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C-anoga Park. California. It contains results obtained from
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"The Application of Statistic' to the Flight Vehicle Vibration Problem.
The work was accomplished under Project No. 1370. ':Dynamic
-oblems in Flight Vehicles," Task No. 140%4. "Methods of
vibration Prediction, Control and Measureiment." This report
was administered under 0. R. Rogers, Chief. ; ehicie-Kinetics

Secticn, Dynamics Branch, Flight Dynamics Laboratory. Aero-
na iical Systems Division. with Robert F. Wilkas initially in
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Professor William T. Thomson, Engineering Department
University of California at Los Angeles, participated in physical
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ABSTRACT

This report prcucnis a crtical analysis of the application of
statistics to flight vehicle vibration pro:lems. The genera pralem
is discusscd irom man' aspects, and re -ds are aTp!icable to many
oher phvs'.iL! zremis besides vibration. Detailed analytical engi-
neering procedures are proposed for determining statistical proper-
tics of a single vibration record, and ifr establishing the over-all
vibration environnect from a collection of vibration records. Jet
aircraft and several categories of missiles are broken down in!o
definite operating phases as regards th.eir vibration envrnmernt.
Simple tatistical techniques are developcd for reducing the amount
of data that needs to -e gathered fo later processing. This tech-
rtque can provid- ; *ow probability of missing an unexpected evexa,
and a high probab;litF of covering the range of expected events.
Straight-forward statistical tests are developed for testing funda-
mental assumptions of randomness. stationarity. and normality.
Mathematical and physical distinctions are explained between
different in;ormation obtained by meas-.ring numerous important
statistical parameters, such as an instantareous amplitude proba-
tility oensit function, or a mean square acceleration power
spectral density function, or an autocorrelation function. An
engineering discussion is given of related instrumentation equipment
available today in many !3boratorivs. with emphasis on their statis-
tical accuracy in measuring desircd information. An experi-ental

laboratory and flight test program is outlined for verifying these
measurement accuracies and other theoretic..- *Latistica! results
contained in the report, such as material on repeated ._.eriments
and random sa.,pling techniques. Importar.t physical applications
are explored indicating how statistical information can be helpful
in predicting the response of corsinuous structures to random
-.xcitation, and for evaluating loading effects on a structure. The
report concludes with recommendations for future work.
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GLOSSARY OF SY.NO--

bk:N, p) Binomial probability density function

B Realizable bandwidth in cycles per second

c Physical definition: Damping coefficient

c Statistical definition: Number of defects

Ccr Critical damping coefficient, U "m"

C Electrical capacitance

C(fM Co-Spectral density function

dZ  Sar.plt r-aagc to sa.m-p!e standard deviation
conversion factor

e Lcngth of unexpected event

E Physical definition: Young's modulus

E Statistical definition: Expected value

f Physical defntion: Frequency in cycles
per second

Statistical definition: Number of observa-
tiont in a claess interval

F Vari .ble with F distribution

Fmax  Ratio of largest to smallest variance in a
set of several variances

F. Expected number of obser-- ti on s in class
I interval i

g Acce .eation due to gravity. 386 in/secZ

G(f), G(w), S(f), S(w) Power spectral density functions

h(t) Weighting function

h n(z) PiobabiLity density function for extreme
n alues

H(), N(f) Complex frequency response function

Hn(?) rM"ilative probability distribution function
for extreme values

iij

I Moment of inertia

k Physical definition: Spring rate (spring
constant)
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GLOSSARY OF SYMBOLS (Continued)

k Statistical definition: Number of flights;
or number of successezs in Binomial
dist ributi or.

K Physical definition. Time constant of KC
circuzit, K = RC

K Statistica! definition: Tolerance fac=o

E. Mean time between samples

ILC L Lower control limit

in Physical definition: Masrs

M, Statistical definition: Sample nn-.c- value

Xi Physical definition: Concentrzted mass

M Statistical definition: Size of population

Expected number of maxima per unit timie

n Nuinoer of degrees of freedom

N Sample size

N a Number of crossings per unit time at

N 0 Number of acro crossicgs per unit time
p Percent =vIue; or fraction defective; or

probability of success for Binomial
distribution

--(k; MPoisson probability density function

p(x. 0) General probability d.?nxity function of
random variable x with parameter 8

p(x)% Probability density function

P Physical dcfznition: Period, (1/f)

P Statistical definition: Proportion

Pa Probability of acceptance
P(x) (Cumulative) probability distribution function

q Probability of '"iilure for Binomial
distribution

Q Mechanical Q. (1/4,)
QMf Quad-Spectral density function
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GLOSSARY OF SYBO1S (Cotinued)

r Number of runs in "run test"

r.- Sample correlation coefficient

R Physical definition: Electrical resistance

R Statistical definition: Sample range

R i. z ... k Sample n-rutile correlation coefficient

R('. t}, R(}). R(T, 7, Correlation functions

S Sample variance Is = sample standard deviation)

S Physical definitio---: Stress level

S Siatisticai definition: Total population sase

S. R. Sweep rate or scan rate

S.f), S(w), G(f)- G(w) Pbwer spectral density iunctions

t Physical definition: Time

t Statistica! definition: Variable with
Student's "t" dstribution

T Physic"l Cthniiioc: Time interval

T Statistical definition: Sample length
(record length)

UCL Upper control Limit

Var(x) Variance cf x (second mom%.". -bout the
mean)

x Any variable

x(t), y(t), At) Ampli-de-as a function of time

X(t Mean value o x(t)

x (t) Mean square value of x(t)

z Standardized normal variate (zero mean,
unit variance)

Z(u) Mechanical impedance

a Level of significance (i. e. , probability of
Type I Error); or arbi:ratj level crossing
of a random process

(V - Confidence coefficient
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GLOSSARY OF SYMBOLS "Coai}ed)

Probab~ity of Type H error

(I-NJ i'Pwer of test
2y () Gkerence f6ctio at f!equea. - f

Correlation cxefficient
Z' (mn Gamma f"Action
6 Dirzc delta functim
- Mean square percentage er-or, (i. r..

norntized mean square error)
SStanda rd error, + "0

Da~png ratio. (c/c r
-I Multipie correlatioa coeficiet
SPhase 40gle

Number of standard deviation*; or men
ff Pissaom distribution

x (I) .spectral bandwidth

Paiw rmia vjuwe
FGemerai z.=1_ "riab c
o Covarianee fivact:o.

a, a~lai.n variance

pOpu tio standard deviatiom. +-
1 Time difference

* Mechanical mode shape
XZ  Vari-hle with Chi-square distribution

W Circular frequency, Zsf
"aNatural ircular frequency

AEstimate of

>Ensemble average

( J Number of combinations.

ASD TR 61-IZ$ xix



I- INTRODUCTION

-! OBJECTIVES OF CO.NRACT

The objectics of the ctract were

o Determine vibrntn respuwdr at a single Foint onax strcture of

a -lig-t vehicle during eraire operational life history to as*ist in

futare f pe and reliabiity in-estigaticas-

o Deterr-inc 7bratio e-iraamcet for erfipment monted on

Struct -res

OWDetricine ?iflu -nnwu~tfor hwmaa comort problem is

future space flights-.

mesn objectives resulted from the seed to:

Improve design of jet aircraft avd missiles to redr st-ructural

failcres -ie to vibration.

SEstabhish better Laboratory test Zft% specifications for structures

UAn VCqaipmet.

o Develop over-all scientific statistical proc"ures a& opposed to

limited spcia-pne-P-- techsiquecs-

a bridge gaps between known theoretical ideas and practical methods.

Principal activitieb of the cotatwere dir-Aded izuo hre

phases as follows

Preazc I. Preliminary Study of Application of Statistics to
F!Sght Vehicle Vibration Problems.

Phase 1o Development of Techniques for Estimating Desired
Statistical Characteristics of Vibratory Time Histories-

Phase Iii. Oudtline of Luperinental Program for Evaluation of
Estimatikn Procedures b (as Laboratory Testing. and
(h') F ight Testing.

Manwascript released by utie authors 3-0 June 1%!62 for publication &s ar,
ASD Techrical Report.
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The work n-s des:g&.i4 £znrd tke fesrocimq main ral:

CProvide material && aid is sirstandimg tae proper applkcation of

warms propesed sralinical techaiques tanne rouh eiematis aod

wrificatiocM of basic as'nnuts which V~at be satuieid.

*E£phasis a practical sltistinj procedues for estiatiag vibraion

respoasecs at a Single pointd ** a nrri=-_re Ae 9Pr Steady speratiag

*Prepanaiinm of am espcriinnta progrAum cogmiman of cqriEpineflt

it. rnt-M problems and statistical sonrCas of ern-r.

;u, a~dckmt. were wwre mary other iinpnrt goals oci a=

* Over-all physical descriptios of wibatinf c-miret"mat 6cr

different categories ci jet aircraft and missiles-

*Greater physical &A inathesauica) assign is the ress of

strhctres to randomW excitation-

a n Wi £iict e oftsmtnal to other physical apLicatincs

inwlvwiag statistical aatns: 4: random phesoeca.

* Clearer appreciation of limitations ofT these staistical rachmiqns
When dcaa with PhetooMn failing to satisfk basic a' -sins.

This cnnamc resulted from a Wright Air Declimvtmision

(WAOI Request for Prp- P. R. .4b.- 94Ut dated 30 December IM,9

ad zshsquen tachnical discassioas between Dr. 0.3RSogers. WADO6

Mr- 3- F. Wiltms. WACO. and Dr. .S. Demc Rs-Wddage(3f

a H marc-& 1%*. Work commene o" I judIy 1940

Progress reports were submsitbt moMthy to WACO begin

10 August 1MG0 aad inte rim tcceical reporits were submitted when= vompleted,

on wrmsporion f ie irestgatas.A prelintisary. draft of this fisal

report Was suba.itted &or a rrchaical and format review on=4 May 1 %21
briefias;s between WADO and 3-W personael n the nsbject Coutnct' taol

lace at WAO on S September 1940. at R-W on ?l Dezember 190I% da
WADD o-% 4 May 1941-
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P~jet nntrfor :!z- c44oatract was Dr. I- S. Snw*At H Dir w

vrsnc~z wrctuztittzt ;hw rre riL wo4 hwr asiaaal moirev-

ttj vr=?,ts -ark mwrertakesa &V cr Rr.Wpdirrrs~vnd.

vAnwzacl Porniem .I~ e5ix .- flefl W-r of specia vwCant Us &ism. as nil-
v prorr w.faasis o! sttm!istical tad wnjarerriag satniaL

whree uenhers of tioe frChafical =.a f h u we .Wavidde ewri%-

ctd greets' go M&e Krnt - 2.. M Echne.oa. Mr- 0. 14. in. astE
Ur- A. C- lSerssi. Mr- tctsiee w"s rrspsesibr for nwth *f 06c &&sic

alatinkia pmrwtrrs "a4 tests CsnAirA4 si aI rrgcfl awl assigsted in

desipm 4;- the rupn eaieal program-. Mgr. erie -As rwes mC for E~sc ribp-

ims ther Pikrsical vibratm flprcCts Of 0Lr raringl caaruiS "Jet aiart

amd trsiina gmeer Cwc4sterratiseo A13ze, be aWa-ke as vhe r*&M an aiag

eechai~ur. !tr-tnpo~n ait**1 est prograa. Mr- flroal

C-s rrspt=StAr Car tenttaiis tctunix f&!ig-r pe*Wbies ns-liea*r

Sfkezi. lt nncnprwnfrws &--: tsar axprreslaw lbraoy prograao.

A (aUwx eme wr Erect tanw-Vnldrkgs. Mr. ft. S- 3&71w. ~ ~nft
am zift"! Stantztiraj .4cUastas.

Professwor William 7r- thece £nizrr Dqartseat. Eanirrsity

of CllUif.ai at baes ASrcs. was eegad as a ressrLta as tMe stur af
tat oC-raa- ic pntinsia"e aLctiVel bot in w'ou disassins* tad -

perS*A4 twe nrerperatr a is fval repart draiag %iti- Owe tspflte

*gx =ncftzro at rAt4ecziftioe -M Lim effetS of ladmng.

A sat*!! s--bdrrct was lefts tei a diine.-9 o artmhrop Cerpe-

ratiqka. !!autharar.. Calif ia a siStace a= fernulati~grganrij

lprcu of CGhX! rhics sA" rnn*iag certain ether SeOrazr amateria. This

uitk was uieme principally 6v Mr. William 3*et ad M4r. R*&ttt WI-Itc

of 2Corair. In adtit ie. Mr. 3Rv Mutslain of Nesflme-cs. nether dirisiom ef

Northrop Corperatioa. as0 helpfu in establisbaenot of the flight test program

disceasscA -a this rceet

Ccafc r-ers were rld Also Wax staer Carisers conm other rewupasies

in tMe Loes Axgeles area& io surrey their vibratios programs and a-ctd. These

indwidtsprowided niabba laormatn om the cur--rt state of vib~ration
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analysis and, although they will be na- eless here, their advice is grate-

fully acknuoJedged.

The contents and recommended procedures of this report, of course,

are the responsibility only of the four authors and do not represent the

practices or views of any other individuals or companies.
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2. SUMMARY OF MAIN RESULTS

2. 1 MATHEMATICAL ANALYSIS AND STATISTICAL
PROCEDURES

An over-all scientific analysis is presented of the vibration environ-

ment to be expected in various flight vehicles wherein:

" Proper emphasis is given tc different types of statistical

information concerning the vibrations.

" Statistical techniques are explained in straight-forward

language so as to be readily comprehensible to individuals

concerned with analysis problems of vibration phenomena.

" Simple statistical tests are developed for verifying basic

assumptio.. instead of accepting them without proof.

* Analytical procedures are proposed for analyzing the

pertinent statistical properties of a single vibration time

history record.

" Analytical procedures are proposed for establishing the

over-all vibration environment given the statistical prop-

erties of each of a collection of vibration time history

records.

Mathematical material in tht: report explains from a broad view-

point:

* Elementary ideas of probability theory.

* Fundamental concepts of random processes.

" General matters of statistical estimation problems.

To mention but a few topics of interest, the presentation includes discus-

sions on:

* Probability density and distribution functions.

* Power spectral density functions.

* Correlation functions.
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* Threshold crossings.

* Extrzrm.e value properties.

* Peak value distribution of wide-band and narrow-band noise.

" Measurement of linear system frequency response function.

Various statistical concepts, tables and curves are presented

including:

" Normal (Gaussian) distribution.

" Chi-square distribution.

" "t" distribution and F distribution.

" Statistical results from repeated experiments.

* Quality control procedures.

" Operating characteristic curves.

" Analysis of variance techniques.

* Multiple regression techniques.

2.2 THEORETICAL INVESTIGATIONS

A numbcr of significarttheoretical (mathematical and physical) results

have been obtained during the course of the investigation. These include:

" Preliminary study of a random sampling technique to reduce

the amount of data to be gathered.

" Establishment of simple quantitative statistical tests for

randomness, stationarity, and normality.

* Physical applications of measurable statistical information

from vibration data for predicting the response of continuous

structures to random excitation, and for evaluating loading

effects on a structure.

2.3 INSTRUMENTATION STUDY

* Statistical effects are analyzed fully for actual measurements

of various vibration characteristics such as mean square values,

power spectral density functions, amplitude probability density

functions, and correlation functions.

ASD TR 61-123 2-2



* A survey is presented of certain available instrumentation

equipment, with emphasis on their practical physical limita-

tions and accuracy to perform desired measurements.

2.4 EXPERIMENTAL PROGRAM

An experimental program is outlined for verifying statistical procc-

dures developed in the report as appropriate to.

* Laboratory Test Program

* Flight Test Program.

Special attention is given to matters such as:

* Tests of basic assumptions for statior.arity, randomness, and

normality.

* Measurement of various vibration characteriatics.

* Verification of random sampling procedures.

* Increasing over-all prediction capability of the entire vibration

environment through repeated experiments.

* Statistical design of experiments to minimize number of

experiments.

* Practical considerations in laboratory testing and flight

testing.

Z. 5 PHYSICAL RESULTS

Many physical topics on response of structures have been investigated

during the course of the contract. These include:

* Response of linear structures v> random excitation.

" Continuous structure- excited by correlated random forces.

* Modification of response due to loading.

* Vibration induced structural fatigue.

* Effect of nonlinearities on response statistics.
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2. 6 SECTIONS OF REPORT

Section 3 discusses the flight vehicle vibration problem, reviews

certain well known results on the response of linear structures to periodic

and random disturbances, and summarizes some past experimental analyses
of vibration data from flight vehicles. Sections 4 and ! provide cemprehen-
give backgr~ond theoreLical r teri-- on mathematical and statistical funda-

mentals which are important for analyzing and evaluating vibration phenomena.

Section 6 containe analytical engineering procedures for carrying out a

sequence of statistical tests to establish the complete vibration environment

(at an arbitrary point on a structure) on a sound statistical basis. Section 7
discusses instrumentation problems relative to measuring desired vibration

characteristics, while Section 8 outlines an experimental program to verify

the analytical procedures developed in Section 6. The reader may prefer

to read Sections 6. 7, and 8 prior to Section 4 and 5, these earlier two

sections furnishing theoretical material for special study when needed.

Section 9 contains some advanced physical applications on the responseof
structures which indicate that, for certain problems, .tatistical information
is available from vibration data which is not presently being explored fully,

while, for other problems, more appropriate statistical information has

still to be developed. The final Section 10 gives a brief review of each

Section, 3 through 9. and concludes with some specific recommendations

for future work.
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3. PHYSICAL DISCUSSION OF FLIGHT VEHICLE

VIBRATION PROBLEMS

3. 1 INT7RODUCTION

For many years, engineers have been aware of various problems in
flight vehicle performance due to the vibration environmcnt. However, it

was not until the advent of jet-powered aircraft, rocket aircraft, and missiles,

that statistics and random process theory were found to be important for

these problems. The main emphasis to date has been to use statistical param-

eters only for the description of the vibration environment. However, even

in this area very little has been done in establishing an accurate knowledge

of the errors of these parameters. Various fundamental assumptions have

been accepted frequently without proof.

In addition there has been an almost complete absence of application

of statistics to determine the number of records that should be taken, the

length of each record, and when during a flight, the vibration should be

recorded. This has often resulted in either too much data, or not enough,

which in turn would produce an inaccurate or biased estimate about :he

vibration levels of flight vehicles.

Statisticians have known for some time that a properly selected sample

can provide a very accurate picture of the entire population or process from

which it was taken, and that there is also a point ct diminishing returns.

Namely, no matter how large the population or how big the process, there

exists a sample size, which results in obtaining a maximum amount of

information for a given confidence in the results. Increasing the sample

size beyond this number yields only an insignificant increase in accuracy.

(See Section 6. Z. 3, Figures 6.9 and 6- 10.)

One of the purposes of this report is to pl-ce the selection of samples

of vibration records in flight vehicles on a sound ztatistical basis. At the

same time it should be realized that this selection cairnwt be placed entirely

on an objective basis. Engineering judgment and a basic knowledge of the

over-all flight vehicle vibration problem will still be required. To aid

engineers in the process of determining the point where judgement leaves

off and the tools of statistics can be applied, a 4iscuesion of the various

factors involved are developed in an orderly fashion as fol:os:
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3. 2 FLIGHT VEHCLES AND THEIR OPERATING CHARACTERISTICS

The type of vehicle, aircraft or missile, large or small. and the

number of flights that can be made, help determine the answers to the follow-
iang matin flaions:

1. How m~any samples sho"dd be taken?

2. How long should each sample be?

3. When should the sample be taken?

An answer to thesc questions requires a knowledge of the vehicle

mission, length of flight, length of various flight phases, and the various

sources of vibration excitation likely to occur.

Table 3.1 was prepared to provide an over-all piciare of the

various flight vehicles which are in service now, or wil be in the near Acure.

It is realized that not every single flight vehicle will fit exactly into one of

the four categories shown in Table 3. 1. This breakdown mainly serves i

quaaitative purpose to help the vibration engineer to prepare an exact chart

for the particular vehicle under consideration.

3.. I Vibration Sources

The column headed "Vibration Sources" in Table j. 1 requires some

additional discussion since, for low measurement errors, sample length is

dependent upon the frequency range to be recorded (this is shown in later

Sections 4, 6, 7, and 8).

The frequency content of the various sources of excitation generally

ranges from I to 10, 000 cps. Without a detailed analyss of the types of

vehicles being considered. providing information as to size, stractural design,

weight, engine type and characteristics, velocity profiles, and launch condi-

tions, the excitations can only be estimated. This estimation would include

a prediction, in certain cases, of the probability of occurrence of various

frequency ranges, choosing only those which appear the most likely. It

should ne moted, however, that other frequencies may also occur in practice

which may cause damage even though their probability of occurrence is low.

Keeping these qaiaaficattas in mind, Table 3.2 can be used
with appropriate caution to estimate the frequency ranges of various flight
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vehicle vibraiion Sources. The natare of these exciting forces is Predom-
inantly random.

Tabie 3. 2 Vibration Sources

i. Rocket Exhaust Noise, Jet 40 - :O, 00 cps
Noise and BaseC Pressure
Fluctuations
Most Sipifcaat Retion 100 - Z'0o0 cps

2. Boundary Layer Turbulence t0o - 10,0On cps

Most Signiiicaut Iegion 300 - 5. IM0 cps

3. Wind Shear 0 -Z cps
Most Significant Regina I - 2 cpu

4. Atmospheric Turbulence 0 - 10 cps
Most Significant Region I - 10 cps

S. Surkace Turbulence and buffet 10 - 100 CPO
fOociflating shocks)

6. Runway soughness I - S0 cps

3.Z.z ed Use of Vibration Data

Another imporitant area in any study of night vsC~.. vibratiome is
the purpose or end us* for which the data is to be obtained. renerally, there
are three main fields of applicabiow

1. Structural fatigue analysis and system reliability-
Z. Establishing vibration environment Asr equipment.
3. Human, comf it considerations.

The relationship of these fields to amplde size. length, and timing. is
somewhat more subtle. and numerical results cant be obweied directly.
For instance, some specific fatigue stady may require special dama reduction
equipmemt which in -turn may impose certain reEgirements on the samples.
Or. for some other applications. specific traasdAciars may have to be used
which then would again place some restrictions on how the samptes should be
taken.
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3. 3 RESPONSE OF LINEAR STRUCTURES TO PERIODIC
A D RANDOM EXCI "TATION

.! ing cbtained a qjualitative picture of flight, vehicle operaing

c€arac eristics and excitation *urces of the vibr-tsos e-iron.ment. the

q-aestion Lhat now arises is: How does the rtruc'urc within the vehicle

respcnd to these forces and at can be expected to occur at a siftee point

On that strct-cre-.

Advanced analyses of structural responses to per-iodi and random

excitations are presented in Section ? of Lhs report. Some basic relation-

ips will he reviewed below for the purpose of summarizing some well

known- rcs-al, t provide the reader wit a simplified descripon of b..

hxn.r str utres rc.# b Wuprw~ azol rard sir FI.r 7.-.

complete development with extensive discussoas and proofs. the reader is

re:rred to appropriate rzferences at the -nd of this section (e.. I- eferetces

3. 3. 1 Response to Single Freqmency Excitation

The simplest model of a vibrating system is the single-degree-of-

freedom system. With proper interpretation the response of this system

can be used to cstimate the response of many otier move complex conLim-

rations. Within certain !imitations. this also applies to the response in one

of the normal modes of coninui s structures.

Figures 3. 1 and 3.-Z below show to possible coafigurations for the

single-degree-of- freedom system.

I (t)

jv(t) I a

I m I

Fig-ire 3. 1 Single Degree Sytem Figure 3.1 Single Degree System
(Fixed Base) (Movable Base)
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Ua Fgu. 3. 1. the meass m is supox t ed akr*wgk a spuiag with sping costant

k. a'~ dasbw wilt daumpis C. over a fixed iwmwdatioft The mass is oub-

ieeted to a force excitauion f (t). In Figure 3. Z. the excitation is ap~ied

as a mo4toe Xft) t " be~a se the system.

In 59adardised ntativa, the equami"u of Mmmba for beth systems

=ay be made idealical. For Figure 3. 1. a minge canoes periadvc emcitiog

force f W = A -ro e -V4 - I- . rtsyits is a conpcz frequescy respo5e funtion,

(wee wefer*Wce[Eq. P -;)

1 (3.-11

Sam - owqPCt response TiQ = IW £ (t). "&ee was amfecing freqmemay i

radam/se.us~ OVMim) as she 1 finumucy .1fuse I esca-
latin. ad =~ (C/cz is ahm dmpime rtio with 'CrS ZV' deit- " d as

the critical, deipa c ciest- For the sysoum of Figure 3. Z. 1 @0) is
replacedhby -mill f). andyll)by fw-zo

A typial illmotraboa of Uime -hislauies; oura Peuiodic input ancisf
&Ad owspa respne rern.,d for a si~-eredfedmsysm nea
uesma" Go. X n)is a.du a i Figure 3- 3 below

Amplitude

*fFe~o Syse erRSWWA
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For F Swr . !., rze fretvescy res*pns% fefc~oa HIM mar befze-

p'eted as the Cwmpiex ratio of :%c fo rce in- the *ris to the a~, tiia force-

For Figureri 3- 1. IJi4 maryLe iser.pret-ed as the ccurpe! ni.#f Eorce Er

Vil- spnzjC t- et~ imextia force that nuku Le iaiisei an the mass if it -wre

SiECTl attached ft th& e tirs buasatisvc.
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I I

P

Figure 3. 5 Magnitude Response Function IH(u)I

In vibration work, phase information can often be ignored and the only

consideration will ;)e amplitude. Convenient measures of amplitude are the

mean-square or root mean-square values. For a time-history of vibration

amplitude expressed by y(t), the mean-square value over a time interval T is
given by

1
yz(t) y 2 (t) dt (3.2)

T X

it can be shown (Referencej., p. 1-7). see also Section 9. 1. 1, that the ratio

of a mean-square output y (t) of a single degree of freedom system to a mean

27)

square input f (t) is equal to IH(ig , the square of the magnitude response

function

__7___ 2

f Wt
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3. 3.2 Response to Multiple Frequency Excitation

if the input consists of a superposition of steady simple harmonic

functions with different amplitudes, phases, and frequencies, it is conven-

iernt to describe its mean square value in terms of a discrete spectral

density function, as defined below. By Fourier Series Analysis, it can be

s hown that if a. real input f(t) is of period P, and has no constant trn- (c. g.,

no dc component), then it can be represented by the real part of the follow-

ing series, [Reierence 6, pp. 1-7 through I-II],

D inwot 2w
1 a 

- (3.4)f~t) an  e WC0

P e- inw0 t
a - f(t)e dt (n=+ 1, + 2, .an --J

0

a0 -0

where the complex coefficients a n(n = + 1, + 2 . ) contain information

about the phases of the various components. A similar representation holds

for the output response function y(t) when f(t) is the inpu. - a single-degree-

of-freedom system.

A typical time-history of the response to multiple frequency excitation

is drawn in Figure 3.6 below. In part (a), the input wave consists of the sum

of two frequencies w and ?-. Part (b) illustrates a possible response output

with a natural frequency w n between w and Z,.

Input f (t) --

(a) . " timei'. " - --- * .
I ", .." "- \---"

Output y(t)

(b) - ____" time

Figure 3.6 Response to Multiple Frequency Excitation

ASD TR 61-123 3-11



From Equation (3.4), if one deals here with mean square values,

there results

n7 N a N

E n L Sf(nG0 ) A " (3.5)

where an denotes the complex conjugate of an. and A. = (Zw/P). The sum

runs theoretically from n = i to n = aD, but in actual practice will stop at

some finite large value N. The quantity anan* = JaJ z contains W phes-e

information. Equation (3.5) shows that the mean square value of a complex

wave is just the sum of the mean squares of the componLnt frequencies.

The quantity Sf(aIr) which equals (anaZ/Z *1&) is called a discrete spectral

density function, and is commonly measured in units such as inch /rad/nec

for displacements or g /cps for acceleration.

For the mean square steady-state output, one obtains by extending

Equation (3. 3) for this case.

N * N N
)' (t) n --- n~ -w =V.6

a 1a 0) Z f (no IH(zau0)IZ , S (nWO)Aw j
n =- n n=1 y

where aw = (Zw/P).

A pictorial representation of Equation (3. 5) and (3.6) are given in

Figures (3.7) and (3.8), respectively. In these figures, the vertical lines

represent the contribution to the total mean square value of the individual

frequency components. Note from Equation (3.6) that the individual spectral

lines Sf (nw0 ) and Sy(nwo) are related by

Sy(ni,) = 1W.uio)1 2 Sf W (3.7)

The total mean square values for input or output are obtained by summing

all the individual spectral lines, as shown in Equations (3. 5) and (3.6).
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Figure . 7 Discrete Input Spectrum
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Response
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Figure 3.8 Discrete Output Spectrum
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3. 3.3 Response to Random Excitation

A schematic representation of the input-output relation for any linear

system is shown in Figure 3.9.

f(t) Excitation Ho.) Respnse t
Complex Frequency
Response Function

Figure 3.9 Input-Output System

The mathematical nature of H(w) for a single-degree -of-freedom system is

shown in Eq,,adion (3. 1).

Important statistical properties of the excitation random process are

the mean vaie, (which for simplicity, as well as fact, may usually be

assumed to be zero), the mean square value, the power spectral density

function, and the autocorrelation function. These and other topics are covered

in considerable detail in Sections 4, 6, and 7. Examples of narrow-band

and wide-band continuous power spectral density functions ani their respec-

tive time-historie' are pictured in Figure 3. 10.

One very important relationship which exists between the excitation

power spectral density function and response power spectral density function

for random excitation [Reference 6, pp. 4-! through 4-71. see also Sections

4.9.4 and 9. 1. 1 of this report, is given by

sy(W) = IH(4 2 S f( (.) (3.8)

In words, the power spectrum of the response is equal to the power spectrum

of the excitation multiplied by the square of the system magnitude response

function.
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5,(I

fit)

Figure 3. 10 Examples of Narrow-band and Wide-band Power-spectra
and their Respectivre Time-histories
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For a -single-degree-of-freedom system subjected to "white noise-

(an input having a uniform power spectrum So from zero frequency to infinity,

see ragure 3. 11 i', the mear square response is 1 lleference 6, p. 4-7derived

heie in Section 4- 9.4.

Y t. h zZzfn (3.9)

Figure 3. It White Noise Spectrum

Even though the result of Equation (3.9) is valid only for an ififinitely

wide-band input, it provides a good approximation for a lightly damped system

subjected to a continuous spectrum which is uniform in the vicinity of the

system natural frequency. This is illustrated in Figure 3. IZ below.

Wn

Figure 3. 1 Z Mean Square Response of Lightly Damped System - 0*nO4
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One additional important parameter of the response is the amplitude

probab;!ity density function. For a lightly damped single-degree-of-freedom

syste., the narrow-band response to wide-band random excitation is shown

in Figure 3. 13.

x7

£ '

Figure 3. 13 Narrow-Band Response to Wide-Band Excitation

The narrow-ba.-A response above is approximately a sine wave at

frequency Gi with a randomly varying amplitude and phase- It can be shown.

(see Reference [tbj, pp. 4- 11 throuzgh 4- 13) t!-at f or many cases the proba-

bility densifty of the cnvc!ope is appronim,-ted closely br; a Rayleigh probabil-

ity density function.

P() A e % Aato (3.10)

where R x(0) is the autocorrelation functilon of the -esponse evaluated at zero.

A theoretical treatment of tshis matter which extends the above result to inc-.ude

wide-band response is discussed in Section 4.9. 3.

3.4 EMPIRICAL RESULTS FROM EXISTING FLIGHT VEHICLES

As mentioned before. a considerable amount of interpretation is

required to arrive at the actual vibration environment from a knowledge of

the vibration sources and analysis of the response of structures. To help

bridge this gap, some actual data on fnioequenc ranges and magnitudes will

now be presented, which has been observed in present day flight vehicles.

ASI) TR 6142A3 3-17



Figures 3.14 through 3.17 show levels of maximum accelerations

recorded in jet aircraft and missiles as summarized from Reference; [.

13, 14, Z(0 at the cd of this section.

10.0i 1.

5.0 No data abovL

•0.51.

0. Zl

10 ZO 50 Ito Z-O 500 1, 000
Frequency cps

Figure 3.14 Maximum Accelerations in let Fighter Aircraft

Z.0,

1.0
0

" 0.5,

0.2 S!

0, i 0 .iI 60 a St I.
Frequency cps

Fi.re 3. 15 Maximum Accelerations in Jet Bomber Aircraft.
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10.01.

Less than 15, 000 |-Note: Missiles W;ith

. 0 pounds thrust lowe hr" , / ! have h;gher

- Vibration levch
Z .of 

rust 00
Greater th-an 100, 0.0 -

pou ft s tS,7

• --
0 . -" .

C OZ:

I

0.1
0 0 so 100 ZOO 500 1,000

Frequency cps

Figure 3. 16 Maximum Missile Launch Accelerations

10.01

- Less than 15. 000 1
I and greater than

100, 000 lbs thrust

Z. 0

SI.O2 -

I¢I

- 0.5
oI

O.Z

.1 IiI

o1 z0 50 100 zoo 500 1,000
Frequency cps

Figure 3. 17 Maximum Missile Flight Accelerations
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Upon examining the references. one finds very litit statistical analysis

and confidence in the above curves. The various authors. for the most part,

do not state information regarding the data reduction methods used. location

and typre of transducers, leng.hs oi records, and calibration checks. Some

of the data waz reduced to rms levels without regaerd to whether the data was

S. , si-.n idal or a em.bir.Waion cf the two. Other data was pr-ctssed

assuming randomness, stationarity. and normality, without justifying these

fundamental assumptions. Of cour e. on the basis of expediency, such methods

may sometimes be understood. as long as ;,ese limitations are not iNtd--el

when conclusions are drawn or predictions are made. Some of the more recent

reports, such as Kennard L13, have shown an awareness of this problem.

information regarding methods used for obtaiing the records and data reduc-

tion techniques are retaned wih the final presentation of the vibration data.

Figures 3. 16 and 3. 17 are representative only for certain classes of

missiles and the levels shown are an -average, maximum. For specific

environments the reaxier is referred to the literatare, some of which appears

in the references. For instance, there have been occurrences of acceleration

levels in excess of 100 g's rms, and some of the more recent data incl-des

frequencies abov-e 2000 cps.

It is also interesting to note, in surveying the references that nearly

all light vehicle vibration response data are obtained in C - fbrm of acceleraison

levelb. No direct statements have been found as to why acceleration levels

are measured in preference to velocity, displacement, or st.ain levels. How-

ever, it is believed that acceleration data ha been favored for many good

reasons including the following.

Piezoelectric crystal transducers, which produce voltage signals

proportional to applied acceleration, are the only commercially available

vibration transducers that have a wide frequency response range (Z to over

Z0. 000 cps) while being small and light in weight (under I ounce). Velocity

signal generating transducers have a more limited frequency response (nor-

mally 10 to 2000 cps) and are auxsiderably heavier (some weighing several

ounces). True dispiacement signal generators applicable for flight test use

are not commercially available. In the days of propeller airplanes, the nature
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of the transducer wsof little importance since the response was prtdominately

periodic and the d4namic energy was r-ancestrated in thk!- freqrzencyr ran~e below
500 cps. The transducer output sigma could easily be differer~iated or

integrated during measurement to obtain a signal proportional to a~-, p--!55neter

desired. In modern flight vehicles, where a broad band random resposse ;is

predouminate. the transducer output signals are not so easily -nmiuatted.

To date. most of the final. presentation ot randomz vibration data has

been in: tie forrm 'f pwer spectral density distributions with assumed Coaussian

=wplitude listribretions- The actual apiueitibiooftestructural

vibration response in modern vehicles has be=n the iarget of imvestigttiost hr

m&--_ engineers only rec&A--'y with ta sting results.

W. S. Shipley [ZIJ determined Vhe amplitude distribtion of the vibration

environment in the SergeAnt Missile ani .zieded up with a sear perfect or.al

distribution. a. W. Mustain Pis1 investigated the amplitude dist-.;bQ!!*m of

the vi~ratiors environment in the SM-6-1 missile. bct did not cblain good adher e

to the vr-ipal distrib--:o!:.

F. H.. Eaig 9 ] presents amplitude distribution results (distribution

.f pcak amplitudes) from miissile vibration data urki~h 4,tviate rather widely

from- the expected Rayleigh distribution. 0f particular irserest is a papr

by Edwin Kamps (nj who investigated the distribution of peak pressures in

the near-field noise generated by the exhaust of a high performance jet *Wnpne.

a major source of structural vibration in piloted aircraft- The results

deviated substantially frem a Rawleigh distribtion- This deviation is noted

also by Kenetare [13]

Forms ot vibration data presentation and interpretation other than

power spectra anad ampifiade distributions have been developed primariiy in

association with the fatigue prOblemn. One such dev~elopment considers the

structural vibration --aviroament in terms of an intensity sectrwn and a

structural susceptibility function, Refercnce [35*
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lt nzay be of interest toaste that saunie lwzjhs laken for vibnation
oeAsztr.ecs: have usually been Z - NO :ecnods k=C. One reason hor this

is prcbbiv that tnagaetc tape recoriags of this; dwratin zfl* %."Veet

tape loyps £,~r nalysi:.. Fe-& refereaces sarveyed considered thec statis-

tical errors assecistrI with nztnple cagth- Another resao r short

flfttA"l M&7 3-nr beta ge arzd ttpnt-en -Of zvducicg ""t w~ici is Nst

stationry. OMe paper dealiag with the pmobWem of spectral analysis of time

rardag data is Refercence [Z4j

Trbm discussioc that. flcws Za Sections 4 thrnug Y of this report sil

prowide improved methods for dealing with ight vehidle vi~ration probius.

These rcrt -As will reswlt. in a better andentaauiag of some of the probls

areas of past meanurefl- and UMl pmovide the eagifeer with teds to

increase his confideace in mean resents ret to be smade.
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4. MATHEMATICAL BACKGROUND FOR ANALYZING

VIBRATION PHENOMENA

4. ! FORMS OF VIBRATION PHENOMENA

Steady-state vibration phenomena may be divided naturally into

fz;:;r main descriptive forms: (1) sinusoidal, (2) periodic, (3) complex,

and (4) random. Combinations of these forms, of course, occur also.

Historically the first three types of phenomena were studied mathematically

quite extensively, and only in recent years have mathematical techniques

been developed to properly evaluate random phennr .ena. This has led to

many separate investigations emphasizing various limited aspects of

vibration data analysis. It is the purpose of this section to look at the

over-all vibration analysis problem, and to discuss in a broad way many

mathematical ideas that have been found to be appropriate.

A single vibration record, or a set of records, is usually described

in terms of its time behavior and its frequency characteristics. See

Fig. 4. 1. For example, after suitable processing, one may plot instan-

taneous amplitude values versus time, the frequency being fixed at a

particular value. Or, one may plot mcan square amplitude values

(associated with a particular fixed record length) -ersus frequency. the

time being held constant. Various other vibration properties may sir.ilar-

ly be plotted versus .ime or versus frequency. Thus, a number of two-

dimensional plots may be generated. This can be displayed as a three-

dimensional plot provided one understands that the vertical scale repre-

sents different quantities, in general, when referred to the time and

frequency axes. For a fixed value of time, freqLcncy characteristics

are displayed, while for a fixed value of frequency. time behavior is

displayed.

4. 1. 1 Sinusoidal Vibration

Sinusoidal vibration is defined mathematically by a time-varying

function satisfying the equation

x(t) = A sin (Zwft + 9) (4. 1)
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VIRTOftY (AMPLITUDE, MEAN SQUARE VALUE. ETC.)

PmillT

FREQUENCY

Figure 4. 1 Three-Dimensional Plot of Differcnt Vibra-
tion PropzrtiJea versus Time and versus Frequency
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where

A =constant amplitude factor

f =cyclIical frequency (usually in cycles poer second, cps)

ID = initial phase angle with, respect to the time origin

x(t) =instantaneous amplitude at time t (usuallyv in seconds),
the rnagnitude of x(t) itself usually being in inches or
feet or g-value (to be defined later) for vibration data-

A complete description of x(t) for all t is known once A, f and 0 have

been specified. For single wave ana!ysis. the phase~ angle 0 is often

ignored. Thus. Eq. (4- 1) may be characterized comple tely by A and L.

On setting 0 = 0. 1'q. (4. 1) becomes

x(t) =A sin Zirft (4. 2)

Eq. (4. 2) can be pictured by an amp'i tuade-time plot, or by an amplitude-

frequency plot. See ..ketch 1below.

A~t Amplitude

0 time Amplitude 0 ffeurc

-A ?~P

SINGLE SINE WAVE

The period P equals the time interval for one full vibration (or cycle),

usually in seconds. The frequency f equals the number of cycles per

unit time. usually cycles per second (cps), and is related to P by

P = /f (4.3)

The g-value equals the instantaneous acceleration magnitude expressw4
Zin units of gl* 32. 2 ft/sec . the acceleration due to gravity. From

Eq. (4. 2)
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Jict) J ( 2wf) Jxt) I

Hence

X(jt) (iri f ) 2 x(t)j =g-value (4.4)
g g

For example. if x(t) = 0.012 1nches. and if f = 100 cps, then the

associated g-value is 12. 3.

In order to describe for later analyeis the superposition effects of

two or more sine waves. with relative phase angles which can be ignored,

it is sufficient merely to plot a discrete frequency spectrum of amplitudes

versus frequency. See sketch below for a graphical plot of the sum of

three sine waves. The corresponding mathematical equation as a function

of time t is here

x(t) = Alsin Zwflt + A sin Zwf t + A 3 sin Zwf t

Amplitude l2

I "I : A3I I
f I f z f 3  frequency

SUM OF THREE SINE WAVES

(PICTURED BY AN AMPLITUDE-FREQUENCY PLOT)

4. 1. 2 Periodic Vibration

Periodic vibration is defined mathematically by a time-varying

function x(t) whose waveform is such that there exists a fundamental

period P having the property that

x(t) = x(t -- nP) for all integers n = 1, 2, 3.... and all t (4. 5)
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The reciprocal of P. namely f = (I/P), is called the f..unda-nental frequency

of vibration. It nay be shown that all frequencies present in x(t) are

constant rnsu:t 1icz vi tiz izaxdmentai± frequency.

A simple sinusoidal function is a special case of a periodic function

with period P (hf) as can be seen directly from the defining rejation

since

sin Zwft = sin Zwf [t+ (n/0f) for all n and all t

The sum of three sine waves may or may not be periodic depcnding on

the commensurability of f 1 . fz and f 3 ' For example. with three frequencies

expressed by rational numbers, say fl = 213 cps. f 2 = 34 cps and

f3 = 5/6 cps, then P = 12 sec would be the fundamental period since 3,

4 and 6, the denominators in fI. f. and f3 " respectively, would all divide

into 12 an integral number of times, and no smaller number than IZ has

this property. However. if any one of the frequencies in question should

be expressed by an irrational number. e.g. NFcps. while one or both of

the other frequencies are expressed by rational numbers, then no funda-

mental period would exist.

If the time-varying function is periodic with period P. then with

few exceptionc in practicc, it m.ay be c--,",cd in a Four" - series

according to the formula

-) + Z a cos 2wnft + b nsin 2wrft (4.6)
2 n=l n=l

where i = I/P

an = x(s) cos 2wnfs ds n = 0, 1, 2....

b =- xs) sin Pwnfs ds ; n = 1.2,3 ...
P o

A Fourier series is determined completely through knowledge of the

amplitude coefficients an and bn at frequencies nf. and may be pictured

by plotting these coefficients as a function of frequency.
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4. 1. 3 Complex Vibration

Complex vibration uill be defined here as non-periodic vibration

phenomena which may be described by some suitable analytic time-

varying function. The availability of such an analytic function ."eans

that the entire time history of the vibration in question can be stated

completely. There are no probabilistic features associated with its

time behavior.

Three simple examples of complex vibration are:

x(t) A I sin ZifIt + A 2 sin -- ; fl rational. f2 irrational

Ae- a t sin bt ; t >_

x(t) F vt
t ; It!>C -C C

0

Observe that for complex vibration, as opposed to periodic vibra-

tion. there exists no !Q .-daiental period P such that xtt) -- :;It + P) for all

t. This is the distinguishing difference between complex vibration and

periodic vibration. Both types of vibration are required to have explicit

analytic representations. If a time-varying function has a Fourier Integral

representation, but not a Fourier Series representation, then it would

belong to the class of complex vibrations rather than the class of periodic

vibrations.

4.1.4 Random Vibration

Random vibration is that type of time-varying excitation which

consists of randomly varying amplitudes and frequencies such that its

behavior can be described only in statistical terms. No analytical

representation cxists for the complete vibration in question so that it

cannot be classified as a complex form of vibration. The motion does

not repeat itself in finite time periode -See sketch below for an example

of a single random vibration record.
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SINGLE RANDOM VIBRATION RECORDU

A particular observed random vibration record is usually a unique

se: of circumstances never likely to repe&at exactly in. al its characteris-

tics- An obser-vd record. in actual practici.. is merely a special example

out of a large set oi possible records that might have oc'Cur red.' In order

to artalyze this single record, it is necessary. in general. to analyze

statistically the entire collection of random records of which it is a part.

This collection (also called ensemble) of records. assuming it can be

characterized statistically in ways stili Lo be described. is known as a

randomn process. The sketch below is a pictstre of a random process in

which the individual records are laid one above the cther using some

common time base.

RANDOM PROCESS

%So1IR b*I:-L. 4-.7



In general, no individual record is representative of any other

record, nor is any individual record in its time-wise behavi Ur at fixed

values of time. In general, statistical properties as averaged ever the

ensemble of records vary with the time at vhich the measurements are

made. Such random processes are called "non-stationary" to distinguish

them from other special "stationary" random processes, where statis-

-ical prope-ies as averaged over the ensembie of records are invariant

with respect to time. Thos, matters wi; be discussed later in further

analytical detail.

Present consensus of information from qualified people doing

vibration data analysis for missile and space flight vehicles indicates

that the overwhelming portion of data falls in the random vibration

category. A limited amount oi data under very special cenditions is

better described as (a) sinusoidal, (b) periodic. or (c) complex. For

this reason, the discussion to follow will concentrate itse-f on analyzing

random vibration phenomena. with some special attention devoted to

sinusoidal vibration.

4. Z SINGLE ANALYTIC RECORDS

The mean value of a single analytic record x(t) of length T will be

defined by

T

The average absolute value of x(t) is defined by

1XI = T jx(t) I dt (4.8)
T 0

A function (not identically zero) with zero mean value will have a non-

zero average absolute value.

The mean square value of x(t) is defined by

2 1 nT
x Z TJ x (t) dt (4.9)
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B- definition, t.he root rnezn square (ris) value. (usually denoted by a-

if the mez, value is zero) is the positive square root of the mean square

value-

Exa-pie: Sine Wave-

x ? Asin Z-ft 0 C t <T

(4- 1)

T nP = n/f where n -integer ; P = period

The mean value. average absolute value. and mean square value. of a

sine wave; averaged ever a length T equal to an integral number of peri-ds.

are given by:

- A !-Tx -- sin zft d: 0
T "O

*** pT . I A fl Z ZAJ !in Zvf j dt sin as, d! = --. 63A
(4 11)

x sin (2f! dt Z - Sil- !sft) dt A 2Z
T 0 (lift

The rms value, a-. for a sine wave is given by

MIX rZ[ = - ; 0-.7TA (4.-12)

Note that in terms of w-. the average absolute value

I (Z/w) r - 0 0- 900 c- (4. 13)

For a single analytic record x(t). the (ctmulative) probab:lity

distribution function P(x 0 ) define= the fraction cf time. en tho average.
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that the magnitude of x(t) will be below x 0 . Clearly. P(-oo) = 0 and

P(+cD) = 1. mince the magnitude will never be below (-wp) and will always

be twiow (+w). For all other iau-s of x ., P(x 0 ) will be a non-decreasing

function of x between zero and unity.

The fraction of time. on the average, that the rnagnitude of mt) lies

bc'ween x, a - A x,. where x, < x2, is given by Ptxz) - P(xl). Define the

quantity

P(x) - P(xl)
p(x1. x21 = _____

xz - xi

and take the -limit cf this quantity as jAx Ix., - x, approaches zero.

Assuzi.ng this limit to exist, there reziAls the derivative

P(x) dP(x4

dx

with

Px) - pix) 4x (4. 15)

The quantity p(x) is called the probability density function. For small

Ax. ne p, .bability that x(t) lies between xj &-- x- * Ax is given by

P. x0 : x.

Pro%- x -A(t) f. VO x F X p(z) dxayp(x 0 )x (4-16)

Example: Sine Wave.

x(t) = A sin Zeft

The probability distribution function for the instantaneous ampiitude values

of the above sine wave is given by. see Ref. t1. p. 1
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lm.x) z liZ +(ilrss -n x!A) (4-17)

o.O5

-A C .A

The corresponding probabiiity density t. , for he ,-sa.aneous

a.-phitue --alues of the sim. w--e is giswro by PEWz 0 C for Izj > A. ud

D(X] dltx) MOW 14

dx vi~ x

ibi

it I
I. p (X) I

U' IU
i, I

-,A 0 A

Tkese results for a single sire vrave should be well understood

because of their considerable differenace toa Gaussian (normal) distr-

btion, function which is associated freq-Jrtly wit?, random pheromes1a.

The Gaussian (cumulative) probability distributon and probabilitr density

finctions wi!l be discussed in a later section.

The p speural density function' S ff) associated rith a single

a.nl.wtic record x(t) is defined as the limiting v~alue of the mean square

.- D Tit -:4-11



~aim* X WI ccriaimmed tft art idead bandpass fifter with cemer frequency f.
divided by !-1e bandse 4th B. as the bandwidia approackes ser-.. Thas.

the pawtr Spectrai den-E.P.62mctia indica*;es the rate of cbazge of the
m~ean square '-aime with freTq-tncy- The teal mean square value in xt)
is O ftau=d b-f imnerating isum~aag S (5) ower alfeunisfo

f -co_ *- f = ooe aeto istetratims ZSV(I from f I Ot. f a

utile the me&-- square valwe af x(t) between Cbe froetces 1 3 tb
obtained by istegratia Z~fQ fhm E. fd (The factor o9 Z. reItIs fam
matkematical Zsclusio .1 of egative frequencies.) In equation form

4r (f <dc! ~ZJ k (i) (4-~X A - - b~bz

Ekbn5E Saft Wave

Sance a(t) Cautains power only at one frequency fe. arnd siacet the
total mean square value in x~t is gives by

x =t f4 j Z~ (4-. 0)

.(f) (A'/Z) Wf - f) (4. ZI)

Where 4(f - t)is the %oval Dirac delta fuactioa as dofimaed by
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I-z -ores. tMe spectral dens ity hacumvkia f a line ware of amplitade A at

freuec~ ~ts a derlta fuectina: C fO ;tdb thae 00f* lt tter

ThIe auvocorreafcz [wan Rx. T) asnciated wisb -a single

aralni.c r"card 4:)j a! fixed [zaite Iretk. I nilE be dctiect by

K T-T C

V*;lt)ffr24 NO.dIa if cc7T

For fixed T. as 7 approathes isin.teanmoorreia;s (anrteo

tjr) is 44dfited by

ft IT) s tm (1m)fXt 41) zfl4M 4 4-14

ia prtitula~r. the above ddfiaitins (without passfge to the limit) applie

to a periodic taoctics of period P r"a! to 7

kn~sSine Ware

x4Qa A six Zsft - PwrieCdT a (fM

ft (,r) #PJTLYA sat Z1s* Si ZAt tl ef flt

* (A- -I) Cos Zsr (.5

in worts. the assoccrrelvws-O faRct.. of a sifte ware of

amplitude A atz frevaency f is a cosine wave of amplitude

(A z 14As same frequency C. Thns. per iodicities peeset

:a a Inn-a~f are reained in its antecoc relation fcac-tac..

Noce Irar Eqs. (4 t'Saad (4.1M4)t

Aifl I. 44-1-* 4-13



R x(0) = (A /2)'= fO S X (f) df (4.26,

One may, in fact, prove a more general result

-ODR x(T) = f Sf co M 2CS fT df (4.27)

The above results may be extended easily to sums of sine waves

and to other analytic functions. The discussion to follow will now concern

itself with establishing various fundamental probability and statistical

concepts which extend the above treatment on single analyiic records to

the more important physical situations of random phenomena.

4.3 PROBABIL11 Y FUNDAMENTALS FOR RANDOM RECORDS

The underlying concept in probability theory is that of a set, namely,

a collection of objects such that it is possible to determine of any particular

object whether or not it is a member of the set. In particular, the possible

outcomes of an experiment (or a measurement) represent a set of points

called the sample space. These points may be grouped together in various

ways, called events, and under suitable conditions probab' lity measures

may be assigned - each event. These probabilities always lie between

zero and one, the probability of an impossible event being zero, of a

certain event being one. For sample spaces containing a finite number

of points, the probability of a particular event is simply the ratio of the

number of points in the event to all possible points. For sample spaces

containing an infinite number of points, a mo re sophisticated approach

is required.

The union of two events A and B is the set of sample points which

Lelong to A or to B or to both, and is denoted by

AUB or BUA

The int-rsection of two events A and B consists of the set of sample

points which belong both to A and to B, and is denoted by

AnB or B A
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A probability measure may be assigned to the set of events of a

sample space it the tollowizzg axioms hold:

(1) To each event A, a probauility P(A) is deined by a non-negative
real n-nber depending on A such that 0 < P(A) < 1.

(2) If A and B are events, then AU B and Afl B are events.

(3) There is a most gencrai ,event, say G, which includes all other
possible events.

(4) For the most general event G, P(G) = 1.

(5) If A and B are different events with no pornt in common, then

P(AUBI = P(A) + P(B) (4. 28)

For the above case, the probability measure is said to be additive. For

the general case where A and B may have overlapping points,

P(AUB) = P(A) + P(B) - P(AAB) (4.29)

4. 3. 1 One Randun Variable

A random variable Rk) is defined as a real-valued point function of

k, where k is a point from the sample space. That is, a random variable

R(k) represents a real number between -co and +co whici- ': associated to

each sample point k that might occur. Stated anothe - way, the outcome

of an experi nent, namely k, can be represented by a real number, namely

R(k). For historical reasons, this .Americal random outcome is called

a random variable.

Let R(k) denote a certain random variable, then for any fixed number

,z. the random event, R(k) _<c. is the set of possible outcomes k such that

R(k) <cf. In terms of the underlying probability measure in the sample

space, one may define a (first-order) cumulative distribution function

PR(a) as the probability which is assigned to the set of points k satisfying

the desired inequality R(k) <cf. Observe that the set of points k satisfying

R(k) <a is a subset of the totality of all poirts k which satisfy R(k) < co.

In notation form

PR(a) = Prob f R(k) <a] (4. 30)
k -
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Clearly

PR(a)< PR(b) if a<b

(4.31)

PR( - OD) = 0 PR(CD)

For example, let the sample space consist of tosses of a single

coin where the two possible outcomes, called heads and tails, are

assumed to occur with equal probability (1/2). The random variable

R(1c) for this example takes an "nly two discrete values, R(heads) and

R(tails), to which arbitrary real numbers may be assigned, e. g.. let

R(heads) = a and R(tails) = b where a and b are real numbers with. say,

b > a. With these choices for R(k), it follows that the distribution function

0 P a)

P R la) = 1/2 a a < b 12, ,,

i -> b P : f=
I a

As a second example, le' the sample space consist of choosing a point at

random in the interval [ 0. 1], including the end points. A continuous

random variable R(k) for this example may be defined by the numerical

value of the chosen point. The corresponding distribution function becomes

aPR{c)

P a &O~al I-------

a> I
a

If the random variable assumes a continuous range of values (which

will be assumed hereafter) then a (first-order) probability density function

pR(a) may be defined by the differential relation

pR) da = Prob[ a < R(k) <a + da] (4.32)
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Note that

PR(&)> 
0

(4 33)

PR d(a) a

The probability density function pR(a) should not be confused with the

(cumulative probability distribution function PR(a).

Suppose R = R(k) takes on values in the range -o to +o. Then the

mean value (also called expected value, average value? of R is given by

the limit of the sum of assumed values when each value is multiplied by

its appropriate probability of occurrence. That is,

E(R) = lir a. Prob [Rlk) CPR(a)dcr (4.34)
N---o i=l-

Similarly. the expected value of any real single-valued continuous function

g(R) of the random variable R is given by

2
E [glR)) z=O g(--) PRlcr) da :- _-j!W) (4.35)

In particular. for g(R) = R , the mean square value of R is Itven by

2E [R z } = _ PR(c) da = R (4. 16)

and the variance of R is defined by the mean square value of R about its

mean value, namely by.

o(R) = E [ (R - R) - 4.37)
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By definition, the standard deviation of R. deaoted by o-, is the positive

square root of the variance. The standard deviation is measured in the

same units as the mean value.

4. 3. 2 Two Random Variables

Consider next two random variab!ez R = R(uj aad S = S(v) where u

and v are points in a suitable sample space. Let PR(a) and P10) be the

distribution functions associated with R and S respectively. The joint

(second-order) cumulative distribution function PR, S' , ) is defined to

be the probability which is associated with the subset of combined points

(,-. v) in the sample space satisfying the inequalities R(u) < & and R(v) < 13.

The total set of combined points (u, v) satisfies the inequalities R(u)< co

and R(v) < o. In notation form,

PR. S (a , 3 = Prob [R(u) < a and S(v)< 1] (4.38)

Cleaily.

P R , S| - O 3 ) = 0 = PR, S {a " "O)

PR, J- o 'Co ) = I

As before, assuming the random variables to be continuous, the

joint (cumulative) probability distribution function PR cra. 1) should not

be confused with the joint (second-order) probability density function

PR. S(aA ) which is defined by the differential relation

PR. S(01,3) dc'd = Prob [a < R(u)< a+do and 3 <S(v)<13+d3] (4.39)

Note that

PR, S(a ' 1 > o
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R .sCO P R.OsD )

PR~a) = co PR,S

Two random variables R and S are said to be (statistically) indepen-

dent if

,nRs~ o , 3 , ' - : pR } PE )(4- 40)

It foilows that

PR. S(C. ';3-) PR(E 1} PS( t )

The expected value of any real single-valued continuous function

giR, S) of the two random variables R = R(u) and S: S v is given by

E[g(R.SIJ =) _ (g(,f}pR -. ")d di= .R'S (4.41)

For example. if g(R, S) = (R -R)(S-S) where R and S are the mean values

of R znd S, respectively, this defines the covariance p(R. S) between R

and S, namely,

p(R. S) = E[(R-.R)(S-S) E[RS] - E[R] E[S]

-OD O-D
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A simple relation exists between the covarialie Of . ad S and -he

standard deviations of R and S as expressed by the inequality

Jp(R. -S j< oiR) o-(S) (4.43)

Thus, the magnitude of the co-'ariance between R and S i: ;tss than or

equal to the product of the standard deviation of R multiplied by the

standard deviation of S.

It follows from the above result that the normalized quantity

r (R. S) = p(R. S) (4.44)
oJR) o1S)

known as the correlation coefficient, will lie between -1 and +1. Random

variables R and S whose correlation coefficient is zero are said to be

uncorrelated. This concept should not be confused with the previous

definition of independent random variables. Note that if R and S are

independent random variables, then

E[RS] f _ a .s( " P) der 0

,--arZ J apRa) dot 13PS(P) - -E[R) E[S] (4.45)

Hence p(R, S) and, in turn. r (R. s) equal zero so that independent random

variables are also uncorrelated. The converse statement is not true in

general; that is to say, uncorrelated random variables are not necessarily

independent. However, for physically important situations involving two

or more norrially (Gaussian) distributed random variables (to be defined

later), being mutuaily uncorrelated does imply independence.

The conditional probability density function of R, given that S = .

(i. e., given that S is between 0 and 0 4 dO for small do), is defined by

pR( IS = 0) da = Prol, [0 < R(u) < a + dc I given that 3 -c S(v) < 13 deJ
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or PR . 0

PR(a0S = M-  , assuming PS(A) A 0 (4.46)

PS(P)

For independent random variables, this simplifies to

P(a)} PSAJ3

pR(a IS = 3) - - PR(&) 24-47

In words, the conditional probability density fur.ct:on for R. given S. is

now tire same as the original probability density function for R alone.

These ideas may be extended in a straight-forward manner to

handle situations of three or more random variables where higher-order

probability distributions would be involved.

4. 3. 3 Special Probability Distributions

By way of illustration, as well as because of ihe-r importance to

physical problems. some special probability distributions will now be

described.

(a) Uniform (Rectangular) Distribution

A random variable R is said to follow a uniform for rectangular)

distribution over the interval (a <a < b) if its probabii;tv density function

is given by,Ref. ,p 86]j P&

b- accf

0 * otherwise a448
pR~a)= -- a_ a -- R ia)

Th corsodn (cmltv)uormerwistrbto fucto iso

=0 ; otherwise

0 a b
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The rnea value LL and 1. ."-riacz a 2 (.iandard deviation = o) of

thc randc., variable R become

IL-E[RJ=J - e¢ pR 'a ck - I- - d  '--

fP % b-a )a z

(Y10R 2 (b-a) 24"2 E[(R - )1=j (a -- P)' pR(a} dc -= 1

Problem: Find the probability that R lies in the range [ IL - V-- iL + Ur J
where IL is a positive numerical constant. The answer here is

Prob[ p - Mcr < R= cr] = Xerlp) (4.49)

For example. if R is uniformly distributed in the range (0. b). then

F = (b/. and 0r = (b4 1 2 - Now. if IL = 1.0. then

Prob[p- a <R< p +oJ -- 57-.7%

On t he other hand, the value of ) such that the probability will be 95% is

obtained from

O. 95 =I (a'I)).(Z/ iZ) or X## 1. 65

Thus

Prob~F- 1. 65 o- < R<L+ 1. 65 1 0.95

These numerical values for ). are quite different from values appropriate

to the normal distribution which follows.

(b) Normal (Gaussian)Dtstribution

A random variable R is said to follow a normal (or Gaussian)

distribution if its probability density function is given by. Ref. [ p. 93J.
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PR(a)

:'ia exrl 1( i)~2a1 (4.501

where p is any r'al cons~ant and o" is auty positive constant. It is verified

easily that p and a- constitute the mean value and standard deviation of the

random vari-able R sunce

EERIR P R(a d&

The normal distribution function is by definition

PR() -exp[-a -IZo- I d

0..
Prob[f R< at (4.51) 1

and .s rcadily available in statistical tables 0

Using simple numerical methods. or from tables, it is now con-

er:e.t" to determine the probability that the random variable R will

assume values ir any desired range. fr. particular

pR( t # ko} - PR(p - X01 = Prob[ia - w R * RC p !4.-)

represents the probability (z. e.. confidencE levei, rhat R will be within

plus and minus X standard deviations of the n-can value. For . : 1. 2. and

5. the confidence results 4rm 63 3%. 95- 4% znd 99. 7%. respectively.

Working the other wa-- for 80% confidence k = 1 3.
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For a large positioe constant IL. one may show for a Gaussian

distribution that

zX

In particular. fo X = 3.

Prob [R > I+ 31- 0. OOZ.

The importance of the normal distribut-ou in physical problems

may be attributed in Fart to the Central Limit Theorem which asserts

that this distribution is approximated closely by the distribution of the

sum. random variable *I a large number of independent small random

variables acting together.

To be a bit more specific. let RV, Rz ... . be N mztzaally

Endependent random v-ariables whose, individual distributions are not

specified. De-.=e bi pi and o, the mean value ar-d vr.iance o. each Ri .

j I 1. Z..... K. Consider the sum random variable

where a i are arbitrary fixed constarts and assume that none of the aiRit

contributes significantly to the sum. Now, the mean value p and vat- e

o R ft become

F--g~l. -ENZ =I ai --. _ a:Er Ri]- at,
ILE~t )L i a .j N

the last result due to the mutual iadependen-te of f i with R. for i A j-

The Central Limit Theorem states that under fairly common conditions.

the sum random variable t will be normally distributed as . with

the above mean value it and -ariance a-, see Ref. [p. 971.
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It? Tr Novd Crmal Dzszrzb~txoct

A ra=do.n variable ft ts 3sati to a.; truncated corrrnal d:szribu-muon

:n the range QC A if ZIts :jrOhab..itv Assi~r fzarctio ;S given by

P. '--- C.'C

!4- 511-

C toA

'Me resrfor zrrad%:c-:t the constamt C -s to ntisfyf the ri"rcnen

-W,

Q7-pscrrr ;!%at to the left zf te valsue a * A. except for t-T scale factor C.

the numcalrd rtorntal dwir.buta~r has Owe gsne *hapt as the original

nfl rucatd ormal ir ~ao The parAmeters p zrC r here do not

re-present the mn al~nue andi standard drnnatson of :be t runcated dusty--

btobut refer back to the underlvang urttrurcxated distrbatzn.

(d% Rayleuglh Dsszbuti-on

A random rartable K Which aS restr-.cted t o -na e ;-b -C

-said tr follow a PRalrtt da.srabutton f its probability desa-tv f-.mctzon is

p (a) (

.4 54.%

0O

A-01 TIg



The tayleigh disvribuffin sh-,.4d na be corJuse.-d with a Gamssiam dis~ri-

;iv~ic!= wrr Uh randem wariabI& may~ take cmbegh Vcsitive and apt:,v*

vraises-.

Tht carresp~sdiz~rg ye~ diigributiam fumcdow is givre by

Pi&)Prob R -ca) I -ezp (-0 w zP

For a Rayleigh distribution. the mutaa -raise and mean squre vanse are

2 2 %I/ 2 i v9 .Z

HetC* the v~ariace is now eapreSed by

(e) N-Divms -toal NCorma1 Dimuibcion

~ ~v be X raudem varmabes deftsed over the se
sanipl* space. Denote their mea mZaaes. 'ariasces. &ad coariances by

0% Ef (-

Ef(R. - iH - PI -
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Thei-r cccnbacd 42zribaa 14 Said io I~e 4= -4nwia ina

4.; .~ce if thev asaic NSpObabci~zy tcessstr fecrbsme is

II

- J -Z (4.14

sftte jj jjis the rot-a riace lairsI Of the . & iskedtria

.'il 11241 a M _J ts Che c01acor opf mt Jeterntban Jul[ To bvr nrc

I'I

'EL -.- 3

'crdrF-I fermrd boy amiiag The ak new and ib Copg.In ghIMI.

Mhe anuS44azMg fraXtxre Of 'fbe -mrnnlmc dinnbr t

X# thai SEEI 0E :.1 propCIriWs are cdermi=A-t nicr Ifrom kmawefee Vt the

tz- -ing -- a sa ~is Vt ad cerarzaSmrs p :xSI- k abo.le retorts t

$91 e.-....rpi-s (4- W,

uttach -.s ihe %nd ar-ueaan zn a imrihau dcftmed prctrosy-

For N c . here results

I- p f .

rL .r i
f *ziu)e



al,
where .2  is the correlation coefficient between R and R2 .

Observe that when R1 and R2 are uncorrelated so that r. 2 - 0, one obtains

p{l) I pP'.) PIC, (4. 60)

which shows that R and R2 are also indencnde~it.

Similar formulas may be written down for highex order cases

where N = 3, 4, 5, ... etc. For arbitrary N, it follows quite easily that

if all different pairs of normally distribution random variables are mutually

uncorrelated, (i. e., r.. = 0 whenever i j), then these random variables

are mutually independent in the probability sense, that is

p(&I a.. aN) = p(C1 ) p(a2 ) ... p(AN) (4.61)

The importance of the N-dimensional normal distribution in physical

problems, analogous to the common one-dimensional normal distribution,

is due in part to the Multidi.-nsional Central Limit Theorem. This theorem

yields the result that the vector sum of a large number of mutually inde-

pendent N-dimensional random variables approaches an N-dimensional

normal distribution under fairly general conditions. Particular applications

of this theorem, relative to zero crossing properties of random records

and expected number of maxima values, for example, may be used to justify

an assumption that a random record x(t) and its succeeding time derivative

x(t) will follow a two-dimensional normal distribution, and that x{t), i(t)

and i'(t) will follow a three-dimensional normal distribution.

(f) Distribution of Sums of Independent Random Variables

Suppose R I and R Z are independent random variables with probability

density functions PR1 (ctl) and pR,(afl) respectively. Let

R r aIR1 + a R2  (4. 62)
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be a typical composi.te sum record of RI with R2 where a I 1 0 and

a Z 1 0 are arbitrary fixed constants (usually known in engineering problen's).

Then the probability density function pR(a) associated with R is given by

~) P( p l( i  K 2 ( - a, a,)Ia2 ] d, {4.63)

For the special case w;iere R = R + R Z , that is, a. = a2  1, one obtains

PR CO PRI (a l1 PR 2 (a - arI ) d a ( 4. 64)

From the above relais*:, one may verify that the sum a: two

independent uniform distributions is no longer a uniform distribution.

Hcwever, the sum of two independent normal distributions remains a

normal distribution, with mean and variance equal to the sum of the

individual means and variances. The latter result may be extended to

the sum of N independent normally distributed random variables.

4.4 RANDOM PROCESSES

A random process {kx(t)} -co < t < co, k = 1, Z, 3.... is an ensemble

of functions of time which can be characterized through its statistical

properties. See Figure 4. 2. In the physica world, each particular kx(t),

t variable, k fixed, represents the result of a single observation or

experiment, and constitutes a sample function of the random process.

For example, each kx(t) might represent vertical wing loads on an

airplarn: as a function of time t, the superscript index k denoting

different airplanes; or each kx(t) might represent runway roughness at

different locations k as a function of distance, the distance variable

taking the place of time.

A particular sample function, in general, would not be suitable for

representing the entire random process to which it belongs. Under certain

conditions to be described later, however, it turns out that for the class

or ergodic random processes, it is possible t-a derive desired statistical

ir.formation about the entire random proc~ess from appropriate analysis
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-I-, X(t)

Figure 4. 2 Random Process

of a single arbitra~ sample function. For the situation of a pair of

random ~ ~ yt) prcse- the corresponding problem is

to estimate joint statistical properties of the two random processes

from proper analysis of an arbitrary pair of sample functions kx(t)

and k y(t). 
k kTh i sConside~r two random processes (01~t and jy(t . h is

statistical quantities of interest are the mean values at arbitrary

fixed values of t. denoted by

IL x (t x At ' over ktfie
(4.65)1

y M ~t>)Av over ktfie
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Note that k is averaged o-at in computing these ensemble averages which

are indicated by angular brackets. In general, these mean values are

different at different times, that is.

Px(- l i x ( t z )  if t I Ft 2

(y t') y(t )  :-f tj t2

The next statistical qua ntities of interest are the covariance functions

at arbitrary fixed values of T and t.

( ) [k X t) - it) k{( t + T- (E+ over k

p~. Kk (t) *1t~ kL(t + T1) I- (t+4.6 Av over k

p(, t) = k (t)- (t) [ky(t + - py(t +-)i.
xy IY ],Av ever kpx(, )[x(t) -i xJ)]L[y(t + r) yt+)A ever k

In general. these quantities are different for different combinations of

T and t. Observe that at - = 0. (omitting the index k for simplicity in

notation, but still retaining angular brackets to imply ensemble averaces)

Px(0O t) /[x(t) - F (t) -=Z(t)

,y(0, t) = y(t)- y(t)1 .> z (4.67)

y~t) -IL (t)
P xy(0. t) 'x(t) - P x(t)] [y(t) - P y >(t]AV = Pxy tW

Thus the covariance functions px (0. t) and p y(0, t) represent the ordinary

variances of {x(t)} and {y(t)} at a fixed value of t. while pxy(0. t)

represents the covariance between {x(t)} and ( y(t)}. As before, different

results would generally be obtained for different values of t.
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Other statisticai quantities can be defined over the ensembie which

involve fixing three or more times, and in tts way, the random processes

can be described in finer and finer detail. However, if {x(t)}. {y(t)} form

a two-dimensional Gaussian distribution at a fixed value of t, then {x(t)}

z:ad {y(t)} are separately Gaussian. The mean values and covariance

functions listed above then provide a complete description of the under-

lying probability structure. For this reason, the main emphasis in this

sectio is concerned only with these two statistical quantities and their

relationships to power spectral density functions.

If the mean values .,x(t) and py (t), together with the covariance

functions px(-r, t), py(T, t), pXY(T, t), yield the samne res-,_lts for all fined

values of t (that is, are independent of time translations), then the

random processes {x(t)} and {y(t)} are said to be weakly stationary.

if all possible probability distributions involving {x(t)} and {y(t)} are

independent of time translations, then the processes are said to be

strongly stationary. Since the mean values and covariance functions

are consequences only of the first-order and second-order probability

distributions, it follows that the class of strongly stationary random

processes is a subclass of the class of weakly stationary random proc-

esses. For Gaussian random processes. however, weak stationarity

implies strong stationarity since all possible probability distributions

may be derived from the mean values and covariance functions. Thus,

for Gaussian random processes. these t'.o stationary concepts coincide.

Random processes which are not stationary are said to be nonstationary.

4.4. 1 Correlation (Covariance) Structure of Weakly Stationary
Random Processes

For weakly stationary random processes. {x(t)}. {y(t)}. which will

be considered from henceferth, the mean values become constants inde-

pendent of t. namely,

J.A

(4.68)
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For simplicity, and without loss of fenerality, it will be assumed

from henceforth (unless stated otherwi)e; that these mean values

are zero.

The crvariance functions for weakly stationary random proc-

esses are also independent of t. and with zero mean values, may
be designated by

R (r) = <(t)x(t + > ; R(0,= 4r Z

R( r) = t y(t+ > ; R (0) =a -Z (4.69)y <(4).69}

R XY(r)}= <Xt) y(t + r)> ; RKy (0)= pxy

where R is introduced instead of p to agree with engineering usage.

For non-zero mean, values, R is different from p. The quantities

R () and R y(r) are called the autocorrelation functions of [x(t)|

and fy(t)]. respectively, while R (r) is called the cross-correlation

function betwecn [(t) and y(t)].

For arbitrary values of px and p y. the covariance functions

are related to the correlation functions by the equation-

p R' =B (v) -P

Px(T) = R (i) - it (4.70)
y y y

PXY(T) = %yl.T) - y
Pxy(I)R= xy(7h " ix i'

Thus, correlation functions are ider'ical with covariance functions

when the mean values are zero. The reader should be careful not

to confuse these un-normalized correlation functions with the corre-

lation coefficient defined in Equation (4.44).
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Frcai the station.try hypothesis, it follows that the autocorre-

lation functions Rx (r) and R (T) are even functions of r. that is

R (-T) R (T)

x x.

R (-T) R_.r")
y

while the cross-correlation function is neither odd nor even. but

satisfies the relation

Sxy(-)R :) ( ,} (4.72)

An upper b-und for the cross-correlation (autocorrelation)

function is given by the inequality

R axy(T 1 4 X(0) R V(0) (4-73)

the equal sign aczcuring only if !he two processes are identically

equal to each other and to a con.ar.t. a trivial case. Hence. a

normalized correlation coefficient r' xy() may be defined by

Rxy!r)
S() =(4.74)
l-x¥VT = Rx(O) R V(0)

such that r-T (r) lies between -1 and . The coefficient r' (T)
zy • x

measures !he degree of linear dependence between f x(t)| and

jy(t)l for a displacement r in ry(t) relative to lx(t)j. The reader

is cautioned not to conf:se this concept with the previous definition

in Equation (4.44).

In summary. the covariance structure of weakly stationary

random processes Ixt)4. X( (t)} . assunting zero mean values.
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may be described by the four correlation furwtiosas R (,o R (1),
xt y

R xy(7) and R y-r). These need be calculated only for values of
1 > 0 since s9,m.-.try properties listed above, Equations (4. 71)

and(4- 72). yield reouit. for r 0.

4.4. Z 4Eectral Decomposition of

5(ationary Random Processes

The spectral decomposition of arbitrary random processes

140 -~) a collection of time functions. (the superscript index k

omitted for simplicity in notation), depends upon the requirement

that each particular member of the random process x(t), a sanplc

time function, have a complex Fourier transform X(f), where f

denotes the frequency. (usually cps), such that

X(=J xte -j2Uft a ; =1 (4.758)

and conversely.

(t) = OD Xfe jz ft CF (4. 750)

A sufficient set of conditions for this to occur is that x(t) and its

derivative i(t) be piecewise continuous in every finite interval (ab)

and that I x(t) I be integrable over (-aD. co).

Similarly. every y(t) from an arbitrary random process

[y(t)J must have a complex Fourier transform Y(f) where

Y(i CO, y(t)e-Jzuft dt (4.76a)
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z'} J Y(fIejWtdf (4- 76b)

Thus, the original pair of real random processes {x(t)},{y(t)} =ay be

described in terms of two new complex random processes {X(f)!. {Y(f)}.

Exam!- Special -asis of a constant and a periodic function. If x(t) = I.

a constant, then its inverse Fourier transform relation

I CoP X(f)tiZvftdf

implies =71-

X~f) =(f)

where 6(f) is the usual Dirac deita function. Also. if x(tV IZf~Ot. ak
complcx-vaiued periodic function, then

jzf,:t °2 xY"

Hnce

Szs(f-o)t

*ZtI X(P f)e 'do f - of
-0)' 00

which yields

xP + f) - 6(p)

or

X(f) = 6(f - fO4
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Nao- for

X () Cos " 0 E =(q2[e t

't. folars thatx

C 101 R, fol-

xs It) = sir, Zzot =(!z 0e

and
X ¢ Of C: :parI --f C W

This concludrs te exam-p!C

I x(Ot} and { hat)} ve zero mean values,. which is assumed here.

it follows that the *ns-.ble averazes

Since x(t) :s real. id may be expressed in terms of the complex

co.-sgate XII) by _^
x~flg ; X Oe ZC_ t dff

Now. the square value

1ft J X ( ) f XX),'(gOdC dg

using a variable of integration g instead o f in the second integral toz,
avid confusion The ensemble averaged value of x1 () is thus giv. by

K/" YF M- X(,g> ej"'0gtI dg df (4 771

From separate considerations. the power spectral derity function

sir, associate with the random process {x(l. where f ranges over
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{-CD. a). u" ba - fi.- . b .- rel.atic

<.zV> !f C SXWl dl (47851

which ;fr.d-Caics how <xz(ti>j i' distribated arer the doubly-iftfinite

frequency range (-w. a*- Ir. particular. S (f) d represents the

arnour of -pou-er" in <x z Iir, in the frequency rafte If. f * d

so tha S (0 is rea: and -o egative for arl f.

