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Part I

Excitons and Plasmons in Superconductors
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I. INTRODUCTION

In the original theory of Bardeen, Cooper, and SchriefferI /

an approximation to the ground-state wave function of a supercon-

ductor was obtained by a variational calculation. Basic to the

theory is Cooper's result -1 that if a net attraction exists between

the particles, the Fermi sea is unstable with respect to the forma-

tion of bound pairs. The BCS ground-state wave function is formed

from a linear combination of normal state-like configurations in

wh.Lch particles are excited to states of low energy above the Fermi

surface. In all of these normal configurations, the single-particle

states are occupied in pairs (Mt, -14) , so that interactions other

than those between pairs of electrons of zero net momentum and spin

are neglected. The theory leads to the single quasi-particle exci-

',tion spectrum given by Ek - (e2 + Lk2)1/2. where e is the Bloch

energy measured with respect to the Fermi level and bk is the energy

gap; that is, 24\ represents the minimum energy required to excite

a pair of quasi-particles from the ground state. The quasi-particle

excitations are fermions and no boson excitations appear other than

the phonons.

This independent quasi-particle approximation has been sur-

prisingly successful in explaining the thermodynamic properties as well

as the acoustic and electromagnetic absorption, the nuclear spin

relaxation, and the Heissner effect observed in the superconducting

state. The derivation of the last has been criticized because it



is not strictly gauge-invariant. This is primarily due to the neglec

of residual interactions between particles in states - and ' .

These interactions give rise to a set of collective excitations

(bosons) and lead to a gauge-invariant description of the Meissner

effect.

For the investigation of these collective excitations,

3/ 4/Anderson- and Bogoliubov, Tolmachev, and Shirkov- have used a

generalized time-dependent self-consistent field or random-phase

approximation (RPA). Their work shows that in the superconducting

state, the plasmon frequency and the plasmon coordinate in the long-

wavelength limit are essentially the same as in the normal state.

They have also suggested the existence of the exciton modes lying

within the energy gap which we investigate in the main body of this

paper. A thorough discussion of the generalized RPA has been given

by Rickayzen,-5 / who used it to derive the complex dielectric constant

of a superconductor and the Meissner effect in a gauge-invariant

manner. The BCS quasi-particle states Ia> and p > do not

satisfy the continuity equation; that is, <a f V-I + 0 jp> 0.

When collective modes are included, the current and charge density

operators I and p are decomposed into a sum of individual-particle

operators and collective operators. A virtual cloud of plasmons

surrounds each quasi-particle, producing a back-flow current which

leads to over-all charge conservation of the excitation. Therefore,

the continuity equation is satisfied within the generalized RPA.

This condition is sufficient to guarantee a gauge-invariant form of

the electromagnetic response kernel.
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In this thesis ve interpret the exciton mode in the super-

conductor as a bound pair of quasi-particles whose center-of-mass

L( + -i2)/2)] propagates with momentum h. The exciton spectrum

is investigated through the generalized RPA equations of motion pro-

posed by Anderson in the form introduced by Rickayzen involving the

quasi-particle operators yk of Bogoliubov-' and Valatin9 / rather

than c k' the usual electron operators. In these equations we make an

expansion of the interaction potential VC,1') in terms of spherical

harmonics. It is found that excitons may be characterized by the

approximate quantum numbers L and M describing the symmetry of the

states with respect to the relative coordinate PI - P2. The existence

of an L-state exciton (corresponding to the p,d,f,... excitons) is

dependent on VL being negative, where VL is the L-wave part of VM,

The plasmon state corresponds to an s-state exciton whose energy is

greatly increased by the long-range Coulomb interaction.

To obtain solutions to the Anderson-Rickayzen equations, we

take matrix elements of the equations between a state with one col-

lective excitation and the ground state which has been renormalized

so as to include the zero-point motion of the collective modes. The

results give two sets of solutions ALM( ) and r M(1) which correspond

to what Anderson has termed odd and even solutions. We show that

the A(J) modes are unphysical and that the rI(1) modes correspond

to the exciton states. The quantum numbers L and M are found to be

exact in the limit of zero center-of-mass momentum 4. For larger t,

states of different L are mixed, although the mixing is small for
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qj0 
<< 1, where 0 is the coherence length. The magnetic quantum

number M, however, remains a good quantum number for all-4 if the

potential has no crystalline anisotropy. The exciton energy for the

= 0 case is plotted as a function of the L-wave coupling constant

gL defined by gL = - N(O)VL/4., where N(O) is the density of states

in the normal phase at the Fermi surfa-e. For 9L > go' the excita-

tion energy proves to be imaginary and the implications of this with

respect to the original BCS ground state are discussed. The M 0

excitons may be considered as transverse collective excitations since

they do not couple with a longitudinal field. In the general case,

if the ground state is formed from Lo,M0 pairs, the Lo,M0 exciton

becomes the plasma oscillation.

In Sec. II we discuss the generalized RPA from a diagrammatic

point of view. Solutions for the collective excitations are obtained

in Sec. III.

