when
sampling from a population with a fraction defective p. Then Eq.(5.116)
can be written, replacing qby 1 - p and k by c,

P(£)=(N)p°u cp e M pSu N (s.119)
N c c!(N - c)!

If p' = c/N is taken as the variable in the binomial distribution the
expectation can &< shown to be {see Ref. [5)),

E(p) =p (5.118)

and the standard deviation is

o = E“l; p) {5.19)
5-60
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5.5.4 Poisson Distribution

Calculations using the binomial distributicn become guite cum-
bersome for large N. Therefore, apuroximations to the binomial
are quite helpful in applications. In inspection samplirg, where N

is large, p is usually quite smazll, and the condition
X =Np ’ A = constant {5. 120}

is ofteur reasonably satisfied. In such cases an approximation of

b{k; N, p} due to Poisson is convenient. Note that

5(0; N.p) = (1 - B} (5.121)
Now substitute Eq. (5. 120) which gives
|
bO;N.p) = (1 -2 & (5.122)

for large N. By simple algebraic manipulation the following relation
is obtained:

b(k; N.p) _ p{iN - k + 1}
b{k - 1; N, p) qk

{5.123)

rom the assumption of Eq. (5. 120), Eq. (5.123) may be rewritten
in the form

bli;N,p) _A-ik-1)p A
b{k - 1; N, p) gk k

{5. 124)

since when p is close to zero, q is close io one, giving the above re-
lation. For k = 1, Eq. (5.124) and (5. 122) yield that b{1;N,p)=ie ™,
For k = 2, one finds b(Z:N.p)R-'(xZ e-)‘)ﬁ—:, and generally by induction
Ak
b{k; N,pj=— ¢ (5. 125)
k!
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This is the desired Poisson approximaticn and is usually designated
by
k
plkiA) =2 e~
kl

A A = Np (5. 126}

()

For inspection sampling it is more convenient to let P(c/N)
stand for the probability of c defective items iz 2 sample of size

is, and write here

).ce
P( = ;i A=Np (5.127)

In words, P(g‘f} is the probability of ¢ defects in a large sample of
size N with a smail fraction defective p such that Np&~\_. For
example. suppose N = 500 and p = .02. Thenr Np = 10 and the
probability of ¢ defects in a sample of size 500 is

p( c |10 e7t0
_500} c!

The mean value of the number of defects ¢ in N items is A aad the
standard deviation is ﬁ_ {See Ref. [ﬂ) In terms of the variable
p' = ¢/N introduced previocusly, Eq. (5.118) above,

ElP) =X ; o=,=VyX {5.128)

5.5.5 Hypergeometric Distribution

A different distribution is someiimes useful in computing
probabilities of finding the numbers of defects in a sample from a
small, finite population. Suppose the total population size is S
and it contains m defects. Assume a sample of size N is taken
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and the probabijlity of finding ¢ defects is desired. First consider
the total number of combinations of N units &ach that may be made
from S units. This is the total number of different samples of size

N tkat may be drawn from a population of size S, namely,

{S) SRS - (5. 129)
N| NS - n)e

Second, note the total number of combinations of N units that may be
made from (s - m} units, i.e., the number of possible sampies from
the "good” units in the population. This would give the probability
P{0/N) of a sample of size N with zero defects as

(S-m‘ {S - m)?
N LN!(S -m -N) _ {S -m)¥S - N)! (5. 130)

el

in other words, P{G/IN) it the ratio of the number of possible ways a

(s) S! (S - m - N)!S!
N] N5 - N)!

sample with no defective items can occur to the tota: number of ways
all samples can occur.

To proceed, consider the total number of ways a sample of
size (N - 1) may be drawn from: the {S - m) good units, Multiply
this by the rumber of ways 1 item may be drawn from the m defective
units. This would give the total number of ways a sample with (n - 1)
good units and one defect may be drawn from the population. Then the
probability of a sample with oae defect is the ratio of this number of
combinations to the total number, or

[T " m
p{‘l: N-tll1] _ (N-DUS-mN+ 1) 1m-1)!
Ny

(S} S
N N!S - N)!

{5.131)
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The above relation illustrates the vaiue of the notation P- for com-~
binations, and the complete expansion on the right in E7. {5, 131) will
te avoided henceforth.

In general, if a population contains S units with m defects, the
probability P(c/Kj that 2 random sample of size N wili contain ¢
defects, wnere c cf course is less than the total number of defects

m, is

(5.132)

This gives what is known as the hypergeometric distribution since

it is the general term in the series by that name. It can be seen

that cornputations might become quite cumbersome with Eq. (5. 132).
If the ratio of the sample size to the population siz# is less

than 0, 16, the binomial is usually used as an approximaticx: to the

hypergeometric. If the sample and population size 2re both large

and the number cf dcfects in the population is not too small, a

normal approximation may be used. The mean (see Ref. [5]) of

the rormal approximation would then be the fraction defective p,

and the standard dewviation would be

o = |PU1-P)
N

N
¢ - {5.133)
P ‘1 S)

|
The probability of ¢ or less defects in 2 sample of size N then is
given by the value of the standardized Gaussian distribution functicn

4
oz) = f (1/V22) exp (-1%/2) &

s o]

where z is
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t
i
z=zlc s 8.5) = i {5-134)

The factor {c + 0.5)/N rather than c/N is to zccount for dividing the
distribution into intervals having ¢ as a midpoint; that is, for the
probability of cxactly ¢ defects, “ompuie {z(c . 5)} - iiz(c- - S)i
to chtain the area in the interval {c - 0.5, ¢ #+ G.5).

The thrz2 previously described distributions ali occur in
sampling plan computations with ti.e Poisscx dften being the most
convenient. However, various situxtions arise where it is necessary
to apply either the binomiai cr the hypergeometriz for roascnably
accurate computations.

5.5.6 A Sampling Flan and its 0.C. Curvs

Several types of sampling plans are used in guality control
work. However, for purposes of applications to vibration data, ornly
the simplest will be considered: The "single sampling plan.™ Their
employment, as previcusly indicated in Section 5.5.2, .Iii probably
be limited to arcas where vibration data is judged as being cither
acceptable or unacceptable. The O.C. curves associated with these
samgpling plans, and their generalization to otker statisticz] tests
in Section 5.5.7, are applicable also to many other physical prob-
lems.

A sampling plan might be stated 2z follows; select a random
sample of N = 100 from a given population, accept the lot if the
number of defects ¢ is 2 or less, rejectif 3 or more. The O.C.
curve for this plan is shown in Fig. 5.8 below where Pa is the
probability of accepting the population as satisfactory, and p is
the population fraction defective.