S-n--. th"-se las: two ctlations for <xz(t)> must be equivalent.

one obtan

a LJ-UID <

which is satisfied b6 the requirement that

<') X( z Sp( 6(, - g) (4.50)

where 4(f - g) is a deta function defined by

Gif - g) r 0 whean f

The abowe discussion helps to Justify the fact that one m,.ay

prove from a deeper direct analysis (not de-eioped here) that pa:rs

of complex randoi, variables X!Q. X(i). Y(f). Y(g) satisfy the re-

lations
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(4'(f) Y(t> =SP) 6(f - g482

< Yij Y(9>) = S T ( 611. - 0(-$

where Sx () and S (f) are called the pwer sptctral G4my fumcti=s
of the randow. processes jIt) ] aad (yit)1. rempectivdy, while

Alt)' a" Vi)) emect , "'"Wh
S () is called the cross-power spectral density functino [lj

.1 |(1| -The irequeunc variabi= f ranges ever (-W, go.
I. is uw quite simpie to derive the corrwp a betweem

these spectral density fnctiomws and the SCread m func-

tioms ft (V. ftw). (I. The results are

Rx(v) S 4n, S 'i a dI (483'

Y(') J-m(4.0)1

R7)JIM S~,OJ~T

prwing that the concepts are Fourier tramsforms pairs. Cemw-

quetly. the inverse relations yield

S 1 OC fD Rt( )e diwf a

(4. 84a)
S Tit) z Ry C('r), "jzo-f r at
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NO scch simple C1aton hip exist fvr maaloycorrelatin

From~ the sinmwtry prepcrucs all Stati.-sary correltion

fiactioms, it follows that

S (-n z SX(f)

SII SRI) (45$S)

S Xy(-If)S XT(1) (5

Sizee Sxi) a"d 5M are al" real amd mmmcaiwe for a!* f. ibis

prsovcx that power spcvtraig dessity btactiuiss are real. mem-negative.

ec-ac fiswrt as a1 I. wkile cross-owmer speciraI density Junctions

are comp exia=C4 fuaCuions cl I.

-M " eain fo th* rea-vaue power vecaral denasity

!uwrtiajas S(f) a=4 S 11) na be simplifte4 to

S (f I J (I) cas tair 4r c I Tt) Cos ZsfrT di

(4-S6)

ST(f) a Ift R TW ces Zmfi dT - fto R ) coo Ziuf di

While

(4-657)

PV,
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This Est resvsk shomm that Ow~th pbysically rez-Hzie positi-rc

er~~raof& w.rre f varies .ccu1y wrer (G. c". the quantities 0 f

Gme~ M~ ZS M 04'y

represent the physically rz-aiza~e poer spectral dmsily ficies
assciated wi.th 171) Afs.c11y. aFm fnh~ia

cacai~t he as* of twuw-; Jf4 power spectral density funtios

(95 (9. defMCd Ower i-op. W4. sad empesias *i am waisau

enpoe.ts. frwtouy msplifsies the analysis. In actesi practice.

-me meares and) 0, 1. defimet Orer P~. =I- Ve readler is

cam~omed ast to comfsee these quamuties. !a terms of the physicaWl

realizabbe power spec ral desity fuactioms G (0 0n (0. th*

-owrepdince with the siwsoay rorriss~ f-sacn t Iv) amd

ft ;T-1 becoes

CU)Qs %V at W-6 ZLo di

,4.?

G(f)a4J R T (1) coo zef ir

Irbile

R (it~ G~ 0(9) ii Zfir E
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For the complex-valued cross-power spectral density function

S XY(f). and the cross-correlation function RXY (ir). one finds

S(f) = Rxy(r) cos 2WfT dr - J R xy( sin Zwfr dr

(4.91)

Itxy} = Sxy(f) cos ZITfi df + j SXY(f) sin Zwfr df

Now, define the real and imaginary parts of S (f) by

sY(f) = CXYQ - J Qxy(f) (4. 9Z)

where C XY(f) is called the co-spectrum of x to y and Q XY(f) is called

the quad-spectrum of x to y. Observe that

Cxy(f) f Rv(r) cos Zwf-r d-r Cxy(-f)

/' oo(4.93)

QXYM J -0 Rxy(T) sin ZwfT d i = -- Y(-It

so that Cxy(f) is a real-valued even function of f, while 0 (f) is a

real-valued odd function of f. From the symmetrv reiation

R xy(T) = R .X(-T), it follows that

KY 0 x Y S X

(4. 94)

a(fM =JfG [Ra (i) - R x(i)J sin ZirfT dT Ms -(f) -

These relaticns will be needed later in Section 6. Z.
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From the above discussion, one sees that the spectral de-

composition of the stationary random processes may be described

by the three functions S (. (S (f), SXY (f), or by the four functions

Sx(f), Sy (f), Cx (/) and Q (f), which need be calculated only for

f > 0, since the symmetry properties, Equations (4.85) and(4. 93),

yield results for f < 0.

Analogous to the definition of the normalized correlation co-
2

efficient, Equation (4. 74),the coherence function y 2y(f) is defined

by

YxM =. is (1(4.95)
xy SX~)S y(,

Since the cross-power spectral density function S X(I) may be shown

to satisfy the inequality

it follows that the coherence function lies between zero and one.

and is a measure of the linear relationship between 31i and

ly(t)I at frequency f.

Certain authors prefer to use angular frequencies w = 2sf

in place of cyclical frequencies as is being followed in this report.

This can lead to considerable confusion in factors of (2w). A

desire to preserve

shows that for consistency, one must have

S (f) = 2W S (W) (4.97)x x
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Similarly.

S (f) Zw S ()Sy

S fxyf)- ZuS X(1

4.4. 3 Ergodic Stationary
Random Proc.e-tes

Consider two weakly stationary random processes [ kx(t)
and ([ky(t))j, k variable. aind two arbitrary sample functions

functions. (or spectral density functions), which are defined by
certain ensemble averages. see Section 44. -. may be calcu!ated

by performing corresponding time averages on the arbitrary

sample pair of functions. In this way, the underlying statistical

structure of the weakly stationary random processes may be de-

termined quite s.mply from an available sample pair without the

need for collecting a considerable amount of dta.

Te be more specific, it is necessary to intrepl-ce some

mathematical notation. The mcan values of k-x(t) and ky(t),

k fixed, when computed by a time average are given by

kk
k v = l i m T / Z k t) d

x T -- 0- T t.f-T/Z

(4.98)

YT- 4icc Tt-T k y(t) dt

Observe that the answer is no longer a function of t since t has

been averaged out. In general, however, the answer is a function
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of the particular record chosen - hence, the use of the param-

eter k.
k k

The cross-co. ariance function betwen, x(t) and "y(t + 14

when computed by a time average is defined by t.e expression

k T/7- N fk
p (=t) n -1 1 ; T) -I

T -0. O T,
(4.99)

while the autocovariance functions are defined by

k () = r l Jm k1t T/ ][xi )kP dT -a. o -- S -IZ x X]

(4.10O0)

T -- , T S -/z I

These quantities should now" be compared with the previously

defined ensemble mean values p P Y" and rnsen h:z covariance

functions px(T), py(T), py(T) for stationary r.tr.dom processes,

Equations (4.68) and (4.70). If it turns out that independent of k.

(with the possible exception of a set of sample functions of zero

probability)

k P x 3 P X

k (4.101)

Ay = Ry
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k (1) = px(v)

kPy(04 = P y(i) (4.102)

kp,(lr) = P(7)

then the random processes [X(t)J and [yWt,) are said to be wad
ergodic. If all ensemble averaged statistical properties of 24t)J,
I y(t). not just Me -. cans and covariances, are deducible from
corresponding time averages, then the random processes are eaid

to be strongly ergodic. Thus, strong ergodicity implies weak

ergodicity, but not conversely. No distinction between these con-

cep¢f exists for Gaussian random processes.

For an arbitrary rancom process to be ergodic, it must first

of all be stationary. Secondly, each sample function must be re-

prerentative of all the others in the sense described above so that

it doesn't matter which particular sample function is used in the
time averaging calculations. This restriction serves to eliminate

many stationary random processes from being ergodic. To repeat,

a stationary random process may or may not be ergodic.

There are two important classes of random processes which
one can staLe in advance will be ergodic. The first ergodic class

is the class of stvtionary Gaussian randorn processes whosc power

spectral density functions are continuous. That is. no sharp lines

(delta functions) appear in the power spectra corresponding to finite

amounts of power at discrete frequencies. The second ergodic

class (a special case of the first class) is the class of stationary

Gaussian Markoff processes, a Markoff process being defined as
one whose relationship to the past does nw" extend beyond the im-

mediately preceding observation. The autocorrelation function of

a stationary Gaussian Markoff procesw may be shown to be of a

simple exponential form.
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4. 5 STATISTICAL r'ROPERTIES OF ESTIMATES

Consider. first of all, the statistical properties that should be

possessed by any set of estimates. Let {kx(tl, -m<tDco. be a real sta-

tionary random process where k = i. Z, 3. - . . (perbaps even

uncountable) denotes the differcrt numbers of the random process.

Suppose that z is the true value of an unknown parameter of the

random, process [kx(t,). e.g.. its mean value or its power spectrum.

Suppose that ks(T) is an estimate of z obtained from a mea. rPment
kmade on a particular finite sample kx(t) of the random process ex-

tendi'r only over a finite time period from 0 A t C T. How should

these different possible kz(t) be related to z. For ease of notation,

the superscript index k will henceforth be omitted, and expected

values (averages) -are tacitly understood to be taken over this index.

It seems fairly obvious to start with that, on the average,

z(T) should yield the true value z. in other words, for fixed T. iE

one takes an ensemble average over all of the possible s(T) that

might occur, then this procedure should p;ve z without any error.

A set of estimates having this property is :.aid to be unbiased.

To be precise.

Definition i. A set of estimates Iz(T)j is said to 'r- .'iased if,

indep,'aij.a of T. the expected value is the true value, that is.

E x(T) = z (4.103)

When this occurs, (T) is also said to be an unbiased estimate

of Z.

For a fixed T. the mere fact that the expected value of a set

of estimates (34T)) is unbiased does not imply that any particular

x(T) will lie close to the true value a. There may in fact be wide-

spread deviations from the true value. Furthermore, it may
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happen that these deviatiors do not decrease as T is increased.

To ana:.,ze these cases, for a fixed value of T. the mean square

error is defined as the expected value over the set of estimates

;f the square of the deviations from the true value. nansely.

E rMT- Z (4.104)

The expected value above represpr.ts an ensemble aver-ge

over the various possible -[(T) - z 1 2 occurring from different

finite sazwvlcs z(T) of the random process. It appears highly de-

sirable. ror- a physical point of view. to require that this mo-an

square error should approach zero as T becomes large. Then,

for large T. any particular estimate of z(T) would necessarily

P-nd to closely approximate the true value z. Estimates having

this desired property are said to be consistent. ;n more precise

terms, one writes

Definition Z. A set of estimates (z(T)I is said to be consistent

if

lim E [z(T) - zZ =0 (4.105)

When this occurs, z(T) itself is also said to be a cvunsi-tent esti-

mate of z.

Observe that the mean square error

E [x(T) - z] = E [z(T) - E z(T) + E s(T) - z]Z

=ET) - E z(T)J 2 + [E x(T) -zt (4.106)

since the usual middle term has a factor equal to zero, namely.

E[z(T) - E z(T)J 0
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Thus, the mean square error is the sum of two parts: the variance

(or square of the random error) of the estimate as gi.ven by

o- [z(T) ; E z(T) - E z(T) E = E[z (T)I - E(T) (4.107)

a"d the square of thz bias (or systematic error) of the esti;mate a=

given hy

[b z(T)I Z = (E z(T) - z]Z (4.108)

It will be demonstrated i. Sections 4. 82 and 4.83 that great care is

required to insure that both the variance and the bias will approach

z.-ro as T becomes large when estimating (i. e.. measuring) the power

spectrum and cross-power spectrum.

4.6 MEASUREMENT OF MEAN VALUES

The following discussion is now concerned with estimating the

mean values p X" p y of a- pair of (weaklyl stationary random processes

(x(t)}. fy(t)} by performing a finite ime average on arbitrary continuous

sample functivas x(t) and y(t). which are known only for a finite time

interval 0 < t < T. By assuming certain commonly satiszied conditions

for the autocorrelation functions of the random processes, it is shown

that the estimates in question are unbiased and consistent.

The same anadygis covers zrreas-rc.cn'.s of eithcr l x or pY.

Consider z(t) as representing x(t) or y(t). Suppose that a single sample

record z(t) from a stationary random process { x(t)} is averaged only

over a finite time T. Define the sample mean value estimate by

m(T) -i T -.. dt (4.109)
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Then

E ,,,(r) E rkt -fT 1.T E x(t) a

=X Pd (4.110)

where the true mean value E = z(t) is independent of t. Hence.

m(T) is an :snbiased estimate of u.

For simplicity and without loss of generality, it will be

assumed un!ess stated otherwise that the mean value p = 0.

Now. the mean square error over the set or stimates fnmcl)j

becomes

,[,T) - ,a Z ; ,,(T)1' - = E(n .(T,1 (4.111)

where

E [M(T)]Z 1 JfTJT Efz(u) x(v)J dmu d' (4.112Z)

By definition, the autocorrelation function R(i) for a stationary

random process f a(t)J is defined by

R(i = E 4[z(t) 4t 1 (4.113)

From the stationary hypothesis, it follows th*t R(rJ is independent

of -r. and an even fur.c:on ofr rwith a maximum at ir = 0. It will be

assumed that R(r) is continuous and finite for all values of v-, and

that all periodic components in R(T) have been removed at the

outset.
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&ddi tiori integrabi!ity properties stisfied by 3(Ij. mwwb

will be seedr-" later. are aeswned w be

4.D; JJ.Jees;f Jin(j < (.!4
(4-114

Tbee conditiom are gmeraliy satied i mamure. e.g.. cbr

In terms of an arbitrary aotecorreis nct fimonS(j the

Mm Squsre error, Fuatives (4.111) ad (4. I1Z). becmes

=T Va ) #2 AW

The Ameed expressiom oa... from the first by odltiagusm

I = u - v, dr = do. and reversing the orders of instq m be-

twee T and V. NOw.

'im T Z[=(T)4,3t() di < -  (4.I'6)
T-0110S

provided tbht R(T) and i3r( are abseolutely integrabie ever (-r. a*

to jptify pasage to the limit inside the integral sign. n particular.

E.uatim (4. 11 5)obwm timt. for lrge T. the mean qmae error
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E[ gn(T)] ft f f) dr 1.4- !!7.

TT-a
"~~~ "" T c T p

H4 ce IME(T) Iamproeaces Xero as I, kppr"Ces infiay. Prving that

zrAT) is cns istex extlm,,oe~ of

Frontpl: Quantiing Auumplitde Levelsr

Supposep 0 S0riic . cbO ¢wu b=n Zv3>0 (4-118)

Then %febied 4 1

The parameter L can be Aws (ef- IIl. Chapter 7) w be ;be Positive

realizable bauduidi i-- cycles per savooi et a low-pass (ftC type) filter.

whila() can be interpreed as he Msrmaliemd Dowt aumtcorrekwim

function ftrom !is fn!er to a ba. h4th -limited white sise input.

From iswlee t f Me normalized Stadard deviation a'. ~ may

nw decd14. to wat degree at ref inewiet a l~tude levels Amid be quan-

sed i parficular. one can stimate bow accurately arious amplitude

values should be wmeamed Witb 60% cotideace. (asiut a normal

*istributim. awet *remems of a desired mean value wil be uriihia

C* aks an eitber side of &Ae true mesAf valme. liesce. the pls ad

_;__ S:.W4C j.6 z [tgi& confaSence. Tim". for "S Ca~ide~e.
the numer of perceptible samplimude valuts wo-Ul be given by (112w)
wbere W is the nomalized standard devuauiom.. For this example umere

Hetre them, the nmber of quantized aplitude levels should be jIIZ.INM.
This camdmds the example.
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4-1? MSASSXEMEYT OF AU-TOCORRLEL.AT')I AND
CROSS-CORRELATON. FWQCTIOKS

The next staisuical q.Wmines of isterest are thcal rrono

f=cawas JT) t (Tj. asS Ce crnss-cr-eI.in £vami.. R wn.j As
in Sectice 4. A- tr ~&ra valves PA" are- assrt-.d !a ape zero- For

cnatianws dana aft). ye-J stica *mists staiyfr ie @515 T. Oae sample

a (r) AIj~l

Kfil WfdiarV)4 -Tc<r cO0

To atwid use at absoiete value signs. T sill b- cmsidared posihitc

from hoacefenki art Mhe rnter should supply required szmilar separauec

;rods for Mcgare r TheC sam~pjve auafjr*rrei&afia (UMtIe estoages

Ifi r- 7) and 3 . T.s ", r merely special ases uteS Out tn- records

colorid..sme,

ftrK(T. T) s - z(t x(tm 0j <~
T-r 'jo

rha. by amblynug the cross-correlaursts fnscacs estunate. zse 4erires

results also for she asieccorrelaties tutto estimates. k particular.

mnasurnt at mesa square nzales are prrscm it. E4. (4. Itt) skin

e£0. namewly.

ftCR~ {fx wa (41WZZ

A-So k op; -I-



Am xk~fie ace wwr t ife 9" of jsime- *-t~ifsates

it pdt 1T- rlp wvl (4- tzri

lace I w? sa ~ de ie. t Il

The- umtAm SNPe error here ii girn by

z fi r x)-R oillza zT r

4141'

Az ac~ pu. rdr he e mpw the lter maeiia

wassaad 4 ae t= AWlel wih mu Physical CAses st iscet-. it

Wi.. beAi-md That Me. ruo Przmcc~xxs f mollfYI) r j~~
Gawsxsa for am. set Ot ulzed ziines. 'MIS rmcstdi-a may bir reuamoned

Loy z-tastigntasg ceras bottraitvi -- osusa the agn-Gawssimi

;z -4 -. k taamn Frac*ss wtboh Afterum sia 40F essesiaI way

whe reff-4ks to be dcr-red. Wbmi () (f)) ar-c - ily Gmmssiaa

ii l.1iWS~ tMat (t)) Ami w t) are SvpArmcisy GA&MOSsam.

For Gatssia -aa~rv ra pr~w*czsrs wwth zero mea

walmes. Owc sutiswzri crrss



PwI( +itm~) ~* '1 , v- * I,9ft # t (-s-u 41Z

Nfeffiw* the bm~ sqpe ez~o

- (bTw (b-ir

now.

7-em t~ xv J

Sart' ,) s l wft SLIP - A*jdlr 40 (4L Iri)

(a. Ibis so es) mdu &.r a is a emos estaly ofe~e~

etv mfch iow large T bas a ams qwe error sime by
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E[Ry(TT) - Z (r)] W 1.0d [Rx(y)Ry( yt R y( r)R y ¥ •)]dy (4.128)

Example: Output Autocorrelation Fuction of Low-Pass Filter to White
Noise Input

As shown its Chapter 7 of Ref. [I]. the normalized output auto-

correlation function Rx(T) of a low-pasz- (RC type) filter to a white noise

(bandwidth-limited constant power spectrum) input is given by an expon.-

ential function

Rx(T) = e-b TI , b = 21B = (I/RC) (4.129)

The parameter b is in angular frequency units of w (rad!sec), while B is

a realizable measurable positive frequency bandwidth in units of cycles

per second (cps).

From Equation (4. 126), one can prove for large T that

2 2k0,I T, T)-- E[ RxlT.,T) - Rxlr) I 6- ; l-ck_<2 (4.130)

Thus, the output signal-to-noise amplitude ratio, as defined by the ratio

of the mean value to the standard deviation, becomes here

RX(Tr) ow b. 1/ 2 e..b ITrl

or (r, T)

At Ir = 0, where R x(0) equals the mean square value, this ratio is

bb = 2wB ; l k (4.131)
S(o T) k )

To consider another important idea, suppose imny measurements

of Rx(T, T) are made at a given fixed value of T, using different sampl - ox

length T from a stationary random process {x(t). Then, to a reasons te

order of approximation, these different measurements may be assumed
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to be normally distributed about the mean value Rx(T). Hence, 95% of

these values will, on the average, lie wt-iin + Zo- of the mean value.

Thus, for 95% certainty that an arbitrary measurement lies within p

percent of the true mean value. it is necessary that

0.01 p Rx(T) = 2o x (r., T)

or

R(r) _200 (4. 132)

o-x (T, T) p

Note that if p = 5% or 10%, then (Rio-) must equal 40 and 20. respectively.

For the low-pass filter example described above, one can now

determine the size of (bT) required to guarantee in advance that an

arbitrary correlation measurement will be within p% of the true mean

value. To illustrate, letting p = 5% and k = 2, one obtains for the max-

imum point T = 0.

bT = ZwBTA#3200 or BTv 500

This concludes the example.

To summarize the work thus far. the analysis in Sections 4. 5 and

4. 6 has stated commonly satisfied mathematical conditions such that:

(a) A set of estimates {m{T)}. see Eq. (4. 109). for measuring

the mean value from continuous data is both unbiased and consistent,

with mean square error for large T given by Eq. (4.117).

(b) A set of estimates {Rx(T. T)}, see Eq. (4. 120). for measur-

ing the cross-correlation function from continuous data is both unbiased

and consistent, with mean square error for large T given by Eq. (4. 128).

Autocorrelation function estimates are obtained by merely letting x(t) = y(t),

and mean square values by then setting T .- 0.

Power spectra and cross-power spectra measurements will now be

developed in the next section.
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4.8 MEASUREMENT OF POWER SPECTRA
AND CROSS-POWER SPECTRA

For stationary random processes with zero mean values,
the real-valued cross-correlation function R XY( ) and the two-sided

complex-valued cross-power spectral density function S (f), which
is defined for -co . f 5 oo. are related by Equations (4. 83), (4.84)

and (4.92), namely.

10D -jZVfr
S XY(f) R Rxy(T)e dr = CXY(f) - JQxyif)

RxyoT) -Zvfr (4. 133)

As special cases of the above, the real-valued autocorrelation
functions R x(r ) . R (r) yield the real-valued two-sided power spec-

tral density functions Sx (). Sy () through the relations

Sx(f) Go Rx(!r)e.Jzwfr d'r

(4.134)
Sy(ff , - ..Ry(?.... .dr

The problem at hand is to estimate S xy(f. S x(f) and S y(f) from.

data which is known only for a finite time interval. In order to

estimate in a physical device the complex-valued function S X(f),

it is necessa:y to estimate its real-valued components, namely.
the co-spectrum Cxy (f) and the quad-spectrum Q Xy(f). Since SX (f)

and S (f) are real -valued functions, their estimation is easier to

ASD TR 61-123 -5



accomplish and to explain than S XY(Q. Consequently. the discus-
sion to follow begins with power spectrum measurements, after

which cross-power spectrum measurements will be taken up in

Section 4.8.7.

4. 8. 1 Power Spectra-Measurements

A schemaiic pictur- *f a general filter device for estimating
the power spectral density function associated with a single random
record, say x(t), is displaycd in Figure 4.3 below.

1() Filter Centered at fe at Aeagr

Figure 4.3 Constant Bandwidth Filter Device for
Measuring Power Spectrum

The input random record x(t) is assumed to be of finite time-length T,
and to be drawn from a stationary random process with zero mean
value. The tunable narrowband discriminating filter is assumed to
have a finite nonzero constant bandwidth B centered at a frequency
f cwhich may be varied over the frequency range of interest. It

turns out that in order to obtain a consistent estimate of S fl), one

must introduce a filtering procedure which averages over a band of

frequencies. The final filter output quantity S 1 (f, T. B) describes the
time average of x 2(t) in terms of its frequency components lying

inside the frequency band f c - (B/Z) to f c + (B1Z), divided by the
bandwidtht B. Analog equipment of this type appears in Referen..e(14J.

The output quantity S (fc , 1 , ,B) is a sznoothing-over-frequency
estimate of the true power spectral density function 5 (f) at f I
which would be associated with input records of infinite length and
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bandwidths of zero width. The quantity Sx () df is the infinitely

long timc average of the product xZ{t) from frequeacies lying be-

tween f and (f + df). The total time average of x Z(t) over all

frequencies is obtained by integrating S (f) df from -m to +co.

Because of its relationship to power dissipated in a unit resistance

by a current x(t). the time aver ge of x (t) may be considered as

the "average power" in x(t), and is the main justification for call-

ing S (1) a power spectral density function.

In an actual physical device, the bandwidth B is not zero and

the record lengths T are not infinite. It is important to be able

to predict within established levels of confidence how closely an

actual measurement S x(f, T. B) will approximate the desired true

measurement S (I). This problem will now be discussed and some
of the main analytical results will be stated.

Let the frequency response function of the narrowbead filter

centered at fc be of an idealized form (see sketch below)

'(f) = f1/ZB for If+fcI<3/Z

= 0 otherwise (4.135)

where the full bandwidth B = B(T) is a function of T to be specified

later. For definiteness, assume that f > (B/Z).

-f c f c

Ideal Narrowband Filter
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The inverse Fourier transform of Mf) is the weighitini function of

the filter denoted by h(t). that is.

h(t) ? Us ?ej -f t djf

For a filter to be physically realizable. it is necessary that h(t) = 0 for

t <O.

In terms of an arbitrary h(t), the corresponding frequency response
function

W = 5 h(t)e-j 2 'f dt = H(Zwf)

When using .~aZwf, )ftf) becomes '9f(l Zs) = H M.= C h(t)e-j44 dt.

It follows for real h(t) that* ?-f) = ?ftf). the complex conjugate of 7ftf).
This is the reason why the ideal narrowband filter has a theoretical

pass-band in the negative frequency region withW(-f) = 7ftf). Note also

that )ff) is defined so that

In words, !?f(f)! ?, has unit area over the doubly infinite frequency range

for any bandwidth B_

For an input x(t). the filter output a~t) is given by

a(t) = S. xu)h(L -u)du= r x(u) h(t -u) du ; t0
0 40D

since x(u) is zero outside the range (0. T). This output is now squared,

then integrated over all positive timre and average by T. to yield as a
smoothed estimate for the time average of x 2(t) in the bandwidth B,
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Co0 2 zf0T I
S (f . T. B) = .1 a-(t) d o-1 a-(t) dt forlarge T (4.136)

By tuning the filter to different center frequencies fC" one obtains

S(V. T, B) for all f.

Fur:hc. analysis (not given hzre) shows that

S (f If. 1 Lf(4-137)

where

S lf. T) -r. Tie-jzcfr dT T (r, T)e- j 'xf. dr (4.138)

.i -, T) S(f. T)e 'Kf df

x(t X(+ i jr1 ) dt fnr 1rj CT (4.139)(otherwise zero)

On setting -r 0. one derives the relations

Rx(0. T) = SI(f. T) df = x (t) dt (4. 140)

which showshow S Cf. T) distribv;tes the "power" in x (t) over the doubly

infinite frequency range from -w to co.
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4. 8. Z Analysis cf Dias

For the bias problem, one may prove that S (f , T. B),

(as obtained from Figure 4. 3), provides an asymptotically un-

biased estimatw mf S If ) as To if the bWdwidth 3.0 as TOGO.

This condition on B as a function of T is therefore assumed.

From Equations (4. 137) and (4. 138),

S(Ic.T. B)l 1.Tje- j Z v T d df

(4. 41)

By definition, £quation(4.106),the bias term is given by

b [S.(f T. B)J - E [S (f .T. B)]' - S.(fc) (4. 142)

At this point, some detailed mathematical analysis must be

carried out which ia; not developed here. The final result is epressed

in the inr?.ortant asymptotic formula below which assumes that (r).

tR (v) and lx (-t are all absolutely integrable funct:. over (-a, 40).
This result is that at any frequency f,

I ' - I

where S"(f) is the second derivative of S (f) with respect to f as
x x

given by

(f) = -4wZf A TR(T)eCj Zf1 d' (4. 144)

From the ab .re. it follows that the bias term approaches zero

as T approaches infinity provided that B approaches zero.
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in fact, for large T.

L xf T. ' i~ t4. 145)
I Z4

No apparent limitation exists from the above for-,iula on how rapidly

B :.hould approach zero as T approaches i:ifinity. It will be shoia
in the next section that B may not approach zero too rapidly if the

varia, ce in the estimate is to be small.

4.8. 3 Analysis of Variance

For the variance probitm. one may prove that the estimate
S'f. T. B). fas obtained from Figure 4. 3). has a variance which
ap,-roaches zero as T-..o if the prodJct BT-.ow. Since the bias

approaches zero as T-wa only if B-.O. these two statements taken
toether imply that B should approach zero slower than T approaches

infinity.

By definition. Equation (4.i071the variance is given by

CZ [sx(f c T. B)ja EjS .C.T. B) - E S x(f c. T.B)J1Z (4. 146)

After a considerable amount of carefui mathematical analysis,

one may derive the following important restlt. At anly frequency f,

lim BT ar 2 S(fTB)w S(f M fjO

(4. 147)
1 5(0) : f4-64
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Thus. for large T.

o.-[s(,.TBah-(/,f) ; • /0J

(4.144)
(ZY/BT) x(0)(4f146

These equations show that the variance approaches zero as

T-o-o provided that BT-wo. This result cotnbir=d'w- a the previous

result f -r the bias term givrs the two parts required for a mnwa

square error anaysis of power spectrum (and cross-awer spectru)

measurements. Observe that at the zero frequency point, f = 0, the

right-hand side is i-screased by a factor of two over the general result

which is valid for f / 0. In the sequel, formulas will refer to cases

where f j 0. and should be modi-fied by this factor of two it f = 0.

4.9.4 Mean Square Error

The mean square error of the power spectrum estimate

S X(f. T. B) at any frequency f j 0 is given by the expression, see

Equation (4. 106).

E [ .(f. T. B) - S-(f)Z = rZ [S -f. T. 8)]. SX(f. T. B)

AmT ' IZ for large T (4. 149)

using Equations (4.145) and (4. 148). It is clear that the mean square

error approaches zero as T-.o if f. considered as a function of T.

is restricted so that 8.0 and BT-om.
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For example, suppose

a: c - c > 0. <al (4.150)

Here. 3- 0 as T- c. and DT- up as T- co-

Equatin (4- !49) above is one of the more important statistical

results in this rqiort since it iodicates the man square error to be
expected in estimating S ( I[or S (f) using any given fistite ad finite

T- Further analysis of this resuk 'sill be takes up as Section 4.9.

4.. S. 5 Froqumncy Resolution

Another important practical question in power spectrum mesure-

rients is to determine how closely estimates should be takes along any
frequency range of interest. It is clear that if these points are maced
too closely tegether. the results would be highly correlated and consider-

able extra unecessary work would be ittrolved- Cm the other Mail. for

points spaced too far apart. considerable information may be lost. 2:

is important to determinc the smallest frequency interval A f that can be

resolved in power spectrumn measurements in the sense that estmtes

takes at this frequency interval apart will be esseatiall'-s emcorrelated.
For idealized narrowband filters. a choice of Af S represents the

minimum resolution attainable. Two different peaks in a power spectrum
which are less than S cps apart may be blurred together and not distim-

guished freem one another- Two peaks which are further thar. 9 cps apart.

however, would he separated.

In actual practice. since realizable filters do not have sharp cut-

off edges. a more reasonable figure to uase for the resolution is 29 cps.

Thus. for high resolution, the bandwidth S should be made as

sr.-all as possible. This is also desirable, as stated earlier. in order

for the estimates to have a low bias. Low bias and high resolutic

ASO I R Q1-123 4-66



are cOWeautt|y complemettary properlies. 5=11i being coanequesces

of rarrowbad filtering. From tie peit of view of re&cing the ner-

iace in the estimates. however. for a Igiea record le th T. te bad-

width a should be made as large ss Psibe since the Variance is in-

versely proportinal to the T product- Thus. the choice of 5 is qite

critical. ! T as not restricted in length, then it is possible to atain

arbkcrarily high resoltierm and sAl bias as wel as arbitrarily low

-artzace. To accomplish "ibs objective. oe should let approack

zero amd T ar-each iafiaity- but is suck a nay at B approaches

zero a: a slower rate than T apprcace itciuity.

represaL--s te number o ,tatistka degrees of freedom associated with

a finite record T secJ.s "uog and c cstrscted to a :rq9emcy bandwidth

i0. 53 --ps wide. in the sense tha the record en be reconsructed from

its samples taken (lI2" atonds apart an the t~e scale. Thus. ZoT

nmbkers completetv determine sc arcord. RaeLi. pA

4. & Cot rectos for Mean and Linear Tread

Tm prew x analy s has assaned tiat the Eput randomn record

aft) as a saMple member from a stationary random process with zero

miss ft2c U -,.a arcta vab is SCA tcro. then the powwr aprs;_r4

density function rill exhibit a large peak (teoretically mirite) at zero

fr r qcac. Considerable distorti ns wilt occur in neasureets of

the power spectra curte at low freuencies by feeding te record directly

*ne h ansalogt detace of Section, U4- I- without! correcting for thl s nona-

MereO treas value.

A second correctis may be aeded :o subtract o a slowly

varving linear trceid ! r. sn-zero sloe of 4t)-1 with respct to

trne about &ich the random record may be oscillating. This may

be die to tie recording eipjmoent. or to an actual change i the

rn.dom record over t : observation tue Whatever the caumr.
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st is clexr that a Ihe:zcr rsumate a1 th- -wavr tpcta V-Vc C

!4t obaimed by uakI:=g preptr accza of this; liamar trend i, Mhe

Lt:)rep: eseat am inat ran~w" reciord from a rmo

pr'cc5 f (1 whicr~h onsy one -. toe corrected Jov a =*-zero

vnc.-m v. a" for a Ux:~ar t rc=C In particaZM, samieee dug

"t " z .n-& - DJ - 4t) * t C (4. SZ

uter -~ czts th mme~re mmvzabe*(U~) .rr its kvct*[@. Ti.

c ame Av*r de 4Oc(Ies tA%- --werfe slope of the record Iut) amt

rer-.; !ir!- 2.. ad the ia term Zia) represefs a sawe

zccord tram a swafiPOmW. random process (aft)1 with seven,&
vaki md rt. lop.. dWq~v that iif mm ad e tya zero, the

U11) herognes xft)

Tbe paraxnsexers m and d may be- estimated fro UQt by the

f JT Uj k(4 153)

T T/31

UO m (4.15)

These relations lead to a sir.*pe analeg dewice for detrzrrAni aft)

from ftt) as sketched in Figure 4-4-. This enpe 240) can new hr

"e into the power spectral asalyzer circoit of ]Fagurtt 4-.) so as to

yield estimates of SW~f.
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pTi-

Th at- rrlic fwfi et~ae o becomes.5

Mr )= L t1-ZFr/r - Z1frA) (4.156)
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Similarly, let I(t) rcpresent an input random record from

a second random process (r such that

it)=m. +4 C(t -)+ y(t) 0O<t<T (4.157)

where my denotes the measured mean value of 1At) over its length[0, T],the

parameter a denotes the average slope of the record 'I(t) with re-Y
spect to time t, and the final term y(t) represents a sample record

from a stationary random process Iy(t)J with zero mean value and

zero slope. As before.

my = T q(t) dt

m T 
( 4 . 1 5 )

Y -(T/3)ZT/J3) T/31 lt) dt 0 -11t) d

R(r, T) T T y(t) y(t + -) dt ; r < T

, O TTS -r(t) i(t + T) dt - my T) a y .
- 0y 12 y (419

where )X{T, T) is given by Equation (4. 156).

Finally, a cross-correlation function estimate Rxy(,, T)

is given by
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If0 T-yRy(r1,T1) = -. I._ x(t) y(t + T}dt 0 O " t

- r -( t + T) dt- m m (mx ay-myex)-r, T) a

(4. 160)

This formula includes the autocorrelation function estimates R(r, T)

and R (r, T) as special cases, and reduces to the usual expression in-
volving calculation of only the first term on the right-hand side when

the quantities m , my, ax and a equal zero. Other situations when
some but not all of these quantities equal zero are also readily ob-

tainable.

4. 8.7 Cross-Power Spectra Measurements

A schematic picture of a filter device for estimating the cross-
power spectral density function associated with two random records

x(t) and y(t) is displayed in Figure 4. 5 below. Physically realizable

real-valued estimates are obtained of the co-spectrum C X() and

the quad-spectrum Q xy() which can later be combined to yield the

cross-power spectrum S y(0) from the defining relation

SxylM = CxylW - j(Xf) (4.161)

The input random records x(t) and y(t) are assumed to be of
finite time-length T and to be drawn from statiopary random proc-

esses with zero mean values. The two separate identical tunable

narrowband filters are assumed to have a finite nonzero constant
bandwidth B centered at a frequency fc whjr.h may be varied over the

frequency range of interest. To estimate the co-spectral density
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function, C Xy(f)the in-phase frequency components in the filter

outputs are multiplied together. then irtegrated and averaged.

This is completely analogous to what was done previously in in-

dividual power spectra measurements. the multiplier circuit now

performing the~ same role as the previous squarer circuit. To

estimate the quad-spectral density function. 0 (f), one of the
0 xy

filter outputs is passed through a 90 phase shifter before being

multiplied by the output of the other filter. The product is then

integrated and averaged as before. This yields the average prod-

uct of tt .e 90 0 out-of-phase frequency components inr the two random

functions, a proper physical interpretation of the quad-spectrum.

The absolute value and phasc angle of the croas-spectrumn may be

determined by vectorially combining the co-spectrum and quad-
3pectrum.

Tunable Narrowband Multiplier,
x(t)- Filter centered at spIntegrator -C (f c T. B)

Y(t)-- Filter centered at Phase Integrator -1 (f *T. B)

Figure 4.5 Crosx -Power Spectral Density Analyzer
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A complete analysis can now be carried out which will in-

dicate the bias and variance to be associated with the estimates

Cxy (jf,. T, B) and QXyitc, T, B) that would be obtained using Fig-

ure 4. 5 Many parts of the analycis are quite similar to what was

sketched previously for individual power spectra estimates. Since

a detailed mathematical analysis of this type is not deemed to be

appropriate for this report, only the main conclusions wiil be sum-

marized below.

The bias terms for any frequency f are bounded above by

(4. 162 )

b[ [xy (f. T. B)] x

where " (f) is the second derivative of S (f) with respect to f. and

is re!ated to RX (r) by the expression

S ,f) .= 4wZ f .Z R (-r) e-jZwflr d (4. 163)

The variance terms for any frequency f 1 0 are bounded

above by

SICY(fT.B) S(f) S (f)

(4. 164)

(f .2 SX(f) S (f)

BT

At f = 0, the right-hand sides above should be multiplied by a factor

of two.
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Thus, one finds that a mean square error analysis for co-spectrum

and quad-spectrum estimates is closely analogous to a mean square error

and'--sis of iniv~ual- pvwc.- spect 'urm. -, parti,,..,,r the...... ... ,

demands on B to be small for low bias (and high resolution), and to be

large for low variance are the same a., previously.

Furthermore, if the actual available records are not x(t) and y(t),

but 4(t) and Tl(t), respectively, where g(t) and rit) have non-zero .. ean

values and non-zero slopes during the time of observation then prior

corrections .must be made as indicated in Section 4.8. 6.

This completes the main discussion on how to estimate power

spectra and cross-power spectra from continuous data, and how to

evaluate the expected mean square error of the measurements. Some

further statistical error analysis will be developed in the next section.

4.8.8 Confidence Limits and Design Relations

From Eq. (4. 149) fr continuous data, the mean square error of

the estimate S(f, T, B), (which will be taken as representative of Sx, Sy,

C and Q as well), is given by
xy xy

s)2 j-5-f) 2'' BB

E[S(f, T, B* - BT Z + (4.165)

The mean square percentage error of the estimate, denoted by G , is

defined by the mean square error divided by the square of the true value.

Hence

C Z [S(f.T.B)] E[S(f. T. B) -. S(f)]
s 2 (f)

SIB 4 I s'(f) lI
BT + 576 1 (4.166)BT 5--76 'i'

Let the quantity

X(f) ) 11/2 (4.167)
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Then X(f has units of frequency (cps), and is called the "spectral

bandwidth" of the random process {x(t)} under consideration. In tcrms

-f.

2 1 B 4 (4.168)e:ET4 76 t- )[

The quantity e itself is called also the "standard er ror". This equation

enables one to make quantitative statements about the mean square per-

centage error e 2 in measuring a power spectrum S(f) for given values of

B, T and X(f). The latter quantity X(f) demands some apriori knowledge

of the spectrum which one is trying to measure.

If e z is large, then any particular individual measurement S(f, T. B)

would not be likely to fall ciose to the true value S(f). However, if e is

small, then all individual measurements of S(f, T. B) would tend to closely

approximate S(f). Thus, to guarantee in advance that an arbitrary measure-
2

ment represents well the true measurement, one should try to make e

as small as possible through prior choice of B and T.

Returning to Eq. (4. 168), suppose that the "spectral bandwidth"

X(f) is known (or can be reasonably estimated) for the random process

under consideration. Suppose also that the bandwidth B of the discrimin-

ating filter, and the record length T. can be set to any desired design

values. Then, in order to nearly always be able to separate peaks in

the true spectrum S(f) which may be a spectral bandwidth X(f) apart, it

appears reasonable to select B so that

B <--f- (4.169)

This choice of B (together with a proper T as found below) will then

guarantee, with a low probability of error, that if S(f/) has two distinct

peaks which are (f) cps apart. then these two peaks can be resolved by

taking measurements :f S(f) at intervals of B cps apart. Another way

of looking at (his statement is to say that meaauremeats of S(f) at intervals

of B cps apart will practically always distinguish peaks which are ZB cps

apart.
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Assuming B to satisfy B < )4}/I2, -te second term in Eq. (4. 168)

becomes negligible and Eq. (4. 168) reduces to the simple relation

T 2 I(4.170)

In particular, for e = 0. 10, corresponding to a roc mean square per-

centage error of 10%, the value of the product BT should be

BTIW 100 or T* (100/B) (4.171)

To illustrate these last formulas, suppose that ,(f) > 40 cps. First,

from Eq. (4. 169), choose B = 20 cps. Then from Eq. (4. 171), choose

T = 5 seconds. It follows that different measurements of S(f) taken 20 cps

apart will now resolve peaks which are 40 cps apart, and the rms per-

centage error in the measurement: will be at most 10 percent.

If B is not small compared to X(f). then the original formula of

Eq. (4. 168) must be used to calculate the rms percentage error. For

example, sappose that B = 24I) at a particular value of f. TLen, for

B = 20 cps and T = 5 sec. the same two values considered in the previous

paragraph, it now follows that eZ 0. 038 and e a,, 19.5 percent. It is clear

from this example how important it is to have B <0. ; ?(f) for all f. if

this is possible.

Suppose that the tunable filter (see Fig. 4.3) is tuned in a uniform

continuous fashion over some wide frequency interval B in the time T.

Then, the average amount of time T that the input record x(t) spends

within the narrow discriminating filter bandwidth B (for any center

frequency fc ) satisfies the relation

S.. - = = (4.172

dt

where S. R. is the sweep rate (cps/sec). Solving for T, and substituting
2

in a = (I/BT). one obtains

e2S.R.
2 = S (4. 173)
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which indicates how the mean square error c v'aries as a function of

S. R. and B. Observe that for an rms error < 1O10, S R sid

satisfy

S. R. < 0. 01 B cps/sec (B in cps) (4. 174)

For example, if B = 20 cps, then S. R- < 4 cps/sec in order to keep the

rms error below 10%.

4. 8.9 Constant Percentage Q Filters

The previous analysis involved using a constant bandwidth filter.

For purposes of comparison, as well as for its own physical interest,

similar results will be written doc.tn for constant percentage Q filters.

By definition, a constant percentage Q filter is defined by the relation

f
S constant (4. 175)
B

Thus. as the center frequency fc increases, the bandwidth B must

increase also to maintain Q constant.

As shown earlier, the spectral resolution is proportional to B.

Hence. the fractional resolution for different center frequencies fc is

proportional to (B/fc). For a constant bandwidth filter (i. e.. B = constant),
the fractional resolution will decrease as fc increases. However, for
a constant Q filter, the iractional resolution will not change as fc increases

since (BIf c ) = (I/Q) = constant. The actual spectral resolution will be

poorer for the constant Q filter as fc increases.

For constant Q filters, the mean square error e- becomes

e Z= = a- (4.176)
BT Tfc

and, hence, decreases as fc increases, for constant Q and T.
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The maximum scan rate S. R. becomes

df 22 2 2S.R. c _e eB 2 =(eiQ,)f A

dt C

One may now sol-e for f. as a fn-ction of time for the two situations

where B = constant or Q = constant. Let f, = minimum frequency of

interest and fz = maximum frequency of interest.

Case 1: B = constant

df
e BZ

fi.
f dfn B e z

f f0

C 2.

fz- =03B. (4.178)

Now. the number of filters nB required to cover the freque-ncy

range (f2 - f1 ) in a constant bat-dwidth systemn is given I-

Case 2. Q = constant

dt ()

f2Q= adf - te2d

(4.180)

f- 1 " ( zQI fzft = 42BZ (fj/f)t if Q (fl/B)
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Thus the frequency range is covered more quickly by a set of constant

Q fii:ers. The number of filters n q required to cover the frequcncy

range mzy be estimated from the form'aI.

nq w In Df if 0 >> 1 and >> fl (4. 1iO

This result shows that a considerzble reduction in the number of required

filters may be achieved by using constant Q filters.

4.9 FURTHER MATHEMATICAL ANALYSIS

4.9- 1 instantaneous Amplitude Distribution

Consider a random vibration record x(t) which is a representative

member of a sationary ergodic Gaussian random proccss with zero mean

value. From the ergodic property, the time-wise behavior of x(t) over

a long period of time will exhibit the same statistical characteristics as

corresponding ensemble averages at various fixed times. As a conse-

quence. it follows that the probability density function associated with tIe

instantaneous armplitude values of x(t) that will occur over a long time

interval is given here by the Gaussian formula for zero mean value,

p(x) Z - I e X2I( 4. 182)

7-.2

where the variance a- equals

a- = <x(t}A ; independent of t

0 1 T xZ(t) dt for large T

J Sx(f W, = z"f SX(f) df (4.183)
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Note that
1 0. 3"

P O Z= -1

p(o-) = p(O) e- 0. 6007 $O)

th_ :rdz=tity Sx(f) denting the two-sided power spectral density function

of x(t) as defi=&-d over (-m. o)- Satisticai procedures for estimating

S (L) from finite data wcre developed i. th previos section.

Thus, the probability dessity ;4actlon p(x) is completely character-
ize4 through gziow!eige of S)f) since .Jfl alone determines r. This

imporztant result tce- knowle4ge of S ( at the forefront of mach worx
in analysis o random. records obeying a norr.al disxtribtio,4.

If the rneam- value of x(t) is no: zero. then Me u.derlying probability

density f uoctie n is given by the general Gaussian formt Oa

I -(z ,z izcrz
.'x) f =4 !eH=84)

where :he mean value

A V independent of t

IT x(t) dt for large T (4.155)
T0

and the variance

Ar c4t) .jA

= (fi- df" (4.6)

the quantity (f) denoting the iwrer spectral density assoc-zated with the

zero mean value portion cf x4t).
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-&ppose that a long r-cord xf.g) of length T r-.zT be s parated into

distinct indpe..derms phaszx ,( k = 1, Z.. . eacih iasttng ier a

time T.- w'k-'C.. ;s Macg &noqgh mo ez-i - ju#=Zet-
9%Q

for each phase. Suppose. also. for the sake of simplicity. that each

g. (t) is nornaally distributed with mean p 0 and w arr.ce k *hich

may differ frrons, one phase to another. How may o-e e.imate an over-

all di.stribu--Eon for the entire reco-d z-:)?

One approach to this pro'alem may be formulated as "ke superposition

of a amber of independent raadon variables x. (Section 4. 3) provided

eacb random variable is weighted accordig to its relative tine of occur-

ren-ce T i/T). Thus. -= consider a specific case. even though say

340) Z Xc.) 0 4t<T-A

(4- 1")
x(V_ T T. czc T. T T

one may consider x(t) t* be given by the sum nt sitable portions of both

xl(t) and xZ.tV, spread out over the entire time T. The resulting x(t)

would not reflect the actial time behavior of the orig|al (t). but it would

reflect tie relative proportions of time that x(t) spends in various arnpli-

~tde levels. From this point of view. by the superpositio- wmcoremn for

indepe ert random. vriables, if x.(t) and xZ(t) are each norally dis-

tributed as hypothesized above, then x(;) will also be normally distributed.

with mean zero, and variance

Note that the final variance o Z weights each individual variance

according to its relative time interval (TkIT). This result is generalized

easily to many variables.

To chcck this result for an obv.io-,s case. suppose x1(t) = xZ(t) and

T1  (TIZ). Thereupona-- = wbicla agrees with tie formula.
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4-.9- Z Measur*e-et ai Ami!- wde Probability DMsty F4Ctioet

Con.sder a stationary radom signal. xjt). The probabilty that

W.)J assumes pazticular amnpuit%dt vaiaes beten x and x: -# Ax i= a toa!

time T secods, mayV be e-stizzated by.

wbere -r. is the tse pent by the signal in the racee fx. x Ax) daring thea
ith enry to the razfe. See sketch beor.

TimeI

Noce tht &Awl? is the total fractiomal portion at the time areat by

the signal ar.the range Nx. X + &x). The hat over P. mamely A). in

Sq. (4.191) signifies the equation is only an estimate of probability sice

the total saumpling time T will always be finite urL practice. Eq. (4- 191)

will approach an exact probability statemn as T approaches ifiity-

The probability density function is given by.

p(x) = UM P~x. X fAX) j4-192)
&a-O 0 X
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d*-.Styfc~-.=.p~z ztr de"-s heProbatilaty. r.of

axarslimwdcs occran.g between amyr two anqulizde harits, arA Z2, as

Fifx, <z x 's ot c(-M

E: Eq. (4- 194. :be procedure ot ntgv- tke limit as "x approaches
Zero is beycAd the caPability of physi.cal Horcnz. waever, the
probabilit density Umay be appresirated as faiawt:

&.14 Fi. xtr-o at (4-1941)

Sabsittr=CEq. (4-. 191 irto Eq. (4.14.1

* ~for Smnall Ax(4In

The q-aatityr (s) is aft estimate ofa tue cProbability density te-cti

p~t) becaumse Mhe sampling gia-r T is at idnite MAn the amphsmu i"Mw
AX is aOV iafiaiztesimrAL

Cscsier awW the Statiszjal acccracy of probability density estaTtes

chtained by physicaly accoamplishing the fuccticms of 14. (4. Ifl). Towards

tkis Loal assanc that repeated ofeers# Air for a gtir. ampixtudet
sittR Ax *era fixed rcord lengthof. T srill be distributed about s!e
expected rakur cl Aw by se&-e distribution (urMCCi-= *ag e defin.XoA The
eqzirvailst sa-xber of statistical degree*s of f reedom (the elfen-ire number

of *kserrwatins) for each 1nMeanremend is a a £AirSff* Eq.(4.lifWhere aN
n* defired below ]Frvc- Eq. (4.195). Air F-As T p(z4- Then. the numbJer

at degrees of freedzm for a meanurerment of p~z) niltr.

a.~ k-At TBPXI (4. 1943)
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The facter B N is the equivalent noise liandwidth of the input signal

and is given by,

B N --- ' df (4.197)
ax

where 7Af) is the frequency response function of a filter which may be

associated with the input signal.

In accordance with common statistical practice, th.; mean square

percentage error e of the measurement D(x) will be defined as follows:

2

22".
FC = (4.198)

where oiD is the measurement variance. In terms of the true population

variance -,
p

2 2

2= nA---- since av -
P  419

Assuming a- : p (x), a conservative estimate, one now obtains

S = 2Z 1(4.200)
The normalized standard deviation, e in Eq. (4.200), is often called the

standard error of the measurement.

It will be worthwhile to discuss in more detail the meaning of e.

It has been stated that the measurement of &r, now reduced to D(x), will

be distributed in some manner about the true probability density p(x).

It is often assumed the distribution of (x) will be normal with a standard

error of e. If the original random variable that was sampled to determine

P(x) had been normally distributed, then indeed D(x) must be normally

distributed about a mean of p(x). But it its obvious that the original

random variable, namely time -ri in Eq. (4. 191), cannot be normally

distributed since time cannot physical'y take on negative values. A
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normally distributed random variable must theoretically be able to attain

very large positive and negative values about the mean with equal probability.

However. from the central limit theorem, under fairly general

conditions, the distribution of (x) will approach a normal distribution

about p(x) as the number of degrees of freedom, n. of the measurement

becomes large, regardless of the distr,-bution of the original random

variable. This is to say that if the value of e is much less than one, then

D(x) may be considered to be normally distributed about a mean of p(x)

with a normalized standard deviation of c.

Specific statistical confidence statements can n.ow be associated

with c by using a standardized normal distribution table. For example.

in any given measarement of p{x),

Prob [p(x) - () < --<p(X) 0 68

AM (4.) V. 6

where o-(x e(x)

A
Then. if a value of p(x) were measured with a e of 0. 10, one would expect

with 087 co.,£idekcc that the true p(x) is between 0. 90 p(x) and 1. 10 D(x).
AIn other words, if the measurement of p(x) were repeated many times,

Ait would be expected that p(x) would fall within 10% of the true value p(x)

approximately 68% of the time.

Note in Eq. (4. 200) that the standard error of the measurement
Abecomes larger as p(x) becomes smaller. It should be no surprise if

Athis equation fails for small values of p(x), as will be demonstrated

later in numerit;al examples. A good rule of thumb to determine if

Eq. (4. 200) is a valid estimate of a normal distribution standard error

is that e should never exceed 0. 3.

The standard error of an estimate P(x) is defined in Eq. (4. ZO0)

in terms of the noise bandwidth BN for the signal being analyzed, which

in turn is a function of the power spectral density of the signal. The

power spectral density of the signal may be thought of as the shaping of

white noise (flat power spectrum) by a particular filter with a given

transfer function%(f). B N is then determined directly from Eq. (4. 197).
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Consider three cases as follows:

1. Rectangular (Idealized) Lov. Paz~s Filter

rI

0 .

0 otherwise

B 0 d o(4. ZOZ)

2.Rounded Low Pass Tuned Filter

voo PO half :-..-:.er point)

BN = 0 I + (f/10) Z Z -o(0Z3

3. Gaussian Low Pass Filter

0 t
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_fZ/20

S e df = L 0  (4.204)

where o-0 is the standard deviation of the Gaussian filter characteristic.

The above three examples define the noise bandwidth in Eq. (4.200)

for three very simple frequen. spectra. It is obvious that the noise

bandwidth for signals with complex power spectral density functions

would be very difficult to determine. For simplicity, it will frequently

be necessary to assume the signal bping analyzed is band limited white

noise with a sharp cut off at f 0 cps as in case 1. The standard error e
A

of a probability density estimate p(x) is then simpiy,

[ 0 T (Ax)] (4.05)

NuMcrical calculations may now be carried out as desired for physical

examples. This is done for a hypothetical example in Section 7.5. 5 of

this report.

4.9. 3 Threshold Crossings and Peak Value Distribution

Consider a random record x(t) whose behavior over a long period

nf time Pxhihit% many randnr- n-rillatinns The expected number of

zero crossings per unit time (usually seconds) of the record, denoted by

No, gives an indication of its "apparent frequency". For example, a

60 cps sine wave has 120 zeros per second. For a random record, the

situation is, of course, more complex but still knowledge of N0 , r

addition to other quantities, helps to characterize the random record.

This type' of information and certain of its extensions disc-±3sed below

is particularly useful for fatigue analysis and reliability prediction or

structures under random loading and vibrati-n.
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At ain arbitrary level, say, x = a'. the expected number nt'

crossings per unit time through the interval (a, a + da'), where

do' is arbitrary small, will be dc-nuied by N d It follows that the

expected number of times per unit time that x(t) exceeds the value &'

(i. e. . crosses the line x = a with positive slope) is given by (i/Z) Na
since x(t). on the average, passes the value a half of the time with

positive slope and half of the time with negative slope. When a = 0

N areduces to Not the expected number of zero crossings per unit

time; the quantity (1/2) N 0 represents the expected number of zero

cros sings per unit .with positiv or negative slopes.

General probability formulas may be written down for evalu-

ating N 0. In practice, however, useful simple formulas have been

obtained which apply only to situations where the random record

x(t) is assumed to be a sample member from a stationary ergodic

Gaussian random process with zero mean value, governed by

Equation(4.182). Analysis of this important case is due to Rice

(Ref. I' J and y ields the following result:

No= 2 (a-d /- ) e X(4.206)

where

a-> Z DSf f= I ) (4.207)

ET! f= f iS(f) di = ZJ' f2 S Mf df (4.208)
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Physically, o- represents the rms value of x(t), and -- represents the
x x

rms value of x(t). Thus, setting a = 0,

NO = Z(-. a ) (4. z09)

These formulas depend upon knowledge of the power spectrum Sx(f) in a

surprisingly simple manner.

For example, for an ideal band-pass filter whose pas* band extends

from fa to fb cps, the expected number of zeros per second for a "whiLEc"

random noise input is shown in Ref. 113. p. 611 to be given by

-3 3 1
if -

As special cases,

N 0 M I. 55 f if a = 0 (low-pass filter)

N_- f if f fb (extreme narrow-
U b ~ a bband filter)

By an analogous but more complicated analysis,R- FI3 p. 79]derives a

further property about the expected number of maxima (or minima) of

x(t) per second, denoted by7&. Since the quantity"?l represents either

the number of positive peaks or the number of negative peaks, which

may be expected to occur equally often on the average, the expected

number of both positive and negative peaks per second is given by 2.

The expression for)7 turns out to be simply

'L-- (x.. /-X) (4. Z 0)

where

2= f 4 S(f) df 2S0f4S(f)df (4.211}
-00 0

Physically, a--- represents the rms value of '(t).x
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The probability that a positive peak will fall between (Cr, u + da)

can also be calculated. In terms of a standard variable z with zero

mean and unit variance,

z = (x/or al 0"z = SX f) df (4, 11 Z)

the probability density function w(z) that a positive peak will fall between

z and z + dz is expressed by the formula. Ref. L8. p. Z3],

ki -z1 2 (No\ Z
w(z) -- Ie I + ze z  [l - P (z/kZ) l  (4.213)

wh-!re

kIc =,l - (NO/2OM

k X (4.214)

and

P =(zlk2 ) I OD -I2d (4.215)

No:e that P n(z/k) is the probability for a standard normal distribution

with zero mean and unit variance that the value (z/k 2 ) will be exceeded.

This integral is readily available in statistical tables.

The shape of w(z) is determined by the parameter (N 012). I t

can be shown from basic considerations that (N 0 / 2%) always falls between

zero and unity.

This results from the fact that (NO! a- = ( r'x a-). and from !.he

Schwartz inequality

a,- f2 S() df < FY Sx(f)d i -(f) :- o-.
X . - i -

j I-7oo Sfj j C
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Hence

o< (N01ZM)f = (o-cZ -.. )< 1 (4 Z16)

If (N0 /211) = 0. then w(z) reduces to a standardized normal

(Gaussian) probability density functio:,

w(z) , I' ' z when (N0 1Zm) = 0 (4.217)

This case occurs ii; practice for wide-band noise where the expected

number of inaximna and minima per second. 2%. is much larger than the

expected number of zero crossings per second, N0 . so that (N0/2#

approaches zero.

If (Nr012Z) = 1, then w(z) becomes a standardized Raylei' . prob-

ability density furctioz:.

w(z) = z e z 12 when (N 0 I Z" = 1 (4. Z18)

This case occurs in practice for narrow-band noise where the expected

nu.ber of maxima and minima per second. 2LI1, is approximately equal to

the expected number of zero crossings per second, No , -;--- -hat (N 0/Z"

approaches unity. The general form of w(z) from E (4. Z13) is thus

something between a Gaussian and a Rayleigh probability density function,

and is plotted in Figure 4.6 below as a function of z for three values of

the dimensionless parameter (N 0 /2% equal to 0, 0. 5 and 1. 0.

In terms of w(z) !he probability Pp (z) tha, a positive peak chosen

at random from among all the possible positive peaks will exceed the

value z is given by the formula

P (z) = w(z) dz
z

No -z 2Ir I= Pn(z/k ) +- [I - Pn(z/kZ)1 (4. Z19)
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Figure 4. 6 Peak Probability Density Function w(s) versus a
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using the % of Eq. (4. ZS), A grapb of P () as a function of z is plotted

in Figure 4.7 below for three ftxed values of (No;za.) equal to 0. 0 -5 aad

1(IVA

Rayleigh

.5
(/Z). .o.5

I.gue .G rassi o f I ()ftvru

Aoi -_ .__ 4.-95,-
. -I - ( 3

Figure 4. 7 Graph ofp (z) w(z) , versus a
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From the abow, it should t. 000-04 that dw actual mnwber 0

positive peaks per srcod which wold xcCd e vaIUe 0 Z W. de*feed

y M. may be esitaated by the tormusa

M ot Pwa-) ARPf~ (4W
'M p p4 2

For large values of& relative to w. %e may verify

.(x 0 14 ZZI)

showing hot for large e. the expected I - er of maxda per secnd

Jying above Ohiw e z w is equal to t3&e eqected mvmber of times per

second that x(t) crosses Mhe line x - a with positive slope.

The expected munt-r of peaks *61ac. exceed the vlue i time

T, is give by

MeTI - 1 P,(aI! (ere

.his .as a. set equal to te expected uumbr .1 peaks ukmch eweed do

v l1 a an time T' by tMrouciq a differea max s varu

sick that

M*TZ &mTt P eow,. -UT.P WWIu)

Now.

Tz P 1 .W)

r P(4. 
Z231)'I " P 01VIrN

Suppose the mean Square value is such that e-, occurs vor time T,

follow e by for time T z . What abould be tVe equivalent - for twe

T a TI + T 2 if equivalence is based am having the same number of peaks

exco.ding a? The expected mumber of peaks w1chJ exceed thc va1m w

in umo Ti and the valume& im Tz is Ugiven by
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Ad* me -- 3pIr 016a

I a* ab"Ve shoo"4 ag- be a"t eqe.1 to

14 T -TP6s.

p j

in ger&L 1--- :6 dasct nmm aqre vako. s M tim pwe34

ow *ami set

T7L CiT ar c ar a f4. US5)

pp

P,#Woi T-10 p(4- UM3

Thow. know"*~ of &Hi quaitie on the tg-b34 *at* of Eq. (4. -

eables owe to solve for p 104.. and I urn for the Parameters (Iuti
p

&a4 ar 9 a a0. beover. E%- (4- U& becawo we adinaMty and w a

we be dol"me34

4.9-4 of uee~. Lancer !j!!~M.?r!"sQwc ZespsseVgtiof

For a casm paroameoter linear system. r its u*U-.k'sa that
sockh& systm can be characes as"d by a !=Sfuaj finctoon It M'.

-ahack. by definition. ytwids the respnse of a ossim to & v"i m-

p*lse functwo~ r bust mmii after the impulse occurs- Sew sketch-
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Ua.-rn r S trm

F-a3r thr sySICr. .~ %n Ph-stcally rraizzablrc at is .rrssary Mau

h4T) P far r.-1'0 (4- UPT

Szt-r A S-sutm £ sAZ Z.-A respond to 4=t~~ before at occurs-

It 41t) -.s an 11*11 Ir. this systnnr. and 4tl) the r"Uhalt owSpS.

thea ie nlpat as gni-r -tas, a nr-rte at-ar sum ra-r the afire

(:nhntea~) past h-zstorr -f te-*- &3s express by

741 Jo I ki) 3Fl - Vj 4T( £~

If af) exists -rdiy for > ) 0. then

(%t
T4t) I Wo 4 e rdv (4- IMe

J*

i"Steitad f S-r v). t 1 he systerm mav r . rhararter.-aed bw 1ItS

!tel nc y re-sponse, MLrzont ltsfwharh a-% de-fined as th- Fourier



W v- -r - r;4 111

asswramc h(v) 0 ftr T < 0 as -.w- & few Phyical eizblt. h

!ttSecc- re-saer. fio.2vftie sbo'-Id noth bc Cfv)CSe u. - tbw trausfeCr

.t-te oi tbw syze-m as &ffimd by !ha- Laplace transform of )4v).

24?) di(4-. Z~

NOWEc eha~2v U ~erff-rs formally fom H64$ Fi ,-rrei repaciug p

Hit!p) byv j.Zwf-

Thw frcTyse-cy respemse c~e is a e~czvEe ~nta

wk-rc~ I . the aibsolate v'aluew- of 19.01 asrc the am livua

r-esponse (Cass) of tb- srstwr. to ant i:me sinfzsc~dal c-Ax-t:ima freVt- ---

f. while V(t) indcates the ca.rrspammg pkase shiaft

CAOosdir a COMOIx-v-almed smsoida faqw

From Eq"Isaoms (4-ZZ&)asd(4-Z±Il).dw respolte VsIUI to

yI" --- *f* Z ta4-9



For a real--valued sinusoidal input

X(E) = sin (27rf 0t +- d) (4.236)

the real-valued output is given by

y(, =I(f)I sin [Zlrf 0 t + d i- O(f 0) (4. 237)

These relations show how knowledge of both the gain factor and the

phase shift term are needed to describe the system's operation.

From physical realizability requirements, the frequency

response function, the gain factor, and the phase shift term satisfy

the symmetry properties

I ~(f)(428

'(-01 = 0(f) I(.28

If one finecar system, described by 1 () is foilowed by a

second linear system, described by X (f), then the overall system

may be described by~ (f) where

Hence

M~ (0 (f) I Z(f) I

Thus, on cascading two linear systems, the gain factors multiply and

the phase shift (f'ctors add together.
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Assume now that the input x(t) is a representative member from a

stationary random process with zero mean value. Then, the same

property i_- true for y(t), and the ordizary pc;-cr spcctral density func-

tions S xf) and Sy (f) are related to r#(f) I by the simple (real-valued)

formula. Ref. [1, p. 72],

Sy(f) = 0/(f)I 2 Sx(f) (4. 240)

This is an important result and is frequently quoted. At any fixed

frequency f, knowledge of two of these quantities determines the third.

The phase shift term o (f), however, is still in doubt since this formula

involves only the gain factor.

Example: Single-Degree-of Freedom System Output Response

For the frequency response function governing a single-degree-ol-

freedom system, see Eq. (3. 1),

7#(€c42r) = H(c.) =1; j =1.fT.' =2irf
1 -(w/wn) 2+ i 2(w/ wn)1 -(ci~w~2+jZ.aI~i~) = (IlZQ)

Suppose that the input power spectral density function is "white noise:,

see Fig. 3. 11, where Sx(f) = S0, a constant, 0 < f <co. From Eq. (4. 88),

this corresponds to S (f) = S01Z) when -o D f <co. Now, from Eq. 14.97),
x= 0

on changing to angular frequency w,

S()= [S (f 2 S/ u - WCO
X X 0-

Analogous to Eq. (4. 240). the output power spectral density function

S y(w), in terms of angular frequency w, is now given by

I 2 wol (S 0 /4w)
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Finally, similar to Eq. (4. 19) or (4. 183), in terms of angular frequency

w, the mean square value of the output becomes

2 - _ 0CryY7 = -, Sy(w) du- = 2 r S y(c.) d.-,

3 -- N?- 81 4~

2'r 0 [ - +~ c 81

This is the derivation of Eq. (3. 9) in Section 3. 3. 3. End of e:cample-

Recall from Section 4. 9. 1 the fact that a stationary Gaussian
random process with zero mean value is known completely from its

power spectral density function. It can be shown that the response of

a linear system to a stationary Gaussian input is also stationary and

Gaussian. Thus, the gain factor b(f) I of the frequency response function

of a linear system characterizes the output system response to any

stationary Gaussian input. This provides one of the main physical

motivations for measuring as accurately as possible the gain factor of

system frequency response function of a linear system. However, if

the system response to an arbitrary given input is desired, it is required

to measure not only the gain factor of the system but also its phase shift

term.

By a straight-forward approach. one may v-rify that the entire

frequency response functionW(f) is related to the input power spectral

density function Sx(f), and to the cross-power spectral density function

S xy(f) between the input and the output, by another simple (complex-valued)
formula, Ref.[l1, p. 75],

sY= W (f) S (f) (4.241)

Thus, if

S xy(f) S js (f) W'J(f)4) = IW(f) Ije(f) (4.242)
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one obtains two relations which involve both the gain factor and the

phase shift.

WSxy(f) =Af)I SX(f) (4.243)

Nf) = 9() (4.244)

Note that the coherence function becomes here, Eq. (4. 95)

xy (f ) = 1 (4. 245)

indicating complete linear dependence between x and y at every frequency.

The value of the coherence function will be less than unity if additive

noise occurs either in the input or output of the linear system.

The main limitations in applying the above formulas are due to

failing to satisfy requirements that the system is of a c-nstant parameter

linear type, and that the input random process is stationary. No such

simple relation exists for time varying linear systems, for non-linear

systems, or for nonstationary random processes.

4.9.5 Confidence Limits Based on Coherence Function

For cases where additive noise occurs in the input or output of the

linear system, an estimate of the true frequency responsel(f) may be

obtained by measuring SXY (f) and Sx(f). To distinguish between the true

vaiue of Mf) and a particular estimate of the true value which would be

measured in practice, let
A

A S (f) 
= xy = k9(f) eJ (f ) (4. 246)

sh~dt trmS (f) A
represent the estimate in question where )(f) Idenotes the estimate of

A
the true gain factor W((f) 1, and #(f) denotes the estimate of the true phase
shift term #(f).
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Results of Goodman Ref. I 61, quoted by Katz Ref. [9] and partially

displayed graphically by Press Ref. [ 3]. demonstrate that to a very close

approximation,

MI Ax f)

whee Yy~ Prosthe F1ernc <sitn and 0 s the n <be egesf

FlY (f) n

I YXY(4.247)

xyL~7 f) Cos iE

where Y.~)is the coherence function and n is the number of degrees of

freedom. see Section 4. 8. 5.

n = ZBT (4.248)

with terms as defined previously.

Formula (4. 247) is of considerable practical importance in deter-

mining the confidence level at which the gain and phase can be estimated

to within a desired error, for a given value of y2 and n. For example,

suppose one wants to estimate the phase # to within 0. 1 radian (e = 0. 10)

and the gainj(f)j to within 10% error (sin e - 0. 10) at a 90% confidence

level (Prob = 0.90). The table below shows the required number of

degrees of freedom n corresponding to various assumed values for the

coherence f,,-nction V.-

Y 2~ 0.9 0.8 10.7 0.6 0.5 e =0. 10

n 27 58.5 1100 156 23 Prob 0.90

In practice, one will not know in advance what the coherence function

will be, and can only roughly estimate it from the measurements. This

restricts the application of the above work to some extent. However, a

conservative choice is usually desirable, and the above formula (4. 247)

shows clearly that accurate measurements of a frequency response func-

tion is strongly dependent upon the value of the coherence function.
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4-9. 6 Statistics for Extreme Vibration Amplitudes

Consider samples of size n. drawn independently and at random

from an underlying distribution described by its probability density

function f(x), or aliernatively by its distribution function F(x) £f(y)dv.
Let the observations di-aum be {x1 . . . . . . . . . . I o

Xf.

Define the statistic

z n max {XI. X .... XnI (4.249)

The problem is to find the probability density ard. distribution fouictior' of

Z n , -Id to consider their asymptotic behavior when n becomes large.

Agood discussion of these znaters appears in Ref. [5J.
The distributior of z is obtained as follows:

De-fine

H n(z) =Prob (z n< z) =Prob, (all xi .z)

=Prob (x1 f.z. x 2 . z. .... xn< Z)

= [F(z) I (4.250)

The quantity Hn (z) is the distribution function of z n. The corrcsponding
density function h (z) is found by differentiating H (z),. This gives

n n

ht) zHn (z) nf(z) ( F(x) In-I (4.251)

Thus H n(z) and hn (z) are determined entirely from n. f(z) and F(z)

A special case for which one can obtain an exact distribution of z
for any n is provided by an underlying uniform distribution.



Example 1: Underlying Uniform Distribution over (0. A).

FIX G x

x O<x<A (4.252)

=1 ; x>A

NxO> A

Now
H(Z) f F()r=o ; <o

O<z<A (4. 253)

=1 z>A

and
* n-I1

h(z) = H (z) - ; O<z <A
•- n A n0<z<A

(4. 254)
0 ; Z<O orz>A

Note that for any value of n,

z.-= Zhn(z)dz n z . dz n A

z"= z 2 hn(z)dz =zn+ z = IA

2 n () 2  n
rA =Zn 

( 
2 2  

(4.255)n ~(n+l) 2(n+Z)

Hence, for large n,

Eaw A

A
an 

(4. 2561
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In. words, for large n, the expected value of the maximum from a

sample of size n equals the right-hand end point of the underlying

-i.rm-ce distributiorn governing the original samples. The standard

deviation in this estimate approaches zero inversely with n.

Example Z: Underlying Normal Di.tribution with Zero Mean and Unit
Standard Deviation.

The case of an underlying normal distribution does not lead to

closed-form answers. Nunm.erical methods must be employed to approxi-

mate desired results.

Fix) -  
p_ dy (4.257,

f(x) ex• (4. Z58)

Here x is a normal random variable with unit standard deviation.

Let y= 1 a+ o-x and dy o-dx

Then g (y) dy = fix) dx - I e-(v-P) 2IZOdy

e -(y- l4'I (4.-'9
Hence g ( y (4. 259)

Now v is a normal random variable with mean value p and standard

deviation a-. This procedure shows how to modify the underlying

distribution to cover an arbitrary mean value and standard deviation.

Similarly 1 -Z

e(V dy

I e-v /dv = Fha
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Hence. letting x = i

G(;) = F ( Fix) (4.260)

Thus. the iastribu;tor function F(x), associated with zero mean value

and unit standard deviation, may be generalized to the distribution

function G(y). w'here the mean value is p and the standard devia-on is

o-. by replacing x by (y-p)Icr. For simplicity. F(x) wil be used instead

of G(y) in further cziculazions.

Frz... Eq. (4. 750), or samples of size n from an underlying

normal pop ulation. with zero mean and unit standard deviation,

Z-y /ZT
H(z) r F(z fj~p.. IfMe dj (4. 261)

and

hn- f.r. n-l n -z iZ I~ t V
,.. zI~..j '' 2 dyj1(.2Ze e dy(4- Z62)

Clearly. these equations can now be analyzed by referring to readily

available statistical ,zbles of the normal distribution. See Table 5. 1 at

end of nex: Section 5- Figure 4. 8 at end of this section displays Hn(z)

as a function of the normal variate z for fixed values of n equal to 5,

1 .'er i-. - ,a i corresooni to Him = F(z).

To illustrate how to apply Figure 4.8. consider the curve where

n = 10. The mode value of z is defined as that value of z for which

H n ) = 0. 50. For n = 10. the mode value is seen to be approximatelyn t

I. 50. In words, there is a 50% probability that in samples of size 0.

the larges" value z will be less than or equal to 1. 5. This result

assumes that i = 0 and o = . Note that ior n = I. the mode value is

equal to zero, while for n = 1000. the mode value becomes 3. 2. At the

951, probability point, for n 1 10, the larges; value will be at most equal

to 2. 7, while for n = 1000, the largest value will be at most equal to 4- 0.
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For n - I there is a 95% probability that the argest value w'ill be at most

equal to -7. These exa-naies show how th--- extreme value statirtics for

an underlying normal population change with increasez in sampie size-
Fer "r-Err ; az .... :"-- is A A _" ."LUZ "LA in: aasnpies

,f ize 10. the largest value z will be less than or ecual to p a 1. o-.

and a 95% probability that the largest value will be less tLan or equal to

V z Z. 7o'. Similar statements apply to other sample sizes for arbitiary p

and o-.

it should also be realized that in samples of small size. consider-

able uncertainty exists in estimates of p and *. A= an iliustration of

material to be explained in Section 5 of this report, for samples of size

n, the true mean val:e V is bounded by

Prob[s= C 4t 0 sL4 ! I -a (4. Z63%

wnhcrc c . isred "evel of significance (e g.. IS or 5%.) and ti is taken

from. the :t-' distrib. 'ion with (n-I) degrees of freedom. see Sections

.5...3 and 53.3. The quantity (I -&') is a confidence coefficient. of 10061-a)

percent (e-g. 99,% or 95%). For samples of size n. the true standard

deviation a, is b"-nded by

,Prob < Vn J X~j 1 -0 M4.Z64)

where X: s taken from he chi-square distribution ---ith (n-I) degrees of

freedom at the a level of significance. see Sections 5. 2. Z and S-4. 1. In

Pantgcuier. (or 3%:5j.

pr--pbr 4 t *sli P 0-95

(4. Z65)

Prob [oa5 Sj.n/x,5  0-: 095

Then. since both extremes will not occur simultaneously. in genera:,

for I standard dcv:--tions from the mean value,

Prob XW < i t I) nX,.J'1>0.95 (4. Z66)
b -5. oiN 

)  - .
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For example. for n = 10. corresponding to 9 degrees of freedom.

one finds fron, Tables 5. 3 and 5.4 at end of Se-tion 5 -at t 5 0 = I. -

and .;. n-15% H-ence, for n = 1,

Prob I, . < An-< s.t57 4 0 3Z10 >0.95

Also, as shn-n cart&r. for sam.ples of size 10. if z eqaIs the maximum

--able, them

Probjza Fc -7p+ ! = 0. 9C

Hence.

Prob fz c Z.s! > 0. 9

This completes the discussion in this section of #]- report.
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5. STATISTICAL TECHNIQUES FOR EVALUATING DATA

5.1 THE ESTIMATION PROBLEM AND HYPO- iESIS TESTING

Two broad areas exist in the generai area of statistics which are

problems of estimation and testing of statistical hypotheses. EstimaLion

can be further broken dovn into that of paiaL estimates and interval

estimates of the parameters of a distribution of interest.

5. 1. 1 Estimation Theory

The general theory of estimation is quite an involved subject and no

attempt will be made to discuss it in any detail here. However, there are

three qualities desirable to have in any estimate. First, one wants an

estimate to be unbiased, that is, the expected value of the estimate should

be the true value. Second, the variance of the estimate should be a min-

imuim, as compared to other possible estimates. and third, the variance

of tho estimate should approach zero for large sample size. An estimate

with th second property is said to be efficient; an estimate with the third

proparty is said to be consistent. The first and third concepts have been

defined and discussed in Section 4. 5.