Tsuneto6 / ias applied Rickayzen's analysis to the problem of

the surface impedance. While he finds the existence of a precursor

absorption for frequencies within the gap, his results give an

absorption due to the exciton states which is an order of magnitude

less than that observed by Ginsberg, Richards and Tinkhami' in lead

and mercury.,
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In Sec. IV we consider corrections to the Anderson-Rickayzen

equations which lead to a new type of exciton of a particle-hole

nature closely related to exciton states occurring in insulators.

A calculation similar to Tsuneto's is performed for the electro-

magnetic absorption due to these new exciton states in Sec. V. As

in Tsuneto's work, the ratio of the surface resistance due to

excitons to that of normal metals in the extreme anomalous limit

turns out to be about an order of magnitude too small to explain

the observed data.

II. EQUATIONS OF MOTION

We consider a system of electrons interacting via an effective

two-body potential V, whose matrix elements in the Bloch state repre-

sentation are given by

vC ' L l,,, 4- V(k,,l

(2.1)

This potential arises from both Coulomb and phonon interactions

between electrons and will be discussed in detail below. The

Hamiltonian is expressed in the Heisenberg representation in terms
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of the operators ck and c which create and annihilate electrons

in Bloch states of momentum k and spin a. They satisfy the usual

Fermi anticommutation relations. The single-particle Bloch energies

ek' measured relative to the Fermi energy EF, are assumed to be of

the form (412k2/2m) - EF. The Hamiltonian of the system is given by

HUI4S~QI V~~p

C )r *CIO. 1  et:7  or

(2.2)

In the generalized RPA one studies the time evolution of

bilinear operators of the form

, - (2.3a)

(2.3c)

which create excitations with a fixed total momentum 4l. It is

helpful to consider the full-time development of these operators

as being built up from the infinitesimal change of the operators

in a time interval bt; for example,
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In the absence of the interaction V, the commutator reduces to

(k+q - ek)b T(,t) so that except for a phase factor, the operators

are independent of time. We call any operator *an eigenoperator

if its time dependence is given simply by a phase factor. The equa-

tion of motion

[E ,,4 1 -2'A (2.5)

for the operator guarantees that p +, when applied to an eigenstate

of H, creates an eigenstate I a> of H with an excitation

energy44f . From the Hermitian conjugate of (2.5) it follows that
a

a has the inverse effect of i. That is, while J adds energy toaa a
the system, subtracts energy, so that #t and 14 may be thought of

as creation and annihilation operators of excitations of the system.

A knowledge of the eigenoperators and their eigenenergies allows one

to calculate dynamic properties of the system as well as the thermo-

dynamic functions.

In certain cases the state "a pB) may vanish idcntically;

for example, if g (creates pairs of fermions in states already

occupied in P . Another example is if the operator 4 scatters

excitations already present in the initial state, in which case 4-ta
vanishes when applied to the ground state. Both cases will be dealt

with in the next section.
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In the presence of the interaction V, the commutator (2.4)

is complicated by the presence of terms involving four single-

particle operators (c and ct's). Therefore, the bilinear operators

bt, b, and P are no longer eigenoperators of H and one must include

products of four, six, ... , etc., single operators to form the v I's

in this case. The question arises whether there is a consistent

approximation in which the eigenoperators are represented as linear

.tcombinations of the bilinear operators b , b, and P alone. Consider

a typical term in the commutator arising from the interaction potential

J- A,_,, A b r

(2.6)

This expression is shown in diagrammatic form in Fig. 1. In the

diagram, time is increasing from right to left with the incoming

particles in states + and -1 entering from the right° The

first term on the right-hand side of (2.6) is represented by Fig. l(a)

in which the interaction, represented by a dashed line, scatters the

spin-up incoming particle to- + + ' , creating a particle and

a hole in states -$' - ' and -$' , respectively. In Fig. l(b)
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the analogous process for the spir-down particle given by the second

term in (2.6) is shown. If at time t = 0 a pair of single particles

is excited, at time bt there is a finite probability that a particle-

hole pair has been created from the background of particles in the

Fermi sea, with the incoming particles scattering to new states. In

the next interval of time a similar process may occur involving any

of the four excitations, and in general the "bare" incoming particles

will create a complicated cascade of excitations leading to a decay

of the initial state. In the generalized random phase approximation

one keeps only those terms in the commutator which conserve the number

of excitations allowing for both forward and backward propagation

in time (see below). This procedure corresponds to a linearization

of the equations of motion by replacing two single-particle operators

in each term by a c-number given by the expectation value of this

pair of operators with respect to a fixed state. If this state is

chosen to be the BCS ground state, defined by

where 10> is the state with no particles present, conservation

of momentum and spin leads to nonzero average values only for the op-

erators bt (0), bk(0), and p (0) nk. In terms of the parameters

uk and vk, these averages are



11

The parameters uk and vk are given by

+ .4y E (2.9a)

-4 (2.9b)
.1

where

E(2.10)

and Lk satisfies

This prescription gives a unique linearization of the equations of

motion since for q ,4 0 there is at most one pair of operators with

zero total momentum and spin in each term. The terms retained within

this approximation are shown in Fig. 2.

(i) As shown in Fig. 2(a), the conventional particle-particle

scattering vertex arises from the first term in (2.6) whent' -7k.
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1

The factor of - in front of V is cancelled by the term in the inter-
2

action with spins opposite to those in (2.6). This cancellation of

1
the factor of - occurs in each vertex.

