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Part I

Excitons and Plasmons in Superconductors



I. INTRODUCTION

In the original theory of Bardeen, Cooper, and Schrieffery
an arproximation to the ground-state wave function of a supercon-
ductor was obtained by a variational calculation. Basic to the
theory is Cooper's resultg/ that if a net attraction exists between
the particles, the Fermi sea is unstable with respect to the forma-
tion of bound pairs. The BCS ground-state wave function is formed
from a linear combination of normal state-like configurations in
which particles are excited to states of low energy above the Fermi
surface. In all of these normal configurations, the single-particle
states are occupied in pairs (K4, - ¥4 ), so that interactions other
than those between pairs of electrons of zero net momentum and spin
are neglected. The theory leads to the single quasi-particle exci-
tation spectrum given by Ek = (ek2 + Ak2)l/2’ where ek is the Bloch
energy measured with respect to the Fermi level and AK is the energy
gap; that is, 2A‘ represents the minimum energy required to excite
a pair of quasi-particles from the ground state. The quasi-particle
excitations are fermions and no boson excitations appear other than
the phonons.

This independent quasi-particle approximation has been sur-
prisingly successful in explaining the thermodynamic properties as well
as the acoustic and electromagnetic absorption, the nuclear spin

relaxation, and the Meissner effect observed in the superconducting

state. The derivation of the last has been criticized because it
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i8 not strictly gauge-invariant. This is primarily due to the neglec
of residual interactions between particles in states X and i’y ;‘?.
These interactions give rise to a set of collective excitations
(bosons) and lead to a gauge-invariant description of the Meissner
effect.

For the investigation of these collective excitestions,
Anderson}-/ and Bogoliubov, Tolmachev, and Shirkov'-u"/ have used a
generalized time-dependent self-consistent field or random-phase
approximation (RPA). Their work shows that in the superconducting
state, the plasmon frequency and the plasmon coordinate in the long-
wavelength limit are essentially the same as in the normal state.
They have also suggested the existence of the exciton modes lying
within the energy gap which we investigate in the main body of this
paper. A thorough discussion of the generalized RPA has been given
by Ricka.yzen,z/ who used it to derive the complex dielectric constant
of a superconductor and the Meissner effect in a gauge-invariant
manner. The BCS quasi-particle states |a) and |B) do not
satisfy the continuity equation; that is, {a| V.T+ b|a> # 0.
When collective modes are included, the current and charge density
operators ? and p are decomposed into a sum of individual-particle
operators and collective operators. A virtual cloud of plasmons
surrounds each quasi-particle, producing a back-flow current which
leads to over-all charge conservation of the excitation. Therefore,
the continuity equation is satisfied within the generalized RPA.
This condition is sufficient to guarantee a gauge-invariant form of

the electromagnetic response kernel.



In this thesis we interpret the exciton mode in the super-
conductor as & bound pair of quasi-particles whose center-of-mass
[(?l + ?2)/2 )] propagates with momentum 4d. The exciton spectrum
is investigated through the generalized RPA equations of motion pro-
posed by Anderson in the form introduced by Rickayzen involving the
quasi-particle operators 7k of Bogoliubov§-/ and Vala.ting/ rather
than Cy? the usual electron operators. In these equations we make an
expansion of the interaction potential V(ﬂ,?‘) in terms of spherical
harmonics. It is found that excitons may be characterized by the
approximate quantum numbers L and M describing the symmetry of the
states with respect to the relative coordinate ’x’l - ?2. The existence
of an L-state exciton (corresponding to the p,d,f,... excitons) is
dependent on VL being negative, where VL is the L-wave part of V('ﬁ,?').
The plasmon state corresponds to an s-state exciton whose energy is
greatly increased by the long-range Coulomb interaction.

To obtain solutions to the Anderson-Rickayzen equations, we
take matrix elements of the equations between a state with one col-
lective excitation and the ground state which has been renormalized
s0 as to include the zero-point motion of the collective modes. The
results give two sets of solutions Amcd) and rm(-q) which correspond
to what Anderson has termed odd and even solutions. We show that
the Am(a) modes are unphysical and that the I‘m(a) modes correspond
to the exciton states. The quantum numbers L and M are found to be
exact in the limit of zero center-of-mass momentum 3. For larger 3§,

states of different L are mixed, although the mixing is small for



qﬁo << 1, where go is the coherence length. The magnetic quantum
number M, however, remains a good quantum number for all @ if the
potential has no crystalline anisotropy. The exciton energy for the
d = 0 case is plotted as a function of the L-wave coupling constant
g, defined by g = - N(O)VL/kn, where N(0) is the density of states
in the normal phase at the Fermi surfa:e. For 8, > 8q the excita-
tion energy proves to be imaginary and the implications of this with
respect to the original BCS ground state are discussed. The M £0
excitons may be considered as transverse collective excitations since
they do not couple with a longitudinal field. In the general case,

if the ground state is formed from LO,M pairs, the LO,MO exciton

0
becomes the plasma oscillation.

In Sec. 1I we discuss the generalized RPA from a diagrammatic
point of view. Solutions for the collective excitations are obtained
in Sec. III.
Tsunetoé/ nas applied Rickayzen's analysis to the problem of
the surface impedance. While he finds the existence of a precursor
absorption for frequencies within the gap, his results give an
absorption due to the exciton states which is an order of magnitude
less than that observed by Ginsberg, Richards and Tinkhaml/ in lead

and mercury. .



In Sec. IV we consider corrections to the Anderson-Rickayzen
equations which lead to a new type of exciton of a particle-hole
nature closely related to exciton states occurring in insulators.

A calculation similar to Tsuneto's is performed for the electro-
magnetic absorption due to these new exciton states in Sec. V. As
in Tsuneto's work, the ratio of the surface resistance due to
excitons to that of normal metals in the extreme anomalous limit
turns out to be about an order of magnitude too small to explain

the observed data.

II. EQUATIONS OF MOTION

We consider & system of electrons interacting via an effective
twe-body potential V, whose matrix elements in the Bloch state repre-

sentation are given by

(k) ksl Vik, k) = 4§ VIkE) + VK, k)¢

X 6;:"'34) ‘I’*hal- *

(2.1)

This potential arises from both Coulomb and phonon interactions
between electrons and will be discussed in detail below. The

Hamiltonlan is expressed in the Heisenberg representation in terms



T
T

of the operators Cra and ra which create and annihilate electrons
in Bloch states of momentum k and spin 0. They satisfy the usual
Fermi anticommutation relations. The single~particle Bloch energies
€, measured relative to the Ferml energy EF’ are assumed to be of

the form (h2k2/2m) - EF' The Hamiltonian of the system is given by

HeZ 40 0o +5 2 VR ED

bo k,.pﬁ)u:‘-‘

+ +
X C/u?,o- Ckl-?:r’ Clzjcr‘ Czlr p

(2.2)
In the generalized RPA one studies the time evolution of
vilinear operators of the form
+ + t
b, (;) = Cm}’ Coet, (2.3a)

Am.g (‘?): c—kog," ck 'r) (2.3v)

R - C;?,r Crp (2.3¢)

which create excitations with a fixed total momentum £3. It is
helpful to consider the full-time development of these operators
as being built up from the infinitesimal change of the operators

in a time interval dt; for example,



Sb,f(g,tk 6:(5?}f+ft)— A,:(;:t)
= (l/di)[ﬁ) A:(ﬁt)]& (2.4)

In the absence of the interaction V, the commutator reduces to

(€k+q - ek)bg‘ (2,t) so that except for a phase factor, the operators

-‘—-

are independent of time. We call any operator ua

an eigenoperator
if its time dependence is given simply by a phase factor. The equa-

tion of motion
[H,/uj]-—#ﬂ«/@- (2.5)

for the operator guarantees that “a+’ when applied to an eigenstate
|B> of H, creates an eigenstate | a> of H with an excitation
energy)tﬂa. From the Hermitian conjugate of (2.5) it follows that
Ky has the inverse effect of p;-. That is, while uc;r adds energy to
the system, ua subtracts energy, so that uJ— and ua may be thought of
as creation and annihilation operators of excitations of the system.
A knowledge of the eigenoperators and their eigenenergies allows one
to calculate dynamic properties of the system as well as the thermo-
dynamic functions.

In certain cases the state ua+|B> may vanish identically;
for example, if ua"' creates pairs of fermions in states already
occupied in |p> . Another example is if the operator pa"' scatters
excitations already present in the initial state, in which case u;r
vanishes when applied to the ground state. Both cases will be dealt

with in the next section.



In the presence of the interaction V, the commutator (2.L4)
is complicated by the presence of terms involving four single-
particle operators (c and c‘r's). Therefore, the bilinear operators
b.r, b, and P are no longer eigenoperators of H and one must include

rroducts of four, six, ..., etc., single operators to form the u;

's
in this case. The question arises whether there is a consistent

approximation in which the eigenoperators are represented as linear
combinations of the bilicear operators b‘r, b, and P alone. Consider

a typical term in the commutator arising from the interaction potential

A +
2 VEERLCien Cops CuGon, 81 ]

+
gy
ottt ,

(2.6)
This expression is shown in diagrammatic form in Fig. 1. In the
diagram, time is increasing from right to left with the incoming
particles in states? +‘31 and -X ¥ entering from the righ%. The
first term on the right-hand side of (2.6) is represented by Fig. 1(a)
in vhich the interaction, represented by a dashed line, scatters the
spin-up incoming particle to® + 3 + 3'1 , creating a particle and

a hole in states -3' -3'¥ and -p'{ , respectively. In Fig. 1(b)
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the aralogous process for the spirn-down particle given by the second
term in (2.6) is shown. If at time t = O a pair of single particles
is excited, at time Bt there is a finite probability that a particle-
hole pair has been created from the background of particles in the
Fermi sea, with the incoming particles scattering to new states. In
the next interval of time a similar process may occur involving any
of the four excitations, and in general the "bare" incoming particles
will create a complicated cascade of excitations leading to a decay
of the initial state. In the generalized random phase approximation
one keeps only those terms in the commutator which conserve the number
of excitations allowing for both forward and backward propagation

in time (see below). This procedure corresponds to a linearization
of the equations of motion by replacing two single-particle operators
in each term by a c-number given by the expectation value of this
pair of operators with respect to a fixed state. If this state is

chosen to be the BC5 ground state, defined by

o= TTC2, 12 b @D10), @D

where ld) is the state with no particles present, conservation
of momentum and spin leads to nonzero average values only for the op-

erators bI (o), bk(o), and pko(O) = n In terms of the parameters

ko’

U and Vs these averages are



bl B @) 1o)= <Hl by 1% = %,

<BiNrl By= 52,

The parameters u and v, are given by

k

L
ue:- +(l'+£k/Eh ).7. )

where

and Ak satisfies

Ay
A,ﬁ%!/(i%')-#:;.