Examples of efficient estimates are the arithmetic mean of a sample

of N observation N
.x-- i

x (5.1)

N

as an estimate of the population mean iL, and the sample variance

$2 X) 
(5. Z)

N

as an estimaCe of the population variance cr2  The expected value of the

sample mean is

E(x) L (5.3)
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and x is an unbiased estimate of IL. However, in Section (5.3. 1) it will

be shown that

E(s 2 N-IN0 (5.4)
22

Therefore, s is a biased estimate of a-. The corrected sample variance

to remove the bias would be

N

s = (5.5)

Several methods exist for obtaining formulas to copa. .:4 mwrameter

estimates from sample data. One procedure commonly used is the method

of maximum likelihood (see Reference [2], pp. 68-71). This nethod gives

estimates which are often biased, but are consistent, asymptotically

efficient and asymptotically normal under general conditions. Also the

bias may often be removed easily as for the sample variance in Equation

(5.5). Most of the statistical estimates in this report are of this type.

Besides the point estimates of a parameter, it is r-eful to be able

to give an interval in which the parameter of interest probably lies. That

is, an indication of the precision of the estimate is desirable. This leads

to the concept oi a confidznce interval. To be specific, given a parameter
•* * s desir ed

E, and a small predetermincd probability , an inter-val (43, i

such that

Prob (8<9 < 0*7) 1- a (5.6)

The probability (1 - a) is called the confidence coefficient of the confidence
* *Z. h

interval (9. The confidence intervrals so computed in a series of

repeated experiments could be expected to contain 0 in (I - a) percent of

the cases.
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5. 1.2 Hypothesis Testing

The simplest situation is the test of a hypothesis against a single

alternative. To be more specific, suppose that the variable in question

has a probability density function p(x, 0), while under the alternative

hypothesis it has a probability density function p(x. 8o). That is, the

density functions are completely specified and if the parameter of interest

is not I then it is 0 . This is known as a simple hypothesis. If any other

parameters exist in the density functions which are n. I known, or if the

alternative to 0 is not completely specified, then the hypothesis is called

a composite hypothesis. This is the more common situation and would

be illustrated by the hypothesis that the mean of a normal distribution is

p with the alternative hypothesis being that -t is either I0 > ; or F0 R"

That is, p0 is not completely specified.

The hypothesis tested is often the null hypothesia. This would be

something such as: The parameters 0 and 00 are the same. Stated in

another equivalent way. there is no conclusive evidence that parameters

e and 90 are not equal. After selecting a null hypothesis, the next step

is to select a region such that if the observation falls within this region the

hypothesis is accepted This is the region of acceptance. The comple-

mentary region where the hypothesis is rejected is the cr;ical region or

region od rcjection.

To choose these regions one first decides upon a small probability

a such that the hypothesis will be rejected a percent of the time when

it is really true. This error Cr which can be rmade is known as the

Type I error. The numerical value & is known as the level of significance

of the test and is usually chosen to be 0. 05 or 0. 01 (5% or 1%).

Suppose the random variable under consideration has a probability

density function p(x, 0), associated with a hypothesized parameter 0. Then

the critical region would be to the right of a value x c determined by

J p(x. 0) dx a (5.7)

c
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Figure 5. 1 below illustrates these concepts.

P(xO

~~~~,.Area = i-a ~ Ae a = Level of significance
x

Region of Acceptance Critical Region
c

Figure 5. 1 illustration of Critical Region and Level of
Significance (Type I Error)

Another type of error may be committed when testing a hypothesis.

Namely, if the hypothesis is really false, it still might be accepted. This

error is known as the Type 11 error. For instance. suppose instead of

p(x, 0), the random variable actually has a probability density function

p(X, eo0). where 0 0e1. located somewhat to the right of p(x, 0) as illus-

trated in Figure 5. 2. Then there is a certain probability P that the

observa~ioni may fall to the left of x c asid be acctepted. This type 11

errorP, see Figure 5. 2. is given by

5c P(X, 0 0 )dx 13 (5.8)

The probability (I - ~)is called the power of the test. Clearly, for

a given value of a,. it is desirable to have 9 very small. However, P is

generally made small only at the expense of increased sample sizes.
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P(X 0 o-Area = 3 = Type 11 Error

x
c

Figure 5.2 Illustration of Type U Error

Two variations for a statistical test often arise. A test in which

the critical region is located only at one tail of the distribution as in

Figure 5. 1 is referred to as a one-tailed test. In many situationstoo

large a deviation in either the positive or negative directions would be

damaging to the hypothesis. In these cases the critical region would be

divided into two parts, one at each tail of the distribution, and the region

of acceptance would be the interval between these two points. The left

and right critical points would then be selected such that the area under

the probability density function for each critical region is 2/Z. This

maintains the level of significance at a, and is referred to as a two-tailed

test.
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5.2 SPECIAL PROB.ABILITY DISTRIBUTIONS FOR STATISTICAL TESTS

Four probability distributions arise ver- frequently in the application

w,' classical statistical techniques. These are the normal distribution,

the chi-square distribution, the "t" distribution, and the F distribution.

They will be discussed bc!cw in this order. Section 5. 2 will emphasize

their mathematical properties and Section 5. 3 their physical applications.

5. 2. 1 The Normal Distribution

The most important distribution arisirg in both applied and theoretical

statistics is given by the probability density function

(x - 2

_ e (5.9)

or the corresponding distribution function

(t -

*(x '- =C' CFW dt 15.10)

The distribution was originally deduced in 1733 by the mathematician

DeMoivre as the limit of the binomial distribution. The distribution is

often credited to Gauss who did much work with it at a later date. As a

result, a random variable having a distribution function given by Eq. (5. 10)

is often referred to as having a Gaussian or normal distribution, see

Section 4. 3. 3(b).

The mean and variance of the distribution are

E(x) = 5 x dx = I (5.11)

Var(x) =50 (x -1 0I)Z.(14idx -or (5. 12)
Aoo
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,W.-n a random variable has a normal distribution with mean Pa and

sta-ddard dCv.iation (j: d. ) c. it is Woften- apeien of as being normal (IL, &J)

for the sake of brevity. The standardized variable

z -~ (5.-13)

then is normal (0, 1) with the di~itribution funct'gon

4(z) =-L z e-t'I dt (5.-14)

-Vj2r x-x,

The density function O(z) = (l!NfJ-) e-z 1 2 is unimodai and symmetric

having points of inflection at +1.

Equation (5-.1!4) is well tabulated for rr-ary values of z- However.

due to the sym~metry. *(z) 7.*(-z), the tabulation is freq7.e.ntly given only

for positive values of z- Also, the tabulation often only goes up to z = 3

since the probabilities of exceeding this value is very small. See Table 5- 1

at the end of Section 5 for a fairly comprehensive tabulation of the normal

distribution in thi.s way. In Table 5. 1. for z 0. the area of the normal

curve is defined by

Area =(IZr) f ~~ 2 dt

0

For z > 0, the distribu.tion fun--ction #(z). as defined in Eq. (S. 14), is non,

given by O(z) =0.50 + Area.

A useful definition is that of the p percent value of the normal

distribution. This is the unique root)X, of the equation.

Prob (Ix - pI>~ X 0 =p (.S

In words, Eq. (5. 15) yields the probability p. in percent. tip-t a

distribute-d variable will deviate from its me in in either diref i.-r by rnCr

than X times its s. d. See Table 5. 2 at end of Section 5 for a taintlation

of this type.
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For later applications, one should note that a linear funcioni ax + b

of a variable x which is normal fit. a-) will be normally distributed

(alt + b, law)-
The normal distribution derives much of its usefulness becaus3e of

the well known. "Central Limit Theorem". see Section 4. 3- 3jb)_ This

essentially Ttes that sums of independent random. variables wnder fairly

gcnerai cLUO itions will bt- approximately. normally distributed, regardless

o~f the underlying distributions, wrien the sample size is large- Since mnan-'

physically observed variables may actually be the sums of many less

obvious variables, or wh~en the nicans of large numbers of observations

are considered. the normal distribution often applies in unexpected areas-

5. 2. Z The Chi-Square Distribution

Let X1 , XZ......x P be r. independent random variables, each of

which has the same normal distribution with zero, mean and unit variance.

The sum of their squares

Y2 xz.-X (5.16)

is c.Iled chi-square with n degrees of freedom (d. f-) Tzeenumber of

d. f., -t. represents the num~ber of independent or "free" squares enter-

ing into the expression for X Z

The variable y has the probability density fuztun

Z nIZr( nI Z);y>o

=0 :y Co

where rjnlZ) is the well known Gamaa function. (See Reference [4] for

discussion of the Gammaa Function). For n = I and ni = 2. Pny is a
nionotenicaily decreasing function for posizire y. For n > 2. the function

is unimodal and non-symmetric.
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The mean and variance :tf this distribution are

ENZ n(.18

Vart' Z (5. 19)

The probability that the random variable y = X assumes a value

exceeding a given quantity yo = x-is given by

Probly > y 0) =jY p,(V) dy (5. Z0)

Conversely, if one wants to find a quantity yp =4L such that the probability

takes a Siver. value, say p. then the following equation must be solved:

Prb( p (y)dy =p (S- 1)

The unique root p=yp of this equation is called the p percent value of

X for n d. f. Essentially the same definitions v.ill be -- , for the t

and F distribiutions which are discussed betow. A tabulation of some

of these values of y pfor the chi-square distribution appears in Table 5-.3.

5. Z-. 3 The Student "tIn Distribution

Let Y and Z be independent random variables such ha t Y is normal

(0. 1) and Z has a X distribution with n d. f. The variable Z will therefore

always be positive. and a variable t can be defined as

t Y (5-22:)

where the positive square root is taken. The distribution of the variable

t is known as Students 'It* distribution with n d. f. it was first studied

by the statistician W- Gosset who wrote under the pseudonym "Student".

hence the name.
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The Probability desity ft--nction of t is giver. by

C
p(tg = n+ I (5. Z3)

where

C (5. 24)

The mean is finite for n > I and the variance is finite for n > Z. These

are given by

EM = 0 n>I (5. Z5)

Var(t) = -- n--..>Z (i . zf)

n-Z

As in the previoe-s section a p percent value of the t distribution

is defined, where p is expressed in percent, by the root t of theP
eqration

Prob(t t) j t p it) dt = p (5. V)

Also, as for X , the parameter n is the number of d. . A tabulation of

values of t as a function of n and p is given in Table 5. 4. Some care

must be taken ;- usin3 other available tables of the "'t distribution in the

same manner as Table 5.4. Some texts v*ll have Prob( I tj t p) = p in-

stead of Prob(t > t p ) = p. Eq. ( 5.27). since the "V' distribution is sym-

metric. i. e. pn(t) = pn(- t). I this case a value for p in Table S. 4

would correspond to a value ior Zp in other tables constructed con-

sidering deLiations in both tails of the probability density function.
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-. 2. 4 The F Distribt_:ion

Given two indeperden: variabes U and V -2-ich have X2

di trib,. =io. "zith r. and n d..r. respectively. the distribtio- of the

variable

F -Ui = U U

V/n m V

is known as the F distribution with '-m, -) d. . Since F is pasitive. the

density function of F is zero for F - 0. while for F> 0. the density

function is given by

.n ,(F) = C .- ">9 g

(mF a)

where C is an appropriate constant depeading only on m and n.

As for X and t. where p is exe.ressed :m percent. a p percent

value of the F distrimition is defined by the rooi Fp oi itc eqp-atio--

Prob(F>F ) = rp FdFp
P J]P p .

Some values of F as a function of sn and n and p are given in Table 5- 5.

5. 3 SAMPLING THEORY AND APPLICATIONS

The distributions defined and discussed in Section 5. Z will now

b.e illustrated as sampli-g distributions. They will be discussed in the

context of their most usual applications. with additiona areas of appli-

cation indicated which are particularly appropriate for aallysis of vibra-

tion data.

A sampling distrib-tion may be defined in general as follows:

Let X be a ra.-A*o.n variable with a distribution function Fx). Let
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x.x X-. be a sA=nir4C Of N tsetrred Values of X. Anyv Well

defined ftsnrcfl;oc of 1-.ese I-rrzLs.Usa g TxO.. xz... X-) winl be

a srneof ."- randon: irariable gX 1 . X,..-.Xlwhrecb

has the same distribution hu=ctioa Fix). T'he probabiity distributfoo

of 5 C3l. X? 1 ,. is calle d the sw'MPicg distribmtion of the

4r~antitrT g(x1 . x2 .-

IiSamples -if N valnes L-re repeatedis drawn. and if uhe ca-
acteritic r. ~ N.) is coputded for tack, staple. a S*4esce

is oiptained ew observwed v-atwn *f the rat60 variabte gIXk. X-'.

- .XQ,. BMx !his wkay evecry sample C!tracttri!id is asod-ated wit

a certain randm rieable- Ore may then. telt of the aamplisg diszri-

mcticns of qqgatif such as th- ari--hnniuc :c zi #;Wpe=r

by Eq. IS..!) and tI:*e sample variance S-im by Eq-. (5- 2.

In principle, the sam--pling char-acteristic =ay be determained

hy the distri-buion fnctrioz 7(x3) 0: the basic- ratnt-o varias-t X.

In practice, h-iflfrr it wnay be difficult to find an explicit expression
for the result.

5.3.11 Estimates of the Mean and Variance

As has beenz implied in precco cg discussions, it and er will

denote the true- m.nean- and standard deviation (sa). £ tstribiw

corresponding tw a random variable- The estimates of these - zc

as conqirAcd fro= a sample of size N w.il be denited Wy i (or an)

and s respectively- The Greek letters ;a ardai 4ruill eftaa be re-

ferred to as the popul:ationt or universe values as cgpooed to their

sample-estimates I and s. it is importaw.t to understand and keep

in mind this distinction. between true values and sample estimates.

Any true populat1ion value is Some Exed real sianbez whetreas fU*

estimate computed from. a sample will1 hivre & sampllg distribatioz.
Consider first the sample mean

- in

ASD TR6-1352



arobstrtocu thu: 4 sopI.l =an is it nraw cofn-32icZ N

r~lrizbix z- and aWppig the ureil. k~w& xdslion !See for sut-ar

MsF.

a"~ :5.33c o

MOOX

This.. zhe *apected vase .1 M~e samp~. cftraczerstic i s

%qm) I. ot* II--* nwas Y4iaie ; Moreeoer. tie the sur@o 4Wvas-

Liam is LW~rseh propric"ai to If. the San**ii m*3K it is a VerT

prtisa *stimac at p tw'arse *- 7hal is. thme &*tribalism of

wilt be coftecrawed in Lb. vicisity Of L *is". at will I - a Ver%_

sm!: i. - -r large IK. Also. k, foILaws from Mhe cew-a Umait

thewrW.. Ohat for LtI~ N The &5srAWbune .1 wili be a~pr.KickmUth

x) tx- x

X ti

Nit N N i

AZD' -8 -1;j ;



IN~

This j *c*em wwioL if Sectiu S. I. 1-. Tar bis may be re-

mow"-,w vAw~ Mm .'i. .g.. betif a w ts r ago * A*e

biasii.& w

Ths SMAM jewsdm of 0 t sl e fw isge X. fos Ka. si
Ii~x. breow *Z Wall. bw a p #e ees a el fo ut*X

MWLD are Swenoliiily 8&9wmw aa! be C4eS frmt lb ew

is ube oarn waw. Mait fereftes. w.'.M Ab* 5eieaI -orjsmes. Swo-

P.M t 4 d4ew sksisCi *jsO were te wmms vt a popumie, is is be

eset" PW c r abeat~i &sWtdq "*Iet WWi*. This Cesi
affise if it mww. was I* be oe:waft fro ~e-& snase qwm 4=m

beviug didt-omm oft"Oe site". 4w if do .b mwarzieae wer peSsir
tdif wil ftatrubou of varying daoe. it is dwo d..iae to

k~a O Afarw 3a *Mib dse sheet *suie abooMi be wojo~t4 jx

.r~k t is v Am e.uiinm f Y, wkb mimin v..-ie... The airmig
St tbs VeiSK io birir iwok.a am& Ebo rosbor is raiarred t 1.3.. (ZlJ 4
a PVOQ9 - ffmve. - bS 60si rtftl if 10 Weie0t l. ObgerniM i.-

Vra-Y to zbdr 'rauisee ?lot io. Gor

ASD Th 6. :21 -



choose

a. - - _ (5.38)

1

where

W 1 (5.39)S 2
o-i

The variance of the distribution of x then is

Var(x) =(.40)
w.

5. 3. 2 Tne Chi-Square Goodness of Fit Test as a Test for Nor.-nalitr

(a) General Remarks

In certain situations such as comparing a normal distribution

with a frequency histogram of some observed data, it is desirable to

be able to evaluate the chscrepancy between the observ-,& and expected

frequencies. It is customary in such problems to compute a statistir

which measures this discrepancy and study its sampling distribution.
ZA good statistic at hand for this problem is X , or chi-square (see

Section 5. 2. 2).

For subsequent discussion, the following notation will be

adopted:

f. is the frequency observed In the ith class,

F. is the expected frequer.cy in the ith class.

Then define the statistic X2 by the sum of weighted squares

2 ~k (f. " F. 12

x 2= 
.i

i=1 F.I

where there are k class intervals.
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Since Ef. = Fi. the quantity T,(fi - F2) cannot be used as a
l 2

measure, and the square must be used. It is apparent that X will

give some ze-easure of the difference in frequencies as compared to

the expected frequencies. Obviously, a large value for X2 indicates

a larger probability of genuixae difference from the expected distribu-

tion.
2

The limiting distribution for X depends on one other parameter,

the number of independent squared variables in X . called the number

of "degrees of freedom (d.f. )." There exists a family of curves, one

for each number of degrcca of freedom. Each independent linear

restriction imposed on the observations decreases this parameter by

one. For instance, with k class intervals and a sample size N. one

can always compute the frequency in the last class interval after the

first k - I are known. So in this case one is left with (k - I) d. f.

Also in the present case of interest, the normal distribution must be

fitted to a frequency, histogram which required the computztion of

the mean and variance. This imposes 2 additional restrictions re-

ducing the number of d. f. to (k - 3) d. f. For each parameter esti-

mated from the observations, an additional restriction is imposed,

and in general there are (k - a - 1) d.f., where a it the number of

estimated parameters.
2 2

Tables for the X distribution normally give the value of X

that will be exceeded p% of the time for (n) d. f The percentage p

is often selected as 5% and the null hypothesis (i. e., there is no

conclusive evidence that the observed values were selected from a

non-normal distribution) is accepted if the computed X2 value is

less than the appropriate table value.

(b) Applying the Test

The null hypothesis, as mentioned above, is always considered.

If this hypothesis can be accepted at the p% level of significance, then

one may reasonably conclude that the parent population is indeed

normal, if supported by other evidence. There is at most a p% prob-

ability of rejecting the hypothesis when it is true (Type I error).
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The first step is to group the observations in some selected

class intervals. These may or may not have been previously

selected, but may have to be modified for this test. The choice of

the number of intervals affects the sensitivity of the test and com-

mon practice has indicated 10-25 equal class intervals is a desir-

able selection, subject to certain restrictions.

For the 5% lee1 of significance the follc-ing tables below have

been developed to assist in .selecting the number (k) of class intervals

as a function of the sample size N and the expected frequency in each

class, see Ref. kO1.

Minimum Optimum Number (k) of Class Intervals
(576 Level) for Sample Size N

N 200 400 600 800 1000 1500 2000

k 16 20 24 27 30 35 39

Recommended Expected Frequencies
for Each Class Interval

N = Sample Size 200 400 600 800 1000 1500 2000

Minimum F. 5-IC 5-10 5-10 5-10 5-10 5-10 5-10
1

Maximum F. 12 20 25 29 30 40 49

The end intervals may have an expected frequency as
small as one, pool (if necessary) to obtain F. N I.
Do not pool to obtain Fi > 5. 1

**Maximum F. may be exceeded slightly but in no case

should F. exceed 50.
1

Experience has also suggested the follo%:n;.;.g practical rules of

thumb.

1. If there are two or more d. f. and the expectation in each
cell is more thn 5, the chi-square table assures a good
approximetion to the exact probabilities.
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2. If more approximate probabilities are acceptable, an

ep ectauion of 2 in each ccli is acceptable.

3. With more than 2 d. f. an expectation of one in the tails
of the distribution is satisfactory i. !he in-erior intervals
have an expectation of S or more.

The sample mean

N X.
-- - (5. 4Z)
i=l N

and the standard deviation

5 
(5.43)

must be computed and the normal distribution can now be "fitted" to the

histogram. The class interval end points should now be converted into

standard deviations from the mean, i. e. , where x i is the ith end point

compute a i = (x I - i)/s. The leftmost interval should be considered to

be from f-o, zi) and the rightmost ( zk_! wn) when reading tables of

areas under the normal density function to compute tk' zxpected fre-

quencies. Proportions of N expected to lie in each class interval rmay

now be found in a table of areas under the normal density function.

Merely multiply these by N to obtain the expected frequencies. Some

intervals may have to be pooled in order to meet the previously sug-

gested expected frequency minimums. Now compute

,= (f - Fi )

X (5.44)
F.

Then compare X with the chi-square table value, Xp, under n = (k - 3)
S 2

d. 1. at the 5% (normally used) level of significance. If ) is less than
2one may conclude there is no good reason for believing the data

comes from a non-normal distribution, and a hypothesis of normality
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2 2

is therefore accepted. If X > Xph, the hypothesis of normality would be

rejected at the p' level of significance.

it is sometimes convenient to remember that the expected value
2 . 2 .

of X s n, so if the computed value for X s less than the number of
2

d. . it is unnecessary to consult the X table and it may be concluded

that the discrepancies between observed and expected frequencies is

negligible.

When n > 30, Xp may be computed via the norindldistribution

since 2X is approximately normal with mean VfZn - I and standard

deviation I. Then

4 = IP - ZJ(.5

where X ._ is the Zp% value for the normal distribution, i. e., X p

would be the number of standard deviations containing (100 - Zp)%

of the area under the normal density function. As before, the prob-2
ability that X , Xp, a one-sided interval, is given by pie.

(c) Computational Examples

Case 1. Less than 30 d.f.

Corresponding to the frequency hist 3gram (Fig. 5. 3) there are

the following set of hypothetica! voltages. (See Fig. 5.4. ) Computa-

tions may be made from the grouped data with a negligible loss of

accuracy, i.e., consider all observations in an interval to be located

at the midpoint.

The formulas used for x and s are equivalents of the definitions

used for computational purposes. "fx" indicates f observations at the

point x. The formula for s is obtained as follows.

Y(x - -Z = .f 72

N N N N

~2 -,1 X:fx 2  -71 
(5.46)

R + +x -- x
N N

ASD TR 61-123 5-19



30

/J

20 
1/- z,;

15 . iiI

i'i /h-6 -1 -4 1 -Z1- 0z "4 5
S -0 -15 -5 -15 -5 5 5 45 --5 I

/ b I

igr 5.3 reuny itgamo ypteiclDt

AS'/ ITi 6112 ,,



aF Al op 0 A , , ~, '
WI on o n aU a. A

.. .-

tm a

m -0 0 -

on F,*FAlF4. zF,,;
#,

on in on in in al in a n i

ASD TR6SZ



After the z i are conrputed using the formula z. = (x- - x}/*o

the proportion of the area, & A, under the normal density function

lying in each interval is found from Table 5. 1. Note that since the

normal curve is symmetric ti.e tabie gives only the values for

C z < w and the areas for the "eft ha f are found using the same

table. For example, for the in:erval (I. S. 2. 5) th corresponding

z vcz are (. 56.. 92). From Table 5. 1. one finds . 3Z12 and

7t123 for .92 and. 56 respectivcly. Subtracting and rounding,

A =A . 109 is obtained.

As snoiw. in Fig. 5. 4. the expected fre-quencies F_ are cal-

culated by mule.ip!-i., these areas by N = 159. The computed value

of chi-sq are comes out to be 17.0.

Looking at the chi-scqiare table (Table 5. 3) under n = 10 degrees

of freedom., one finds

2 2X = 8.3 and Xl 0 =6.0

If the 5;i level of significance is being used. the data would be accepted

as being from a normal distribution. However, if one had decided to

work at a 10% level the null hypothesis would be rejected and non-

normality assumed. In this case. other factors probably should be

considered when deciding whether or not to assume normality.

Case Z. More than 30 d.f.

To illustrate the computation of approximate values of

which may be used when n > 30 use the above value n = 10. Then

for the 5% level, one has from Eq. (5.45).

X5= 2 0 - 1. 64) k 180

where 1. 64 = XZp is found from Table S. 2 for Zp = 10. Int -is case

the agreement is qite close to the previously calculated X5 = 18.3,

but the method is not generally reliable unless n >30.
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(di Other Applications of X'2

Chi-scpare tests may be employed to compare any set of
observed frequencies with some set of theoretical frequencies. The

distributio. E* be co.-pared against need not be the normal distribu-

tion. but may be :;nr one of interest. For example, this test may be

applied to a Rayleigh distribution, or to a combined Rayleigh-Gaussian

distribution as illustrated by Eq- (4. Z1 3 ) in Section 4.9. 3.

(e) Limitations cf the Test

The X curve is* only an approximation so the true distribution

so care must be exercised that the X test is employed only when this
approidmation is good. The previously mentioned rules for minimum

expectations and class inte~rvals should be adhered to. and sampie

sizes should be of the order of ZOO or larger.

Since there can eist distributions other than the normal that

would give similar expected frequencies for intervals, it must be

borne in mind that desired results with the XZtest do not completely

justify assuming the parent population to be normal- If possible. the

X test should be supported by other conclusions-

5. 3. 3 Applications of Students *IV Distribution

(a) Introduction

In making inferences about the mean IL of a population. it is

necessary to take into account the standard deviation (s- d. ) dr of that

population. In most practical sitsutions; neither ua nor w- are known

and their sample estimates for IL and s for @r as calculated by
N

(5.47)

N

and

N
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rri-st be used. Relationsbips of R ar.d s to I and o-will be iresti-

zat&ed im t-A~s section.

(b) Special Case Where w- is Known

In the speciad case where a-is known and V is ungowno. om

can apply the normal distributicn. rzzL;zr than eke -it -distribution to

be described, in mnaki"g inferences about I from- *ampe means.

Using Eq. (5. 3Z) and (5. 33) from Section 5.3. 1. the mean of ithe

distribution of the sample means is

FP =IL 1.*

and the variance of the distribution of the sample means is

Zz o-
= - (. SO)x N

The s. d. of the distribution of the sample means is thes

_ =O- MR

One cn now ataadardise" the observations by subtracting the

mean and dividiag by the standard deviatioe whick gives the fellowing

normally distributed variable, z, with mean zero and a. d. of unity,

namely,

• : (5.sZ)
a- or-

Th"s. given a sample of N observations from a normal pqpulation

with s.d. or with which to test the bypothesis that the mea is b,. one

comptes t fron Eq. (5. 47) and thea a !rom Eq. (5. 5Z). Next, con-

sat the table of the normal distribution to obtain the percent of time the
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samp'e value wiil lhr outside the rane -z- :f this percestWg is greater

thamn some arbitrariiy selected !--e! of sig ificankce oa. say 51;.*=-e

would accept the hypothesis that the mea" is L

For example. assume a sample of size %' vp' from witich i IZ. 3

is computed-. Sek-ppose further that thz p=r4aion s. d- is c- = Z. 0~ and

one wants to test the hypethesis p = 13. C-m-4puting -z frogn Sq. (S. SZ).

one obtains

z. -' 13 iY 10
Z. 0

an tabse of Mhe normal distribution (see Table 5-.1) one ids that

+1.05 comtains 70.6&% of the area under tibe normal dessit-' fmnc;Jon.

Alternatively. the sample vaiwe 'mou-ld lie outside the range ±1.05

4Wfroxiwately Z9 - 4 ! of Mhe tie. Therefore. working at the 51% level

of significance one accepts the hypothesis that pL 13.

(c) Gener%! Case Where a, is Unknown

For the more common case when both4 and IL are unknoswn

consider Mhe following statistic af the Cgeneral form

, Y (5.53)

whre Y and Z are independent raidmi variables. The variable 1

is normally distributed with meaa zer-i and s.d& of unity while Z has

a X distribuztion with a aegrees; of freedam- The distribution of IV*'

is known as the "Student- or IV' distribL-tion- (See Section S. Z. 3.1

The -Stderwt-tt' distribution is acti-Adly a family of curves de-

pending on a parameter a. the nymber of "degrees of freedom" (d. f.).

Agraph of the t-distributiom even for small a. closely resembles the

Pormal density function altmough actually having muzch '%!icker" tals.

in other words, the probabilaty of large deviations from. the mean zs

higher than in the case -A the no.-mal distribution. The expectation of

t is zero for na>I and the variance is n/in - 2) for n > . For a CI
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the mean is not fimi:e. u+%!e the "ariaace Es C finite for a 4 2. now-

e-ver, prca:iejhies can still be c vrteg b~r a = I ad taxies of the

t-distribution usually raige -Irr = = i tc = = 1ZO. (See Table 5.4.)

The variable t is asvptotically normal with inean sero ae

uak" s - . for large a. in most practical situatins a > 31 is a setfi-

ciertly large v.alue to kastffy use of the -ormal apwu-atos

Soie specific forms of Eq. (5- 53) will now be gives for testing

hypotheses about means. s samples of size N from a normal "4&-

iation with mean R and s. d- 0-. :be estimates z and a2 are is4de-

pendent. The samplel estimme is normal with meas p and s. L
z z. Ns i cle r f nes a x distribotion with (N - 1) 8.1 A

somewk i.tiveye szificati"o for NS for, havisa x dierutit

is as oBows: Chi-square is essentially Ui sum of sqmared devistions

from some fixed number - the exapeed frequency - then these *murof

divided by some fixed ownber - again t~e eapected frequency.

For C i-square with k class intervals one has

k 0_-" - F.) 2
";) (5.54

For the variance. ; rewrr" Eq- (5.48). one okaine

2
As in X . Eq. (5. 56) is a sum of N squared variables, but with an

additional restricton. in this case
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K

Ccmsi~r ib , tui~4*4lI7r&

Note dast I is woma w-*~ mbran, *o and st a -wJe Z is
x discribotiea wit-l %'%. - 0~ 4Lf. -Wiz& 4AJIAL. zi* rtqvirenmes 9w

iM aribt in s~.£. S.0 ~ s

Com~painga sample me&A R agaismi some h~pothet.J popwaift

Amaher importam appiucauo of the : distribuhiso is as f*flows-

GcaSsder :we ioePrea savmi4es of sist K and X with aemas
iliad Z & wAC vatawe s and S, respectiv*S'. if the two Parent puwiS-

tin ~v meas it &S I, a" a comma- t. .r. wxt M f.!owiag

The vari&?Ae

is mormal ith maean v;ero aad sd
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4.2

Alo, cae wrie

I I

-tbich has the M.. 23o 's.l L ,-4 This p-rrdes a

test for coMpar-ing tw aWm Mean. TheSU tn)Cs" wll be the

sYPnbesis V.5 =p.2 or (y-. - v,= 0. and the test will be for eqszlty
og iR acd j. rere are saXme s~iLr warimtiocsa to the a-bove case which

Wil be acted is the section or- applications below.

(d4 Applications

Several sligtir different siwuati.a eats! in appyina the t

distrikuoc" to tests aouameants. Each case has a fetent-*j approac-h
for !argie" or "s.m'1 5 -ies Thet nia cases arc-

Case 1. Tests a-bou IL -bon r- is -ak~wm..

Case Z. Tests abe-t I 1 - p2
2)Wh*a r and -7 are, h&wa.
i)When r, ad a- are wshacn -z

prcsum-eU ial. z
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iii) When a- and o-- are unknown and

unequal.

Case 3. Confidence intervals for estimates of ±.

The general procedure for all cases is as follows. First, the

mean x and standard deviation s, as given by Eq. (5.47) and (5.48).

are computed from a sample of N observations. Then t is computed

as given by Eq. (5. 60) or (5. 64), whichever is appropriate. Assuming

one is working at a given level of significance, say a = 5%, one then

looks in Table 5.4 under the appropriate number of d. f. for tp, wh.-re

p = (q/2). This is for a "two-tailed" test, which is correct assuming

thn sample mean can vary to either side of the hypothesized population

mean. In other words, 7. 5% of the t-distribution lies to the right of
t . and also 2. 5% lies to the left of -t?.5 giing a total of 5 a of the

area in the two tails. Therefore, if J tI > t2. 5 it can be concluded

that only 5% of the ti--e .ill a value, this large be obtained if the means

are really equal and therefore there exists a statistically significant

difference, i. e., there is a 5% chance of rejecting the hypothesis of

equality when it is really true (Type I error).

A "one-tailed" test is acceptable if the logic of the problem in-

dicates the difference in the means could be in only nrne direction.

Then for the 5% level of significance, one looks in Table 5.4 under

t 5.0 since one is concerned about a deviation in only one direction.

Note that values of r are tabulated in the same manner as X . For

n degrees of freedom, tp gives the proportion of area p under the

density function for t in the interval (t , o). However, the t

distribution is symmetric whereas X is not. The entries for n = oo

are values for the normal distribution. In most practical situations

as previously mentioned, for n > 30, the value for t is close enough

to that of the normal to justify using normal tables, and n > 30 will

be considered a "large" sample.
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(e) Computational Examples

Case 1. Tests about L when a- is unknown.

Suppose a sample of N = 6 observations has 7 12.3
zand s = 4.8, and it is desired to test the hypothesis

that i = 15 at the 50 level of sigif-icance with a two-

tailed test. Compute t by Eq. (5. 60).

t = 1 -z. - Is=Z.76

In Table 5.4 for 5 d. f. one finds t. 5 = 2. 57. This

value implies that + 2.57 wr Ad contain 95% of the area

under the density function. Therefore, working at the

5% level of significance. the hypothesis is rejected

since 2.76 > 2. 57.

For the case when N i= large, say 37, compute t

as in the above example but now refer to tables of

the normal distribution rather than the t-table.

Assume the same mean and variance. To test the

hypothesis IL = 13, compute

t = 361.3 - ,3 =1.91

The 2. 5% value for the normal distribution is ,0 6

so in this case the hypothesis IL = 13 is accepted.

Case Z2. i) When o- 1 and 0- 2 are known.

Here is a special case similar to that described in

Section 5. 5. 3(b). As explained previously, one need

only refer to the table of the normal distribution

after computing

i 3 z -
(5.65)

_z

N1  N2
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to find the percentage of time the variable lies outside

the range +z.

ii) When o-, and a-, are unknown but presu.ed equal.

Assm-ue two samples of size N, = I and N Z = 12

with means 82. 1 and 72.6 and variancer 276. 16 and

3Z0.24 respectively. The hypothesis to be tested is

that of cquali- of means. Letning (IL. - p2 ) = 0.

compute from Eq. (5. 64).

t = (12)(11)(21) 82.1- 72.6 1-2.
23 (11 )(276. 16) + (IZ)(320. Z4)

Looking in Table 5.4 under (N 1 + N2 - 2) = 21 d.f.

one finds t2.S = 2.08. The value 1. Z6 is within the

region of acceptance so accept the hypotheses that

ILI = Fi2 .

It should be noted that when samples are small and

variability is large the observed difference mu " ba

very large to appear significant. The failure to find

a significant difference may be due to the small

number of cases examined rather than to the equality

of population means.

For large sample sizes compute t from the same

formula, Ec. (5.64), b 't one may use t-blcz o' :.le

nr-rmal distribution rather than tables of t ii con-

venient.

iii) When a-n and o-2 are unknown and unequal.

Discussion of this case for small samples is fairly

complicated and will be left for outside study.

Case 3. Confidence intervals for estimates of tt.

Given :% sample estimate i of a population mean IL

it is possible to compute an interval about i which
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has a given probabilify of containing the pop-:ation

..- nea--- Chco--inz .o-e small level of significance

S;- perccat, ubuaIly 50 or I -. , a conidence coefficient

(I - a) is obtained. Now consider the expression

Prob t(/2<X< tPa/2 - I - (-I5. 6)

This is read as :he probability of the expression in the

parenthesis is eqial to (I - a). By a simpie rmanipu!a-

tion of the abo:e inequality one finds

t i ) < X + t =0 -d)

15.67)

A confidence interval corresponding to the sample

estimate 3 of ;t has now been obtained. For example,

choosing a = 5 there is a 95; probability that IL is

included in the interval

7--1 - (5.68)

where tZ. 5 is obtained from Table 5.4 under (N - 1) d.f.

Using the hypothetical values from Case 1: N = 6, R = 12. 3,

s = 2. 19 and t 2 .5 = Z. 57 one can compute a confidence

interval using Eq. (5. 68). The result is

+ S- t 2"512."3 + 2.19 2.57=13.4
2.5

and

- t 2 "5 =1Z.3 -2 Z. 57 = I1.Z

There is a 95%. confidence that the true population mean

p lies in the interval (11.2, 13.4).
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(1) Other Applications

The t-distribution arises f£ruently in statistics. Another im-

portant application is for testing regression coefficients for significance

(see Section 5.6. ZD).

5.3.4 Applications of the F Distribution

(a) Introduction

In applying the "I" distribution as a test for equivalence of mTeans

from. two samples, it is necessary to know whether or not the variances

of the two samples should be considered equal or not. The F distri-

b-tion, described in Section 5. 2.4. exists for making this test b4ased

on computi.-4 the ratio of the two variances.
2

Consider two independent variables U and V which nave X

distributions with m and n degrees of freedom respectively. The F

distribution as defined by !he variabie

F = 4m = 1 ] (5.69)

lead-- to a useful test about the ratio of two variances.

From previous considerations pertinent to the t-distribution

one recalls that in samples from a normal distribution, the random

variable Ns / Z has a XZ distribution with %N - 1) d. f. Let sZ

ands be sample variances based upon random samples of size

and N respectively. Sinc N1 siU and Ns Z possess in-I! Zn "Z I~p c i ~ T  -n.. l I, 1a/0"2

dependent X distributions with (,N! - 1) and (N 2 - 1) degrees of

freedom respectively,

U I (5.70)
m (N.,-t)a t

and

V Z #(5.71)

n (Nz -

satisfy the requirements for Eq. (5.69).
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-> 7

In general the hrypofthesis .j=,j-. can be made where a is
Z.

some constant. Eq. (5.69) would then become

N s-,/a(N1 -)

which possesses the F distribution with (N, -1) and (N2 - 1) d. f.

A more usual situation" is the hypothesis c-~ c2 , and Eq. (5.69)

is then

IF= (5.73)

which also possess the F distribution with (N I - 1) and (-M - 1) d. I.

This distribution is well known and tabulated, and provides a test for

comparing sample variances. (See Table 5. 5.) For the special case

of equal sample sizes N. Eq. (5.73) reduces to ;- simpler form

F= (5.74)

N '(- 1. N - 1) df.

The general random variable F defined by Eq. (5.69) 'sa

mean value and variance g-'*.en by

E(F) = a- for P > ?, independent of m
n -Z

VII(F) = Zn On+ n- Z) Qr n> 4
m(n- Z) 4(n -4)

For the special case of Eq. (5.74), where n = m = (N - 1). the above

becomeg
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Eo-- for large N
N- 3

Var(F= 4( - MN f~or large N
(N -3)2(N- 5) N

Thus. !or large N. the value of F should be close to unity for equiva-

lences of -variEances.

The u~niquze roe: F of &he equation
p

Prob(F'P F) p p (5,76)

wherc p is a g.;ven percentage, is called the- P percent value of the

F distribution,. and is tabulated in Tabie 5. 5 flor cdafferent percentagce

values of p. From the definition of F. it may be showr- directly that

F! - (5.77)

p

so that given the value of F pfor one side of the distribution. one can

immediately find the value for the opposite side:. Thus, the (I - p)

percent value of the F distribution equals the (I - p) nercent value

of the V /F) distribution.

The F distribution aiso bears interesting relationships to the

t and X distributions under certain conditions. When n = 1,* for

F 0 , =(5.78)

where F has (1, in) d. f. and t has mn d. f. This relation is not

easily shown but can be found in the available literature. When
M-&D 3 2 -frZ and F will approach s/ .But ns 2 /o 2 has

a x 2distributzion with n d. f. Hence.

z
25 2 (5.79)
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and
2= 1

F =- 1  X (5.80)

Therefore, when m approaches infinity, F has (n, oa) d. f. and F

follows a X zn distribution.

(b) Applications
2

Tabulating the F distribution is more complex than t and X

since there are two degree-of-freedom (d. f.) param-eters. This would

require a three way table so in the interests of economy of space, the

different percent values given are limited. Tab!i 5. 5 is in four parts

for the 5. 2.5. 1.0, and 0.5 percent values with r and m d. f. for

numerator and denominator respectively. By the reciprocal relation

of Eq. (5.77) one always has the 95, 97. 5, 99, and 99.5 percent values

also.

To test for the equality of variances from two samples of size

K and N 2 one must first compute s1
z and s z It is customary to

2 2 2
compute F from Eq. (5.73) with the larger of sI and s2 in the

numerator. This is allowable due to the reciprocal property. Under

normal circumstances, a two-tailed test must be used. Since the

hypothesis is that the variance estimates s and s 2 come from popla-
2tions with the same variance, too great a discrepancy between 0l

and s is damaging to this hypothesis regardless of which is larger.

The region of rejection must include both tails of the distribution so

that the hypothesis will be rejected if either

2 2 2 il o ~s 2
1/8 2 is very small or s2/s 2 is very large

which is the same as if
;'a is veysal

is very lar:-e or s-/s I is very small.

Therefore, working at some given level of significance a. rej,,ct r.te

hypothesis of variance-equality if F > F
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Conceivably, the logic of the problem could indicate a one-tailed

test. in this case one should reject if F") F a

(c) Computational Example&

Assume two sp-.,.:,es of size N1  21 and ?- 2 =1H th zs50.6

and s = 63.8 and o::c wants to test the hyheis 0-! - atthe5.

level of significance using a two-tailed test. Computing from Eq. (5. 73)

one obtains

Z0(50 E-s
20 3.75

11(63. 8)
1o-

in Table 5. 5b under n =20 and m = 10 d.f. one finds F 2 -5 = 3 42.

Therefor-, one can. discard the h-pothesis of or- = a- at the 51,

.evel of significance.

IM a sinpler case of equal samp.le sizes, say N1  N 2 = 31.

with variances sZ 260. 5 and s = 217. 1 one conputes from

Eq. (5.74)

2= 60.5 = .

217. 1

Working again at the 51 leve-- of significance, one finds from Table 5. ;b

under (30. 30) d.f.. , = 2.07. l this case, accept the hypothesis

of q--,ality of variances.

Application of Eq. (5.72) under the hypothesis o- ao-2 would

be identical to the above computational procedures except for including

the factor a.

(d) Other Applications

The F distribution is applied extensively in the area of analysis

of variance. Variances for several interact--rg f.-ctors can be studied
simu!tancously using these techniques. (See Sections S.4.2 and 5.5..7(b).)
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5. 4 STA7LI fCAL RESULTS FROM RE-PEATW EXPER MEKITS

in samples of vibration data taken !r- single fEk of some

vekiclc. one ca mi nlyyake Cstnmrc&1C of parameters off interest con-

cernirg that one fligh. Some confidence, in the form of a pro iilty

statemet. r--ay be attacked to these esimates based upon certi

start tc' considerations such as the frorm of a prabahiity- dex-sity,

funcstion and sao..ple sizes it is desirable to be ablec to make sone

svazenen-ts as to Ibow reepresatire one flit-k is of ocher flighs of

thec satne or similar vehicles un-der sinilar conditions. Thi-s cannot

b= dome aithnt' repenimig the exuerimen. i e-. the flight. wticL in

ta can he give some emirates of variation betweifn flightAs as

opposed to varzzoc within a fight- Statistical tests can be pcrfnr-zd

to determine w-ether or r9t the vari-Mbity is the sa-.e fro= f4 to

fIgt And wheter cr bat an ararace mibrazioa level- (e-g. rn

acceleration) is the same (roes (tight to Rlight. WEircz the see evari-

ability and average vibration erdl from flight to flight (within the

iL'fit. of adored rando-m varia:tia. estimatues ca-- be obtainmed of the

oer-a!l mean and variance -with a specific corfidence) of the entire

population of these fightsz.

This section ef the report discusses certain increased infonaa-

tion and confidence to be gained in taking vibration samples from several
.jft=wrc fligs as opposed to -- I one iliht. Statiszal analysis of

the data from a single flight is described in detail as well as statistical

analysis for dala samples from several flights. The distinction is ex-

plained bewen a large sample est mnate from a single fgh4t, as

opposed to an estimate obtained from. co-bining a number of smaller

samples frsga several fllgbts. It is s C; meaningful re*ts way

be obtained from repeated experiments -ue to simultanems verifica-

tion of important assumptions concerning the whole class of flights.

S. 4. 1 Analysis for Sizgle Flight

Assu-ne N observations of some pararneter exist for a single

fligk (exper-nea). One ct then compute, for this 1 it  flight. the

meCan
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Assume N observations are obtained from each of k flights

and one wishes to test the hypothesis of equals means.

That is

1LI = 1t?- . " Ik2I "  (5.90)

if this hypothesis i n . . e assumption of normal populations with

equal variances is justified, then all the observations may be regarded

as random observations from a single normal population with mean R2
and variance c-. The means of the samples would then be random

observations from a normal popLIation of sample means for which

E (x) = p. (5.91)

and

2 o-o-_ = - (5.92)
x N

The unknown variance cr can be estimated from the variation between

the k sample means (between groups). It can also be estimated from

the within flight variances (within groups). The ratio of these two

estimates provides the statistic for testing the hypothesis.

(b) Estimate of a- 2 from Variation Between Groups:

Let 3x be the estimate of the mean from the ith sample. First com-

pute the mean of the means

k

- i=
"~ (5.93)

k

and then

k

NSZ = i=1 (5.94)
A-3k
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r2 =c,2 am'a 2 frmZ hsince No- = -. Equation (5. 94) is the esti-ate o a from thex
between group variation. Note that this estimate is based on the

random variation expected in sample means o size N plus any addi-

tional variation due to real differences in these means if the hypothesis

of equal means is false.

(c) Estimate of (r-Z from Within Group Variations:

Next pool and average the variance estimates from each flight to ob-

tain the second estimate of o- , the mean square within groups. In

general, weight each sample variance according to its number of de-

grees of freedom and divide by the total number of degrees of freedom

which gives
Z _ 2 . 2

(N 1)sf +(N 2  )s 2 + . .. +(N k  
1 )k (

s 1 (5.95
N I +N 2+... +N k - k

In the casca of equal sample sizes Eq. (5.95) reduces to

V - 1) X._.si  F
s i=1 i= (5.96)

Nk - k k

Alternatively, one may write

k N
Z (xii - xi)

52 1= =1 (5.97)

Nk

for computing directly from the original data. Note that this estimate

will not be affected by any variation due to different means.

(d) The Variance Ratio: Two independent estimates of

the population variance have now been computed, namely, No-, which

has (k - 1) d.f. and s which has (Nk - k) d.f. To form the desired
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ratio recall that k(N*s,)/o -- and Nkfs,/o-- have X distributions
with (k - 1) and (Nk - k) d. f. respectively. Taking for the rumerator

2 z
the term with the greatest expectation. k(Ns- /o - , the F ratio then

is

IkI x~N - (Nk - k)

_ (k -=__ x (5.98)
Nk(sZ)/o-2  Nk 1(52) 7 (k- i)

(Nk Nk -k

or

k
NJ -Nk - k)

i=l__ _

k N ( (k- I)

Since a one-tailed test can be applied. F is compared with F with

[(k - 1), (Nk - k)J d. f. The hypothesis is rejected ihe ar percent

level of significance if F > F.

(3) Parameter Estimation.

(a)' Mean Vibration Confidence Interval: Assuming,

that at a given level of significance, equal variances and means from

flight to flight exist, statements can be made about the probability

of exceeding certain values within a flight, and the over-all mean
vibration level can be located more precisely. For instance, suppose

an interval with a certain probability of containing the true mean A

is desired. Assuming k flights of N observations each with means
zx and variances of s., the over-all sample mean i can be computed

by Eq. (5. 93). Then compute the variance of the distribution of means

of samples of size Nk by computing the population variance estimate
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from Eq. (5.96) and dividing by the total sample size Nk. This

gives for the standard deviation of the means

k 2
E i

s 2 __

s- = where s = 1 (5.99)X N k

To obtain a confidence interval that has a probability of (I - C) of

including the true mean ;, use the fOllowirg equation:

Prob - t(s/ s2)  = ((ca- 0) (5.100)

or

X t(/ 2 ) (5.101)

where the value t(, 2/,) is obtained from the tab-cs of the t distribution

with (Nk - k) d. f.; that is. Lhe valuc defined by the equation

Probt' ( 2 )J = (&/Z) (5.102)

If (Nk - k) > 30 the t distribution approximates the normal distribution

closely enough so that one may use

x+X ms(5.1J03)

where Xa is obtained from the tables of the normal distribution.

To illustrate the two cases, suppose the aample size is Nk - 16

and one seeks an interval that has a probability of (I - a) = .99 of

containing r,. If k = 2. it is ascin forom the tab!s of the t distribution

under 14 d.f. that to. 5 = 2.98. Usi-.n Eq. (5. 1011

- - 2 ; + 7--98) s =-i + (.8)s
+ 0 5  1Nk 3.75
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With Nk = 36 and using Ea. (5. 103). X, -:i found to be Z. 58 and the
interval is

(bi Indivi&ual Vibration Confidence Interval: To make

a s; ----lar statement abcft the individual values rather than the mean

value of a flight, a tolerance interval may be computed using Eq.. (5. 86)

and the procedure described in that paragraph. Note that now the

sample size is effectively considerably increased from N to Nk and

as a result the interval will be significantly smaller. Figure 5. 5

gives an indication of the dependence of K on the sample size for a

cornsta--t proportion P and confidence coefficient (I - a), The data

in Fig. 5. 5 is a plot of the speciz! case in Table 5. 6 (at end of section)

whr.re P =0. 95.

10 P = .95

(1 e =.95

for N = co

5 K = 1.96

K

31

2 46 810 2O N C

Figure 5. 5. Tolerance Factor Curve
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(c) Population Variance Confidence Interval: One can

also obtain an interval estimate of the population varian4e. An estimate

of s 2 with (Nk - k) d. L may be computed from Eq. (5. 96). Then the

procedure described in the analysis for a single flight will give the

confidence interval for the population variance. Depending on the sam-

ple size, either Eq. (5.87) or (5.88) is applied.

An estimate of the population variance with (Nk - 1) rather than

(Nk - k) d. f. may be obtained at the expense of recomputation of an
2

s directly from the original data pooled, that is

Nk
2 !2

= I(5.104)

Nk

The danger in using this method is that the flights may actually not

have the same mean but by chance the differences failed to be caught

by the test- In this case this estimate of the variance will contain

the flight to light variance and will be larger than it should be.

(d) Results if Means are Unequal: Equation (5.96)

still gives a iegitimate unbiased estimate of the within flight variance

whether or not the means from flight-to-flight are equal. Therefore

tolerance intervals may still be computed for the individual values

within a flight in the manner described in (b) above.

One can also estimate the variance of the distribution of the

flight-to-flight means in the following manner. The between group

varia-ce eatfmateNs is an estimate of the within group population
x

variance plus the additional variance due to the flight-to-flight varia-
2 2

tion. Letting sM = No X

S + Eui - 2 (5.105)
M F IL

ASD TR 61-123 5-48



Since s as computed from Eq. (5.96) is an estimate of cr- , the

relation

s2 s 
--Estimate of a-7 (5. 106)

N

is obtained. If the flight means are normally distributed, one may

again compute tolerance intervals using k as the sample size. Note

the means are being cansidered as individual observations from some

population in this situation. Averages of N measurementf- of the

heights of k men would be an analogous situation.

For the o_,er-all' mean x as computed from Eq. (5.93). a con-

fidence interval can be computed with aid of the normal distribution

by the following relation:

Probji+ ]'a ____ = 1 -0 (5.107)

where X is taken from Tnble 5. Z.

5.4. 3 Selection of Sample Size and Number of F!.g.,LS

Methods exist for the selection of sample size N and number

of flights k so as to minimize the tozal number of observations Nk

if some additional assumptions are made. Equation (5. 105) indicates

two components of variance in the estimate of variance determined from
Zthe variation between means. If the second of these, , is zero.

then the meansare equal and the hypothesis is accepted (1 - a) per-

cent of the time when working at the a level of significance. In this

case the Type I error is a percent. That is, the hypothesis is re-

jected cr percent of the time when it is really true. For selection of

N and k one must also consider the Type II error J3. That is. the

probability of accepting the hypothesis when it is really false. Tables
8.3 and 8.4 in Ref. ,6J based on pages 311-314 of the text, determine

N and k as a function of a and 3.
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An alternative way of considering the probiem ,;i given =

pages 527, 5Z8 of Ref. [5]. Here the -"operaiing characteristic"

(0. C.) curve of t% te test is co:sidered. To obtain on 0. C. curve

the probability of acceptance of the hypothesis is plotted versus

some measure of the deviation from the desired value. Then, the

N and k that gives the 0. C. curve with the steepest slope, con-

sistent with economically feasible sizes of N and k, is selected.

This would be the test thnt discriminates most effectively against

values that are considered acceptable and values that are considered

unacceptable. These 0. C. curves, or "power": curves as they are

sometimes called, will be discussed more fully in the next section

on quality control procedures.

There is no real advantage in taking k samples of size N

over one large sample af size Nk if ii. is known for sure that all

the flights will have the same vibration levels. However. if one

i:as any reservations as to the vibration levels from flight to flight

(as o certainly should), several flights must be sampled to verify

the assumntions. This is -- e real worth of the repeated experiments

wh.le at !hc same time allowing the computaticn of better estimates

of the mean and variance of the population due to the effectively in-

creased sample size. When the hypothesis of equal means holds,

one is still able to pooi samples while having the assurance of a

given probability that some of the assumptions have been verified.

Estimating vibration levels for another flight from a sample

of a single flight, even though the sample of data is large, is at best

a somewhat tenuous prncedure. However, collecting smaller amounts

of data from several flights will still allow the use of the final, large,

combined sample size with the corresponding narrower confidence

intervals while having much greater assurance that tLe estimates

to other flights arc reasonable.

5.4.4 Computational Example

Assume the hypothetical data in Fig. 5.6 below has been ob-

tained from 5 flights with sample sizes of 15.
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___-m- Waber

_ 1 31

_____ 5121 3 2

2n

E i=5 5 1 i5 15 5

(o - k = 5)

Firs. ro pt th....tso hema ndvrace n

s~~~ foEq(5 1ad(554.ao !;-~

s . 1.7± 2 . 2

kt 4

_ 

_I -

-i I_ _ I
15I 1 I5 15

(I = 15, k = 5)

Figure 5.6b. Computational Example

First. ornputc the estimates of the mecan and variance, xi and

s. from Eq. (5.81) and | ) 'ow c: ....- '....

1 1 1.1 1 Z

s t 1 . 109 s =1.915 s1.15 s 4 = .995 $s= Z. 065
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Also ccm.nptacl ut ome-aUl mean x f-rn Eq. (5.93.

1)Varian-ce gqizL-2i!y Test
The atz rkiH be assL-ne:i to be taken from a normal

pora7latic so zht first hypothcsi.s 1o be tested is VJ= Zr4 52
For this. use Eq.. (5-z9') arnd comnpute

5z 7-65
sz .995

ln Tale 5..?for k 5, and =nN - I1 4d.fL. Fw w4.. is found

for the 5%6 level of sgicac.Since the cuwuputed vaAue is 1.0C$.

accept the hypothesis of a con-anon variance at the 5%6 level of sig-

(2) Eqvsality of Means Test

The next hypothesis !o test is I 1 =L IL =F

To do this firs: compate the estimate of the variance from the between

group raoafrom Eq. (5. 94).

z I___ is 7U

x ____ = IS 1 149ZZ

TheM second estim-nate of the variance from within group variation is

com.puted from Eq. (5.96). This giVes

S. -

Ic 5
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Frt! is ccnpatt-cd iroem rq. (5.'

e~l. =c fl6s t~ar she 5L; lewdl of si.AaiC-ncc -IC*-0 (4. 70) z 2L. 50.
Siacc the ecpatct nbtc is lts$, accept cze h-rr4Fssis, ofeqa

=eans-

(3) &eant~r V=srmicc- Ccctidtee Cen

To ckzt= A c4,-tdctc a"erral chat "s Ia proba~aiM

of Ii - e) v At ofw~ii the :xwer-Si mns E.5.Cg

- s

(4) Etz-'idnvl ilanc omahcncc 1interwal

A !h~erxanee Ierwal Vm-y bwe cpsed for ihe i-

diricA-i rablcs for _- flicks. The i-erval hMu will Ponxai P 99

of the na (I - it) a 95lst .,f he tune.v i obuzand uasing Eq.(5.

I- Table 5.6 tbtfacr K for as z sizof krv5 is 3.ODOZ.
tbsilg x froen Eq. (5.93) and S from Eq.(.9)

i7± -Kps) I w-1)(.0(.1)c(.7 39

Tha is. the intlerval (-4- 20. 3.66) will! continz 90, of sHem values in

05 oat af :03 schti iacrrnis vsn: --re cicmnpud.

(5) Population Varian-ce Confidence luzerrazl

For an inaterval estimaze of the popualaion standard

deviation or Eq. (5.8) is used tb %k as she sample size. For
a ccnfi.'nce of" 91V
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R. 1 5 6 3 5! 3 35

! J 11

Figure 5.7. Control Chart for Mean Values (k = 12. N = 5)

(b) Application to Flight Vibration Data

The control chart's application to flight vibration data

should be as a rough visual aid to obtaining indications of a drift of the

meazn vibration level over a flight phase or as an indication of some

unusual occurrence if a measured mean value were to exceed the

control limits. Flight-to-flight means could also be plotted this way,

but it is doubtful if enough "flights" would be conducted other than in

laboratory experiments.

The control chart may also be used as a rough test for random-

ness of data, since non-random effects should be caught as point outside

of the control limits on the chart. It should be noted that with fairly

large sample sizes, say N > 12 or preferably N :30, the control charts
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are safely applied whether or not the underlying distribution is normal.

On this basis the control chart may often be useful when other tech-

niques are not.

The control chart for mean vibration measurements is only one

of many different variations of this technique. See Ref. [5] for a more

exhaustive discussion.

(c) Comparison with Analysis of Variance

The analysis of variance technique described in Sec-

tion 5.4 concerning repeated experiments is comparable with a mean

and standard deviation contro! charL in many ways. They are not

2xactly equivalent; however, they both give a test for equality of

several means. The control chart has some advantages in that it

gives a visual picture, it more or less pinpoints the exact position

of the offending mean values, and is of course somewhat simpler to

apply and understand.

However, the control chart is most useful where observations

are easy to obtain; that is, not time consuming, reasonably inexpensive,

and plentiful. The analysis of variance technique is much more use-

ful when the maximum amount of informati-n .'t be obtained from

the minimum amount of data. This indicates that !or limited flight

vehicle vibration data, the analysis of v.riance will probably be the

necessary technique.

5. 5. Z Inspection Sampling

The situation may arise where it is convenient to measure some

vibration parameter in terms of whether or not it exceeds some safe

or acceptable level. In this situation the observation may be interpreted

either as "acceptable" or as a "defect". Under these conditions sam-

ples of N observations could be considered as coming from an accept-

able or unacceptable population having a certain percentage of defects p.

This is assuming for instance, that ii eome vibration level is exceeded

only a certain small percentage of the time, then no damage will be

done.
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Under these conditions the application of inspection sampling

techniques may be useful. These techniques basically consist of in-

specting the sample of N items, and rejecting the population as ex-

ceeding some percent defective if the number of defective items is

larger than some predetermined number of allowable defects c. With

the sample size N and "acceptance number" c determined, an ). C.

curve may be plotted to indicate exactly the probabilities of accepting

or rejecting a population with a given percent defective. To discuss

these sampling plans and consider methods of computing various

0. C. curves, it is necessary to first review briefly three important

discrete probability distributions: the binomial, Poisson, and hyper-

geometric distributions.

5. 5. 3 Binomial Distribution

The binomial distribution is a discrete distribution arising

from an expansion of (p + q)N where p may be thought of as the

probability of a success and q = I - p the probability of a failure.

The '-experiment" having these two possible results is repeated N

times, and the outcome t,f the experiment is always independent of

the past results. These repetitions are known as Ber,-t'lli trials.

That is, repeated independent trials with only two possible outcomes

for each trial and their probabilities remain the sar.e :h.radghout

the trials. Writing S for success and F for failure with p the

probability of S and q the probability of F, it is clear, cince the

trials are independent, that the probability of any given sequence

of successes and failures is

Prob((SSFS... FS)} z ppqp.., qp (5.113)

where S and F are just replaced with p and q respectively.

If N is the total number of trials and k the number of successes.

the probability of any one sequence of k successes in N trials is

pkqN-k (5.114)

ASD TR 61-12; 5-59



To consider the probability of the totazi -nir~cr of successt- k out

of N trials, the numbcr of different ways of distributing k letters

S in N places must be computed. This is just the number of comn-

binations of N things taken k at a time. That is,

ik) ;-!(N - kc)!

Then the probability b(k; N, p) that L'S Bernoulli trials with probabilities

p for success and q for failure result in kc successes (04 k4C N) is

13(k: N, p) (NpkqN~ 516

That is, multiply the total number of possible favorable events by the

probability of cna favorable event. In particular, the probability of

no successes ir. N tria's is qand the probability of at least one

NN
binomial expansion of (q + p)N, therefore the name.

In the application of the binomial distribution to inspection Sam-

pling it is convenient to rewrite Eq. (%5. 116). Let i;c/N) stand for

the probability of c defective items in a sample of size N when

sampling from a population with a fraction defective p. Then Eq. (5. 116)

can be written, replacing q by 1 - p and kc by c,

p (_E) =fN) PC(, _ P)N-C = N! p c U - P) N-C (5. 117)
N C c! (N -c)

J1 pl = c/N is taken as the variable in the binomial distribution the

expectation can bc shown to bc ree Ref. (53I).

E(p') = p (5. 118)

and the standard deviation is

(r, I - ) (5.19)

5-60
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5. 5.4 Poisson Distribution-

Calculations using the binomial distribution become quite cum-

bersomne for large N. Therefore, approximations to the binomial

are quite helpful in applications. In inspection samplirg, where N

is large, p is usually quite smial and the condition

X= Np , X = constant (5. 1Z0)

is ofteiz reasonably satisfied. In iuch cases ar. approximation of

b(k; N, p) due to Poisson is convenient. Note that

b(0; N. p) =(I1- p)N (5.121)

Now substitute Eq. (5. 120) which gives

b(; N. p) =(I - N.- 4*- (5.122)
N

for large N. By simple algebraic manipulation the following relation

is obtained:

-b(k; N. p) -p(N -k + 1 (5.123)
bik -1; N.p) qk

From the assumpiion of Eq. (S. 120). Eq. (5. 123) may be rewritten

in the form

bk_ NP) _ - (k - 1)pr_ X(.2)

b(k - 1:;4,p) qk k

since when p is close to zero, q is close to one, giving the above re-

lation. For k = 1. Eq. (5.124) and (5. 122) yield that b(1; N.p)-=Xe-.

For k = 2, one finds b(2; N, p)~ A(h e 4 ' )/Z, and generally by induction
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This is the desired Poisson approximaticn and is usually designated

by

p(k; X)= e ; .= Np (5. 126)
k!I

For inspection sampling it is more convenient to let P(c/N)

stand for the probability of c defective items in a sample of size

i, and write here

P cE X =Np (5.127)

In words, P is the probability of c defects in a large sample of

size N with a small fraction defective p such that Np m X. For

example. suppose N = 500 and p = . 02. Then Np = 10 and the

probability of c defects in a sample of size 500 is

The mean value of the number of defects c in N items is X and the

standard deviation is V. (See Ref. (i) In terms of the variable

p' c/N introduced previously, Eq. (5. 118) above,

E(p') =X ; 1 = Vrk (5.128)
p

5. 5. 5 Hypergeometric Distribution

A different distribution is sometimes useful in computing

probabilities of finding the numbers of defects in a sample fromn a

small, finite population. Suppose the total population size is S

and it contains m defects. Assume a sample of size N is taken

ASD TR 61-123 5-62



and the probability of finding c defects is desired. First consider

the total number of combinations of N units each that may be made

from S units. This is the total number of different samples of size

N that may be drawn from a population of size S, namely,

( = ! (5. 129)
N N (S - N)!

Second, note the total number of combinatiots of N units that may be

made from. (s - m) units, i. e., the number of possible samples from

the "good" units in the population. This would give the probability

P(O/N) of a sample of size N with zero defects as

=-- (S -!(S - NY (5.130)
(N) (S) S! (5 - m - )S

N N:(S - N)!

In other words. P(o/N) is the ratio of the number of possible ways a

sample with no defective items can occur to the total number of ways

all samples can occur.

To proceed, consider the total number of ways a sample of

size (N - 1) may be drawn from. %he (S - m) good units. Multiply

this by the number of ways I item may be drawn from the m defective

units. This would give the total number of ways a sample with (n - 1)

good units and one defect may be drawn from the population. Then the

probability of a sample with one defect is the ratio of this number of

combinations to the total number, or

IS-mfm (S - M!m
1Pd (IN-lI ) / ( - (N - 1)!(S -m-N + W)! !( - 1)!

I S!

N) N'%S - N)!

(5. 131)
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The above rclation illustrates the value of the notation [-I for com-
lb I

binations, and the complete expansion on the rige1t in E:0. t5. 131) will

be avoided henceforth.

In general, if a population contains S -snits with m defects, the

probability P(c/N) that a random sample of size N will contain c

defects, where c of course is less than the total number of defects

m, is

IS -milml
-s A cl 5132)

NS)
This gives what is known as the hypergeometric distribution since

it is the general term in the series by that name. It can be seen

that computations might become quite cumbersome with Eq. (5. 132).

If the ratio of the sample size to the poplation size is iess
than 0. 10, the binomial is usually used as an approximation to the

hypergeometric. If the sample and population size are both large

and the number of dcfects in the population is not too small, a

normal approximation may be used. The mean (see Ref. (5) of

the normal approximation would then be the fraction defective p.

and the standard deviation would be

- I -P) (5.133)
P N

The proba.bility of c or less defects in a sample of size N then is
given by the value of the standardized Gaussian distribution function

Oz)= P.ZTl ) exp (-t . ~dt

where z is
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Z =z(c '0.5) = fi ..- 51

The factor (c + 0. 5)/N rather than c/N is Eo account for dividing the

distribution into intervals having c as a midpoint; that- is. for the

probability. of cxactl4V c deffects, compuzte 4z(c + .- j - izc - .5)

to obtain the area in the interval (c - 0. 5, c + 0. 5).

The thrte previously describee distributions all occur in

sampling plan computations with ti~e Poizzoz often beieg the most

convenient. However, various sit--ttions arise where At is necessari

to apply either the binomial or the hypergeornmetric for rnasonably

accurate computations.

5. 5-6 A Sampling lan and its 0. C. Curve

Several types of sampling plans are used in quality control

work. However. for purposes of applications to vibration data. only

the simplest will be considered: The "single sampling plan. " Thei'r

employment, as previously indicated in Section 5. 5. Z, .. ; probably

be limited to areas where vibration data is judged as being either

acceptable or unacceptable. The 0. C. curves associated with these

sampling plans. and their generalization to other statistical tests

in Section S. 5.7, are applicable also to many other physical prob-

lems.

A sampling plan might be stated az follows; select a random

sample of N = 100 from a given population, accept the lot if the

number of defects c is Z or less. reject if 3 or more. The 0. C.
curve for this plan is shown in Fig. 5.8 below where P a is th

probability of accepting the population as satisfactory, and p is

the population fraction defectiv,..

For p 1. note that Pa = . 92. Tht rrforv, if a fraction

defective of : .01 was considered as being satisfactory, this

sampling plan could be interpreted as a test of the hy pothesis p 0 01

at the 8% level of significance. That is, the probability of rejecting
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I PN = 100

I

I .

i

PI at .03 C-; .35 .66 .07

Figre 5. 2- 0-C. Curre for Sinle Swn-pling Plan

the hypothesis when it is really true (Type I error) i s & = . 083. The

interpretation for the fr--ction deffctilye in vibration data anay is

could be something such as the percentage of timne *o*me vibration

parameter is exc-eeded, &.A that exceed-4 h Es levee! *=e percent ef

th e t me is not considerzd harmful.

if a, fraction defective of . 05 wazz considered unacceptable (see

Fg. 5. 8). the Type H error JS vwjId be 12%. Thal. is. the probability

of accepting the hypothesis' when it is really false (for th value p = . 05)
is J3 = . IZ. When the acce*ptable value p.r and the unacceptable value p,
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cf !2:e fra.ction- defective are d-cided po.adresof a r4d

selected the desireCd Samzivt5 plan- r.dd be 0=e harirst_ a-- O- C.

crepassing throrzgh thvese tvro Paints. The iEal. case is to have

a = 0 a-- N 0 fc. For=. Val= n off P. kt-- of Course tv=is s ti-

phossible. As & and -3 arc dec-rat'd asd paadpa r rvk
closer togsether. the sa6npl- Mfze ntust be increasec to ac~airi the

desiEred 0- C- curve.

pla 0. -- ~cr~.arc willy comptd sit? aid

of the Poisson, dirbzo.E.e cazay&shvr

geen--aric or bEincrn2-iaitibzho mifght Le resipired 4epcrdin- =1

the comh--Fons. Table 5-9 g ives so.-e. vcaEzes bavsed ce tc ?oissoc

d-sriemion for set:a d=sire-d sa.-n-pHing plan 'hen a z 05 sad

10A. Sinczicgral values of N and C arc retire6. am exact

sohz-tica ma-y =e always exist Wn o-n4 ca-- usl btaim a sa=is-

factory nprorinrzicn. Table S.a appears a: end os, Sectiomm 5.

AppJiCation of Ta be 5_ is _s Sfollenw-. Szppcsc a plamm is de-

the rati;o pp which inthis case is 3- 1-- the rigt handA coairs

Of the table it is forund that a lies betwrcc-a 15t rake lM.% for c I

and .50 for cuzt.. For afixedrvahwcof N. choosir:- r= m iWill i

effect Live a lower 0-. C. curve. 7:% £.s, decrease Pa for alt rakues

o1f p. Choosing c W Z for the samte fixed valae of NS will in ur

raise the curt.S In ny aseitn =ow be decied Wkethr- to h ar

the cu-rve pSS preciselyvhrut the poin? (p. ) ;- o~nWhich case

t'e second colcumn for a s used. or (p,..- in which ease the thaird4

columnn for *4 Nis used rT 2V is compu-ted from ether

or - as 515

Pa pO

where p 24 or- p is ob=taed front thec appropriate coltum in Ta~'e &9.*42 X
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The cka t beizz- gives tke resa4zs from the various ckoices

r=euiaued im the above~

C ___=__I I cZ

(P Zjqhed J(P i -.)do heId
I ~ rd( a~~N0 ;rp- :~P f.

= 3..Syf.. I -355/-0! I = S. .z04 = .Si;/-O1

Toe actual OPS and IPS as Cohipated from the Poisson distributwe

gir byq. (S.. Unit are shouwm below.. For tkese com---x= IKPW

or. X as aifroWriae a"d Cke ter--. for c = 0. 1s orC = 0. I. Z

as approriate are s=MxMed. Foue instance. the probability of SCcCCe
a-,P = p bfw he Pea= N c I uwld be

Pa= Probicz I 4C(,lCg( 9 )..E
C- C!

The .~.soadisrib~os ss ee.wlU tabultd so perforing these

cup~tatioes is jL redatirly simple matter. Ras-Itsar

Plan&A

1. V=49.c1l -04 .10

Z.. N=36. c=1 -05 -Z3

3. N=6-g3 c=Z .03 .10

4. N=SZ c=Z 05 -04

Figure 5.9 below Shoaws the actzal O.C curves for :bese feur plaza.
Note that plan 4 with the Lurest *anq'.e size- gives tke desired level
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This curve goes to either side of the hypothesized value % = 50

since both positive and negative deviations are possible. Note that

to calculate this curve the population standard deviation o- is

assumed to be known. This of course is not usually the case; how-

ever, a-may often be estimated closely enough to indicate what the

test is really accomplishing.

The curve in Fig. 5. 10 would be constructed in the following

manner. First, the (I - a)% interval around the hypothesized mean

value 1i0 is computed from

Prob [ °  (-I -a/z) F +1 )

(5. 136)

where a is the level of significance. The values for Fig. 5. 10 give

the interval (46. 1, 53.9). Next, assume the true mean value R is

different from 50, say 52. For a true mean value of 52, the probability

for a sample mean exceeding 53.9 is clearly larger than a = 2. 57

In fact, the probability will be (I - p) as found from the equation

Prob[z.Zp 1=1 -p (5.137)

where z is a normal variate as given by
1 P

z = tr- (5.138)P or-/F4

jL = true mean value

=- 15. 139)

In the example N = 25, a-= 10, Po = 50, g± = 52, and ic = 53.9.

The method for finding Pa is now as follows. From Eq. (5. 138).
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compute (53.9 - 52)/2 = .95 .= z P In Table 5. 1 of the normal probabilityp
distribution the. area to the right of z = .95 is found to be . 17. Thep
area to the left of the other end of the interval, 46. 1, from a mean value

of 52, will be negligible. Therefore, the probability of finding a value

i inside the limits (46.1, 53.9) is .83 when IL = 52. This gives the

desired value for Pa when t = 52. Other values are computed similarly.

(b) 0. C. Curve for Analysis of Variance

The same type of curves may be computed for the F test for

variances. As a particular example, some 0. C. curves will be illus-

trated for the analysis of variance technique described in Section 5. 4

on -repeated experiments. Here the test is for equal means from sam-

ples of size N from k flights. A variance estimate is computed from

the variation of the sample mean of these flights. The estimate sZ

contains two components:

s2 =Z No (5. 140)
M =-

2
where o- is the population variance and o- - is the variance due to

IL2
any real difference in the means. For equal mea:- = 0, otherwise

Z becomes larger as the difference in the means increase. Uviag

the ratio

2
It (5. 141)

as a measure of the real differences in the means, an 0. C. curve may

be constructed. Of course, w- " ill probably be unknown, and must

be estimated as well as possible.

Different curves can be computed for various sizes of N and

k, and an C. C. curve may be selected which discriminates most highly

in the region of interest with Nk made approximately a minimum.

Minimum Nk implies smaller number of samples and flights. Fig. 5. 11
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below shows some 0. C. curves for a few values of N and k where

the probability of accepting the hypothesis I  IL is

plotted against A.

0. C. Curves for test
of hypthesis:

.... N=3, =

Figure 5. 11. Selected 0. C. Curves for Analysis of Variance Test

A comparison of the curves for (N = 4, k= 8) -. (N = 8, k = 4)

reveals that the second of these is more "powerful" for smaller values

of A but less "powerful" for large values of Ai. That is. for values

of A between zero and approximately 0.9 the second curve has smaller

probabilities of acccpti-.g the hypothesis when it is really false (Type

-I error). However, for values of A larger than 0.9, the first curve

has smaller probabilities of accepting the false hypothesis. All cases

have the same probability of accepting the hypothesis of equal means

if it is really true. That is, P. = 0. 95 when A = 0, or there exists
a

a Type I error here of 5% independent of N and k. This comparison

gives an indication that the same total number of observations can

perform different functions. If A could be expected to be small,

choose N = 8 and k = 4; however if A is expected to be large, N = 4

and k = 8 would give a more powerful test. Also notice that for values
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of A larger than approximately 1.A4, (N = 4, k = 8) gives about the

same Pa' as (N = 16, k = 4). Therefore, if very large values of A
were expected, 32 observations could do the job as well as 64.

T he curves in Fig- 5. I1I may be constructed using Tables 8. 3

and 8.4 in Ref. [j61 and the procedures described there or. pp. 311-313.

These tables give values of a function o such that

2

A2  t 13~a., k 1. k(N 1)] 1 (5.142)
N

where 13 would be the Type 11 error corresponding to the real value

for A. Therefore, when values for a. N. and k are selected.

Amay be plotted against 13. This value for j3 equals P a

(c) 0. C. Curve for F Test

These same tables in Ref. [61 may also be used for computing

0. C. curres for the F test as a test for detecting a difference in two

variances a.and c-in the following manner. For this case, when

a. NII and N2z are selected, the quantity

oI
jicr 13, N 1 , N2 - 1) (5. 143)

Therefore, .8 may be plotted against values of z z For eape

if a =.05and N, = I = 16, o 1.685 is found in Table 8. 3 of Ref.fIj
for J3 = .7 5. Figure 5. 12 belAow is the 0. C. curve for the above values

of &, N1 , andN N when a "one-tailed" F test is used.
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1.0 N- N 16E

ii

4 .6 -

0= ocl- 2  -

Figure 5. 12. 0. C. Curve for One-Tailed F Test

5.6 MULTIPL.E REGRESSION TECHNIQUES

This section discusses basic multiple regr#osion techniques

which may be useful in correlating input parameters to output vibra-

tion levels. A derivation is presented of the least squares equations

for obtaining an optimum linear fit to k variables, The solution of

the equations and the computation of important statistics are carried

out in detail for the important special case of three variables. A

brief generalization to k variables is then discussed, followed by

methods for fitting to nonlinear modcls by appropriate linear methods.

Since an electronic computer becomes an important tool in cases for

many variables due to the large amount of computations involved, an

alternative calculating scheme is presented without justification

which is helpful for computer programming.

Multiple regression is a statistical technique v:hereby it ib de-

termined to what extent one variable may be related mathematically

to several others. A general relation between several variables is
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usually assumed which ir.volvpes iinknnm coefficients, and the co-

efficients of the variables are then calculated by some suitable method,

such as the method of '"least squares". This method minimizes the

sum~s of the squares of the deviations of the observed values from the

predicted values.

The assumed mathernatical relation is quite often chosen to loe

linear. For the linear case, if it is desired to find a relation between

k variables x.(i = 1, 2,. .k), the coefficients a.(i = 02, 3,., k)

of the following equation are determined:

xj= (;+ e + Z,.x, ... +X. (5.144)

where x1 woruld be thcught of as the predicted dependent variable, and

z .... Xk as the independent variables. it must be voted that in~de-

pendent and dependent are not defined here in the statistical sense, but

rather -more as a concession to com.-on. usage. In geometry. Eq. (5. 144)

would be a hyperplane in "k-dimensional space".

Assumne now *hat N observed sample values of x1are obtained.

By the methods of least squares, the coefficients a.i would now be

selected so as to minimize the sum of the squares of it-,- deviations

of the observed values of xIfrom the predicted values xi' That is,

the a. must be such that

Z( i - c)Z = minimum (5. 145)

where the sum here ranges over the N samp'le values.

5. 6.! The Least Squares Equations

It is more convenient to work with the variables as measured

from their sample means i.where

N

= (5. 146)
-N
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Therefore let

X. x. -Z, (ik=,Z.....k) (5.147)1 1 1

Also note that if X' = x-

then

X-x' =XI +II - Mx 4- x, - xi (5.148)

Now the small x's can be expressed in terms of the capital X's and
Eq. (5. 144) may be written with appropriate coefficients b. in place

of a.,

Xi = b0 4 b2 X Z -a. b 3 X3 +... bkX. (5. 149)

Equation (5. 149) is known as a regression equation. Equation (5. 148)

indicates that mnimizing Z.(X1 - X') Z is equivalent to minimizing

N- x') - Hence. determining the b- to minimize the sum

.(X 1 ) will effectively give the a. determined L, sninimiing

the sum 2(x, - ,9}.
From Eq. (5. 149) one obtains a function of the b. as follows:

1

(X I - X ,-)Z  = f(b 0~ , .... b k  (X , - b , - b X 2  -.. X bk k Z

k f 2 2 k k

(5.150)

Next, in order to minimize f with respect to the bi , the partial deriva-

tives of f are taken with respect to the bi and set equal to zero, giving

the following system of equations.
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- Z.(x - bo - L-zX z - ..- bkX,)-

-Z X,(XI - bo - bzX2 -... bkXk) = 0

(5.151)

- ZEXktXI - b0 - b2 X2  - bkXk) = 0

Now th-ese eq--aions are multiplied by I/2 and the first sur-z, is trans-

posed to the right which gives

Nbo + b2 -X 2 + + b.Xk. = X

boFXZ + bz.Z +. + bkFXZXk = Y.XZX,

boZXk + bZEXkXZ . + xN= ZXkX

Since the sum of deviations from a mean is zero,

Ex - (x i - i) = 0 (S. .53)
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3i1 termS vanish in the first equation of Eq. (5. E52) except Nbo,
o

which implies 5,. = 0. Thus the number of Eq. (5. 152) to solve is

reduced by one.

The q-,antity -i as defned by

IE- X x - 0 (X. -

r i -= 1 3 (5.154)
xj Nss.

1 j
.1.

where the s. and s. are the sample standard deviations, is known as
X j

the sample correlation coefficient between the variables x. and x..
I .

This qaantjy r.. is a ent-ar- "it.'- nu erical .aue between -1 and 1.

Since

= :IX(x. i) x.) =Nr-..s-s. (5- 155)

the set of iinear Eq, (S. 152) may be rewritten as

b r.S. + b 3 r 3 s 3 -. . + bkr2 ks k = r s,

b2 r 32 S2 + b3r 3 3 s 3 +. .. + bkr 3ksk r I

i5. 156)

bZrkZsZ ' b3rk3 s 3 + ... +bkrkks k = r klS

Thu -ut of Eq. (5. 152) may now be solved to obtaip the coefficients
b. for the regression Eq. (5. 149). Solving these, of course,

I

effectively gives the coefficients ai for Eq. (5. 144) also. The general
procedure discussed above will now be illustrated on the important

simple special case for three variables.
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5- 6. 2 Specizl Case for Three Variablcs

A. Re~rcssiunr Ecriatior Caefificsezs

The desired eaiz to bc obtain~ed is

x Ia z 0--ax z ,a (5- j57)

or the ea=ziwalerit evressioni

x b X_ -r b..X- (5.158)

where the coeffict-n;s are obtained frowm the followaftV set cf cqszuiOs:

b2  3 2  3 iT

To solve for the a., substitute Ix- -) for X.- Thea

- x 1 = ,(X - ~~) - -x 3 )(5- 160)

This gives the coafficietits a, as

a = b i b

33

Equgations 0. 1599) may be solved by saymethods. A systematic
method will be de~rors*trated that convenziently gives other qizin!ities
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:C bh- tsed in tes:z-Infrsgcnr the reression eoefft-ciens =-d

the rnutle corre~zatico coeffic.c:. (to be defin--ed be~ . Fzrsz covn-
pute Mke --ce nas .ad snndard deviation:z s. Note thaztIwo

of B= qtnatiuies Sxd and are cbtaiced in t process of cam.-

puffing hze Sta4rd deviationLs znd nmst Ere saredl. '(n the. Tcs

F-X .x .. XX. and Z fl21ma be COm-p--C! !ro-.- .Ic f!oi

To solve the systc.s En. (1- lf9j twon set-s of aniliarv ez-=Viames

mrn be first fonne-d. wn-ny.

c7.Z~~- CIO Y (5 164M)

and

%?3ZX)+ rC3 3 2rX,X 3 =

CfX x) c3x 51)

Tht 50lut0T5r of E4. (5.164) art

- SE?)Itlb
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Fe Es. (5. 165:0

c x:4 (5167)

%ow c~~ thr-e b-Z :L-e=

b= c?1Sx 1 + 3 X!

Finally, the es for the original regressium eqsade are obtaim bed frm

Eq.- (SA 6ZJ..

B. Stanard Delianoms of Vhe W's.

The standrd, dewi-atiez Of the distribstiOt of the W's can be sboa

% l -Z1 ; 7

whbere s9 t-z is the stndrd deviation for the ptame of re-

pressioe of x cm x aid xopue froaiym~-z3 "~
I ' Z "d'-V.2

(see Ref. [5):

a s4 b XSa'z-- 3 X1 X3

1.Z3 N

-whi-shas (N - 3)&t-
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rib 2S-p-o-- rcewed imC~i~ hs sta=r-r tetiAic*a arc

(I) hr a !e~ crsprece6ire isv ct6£.&awg WS

(In C-C.t PCaim (3Eye V is dn-pucd srepae ezptriccs tith

Xb-s= the or ai~i.(3) dhat the nriine cK r IEs cg'asflSA

£c*r r 7 POFiM (xz. z)l. a~td (40) au lie drixiao~ es dte M&Serttd

iraizcs of x, Erca= the pre.-cted ra.:-ns of X W aeS maa Iy &nnsrzlwt"t

C ME c~T~ Ccc c CJcza

'Ix- Z3£

Tbe sqnrr *.f the tt!ti~e corduin cotfficzr. mc!dr

(ri 4 cam be inerzprr-Cd- As the Mccrzcae of tc irariixcc of X
tIczM as xtcow~acd- for by zp aod X.. The amnl£2e rcn-c

fetacaz ' .3 .2&xi of~' - ~ £

disioc ofl tsiag fro=n tec rezresssa= cqnuioa r-ather- this-

&cm- CL etc ean V'-c sxretc-as arc zxr-*ificC £2pr e)-o
Th=e s-uflpk~ =4iie eor-a-iom eodfcien R3, Zais d~r

as

SM

flowcrcr. to nak.- U~s am- =and eswir.ze of (the %b t

CSE-tsof r- -s4 chae R- -- S .4frnrl , 23
s, respectively. Cw4be =sc-4 This prves the rdlaice

(N-)
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z~n .- b 35 cr of (w I .r; oreu
css .recfr ~ M~ ae 1

'rw r~xzeSS5-= coefficicsbn b.' gray& be trneCd for significrecc

-- ~~ ~ a rt 51

wht C is Eh-t & ce dpaplatia. -rcrssism cceficitae has

= ~r in i~icc~ ih ~X- SI f. mrc of izcrres is fzr

-.=.TA=s. is. dcsirAble to kans whether or Wl sMe codfficitsta

S..- for Ow rariab'e Mt is sis=ilcaair *-arcfrm Zero. Thnercacre.

fra x Wdtent at the l ewel of sigtfkace. cmpae

b-j, [PC.

Reject the- hy.Pothesis boC if Urt whe zO isr_4 % Zj btainet L-e=

~~~~~~~~~o d rbdcut N-3 &f se oce-trn'S rest.
reject- if t for the &' treofsiC a

jmverywl wtiL a 1I - a) pr- ar ft b eacfgbe popuixice Co-

cffc~st3.itgienby

ft caa be s-*on (see Ref. eC-e th !- stzisdic

R. ao



has an F distribution vith n I = 2 and n2 = N - 3 d. f. Therefore

the multiple correlation coefficient may be tested for being signifi-

cantly different from zero at the a level of significance by comparing

F wi h F obtained from the tables of the F-distribution with

(2, N - 3) d. f. The hypothesis of the population value being zerc- is

rejected if F>F .