2

(2) Another possibility, shown in Figs. 2(b) and 2(c), is for

the scattered incoming particle to enter a bound state with the other

incoming particle, the outgoing excitations being the particle-hole

pair created from the sea. This possibility is allowed for in the

linearization by including the finite average <o*0Ibkt(O) *0>

which may be regarded as the amplitude for the pair to enter the q 0

bound state, which is macroscopically occupied in 1* 0> Since

a finite fraction of all the electrons occupy this bound state in the

superconducting state (corresponding to the finite fraction of

helium atoms occupying the k = 0 state is superfluid He ), the small

fluctuation - N1/2 in the number of pairs N described by (2,7)

leads to no difficulties in a large system. Notice that in Figs. 2(b)

and 2(c), the incoming pair of particles is transformed into a particle-

hole pair by the interaction. Therefore, bkt(Z) and Pk-) are coupled

in the equations of motion.

(3) In addition, there is the possibility that the scattered

incoming particle enters the bound state with the particle created

from the sea, leaving the ho'e and the other incoming particles as

the outgoing excitations, as shown in Figs. 2(d) and 2(e). Due to

the presence of the bound state, the incoming spin-up particle in

Fig. 2(d) is transformed into a hole in the state of opposite

momentum and spin. In the next instant of time the inverse process
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may occur. It is clear that the equations of motion are simplified

if one introduces "quasi-particle" operators 7ka which are the

proper iinear combinations of particle and hole creation operators

to account for these processes. The appropriate transformation,

introduced first by Bogliubov and by Valatin, is

2 r-. (2. 12a)

k-t

+ (2.12b)

For mathematical simplicity we will follow Rickayzen by expressing

the final linearized equations in terms of quasi-particle variables.

(4) The exchange contributions to the single-particle lines

are shown in Figs. 2(f) and 2(g). As is well known, they lead to an

anomalously low density of states at the Fermi surface in the normal

metal unless a screened interaction is introduced. This point is

discussed below. The exchange self-energy vertex can be accounted

for, along with process (3), by the quasi-particle transformation

(2.12).

(5) Finally, the unscattered incoming particle may enter the

bound state with the particle created from -ne sea, leaving the hole

and scattered particle as the outgoing excitations, as shown in

Figs. 2(h) and 2(i). As in process (2), the pair of incoming particles

is transformed into a particle-hole pair by the interaction. In the

limit q - 0, process (2) is more important than (5) in forming the
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plasmon state. Since the momentum transfer is always Al in the former

process, the large matrix element of the Coulomb interaction 4ne2 /q 2

dominates the latter vertex in which the momentum transfer 41' may

assume any value. Anderson and Rickayzen have neglected processes

(4) and (5), suggesting that their effect is primarily to renormalize

the single-particle energies and the effective interaction.

The terms occurring in the linearized equation of motion for

P ka() are shown in Fig. 3 and bear a close resemblance to those

shown in Fig. 2. In the conventional RPA for the excitations in the

normal state, only the polarization vertex E Fig. 3(b)] is retained.

The so-called exchange scattering correction shown in Fig. 3(a), when

combined with the polarization vertex, approximates the time evolution

of pko(I ) by graphs of the type shown in Fig. 4. In the limit q - 0,

the exchange correction to the plasmon frequency vanishes. Since

matrix elements of the equations of motion are taken with respect to

RPA eigenstates, two pairs may be spontaneously created from the

vacuum and may interact with the incoming excitations as in Fig. 4.

This process may be viewed as a propagation of the excitations

backward in time, familiar in the Green's function formulation of the

problem.

In the generalized RPA for the superconducting state the

presence of the bound state gives rise to the vertices represented

in Figs. 3(c), (d), (g), and (h), so that an incoming particle-hole

pair can be transformed into either a pair of particles or a pair of
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holes. Therefore, the operators bk (1) and b are coupled by

the density operator Pka (). The vertices occurring in the time

development of bk,(1) are identical to those in Fig. 2 except that

all arrows are reversed and the momentum Z is replaced by 4.

We turn now to the question of screening. Within the random-

phase approximation to the normal state, the screened interaction

line is represented in the limit of small wave-vector I by a sum

of diagrams of the form shown in Fig. 5. Rickayzen has shown that

the dielectric constant is essentially unaffected by the pairing

correlations occurring in the superconducting state. It is easily

seen that the vertices 2(b), 2(c), and 3(b) are automatically screened

within the RPA through the presence of the polarization vertex

[ Fig. 3(b)] in the linearized equations. For example, when the

vertex 2(b) is followed in time by a series of vertices 3(b), the

effect is to replace the bare interaction line in 2(b) by the

screened line shown in Fig. 5. Therefore in vertices 2(b), 2(c), and

3(b), the unscreened interaction VD must be used. The potential VD

is given by

V,4i (2. 13)

where tIf is the energy of the excitation involved. Also, v i isq

the bare electron-phonon interaction matrix element introduced by

10/ iBardeen and Pines / and w is the bare phonon frequency. It is
q
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essential, however, to introduce the interaction screened by the

dynamical dielectric constant in the remaining vertices since it is

impossible to replace the bare interaction line by the screened line

through an iteration of vertices occurring in the linearized equations.