For p = .01, note that ‘Pa = .92, Therafpre, if a fraction
defective of p = . 01 was considered as being satisfactory, this
sampling plan could be interpreted as a test of the hy pothesis p = . 01
at the 8% level of sigrificance. That is, the probability of rejecting
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Figure 5.2. O_C. Curve for Single Sampling Plan

the hypothesis when it is ceally true {Type L error) is a= .08. The
interpretation for the friction defeciive in vibration data analysis
could be something such as the percentage of time sorne vibration
parameter is exzceeded, ind that exceeding this levsl sze percent of
the time is not considerad harm#fil.

if a fraction defective of .05 was considered unacceptable (see
Fig. 5.8), the Type Ii ecror § would be 12%. That is, the probability
of accepting the hypothesis when it is really false (for the value p = _0%5)
is B =.12. When the acceptadle value P, and the unacceptabie value Pg
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of ike fraction defective 2re decided wpon, andvHues i g 2= £
selected the desired sampline pian wocld 5 one Bavizg 32 O.C.
curve passing throogh these 1o points. The Ideal cx$e Is o Eave
o=0 ard 8= 0 for scme valze of D, bt of course thEr s i
possible. As o and 8 are decreased and P, E3 ] ?;;-‘: are Broughl
cioser togetker, ke samplr size must be Intreasec 1o otain the
desirec 0.C. curve.

Sxmpiics plian O, .. .« ove. 2reo sxually compzied with: aid
of ke Poisson Sistrideiion,. Dowsver, occlzionzlily the byper-

gotneiric or Mamniz! Exiriborion might be regzired Seperding oo
the conditfons. Tablc 5 9 zives somc vaizes Sased ox the Poissoc
Esrrituiion for scicctize 2 dosired sampling plan when o= 65 and

£ =10, Since izicgral valzes of X 3nd © 3re regzsired, an exact
soiciion may 2ol always exist bzt ong o3 asuslly obixiz 3 s3iis-
factory approximaticn. Table 5.9 appexrs al ond of Section 5
Appiication of Txbie 5.9 is 25 follows. Scppose 3 piax is de-
sired with P, = .OF, Pa= .08, @= .05, 2= £= .10, Firs: compzie
the ratio g;fpa which in this casc is 8. In the righs haod coloms
of the table it is foznd thas § Hes betwees the valze 16,95 for € = §

zné S .50 for ¢ = 2. For 2 fixcé valze of X, choosir- » = =ili is
effect give = lower C.C. curve, 12al i3, decrease P, for a5l valzes
of p. Choosing ¢ = 2 for the saumne fixed valucof N ﬁ%ﬁ im turn

r2ise the curve. I 3xy ©ase it mudl mow Se dezided ekcther Do Bave
ke gurve pass preocizely throsgh the poin: -’@ﬁ. ¥ - o) iz wkick exsc

tke secozd colemin for aﬁ%&‘ is used, or {p..5) ic which case 1he thivd
2

i

colums for p.N irused. T = N is compated from eitker
]

2 _=x or =N i5.13%)
P s
where p X o- 95_‘ is obiained from 1he 3poropriate column iz Tadle £ 92,
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Tke ckart Beicw gives the rescits from the various choices

rmextioned in the 3BoTe xITmpeE,

c=z e=2
{p..5) Eed P .5 ~-a)keid P B Brid ip . I - a) keld
- L 4 -2 £
N=p2ifc8 | N= ;ﬂge;‘.sz N= ,gge],a N-= p‘Sf.Qi
= 3.59/.0% = 355/ 061 =532/.¢08 =.85i8/.01
~4% ~ 55 ~E7 ~8T

Tie actzal o°s 2nd F's as corzpaied from the Poissox distribation
give= 5y E5. {5, 127) are showg beicw. For tkese compsiations 1=§p¢
ﬁ:&:gisuawqr-laeaﬁahamkr c=0,lorc=6, £, 2
25 approprime are samrmed. For iastasce, the probability of acceplance
z:g:pﬁf::tkeﬁz:ﬁ:-ﬂ. c=s 1 wosid be

(950 n< t'(ﬂ)(. 01)

pa=ProbEc(i]:— g

[ - ct

Tx=e Poissos distribstion ass brez weil tzbsiated 50 perforzisg these
cosnpstations Is 2 refatively sSmplie malter, PRestits ares

Pian & 4
I. N=8,c= .G .10
2. N=3¥,. c= .85 .23
3, N=6F,c= .83 .10
4 N=232. c=2 .85 .08

Figzre 5.9 beiow shows the acsal O.C. czrves for these four piacs.
Note that plan 4 with the largest sampie size gives the desired Ievel
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of Fesifrymre ?s £ .75 a1 p = O.OL axd thaw P drops mmere ragidy
o gire fonmr ? v3izes 2§ the frazilions defexiive tmeveases. “Thxs.
oizm § is Serrier 10 1he oibse FUIDS i sxieclizy Sammples Baving &

Erope maondeer of Stictis.
E.€-

2

g

Fizzre 5.2, O.C. Csrees for Sempling Pisss Commpated is T

5.5.7 Operalisg Charscicrislic Cazves

Tee 0. C. tusves skhowxs for 12e swenplisg plazs iz (3e eresioss
sectizs have cossiorparts foo 3ny statistcs! tedt of a bypsibesis,
This carve for 3 givem lest wozld be 2 plot of the probability of
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Froeptize (5t Brpohesis verfas soont rmexsers of daviation froes the
Erpotiesis oxdér test. For imtizzce, 1he t-Esiridaiicn muxy be wsed
to tesST the Expotbosis thay twe popaialiioe FRrZst 2re 923l Eased om
SIcmpic 3tionEtes of theye mda=s.  [n RIS cEee, I the rmezss are rexily
smal, B2 E$ g, - gy * 0. there is 2 produbility of {1 - o) of zeceptisg
e Eypothiris whes workize 22 3¢ o kvd of sigeiica=ce. Now if the
rmeaxs zre realiy Sffereatzamely fug -a§>§. tke probability of
Zcoigiing thx RFpREcsis i sermeskad Less thaz (1 - o).~ This probabalis:
gm&ﬁéﬁm&rﬁégﬁaﬁgﬁ -;-25 308 % plstof
Toese valors world give the O (. corve for the t-1esi. [2Is indailvely
cierr 1R ISrger $3omple STres will izcreaee the stope of tifs ¢

;3;.; xgg fricm T€ro Eocreasts yagdly as §§=§ -:25 iscresses. Iz
e, £f 52 i divived to bave 3 specifiic probaialiny of accipting the
brmockesis for seeme arbitrary valze of fx, - 5yl . 3 certane mizimom

§a) ©.&. Carve for t-1a
Figerze 3 10 3hows the O. €. &orve for the 2-1est of the kypothests
F * D =tz N=2f ot 0% xxdthe popiumice stamdsrd deriatise s

Eeomm 2 Bo o= IO, f‘}
-\ Eﬁﬁiss-‘:s?.ggié
? = »o=n Fne 35 = 32T
“;\ o =59
-
=
%

AR | B \\
2 4 £ 45 02 T+ £ sb 53
Sgi———i"-




This curve goes to either side of the hypothesized value By = 50
since both positive and negative dcviations are possible. Note that
to calculate this curve the population standard deviation o—is
assumed to be known. This of course is not usually the case; how-
ever, o-may often be estimated closely enough to indicate what the
test is really accomplishing.