This test of significance f'Zr the multiple correlation coefficient

arises from a partition of the variance f the observed values of x I

from its mean R1 " One sum of squares has 2 d. f. (k - I in general)

and the other N - 3 (N - k in general) leading to the F ratio given.

E. Interpretation of Results and Restrictions

The main assumption present in obtaining the preceding results

is as follows. For each point (x 2, x 3 ) the variable to be predicted,

x , is a random variable with a normal distribution about some mean

which depends on the point (x 2 , x 3 ), but the standard deviation is the

same for all values of (x 2 , x3). Also it is assumed that if the sampling

is repeated, the same set of (x 2, x 3 ) would be observed each time with

again x I the random variable.

The interpretation of the multiple correlation r.efficient was
A 2

mentioned previously. That is, the square R . 23 gives the per-

centage of variation which is "explained" by the variables x.1 x
A 2 2Y

Stated another way, I - (R 1 ,3) is the percentage of variation due

to other sources or left unexplained. From Eq. (5. 172),

SL. Z3 A (518s. 3 _ I - (R1 . 2 3 ) (5.178)

In this sense Eq. (5. 178) gives an indication of the size of the ratio

of the deviations of observed x I from the predicted values x' as

compared to the deviations of x I from its mean _x" Since this ratio

is less than unity, it yields a measure of the improvement in the

precision ot prediction whcn using a regression plane as compared

to the mean value of x I .
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The regression coefficients b and b 3 represent the effect

on xI of a unit increase in x 2 when x 3 is held constant. and a unit

increase in x3 when x2 is held constant, respectively. The co-

efficient a0 merely accounts for the means not being zero. The

b's being significantly different from zero indicates whether or not

the predictor variables involved have significant effects on the vari-

able to be predicted.

Large sample sizes are normally quite necessary to obtain

significant results in multiple regression problems. That is, one

prefers sample size3 of N = 100 or preferably even larger. Also,

the full range of interest of the variables must be sampled. It is

very seldom that one can extrapolate his results beyond the range of

values which have been obtained. Figure 5. 13 below gives an indica-

tion for the two variable case of what could happen. The range that

was observed can be fitted very well by a linear equation, but clearly

this approximately linear portion could be part of a quadratic re-

~/True Quadratic 
Relation

Between Variables .

I /

Linear Relation
c, Estimated from Data

X

Range of x
which was sampled

", True Quadratic Relation and Linear Estimate
D ilR t1m: - .el-: Data
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5.6. 3 Computational Example

The following table of hypothetical data for 3 variables will serve

to illustrate application of the preceding equations.

k--3 1=25

2 2 2

1 1 1 1 1 1 1 1 1

1 1 2 1 2 2 1 1 4

2 2 1 4 2 2 4 Ii

1 2 2 2 2 4 1 4 4

3 3 2 9 6 6 9 9 I

2 3 3 6 6 9 4 9 9
3 3 12 9 12 9 16 9
2 1 2 2 1 4 1 1

0 1 1 0 0 1 0 1 1

1 0 0 0 0 0 1 0 0

0 1 0 0 0 0 0 1 0

1 1 1 1 1 1 1 1 1

4 3 3 12 12 9 !6 9 9

5 3 4 15 20 12 25 9

4 4 3 16 12 12 16 16 9

5 6 5 30 25 30 25 36 25
V 6 5 2 20 3 16 36 25

4 3 4 12 6 12 16 9 16
5 4 4 20 20 16 25 16 16

4 5 5 20 20 25 16 25 25

6 5 5 30 30 25 36 25 25

5 5 5 25 25 25 25 25 5

6 . '- 30 20 36 16 25

2S3 2 6 4 6 4 9

73 6n 266 269 265 9-95 2S3 259
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'N -8.41 -x 2  8.41

(x2) Z. =8.41 x~ 3 8.IZN

x3 3 = 2.8 'i3) 7.8 4  X2 X3 - 1

2X= -Nf, 295 - 25 = 84.75

= Z 7- N(2 )2 = 283 - 210. 25 = 72.75

ZXZ= 7xZ- Ntzia) 2 = 59 - 196. 00 = 63. 00

2:X 1 XZ 2 'lcXX- W:i" = 26b- 7-0.25 =75.75

F-" Xl = 2x 1 x 3 - N I 3 = 69 - 203.00 = 66.00

= - Ni 3 = 265 - 203.00 = 62. 00

2~~~~ 3 ~~3-M

From the preceding data, the following computations are made:
from Eq. (5.159)1

b2 72.75+ b3 62.00 = 75.75

b 2 62.00 + b 3 63.00 = 66.00

Solution of auxiliary Eq. (5. 164) and (5. !65) by Eq. (5. 166) and
(5.167):
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Let z - (XX 3 ) = (72. 75)(63.00) - (62.00) z 739. Z5

- -62.00 -62.00C=- = -. 0839

A 739. Z5

* 2=63.00 63.00 085= 3.0= .0852
A 739. 25

- 7Z.75 = 72.75 .0984

A 739.25

Then b and b 3 are obtained from Eq. (5. 168)

b2 = (75.75(. 0852) + (66.00)(-.0839) = .9165

b 3 = (75.75)(-.0839) = (66.00)(.984) = .1390

and from Eq. (5. 162)

a0 = 2.9 - (2.9)(.9165) - (Z. 8)(. 1390) = -. 1471

Next., using Eq. (5. 170):

2 84.75 - (.9165)(75.75) - (.1390)(66.00) - .2460S. -

.. 23 25

st.23= "4960

and with Eq. (5. 169)

s. =.i960 .0852 =.143702

Sb 49 60  .0984 =.1545
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Now -, = %84. 75/25) = 3. 39 and using Eq. (5. 172):

I2 )2 *2460
(R 1.23) I " = .93

3.39

and with Eq. (5. 173)

R.3) ) 1010992
22 22

RtL. 2 3 - "9c

In practice, it would be quite unusual to obtain a correlation co-

efficient this large.

To test the b's for significance compute "t" from Eq. (5. 175):

for b.. t.--9165 25--.56

ior b 3a t-= 1.390i Z21_ =o. 82
for b1545) (251

From the tables of the t-distribution with 22 d. -ids t2. 5 = 2.07.

Therefore, working at the 5% level of signific%", b 2 -.. -hly sig-

nificant while b is not. This would indicat, .. at the variab. -. has
3

x . -1.

To test R 1 .23' compute F from Lq. (5. 177):

1.081 1

In the tables of the F-distrib" ti'.n one finds F i. 0 (2, 22) = 99.46 so

even at the 1V- level of siy .t.ance the mul'iple'corr elation coefficient is

significant.

ASD TR 61-123 5-90



5.6.4 General Case for k Variables

A. Regression Coefficients

The auxiliary Eq, (5. 164) and (5. 165) given for solution in the

three variable case actually are equivalent to finding the inverse of

the matrix of the given sums of cross products. That is, letting

represent the sum F.X- where i, = 2. 3..... k, the c..'s

represent a matrix such that

x 2 .x 2 3 ... x2k c 2  3..- C2k 1 0 0 C ... 0

x 32x 33" x. 3k C3ZC 3 ... C3k 0 ! 0 0 ... 0

x c4c c 0 0 1 0 ... 04Z'3- k 4Z 3 4k

.. (5.179)

xkzk 3 ... Xkk ckZ ck3... Ckk 0 0 0 0 ... 1

After the multiplication is perforaded. columns .dn be equated to

columns, and k - I sets of k - I equations, each set with k - I un-

knowns,are obtained.

x 22c + X c ...Z3 c Z3 = 1

x 3 2 CZ2 + x 3 3 c 3 2  ... + X3kCk2 =0

(5.180)

z ZC2 + XkZ c3Z + '+XkkCkZ =

etc. for the other k - 2 columns of the matrix.
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Of course, the amount of computation involved as the number

of variables increases becomes quite extensive and a digital computer

becomes a very desirable tool. Another computational method will

Bc given without justification in Section 5.6.6 which is foi ,b!e for pro-

gramrnin on a digital contputer.

To continue from Eq. (5. 180) the b.'s are cc.nptted by per-

forming another matrix multiplication. That is.

bZ C c;z c 23 ... c ,k  x! 21

b3i " 3 2 ' 3 3 .. C3k x31

1  " (5.181)

5k CkZ Ck3 ... kkI xk

This gives the generalization of Eq. (5. 168):

b z c Z x2 1 + C2 3 X| +- ..+ ck xkl

b 3 c 32 x 2 1 + c 3 3 x3 1  ... + C3kXkI

b h k CkZZl * Ck3 x 31 + + Ckkxki

Let B be the [(k - 1) x 11 regression coefficient vector. X the

[(k - 1) x(k - I)J matrix of sums of cross products ior the predictor

variables, and 1 ( the Rk - 2) x vector of the cross product sums
L

involving X 1 , the predicted variable. Then the r .ccding can be

cencisely expres-d as the matrix equation

X a Y (5. 183)
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with the solution

B =X- 1 y 5.

where C = X - I as defined by Eq. (5. 179)

B. Standard deviations of the b's.

Standard deviation of estL-rate st. z3... k f o r the "plane" ,

regression of x 2 x - x.. on x, is the square root of

.X- - b2EX X - b3.XiX 3 - . - kZ.s1.23 ... k =
N

(5.1

which has "N - k) d. f. The standard deviations of the b's

S b. =S.23 ... k Ici Z- =2 3o .. k (5.1

1

C. Multiple Correlation Cocfficient

The sample multipzi- correlation coefficient R t. z3 .. k is

given by the square root of

s(R 2 =I f. 23,... k

..3.. k) s z

The unbiased estimate is then

I = (N- 1 ) ,Z _ k-I( R 1 3 .. k ) = N ~ ( R . 2) 3 . . . k " N5 - 5
- (N -k) 1.23.-

D. Tests for Significance

The "'t test for the regression coefficient becomes

ASD TR 61-123 5-93



with the solution

B =X "! y (,5. 184

Aherc C = _Ias defined by Eq. (5. !79)

B. Standard devi.atEons of the b's.

Standard deviation of est-L--ate s.23 -- kfor the flpsanel of

regression of x,. x 3 .... x- on x. is the spoare root of

z ~-,2 1x 2 - Lb3ZX 1 X3 LkZ - Xk
sS. z3. k IN

which has N - k) d. f The standard deviatious of the b's

S b. = s! 1-3 ... k qc i -, 3 - .. k (5 -1 ')

C. Multiple CorreiationCocfficient

The sample multiple correlation coefficient P. 43 k

given by the sq-are root of

2

(R IZ3. 0' 1.23 ... k .8

The unbiased estimate is then

z (N - 1) Z; k-L

(R (R (Zk-5.186)
1.3 z... K (N k) 1. 23... k" s

D. Tests for S ignificance

T, he "'t" test for th- regression coefficient becomes
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(5.199)
N

- k

where t has a "t distributiou with (N - ks d. f.

For the m ltiple regression coefficieat;

F (A I.. Z3.- L jN--A#V

(9-O1.z3 ... (k- 1)

where F bas a.t -"'" distribution with (k - 1, N - k) d. .

See Ref. [I for the above general.zatioes to k variables.

5. 6. 5 Nonlinear Regression

Powers or cross prodacts of the predictor variales may be

attached to the regression eq-.rizs as additional variables. For

instance, in the three variable case for linear regression one must

solve Eq. (5. 159). U! it is suspected that an intera-Lzn exists, a

term in the form of xx 3 could be attached as a fourth wariable x4.

Then in tead of two eqations in two unknowns, the dimension of

the problem bas been raiscd a=d there would now exit three equa-

tions in three unknow,-. Powers such as a.d 13 culd be at-

Cached as variWaCS X-. and U, so desired.

If an ex osential relation is proposed such as

xI =a x x 3  
(5.11)

then iogaritluns of Eq. (5. 191) may be taken to linearize tke rela-ons;
rnow.

log x =lot 1  b log x 2 + h31o923 (5.192)
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a--d th-s s~re.. is clearly az-alGotoas to E4j. (S. 9). - re least zqzxres

fit obta:-id to Eq. 15.. 192) is n~ot precisely the same as that obtinled

byr fittinmg directly to Eq- I5.M IM,). Howe-er. zbe errar is generally

sadl e~cuzgh =o tha- the linearization by logaritkns is useWu in practie-.

5. fi. 6 Alternativ-e e~mr!!!m scbheme

Form the followift matrix of tI-e correlaxiom ceeffiimis r--.

*'ere r-.- is defirsed bry Eq-. (5.155).

r.,, r., -23 --- k

r1r3Z '33 - 3k

-(5 (Sl3)

rki kZ rk3 -- k

Gemfute the inverse

A -- t'

LFa-are the elements of the matrix A. The following =%y be

(1) Thte regression cefftcieii~s

~ 1 ~')(5. 195)

(2) r= nuitiple correlation coe!iciCeI(

R 1 . k'~' P(/a 1 ) (5.1%6)
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( jThe &t2-dx-d dtviua- of e~ err.-r cfE

(4) 're V-a~e&-re de-r-at5ae or tiz rnIresso cotffi~i~
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z 5 .Ar Area
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Table 5. 1 (cont'd)

z Area z Area z Area
1.35 .4115 1.80 .4641 2.25 .48781.36 .4131 1.81 .4649 2.26 .48811.37 .4147 1.82 .4656 Z.27 .48841.38 .4162 1.83 .4664 2.28 .48871.39 .4177 1.84 .4671 2.29 .4890
1.40 .4192 1.85 .4678 2.30 .48931.41 .4207 1.86 .4686 Z.31 .48961.4Z .4222 1.87 .4693 2.32 .48981.43 .4236 1.88 .4699 2.33 .49011.44 .4251 1.89 .4706 2.34 .4904
1.45 .4Z65 1.90 .4713 2.35 .49061.46 I .4279 1.91 .4719 2.36 .49091.47 .4292 1.92 .4726 2.37 .49111.48 .4306 1.93 .4732 2.38 .49131.49 .4319 1.94 .4738 2.39 .49161.50 .4332 1.95 .4744 2.40 .49i81.51 .4345 1.96 .4750 2.41 .49201.52 .4357 1.97 .4756 2.42 .49221.53 .4370 1.98 .4761 2.43 .49251.54 .4382 1.99 .4767 2.44 .4927
1.55 .4394 2.00 .4772 2.45 .49291.56 .4406 2.01 .4778 2.46 .49311.57 .4418 2.02 .4783 2.47 .49321.58 .4429 2.03 .4788 2.48 .49341.59 .4441 2.04 .4793 2.49 .49361.6f .4452 2.05 .4798 2.50 .49381.61 .4463 2.06 .4803 2.51 .49401.62 .4474 2.07 .4808 2,52 .494j1.63 .4484 2.08 .4812 2.53 .4943
1.64 1 .4495 2.09 .4817 2.54 .4945
1.65 .4505 2.10 .4821 2.55 .49461.66 .4515 2.11 .4826 2.56 .49481.67 .4525 2.12 .4830 2.57 .4949
1.68 .4535 2.13 .4834 2.58 .49511.69 .4545 2.14 .483e | 2.59 .4952
1.7 .4554 Z.15 .4842 2.60 .49531.71 .4564 2.16 .4846 2.61 .49551.72 4573 2.17 .4850 2.62 .49561.73 .4582 2.18 .4854 2.63 .49571.74 .4591 2.19 .4857 2.64 4959
1.75 .4599 2.20 .4861 2.65 .49601.76 1 .4608 2.21 .4864 2.66 .49611.77 .4616 2.22 .4868 2.67 i .49621.78 .4625 2.2 .4871 2.68 .49631.79 .4633 2.24 .4875 2.69 .4964
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Table 5. 1 (concluded)

z Area z lArea Area

2.70 .4965 2.80 4974 .90 .4981
2.71 .4966 2.81 .4975 .91. .4932
Z.72 .4967 2.8Z .4976 2.92 .498Z
..73 .4968 Z.83 .4977 3.93 .4983
Z.74 .4969 2.84 .4977 .94 .4984

2.75 .4970 Z. 85 .4978 Z.95 .4984
2.76 .4971 2.86 .4979 2.96 .4985
2.77 .4972 2.87 .4979 2.97 1 .4985
2.78 .4973 2.88 .4980 2.98 .4986
2.79 .4974 2.89 .4981 Z.99 .4986

I_ 1_ 1_ 3. 00 .4987

For a mor. :omprchens v,. table. s..c hlcejerecn. [j. 1 p-456.

Table 5.2 p-percent Values of Normal Distribution

The probability that x differs from its mean by more than

)p time s the s.d. is equal to (p/2)%. Alternatively, 1i + XP o"

contains (OO-p)% of the area under the normal probability

density function, ,.. e. r,-.,. 1j. p. "

p X

100 0.0000
95 0.0627
90 0. IZ57
85 0. 1891
80 0. 2533
75 0.3186
70 0.3853
65 0.4538
60 0. 5Z44
55 0. 5978
50 0. 6745
45 0.7544
40 0.8416
35 0. 9346
30 1.0364
25 1. 1503
20 1.2816
i5 1 4395
10 1.6449

5 1.9600
Z. 5758

0.1 3.2905
0.01 3.8906
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Table 5.4 p-percent Values of "Student's t" Distriblution

n tio 0 t50 j 5 i i0 tO5

1 3.08 1 6.31 12.71 31.82 63.66

2 1 Z. 9z 4.30 6.96 9.9Z

3 1.64 2.35 3.18 4.54 5.84
....4 1.53 2.13 2.78 3.75 4.60

5 1.48 2. 02 1Z.57. 1 3.36 4.03

6 1.44 1.94 Z.45 3.14 3.71

7 1. 4Z 1 .89 Z. 36- j3.00 3.50
8 1.40 1.86 2.31 Z.90 3.36

1 9 1 .38 1.8 j 2.26 Z.82 3.25

10 1.37 1.81 Z._ 23 2. 76 3.17

1t- 1.36 1 1.78 Z.18 ! Z.68 1 3.05

14 !. 34 1 1.76 2.14 2.62 2.98

*7 !6 1.34 1.75 2.12 Z. 58 2.92

18 1.33 1.73 Z.10 2.55 2.88

20 1.32 1.72 2:09 2.53 2.85

Z2 1.32 1 1.72 Z.07 2.51 2.82

24 1.32 .1.71 Z.06 2.49 Z 80

26 1.32 I 1.71 2.06 2.48 2.78

28 1.31 1.70 2.05 2.47 2.76

30 1.30 1.70 2.04 2.461 2.75

OD 1.28 1.65 1.96. 2.32 2.58

For a more comprehensivc; table. see Reffrer.cu 91 p. 465.
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Table 5. 5 F Distribution

n - d. f. for numerator rn = d. f. for denominator

1 a) (b)

F 5 . 0  F 2 . 5

r - -.

5 i 10 20 30 __ 5 10 20 30

5 .05 4.74 4.56 4.50 4.37 56.62 6.33 6.23 6.02

10 1.33 2.98 2.77 2.70 2.54 10 4.24 3.72 3.42 3.31 13.08
ZO.71 2.35 2.12 2.04 1.84 L0

4 .29 12.77 2.46 12.35 2.09

30.53 2.16 1.93 .84 1.6Z 303.03 12.51 -. 20 2.07 1.9

wF..2i .1.83 1.57 1.46 1.00 oZ.57 2.05 1.71 1.57 1.00
_- -

(c) (d)

F 1 . 0  F0.5

5 0  o20  30 OD mi 20 30 O

5[1.0 10.1 9.55 9.38 9.02 5 14.9 13.6 12.9 12.7 12.1

10 5.64 4.85 4.41 4.25 3.91 10 6.87 5.85 5.27 5.07 4.64

20 4.10 3.37 2.94 2.78 2.42 2C 4.76 3.85 3.32 3.12 2.69

30 3.70 2.98 2.55 2.39 2.01 30 4.43 3.54 3.01 2.82 2.38

OD 3.02 2.32 1.88 1.70 1.00 oo 3.35 2.52 2.00 1.79 1.00

Prob(F ) Fp = p

For a more comprehensive table, see Reference [5]. p. 878.
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Table 5.7 Values for Variancc-EGUalitY Test

-95th and -99th-Percentile Va.lues of F = s 1 in aSet ofkMean Squares
F .ax= max -MInJ

each based onn -Degrees -ef 'reedom. Upper Value-is 9 th and Lower the -99th -Per-

centile in each cell.--

2 3f 1 5 -6 71 j 9 10
2 39.~*( A7. 142. M02. 266. 333. 03. Ir.

- 1 W 729. 1036. 1362. 1705 2063. 232.

I 6 ..__.. 93
3-15. 27.8 39.2 . 72.o9 83.5 .9 10.

:4 j 8.5. -LZ0. _151. 184 I -W
4 9.6D 15.5 j 20.6 25.2 4 9.5 33.6 3;5 W'i.i 111,.6

3.2 37. 49. 59. i69" j . 8. 9. 106.

-2.9 -L-Ii- - -

1 7-15 10.8 13.7 16-3 38.7 20. 22.9 2.7 26.5

-,.9 22. 28. 33. 30. 42. 116. 50. 5,.

8 4-.A3 6.00 7.18 8.12 9.03 9.8 1.5 .1. 31.7

7.50 9.9 1.7 13.2 11.5 15.8 16.9- 17.9 8.9

t0 3.72- .85 5.67 6.31 6.92 7.42- 7.87 8.2 8.66
5.8-5 7A;k 8.60 9.6- io.4 n.1 n.6 12.41 2 l.9

35 .86 3-4 4.01 1 .37 1- 1.95g= 49]5.-10 5.s9:
1.07 1.9 5.5 6.0 6.4J 6.7 7.1 173 7.5

3.32 3.8 4.3- 4.6 4..9 5.-1 5.:t 5- 5.6

30 2.07 2.10 2.61 2.18! .9r 3.021 3.42 41 .2

______i 53 ,
2.1 3.0 13 3 -4 3.6 3.7 13j 3-F 4 10

167, 1.5 :.96 2.Ok 2.211 2.3 .7z -. 2 2.30-
3Lz.961 2 .2 .3 2. 2.1 2.5 . 1 z.6 -. 6

Fo- .1 mrev comprr-n- r~. mb -. sea Rnerence (9,q, 2
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Tz.Lle 5. & Factors for Converting Sampic Range to

Sample Standard Deviation

Values of dZ. The sample standard deviation s : R/d, wherei

is based on the a -erage of k sample ranges co.ipated from

samples of size .

I Mae-e or sawmpe 911 1
Snples k 1 k 5 6 8

~ - 1 S23 Sz 3

2 !.1.28 1.81 2.15 2.40 2.60 2.I 2.91

1 11.231.1 1.75 2.21 2.3T 2.5>7 2.4cr 2.88

|1.19.F 8 1:E1 EE7 2.S EE3 2.5 2.2 28
A I 1i.1 1.71 2.07 2.3% 2.5 1# 2.71 2.8"

Go .13 1.69 .06 2.33 2.53 2.10 2.85

For a more comprelwzns.- £b!ae, see Refer.rce S -1. p. 7 4

ASD TR 61-1 5-0



Tale 5.9 Factors for Computing Sample Size

and Number of Defects

Factors for compuing N and c for a sampsiag pUja with c -
ar d = - 0

rI ° cr I "N" I
0 o.W51 2.3D ,5.10

0355 3.89 10.96

2 J 0.38 5-3 6.5o

II
I13 Ii.36 6.68 4.69

1. 7.99 40

5 2.613 9.28

'B

6 3.25 1053 3.2L

7 3-9: 8.1? 2.96

8 4.695 22.99 =.i7

9 5.1,25 l U 2.62

[ 0 6..,. 15.4 .50

* For a more comprehensive table, see Reference [IJ. p. 83Z.
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6. ANALYTICAL PROCEDURES FOR DETERMING

VIBRATION ENVIRONMENT

The Procedures for determining the vibr?f*=o e-wiroment at a
single point on the structure of a rznodern 114!st vehicle mar be divided

**sgicaaly into two 5=ets:

Part 1-. the procedure for aiwalyzing the pertinent statistical
properties of a single vibration time history record.

Part Z.. the procedure for establishag tue over-ail vibration
environment gives the satistical properties of each of
a collection of vibration timre history records.

Section 6. 1 will describe aft over-all recommie, * I procedure for

Part I while Section 6.. 2 will discuss a reciwxnmended, procedare for

Part Z.

6. 1 PROCEDURE FOR ANALYZING WKDIIDUAL VIBRATION XECOR-D

The over-all recommended procedure for analyzing the pertinent

statistical properties of a single vibration timne history record is sum-
wuaretd in f Fig. ..- Each block in Fig. 6&- I will be discussed in this;

section. The discmss-ion* w.il be :.= terms a' . analog techniques and in-

strumentation. but ay part of the recomumended proced..e or all of it.

could be ace=. plished by digita!1 tec&apqas.

Actual procedures to accomplish t-he functions shown in Fig. 6. 1

have in mnany case- been covered in ocher sections of the report. The

discussions here -mill then often consist of simply defining tbe need of the

function in the over-all procedure while referring the reader to another

appropriate section of the report for details.

A U i Vhwatiou "Pransducer

The first step in the procedure obviously is to cliain an ar.2'o

signal of the physical parameter of interest as noted by block A in Fig. . .1.

The pirrsicMal paramieter of i nterest will proi,.bly be some measure of vibra-

tion response at a point on the structure of the vehicle. such as acceleration.

velocity. displacement. or vsecs. The transducer would then be an accel-
erometer. velocity signal generator, displacemen: signal gencrator (if such

AS D TR 6 1-l 112I
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a trnmstacer ezd~r'Sj. or flrlL -ate. flwerver. 0=e aroccdccr ES --Qe

Unafited :o parbrntrs of sgtruczsnil wibnrioa resrposse 'The :~c

CCO-dd faSt As wrIl bC. f*-r kXampl., a inicrcfhnae Which cr

Me piarsICal characteristics of =Mra~tn4-t erzast-cers; AppicaCe

to the fflg47-t rehiCIC tilrftiec problem are dtaZltd is Stain~ 7. 1. Ade--

dinai disccssioC X ccccersisg tie *t!*aic= of £razsimcers are prcsestcd

gm Stales ED= 4.

SmCS of the anlcrg Slkna! item tile traaSdzcr wms eaicd

by SeeV saanpiisgz~j procirdart as Swed by Mlock 5Si Sm7. L. . The ksph

of &*cs .rt hlsEry saa-pfc zc Rime -as of direct impnrarce to tOe Sax-

W.11be diussedt for each type .1 asirSis.

Ff :Le r.her- haMd. the ==0brr of Sa2eo- eise amd the T%_Cse

Z* wAtc Ckcr are S~ktKed is of direct zE-"onac to Wt~~s he wer-

all nibrale. ewnr@mrFl X- & !-irr_-lttrc Of the -reMdC:.
5= sera;. -.i 'sill be reccammeed unsmesbe ebW-'n1 by ti2the ime

ioe4 caatizan.s record. or by a Set! r& rt rec s of Pre*dnemfmise

lergieach selectedl rndeen~y 0&1rit* a fl~LThis tzuire subject. is-

elding a dcszri:psion of a 5-iftable ramndae- sapa evice. will be de-
taileCd in Se 3oa4..

.Litarate adTransiission

After the vibratioun c- ne szory sxnples are a*ted.=v tht samPles

an-ts ither be analyzed direclF or ricnrdcd ad coreda *- nisguetic ;zpe

(or sene cuber nitae means ef sbarazec) for later azalyFsis. As will Le

sea-C. the aser-all xaavikat2 pr9cctrr Aind atal1YSitccqs recanm-

amezded here willI rcitirr a rteated !nresigltn= of each limeSI history

*ample. Ahuz ietalsso irts iehsoyswtpal was

sorneirvncs domc a feCW yarsC a:.. !is5 approach is so looser feasiblle. TheL

recording and4 st.oragCel the *line history signmals wmill e-xrealv be cc-

cy.rcd.L Magmesic tape ecdigis reconnnaded sinc istffr the mst
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Eacnfle atzd cCcretiea meazs araibe 2a e!* -prCeetime (or smniing

&nmtg sigcz~s ri*f~ t-ie&acde amd -.Freqa.ccy ra=?es. A discrsSio

of tn-w~ci-c wape cc m kw prcscd isA Section 7. --P Z

Tlc wr;nzC m nv history saapkCs m, 5 M be recorded an inei

cored "ee. Teoe recorer cc? 3m fr-FlIg-Jt m-1amic taPe reczr4Lc:, .Es

omc =C. Pcnrsie, Paumictar~is Ih Ee case -of ilolless raissules- n

issale ptced aie?ases. =s airs-cn-.a ;APe recorder nyM =-t be ;cr-

ct caz-se --f s=t atHeg.lOWCtrer. it is rcmmmeadd gbi

zan~v ant b - obiaiae4 dfre'-cCr I-- i0igm- ;;f an aC-rhorme rrnrcr&r

flbz ;z!aeh A ttelC7er Vsnc- is XIS 24666u! swzrc CE caLibrrinw

error as zwfl as a sm=rCt af ges. fahre ae t2 maifusctiom. and sh,4d

be C=tYeC*d, dr, wfrc- -%bSott2elr secessar. A discussie of tWemtry

The crer-'C; rce.,? drrcetrcc requires at this point that

tke sn=Fe records bt 4r6ed" ixe two, cang~ries: records whith are

razdem a"d react u4cz arc ameraanm.. An cspicit statistical proce-

tiefor esnaitr -bhr or cno a record is radwnm is proposed in

a.~ =*a tseccs. Metir.: bdfore procetaing w;ishkiie analysis, it

wcadte 45nirahte to take a riq*ick isa- a ihuiati time hicry :a

see Ef Cl'e- reczrd is OEWris'siy sa-razdee- as fmaczet by Miock 0 Em

Fij Et£ Ths ar be &Fr 4- spamisjx the= recoard on a cathode rayf

os-'oscpcor a high frequency ;alvaremeter ndllqprapb. lf strong

pcic ,se epsm are obmiasjly peress,, the samp~ record may be

reecedL aalyas being mrsrndcct wihnut nastisg tine ocm n~rt

Thc '*gaich inkzew amivstyds sup my- be as C:ish.Mt as desired.

For cflimple. a frequency *pwsspay w1 1l reveal the presnce aC

pni54Ecies Sm a sigsa to thae esperlesced vi!rao e*-rgaecr. erm wtemn

Cke AmpEiadc Off the Periac CwapaaZ is quilqt small reirire to the

ram&oca- soiSt bacaxror0-s& Dirct risol displn- specualcm'

.&Ml zers.kmuc ar f c C*erfilyanlb. .db
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such as autocorrelation analysis could be employed, but elaborate anal-

ysis of that type is net justified at this early stage in the over-all pro-

cedure. in any case, sample records which are obviously nonrandom

should be transferred to block Q in Fig. 6. 1, to be discussed later.

6. 1. 5 Test for Randomness

Those sample records accepted as possibly being random by the

"quick look" analysis must now be investigated more rigorously as in-

dicated by block E in Fig. 6. 1. It is necessary that one have considerable

confidence that the sample record is random because analysis procedures

to be later recommended will involve statistical procedures based on

randomness. One suggested method of testing a sample record for ran-

domness is the Run Test which wvill now be described.

Suppose in tossing a coin 20 times the following sequence is ob-

served:

HH T H TT HHH T H TT H TT H TTT

1 2 3 - 5 6 7 8 9 0 2 2

A run is defined as a sequence of identical symbols which are followed

and preceded by different symbols or no symbols at all. In the above

example, the number of runs is 12. The total number of runs in a sample

of any given size gives an indication of whether or not the sample is ran-

dom. If very few runs occur, a time trend or some bunchir.g due to lack

of indepcndence is suggested. If a great many runs occur, systematic

short-period cyclical fluctuations are indicated.

Let n I = the number of elements of one kind, and n 2 = the number

of elements of another kind, the total number of elements being n = n I + n .

In the above example, nI would be the number of heads (n I = 9), and n2

the number of tails (n 11). Let r equal the number of runs as defined

above.

Fir nI and n2 larger than 20, it can be shown (Ref. [7] and [81)

that for eandom data a good approximation to the sampling distribution

of r is the normal distribution with mean ttr and variance 0?given by,

ASD TR bi--? 6-5



I n2  2nln2  1
,=-- + - + (6.1)

*r I
n1+n2

Zn nZ(Zn n- n - n?) 2nln,(Zn.n 2 - n)o- = - (6. Z)
r (nI + n) (nI + n- ) nz(n - 1)

For example, suppose n1 = 40 and n2 = 60. Then "r = 49 and

o" J' 5. Thus, for a 95T* confidence level, the value of r should fall

in the interval between 39 and 59. Stated another way, if r lies outside

this interval, the data may be considered nonrandom at the 5% level of

significance.

For vibration data analysis, if n discrete measurements of the

instantaneous amplitude value are taken, the nunrber n may be taken

as the number of measurements which lie above the average value of

the n amplitudes at hand, while n may be taken as the number of

measurements which lie below this average value. A single run would

he defined as a sequence of above average (below average) measure-

ments which are followed and preceded by below averatp, f(above average)

measurements or no measurements at all. The total number of runs

may be denoted by r, as before, and the sampling distribution of r

described by Eq. (6. 1) and (,6.2), assuming nI and n2 are larger than Z0.
When instantaneous amplitude values of the vibration data are re-

corded continuously, the effective number of samples is n = 2 BT where

T is the sample length in seconds, and B is the frequency bandwidth

in cps. The quantity n, would be obtained by multiplying the percentage

(P1 ) of time per unit ti-:.: Lse instanianous amplitude values lie

above their avcrage value by n. Thus, n! = PIn. Similarly, n2 = P 2 n

where P is the percentage of time per unit time that the instantaneous

amplitude values lie below their averagc value.

For example, suppose T = 5 seconds and B = 100 cps. Suppose

also that P 1 = P2 = 50%. Then,
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n = ZBT = 1000

nI =P In = 500 =n
2n 1 2

n

Zn.nIZnln2 - n)

"r n (n - 1)

Then, for a 75% confidence interval, if the record is random, the value

of r (the number of times that the instantaneous amplitude values pass

through their average value) should fall in the interval between 4.69 and

533 If the value of r falls outside this interval, the record may be

rejected as nonrandoin at the 50 level of significance (that is, probability

of Type I error equals 5%).

The application of th. Run Test to vibration time history records

will require only a few instruments. Because an explicitly defined signal

bandwidth B is required, the record will have to be filtered through a

low pass filter with an extremely sharp high frequency cutoff. If the

filter does not have a cutoff of, say, at least 60 db per octave, the trans-

fer function for the filter should be determined to calculate the equivalent

noise bandwidth B N of the signal as described in Section 4.9. 2. The

noise bandwidth B N should then be used for obtaining the number of de-
grees of freedom n for the record by the formula n = ZBNT.

The quantity r, which is the number of times the instantaneous

amplitude values pass through some arbitrary level in either direction,

might be determined by using a polarity device followed by a counter.

For convenience, the polarity device should be centered over the average

value of the signal record so that n I will equal n 2 . The quantity r

could also be determined by simply obtaining a visual recording of the

instantaneous signal amplitudes on an oscillograph, for example, and

manually counting the number of average value crossings occurring in

the record length T.

It is conceded that the proposed Run Test is not a totally fool-proof

method for establishing randomness. Obviously, a specially selected

sinusoidal signal with an appropriate frequency will be accepted by the

ASD Tr% 61-123 6-7



Run Test as being random. Furthermore, it would not be surprising

if the Run Test fails to perform properly when the signal record being

analyzed has sharp peaks in its power spectral density function, These

possible factors Vill have to be investigated experimentally in a con-

trolled laboratory program, as outlined in Section 8, before the Run Test

for randomness can be incorporated into a standard procedure. Never-

theless, it is believed that the Run Test when augmented by good engineer-

ing judgment and experience will permit the detection of nonrandom

sample records with a high level of confidence.

Sample records which are found to be nonrandom by the Run Test

are transferred to block Q in Fig. 6. 1, to be discussed later.

6. 1.6 Tests ior Stationarity

Sample records which have been confirmed to be random must now

be divided into two categories: records which are stationary and records

which are nonstationary. This is necessary because analysis --r-3cedures

to be recommended later will involve statistical procedures which re-

quire that the data be stationary. An explicit statistical procedure to

establish whether or not a random vibration time history sample record

is stationary will now be proposed, as indicated by 1-nck F in Fig. 6. 1.

First, it is required to define clearly what stationarity means in

terms of a single random signal record. In Section 4.4, stationarity is

defined for a random process consisting of a collection or ensemble of

records. However, a somewhat different concept is involved when sta-

tionarity is considered for a single record from the ensemble. These

matters will now be discussed.

Suppose a single experiment is performed yielding only ont output

vibration record, say, the vibration amplitude as a function of time.

Furthermore, suppose that it is not convenient or possible to obtain

other results which would generate an ensemble of records. Thus, it

is now meaningless to perform ensemble averages, or to compare time

averages from this one record with any other record. Pictured below is

a sketch of the single available record.

SINGLE RANDOM RECORD

A5D TR 6i-123 6-3



What does the word "stationary" imply with reference to a single

record? The answer to this question is obviously a different interpreta-

tion for "stationary" than considered previously in S.-ction 4.4. To

distinguish this case, the terms "stationary-within-itselfP or "sclf-

stationary" will be introduced because these terms convey the idea of

breaking up the single record into a reasonable number of shorter sub-

records and comparing their statis:ica! properties a- obtained by time

averages in each subrecord. If all statistical properties from the sub-

records agree with one another, then the original record will be said

to be strongly self-stationary; if only the mean values, mean square

values, and autocorrelation functions are in good agreement, then the

original rccord will be called weakly self-stationary. Thus, the class

of veakly self-stationary records has as a subclass the class of strongly

s If-stationary records. If the amplitude values from the subrecords

f, tlow a Gaussian distribution and if the record is weakly self-stationary,

t: en the record will also be strongly self-stationary. Thus. for the

C tuss-an case, weakly and strongly self-stationary are synonymous.

Single records which are not weakly self-stationary will be said to be

self-nonstationary.

It is important for the reader to keep clear the essential distinctions

between such ideas as "stationary", "ergodic", and "s' -!.--ztationary".

The latter term applies to a single record; the first two terms apply to

a random process, that is, an ensemble of records. If the single record

is also a particular member of a random process, then the random proc-

ess may be stationary while the particular single recora under con-

sideration may or may not be self-stationary. For example, individual

records may be self-nonstationary by themselves, but when considered

in an ensemble of records, the entire ensemble may still be stationary.

For this to occur, special f'luctuations within one record must be balanced

out by different fluctuations within other records. Thus, knowledge of

the properties of a single record by itself yields no information about

stationary nature of the random proc.ess. However, if the random proc-

ess is ergodic, the individual records must he -clff- setionary since each

record is representative of the original random process. Hence, if an

individual member is not self-stationary, then the random process can

not be ergodic. On the other hand, individual records of a random process
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may be self-stationary without the process itself being ergodic because

the individual records do not have to agree with one another. Of course,

the random process will be stationary when all the individujA records

are self-stationary.

Figure 6. Z is a display of various categories for a single record

and an ensemble of records, using arrows to indicate subclasses.

Si.e .. 4Self-nonstationary

Recordl self-stationary
by

Strongly Ergodac ---

Figure 6. Z. Categories for Single Records and Ensembles

How may one proceed to test whether or ,ot a given random process
is stationary weakly or strongly) or ergodic (weakly or strongly)? Now

may one test whether or not given single record is self-stationary

(weakly or strongly)? What special properties should be considered if

the given single record is a member of a rand on procese?

Consider, first of all, the case where a given single record is a

member of a random process, and suppose one has determined for this
record that it is either self-stationary (weakly or strongly) or self-

nonstationary. I ethe record is seif-nonsttionary, then the underlying

random process can not be srgodic, but is otherwise not restricted. If

the record is self-stationary, no conclusions can be drawn about the

random process based on this information alone. For a record whose

amplitude values follow a Gaussian distribution, the record is automatically
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strongly self-stationary if it is found to be weakly seUf-stationary If

the amplitude values follow a non-Gaussian distribution, weakly self-

stat.ionary properties do not imply stro-gly self-stationary properties.

Fortunately, one is usuaIlr satisfied tc know merely whether or not the

record is weakly self-stationary.

Consider, next, the case where a collection (ensemble) of records

is available from a give-. random process. Suppose that one has deter-

mined for each record whether or not it is self-stationary of self-

nonstationary. if mixed results are obtained, then the random process

is not ergodic. but is otherwise not restricted. Statements about the

stationarity of the random process would now depend upon performing

ensemble averages of statis:ical qua-tities over the random process at

different times, and checking to see whether or not these statistical re-

sults are invariant with respect to time translations. If every individual

record is sedf-si.=:onary, then the random process will automatically be

stationary and no ensemble averaging is required. Furtherrore. if the

individual records also yield essentially the same self-stationary prop-

erties, then the random process will be ergodic. Thus, determination

of self-stationarity of each record in a large collection of related rec-

ords wilt yield desired information about the underlying random pro-ces$r

It is now necessary to develop a quantitative procedure which tests

whether or not a gi--cn single record is self-stationary. More explicitly,

it is usually of practical interest to test unly whether or not the given

record is weakly self-stationary. Towards this goal. the record most

be broken up into a number of shorter subrecords, and it is required

to observe how closely the mean values, mean square values and auto-

correlation functions as calculated from each subrecord agree with one

another. For simplicity, as well as because of its widespread occur-

rence in random phenomena, it will be assumed that the mean values are

essentially zero (or can be subtracted out) and that these mean values

agree to within a desired confidence level. Also. it is reasonable to

expect that autocorrelation functions from the various subrecords will

be in close agreement if this is true of their mean square values, since

autocorrelation functions are less than or equal to their associated mean

square values. Hence, it is deemed sufficient to examine merely the

mean squars values from the various subrecords.
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Before proceoEdng w'im theC detai:3 i. f a tes: for weak sclf-

-StztiO-Mz ity. ce~i~cacIrelationShips associated with the

mean squjare vale eictin!2tiof problem~ are required. These recation-

Ships Will be developed i, dazaiI in" the followins subsectio Ca "'Analysis

of Mez-- Smpare Mecasureiments". -those not interested in such rrnathc-

rnatical details are- advsc-4 to bypass this subsection and go directly to

the next subsection -ntitied "-A Test for Weak Self-Stationarity-'.

.1-. 7 -Amalysis of Mean Square Measuremnents

Comxider a random record x(t) of length T (seconds) to be passed

through a sq-.e-ring circuit and then thtro:4gh a perfect integrator where

it is averaged for a time T t< T. Let the outpu be denoted by y~t). This
output is An ncSti.m.mic of the nriean squ:are Valtue of 1(1). Sec sketch bciom.

x(t) Squarin g xAlt) Integrator znd[y )
Circuit -1AvrageT,[

I . i

F!:; , tT z (t) dt I <t<T (6.3)

If the record length T is such that NT I- T where N is an
intczer. and if the output is obta-ed only at discrete times T..- ZT 1 .

ZT then

V(Tl) L f ST, .2(,) dt

I £T

T )T xtc

y(N.)NT*9 x - ,. d



wouvd rc ,resez a discrete sel of en square *=pte- values as comput-d

from. N differe-i subrecords of xAt). An alterr.ative e ivaltr- repre-

t-c-o'atio for the above outputs is given by

71 = -Lxt)*
TI

- z

T1 z T L2"a

where the range of iMegration is now the same in A all cases ;0. T 1 ). and

the different *U-records xi(t), i 1. Z..... . are indicated by the dif-

ferct subscripts- This se: of outpu:s is a special case of Eq. 0. 3)

where t T. a co ut,. and y(t) = f oi. i = 1.Z ...... M

The mean value of the set of possible output records fy(t)j at

any fixd instant of time, computed o-er the ensemble . possible input

records [xl,)J. is given by

tJ - 5 E-x
2

(t)J T I i -TE +?(u + 3 ) .

where it is assumed that 4:) is wca Uy se I-starionary. The quantity

Rx(O) is whe stationary itutocorrelation ;rnction R(T) at T z 0 ox(t)

as defined by

R =(i) a[xlt) At + 7)] independent o t (6.5)

Equation (6.4) shows that y(t) is an unbiased estimate of the mean square

value of At).
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The variance in tke esrmate yo'j is given by

z L1  z fyj z Y' - F 66

- T , £.. t -TI. " IC(U) xZIV) - ftZ(O)J asa

insiag the stati~mary relation

4xlu CZar) = ZA:(V - a) + dc (6..SJ

which is valid if x(t) follows a GAsssisf (mormalj distributii. with xere

meavalue. This rdatiois apprimzed closely also by other disti-

v.e.From Eq. (4- 4)letig =v- a. dy rdv. ~ obtin$

- T u b' dy aw (6.9)

.Weat. reverse the order ef integration betwees y a" a. See sketch

below. Thijs yields

Z 1 J Z STI 1 (T0 Z(V) ds 

5 T' (TI y) R-(y) dy P.. 10)

T1
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t

TI

For defimitesess a"d simplicity. as well as becaust at itt wide-

spread observamce -' physical phenomena. the asacrrcIation functise

Rt jyj will be represented by a das.ped ezpoweaial fwacir

ft (y) Wt ZR) 3TI (6.11)

where 15 may be interpreted as am idea low-pass bandwidtt (Cps)-

&S-bstitut-a Eq. (6.1It) znto Eq.- (6.14. a"d carrying out, the simple

integration,

y STI

if the integrati~o time T, equal* the full length T of the record.

Eq. (6. 12) shouald bc replaced by

oao R (a assiuming BT >1 (6.13)
Y ST
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r~ratin 6. Z SL.wxMI- * raches *are as T, becomes large,
proriog that jft) is a cc-s~ e-imt of the inea 01PUaae valow of

Tke resvilt obt~imdIir. Sq. ii. 12) jgives the v_.rzance i stimates

of y(t) for timtes t i= the range T I 4 t -CT. n as each inicates the

Ineaf square a-uctuatiom to be Oapected in 7(t) during this time interval-

ft-C Avere

Instead of using a Perfect i~grMor a"d SerzgOw. it is frequestly

necessary to mniel a f-C aweragiaig circeit-. A direct congarisee

-ill nw be carried eat keewees swaisticia reedts obained pre oslv

for the perfect imeeraer-swevager and theeqected fer thw-C

cirei To avowd ca IKA wb e preview. vvek. me" UP& 46mff.
the ft-C circuit be dinme" by *(I- See sketch belo.

As is well boom.

SO) x2 (A -446; t&N 6.4

wahere

K

X z KC =time-constant of ft-C circuit
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7the Z.can ofiu . bc se CC pcs!1C- Ijf xs Cic- by

VL Efz:1=-l 'E

K JO

~The rotule bdgw shows bhw .V varies with t.

I K ZK -W S -K

It i-cr tat&prt 3 3. L mzay be am~ste %T AV"( with. at

mmlt & 5 perc~ error.- for 0 4. Le affroximaeft is so" to wftkia

& Z perc*n error- FSr 4&Wmk#jcs. asawe fsm hemcclorth that

Ca A-- as to mame PL essemwuly iaitpeaiexx of I- Thms.

MAa sit) for t )14K 4eemes am unbiased estiam*t of the wwtm sqware

ValUC 41 *).

Analegoug to Sq. (4- 6. ahe vvriaacc in the estimate is here give*

bi

Ef.I!.. -

L,--. -0 - 4
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Vx. asswajag is naw-ir sA6ninrr a"t nmnanv

scna. asin d± - C~tIsn at Eqais (6. 1-.;. rcnerfl tt4

a-S" T~Rsi heist j*c n.Sestc d



Ze4 _ tK R2 {y) eY/K eZu/K

- tIK t Q-u

4 Zi"-2t/K 0t f t-2K2 ey/K eZu/K4--.-J J R2{y)e du dy

e-t/K 0RZ ey/K [e' t/ K _ e/K ] dy

+e- ZtfK Cz RZYy/K r Z(t-y)/K-11d
K JO

+ f R2Z eyC K ( e /K et/K_ dy (6. 2Z)

K Io

Assume now the same autocorrelation function Rx(y) specified

previously in Eq. (6.11), namely.

Rx(y) = Rx(O)e -ZBIY3 I (6.23)

where B is the bandwidth (cps) cccupied by x(t). Substitution of Eq. (6. 13)

into Eq. (6. 22) leads to the resuat

o"ZKJO assuming t 44K and BK > 1 (6.24)
z 2 BK
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Direct comparison of Eq. (6. 24) with. Eq. (6, 12) reveals that the

ef'!ctive integration time (T I) is eq~zal to twice the R-C circ--i* ;une

constant (2K), that is, independent of B.

T= 2K (6.25)

This important result holds in the time range t ;i.4K and all formula*

involving T, are valid for the R-C circuit in thjet time range =crely

by replacing T, by 2K. In particular, Eq. (6.24) indicates the mean

square fluctuation to be expected in z(t) when t 44K.

6. 1. 8 A Test for Weak Seii-Stationarity

The test for weak self- stationarity to be developed here is actually

a test for whether or not a particular record is self-nonstationary at

some givea level of significance. The test is applied *-y J.etermining

whether measured mnean square values fluctuate outsidle an allowable

range more than a defined percentage of the timc. Records which fail

to be self-nonstationary by the test will be accepted as weakly self-

stationary.

Let it be assunied that the input record is weakly self-stationary

and occupies a frequency bandwidth of B cps. The normalized variance

in the measurement of the mean square value a 2 using a perfect inte-

grator with a finite integration time (equal to the subrecord sample

length) of T, seconds is shown in Eq. (6. 12) to be estimated closely

by

Variance: = ... (6.26)
9 BT1

For *n PC averaging circuit with time constant K = RC. after "~y four

or more tirre constants have elapsed, the effective integration timeTI
is shown in Eq. j6. --') to be related to K by

T1= 2K :b. 27)
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Hence, after time = 4K, the normalized variance for an RC circuit

is given by

Variance = . (6.28)
2BK

The nu-ber of Aegrecs of freedom associated with a record of
length TI(sec) and frequency bandwidth B (cps. is n = ZBT. since the

record can be reconstructed from its samples taken (,/2B) seconds

apart or. the time scale (Ref. (l). p. 57). Thus, T i divided by (I/ZB)

or 23TI numbers completeiy detern.n.e a record which is T 1 seconds

long.

n = 2BT I = 1) (6.29)

For an RC averaging circuit, after time = 4K, tl-e equivlent number of

degrees of freedom becomes

n = 4BK (6. 30

From other dtatistical considerations (see Section 5. 3. 3(c]), it is

known that for samples with n degrees of freedom, the measured mean
ZI

square value s" and the true mean 3quare value o- are such that

ns = X2  (6. 31)

2
follows a Xz distribution with (n - 1) degrees of freedom. Valuee of

X are tabulated according to n and a desired level of significance a

fin per-ont) -s defined by

Prob X2 > = 2 (6.32)

For example, if o'/2 = 5% or 95%
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PrepX > X. 0  =.05

Probf X z X = . 95

Hence, a 90% confidence interval is given by

Prob[X 29z,C X z 5-

In generai. for an arbitrary confidence interval (1 - a). in percent,

r ._aZ (!)

ProbIx! )X (x o = 1 -a (6.33)

The quantities X 2 and yield the lower and upper !imits of

X in he desired confidence interval. From Eq. (6. 31,. equivalent

expressions to Eq. (6. 33) are

P,-ob [xt_(,/z) -. X(*4)] - i -( (6.34)

Prob [rZ(I?. J !L , S C l? (6.35)

Prob Z z(XZ)) < a2 s (Z n J I 1 - (6. 36)

Equations (6. 34). (6.35). and (j6. 36) are confidence statements

about the random variable nsI/- in different fiorms. The confidence

:-aeaning in each of these equations is that if the experiment of rneasu-

ing s is repeated a large number of times, then the inequality in

question will be satisfied in (I - a) percent of these cases.

To ;; terpret Eq. (6. 36). one would say that the range interval

constructed from a measured 9 by calculatng s2(n/xZ 4 ) } and

(n/xI .(&/Z)) will coptain thc true a- with (I a) percent confidence,

that is, in (I - a) percent of the times that the test is conducted.

Similarly, to interpret Eq. (6. 35). assuming o- to be known, one
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would say that the measured valses !s will iail in the range shown from

8 z ( /, to s (x 2/) with -o percent confidence. Equation

(6.35). rather than Eq. (6. 36). is fundamental to the later analysis. First.

however, Eq. (6. 36) will '- e discussed.

Table 6. 1 below, based on Eq. ,6. 36), contains calculated values of

(n/x ) as a function of n and a. and thus provides confidence limits and

intervals for the true a - fro n measured mean sqare values of s.

For simplicity. only 80% and 95% confidence intervals are shown, and

n is taken equal only to 2, 10, 20, 40, 60, or 120. Othe- values ar-
2

readily available from general X tables. For large values of n, the
2

X distribution approaches a normal distribution with mean equal to r

and variance approximately equal to Zn, (see Section 5. 3. Z).

Table 6. 1. Confidence Intervals for True Mean Square V1',iues

No. of degrees of freedom n 2 n = 10[n = 20 n- =40 n = 60 n = 1Z0

8G Lower 'imit 0.43 0.62 0.70 0.77 0.81 0.85
Confidence -
.te-. ai Upper limit 9.48 Z.05 1.67 1.37 1.29 1.19

9i Lower limit 0.27 0.49 10.58 0. 67 0. 72 0. 79
Confidence
Ix terval Upper limit 39. 20 3. 07 2.08 1. 63 1.48 1. 31

"abulated Limit x Measured Mean Square Value = Confidence Limit

Ce-niidence Interval = Upper Confidence Limit - Lower Confidence Limit

To illustrate use of Table 6-1. suppose n = 6C for a partirclar

record as computed from Eq. (6.29) or Eq. (6. 30). and suppose the
2

measured mean square value s = 3 volts. Then, the 601; lower arid

upper chi-square confidence limits for t are cqual to (0.81)(3- = 2. 43

volts and (1. 29)43) = 3.87 volts, respectively, and one would state here

with 90%, confidence that, if the record is weakly self-stationary, then

the true mean square value lies in the range 2. 43 to 3.8? volts. That

is, in repeated measurements of the mean square value, there is a ron-

stant probability of 80% that this statement about the location of the true
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mean square value is true. and a constant prohability of 20% that this

statement is false.

Table 6. 2 below (based on Eq. 6. 35) contains calculated values

of (Y :n) as a function of n and o, and thus provides confidencc limits
2

and in'-rvals for s assur.m-g knowledge -Z the true mean square value

a" . Tabe 6.2 and Table 6. 1 are, in a mathematical sense, inverse to

one another.

Table 6. -. Confidence Intervals for Measured Mean Square Valuars

N'o. of degrees of freedo n =2 n l= 40 n = 60 n = 1

8C N Lower Limit 0.10 0.48 10.60 0.73 0.77 0.84
Confidence I -

Irterval Upper Limit Z. 33 1.62 1.43 1.30 11.2N i.18

9 5 Y Lower Limit i0.03 0.32 0,48 0°-51 .6 7 0.76
Confidence I I!
Interval I Upper Limit 3.7104 1 .50 ,1.39 27

Tabu ;ted Limit x True Mean :;quare Value = Confidence Limit

Confidenc.e interval = Upper Confidence Limit - Lower Confidence Limit

To illustrate use of Table 6. 2. s.,,Se n = 60 and suppose the

true mean square value is known to be o-- - $ volts. Then the 80% lower

and upper chi-square confidence limits for z z -ire equal to (0. 7713) = 2. 31

-,olts a4 tf1. 24)(3) = 3.72 volts, respectively. One v-nul assert here

that the following statement is correct: namely. if the re--rd is weakly

stationary, and if the experiment is repeated over and over aga -, ;L

would be expected that 30% of the measured mean sq'are values would

fall inside the range 2. 31 tw' 3. 72 volts. It follows that 20% of the

measured mean sjuare values would be expected to fall outside the range

2. 31 to 3. 7Z vc !.s.

In applying Table 6. 2 or extensions t.ereof to practical problems,

it is required tha n a.d o . 2 be known. The main problem is estimation

of a', the true -ncan square value, Since the expected -,alue over a set
.2

of measurements oA * gives an unbiased and consistent est-nate of (r

this is clearly the approach to tak.e to estL-nate c-8. By definition, a set
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of measures.ns~ of any quantity .:: -&d to be unbiasedi if, independent

of the number of degrees of freedom xx. tte -2xpected t-ablxe is t hz true

-alue. The set of measurements is ;aid to be consistent if the mean

so- are deviation from the true value appro iches ter* as xx approaches

infinifty. Thtus, one should choose for or zthe aL erage value ,t about
vhicb the differ-ent measurements oi s are -'aryirg. in the case cf

an %,. filter. only -,he #t;rne history after four tir-;e cemnntarts S.Izve elapsed

should be considered irn determining ,his avr rage v-siue.

Assume now that a sunple reccrd of eetlh ' and taadwi~th B

is to be tested for weak 3el!-stLitionarity_ Tht record .'s divided into

N number of subrecords %f eqriai lenith T . (TIN). Themi the najmber

o-f de&:ree of freedo.- for e-,ch subrecord is n -; (ZBT/S)_ Estirnate
the nmean- sqtare value s z for each of th.- N F.brerords. Establish

1
a (I - a) chi-square confidence interv~i and -:t estimat~cd true MeAn

square va ue -7 for thc entire rccor1 ay the prcedures *revio- sly
discussed.

If the sample record is weakly - Af-stationary, it would be ex-

pectcd that *N of the mean square cstimatT- 5. wvould fall outside the

(I - a) chi-square confidence interval. "he nurnbtr *N will hereafter

be called the expected nurnber of violatio:zs. R-emrtber that ON is

only an expected number of violations and for any river. test for scif

stationarity on a weakly se!f-stationary rcc-rd. th.. actual number of

violations q may be somewhat more or less than. *N. Ir fact. the actuial

number of violations q will be distributed in soxne -cndefined manner

about a mean nf *N. If it is assumed that t 3t. u:de-1ind eintribution of

q is sym metrical. then thxc mean &N will a! ~o he~ the madtn, and 's
will actually be greater than aN in :51 of the *tim.e ;hat the test is applied

to self-stationary data. The remaining questi1:0 -s. .::zn.y viol!tions

q should be permitted before the sample rec-. -d is contsidered rcelf -

ilonstati ~nary.
Consider the test for self-stationarity a.- a st. cof N experin.ents

where each experiment is the estimation o[ a ri.e~n scr.art vaiu.! s fax

the ith subrecord formed from the oiginal rec- rd beirg tested, Each

experiment has two possible outcomes, the value of s. w-11 fall outside

a (I-a) chi-square confidence into-rval ',a failure). or the value of s
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wiii I'a-H irnsidc a (I - a') chi-square confidence interval (a succesa,.

Ass~a.-iing thop series of N experiments are statistica~ly iniependent.

th- g. ;i inay wr considered a.s a set of Bernoulli trzals isee Section

w-h..: .ere the probability of a failure is a and the probability of a

succt-spr is !I a)- The resulting randwrm variable for the wnmber of

failur#-t q (violation of the (I - o.) confidence 1nterval; will bave a

n:ziai probability density function as follows.

bi q) = 17-41 a( I - 0) Nq (6. 37)

The expression I?( is the number of different comrbinations of N number

ofZ exioerimevots taifer i number at one time.

QN N: (6.36)
1q.q (K - qJ!

whert N! = N(N - 1) (14 -2) - (3) (2)11).

Remember that the sum of all probabilities must be one.

Hence.
N

(N- N -q =(6. 
39)

Also. the probability of any given number of failures k can be estab-

'haled a, IVID W'S:

E IN Al a) ~l)+ b() + ~k)(6.40)
q=1l q9

Consider the 1611 - wing example. Assume the sample record is

'?.iv'4ed into AN - 10 su ecords, and the mean square value i. s
estimated for each of t:.. ten subrecords formed from the ozigirAl record.

Any chi-stq"*re tenfidev- e inrar'val (I - a) desired can be calculated for

!he estz'mates. Since confideace coefficient is of no dire#.t importance

ASO~ TR 6-.- - 646



to the present exa.-nrs. use a 501, rhi-square confidenct- i-er-ai for

simplicity.

Then

(I z -05, and for N O = 0,

biqz - D. sq. ts)0 f!. ,) ::!I

=1q:'O}IO.O*t = =---

b~ 1 0- 001 = Wq 0)
bNqr 9)=0.01-=b(q 1)

b(q= 8):0.44bo(q:Z)

b(q = )z0.117 b(q=3)

biq: 6)=0. 05- b(qz4)

b(q = 5)0. Z46

It may be said that the probability of 7 or more of the ten mean

*q are est;-i--.ates falling outside the 507,hi-so.uare confidence interval

is b(q = 7 or 8 or 9 or =G = 0. 17Z. if the original record were seff-

Stazionarr. HP.-e. if I or ,uorc of ;hne ten estimates fall outside the

501; Chi-square confidence interval, the record can be considered as

self-n~nstatio.ary at the 17. 2 level of signifirane- (Type i error

= 17. ?,). Higher confidence is obtaincd if a largcr number of est..a:es

fall outside the confidence interval. The following higher confidence

,tatements could be made.

A. If 6 or more of the ten estimates fa;l *atside the ;0S
c.n;'.disei.-e interval, it mar be said with 94. 4% co.-fidence
that "he record is self-n.-onstationary.

B. If 9 or mort of the ten estimates ftal outside the 50%
confidence interval. it mav be said with 99 confid .c:-
-a'.- re;- is sclf-nonstationary.

C. If all 10 of thec estimates fall o-'side th- 507; confidcne
intert.al, it may be said with "9.9i; confidence that :he
record is self-nor.stattoeiary.
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If ii is large and cr :z* amaiL, then the biaoc'ia distuixwtion may

be approximated b7 a Pw~sson dizstrbcG-oa (see Section 5. 5.- '). such

that

pij). wacr &N~ (6.41)

zgA'r;t expiected value Ebij and standard dev~iation ajfq) of the number of

faiures; q are now given by

A fuarther Ismiting aproxirnatioe of the Poisson distribution for large

NDk and small a leads to a normal (Gazssiam! distriu:ton w'Pb the abo--e

mean and standard deriazzoc-

For example. suppose N = ZSO and 10 S. Thez = ZK= 5

axad a,= . = 5-. 0. suppose, to a first order of approxiraiom that a
norml dstrbutin aplis..!f the record is self-szt~aioear. then the

prob~iiity that ;L 4 Zri: 35 or more of the 150 samples Hie outside

the t1 - a)= 0 chi-squzare zonfidence interva; is L. 5%. Hence. if

this occurs. the record may be considered self-nonstationary with

97.,57a confidence. The probability that (X + a-) 30 or more of the

samtples lie outside this same "14. chi-seriare cowideace interval is

t6.For tlhis case, the record m~ay be cowsaidered nonstatiosary wi.th

$4% confiden-ce. Fiai!r the probahill. --:U X. = ZS or more of the

samples lie outside the "'A' chi-separe contidence interal is 50%.

Now, the record would be considered self- nonstationerv with oclr 50%.

confidence..

"'he -ittt ideas discussed for a sample recora divided into

discrete subrecords can be tple o cootiwAous estimates of mea

ziizare values obtained by filtering the output of a square law recti-

fier with an RtC filter of time constant K. For :Lis :ape -attention is

directed to the p.rcetage of time per uanit tiirse (P ! t:& the continu-

*uas mean square estime'te lits outid le a (1 - ej clki-souare confidence

interval. From Eq. (6. V7). the total number of experiments will be
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given by N a (T/ZK) where T is the total record I. nt Trhen the
number of failures q n P qN

From the foregoing discussion, one might b teiT. t"4d to test
for seIf-stationarity at the lower self-nonstationasi 1ev Iof significance
to, reduce the risk of rejecting self-stationary dat. -to b. naq self.
nonstatiunary (reduce Type I error). However. i shoua' be noted
that an the level nf significance for the test is dec eaott. -ax the
probability of Type I error is reduced), the risir If accet. owi a record
as self-stationary 'when in fact it In truly self-no-.-tatione y is increasod.
This risk of accepting a seif-nonstationary reco& as sel. Pi-L~ionary ins

the Type 11 error of the test (see Section S. 1).

The Type U error associated with the test *r self-& 'i.,. 4rity
is a function of both the number of statistical del eey oi fr '~~

(n a ZOT1 ) of the mcan square estimates for eaL of the orl i!d .-.Iob-
records, as well as the level of significance fur lie test (T% -,i errorO.
A Type 11 error ca. (with some reservations, p rhaps) be r. -aIoped
for this test by using conventional quaality contr', procedure. A:, 4-t.

cussed in Section 5. S. However, if the number . degrees u fr4.; dom

tor th.u moan square estimates is reasonably Is. ;e (graiater ~ .4.ay.

n =20) the Type 11 error should not be a seriou problem eva when
testing at a level of significance of 1%.

In conclusion, a specific analytical proct ...ure has been . ropc'sed
to establish with defined confidence whether 0! t~ot a single vi, *t'ion
time history nsimple rucord is self -nonstationi. .y. Those eece- O- not

rejected by the test as self -nonstationary will ai accepted as b ir-.e
weakly aself-stationary. As stated for the rect nmended test fo .,-r.-
domness (Section 6. 1. 5), the general procedu *Y should be tho;r z."lv

investigated by laboratory experiments, as ov.itanad in Section ~..:

bef',re the test is incorporated into a standar. .-- I

Sample records which are found to be self-nonst i aonary oy 9*i
test for stationarity are transferred to block 3 in Figure 6. 1. to ie
discussed later. All other record. will be considered weakly sell
stationary until further tests for normality are conducted, also to )a
discussed later.

GOO'
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ments needed to accomplish the test for stationarity
irnclods ' is filter with a very sharp high frequency cutoff, a
'Pi,. syJI 'mating device suc), as a true rms vacuum tube volt-

.ed in Section 1. 3, and a voltage level recorder.

6. 1. 9 Ar At,. ProbabilyDesity Analysis

Ont f the Iindarnental types of analysis included In the over-
all rucor. andet -rocedure is amplitude probability density analysis,
as fr.*.li-: I by b i ak 0 in Figure 6. 1. Probability density analysis
has not 1 a. a c -, mon data analysis procedure in the past. This has
been tru crr two -imary reasons as follows:

(4, rhe eat %ation of probability density for the instantaneous
signal a plitudes at three or four times the tins value of
.~he sign .(at 3 or 4 w') requires rather )oug sample
records, Ls shown in Section 7. S. For example, an
18. 5 mit o.e long record is required to estimate the prob-
ability C. -sity with a standard error (normalized standard
deviation if 30% at the 4 vpoint on a normal (Gaussian)
probabil; density function.

SEngfn't.', a end to be readily receptive to the idea that all
r andor ponsos in nature are probably distributed in a
Gaussiaii knner and that confirmation is not required.

*:first reasn -for avoiding probability density analysis in a
data rz' i ction proc,-r -ae has considerable practical support and poses
a real -oblem. The * cond reason. however, is not justified. Vven
if it e *d be ass*ime', iat the underlying stochastic processes pro-
ducinj .a structural . 'pouse are nearly always distributed in a
Oaubi.- ii manner, t),, .--ssibility of nonlinear structural character.
ixtic! % y sometime. j oduce a response amplitude probability density
funct .~that deviates v i esly from a Gaussian probability density fuac.
tin. 'he suhiect u~vi nt inear structural response is reviewed in

8 *r 9. S.
is Tecommead". hat amplitude probability density analysis

t- . .4d early in the or-all procedure for analysing a sample
record for the following asons:

GOOJ
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(a) ra estimate all the prciabiu-vy dess-iy [anis of
any-mie record ae roc ac rest 1t record far
mzr-a~y. rat flart tkzt a s spit rec-Ord dMeg ar
d0wes h~ave * Onl~sciba prr..aiJity desity fetctle.t
readersz i=4jrEtcW S4 cacersiagZb S sef-
stasioetariry of --be reccerd see 06C ofs.~ Oer~
tepe inaa na asbtsusdmmSel.61

(54 Urithe amnplitw boer~buhi 4nitr [attMN Of the tapic,
record " Sm Ga--ssia-. dke c-tuae.!- probilig, density

numts of the ever-all analysis irocsdre. paflicm~sry if
the vsisamr ej~ectiwe of Icc Aaaysis is stle prtactso. a

crueralfaipec life- For deejrails see the verity of
ntrscrai fatigue present?, tai Y

Z-aWc records by analog ucchmiqen is dnaikmd in S."t .

a.1.t* Tcv tor Cermancr

After :-Le aw4n:sF-d. 5-oh0iuy.I dWAUss kanIA o t sipit

reccord AiS estimatwd. Ow record skanld 5 tsne for aorsnfly.a &

um~cated br Weock K in Fig.- .61, A tma for mermuai "I ow be

Frawn Seal.m . .. mm given cardence intervail(assumiaga

aental tsrtrihsIaf tcstimatrsj ent be C'flsS zLw estiesaze a

any Pointa-- a probabilityr deasiry fmactiom, care givenf mhe sign)

banduidik R arC she record leearA T. Let if, %c asmd sham a sample

recOrd has a Gnaia apirttde probAU-i-tv drssitr rin.Calue

she upfer asS !ower mormal cafideace imterval- limlits desired for thec

appropriae raises of 8 amd T. as wel As Ik appie ampgsde

idow (64I for she specific analyzer big used. Moat a sheaoretical

Gaussiam probaflity density farmzin With the Cafideace limits wt all

ampfL-dc poins a sba is rag. -6.3.

is maw rams to determirp U- she eSsiatated probabiln aet-

fctios $"'lx) of the sample record Will properly it a given amalj

cawfiden interval as Shows n Iig. 6i. tThe re-estnc r-eally is,. what

dosa proper Em:- cewr?