11

(2.8a)

(2.8b)

(2.9a)

(2.9v)

(2.10)

(2.11)

This prescription gives a unique linearization of the equations of

motion since for q 54 O there is at most one pair of operators with

zero total momentum and spin in each term.

this approximation are shown in Fig. 2.

The terms retained within

(1) As shown in Fig. 2(a), the conventional particle-particle

scattering vertex arises from the first term in (2.6) when'b‘ =¥
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The factor of % in front of V is cancelled by the term in the inter-
action with spins opposite to those in (2.6). This cancellation of
the factor of % occurs in each vertex.

(2) Another possibility, shown in Figs. 2(b) and 2(c), is for
the scattered incoming particle to enter a bound state with the other
incoming particle, the outgoing excitations being the particle-hole
pair created from the sea. This possibility is allowed for in the
linearization by including the finite average <:W0|b£r(0)| ¢0:> ,
which may be regarded as the amplitude for the pair to enter the q = 0
bound state, which is macroscopically occupied in |Wd> . Since
a finite fraction of all the electrons occupy this bound state in the
superconducting state (corresponding to the finite fraction of
helium atoms occupying the k = O state is superfluid Heh), the small
fluctuation ~ Nl/2 in the number of pairs N described by (2.7)
leads to no difficulties in a large system. Notice that in Figs. 2(b)
and 2(c), the incoming pair of particles is transformed into a particle-
hole pair by the interaction. Therefore, b:(?) and pko(a are coupled
in the equations of motion.

(3) In addition, there is the possibility that the scattered
incoming particle enters the bound state with the particle created
from the sea, leaving the tnie and the other incoming particles as
the outgoing excitations, as shown in Figs. 2(d) and 2(e). Due to
the presence of the bound state, the incoming spin-up particle in

Fig. 2(d) is transformed into a hole in the state of opposite

momentum and spin. In the next instant of time the inverse process
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may occur. It is clear that the equations of motion are simplified
if one introduces "quasi-particle" operators 7o Vhich are the
proper Linear combinations of particle and hole creation operators
to account for these processes. The appropriate transformation,

introduced first by Bogliubov and by Valatin, is

T +

ﬁo S UCH - T lry (2.12a)
+ g

Jk/ - ZLk e‘k¢+v; CKT‘ (2.12b)

For mathematical simplicity we will follow Rickayzen by expressing
the final linearized equations in terms of quasi-particle variables.

(4) The exchange contributions to the single-particle lines
are shown in Figs. 2(f) and 2(g). As is well known, they lead to an
anomalously low density of states at the PFermi surface in the normal
metal unless & screened interaction is introduced. This point is
discussed below. The exchange self-energy vertex can be accounted
for, along with process (3), by the quasi-particle transformation
(2.12).

(5) Pinally, the unscattered incoming particle may enter the
bound state with the particle createdi from .ne sea, leaving the hole
and scattered particle as the outgoing excitations, as shown in
Figs. 2(h) and 2(1). As in process (2), the pair of incoming particles
is transformed into a particle-hole pair by the interaction. In the

limit q =+ O, process (2) is more important than (5) in forming the
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plasmon state. Since the momentum transfer is always AQ in the former
process, the large matrix element of the Coulomb interaction huee/qa
dominates the latter vertex in which the momentum transfer 63' may
assume any value. Anderson and Rickayzen have neglected processes

(4) and (5), suggesting that their effect is primarily to renormalize
the single-particle energies and the effective interaction.

The terms occurring in the linearized equation of motion for
pka('i') are shown in Fig. 3 and bear a close resemblance to those
shown in Fig. 2. In the conventional RPA for the excitations in the
normal state, only the polarization vertex L Fig. 3(b)] is retained.
Thne so-called exchange scattering correction shown in Fig. 3(a), when
combined with the polarization vertex, approximates the time evolution
of pko(?) by graphs of the type shown in Fig. 4. In the limit q = O,
the exchange correction to the plasmon frequency vanishes. Since
matrix elements of the equations of motion are taken with respect to
RPA eigenstates, two pairs may be spontaneously created from the
vacuum and may interact with the incoming excitations as in Fig. &4.
This process may be viewed as a propagation of the excitations
backward in time, familiar in the Green's function formulation of the
problem.

In the generalized RPA for the superconducting state the
presence of the bound state gives rise to the vertices represented
in Pigs. 3(c), (d), (g), and (h), so that an incoming particle-hole

pair can be transformed into either a pair of particles or a pair of
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holes. Therefore, the operators B:.(Z) and bk+q(:a) are coupled by
the density operator pkaﬁf). The vertices occurring in the time
developnent of bk,GI) are identical to those in Fig. 2 except that
all arrows are reversed and the momentum T is replaced by Ji

We turn now to the question of screening. Within the random-
phase approximation to the normal state, the screened interaction
line is represented in the limit of small wave-vector??'by a sum
of diagrams of the form shown in Fig. 5. Rickayzen has shown that
the dielectric constant is essentially unaffected by the pairing
correlations occurring in the superconducting state. It is easily
seen that the vertices 2(b), 2(c), and 3(b) are automatically screened
within the RPA through the presence of the polarization vertex
[ Fig. B(b)] in the linearized equations. For example, when the
vertex 2(b) is followed in time by a series of vertices 3(b), the
effect is to replace the bare interaction line in 2(b) by the
screened line shown in Fig. 5. Therefore in vertices 2(v), 2(c), and
3(b), the unscreened interaction V. must be used. The potential V.

D D
is given by

V (Z)= wre’ 742 (2.13)
) + T 0
g"‘ n* ~(w?)
i

vhere i) 1is the energy of the excitation involved. Also, vq is

the bare electron-phonon interaction matrix element introduced by

Bardeen and Pineslg/ and ahi is the bare phonon frequency. It is
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essential, however, to introduce the interaction screened by the
dynamical dielectric constant in the remaining vertices since it is
impossible to replace the bare interaction line by the screened line
through an iteration of vertices occurring in the linearized equations.

The screened potential is of the form

V(E',Fz'f?)= _zﬂéf__ s (2.1%)
g K(?’)wﬁ‘,f)

where the dynamical dielectric constant is given by

K(f, wp,?) =| + 4T, (7,%7) + T o (?a, Uz.;)
(2.14p)

o 1= ET Tl + ks /9,

k

number. In a more complete treatment involving coupled equations of

Here, dnnk,q = €k+q - € and ks is the electronic screening wave

motion for the electrons and the lattice, the energy ﬁak’q would

presumably be given in terms of the quasi-particle excitation energies.
For simplicity, we neglect the vertices shown in Figs. 2(h),

2(i), and 3(a). We also neglect the exchange self-energy correction

since it simply renormalizes the single-particle energies. With

these approximations, one obtains the equations first given by

[H, b:(bf)]=(£kf£k,%)li'(f) PG (UeVy ey Vorg ) +

BePut P +Beeg P gy GI~(-- %eg) % VER) by 3 (2.15)
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LA (;Mg(—z()]—'(ﬁkr%f)bﬁ(—?) Vo PP et Vigg Urng ) -

e ooyt §)Dusg 152 - (1% mf )Z I/(FEJA,,,; (f)

(2.15b)

LH, @l = (g5 G+ G- TV (PIp (P4
BBy @) - IRPLING 2L P: 2 VRRIL (P
" Uity e % VER) b K'tg (- ; /5 "5 )
4 gt P Gt g s U
- by, b,% @ +Ak+3 b (?’)-}u,% Vo ?‘; VEE) by (j‘)
- Zt,e’(/,'{; V(R R Akq.g (-';'). (2.15)

The density operator p(q) is given by

PR-L éh}v- b

As mentioned above, the equations can be considerably simplified
by transforming to quasi-particle variables. The Anderson-Rickayzen

equations are then:
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Ch, z(;‘?o Yo 1= (g tEs %tfo Ju +8@Im &F)pE)

“2LREAR)+EED B @),

(2.16a)

4 ,{/«-ﬁlﬂoj =~ (Ekfg +E/.,)/k,?,ﬂo - I_{(I?)M(R;I‘) )p ()
- %z@;')Ak () -%n®F) Be 7,

(2.16b)
+ t+
[H) )/kfic,r/k,r] = (Ekf-f -Ek)lkf*i.ﬂ‘/’?ﬂ‘-
(2.16¢)
The coherence factors are defined by
,((E:Z):u&u”?_-f'”,}v;,‘g_) (2.17a)
M(E')—i)r z‘g?&ff"”i ul?\‘f) (2.17v)
nRY)= Uellarg =% Vreg (2.17c)
P(EBZ') =2CQW,;*§_“3{(ZLR*§J (2.173)

and the three collective variables are
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Acp) = -%'_ VgL by = beg (-]
= ~% Vie k?)[j(@}’) (//,%o (ﬁ;’; ‘fk#j/ )/k'o) +
P(F’,'f—’) (/z—iffo k’o"{/xﬂ#jl)],

(2.18a)

Bk (i) 2% Vik #:) [ £;(P + .ék‘,.z (—"bz?)]
= % V(ZE")[” (E},f)(ﬁﬁ_oﬂ_‘y +J/k'-?lﬁ'o)‘
MKEG;)(X;;}O%'O + JKT; Xk '-ffl >])

(2.18v)

ﬁ(f)= %-_ fk’v-(f)
=2 Lnep (fngo mylyk'o%
}'L(E",F) ()/IJA?OXVO +ﬁ'/ X k#-f/)] ‘

(2.18¢)

From (2.16c) we see that half of the normal mode operators are

of the form 7I+qo ‘7k o’ which has the eigenvalue E E. . These

k+q ~ k
operators describe scattering of excitations already present in the
initial state and vanish when applied to the ground state. Since we

will always take matrix elements of the equations of motion between
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the ground state and an excited state, these quasi-particle conserving

operators may be safely neglected.

III. SOLUTIONS OF EQUATIONS OF MOTION
For the analysis of the plasmon and exciton modes at temperature
T = O we begin with the Anderson-Rickayzen equations of motion (2.16)

for the pair operators ii;qo It must be kept in

711 and 7y 4q17x0"
mind that the equations have been linearized with respect to the
ground state involving s-state pairing between electrons of opposite
spin and momentum, as our results depend critically upon this fact.
The collective variables defined by (2.18) are substituted into the
equations in order to obtain them in a form involving only the

Bogoliubov-Valatin quasi-particle operators:

LA, feigo pad - mg’))zl;o Yo+
o @mED2 mg) (fesgo Yo +crg fio)+
2 L@ T VERIMED Wl Y - Jisgico )
¢ ncn,;)g V&RInR>?) ()o,%,, Joo +esg Jho)

(3.1a)
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LH, fergidhed 2 = Pofergs
Y PnBDZ D (o i, + ergiflen) +
5 U’?’sz VR ®)4(Z, ;) <ﬂt—?o [:: 'J’/ﬁ;: fho) =
+p oe,;)kZ R B)n (F:j;")( )/l:;?o Yor g Yeo).