The curve in Fig. 5.10 would be cunstructed in the following
manner, First, the (1 - a)% interval around the hypothesized mean

value By is computed from

. - T ex AN
P‘°b[“o Z(x-a/z)ﬁ“(*‘o*zu-a/z)‘/'g] b-e

(5. 130}
where « is the level of significance. The values for Fig. 5. 10 give
the interval (46.1,53.9). Next, assume the true mean value p is
different from 50, say 52. For a true mearn vaiue of 52, the prcbability

for a sample mean exceeding 53.9 is clearly larger than a = 2. 5%

In fact, the probability will be (f - p) as found from the equation
Prob =1 - 5.137
r [z >zp} P { )

where zp is a normal variate as given by

o " ¥ (5.138)
z_ = .
P o/
K = true mean value
B_SR_+ g 15, 139)

rA -y
{1-a/Z) VN

In the example N = 25, 0~ = 10, B, = 50, p = 52, and By = 53.9.
The method for finding Pa is now as follows. From Eq. (5. 138),
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compute (53.9 - 52)/2 = .55 = Z o In Table 5,1 of the normai probability
distribution the area to the right of z_ = .95 is found to be . 17, The
area to the left of the other end of the interval, 46.1, from a mean value
of 52, will be negligible, Therefore, the probability of finding 2 value

x inside the limits (46.1, 53.9) is .83 when p = 52. This gives the

desired value for Pa when @ = 52. Other values are computed similarly.

{(bj G.C. Curve for Analysis of Variance

The same type of curves may be computed for the F test for
variances. As a particular example, some O, C. curves wili be ilius-
trated for the analysis of variance technique described in Section 5. 4
on repeated experiments. Here the test is for equal means from sam-
ples of size N from k flights. A variance estimate is computed from
the variation of the sample mean of these flights. The estimate sZ

M
contains two components:

2 _ 2. 2
sM—o- + No;‘ (5. 140)

2 . . . 2 . .
where o is the population variance and o=~ is the variance due to
. . 2 .
any real difference in the means. For equal mear= Su * 0, otherwise
2 . . . s
o, becomes Jarger as the difference in the means increase., Usiag

@
the ratio

of 2
_§ = A {5.141)
[+

as a measure of the real differences in the means, an 0. . curve may
be constructed. Of course, 0_2 will probably be unknown, and must
be estimated as well as possible.

Different curves can be computed for various sizes of N and
k, and an C,C. curve may be selected which discriminates most highly
in the region of interest with Nk made approximately a minimum.
Minimum Nk implies smaller number of samples and flights, Fig, 5.11
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below shows some O.C. curves for a few values of N and k where
the probability of accepting the hypothesis ByS-.. S =g is
plotted against A,

1 O.C. Curves for test
: of hyp»thesis:

By SHz Zeee Ty

a= .05

e
«

Q

igurc 5.11. Selected O.C. Curves for Analysis of Variance Test

A comparison of the curves for (N =4, k=8) z2..(N=8, k= 4)
reveals that the second of these is more "powerful"” for smaller values
of A but less "powerful" for large values of A. That is, for values
of A between zero and approximately 0.9 the second curve has smaller
probabilities of accepting the hypothesis when it is really false (Type
il error). However, for values of A larger than 0.9, the first curve
has smaller probabilities of accepting the false hypothesis. Ali cases
have the same probatility of accepting the hypothesis of egual means

if it is really true, That is, P_ = 0.95 when A = 0, or there exists

a Type ! error here ot 5% independent of N and k. This comparisca
gives an indication that the same total number of observations can
perform different functions. If A could be expected to be small,
choose N =8 and k = 4; however if & is expected to be large, N= 4

and k = 8 would give a more powerful test. Alss notice that for values

ASD TR 61-123 5-73




of A largzr than approximately 1.4, {N = 4, k = 8} gives about the
same P_'s as (N = 16, k = 4). Therefore, if very large values of A
were expected, 3Z observations could do the job as well as 64.

The curves in Fig. 5.11 may be constructed using Tables 8.3
and 8.4 in Ref. [6] and the procedures described there on pp. 3i1-313,
These tables give values of a function ¢ such tkat

_oleB k-1, xm -1} -1
N

AZ -

{5. 142)

c]td =

where 8 wculd be the Type I error corresponding to the real value
for ./_\.Z- Therefore, when values for a, N, and k are selected,
A may be plotted against B. This value for 3 equals P,.

(c) O.C. Curve for F Test

These same tables in Ref. [6_] may also be used for computing
O.C. curves for the F test as a test for detecting a difference in two
variances o"lz and o-g in the following manner. For this case, when

a, Nl' and NZ are selected, the quantity

o
ola.B, N, -1, N, - 1) = — (5. 143)
2

Therefore, B may be plotted against vaiues of c-‘;'/o—i For example,
if @=.05and N, =, = 16, ¢ = 1.685 is found in Table 8.3 of Ref.[§]
for B = .75. Figure 5.12 below is the O.C. curve for the above values

of o, N’. and Nz when a "one-tailed” F test is used.
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Figure 5.12. O.C. Curve for One-Tailed F Test

5.6 MULTIPLE REGRESSION TECHNIQUES

This section discusses basic multipie regression techniques
which may be useful in correlating input parameters to cutput vibra-
tion levels, A derivaticn is presented of the least squares eguations
for obtaining an optimum linear fit to k variables, The solution of
the cquations and the computation of important statistics are carried
out in detail for the important special case of three variables. A
brief generaiization to k variables is then discussed, followed by
methods for fitting to nonlinear mcdcls by appropriate linecar methods.
Since an electronic computer becomes an important tool in cases for
many variables due to the large amount of computations involved, an
alternative calculating scheme is presented without justification
which is helpful for computer programming.

Multiple regression is a statistical technique whereby it is de-
termined to what extent one variable may be related mathematically

to several others. A general relation between several variables is

-,

(8]
1
-y

s
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usually assumed which involves unknown coefficients, and the co-
efficicats of the variables are then calzulated by some seitable method,
such a5 the method of Tieast squares”. This methcd minimizes the
sums of the squares of the deviations of the observed values from the
predicted vatues.