Rememer Mat shke estimate fta) IS actually' X set of estiMates.

eachk for some diffreant amplitee window. as.- If ;NM) is estiatedv
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over some amlitude range (x - xI) , the total numbe: of experiments,
N, represented by different P(x)i will be,

(x2 - x) (6.43)

It would then be expected that aN of the individual estimates Ow,
would fall outside a (I - a) normal confidence interval. For example,

if the amplitude range of P(x) is (x2 - xi) = 8 cr, and the amplitude

window is A x = 0. 1 a-, then N = 80. For an 80% normal confidence

interval (ea = 0. 20), it would be expected that &N = 16 of the 80 esti-

mates would fall outside the 80% confido'ce interval. For a continu-

ous probability density estimate curve, it would be expected that the

estimate curve would be outside the 80% confidence interval along

20% of the range (xZ - x ).

The procedure for establishing a level of significance at which

P(x) will be rejected as non-normal is precisely the same as was

developed for the test for self-stationarity in Section 6. 1. 8. That is,

assume each of the N number of individual estimates Px)i to be a

statistically independent experiment with two possible outcomes,

failure or success. The resulting random v-riable (failure or suc-

cess) "..il have a binomial distribution. As before, if N is large

and & is small, the binomial distribution m-ay be approximated by

a Poisson distribution or further approximated in the limit by a

normal distribution. Appropriate confidence intervals may be estaL-

lished as detailed in Section 6. 1.8 to reject a sample record as being

non-normal at any desired level of significance.

Remember that the above proposed test for normality is basically

a null hypothesis test as are the proposed tests fo. randomness a::d

stationarity. It is hypothesized that the sample record i' obtained

from a vibration time history with a normal amplitude probability den-

sity function. A test is conducted to see if there is strong ah )n to

believe that the hypothesis is not true, and if so, the sampl :ecord

is rejected as non-normal at a given level of significance. The pro-

posed test for normaility is then really a test for non-normality.
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Those records which are not rejected as non-normal are accepted as

being normal. The confidence in the result of the test is a confidence

in a record being non-normal and not a confidence in a record being

normal.

As the level of significance of the test is decreased, the risk of
rejecting records which are truly normal as being non-normal (Type I

error) is reduced. However, as the Type I error is reduced, the risk

of accepting non-normal records as being normal (Type II error) is

increased. It is b-iieved that the arguments concerning Type II error

presented at ,he end of Section 6. i.3 also app;i to the proposed test

for normality. If the equivalent number of degrees of freedom, n,

for the probability density function estimate ^(x) is, say, at least 20,
the Type II error should be incidental.

Now consider in more detail the significance of the results of the

test for normality. Assume a sample record is found to :e normal.

Referring to Section 6. 1. 6. the record may now be cor.,idered as

-Itroug&y self-stationary rather than only weakly self-stationary. Further-

naore, the test for .icationarity is based upon an assumed chi-square

distribution of mean square values. Theoretically, the distribution of

mean square values is known to be a true chi-square distribution when
the original armnitude distribution is normal. Hence, if a sample rec-

ord is found to be normal, the results of the test for stationarity can

take on more technical rigor.

One may wor.ler why the test for normality is not conducted be-

fore the test for stationarity. The reason is that the procedure for

estimating an ampiitude probability density function from a sample rec-

ord, nr.eded to test for normality., requires that the sample record be

self-stationary. If one wznted to be completely safe, it might be argued
that neither the test for normality nor the test for stationarity is rigor-

ousv valid un!ess the sample record is accept,_-I by both tests as being

n--.- ' .-id self-s.tation~ry. However, because of i.he Central Limit

Theorem and ift practical consequences, it is no t necessary to require

that the original record be normally distributed before applying the test

for stationarity. The concepts of stationarity and normality are quite

distinct, and a stationary random record may or may not be normally

distributed.
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In view of the above statement, the over-all recommerded pro-

cedure for analysis will not be terminated because a weakly sdIf-

stationary record is found to be non-normal. Furthermore, tile above

considerations should not pose a serious problem unless the amplitude

density function for a sample record deviates drastically from a normal

distribution, which is not considered likely. It should simply be kept

in mind that the confidence in the test for stationarity will be somewhat

less rigorous if the record is found to be non-norma!. The .zme posi-

tion will be taken in regard to some of the analyses procedures to come,

where the statist.cal accuracy is developed assuming a normal rroba-

bility density function for signal amplitude-.

One additional comment zhouid be noted. £thc test for normality

describec- here is applicable to an analog sample record. If the data

is available in digital form, the normality of the sample record may

be tested directly by the chi-square goodness of fit test ae detailed in

Section 5. 3.2.

6. 1. 11 Root Mean Square Level Analysis

The next step indicated by block I in Fig. 6. 1 is an rms level

measurement. This step actually will not supply any new or significant

information. An estimate of the rms level of the record will auto-

maticaly result from the amplitude probability density analys;s dir-

cussed in Section 6.1.9, since the rmns level is simply the standard

deviation ,.'-, of the probability density function. The rms level also

will be yielded by the powver spectrum of the signal, to be discussed in

the next section. It is included as a cardinal step in the over-all pro-

cedure because, in the past, it has somtimes been the only statistic

of structural response that was measured and analyzed. By itself, the

rms level of a sample record will give only a "bal! park" idea of the-

intensity of a vibration environment.

The general procedures involved in estimating the rms level

of a sampl- record, however, are of considerable importance because

they art fundamental to the power sbp.:¢Eral density estimation problem.

As a result, voltmeter estimation of rrns levelz of sample records
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and the statistical acceracy of such estimates are discussed in detail

in Sections 7.3 and 8.3. 1.

6. 1. 12 Power Spectral Density Analysis

Perhaps the most impo: tant single statistic of a self--ta-ion.ry

random vibration time history record is the power spectral density

function. The power spectrum of all self-stationary sample records

should be estimated as indicated by block J in Fig. 6. 1.

The power spectral density function describes the frequency

compob' ti-n of the vibratory response. Fc.r linear systems, the re-

sponse power spectrum is equal to the input power spectrum multi-

p-'_ied by the square of the transfer function (magnitude response func-

tion) for the structure. Thus. power spectra estimates can yield in-

formation concerning the dynamic characteristics of the structure.

The total area under the power spectrum curve is the mean square

value of the response. To be more general, the mean square valua

of the response in any frequency range of concern is determined by

the area under the power spectrum curve bounded by the limits of that

frequency range. Obviously, power spectra data will be required for

any analysis objective.

Physical significance of the powc spectral density function o-

structural vibration response data is show n clearly in Section 9 and

elsewhere throughout this report. A detailed discussion of the tech-

niques for estimating the power spectrum of a vibration signal from

a self-stationary sample record, and the associated accuracy of such

estimates, is presented in Sections 4. 8 and 7.4.

6. 1. 13 Autocorrelation Analysis

Other analyses remaining in the over-all recomrnmended procedure

shown by Fig. 6. 1 are considered specialized analyses. This is to say

that they should be accomplished only when required by particular ap-

plications and analysis objectives.

The first such specialized anal-sis is autocorrelation as indicated

by block K in Fig. 6. 1. The autocorrelation function of a vibration

time history is the inverse Fourier transform of the power spectral
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density function. Thus, the determination of the autocorrelation func-

tion will technically not yield any ne" inforn.atin o-;cr the power

spectrum. Ho-wevcr, there are situations when the a tocorrelation

function will better define the information than wili the power spectral

density function. An example is the case of detecting periodic com-

ponents in an otherwise random signal. Autocorrelation analysis will

quickly identify periodicities that mightbemnisced in the power spectrorm.

as discussed in Section 7. 6. As a result, autocorrelation analysis

would be very valuable in support of block Q in Fig. 6. 1, to be dis-

cussed later.

A detailed discussion of techniques for estimating the aut-corre-

lation function of a vibration signal irom a self-stationary sample rec-

ord, and the associated statistical accuracy of such estimates, is pre-

sented in Section 7. 6. The importance of cross-correlation fuinctions

is shown there by an example of vibration source localization.

6. 1. 14 Peak Value Distribution Analysis

The next specialized analysis, indicated by block L in Fig. 6. 1.

is peak value distribution analysis. The distribution of peak values in

the structural response time history is of prime importAnce if the

general analysis objective is the prediction of structural fatigue life.

The significance of peak value distributions in the problem of fatigue

prediction is discussed in Section 9.4

Peak value distribution analysis is actually an extension of arpli-

tude probability density analysis as discussed in Sections 4.9. 3 and

6.1.7.

A practical technique for estimating peak valu- distributions

from sarmple records is detailed in Section 7. 5.

6. 1. 15 Extreme Value Analysis

Another specialized analysis that might be of interest, particularly

for fatigue 'i c predictins, is an analysis of extrene values as indicated

by block M in Fig. 6. 1. A brief analytical discussion of extreme value

is presented in Section 4. 9. 6.
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6. 1. 16 Threshold Crossing Analysis

An investigation of thrczhold crossings, as indicated by block

N in Fig. b. i, may be desired if the mean time between arbitrary

level crosein-s is of interest. Such iniormation would be useful, for

example, in predicting collisions between a piece of equipment mounted

ca the structure and some nearby object. In a more general case,

threshold crossing data could be used to design the optimum spacing

betwecn adjacent pieces of shock mounted equipment in the vehicie. Of

course, the vibration time history data in this case would have to be an

analog of dispiacement. Thresho'd crossing analysia might also be of

some aid in fatigue life prediction.

A brief analytical discussion of threshold crossings is presented

in Section 4. 9. 3.

6. t. 17 Oscillating Mean Analysis and Other Future Dati .- alysis

An "oscillating mean" analysis, as indicated by block 0 in Pig.

the subject. The oscillating mean is defined as a line which will pass

through the mid-point between each peak and following vaiey of the

vibration time history record, it is believed that the distribution of

this oscillating mean, combined with the distribution of instantaneous

amplitudes about it. will present an improved technique for predicting

structure fatigue life. Those interested in further details are referred
to Ref. r9 1

L J'

Block P in Fig. 6. 1 provides for other future data analysis, or

more specialized analysis for particular applications, which are not

covered by procedures a.iready discussed.

6. 1. 18 Investigation for Periodic Components and Separation of
Periodic and Nonperiodic Data

Let attention now be returned to blocks D and E in Fig. 6.1.

Those sample records that are found to be nonrandom in either block

are transferred to block Q which will now be discussed.
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The mobz cormmon reason for a record being considered non-

ranzdomg by either visual inspection of the time history (Sectioni 6. 1. 4),

or by application of the Run. Test (Section 6. 1. 5), will undoubtedly be

the presence of periodic comrponents. If Periodic components are

present. it may often be possible to separate the~z from the random

components and then return the record with periodicities removed to the

over -all recommended procedure for random data.

The first problem is the detection problem. The two rpost ef-
fecti-e detection procedures have already been discussed. A narrow
band spectrurn analyzer will often reveal periodic components in a

random background to the experienced engineer. The difficulty is to

distinguis~h between a periodic component and a sharp peak in the

spectrum caused by the random response of a lightly damped structural

resonance. The power spectral density analyzer of block J1 in Fig. 6. 1
could be used for this sort of investigation. AR second and more power-

ful detection procedure is autocorrelation analysis ai~ the record, as
discussed in Section 7.6.

The nsext problem is the separation problern. The required
separation can be acicomplished with high "Or' notch filters. The so-

called peak-notch filters found in many random vibration shaker sys-
terns in vibration laboratories should be acceptable for this application.

Of course, when a sine wave is filtered out of the record by a nctch

filter, a narrow frequency band of the random comnponent, will also be

removed. However, if the 'IQ' of the notch filter is quite high (if the

bandwidth is very nar-row), the random data removed will be incidental

in terms of the total broadband random energy represented in the record.

After all periodic components are removed, th-t record should be
returned to the over-all recommended procedure at block E in Fig. 6. 1.

the test for randomness. If the record is again rejected as nonrandom,

it should be discarded, or removid for special analysis not covered by
the present procedures.

6. 1.19 Periodc Datx Analysis

Periodic components separated from otherwise random records

in block Q r-.:y h#- analyzed separately, as indicated by block R in
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Fig. 6. 1. Procedures and techniques associated with periodic dafta
analysis are tbcxruaghiy covered in the literature. A sumumary of per-

tinent mathematical properties of periodic signals is presented in

Sections 4. 1 and 4.2., with additional physical material available in
Sections 3. 3 and 9. 1.

6. 1. 0 Nonstationary Data Analysis

Those sample records that are fouand ro be self-nonstatiaouar7,
by the test for stationarity in block F, are set aside for special con-

sideration as indicated by block S ;--& Fig. 6. 1. The analysir oi random
vibration time history records which are seif-nonstationary is beyond

the scope of this report. Considerably more theoretical work is needed

on this subject.

6. 1.21 Statistical Errors and Instrument Errors

Errors associated with the analysis of a single vibration tim

hi~y 5asic record by the over-all recommended procedure may be

divided into two main cato.gories:

a. statistical estimation errors
b. instrument errors (sometimes called calibration errors)

Statistical estimation errors associated with each recommended

analysis technique in the over-all! p-.acedure have bcan developed for
each technique. It should be remembered that the predicted statistical

errors presented ar W over and above the conventions! instrument errors

to be expected. The instrument or calibration error tor each analysis

procedure is. of courst. a function of the specific equipment employed,

and must be evaluated in terms of an actual data reduction ins trumonta-

tion system.

6. Z PROCEDURE FOR ANALYZING C OLLECTION1 OF VIBRATION
RECORDS

The preceding section has presented methods ior analysing each

individuaa! vibration record by itself. A procedure for gathering and

ASO TR 61-123 6-40



artaiyzing switstical preperties associated with a Collec~ion of reco4rds

will be presen!'d in this section. Sect:or-S 6.2. 1 thrO"Ith 6-2-.5 to
follow diaccss theoretical consideratiors involved in selectinX an a-

propriate samplicg technaique so as to reduce the amount of data to be

gathered. Section 6. 2. 6 then displays a block diagram for carrying

out this technique for ge~ner'?! ri!Uations. The final Section 6.Z. 7 out-

lines a step-by-step procedure for statistical analysis over the collec-

tio~n of records which have been gathered. This procedure is relzaed

closely to material in Sections 5 and C. and the reader wsill be referred

to these sections for etails.

6. 2.1 Random Sampligg Considerations

It is the purpose of this section :o present one possible approach

to obtair. the maximunm amount of information from a mlnu amun

of dota Such an optimization procedure cau ofte-. be best by

applying known statistical methods. To reduce the quantity of data that

need be gathered, and to avoid the human influence in biasing the re-

suits. a random sampling scheme is proposed. Knowing the mnean time

between samples, the distribution aboutw this mean, and the length of

each sample. cpantitative results can be obtained allowing the predic-

tion of any X en vibration level occurrl~g. bow often a given level

might *ccur. how well the samples rcprtsent the entirei vibration life

history of a vehicle, and the minimum number of samples required for

a given confidence in the results.

Another reason for a randorn sampling techniqut, as opposed to

predtcrmined sampling, is that if samples are taken at predetermined

times. the probabi'ity of recording events which occu: be-

tween samples will be zero. Random sampling handles th-is problem

by providing, within :tknown probability and confidence, that the sam-

pla will record high and low vibration levels in the same proportion as

they occur in flight.

Jt is not intended that the random collectioni of data, which is

proposed here, take the place of sp~cific test Mights made to collect

specific data. Rather it is to b used where it ;is desired to know the

over-all long range vibration life history of flight vehicles.
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Since no single give r..ean Lime between samples wls fit aill

flight vehicles, cr !ake into accouint the lengths of different flight

phases of any one vehicle, a breakdown is needed to help determne

Iat type of sampli.-g scheme would apply to a particular vehicle.

and/or each flight phase of the vehicle. Prime concern is the dara-

tion of each flight phase and the frequencies most likely to be present

daring each phatse. A sumnary of this iormatioet is sL-owa in

Table 3. 1 of Section 3. . It is realzed that not every par-,icular

flight vehicle will fit exactly into one of the four categories shon

in Table 3. ;. This breakdwn just serves a qwalitative purpose to

indicate some of the relative LWrgth. of flights and flight phases to

help decide the nraber of samples to be iaken and their tL-.. dura-

tion.

Some of the additional factors that m-.st be considered are:

I . End use of data (awlysis obective).

Z. Frequency range and dynamic raw*e of telemetry and
recording equipment available.

3. Frequency range of the vibration to be measured.

4. Length of recording #inte and number of channels that
are available.

5. Before deciding to use a random sanplig techtque. it
has to be determined if the savings in the ount of daa
and data reduction Lime are greater than the weight pesulty
and expense of equipment required to accomplisk random
sampling.

Some of the to'rs'w, _t -em tioned in item 5 above) needed to

accownmpU random sampling. would be a random noise source to trip

a relay at random time intervas to actuate telemetering or recording

equipment. If it is required to know exactly when during the fiht

each random record was taken, a Tim e-of-Occurrence-darker sahuld

also be used.

Random noise sources, for example, are made by the General

Radio Co., West Concord. Massachusetts, Automation Laboratories.

inc.. Westbury, L.. I., .K. Y. and others, while Time-of-Occurrence-

Markers are made by the Applied Science Corp.. Princeton, New Jersey.
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Other companies wormcino E_- this area are 8 & K Instruments, Cleveland.

Ohic, PFk- Corp.. Arlington. hMassachusetts. Panoramic Radio Products,
inc..* Mcuant Vernon, New yoris. ark; mtany others.

Moreorer, everyc~y smaller and liger teimieredag .qmipsuent

becomes available and possibly by combining several of the above items
into a single random -samping-telemetering ==ft. no weight penatyat
al' =--,- be involved.

For reasons of simplicity both in intrumentation and in later
statistical analysis. it is rew4cae that sample lengths be of fixed

duration. anO only the time interval between samples should be random.
Prior hnowlte of tke saunpic length, and of the frequency range be-
in recorded. enables owe to mlake vaid statistical estimates about the

accuracy of various -measurements of interest, such as %ntr zpactzuun

measnwoments er probability densty measuremnts, as discuss"d in

Section 6. 1. On the practical side. Iastmnn-aio pr_-Wemns of re-
cording asch &sta appears easier if it is decided Jin advance that each

sample length should be of a certain definite duratwon.

6- Z. Z Probability of Missing Particular Vvents

The first problem of cnv-cern is that. if data is noe recorded con-
tiaonusly. certain important unexpected events might be missed. There-
fore, the probability of missing unexpected events should he known or

estimated. This is best illustrated by a& example- Let

* = length of unexpected event in seconds

T 2 length of each sample in Seconds
and T= mean time between samples in secor.:f (measured

from center to ce-,ter)

TI

time

F-Wure 6. 4. l2.Ample of Random Sampling
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F .iUe 4 shows ose possible seveace. given that e will occar

once (at z!aadom) daring time I - T'he "Aerzge"' 77 hlia t7 (since
iso a av berage) of missift an pants of even e is then

T (missing e) L'Iroe

_r I

asauniag e>G and T e~l

To illustrate Eq- (6. 44). OwAridler the limiting cane: as '

preaches zeo For e =0. fro E. (W 44).

LT
'F fMissinge=@)

PCow. if L ZT. ofte ^- krzAin

IF(missing C I0

Which agrees with the bserVaim that there is a& average probability

of (1/4s f missing unexpected evea09 at islinitesal Size if the mm
time bet'ween *%m=Pes is twice thes sampl* J1"oh.

Ejoati~ (6. 44) does met sply to siIS&Utio f Predtrie
aixed sample lengtits ad fixed times beween samples. For Prsde-
tinined fixed sampling techiquies.

Pob (iasiag a) r a =car inid Samle lem
19 iif ocursow:side sample lomgth

Suaiarly. &1.3 further remarks d: not a-nplY to these fixed CaOSiS.

For random sampling techniqunes. from F4. 16.44). the average

probability .f recordg -any 2Wit of the st e is

T (recording e) ti~1 i ).~(4. 4%
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For .z9aanpie' if L 0 = x scoo. 'a 5 szsc4od. and e -Z1 ec-

o~log

L .- e.. there i_% a 15 percent problityr (o= the average) thman y pan

of e will be recordej if tkb- sa-pie length is S sec.~ :be mes te

bet-eea samWles is I" secomeds a"d the length of the ran.im e-em is

to s*ewed.. This wow" appear to be quite low. llostue. if e d.ia

oco oo-y eac z. k migkno e of very great iners cyuay. tm if

e woid ocwor. for example. 19 :&rt* ftring a M0W sea" atra
a nmc bigber prababiity miod be reqzired nd. in fact. exsts-

Using tbe same vaiqs fine a. T. and E as abore the average proib-
b iyof rec:.rdL-, 3ft p .5to e at least once -isno

(rcrin !aI T e08

Thec relatiosshigs ahove a~py to the probability of recording

man pant of e% the !eWh of vohich could be; --- -aitimazir smali.
It woud be more satisftctory to knew ' Wha ;s probability at rewod-

ggat least I second of a 10 second event? Let er. be the mimiinm

portion at e to be recorded. rqAtgio (fi-4.9 now becemmes for

e r T ad * Cc

Pre~ragar. - - Ic 3 6  (44

subject to the assumptioas :km e) >d C Z" T L . in derivirg

Eq. (6. 4,65. the probabilitT of recording at least c r S obtain" freom

the Probability of missing a most (e - -e sm lthse:

probabilities being unity. For the example valuest al m1sec..

T a see-., a a if sec., and e r I sec.. :bte result would become

IF !t 0. 14.
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Nodaift hMs beid so4 Sfar about the probability deskyti of
tztZ= intWatm exceS f qtatM Same flf l Sruo diacribstia

Ifs zr--iS.. if Whs Endhiaios fis hern&iatee a coafidmce knve cam

te enahbsbed fe-r the prebablky of nccong e- Asme the tm

bnw'e espiwes has a .eomy 2 Lmony fumactism wa a kmaf Staood
desiasim ot Ar (as detained is advane hr a particular piece of

recsrdeg claial, this Lhe probablity of aissiaig e will have a

-ange

Pjw;-sSLw Cs1-(r tJ

weeIis the inbtrm of stadrd dIniatiens required feer a Igirn.

r.*dsrcr. Ts Parwionar, Ir t5 parcon emfidefmee widt a woims)

dimtioi of ti" beA.- saapes, the coa nx - Z.The wort

cabmidnce" s@d be interpreted here by the s mam wthat if a
sw-ies of seanrtrmeats are =md amd the as ob' u dafsonm
them 95S.6 of these prbailiies will Ime in the ragoe empraes by

Eq. (4-.42#)

iqsti"m (6.47) cam W"a be nines

CP(ssissig e)l!-

Kfet=. ;Le probability of zero. inig &MY part of a will howe the rmage

Te we Tee (.4

a& the poAbility of rr eording w- kess f a eT Un inns)v of a

ent e will1 Lare the ragte gives byr

JA$DTitM.-In344



For example, if 1 is normally distributed with o- = 5 sec.,

and 1 100 sec., T = 5 sec., e = 10 sec., e = I sec., then forr

= Z, it can be said with 95 percent confidence that the probability

of recording at least one second of the unexpected event e, wili have

the range

5 + (10 - 1 C'-p(recording at)< 5 + (10 1)

100 + 10 1least e 100 - 10

p (recording at Co 15:
0. I L7 IC least e

If ten such unexpected events should occur during a period of

1000 seconds, then the probability of recording at least I second of

one of thu events, with the other parameters the same as above, will

be

- 5 + (10 - 1)110 Irecordin, at t [ 5+ ,o - _10

7 100+ I° e oacel L 100 - 10

0. 7Z <p [ recording at < 0.St3

[ least er once)

with 95 percent confidence.

From the equations above, the sample length and mean time be-

tween samples can now be determined for a given confidence in a known

risk of missing unexpected severe vibration levels of arbitrary lengths e.

Of course a qualitative evaluation still has to be made as to what con-

stitutes a "risk,' i. e., how high should the vibration level be and how

long should it last before it is considered of importance to know the

probability of missing it.

6. 2. 3 Probability of Including Range of Events

Another criteria that determines sample length and mean time

between samples is the total number of samples required for a given

ASD TR 61-123 6-47



confidence to predict the total vibration life history from. these sam-

pies, namely, the total range of possible events. This can -est be

illustrated by approaching the problem in reverse, i.e., given a

number of samples, what can be said of their accuracy in represent-

ing the continuous process from which they were taken.

For example, suppose 50 samples, each 5-seconds long, are

available which have been taken at random times. Many parameters

may be calculated from these samples involving amplitude or fre-

quency properties. For purposes of illustration here, consider only

one such parameter. To be definite, suppose the rms acceleration

for each 5 second sample is calculated. A single number, g's rms,

now represents each of these samples and can be plotted vs. time

as shown in Fig. 6. 5.

g (in g's rms) 4 50 DATA POINTS

t 
(N = 50)

maximum value
X

~x x
x xX x Xx

X X X j X _X Xmean value

X X

X
minimum value -X

I Duration of Total Flight or Flight Phase- 4

Figure 6. 5. Example of Range of Events

(It should be noted that the division of the time axis may be arbitrary.

It is assumed here that the real time relationship is to be maintained

since it may be of interest to know which particular sample point is

taken during any given flight maneuver.)
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The minimum and maximum values can be noted from Fig. 6. 5.
and the mean value and standard deviation can be calculated without

knowing anything about the distribution of these points. Let m be

the mean value and s the standard deviation from the rneaki, then

=1 N (6.50)
2" gi .5}

m = N

N i=1

where N is the sample size, and

s g--m (6. 51)

where

g~ I N Zg) (6. 52)

N i=l

Several conclusions can now be drawn from Fig. 6. 5 if the various

values are statistically independent. This assumption appears reason-

able in nearly all physical applications, provided that the autocorrela-

tion function of the process that is being sampled is zero for time de-

lays equal to the mean time U between samples.

It has been shown (Ref. [i]. pp. Z01-204) that a stationary ex-

ponential-cosine autocorrelation function R (T) (see Fig. 6.7) applies

to a common power spectrum as shown in Fig. 6.6. As long as

S (f) --o 0 as f --. w where f is frequency. thenR 9R(T) --. 0 as r--w co.

(For the vibration environmcnt in missiles and aircraft the spectral

density is approximately zero above 10,000 cps and often is considered

negligibly small above 2000 or 3000 cps.)

I_'S (5 0% R )

f T*

Figure 6.6. Common Power Figure 6.7. ,xponential-Cosine
Spectrum Autocorrelation Function
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For the particular case of a i1..t fbanrdwidth-limited' power spec-

trum (Fig. 6.8) the Sampling Theorem (Ref. [l], pp. 55-60) shows that

Sg9(f

of
0

Figure 6.8. Flat Power Spectrum

the first zero crossing of R (r) occurs at 7 = (I/2B). where B is the

bandwidth of S (f). It can now be stated, that as long as 1_ 'VI/2B),

the rms accelerations in Fig. 6. 5 are approximately independent, with

the approximation rapidly becoming better as L -e. c. It can be seen

this is really no limitation at all on :L s;ince for B = 2000 cps, L O

(1/4000) = 0.00025 seconds.

A more stringent limitation is that L should be at least as long

as the period of the lowest frequency of interest. If the lowest frequency

of interest is 5 cps. then E should be at least 0. 2 seconds long tn as-

sume statistical independence. Again, this criteria can usually be met

but should be kept in mind as one of the limititions on E. The lowest

frequency of interest is also a consideration when determining the

sar.ple length T.

Another assumption that is usually made is that the statisti.k.i

parameters of the random process (i. e.. vibrations) do not change with

time. This is another way of saying that the process should be stationary.

This assumption will usually not be valid for an entire flight and

therefore the flight will have to be broken up into several periods, each

of which may be reasonably assumed stationary. Probably few random proc-

esses of interest in the physical world are truly stationary. However,

the assumption still provides a useful and simple model which can give

results in good agreement with experiments.
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The ergodic property is also quite often of concern. If it is only

required to know how well the samples represent the one single Eight

from which the-y were taken., rgodicity does not enter the picture at

all. 1C only becomes a problem if it is required to know how well these

samples represent flights to be made in the future, or other flights

from which no samples are available.

For example, samples taken during the cruise phase may or may

not represent the environment of another aircraft during cruise. This

will only be true if the cruise phase was made under "similar" condi-

tions (i. e., weather, throttle setting, pay-load, etc.). The word

"similar" also implies that there are certain random variations which

cannot be controlled. Therefore, more than one flight should be made

so that the random variations can be taken into account.

1. One-Sided Test. As mentioned above, it is assumed that the

distributien of these rms values is not known. The proportion of the

population (the number of rms accelerations for all 5-second intervals

puasic during ihe fiiight, i. e., for a i hour flight there are 7LU live-

second intervals) occurring below the maximum sample value can be

calculated with a known confidence from the formula (Ref. [2], pp. 162-163),

(p)N (6. 53)

where

P = proportion of population

I - a = confidence coefficient

N = sample size.

For example from Fig. 6. 5. N = 50; therefore it can be said with (I - 0)

percent confidence that 100P percent of the population will be less than

the maximum value shown in Fig. 6. 5. If the maximum value is for

example,9 g's, and 92 percent confidence is desired then

(P) 50 = 0.08

P = 0.95
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and it can be said with 92 perce. corjidence that 95 percent of all

rms acceierations (of 5-second duration) for the entire flight will be

less than 9 g's if 50 samples are taken. See Fig. 6.9.

2. Two-Sided Test (Maximum and Minimum Value). If it is re-

quired to know what proportion of the population w'il": be between the

maximum and minimum sample values recorded, the relationship be-

comes (Ref. [2], pp. 162-163).

N-1Ip14P - (N - 1 )pN =( (6.54)

where N, P. and a are defined as before. If for example the maximum

value in Fig. 6. 5 is 9 gIs and the minimum I g then for a = 0.28 and

N=50

50(P) 4 9 _ 49(P)5 0 = 0.28

and the solution for P is

P -0.95

Thus, it can be said here with 72 percent confidence that 95 percent

of all rms accelerations (of 5-second duration) for the entire flight

or flight phase under consideration will be between I and 9 gas. To

consider another example, for P = 0.90. N = 50 it can be said with

96.6 percent confidcnce that 90 percent of all rms accelerations will

be between I and 9 g's, since a turns out to be equal to 0.034.

For Eq. (6. 53) and (6. 54), a and (I - a) have been platted

against N for various values of P in Fig. 6.9 and 6. 10 respectively.

These curves clearly show that very little additional confidence is

gained by taking a continuous record, no matter how long, rather than

approximately 50 samples, if P = 0.9.

The assumption is made here that the population (all possible

5-second samples during a flight or flight phase, i. e., a continuous

record) is infinite. This assumpt.-on is generally considered valid if
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the population is at least ten times as la7Ze as the number of samples

taken. Yet. for instance, five 5-se-cond samnples mnay ihave been taken

during a flight phase which is only one mninute long. In this case the

population is only twelve and Eq, (6. 53) and (6. 54) do not apply. in

this case Eq. (6.44) through (6.49) should be used to determine the

probabilitj of missing unexpectedly high vibration levels. This is also

illustrated in Section 6. 2. 4. where numerical examples are considered.

3. Two -Szded Test (Arbitrary Values). It may also be of inter-

est to know the Frobability of the population occurring between rzn - Xz

and m + Xs, i. e. , if the mean of the sample in. Fig. 6. S is 5 g's and the

standard deviation s = I g, what is the probability of the population.

occurring between 3 and 7 g's %'X- 2)? For X > 1. the Tchebycheff

inequality (Ref. [ij. p. 102 or Ref. [101. pp- 176-177) car. be applied.

and

PII -, ka <I
L

where IL i4 the true population mean., and co the true population variance.

Before using the inequality (6. 55). SL has to be evaluated- If E(m)

is the expected value of the sample mean then

E(m) =(L16. 56)

This cannot be evaluated directly, but the distributio-f car. be

found and thecrefore the range of E(mn) will be known since the distribu-

tion of m. from the Central Limit Theorem (see Section 4. 3. 3(b)), will

approach the norrmal distribution as the number oi samples. %'. approach

infinity. it would appear that a large number of samples would be re-

quired. Kowever it has been shown thaxt even with N =10 or 1Z. a very

good approximation to normality is obtained (Ref. N8. p. 138 and

Ref. [101. pT. 180-183). The variance of the distribution of the sample

mean is aiven by (see Eq. (5. 33)).

cr2=c (6. 57)
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Now the problem arises of determining w- . the variance of the

poplation. About al! that can be said, ir- that the expected value of

the samnple variance, E(s2  is Cqaal to LWN - ljAThereiare for
2 Z. Z of z4.

samples larger than 10. E(s )- - To find the distribution of s

or even the higher momerts such as the standard deviation, is very

difficult and is discussed in Ref. I]], pp. 113-13-3. Howcvcr, si.ce

the population is not infinite, it can be staxed intuitively that the sta--

ard deviation of sz wilii decrease with an increase in sampie size.

For purposes of simplicity it wi'l now be assumed that a= 3 but

it should be kept in mind that s is a rando= variable and not preciseiT

From Eq. (6. 571) with o = s. and letting N = 50 as in Fig. 6. 5.

a- s 0-1

m j4

Therefore. assuming normality. if the sample meau value m = 5 g's.

the probability of Eke true poF-zation mean IL lying between 4. 7Z and

S. 28 g's (+ za-M) is 0.95.

Again the above estimates of the population mean and population

variance are only valid for an infinite population. As previously stated

this assumption is con-sidered valid if the population is at least ten

ti--..es the sample size.

If the population is smaller than this, the estimate of the popula-
tion variance becomes (see Ref. 14I. p. Z53-Z54).

where M is the size of the population and N the number of samples.

The standard deviation of the distribution of the sample m-ean becomes

C 1 m = S (6.59)
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-Now the probilem arises of deternriig o. the variance of the

PoPa~tion. Ahbout all' that can be said. is that 7h-- -vvected value of

the sam e varia~ce. Ets is -=Kzai to [(N - )/j.Thrfrfr
samples larger than 1G. Z~ a-?- To fin th distributic ofSZ

or ev-en the higher rnor-cza5 s-zcb as the stan~dard deviation. is very

difficult and is discussed i= Ref. &!],. po. 113-138. However, since

the population is =ot infinite. it can be stated intuitively that the stand-

ard deviation of s 2will decrease ith an increase in sam-te size.

For purposes of sipiiciiy it will now be as ued that c= s *~

it should Be kept im -hind that s i-- a remoom variable and mot precisely

known.

From Eq. (6.. 57i with a- s. and Uetting N = 50 as in Fig. 6..

Therefore, assuming normality, if the sample mean value m = 5 aeS

the probability of the true populatioa mean F lying between 4. 7Z and

S. 9 IS(+z~r I )is0.95.
Again the above estimnates of the p.7po!at!*= mean and population

variance are only vz.id for an infinite populaion. An. previously stated

this assumption is considered valid if the popaion is at least ten

timnes the sample size.

If the population is smal-ier than this. the estimnate of the popula-

tion variance becomes (see Ref. [t]. pp. 253-2:54).

where 14 is the size of the popuktioo- and N the number of az-ples-

The standard Seviation of the distribution of the sample miean becomes

____6. se *9)
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It Can be seen thar for l -re L and N. ;ta Nc I<. Zq. (6. 59)
approaches Eq. 16 57).

A=-rher complication arises now, which is, That the san--ie =ean-

is zot normally disrribrsze& IHowvrer, the assci-npi;- a'romnlt

will only introt--ce a smia.l error since the Td-cbycheff inequality is

a very coservative estirmate regardl-ess -f the nature of the eistribu-

tio=.

Appixyig these res-Its to Eq. (G. 55, ; can be sted with a given

cornfdence that the probability a ras acceleration values (g) occur.... 5

in a give-- rag-e is by :--tting r = s., =. + X'r- (or w- =- a-e.and

F= M. + ~''dependi-r o= popui:aio Size) 2=d X1> I

Pf!= - r X O- :.ascsctne)MM r- )asl)4.. (6S

where %I ;--- the e-.ber of - -s required for a given -idc=ce.

For example if =s =. or- =0.14. =Z. arndM=2

pfz nT <g < -. Z31 >I -:0.T5r-

4

. e. . the probability of an rms acccicra; ac- !of 5-second8 6r 9on)

octzrring between 2.72 a=d 7. 28 g's dring the entire fliht is grater

than 0. 7 5 or the probability of the pop,-lation being greater than 7. 28S

g's or less ann 2.72 ;'s is less .ha-- 0- 25. with a 95 pe-rcent confidence.

This probability car be imp-roved considerably if certain auss.mp-

tior.s can be made about the distribation of g. na--ciy if

a. 'The probability density function ift) of the statistic
un-nodal w:th the modal value coinciding --th t .re meauc
and

b. The function 1(g) is monotr-;c on either side of the modal

Then the Czanp-Meidell inequalitr applies (sea Ref [3,. which is

P[La= - k)cg< h+ ka-Ai>l - 1(6.61)
IDZ.T-S
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If thet =Odai wraZ-e to dcwes not coiindde with~ the mu-a-- ;, hbe

right ha nd side of Eq. (6&?.!J u-comres, (sect Ref - [4]. pp. 133-194,

1 . Z~. -

wtere c is a =Cesare ef_ the Sk~ewness defined sa

PL - 4

Cr

Makin the r "Or IL &=& a- as in E4.. (6b.ir. Lii !6-613

P[(=~~ ~ ~ - -06 x<S =rxw

azd for the same VAI'Mes: 2sed- -;= the previous Proble=

P(ZZZg(7. Z)p0.8

The aswamptions r-nae bere are eie iinportaat- Uf. for instaoce.

te sample points bad beena distrapated as *bownz =a Fig. 6. 11. the prob-

ability diasiy 6aetion ftg3 would not b~e wainoda! (see Fig. 6.14Z a"d

Eq- (6.71) does wt apepy. it also should be noted Cha :he zzscunptioc
of s:=- ons rity u-2d reCqiire smiecialJ !nVestigazio. Sack a Wme--01,

disriabeaion might reszult from a chazic E_= f!igt pkase. ach as chaag-

ing from, tax! to rzzz- p.
An~ additiocal i--crease *f Ws prabahilitT can be obtained if tke

assuzmption is made that g is distribated n-orr.aiIly. Of course this

distribation can n-ever be trul!y normal since S > azd morma,!:r re-

qas- co < g < w. However. 0U55 assuniption eza-f be quite good in

the region of interest .. m + 3)-.4. Tw tests to dete~nizze the error

of a*s.~pic of normality are ava~ibe zao ure disczssed ix Sec-

t-:*" S. 3. Z and 6. 1. 10 961 this rttofl.
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If the region of interest is mr a 3s the first requirement that

should be met for a normality assumption is

m - 3s>O (6.63)

If subsequently it has been shown that the approximation of normality

is good the following relationship applies (Ref. [1), pp. 93-96), see

Section 4. 3. 3(b),

P rg>1 ~]= dg (6.64)

2
x

0 - e Z dx

by letting x = g - R, dx =dg. Similarly,

x

P[< - ka] I e 2r dx (6.65)

and therefore

2x

P L Cr-<g < P + xa1 -c a-rz e dx (6.66)

is the general equation desired.

Making the previous substitution a- = s and m± = r X'0rm (or

C= er and L = m +.4X'oV depending on population size) Eq. (6. 65)

becomes
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zx
P[m; - .'-m -ks< <{m+ 'Om)+-s =~ .-

P[(m - m va- Xs~g<(m + r ) +Xsj J X s - e 2s dx (6.67)
t. m ~ ks s~

The probability integral in Eq. (6.67) iAs tabulated in various forms in most

handbooks on probability theory and statistics. (See Tables 5. 1 and 5. 2.)

For several values of X the value of this integral is shown in Table 6. 3 be-

low and compared to the values obtained -,w'hen the Tchebycheff and

Camp-Meidell inequalities are used (see Ref. [5], pp. 239-240).

Table 6.3. Comparison ol Normal, Camp-Meidell,
and Tchebycheff Results

Deviate j = 1 X = 1.5 X = 2.0 = 2.5Ik=3.0

Normal 0.6827 0.8664 0.9545 0.9876 09973

ede ap 0.5556 0.8025 0.8889 0.9289 0.9506Meidell

Tchebycheff 0 0.5556 0.7500 0.8400 0.8889

From Eq. (6.67), for the same values assumed previously,

P(2.72<g<7.28)>0.95 (with 95 percent confidence)

6. 2.4 Numerical Examples of Random Sampling Technique

When applying the relationships developed in the preceding sections,

a considerable number of engineering judgments have to be made. There-

fore, the development of a step-by-step procedure is best accomplished

by considering and solving a hypothetical example to illustrate in general

how this sampling method can be eff~ctive.

Problcm 1. Jet Aircraft. A sensitive piece of electronic equip-

ment is to be installed in a jet aircraft. The vibration environment in

the region where this equipment is to be mounted is not known. One or
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more test flights are to be made to establish the vibration levels pres-

ent in this region. The length of the mission of the aircraft is eight

hours, from engine start to shutdown.

Question: How should the data be taken for maximum accuracy

and a minimum amount of data?

Step No. I

Prepare a chart similar to that shown in Table 3. 1, Section 3. 2,

of this report. Category 4 can be used as a guide. A hypothetical

chart for the aircraft under consideration is shown in Table 6.4 below.

Step Me. 2

From -able 6.4 ,t is appareit that a single mean time between

samples will riot adequately cover all flight phases. Therefore, a

"long" mean time will be chosen for phases a, f and g (the three

longest phases), and a "short" mean time for each of the other phases.

If desired, one may pool together phases of short duration wiose

lengthR irt not c!early defined and base ,.,,cusai i'J..: on their combined

longer time interval. This latter procedure, of course, will destroy

individual information about the various short phases, and so should

not be followed if individual information is sought.

Step No. 3

A numerical value now has to be determined for the two mean

times between samples. The mean time between samples is a function

of:

a) Length of each sample

b) Number of samples required ior a given confidence of not
exceeding the maximum value (which in turn depends on
length of flight and each flight phase)

c) Total recording time available for the flight and each flight
phase

d) Probability of recording parts of an unexpected event.

Some engineering judgment is required to reconcile these different

considerations.
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TRIAL A

a) Sample Length. In Section 6. 2. 3, it is noted that each sample

should be at least as long as the period of the lowest freqirency of

interest. To be on the safe side it wil! be required here that

T (Z/f T) (6.68)

where fT is the lowest frequency of interest in cycles per second.

If fT is 5 cps then

T)(2/5) = 0.4 seconds

However, there are also other considerations that have to be taken into

account. These are:

I) Adequate length of tape to form a loop.

This should Preferablv be no less than 15 frhs. IT tn._Crd.-

speed is 30 inches per second, then the minimum sampling time should

be 0. 5 seconds.

2) Statistical accuracy in the analysis of each sample.

If n = number of degrees of freedom. B = filter bandwidth, and

T the sample length then, see Section 4.8. 5.

n = ZBT (6.69)

For reasonable accuracy and confidence in rcsults, -... . z..... _-

ber of degrees oi freedom shnuld be at leant Z0, preferably larger.

Consider the case where the primary analysis will be a power

spectral density analysis using a filter bandwidth B. If B = 5 cps.

then from Eq. (6.69)

n 20
T =-- = Zseconds

2B 10
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It should be noted here that for n to be large, B should be large, yet

for good resolution B should be small. A detailed discussion of this

matter is presented in Section 7.4.

From the above considerations a minimum sample length of 2 sec-

onds appears here to be a good choice.

b) Number of samples required to include maximum values. When

establishing the vibration environment for electronic equipmen! it is

gcncrally most important to know the highest acceleration that might

occur during flight. Therefore the one- sided relationship (Eq. (6. 53))

will be used to determine the number N of samples required. A de-

cision now must be made to determine a satisfactory probability that

the vibration environment will not be higher than the values recorded.

It will be assumed that a 95 percent confidence is desired in the claim

that 95 percent of the vibrations during any one flight plz-se will be less

than the maximum value recorded. Therefore from Eq. (6. 53)

(0.95)" <0 .05

and from Fig. 6.9,

N N 58

For N< 58. the above claim and confidence must be reduced. At this

point it is obvious that 56 samples, each 2 seconds long, cannot be

takit-, during phases d and i of the flight in question (see Table 6.4).

since these phases last only for I minute each. Also, no coitsideration

has been giver, here to a mca time between samples w.ich requires

longer phase durations.

c) Short flight phases and probabili-ty of recording unexpected events.

The first alternative iS to continuously record during these two flight

phases. But then flight phases a, b, c, h, and j should also be re-

corded contiruously to avoid 6 changcs in the sampling procedure.

This would require approximately 30 minutes of recording. or 4, 500 ft
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of tape for a recording speed of 30 inches per second, with only 6 per-

cent of the total flight covered.

The other alternative is to take fewer samples. As a first try it

will be decided to take 10 samples, each 2 seconds long. Since now the

population (total nurnber of 2-second samples poscible in one minute)

is only thr,!-e times as large as the sample size, Eq. (6. 53) and (6. 54)

do not apply. Instead Eq. (6.44), (6.45) or (6.46) can be used to cal-

culate the probability of missing unexpected events. If, for instance,

during 5 percent of the time of the flight phase (3 seconds out of 60 sec-

onds) so me severe vibration level would occur, it is only necessary that

5 percent of the sample records show this severe vibration level in

order to have the same ratio of length of severe vibration to length of

normal vibration. In this example the total recording time is 20 sec-

onds. Therefore approximately I second of the 3-second event should

be recorded. Using Eq. (6.46) with T= 2, e = 3, cr :. and i = 6,

the average prr:ability

TF (recording at least e) =2+(3 - 1) =
r 6 11

Thus, on the average, this result may be satirfactory .

For some appiicatons it might be important to detect the unex-

pectedly severe vibration levels even if they last, say, only Z seconds.

If they occur 10 percent of the time, there now wo'Id be three such

unexpected events, each 2 seconds long. To record 2 seconds from

these 3 events. 0.67 seconds have to be recorded from each event.

The probability of recording at least 0.67 seconds of one event occur-

ring 3 times is for T = 2, e =2, e = 0.67 and =6

IF(recording at Least e r}  Z + (Z - .67)} 3 = 0.91

6

and the probability of recording •r all of the 3 times is

(recording at least er 3 times) = (0.91) - 0.76
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These calculations show that engineering judgment is required on how

long an unexpected event should be before it is considered important

not to miss it, and if the resulting probabili.ies of detection are high

enough.

For the purpose of this example the two second sample length

and a mean time between samples of six seconds -wili suffice. Also.

since the mean time bctween samples is quite short, the samples do

not have to be taken at random and a fixed time between samples can

be used, if so desired. Using this same sample length and ti-ne be-

tween samples for the other short flight phases results in a recording

time of 10 minutes (or a tape length of ! 500 ft for a 30 in/sec recording

speed).

d) Long flight phases and probability of recording unexpected events.

Using a two-second sample length for phases e, f and g. Eq. (6. 531

can be applied since the total number of possible two-secord samples

for the shortest of these three phases is 900.

For 58 samper, each two seconds long, the mean timp be'ut.

samples for phases e and g is

_ (e,g) = 1800 S 31 seconds
58

These samples will now be taken at random. Assuming E to

be normally distributed, a standard deviation of times between samples

of 5 seconds will be chosen. This will result in a spread of E + 15 sec-

onds with 99.7 percert probability. Of course, the assumption of nor-

mality is only approximate since the tails of the distribution of E

cannot go to + co (i. e. the probability of a succeeding sample being

taken before the preceding one is zero).

Now the probability of missing certain e-ents can be calculated

(as was done for the short flight phascn) with a given confidence, once

it has been decided how long an unexpected event should be before it

is of importance not to miss it, by use of Eq. (6.47). (6.48) and (6.49).
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!or example, if T6 is normally distributed with r.an j-_ = 31

seconds and standard deviation o- = 5 seconds, then for T = Z sec,

e-=6sec, and e = I sec, from Eq. (6.49) with X= 7, it can be said

with *5 percent confidencc that the probability of recording at least

one second of the unexpected evCvn e will have ie range

0. 17 < P (recording at least er ) 0.33

For ten such unexpected events the probability of recoring at least

one second of e will have the range

U.84 < P (recording at least er) < 0.98

e) Total recording time. For a mean tlrme betwet" sa.-pl- oi

31 seconds for phase f. the number of sa-nples for phase f will be

N() = 6. 5 x 3600 75 6

31

Then the total number of samples for phases e. fA and g is

N(e.f.g) = 2(58) + 756 = $72

This resaults in a recording time of

2 (872 - 29. 1 minutes

60

The total recording tim.. for the entire flight is now 29. 1 + iu = 39. 1

M..inutes.

b) Number of flights. If no confl:cts hz-,-e occurred, the above sampling

plan can now be used. The question that next arises, is, what is the

number of flights that should be made. This again wil.l depend on the
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problem under consideration- Is thc electronic equipmewt to be in-

:italied in more than one airplanc? How representativre is the one

test fligtt going to he of other flights'? Raw~ reprccatative : t e

airplarze of other airplanes? The answers to thzee uestians ftcU in
the gencral category "'Statistical Results from Repeat ed Expeinee'

and are discussed i~Section 5.4 of this report. It shoulA be noted

~cthat if rnore than ocie flight can, be rade, fewer samples may

be requjired for each of the flights than were determined in Steps Z

and 3 abcm-e-

Prcblesm Z, Balistic )sic.A pi-ece of electronic eequip-

racat is to be installed in an air-launched ballistics missile (A4LBU)-

The vibration en-viro.nent for this equip.-ent is to be dete..4n"ed.

The ALBM will be carried by a jet-aircraft for approximately 4 horars

and then launched. Total powerod figla for the _ALBM is 2 mintutes.

TRIAL A

Step 'No. I

Prepare a chart similar to that shown in Table 3. 1. Section 5. Z.

A4 hypothetical chart for the ALEM is shown in Table 6- S below.

Steps 'No. Z and 3

For phase (a) of1 the A1BMd shown in Table 6. 5. a simnilar

argumnent c=n be made as for phases a-f in Problem jFt It wxill be

assumed that the same mnean times between samples are applicable

here. Tie short mean time between samples should be resumed

in phase (b). Table 6. 5, which calls for fliring of the ALBM. How-

ever if data is telemetered &rwugh-.t tht: mission of the '.IXM one

additiona: improvement can now be made. Rather than taking no

records at all &~ring the- period betwetn --amples. a cocn mutato- can

be used to tran~smit the vibration levels from two for m~ore) additional

points on the str--zcture. This will result in a considerable sarin,;4
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Of to-'nnetmer chancts- w.thn any, loss of szczsical accu~racy. For

a randzn= zrn-plirg plan, the cc~nanutazor can be instructed to changec

channels::. randon; to retain the, statistical significanmcec of =e results.

62. 5 Further ItRna-.rks on tand -zp Sampling

As shown in preceazng Sections 60.Z.I :b;ough 6.3.2- 4. the de-

cisi.on as to ho-w mach data shczld be gathered car. be reekced en-

c"irei-r to a-- objective proces:. Hlowerer the discuscona does present

several rays in which qu-amttire erakzation- and prediction ofr results

caz be obtained. for manmy of the orob-eznsz crfroctig Me vibration

engineer. These tectmiques can eliiae within- the present stae

of the art, certain gross i-titire decisions which ofte= lead to crrane-

sus con-clusions, and they show prontmse of considerable savwings in

cost,

This apjroacb attaches a nmerical confidecec vo tc a-mesrion

of how rcpresertlive a certain:ube of samples are :Fro M differas!

flighat Phases Of a fli-0h' vejrL-'. Q r;.da cs nunterieai va;.e
for the risk of mnissing certain ere~xs if a contmcous record is t

The onlyV parameter ==&er comsidenalca -p w now, has been

the rcn-s zccelerztion of vibration sam.14es of scenme arbitrar-y length.

No-hing has been said so far about the frequency content of these

zz.-gcs and4 it. has been: assumed iby impi-'catio) that there were '

periodi-cities superimposed 0n these 5aznpIlcs. s;&ncc sample values

waere com-sidered to be idpnet

it will now be shown qumalitatwecly how the general statistical
mmcthods shorn abort can also be aple tootrprmeeso h

samnples taken. during flight.

I. -1! any periodic com-ponents are present in the samples. they

should be filtered out as discussed !in Section 6- 1. IS- ifr desi'red.

the sax-pleS can- be ftered to dete..sdie an -rs acceleration for

anf given ban-dwidth. For example, if the samples covered the Er-

qruency range from 5-M00 cps. a plot sim ilar to that shown in Fig. 6a. 5

can now be madec for each of twentty frequency bands- say.. 5-100 cps,
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SOZGcps. 1900-7OOO cps. Or, Hf desrco-. a narrower ban-d-

wab ceZd he us:et- Each of the rtnlzfing plots can cow be analyzed

h=.e S&Zrc ==y a-s F-g- 6- S.

Z-. The power spectrum cc--.; Lhr ot=Eind for a craber of re-

lazed samples. For each frequiercy. or ninal' range of frequencies

aver whch the spectu .-=z i.rzst. a=- average r- spru
valme c=n be calculated siza!!smpe of z 'I~gM or flight pbase.

z-.d the ntaiard deviation from thi- average c;n toe dettermined *ad

these valu-es anlzdas shot'..

3. The amplitude prtbi-'iy density cn!d tic bandieed in a sim-

ilar rmatrmr as that used for the power snectumn by comnpatiag the

ampitdeprobabilitr e.k for a nbc f rclated-- samrples. For

?articzular amnplizude vaues of Entere&-l. a-- avre probability density

can be calculated as w-el as Mi standard deviatio f-rm this average-

4. Arbitrary levre! trse. crossings mithzt also be of in-

terni. Fromr each sample it cam-- be determined how often a given

level, of acceleratio is exceedet. This parameter also cam then be

analyzed Similar to the method shon..

For each of the parameters listed above (a=4 others) the pro-

ceture may have to be -modified somewhat- It is beyond the scope

o! tis report- = do this:! qatintivey. but it is recommended dot

such analiss be dome i= the fcxare.

6. 2- 6 Block Diagram for Selection of Sampling Scheme

The preceding examples have illustrated zmalrical inethods

involved -in the selection of a ran-dom sampling scheme for collecting

vibration records from flight vehicles. Figue 6.. 13 presents a biock

diagram to outline thi--s procedure- A short discus siolt will fol-low

explai-'irg each block in' the diagra-M. it she-AId be noted that the

diagrar presents procedures applicable mnainlv to data collection im

a laboratory program. Mo&-rzz!'-=s necesasary- when, concerned with

actual flight data wmill bye indicated uthere apprcpriace.
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Block A. Flight Specifications

Step No. I of the numerical examples (Problems No. I ane 2),

in the preceding Section 6.2. 4, explain this procedure and also give

charts for a hypothetical aircraft and missile.

Block B. Sample Length D.ierrn;..ati"n, Mean Time Between Samples

Steps No. 2 and 3 of Problem No. I present considerations in-

volved in the selection of the mean time betwcan samples and tht sam;ie

length. These are shown to be interrelated matters and, also, may

have to be modified when considering the number of samples required

as a result of other statistical demands.

Block C. Number of Samples for Unexpected Events

Engineering judgment is, of course, necessary here in deciding

on what probability one wants to maintain of detecting an unexpected

event. Analytical details of this important consideration are presented
i S.,- . 7. .*, -dicussc 3-so i- Probem Nu. I, Steps 3c and 3d.

Block D. Number of Samples to Contain Fraction of Population

As pointed out in Problem No. 1, Step 3b, if it is desired to

know certain maximum values that might be attained, the sample size

will have to be increased to include larger portions of the population,

This topic is discussed in Section 6. Z. 3, and illustrated in Fig. 6.9

and 6. 10.

Block E. Select Over-all Sampling Scheme

After the above steps have been accomplished, an over-all sam-

pling scheme may now be devised. This again will require some judg-

ment in adjusting the sample length, mean time between samples, and

number of samples to fit together as a meaningful whole. The material

presented in Sections 6. 2. 1 through 6. 2. 5 is of considerable assistance

to this end.
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Block F. implemunt Scheme; CoJlect Data

Here, there is a great difference as to whether the data is to

be collected ir a laboratory or from actual flight vehicles. Mar.y

considerations enter, such ab instrumentation and flight details,

which ar-c covoL cd in various sections throughout this entire report.

Block G. Analyze Data

If the data is the result of laboratory experimentation, final

calculated results may be compared with the a priori statistics.

There are two main tests:

1. In the laboratory where the parameters are controlled, one

cans check whether or not any "built in" unusual events were re-

cord as often as expected. Section 6. 2. 2 presents details on these

calculations.

2. The range of vaiues allowed is known in advance and there-

fore comparisons can be made with the calculated results. See Sec-

tion 6.2. 3 for det2ils on these calculations.

If the data is recorded from actual flights, these comparisons

cannot be made. Instead, one now would have certain information

of interest about the flight. The following section will present further

procedures to follow in analyzing a collection of flight records, with

tests designed first for a laboratory program.

6. 2.7 Block Diagram for Analysis of a Collection of Records

As in the previous section, the block diagram in Fig. 6.14

presents procedures which ireuolve laboratory experimentation.

Again, the Preas that do not apply for the analysis of actual flight

vehicle data will be indicated as appropriate. The experimental pro-

gram in Section 8.4 is mainly an extension of the present section,

while basic statistical rntters appear in Section 5. 4.
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Blocks A and B. Random Sampling

Section 6. 2 outlines procedure-i involved in selecting a random

saipiing scheme. In Section 8.4 of this report, there is further dis-

russion concerning the selection of sample sizes and the number of

flights for repeating flighLs. This suggests a test for trying two

variations in the laboratory, and then making the final decision for

actual flights based on the laboratory results. Namely, it is sug-

gested that in one case the flight phases should be considered sep-

arately. In the other case, ignore the flight phases and consider the

flight as a whole. A comparison of results may now be made which

could possibly indicate that the consideration of flight phases i- un-

necessary in some situations.

Blocks C and D. Repeat Flights

Again, the reader is referred to Sections 5.4 and -U. 4 ior ana-

lytical ietails. In the laboratory, the "ri.sion" from flight-to-flight

can oe controlied precisely. Th:::, upo.n asialysis of the fial rcsulta,

it can be determined if the variations are detected as predicted. Two

procedures are suggested: (1) that of repeating the same simulated

flight (constant mission); and (2) that of repeating a set of different

flights (variable mission), with the variation between flights being

controlled so that statistical procedures may be verified. In actual

flight test, of course, these options do not exist.

Block E. Compute Flight Means and Variances

The means and variances of whatever parameter is being con-

sidered should now be computed. In this situation, as contrasted

with that of the individual record analysis, each record will be a

single observation and the sample size is therefore the number of

records. Complete details for these calculations appear in Sec-

tion 5.4.
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Block F. Variance Equaiity Test

The proccdurc for application of this test is given in Section 5.4. 2.

Before the analysis can continue further, the assumption of equal vari-

.-aces, necessary for later calculations, must be verified. This, ap-

parently, is not an unreasonable assumption to make in actual practice.

Block G. Compute Two Estimates of the Variance

Section 5. 4.2 presents complete details of this desired calcula-

tion and its theory. Basically, two separate escimates ol the over-all

population -ariance are computed and lead to the test for equal flight

means.

Block H. F-Test for Equal Means

This test is given in Section 5. 4.2. The verification of equal

means allows the pooling of the data from all the flights. When this

pooling is justified, this is the most important result of the repeated

-- bght -an aly--'z. The data rnay inca be considered ar, one large sample

with the associated increased confidence for the estimates.

Blocks I. J and K. Pooled Data Estimates

These calculations are covered in detail in Sections 5.4. 2 and

5.4. 4. It is here that precise estimates are obtained about pararneters

of interest for future predictions.

Block L. Comparison of Results vith A Priori Values

At this point, if the flights have been simul--ed in a laboratory.

comparisons may be made with the predetermined valuas. Any dis-

crepancies here, such as an indication of equal means when the mis-

sion was varied, or an indication of different means when the mission

was constant, require some further consideration as indicated in

Block R. Supplementary discussion on these matters is presented

in Section 8.4. 3. Clearly, this block does not apply for actual flight

test data.
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Block M. Comparison of Results from Different Sampling Schemes

Again, this block does not apply for ar actual light test. How-

ever, results obtained from the laboratory may now be applied to

future flight test procedures. See Section 8.4 fcr f-rher discuss oin.

Block N. Between-Flight Variance Estimate

If the means from flight-to-flight are different, an estimate

of the varia.-:e of this distribution is desired. See Section 5. . 2

for required analytical details.

Block 0. Within-Flight Variance Estimate

The data may still be pooled for an estimate of the variance

of the distribution of valuts within a given flight. See Section 5. 4. 2

for required analytical details.

Block P. Over-all Mean Estimate

An estimate of the mean of the over-all distribution of flight

means may be obtained here. This involves the same computations

as for Block I.

Block Q. Individual Flight Tolerance Intervals

In this case, the pooling of the data from all the flights is not

allowed, and therefore, the intervals will not be as precise as that

obtained in Block K. See Section 5.4. I for the calculations.

Block R. Examine Assunaptions. Procedures, Instrumnents

This block applies mainly to laboratory data, but may also be

pertinent for flight test data. If at any point in a laboratory program,

the results of the analysis do not agree with the controlled parameter.

some examination of Zhe procedures involved will have to be made.

Perfect agreement cannot be expected. However, any extreme de-

viations must result in further critical examinations of the underlying

assumptions, procedures and instruments.
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7. INSTRUMENTATION TO MEASURE
VIBRATION CH ARACTERISTICS5

Previous sections of this report have discuszed many mathe~matical.

statistical, and physical aspe-cts of acquiring and evaluating vibration

phenomena in a flightl vehicle. The present section is concerned with

problems of actual hardware instrumentaticn gcnerally available in labora-

tories or required for excperimental verification of analytical material

contaitted in the report. The section is divided into various parts which

attempt to cover a large number of the more important instrumentation

problems. For illuistration purposes only, specific equipment and manu-

facturers are named in some instances, and are not intended to reflect

on the merits of other available equipment which is not discussed.

7. 1 TRANSDUJCER CONSIDERATIONS

Many different types of tra.nsducers have been developad :;,er the

years for the purpose of converting mechanical motions iato equivalent

electrical signals. These include strain gage. piezoelectric. vjariable

inductance, ci ectrokinetic, magnetostrictive. potentiometer, variable

capacitance, and permanent magnet self-generating instrurnents. The

most commonly used of these elements for structural response mneasure-

ments in flight vehicles are the strain gage and piezoelectric crystal.

Both elements are employed to generate analog acceleration signals.

Bended strziin gages arc also widely used to obtain direct analog strain

(stress) signals.

7. i. 1 Characteristics of Piezeectric Crystal Accelerometers

The small size, light weight, and high frequency response character-

istics of the piezoelectric crystal accelerometer have resulted in its wide

application for structural vibration response measurements in flight vehicles.

Crystal elements have been designed with natural frequencies as high as

1001CC permitting reasonably accurate acceleration measurements up to

f.0 KC.

A summary of the general characteristics of commercially avail-

able piezoelectric crystal accelerometers is presented below. For more
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specific inform'ation. one should refer to the literaturc of accelerometer

manufacturers. some ot which is givers in references at the end of. this

section.

Dynamic Range 0. 01 g to0 10, 000 g
Freciency Response 2 cp* to ZO KC

Temperat~re Range - O 0 Fto + Z50 F

Linearity +!% and +2%

Sensitivity -075 MVfg to 75 O-V/g

Lowest Resonan~t Frequency 1-. 6 to 60 KC

Tranasverse Sensitivity +5%w and +10%

Acoustic Kesponse Less than 0. SS at 140 dlb

7. 1. 2 Characteristics of Strain Gage Accelerometers

A flat frequency response down to 0 cps (DC) in the primary advant-

age of the strain gage accelerometer. Unfortunately. the h~gii frequency

response is limited to a maximum of 600 cps. A genera' summary -f the

presented b~elow-

Dynamic Range Og to ZOOS

Frequency Response 0 cps to 600 cps

Temperature Range -40 0 F to + 200OF
or -&SFt+US

Linearity + 1'ro

Sensitivity 0. 4 MV/g to 35 MV/g

Lowest Resonant Frequency Z I cps to 850 cps

Transverse Sensitivity +2o'

Acoustic Response Unknown

7. 1. 3 Characteristics of Bonded Strain Gages

i contrast to the acceleration transducers discussed above, the

strain gage. as its name implies, has an output that is proportional to

strain. rather than acceleration- 'Ihe restrictions on strain gage data.

such as frequency response. dynamic range. etc..* are usually imposed

by the associated instrumentation and not by the gage. The subject of
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strain measurements i3 well known througho-t the industry and is covered

is, gr-i detaii inz cri.ny Puniicatens. Therefore, it will not !:=:: _sed

anr further here.

7. 1-. 4 "rarss Iurr Applications

Appropriate appications f67 the transducers mentioned above fall

into the following broad categories:

I- Pliezejectric 3r?- strain-gage accelerometers are generally

used to determnine the vibration levels of primary structure. and the

tribration en-virotnent for equipuica and human comfort considerations-

2. Bonded strain gages are generally =cd to obtain panc! responsc
data whic's aznay be interpreted in terms of stress levels or displacement

amplitudea, either of which is valuable for fatig_& life prediE ction.

Accelcromecterz have been~ empl3oyed at times for facigue studies,
but then it is important to know somethirg about the no-iercharacter-

istics of the structure, and one should measure phase information.

7.- Z TRANSMISISIOIN AIND RECORD M-

Signals from dynamic transducers are transr-sited to mzgnetic tape

recorders either directly or througn telemetry systems. The use of

telemetry is obviously required in missile applications. Additional in-

strumentation is provided by amplifiyers designed to ma.=tch transducer

impedances azd to amplify the signal.

7. 2-. 1 Telemetering Systems

Various iielemetry systems are available for the .ransmission of

flight data. Bec~ause of the diverse instrumentation requirements of

aircraft. missiles, and space probes. no single telemetering package

with fixed capabilities will satisfy even a majority of applications-

However, the FM-FM (frequency mnodulation) sysV-zm has been the method

which has been most widely employed to compile dynamic data-

In the FM-FM system, the trans&-cer signal modulates a sub-

carrier frequency which is mixed with other subcarrers to create a

composite signal that, in turn, frequency mnodulates the Main carrier
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frequency tusuallyf froc-- Z16 to Z35 w-egacyles/sec- A study -_! FU-]FM

teleretering nracteristics requires an examirnxtioc of the main raits:

that comprise the FM-FM Sys em- Mzjor units include: subcaruier

oscillators, radic--"-quency tranlsmtters, band-pass filters, and su-

carrier discriminators-. FA-FM channels are standardized acco-rding

to Inter-Range Insrun==tation Group (URM-) secificatien-s. Eighteen

subcarrier frequencies are avaiabe for J'mt modulation, with center

frequencies ranging from 400 cos to 70, 000 cps-. The "maiminmr frequency

response available is DC to Z100 cps.

7, 7- 2 Magnetic Tape Recorders

Magnetic tape recorders fall into three main classes: (1) direct

amplitude moilulated (AM) recorders, (Z) digital recorders. and

(3) frequeuicy modulated (FM) recorders. The direct rcorders do not

have the abtity to reproftce low-frequency signals but do hire an excell-

ent high-freqaency response and consequiently. are usefuil in recording

telemetry Signals. Th7e digital recorders have fast stop ad start features.

and are utilized to record pulse data wherein the tagnetic tape is either

saturated or n -sc& Pulse code modulation signals are recorded

on the digital tape units. The FU tape units are ideal for recording

vibration and acoustic signals. Most FM tape units provide frequency

responses from. dc to 10, 000 cycles per second at tape speeds of 60 inches

per second. FM recorders are presemntir available wifth responses !rcra

dc to Z0. 000 cycles per second. The AM rvcorders which are used to

record composite tel'emetry signals are. generally. grouzid-based units.

Air-borne AM units are available. but. are not emnployed to record dynamic

data because of their low-frequency Uimitations- This leaves the FM

tape units to record airborne vibration and acoustic signals both in air-

borne and ground installations. For further informtnion, the reader is

referred to the iterature ane. the references at the end of this section.

7.Z. 3 Calibration of Transducer-Telemetry-Recorder Systems

Perhaps the greatest Source o1 instru~nt: fcallbratioa; error In

any data gathering and processing procedure is the ccmbination trants-

ducer, telemetry, and reco-rder system errors Each oi these items
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-xill un-dorbtedly bc c1-"'~-d ic ~~~at regular i-tservals or tbefore

ezch test. Nevertheless. co-mplete System caibrations are: a definite

ccessitv to oroduzcc tnIid drazcif-3rtnatioc. This calls for end-to-

end sysze i caiibraions whe rein a Ad! rarige of freq-ue-cies and niun

are: iniected into the Crac-s~icer end of the inst.-imentation system. tranis-
:-i-ted thraazg each munit i= the chain, and recorded *-- magnetic tape for

final data reduction z=-d arzais..

The material to follow will row consider properties of availaile

inst=rumentation equipment to perform various desired measurements or-

Ethe vibration data whir-. 4as bzen gazhered-

7. 3 VOLTMETER 3MASUREMENTS OF' RANDOMd DATA

As discussed in the previous two sectiocs, random vibration rc-

sose measuremen-ts in mnodern fligHt vehicles are obtained casing

tra-S&ucers, Which Produce Ceentrical voltagesgnl prezor.azal to

displaccmenz. velocity, acceleration, or stress. InhC analc voltage

signals mnar be processed in mcany ways bw. uItimazzelly ==s: he r--:!zd

in tercms of some amcilitude level sach as &he mean squaare or root mean

squzare level for a g:v'en bandwidth- A voltage level measuring device of

s-uzr.- sort is :hen a necessary inZstrum-.rent for randora vibration response

.neasurements.

Eirczzt-cal cngineers have always been conccr:ned primarily with

betweemn voltage a.-A power- For direct cretsysems, the relationship

is qu--.te simnple: power is propornio=al to the scumare of the voltage. When

alternating current came i-:o the picture, the paramneter of rowt mean

squ-are (mi.ns! was adopted to characterize an alternating voltage because

it permtted the same si-mPae assoctation With power- power is proportional

to the square of the w.ns voltage. The truje a.-.S value for any periodic

votage. --tt). is as follows:
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SpecfxcaL-. for a izsil rtgevt)=V, 1

v. = 70 V f M.)

Earriy AC vcltmeters were designed to actz-ymeasre a indi-

cate the trte_ rms roftage of = sigaw. 'Ie two moLt popular wis

measuring voltmeters were the dynamometer O!ype and the tbernmrouple

type, as discussed in Section 7.. ?- The limited freTeacy response rA

:he dlyaome-er axd the fragility of the thermocople voltmeter forced

these instruneats out a popular wse ,ea the more rugged broad frle-t--

response vacuum tube and dry disk rectifier type voltmeter& were

7.3. 1 AC Rectifier Type Voltmeters

At the presem tire. the -as joritw of commercial AC voltage

mez2n_-ing instrwment are rectifier type voltmeters. These voltmetere

=ormaiay ha-e scalew calibrated to read the rau voltage of sinusoidal

signals, but do n-ot actually measure dhe raw voltage of the signal. The

two most commeo rectifier circuits are as iroUow*:

1. An arithmetic average value rectifier whick sclematically

consists of a lYArsoaval meter in 2tricz with a diode Ibsi-wave average

value rectitier) or a DPArsomval meter : rs a bridge of our dieds

(full wave average value rectifier).

A value rectifier which schematically consists of a

D1Arsomvnw .eter in ser.es with a diode plus a shwa capacitor Oudf-wave

peak value rectifier) or a D'Arsoaval meter across a bridge of hr diodes

with a skust capacitor (ful) wave peak value rectifier).

Full wave bridges are employed in -reference to hall-wave circuits

in the more expensive instruments, but the result is the sane; an average

value rectifier voltmeter measures the re.tifed average vitage of the

signal and the peak value rectifier voitruter measures the peak voltage

of the signal. Of the two types of rectifier circuits, the average value

circuit (or something similar to it) is far more prevalent in commercia
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mflflznnents. D-e to th- oomi~ere~rcitc f =anty types of

diodes in t2zz lower rei a i ther usable voltge range, so-me AC

recti tnartefier zgfpe moltcmeters actually meas--re so= ea te et voltage

at the low #e-d of the scale =nd something =-r the rnge voltage at the

tlIg4 end of the scale. ir. any case, the meter salesz are calibrated to

tead thle rms valtage of a sinzsoidal sign-aL

Th -e conventionza! nauim tute and drT &sk rectifier type AC volt-

meters just &scusse are cotmpl=etely saridctez-ry for fcuctriza! power

twortk sicce afternazcrs prodaece si:-soidal wrlzage sigizals. Iloceuer.

these voltmeters will give erraosms readings when used to measure

sigrais wit ware fontes that are sot sin=soidal- The aguide of err

tht mar result are Well iLWhunrarcd for the case of a coerenticcal average

value rectiGcr type AC tttueter i- the folistsing table taken fromt Ref4Z.-

Size ~Sqzarc I Rectangular Peaks Occupy-__________________.Wave; Waveu I i 1% c,- Time Axis

SVotweter I I
I - __ ____ ___ ____ ___ ____ __

Errone-ous voltage: readings w;ll also renir "atn the cccvrexiosa) AC

voltmeter is used to measure rnmdmn v-'tagr signals, For example. if

an ideal average value rectifi-Eer type c-Aete- wrer use-- t- measure the

mis voltage e!: zdcn~'? ih±C~i prcaEydsiy

functi-on, the tin-s voltageT of the sigmal u'o4d be ZA;F -V'r ann-rorfrnmatelrf

1. 3 times the tns; volmtagreadn immcated by the votmneter (Rtef. [2U))-

IU a peak value =eczfizer Irre voltmeter were used for the samte mecasure-

meat, a conmrp~ved nons-eical readingX would oiusyresult.

the -- reasieg armena! of raenvbaindaza being gathered in

modemn hillh speed flight vehiacles has produced a new seed for inszzuinents

which will mreasure the -.ns voltage of any aperiodic CSignal. There are

o wme .=- -:-so true rVMS voitage zraSn - .. Sruilna that

have hem develoaped over Chke years. as szinrnarized in Sction 7.3. s.

All of these icstnunments. ho--wever. pussessed at least ome ..a'jor dis-

advantage for general ppiato in vibration =- alysis As -7 result.

several inst rument comnp'nis have develojcd vacuum. tube rectifler type
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voltmeters designed to actually measure the true rms voltage of a signal.

Thesre instruments are usually called true rrns vacuum tube voltmeters

(true rms VTVM) to distinguish th- -i from the conventional AC VTVM's.

They actually measure the rms voltage of non-sinusoidal signals with

the advantages of conventiona! VTVM's; i. e., broad frequency response,

rugged dependability, high input impedance, high sensitivity, etc.

7. 3. 2 Vacuum Tube (true rms) Voltmeters

The electronic circuit used in true rms VTVM's varies with manu-

facturer, but :n general it is a rectifier circuit which approximates a

parabolic transfer characteristic so that instantaneous output voltage is

proportional to the square of instantaneous input voltage. Such a transfer

characteristic can be obtained in several ways. As stated before, many

types of diodes have non-linear transfer characteristics particularly in

the lower region of the usable voltage range. The transfer characteristic

is often quite close to the aesi red square law over a properly limited

voltage range. Another approach is to use a circuit of biased diodes

designed so that each diode contributes a straight line segment to a

polygon transfer characteristic which approximates a parabola. in any

case, the squaring circuit must be followed by an averaging circuit to

obtain the mean square of the signal.

The ideal averaging circuit would integrate the input signal over

some averaging time, T, and divide the result by T. An actual integrating

circuit such as is used in analog computers (an operational amplifier with

a feed back conden:aer) could be employed. A true intcgrater type averag-

ing circuit would give a one number average value at the end of the

integrating time, T, for the input voltage occurring during that time.

However, a simpler and cheaper way of --:eraging is to use a resistance-

capacitance (RC) circuit. In this case, the output is a continuous signal

representing at any instant the approximate average of the entire past

history of the input voltage weighted by an amount which depends upon

how long ago the voltage was applied. Commercial true rms VTVM's

employ RC circuits to obtain the mean square of voltage signals. The

square root of the resulting mean Fquare measurement is obtained by

proper calibration of the meter scale. The specifications Including
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instrument error for one of the commercially available true rms VTVM's

(Ballantine Laboratories Model 320) is presented in Table 7. 1. This

instrument is chosen merely for convenience and should not be regarded

as superior or inferior to other available similar equipment. As one

might expect, zr niajor disadvantage oi a true rms VTVM is cost.

Table 7.1 Specifications For Ballantine Laboratories

Model 320 True RMS Voltmeter

V.-tageR P.gc: 100 ruicrovoit to 30lo volts RMS in 13 ranges, in

steps of 10 db.

Frequency Range: 5 to 500, 000 cps.

Crest Factor Range: I to 4. 5 (0 to 13 db) for full scale readings; I to

15 (0 to 23 db) for bo:tom .cale readings.

Accuracy - Sine Waves: 3 percent from 15 to 150, 000 cps; 5 percent

from 5 to 15 cps and from 150, 000 to 500, 000 cps at any point on the

scale.

Accuracy - Non-Sinusoidal Waves: 3 percent if all component frequencies

lie in the range from 15 to 150, 000 cps; 5 percent for all other conditions

within the allowable frequency and crest factor range. All accuracy

figures apply to any point on the meter scale and for all ranges.

Stability of Calibrating Source: 0. 5 percent for line voltage variations

of 105-125 volts or of 210-2en or of 210-250 vo.ts and for long term

usage.

input Impedance: 10 megohms shunted by approxin.aite!y 25 MMf up to

10 millivolts, and by approximately 8 MMf above 10 millivolts.

7. 3. 3 Statistical Accuracy of Measurements

Beiore proceeding with the discussion of specific true rms volt-
meters, consider the statistical accuracy associated with the use of these

meters to measure the mean square hcvel of a random signal. Mean

square rather than rms measurements will be discussed since thn mean

rz;--r- vyl!ag,2 is the parameter aeteally measured by true rms VTVM
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,:;rcuits. As mentioned before, the square root of the imeasurement- or the

rmis voltage is obtained by proper meter calibration.

Assume an ideal voltage measuring instrument with a perfect squaring

circuit foWbnwed by an averaging circuit which integrates for a mean square

voltage over some averaging time, T. Such a voltmeter would give an

exact mean square measurement for any steady state periodic input signal.