(3.1p)

Those operators u; ('3 ) are now considered which are linear combina-
tions of the bilinear products of 7k's and 7k1.'s appearing in the
two equations of motion (3.1), and which create one elementary

excitation of type a. Thus we desire

SO AR g oo ],

with

(3.2)

HEr=bagpaelc@lor,

vhere ‘07 is not the original ground state of BCS, but the
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renormelized ground state with -,La‘\?) \O? = 0. The quantity Ii_ﬂa (’E)
represents the energy of the excitation created by the operator u;(?).
The elementary excitation u:(z ) may be any one of the three types
involved in the theory: a pair of excited quasi-particles in scattering
states, a plasmon, or an exciton.

From Eq. (3.3) and the discussion of Sec. II, we have
[ou @I} @ -ag@ut@io)

Since the commutator [H,uj(a)] is related to the time derivative
of HJ (?), the matrix element of u(;r () between the ground state | O)
and the state ll(&,a)> containing one excitation of energy
60.(1(?) must have the time dependence exp[iﬂa(a)t] . Now, Eq.
(3.2), expresses ua-r(a), within the RPA, as a linear combination of
the bilinear products 711(10 7;{‘1 and 7k+ql7k0’

the inverse transformations as

Yeogo i = L s REUGP)
thepuepl, ow
Yogeo = L G RE) 1 )
o 06F) sha (D], -

Taking matrix elements of Eq. (3.4) between |0 > and | l(ﬂ,a))

so that we may write

and using the orthonormality property of the excited states, we find
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Al o 1075 £, pAGRYT D107

= fRDepleR (@rt],

(3.5)
¢ (?,"Olﬁﬁb_'fkolo> :%w?)e“‘)hﬂ* (?)t]' (3.50)

The solution for the exciton mode dispersion relation is
dependent on taking matrix elements of the equations of motion (3.1)
between the states | 0 >> and I 1(T,0) ;> and using the relations
(3.5a) and (3.5b) so that we obtain a set of c-number equations.

The resultant system of linear equations may then be solved for the
normal mode frequencies and the transformation coefficients f and g.

By taking matrix elements of /3.1) we obtain:

lho.@-pl L& =

Y pmepZ mepl £y e pl +
Fa) 2 Vw1 pliep -gaepls
L ) 0@ ) L @ race:
Enep L Yep) ne PLE@pacep),

(3.6a)
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Lhapora)] %3 =

Y Pnap) mepLiep g+
‘z’l(k‘,}")% VRE)L @ o @]
“2n@d) L Vi@ )l L&D+ g 0],

(3.60)
From (3.6) it is evident that an explicit form for V(?,Tc') must be
chosen in order to proceed further. As emphasized in the foregoing,
the BCS ground state about which the Anderson-Rickayzen equations
have been linearized is one involving s-state pairing. Thus in the
absence of crystalline anisotropy, the q -+ O solusions must transform
according to the irreducible representations of the full rotation
group, i.e., the spherical harmonics. Because of this fact, we
expand the two body potential V(?,‘k') in terms of spherical harmonics.
The coordinate system is chosen so t'nat—a lies along the polar axis
with 8 and @ the polar and azimuthal angles of the wave vector I'
and © and ¢ the analogous quantities for RIf { 1s the angle between

1?' and -l?, the use of the addition theorem gives
V(k,k')=g° lZ(/e,/e') Y ( ¢)=
had Y

2w Latp Yn(89)

A=p

(3.7)
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where
0 - enfos s )BT (ko
Vz(k,k ) = (4n/24 + 1) Vz(k,k ) .
A further approximation is made in setting Vl(k,k') = VE, a nonzero
constant, for | €] <4ﬁaé and zero otherwise. The quantity'ﬁu%

is the average phonon energy of the order of the Debye energy. We

define the coupling constant gr, by

g = -N(0) vL/un . (3.8)
The BCS coupling constant is related to g, by

= -N(0) V /bx = N(0) 0.

€ Vs ~

It is convenient to introduce three new variables
- *
N @)=2 0 R, Lo (B0
xLf®pep®y)],

(3.9a)

" @) =Z;uk°,;')l/¢ Yom ( 49)
x [4& 7) —;(re,;’)l (5.90)
Z@-plnaplapgeg],

where the subscript o has been dropped from both sides of the equa-
tions for simplicity. Equations (3.6) then express the transformation
coefficients f and g in terms of the new variables A, I', and Z. By

substituting these expression into the defining relationships (3.9),
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we obtain the following coupled integral equations to determine the

eigenfrequency ﬂ (q):

. /
N = \{Z h (&) (40201 -V @F ”
L2%qIm &) Z4) Vi 8p) +
» Z *
K GIn®2) L Vo 0) bom 6P L (f+
‘WPWLZ,,, M ©P 2 [om ¢ g‘)},

(3.10a)

[ =W 2 e YT

{20 @m, D2 Vo )+
h2(f) nRT) Z Yoe (0 )o, 09 NP

RGURD) L Yog ) oy 8P [ D) S

(3.10v)
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/
Zq- 4 (?)Z: m®J) [l ™ Vi @° ”

@) R L 89 Now () +
WL @LR ) Vb T (P

(3.10c)

From these three equations it is jmmediately seen that one good quantum
number for the description of an excitation is the magnetic quantum
pumber M. In the sum over")?, the angular integration requires m = M,
as the only @-dependent quantities involved are the spherical har-
monics. Thus, M is a good quantum number regardless of the center-of-

mass momentum btod

(1) q » 0 Case

In the case of zero center-of-mass momentum, Eqs. (3.10) give
L as an additional good quantum pumber. This follows since neither
the coherence factors nor the energy “k(a) of the quasi-particle peir
are dependent on the polar angle in this case. The angular part of

the sum ZK then reduces to



28

f Vo @89, Gf) di, =10 dum.

The sum Zk is converted into an integral by letting

;’ [v/tany] ﬁe i,

where the volume v of the normalization box is taken as unity. The

radial integrals over k are all of the form

IO = // . d.(FJO)é(eO)-“ /ézdk, \
ab... i) (4[2)2_ )’-k(o)z ) (3.11)

vwhere each of the quantities a,b,c, ... is one of the coherence
factors, the energy Vk(O) of the independent quasi-particles, or the
excitation energy A{) . The integration over the magnitude of i?is
replaced by an integration over the Bloch state energy ek, as meas-

ured from the Fermi surface, by setting
2 g E‘ ‘S. _ P
I dies (i 162 * (RE.)"ds. = 2T y) d5. (3.12)

vhere we have made the approximation of a constant density of states.

The approximation leads to an error of order‘ﬁuE/EF = 10-3. The

integrals Iab 0 are only performed over the region -ﬁwh <€ <-ﬁa%

since the potentials V‘ have been set equal to zero outside this
energy band. Using (3.12), Eqs. (3.10a) and (3.10b) for the q = 0

case are vritten as



(1-V, I3 ) N =V Tipon i

:;/i"oq Z(g)’? ‘{ ;‘:m Xo)

(3.13a)
0 o
"VLIMun-/)LM*(/ m‘)FM
"’" Z(f);’ Ajum 0.
(3.13v)

From these equations it is seen that the direct Coulomb interaction
hnez/qa involved in Z(3) only appears for the L = M = O state. It
will be shown below that this state has a solution corresponding to

8 plasma oscillation with the usual plasmon energy

‘hﬂf =4 (4rne*/m )yz'* l0ev

and lies far above the gap 24 ~ 10-3 ev. In this section only the

M # O cases will be considered, in which the right-hand sides of

0
Eqs. (2.13) become zero. Since the integrand of %hjlin
about the Ferml surface within the constant density of states approxi-

is odd

mation, ;hlllno vanishes and there is no coupling between the A and
I modes. The excitation energies for the L # O modes with zero

center-of-mass momentum are then determined by the conditions:
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6“ V, I;ﬁ“) "'OJ (A mode) ,  (3.1ka)

(I—%. I,l,(") = O_, (., mode) . (3.14b)

IM

Setting x = (#(1/24) < 1 in the integrals Ivn2o and I ”20 and using

the definition (3.8) of the coupling constant g;» Eas. (3.13) become:

/ , Yo
(i: __;/;)-_-_ (Aﬁzlnl %) ) (Apy mode) ,
(3.1%)
/
(_/_ - ./_): y 4 /4“5_"’7'“_ ) (Ppy mode) .
;4. jo (,_%z)yz
(3.150)

Values of x = (fifl/2A) are plotted as a function of the left-hand
sides of these equations in Fig. 6. The plot shows that when 8y,
becomes larger than 8q the frequency L) of the I"LM mode becomes
imaginary, indicating that the system is unstable when described
by a ground state formed with s-state pairing. Therefore, if 8;, is
the largest coupling constant present, the ground state should be
formed from pair functions having L-type symmetry. The pair spin
function is singlet or triplet depending on whether L is even or
odd, since the wave function describing the exciton state must be

antisymmetric on the interchange of all coordinates of the quasi-

particle pair involved.
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The growth of the IiM modes for 8y, > g also indicates that
the AIM modes have no physical existence. As is seen in Fig. 6, a
ALM exciton cannot exist unless gy, > &y However, when such a

coupling strength is reached, the corresponding IEM exciton is un-

stable so that the system decays before the ALM mode can come into
existence. Figure 6 also indicates the 2L-fold M degeneracy of
q = O L-state excitons.

It should be mentioned that a continuum of scattering state
solutions is obtained from (3.14b) corresponding to the vanishing
of the denominator of the integrand. One such state exists between

two successive unperturbed levels, Ek + Ek Although the energy

+q'
of a scattering state solution is unaltered from its value in the
absence of interactions, its wave function is strongly modified since

each particle is surrounded by a depletion of the same type of

particle leading to the backflow picture mentioned above.

(2) “q Finite Case

From Eq. (3.10) it is seen that L is not strictly a good
quantum number for the case of finite?i since the coherence factors
and Vk(an now have a polar angle dependence. Because of the com-
plexity of this dependence, the sum Zk cannot be carried out exactly.

We approximate

et g

by

s ~
g = e A (3.15¢)
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where B =‘ﬁvoq, W = cosB, and v, is the velocity of a particle at

9]
the Fermi surface. This leads tc an error of order q/kF < 1. The
integrals Iab are of the same form as those in the g = 0 case. To

perform the angular integral, we expand the denominator of the

integrand

=L / 4(@2')50@);. '%’d (3.16)
& CIORED Y

ab,..

in powers of B. This procedure is valid so long as B <MLL - 2A.