The screened potential is of the form

Wit rt re 2(2.l.4a)
=Z/( (* )

where the dynamical dielectric constant is given by

(2.14b)

l4 +

Here, q = k k+q- Ek and k s is the electronic screening wave

number. In a more complete treatment involving coupled equations of

motion for the electrons and the lattice, the energy Klk,q would

presumably be given in terms of the quasi-particle excitation energies.

For simplicity, we neglect the vertices shown in Figs. 2(h),

2(i), and 3(a). We also neglect the exchange self-energy correction

since it simply renormalizes the single-particle energies. With

these approximations, one obtains the equations first given by

Anderson:

[H~ +~ (f] t b + V, (p f (V.* kJ .t tl~ + i
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(4 -1)-Ak *) -b (1~?If )I f)V('r 4 1

(2.15b)

-s Z4 \+ c'' A

-~~~ ~~ Z~ L ~f -4 (-J 7_6V~) $C

TheT denit opeato p-q isP give by

*1k

As metiond aboe, te qA tina ecnidrbysmlf

by~~~~~~~~r trnfomn to qusipatil Paibe.Th nesn-iky

equtios ae 4ten



18

(2.16a)

[urk~~y L (kfE,,2Jk~IjO - jVb~f f
__ . .., , -_

(2.16b)

(2.16c)

The coherence factors are defined by

An Al re o(2.1r7b)

p() a*2 5tt rh P-Af) (2.17d)

and the three collective variables are
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- 21-

-2 V( ) ( (o F + ,, Iif ,) -,

(2.18b)

(2.18c)

From (2. 16c) we see that half of the normal mode operators are

of the form 7k+qo 7 ka ' which has the eigenvalue Ek+q - E k . These

operators describe scattering of excitations already present in the

initial state and vanish when applied to the ground state. Since we

will always take matrix elements of the equations of motion between
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the ground state and an excited state, these quasi-particle conserving

operators may be safely neglected.

III. SOLUTIONS OF EQUATIONS OF MOTION

For the analysis of the plasmon and exciton modes at temperature

T - 0 we begin with the Anderson-Rickayzen equations of motion (2.16)

for the pair operators A O Ak and 7k 7 It must be kept in
k+qo ki k+q17k0

mind that the equations have been linearized with respect to the

ground state involving s-state pairing between electrons of opposite

spin and momentum, as our results depend critically upon this fact.

The collective variables defined by (2.18) are substituted into the

equations in order to obtain them in a form involving only the

Dogoliubov-Valatin quasi-particle operators:

VI,,)+m ), ,,+#, V( PM<>P,
-k~ Z~hPxr~~4A1k~)

I)Z V1,P) h ( 1) 41

P 1 it0)



21

M: inf) V(M'%P~ (Ao A f1 , -,

(3. lb)

Those operators p () are now considered which are linear combina-

tions of the bilinear products of y 'S and 7yt's appearing in the

two equations of motion (3.1), and which create one elementary

excitation of type a. Thus we desire

it f(3.2)

with

wer4 o is ) not t or l g d s e o(3.3)
where 1 O> is not the original. ground state of BCS, but the
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renormalized ground state with .± C) 10 0. The quantity All (I)a a.
represents the energy of the excitation created by the operator t T).

The elementary excitation i(t) may be any one of the three types

involved in the theory: a pair of excited quasi-particles in scattering

states, a plasmon, or an exciton.

From Eq. (3.3) and the discussion of Sec. II, we have

Since the commutator CH, is related to the time derivative

of I(Z), the matrix element of j(j) between the ground state I O)

and the state I l(Za)) containing one excitation of energy

6ft (Z) must have the time dependence exp [ill()td . Now, Eq.a C
(3.2), expresses g t(z), within the RPA, as a linear combination of

the bilinear products 7Y "  7t and 7  so that we may writek+qO 7kl Wk+ql kO'

the inverse transformations as

+ kP ,fTj (.a

Taking matrix elements of Eq. (3.4) between I0 > and I(j,0)>

and using the orthonormality property of the excited states, we find
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(3-5a)

(3.5b)

The solution for the exciton mode dispersion relation is

dependent on taking matrix elements of the equations of motion (3.1)

between the states 1 0 > and I l(Za) > arid using the relations

(3.5a) and (3.5b) so that we obtain a set of c-number equations.

The resultant system of linear equations may then be solved for the

normal mode frequencies and the transformation coefficients f and g.

By taking matrix elements of (3.1) we obtain"

(3.6a)
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(3.6b)

From (3.6) it is evident that an explicit form for V(2,1') must be

chosen in order to proceed further. As emphasized in the foregoing,

the BCS ground state about which the Anderson-Rickayzen equations

have been linearized is one involving s-state pairing. Thus in the

absence of crystalline anisotropy, the q - 0 solu-,ions must transform

according to the irreducible representations of the full rotation

group, i.e., the spherical harmonics. Because of this fact, we

expand the two body potential V(,') in terms of spherical harmonics.