Consider the case where the input signal is a random signal which is

stationary in time with a frequency bandwidth of B. The measurement

obtained is now only an estimate of the mean square voltage of the signal,

since aie measurement constitutes a sample of the signal over a finitc

period of time. The statistical accuracy or quality of the measurement is

a function of the averaging time (sample length) T, the signal bandwidth B,

and the power spectral densit-y function S(f). For the present, assume

the signal has a uniform power spectrum, S(f) = constant, and an ideally

defined bandwidth, B, with infinitely sharp cutoif frequencies. The more

general case will be discussed later in Section 7.4.2. Now the quality n-ay

be expressed in terms of a normalized variance of the measurement as

follows:

e (7.3)
BT

Another measure of quality is !he eautivalent number of statistical

degrees of freedom, n, for the measurement, as follows (Ref. [71):

n = 2BT (7.4)

Consider a signal with a Gaussian probability density function and a true

mean square voltage oi o-. For a mean square voltage measurement of
2s , the following statistical relationship exists:

02 n

2
where the value of X( (chi-square) for various conf.-dence intervals may

be obtained from standard statistical tables (such as page 309 of Ref. 191).
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Now, if a mean square voltage of s z is measured for a sample of length
2

T from a stationary random signal, the actual mea, square voltage, r7

"or the random signal is between the limits defined for a given confidence

interval by the equation:

0' wtere n = 2BT (7.6)

A limited table of confidence intervals from mean square measure-

ments as a function of the number of degrees of freedoms for a

neasurement o' unity is presented in Table 7.Z.

Table 7. 2 Confidence Limits From Mean Square Measurements

As Function of Number of Degrees of Freedom

ioof Degrees of Freedom 1In = O rn14 1)n 6bO ,E=-1

80%' iLower limit . .6Z .7"0 i 1.8 .85
1 Confidence Upper limit 9.49! Z. 05 1. .371 L Z9 L I
1 95!& Lower limit Z7 771 .b7 7
I Confidence_ Upper limit 39-_ Z 1 3. 07 Z.08! 1-63V 48 1_51

For example, assume an ideal instrument with an averaging time of on

second is used to obtain a mean square measurement of s equal to one

volt for a random signal with a bandwidth of 60 cps. The equivalent

number cf degrees of freedom for the measurement is 120. From

Table 7. 3, it may be said with 80 percent confidence that the actual mean

square voltage of the random signal is between 0. 85 volts and 1. 19 volts.

7. 3. 4 Accuracy Using RC Filters

The quality of a mean square voltage measurement obtained using

an ideal instrument has been established. However, as previously noted,

commercial true rms VTVM's do not a erage ideally by integration

over the sample length but rather by use of R-C filters. The output

voltage time history of a simple R-C fi!ter for a constant DC voltage

input is shown as follows.
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As seen from the above graph, the output of the si.nple RC filter
will reach a voltage nearly equai to the input after the signal has been
applied for three or four time constants (V0 = 0. 98 V. at four time1
constants). Thus for a steady state periodic input signal to a true rms
VTVM, the RC filtering of the square law rectifier output will yield a
reasonably accurate and steady meter indication of mean square voltage
after a few time consta ,ts have elapsed. This assumes of course that
the filter time constant is long compared to the period of the fundamental
frequency of the periodic signal being measured. Now consider the case
of a stationary random input signal. After a few time constants have
elapsed, the meter will indicate a continuous estimate of the mean square
voltage which at any ilstant is the result of all vignais that have gone
before. The quality of the measurement at any time is once again a
function of the frequency bandwidth and the averaging time, which in turn
is dependent upon the time constant of the voltmeter. As the voltmeter
time constant and/or bandwidth of the input signal become smaller, the
fluctuations of the meter reading become larger (the quality of the measure-
ment at any instant becomes poorer).

The relationship between the voltmeter time constant and the averag-
ing time T needed to establish the statistical quality of the meter reading
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at any instant of time is not precise until the signal has been applied for

several time constants. After, say, four or more time constants have

elapsed, the averaging time T in Eqs. (7. 3) and (7.4) may be replaced

by 2K where K = RC is the filter time constant. This important relation-

ship is derived in an earlier section of this report. Now. the normalized

variance of the mean square measurement at any instant after time = 4K

becom'es,

e2 (7.8)

2 BK

and the number of equivalent degrees of freedom becomes,

n = 4 BK (7.9)

For example, if B = 50 cps and K : 0. 1 seconds, then n = 20.

From Table 7. 2, it follows that for an 80 percent confidence interval, the

actual mean square voltage of a random signal is between 0. 70 and 1. 67

of the .nean square v:itage .-. asured at any instant of time after, say,

4K or 0. 4 seconds have elapsed. This assumes that the sample length

of the signal is at least 0.4 seconds long. It should be noted that the time

constait of commercial true rms VTVM's is fixed, and thus for a given

bandwidth, the qdality of an instantaneo,'- :.-..-'erE is fixed no matter

L. .w long the sample length of the signal is. It would be desirable if the

time constant of the meter could be a-j6istd s , *"m * could always be

1/4 of any sample length being measured. The measurement would then

be the meter indication at the end of the sample and world be the highest

quality measurement attainable for this type of voltmeter.

It should be pointed out that a true rms VrVM with a fixed time

constant often is used to measure the voltage of a stationary random

signal where the samplc length is many times longer than the time constant

of the voltmeter. In this case, the observer does not obtain a measure-

.. nt by reading the voltmmcter incdicztion at one particu!ar instant, but

rather by mentally averaging the continuous voltmeter indication over the

entire sample length. The quality of a measurement obtained by averag-

ing the continuous mean square voltage indications over a long sample is

better than the quality of one instantaneous observation.
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7. 3. 5 Physicai Example

The time constant of true rms VTVM's is usually between 0. 1 and

[. 0 seconds. Time constants of less than 0. 1 second will seriously limit

the instruments' capability to measure low frequency signa s. Time

constants of lorager than a second will result in an unduly long wait to

obtain a measurement, -lhough the resulting meter indication would be

more steady (the quality of the measurement would be higher). A

physical example might help give a better feei for the association between

meter indication, time constant, and input signal bandwidth for true rrns

VTVM voltage -neasurements of rando-: noise. Such an example is pre-

sented in Fig. 7. 1. A true rrns vacuUM tube voltmeter was used to

measure the mean square voltage of the output of a random noise

generator limited in bandwidth by a controllable filter.. The time constant

of the voltmeter wag measured and found to be about 0. 1 second&. The

mean square measurement signal was monitored and recorded just prior
: -": ":- -- ......-. ;. Thc mean square voltage time history for a

3-second long sampie is presented for various bandwidths. Bandwidth

rather than time constant was varied because the time constant of the

voltmeter is fixed. The random noise generator was permitted to warrr.

up Ifor several hours to assure a stationary output signal,

From Fig. 7. 1, note that the continuous mean square measurement

(and the rms indication of the meter) for a bandwidth of 20, 000 cps was

quite steady over the 3-second sample. in =Is--e, the .. t. o " he

measurement at any instant is so high (4 BK = 8000 degrees of freedom)

that the estirusaanr:r2_ " negligible as corsurada to the instrument

error. Now consider the measurement for a bandwidth of 5 cps, and

note the large -.variations in the measurement over the 3-eeccn long

sample. Here the measurement at any instant of time (after four or more

time constants have elapsed) has a quality of 2 degreet o- freedom. If

the indicated mean square voltage at any instant is s2, ont could 3y with

e0 percent confidence that the true mean square voltage of the &.5gnaL

measured was between 0. 43 s9 and 9. 48 s . This experiment ah;ws that

true nmsn VTVM's may be used to nbtain random signal voltage mcasure.

ments with high confidence for short samples of broad band input signa-s,

even when the time constant is as short as 0. 1 seconds. However, whe-

ASD TR 6.-:-3 7-14



I1 Bandwidth = ZO. 000 cps
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TIME - SECO.ND.S

Figure 7. 1 Mean Squa1r.- Output vs. Time

True rrms Voltmeter

Time constant of equivalent RC filter is approximately 0. 1 seconds. t is

several time constants after stationary random (Gaussian) signal w¢as applied.
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such instruments are used to measure short samples of narrow band ran.-

dom signals, the confidence in the resuilting meazurment is rather poor

and must receive consideration. This point is extremely important because

:;ectral analysis of random signals is normally accomzi~ished by meazcur-

ing the mean square voltage output of a narrow band wave analyzer. The

subj ect will be covered more fully in the next Section 7.4 on pow-er spectral

density measurements.-

7. 3.6 Further Remarks on Voltmeter Measurements

The rectifier type true rms VTVM has been discussed in some detail

here because it appears to be the most practical voltage measuring instru-

c.ent for randomn vibration analysis that is readily availabl= commercially.

This does not mean that other types of v-otmeters are not w.a ae. Thermo-

couple t"p voltm.eters incorporating eltectronic;- circuits have been developed

wh-'ich provide the high sensitivity and hilth inwut =E~" f zeciiier

type voltmeters- FUrthermore, these instruments do not appear to present

the problem of damage susceptibilliti th.at has been characteristic of

hermocouple type voltmeters in the past. Thermocouple voltmeters; with

equivalent RC time constants of as long as 16 seconds are commercially

available. if long enough random signal samples are obtainable, luctuations

of the mneasurement indication will be quite small even for narrow frequ-ency

bandwidths.

One additional point concerning tr-ue rrms voltage rneasurements of

random signals should be mentioned. Any true r.ms voltage measuring

instrument must be designed to electrically deal with instantaneous invp*

voltages over a very wide dynrami;c range. In tnie case of conventional AC

voltmeters used to meascre sine wave signals, the voltmezer circuit will
not see instantaneous voltage levels above 1. 414 times the rmws voltage

of the signal being measured (the peak of a sine wave is 1. 414 rms).

However. non-sinusoidal periodic signalx's may have instantaneous voltage

peaks which are many times larger tha. the rms voltage oi -'. aiinal.

The &attio of peak voltage to rms voltage is called the crest Lactor of the

signal (sometimes =aJled peak factor), arnd the ability of a voltmeter to

accept high crest factors is defined by the crest factor limit or range of
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the voltmeter. The crest factor of a sinusoid is 1-. 414. and at voltmeter

wvith a crest Lactor imt~ t' 5 iran-ge of 1 to 5) willI measure Withort

cip~any signal with a creL- factor of 5 or less-. Far t- care of

r=z'doni signals.. the crest factor is* undefineT-d (it is extrem~ely large).

and some clipping must occur since no voltmeter can be designed with

An izin- cre3t factor limit. However, if the crest factor limit of the

votmeter is suifficiently high, die clipping ma), be negligible. Whether

or riot the crest factor limi: off r- given voltineter is sufficient depends

upor- the probability dencsity fixnction of the random signal being measured.

For a random signa with a Gaussian amplEitude densit'r, a crest factor

limit of 5 would result in clipping only 0- OO0057 percent of the time. and

=--z zest factor uNit as low as 3 would result in clipping only 0. VT

percent of the time-. The crest factor limit for commercial true rms

VTVM's is normally bet-etl? I and 5. a~hvoltaleters are available

with crest factor limnits: as Kill as 10. A edetailed disctvsion of Ehe

ezter- I cizppzng on ranaorn signals appears in- Section 9. 5 of tis report.

In summary. rms voltage measurements of random signals in

association with analog vibration data analysis should be obtained using

true rmns voltage measuring instruments. It should be remembered that

most convrentional AC voltmeters in vise today art average value rectifier

type voltmeters which do not actually measure the --ms voltage of a

signal. It should also be remembered that no matter how sm-all the in-

strument error of a voltmeter is, the rms voltxge menoured for a ranmdntn

signal is only an estimate of the true rm~s voltage of the silgnal. A con-

fidence interval for the estimate can. be established if the signal frequency

band width and instrument averaging time or sample length are known.

it woulId be desirable to measure the rms v.oltRage of a signal by actual

integration over the sample length, but unfortunately, commercial in-

struments of this type are not readily available. Most commaercial

voltmeters average the instantaneous voltage square signal from the square

low rectifier by use ol an RC type filter to give a continuous mean square

mneasurement (made rmns by proper scale calibration) over the sam.nple

length. After the signal his be=naple for foaur o7 :-nore fillter time

constants. a en101idence interva for the meter indication at ant- instant

can be established by considering the averaging time for the measure-

m ent to be equal to two time constants.
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7. L ' Summirary of True rms Voltage Measuring Instrumen~s

iComnpied from References 'tZ811. 1Il. t 30], ad tZZJ

1. Electrodirnarrnc type voltmeter dnm etr.

This irzstxzzmet employs two coils conxnected in series, one

fixcd and one moving. with an indicatinsg needle attached to :he mo-Ang

coil- The instrument is then like a D5 Arsonval meter except the ;verman-

ent magaetic is replaced by a fixed cofil. The resulting needle mo-jemest

is proportionial :o the sqzare of :he instantaneous applied voltage. The

inerzia. and daming of the moving element integrated the .- Cu vr~

Eiocs to give a mean sq7-:are indication. Proper scale calibrati=,?jerznits

direct rms readin-gs.

Primary advarzage: high accuracy-

PrimaryT dizadvantage limited frequency response (DC

throwgfh power freqaencies).

Z. Moving-iw'_ !Mpe voltmeter.

This ns t~c:uzlizes the reaction between a Mnoveable

soft-iron wane and a mgnetizing field coil- The vane movement is a

fun-c,-Cn of the r is voltage to the coil.

Primary advantage: high accuracy.

Primary disadvantage: Uimited frequency response (DC

through power frequencies).

3. Thermocouple type voltmeter-

rthis instrument consimts of a heater. a thermocouple, and

a D'Arsonval meter. The voltage signal is applied to the heater which

is in phys-ical contact with the thermocouple. The th.-mocoiple tempera-

t-te as read by Qge VArsouval m-eter is proportional to the average power

dissipated in the heater. which in.-turn is proportional to the mean square

voltage of the appiied signal. Proper scale calibration permits direct

rms readinus.

Pri-mry advan!2ges: high accuracy and broad frequency

e- C tz** C-. '= maicyi 01.5 B_:5c)

Pri-mary disaduuintage: susceptibility -to damage due to over-

loadig unless the crest factor range is sbarpry 12'..1ited.
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4. Cornputer type voltm-eter.

This instrument employs analog coernuing circuits tc square

:he in~put voltage sigmal and integrat over any desired timoe interval to

oain a mean square mcasurement for that ___ .Wai

Primry ava~aes:grez: leibility; yields a one number

.ca-- square measuremect for a specific sample len-gth.-

Primary disadvantage. cost.

S. Electrostatic type voltmeter.

Mw Ss~rnn -tilizes the electroxtatic reaction between

the fixed plate "-"d ugoveable pLatcz ci a variable conden-ser- The position

of Che mroveable plates - icated by an attached nueedle can Le made

propozoeav to tMe -.ns voltage of the applied si gnal.

Primary advantages: MAg in.ut impedance a: iow frequeacies.

Primary disadvantage- limited senasitisvity ijiziia v-;Itages

oaly%.

ITue rms rectifier type voltmeter.

This in-svrurncnt is discussed in the text-

Primary advantages: high input .;mrpedance (up to 10 megohrrS);

high sniity(dovmn to U-G microvolts): broad fre Vuency resp-=se (5 cps

to ZOO kilocyclIcs or higher).

Pr-imary disadvantages:- cost and only-r-oderate accuracy

(aboat 3 percent).

7.4 POIYER SPECGTRAL DENiSit-Y MEASUREMENTS OF RANDOM DATA

One of the useful statistics for char--cterzzing a rai.±do=m sigaal is

the power spectral den-sity of the signal. The power spectral density or

power spcectrur-zn of z staticna-.2 randorn signal is a mneasure of thr relative

-mver per cps versus frequency and m.zp be presented in any' units vLhi*-ch

are proportional to power. i. e- g ,cps. ps;&-cp. etc-. Pandom v-ibration
measrnrn--s in modern flight vehicles are uscally obtained using

acceleration transducers- As a result. most power spectrum data

currently appearing in the litcraturc- are in the form of acceieration.

powver spectral densit~it: with the units of gicps.

ASO TR~li~11



Azly zca~y. tbe power spectram of a staE ocary randomi sigmal is
the Fourier tranafaro c i &he autocorre-atio2 lfoc!ion of !he 5-2

lience =~e ca= abezii : a ~ e t iher uirectly by filtezi--g in

the frequ.ency do-ain1 , or indirectdy by filtering ;.= the time domz-- (%=I-f-

co.-zc~a*tionl and determniing thec Fourier transform of the results- 1-U-s

section w41M deal only with the tneasurem-erax of power spect.u by filtering

in Che freqzency doemain. Autocorrelation rneasurements Will be the

subject off a later Section 71 6.

In gemzerl. the determninatxon of the power spectrum for a random

signal nozsists; of measr-ring the mea& square -.alue of the sigma! in each

of ==y marrow frequency bands which together cover the frequency

range of coaccern-. ad dviding each mean square value by its associated
bandwdth.Ideally. one would like to measure the limit of the ma

square value divided by bandwidth, as the bandwidth approaches zero.

but this is beyood the practical capaill-ftes of physical instrume's.

F=trigad =ean scuare measuremrent are then the fi-amental

nbysica!l processcs involved in power spectin!' densi- deterwuatiom..

However or-e cannot actually measure the true tea square veins of? a

randwr signal, since a measuretn- c--nsi.tutes a santple of the signal

over some finite period of time. A mean square areasureamem of a

samnple record fr*:m a random signal is then only an estimtate of the true

atean square level of. the signal. When one speaks of power spectral

denitiy measuremens, c-e ---3 2-afy talking about a statistical

estimate. The accuracy of power spect.r-.r= estimzates is cc side-red-fin

detail in this report.

7.4- 1 General Techniques for Obtaining Power Spectra Estimates

Considtr now the actmal techniques that aught be employed for

power spectral de"-sity analysis. The discussion will be in terms of

analog devices. bit the general proceduires cou-ld just as well be acroat-

plisied digitali-f- Orte possible iqe.in terms of mainimum computa-

tin tiam. would be to pass the ins--t randon signal through a set of very

.- rrow band Efte.-s which co-er the freT.ency range under conaideisatioa

and 9'ivoutaneor-sly measure the -rnean square oatpc= of each flfter by

squaring and aeaigthe output of each filter over the entire available
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record r'cZ- Tim=. 67f dz'ridL- each- uzea- scare besTee~6 its

aL.ssocivte-i fiftr- widmG amd sint~osyrecordin~g the s Ca

Q= Zppropet.atte freq-ezcy sca-ge. a estim~ate of the power spetiral dens-.!

f=ctl= Zor the random s:-uai is obtai~ed. ass sbown in Figure 7. Z be~vw.

To
Recorder

-j M I -

division

br filter I I I I I
1 Z jP I

circuits14 yi yI v
mean Suure ~x

Icircuits i i i i 7
Marwwo badF] '

Fiue7. Z (Paraliti) Fiiter Set Tvpe Arjayer
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The proccdurc shown in Figure 7. 2 would require a large number

of filters and mean square measuring devices, which are expensive. A

great deal of money is saved at the expense o~f increased analysis time

by using only one ..nean square micasuring device, and determining the

mean square out-put ot each filter of the set individually, as shown in.

Figure 7. 3.

Division by
Narrow Band Filter Bandwidth
P ass Filters

LLTJ

76

Ix1 t Squaring I1 (t) Averaging 6
Circuit ~Circuit -

Figure 7. 3 (Sequential) Filter Set Type Analyzer
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The procedure of Figure 7. 3 wili be called a (sequential) filter

:et type analyzer. The filter sets of Figures 7. 2 and 7. 3 might be, and

often are replaced by one filter with an effective variable center frequency

that may be moved continuously through the frequency range under con-

sideration. This arrangement, which will be called a variable center

frequency filter type analyzer, is shown in Figure 7.4

Narrow Filter Xft) Squaring x (t)

Vx with Va.riable I Circuit
I Center Freq. f C

sf/, Division 'eaitg
By Filter I

To Bandwidth |C-rouit
Recorder I____

Figurc 7. 4 Variable Center Frequency Filter Type Analyzer

A fourth procedure involves the application of the heterodyne

principle. Rather than moving a variable center frequency filter through

the frequency range of the signal as in Figure 7.4, a heterodyne analyzer

moves the frequency range of the signal past a single high frequency

fixed filter. Frequency transposition of the input signal is accomplished

by combining the input signal in a modulator with a signal from a

variable frequency oscillator. As the oscillator frequeiacy is varied,

the modulator generated sidebands are moved in frequency pas the

fixed filter for analysis, as shown in Figure 7. 5 below.
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input, x(t) Modulator x Squarin, t 2 (t)
' and Filter Circuit

Variable
Frequency
Oscillator

S/B ivso Sf F~vr 7 in
By Filter _,Averaging

To Bandwidth LCircuit
R eco rder Ij

Figure ?. 5 Heterodyne Type Analyzr

The heterodyne type analyzer is inherently a constant bandwidth

instrument, its primary advantage is that the single fixed filter can be

carefully designed and controlled to obtain high selectivity and stability.

Quartz crystal filters with a Q of 30, G00 or more at a center frequency

around 100 kc are used.

It has been pointed out that the heterodyne type power spectrum

analyzer in Figure 7. 5 filters over the frequency range under considera-

tion w:th a constant bandwidth, but nothing has been said about the band-

width of the other analyzer techniques discutsbe. The filter set type

analyzer in Fig-re 7. 3 may be one of two types. The first is a set of

filters having equal bandwidths (constant bandwidt;. analysis) and the

second is a set of filters having equal C iconstant percentage analysis).

The constant percentage filter set is far more prevalent in practice.

The variable center frequency filter type analyzer in Figure 7. 4 may

also be either a constant bandwidth or constant percentage type filter,

There has been considerable discuefion in the past on the subiect

of constant bandwidth versus conntant percentage filtering techniques

for power spectral density analysis. A good summary oC pro and con
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arguments is presented in Ref. [ 19]. in general, constant percentage

analysis has certain advantages associated with a constant resolution

of the power spectrum estimate, as will be discussed later. The primary

argument for constant bandwidth analysis is simply the practical con-

sideration of filter design. The sharp selectivity of the fixed crystal

filter in the heterodyne ty.c analyzer is not obtainable in the constant

percentage type analyzers.

In summary, the vast majority of commercially available power

spectral density analyzers employ one of the following three filtering

techniques (Refs. [71. [Z81. and [Z41).

1. Constant percentage filter set type analyv:er - Fig. 7. 3.

2. Variable center frequency filter type analyzer (either constant

bandwidth or ccr.stant percentage) - Fig. 7. 4.

3. Constant bandwidth heterodyne type analyzer - Fig. 7. 5.

Of the three types oi analyzers, the heterodyne type xnstrument

is the most vi-' used for detailed power spectral density analysis.

Commercial heterodyne analyzers usually are equipped with several

different filter bandwidth selections ranging from 2 cps to 50 cps. The

frequency range of heterodyne ana.-zcr is usuaiiy irom zero to 25 kc,

which is amp!e to cover the frequency range of interest for most vibration

and acoustical data analysis.

7. 4. 2 Statistical Accuracy of Power Spectra Estimates

The basic measurement required for power spectral density

analysis of stationary random signals is a mean square value determina-

tion. Specifically, the mean square value of the random signal is

cstimated by measuring the mean square value of a sample record using

a squaring circuit followed by an averaging circuit. The details of attual

analog mean quare voltage measuring devices are presented in the

previous Section 7. 3 Assume for the moment that one has a mathematically

precise mean square measuring device consisting of a perfect square

low rectifier followed by a perfect averzger which integrates the squared

amplitudes over the entire sample record length nd divides by the record

length.
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How weli a mean square measurensent of a &amnpie record from a

stationary random signal represents the true mean square level of !he

signal -mray be expressed in terms of thc statisticai quaiiy of the measure-

ment. The quality of a mean square measurement is a funrction of the

record length T.. the record frequency bandwidth B, and the pnwer

.spectrum S(f). One expression for statistical quality is the normalized

variance of the measurement given as follows, see Eq. (4. 168) of

BT 576 ML

where X(.) = S(f)/S1-(f)I '17- is called the "spectral bane 'idth" of the
random signal under consideration. If there are no sharp variations of

the power spectrum within the bandwidth B being considered, the value

of X.(f) becomes very Large and the second term of Eq. (7.l3)becomes

negligible. For the case of Dower spectral density analysis where B

is the bandwidth of a narrow band pass filter, the second term may

normally be neglected (although not always), and Eq. (7. 10) becomes

simply,

BT

Another measure of statistical quality which is more amiable to

standard statistical tables is the equivalent number of degrees of freedom

of the measurement, denoted by n, as follows:

n = 2ET (7.12Z)

The same argument now applies as developed earlier in Section

7.3. 3, and conlidene limlits for the true mean square value from

measured mean square values as a function of ni are displayed in

Table 7. Z.
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For example, assume a mean square value of s is measured for

a sample record of one second !ength from a random signal with a band-

width of 30 cps. The equivalent number of degrees of freedom for Le

measurement is 60. From Table 7. 2, it may be said that the actual mean
Z , 7

square value for the random signal is between 0. 72 c Ind 1. 48 s for

a confidence coe-ficicn: af 95 percent.

It should be noted that Eqs. (7. 11) and (7. 12) may have slightly

different constant coefficients depending upon the actual configuration

of the band pass filter emvloyed, Refs. (3] and [4]. but fur the purposes

of this discussion, the filter will be cons;dered ideal with sharp cut off

edges. Eqs. (7. 11) and (7. 1Us are good approximations for an ideal

filter.

7. 4. 3 Resolution of Power Spectra Estimates

Examine in more detail the effect of filter bardwidd. on the quality

of power spectral density estimates. It is seen from Eqs. (7. 1i) and

(7. 12) that the statistical qality of a mean square measurement (in terms

of the equival_ nt number of degrees oi freedom) is directly proportional

to the bandwidth of the signal. One might then conclude for power spectral

analysis that improved measurement quality can easily be obtained by

simply increasing the bandwidth of the analyzer filter. However, increas-

ing the filter bandwidth reduces the "resolution" of the analysis; i. c. , it

re:duces the abiliiy of the analysis to properly define sharp peaks in the

power spectrum. The selection of the analyzer filter bandwidth is always

a compromise between measurement meualty and n~easurernent resolt:uon.

it should be further noted that if there are sharp peaks in the filter

bandwidth, the second term of Eq. (7. 10) may become qtite significant

and the quality of the measurement will not be as good as would be

predicted by Eqs. (7. !!) and (7. 1Z). The emphasis then should be placed

upon selecting an analyzer bandwidth which will afford proper resolution

of the spectrum being analyzed. A reasonable criteria for proper resolu-

tion might be a filter bandwidth th&E is one fourth the bandwidth (between

half power points) of the narrowest pak in the power spectrum to be

analyzed. This points out the rather annoying fact that power spectra

measurements with known statistical confidence cannot be obtained
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A thot some prior knowiedge of a- least the general nature of the power

spectrum to be analyzed.

Power spectrum resolution is sometimes defined as the bandwidth

of the analyzer filter divided by the center frequency of the filter in

percentage. For a oower spectral density analysis with a constant 5

percent resolution, the analyzer filter bzmdwidth would be 5 cps at a

center frequency of 10O cps and 5e ups at a center frequency of 1000 cps.

Using this definition of resolution, a constant percentage type analyzer

(using constant Q filters) will yield power spectra wi- constant resolution

while constant bandwidth type analyzers will yield power spectra with a

resolution that increases in direct proportion to frequency.

7.4.4 Constant Bandwidth Power Spectra Estimates - Maximum
Filter Scan Rates

Consider in detaii the statistical accuracy of pow-er epectrai

density estimates obtained using constant bandwidth tyme analyzers, such

as a heterodyne type analyzer, which scar the frequency range under

consideration with a continuous sweep of a single filter. Thin type of

analyzer is being considered first and in most detail because it is !he

most widely used. Assume a sample record of length T seconds was

obtained from a band limited stationary random signal with a frequency

range of F cps. The power spectrum of the signal is to be Measured

(estimated) over the bandwidth of the signal by analysis of the sample

record. Since the analysis will be done by an analog instrument, the

record should be on magnetic tape or some other form of storage

suitable for electrical playback. The record can then be made into a

loop for continucas playback into the analyzer. Le: the bandwidth of the

analyzer filter be determined by resolution considerations to some

,'alue B. The maximum statistical quality attainable in the power spectrum

measurement has now been fixed by Eq. (7. 12). For example, if the

record length is T = 6 seconds, and the analy-er fluter bandwidth is

B = 10 cps, the maximum qTality of the power spectrum measurement

is i20 equivalent degrees of freedom. Analysis techniques employed

fr., this point on cannot increase the statistical accuracy of the measure-

ment beyond that accuracy defined by 120 degrees of freedom.
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The next cuestop i;s how fast may the analyzer filter scan the

frequency ranrge F of the record without unnecessarf.7 reducing -'-e

j uality of the measurcment. If the frequancy range F were scanned in

discrete steps. the fiker would have to be stepped through (F/B)

different center frcquzzicies and rernain at each center frequency for at

least T sccornds if max~imum statistical quality ir to be obtained. For

example, if F = ZOOO cps. B = 10 cps, and T = 6 seconds, the filter

wo'uld havec to be mov'ed through 200 positions and remain at each for

6 seconds to obtain the maximum available qualit; of 120 equivalent

degree4 of frcedom-. The total analysis time would be at least 10

seconds- If the f recluency rwige F is scauned by a continuous sweep of

the filter (as is the case in actual practice). the same general limitation

aplies. The scan rate should not. be faster than one bandwidth per

record length or BIT.. For the previous ex-ample, the maximum scar.

rate would be S. R. = 1. 67 ,;.s/sec. for maximum quality-. A slower

scar rate would not increase the quality of the rmeasuremeZ.E. !---t a

faster scan rate would reduce the quality of the measurement. On a

bas;.s of measurcement quality, the mnaximumn analyzer filter scan rate

(S. R. 1, has Onus been estabished to be,

S. R. L_ (7. 13)
T

However, there are other problems vwhich m-ust be considered.

'The transient response of the analyzer filter :s oze such problemr. The

filter must be swept slow enough tc pertnit proper response to abrupt

changes in the power spectrum being analyzed. The response of an ideal

rectangular na.rrow band filter to a suddenly applied sinusoid is detailed

in Chapter X1 of Ref. [ 151- It is shown that the time required for the

filter output to rise from zero to 100% of the input, which shall be

called "build up ' irne". is inversely proportional to the bandwidth of the~

filter. It can be shown that this inverse proportionality of transient

response to bandwidth also applies for simple single tuned arnd double

tuned filtcrs (Ref. [ 191. 1002-0- 1. and Ref. [ 31). For the- case of the

ideal rectangular narrow band filter, the build up time to a suddenly

applied input signal (or any abrupt change in the input signal level) is
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approxim~ately eqrua ! o ~ /.However, the fliter ortput does not r&ise

to the input level and stop !!-.re zftcr (1/B) seconds- I'.overshoots the

input 'e~rel and then goes into a decayed oscilaton about it. These

oscillations will decay to lzss than 2% in about (8/B) seconds after the

input signal i-S applied. Thus a criteria for propmer Elter response

sh-oudd be that each frequency increment of the spectrum be viewed by

the analyzer fEtter for at least (8/B) seconds or 8 times the build up

time for the analyzer filter.
T! T-,-)- noted tha! there is aL-!e motn reason to support

such a criteria. Assume that each frequency izcremexA is viewed for

an. interval of only (1/B) seconds- The full output of the filter will occur

*nly for an instant at the er4 of 'Mie interval. For a random signal iaput

wxhere a mean sq7.are estimnate of :he fiter output is obtained by averaging

all scruared amplitzdes over the entire interval. it is obvious that the

resulting mean square measurement would be too low. BT limitin the

minimum interval that each frequ~ency increment is via-ci by the filter

to (8/B), wse assure ourselves that the resulting meara sqmare measure-

ment of !he filter c~atput wfl be biased by omee thn 1.1/8)1 of the

interval. Then. on a basis of proper filter responje, the scaa rate

should be limited to B or,
(8/B)

S.L 32 (7. 14)

It should be noted that the constant factor of (1/8) in Eq. (7. 14) would be

somewhat different for other filter characteristics (single tuned. double

tuned, etc). However. Rei- r-191 (ICU-Q-I1) indicates the build up time

for an ideal rectangular filter is longer than for other conventional filter

characteristics. and Eq. (7. 14) shoczld be conservative when applied to

any real filter.

Another factor to be considt-cd in the maximum scan rate that

should be used for constant bandwidth spectral analysis is the charac-

teristics of the read-out or mean. square measurement circuit of the

analyzer. if the read-out is accomplished by a true integration of the

output of a square law rectifier over the record length T. no further
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problerris arise- However. the read-out is often accomplished by

averaging the output of a square law rectifier t= an eceivalent RG fiter

(not to be confused with the scanning filter of the anaiyzer). As dis-

cussed in Seciorn 6,1 17 of this report. when. a random signal is passed

through an RC filter, the output of the filIter is not a true linear time

integratio-. over a specific time interv-al as is required mathematically

:0 obtain a true average of the inpuz i'Pis= Vie outwr. of the PC filter

is a continuous signal which at any instazit of --:me is a time weighted

inte-gration of 3111 sigmal amiplitudes that have gone before.. However, it

is shown in Section 6. 1. 7 that after th- sign-.1 has been Zpied to the
RC filter for 3 or 4 *_te constants the wutna a! the RC -9-iler at any
;nstant approximately ccrrzzponds to a true averaging process with an

effect..-i integration time equal to twice the time constan-t of the RC

fiftea. Then when the output of a square law rectifer is passcd througit

an equivalenct R.C filter, die output of the RC filter at any ine~t (after

3 or 4 time coastants have elapsed) is equivalent to a mnean square

... easurement with x statistical q7z-' give-m by,

Number rf degrees of freedon, ra =4 BK (7- 15)

where K =R.C time constant

Consider now the significance of Eq. (7- 15) in the constant band-

width analysis of a record length T with a scanning filter of a badwi-dth

B_ As previously stated. the maximum quality (degrces of freedom) of

the measuzrement i s fixed by n = Z BT. Then if this maximum quality is

to be maintained in: --he mea= square read-osa, the time constant K of

the cT-iivxicrt RC filter assne~r~fvd with the- read-atut zhould be K =(TiZ).

A larger time constant cannot improve the quality of the measurement.

but a shorter time constant will reduce the quality L-: the mcasurcmert.

Consider next the effect of the rcad-out time constant on the scan

rate. If the scanning filter we- stepped '--n one center frequency to

another frequency 8 cps away. several time constants munst elapse to

permit the equivalent PC filter of the read-out to respond to the new

information. Specifically, let 4-K be the cr-iteria for proper response

(the output of an RC filter rises to 98% of the input at 4 time constants).
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For proper read-out by an RC averaging network, the &can rate of the

analyzer filter is iritzed to one a:Zer d-ritn every 4 ftC filter time

coaz.~ts. or,

Rer-n-mberiag that for mar u= measurement quality. K =(T.IZ), it

ZT

Note that Eq. (7. 17) limits the maximum scan rate fcr the analyzer

filter to (Ij2) the scan rate permitted by Eq.. (7. 13). 7-L-s 1icads toth

important conclusion that if power s~ectrsum read-out (:-Aam square

measuremeat divided by bandwidth) is accomplished b7- a-mming the

squared amplitudes with anequivalent RtC filter rather tha by tru

integration, the maximum scan rate for the analyzer filter must be re-

duced by (1/2) to obtain the same statistical quality in the measurement.

Before proceeding. briefly review the discussion of power spectral

density measurements by scanning with a constant bandwidth filter.

Given a stationary random signal record of length T seconds, the maxi-

mum, statistical quality of a power spectrz! density esdimate at any

frequcr~cy in terms of the equivalent number of degrees of freedzin,

n. for the measureme~ is,

ni = ZBT(71)

where B is the bandwidth -if the analyzer filter. The bandwidth B selected

for aneysis should be as large as passisblc while s1=1 iii proper

spectral resolution in the measurement. In gene rd, B should be no

greater 0=a (1/4) the bandwidth of ;he narrowest Feak to be expected in

the pu~r-.r spectrum. After B is selected, the maximum attainab~e

quality of the raea:3urement is fixed. in order to maintain this qu=.Hty.

rte scar. race. S. f.*of the analyzer should be as follows:
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(1For F-Wer read-o0i 1 aw rgri qye a.iOzdes

S- R - or S.. R - . wi~~e is stmaflcr (7- ;9)
T

To~ !a~wj~ e -L.(7. 20;

SA- R.

B bdd t ofScariz filt*r E= cps

T record ieirjh in secod

i recuency rane to be :-Dazylei in cps

(2) For power spectrurn read-ount by ave.-Aging squar&.ed anAi-.=&s
using a= R~vl~EC fiter rci

6-R. or S- R - whichever is sma~ler (7. 21)

Optimupm value of K = (17 ) (7-. 2)

Towa1 Anmalysis Tim&a = ...
' ~

S.Ri. =scan ratc in cpssc

B = bazad-idth in cps

T = record length in seconds

K = imne 4COMstant of CCo-iv-aemt RC fltter ;-n seconds

F = frequency range to be analyzed in cps
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Commercial. &eterodyre typte power spectral densitv azatrzers are

eqaipped with several c~fferent fixed fittet bandwidths ranging from 2 cps

to 50 cpz. in order to obtain proper res !uica in the lotfer freqile~cfts.

zt might be mecesry to select a bandwidth of say 5 cps or perhaps ee

as earrow as 2 cps. However, at higher freq--eudces a filter bandwit

of 50 cps may- pravide co ifetel acceptable resolaiioe. It is good

practice to divide the fr#dTztncy range tw be aalyzed into two or three

ranges and use a different filter bandwidth in each rage. The hig~aer

frequency ranges can be scanned aith wider fl'ters- rac result is a

faster scan ratt ireducced azzl=E time) with adequate s~atisticalI Rccuracy.

Exampl: G~sdetr the problemn of estimatiung the power spectrz=

ofa staxiouary random signal by constazt bandwidth analysEis of a 6-secomi

long sample record *-ver the fr-equenc7 range from 10 to ZOC- cps. By

a bri' ef preliminary freqwiency scan. it is derer_-ined& thzz proper spectral

re"utzioa uwII be obci-m~ed using -'ltes ;xandid. as fellows:

11,50s - tvWSCpS: ~

(2) 100 - so00 cps: 10 C;A

(3) 500 - Z000 cps: 5-3cps

The maximumn measurement quality in -_.ach of the three frequencyf ranges

will be as foilows:

(1) 24 degrees of freedom

(Z) 120 degrees of freed*-.-

j3) 600 degrees of freedom

Assunkic power sptctral den-r-. read-o.-a is accomflished by avergn

the output of a square law rectifler w-'ith an equivalent RtC filter and

dividingj by bandw-4dd. 'ahe time cosant. for :he equivalent RtC filter

A.-ould then be adjusted tc 3 secs an:E the scan rates um each of the thret

frequency ranges should be limited as follows:

(1) less than 0. 167 cps/:ec

(2) less than 0.. 833 cps/sec

(3) less tha 4. 17 cps/sec
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Nci~e that the6- scaz r-ater are mac (tinkher ;immettd by diec rcsose rhns rar.-

ten-stzs of thea amalyzer filter. Tme tcr'ak -Wsis daue will be at least

* JCV scos-mis or Z3 uvs

The stadsccal co=B15dence, Iimktx (for an W(% coefidesec cazffcient)

6b nmay be placed CWc the Welt posaer spectral density estimate

i~ ahOf theC three frcqV.=Cyrarfes arc as fOllOWS (cbcaired from

rztcJ09 ofERef. !J

(1) 0mCc cuzy Loc cofldn-t that tbe truMe Power spectmral dct

ofth sigmal at av f " 4 CZ between= Z0 and- 100 cps is bctunr P 07z 0
A A

and ;- 53 5(f) where s(1) Es &-e mneascre-d power= spectral density at Sat,

(2) Onme c.ay be 2%,: riCdrm that tL- tree pwer spec.ral density

of the signaal at my fr-e:sCcy between 1M amd 50Z c.A is betwee- 0.. 85 9(f)

2=d LISYf)

(3)0- On ay be So% C=onfid-_t that. theC t.r-_ parer- rweCtna denier

oft the signal at azy Irve-qracy betwen 500 and Z000 cps ttZwee
A AASQand LIS1)

4. 5 Constant Percen-tge Post-r Snecra Es--tcza - mrziczact

,be general relatioaships developed for consta- baadrt-h poer

spectral density Znalysis also appl to ccstfl-t percentge power spectra!

deasty 'zyss. Thre only Aff-frect is that ffor con-stan-t perceztage

analysi-s, the aar --Fer filter barndndd icc rents in direct proportion

to the center frequ-ency of :he Miter. Here B5 Pt whe-re P is .c'to

(some cozstamt zfractiOn less tha one) and I is center- frequar. For

costntpretage a=ua:ysis. Eqs. 7 ±.(.1) (7*.z4). and (7. 17)

become, respectiv-ely.

m = ±(P!J1T (7-2 4i

5- P-. £ ffn! (read-omt averagtcg by te- in'Wegratzoc) (7ZS±)
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s. r. 4 Pf)2  (7. 26)
8

S. R. L pf) (read-out averaging by equivalent RC filter
'T with K =-

2: T) (7. 27)

Note from Equation (7. 24) that the quality of the measurement increases

with frequency. Also, from Equat ¢ns (7. 25) and (7.27), the maximum

scan rate increases with frequency. Specifically, for Equation (7. 25),

df Pf df Pdtmax. S.R.-- =- r =-
dt T f T

Then
df _ dt

Sf fT'ot

Hence

In (f/fI)=. of f = e(/T) (7. 28)

where f. is the upper limit and f, the lower limit of the frequency range

under consideration, and t is analysis time.

If the maximum scan rate is to be maintained, the above formula-

tion shows that the frequency range under consideration must be scanned

by a logarithmic sweep. Furthermore, the total analysis time
T f2

t =1 ln --, multiplied by two for read-out averaging by an RC filter.
P f!I

These conclusions are of course subjected to the possible limitations

imposed by Eq. (7. 26).

Example: Consider the problem of estimating the power spectrum

of a stationary random signal by constant percentage analysis of a
6-second long sample record over a frequency range of 10 cps to 2000

cps. By a brief preliminary frequency scan, it is determined that proper

spectral resolution will be obtained using a 10% resolution filter

(P = 0. 1).
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The maximum measurement quality will range from 12 equivalent

degrees of freedom at 10 cps to 2400 equivalent degrees of freedom at

2000 cps, increasing linearly with frequency.

Assume power spectral density read-out is accomplished by

averaging the output of a square law rectifier with an equivalent RC

filter and dividing by bandwidth. The time constant for the equivalent

RC filter should then be adjusted to 3 seconds and the frequency range

should be scanned with a logarithmic sweep of no shorter than 636

seconds (10. 6 minutes) which is the minimum analysis time. Note that

the scan rate is not further limited by the response characteristics of

the analvze: Eller.

The statistical confidence intervals which may be placed on the

resulting power spectral density estimate are different at every frequency.

The widest confidence interval (poorest estimate) will be in the lowest

frequency analyzed (the narrowest analyzer filter). At 10 cps, we may

be 30% confident that the true power spectral density of th -- signal is
A A A

between 0. 64 S(f) and 1. 90 S(f) where S(f) is the measured power spectral

density. At 100 cps, we may be 80% confident that the true pxwcr
A

spectral density of the signal is between 0. 85 9(f) and 1. 19 S(f).

7.4. 6 Power Spectra Estimates for Nonstationary Random Data

The statistical accuracy of power spectral density estimaLes for

stationary random data has been reviewed in this section. It is important

to remember that all discussions have been limited to the analysis of a

sample signal record taken from a stationary random proces- (the

statistical properties of the process are invariant with time translations).

If the signal is non-stationary, it is obvious that no statistical property

of the signal over all time, such as the power spectral density function.

can be estimated from a sample record of finite time. It is quite

important that one has confidence that a sample record used for power

spectral density analysis was obtained from a stationary random signal

before that analysis is used to estimate the power spectrum of the

random signal, Such confidence can be obtained by testing the record

to be analyzed for self stationarity by the procedures presented in

detail in Section 6. 1. 8.
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Azszuz..c a long sample record of the random acceleration time

history at a point on the structure of a modera flight vehicle is to be

analyzed to estimate the power spectral density. Also assume a test

of the record for stationarity fails to establish confidence that the record

represente'a stateiary random signal. Such records are common for

vibration measuremenho obtained during missile flights where the vibra-

tion environment may continually change with time. The engineer is

often interested in obtaining some definition of the environmwnt represented

by the record. Procedures for analyzing non-stationary records have been

proposed from time to time, such as in Ref. [20]. Nearly all such pro-

posals involve the same general approach, which may be summarized

as follows:

(i) The long record of a non-stalionary vibration sigmal is divided

into many short sub-records.

(2) Each of the short sub-records is assumed to be representative

of a stationary random signal.

stationary signal is obtained for each of the sub-records.

(4) The results are presented as a variation of power spectral

density versus time.

The argument for the procedure is that the resulting vibration data which

is sometimes referred to as a "power spectral density time history",

may be correlated with flight events that are also changing with time.

Time lags between instantaneous flight events and the response power

spectrum are usually ignored as bcaing very small.

There is no doubt that worthwhile qualitative engineering information

may often be obtained by such an analysis procedure. However, the

statistical significance of the resulting data is at best rather questionabie.

If one could nnt confidently accept the original record as being stationary,

there is certainly no quantitative justification for arbitrarily accepting

all sub-records formed from the original record as being stationary. It

follows then that confidence statements about the statistical accuracy of

the power spectra estimates obtained from the sub-records would not
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be justified. All that can be said is that the equivalcnt number of degrees

of freedom of the resulting tneazrements must be less than P_ = ZBT, or

less than the statistical quality that would have been attained if the measure-

ment had been an estimate of the power spectrum of a stationary signal.

These matters for non-stationary data are worthy of further theoretical

investigation.

7. 4. 7 Conclusions

T summarize the preceding discussion, general procedures have

been described zor obtaining power spectral density estimates by analog

techniques. Emphasis has been placed upon the statistical accuracy of

the estimates 2s related to sample record length, filter bandwidth, and

filter scan rates. Both constant bandwidth filtering and constant percent-

age filtering techniques have been explained, and stztistical confidence

intcrvals for the resulting estimates have been reviewed assuming ideal

filter characteristics.

An analog instrument ssraA for p*-r spctral analyi:. fnust

accomplish four functions.

(1) Filter over the frequency range under consideration.

.Z) Square the output of-the filter.

(3) Average the output of the squaring device.

(4) Divide the output of the averaging device by the associated

filter bandwidth.

Several commercial companies produce complete power spectral

density analyzing systems, for sale at prices today ranging from $5, 000

to $20, 000, or more, depending upon the amount of support equipment

desired. The more elaborate system3 are equipped with both an integra-

tor type averaging circuit and an equivalent RC filter type averaging

circuit to give a choice in the technique desired for mean square level

estimation. The cycle leneth for the integrator averager and the time

constant for the RC filter averager are both variable from one second or

less to 30 secords or longer. The great flexibility of such commercial
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power spectral density analyzers permits maximum quality estimates of

power spectra froJm rc.ord cngths of less than one second to longer

than 30 seconds.

Many laboratories cannot afford the expense of a complete corunme-

ci-al power spectral dcnsity analyzer system. However, with th-e sacrifice

of convenience and flexibili-y, pre-- r spectra estimates can often be

obtained us-ng common iaboratory equipment that may be an hand for

other functions. Many commercial wave analyzers are available, and

often found in vibration laboratories, which are not actually power spectral

density analyzcrs because their read-out is accomplished using a conven-

tional average value rectifier type voltmeter circuit. These instruments

.. -cc. -- _ h " tlv . L.. function stated above. However, with the

assistance of some additional laboratory instruments, power spectral

density estimates can be obtained using such wave analyzers. The

laboratory may have available a true rms vacuum tube voltmeter, as

described in detail in on 7.3 of this report, wbch ini effectively

accomplish functions 2 and 3. A voltmeter such as the one specified in

T le 7.1 squares and averages (by an equivalent RC filter) the input

signals and has a mean square signal output jack on the panel. A number

of common laboratory chart recorders can be operated from this mean

square outp.t signal. The output of the wave analyzer could be inter-

cepted just before its own read-out circuit and monitored with the true

rms voltmeter. The mean square output of the voltmeter could be recorded

as a function of time and correlated with the center frequency of the

analyzer filter. If the analyzer scans with a constant bandwidth filter,

function No. 4 is easily accomplished by dividing the resulting spectim

plot by a constant.

Such a makeshift set up will, of course, present problems. For

one thing, the time constant of the final read-out would be a fixed value.

Without a variable RC time constant, the set up would not have sufficient

flexibility to obtain the Yrraximum quality in measurement of the available

data. However, a specific statistical quality can be associated with the

power spectral density measure-nents that are obtained.
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7.5 PROBABILITY DENSITY MEASUREMENTS OF RANDOM DATA

The arrplitude time history of any steadly state periodic signai

is defined by in explicit 'methemnaticai equation, and the exact amplitudc

of the signal may be determined at any fiture instant of time. On the

other hand, the amplitude time history -of a randozr signal cannot be

characterized by an explicit matheriaticil function and statements con-

cerning the exact amp.i;tude of a random signal of any future instant of

time are not possible. However, if the random signal is stationary in

time (See Secti-Uns 4 an~d 6 of this report). statistics can be e mployed to

establish the projability of certain amplitudes occurring at any future

instant of time. the amplitude probability densityr function of & stationary

random s;gnal (sometimes called the amplitude probability distribution

although this term is also reserved for th2 integral of the probability

density function) describes the probability of given amplitude occurrences

and is an important statistical property of rando m- signas.

Usually only two parameters of a random signal whi'ch may be

calculated from the probability density function are of interest. These
2are the mean, IL., of the random siram: and the variance, a- , the variance

being the mean square value about tI*.* mean. For analog vibration data,

the mean (defined by a DC voltage level) is normally zero, and interest

is limited to the variance. The variance for a random signal (with uicae n

of zero) is the mean square value of the sigr.;, -!A is the parameter

t~x irne aictually rstimates with a true rms voltmeter as described in

Section 7.3 The rms (root mean square) value of a. rtdvai3 sigr.2 I*

simply the positive square root of the variance, and is callti* the standard

deviation, a-.
In some applications, thz mean square value of a -andom signal

may not be a sufficient description for the engineer. Consider the case

of an engineer analyzing an analog signal of the acceleration response

at a point on the structure of a modern flight vehicle, His interest may

be in structural fatigue, in which care he would like to know the proba-

bility of accelerations occurring at, say, Z a- or 3 *, and not just the

mean square acceleration. In other -.words. he would like to know the

over-all acceleration probability density function for the response. The

estimation of such over-all probabiity density functions of random data

by analog techniques is the subject of this section.
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7. 5. 1 Analog, instrumentation

As discusted and illustrated Xin- Section 4.9. Z of this report, an
estimate of the probability density function is provided by,

The terms of Equation (7. 29) define the operations which an analog
instrument must accomplish:

(1) Measurement of the total time, Ar, that the signal ampitude

falls ithin a narro amplitude window, Ax.

(Z) Division by the window Ax.

(3) Division by the total sampling time .

Of course, the ccnter amplitude of the window, Ax. wovld have to be
variable to cover the entire range of signal amplitudes under considera-

tion. In terms of N(X),

A
P (k. x +Ax)E j(X)AX (7.30)

where P(x, x + Ax) is an estimate of the probability that a randomn record
x(t) assumes amplitude values between x and x + Ax in a sampling

time T.
The above operations for measuring p(x) can be physically

accomplished in many ways. In general, the factor ATr could be deter-

mined by using a voltage gate (narrow band voltage discriminaior) to

actuate a clock. The width of the voltage gate would correspond to some
narrow range of signal amplitudes. When the input voltage fromn a

sample record falls within the gate, the clock operates. For aUl other

input voltages, the clock does not operate. The division by the record

length T would be accomplished by a second clock which operates over

the total record length. If the wid!h of the voltage gato is constant, the

required division by Ax can be obtained by proper read-out calibration.
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Statistical estimates of the amplitude probabiliiy density function in

accordance with Eq. (7. Z9) wo-:1d result. See Figure 7. 6 below.

xlt) I Voltage Gate i A X
- Clock

Ns +Ax)

i Clock

Diision IFAX X1  Division

Figure ?.6 Probability Density Analyzer

Analog probability density analyzers have been manufactured

by several commercial companies. Experiments conducted on one

of these laboratory analyzers which is commercially available at the

present time is discussed in Section 7.5.4.

7. 5.2 Distribution Functions of Instantaneous Values and Pcak Values

By definiton, the (cumulative) probability distribution function

P(x) is defined as the prc _tbility (i. e., the fraction of time, on the

average) that x(t) assumc* pariciar amplitude values between -w

and x. In terms of the W..lability density function p(x)
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P(x) = Prob lx) - p(x) d ; dP(x) = p(s) (7.3'9)
". . .dx

These different concepts of (cumulative) probability distribtion fuection

P(x) versus probability density function p(x) are coniksed occasiomnl1y

in engineering lerature. The above relationship shows that knowledge

of either one dcELrinnes the other by appropriate integration or

differentiation.

Probability distribetion functions Af instantaneous values of a

signal x(t), and of peak values of x(t), are of considerable importance in
vibration analysis. Analog instrumentation to measure these two
probabity distributic functions directly will now be described

(1) Isstantaneous Values

To determine the probability distribution of instataneoss

values of a signal x(t). the sum of time increments i (i 2,3. " 

that xit) exceeds any preselected value of x is measured and divid"e by

that total time (record length) T. This yields

Prob -80 (7. 3Z

L7 T (.2

Then

k

P(x) = Prob [x-t) x I - Prob t) = - ixi (7.33)

See sketch below.
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3 --C

For *xampie.

1X 3~

Required equipment to perform the alive operaions are (11 an

optiona! polaist, device if it is desired that positive and negative vlues

of x(t) should be aL.-alyzed separately. (Z) a bank of discrimiators whaich

determine wkether tht signal is greater *.- !ass tha a preselected

value. (3) a clock to record the time interval tMat a pasticular level is

exceeded. (4) a separate clock to record the time interval between tese
events. At the and of the record ligtit T. the separate clac readiag

's divided by T to give the value of tkc probability distribution function

at the giver. level- If the values at adjacent levels are subtracted from

one anothter, an estimate would b-- obtained of the average probability

density function between these two ik'des.

ASD TR M-IZ3 * -45



(Z) Peak Values

To detc.. -i the probability distributom flectiep P tE) of

peak values in zit), a slightly diffre procedure may be eumpoyeL

Let x. bc the kz- *uch tha there is a 5%0 pr bability that x(t)

exceeds x.. For a sigma s!k a sm etrical p-bability density functiom

about its mean vaue p. the lwel z. =. Let x (t) represent peak values

of x(t). Then the probability tat x p(t) is greater th a preselectedP
peak value x equols the --nber of timts !at zit) exceeds x divided

P p
bi taice the tota! ::emer of times dat W.) exceed$ x.. In equato

foruf.

Pr"b lmptt) 1)X (7- 3#)

Then

PUx) =Pnoblx-t) 4c x -_______ CI e

where

N [x(t) x - mnmber of times Oat x(t) exceeds,

01
N lIlt) INI uawmber of tmes tkat xlt) *Aceeds z

L I (called the zero level count)

Required equipmet to obtain the &be-e probability E&tribudon

fInction of peak values are (1) a bask of discrimisators. (Zj a set of

associated counters to rgister ame coma each time the level of de

particular discriminater in exceeded. At *e end of the record lemg&

T. the various counter readings are recorded. an divided by the zero
level count- As ;efore, a polarity device may be employed to analye

separately the positive and Negative vatles of x(t).
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7.. 5.3 Staistical ftelazinsus and Rceracy

1he atatioica accuracy of probability density estimates carres-

pondisg zc Eq- Mt 29) as been; Studied previously in Sectionm *-,- Z.L A

final result. Crontaine 1*t ft (4. 205). gives Aor the standard error

E(noraazed standard deviation) of the estimbate

LZ f. T (xX)x) z

"bens band limited Okia* &Oise is pa.ssed thrug = ideliatd !*w pes

Alfter with a sharp cut off at frequey f. cps.

Asacber difkreat approach to defiif The standard error of pxeba-

Wiity densit estinates may be besed uo work dowe at Dolt Bernk

uA Newinaa, Inc- 'Thel follwing development originates fae-

c=rrespondeace with Mr. Herbert I- Fax of Ohat companY.

Tho. Mowusaized variance of an amplitude dMORuty etimste Athined

using an ampitude windiow of voidth Ax ever a samae record at length

T may be give by.

C(A -) (7V 3

iwre V is die number of timbes x paaues through the interval

(Wo. XG v A) per ma.... Em.~e- The denomiaor. a (&x)y? equals the

number of statistical degrees or freedom (dt effective awmber of

obsedo ns), as R 1 '- -z of mhe aumber of observaiosS

mar kvdnt fax). multiplied by the awatber of events per -nit time

=atipieAbh the sampiing time interval T.

if &x is smsall emnkg, masuy he assumed that the probability

of x entering a an" changing direction im Ax widsout Passing

throngta is very Sadi. Therefore. Ii is approximately twice the namboer

of times thaz x exceeds some x. per unit time. since n the aver~tge

there would occur Owe samte numbecr -C upward and downward crossints.
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Vhere 5(f) is Coe Power spectral density fewcet of me SiAGS bek%
analyzed. Clce agai.. a pmr srvctwww- Apr the signal most be ..

or as=* to auain a solutim to Eq ;7.34
Assme. as Lb-Avrc, V-at the suis howd 'limited Ihite noise

cut off *2$7pl at son freqoecy f.. Tarn

Sobeitinig ifto Eq. (I5j.

Tr the stawlrd error of Ube probability dossty estiate bcms

Mate that Eq. (741) it I'deftical -. eom to the corspW&
result of the first dewe~~t Eq. (-, 361L liwvewer. Ike c..mast
coefficients of the twD e,~aaiom are Atereat b7 a faelwwr 9 abcat ZBc
0.747?forEq- (7.36) as compared to0. 5"for Eq. (7.41L)I vw of9
the tWally differeat a. esused to arrive at dkese equatis the

agreement is cosidered qu~te good& Oe cooerleeis ith espeni-
nwesla! tests me w c
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The center vc.tage c. the window is now moved 0. 1 volts, a-id the proba-

bility density, P(x 2 ) =xT2 , is measured. The procedure i- 'r'pe-td

until the amplitude range of interest is covered.

If the -nplitude range of interest were say +4&- (+4 volts), 80

measurements would be required and the minimum analysis time would

be 800 seconds or 13. 33 minutes. Note that the amplitude range could

be scanned either in discrete steps as described'above or continuously.

if a continuous window scan, is used, the scan rate (S. R. ) should be

slow enough to permit each increment of amplitude to bc viewed by the

window over the length of the record. Thus,

S. a. ;kAx (7.43)

T

The maximum scan rate for this example would be 0. 1/10 = 0. 01 volts/ec.

Now consider the standard error of this estimate. Eq. (7. 36) will

be used since it in the most conservative estimate of standard error.

From Eq. (7. 36), for this example,

I 'I-
A 'a AZ(500)(10)(0. 1) p(x) NpX)X

The standard error at any voltage amplitude x I is a function of the

probability density measured at that voltage. For simplicity, assume

the probability density function measured in the example followed a

Gaussian probability density function. Suppose the measurements at

principal points and their associated standard errors wera as follows:

Center Voltage Value for
of window p(x) J

0 voltz 0.40 0.050

+ ! 0.24 0.064

+ 2 0.054 0.14

+ 3 0.0044 0.48

t 4 0.0001 3.2
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From the estimate at zero volts, for a 68 percent confidence

interval, the true pro'ability density, p(x), at zero volts is within the
A Arange of p(x) +e p(x) or between 0. 38 and 0. 42. At one volt, one can

be 68 percent confident that pfx) is between 0. Z2 and 0. 26. At two volts,

f -- a 68 percent confidence interval, p(x) is between 0. 046 and 0. 062.

At three and four volts, the standard error has become too large to
Apermit an assumption that the distribution of p(x) is norinal. Note that

the standard error at four volts indicates that p(x) would be between minus

0. 0002 and 0. 0004 with 68 percent confidence. This is of course

meaningless since p(x) cannot take on negative values. Thus, one does

not know the statistical accuracy cf these measurements at three and

four volts except it is undoubtedly much better than indicated by e.

It is of interest to reverse the problem and solve for the required

record length T to obtain an appropriate value of e for the estimate

of probability density at three and four volts. Specifically, assume one

is analyzing a signal Aith a true Gauzsian amplitude density function

and the estimate at three and four volts is desired to have a standard

error of e = 0. 3. At three volts, p(x) = 0. 0044. Then,

0. r 3/
2(500)(0. 0044)(0. 1) T

Solving for T yields,

T = 25. 2 seconds (3 a- point)

At four volts, pix) = 0. 0001. Then,

0. 3= 2 L ]1/2

0 (5[0)(0. 000 1)(0. , T

Solving for T yields,

T = 111 seconds

= 18. 5 minutes (4 (- point)
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The above example illustrate& clearly the real problems associated
with probability density estimations. The primary problem is that long
sampl. are necessary to obtain estimates of very low probability
densities with known statistical cgunfidence coefficients. This in not to
imply that probability density analysis is not practical. Often, an
estimate of the probability density of a random signal out to +3 a- is a
satisfactory definition, and can be accurately obtained from samples of
less thar. 30 seconds. It should be added that more theoretical work is
needed on the problem of error analysis for small probability deasity
measurements. It appears that non-paramietric techniques might be
applicable to this particular estimation problem.

7.6 CORRELATION MEASUREMENTS OF RANDOM DATA

In the past. vibration engineers have generally limited themselves
to power spectra analysis when dealing with random vibration. This may
account for the limited number 4 commercially available correlation

analyzers covering the frequency range froqm 5 to 2000 cps. In recent
years, however, engineers have become aware of the importance to
determine if one set of measurements is linearly dependent upon another
set of measurements and srveral companies (see Refs. [131. [141. and PPJ
have built analog correlation analyzers for their own problems. Usually

both the autocorrelation and the croe s-correlation functions are desired.
The autocorrelation function provides information about the de-

pendence of two measurements taken from the same random process.

Under certain conditions the autocor relation function (except for *
constant factor) is the Fourier transform of the power spectral density
and therefore contains the same information, except that the atocorrela-
tion function is obtained by manipulating in the time domain while the
power spectral density is ai function in the frequency domain. In
particular, the autocorrelation functi=z will help to bring out any hidden

periodicities contained in the random process. This information cannot
be obtained as easily from the power spectral density function since a
sharp peak in the power spectrum only indicates a large amount Of '1powerl
at the particular frequency, but the amplitude at that frequency may scli
be randomly distribuied.
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The cross-co2rrelation function givew information about the dependence

between two different random processes. For instance, the vibration level

occurring at a point on a structure can be separated insto components

according to (1) the sources fromn which it originated; (Z) the transit txmre

from the source to the point in queszion; and (3) the frequency, ail from a

knowledge of the cross -correlation functions intei'e&.

This section first discusses the underlying thcori d- correlation

functions, then describes the basic features of two privately manufactured

anaieg correlators, and zovicludes with a practical example indicating

the importance of correlation analysis to vibration analysis.

7. 6. 1 Correlation Coefficient

As pointed out in the prectding remarks. it oftten is desirable to

know something about the dependence of one set of measurements or.

another set of measurem.ents. Assume that one wants to know the depend-

tence of a random variable x on a random variable y. J. --ay of determin-

ing this would be to plot the outcomes of a particular expe riment as po.ints

in the (x, y) plane and observe the resultant figure. Such a scatter plot

raight look like that shown below.

,mx

Scater Diagram

If x and y are not dependent upon one anothei the sample points

would be more or less scattered throlighout the plane. On the other

hand, if x and y are strongly depeadent u.pon onc another. the sa-r~ple

points would theta be clustered around som e curve describing their
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functional dependence. The simplest type of dependence would be linear

depe-dernce in which case the curve would be a straight line. If there is

an indication of linear dependence, it would then be of interest to deter-

mine which straight line

yp = a+ bx (7.441

gives the "beat" predicted value yp of the random variable y based

upon a particular value of the random variable x. A generally

accepted definition of -besth prediction is in terms of minimizing the

mean square deviation a, between the true sample value of y and its

Predicted v-lze:

(r = E [(Y- YAJ 17.4S)

where E indicates the Expected Value. This is known &l4o as a "least

squares" fit.

It can be shown (see Ref. 7). that by using this criteria for goodness,

Eq, (?. 44) becomes

yp= y+ (xJ~x)(7.46)

where ;L = Efy- is the mean of y, ILx = E(x) ie the mean of x,

E [(x - x)9i. the variance of x, a pxy is the covariance of

x and y defined by

-I T N - ILX)(y - Iy (7.47)

The corre-laticn coefficient r is defined byxy

r = [ (7.48)
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These terms were introduzced previously in Section 4. 3. 2 of this report.

In terms of r, one may prove from Eq. (7. 4~5) that the minimum

mean s;uare deviation a- becomes

c =a-y2 (l-7) (7.49)

yy

case occurs, the "best" predicted value for y pis yp = 1IL y, the meani value

of the -;Is- On the other hand, if y =x, hap ; :-a-a- and rl.Wn
xy xvy

this case occurs. the minimum -. ean- square deviation a- = C. Since it

can be shown that r is always between -11 and +.1, the minimum mean

square deviation a- zwill vary between 0 and cr . The correlation
y

coefficient thus determines the dependence of y to x and indicates how

much improvement is possible using Eq. (7,46) as opposed to merely

choosing v = S Y

7. 6.2Z Correlation Functions

Let xIand x 2be thse randomn variables representing possible values

of sampie functions (XMJ~ (k = 1. 2, 3. from a random proccs-

at times t I and t. See sketch bclovw.

It

z x(t)

Random Process
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Since the joint probabiity distribution of x I and x. may cha ge as t

and t. change, the statistical average E Lxixz] over kx(t)1 could be

a function of both instawts of time. This statistical average is called

the "autocorrmlation function" sf the random process and, as in Section

4.4. 1, denoted by

Rx (t 1 . tz) E [x XZI (7.50

Now the corresponding correlation coefficient is also a function of t

and t.., It is called the "normalized autocorrelation function and

denoted by rx(t, t., namely,

E [(x, - it.)(x - ILZ)]r,(t . tz) =Z (. 5)

where iz= E(x 1 ) and IL E(x,). Eq. (7. 51) should nt be confused

with C- . (7.48) where x and y are not iunctions of time.

If the random process is stationary, the awtocorrelation is a

"unction only of the tim-s difference - = t1 - &a d one can write

t ) = R(r) = [x. - (7.5Z)

Since now ix = ! = ;Lz -r = - =" the normalized

autocorrelation function becomes

RX(r) - "X (7.53)

x

Consider next two random processes x(t) and ( ky(t), each

of whxch has an autocorrelation function R(t,. t.) and .-(t, t2 )

respectively. For these two processes, two cross-correlation functions

are defined by,

RXY(t 1 , t 2 ) = E [xIyZ] (7.54)
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R t = E(yExl. (7. 55)

where the expected values are obtained by statistical averaies over the

random prccesses. All statistical correlations between kkx(t)i and
(k I L

Y(tWJ can then be specified by a correlation matrix

R 'x: (..I t ) RX . t')

Ry(t 1. ,t) Ry(t1, tZ) (7.56)

L J

The time autocorrelation function R(lr) associated with a particular

reccrd x p(t may be defined by a tim= average

f T

Rp (r) = T-- -1 x (t) x (t + -r) dt (7. 57)

p T-wZ T~
-T

if the random process is ergodic (see Section 1 4. 3), independent of

the choice of x (t).

R x (r) = Rx(T) (7. 58)
P

where Rx(T) iS the Previous statistical average shown in Eq. (7. 5Z).

Similarly, the time cross-correlation function for a particular

paid of records x (t) and yp(t) may be defined as
p

"T

Rxyp(r)  T--=J zp(t)yP(t + -t) dt (7.59)

-T

If the processes are jointly ergodic, independent of choice of x p(t) and
Fp~t}p

R (T) = R v(r) (7.60)
.pyp 6 3
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All of the above relationships require manipulation in the time

domain. Sometimes it is easier to perform calculations in the frquaency

domain, and for a stationary random process one can obtain in this

manner the power spectral density function 5x(f). Simple relationships

exist between !his power spectral density function and the time auto-

correlation function, one form of which i.s, (see Eqs. (4. 66) and (4. 87),

S(f)= zJ R(ir --os Z2fr dr (7. 61)

~o

Rx(T) = Zj S x(. cos Z-fi df (7. 6Z)

Some general properties of stationary crrMI-i.n fe.xtion* are

reviewed below withoest proof. A more detailed discussion an tha subject

can be found in Section 4.4. 1.

(a) The autocorrelation function of a stationary random process

is an even function of its argument, hencc

RX(T) = Rt (-r)

This property does not apply to cross-correlation functions.

C-b) For a stationary random process the autocorrelation function

has its maximum value at r = 0. Therefore, for all -,

IRx(.r)Is _R,(O) (7.63)

An upper bound relationship for a stationary crose-correlation function

is

V .'.)C*~fr(O) VPY(O) (7. 63a)
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c) R(O) = E lX1

In words, the autocorrelation function eval=ted at ze.o is equal to theCL.
rr.ean square valuc of the stationary random prcess r "'xt)). For

zero means this is e.ual to the variance of [k_(tj -

Id) Note that for ergodic raw-om processes K(-r) can be replaced

by RX(.), where £ is an arbitr-ary aic"-. reco.d of the random process.
p P

..e) Hidenm ici in t.he samAe function of a stationary

random process can be uncovered from a knowledge of the ato-_-rreltion

f-£nction. For physically generated random processes R 1(T) will

approach zero as r 1 becomes large, since widely separated values

will not be correlated. If hidden perididies ;re present K (T) Ti

not become zero for large I ir since R,1CT) wi-li now also !-- periodic-

(f) in general, "uncorrelated" (i.e.. R 1 (r O ) = 0 for sow-.e rO)

does not imply statistical independence of two values at ta and t> = to + Tn

from a stationary random process. It will, however, if the random

process has a joint Gaussian probability density function at the two

times. It is important to remember this fact since many statistical

tests that .. ight be applied to a set of various parameters isuch as rrns

acceleration) of a random process require statistical independence of

these parameters. Proving that the autocorrelation function is zero

is therefore not sufficient, in general, unless the process also has a

Gaussian distribitio..

7. 6. 3 Methods for Correlation Measurements

Vibration data in flight vehicles is obtained usually by recording

displacement, velocity or acceleration as a function of tim,-e. Eqs (7. 57)

and (7. 59) therefore indicate the operations to be performed on such

records to obtain autocorreiation and cross-co-reation functions

respectively. A block diagram for determining a cres-correlation

function is shown below. By letting y(t) = x(t), an autocorrelation

function can be obtained.
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x(t) IMlii Ae~e

y(t)-. DelayI y-tr

In practice, records of infinite !e gth are Not available. in

additiom. if a very long record has been obtained (for example, 1000

seconds), it would be desirable if oely a short portion (say I0 secods)

would have to be used to obtain information abc ,t the whole record.

Generally, different 1- se--cad p.rtioms of i1a 1000 second rece' wou=

be expected to give different results Aor the autocorrelati fmtion.

If the record is stationary, R(r) would still not be tke same for diferent

O second samples, but now the results would be expected to be within

a certain range, so that R(r) for one single 10 second saumple would

provide &a estimate of R(T) for the whole record. Owe woud also e-x-

pect the estimate to be better as the sample length covers a greater

Portion of the total record. To indicate this depeadecce on sample

length, measured values of correlation functions will be indicated by

R(. T). In additioe, since R(T, T) is an --'n function for a self-

stationary record, see Section 6, only positive valnge of i have to be

measured and Eqs.- ?. 57) and (7. 59) become

It(T. T) = I f x(t) xt + -) dt
T I
-Jo

.T

R -r.,T) = If x(t) y(t + i) dt (7. 65)

It should be noted that noustation~ry random processes are not

considered, sicce knowledge of the correlation fAnction for a sample

will provide no izxformation about the correlatiom function of the entire

reccrd.
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Two c-r-i* rs will be discussed in this section. The principal

differences between them are the frequency response and the r,'rod

for obtaining the time shift. Other co-nmercial correlators are availabiE.

Type A C 7relation Computer

T'ris comp~e.- was bilt by the University of Texas and E ,54-s-

-- ssed in detail by C. E. McCullough lRef. [z 4. A oiock diagram for

this correlation compcter is shown in Fig. 7- 7.

The time functions are rt--z;7cd oa magnetic tape uasing a freer_-ncy

mnodulation syzur =.x-- the !=- frerzancy respose to zero. To

obtain- the time shift (r). a conti= oo loop of -wo-ch. aei magnetic

tape is passed through two separate recorders. Gee of the recorders

drives the loop at 30 inches per secmd. Between the two heads, the

tape pasCs ~cz. p 1ey wthich is driven uap or4Ci -!-

lead screw. As the ead screw r-ores the put1ey in one di-ec-ra, the

lengCh of tape between heads decreases causing yjt) te !t x(tj and

as it moves in the other dir&.Iion y(jt will lead x(t)

Since this shift rnechanipm runs continuously, s*mn eraor is

introduced because the -multiplication and avtragihag over :he sam-Ple

length T is not made for various fixed values oi T. This error can

be reduced by slowing down the shift mechanism. but then the computing

tinne would be increasee The range of . used for this =om- er ;.s

variable from 0 to I second.

A frequency response czrve for the comnuter is shoica in Fi. 7. #.

This irndicates that for random vibration analysis the frequency range

of this device woe-d have to be extended considerably since most of the

vibration data of interest today ranges from 5 cps to ZOC cps, with

some data as high as 3000 cps.

Type B Correlation Comruter

This computer was built by One Acoustics Laboratory. Massachusetts

Institute of Technology, and is described in detai! by Kenneth W. Goff

(Ref. 1 141).
The frequency range for this correlator is from. 100 cps 10. 0 cps.

It employs a magnetic drum instead of tape recorders aad . ca be -aried
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either in steps (one step for each revolution of the drum) or continuously.

The range for T is from -15 milliseconds to + 100 milliseconds. A

block diagram for the computer is shown in Fig. 7. 9. It should be noted

that the sample length T is now fixed and equal to the circumference

of the drum. For a 100 in/sec surface speed this would allow a sample

length of 0. 25 second sin-e the circumference of the drum is 25 inches.

A qualitative comparison of Types A and B is given below.

Type A Type B

Frequency Range: 0 - 300 cps 100 - 10, 000 cps

Range of time-delay T: 0 - I second -15 to + 100 milli-
seconds

Error in T: ? Less than 5%

Change in T: Continuously Ste-ped or Continuous

Signal Source: Tape Recorders Magnetic Drum

Type of Integrator: Operational RC-Type
Amplifier

7.6.4 Errors in Correlation Measurements

The errors associated with correlation measurement can be

divided into two types:

1. Computer errors due to

(a) method employed to obtain T

(b) type of integrators

(c) inherent phase-shift

(d) drum or tape-speeds

(e) accuracy of other electronic parts and recorder

2. Statistical errors in estimating the correlation function from

a short sample.
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The effect of these errors in the time delay T and the correlation

function R(. T) will now be discussed in a quantitative manner wherever

possible. Detailed proofs will not be given =d thc reader ts r,-ferred

to discussions by Bendat (Ref. [3]), Biackman- and Tukey (Ref. [4]),

Goff (Ref. [ 14]), and McCullough (Ref. [23]).

The error in the time delay T is generally due to three causes:

1. Fluctuations in the tape or drum speed

2. Inherent phase shift in the system

3. U.ing a continuously changing time-shift mechanism

The exact magnitude of the total error in -r cannot be determined

analytically. The calculations have to be supplemented by experimental

data obtained from various components of the computer. The approach

to this problem is discussed by McCullough (Ref. [ 23]) and Goff

(Ref. [14]), each obtaining an answer for their particular computer.

McCullough does not give any value for the error in r bt states that

it can be determined by analyzing a known function (such as band-limited

white noise) and comparing the experim.ental autocorr-es*;,n- &-ation

with the theoretical values. This was also done by Goff who obtained

an over-all error of less than 5 percent (Ref. [ 14], page 236).

The error in the correlation function R(T, T) depends on:

1. Type of integrators

2. Drum or tape speed

3. Associated instrumentation and recorder accuracy

McCullough (Ref. [23]) uses an operational amplifier in the integrator

with an associated error of less than one percent. Goff (Ref. [ 141),

however, uses an RC integrator. A comparison of integration times

for these two types are covered in detail in Section 6.1.7 of this report.

The drum or tape speed is governed by the desired frequency

resolution, which in turn is a function of the incremental shift in time

delay (At) between adjacent points on the correlation curve. As AT

is decreased, the highest frequency that can be detected increases.

The highest frequency which may be detected is one-half the sampling

frequency (Ref. [ 23] ). For the computation of correlation functions,
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the effectivc sanpling frequency is I 11 A-r) cycles per sece.,.. Therefore,

any frequencies above (l/2Ar) cps ca-nnot be detected sirice at least two

cycles should be available for good resolution. If the original time

function contains any significant components above (t/2AT) cps they

should be removed by filtering or they will appear as low frequency

components. This is generally referred to as "Aliabing" i the data

(Ref. [31). pages 51-52).

What ;z usually desired is an estimate for R(r), the stationary

correlation function for a relatively iong record. This estimate is

R(t, T), and now the question arises as to how well this estimate

represents R(r).

The general expression for the mean-square error (variance) in

measuring the cross-correlation function is developed in Eq. ,4. 128)

and is given by

cr{ T, T) *"I~f[Rx(y)Ry) + R xy(y + -r) R YX(y - .]dy (7. 66)

The autocorrelation function estimate is obtained by replacing

y(t) by x(t).

For the particu.ar case of white noise passed through a rounded

low-pass filter, the normalized variance in the estimate of the aut--

correlation function reduces to

e2(T, T)O .2(T.T) z k (7.67)

R z(-.; nB1

where k is a constant of proportionality, T is the sample length, and

B is the bandwidth of the filter (see Ref. [ 31, pages 271-272).