The integrals over k are then of the form

Tobo.. lap.., T ot R I ot (3.17)

with superscripts indicating the powers of 8 involved. Keeping

terms through order 52 and using the relations

cosf = p = (hﬂ/})l/a Ylo(e)

and

cos?8 = = Z(un/5) 2 v, (0) + (W) R v

the equations for A and T (3.10) become

N @ =V, /Au )2 (*?)fI,f,,,, Z@) Y Vio +
[t Tyoe + A T + 3 T Yo D
g Yo &Mﬂm(f) t (@{—IJ’Q[;, Xu LZ }g Ve L2 657 J),

(5.18a)
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[T.@=V, /m [ (@ Togm + 5 Thaom) Yo
4 o Yo 2 Yok +
(5 Lin Yo 2 Vol o N oL (60T
D T e + 3 T W 17 VYot Do .

(3.180)

With the relation

y ¥ @l )8, +1) 1%
/ dw,); My )},m, ),/l//l(, =L r4,+)

X c([,/,/_g; /’74’”2”73)6 (/'4/\!.;&00)/

where the C's are usual Clebsch-Gordan coefficients,ii/ Eqs. (3.18)

become
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Nu@=1 20D Ty 205550
(tmfzp (F 7L )Z 2t 7%
X Cloar;omm) Cloae;000) NLgy(F)+
$EF Lo 2 [t cocsom
X C@eL;000) Mo (F) + (ﬂ) Im/zn 2L %)v

XL oL oMM)C(1£L: 000) lgr (;’)})

(3.19a)
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el T D)5

(B T o T B 1200+ (0 T (B Te)

XZ[‘:(ZL) Clos LioMm) Elosl; 000) I LM (f)*'
L

( 4
:f‘(”) I,a Z [wz:fo] EQRuL; oMif) X

4 3 %
C (2L L 000) /1/1 (f) +(g_r) I;,a_},,, Z[‘ﬂm?::lj]

X C (1 Ljo/ur/) Clp L;ooo)./l,,., (f).{

(3.19v)
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As in the q =+ O case, the Coulomb field represented by the presence
of the z(E) term does not couple into the equations of motion except
for the longitudinal modes M = Q. Discussion of this case is deferred
and the transverse cases M % 0O are now considered. For a given
M # 0, Eqs. (3.19) represent a set of 2N linear simultaneous equa-
tions in ALM and nuq, vhere N is the number of terms present in the
spherical harmonic decomposition of the two-body interaction (3.7).
It follows that fo. a given set of VL's the normal mode frequencies
of the system may be cbtained by setting the determinant of the coef-
ficients of the AIM'S and IiM's equal to zero. Once the frequencies
have been obtained, the Am's , I‘m's , and the transformation coeffi-
cients f and g may be determined.

For simplicity we consider the case for which all but two
of the VL's vanish. It is assumed that the two-body potential con-
sists of a term VO’ corresponding to the BCS parameter and another,
VL, representing the angular dependence of the interaction. Since M
has been taken as nonzero, it is seen that the simplified VO and VL
potential allows the modes to be characterized by a quantum number
L within the approximations of the calculation, due to AOM and rbM
vanishing identically for M # 0. Thus, we may speak of & p-,d-,...
state exciton when the additional term in the potential has L = 1,2,...
type angular dependence.

If the potential contains s- and p-wave potentials,

VIg,R) =V, Yoo (6.9) Voo (B, D) +
i Yl,tl (9,;0) ){,ﬂ (@, f),

(3.20)
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the dispersion relations obtained from (3.19) are found to be

—E—: (I;h" +3/-I,,.;a.) 3 [-A-IJtI(P Modes]) (3.21a)

v/
[

0 <3
(TheysT2), [ 1
_6— (I)‘,Q" t< I)!,Q’- S rzil (?f)mode\s . (3.21b)
!
We discard the A mode since it does not exist if the system is
stable. The dispersion relation (3.21b) for the r +l(‘ci) mode, Wwhen
-

rewritten in terms of explicit expressions for the integrals Iv320

and Iv£22 becomes

- -
2 _2 _ &xhresing

@;3)1_1073 % &~ Vrzx

7| 2 - Arsing |, 2% Ares
+ % h
i /25 1 2 (/—x’j%z-

(3.22)

where x =liﬂl +1/2A < 1. This dispersion relation is plotted in
B
Fig. 7 for two values of 8, with g, = 0.25. From the figure, it is

seen that the curve intersects the origin for g =8 For a value

o'
g, < 8 there is & minimum value of x = x_ given by (l/gl - l/go) =
xm arcsin xm/(l - xm2)1/2, in agreement with the results of the last

section for the q ~ O case.
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(3) The s-State Exciton

The above discussion was restricted to that of the trans-
verse, M # 0, excitations in which the Coulomb interaction term
2(?) did not enter into the equations for ALM(a’) and I"LM(?;’) Be-
fore discussing the M = 0 cases, it should be emphasized that the
equations of motion (3.1) which are the basis of this paper are
those linearized by Anderson about the BCS ground state based on
s-state pairing of the electrons. As Andersonélig/ has pointed
out, it is the s-state exciton which corresponds to a plasmon
excitation, due to Z(Q) coupling into the equations of motion.

The L = O mode 1s considered in the q - O limit. DBecause

of the singular nature of the direct interaction, it is not possi-

ble to set Q@ = O in the calculation, so that the limit q - O
must be taken. For our starting point, we consider Eq. (3.13b) for

the 1"00(3) mode in the q = O case:

(1-Vo Ty, = lim Z(g')"? % Lugem . (3.23)
?-»o

From the definitions (3.5) and {3.9) an expression for Z(q) is obtained:

\b (9 X
1= 8T Vo(@) (Tpo e + Liw/3)

h

ﬂt(‘”)flaoum +( %) &Iﬁium] oo (f’) +
n -
(P Lot®) + 3 Th ).

(3.24)

Zlg') =
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Since the L = 0 mode excitation energy is being considered, only
the rbo(q) term in (3.24) need be used in substituting for Z(q)

into (3.23). Rearrangement of terms then gives:

A= lim gTr\4(§) /
i / =V Lap>

{ I(jlﬂm (I«ium ¥ Trny, / ) Vo +
o

(o +Toe/s )~ 0T ) §

X

(3.25)
Since Vb(q) ~ l/q2, Eq. (3.26) indicates that in order for the

limit to be finite, the terms in the numerator which are independent

of q must vanish:
o 2 —
(Txag) Vo + Lo (Yo L,;) =0, (3.26)

The validity of (3.26) is shown by considering the explicit form

of the integrals involved:



#,
I;ma :/ J/V(QAZ/E d;_) (3.27a)
7 Ge)E

()

Trc = m/ LAY 2
i, hQ)-4£*

)
=) ME 4
K,/ {(%.Q)"E T

~hWe
A ( / _ L }d{.
E \GR)*~4e* Q)]

- i:_%_ +/w¢ _ME)HAE
Qv fopl[40)-4E*]

- g [T

(3.270)

where the BCS integral equationi/ for Vo has been used to obtain
the first term on the right. With the use of these relations,

(3.26) becomes:
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24 l{,(-—-./_ + Ly 2|40 MDOAE 40 +

A\ e o, GQ-¢E*

e
O’Z/ A/(f-)Az/E (/—l{,fulz) di —_ 0‘
F, GRy=tE*

With the validity of (3.26) established, (3.25) reduces to

1= lim 8’77'\/,(;2 / 5 X
F>° 3 /= Vo Ly

iVoIZo.zm Tioom + L -V thz)} .

(3.28)
To determine the existence of a plasma oscillation for the L = 0O
mode, (3.28) must have a solution for x = (£2/2A) >> 1. Under this
condition the term Volvﬁo in the denominator is much less than
unity and may be dropped. The integrals involved in (3.28) are

evaluated for x >> 1 so that, to order l/xe, (3.28) reduces to

L
/= 7% V) @ ;‘/V(o)}' . (3.29)
62>
Using Vy(a) = bne?/a® and e N(0) = (3/20° )(hw /28)°, vnere
wp2 = l+:t1'xe2/1u, (3.29) gives Q. ®, 80 that the excitation fre-

quency of this mode is the plasma frequency.
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(4) The L =1, M = 0 Mode
To complete the investigation of the collective states present
when only the VO and Vl terms are kept in the potential expansion
(3.7), ve must determine the dispersion relation for the I"lo(q) mode .
Setting M = O in (3.19b) we obtain two simultaneous equations involving
I‘OO(E)) and I‘lo(f). There is no mixing of these modes in the equations.
The POO dispersion relation gives the plasma frequency as discussed

above while the I‘lo(a) mode dispersion relation becomes

' _ o 3 ——2

‘\7; = (I)uz + 7 Lwer) (3.30)
In Sec. III (2) we found the dispersion relation for the Pl+l(q) modes
to be

: [4Y 2

\/' 3

Thus the I‘lo('ci’) dispersion relation can be obtained by letting
3 +3V3 in (3.22), indicating that for a given wave vector§ the
excitation energy of the longitudinal l"lo(q) mode is raised above that

of the transverse I"1+1(?) modes.

IV. CORRECTIONS TO THE ANDERSON-RICKAYZEN EQUATIONS
We consider here the terms in the linearized equations neglected
by Anderson and Rickayzen. For simplicity we treat these terms only
in the ¥ - O case. In the equation for ka(a), the terms shown in

Figs. 2(h) and 2(i) were neglected. They contribute the factor
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- a,ev;kZ, V(RE) (A /2Ew) X
()4$;)¢;1 +*d1éﬁéyéﬁ9.>

to the right hand side of (3.la) in the limit—a »'O, vhile the

(4.1)

negative of this factor is added to the right-hand side of (3.1b).
The exchange scattering vertex shown in Fig. 3(a) was neglected

in the equation for pkcﬂf). Its contribution,

z CZ*?" Cer LV )2, -
Voeg, #ee) 2% ]

vanishes as'g-» O and does not affect the energy of the exciton

(4.2)

states in this limit. The inclusion of (4.1) adds the term

2 2 Z V(I?F) (ﬁ, %) (4.3)

to the right-hand side of (3.6a) and the negative of this term to

the right-hand side of (3.6b). Introducing the variable

Re = > _gs VR ) (£ e ), (4.4)
e S

one finds the M # O exciton states satisfy the set of coupled

equations:



LM"}_—L,.MVZ ‘QEK —_

(hR)*— 4 Ef*

ﬁLJV L{ Zﬁk’ 'A'Il
£ Ee (R0 -4E¢

(4.5)

2N
Rar VZ E[tn)-4et]

Setting the determinant of the coefficients equal to zero, one finds

the dispersion relation

(——&: +.-Z—,t:1:) -é"z;;l)+(1;;4m>1 = 0;
(4.6)

or

(725 )F 5 )

(Aresina) _
t -2 ~0

(4.7)
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for the energy of the IEM excitor. The modification of the7i-* 0
exciton energy given by (4.7) is shown in Fig. 6 for g, = 0.25 and
is seen to be small. A new type of excitation follows from (h.?)
for 8, < 0, that is, a repulsive rather than attractive L-wave
interaction between electrons. The energy of this state is shown
in Fig. 8 as a function of -8, for 8y = 0.25. From the form of the
coherence factors entering the dispersion relation it appears the
new state should be interpreted as a bound electron-hole pair in
close analogy with the exciton states occurring in insulators. This
interpretation is consistent with the fact that the electron-hole
interaction is attractive when the corresponding electron-electron
interaction is repulsive. Thus the electron-hole exciton arises
solely from the terms neglected in the Anderson-Rickayzen equations.
In Sec. V we consider the role played by this type of
exciton in the absorption of electromagnetic waves of frequencies

lying within the gap.