The coordinate system is chosen so thata lies along the polar axis

with 0 and @ the polar and azimuthal angles of the wave vector-'

and 8 and 0 the analogous quantities for to If C is the angle between

k' and k, the use of the addition theorem gives

40

A =* 
(3 -7
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where

V1(k,k) =(41/21 + i) (k,k')

A further approximation is made in setting VI(k,k') = VV, a nonzero

constant, for Ie I  <4w c and zero otherwise. The quantity -fiwC c

is the average phonon energy of the order of the Debye energy. We

define the coupling constant gL by

9L = -N(O) VL/4o • (3.8)

The BCS coupling constant is related to g0 by

go = -N(° ) V0 /4o = N(o) V s > 0

It is convenient to introduce three new variables

X fk)j-, (,.9a)

(3.9b)

where the subscript a has been dropped from both sides of the equa-

tions for simplicity. Equations (3.6) then express the transformation

coefficients f and g in terms of the new variables A, r, and Z. By

substituting these expression into the defining relationships (3.9),
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we obtain the following coupled integral equations to determine the

eigenfrequency .0 (q):

A .(,) VZI&(~f) /"s x

(3. los.)M ~() .II2Zf ) / (a.

(3.1ob)
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tk 2thf) Z T +

n fZl(_) Y,4fJl T() +

J? 3 l~c)

From these three 
equations it is 

immediately seen 
that one good quantum

number for the description 
of an excitation is the magnetic quantum

number M. In the sum over l, 
the angular integration requires m = M,

as the only qpdependet 
quantities involved 

are the spherical 
har-

monics. Thus, 14 is a good quantum 
number regardless 

of the center-of-

mass momentum AT.

(1) q 4 0 Case

In the case of zero 
center-of-mass momentum, 

Eqs 0,.l0) give

L as an additional good quantum 
number. This follows since neither

the coherence factors nor 
the energy vk(1) of the 

quasi
-Part

i cle pair

are dependent on the polar angle in this case. The angular part of

the sum Zk then reduces to
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The sum Ek is converted into an integral by letting

; --- UrlA'Zry fA ke,&)cj
where the volume v of the normalization box is taken as unity. The

radial integrals over k are all of the form

-0 .,/( ) -. ) , - -e2 (3. 1 )

where each of the quantities a,b,c, ... is one of the coherence

factors, the energy Vk(O) of the independent quasi-particles, or the

excitation energyIf. The integration over the magnitude of ?is

replaced by an integration over the Bloch state energy Ok as meas-

ured from the Fermi surface, by setting

-, l (. 2 4'(o) dL , (3.12)

where we have made the approximation of a constant density of states.

The approximation leads to an error of order 4w c/E7 = 10
-3. The

integrals i 0 are only performed over the region -Ki < e <.4 c

since the potentials VI have been set equal to zero outside this

energy band. Using (3.12), Eqs. (3.la) and (3.lOb) for the q - 0

case are written as
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0L (3.13a)

-VL I A4., +L +Q- V1% fi

-o (3.13b)

From these equations it is seen that the direct Coulomb interaction

4 1e 2/q 2 involved in Z(%) only appears for the L = M = 0 state. It

will be shown below that this state has a solution corresponding to

a plasma oscillation with the usual plasmon energy

and lies far above the gap 2- 10-3 ev. In this section only the

M 1 0 cases will be considered, in which the right-hand sides of

Eqs. (2.13) become zero. Since the integrand of I an 0  is oddi .n

about the Fermi surface within the constant density of states approxi-

mation, an vanishes and there is no coupling between the A and

r modes. The excitation energies for the L 0 modes with zero

center-of-mass momentum are then determined by the conditions:
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-VL 4 A (A4 mode) , (3.14a)

(I - V Dz ±) Oi (rLM mode) . (3.14b)

Setting x -(4= /2L) < 1 in the integrals I n20  and I 0 and using

the definition (3.8) of the coupling constant gL' Eqs. (3.13) become:

(AL.mode)

(3.15a)

< _ -csin )y  (PLM mode).

(3-15b)

Values of x = (411/2) are plotted as a function of the left-hand

sides of these equations in Fig. 6. The plot shows that when gL

becomes larger than go, the frequency fl of the Pi, mode becomes

imaginary, indicating that the system is unstable when described

by a ground state formed with s-state pairing. Therefore, if 9L is

the largest coupling constant present, the ground state should be

formed from pair functions having L-type symmetry. The pair spin

function is singlet or triplet depending on whether L is even or

odd, since the wave function describing the exciton state must be

antisyzmmetric on the interchange of all coordinates of the quasi-

particle pair involved.
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The growth of the rPM modes for gL > g also indicates that

the A,, modes have no physical existence. As is seen in Fig. 6, a

A exciton cannot exist unless gL > go. However, when such a

coupling strength is reached, the corresponding rI exciton is un-

stable so that the system decays before the AiM mode can come into

existence. Figure 6 also indicates the 2L-fold M degeneracy of

q = 0 L-state excitons.

It should be mentioned that a continuum of scattering state

solutions is obtained from (3.14b) corresponding to the vanishing

of the denominator of the integrand. One such state exists between

two successive unperturbed levels, Ek + E k+ q . Although the energy

of a scattering state solution is unaltered from its value in the

absence of interactions, its wave function is strongly modified since

each particle is surrounded by a depletion of the same type of

particle leading to the backflow picture mentioned above.