The assumed mathematical relation is quite often chosen to ve
iinear. For the linear case, if it is desired to find a relation between
k variables xi(i =1,2, ... , k), the coefficients ai(i =0,2,3, ... , k)
of the following equation are determined:

X] = A+ 2%, F Ak F AN (5. 144)

where x'i would be thought of as the predicted dependent variable, and
Xys wenn Xy @S the independent variables. It must be noted that inde-~
pendent and dep2adent are not defined here in the statistical sense, but
rather more as a concessSicn to cormrmnon usage. In geometry, Eq. (5. 144)
would be a hyperplane in ""k-dimensional space'.

Assume now that N observed sample values of x, are obtzined,

By the methods of least squares, the coefiicients 2, w:uid now be
selected so as to minimize the sum of the squares of 1+~ deviations
of the observed values of x from the predicted valuzs xi. That is,
the 2, must be such that

S7tx, - x)° = minimum (5. 145)
where the sum here ranges over the N sampiz values,

5.6.! The Least Squares Equations

It is more convenient to work with the variables as measured

from their sampie means Ei where

N

(5. 146)
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Therefore lect
X. =x -x, (i==nzn---uk) (5-147;

Also note that if Xi = x'l - X

then

x,-xi:Xl-i-xl-(X;-l-xi):Xl-Xi {5. 148)

Now the smali x's can be expressed in terms of the capital X's and
Eq. {5. 143} may be written with appropriate coefficients bi in place

of ai,

X'l = bo ¥ beZ + b3x3 ... bkxk (5. 149;

Equation {5. 149) is known 2s a regression equation. Equation {5. {48)
indicates that minimizing Z(X - X') is equivalent to minimizing
Z(x - xj) . Hence, determ:ning the b, to minimize the sum

Z(X xl) will effecuvely give the a determmed L, minimizing
the sum Z(x - xl)

From Eq. {5.149) one obtains a fuanction of the bi as follows:

e . = - .- z
(X, - X§)° = f{by.b,, ... b ) = (X, - by - bX, -... - b X,)

{5.159)

Next, in order to minimize f with respect to the bi' the partial deriva-

tives of f are taken with respect to the b, and set equal to zero, giving

the following system of ecquations.
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] . ) . (5.151)

-szk(x by - bX, - .. -5 X ) =0

Now these equations are multiplied by 1/2 and the first sum is trans-
posed to the right which gives

Nby + b3 X, 4 ...+ 5D X, =3 X,
by DX, + b0 K5 + ...+ B DX = 3K, X,

by X, + B3 X X, + ... + b DX = 30X, X,

Since the sum of deviations from a mean is zero,

22X =20(x, -x) =0 (5.453)
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ail terms vanish in the first equation of Eq. (5. £52} except E\’bo.
which implies b = 0. Thus the number of Eq. (5. 152) to solvz is
reducad by one.

The guantity :ii as defined by

o Z:(xi -Ei) (xj -SEJ.) (5. 154
ij . -
!\s;sj

where the si aad s'.j are the sample standard deviations, is known 2s
the sample correlation coefficient between the varizbies x and xj.
This quanticy rij is a constant with numerical vilue between -f and 1.
Since

Z(XEXE) = > 0ix, - ?Ei)(xj -X.) = Nr..s.s {5_155)

the set of iinear Eg- (5.152) may be rewritten as

bzf_ s +b3 233 .--+bkrzk k’r S

253252 % P3F3353 7 - oo F O S TSy
15. 1556

s, ¢ b,r +b r s

?.kZZ 37 k3%3F -0 P PRTRSK T TSy

The sct of Eq. (5. 152) may now be soived to ebiain the coefficients

b for the regression Eq. (5. 149). Solviag these, of course,
cffcctwcly gives the cocificients a, for Eq. (5. 144) also. The general
procedure discussed above will now be illustrated on the important
simple special case for three variables.
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5.&. 2 Specizl Casc for Threc Varisbhies

A. Regression Equation Cozfficients
Tie desired eguztion 1o b obiained is
x, = E- + 2.X I=_i57)
1 5% 25t 3% (=150

or the casivalent expression
X, = E’l b‘x {5.158)

. >
i < >

where the cosfiicianis are obizined from the following s&t ol ecualions:

2 . <
8,2, + b2 1K, X3 = 31X X,

s 25, 159)
5,2 XX, + by X3 = 3 XX,
Te solve for the a,, substitute fx, -x.) for X.. Tken
i, - _’E:’ = byfx, - ?:'2) + byfx, - 23) {5. 165)
Xy 3 Xy = byx, - byXy F byx, * byxy (5.151)
This gives the codificients 2, a3
39 =%y " By¥p - By¥y
a, = bz §{3.:52)

P 1)

Equations {3, 153) may be soived by many methods, A sysae:na:ic
method will Se demonstrated that conveniently gives other guantities
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ic be os

1
w

% in tesiing for sigmifcance the regression cocfiicients and
the multiple correfstion coefiiciest [1e Se defined belica). First com-
patle the samcoic \:::ta.s zg and s::;-.ézré deviations # - Hote (B3t
of &= qurntities E A 2ad E x arz cdixiced in :E:* process of Torm-
puting the standard c-:r;z‘; ioas s“é mast b saved, Noxt the term:s
5 -t 5 . et £, Se Falloms
szxs. 2 szs. =g xixg mxy be compotad from the following
formmta:

Nx = -x ~ x5 = L - Kx.x. T
e i‘j 2{:2 xEHx; =3 ngxj NxE; £ £23)

To solve the sysie Eq. (5. [35) two se1s of z=xiliary eguaiions
mzy be first foermed, namely,

i {5. 164}
t:-:z-x?x; = czﬁxi =9
znd
€32 Xy + €332 XXy = ¢
c?xzxgxg * chzxi =1 - 23

= 5 : 3 {5.185)
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Cpe = ~ {5. 167)
B3G5 - (X’
Now, compate the B's irom
by = €52 XX, 5 €333 XX,
by = €332 XX, + €332 XX,

Finally. tie 2°s for the original regression eqeation are obtiined frem
Eq. {5.182).