V. ELECTROMAGNETIC ABSORPTION
Ginsberg, Richards and Tinkhamz/ have measured the absorption

of infrared radiation in bulk samples and the transmission through
thin films of several superconductors. In samples of lead and tin
they have found a precursor absorption existing for frequencies
below that corresponding to the energy gap. The Rickayzen form of
the Anderson equations of motion has been applied by Tsunetoé/ to
the problem of the surface impedance at finite frequency. While he

finds the existence of a precursor absorption due to the creation
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of excitons, his results predict a value for the absorption which
is an order of magnitude smaller than the experimental value. The
Tsuneto analysis does not include the corrections to the Anderson-
Rickayzen equations described in IV which give rise to the hole-
particle excitons. In this section we calculate the infrared
absorption due to hole-particle excitons in order to investigate
how this absorption may modify the Tsuneto results and to see if
the experimental results can be explained.

In order to calculate the absorption we must extend the
equations (3.1) for 7;+qo7kl and 7k+ql7ko to treat particle-hole
excitons with a finite center of mass momentum ,hﬁ. Once again
the quasi-particle conserving operators 7;+q07k0 are not considered
since they do not contribute to the dispersion relation for the

excitons nor to their absorption.

We begin by defining the quantity D(X,K') by

Dr®') = de Vg (U 152). o

With this definition, the non quasi-particle conserving contribution
to the equation of motion (3.1a) for 7+ y due to the inclusion
k+qO ky

of the terms shown in Figs. 2(h) and 2(1i) is



L7

. —> L , :
Co) = ; + (Vige)+ V(#sz R +7)))<
{[3(221‘;{)&4,,:7 % + 7(/?7%2)&,@' V,&ZMZ}O Z
+ [D(/'ejm;)?z;/,? Wy + ,?(@7?‘, €)'y ”fe'.b/k H ¥ }

(5.2a)

The contribution to equation (3.1b) is

~Culpr= 2 = (VWRRI+ VG, BD)X
;[D(Rﬁi’) R) Uy 7 gf ‘f‘)(?,;*’f)uk’rf e i_’d/lz'ff/%’o

..’—
+ [D(E??)P)V,e, u,,a,x + DR, Reg) "4'77/2'7 ] ﬂ#;oﬂ, ? .

(5.20)
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In order to investigate the electromagnetic absorption due to
the creation of excitons we consider the effect on the equations of
motion (3.l1a) and (3.1b) of an externally applied transverse vector

potential
AR =2@) expl R -itorape], 6o

With a = (ed/2mc), the inclusion of the vector potential and the

corrections (5.2), the equations (3.la) and (3.1b) are rewritten as

+
[H))/mg_o)/:‘-_] = \)&(g.’)ﬂifo&/kf + K(I’Z)/)(F)M(Ei)
+ 0 PR+ 4R 4R + Ce D)
+ o pR2) Z() (k+2) expl-C vyt ]

(5.4a)

and

[. H_,Xk*-gl)/ko] = —vl—z (?’)ﬁfﬁl%o "l/D(f)jﬂgf) MCE’,?)
"t nRP)%(7) - AR ) 4,4}") -G, (1)

+ °<P(F,}’) Z(f)o(—&’»‘-}’) Sxp L“'(“""’()f]'

(5.4v)
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The variables Ak(a), Bk(a), and pk(a) have been defined previously
by equations (2.18). It is the three coupled integral equations
for these variables which are the basis for Tsuneto's analysis
of the electromagnetic absorption. With the inclusion of correction
terms due to the presence of the hole-particle excitons, the two
new variables, Ck(Z) and 5#(37, of equations (5.2) are coupled into
the equations for the three original variables. Tsuneto has shown
that the cross terms involving pk(a) and Bk(a) vanish so that his
absorption is determined by the one collective variable Ak(z). In
our analysis, we have three coupled integral equations in Ak(z),
¢, (2) ana T (@),

It becomes convenient to introduce a change of variables

with the new set of definitions:

Tweq)=Z Vr#) x

gukﬁ UZ'/kZio)QT-f ?//?+;_ %k'ﬁ#f//k’o ;,

(5.58)
Tae@=2, V(o R)x
iy el g g oo
(5.50)

_Ei(f) = Tik (g) + ok (;"),

(5.5¢)
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We also note that D(¥,k+q) + D(R¥Q3) = £°2:3) n(R,3), and
D(R,2+3) - D(R4q,3) = n2(R3) P(R,Z). We will work with the fol-

+
lowing three coupled integral equations in Ak(-cz) and T;(-ci):

N
Ak(?) "‘% W@F’)(%w +c‘rl)"- V‘k‘(i‘) X
&2(?33) e ) A 4)- A pR.TILE,T) Ve @ 2’(;") ‘K
- bR fIn@.Q) Tk%") LB PRIV ) Te T{;ZJf

(5.6a)

/
@) =2 VR Gwip S X
; hwlR I, ;) /}/ef/li’) — WAL ;)fae; 7 a*g;)-?f

2 - .,- -
LBPHEE) e @) e @)~ homlR, IR L l(p},

(5.6v)

- /
T;( (? = % V(KF’) (gwf_[)()z_,,(k,(?)z. X
Do PRI R Aol = 10 () PR TG H7

Ho CRPmEPp @ LT ) W PP PP T (0f,

(5.6¢)
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We again use the decomposition of the two body potential V(E';k)
into spherical harmonics as described by equation (3.7). This allows

- - —s
us to define the three quantities Atm(q)’ Tllm(Q) and Tzlm(Q)°

/41n1(;?)== "\g{‘%EZZ)Z::(ZZ)%LZ(%?EJE)<§%:;;u>é)¢;r_’2)2#f;/<)4;ﬁ> :ﬁ

(5.7a)
Toam @)=2_ Y, Yol (Mess 0 fergo Yt
+ 2@7 Z%'ﬂ'*f’%e'o >)

(5.T0)

A * ‘f' +
Taem Lf) "; ‘4 Yem (‘gf’)(Z‘k‘WE’f—?%’»«XAﬁ‘/
s Vr %’7/ Jo )
(5.7¢)
Analogous to equation (5.5¢c) we set

+
Tp(@ = T, @ +1,, &) . (5.74)

With these definitions and use of the orthonormality properties of

the spherical harmonics, equations (5.6) may be reduced to
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ALM C?F \/L. Z (4w+/u()7-~ﬂkf(f’)a X
L@ @) 2 Yot Yo Au (B
“Hho L@ DmEDT Yot You Ten’ B
LR DECTI PRI ot Yo T )

¥
" PR ERTI ) B R L (g w0 )9

(5.8a)

+ — /
7;1 (f) = VL%— (/iwﬂ’i()‘-lﬂ,‘,’(f“'_) X
%%wﬁ(}ic’{')m@pﬁz YL: Yer A fi’)
2 - 2 7 + i
LR, Ve ) .Z__ L Yo Tews ()
~hio m(R; )Z’) 71’(2',}’) PR, f); )f: )Z«ZH_ (f')
~ 1t MR, T) p(R2) AQ)- R e -/)f,

(5.80)
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- /
Ton (g’) = VL_ %- (ﬁwm()l—yk,(f)?- X
5 ¥ -
QTR ) L L Vo A ()
~h %% ;’)m(i?/,;”) PE, f);— ){: XHEJ( ,'4”)
R R PP ) L ot Yo T P
TR V@) > (%, 7) 2q) # Vo (i 1430 1) f)

(5.8¢2)

We must calculate the correction to the BCS paramagnetic current due
to the transverse collective excitations which are included in
equations (5.8). Then, following the method of Tsuneto, we determine
the surface resistance of a bulk superconductor for frequencies less

than the gap.

The paramagnetic part of the current density is

fr‘f) = -« ; (22’7)?(?,}') X
ool ~ogs oo ).

(5.9)
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By the methods described in section III, we take matrix elements
of equations (5.4) vetween the renormalized ground state l O;>

and the state ' l(E,a);> containing one elementary excitation.
The results of this, together with our expressions for Ak(a) and

+
T;(E), allow the paramagnetic current density to be rewritten as

a D)= =€ L - ?D(léﬂﬁﬁ)
(o= - e aeep) ot~ A

=L le, 7)) A (f)

o kR F)m 2T T @)
@A RP) pET) e (F

+ 2 plRP) Ve (;‘) Z’(f) '&F’:?) f :

(5.10)

Since the odd £ values in our potential expansion (3.7) can-
not couple with a transverse field, we consider a simplified case
in which the only terms present in the potential are VO and Vz.
Furthermore, the presence of the Kronecker deltas (due to the trans-

verse nature of the applied field) in the driving terms of equations
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(5.8) indicate that we need only consider the M =+ 1 cases in

solving these equations. In addition, it is easily shown that
+ +

"o - -y — »
A21(q) = - A2,-1(Q) and T21(q) = - T2’_l(q). Therefore, we must
solve equations (5.8) for the three collective coordinates Azl(-ti)

+
and T;l(-ci). We reduce our notation by referring to these as A(q) and
+

T (Q).

We introduce the sums

)

1ab,..

= %Z YZ:"(‘QI?) YZI /(9)?) ab...
ke (b)) )}k’(f)z

(5.11)

and

*—
Si, = > _ulbpab.. 512
K’ (sz)i—-)!k'(i")‘

where each of the quantities a,b,c,... is one of the coherence factors,
y-k(a),/ﬁw or a(gq)-X'. With this notation, the three equations (5.8)

+
for A(q) and T (q) may be rewritten

( "Su.‘?) A+ Swﬂm T++ Ste /»z’)’-T‘: — 9 \S?Z/:.l Va-k,

(5.13a)

+ -
- Slhwlm A‘f'(/ *Sl[mfy‘)T + S/ﬂwmn’PT = - Vquﬁa)PZk"mJ
(5.13b)

" Supr A+ SmwzszT++ (- Spen T = =4 SzpuaR:.