(2) " Finite Case

From Eq. (3.10) it is seen that L is not strictly a good

quantum number for the case of finite 1 since the coherence factors

and v k(q") now have a polar angle dependence. Because of the corn-

plexity of this dependence, the sum Zk cannot be carried out exactly.

We approximate

by
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where = 0 iVq, L = cose, and v0 is the velocity of a particle at

the Fernwi surface. This leads to an error of order q/kF << I. The

integrals Iab... are of the same form as those in the q = 0 case. To

perform the angular integral, we expand the denominator of the

integrand

--. / = _L3k, (3.16)

in powers of p. This procedure is valid so long as p <-hJL - 2A.

The integrals over k are then of the form

01 1 2

Iabab . 0ab... bab 1 + + ... 2 (3.17)

with superscripts indicating the powers of p involved. Keeping

terms through order p2 and using the relations

cose = (4v/ 3 )1/2 y 1 0 (e)

and

Cos 2  2 = (4t/5)1/2 y (e) + ( 4 1/ 9 )1/2 y
S3 20 00'

the equations for A and r (3.10) become

-"

Y.LH* ~ ~ ~ 2 Ywy Al z MP~
(3. ].8a)
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zM'pYZ4

(3.18b)

With the relation

where the C's are usual Clebsch-Gordan coefficients,l l / Eqs. (3.18)

become



+

X: O.P L AI L ) lA,(, PIM)

(1-7-

x ~L;o00)- A + (3)L-121L 3w9(QiL+UJ

(3. 19a)



35

+ -_. _,.,.,hte.,,,a &r +( _ + ( )/ziT,)

L+

~+

.z L,, ooo) /L ( ) *

(3.19b)



36

As in the q - 0 case, the Coulomb field represented by the presence

of the Z(q) term does not couple into the equations of motion except

for the longitudinal modes M = 0. Discussion of this case is deferred

and the transverse cases M 0 are now considered. For a given

M 0, Eqs. (3.19) represent a set of 2N linear simultaneous equa-

tions in AILM and rIM4, where N is the number of terms present in the

spherical harmonic decomposition of the two-body interaction (3.7).

It follows that fo,- a given set of V L's the normal mode frequencies

of the system may be obtained by setting the determinant of the coef-

ficients of the ALM's and riM's equal to zero. Once the frequencies

have been obtained, the ALM's, PX's, and the transformation coeffi-

cients f and g may be determined.

For simplicity we consider the case for which all but two

of the V L's vanish. It is assumed that the two-body potential con-

sists of a term VO, corresponding to the BCS parameter and another,

VL, representing the angular dependence of the interaction. Since M

has been taken as nonzero, it is seen that the simplified V0 and VL

potential allows the modes to be characterized by a quantum number

L within the approximations of the calculation, due to AM and OM

vanishing identically for M 0. Thus, we may speak of a p-,d-,...

state exciton when the additional term in the potential has L = 1,2,...

type angular dependence.

If the potential contains s- and p-wave potentials,

V0  Y.&f) ( +

V, Y" Y"(3.20)
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the dispersion relations obtained from (3.19) are found to be

We discard the A mode since it does not exist if the system is

stable. The dispersion relation (3.21b) for the 1,+l) mode, when

rewritten in terms of explicit expressions for the integrals IvL20

and I (22 becomes

_ _ . (3.22)

where x 1. This dispersion relation is plotted in

Fig. 7 for two values of gl with gO = 0.25. From the figure, it is

seen that the curve intersects the origin for gt = gO" For a value

g< go there is a minimum value of x -- xm given by (i/g 1 - l/go) =
xm arcsin x/(1 - Xm2 )./2, in agreement with the results of the last

section for the q . 0 case.
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(3) The s-State Exciton

The above discussion was restricted to that of the trans-

verse, M 0, excitations in which the Coulomb interaction term

Z(J) did not enter into the equations for AL(') and r4(1). Be-

fore discussing the M = 0 cases, it should be emphasized that the

equations of motion (3.1) which are the basis of this paper are

those linearized by Anderson about the BCS ground state based on

s-state pairing of the electrons. As Anderson3,12/ has pointed

out, it is the s-state exciton which corresponds to a plasmon

excitation, due to Z(T) coupling into the equations of motion.

The L = 0 mode is considered in the q -. 0 limit. Because

of the singular nature of the direct interaction, it is not possi-

ble to set q = 0 in the calculation, so that the limiL q -. 0

must be taken. For our starting point, we consider Eq. (3.13b) for

the r00() mode in the q - 0 case:

S -V o _ 'T ... 17 = /;,,, . 0 1 _T 0 ,, , .
00 Y PO -AUm 0(3.23)

From the definitions (3.5) and (3.9) an expression for Z(q) is obtained:

9rV (T X

{+ n+ n&, +

(3.24)
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Since the L = 0 mode excitation energy is being considered, only

the r 0(q) term in (3.24) need be used in substituting for Z(q)

into (3.23). Rearrangement of terms then gives:

0- Yvi gTr g (pl /X

T, (17- + /3 ) V. +

(3.25)

Since VD(q) l/q2, Eq. (3.26) indicates that in order for the

limit to be finite, the terms in the numerator which are independent

of q must vanish:

0 2. 0. -

V,, + ,2.- (i- y) ) 0 (3.26)

The validity of (3.26) is shown by considering the explicit form

of the integrals involved:
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.2___d_/ (3.27a)