(5. 1£9)

B. Suadard Deriatioesz of e b's.

TEe stasdaré deviatioz of tae Zistribation of the b°s 3= be show=
o e

‘bz =%y.23 i‘"’:z

{5.189)

sbs =% .23 Vey3

where 8 23 is the staadard deviation for the place of re-
;teniuafx! o= x, aat!xs. TEe quaatity s':'_zsiswulim
(see Ref. [5h:

2 2": -0, 2 X X, - 1y 3 X, Xy (5.170)
. 237 - -

whizh has (N - 3} d. £

B
%)
[T ]
HY)
y
"
&
(¥}
W
§
{
v




Tht assernpiions ixvolved & deririzg these stmdzrs Seciatices re:
€ER e232 2 Fex=t sonires procedore i5 esed ix oLidining Gur BS,
{2} ey point {:Z. x;} is Sxplicaed i= repciled expericmints wik
xy Btezg (BE oxly varizbkie, (3§ iz the varizsve of = £ conyians
i@::r.:r?;:zﬁgzz, x:) axd (4 1222 the deviatioes 2f the ohsirved

vitzes of x, frees the proEcied valives of z, € soraexlly Estribeted,
C. M=iipie Correlxtios Coefiicient
Toe moliipie corredation coefficient =, »y 55 Sefired by its
o -

S¢sEres resadion

i&&e-g iaés-g 23 Xre 1he Irze popzinticn vaizes,

’I&: sezxre of the meliipie corrainiss coefficiod, maemely
g’*‘; ,4" <3z e ixterpréted a5 The poroesiige of e vxrissee of x,
123 35 2ocoamies Ior by xy Zmd x5 Toe muliipie corralziion oo
cfficient R; 3 £ives 32 ixdication of the improvement iz the pre-
eisisn of estmaling x, frocm the regresrsios ognilisn rather thia
fror the medn :n:g ;-.gs: FIMernzois 3re E2oplified i par? {e) Bafow,
The s3mplic maliipie correiriion cosfficie R, 23 i3 éclined

x5
2
= .
R, e -2 (5. 572
&
However, o makes 155 az s=Mated c31imste of {i-gg jb333. the s=biased
esiimates es 2 3 znd ri =hick ;:.:§ H E}s‘} 2
s/ - ) sp = expectively, 3ho=id be csed. This gives the relation
B 07 -2 (5.179
- &
Ry oy = st T
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, . . - z - -
woare {%2 gaf i Bt "he™ eruimute of {x, ,,2 . This corveciion

tx wmmeresxry jor dErge Talzes of 3.

D Tesix for Sgrifizzce
The regressios coeflicients %2, 2-53 3T be lested for sigaificamce
g=ite 22350y, B Ras bres sSowme {set Rﬂ_g@%} shay the stafisiic

é"gg 3 -
£E - = = Ez2, = £5. 175}
F M 8§ _
- %g b,
%'ﬁ ;;ﬁ -

=kére 5. is be Eypethesived popristise regression cocfiiciezt, kas
o distribetion wHRIX - 3} &L The cise of interest is for

=€ Thu i¥. I £F SeFiralir o knew wbether or not the cofficient
for the variabis x i significasty &ffcre=z froon 6. Thereiore,
for 3 vws-tailed Test 31 the o Ievel of sipxificasce, commprie

4 % -Fh;i {5175
i~/

w“l .:%% "

"

L] l”}}‘ L

Eziec: the Expotkesis ?sézg H 4 =>g§'f-’i' wiere at!z is obtaized fooem
1alles of ihe -ERrBstisn wRh{X ~ J) 4.4, For the soe-taiied tesh.
refec i€ >z for the & irvel of $¥igeifzance.

A oozflence ixterval for B may 3050 B2 compated. This
fozer=al with 2 {1 - o} proSability of coataining the popaiatios co-
sifciest ;%;; is gizea by

}s&‘ T, {5078

F =- - T3 177)

- 2
- BRy a5F z
Ry =




has an F distribution with n, = 2 and n, = N - 3 d.f. Therefore
the multiple correlation coefficient may be tested for being signifi-
cantly different from zero at the a level of significance by comparing
F wi.h F_ obtained from the tables of the F-distribution with
{2, N - 3)‘d. f. The hypothesis of the population value being zerc is
rejected if F> Fa’

Thig test of significance for the multiple correlation coefficient
arises from a partition of the variance cf the observead values of x 1
from its mean x,. One sum of squares has 2 d.f. (k - 1 in general)

and the other N - 3 (N - k in general) leading to the F ratio given,

E. Interpretation of Results and Restrictions

The main assumption present in obtaining the preceding results
is as fcllows., For each point (xz, x3) the variabie to be predicted,
xi, is a random variable with a normal distributicn about some mean
which depends on the point (xz, x3), but the standard deviation is the
same for all values of (xz, x3). Also it is assumed that if the sampling
is repeated, the same set of (xz, x3) would be observed each time with

again x, the random variable,

1
The interpretation of the muitiple corrf\:lation ccefficient was

mentioned previously. That is, the square R gives the per-

1.23
centage of variation which is ""explained' by the variables X1 Xge
A

Stated another way, 1 - (R, ,3)2 is the percentage of variation due

to other sources or left unexplained. From Eq. (5.172),

s !
1.23 _ % 2
_.s_.._ 1 (31'23) {5.178)
1

In this sense Eq. (5.178) gives an indication of the size¢ of the ratio
of the deviations of observed X, from the predicted values xi as
compared to the deviations of x, from its mean El. Since this ratio
is less than unity, it yields a measure of the improvement in the
precision ot prediction when using a regression plane as compared

to the mean value of xg.
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The regression coefficients bz and b3

on x, of a unit increase in xZ when X3 is held constant, and a unit

represent the effect

increase in xg when x, is held constant, respectively. The co-
efficient a, merely accounts for the means not being zero. The
b's being significantly different from zero indicates whether or rot
the predictor variables involved have significant effects on the vari-
able to be predicted.

Large sample sizes are normally quite necessary to cbtain
significant results in multiple regression problems. That is, one
prefers sample sizes of N = 100 or preferably even larger. Also,
the full range of interest of the variables must be sampled. Itis
very seldom that one can extrapolate his results beyond the range of
values which have been obtained. Figure 5,13 below gives an indica-
tion for the two variable case of what could happen., The range that
was observed can be fitted very well by a linear equation, but clearly
this approximately linear portion could be part of a quadratic re-
lation.

True Quadratic Relation
Between Variables

B

T~ Linear Relation
/ _(,—'—— Estimates from Data
,/
\ _J X ———
"
Range of x

which was sampled

Tiyurs & 17 “Leaathesiczl True Quadratic Relation 2nd Linear Estimate
Obtained oot Reserirnaed Di2ta
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The following table of hypothetical data for 3 variables will serve

to illustrate application of the preceding equations.