(5.13¢c)
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When the angular integratiouns are considered, the orthonor-
mality properties of the spherical harmonics reduce equation (5.13¢)

to

([+ 5:;,7;2%)7 =0, (5.14)

Therefore, a consistent solution to equations (5.13) may be obtained
with the setting of T = 0, since the quantity (1 + smzfa,) is
non-vanishing when evaluated at points of the dispersion relation

determined by A and T+ alone. The two equations to be solved are now

O’Su‘#)/q +Smwz’m7= e ‘S.\zlaf#'&"?’,

(5.15a)

—Sma)zm /4 +(/+Suzm7-¢)7; _%Sj?ﬁwM/)Z'F’J

(5.15b)

where we have written T+ = T for convenience of notation. The solutions

are

A: —7)" [“‘7“’( Slfl)"&r' B’ (/'f S/j"m’y‘) +

Yo 5‘24@»7/)233’ S/ﬁwlsm J; (5.16a)

T-- P~ ['7“’( ‘Sezliw;nf&’: B (I- SII’V)"‘
L/q S-?ﬁl#Zl': ?, Sﬁw{m ])

(5.16b)
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where

P (I-S/,e‘)t)(/J-Swzmz);)—f-S;ﬁwﬁam S”Mem. (5.16¢)

We now consider the calculation of the surface resistance. In
equation (5.10) for the paramagnetic current density the first term
gives the BCS paramagnetic current. The collective part may be

written as

— > 4 ky }>6€:j?)
o (= ex 2. Gt P R (%,(6,8)

(5.17)

X @) @A+ torvepimer T (5)

The kernel xcoll('&,w) is defined by

‘723/ (;w) = - —1%7 Ka// (ﬁw) Z(f';w)) (5.18)

and can be easily shown to be given by

_ S T )I/l*(@,@-) Z/(@Jé)
Ken(fro) = "o kZ/jkf (#”+£}()z')l’<a(f)

pEF) [zaap KePA 0 278 TImRF) T

(5.19)
In this expression the quantity kF appears as an approximation to lfl
in kx since the two-body potential is assumed to vanish except for

]§| and |k'| near kp-
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To evaluate the surface resistance we assume the condition of
specular reflection of the quasi-particles at the boundary of the
superconductor. We should not expect our results to be too sensitive
to the boundary conditions. For example, the penetration depth com-
puted under the specular reflection condition differs little from
that calculated in the random scattering limit. Also, the condition
of random scattering involves mathematical complexities beyond the
scope of our calculation.

With the specular reflection boundary condition the instan-

13/

taneous field inside a bulk superconductor is given by

a Cgajw) = Ho) / (5.20)
T - @)+ Kge)
where H(O) is the magnetic field at the surface. The quantity we/c2
is neglected since we are interested in the infrared region where the
vavelength of the electromagnetic wave is large compared to the
penetration depth of the sample. For our rough calculation, we also

in the denominator, so that K ~ K

neglect Kco the ordinary kernel.

11 0’
We further approximate KO by 1/x€ which is valid for eoq < 1l. The
quantity kL is the London penetration depth.

The rate of absorption of a wave of frequency w is

‘2(377)2[?6 [7{?0) ' E(i’,w)] df (5.21)
= arthe) T [KauGu @)l 4y
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With the substitutlion of our approximation for a(q,w) into (5.21),

ve get
R tw)= {Z_Cf?@)f O/I,,, Kew 0. (5.22)

Thus we are interested in evaluating the imaginary part of
Kcoll(a’w) given by equation (5.19). In section III(2) explicit
expressions could not be obtained for the integrals involved in
ALM(E) and FiM(E), and approximations were used to second order in
the momentum transfer&fa. Similar approximations are made in this
section for the evaluation of A,T and subsequently Im Kcoll(a,m).

With these approximations, the coupling constants g defined by (3.8),

and x = (fw/2A) we can obtain

I /((?,w)= %fz (%)azl* /ix* X
§(FT-£w)
/%?/ff»)

{ (- +§)x-2 +
:2(/‘ éiﬁ‘ e ygj(/-%z)%Arcsin X
B r_.(l—;%> + 'sz(A‘msm 74)2 }

(5.23)
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The quantity q(w) is the solution to the equation P(q,w) = O which
gives the dispersion relation for the exciton spectrum. The presence
of the delta function term indicates the absorption by the system of

a photon of frequency w resulting in the creation of an exciton of
energy Aw and center of mass momentum hq(w). Because of the delta
furnction, the integral in expression (5.22) for Rs(m) is easy to
evaluate. We are interested in obtaining the rati;'of Rs(m) to the
resistance of a normal metal. In the extreme non-ciassical (anomalous)
limit, and with the boundary condition of specular reflection, the

surface resistance of a normal metal is given byiﬁ/
£ $p\5
Roo )= @ (ho X, fan)T(E)°A, (5.2

From the data of Ginsberg, Richards and Tinkham the absorption
in the gap has a maximum at a frequency near three-quarters of 2A.
For the strong-coupling metals involved in their experiments, we may
take a value of g, = 0.5. In Fig. 9 the particle-hole excitation
energies are plotted as a function of (-32) in the q = O case for
this value of &y° We see that an excitation given by x = % occurs
for a value of 8, = =0.75. With these values of &, and 8 the ratio

Rs(m)/ap(w) becomes



ZE (w) _ Q[ /A 4 0
Ri (@) %(;’?{"’)) @/7)% (?:_)3}1% —x= X
{ 2 T PU-x)+ "(5 - z)(/—x’)’ Aresinx

(«2 22 XAresin ) }

_2?(LQ)
(5.25)
This ratio has been evaluated as a function of x =Hw/24, and
the results are indicated in Fig. 10. We see that our results do
indjicate the presence of absorption due to the creation of particle-
hole excitons. We do not observe the peak-like structure of Tsuneto's
results since our approximations are not valid beyond the regions
plotted. However, as in the case of Tsuneto's work, our absorption
is at least an order of magnitude too small to explain the observed
experimental data. For example, with &O/kL equal to 4 for lead, our
results indicate an absorption ratio of about 0.003 at x = 0.825,
while the observed value is of order 0.1l. Therefore, we can conclude
that the particle-hole exciton absorption cannot explain the lead and
tin precursor absorption observed by Ginsberg et al.,l/ within the
approximations of this weak coupling calculation.
It should be noted that our work, as well as that of Tsuneto,
has been based on a bulk sample calculation while the experiments
have been performed on thin films. The wave vectors, q, of importance

are of the same order as the thickness of the films. Therefore, an
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improved calculation might be one in which the original unperturbed
wave functions are not three dimensional plane waves, but ones in
which the finite thickness of the film is taken into account, i.e.,
a wave function which is an infinite plane wave in two dimensions
and sinusoidal in the third with boundary conditions appropriate to

the thickness of the film taken into account.

VI. CONCLUSIONS
While we have approximated the Lth spherical harmonic of the
two-body interaction by a separable potential, VL(E;K') = - VL for
el 2 &l <zﬁuE and zero, otherwise, in general, if the
potential is independent of crystallographic orientation, the numbers
L and M remain good quantum numbers for the excitations in the limit

- -
q - 0. For a nonseparable potential, i.e., if V_{k,k') is not of

LY
the form ¢L(E) ¢£(?'), there may be more than one exciton state for
a given L and M. While the excitons should give a negligible contri-
bution to the specific heat, it may prove possible to observe the
thermally-excited odd L excitons (spin waves) by magnetic resonance
techniques. The precursor infrared absorption observed in Pb and Hg
cannot be explained within the framework of a bulk sample calculation.
It would be interesting to carry out an explicit calculation of the
absorption coefficient for a thin film geometry in an attempt to

reconcile the difference between the theoretical predictions and

experiment.
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Fig. 1

The two vertices occurring in the full equations
of motion for b:?a)~ In the linearized equations
only vertices with certain values oflﬁ' and E‘

are retained.
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Fig. 1

The two vertices occurring in the full equations
of motion for bziz). In the linearized equations

only vertices with certain values of S' and E‘

are retained.
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Fig. 2

The vertices retained in the full linearized
equation of motion for b{ka). Vertices f, g, h,
and i1 were neglected by Anderson and by Rickayzen.
The particle-hole excitons are obtained only if

the interactions shown in h and i are included.
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Fig. 3

The vertices retained in the full linearized
-

equation of motion for ka(q). Vertices a,

e, and f were neglected by Anderson and

Rickayzen.
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Fig. 4

Fig. 5

A typical diagram retained within the random-
phase approximation to pkd(a) in the normal

state.

The random-phase approximation to the screened

interaction line.
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Fig. 7

The 3—state exciton energy as a function of
momentum g for g, = 0.25 and g, = 0.24 or 0.25.
The parameter ﬁo is the coherence length

~ lO-u cm. Notice that the exciton states are

strongly bound only for q-l > ﬁo.
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Fig. 9

The energy of the D-state particle-hole exciton,
in the limit of q = O, as a function of the

D-wave coupling constant with g. = 0.50.
& 0
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Fig. 10

The ratio of the surface resistance of a
superconductor due to creation of D-state
particle-hole excitons to that of a normal
metal in the extreme anomalous limit cal-
culated for the D-wave coupling constant

=-.7 = . .
g5 0.75 and g, 0.50
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I. THE ROLE OF LIFETIME EFFECTS

In a many body system a particle in an excited state does not
remain there indefinitely due to its interacting with the other
elementary excitations of the system. The presence of this lifetime
can be taken into account in the description of the excited state
by specifying its energy as E = Eo + iEl, where EO and E1 are both
real. PFrom thlis we see that a well defined excitation energy only
has significance when the state is long lived; i.e., when El << qu

The effects of finite lifetimes on the excitation spectrum
cannct be investigated easily using an equation of motion approach
or a variational one such as that used in the originall/ BCS theory
of superconductivity in which exact eigenstates are obtained for a
reduced Hamiltonian containing no damping effects. The mathematics
of a Green's function formulation provides the most convenient means
for investigating the lifetimes. The basis for an analysis of this
type is the calculation of the fermion self-energy diagram of Fig. 1
whose imaginary part is related to the damping rate. The solid line
represents the fermion and the dotted one is the full interaction
line.

Migdalg/ has evaluated the electron self-energy for a normal
metal with the interaction line representing the phonon propagator.
For excitation energies €, (measured relative to the Fermi surface)

much less than the maximum phonon energy‘ﬁua he finds the imaginary

part of the self-energy to be



Bk

E (k) = ($0s) The(Z-)o) _é_)s, (1.1)
A (/"'/\o)z 4o

In this expression, ko is a dimensionless parameter of the order of 1/2

related to the coupling strength betw:en the electrons and phonons.

For energies € Zlhwb, Migdal finds that the damping rate due to real

phonon emission saturates out to a constant value. For the range of

excitation energies larger than about ten times the maximum phonon

energy, damping due to hole-electron pair production becomes important

and has been obtained by Quinn and Ferrellé/ by allowing the inter-

action line in the self'-energy diagram to represent the screened Coulomb

interaction. For values of € < EF’ the Fermi energy, they obtain

E/ (k) = (‘ﬁﬂ P) (@}(_ﬁ_&)i (1.2)

250

where Qp = (hnnezfm)l‘/2

is the plasmon frequency.