I~kn -= . _f__ _ _

-4 z

A (a 
I ~

(3.27)

where the BCS integral equationI/ for V has been used to obtain

the first term on the right. With the use of these relations,

(3.26) becomes:
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0~( AZ~~ +

( -(a) 2:-  2E 4 =

With the validity of (3.26) established, (3.25) reduces to

(3.28)

To determine the existence of a plasma oscillation for the L = 0

mode, (3.28) must have a solution for x - (Q/2A) >> 1. Under this

condition the term VoIvj20 in the denominator is much less than

unity and may be dropped. The integrals involved in (3.28) are

evaluated for x >> I so that, to order l/x 2, (3.28) reduces to

2o6) (.29)

Using VD(q) - ,we 2 /q2 and e2 to 2 N(O) = (3/2?)(/w /)2 ,  ,here

W2 = 4 xne2/m, (3.29) gives - = w so that the excitation fre-

quency of this mode is the plasma frequency.
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(4) The L = 1., M = 0 Mode

To complete the investigation of the collective states present

when only the V0 and VI terms are kept in the potential expansion

(3.7), we must determine the dispersion relation for the r10(q) mode.

Setting M = 0 in (3.19b) we obtain two simultaneous equations involving

00 (q) and O1 (it). There is no mixing of these modes in the equations.

The r0 dispersion relation gives the plasma frequency as discussed

above while the r10(q) mode dispersion relation becomes

V, _r; •4 -"e; (3-30)

In Sec. II1 (2) we found the dispersion relation for the r1+,(q) modes

to be

4--- (3.21b)V
Thus the r10 (T) dispersion relation can be obtained by letting

q -*T in (3.22), indicating that for a given wave vector- the

excitation energy of the longitudinal r10(q) mode is raised above that

of the transverse r+1 () modes.

IV. CORRECTIONS TO THE ANDERSON-RICKAYZEN EQUATIONS

We consider here the terms in the linearized equations neglected

by Anderson and Rickayzen. For simplicity we treat these terms only

in the-1 - 0 case. In the equation for bt(j), the terms shown in
k

Figs. 2(h) and 2(i) were neglected. They contribute the factor
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4k V j k 9 6 k' 19k, E. X

(4.1)

to the right hand side of (3.la) in the limitq - 0, while the

negative of this factor is added to the right-hand side of (3.1b).

The exchange scattering vertex shown in Fig. 3(a) was neglected

in the equation for Pka (). Its contribution,

CV(k kzr P-

vanishes as q -. 0 and does not affect the energy of the exciton

states in this limit. The inclusion of (4.1) adds the term

1--Az 2:v, Z,) 4-, k,(' ) (4"3

to the right-hand side of (3.6a) and the negative of this term to

the right-hand side of (3.6b). Introducing the variable

one finds the M 0 exciton states satisfy the set of coupled

equations:
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FL. H FL r4VL~j a
k

Ak (, n )12. 2.

(4.5)

&'I LMVLZ

Setting the determinant of the coefficients equal to zero, one finds

the dispersion relation

(#~ ~ ,r)( -i)C~ )~ =
(4~.6)

or

t -/-t 47

(".7)
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for the energy of the rLM exciton. The modification of the 1- 0

exciton energy given by (4.7) is shown in Fig. 6 for go = 0.25 and

is seen to be small. A new type of excitation follows from (4.7)

for gL < 0, that is, a repulsive rather than attractive L-wave

interaction between electrons. The energy of this state is shown

in Fig. 8 as a function of -gL for go = 0.25. From the form of the

coherence factors entering the dispersion relation it appears the

new state should be interpreted as a bound electron-hole pair in

close analogy with the exciton states occurring in insulators. This

interpretation is consistent with the fact that the electron-hole

interaction is attractive when the corresponding electron-electron

interaction is repulsive. Thus the electron-hole exciton arises

solely from the terms neglected in the Anderson-Rickayzen equations.

In Sec. V we consider the role played by this type of

exciton in the absorption of electromagnetic waves of frequencies

lying within the gap.

V. ELECTROMAGNETIC ABSORPTION

7/Ginsberg, Richards and Tinkham7 have measured the absorption

of infrared radiation in bulk samples and the transmission through

thin films of several superconductors. In samples of lead and tin

they have found a precursor absorption existing for frequencies

below that corresponding to the energy gap. The Rickayzen form of

the Anderson equations of motion has been applied by Tsunet6/ to

the problem of the surface impedance at finite frequency. While he

finds the existence of a precursor absorption due to the creation

a
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of excitons, his results predict a value for the absorption which

is an order of magnitude smaller than the experimental value. The

Tsuneto analysis does not include the corrections to the Anderson-

Rickayzen equations described in IV which give rise to the hole-

particle excitons. In this section we calculate the infrared

absorption due to hole-particle excitons in order to investigate

how this absorption may modify the Tsuneto results and to see if

the experimental results can be explained.

In order to calculate the absorption we must extend the+

equations (5.1) for 7 k+qo 7  and 7k+ql7 k to treat particle-hole
equtins(31)fo Y~q0 k1 1~ Ik0

excitons with a finite center of mass momentum Aq. Once again

the quasi-particle conserving operators 7k+qo~ka are not considered

since they do not contribute to the dispersion relation for the

excitons nor to their absorption.