5.6.3 Computational Example

25

(1a]
1}

e S |

e B T

*3

(4]

-

(=)

16

(5]

r4

~

25
]

16
25
25
25
16

16
25
16
25

25
25
25

12
25
30
25
30

¥4
25

usN

5-87
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- 1 -2 —=
xg = =2.9 (xI) 8.41 xixZ =8, 41
N
— sz .2 -
X, = =2.9 {x,} " =38.41 X, %, =8, 12
2 2 173
N
% 273 =2.8 %)% =7.84 X,%, = 8.12
3 N 3 23

2 2 -2
2.X{ = 2.o%) - N(x,)" =295 - 2.0.25 = 84.75
32x2 = 57 - Nix,)? = 283 - 210,25 = 72,75

27 2% z e =re
%2 =372 - NE? = 259 - 196.00 < 6

37 22%3 - N(x,)“ = 259 - 196.00 = 63,00
XX, = 5% x, - Nx X, = 286 - 210.25 = 75.75

2.X,X, = 20xy%3 - NX,%, = 269 - 203.00 = 66,00

22X,X3 = Fx,x, - NE,X, = 265 - 203.00 = 62,00

From the pPreceding data, the following computations are made:
from Eq. (5.159),

b2 72.75 + b3 62.00 = 75.75
bz 62.00 + b3 63.00 = 66.00

Solution of auxiliary Eq. (5, 1£4) and {5, 165) by Eq. (5.166) and
{5.167):
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Let A = ngzxg - (30X,%,)° = (72.75)(63.00) - (62. 00)% = 739. 25

_ -62.00 _-62.00 _

- = -.0839
23 A 13925

_ 83.00 _ 63.00 o
22 A 739.25
e o 1275 7275 go0s
33 A 720,25

Then b, and by are obtained from Eq. (5.168)

b, = (75.75).0852) + (66.00)(-.0839) = .9165
by = (75.75)(-.0839) = (66.00)(. 984) = . 1390
and from Eq. (5.162)
ay = 2.9 - (2.9){.9165) - {2.83{.1390) = -, 147

Mext, using Eq. (5.170):

2 _84.75 - {.9165)(75.75) - {. 1390)(62.00) _

s, =
.23 25

. 2460

s = . 496C

1.23

and with Eq. (5, 169)

= . 4960 \!.085 = . 1437

S, =
2

Sy =, 4960 d.098 =, 1545
3
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Now sf = 184.75/25) = 3. 39 and using Eq. (5.172):

2_, .2460

(R, ,J2=1-
1.23 3,39

=.93

and with Eq. (5.173)

(], 23)2-§(.,_ -2-1.01-.09=.92
. 22 22
Ry 23=-9

In practice, it would te quite unusual to obtain a correlation co-
efficient this large.
To test the b’s for significance compute "t" from Eq. {5 175):

for b 2 t=l_?_l_6_5)_ ZLl-5.56
1437

for by, t= -‘39°) (ZZ‘ 0.82
1545

From the tables of the t-distribution with 22 4.5 -: —=ds t2 5% 2.07.

Therzfore, working at the 5% level of significz « b, . -~hly sig-

nificant while b is not. This wouid indicats ...4t the variak. -, has
. n‘f

oo "‘5"":5“’" cdzet oo :11.

To teat Rl 23 compute F from Fq. (5.177):

-(-—} . (-— = 126.5

In the tables of the F-distrib zicn one finds Fy 92,22} =99. 46 so
even at the 1% level of siy .:cznce the multiplecorxelation coefficientis
significant.
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5.6.4 General Case for k Variables

A. Regression Cocfiicients

The auxiliary Eaq, (5.164) and [5.165) given for sclution in the
three variable case actuzily are equivalent to finding the inverse of
the matrix of the given sums of cross products. That is, letting
xij represent the sum inxj where §,i=2.3, ..., k, tke cij‘s

represent @ matrix such that

X2z %23 70" Xk l €22 23 --- S too0c... 0
X3y X33 -me Xy €32 €33 --- C3 0100...0
X432 %43 -+ X4k €42 €53 --- S4 co10...0
e e eae . . . e . = - e e-- . R}(5.179)
|
X2 k3 " *kk I <z 3 - ki 00600... 1

After the multiplication is performed, columns cen be equated to
columns,and k - 1 sets of k - 1 &quations, each set with k - 1 un-

knowns,are obtained.

x22c22+x23c23+ +x2kc2k=l

]
[+

X322 F X33C32%F --- ¥ X3 G2

(5. 180)

X222 k232 - F X Sk2 T

etc. for the other k - 2 columns »of the matrix.
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Of course, the amount of computation invoived as the number

of variatles incrzases becomes quite extensive and a digital computer

vecomes a very desirable tool. Ansiher computational method will

e

¢ given without justification in Section 5.0.06 which is suitzbiz for pro-
g J

ramming on 2 digital compuier,

L]

To continue from Eq. (5. 180} the bi's are ccmputed by per-

forming another matrix multiplication. That is,

b, E K 2223 - x21 'g
%3 § 32933 - S3x *31
z . {5.181)
%k k2 k3 """ “kk XK1 I
This gives the generalization of Eq. (5. 168):
Dpmeap Xy F a3 Xy F . b o Xy
Dy = C3p Xy + S33 X3y + ... ¥ Cyy Xy
b 2 ®ar * k3 ¥ toe- F S Xit
Let B be the {{k - {)x l] regression cocefficient vector, X the

[(x - ) xtk - !)] matrix of sums of cross products for the predictor
variables, and ¥ the r(k - ;)tl! vector of the cross product sums
involving X, the ;rcdxcted \:ann‘;!c Then the ¢ -ceding can be

cencisely expressed as the matrix equation

XD =Y {5.183)
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with the solution

B=xly 153

1

where C = X as defineé by Eq. (5.579)

B. Standard deviations of the b's.

Standard deviation of estirmate S: 23 kz’m- the "piane” :

resression of Xy Xgp -o- - X OR X, is the square root of
F 3

2
} 20X - D2 X Xy - By D X X - . - B S

2
s
$1.23 ...k N
{5.1
which hzs IN - k) d_f. The standard deviations of thc b's
i=2,3 ...,k {5.1

’bi"x.zs...k S5 .

C. Multiple Correlatior Cocfficient
The sample multip:~ zorrelationcoefficient Rl 23 K 15

given by the sgucre root of

sz -
(R:_zs,,,k)z g __1.23... Kk 3.1
s
i
The unbiased estimate is then
A 2_(N-1) 2 k-1
Ry 3.8 = Ryas.. W ", (5.1

(N -k}

D. Tests for Significance
The "t test for the regression cocfficient becomes
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with rhe solution

B=x1y £5_183;

- -

. .-f P
where C= X~ as defined by Eg. {5.179)

B_. Standard deviations of the b's.
Standard deviation of estimate Ss 23 kfcr the "piane** of
regression of Xys X3p ooo - X OB X, is the square root of

2 .
22X - b2 X, X, - By XXy - .. - B TX X,

2
s
1.23 ... k N
{5.185)
which hes IN - k) d.f. The standard deviations of the b's
s':=s1-23..-k o . £Ez22,3 ... .k £5. 184)
C. Maultiple CorrelationCocfficiem
The sample multiple correiation coefficient P: z3 k is
given by the square root of
s4‘!
2 _, _ "1.23...k e sme
Rz W =t —3F {3.287)
i
The unbiased esiimate is then
a 2 _(N-1) 2 k-1
Rya3.. 0 " Rz & "5 (5.188)

(N -k}

D. Tests for Significarce
The "t test for the regression cocfficient becomes

xnl
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t= {5.189)
N s,
(K-k :
where t has 2 "t distribution with {N - k} &.f.
For the multiple regression coefficient;
r4 _
(® N -5
Fe_o1.23... o ¢s. 190

T -iRy 53 gz k - 1)

wiere F has an “F distribation with {k - i, N~ k) d.f.