Eq. (7. 67) indicates that the mean square error is inversely proportional

to the BT product, and that the uncertainty in the measurement can be

reduced by increasing the corrclator bandwidth, the !ength of the

sample, or both.
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For cross-correlation measurements, the mean square error

bccomes (Ref. [3], pages 274-275), letting . = wBT,

2 2 r 0 - - -f l]
a- (T, T) = S2 c, (T, T) + (SN + SN Z + 14N- ( - ,

(7.68)

where and N represent the(rms) (power noise) values in x(t) and y(t)

rcapecti'c!yand .S -cp:esent- the(r- va!ue of the signal. For a

normalized signal (i. c., S = 1), and no noise in cither record, Eq. (7. 68)

reduces to Eq. (7, 67).
If the correlation point moves continuously during the measure-

ment, an additional statistical error is introduced. If AT is the smallest

increment in r to be distinguished and r varies from -'0 to r0 + AT

during t e correiation time T, -r becomes a function of - me and :.s

given by (Ref. [ 3], pages 278-28Z)

1(t) = rO + Xt (7.69)

where

X = AT (7.70)
T

For large BT, (say BT > 103), it has been shown by Bendat (Ref. [3])

that the additional normalized varianc along te autocorrelation curve

for the autocorrelation function of white noise passed through a low-pass

filter is approximated by

e2y(X, T1 < X2 BT (7. 71)

It should be noted that this term is directly proportional to BT, whereas

the fundamental variance, Eq. (7. 67), is inversely proportional to BT.
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7. 6. 5 Physical Example of Vibration Source Localization

Assume that the vibration environment at a point on a structure is

to be measured, and that the vibration level is due to three sources

located at various c.istances from the point in question. See sketch below.

yft) Tape Recorder

I- -Vib ration pick-up

X2 (t) I

"i x3lSorc No.3I

Source

Block Diagram Set-up for Localizing Vibration Sources

It is desired to know what portion of the composite record y(t)

is due to each of the three sources x 1 (t), cz(t), and x,(t). For this

problem, suppose also that the contribution of Source No. I is trans-

mitted to the point in question along two different structural paths.

This problem can be solved quite simply by recording xi(t),

x2(t), and x 3 (t) at their respective sources and then finding the cross-

correlation functions Rxv (,), R (r), and RX (T).
I , x~y x3 y

Hypothetical results are pictured in Displays A, B, and C.

This analysis not only provides information about the sources, but also

determines the time it takes for the vibrations to travel from the source

to the point of interest.
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01 T

Display A. Cross-Correlation vs. Time Delay from Source No. 2

T 31

Display B. Cross-Correlation vs. Time Delay from Source No. 2

T31

Display C. Cross-Corrclation vs. Time Delay from Source No. 3

Display A shows that source No. I travels along two different

paths and gives the time it takes to travel along each of the paths before

arriving at the point in question. The relative severity of their contri-

butions to the output is shown by the height of the correlation peaks.

Dispjay B indicates no correlation between source No. 2 and the

accelerometer. A conclusion would be made herc that the vibratory

energy from source No. 2 was dissipated somewhere along the way.

Display C shows one point of correlation between source No. 3 and the

point of interest. The time delay r 3 1 is different from both TI

and T 2 indicating a different length of path tiavelled. The height oi

the correlation peak indicates a contribution something between the two

paths of the first source. This concludes the cxample.

ASD TR 6t-123 7-70



7.7 REFERENCES

I. Aeronutronics Division, Newport Beach, California, Publication
No. U-743, Vol. 1, II, and Ill, "Telemetry System Study".

2. A.mpex Corpo - a n, Redwood City. Cahiornia, Preduct Catalog
"Instrumentation and Digital Magnetic Tape Recorders".

3. Bendat, J. S., P-inciples and Applications of Random Noise
Theory, John Wiley and Sons, Inc., New York, 1959.

4. Blackman, R. B. and J. W. Tukey. The Measurement of Power
Spectra. Dcver Publications, Inc.. New York, 1958.

5. Bowker. A. H. and G. J. Lieberman, En ..-neern - :t tcs.

Prentice-Hall, Inc.., Englewood Ciiffs, N. J.1

6. Chang, S. S. L., "On the Filter Problem of the Power Spectrum
Analyzer", Proceedings of the I. R. E., August 1954.

7. Crandall, Stephen H., et al, Random Vibration, The Technology
Press of M. I. T., Chapter 7. Cambridge, Mass., 1958.

8. Davenport, W. B., Jr. and W. L. Root: Rand.,r Signals and
Noise. McGraw-Hill Book Company, Inc.. New York, IV58.

9. Dixon, W. J. and F. J. Masscy, nl -oduction to Statistical
Analysis. MGraw-HiU Book Company, Inc., New York, 1957.

10. Endevco Corporation, Pasadena, California, "Endevco Series
ZZOO Accelerometers".

11. Flow Corporation, Arlington, Massachusetts. Bulletin 59, "AC
Voltmettrs and Random Signal Measurements", Technical
Memorandum. January 1960.

12. Fowler, T. C. R. S., "A Six-Channel High-Frequency Telemetry
System", IRE Transactions on Space Electronics and Telemetry,
Volume Set-6, Number 2, June 1960.

13. Goff, K. W., "An Analog Electronic Correlator for Acoustic
Measurements", Jour. of Acous. Society of America, 27 March
1955, pp. 223-236.

14. Goff, K. W., "The Application of Correlation Techniques to Some
Acoustic Measurements", Jour. Acous. Society of America,
Z7 March 1955, pp. Z36-Z4b.

15. Guillemin, E. A., Communication Networks, Vol. 11. John Wiley
and Sons, Inc., New York, 1935.

16. Gulton Industries, Inc., Metuchen. New Jersey. "Glcnnite
Self-Calibrating Accelerometer", Bulletin A28.

ASD TR 61-123 7-71



17. Gulton Industries, Inc., Metuchen, New Jersey. "Specifications,
Glennite Model FT-521U Amplifier".

18. Hernandez, J. S. "Introduction to Transducers for Instrumentatiom",
Statham In.s--r.-_.ents, Inc. , Santa Monica, Ca-ifforni.

19. Kaufman, M. "Methods for Analyzing Smock and Vibratio&', Gruen
Applied Science Laboratories Reports Nos. IOOZ-Q-1, -2, -3. -4
and 1OOZA, West Hempstead, New York, 1957.

20. KelIy. R. D., "A Method for the Analysis of Short Duratioa Non-
StatiorAry Random Vibration". (An unpublished paper). Hushes
Aircraft Co., Los Angeles, California.

21. ain, Elas, et a!. Fundamentals of Guided Missile Packaging.
Chap. 5. Naval Research Lahoratory, Wa/Uigto., D. C., July 1955.

2. Knowltou, A. E., et al. Standard Handbook for Electrical
EPgiaeers. Section 3. McCravw-Ht Boot Co., ., New lork 1957.

23. McCullough, C. E. . "An Analog Correlation Coamy.ter". ASTIA
Report No. AD24Z809. 1 August 1960.

24. Moody. R. C., "Spectral Wave [analysis", Test EneLering.
November !960. Ye. 11, pp. IZ-14. 22, Z4.

25. Orlacchio, A. W-. "Characteristics and Applications of New
Miniature Piezoelectric, Variable Reluctaace and DifeMial
Transformer Type Transducers". Perlmn-t-Colman Jastrumetation
Symposium. Statler Hotel. Los Angeles, CaUL, December 7-5, 1955.

26. P-ns, Tbhom: A. and C. W. Kissinger, :A Barium-Tiiafate
Accelerometer with Wide Frequency and Acceleration Ranges",
National Bureau of Standards Report Z390A, Washington, D. C.

27. Rorex, James E., "Evolution of the Saturn Booster Telemetry
System". IRE Transactions on Military Electronics. Vol. MIl-4,
April-July i960, No. 2-3 U. S. Ar- y Space issue.

28. Soffel. A. R.. "How to Make Power Density Aaalyses of Measurement
Signals'*. LSA Journal, September 1959, Vol. 6, No. 9, pp. 1J-4.

29. United ELectrodynamics, Inc., Pasadena, California. "New
Products from United Electrodyna.nics, Inc."

30. Wahrman. C. G., ':A True RMS Instrument", Bruel and Kjatr
Technical Review. No. 3, July 1958.

3t. Williams, W. E., Jr.. "Space Telemetry Systems", Proceedings
of the IRE, Space Electronics Issue. Apr.il 1960.

AZD TR b-62" 7-72



8. IXPERIMENTAL PROGRAM TO VERIFY
AN1IALYTICAL PROCEDURES

An experimental program wili be Droposed to verify the import---:

statistical procedures developed and discussed in this report. The pro-

posed experimental oro~gram is divided into twco parts:

Part I - Laboratory Test Program

Part 2 - Flight Test Program

Controlled and well defined conditions available in the Laboratory

maim laboratory experiments best stated for investigation of basic sta-

sit ca! techniquzezr As ern.-l. pas-.s will! 4e piaced on detailing

comprehensive laboratory experimc.ns. age F_-se h test pro-

gram must be approached in a more general manner since the explicit

derails of a flight test experim nrt, w:11 be heavily depcndent upon the

... ul:s of the proposed Wa~ratcry- experiments.

The material to follow begins by discussing i_- s*o-nc detail !=bora-

tory test procedures for veriyyng tests of fundamental assumptions and

statistica! accuracy of desired measurcn-ens. This is folllwed by a

broad treatment on statistical con~siderations for repeated experiments

(fizights) and random sar.-p lzrg zechniqrues. The final portion of this sec-

tion contains material relevant to conductirng a flight test program.

8.1I LABORATORY TEST PROGRAM

14ie propesed l'aboratory test program will include three Phases

as follows-

.ase I - Ver:ftcation oi fundarnent.4: assumptions.

Phase 2 - Ver-.ficatior. of stat:sticai accuracy o! measurem'ents.

Phase 3 - Verifirat~or. of statistical procedures for repeated
exper.-mer:s and random plng

8. 1. 1 Basic Laboratory 1.scrumentz

Th.-e laboratory experi.me:nts to be described will involve repeated

use of several bas:c common iabor>torv trs:vaen. Three instruments

that will be con~tinually required are as folIo-xs.
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al random noise generator

1 low pazs filter

c) read-out recorder

The random r"oise generator = ' idAca.ly p~izdu- a stationary

ra.ndom signal with a GzL--'in r.babiity density function and a uni-

form pwer s.c.-al density funct on iband-limited white noise). A
number of random noise ge=erators Lre comnerciailly available wiich

provide a signal that acceptably approximates the above desired

ciaracteri--. cs-

The lew pass filter should idexily have an ---finitely sharp high-

frequency cut off with a variable cut off frequency available. If the

low pass filter employed does not have a relatively share cuM off say

at least 60 db per octave, it will be necessa-y to determine the

frenuency response f-nc.ion for the filter ard lcula-.te the equivalent

noise bandwidth BN " described in Section 4. 9. 2. A sharply cut

off signal bandwidth or an accurately defined equi-ie noise band-

width is essential tor successful. laboratory experiments.

The read-out recorder may be any conventional laboratory direct

volzage recorder. Direct writing stylus type recorders can be

employed, but the galvanometer type oscillograph would be more
desirab!e because of the higher freqccuency response available. An

upper frequency response limit of 60 cps, characteristic of direct

writing stylus type reco.ders, tili n L permit as r-m-ch flexibility it

the experiments as the higher fregruency res nre of the galvanometer

oscillograph.

8.2 VER!FICAT=ON OF FUNDAMENTAL ASSUMPTIONS

As noted in Section 6.1, the analysis of a single vibration signal

rec=rd and the interpretation cf the analysis is greatly facilitated if

the record is random and self-stationary, and displays a Gaussian

distribution of instantaneous amplitudes. Straightforwa-d tests are
proposed to confihm the hypotheses of randomness, self-ctationarity,

and Gaussian am.plitude distribution. Thi6 section details laboratory

experiments te substantiate the validity of the tests outlined in

Section 6.1.
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Z- t; Test for Pacrsx

A run~s furt . ad~nes a -ribraiOrl sztgnai* record sz detailed

mSrrtrenrm 6- 1. 5- An -z-rtrerification -it th.-G :Will iwoi~re

two- approaches. T:e firs:. :s to sdatietat ther test will accerpt a

s-;riai rccord th-at is razoontm. Tin- s'xoviad is Wo substanuate -.tat the test

Will reject & sira record that is za; rancoz-.

a) Verificarioc that che rtn est vrill accept a sinlrecord that
is rancocn.

T he forllowing test set Up will b-e re3rd.Se Figre- S

os e : p Psz1f Reccrder

F;gure 5. Lro~icetfor adrnslut

ne- ramndocn nowse gezr.rr as ts fier. an-d read-out: recorcr

shou-ld he as d'9scrzboec . Setie= 8. L. 1.

After the ra.Ando oi generator has warm.ed up beog enzg t

assure a statio:nary outpZT. s:gn-al. adj~ks:z the sa pass filter cut off to

some freq-:rxy f to0 give- Z. sign-Al bandWid.h of B. Remenmber th=at 11
must be l-ess -han *-he upper frequ:ency response Li:i -21 te read!-nu

recorder-

Prcceed hrby a~i~ a recourd of -he bnlm;eraeonsignalz
&Zt - a: letas; - eoms Tb= -

e;dt ofhe s.Cala -- say 1aGO :ps. the. record !rghshoulId be a: letst

!z1 5 seconds. N~ow divide the .Lo record ::o N nutrOf subrecorts
IN > 25). each w nt z =100 sta::s..zcal ereso fred in ' -.Te

if B were 100 cps. th-e l ength T of each subrecord woul:d ber 0. 5 secon-ds.

Cour: the ermxbuer : .rner r .= tSinal lere": tresses the-. Zero !beel
for each of t N subrecords.

FromEquaon 6. 1) ande1 6-12. Ite eXperied r~zbrOf ZeroV crossar-4

!A_ -- 6.!Z)
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with at variance given by.

Equations: (a.1 I nd (8. 21 are Writtena in~ a form ubich astes that the

times spent by the signal above An" below the zero Ie el are about equaL

This assmpion is qzite valid if the zero level is correctly established.

and the value of a is large.

For a t 100 stea-Sticzl degrees of freedom. F,= Se and a = 24.. 75.

Them if the nmber .4r zero crossiats r is mneared for the N differeat

samipe records. each with a = 100 Ustatical degrees Ofi reedom, it

b~d e expect"d ila the meamred va!&-*s -:f r wudbe -

dsxribwted about a mean 50p =S with a Agmiuard, deviation, ofw rn

It now remains to Compare the empermally zite-nnmed valus

- - n - rec--rd. :0 Ia normal distrib=-:2= with a meAS of S0

WAn a standard deviation of 5. Specifically. the following riimp
skocid be cLsely apoimtd.

15% of :he values of r should exceed 4Z

73S of the values at r sho--ld exceed 47

50% of the values --- r shoud exceed 5O

Z7% of the values of r shosuld exceed 53
5% of the values of r shosid exceed SI

The above genera! procedure should be repeated using a random sp~
which does not bare a uniform power spectral deasity fonction- A nes-

uniform power spectrum can be obtained by complex ffileriag of the

random moist generator *uW- Extessive experiments of this "_p

will be necessary to establish any limitation that may be inmpoed a
the :est for randomness by the pmr~ spectrum characteristics aC a
sofpl record.

b) Verification that tht ri' asst w."! reject a signal record that
is not ranDm.

The following test set up will be rvqptred- See Figure &. Z.
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I

Sine

Generaor

L-.gum 21- Z E s aw .;= P.-Radoes Tes

are mad to su perimpose at si si on ranm saui~ from awe

,id,;-K thde rms r*Rfe :evl --f -- e sinusoid to be abgmt eqa to

!ern-.s v.oltag e z --it th Iband-limited rando we-ze. Set the frequency

ot the siaws.d z be j-.st below tbe hfgh fraqe- ca of of t J&r pass

fI iler3tcrer

Prfec*d by obtti s record ee te bted-r.;Mited mixed -

rarjavan aif ul wth.J a le]ob req4ire4 to give' IM s4ttsia de greelso

f.eedm. Then- iu the fre e br dtfthe signal is say 100 cps.

E-e record t stde ae a 0-5 s e ekdt!i. Pat (e ez--rI er ers evel

ares.es r asu apply e rca estt m a eeS -mi om" sotlfreetac.

For exmpla asswo 3 ;CO cs andT z 0. r-s4eonds. Then

MC and at.b -tle of r for a ra-&- sig.!nal wal LIU betrce* 40
and 60 at the ?r% c.nfidencer-J- it r as less ! 40 or grater

M0. the- runsd wrr tete kl ftoe snuoid- to e is%- cnie~ncet

I rs rlne-e ee s ete- h it raacord shol be r tee q by the

test as nso rEC. e st b S oe taeone h-ig pr-odauce arly 10s

rrossia-gs.

Pr.oe byst oblmAg ae reord f eaiousIratios oe mixe to

randcgn .. d withl a lnt vreu iresdoge10attal drq-nis I sTeg kela

S.. TL R -2 W -



that certain combinations of rms levels and sinusoidal frequency will

produce records that will be accepted by the run test as being random.

These combinations represent error risks associated with the test.

8. Z. Z Test for Stationarity

A test for self-stationarity of a random vibration signal record is

detailed in Section 6. 1. 8. An experimenzal verification of this test will

involve two approaches similar to the previous test for randomness.

The first is to substantiate that the test will accept a random signal

record that is sell-stationary. The second is to substantiate that the

test will reject a random signal record that is not self-stationary.

a) Verification that the test will accept a random signal record
that is self-stationary.

The following test set up will be required. See Figure 8.3.

!I

MEAN SQUARE VALUE
ESTIMATION

Random Low S ; RC Filter Rea-Out
Noise Pass Squa A craging RecderGenerator Filter , -- ."Circuit Recorder

F I ircuit

L _I

Figure 8. 3 Equipment for Stationary Test

The random noise generator, low pass filter, and read-out recorder

should be as described in Section 8. 1. 1. The squaring circuit and RC

filter averaging circuit are components of many true rr-s vacuum tube

voltmeters and power spectral density analyzers as described in Sections

7. 3 and 7. 4.

After the random noise geznerator has warmed up long enough to

assure a stationary output signal, adjust the low pass filter cut off to
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some frequency f 0 to give a signal bandwidh of.B. The actual bandwidth

B to be emploved in the experiment will be a function of the RC filter

time constant K. The nubcr of statistical degrees of freedom n for

the resulting mean square estimations should be rather irizall, say about

40, to obtain a good spread in the estimates. Then, from Eq. (6. 30),

the product of BK should equa) about 10.

Proceed by obtaining a record of the continuous mean square

estimation with a record length of at least 500K seconds. Then for

n = 40 degrees of freedom, if B = 100 cps, K = 0. 10 seconds, and the

total record length would be at least 50 seconds. The resulting record

,, y be considered to be a gr._ up of N numbers of subrecords, each of

length T = ZK constituting a mean qt.lare estin-ate. Then N will he

greater than 250.

Repeat the above experiment at least 25 times under the same

conditions to obtain, N' number of records (NI > 25) of identical length

it.'. quality. Finally, obtain one additional mean square

estimate of very high quality for the same input inoise level and band-

width by increasing the tin-e constant of the RC filter to the highest

value available. A time constant K of at least 300/B to gi-c at least

1200 statistical degrees of freedomn would be desirable. The resulting

estimate may be assumed to be the true mean square value 2 of the

random signal. If the mean square estimating device does not have a

variable time constant, an average of the continuous mean square
2

estimates of all experiment records may be used for o"

A chi-square confidence interval of ( 1 - a) for n degrees of

freedom may now be established for each of the N' experiment records.

Measure the actual percent of the time C that the continuous mean square

estimates faU1 outside the (I - o) confidence interval fo," each of the N'

records. From Section 6. 1. 8, if the equivalent number of mean square

estimates N for each record is large, say greater than 250, and if at

is small, say less than 0. 10, then the measured values of multiplied by

N will be distributed in an approximately normal manner with a mean

value and standard deviation as follows:

= Na (8.3)

Nd\j \i (8. 4)
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It now remains to compare the N' experimentally determined values for

N to a normal distribution with a mean of N- and a standard deviation

of 4M.

-- - -. A- ssume 5 records of continuous

mean square estimates are obtained for a random signal with a bandwidth

of 100 cps using an RC filter time constant of 0. 1 seconds. Then the

number of statistical degrees of freedom n = 40. Assume each record

is :( seconds long. Then the effective number of estimates per record

is N = 250. Consider a chi-square confidence interval of (I - a) = 0. 95.

From Table 4. 2, the upper and lower confidence limits will be 1. 50 0 -

2

and 0. 61 cr respectively. M-asure the percentage of time 0 that the

mean square estimate is outside the above limits and multiply by N = Z50

for each of the 25 records. The 25 values for N (N 1. IO , etc.) should

be normaly distribu:ed with a zmear of I"Z - 1 . 5 an'! a standard deviation

of Na = 3. 54. Specifically, the following relationship, shnild be closely

approximated.

24 of the values of Ne should exceed 6.3

20 of the values of Na should exceed 9.5

15 of the values of Na should exceed 1. 6

10 of the values of Na should exceed 13. 4

5 of the values of Na should exceed 15.5

The above general procedure should be repeated using a random signal

which does not have a uniform power spectral density function. A non-

uniform power spectrum can be obtained by complex filtering of the

random noise generator output. Extensive experiments of this type will

be necessary to establish any limitations that may b -! imposed on the

test for seif-stationarity by the power spectrum characterisofics of a

sample record.

b) Verification that the test w.ill reject a random signal record that
is seif-nonstationary

The required test set un is identical to ,hat shown in Figure

8. 3. Use the same signal bandwidth and RC filter time constant as

Part (a). A self-nonstationary random signal will be obtained by

arbitrarily varying the output level of the random noise generator.
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Proceed by obtaining a record of the continuous mean square

estimation with a record length of at least 500K seconds, while arbitrarily

varying the output level of the random noise generator. Apply the test for

scif-statio.arity as described in Section 6. 1. 8 to the resulting record.

"h Les" shoulc reject the record as being self-nonstationary.

The power of the test for -eif-stationarity can be experimentally

investigated by repeating the above procedure for variations of the random

noise generator output within several different specified limits. For

example. obtain a record of the continuous mean square estimate while

the noise generator output voltage is varied from 5)% above to 50fe below

some average value. .Such a record shoul dbe rejeted a- c 1f-n-onstati^ avyr

even at a 99% confidence level. Repeat the test over and over reduceng

the range of noise output level variations each time. As the variations

in the noise output level become limited to a very narrow range, the tesL

will start accepting records as being self-stationary- Such a set of

experiments would give at least a qualitative feel for the -"1p- Ii error

associated with the test for self-stationarity of random signals.

8.2.3 Test for Normality

A test for normr.ality of instantaneous amplitudes of a random

vibration signal record is detailed in Section 6. 1. 10. The test is

accomplished by estimatinp the probability density function of the random

signal from a record cf length T and bandwidth B (using an instrument

as described in Section 7. 5), and comparing the estimate to a theoretical

Gaussian density function with an appropriate (I - cr) normal confidence

interval.

The validity of the test for normality rests primarily in the accuracy

of predicting any (1 - ) normal confidence interval for a given probability
Atdensity estimate, Px). A verification of the test for normality thus in-

volves little more than a verification of the statistical confidence for

probability density estimatcs. This -ubject is discussed more fully

later in Section 8. 3. 3.

ASD TR 61-123 59



B. 3 VERIFICATION OF STATISTICAL ACCURACY OF MEASUREM-iNTS

In Sect;on 7, the statistical accuracy associated with analog measure-

c. ..ts ... four important statistical properties of a random .tignal are

developed. The four statistical pronerties discusaed are (11 the root mean

square value; (2) the power spec:r.d density function; (3) the prbabiiity

density function, and (4) the autocorrelation (and cross-correlation)

function. This section details laboratory experiments to substantiate

the expected statistical accuracy in measuring (esti:rnat-ng these properties.

5. 3. 1 Root Mean Square Value Estimates

Procedures for estimating the root mean square (rms) value of

random signals and the associated statitic4a accuracy of the estimates

are detailed in Section 7.3. Actually, mean square value estimation is

the essential result of power spectral density estimation. S Ince the rms

vaiu- of a randon bizgral is simply the positive square root d' the mean

square value, the verification of the statistical accuracy of rms estimates
,.,:ill result direculy from the verification of the statistical accuracy of

power spectra estimates. This subject is discussed next in Section 8. 3. 2.

For some simple applications, it may be desired to confirm the

statistical accuracy of rms value estimates using a commercial true rrns

voltmeter as described in Section 7.3. This may be done with the aid of

a low pass filter (or a narrow band filter), and by applying the statistical

methods discussed in Section 8.3. 2.

8.3.2 Power Spectral Density Estimates

Procedures for estumating power spectra of random signals and

the associated statistical accuracy of the estimates are detailed in

Section 7.4. It is shown that the estimation of power spectra effectively

consists of measuring the mean square value of the random signal through

many adjacent narrow band filters, and dividing the mean square measure-

ments b', their associated bandwidth. An experimental verification of the

statistical acciracy of nower spectra estimates taun involves simply the

verification of the accuracy of a mean square value measurement of a

-ar.dorm signal with a given bandwidth B. See Figure 8.4.
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POWER SPECTRAL DENSITY ANALYZER

andom I Narrow lAeragingN-:- n P01 ! i Souaring
Noise BandPas Squi Circuit

Generator I I Filter 1ICircui (Integrator)

* I I

* I Read-Out I.
I Recorder

I i

Figure 8.4 Eouipment for Testing Power Spectra Me-ssirement Accuracy'

The random noise generator should be as described in Section 8. 1. 1.

Th- other instruments required are integral components of any conrne.cial

power spectral density analyzer system. An analyzer with a heterodyne

type crysral filter would be the most desirable since it closely approximates

an ideal rectangular filter characteristic.

From Section 7.4, the equivalent number of degrees of freedom

of a mean square estimate. s is given by.

n = ZBT (8.5)

Equation (8.5) assismes a flat power spectrum over the frequency range

in a handwidth B with infinitely sharp cut offs at the uprer and lower

frequency limits. After the random noise generator has warmed up

long enough to assure a stationary output signal, adjust the narrow band

pass filter to cover some frequency range where the power spectrum

of the signal is reasonably flat. The bandwidth B should be about 10 cps

Proceed by recording a large number of mean square estimates.

The number of estimates N should be at least 25. The number of sta-

tistical degrees of freedom n for each estimate should be sma!l, say

about 20, to obtain a good spread in the estimates. Then for a 10 cps
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bandwidth. the record length T for each estirate (integrating time) should

be about one second. Finally, measure one additional estimate of very

high oualit-t for the same input noise level and bandwidt by increasing the

integrating time to obtain the longest possible record length. A record

length of at least 30 seconds giving an estimate of over 600 degrees of

freedom will be required. The resulting estimate may be assumed to

be the true mean square value M.2 for the signal.
2If each of the N number of sample mean square estizates s;

(i = 1. 2, ... , N) is an estivv.ate of n = ZBT degrees of freedom, then

2
n si  21 x (8.6)

where the distribution of X (chi-square) may be obtained from standard

statistical tables. Compute the left hand side of Ea. (8. 6) for each of
S2

the N estimates of s and compare them to a ) distribution of n = ZBT

degrees of freedom.

For example, if a bandwidth of B = 10 cps and a record length of

T = I secord is used, th,-.i n = 20 and the following relkzionships should

be closely ap.---ximat a:.

95% of the values of -. should exceed 3. 94
.

90% " " Ii " " " 4. 87
75% " " " " " 6.74

50 l. : 2 ': " " " 9 34

25% " 2.5

10% " 16.0
5% to of *t is i Z: to 18.3

The experimental procedure disc;_ssed here may be repeated for

several different frequency bandwiddhs B and record lengths T to verify

the general form of Equations (8.5) and (8.6).
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8. 3 -3 Probability Density Estimates

Procedures for estimating probability density functions of random

signal@ and the associated statistical accuracy of the estimates are
detailed in Section 7. 5. An experimental verification of the statistical
accuracy developed for probability density estimates will require the

following test set up. See FiS%;re S. 5.,

!? = -.d - Low Probability Ra-u
Noise Pass Density Analyzer Ra-u

Generator Filter (Section 7. 5) Recorder_

Figure 8. 5 Equipment for Textin-v Proh~bilby De"nsity Measuzrem'ent Accuracy

The random noise generater and lo-. -!- filto-.' 1ould be as
described in Sectior 8. 1. 1. The rexd-out recorder wit! probably be an

integral component of thc probabifity densit; arnalfcr-

From Section 7. 5, the normalized standard deviation a. also

called the standard error, of ;k-. amplitude probability density estimate

P(x) for awy value of amrplitude x is given by,

e , k (8.7)

(X) 4(Ax) TB pj(x)

where k is some constant with a theoretical 'value of about 0. 7. Ore

purpose of the experiment will then be to establish a value of k for the

actual equipment used.

After the rando.m. noise generator has warmed up long enough to

assure a stationary output signal, adjust the high frequency cut off of

the low pasr filter io sorne frequency f0 to obtain a known signal band-

width B. Set the amplitude window Ax of the probability density analyzer

over zero, the mean value of the signal.
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Proceed by obtainsing a large number of probabi-Ity density estimates

Ap(x) (i = 2, 3, etc.), using records of known equal length T_ The

number of estimates N should be at least 25. The expected normalized

standard deviation e of the estimates should be rather large, say about

0. 1.to ,- &:%;n a good spread in the estimates and minimize --h2 effrect of

instrument and obser'ation errors.

Now compute the standard dvc-ALivn estimator. s, given by,

S~ i, _,-Zi~~)- p(x UI 88

N

where px) is given by,

px) = _ pi(x) (8.9)
N

A
Substituting s for v- and px) for p(x) in Eq. (8.7), a value for k associated

with the specific equipment used will be obtained. The value for k hope-

fully will be about 0.7.

The above exoeriment should be repeated many times for different

values of bandwidth B and record length T. The va~ue of s computed from

observations for any product BT should yield approximately the same
Avalue for k when s and p(x) are substituted for o- and px) in Eq. (8. 7).

Finally. the experinent should be repeated with the amplitude window

Ax set over several different amplitude points and, if the equipment

permits, with several different amplitude window widths. Once again,

the values for k produced by the observations should be approximraltely

the same as before.

One may be 'ntcrested in confirming that the estimates p(x)w

be normally distributed about p(x). For any giver set of parameters, B,

T. Ax, and p(x), the resulting set of N number of estimates pi(x) may be

tested for normality by direct application of the chi-square goodness of

fit test as detailed in Section 5.3. 2.
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512 3.4 Autocor relation Function Estimates

Procedarez for estimating autocorrelation functions of random

signals and the associated statisticwsi accuracy of the estimtates are

detailed in Section 7. 6. An experimental verification of the statistical

accuracy developed for autocorrelation estimates -.ill require the foilow-

ing test set up. See Figure 8. 6.

IRandom Low 'HCorreiaiura a ez-cu
Noise PH ass Func*-Ion Analyzer Re corderIGenerator Filter (Section 7-.6)

Figure 8. 6 Equipment for Testing Autocorrelation, Funrction
Measurement Ac.-uY--'-r -

The random noise generator and low pass filter si~ould he as

described in Section a. 1.-!. The rcad-ou'. recorder -will probably be an

integral componen! of the correlation function analyzer-

From Section 7. 6. the normalized standard dev.iation of an auto-
correlation estimate R(-r. T)(to be noted simply as %) for any value of

time delay -. is bounded by,

The equality sign appiies when -r = 0. The parameter k is some

constant with a theoretical value between 0. 5 and 1. 5 u1 the bandwidth

B is determined a:* described in S&ction S. 1. 1. one purpose of the

experiment will then be to establish a value of It for the actual equipment

u~sed.

After the random noise generator ha s warmed up 1long enough to

assure a stationary output signal, adjust the high frequency cut off of the

low pass filter to some frequency f 0 La obtain a known signal bandwidth B.

SeL Lh.- time delay -r of the autocorreiator to zero.
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Proceed by obtaining a large number of autocor relation function

cstistates. k(U = 1. 2, 3. etc..). usiug records of equal length T_. The

nurnber cf estimates N should be at least 25. The expected standard

deviation of the estimates should be rather large, say about 0.- i R. to

obtain a good spread in the estimates and minimise hI effect of instru-

ment and easervation errors-.

Now compute the standard deviation estimator. s. given by.

N

- AR

Substituting s for 0%fo R, E;,Eq. (8. ! 0). a value for k rssociated with

th- spcif-c eqime scd ymjf be obtaned The value for kc hopefully

will be botymen 0. 5 and 1. 5.

The above experiment should be repeated many times jor different

values of tQ=_*idth B and record length T_. The value of a computed

from observation for any produict BT should yield approxinmL tely the

same value for kc when s is substituted for alt in Eq. (6. 10). Finally.

the experiment should be repeated with the autoco-.relator time delay

set at several different values of ir 10.. New values fro. k should be

p-roduced by the observations which are smaller th~an the values found

earlier when -r = 0.
A

One may be interested in confirming that the estimates It. wi'! be

normally distributed about R. For any given product BT and time delay

1r. the resulting set of N number of estimates, 1OL. may be tested for

-_orrnlity by direct application of the chi- square goodness of fit test as
detailed in Section 5. 3. Z.
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8.4I STATISTICAL- CONSIDERATIONS FOR REPEATED EXPERIMENTS
AND RAINDOM SAMPLING

It is desirable to verify by experimental methzods some of the

slatistical procedures described ia Mhe repeated ex'rimts portiEon of

SetEEGis 5 and i& Z. and the random sampling techniques in Section 6.2:. b.

To do 0this, simulated u"flights" may be ran in the laboratory, and appro-

priate data coiiected and analyzed. If real differenc-es are caught asI predicted, and paralneters estimated correctly7 within the prcdc-.ed
confidence !iMn' :::. L:en :!:e pracedures may be assumed to be valid-

If not, otber ne'hods must be devised. or urrerlvkg. assumptions must

be :r.=7C-tCa 5
Two different approaches can be carried out in an experimental

program to indicate proceduIres that might be tried later in actual flight

tests. It would be desirable. for reasons; of simnp;city. to bo. able- tW

ignore various separate flight phases. ~a only to consid-Ar a flight

vibration history as a whole. This is. clearly impossible for iiytypes

of flight vehicles but not necessarily for all. The small numb;er of flights

(8 to 9) and samp-"Ts sizes (6 to 12) indicated in the next Section 5. 4. 1

(Table 8. 1) are pa.%AZbly quite suitable when considering the flight phases

separately. Reasonable amounts of data would then be collected for the

entire flight by combining information fro.~ the separate phases.

However. when samples are randornzy selected over the total flight

without regard to flight phases. morm, tha% 12Z observations are clearly

necessary to obtain reasonable estim~ates of the parameters of interest-

For example, if the assumption of a normal distribution is to be verified

using the XZ test. sample sizes of the order of 200 are desirable.

Many of the flight test problems being mentioned are actually not

pertinent to laboratorv c xperi.entaion1 -I;;- to the controlled conditions

available in the laboratory. The validity of statistical procedures for

small sampe sizes is easily verified in a ir-boratory program. However.

it is difficult to implement their, in an optimum mnanner in a':tua flight

tests.
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a. C S SCCion C-: Sample Sir& an-d Nmer af F~ights

r. Etw Sb:v ~e paraLenters of iictereet i--zi be preset-

Kowing Ikese Li4 advance. one ca then mleisdintiy c;jinre the

experim~ents. That is. the numbder of fbghs k and thz sarmple size M

for each fi:glh may be calcul~ed so as to minimizz Nk for a Xivta

probability of not detecting, for example. real differencet EM fris or

double-a~plitude) vibration levels. In practice. of course. the real

differences will not be known; howe-er. reasmonabie apriori estimate.

may of*.en be mnade. in L'be laboratory the real differences i= the -

tinlevels will~ !-'' .*raiia proce& es caa

be tested more precisey..

In Section 5-.4 of the report. mnethods for selection of the awarher

of fl~buz k and the sanple size 2N are mntioned-. For the laboratory
e cperimeznt design~. ape!-' ctIono will_ be made of these procedares MAd

they will, be considered in greater defta-;-

Refer-.x-g to tbe abore czentioned Section 5. 4. one finds tkat the

population vaianc± estirnaze ccmpu-ted frorn t?5e betweem gr Caii--

to-fliefht) variation consists of two comp~ants; a-. Z :e poa-ilatioft war-

jance. and No- Z the variance dr-e to any real (differences in xneas

sraltiplied by the sa.mnple size N. 11h7e second- q-saaatty. a- . is :he cone

hypothesized to be zero, and represents the quantity to be detected if

it is act zero. In at laboratory expermerets. a sarnple oif P-h0s may

be selected such as to have mean vibration levrels from a populat sa&vin
a ~-aria-ce cA-With this q--antity krown in advance (along WitILZ

-talues of N and It can be selected so as to minimize Nk and Igive a certain

prok-ability p' (;he I -e Ii error) of not detecting this conyoent of variance..

Also, there will be a certain probability a (the level of significance or the

Lprobavii:ty of Type 1 error) that the test will indicate o- Z i 0 wihen in fact

it is* zero. It is desirable to have a and 3 %-ery smiall. but these are made

smxall at the expease ofin~creased sarmple sizes.

First, values for a and IS must be selected. !'or the w.jrposea --t

this discussion. a 0- 05 will be chosen. The ratio

A 4F (e-13)
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=Ube =zed as a zneas-_re af devmatioc fromr Ebe av.oc.smr:c~m C7- z G_

TheaI A 0..5 u',7i be selected as criticAl v-a1~ez for
ilimstraii compczautoa That is. -f tkefit:-g va-ala is as

grea: as Ike nithic rfii~h -rratim imm ome case. or kaL' as Barge i= dze
ceker. Na and k wid be select-ed s~z v: ;jgive a pro6h-H~of 1 t ast

0_'Z_ 05 of wdeectimt tIsi Cc?*CC=I 001 vmariatice 2

App-Uclton.ii m Bpe nza&r off T ble to' 3 Em ecremcw J Thi s
gfres: valt;** of a 0nii wouhrim l!c-w Nt arms k as a (fzctof c

IPI
az 3 T_- euie t - tsa SUwr

S~sfwm the sekczed -. iA~cs 0. A * zzd a ce f:nd.±

SLnce IL as Mhe pri-=.ar- 7 0 -- --a. r3 _ cc k uidfur bpe
sellected_ Thwa bw imnspection of Table A-.3 i= RP-'. 11±. values of And

N wil be kosento aproximately fit the -- :rcd relation0 q. - 5

cr (3-.16)_ Table 8-. 1 belouwg,... -:u.waio-' ci va:les obtaimed by ~i
~roeeurc.The tAbulated va..uts za Table 3. 1 are met precise for sereral

reas*?.S. OnlyT *Z-'.-I 4  N1 riL SCM. C stSO a value os 0 Ca- =4X

be selected Inm geaeral to n=Z=LAIM Zkv rcilsoms t= Eqmaatioms (41 !5) a:--

(3. 16)- Also iWterpotaticin is requir=:- ga Gze tAbie referenced akicu

rezults inl inaccuaracies in. the eorr~pzIed vaues of Az

The vaues in Table S.1I imncate that 1, a 5 and N r 12 are -,~~

values to cezect A z 0- 50 (Case I1' kL * 9 an-d K -z 6 are rc~nr

tor A 00LO (Case -4) HIC i-cr. h - 7 and N - S;InCase Z to cc!Ar

the togas, uu-nber of observattons s~id.fCA=%lF While reducin the zn~ber

of flights by two



Table 8. 1 Selection of Sample Size and Number of Flights

Case I

k 4 5 6 7 2 9 10 11

N 41 26 18 15 12 11 10 9

Nk 164 130 105 105 96 99 100 99
A2 .53 .49 .51 .48 .49 .47 .45 .45

N and k for A2 = 0.50

Case 2

k 4 5 6 7 8 9 10 11

N 22 13 10 8 7 6 6 5

Nk 88 65 60 56 56 54 60 55

A 2  1.01 1.03 .96 .94 .93 .94 .88 .90

Nandkfor A = 1.00

It becomes apparent at this point that the selection of the eample

sizes and number of flights requires the exercise of considerable engineer-

ing judgment. Sample sizes on the order of 8, 10, or 12 are undoubtedly

not sufficiently larke to obtain general information of interest for an entire

long flight. Also, after data collection instrumentation for a flight vehicle

has been accomplished it will probably be comparatively easy to collect

more observations in many situations.

8.4. Z Data Collection Procedures

At this point, the detailed procedures for a random sampling scheme

described in Section 6 may be applied. Flight phases and reasonable

vibration levels for these phases may be simulated. Two data collection

procedures might now be employed.

1. Disregard the flight phases and randomly sample throughout the
entire "flight"

2. Sample within each flight phase so that ech phase may be
considered separately in the later analysis.
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Also, two procedt.res for repeating the experiments should now be

foJ I owed:

1. =epeat the "flight" to simulate in effect a constant "mission"

from flight to flight. That is, there is no component of variance due to

flight- to- flight variations.

Z. Try different :flights" to simulate variable missions. The

flight-to-flight vibration will hP varied according to a predetermined

amount.

8. 4. 3 Verification of Statistical Estimaltes

Referring to Sections 5 and 6, calculation of estimates for statis-

tical parameters of interest may now be performed. There exist four

different combinations of repeated flights which should be analyzed,

and cornparisons should be made between the various estimates.

(i) Fiight phases considered

a. Constant mission

b. Variable mission

(if) Flight phases ignored

a. Constant mission

b. Variable mission

Several checks should be made:

1. In the ease of a constant mission from flight-to--flight, no

sienificant difference of flight-to-flight mean vibration levels should

be found.

2. In, the case of a variable misbion. the component of variance,z
( , should be detected.

3. For all cases, the mean and variance estimates along with

confidence intervals can be compared with the actual known values.

4. Estimates obtained by ignoring flight phases can be compared

with the estimates from the cases where flight phases are considered

separately.
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Perfect agreement cannot be expected, of course. lu all cases,

the underlying assumptions will not have been precisely fulfilled but only

approximated. Here again, theory must be tempered with judgment.

8.4.4 Suggested Experimental Plan

1. Select a hypothetical "flight" plan (see ior example Table 6.4

in ranr, m sampling portion of Section 6. 2.4).

2. Decide upon representative (rms or double-amplitude) vibra-

tion levels for the flight phases.

3. Determine a size for the component of variance, or2 , relative
2

to itie known variance, a-, of the vibration levels within a flight (see

Section 8. 4. 1 above).

4. Compute values for N and k as in Section 8.4. 1 for use when

flight phases are considered.

For an alternative method, application may be made of tabulated

valves of Eq. (8.14) for a = 0.05 and A = 0. 50 available in Ref. I]. A

smaller value for A would then be selected to correspond to 0 = 0.50.

Operating characteristic curves (as described in Section 5. 5. 7) may

then be computed for various pairs of N and k so determined. Then an

N and k can be selected based upon the 0. C. curve giving the smallest

for the o-2 originally selected.

5. Determine a random sampling scheme for the case when flight

phases are ignored. See Sectior. 6. 2 for details as to sample length, etc

For this case, k may 6e made slightly smaller and N increased to obtain

a sample size more consistent with the consideratio-s involved in the

sampling scheme in Section 6. 2. One must not decrease k too much or

it will be impossible to obtain good estimates of the fitht-to-flicht variation.

6. For the case when flight phases are considered, @elect samples

of size N for each flight phase. Each observation will be taken randomly

with respect to time in the flight phas. Again see Section 6. 2 for sample

length considerations, etc.
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7. Determine a random selection of differe.at r,,",s vibration levels
Zfroin a "normal-' popuiation of a predetermined mean V and variance o-

IL
This must be done for each flight phase using the vibration !evels selected

in step (2 as the mean (nr each phase. These valucs will then determine

how to run the repeated ':flight3" for the case when the mission is varied

from flight-to-flight.

8. Perform the repeated flights .nd collect the data for he four cases.

9. Perform calcuia'ions as detailed in the repeated experinents

section of Section 5.4 and the random sampling scheme of Sectior f. Z.

10. Analyze results to determine if:

i. Flight-to-flight variations were detected as predicted.

ii. Confidence limits for statistical parameter estirrtes
include the actual preset known values.

iii. Results from not considering flight phases are significantly
different from those obtained when the flight phases were
considered.

'I. An additional procedure would be to run a "flight" introducing

unusual oc.urren es and detcri-in if" the random sa.mpling schuzzi

detects these as predicted.

8.5 FLIGHT TEST PROGRAM

8.5. ! General Remarks

The exact method to be employed for obtaining information about

the over-all vibrati-n levels of flight vehicles from selected samples

will to a great extent dep.nd on the results of the Laboratory Test

Program discussed in previous sections. However, there are many

considerations that do not depend on the particular sampling scheme

used and these will be discussed below.

In Section 3, flight vhicles are divided into four main categories,

and gathering of vibration data is dist.ubbed with reference to suitable

sampling methods. Once a sampling scheme has been decided upon,

the method for permanently recording the vibratin data and the location

of the vibration sensing deviceb are of primary im:portance.

ASD TR 6.- 23 8-23



Even though the flight test program under iscubsion here ib

proposed for the main purpo.se of ";-erifying certain techniqones arplying

to a single point on a structure, other related problems cannot be

entirely ignored. Vibrationso are only a part of the total dynamic environ-

-nnt, and the high cost of a flight test program makes it mandatory to

obtain the maximum amount of information from each flight. Therefore,

the areas of acoustic noise and shock measurements should also be coe-

sidered as part of a vibration survey. It should also be kept in mind

that the data should be useful for determining the dependence of ane set

of measurements on another even if this iz not required to satisfy the

main goal of the test flight. In addition, flight recordings can be sup-

plemented with mechanical impedance measurements on the ground, to

further enhance their value for determining correlation effects.

8. 5. 2 Preparaticn for Flight Test

Each of the four flight vehicle categories can utilize two main

rnzetod for obtaining -i-ration data. These are by 1) direct recording.

or 2) telemetering. Section 7. 2 discusses in detail some of the instru-

mentation available for each of these two methods and their advantages

and disadvantages. Generally, telemetering of data imposes greater

restrictions on the frequency range, dynamic range, and the total number

ol transducers, than the method of direct recording.

The next consideration is the end use of the data. This includes

such areas as:

a. Establish dynamic environment for equipment

b. Fatigue studies

c. Human comfort considerations

d. Verification of predictions

e. Any combination of two or more of the above.

Each of these points has an effect on i) the total number of trans-

ducers, 2) type of transducers, and 3) the location of the transducers.
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To bring these remarks into better focus, two specific exam.ples

wili now be discussed. The first considers a hypcheticai test flight

utilizing direct recording methods, the second coneiders the telemetering

of data.

8. 5. 3 Direct Recording of Vibration Data

This dicussion a,- rs a possible practical preparation of a flight

test program when a direct recording method can be used.

a. Type o. Vehicle: L- rge, manned, jet-powered aircraft.

b. Purpose of Test: Ver-fication of the sampling scheme deter-

mined from Laboratory Program to estimate entire vibration-life-history

from selected samples for several point o.. Lte structure.

c. Type of Recorders: Magnetic tape. See Secti:n 7 for discussion.

d. Type of Transducers: Self-calibrating. piezoe-;ctri,= acce!ero-

meters. See Section 7 for discussion.

e. Frequency Range: 10 to 2000 cps.

f. Acceleration Range: 0. 2 to 50. 0 g vector.

g. Number of Transducers: Fifteen.

h. Location of Transducers: See Figure 8. 1. Each location us.es

three transducers. each transducer sensing along one of the three mutually

perpendicular axes.

i. N umber nf FlightZ" To be determined from desired confidence

limits.

Two tape recorders will be used. One will continuously record the

vibration le-vels while the other will only record the sa-mples whose length

and method of selection were determined 'n the laboratory. The self-

generating accelerometers contain a dual seismic system of which one

element is the driver and the other the sensor By correlating the sim-

ulated acceleration response of the sensing element with the driving

system an actual calibration can be made. Since both elements can serve

as sensors simultaneously during flight, the accelerometer can be used

as a dual output device to measure the same aczeleration in a specific area.
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A13, A14, A15

A4, A5: A6

AlO. All, A

Accelerometers

Vertical Longitudinal Lateral Location

Al AZ A 3 Attachment of Main Fwd. Spar to
Fuselage (Approx. Sta. 500)

A4 A5 A6 Mid-Section of Fuselage
(Approx. Sta. 1100)

A7 AB A9 Tail-Section of Fuselage
(Approx. Sta. 1600)

A10 All AIZ Attachment of No. 2 Engine to
Wing (Outboard of Wing Station
300)

A13 A14 A15 Attachment of No. 3 Engine to
Wing (Outboard of Wing Station
300)

Figure 8.7

Location of Transducers for Flight Test Program
(Using Direct Recording Method)
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One of the sensors will then be connected to the continuously running

recorder while the other sensor is sampled in accordance with the

proposed sampling scheme. From these two recordings the accuracy

of the sampling method can then be verified. It is also important that

the acceieromaeters are located on primary structure with a minimum

of bracketry to avoid recording local resonances which may give a

distorted picture of the severity of the over-all vibration environment.

If equipment is to be mounted on some secondary "'soft" structure, a

record of the vibration level at primary structural points, c up!ed

with a knowledge of the transfer function from these pVints to the

secondary structure, allows the engineer to calculate the environment

for the equipnmcnL at a later time.

3. 5.4 - -iczzzczcr Vibration Data

For this example. a hypothezica] four-stage Spa.e Probe will be

considered. For such a vehicle. telemeter channels are usually at a

premium and it is desired to obtain the maximum amount of information

from a minimum amount of data. De.ending on the sampling method

involved, one telemeter channel could be used for several transducers.

if the time between samples for each transducer is long enough. The

number of flights are also limited, sometimes only being one. It will

th-rcfo.re be proposed to collect acousticail data in parallel with the

vibration data. This will extend the usefulness of the flight by allowing

zeveral end-results such as determining the correlation of the acoustical

anr. vibration environments. It may asc be desired to correlate the

measurements with theoretical predictions made prior to the flight.

The scope of these dynamic field measurements will assist the rank

ordering of the magnitudes and characteristics ot the environments

which will occur in various space vehicles. At the same time, such

a study would improve the designer's opportunity to foresee more

realistic structural and equipment cnsv:ronments, thus fostering more

confidence in design and earlier initiation of environmental testing for

reliabilty of equipment and structure.

The vibrational environnent at any point in a space vehicle is

given by a complex prodioct of external and internal exciting forces

and the reception and !ransmissik'- of these forces b and through the
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vehicle to the poin:t. For example. during the launch of a con-ventionai
missile, the noits aenerated -nl the rocket mrotort! exhaust stream is

propagated through the air, to, and along the outer skin of the vehtcle.

Because this engulfing rocket noise is of a random nature, containing
all frequencies rver a range of a&mpitucs. it e-ctt h i~th major anei

local structural and skin vibraticwt resonanres. The magn.-tutdc of this

excitation depends upon the irecuency spectrum. ampittuade. and the
space correlation of the noise. and upon the mechanical impedance of

tl-. ueil c;:nfi-,-iratior. The resulting vibrational 1-E :transferred

throughout the missile to sub structure and equipment, and a portion is
re-radiated from that as acoustic energy in to the vehicle's compartments.

There are several sources of '-ibratory energy which, either snl

or in combination, create vibratios, within the space vehicle. The zoise

generated by a rocket motor results primarily from turbulence in the
subsonic mixing portion of its jet stream. The amplitude and spectrum

of this noise are dependent upon various Jet stream paremeters. distantce
from the jet stream,. and on. t~e directior relative to the exhaust streamn
direction All data indicate that the rocket noise reaches a maxim'.m

during launch; its exact level depending somecwhat an the launch pad con-
figaratioi.. Rocket noise reflected fromn the ground~ plane dominates the

environmnent for the first 1 -2 seconds of flight until the nozzles reach an
altitude on the order of 50 nozzles diameters. By this time, the missile

is at an altitude wherein the rocket exhaust flow is unobstructed. Where

upon, at this point, the effect of forward vehicle motion reduces the

noise tr.,vr;rconmerrt surrounding the missile. As *.-e missile velocity

increases, rocket noise forwxard of the nozzle decreases approximately
with the square of the missile's -.c&uity until Mach 0.5 is reached after

which it decreases more rapidly. approaching zero at Mach one.

The spectra and levels in the rockets near field are dependent upon
,additional factors vhich include shock wave formation and stability, and

the formation ard stab:lity of afterburning in the jet stream. The noise,
has.* in general, a continuous randuja. level spectrum. but may contain

some d-.screte frequencies. It is proposed that acoustic measurements

be made during eight test vehicle launchings (or less, depending on the

confidence desired).
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In addi*.ioGr -c the at-vustical energy generated by the rocket motor
exhaust, vibratory forces from the rocket motor casing are mechanically

transmitted through the vehicle structure. This energy includes random

forces resulting from thrust variation, combustion instability, etc. ,

together with pos sibly large :ransient excitation during ignition. The

internal vibratory energy re:;uitang from the rocket can occur either in

spa~c or in the dlmosphere. whenever a rocket is used for propulsion

or steering, it is therefore popused for this hypothetical example to

install fifteen Self -Calibrating accelerometers in strategic locations of

-he hypothetical louz stage rocket test vehicle.

Art important sxterrnal source is the aerodynamic noise which -esults

from turbulence in the boundary layer. Its magnitude and spectra appear

to correlate with'- local "Low paramneters .n a manner whicia allows mathc-

matical spectra density treatment and reasonably accurate prediction.

depending upon the aerodynamic prediction of flowv conditiorns. It is

therefore highly desirable to measure this aerodyna-mic noise durirng

flight.

The following list of forcing functions presents some of the vibro-

acoustic sources that must be considered, mcasured, and an~alyzed to

adequately define the dynamic envirorment of the test vehicle.

1. Acoustic Source

a. Aerodynamic noise

b. Rocket noise

c. Auxiliary equipment

t!. Secundtry acoustic source

e. Interaction of shock w4ve and boundary layer

2. Vibration Sources

a. Main paxer plant oscillationis

b. Auxiliary equipment

c. Aerodynamic gusts

d. Separation of stages

e. Coning vibrations

f. Guidance system reactions

g.Spin rocket excitations
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As stated earlier, for purposes of illustration fifteen Self-Calibrating

accelerometers wi!" be mounted within the test vehicle. These piezo-

elccLric accelerometer- contair .Anal seismic svstc= of which oee

ment is the drivcr and the other the aensor. By correlating the simulated

acc-leration response of the sensing element with the driving system, an

actual calibration can be made. Since both elements can serve as Sensors

rii.Wu:aneously, the accelerometer can be used as a dual owia device to

measure the same acceleration in a specific area using different fCill

scale ou:pzts, thereby increasing the reliability and the dynamic range

of the system. The four terminal theory, involving the reciprocity tech-

nique, can be utilized and since either element can be driven, the data

obtained from the sensing elerm.t would be valid in both directions. The

preferred locations for these accelerometers are listed in Table 8. 2 and

are displayed in Figure 8. 2. Accelerometers have been located in the

critical guidance bay, the nose payload, and at the aft end cf tn. second,

third and f1our& s.tages. Following are some of the specifications applic-

able to these small measuring devices:

Acceleration Range: 0. 2 t. 500 g (vector)

Resonant Frequency: 15 KC minimum

Frequency Response: 3 to 5000 cps

Sensitivity (with a 4 ft cable): 7.5 mv/V minimum

Transverse Sensitivity: Less than + 5% of maximum sensitivity

Linearity: + 2% from best straight line

Temperature Range -650 F to +2500 F

Driving Sensitivity: I volt drive induces a minimum

output cq-ivaient to 0. 5 g
acceleration on the seismic system

Driving Linearity- + S p to 20 volots input

Houting: Titanium
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Table S.2Z. Vibrc-Acoustic Ir-tr-entation

Microphones Accelerometers
Iritern~at External Vertical -Iongitud;Ina Lateral Lcto

Nil kiz Al A2 A3 -rSSG - near guidance bay

IME3 M4 A4 AS A6 FS1Z5 - =ear guidarnce bay

M5%P7L- AS A! FSZZO - between 2---- ano'
3rd stages

1.7 Nis AZo All A: FS4f.O - between 3rd and
4th stages

M9 Y. SC? A13 A14 AI5 MSO--, area offin-%

' .4 - 28 stud

Dime.nsions: L. 13 L x 0. U D Overall n-ax.

WelghL! Zt grams

The accelerometers should be instailed .irectlu on the basic struc-

ttzre with aminimum amount of bracketing. Tebahs~~e i n

s!hould be relatively rigid in order te mn imize erroceous ampi-ficat Oc~s

-.ca b...c - t.. - 'w reva7 pssibla :he

should be =--edo rigid structural members to a-roid =-wa~ed local

resonances. It is advisable that the -icce'.erom-eter in.-strz~wetazion be

calibrated to 5000 cps. Electrical voltages should be irser*-Cd :o the

drivers during pre-flight and the resu!.-- sensor response recorded.

A recording shoul'-d 6c e made also of the system electrica! zero. TIhese

calibrations shoulid be accCAw.P!ishedA z close to the actual fligint time as

is Practical. Calibration-s a,-d data ruas may be identified by suitaoe voice

announcements on- :ape recordings.

The internal and external sound pressure levels of the test vehicle

may be measured by ten high-imtensity microphones. Mhe microphones

should be calibrated for freqjuencv response in an anechvic chamber to

20.000 cps. An electrical insertion method of calibration sh:!d be used

prior to launcL. X-Ne-arical voltage* to iwaient to selezted sound pressure

levels at various frequencies shotad be inserted into the instrumentation

system during pre-flight. Suggested microphone lucaaions are listed in.

If able 8. 2 and are displayed in Figure 8. 2. Microphone measurements

should be -.ade -.n the critical guidance bay. near the nose payload. and

at the aft end of the second. third and fourth stages.
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a-. Z_5 F Caektc and U6;1-be of Mlitts

ZSec.tions 5-. 4 azd 8.. 4- staiisdcal methods are developed &NW-

apnftzicd z determa. :!:e exact nwer a6 !r-igikts reqwi red for a gives

confidacc in Itat 6wrchesis that the ratio *f 9' -- t between Oflie.

variance. to o"'.tMe within flight varace .1 of ihration !evels. is
z z 1

scam =nszar. Th~reforc. the smalier tke ratio A a- lei).

thz f--wer filights wil! b e necded far a co £iertcr to accepi or

reject the ikypoaeuss 1: is apparwat. that som judgament will be re-

quired to specifyr as esutimated va-w for A 7-T aid ja hais esdu-2ion
sc.~2 possible cwubn mab %M' £Righ conditions for a massed aircraft

are Stive below is *0?d-cr of inc~imin ratics oC i&7

a- The identical aircraft Rlies identical wissioas "iM the sam

a -lot wader sgmilar wcatkcr conditios-

M=. h~ idrstigal aircraft a."es idenical! -_ ses with -Afferwat

C,ots uner similar weather Conditis.

c- The identical aircraft fizes &Weaca: missions ut* &Me re

piots wader varying weather roeditioas.

&d Diftcrest Aircraft. of the sawoe model fly idestica; missf oss

wilk ;fffersat pdlots under varying weather coaditios-

e. Different aircraft of the same mde~l fly different umissios

with 4ifferent pilots wader varying weather cos"tzass.

(_ IDlerren atrcrzft. usirg differeat umaies of the same

categ~oty (such 2AS interceptors) fly different massioss witif diffcrest

uiots under v'arying weather cositios-.

ft s:==ld te oted that each succeeding Croap of flights his s

chanige a~dl. it is cf course possible to add several additiosal sub-

gro-aps of other comboisatioss of duasges in t:!caaditzoas usatch can

be tes*.ed it it is (Celt that a *igsificaiz d!-gtS in A' would occur-.

The above discussios shows that Cke exact muwAmbr of Moits

caarnfl be deteraniscd _-1 this tiabe and will dCe"a to a treat extent cc
ah,- Ceight vchicle unsder cossideratlon and the purpose for which the data
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is to be taken, i. e., is the average vibration level of a class of aircraft

to be establishedor is it desired to solve a vibration problem on one

particular airc raft.

As a general recommendation for verifying certain parts of this

report, it would be desirable to hold the variation of flight conditions

to a minimum until some confidence has been established in the procedure.

There is one additional problem that should be discussed. For

larger missiles, such as space-probes, sometimes only one sinag)" test

flight is available. It should be realized that it is no- theoretically

possible then to state a numerical measure of the mathematical confi-

dence in a prediction of the vibration environment for a second flight.

In practi'e, of course, certain knowledge exists as to the similarity

of the second flight compared to the first. A qualitative prediction can

therefore be mz de, but a rn-nerical confidence cannot be established.
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9. APPLICATIONS TO RESPONSE OF STRUCTUAES

Many physical applic.tions to structures problems involving statis-

tical information about random vibration phenomena have been carried

out by various authors (seeRef. [4], including its Bibliography). It is

the p' rpose of this section to reviw some of that material, and other

references, as well as to develvp seme new physical insig'nt about cer-

tain mattcrs not previously investigated elsewhere. In particular. a

survey appearL here on questions of vibration induced structural fatigue,

aRd on effects of non-iinearities on response statistics. New theories

are proposed for learning about the response of continuous structures to

correlated random forces, and for studying modification of responses

due to loading. The discussion to follow will begin by reviewing well-

known material on the response of linear structures to candom excitation.

9. 1. RESPONSE OF LINEAR STRUCTURES TO RANDOM EXCITATION

The problem of determining the response of a linear structure to a

single frequency excitation, a discrete frequency spectrum, and a con-

tinuous frequency spectrum. will be developed for a single degree of

freedom system. The response of a continuous linear system will then

be explained for free vibration and forced vibration.

9. 1. 1 Single-Degree-of-Freedom System

The linear spring mass system with viscous damping and fixed

base is the simplest oscillatory system to analyze (see Section 3. 3).

When excited by a force f(t), its equation of motion is

f (t)

ml
my+ ct + ky = f(t) (9.1)

k c

where the response y - y(t) is a function only of a time coordinate t.
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Introduce rhe following quantities:

W n ! undamped natural frequency (9.2)

- = damping factor (9-3)

cr

c = 2 q = critical damping coefficient (9.4)

Equation (9. 1) can be expressed in the following form

+Z ry.. + y- f(t) (9 5)

m

When the excitation is in the form of a motion x(t) of the base, an

equation similar to Equation (9.5) is obtained as follows.

y

+ I- I + W 2 zw = -11(t) (9.6)

where z = (y - x) = relative motion between the mass and bate.

i(t) = acceleration of the base.

Thus the problem of base motion can be analyzed by replacing

f(t) by -m3E(t) and y by z = (y - x).

The general solution to Equation (9. 5) consists of the homogeneous

solution which depenr.ds on t'he initial conditions y(O) and j(0), and which

damp. down in a short time, and the particular integral depending on the

excitation f(t).

Of particular interest here is the steady state solution to a harmonic

excitation f(t) =k [Fe.i*] where* denotes the real part of th* complex

quantity in brackets. The response y and the excitation f(t) = F0 cas wt are

representable as vectors of fixed magnitude differing by a Fhasa 0 and

rotating together with common angular speed w according to the equation

ASD TR 61-123 9-2



ir .1,!Z

and

Z-W) = MW, +(j [2- e ~ (9.9)

The quantity Z(wj is referred to a3 the i-npeda--ce of the system

and its reciprocal 1/z:w) is called the frequency response function.

In these equations it is understood that the applied force and response

are both real quia-itities. indicated byo - t that another expression

for y is

y -(Y ei + Y e iw) (9.10)

where Y *denotes the complex conjugate of Y.

The mean square value of y is of interest in problems which

are to follow. The mean square response is found by integrating

over one cycle.

y 1 1 2 y t- + ZYY +Vc- )dt

YY - 0

ZZ(W4Z (Wi) IZ~uV
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The exponential terms integrated over one cycle are zero in the

above integral and Eq. (9. 11) is accurate even when integrated

over a time interval not a multiple of one period provided T is

large compared to the period. Since

20

Z

is the rnsan square value of the harmonic excitation, the men square

response 's the mean square cxcitation divided by the square of the
1 2

impedance 1 Z(i Z.

If the excitation contains more than one harmonic components

the steady state solution becomes

:4Z ~ ZY~ Z At(W 3Z)eIio~

r zz I

W ' t  Z A "1W

=0Z ZY e j: e 10.12

The mean square response now becomes

= IT 1 J. " Y eZ - dt= Y (9.13)
-TJO4 1 it 3 .j

with terms like the single frequency case which must be summed over

the irequency numbers j.

Consider next the problem where the excitation contains many

closely spaced harmonic components approaching a continuoue spectrum.

For this, consider f(t) jd y(t) so t-& the Fourier transforms cxist, namely,

F(h) uo • "iW t f(t) dt (9.14)
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Y(W) -o e'It y(t) dt (9.1-)

and determine thc Fo.rier transform cf the original differential

Eq. (9. 5) to obtain

y F(,) (9 1 )

Associated with Eq. (9. 15) ono )-as the i.-erse transform, and

since y(t) is real, it may be written in two forms as follows.

! e ei t y;.( dw1. 1

1 f"De-"A *(w)(9.17)

The mean square va!'Je y :)= can now be obtained by madtiplying

the two forms of Eq. (9.17) and integrating over a long time interval

ZT as follows.

Y 1 Y(W.4Y*(W')L e dt ww
4v MJIM 2T J-T

¢2"2:(9. iS)

Note here that the integral

.au sin (w - W)T

AD W -- W-)
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for large T is zero except when w = w'. in which case its value is w.

This cccurs b -cauz for largit T the integrand above benaves like

v6(w - W) where 6i( - w') is a delta function peaked at w . w'. The

mean square response then reduces to

=-- -YlwlY (w) dbo

4w T

;Jo ¥YiV)'Yt (W)6. (9.9)

where the prime on w. is now discarded. Equation (9.19) is a gener-

alization of the previous case of the discrete spectrum to the cor.-

tinuous spectrum, and the finite st.-n.atioa has rnow be¢a rep!aced

by an integration over arequency. It is possible to view the integraad

of this equation as the power spectral density function of the response.

namely.

S (W) = I Y() ( (9.o :
y ZvT ?r

from which the mean square response becomes

y Sv(w) d. (9. Z

showing how y is distributed in the frequency range.

Similarly the power spectral density function of the input f(t)

is given by

St (w) F(.) F(). (9.2Z)
Z*T
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such that

"'TS
(tI- V f(t) dt= SuW dw 19.Z3)

T JO

Substituting Eq. (9.16) into (9. Z0) yields the following important re-

lationship between the power spectral densities of the output .nd input.

2 F(.WF(u. Sf (.4 (9. Z4)Y 2- z,,&* z (ofJ z(-0)

Thus the power spectral density of the outpet is equal to the power
spectral density of the input multiplied by the square of the absolute
value of the frequency response function.

It should be poin.ed out here that in actual practica! measure-
ments. the power spectral density function should not be calculated by

Eq. (9. Z01 or (9. ?2) since these definitions lead to inconsistent esti-

mates (see other sta_-isical analyses of power spectral density functions

in Section 4.8 for a full discussion of proper methods of measurement).

In summary, the mean square response ef a single-degree-of-

freedoir. system for the three cases considered is given by:

1I) Single freqtency excitation

y =-YY I9. ZS}

F
where Y 0

Z(m)
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(2) Discrete frequency spectrum

7 Y* (9.26)
JZ J

Where Y -
JJ

(3) Continuous frequen~cy spectrumn

2vUjO T

where y(m) = !1*
Z(W)

M M e-iwf(t)at

In a~ities the power spectral desity fismetions for the oultpu

Y(t) ad input f (t). each of large finite leupet T. have bes ideined

by

S(W4-Y= Y( (9-29)

() =-I-F(44(em (9.29)

ad it has been shown that they are related by the equatins

S (.) - I£- 3 4 (9.30)
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9. 1. 2 Continuous Sstem"

A contisxz: elastic body is a sy-ue-,- of infinite nunmbc of de-

grees -; mrcen. - its equation of motion is a partial differential

equat-'on in the Urne and space coordinates. Its solution for the dis-

piacement is now a functicn of the space coordisate x ard the time t

and will be designated by y(x.t).

(1) Free Vfir-tion

Insteaa of solving the partial diffcrential equation, which is an

eigen-value problem, it is possible to view the problem from a sinpler

point of view of normal modes. ]Normal modes are free vibrations

o f the system in the absence of all exter.al forces and damping. and

hence can be considered as dynamical propert;-s of the system. Such

normal modes depend only on the geometric coefigar-.tic= of the body

and its mass and stiffness distributions.

If a body is distorted into oc uf its normal mode shapes #n- .x)

and released, it will continue to vibrate harmonicaily in this mode at

frequency w . This harmonic vibration in the time domain may be

represented by sin wt. cos w t. or e . Ths.ox) and com-

pletely characterize the normal rode vibration of order n. The mode

shape and its natural frequency are independent of the ampiitr-ie. and

the scale of #a(x) is arbitrary.

The mode shapes. 9n(x). possess certain mathematical prop-

erties which are called orthogonal. That is. if one measures tie mode

shapes of the Ith and the j t modes ad =_.nines the integral

r0 @(x)_9j(x)mx) dx

where rr.(x) is the mass density, and the integration is over the entire

body (assumed above to be of length L). the above integral will be zero

when i /j. and is a finite number M i depending on the scale of #a(x)

when i = j. It is convewjent to choose the scale of #n(x) such that this

integral will equal one nur.ber. equal to the total mass M of the body.
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There resrats

L afohen i 31)

and ose says that #,,(x) is normalized to the total mss M.
Each normal mode ca persist independetly with a cyclic inter-

change of kinetic zrd potential energies. The e9 .~tios of mio& is

where D is a spacial differential operator depending on the type of
structare. For insts.. Zor the flexural vibration e1 a beam

and for the longitedinal oscillation of a *leader rod

D = Z--I AE d~ (9.34)

where E. I and A rep~resent Youft*s moeiss. the momen of inertia.

and the cross sectional area respectively.

For the longitudinal oscillation of a Slender rod of uaffoz= cross

section. the differential equation, for the free vibratzon y(x.t) must

satisfy

m M4 -AEM-h=O
at ex
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For a :uniform rod o. lenwth L with iree ends and fixed center, the

x€-ma! modes from. Eq. (9. 3 are found to be

91(X) = Cos
L

P3U.x) = cos

= cos etc.
L

At any o de a. (a = 1. 3. 5. ) the displacentent can be written as

Fix. : ()nx

which s;: bT.i;-fttd into :, differential equation abovne becomes

iq .4 a(z) z •

w~herv z(U!)z AE (a

Th.ms. the so;ution q( -z cos w t is harrromic in the time domain with

frequen-. u . and its displacement is give by

T pX. x) cos W t

It is possible to hav'e a free vibration whic is not tie simple

sijc freeq-ecy Mzion iadicated by #21 4 and Wn For ins ce. the

bod'e might be 4eformed into some configuratiot 41x) differe-t from

Anty of the normal modes and then releared fre-.. ti -ositioa, law-

€er. note that OX) can always be represeated by the s;un of Mhe norma:

=odes with proper amplitdes as follows
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aad since eack nral nbode caft r-ersist indypenaialy. the resulug
muotion will be

T= Anpjz) coo wt (9-.34

fZI Fcrcid Vibration

MO a elastic bady is ea&dte6 boy a diatrii..ted force P. t) i.z-

C~IS& vi* r -* aping. ats aLfferestia: equnation of more is

Asmn new thsat the dispacemu yix. )j can be reprtev--ai by the sw
ofte nomeaZ ="it JI3 mutiplied ty Smbe time 2fNCOMes t)

(Z. Q (t) 0 (XI (9.38)

where0 the qjt) are to be determinfed.

Substituting Eq-. (9. 32) is". (1. 3-.

a W

it. 39)

Nea. repac DPu (x) - ,Z g(3*) (a) from 4.(1. 34. ultu?1eac

t~=by i (x$ &c ad inttgrate over the structure. Due to Wht orthegensaty
relatioc. Sq. (9-31). the first and thi;7 terms of Eq. (9-39) red~ce to
sing!& term for a z -" For the n'± zc : . to aszo xuihir,~I
it is necessary for C(Z) to be proprtional, to m(Z). Kf one lots
C(x) = 24 w (X) the suntmatisa agaia disappears for a at i a"d one

arrives at the uncoapled sero.- rder di Eerem- a! eq--zie for
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.(t) + 2;W q.(t) + wZq.(t) = - fix, t) 0,(x) dx (9.40)

Sinuse the integral on the right side is not a fu-nction of x, but depends

only on t and the mode number i, let

f it f(x, t) i(x) dx (3.41)

and , Eq. (9. 40) as

4i + 2iqi 2 1 i(t) (9.42)

Equation (9.42) is identical in form to Eq. (9. 5) for Ehe single degree

of freedom system. Thus, its Fourier trc..isform

Q F) -LW 
(9.43)

Z i(W)

correspond to that of Eq. (9. 16), where:

Fi(W) 0 e1-i ( t )

(9.451

SP, . &) (X ) .x
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F(x, - 5 e-'" f(x, t) dt (9.46)

Qi(W D eit d; (9.47)

i.e. Qi(w) and x, w) are the Fourier transforms of qi(t) and f(x, t),

.estricted time-wise so that th transforms exist.

For simplicity, consider first the case where all modes except

one are insignifii.ant so that in place of the summation

y(x, t) W #ij~g(X)

and (9.48)

Y(x.u) = L(. 0i (x)

Equation (9.19) for the mean square response now become* a function

of the space coordinate x, denoted by

CDIF (ci) F. (W~)
y (x)~ - - --- d

2w 0 T Zi(W) Z i (W)

(9.49)
2 D t L PL

- __I __lj J 7-'i,. ..i ,,u...U du, ,.. ,

One thus finds a new factor

F.(iW) = -1  0 Pu,)(',wlilulil) du du' (9.50)
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which will be referred to as the generalized power spectrum of the

excitation, entering into the response equation. In terms of the

notation F ii(w), one can rewrite Eq. (9.49) as

Y (X) dw (9.54.)

Observe that the generalized power spectrum FUi(w) involves the normal

modes 0,(u) and #i(u'). and is obtained by averaging over the space co-

ordinates u and u' in the functions FluoA and ]Ru',w. These functions

are Fourier transforms of the exciting functions f(u, t) and f(u', t,

respectively, the parameters u and u' being used in place of x here

to a,-id confusion .dth the -. x) term appearing outside -he integral.

Finally, consider the most generai case where Eq (9.48) must

be replaced by a summation

. ().(X) , *i(x) "L

__x._)_ --Z2. FIx, c)i .Ix) dx

i Zi(W) i Zi(u J"

(9. 52)

The mean square response will now be

y (X) =- -lx}
Zro T i Zi(W) j Z.()

(9.53)

C~o W )~(X) -1 TL
L ,.,J F(uo W) hu (u)9.(x') du du' d,

2W~~~ J WZ()T oI

The generalized power spectrum now is composed of the iniluence of the
.th jth
a and the j mode and can be distinguished by the notation
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F.(u) = - .uw) . w'. ) i(u ;(W) du du' (1. 54)
lJ TJOjo 1

One can then write for the -nean square response at position x,

= (x) ix d} ,(9.55)

Zu~ ij M ~~Z~

Equation (9. 55) reduces to Eq. (9. 51) when only one mode is involved.

Thiu completes the derivation.

9.2 CONTINUOUS STRUCTURES EXCITED BY CORRELATED
RANDOM FORCES

In the previous section the equation for the meai aquare respon.

at any point x of a continuous structure excited by a spacewise dis-

tributed random force was developed. Such distributed random forces

are encountered in the aerodynamic flight of missiles and aircraft,

whereas jet engines are an example of multisource concentrated ex-

citation for the continuous structures. It is the purpose of this section

to relate the statistical response of the continuous structure to the

correlation of the excitation forces at differing positions on the structure.

9. 2. 1 Statistical Response and Cross-Correlation Funcvon

From Eq. (9. 5Z) of Section 9. 1. 2. the F. T. of the response of

continuous system excited by a distributed random force is

Y(x,.,) = ZL S Fx.w)#i(x) dx (9.52)

When the random excitation phenomenon is considered to be stationary

with ergodic property, the correlation between measured quantities

at two positions x a.d x' at different times t and t + -, depend only
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on x, x'. and -r. Ensemble averages may then be replaced by time

averages and the staii;ical properties to be deduced are ind:peadent

of the origin of t chosen.

Define first the cross -correlation function of the response at

two points x and x' differing in time by -r to be

y(xt) y(x',t + 1r) = lirn y(x. t) yfx',t + -r) dt (9. 56)
T-ooDZT -T

The two records y(x. t) and y(x,t) aligned in time are shown in the

sketch below, and Eq. (9. 56) implies that their instantaneous values

at t and t + T are

yix, t0

multiplied and averaged. the result being independent of where 0 is

chosen.

Next, Lruractc these infin.te records so that outside the time

interv.?! -T to T. where T is taken to be a large time, the.ir vabaes

are zero. The equation for the cross correlation function then be-

comes

y(x. t"y(x',t + -r) y(x. t) y(x 1.t + ) dt M9 57)

where the limits of integration are m3tehndcd to infinity without altering

the result.
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The cross p.wer spectrum is the F. T. cf the cross correlation

£uncts-o,.

S y, (X, , = 0 e' " y(x) y(xl,+ dr (9.58)

Substituting Eq. (9. 57) into Eq. (9. 56) and introducing eiwt " imt = 1,

S (x"x"." = CD e - e'W e'ty(z't)y(x"t + 1) €t d-

If one interchanges the order of integrati.o. .lcdinx t constant and

varying r, one can rearrange the above equation to

X . o e-)(t e ) y(x'. t+ S d yIx. t) dt

and by letting t + r- in the first integral. d-r = dt

(XX ) I - y( .) Oe Wt y(X t)

y Z c c

1 I Y(x,}y(x,.) (9.59)

ZT

where Y and Y denote the F. T. and its conjug&:*, and T is a large

number approaching infinity.

The F. T. of Eq. (9. 58) is related to its inverse by the equation

Y(xt(x t -(39% e"S (x. xlwi do (9.60)
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The substitution of Eq. (9, 59) into Eq. (9. 60-, results in

y(x-t)y(x't -7) =-- e - Y(x'W)Y*(x.W) d w 9.61)

." T ar.- Y c.-n now tit repiaced irom eq. (9. 52) which enables

Eq. (9.61) to be written at

Tix. t) y(x'.t + T)

I .i(x-, j(x) L Z 1 e:
r  J J L F(x41,i(x.fi)(x,l(x) dr- dx do

2s i " Ji}L ZT

(9.62)

Ze i j J J-sW Zi(Wzi(.)SO

In Eq. (9.62), the tcrm

=-I F(x,(ffx~w) (9.63)
ZT

is the cross power spectrum of the excitation at x and x'. Equation (9.62)

includes the special case of the mean square response which becomes.

setting - 0 and ' = x. except inside the integra; sign,

-77.. Co I- - N.x L CL.
y . ASx. X') O &

(9.64)

Note the cross power spectrum of the genera:l-zcd fore

rJ sox. .Wi(u. )#,(x() 4W x (9.63)

remains unchanged in Eq. (9.62) and (9.64).
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The use of Eq. (9. 627 or (9. 64) is straightforaard. However.

evaluation of Eq. (9.65) for the cross power spectrum of the generalised

force requires. some explanation. The following exampleg winl clarify

this pon.