In the case of a transition to a superfluid state, the effect
of damping on the required energy gap and the transition temperature
is closely related to the relative roles the phonon and Coulomb inter-
actions play in constructing a criterion for the possibility of a
transition.

In the original BCS theory the general criterion for super-
conductivity is that the attractive electron-phonon interaction as

calculated by Bardeen and Pines&/ dominate the Coulomb interaction for

those matrix elements which are important in the superconducting wave
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function. The specific model treated by BCS is one in which the

two-body interaction is taken to be the separable potential

-M{k,=(%+l{pA%;_V<o (1.3)

Sor 12al | Sl <hwg - ena

- \/kk' = 0 + otherwise.
In this expression, Vc and Véb are the Coulomb and phonon interactions

and
2, 2
EEK‘:: ii_kL - EEF':
am
The BCS criterion has been further investigated by Pinesz/ who

considers the sign of the interaction (VC + Vi ~Vy+ in the

Bkt =
-y -

zero excitation energy limit: 1i.e., when bothlkland\k'|are taken

equal to the Fermi momentum kF' In this model the ionic charge is

considered to be a continuous fluid whose vibrational spectrum pro-

vides the frequency distribution of the rhonons used in the problem.

With this model, Pines finds will be positive at the Fermi surface

ka,
if Umklapp processes are considered ‘which are calculated without
including periodicity effects). Using this criterion, that the net
interaction must be positive at the Ferm: surface, predictions are
made as to vwhich elements in the periodic table ought to be super-~
conducting. In the case of those elements for which the neglect of

periodicity in calculating the matrix elements may be valid, certain

qualitative results are obtained which agree with experiment.
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Another investigation into the criterion for superconductivity
has been made by Bogoliubov,éf and Abrikosov and Khalatnikov.l/ In
their treatments, the Coulomb and phonon interactions are considered
explicitly in order to determine the relative roles played by these
two interactions in the criterion. In their method, the attractive
potential due to the phonon interaction only is taken into account by
inclusion of a separable potential (1.3), and is characterized by the
positive coupling constant g = N{O)V > 0. The quantity N/C: is the
density of Bloch electron states of one spin at the Fermi surface. The
Coulomb interaction is accounted for by & constant repulsive potential
acting within the momentum band, 2&&%, whict. is larger than the range,
ZHQE, over which the attractive potential acts. This corresponds to
the fact that the Coulomb interaction is screened at distances of the
order of the lattice spacing and will be explained in greater detail
below. The repulsive potential's coupling constan*t 1s dzroted by
g' = -N(0)V' > 0. With these definitions the gap, A, is +he solution

of

=(f - Vs — |fn 2 . (1.4)
/4—/@%(_2’3% A

From this equation we see that the criterion for supercarductivity in

this model is

;> (1.5)
/ +;’,€n Uc)

replacing the condition g > g' given by the separable potential model
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of BCS. The role of the Coulomb interaction is thus reduced by the
factor ln(aE'/uE) which is typically sbout 5 if hag = Eg. Furthermore,
when
/ /
? >f> 2 (1.6)
/l’f%(_@s.’)
Le

the net potential may be everywhere repulsive in mcmentum space and still

lead to a superconducting state. This result may be more clearly under-
stood if we consider the relationship between an interaction in coordinate
space and its momentum space Fourier transfcrm. For the limiting case

of a constant potential having infinite extent in mcmentum space  the
coordinate space interaction takes the form of an infinitely sharp delta
function. As the eixtent of the interaction in momentum space is shortened,
the corresponding delta function broaderns increasing the interaction's
extent in coordinate space. We can now apply *“his notion to the
Bogoliubov potential in which the Coulomb irnt:=rectior has s greater

extent in momentum space than the phonon interasction. With uE' >'u£,

the coordinate space extent of the screened Coulordb 1nteractioﬁ ‘the

order of a lattice parameter) is less than that of the rhonon inter-
action. From the BCS theory we know =hat the superconducting state

is characterized by the formation of b-urnd pairs of electrons whoss
relative coordinate wave function has ar extent of éoz lO”h cm, Since

a lattice parameter is roughly 10_8 cm, the bound pair of electrons

rarely experiences the Coulomb potential; although its effects may not

be totally neglected since it is of large magnitude. The bound state

is mainly determined by the attractive phonon interaction ewven though
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its average magnitude may be less than that due to Coulomb effects.

In this way a net repulsive interaction in momentum space can lead to
a superconducting transition. Of course, when the range of the two
interactions is the same so that QE' =W, the Bogoliubov criterion
reduces to that of Pines and the model solved by BCS. One difficulty
in greatly reducing the Coulomb effects is that the critical tempera-
ture increases so that most metals might be expected to exhibit super-
conductivity.

8/

Bardeen—' has suggested that lifetime effects due *+o *the Coulomb
excitation of particles out of the Fermi sea could be used to determine
the cutoff,)m%', for the Coulomb interaction. When the energy & is
sufficiently large, the excitation may decay so rapidly that it is

not well defined. For a rough estimate of Coulomb damping effects we
can use the Quinn and Ferrell result of equation (1.2). From this
equation we see that for € > EF’ the imaginary pert of the self energy
is

E, (kl'kp):‘— &EF.

(1.7)

As we will see in the next section, damping begins to affect *he gap
equation when El(k) and €, are equal. Although equation (2.1) does not
hold for € > EF’ the result (1.7) indicates that the desired equaiity

would not take place until €x > EF‘ But for these values of € the

matrix elements of the screened Coulomt interaction are small, indi-

cating that Coulomdb damping effects play a small role in determining

the cutofflm%'.
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This result shows that the inclusion of Coulomb damping effects
cannot reduce the logarithm term in the Bogoliubov result (1.5). This
reduction is necessary if the role the Coulomb interaction plays in
establishing a criterion is to be increased. On the other hand, as a
consequence of (1.5), most metals would be expected to be superconducting.
We can only conclude that a careful exemination of periodicity effects
in the electron-phonon interaction would be necessary in order to estab-
lish a satisfactory criterion for superconductivity. This problem is
not considered in this thesis.

Below, we outline a formelism for working with demping effects in
a fermion system and consider the consequences of certain assumed forms
for this damping. We also consider the rroblem of He3 for which no
superconducting transition has been observed in experiments down to
T>5x lO-BOK, although theoretical predictions neglecting damring
have predicted a critical temperature an order of magnitude lerger than
this value. We find that the damring of sxcited states will %end to
reduce the net attractive interacticr nececsitating a corresponding

lowering of the critical temperature.

IT. EVALUATION OF THE SELF-ENERGY DIAGRAM

In calculating the self en<rgy diagram of Fig. 1 we will follow

/ Ty
most closely the formulations of Nambu2 end Eliashberg 0 It 1s

I

useful to introduce the two-component form for the electron wave

fields

Cpt
? = :- (2.1)
Fo A\,
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along with the Pauli spin matrices
G=(0)) =(27 ('
! /O)z.z“ (o )”J’d G= {4 ) (2.2)

The operators C;U and Cp0 are the usual electron creation and annihila-

tion operators whose only non-vanishing anti-commutators ars

{Cpo—) C:‘o"} = B-PP' Xo-o") (2.3a)

from which we see that
T ANCIINE

In evaluation of Feynman diagrams within the new notation of (2.1)

and (2.2), all the usual rules hold with the ¥'s taking the roles of
the c¢'s of the old notation. The orly new rule is the addition of a
factor of 1'3 at each vertex. This can be seen, for example Dby con-
sidering the familar kinetic energy and electron-phoncu interection

Hamiltonians

HK :Z é—P C;—Cpq-) (2.ka)
and F,O'
) + +
Hd-Pl. -%_ 7’?_ Cﬁ;r CPq— (4?, +d-—i_ )) (2.%)

2 2
L p
where ep = n EF’ gq is the strength of the interaction, and aq

is a bare phonon operator. In our nevw notation equations (2.4) become

HK:ZP;%’[ §|>+‘L‘3 iP-H]) (2.%)
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and

Helyh Z%_ G ?LEP(G%-FG 8’> (2.50)

If we consider the Fermi sea as our vacuum, l O> . we define

the Green's function for free electrons (4 = HK) by

<OIT§E1(’E’,6)§; (®e)lloy = G R -t

‘] ) (2.6a)
where T is the time ordering operator. Taking the Fourier transform

of (2.6a), it follows that

o .
G—P: (4

Po —(2,+i1p)C, (2.60
f 3

where p = (i?,po). The Green's functicon. Gp, fer the total Femilitonian
H = HK + H' is related to *he seif energy, Zp/ and the lowes* order

Green's function (2.6b) through the Dyson equation

Gf'—' (é;)—l"ZP. (2.7)

The most general form for le would be one having comporents a.iong all

four orthogonal axes; i.e..
P=—;(C;I’ +J(FC+A,>‘C,+_A—FZ,_) (2.8)

However, the first order Hamiltonian (2.5a) is invariant under rota-

tions in a plane orthogonal to the unit matrix and ':3:

Therefore, we

can get u = 0 in (2.8) and take

Zr (G + X5, + 85D, (2.9)
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This equation, together with (2.6b) and (2.7), gives

) (2.10)

Gp= (__) Po + z[ Ept)G +5, Bp T,
o 53"[r(£’ *—J(f')‘*—ng :]1F L)Z,,
where

ZF= | — (;F/P") (2.11)

The Dyson equation connec*ting the self-energy, ZP, with the

exact Green's function for the prdulem and the total vertex, rgp,, is

Z- [ Gt Doy [ 2.122
P ‘/(277) i /’; (2.12a)

where Dpp' is the propagator for the interaction. The self-energy is
generally obtained from a perturbation expansion. 1In tke case of an

electron-phonon interaction, DPPi is *he phonon propagztor ard rf,
B

o4

represents the coupling constan*. For this case Migdalfl has snown
that T, ~ I to order (m/M) where M 1s the ion mass. If *he

Pp'P~ PP
vertex function for any interectiorn 1: approximeted by its zeroth order
value, this is equivalent. to summing a perturbestion series for the self~
energy only involving diagrams in which nc two interecticn lines cross.
The result of this amcunts tc evaluating the self-energy diagram of
Fig. 1 in which the so0lid line represen+s the full Green's function for

the problem and the dotted cne the full interaction. For a general

potential, pr,, this approximation to equstion {2.1l2a) is expressed by

Z ="L/_g & G{L’Ib’) lf.'lp (2.12)

Gan)¢
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where the t's appear for the reasons discusged previously. Substituting

(2.10) into (2.12b) and considering the 7. component of the result, we

1

obtain the gap equation

A= __/ oo 4, Vo, (2.13)
P 2 /T P
(f%)%"(i}f ®) -—;[(sz);\,)ﬂ_l_ﬁf, ]+u(1,.