See Ref. {S:l for the above gereraiizations to k variabies.

5.6.5 Noalinear Regression

Powers or cross products of the predicter variables may de
aitached to the regression equziicns as additional variables. For
instance, in the three variable case for linear regressioe ome must
solve Eq. {5.159). I it is suspected that an interza-Ion exists, 2
term in the form of x,xy co=id e attached as 2 fourth variabie Xy
Then instead of two equations in two unknowrs, the dimensior of
the protiem kas been raiscd azd there would now &xist three egua-
ticns in three urknowns. Powers such as xg and x§ cculd be at-

Sxn*

wached &5 variabies x_. and xg i 50 desirec.
-

If an exponential reiation is proposed such as
g T¥%Xy Xy {5. 151)

then iogarithms of Eq. (5. 191) may be taken to lirearize tke relations;

Low,

log x, =log &, + b, log x, + b, log =5 (5.192)
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axd this sysrem i3 clearly anafogocs to Eg. {5. 157). Thke least sgoares
fit obtained 2o Eq. {5 192} is not precisely the same s 'hat oitained

by ftsng Erectiy to Eg. {5. 171). Howéver., iie error is generally
smali emougk o that the Iizearization by logartthems is wsefal in praciice.

5.6.& Altersative Compsting Scheme

Fore= the following matrix of th= correlation coefificients r.
=kere r 5 is gefized by Eq. {5 i55).

"

13
-

i Tpp Fiz ez Tk
Fas F22523--
T31 532533 T
. e e . =R {5.1%3)
|

ot Pz Tk Tk

Cempute the inverse

43 sii are the elemeats of the mairiz A, ihe foilowing may be

computed:

{1} Tke regression coefficients

b, o -[21) [ ]
’ i-‘1) \’3)

H

=23 ....k

Lol

{5. 195)
{2) Tohe maltiple correlation coefficent

Ry 23...x" ‘ i-{1/a ) (5. 196)
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{3 Tie stasfavddeviaticnolithec e
{5157}

.23... &k sz

)
JEZ 3 ...k {5299)

I
W\I
[}
L)




5.t Areas of &= Joorm=al Sorve,

i texres of o oxits}

AYes = —

¥

»
= Area = Area z E Area
(=] .0cee .45 [ 173 .50 _3159
K- .0us5 4% F 1772 .51 : .3i%k
.62 . 0080 .47 [ .ieex .92 F 3212
.e3 .G1Z0 .48 | .184s .93 § .3238
R-7 .956L 4% § 187 -9 | 3264
.63 .Cize .58 § _1SiS .95 1 _328%
.06 .8Z39 .St | 1958 9% | .3315
.eT .€2Z7e 52 & 1985 .97 § _33¢0
.66 #3159 .53 [ _2e19 .96 i _3%S
g ) .€359 .58 i .225¢ .99 ; .3389
.1e .83%8 .55 [ _2088 1708 | -3413
.if L9438 .56 B 222 1.1 .3438
.12 .8478 .57 ¢ .2157 1.62 | 3463
.13 LSSET .58 I 219 £.23 | .3485
.14 .e557 58 [ .222¢ 1.04 | .3588
.15 .05% o8  _2257 .05 | _3531
.16 . 9636 €1 & _2291 1.96 ;| 3554
.57 .0675 62 § .2324 1.67 | .35717
-is .0754 .63 § .2357 1.08 | .359
.19 .0753 .68 = 2389 109 ;© 3628
.20 .9793 .65 § 2422 .10 | .3543
.2t .£§32 -ab * _2454 1.2 .2685
.22 .#7 87 - 2488 .52 i .368&
.23 -09i0 68 - _2517 .13 .37e8
.24 .9%¢8 6% |, .2549 1.54 ; .3729
.25 .0%7 . § 2580 5.5 .37249
.25 . 1026 T o: 2611 5.16 * 3708
.27 - 1064 .72 § 2642 117 .3752
.22 .iIT .73 § L2873 i-26 380
.29 1148 .74 i 273 .19 . .38%
.38 L1178 .75 [ .27 1.2¢ | .3849
.31 5217 .M i 2% 1.21 § .38
.32 .i25s 7T § .27 .22 .3888
.33 L1253 .78 i _2823 i-23 ., .3%07
.34 -1331 o, ] 2852 124 ¢ .3925
.35 -1368 -9 j .2881 £.25 - 3944
.35 . 1406 81 § .2910 1.26 ¢ .3%%2
.37 - 1443 -2 i 2932 £.27 § .3%8C
.3z . 1400 -83 T _2%7 1.28 ; .39%7
.32 . LES17 5 .29 1.29 , 4915
-4 | .1554 -25 3823 1.30 © 4632
41 3 159 85 .3es1 £.31 . _4040
42 1 .1ée 87 - .37 £.32 © .08
43 5 _1eas! 88 _3idk £.33 | 4082
-4 ITHS 5. i -5 .2133 .34 i . 4099
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Table 5.1 (cont'd)