9. 2. Z Selected Physical EKMxPe*

Exampe 1.A Seneral structure is leaded by two ct'ucea-

tratud forces p I (t) a"d Pit) at POstOMOs X, MAj i 2 . Nf the correlion

fuactiv* haet asp 1(t) =A P P5) is kr-wn. dsternaim the mesn, square,

response at any point Xn.

The force per unit length. Ixt) can be expressed as folio":

Ax-t) = r- I(x( - ZIn) + P2 (t)IRX - 39i) (-

where &(Z - in..) is a delta function which is zero everywhere except at

i. The F.T. offixt) is

F(39.W) - P1 (4(x - i) + 'P3 .(x-

ad the ncitatioa cross power spectrum from Eq. (9.63) becomes

so(x. 44u -- ±fP 1 4P 1Hk(x - xI)G(xi - e) + PZI44P:GIK - 3y&in' -3J

+ P(W)* 46(Z- XZ)6(XI - st) +P *(44P1.(u114x'.- z)&(x - ai)

The ezcitation cross power spectrum boas now been resolved in terms em

the power spectra

Sf ~ ~ I. MlM lw
11i ± ZTI
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and the cross power apectra

IZ Z

Sf . W)Z I'4 )z"

fu ZT

Howev-er the cross power spectra G f (w)u are the F. T. of the cross

correlation function between P 1 (t) and p 2 t), whetreas -he power spectra

Gf(w) are M~e F. T. of the avtocorrelation f=c-tions Of PI(t) an" P ,(tJ.

Eqaciou (9- 6S) can now be evalua~ted. t!- resalt beino

SAX.L x.,~xx dx' dx = Si GC(e~x )*--(Z 1 + S. u.z 2 9(
joj I- j 11 111 xz

+ S~ (44.(x1 )0.(Xi (4 1 X)

Thus if p1 (t) and p,(t) are completely uncorrelated. i.e. PltPzt -ZC

S~ fi.(w and Sf'2 (w) will lop itero and the terms involving the normal mode&s

at two different stations will drop ".t. For Pi(tQpz(tj j(0. all four terms;

must b-- retained.

The mean square response at x car. then be written from Sq. (9.)

as

y a(x. t) = -LxZZ,.(X). x) times

Sf, (.49j(x I)# zI) + Sf wojx) (x ) +S Wt( #( W Xf(

i .9

where the Iawt two terms of the integral becomes zero for the uncorrelated

exc.tation.
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Exizinple Z. A continuous *tructure has a randomn I'ad

which is distributed over its !ength. Determine its mea square

rca3oflsC at an~y point x.

This problem can be considered to be an extension of problem 1.

Assume the distributed load i(x.t) to be represented by a series of

concentr--ed forces as follows

J. .) = P,(t)6'fc - X1 I- P 2:)6'x - X1 ) + P 3 (t)6(x - X3) +. 9.S

Its F. . and its conjugate are

f(xI.W) :, fIS(x' - X I) +PZ(41(' - Z) + P 3 ".6(x' X3 +

= ~I4 - Z)4P.4( - Vz P4.41(x X3).

and the cross power spectrum becomes

4P3(0?1 ()(x!z (xXw1(u)P2(u)(;KX'F3(m V)?3I b(6-13)4 -

71-c cross power spectnrm of the generalized force. from Eq. (969

is ther. reprcsern*.d by the following array of terms

S, 1(.41 (x3 Jp3 (x1 ) S3 ()jXfjXZ S3 ~i(3z1)#IX3) ...

Thus it is seen that the problera-. req~ires the evaluation of the cross

correlation of the excitation p t)- P~) between every pair of points

chosen as station on the structure: i.e..
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S I. (W) iAp 1 .jtI pt) dR

For uncorrelawed loads. i- e... p (t) ti = 0 for n /rm. opi!y

the diagoazi terms of the above array are retained and the amn

of conmetation re~zirod ;-s redaced corsiderably- It skouid be noted

however tise the diagonal termrs of the form Sn.(4 90(j*.(x in-
volve the products of the andt W- a

Iaj modes wv~ch re:_-ia to be

summed.

Exar.%ple 3. A contimuous structure has a com ective load

expressed by the eqiation

B~x. tj= p cee k (x- ct) (9-69)

where p is tiw amplitude. c the prc-p&a&a speed of S-..: and

k the wave nmbe. To determine the cross powcr Wectrum of the

load, first flid the Fourier Transform Flx'.*A as follows- From

Sq- (9- 4e@. repiacing z by xg a"d using a Ulaiting operation.

F(xl.&4 = imn p F CT tcsk~'-c)d
T--a %J-T

= lim p T e _kx when U = kc
T-a.

= lim pTe ik' when " = -kc

= 0 wewIt +/.kc
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In r. e limit as T-ww. Fix;ul and r ix. a4 become iasaite. which is

to be expected siace the F. T. or spectrum off a harmonic function

e etis a delta itction 6(w-kc) madtilied by t2!e factor Zw.

Fro Eq- (9- 63) the cross power spectruma becomtes

SVx.x4a = Jim !Z.iibX-X) When t = ke

= im P reik(x'.2) uhep 'W -ke
T -- w Z

aU -be W/*fkc

Now. replace the limiting value of T by the delta knedms (Zwr)W~ - kc)

and (Z:-)G(u + kc) at w - kc s -kc. respecti-reiy. andl rewrite the

above eqzatioa as

V1 x. x?. V uZ [ C ikxX) 6(. - kc + *a~ ikxl 6 * Ito]

The substitiation ol SiX. W. W) inbo Eq. (9.64) involves the following

integrals

2 ^0 ~ c) LfL -kxo)

Zr P I.Rw +kc) .iL k([x) 0jz)V (X) din' ilsido

- p I ZfL rLesx _ 9:(X')() ale dx
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since Z(kc) -Z ( - xc). thi 5 qzaezfty beinc an even fi:.ctouk of .-.

argamem-e The fiia! --jressioat for y7~7) is* th--

?tpZ Z *(X) Oix) fL L

This concl~sdes Example 3..

Ba- summary. material in thi:- section has outlined a procedure

for the deer.-loatio of the cross-cot re~tios or nwaa squre of the

r~rapoase 91 a coauieos stru-ctuare excited by a disuributedl rawam lea.

The task resoi%-es inito oac of evaluating the cross-c-3rreca.vai:.c- i

Is..;=%ww eAI*.ig~~ very p4&r es pomns caac~a A. aiia Oa te

structare. Since in most cases the ceoss-corre~atioe, 6sc- between

two suxtims dimirdsh with the distance beweta them. the mumetrica;

-- Imes of the cross power spectrem im~cated, by the array in Exhmple (Z;

wisl decrease for etemeats as they deviate from the -main diagonal- For

the uncorrelited '.xiatat-- only the diagonal terms of the array wiN have

valves other than zero; howrn-vr cress products ot the normal modes

at each &:&aron cannot FOa*ie is the calculaion.. If ftv ever thet

power spmctur Six. x. w of the exaE-iof rari es aloag x in propor-

tion to the m~ass distri !ioEaf. then Eq. it. f65) !=dicates that for the

uncor related exciatation the terms isrovMag the cress predacts of? the

normal modes will he zero. A ur~iforn= vw;%m or plate with const ant

power spectrum distribution in x would satisfy such a requiremuent.
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1. 3 MODIFICAflON GF REWOKSE DUE TO W"DUG

in Me roblem ef etublisking the response ot a missile campe-st
auIer16od ft'6 sL~e t !~'.!= !OCZ a~fG r seOf the SeiSSile

strtct-ure itself. at te "-iLZ wbwae Mhe c~~moes is to be attache-L is

of- pecif~ed as Mhe envirsumeat &r e~ittiom ander which the ccda-

Paeet "uSv Operate- T~tS &*w~mrim S .% M-1~ ubes the mass e !!Me

copnent is small bet unrealistic for sisable masses; doe to ftha edig
effevL It is; evident uha: a large mass aftachait toe a vibeating sucftr
'Win ta" to farce a mode at te poinat uacbmne at is al"o bases

daZ sgetat =a** Sye af aMach"dto, a vibratift body act a" ML wo-a-

Sionm absober at Uts natural freqseocy which ialtiba he wisom of *ae
vibraing body~ This 3odiag uffe depends; am he ratio of the no"e m
of the Compomezt to tibe local mm," " of fte sftru* which is affected.

a" "h pzrp--ze z: this "cie -as ft estblishthis effe*&uMiaiwy

For she imlysia of the problam, it is desirabl e ocoidr the

Over-all! *Toumi to I* divided Aso. ve form a primary s-Ie - Ich
e=Acledie, missiles campofteu m qwedo.0. &ad the osen*y system

consistiag of the comoen and its smosimgse oolo. as; ailbcrat'd

am Figure 9~1. The primary system is represeated as a distributed

system of mass AL whereas the seceasary system is revpreeted opy the
attached spring mass oscillator of mass m asA spring stiffness k-
Dampimg will be left out ist this first section a" the mxitatiou will be
&ase-D to be harvuomic at frequency v~. Later sections; will consider

dsmpinp and raedom excitation.

lemnag f hx e the aormal modes of:& nh atiowk- primary systm.

the response of the Weaded primary system can be represented in terms

of #jx) as. see S. 19.35).
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Figure 9. 1. Schematic Diagram of the Primary Structure
ar~d the Attached Component

where %n(t) is the generalized coordinate describing the time variation

of the nth mode of the loaded structure. With the compor.2nt attached

at x = a. the generalized force due to the secondary system is --mn r%(a).

Asawning the exciting force to be f(x) sin cot, the equation for the general-

izied coordinate of q q(t) becomes

q n + ( nq n M IL A~x) (x) dx -!!.# (a) (9.72)

where: M=JL#' (x) dM =gcncralizd mass of the primary system
0 which is normalized to the total maes M

of the primary system.

L tigK n L f(x) # (x) dx (9.73)

and since 9 e. , and 4n=-w qn the solution to the above rquation is
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2

nn +n 1

M + (9.74)M n [,--w,
The equation of motion for the secondary system is

L -. ,...11= (9.75)

"4 *,:. hw i.tt.nV. "Z k here resci"ts the relationship

y(a, t) (9.76)

Now, substitute Eq. (9.76) into (9.74) and Eq. (9. 74) into (9.71)

as follows,

K s) On(a) y(&, t)
.7f2 nIn fli

MW~' nn L

Solving for y(a, t) yields the result,

T", K n (a)

y(a, t) = (9.78)

AS& 2 (a)
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Note here that the respone at x = a with no recondary system attached

(i. e.. in = 0) is

Y(a' t) =. Ki d(a) (9.79)

Thus the ratio of the response of the loaded to the unloaded system at

x = a is

R(a) = (9.80)

Next, examine the amplitude 4 of the rissile component, which

from Eq. (9.76) and (9.78) is

Here again one can compare the response for (iMS'4 I 0 as compared tom/M}= 0. Since - 0 for s = 0. this ratio becomes equal to

n- [1 (t)

0o

a) (a

0-1

where R(a) is liven by Equation (9.80).
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9. 3. Z Special Case of Rigid Attachment

If the secondary mass m in attached directiy to the primirv

system, the case corresponds to k = ao or &, = c. Equations (9. 78) and
0

(9.81) are then equal and become

nn 4.
W 2 1 %' 

S")
si ~ I~ J(9.BL}

(w) #Z(a)
1 m Wh n .

n j

To determine the resonant frequencies, the numerator and de-

nominator of Eq. (9.82) are plotted in the top half of Figue 9. 2. where

the dotted curves are the numerator and the solid curves the denomnator.

It is evident that the resonant frequences occur at points (D (. (.
etc. where the denominator goes to zero. Since the second branch

(n=Z) of the denominator curve contributes very little to the first branch

(n=l) near OD the first resonant frequency is given by

1( (9.83)

and the addition of the mass m to the structure lowers the quantity

(id/l)2 by the amount
2

I I+ 9 (a)

For the determination of the second resonance, it is noted that

the contribution of the third branch is negligible and. since w >, 1.- the

denominator is approximately
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Plo of'C Eaio 9.& -- banhso *ao

E~ataol 9 * 2 branches of denominator

0 M:

Ix I
me.3

Resultant io fEao .&

Figure 9.2Z Resonance @i Struaurt with Rigidly Attached Mass
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+n 2Oz m () (a) 0M; (a))

or

4) = ~ j 9 (a)

follows t-at the atlantty (wi.Z) is lowercd by

z M Z (98?., ~ #2 9(a)

By inductioa, ihe nth resonance is given by

A-I

and the quantity (w/w.) z is lowered by the amount

m Z

n ! a

n=J %

At the frequencies v,, v,. w . corresoondin. to the nath!ra
modes of the primary structure, both the numerator and denominator
are infinite but their ratio is finite. It is only necessary to consider the
two terms approaching infinity in the n,,merator and denominator which
shows that the amplitudes at these frequencies are
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-K, sin t

MW P (a)

-

9.100)

gu~Z r Zla etc-

It is now possible to plot the zesults of the findings here as shown in the

bottom half of Figure 9. Z. Each normai mov frmquency of the primary

system is lowered due to the added mass. but the degrees of freedom

remains unchanged with the same nimbar cA- resonant frequencies.

9. 3.3 Effect of Dampinz

In the first section.9. 3. 1. damping has been neglect.ed since its

effect on the resonant frequencies of the system is of second order an

therefere negligible. Dampiug A: of -nportance. however, when peak

response at re.saance is of concern, and its effect will be considered

in this section.

With a viscous damper between the primary and secondary system.
Eq. (9.75) is changed to

n-n + [ - j'(a.t)] + k[ - y(a.t)] = 0 (9.101)

and in place of Eq. (9. 76). by letting i&4 and j- i.y, one obtains

N z y(at} (9.102)
0 0%

where 4. = -"- fraction of critical damping.
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The left side of Eq. (9.72) must now have an additional damping

term 4nu,%where il, is the fraction of critical damping for mcde u,

so that the equation for qn becomes

K r~nhwtz
' i la)

qr (9. 103)

I- n ~ ~ 'w~L-

Combining Equations (9. 102). j9. 103). and (9.71). and solving for y(a. t),
Eq. (9.78) is replaced by

sin .ai ja)(.
n z _ 2 "_ -

y(a. t) = z (9.104)

LE .oj L n -

and Eq. (9.81) by

I+ iz o (W)

0p times Eq. (9. 104) (9. 105)

% 0

These equations are much too complicated to work with. How-

ever, one should take note of the fact that a zingle damper in the system

will prevent infinite amplitudes. Thus one,--an attach a viscous damper

co to the isolator spring -f the component *d consider the primary

system to be undamped.
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9. 3.-4 Hndampe Primary Structure witk DaMped SecondiLry §pring Mass

The component attached to the undamped primary structure is

assumed to have a damping factor ;owhich will be held constant as w.

is %varied. Of interest is the variation~ of the amplitude 4 in the neighabor-

hood irp rpno-ance atte~ t^ -v-rjjtjc of (!

The equation for from Equations (9.104) and (9-1105). astuming

;n 0for n 0. is

= 2 C)~ 0%: times

0 Wo(9.I0M)

I #I (a) KI a)

Mer I z z
L. Z

ft is of interest to examine this equation for two values of w. near the first

resomant frequency.
At w. zw the terms containing the factor J winl dominate

I- ct)Z
the expression which becoymes

1: -K1

-A (9.10?)
Mli VAt '01(a

Thus, the amplitude 4 decreapes as (Ulm). It is noted also that the

result is independent of damping sin~ce the freqnency w,1 is off from

resonance, and damrping influence* only the peak awnpMitu4e at rescn"arce.
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Conrider next the peak response at the fi.t reso=W. frequency of

.6c cadd st -hcture. Rewriting . 1.-06) as

K1 ,1  K2zz

1 . i zA -! b 'I
0 0

l19- --

V 

+6K,1  l 2 1

the ~ ~ ~ . ipnoiato €omi mro 'si. lseo(1 ~U

the approxaimatioat coming from assismng 24o(.4a.*<1I OR*e c.- a-"

equtate the real part of tke denomnator to zero for the peak resr~onse.
Z ZAgain. assuming vrC the real part of the denominator which is

equated to zero becomes

Z Z
Z-7 (.E) #

0

or

W1 Z (W4 !i
-~~ L J 919
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For the previous case where in is attacked directiy to the prir-atry

structure. . = m. and

the same ressi? as Eq. t9.83).

n general. from Eq- j9. 19), as (wIw,) increases frem ger@.

* freques (1e0wl splits uff to t fr eqecies c4 tie quadratic *q"-

i. (Oo) z eand the problem agaw becomes more cv-opicatde Mkw-
ever. for small valuea cr (e.liwz ~ cam asme the resnan froquOcy

:4 differ only wSily from Eq. (9. 1101. and the peak resposse frow

PON.. 0*; becomes

SK 3 1 () 

k is noted now th peak response as given by Eq. (9. 111) is inversely
prolpelrtional to tk* danopin So as it should be. Also * last factor indi-

cotes a rodhactiona d the peak reslroooe with increase of (=IM) from sere.
The infiite amplitcie at (=/IQ w 0 is explained by the fact "t as m

approtches sere the system reduces to be uamped primary strcture.

1~ 3. 5 Response to Random F titatimo
For random excitation one mid replace the generalized force

A) , (x i q (9- ?Z) by i'If[9. tj #k5  dx: z .(t)

wbere f(x. 0) is the random force. By taking Ow Fonricr transform cf

the diereatial equations of the previous sections. Eq. (9. 104) is r".iaced

*y the equation
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Fjas is.%

a a

ar

a-ZR

.11 - F

L An(SdI

where Am(. and Zj.(.4 are defined by ~Muaies 1.9. 1121 and (9- 113).
Fdlhwimg the precdre ouimed am Section 9. 1.2 4 he mmm square

respose for the secoady slaess can be shown to be Sivas by

Jim w. Jl41.
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As in Sq- (t- 54). *Ae UO.Or 'F-Ju4 is can*&do hefteralized pewr Specuwe

of the excitaties.

AWficatis of the e'jAatis d thi:s gectiat ca be iilesirakd by
rus~eim a ca"n wkher* lb ranalmm force is wqeablae cc Is forms

The equtias for17i v-- -~ Ieo

A" -Mw iu1 im pil
% '.5m AL -

i.m £1 Tz-?

T

4 Twft 2T 4-T

ilion - p(t v a

is the tune -. turrelatin imtiam of the TorMity pit).



;- na* cazs tc t~c =rr~ft~i f=cigw 4r~ WE rapiy wida z.-

I! om a.ssue

Vol~ grt)l W.9.i it- 1

waarc i s dbe iseal noit imposeo faution. uck meo dt he
corrodai is ute 5.. a31 v enet uS, = te last iwkwZ zms

swd te occers; dbe sFecia came of mwit now*-. Me .Sasaalisei
pow* r SP aecm js he*&

7.(44= t a) w(Ms v qph1 (U as 4k (9. 1Z.
IL iti

which is iepowde of. Te =*a sosstt rsqm a s mm Auw
frm tk* Oquw

uwre the fact.. 7.1.4& is a costom as rtr thoe wmmsral eser W
Since :he C&SOna pea& ainvg'*.'S froms !be pmei"ws amalyis an1

SbW i.eCreae withk iacrease at isollott. e... lIZtal io r-toed

due to lAcr&sse of (mix) jibe AUO&e ibwftrh is a!" re I re&. Te.
the ~ S~* ?t79 -kinoU~A4U *=iaivaj --Sade 1,4iimp isa

einaier ertaitmdb iLtIdeg



9.4 VIBRATION INDUCED STRUCTURAL FATIGUE

Otie of the most important reasons for interest in the vibration

response in modern flight vehicles is the concern over structural fatigue

damage, Considerable work 'tas been done over the last 15 years to

correlate the vibration response of a structure with fatigue life. How-

ever, most of the efforts have been no more than an extension of

procedures suggested by Pal.ngren in 1924 followed independently by

Miner in 1945 (Ref. [ 15]). The basic hypothesis, often called Miner t s

1...- statd as!1e: Az=-ne a strumcture is subjccted to a
repetitivc load rcsulting in a maximum stress level of SP and the

• ... _,-z . ... z ... ive load S, required to produce fatigue

failure is N1 . Then if the structre is subjected to a repetitive load

S for n I cycles, it is stated that a fracdon of the total fatigue life

of the structure equal to n,/N1 will be consumed or used up. If the

structure were then ,ubjected to a repetitive load of Sz for n 2

cycles, where Nz cycles would produce failure, an additi.ana fraction

of the total fatigue life equal to n./N. will be consumed. The consumption

of fatigue life in this manner is considered cumulative such that

-,n.
(9).124)

i

where the term or. the left is sometimes called the cycle ratio.

Considerable exper'ime-ntal data has been gathered in attempts to

substantiate Miner's Rule. Ref. [4] presents a good summary of such

experiments. Considerable scatter exists in the expeiLimental data

with cycle ratios varying as much as one order of magnitude from the

cycle ratio of I suggested by Miner. However, the vast majority of

experiments did produce cycle ratios between 0. 5 and 2. 0.

From Ref. f41 (Chapter 6), Brooks reported a &cries of studies

from which he found that one could have 95 percent confidence that

90 percent or more of the specimens tested would have a cycle ratio

between 0.4 and 1. 8. Similar results were reported by SmithHoward

and Smith who tet. d 60)0 sgwcimArns. Fbey fnnd the order of applica-

tion of the high and low stress levels was not important. On the othcr
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hand, many other investigators believed the order of application was

influential on thie resulting cycle ratio.

An area of concern to some investigators is the fact that Miner's

Rule assume* linear accumulation of damasge, i. e. . damage accumula-

tion for repetitive load. with a maximum stress level S I is directly

proportional to thte number oi stress cycles n,, appiied. An a result,
a number of more complex empirical correlations have been presented

an typified by Refs. [ 31 and [ 121, but there appears to be considerable

question as to whether or not they have enough more validity over

Mine.-s Rule to be practical.
Thus far, only fatigue damiage for steady state loads has been

discussed. Miner's Rule may be readily extended for non-steady state

loading if certain statistics of the response are known. A simple

development ip presented in Ref. [41 as follows:

Let f(S)dS denote the probability that a given

stress cycle will have an amplitude betwetki
S and S + dS. Then the number of cycles

dn at a stress level between S + dS will be
given in terms oi the total number of cycles

N tby

dn = N tf(S).dS (9.125)

Miner's Rule now becomes

s (mx Ntf(S) dS (9. 126)
S (min) NS

The above equation requires that; the probability density function of peak

amplitudes i(x) be known. It also requires that the number of cycles

to failure as a function of stress level be known. The S-N curve for

many materials can be approximated by a straight line on log-log paper.

In this- ca~e,

N(Sj -- 4 N9 .A",
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where N Iis the number of -ycles to failure at a stress level of S.
and b is a slope constant . The pravious equation is then simplified

as follows:

NI - (S - d!; =1 (9. 1 Z8)&is (min) N I1

Consider the meaning of the above statemnent ot Miner's Rule in

terms of the respons3e of a typical fieat vehicle structural panel.

Vehicle structure is usually very lightly damped (damping coefficient

less than 3 percent). Then for any broad band random input spectrum.

the spectral power of thccte t~~ response will itC coiaceniratud ita

narrow frequency bands centered at the normal mnodes of the structxre.

Corrczporldingly, the peak stress levels of concern wilt bir I iited to

the frequencies of the normal modes. In a paper by Miles, Ref. [j 141,

it is pointed out that when a random function is filtered by a narrow band,

the response becomnes more normal as the bandwid~h becomes narrower

even if the input does not have a normal DrohxH;ility dintribuie:. -1.1

the response through a narrow band has a normal distribution of instant-

aneous amplitudes, it will have a Rayleigh distribuztion of peak amplitudes.

The rms value of the response would, of course, be a function of the

input power spectram and the damping coefficient of the panel. When

the response function is measured, a knowledge of the source and panel

characteristics is not necessary. Then for a single degree of freedom

linear structure with a natural frequency of f 0 and a mean square

stress response of ;p, the distribution of peak amplienden, f(S), may

be replaced bjy the Rayleigh distribution. Miner's Rule is then extended

to the following:

Tfo ~ 2 dS = 1 (9. 1 9)
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where T is zotal titme u fWiure and S 0is the fictitious stress level

for which one cycle would cause failure . The above general equation.
as modified and extended by specific investigators, is 'Widely used to
predict fatigue life of struictures. In particular. a more general
Rayleigh-Gaussian distribution for peak amplitudes is presented in
Section 4. 9. 3 which might be substituted into Eq. (9. 1 Ze).

Miles in Ref[, 14's presents a detailed development of the cumila-
tive fatigue damage for a single degree oi freedom panel starting with
a jet noise source using a generalized nonlinear cumulative damage
correlation. A pertinent conclusion oi the paper is that nonlinear

damage correlations do not produce results significantly differet from
those obtained using the simple linear correlation of Saner.

The general procedures for fatigue lie prediction discassed thus
far were developed for ;. sinrle degree of freedom srstexn. for the
real case of an elastic structure subjected to broad band random
excitation, the response will reflect the participation of many modes
and will not be a single degree of freedom response. There is con-
siderable question as to whether the Rayleigh Distribution is an acceptable
definition of the distribution of peak stress amplitudes for a complex
multi-mode response. Experimental analysis of some missile vibration

data by Douglas Aircraft. Ref. (7), indeed indicated that the distribution
of peak acceleration levels in missiles deviated rather widely from a
Rayleigh Distribution.

One concluding point should be noted. Many mctals possess the
characteristic of having S-N curves which are a straighr. line on log-log

paper only above some specific. stress level. Below this stress level,
the S-N curves become nearly flat; i. e. , an extremely large number of

load cycles approaching infinity are required to produce failure. This
stress level at which the slope of the S-N curve changes ia Callad the

endurance limit. Steel ir. particular has a very distinct endurance
limit. Nonlinear cumulative damage correlations have been derived

which take the endurance limit into account. However, Miles and others
believe that if the rms stress response is high compared with the
en~duranace limit, it may be ignored with little error.
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9.5 EFFECT OF NONLINEARITIES ON RESPONSE STATISTICS

Nonlinearities in the transfer characteristics of transducers and

data processing instrumentation will influence the statistics of structural

vibration response measurements. Of course, the nonlinear character-

istics of the structure itself will influencc the statistics of the actual

response as well. An ability to recogniz. ke effects of such non limearities

in vibration respoese data would be valuable to the data processing

engineer.

When vibration response data is tested for normality (a Gaussian

amplitu-e denai.y), "d that data deviatcs from noamality, three primary

possibilities exist.

i. The source of excitation was not. a stochastic process with

a Gaussian probability density.

2. The structural trAnsfer function was nonIne.M a.

3. Tht amr.- tl e t.-sfer characteristics of the transducer

or data processing instrumentation were nonlinear.

Little can be done about the first two possibilities, but something

might he done about the third possibility if there were reason to believe

that the ,'alin.ar Ltnsfcr characteristics of instru mners were distorEing

the measured response statistics.

Assuming that the input source is Gaussian and based upon the

limited info: mation available, it appears there is at least one case where

an instrumentation nonlinear effect could be di stinguished from structural

nonlinear effects by examination of the acceleration response probability

density. Clipping of the response signal by an electronic device can

cause distinct clustering on the tails of the amplitude probability, density

of the response. Since common structurid nonlinearities -,ould probably

not bc sufficiently abrupt to produce this result, the presence of such

clustering would point to an instrumentation problem.

Another possible area of distinction would be an acceleration

response probibility density which displayd large kurtosis (a density

function with thick tails and sharp clustering abo..t the origin). The

results of an experiment on a single degree of ireedom syste-m with a
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nonlinear hardeuing spring indicated such an effect. Since the common

amplitude nonlinearities associated with instruments do uot produce

anything resembling large kurtcsis, the presence of such an effect in

an acceleration r.!sponse probability density curve may pint directly

to a structural nonlinearity.

9. 5. 1 No!inear Transfer Characteristics of Instruments

Consider first the case of nonlin-ar a=zi.a! " L-staracter-
istics (nonlinear gaiun which might he associated -wih transducers and

daza processing instrumentation. Included in this category is the

problem of limited dynamic range. When a random signal is passed

through an amlitude transfer characteristic which displays amplitude

linearity., the probability density function of the signal will not be

changed. If howe-er an amplitude transfer characteristic is not linear,

the probability density function of the signal -ill be altered by the

transfer characteristic. If the probability density function of the signal

is altered, the mean value and the mean square value (and other statistics)

of the signal will prrbably be changed also. The effect of nonlinear

amplitude transfer characteristics on random signals is briefly dis-

cussed with illustrations by T. P. Roe in Chapter 7. Ref. [4). The

discussion given there of the effect of amplitude nonlinearities on

random signals .eq-uires careful intcrpretaticn on the part of the

reader. Because limited dynamic range is such an important problem

in the -measurement and reduction of random vibration data, a critical

discussion of the effects of limited dynamic range on a random input

signal is presented in Section 9. 5.4 herein. A related general treat-

ment of the effects of nonlinear transfer characteristics on the statistics

of random signals is available from Ref. [5]. Chapters 12 and 13.

As discussed in Section 9. 5.4, the term "limited dynamic range"

might oe interpreted in two ways. The interpretation implied in

Ref. [4J is a transfer characteristic (gin function) with a gain of one

for amplitudes with absolute values below some specified level, and a

gain of zero for amplitudes greater than that specified level. In other

words, an instantaneous input amplitude with a value outside the dynamic

range limits would result in an instantaneos output amplitude of zero.
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S1jc: an iraerpretaticn of limited dynamic range has little physical

significance. i. reality, limiteJ dynamic range usually implies a trans-

fer characteristic which limits amplitudes with absolute values ab,-ve

some specified ievel to that specified level. This gecond interpretation

is more representative of such phenomcna as clipping, magnetic

saturation. and similar physical limitations on amplitude linearity.

The specific effect of both interpretations of limited dynamic

range on a r.-dn- signal with a unif-orm input probability density

function is developed here in Section 9. 5.4. The delta functions in the

output probability density functions s'own in Fig. 9. 3 are, of course,

the resuti of ar. idealized dynamic range limitation. In reality, physical

-imitations on signal amplitudes would not occur so abruptly and the

,lelta functions would actually appear as clusters on the output probability

density function. The height and width of the clusters would be dependent
upo. 4o,,- sui-irply te Eransfer device would limii amp-I.tudes. b't the

areas under the clusters would be approximately the same as the areas

of "t,€ delt functions shown in Fig. 9. 3. Note that the rms value of the

signal is reduced by the transfer characteristi.C for either interpreta-

ti.., but not to the same value. Cioop ng will result in the higher rms

output. Also note that for the example considered, the mean value of

the signal is unaltered. This is true only because the signal probability

density function and transfer characteristics selected for the example

were considered symmetrical about zero for simplicity. In general,

lack of symmetry in the input probability density and/or transfer

characteristic will produce a shift in the mean V.line of the output.

Presented in Fig. 9.4 are qualitative illustrations of the effects

of common noniinear amplitude transfer characteriatics on a random

signal with a Gaussian input probability function. Case fi) demonstrates

the clustering on the tails of the ampl'tude density caused by symmetrically

limited dynamic range. Case (Z) illustrates the effect of a nonlinear

transfer characteristic in the form nf x gain that falls off gradually with

amplitude. The general celect is clustering about the origin. For both

Cases (1) and (Z), the rms value of the signal is reduced but the mean

value is not altered. Case (3) demonstrates the effect of an asymmetrical

nonl-near transfer characteristic such as might be represdntativt of an
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asymmetrical transduccr. For this case, not only is the wins value of

the signal reduced, but the mean value also is altered.

Of the above three types of non~inearities. limited dynarnic range

as represented by Case (1) coustitutes the most common problem in

vibration measurement work. Cases (Z) and (3) will usually not be a

problemn if high quality tranhduacers and instrumentatioc are used. The

majority of vibration response data being gathered today are obtained
using piezoelectric crystal acceleration transducers. Ccmm=ercial
crystal accelerometers have a dynamic range of up to +10, 000 S's with

a maximum amplitude noulinearity of +1 pereent ovcr tke evatire

amplitude range. Fot normal vibration measurements, amplittude no&-

iinearity in crystal type transducers may be considered negtigible. The

associated instrumentatioc including data tran emission and processing

equipment will usually A!islay equally good linearity witin the dynamic

range limits of the instruments. However. ever. ithme highest
quality instrumentation, a test engineer may unduly limirat the dynamic

range 9.1 random signal mctasureinents by improper use of the measure-

meat equipment. A common example is the improper 'ase of instruments
which w~ere ilesigned primarily for harmonic signal work.

Many ins trumtents used in association with vibration m. auaremmst

and analysic are equipped with input attenuators and signa level meters

which permit input signals levels to be appropriately adjusted for the

dynamic range limits of the particular instrument. To keep the signal
to noise ratio as high as possible, it is not uncommon for the test

engineer to aduit the input attenuators so that signal Iteis are near

the upper limits of the instrument's dynamic range. if the input signal
level meter is a conveationrl average sensing voltmeter zc-Iibrated in

rms for sine waves. the main-atri inpa level to the instriiment as

defined on the meter would probatly correspond to that voltage level

where the instrument begins to clip sine waves. In ether words, the

instramee. w~ould clip vcaltage cal o about 1. 4 times the maximum

rms voltage input as defined on the meter. Consider the case* of input
sigals vuhich are random and have a&Gaussian amplitu.de probability

density. The m-s value of a Gar-ssian signal (I*-) would be (Z/j-i)
or approximately 1. 3 times the reading of an average sensing voltmeter

ca!ibrated in ring for sine waves, Re(. (9]. Than if a Gaussian input
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signal was adjusted to the -maximum indicat~ed inpoat level fer such an

instrument, clipplag would occur for signal amplitudes above oaly 1. Z5a:

Sometimes the problem of limited dynamic range is unavoidable

as in the caza 61' .. enginear who has no controt over sensitivitv or

gain settings of the instruments during the actu.al measurements. For

missile vibration measurements in particular, unless the test engineer

has some prior knowledge of the environment, he often must estimate

what the vibration levels will be and pre-set the gain 'nf the measure -

meat instruments accordingly. If the estimat-eof the rnvironnt is

poor. the data may be obscured by background noise or distorted by

clipping. The problem is further aggravated when the desired vibration

responzc usmasurerieats are to cover several different flight phases

characteriedi bi different rources: of excitation producing widely varying

response leve!s.

9. 5. Z j'cnlintear Transfer Characteri;stics of Structures

Separate from the problem of nonlinear amp"'tudit transfer

characteristics of instruments is the problem associated with the response

of structures having nonlinear transfer functions. Real elastic structures

such as aircraft pane' s ". iy -emonstrate the nonlinear characteristics

oi a hardening spring (a sprin~g whose stiffness increases with amplitude).

For large bading deflection of a flat plate. the small slope assumption

used to lirearize the p!atc flexure problem !.ccomes invalid, and the

plate 4eflections are Zess than -tuniad Lc pd-.ttv, h. 7 Vear plate deflection

formulae; i. e., the plate becomnes stiffer as bending deilections increitse,

Ref. ( Z1j. Furthermore, when clam~pe~d edge conditions exist, the

flexure of the plate is not independent of tension loads for large deflections,

and these tension loads also produce an effective stiffness to flexure which

increases with defiection. The analyticd development of the nonlinear

spring force problem for continuous structures is rather irnvolved, but

the related althugh simpler pro~blemn of the response of a nonlinear string

is treated in Refit. [ II I and r171 for those interestvi in de?'ils. In

general, the frequency response curve for a mechanical system with the

nonlinear characteristics of a hardesting spring is typified by the well

known 'Jumt) phenomcna". Ref. [tSJ1.
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Another nonlinear paramieter of real elastic strjctures is damping.

In elementary" vibration theor . the damping forces are assumed to be

a iuncion. of velocity and only velocity (viscots da=ping) so that linear

e'autions of r.otion will evolve. !a real elastic strctures, e damuing

forces are not linear- in complex struci'res where rivetc j-oS are

included, tl dissipation of cnergy through damping is primarily de to

relative motion in the joints. In the case of a si:ple contipmou structoe,

the .1amnzg. ri=.ts frc.-i iuternai friction and is ofte= called solid or

hystercis dampnEq, The actuJ mechanics of so!id damina is mot

cizarly defined although it has been the object of considerable research.

The extent of investigation. in the field of solid damping is readily ia

frown Ref. [6 which reviews almc**. 90 technical papers publisbed oan

this subject. In general, it can be said that the fe. sr dissipated

per cycle by solid damping is independent of frequency and proportional

to the second p-wer of the displacement ar.p!itude.

The topic of nonlinear strucr-'ral rest--mse to stochastic forcis

does not readily- lend itself to analytica trea"-e:t .he most productive

investigations of Lhis subject have been empirical in nature. Of pa-tiu-

!ar interest is an aniog computer study of the response of nooliner

mechanical systems to random inputs by Mcratosh, ReL [ 13J.

Three types of nomlinearities in a single degree of freedo

system were studied by Mcrntosk:

I. Combined linear and displacement cubed spring force

(hard4*sing sprini

2. ombined linear and disptacement cubed damping force

(hysteresis damping)

3. Combined lin.ar and velocity-squared damping force

(air damping)

Each of the three nonlinear models wa subjected to a random input

acceleration with a Gaussiaa probability density foaction and a wide band

(as compared to the computer rerpouse) uniform spectral. density, and

the response of the mass was meas-ared. The residts are presented as

plot* of the probability :f exce-dizj; asos of outpw. zc:eleraion to rm&

output acceleration for various degrees pf soulinearity. iots oi relative
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ring response vcrsus degree c~ znn!inearit-, are a!=o shon. Th-t con-

Clasions Iftnpj-Ed by- the graphical results rsi-a- be g er2izd at

1,. For the so'Izear hardening spring. as the degrie of mw,-
inelarity is increased:

a) The rms accele ration of Mr. respcasc, increases-

ts Thec probabiulv of exceeding accele ration ratios rf

greater thax- 1,.6 i"-reases. vd-ile thet pro'bability of exceedirg Acce~tra-
tice rz!Eas IOUless CLan 1. 6 decreases.

2. For the nonlinear hrotercsis damper. as the degree of am.-

linear darsjAng is increased:

a) The rms acceleration of the response decreases.

WO The pgo~.ability e4 excardie ".y =wec *cc~rz*_i*; razio

3-. For the nonlinear air datmper. as the deg~ree of nonlinear

damping is increasc-d

a! The rm* accw*Ecration oi tinc resp~asse dec r--ses.

b) The probability of excteding any given accelacration

ratio decrease*-

The conclusions under a) are clear and quite nweantingful. The

cnclu~ under ia4, however. require further in-vPS!i$Ition. The

"probability of exceeding ratio" plots are based upon ratioa of ae'flrA-

tion to the rnns zccalerationo for each conditi".' *r d,-ree =! anonlincearfty.

Since czek degree of acalinearit- prodced a different response rmsF

acceleration lee*l. the scale on the plots does not have a conno

denomsinat.or for ail! curves and thus5 has A* significance in terms of actuAl

aicceleration levels.

For c=m-c ig. 17 in tkef. ( 13). izdicates !;iat the protability

of acceleration* exceeding thet rms value for a linear system is about

. 32, 'stile the probab~ility of accecrations exceeding the rrns vaive

for a specific delgree Wr spring force nonlinearity (idenmti fied as b a1. 01

is about 0. _7Z. HIowever. Fig. 16 shows~ tihal the rms --cceieration
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respse for the !imar case. Thim ike prz.basIity of doe acceleration
respwffe levels exceeding SOINme acmal acce!rMtios leveli, say doens

itsfor the limear resae, is aboat 6. 3Z for b~th e ia-ear aod Mhe

sadriarcae.;i aaUWC stwiies, 0-e dia *bou be present" in the

form of probability density curves ona owwu abscssa so that =are
explicit itatistical comdossn coauU be drawn- Nevewtese t
report i-sclu-des Pertinent kv!aramano i1ke ressits; zre infeete wK.

nased a= a b!m4- Ste--Mis -& SCUU0 wal
aabzayss. it is believed that te daft is ReE 131 ougpsto the effect

CE The nostide~AaeUz &sc- -zed on te regpow accalrrsdow probabiity

desity wovM be qualitatiw~v as ilumstrated below.

______________probability tsskbit 'A acculerw."' rctep-ns. s~e&m.t

Mosiimarity IfOa probao!ity &Muity fiaeumJ

- -- - -- -- -probability dematy of &c4eratisao rospooe with
aelset as noted

i. baiderift sprng L bysteresis daimpiag 3. air demping

___iN
6 0

AmplitudeAmitdAplud

NMt. tat the effec-t of aSoftu"Ma dam"Psr of 1.1-6 two types

Coasidered foo? a sine degree of freedom ofte aPP"a"
to be qpite similar to she offoct of amplitude nonlisarity

;_r istatimens at th type Mukstrated by Came (Z) of

Fig. 1. 4. The effect **of fkr the hardening spring is

vomeima c!!ed large kwuise It .uin~loi also be
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MtstiwTd * &I-e -czz!t- of Vf [13j P ap la sy to
acceleration rcsp~ase proalt..Wiies and cmab be in-

terpctcEC in lE&ms of 4;3r Para=m-z,-rw *UCsv as

9. 5.3 hlatemadical IDerivms

Cwidcr =c -exeral case of a sftd=&~r- r~adsm AlSpat wih as

amplitudie prouibility deaugtv IEiciA wb~) & passed *raugt as
Ampulitud tramasfer cbaracterisfic G(T, via &*it~d 4srahmic age.

CRtT)

TI I

ya~

I(~.~eic two im erptafiefs5 of liugsitc- drawmc 2ag are
possibIe. ?be amgmiusd irmskr characteristic 0(y) may be *uch *tho

aomplitudes of y ;rss tham f or grealer i~e Y are:

ft) excuded (.r~mhI t* zero)
(b) limieto I. waiss ct wv. or rx

Case ta) wesid occur ix a deviot wWih "spea-circass ubse ispot siigmis

are ae-vt a level yo Wwalee

(a~e (b) ueg. occur in a dt-wire whice clips or !Imiks vhoa imats sigags
arvabve !wd . r bo&w a ewd 7,

Th* transfer *Aracteristic Gf(7) 3ssocialcd with eaes of she meO

isle rprefaticas for liuRttd dysamaic range may Iw Ihqwu-t of prapical!T1

as sh~wa abow. nim vertkica dAubed liftes IIbtlt (a) complete *:!c
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Eiratsefer zmaracze-ic for case fa) *md the dasb" liar# Jabekd (b)

cwpitft Ow traavfer e!a rcterfMc -Or ca"e (b)- Tb* two ramder
zuaatezistics may a!.. be presemeE ws I% faui. -A .'t-pt 31

as SWIM teicw.

Cassder Ahe probabiity duiy isactim of Owe~ (a) for

each of "e trsesfrr chousc~eristics E~czasi aboe.

Case (a)

ixW a-F supa 3~y irv y T

13. owp prOWWAiiY dwasty inctin al mod (. Obwt be as

1 0 fr Y24~a cy

whare A is Mhe area of "h idda Ameciem at aS sad ma hav a venue

Met A s IPZ vy(9ZZ
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Case (b)

y fory y y < yZ
The output amplitudes, z = yG(y) = y for y < yl (9. 133)

Ly2 for y2 < y

The output probability density functi.-n p0 (z) would then be as

follows:

r pi(y) for y,<z < -2

p(z) = A, A6(z-yI) for z = yj (9. 134)

A2 6(z-y 2 ) for z = Y2

t_ 0 ffor y 2 - z < Y,

whcrc A and A 2 are iac areas of the delta futctions at z z y, and

z = y. and must have values such that;

5 p(z)dz = I =S piy)dy A1 + A2

Specifically, A1 = Pi(y)dy and A2 = pily)dy (9. 135)

To further investigate the effect of limited dynamic range on a
random signal, specialize the development for a uniform probability

density function with a mean value of zero. For simplicity, consider

the transfer characteristics to also be symmetrical about zero as

illustrated in Fig. 9. 3.

Case (1) of Figure 9. 3

The area of the delta function A at z = 0 is as follows:

A = I - Ab I dy = 1 2b a-b (9. 136)
J-b Za Za a
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Ther the output probability density ljunction is as follows:

F z =4 6(z) ior z = 0 tsee Fig. 9. 3) (9. !37'
0 for b < F

Now consider the mean value 1 and the root mean square value

rms of the output probability density as compared to the input probabi'ity

density for case (1). The mean value is equal to thc first moment of the

The mean value oi the input, i&. 5D yp.(yidys =5 ..X--dy =0 (9. 138)

The mean value of the output, ,z. 0 J zp 0(z)dz =J %a-bl6 (z)j dz = 0

lhuza, for the simple example considered where the probability density

function anid tho transfer characteristic are symmetrical about the origin.

the mean value is not changed.

The rms value is equal to the standard deviation or the square

root of the variance. Since the mean value is equal to zero, the variance

is equal to the second moment of the density function about the origin.

The variance of the input, 0 5 COy Zpi(y)dy 5 a y2 dy=a2

The variance of the output, Cr'O D ',zd zI-'+ ! q z L

-ODJ-b [Za (a-b 6  3a

Ther. 07i rms. - and cr rmso -3a
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For thc example considered, the rms value of the signal is redur-d by

the case (!) limited dynamic range as follows:

rms o = [b3/Zrms, (9. 104)
LaJ

Case (2) of Figure 9. 3

The areas of the delta functions A, at z = -b and A at z = b are

equal in value as fcllows:

A =A 2 = Idy = (a-b) 9. 141)
1 .j)b Za Za

Then the output probability density function is as followt:

I for Iz <

pO(z) = 6(zb) ior 1& = b (see Fig. 9. 3) (9. 142)

0 forb <zi

The mean valuc and root rc.- square value cof the input probability

density funcuion arc Chue *.ma as in c .. e 1' .

The mean value of the output. I=1O P (z~z b + (-?6(z~b)IdzO0 CO 0  Tb jj[a 2a j

(9. 143)

Thus, for case (Z) as in case (1) the mean value is not changed due to

the symmetry of the example considered.

The variance of the output. (zd b ZZ T' pz+ !-6(zb)d.
J Ib za Za J

3a a a (& -3b j
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Then 0o = rr.-s, (9. 1441

For the example considered, the rms value of the signal is reduced by
!he case (Z) !i.ited dynamic range as fol!ows:

ba3-bl (9.145)

Figu.res 9.3 and 9.4, discuassed previously in Section 9. 5. 1, and
in the above mathematical derivation, appear in the next two pages.
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INPUT: A Uniform Probabilitv DIcsit.L Functiort With a
Mean Value of Zero-

AMPLITUDE T.%%NSFER
CHARACTERISTIC: A Gain of Ome With Linited Dynamic *Cnge o4

Two Types Ar Shcwn.

Case (i) ct_ 'D S _______y_

INPUT. W (Y)

-a~ -a----~- a
Amp'i:ude Amplitude

G(y) Go

I AMPLITUDE TRANSFER
CHARACTERISTIC. Gf vr

-b b -a -b & ) a

G(y) suCh L-t.t amplitudes ofyl>b are G(y) a=c! that amplitudes of y >b
excluded (equal to zero) are limited to a value of b.

(a-b) (ab) (a-b)

POO) OUTPUT.W b)) -b

-b 0 b -b 0 b
Amplitude Figure 9.3 A.sipliLude

Ointp Probability Density Function as Function rA Tuo Di ecrent Nonlineuar
f ransfer Characteristics (Uniform Input Probability Density Function)
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INPUT

.GUSr.LA!4 PvtOBASHL!TY MUS1TY ELPCTOMJ

C~sIfI Case (2) caete(3; /~

AML!T~jD- TRANSFER CHARACTERWSIC. G(y)

C-!,) (Y)G((

U 0

OUTPUT

PC [) PON)

Ampisat'e AMphawd Anpitude

isure 9.4
Output Proabbility Density Functica as Function of Thrie

Different Nonlinear Transfer Characteristics (Gaussian Input Probability
Density Function)
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10- CONCLUSIONS ANC RECOMMENDATIONS

The cbicct'I-res aof £i contract. ;t- sturtmary Of ;nain results are listed

in Sections ! and -7. it -as unnecessary to repeat this material here. To

coaclude the report, a briel review will be given of son-e of the important

results found in thc other individual technical Sections 3 ehrough 9. This
will help to i hcw material from. sectien to- section !s iflterrela.W.,

and point out to thie interestet reader ho maref of the sawse topicso are

covrd. md--rcnt peint cf Ih g..e'"It rcp ,rz TAas review
will :hcn be followed by some specific. renmrw.,wdations for fut-tire wmork.

!0. 1 REVIEW OF REPORT

Section 3. Phys-cai Discussion 01 Fught Vehicle Vibration Problems

This se:ction serves to motivate the need for later mathematical,

statistical. experimental, and r-.ore advanced physical in estivstion* which

appear in the report. Various ftight vehicla-zare broken down into different

operating characteristics, and an outline is presented of nm.zny vibration

excitation sources. A preliminary description is given of the response of

linear structures to periodic and random excitation. This is followed by

a brief discussion of some knoawn experimental results from previous

teninering analyses of vibration in flight vehicles. One becomes aware
here of a lack of statistical procedures not only in analyzing vibraf ion data
after it has been gathered. but ildso in the origim-0 gathering of 11-c 4j'a-a

Section 4. Mathematical Background for Analyzing Vibration Phenomnra

The material in tis section is consideraui broader titan the tiwa

implies and might be more appropriately labeled as mathemnatical background

for analyzing a large class of random phenomena, of which vibration ph.-

nomnena. is but one example. A short introduaction in given relative to plat-

nomena which can be described by periodic, cornple--. or analytic rezords-
aftcr which the main discuexion is thv- ;evofed to randonr. racerd. Specil

subsections explain basic ideas of probability th'.ory, random procebsez.

and ritatters of estimation theory. OQuantitative formulas are derivcd for
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predir:irg the mean, squaare error to be expected in measuremcnrs of impor-

tant pa rameters of a random process suc.h as its mean value, auttocorrelation

funczzion. and power spectral density iunction. Tim analysis treats in dtail

a orctical engineeriog Earaugy technique for making power spectraM measure-

me::ts for a *single random procss. -as wwll as cross-power spectramu meas-

urtments for a pair of randonn procestes. Several physi: liton

are treated inltding: (a) probabi!ity distributioft of instantaneous anajoit~de,
v~alues of a random record, (b) mcatsmremn of a lineir system ireqiency
r~sponze function, jc) zero crossings andS threshold croaxings of a rz=omr

reccral. id) pe~Ak urobabili;'Y distribut~on of boii- narrori-band and aide-band

"oise, (e) statiutiss of ex.reme vribration amplitudes. The mathematical

roaterial, in this section providle* Ohe basis for measurement error* of

parameters of inte,.*st in individual records which are to be tested later in
the experimcntal program..

Stction 5-. Statistical Ttchri-ic& for Evaluating Data

As in the previous section, the mater.ial here is applicable to many

other physical problems besides the vibration problem. General statistical

ideas and techniques are developed whiich are basic to evaluating data regard-
less =f -Its physical m-riir. By way of illustration, aL nairbr oi speci I

----2-- -r=!.....ed which arc cal..arly directed toward* aANX' .

vehicle vibration data. The first part of the section discusses stat'istical

aspects of parameter estimation andJ hypothesis testing. This is followed by

mathematical formulas, tables, and applicatians of four special probability

d-strib'tions used ir. statistical tests: the normal distribution, chi- square

distribution, Student "C' distribution, and the F distribution. Included

amo.cng the applications is a -:est for normnali'y. The firnd portions of the

section explain more advarced statistical matters relative to: (a) statistical

results from repeated experiments. (b) quality control proeedures, (c)

mu' tiple regression Lachniques. The statistical material in this section

provides the basis for estimates of =asiplr: mcans and varionces over X

;!Arge) caicction of rtcords which are to be tested later in tist experime-nt!!

program.



Sectior' 6. Analytical Proc.-durrs fe Determning '!ibraf.Eon Env! rornent

Slock diagrams a.re dizp~a5,jd '-- :!.s sectiOn for carrin Out step-Fri-

,,= -s. anlItz ofa~. -. I. -- s vk ice vbraion data. The

-iSciaw:ian is Jiv~ucd ira!o two parts: Pan i the 2race~ure for anaiyzin,:

M~e v-.*-- zzainizy 'rprie a ibag! vibration !imc history rco~rd;

Part 2 - the procedure for establishing m-e ever-41 vibr--tior. er.%rrmnjtent

jiver. the statistical properties of eachi oi a collection of vibrai on time

history ricords- For siaglcc record*. gmalug trs!.s 4ased en stalissical1 con-
derztions are describotd for te&!ing iudan.t 35 a&-npti 5s of rd m-

ness, x53t-:na rity. ant normrality. Dvoaiitd theoretical argumnentv tto -iztf

these three It-sts are: preset'ted in --his sectioa- Other desired measzrements

for sing3e rece"'s krc describedj 6t io-jrl- biz actn4L! d-Lzaiis Of in'*trwmexn:3tioa

phss av? experimental program to verify =easurerTn:4 accuracies are :!evtl-

aped more completely ir surceeding Sectiorz: 7 --nd S. 7--tr=ive~y. For

znalysis over a (large) collection of records. correspontding to a nvmiber of

vibration records obtained frown the some AH Sht or from a nuamber ofifr.t

fliighls. block diagrams ar_- displayed for carrying out desired statistical

tests. A1 deaak;W discussion is given Itere on thjtartticigl statistical mattoers

relative to raadom sr-impling tech-iaues for red...ing the a-mount f4&a ;o bte

gaLhc red.Otr zs!ia n5dr n er:rt1c.xeimttlroas

fc r testing the accuracy of Um~se random sampling techriques. ast well as ffhe

;Cccurc7 of repetated exper :e-tz over collections of records. are discussed

in Section B.

Section 7. instrumentation to Measurv Vibration Characteristica

Following the preceding three seiieni. devoted in large measure to

theoretical questions, and preliminary to the succeedintg sectio-n w'hich out-

lines an cxperimentai progeram te v.erify analytical procedures developea :

the report. this section represents ar. attempt to brifte the gap ;be&tween

theorv and experiment by discussirg sor.te of the practical limitations iatterent

in instrumentLation equipment cornmoniy use-d to measure vaiiration charax-

to-ristics. Emph;sis- is ;Iven to properties of actumi avaijable equipment

and to tirr2areetacris.The discussion includes n-ater~x! on

ASD TR 61 1.12c3



~ masre.-c~s.3ifl~? for most of Vie to-mewtx

coincerr.;=S -tatist-icat accuracyv of mneaurtemcas may be Jou~d is earlier

Sc-ln 8- 7xperiwt-Wa Pragram to Veri!y ^3&tvtical Procediaes

This section ties in quite closely w;. ike preceding two sect:*". it

==En e insom! dcta-"" a2 *xperiubhul progrwa to verify importazI. --maire -
srsezL accurities and tatistic-i *i-ocedures: develope" ia this repoz% Tnt
proposed experim-ental programi is diided iclO two parts: Parl. I - lbrtr

Tcs- Progam~; Part Z - T42 vr . LAbr=:. = .- *~~

are descibed !rtr tests of fundamental asampt~ens of ra'rnuu'es.

Stoiy;- zOt05ally. Faitber laboarr tests isdicate h!)W rs
smatsticai eso-nr.Aes of roct =*&sa separ^. wcl.es, 2*wer tpectta,- pr-~li
densities. and correlain functioes This is foLlowed by a bra"i trestma!

on statistical considerations for an-alyaiag large coloctioss of records
(repwaied expefret), and wuskdm sapling tachniqumes. The finid portis
of this secti= cc-Sawas Imte ria: n&Vat to conducuing a nlight tesa Pramn.

section . Aplicatioes to Reepsa.. oft t'uctures

This last tachni-- zz=6r. of tihe report coftaiss sesso advaced watrial
dealing with physical aWlitvionx or- Ske resp..s. o structares under v.ariews
condition~s. These i2etr351 tons oriuisated from a 4esirt to lo~ruwb t

statistical is5.rmatia froms vibration data may be pertineut t these questions.

Fire topics are discussed: (1) Response of !-.'=ar struzctures to ravdow *xci-
tation; (Z) Response of continuous struscture* te correlated random escitation;
(3) Nlodificaujon of response due to loaidiag; (4) Vibrat:ius inftced struictural
fatigue; (5) Effect of molmaiison ZtspoRse statistics. Work ss this
section -'Indicates that considerable statistical information available from
v'bration data is prcee!Wy Wena sel--.9vJ that would be helpf-. f1or so--se of

these pr~blems. Techniques for other needed swaistical. information have
still to be ceeveloped. JIn particular. knovoledge of tie cross-correlaioa'
function betwee two points an a strw-tart reprtest usefu i%&formation wic
is not being *.-**red fully. wile ana.!ysis of fatiaat and noOliear.-ts re~re-
sent largely open problems.
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Three lkmaigz areas exist for Ew-sortact txLT-2zsiccs if th~e p"-sent

Z..-otretical intyv*iZziSz of core Ma#a,:cedJ prrWAcvas-

~. F4meecj~deweXo~m*-e-t ef IPCZ!EWtis~a

Seg~e specific reco.madatiems 6-er eCC-zfc c!%&s are" -ire as

E..£qramenW l esaing ef the statiszidcal xev-haiqses

(A! Carry "- expeeieaW Iabetawr- program. as 40e-mZoped

in setios 4. 7. amid ; of rtpsrt.

IS! rr oc -Pie Kaja arr z~ramu. as outlied -'. Seio Fe

of !:~t

Z- Thke~:ticA onetg~ie nmaubre &dVAAi~eA prosblems

W1 Farther sody of j6.at smatisuicA; properties of vibration

Eu.L at two or v-=rc peo~t*~SAL Structure. eftlar 4iuZz
work Cliseussed in SCCCots -1 amd 9 of repett.

(iAw.-,Ycal procedures for eltieiating j*Eat Slaegitid

properties. includiuig -jes for S ~an sd antlySis

*'a we"Mres. expnding warik 4iscessed ;.a sectiocs IS anid

6 of rcprt

(c) Devrl.mnet of ezperimez-aI programi ter wtrein jant

statisticall preperuies of vibration dam. exoadiuig work

discussed imi secions 7 4"ad o f the Trtrl

aiwies. coian vu--k started in Sectiem 4 of reprt.

less Adrvaced s-tadies =~ =ct~ds for ewa 4:ti; 6-6t.a-

data. a te~ic noi co~s~ered ini this rqpwro.

IC.'s



Adva&cc4 staisgiz " eikct-s of uIIOir-~ii --ftu.~

sLr-js~. 4-dwz 4wcpr i:A ams4S* 44-SS~e io

* 1 r4"m

.4) A iacd Z~akvs o m. sc; stra k3GI

&;at start of magrim; dowtiped ins ectm 5- of r4p-fl..

3Ewg.a*mm dd.mz spArtA! pszp*e mThi,,!w i.II~qu

( D*TC~op s1-ite.specia-'Parpre oftuaiC44 Comtr

ft carry 6tJ"i. E pr csimg a"d sulitiical caeks-
latisac lbr UazS* Ip~wta & wibratims damn Vic- UA'

ecemwcaily. a iscssmwif asSc""m 5r 6. a&* of1 isper

lrkmp itV~ sitmpit practica": r4"-- swrig device. as

discussed insSect-:*& 6 tsop

(c) okw*p a practal corrawio compotr 16r aa&!Iris o

~razis data.Asisi~sa" in Setism 7 of "*o.

ASO TIk im-1-Z3A



REFERENZCES (COMPLETE LIST)

Ae--onutraiiics Division, Newport BeaLbi, California. Publication No.
U-743, Vol. 1, 11, and lL, "Tieemetry System Study"

Ampex Corporation, Redwood City, California. Product Catalog
'Instrumentation and Digital Magnetic Tape Recorders"

Baines, A. H-. .1. , "On Econc n- ica- Dcsign .af Stiatisiical rxycrij1ctni:",
(British) Ministry of Supply, Advisory Service on Statistical Method
and Quality Cotitrol, Technical Report, Seri as R, No. Q. 'C/l /!S.
July 15, 10944.

Beckcwith, ff., "Vibration Data on Final Stage Able- I", STL Report.
Space Techniology Laboratories, Inc , Los Angeles, California.
July 1958.

Beclc'.,ith, 1-f. and f). Dolialas. "Vi bratjc:n nlta ;r% Thor".........._
No. TR-59-0000-00566, Space Technology Laboratories, Inc.,
Los Angeles, Calif~rrnia. January 1959.

Beckwith, H., "Vibration Data in Atlas Series A"!, STL Report GM-TR-
0165-0048, Space Technology Laboratories, Inc., Los Angeles,
California. September 1959.

Bendat, 3. S., Principles and Applications of Random Noise Theory
John Wiley and Sons, Inc., New York, 1958.

Bennett, C. A. and Norman L. Franklin. Statistical Analy'sis in
Cheis~zand the Chemical Inusty John ilWe and Sons,-nc.,

New York, 1, -. [7

Blackman, R. B. and J. W. Tukey. The Measurement of Power Spectra.
D'over Puiblications, Inc.. New YorF1_589.

Blake, R. and M. Oleson, "Vibration Data Obtained During Firings of
Vanguard", NRL Report 5102, Memos 6261. 292, -315, -46, October
1957 - February 1958. Naval Research Laboratory, Washington D. C.

Bowker, A. H. and G. 31. Lieberm~an. Handbook of Industrial Statistics.
Prentice-Hall, Inc., Englewood Cliffs, N.J., 1955.

Bowker, A. H. and G. 3. Liebermani Engineering Statistics . Prenfice-
Hall, Inc., Englewood Ciiib*, u.j . , 1459.

Brownlee, K. A., Statistical Thoyand Metodle Scicnce and
Engineering, Jonr Wey and Sons, Inc., New York, 19b0.

Camp, B. H. "A New Generalization of Tchcbycheff's Statistical
Inequality"! Bulletin of American Mathematical Societ , 22, pp.
427-432. 19LY.-

Chang, S.5S. L. , "On the Filter Problem of the Power Spectrum Analyzer",
Proceedings of the I. R. E., August 1954.

Clarksnri, B. L., "The lffcct of Jet Noise on Aircraft Structures",
Aeronawt~ic;! Qua~rterly, Vol. 10, part 2, May 1959.

ASD TR 6!-123 10-7



Cole, 3. N.. et al, "Noise Radiation from) Fourteen 'ryimv of Rockets in
the 1, 000 to 130, 000 Pocunds Thrust Range,", WADO Technical Aepors;
No. 57-354. ASTIA Document No. 130794, December 1957.

Coleman, -A. L.. H. Presw and M. T. Meadows, "An Evaluation of
Flexibility on Wing Strains La. Rough Air by Means of Experimentally
Determined Frequzacy- Response Functions with an A4ssessment of
Random-Process Techniques Eenpioved%. Technical Note 4291,
Langley Aeronautical Laboratory, Langley Field, lva., July 1956.

Corten, H. T. and T. J. Dolan, "Cumulative Fatigue Damage",
International Conference on Fatigue of Metals, Inst. Mech. Lang.
Londion 1956, pp. 23 5-ZA-6.

Cramer, H.., The Elements of Probability Theory. John Wiley and
Sons, Inc. , New York, %95.

Cramer, H. * Mathematical Methods of Statistics. Princeton University
Press, Princeton, N. J. P1'6M.

Crandall, Stephen H., er al. Random Vibration. The Technology Press
of M. I. T., Cambridge, Mass. 198.-

Crede. C. E., and E. 3. Lunney. 'Establishment oi Vibration and Shock
Tests for Missile Electronics as Derived froran the Measured Environ-
ment" WADC Technical Report No. 56-503. AST:A rocament No.
118133. December 1986.

Curtis, A. 3., "Concepts in Vibration Data Analysis". Shock and Vibration
Handbook, Chapter 22, Mr.Graw-Hill Book Co., Inc.. %ew York.
191PS"ress'

Davius, 0. L. Statistical Methods in Research and Production. Oliver
and Boyd. London, 1954.

Davenport W. B. Jr., and W. L. Root. Random Simas ad Noise.
McGraw- Hill Book Company, JIc.. New 'york, I v53.

Derner, L. 3.. "1Bibliographl of the Material Damping Field" WADC
Technical Report 56-180, Jure 1956.

Dixon, W. 3. and F. 3. Massey, Introduction to Statistical Analysis.
McGraw-Hill Book Company, Inc., New ,o 1957.

Douglas, D., "Quick Look", Vibration Report of Titan A-5, STL Report
Space Technology Laboratories, Inc.,* Los Angeles, California.
March L959.

Duncan, A. 3. Quality Control and Industrial Statistics. Rev. Ed.
Richard D. Irwin, Inc., Homewood, I~incis,199

Eisenhart, C., M. W. Hastay and W. A. Walis. SetdTechni ues of
StatsticalAalsis. McGraw-Hill Book CompayInc.New Tork

Endevco Corporatiun, Pasadena, California. "FEndovco Series 2200
Accelerometers"

Ent, F. H., "Analysis of Vibraticn Data", Shock and Vibration Bulletin
No. 26. December 1958.

Epstein, E., "Elements of the Theory of EFtreme Values" , Technical
Repo L No. ?, Department of Mathennatics, Wayne State University,
Detroit, Michigan. April 1959.

ASD TR blt~i- 10-



PFringcyen. A. C., "Response of Beam-s and Plates to Random Loads"
Jrj;zrnal of Applied Iviecha:-ic, March '.957, pp. 46-52.

Feller, W. An Introduction to Probability Thecry and its Aelctcn
Vol. I. Zd Ed. John Wiy and Sorts, lac., -New York. 19V 7.

Flow Corporation, Ar,1ingto=a, -"-sschusertt. BJilletir- 51,, "AC Volt-
mete rs and Ran~dom Simnal Measurem-rits", Technic3* Memorandurn.
lanuary 1960.

Fowler, T. C. R. S., "A Sixc-Chantell 1High-Fremquency Telegneiry SyuL-_txs,
i. R. E. Trarsactioais on Space Electronics and Telemetry, Volume
Set-6, Number 2, June 1960.

Qate:-, C., "Environmnent of Corporal Missile XSSM-A- 17", JPL
PrrPre R~pnrt 2:1- f 5. Tet Propulsion Laboratory. Pasadena,
Cai~fdrnia. 2i:i 953.

Goff, X. W., "An Analog Electronic Correlatar for Acoustic Measuzre-
men~ts", jr-ual of Acoust. Society of America. 2Z7 March 1955..
pp. 22Z3-Z't..

Goff, K. W.,* "Thc ~Lz G.o of Correlation Technict.!s to Some
Acoustic Me -_urerne-:t-". Journai of Acoust. Society of An14:ric&.
27 March 1955, pp. Z36-24; .

Goodman, N. R.. "On the Joint Eatimaticn of the Spectra, Cospecz--m
and Quadrature Spectrum of a T...ro- Dimensional Stationary Gaussiar
Process", Scientific Paper No. 10, Enginecring Statistics Laborat..ry,
New York University. 1957.

Granick, N~eal, and C. E. Thomas, '-Aircraft Structural Vibrtin Induced
by Jet Noise', Shock and Vibration Bulletin No. 24, February 1937.

Grenander, U. and M. Rosen~blatt, Statiscical Analybis of Sainr
Time Series. John Wiley and Sc-n-;, Inc., Ne-,; sork. 1957.

Gullemnin, E. A Communication Networks, Vol. 11. John Wiley a.
Sons, Inc., 'sew York, 1935.

Gulton Industries. Inc., Metuchen, New Jersey. "Glennite Self-
Cxlihrating Accelerometer". EB:Aletir. A28, and "Specifications.
Glennite Model F'T-521U Amplifier"

Harris, C. M. and C. E. Crede (Ed.). Shock and Vibration Handbook.
McGraw--Hiil Book Co., Inc., New York. 1961 (In press).

Hernandez, 3. S5. "Intro~duction u:TransducerF for instrumentation':
S-A.st? instruments. L'tc., Santa Monica. Califo-nia.

Hines, M., H. Beckwith and D. Douglas, "Vibra tion Data for Atlas No.
3B, 413, 5B, 9B, hiA, 13A, 15, 16A" STL Reports, Otober 1958 -
November 1959. Space Technology llzbcratories, Inc., Los Angeles,
Califorstia.

Hoel, P. G., Introduction to Mathematical Statistics, 7?4 V Johnt Wila-,
and Sons, Inc.. New York, 1954.

Huston, W. B. and T T4. Z:,..pinski, *'Probability and Frequency Charac-
teristics nf S;"rne F!l!ght Btrffet Lo~'itF, Technica1 Note 3733, Langley
Aeronautical Laboratory, Langley Field, Virgira, August 1956.

ASD TRb61-'- 10-9



Kamrs. E. C. , "'Statfztical Z'alua tion of Near- Field Sound Pressures
Gercrated by the Exhaust of a High Performance Jet Engine", Journal
of ;he Acoueticai Society of America. Vol. 3'i, rp. 15557 7_--.U&7Fff59

Xatz, S., "Spectra and Cross-Spectra -.4 Stationury Time Series:
MeaLsurement an-1 lnteroretatiots?. American Cya-.2mid Co..* New,
York. 1959.

Kaufman, M. "Methods for Analyeing Sh~ock and Vibrationm". COruen
Applied Science Laboratories Reports N~os. 10Z02--1, -2, -3, -4
and IOOZA: West Hempstead, New Yorkc. 1957.

Kelly. P.. D., "A Method for the Analysis of Short Duration Non-
Stationary Random Vibration". Hughes Aircraft Co.. Los Angeles.
California. (Aet unpubiisined paper.)

Kennard, D). C., jr.. "Sonic Vibratioa as Exemplified by the BB-66B
-Airoxlane", WADC Tech~ical Nov: 39- 158'L. ASTLA Document No.
Z15830. May jS59.

Klein, Elias, et al. Fundamentals oi Guided Missile Packaging. Chapter
5. Naval Researchi Laboratory, Wath~ngton: T3.CG. July 1955.

Knowlton. A. E. * et al. Standard Handbook for Eieezzcal Engineers,
Section 3. McGraw- Hiff Bookc -t95Ic. i~7.

Lambert, R - F. and D. H. Tack, "Influence of Nataral Freqa.-mcies
and Source Correlation Fields on Random Response of anals",
WADD-TR 60-188. July 1960.

Lunrey. E. J. and C. E. Crede. "Tht Establishment of Vibration and
Shock Tests for Ai-rborne Electrorics", WADC Technical Report
57-75, ASTIA Document No. 142349. January 1953.

Lyon, Richard H.. "Response of a Non-Linear String to Random
Excitation", Journal of Acoustical Society of America, Vol. 32,
No. 8. August !960.

Marco, S. M. and W. L. Starkey, "Effects of Complex Stress-Time Cycle
on the Fatigue Properties of Metals". Trans. ASME, Vol. 79, pp.
1329-1337. 1957.

Marshall, J. T. and R. A. Harmear, "A Proposcd Method Lowr Assessing
the Severity of the Vibration Environmert, Shock and Vibration
Bulletin No. 26, December 1958.

Mayer, 3. P. and H. A. Hainer, "Applications of P'owir Spectral Analysis
Methods to Maneuver Loads Obtained an Jet Fighter Airplanes Da~ring
Serv'ice Operations", INACA Report RU L56315. Langley Aeronautical
L.aboratory-, Langley Field, Virginia. January 1957.

McCullo, C. E., "An Analog Correlation Computer". ASTIA Report
No. ADZ42809. August 1960.

McIntosh, Virgil C., "The Responste of Mechanical Systems to Random
Vibration as Determined by Analog Computcr". WAD.!C To:chnical
Note 59-193. Februarf 196(s.

Miles, J. W.,* "Or. Structural Fatizzle Under Random Lo~'ing, Journal
Aero. Science, Vol. Z1, pp. 753-761. 1954.

ASD TR 6!-'.:- Jj)%_1o



Miner, M. A., -*Cumnulative Dernage it, Fatigne", Journal Applied
Mechanics, Vol. 12, pp. ;59- 64. 145

Monroe, J. P. and 3. P. Bosscher, "Analysis of Yiduced Structural
Vibration in Naval Aircraft-, Shock an~d Vibration X0leinN. 25.
December ;937.

Mom'i, A. M., .lrouction Ec the Theoryf of SmtdstiCs. John Wiley and
Sontz, Jnc., . e ~ -8

MOudY, R. 1-.. ::Spectral Wave Ana-ys-zi". Test Eaginetring. Vol.. I

Novemnber 1960, pp. 12- 14, 22, Z4.

Morrow. C. T. Shock and Vibrzt~on. Johni Wilev and Sons. In~c.,
New York I:%!. (in presz!I

Mustai-n, R. ."Extmded Environmental Tests of SM-6Z Mliss' le Camnponznts",
Shock and 'Vibration Bulletin N-2. Z-7 .une 1959.

Orlacchio. A. '4. . "Characterist- cz and App!-cations of New Miniature
Piezoelectric, Variable Reluc-dance and Dffferential Transfcrrner

TyeTrans *'xcers", PerirnutF- Colmnan Instruzment ation Symnposium,
Stat:ler :4ott., L.os An-eles, CaIfornia. De~cember 7-8, 1955.

Parzen, E%. * "On Cuc,=;istrnt Estimnates of the SpecLr--rn of a Stationary
Time Seriez"1, arnd -Oa) Chousiang Rzt Vmrate of the Spectral Dernsitv
Elanction a., a Stationaryr Time Ste-iea' , Annals Math. Stt-istics.
Vol. Z8, pp. 3Z9- 3-e. June 1957; vol. 28, Do. 9:-,,3z, Decemb,-r :957.

?, rls. T homas .A. a!.i C. W. ffis:~r ' Bariuni-Titanare Accelerometer
with Wide Freqjuency and Acceleration Ranges", National. Bureau of
Stand.ards Report Z3 ' OA, Washington, 1). C.

Press. H.. and J- W. Tukey, Power Spectrat Methods of Analysis and
their Ap .i:atic-n to Problems in Airplane lynamj-ncs, Vol. IV 01
AGARD Flight Test tftnual. Part 1V C. Enoch J. Durgin, ed.. %h!rt:--
Atlant-' Treaty -organzation.

Rice, S. 0., "Mathematical Analysis of Random.Nise". Bell System
Technical ;ournal, Vol. Z3, pp. 282-332, July 1944; Voi. 24, pp.
46-156, January 1945. (This article appears also in Selected Paeers
on Noise arnd Stoc!hastic Processes, edited by N. Wax, roire- ub
New fork, 19154)

Roberts, P. V., "Hawk Supersonic Missile Vibration Meas "rements",
Shock ars! Vibrat' n Bulletin No. 26. September 1958.

Roberts, William. K. Eilred and! R. White, "Structural Vibration in
Space Vehicles". WADD MR 6!-62, Norair Report NOR 60-26,
Northrop Corporation. Hawthnrne, Salifornia. January 196!.

%orer. James E , "Ev'olution of the Saturn Booster Telemetry System"
1. R. E. Transactions On Militiry Electronics. Vol. Mil-4, April-
JulyI '96O, No. 2-3. U.S.Army Space issue.

Schijelderujp. IN. C., "Preijiction tnf Acousstical Fatigue Uife, American
Society for Materiaha Testing, Preprint Paper 67a, 1960'.

Schjelde rup, H. C. and A. E. Gale(, "Some Aspects of the Rspc-nse vi
Structures Subject to Sonic Fatigue", Report P- 125- 2, National
Engineering Science Co., Pasadena, Califorria. arh1961.

ASD TR61-113 10-i



Shewhart, W. A. Economic Control of Quality of Manf,'zartur iProduct.
D. Iii-nNostran~ 1o.ic. * New Ycrk. 1931.

Shipley. W. S., "Measured Vibration Envi-ronmnt irn the So-- :eant Missile".
Shock and Vibration Bulletin No. 26. December 19518.

bi::ion. Leslie E. A. rngineers 16anusia of Statis:i~al Mt.John Wiley
and Sons. Inc.. New York. 1941.

Smfith, F. B., "Analog Equipment 10: Prccessing Randomiy .-.ctuating
Data-, Acro Erg. Rev., 0 7~l. 14. pp. 11- 119. Mayj 1955

Z Ifel, A. R., "Hew to Make Power Density Analyses of M2-- -td Signas",
;SA Journal, September 1959. Vol. 6. No. 9 -p. 80-84.

Stoker, 3. 3., "No-Linear Vibration of Systems with Sevez. -:egrees of
Freedom". Proc . of Second U. S. National Congress of Af. .'-: Mechanics.
Ann Arbor. ldichigzan. 19'-4.

Stoker, 3. 3. Ncrlinear Vibra*.;io. in.,crscience Puzblisher*
York. 1950:

4 tn o, H. 3. . "Responc c of Mchznical Systems to Randon .citing
Forces, NAVUORD ieport 7010, China Lo -- c, California. -* -cember i956.

Th~omson, W. T., Mechani.cal Vibrations. (2nd Ed.)~ Prenti.- Hall, New
York. 1953.

Thomson.. W. T. and M. V. Barton.. "The Response of Mec. :--cal Systema7
to Random Excitation". Journal of Appited ML-chani-ca. Jr. . 1957,
pp. 246-25i.

Ti.nos.'hecko. Stephen P. and S. Woi-nowsky-Kreiger, Theor; if Plates
and Shells.a McGraw- Hill Book Comp~any. Inc. . New Tor 6-M """

Turner, M. 3., "Environmental Vi!bration Problems in La-: ,-: Jet-
Propelled Aircraft", Shock and Vibration Bulletin No.2 !'tily. 1S5.

United Electrodynamics. Inc.,* Pasadena. California. 'Ne% i-ra *ct'
from United Flectrodyrnamics. Inc. -

Wahrmar., C. G., "A --- re RIS instrument':, Bruei and Kj-5. r .

Review. No. 3. July 195S3.

Walker. H. !4. and 3. Lev. Statistical "r-ceace, Henry H IL 4 Company,
Inc., New York. i953.

Wilks, S. S. Mathematical Statistics, Princeton University ' r a, Princeton
N. J., 1950.

Williams. W. E., Yr.. -Space Telemetry Systems', Proce - 1 .1b of the
I. R. E. Space Electronics Issue, April 1960.

Zirnmern-an. j-, "Co relation and Spectral Analysis of Tint t.rying
Data', Shock and Vibration Bulleti.= Nj. 26. December I'

ASD TR 61Z3 1C-12