The integration over pé can be carried out by the considerations of

Eliashbergcig/ The Green's function pr whan considered as a function
of p,, is analytic in the upper (lower ) half plane for Iy > (<) 0.
Therefore, the iﬂp, term may be dropped in the integrand when the pé
integration is taken along the contour Cl of Fig. 2. We will now »
assume that the potential Vip, is real and independent of Py and pé.
With this condition, consideration ¢f the complex function a(pyz) ‘
which coincides with G(p,po) on the urper (lower) haif plane for

, > (<) 0 allows the contour C, to be deformed to C, of Fig. 3.

2
Since the values of ia(p,z) on the opposite sides of the cut (0,»)

are complex conjugates, we obtain

A= 2T, [dp Vi, [ dn Ap /2,

P m _72, PP P
(arr)’ am) (p - F2 °
. ) (- L,

(2.14)

where

T f-:: / 2: 2'/ _— [4 2
E,, ("-’7}‘ [ir +AI"] = (%) (2.15)

Since the integrand is symmetric in po' the lower limit in (2.14) may
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be replaced by -» and the result multiplied by 1/2. Assuming that
the analytic continuation of Gp into the lower half plane for Pg >0

has a simple pole corresponding to an elementary excitation of energy

E;/ =E(P;}>o‘) f?>'=75—/5) (2.16)

the int:gral equation becomes

-
A = ’Re 4‘(3&/ i/p’p A(Fi é:P,)
P @)’ d%,E, { I-Ex[> (t/z,,')/épé]},gz Ep:

In this expression the guantity Cp, related to Zp through (2.12),

*(2.17)

satisfies an integral equatior similar to {Z.13) obtained by considering
the unit matrix element component of equation (2.8&) and gives the

normal state self-energy in the limi*t of Ab-* 0. Tne imaginary part

of Cp gives rise to deamping effects in *the energy gar equaticn. When

Cp is set equal to zero (Zp =~ 1}, the integrand of (2.17) becomes real

and the equation reduces %o that of BCS.

III. DAMPING EFFECTS FOR ENERGY INDEPENDENT Vb,p
We will investigate the effects of damping on equa*ion (2.17) by
considering various forms of the function Cpu The real par+ of Cp
will not be needed since it serves ts renormelize the excivation ener-
gles ep and the interaction pr'. It is the 1magirary psrt of Cp
which provides for the damping effects. We consider a general form

for Zp in which the damping is proportional to a power of Pye i.e.,

Zp=l+ éxlp;I"svzn P, (3.1)
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It should be noted here that our assumed form for Cp'a imaginary
part is not entirely satisfactory since this quantity must vanish
for ]pol < Ab' Therefore, for n = 0 in (3.1) we may only, consider
the Ab = 0 situation. For n = 1 the approximation is much tetter,
and for the case where n = 2, the error introduced is entirely

negligible. For n # 0, substitution of (3.1) into (2.17) gives

Bp= - [ 42 Vpp 2

(3.2)
3 - 3
&) 2L, [ 1+ n2x? Ipr | > ]
where po' is the solution to po' @ Eﬁ,r

We will consider the three cases n = 0, 1, and 2.

(1) n=0

The n = O case corresponds to constant damping. For the

separable two body interaction
/= - / s
Vo ==V, 1£p1,140] < i
(3.3)

Vep' = 0, otherwise,
setting Ab = 0 in the n = 0 integrali equation allows us 1o determine

the minimum value of o such that no transition to the superconducting

state occurs; i.e., Tc = 0%. Although equation (3.-} does not hold

for n = 0, it is easy to show that the Ab = O equation for this case

is
o

/ £ds

nm——— S ——— e, .k
Vo U, 214_0(&,_ ) (3.4)

where N(0O) is the density of Bloch states of one spin per unit energy
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at the Fermi surface. The solution to (3.4) gives the critical

value for q,

Ko =’t1(4)¢ exF[— 1/N(0) V.] . (3.5)

This result agrees with that of Suhloli/

(2) n=1

With the separable potential of case (1), the gap equation (3.2)

gives

e
L :/ as / . (5.6)
I (245 (1)

The solution is of the BCS type with
Bp= #ue fsinh[(tecINOV], for 1512400 5

A =0 , otherwirce.
P
Thus, the inclusicva of linear damping modifies the BCS solution only

through the introduction of a reduced effective coupling constant

N(O)V/(1 + o).

(3) n=2

For the case of quadratic damping, the T = 0%k gap equation

is

A’p = -—%f ! A,p’L,/?y'/Z ‘s )
@n)’ [ (2,,')‘+(A,,')z]&{E+‘/-<‘((1Po’+ (4,,')3] Eé} >

From the result of (1.7) we have seen that the screened Coulomb
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interaction leads to 1/a > E_ so that the effects of Coulomb damping

F
on equation (3.8) are negligible since the screened Coulomb matrix
elements, pr,,are small for energles ep > EF' Therefore, inclusion
of Coulomb damping cannot serve to decrease the extent of the Coulomb
interaction in (3.8). Consequently, the parameter @' in the
Bogoliubov criterion (1.5) for a superconducting staté in metals is
essentially unchanged from its value computed in the absence of
damping.

For He5

, damping effects are importart in determining Ab and

the transition temperature, Tc’ for a possible superfluid state. Due
to the hard-core potential, the integral equation must be solved in
coordinate space. However, we can obtain an estimate for the reduction
of TC due to damping effects by considering an effective separable

potential given by (3.3). With this potential, the transition tem-

perature is given by

e
_!~ = ds 'ﬁuﬂk (}Q;i/ﬂl)
MV % S[2(ryxst)s o]

(3.9)

vhere B = (ch)-l.

We will now calculate an approximate value for . For the

3

thermal conductivity of He”, Abrikosov and KhalatnikoviE/ obtain the

theoretical expression

K = 3’& F_EE w(8,9)(I- tes G)J g:l (3.10)
(/ﬂ"’)“ 7 Cos 42) Am9¢

3

where pF is the Fermi momentum and m* is the effective mass of a He



98

atom. The quantity w(6,9) represents the transition rate for the
scattering of a quasi-particle and is related to the scattering

amplitude, £(6,9), by the usual "golden rule" formule

w (8,p) = —2._71.' ’f(&ff)l% (3.11)

Since we have chosen an angularly independent separ<ovle potential it
is consistent to consiuer w{6,9) as ~onstant in the expressions (3.10)
and (3.11). With this assumption, performing the angular average in
(3.10) gives
W = 774&*3 F?
(m)*KT

At this point we consider the above quoted work of Quinn and

(3.12)

Ferrell,z/ in which the imaginary part, El(p), of the excitation
energy is obtained for electirons interacting under the screened

3

Coulomb potential. Their results may be used for the He” problem
if the screened Coulomb matrix elements are rerlaced by the scattering
amplitude, f. This straightfcrward generalization gives
3 L2
- * 2
E, (p)=2 (m )nf £, (3.13)
e # PF

rarticle density. Substituting f2 obtained from

3

where n is the He

(3.11) and (3.12) into (3.13) gives

=3 [hf st (3.1%)
Ecp /6 (mV"KT) P

Use is now made of the experimental work of Anderson, Salinger and

Wheatleyiz/ who obtain
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K= &1/ erys/om.secoK * (3.15)

With this value for the thermal conductivity, equation (3.14) becomes
E()-‘:O(éz:.? ﬂﬁ)zz. (3.16
1Cp P 6 (Sim® P (3.16)

The values m* = 2.82m and n = 1.64 x lO22 particles/cm3 give the
damping constant

15

a = 4.27 x 10 (ergs)-l (3.17)

3 1

When compared to the He” Fermi temperature of about BOK, a = 1.77 EF' R
indicating that the imaginary and real parts of the excitation energy
are equal at ep ~ EF/2° Having arrived at a value of ¢, we may go

on to compute TC.

The integral of equation (3.9) 1s approxima*ed by

£
‘L,, ~ -j/’ as. ‘#ﬂ)ﬂé aegiéjel) +
NV 3

° (3.18)

o, T+,
/% fTRgeiro® o]

For this approximation to be reasonable we need a value of

which 2r2 <1l for ¢ < L In this way damping effects are

negligible in the ¢ range of I. and *h2 hyperbolic tangent may be

«. for
i

replaced by unity in 12. We note that for € = 1/10 o the condition
of Il is satisfied. Furthermore, if we take Tz = 0.05°K for the
critical temperature without damping as calculated by Emery and

1 .
Sessler,—i/ our choice of € 1 gives tanh(az 1/2) x« 0,91. Since
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our result for T will be less than Tg, setting € = l/lO a also

1
satisfies the requirement of 120
The Il integral is identical to that arising in the BCS

critical temperature equation. Their numerical evaluation gives

L, =ty (1144), (3.19)
Rle
For €, = 1/10 a, the upper limit in 12 is essentially infinite, so
that we get
L, s L tog 20 (5.20)

With these approximate values for I, and I, in equation (3.18), the

critical temperature with inclusion of damping effects is given by

L
KT, = (R50)°(1.14) 2, exp [-1 /W) v, (3.21)
The ratio of 'I'c to T: is then

T&/Tc,o = C;zs—o)'/g (il /‘H‘Oc_). (3.22)

For €, = 1/10 a = EF/eo and 4w, > EF,

Te/T,° ~ 0.32, (3.23)

indicating that the effects of damping in our simplified treatment
would reduce the critical temperature by a factor of about three.
For the Emery and Sessler value of Tg = OOOSOK, damping effects
reduce the critical temperature to Tc = 0,016°K. Experiments have
been performed at temperatures T > 5 x 10'3°K without the appearance

of a superfluid transition, which might indicate that damping is not
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as important in'determining Tc as we had hoped. However, the reduction
of Tz by a factor of three could be important if & lower value of Tz
were obtained. We should also add at this point that our work was
based on & simplified model in which the potential was assumed to he

of the S-wave type; i.e., V

pp'
other hand, the work of Emery and Sessler is based on the assumption

contains no angular dependence. On the

of a D-wave term in the potential. Therefore, it might not appear valid
for us to use their result of Tz :‘O°O5°K in our calculation. We have
seen, however, that the effect of damping is essentially to reduce the
amount of phase space over which the potential acts. For this reason
the ratio TC/T: would not be expected Lo vary significantly with the
choice of angular dependence for the potential, although in a more

exact calculation of Tc a D-wave term would explicitly be included

in the potential in the energy gap equation.
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Fig. 1 Self-energy diagram used to evaluate the integral

equation for the energy gap Ab'

Fig. 2 Contour Cl along which the pé integration is carried

out in the energy gap equation (2.13).

Fig. 3 For an energy independent potential, vp'p’ the

contour Cl may be deformed to C2 leading to the

form (2.14) for the energy gap equation.
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