z Area z Area 2z Area
1.35 . 4115 1.80 . 4641 2.25 | .4878
1.36 . 4131 1.81 . 4649 2,26 | 4881
1.37 - 4147 1.82 . 4656 2.27 | .4884
1.38 .4162 1.83 .4664 2.28 | .4887
1.30 . 4177 1.84 . 4671 2.29 | .4890
1. 40 .4192 1.85 .4678 2.30 | .4893
1. 41 . 4207 1.86 . 4686 2.31 . 4896
i.42 . 4222 1.87 . 4693 2.32 | ,.4898
1.43 . 4236 1.88 . 4699 2.33 | 4901
1.44 . 4251 1.89 . 4706 2.34 | .4904
1.45 . 4265 1.90 .4713 2.35 | .4906
1.46 . 4279 1.91 .471¢9 2.36 | .4909
1.47 . 4292 1.92 . 4726 2.37 | .4911
1.48 . 4306 1.93 .4732 2.38 | .4913
1.49 - 4319 1.94 .4733 2.39 | .4916
1.50 . 4332 1.95 . 4744 2.40 | .3vi8
1.51 .4345 1.96 .4750 2. 41 . 4920
1.52 . 4357 1.97 . 4756 2.42 | .4922
1.53 .4370 1.98 .4761 2.43 | .4925
1.54 . 4382 1.99 .4767 2.44 | .4927
1.55 .4394 2.00 L4772 2.45 | .4929
1.56 . 4406 2.01 .4778 2.46 | .4931
1.57 .4418 2.02 .4783 2.47 | ,4932
1.58 . 4429 2.03 .4788 2.48 | .4934
1.59 . 4441 2.04 .4793 2.49 | .4936
1.6¢ . 4452 2.05 .4798 2.50 | .4938
1.61 . 4463 2.06 .4803 2,51 . 4940
1.62 | .4474 2.07 . 4808 2:52 | 4%
1.63 | ,4484 2.08 . 4812 2.53 | ,4943
1.64 . 4495 2.09 . 4817 2.54 | .4945
1.65 | .4505 2.10 . 4821 2.55 | .4946
1.66 , .4515 2. 11 . 4826 2.56 | ,4948
1.67 . 4525 2,12 . 4830 2,57 | .4949
1.68 .4535 2.13 .4834 , 2,58 | ,4951
1.69 @ .4545 2.14 .483¢ | 2.59 | ,4952
1.7, .4554 2. 15 . 4342 2.60 | ,4953
.71} .4564 2.16 .4846 2.61 . 4955
1.72 ! 4573 2.17 . 4850 2.62 | .4956
1.73 | 4582 2,18 .4854 2,63 | L4957
1.74 L4591 2.19 .4857 2.64 | .4959
1,75 | .459¢ 2.20 . 4861 2.65 | .4960
1.76 | .4608 2,21 . 4864 2.66 | 4961
1.77 .4616 2.22 . 4863 2.67 i .4962
1.78 . 4625 2,22 . 4871 2,68 | .4963
1.79 . 4633 2,24 . 4875 2.69 | .4964
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Tz5le 5. 1 (concluded)

z Area z Area z Area
2.70 . 4965 2.80 . 4974 2.5¢ ; .498%
2.74 . 4966 2.81 . 4975 2.9 | 4982
2.72 . 4967 2.82 . 4976 2.92 | .4982
2.73 . 4968 2.83 . 4977 2.93 | .4983
2.74 . 4969 2.84 . 4977 Z.94 | .4984
2.75 . 4970 2.85 .4978 2.95 | ,4984
2.76 .4974 2.85 .4979 2.96 | .4985
2,77 . 4972 2,87 . 4979 2,97 | .4985
2.78 . 4973 2.88 . 4980 2.98 | .4986
2.7 . 4974 2.89 . 4981 2.99 | .4986

3.00 | .4987

. £ =
For a more zomprohensiv, tabie, sue helerence {9], p. 456.

Table 5.2 p-percent Values of Normal Distribution

The probability that x differs from its mean by more than
xp times the s.d. is equal to (p/2)%. Alternatively,p + A\ o
contains {100-p)% of the area under thc normal probability

dﬂmﬂyﬁmﬂhmxmnhdmumulﬂ,pfm.
E]

P L
{00 0. 0000
95 0.0027
90 0. 1257
85 0. 1891
80 0. 2533
75 0. 3186
70 G. 3853
65 0. 4538
60 0.5244
55 0.5978
50 0.6745
45 0. 7544
410 0. 8416
35 0. 9346
36 1.0364
25 £.1503
20 1.2816
is5 1.4395
10 1.6449
s 1.9600
1 2.5758
0.1 3.2905
0.01 3.8306
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Table 5.4 p-percent Values of ""Student's t' Distribution

n | Yoo |%.0 | t2.s | %o | tos
m

1 3.08 | 6.31 ! 12.71 ] 31.82 [ 63.66
2 1.80 ! 2921 430! 6.96 | 9.92
3 1.64 ; 2.35 | 3181 4.54 | 5.84
4 1.53 | 2.13 } 2.78 , 3.75 | 4.60
s 1.42 | 2.02 2.57.1 3.36 4.03
6 1.44 | 1.94 | 2.45 | 3.14 } 3.7
7 1.42 | 1.89 | 2.36¢| 3.00 | 3.50
8 1.40 | 1.86 | 2.31 | 2.90 | 3.36
9 1.38 | 1.835 § 2.26 | 2.82 | 3.25
10 1.37 | 1.81 | 2.23 ) 2.7 | 3.17
12 1.36 | 1.78 | 2.18 ! 2.68 | 3.05
14 $.34 1.76 2. 14 2.62 | 2.98
Ar ¥e 16 1.34 | 1.75 | 2.12 ] 2.58 ;, 2.92
18 1.33 | 1.73 | 2.10 ] 2.55 ! 2.88
20 1.32 | 1.72 | 2.09 | 2.53 | 2.85
22 1.32 | .72 | 207 | 2.510 | 2.82
24 1.32 | 1.71 | 2,06 | 2.49 | 2.80
26 1.32 | 1.71 | 2.06 | 2.48 | 2.78
28 1.31 , 1.70 2.05 2.47 } 2.76
30 1.30 . 1.70 | 2.04 | 2.46 ¢ 2.75
® 1.28 ¢ 1.65 | 1.96 | 2.32 | 2.58

For 2 morc comprehensive table, sec Re(r.rcr.cc{‘)) p- 465,
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Table 5.5 F Distribution

n = d. {. for numerator m = d. f. for denominator
{a) (b)
FS.O Fz, 5
n T -
A 5 10 20 30 o) n'}\ 5 10 20 30 @
5b.05 |4.74 |4.56 |{4.50 | 4.37 5[7.15 [6.62 $6.33 |6.23 | 6.02
10B.33 [2.98 {2.77 12.70 | 2.54 10 ﬂ 24 [3.72 | 3.42 |]3.31 |3.08
20R. 7 12.35 2.i2 |2.04 | 1.84 20PB.29 (2.77 | 2.46 | 2.35 } 2.99
30p.53 (2.16 }11.93 j1.84 1| 1.62 30B3.03 (2.51 §2.20 {2.067 }1.79
cop.2f 11.83 {1.57 {1.46 | 1.00 ioo ‘2.57 2.05 |1 1.71 | 1.57 | 1.90
{c) {(d)
Fio Fo.s
" s | 10 | 20 30 ® VE sl 20 30| o
m m
5§1.0 |10.1 }9.55 ]19.38 | 9.02 584.9 (13.6 §32.9 |12.7 |12.1
10]5.64 | 4.85 |4.41 [4.25 ) 3.91 1016.87] 5.85] 5.27| 5.07] 4.64
2014.10 ] 3.3712.94 (2.78 | 2.42 20 14.76 ] 3.85] 3.32] 3.12] 2.69
36§3.70 | 2.98j2.55 }2.39 | 2.01 3014.43 ] 3.54] 3.0} 2.82} 2.38
oo }]3.02 | 2.3211.88 }{i.70 | 1.00 o0}3.35] 2.52] 2.00} 1.79] 1.0C

Prob(F )FP) =p

For a more comprenensive tavie, see Reference {5] . p.878.
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