We begin by defining the quantity D(?,k ') by

With this definition, the non quasi-particle conserving contribution

to the equation of motion (3.1a) for 7 +k 7k due to the inclusion

of the terms shown in Figs. 2(h) and 2(i) is
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k17~ 1 *z4'iJ~d

(5.2a)

The contribution to equation (3.1b) is

k (f )= Z L(V + V(k1f) R4)-1 .

+ t() 7 .+/

(5-2b)
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In order to investigate the electromagnetic absorption due to

the creation of excitons we consider the effect on the equations of

motion (3.1a) and (3.1b) of an externally applied transverse vector

potential

With a = (eX/2mc), the inclusion of the vector potential and the

corrections (5.2), the equations (3.1a) and (3.1b) are rewritten as

[H t% f t-

4., Y ,, +

(5.4a)

and

I /C t 4 f) - (

C<PCs 10b)



49

The variables Ak(), Bk(") , and Pk (') have been defined previously

by equations (2.18). It is the three coupled integral equations

for these variables which are the basis for Tsuneto's analysis

of the electromagnetic absorption. With the inclusion of correction

terms due to the presence of the hole-particle excitons, the two

new variables, Ck(T) and Ck(T), of equations (5.2) are coupled into

the equations for the three original variables. Tsuneto has shown

that the cross terms involving P('q) and Bk(q) vanish so that his

absorption is determined by the one collective variable Ak(T). In

our analysis, we have three coupled integral equations in Ak(Z)l

Ck('q) and Ck(j).

It becomes convenient to introduce a change of variables

with the new set of definitions:

(5.5a)

(5- 5

(5.5,)
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We also note that D(-k,j+) + D(24 ) m ), and

- 2+ , -n , P We will work with the fol-+

lowing three coupled integral equations in A (*) and 
(q):

(5.6a)

-. V(e, r) ( - J X

(5.6b)

(5.6c)



51

We again use the decomposition of the two body potential V(k',c)

into spherical harmonics as described by equation (3.7). This allows

us to define the three quantities AAM(-), Tl1m(q) and T21m(,).

(5.7a)

V, t Yei (S~ Y 1 1

(5°7c)

Analogous to equation (55c) we set

+

T;R(q) = T1 ~m(j) + T2 ~~ (5/Id)

With these definitions and use of the orthonormality properties of

the spherical harmonics, equations (5,6) may be reduced to
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Z Y,

(58a)

ILi~~i'

-.exf zY'/T (p()
~ 9f 2~), 6 f 7A

(C ~ x p1p jkL(

,pZ Y4. "'T
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(5o8c)

We must calculate the correction to the BCS paramnetic current due

to the transverse collective excitations which are included in

equations (5.8). Then, following the method of Tsuneto, we determine

the surface resistance of a bulk superconductor for frequencies less

than the gap.

The paramagnetic part of the current density is

e (5.9)
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By the methods described in section III, we take matrix elements

of equations (5.4) between the renormalized ground state 10

and the state I l(*,a)> containing one elementary excitation.

The results of this, together with our expressions for Ak(') and*1nd

Tk('), allow the paramagnetic current density to be rewritten as

k

(5.10)

Since the odd I values in our potential expansion (3.7) can-

not couple with a transverse field, we consider a simplified case

in which the only terms present in the potential are V0 and V2'

Furthermore, the presence of the Kronecker deltas (due to the trans-

verse nature of the applied field) in the driving terms of equations
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(5.8) indicate that we need only consider the f = + I cases in

solving these equations. In addition, it is easily shown that

A21 (q) - A2 ,.() and T2 1I) - T2 ,I(). Therefore, we must

solve equations (5.8) for the three collective coordinates A2 1(q)
+

and T21('). We reduce our notation by referring to these as A(q) and
+

T-(q).

We introduce the sums

and

~~2 __ _ __ _ _ J (5.12)

where each of the quantities a,b,c,... is one of the coherence factors,

rk(j), or a(*)4k'. With this notation, the three equations (5.8)
+

for A(q) and T-() may be rewritten

(5- 13a)

(5.13b)

(5.13c)
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When the angular integrations are considered, the orthonor-

mality properties of the spherical harmonics reduce equation (5.13c)

to

(1+ 5 ,1h )T .o..4)

Therefore, a consistent solution to equations (5.13) may be obtained

with the setting of T- M 0, since the quantity (1 + Shmpa) is

non-vanishing when evaluated at points of the dispersion relation

determined by A and T+ alone. The two equations to be solved are now

(I-S, *)A _'Y T5=~

5/~~~4UWbnF A Ij) ~ b '' (5-15b)

where we have written T+ = T for convenience of notation. The solutions

are

A:~~~ ~~~ S~ - ~&~(t~~

(5.16a)

(5o16b)



57

where

We now consider the calculation of the surface resistance. In

equation (5.10) for the paramagnetic current density the first term

gives the BCS paramagnetic current. The collective part may be

written as

x

The kernel K ollCqw) is defined by

and can be easily shown to be given by

wp )p ), f)A +> x. fm, f) T7. ,

In this expression the quantity kF appears as an approximation to II
in kx since the two-body potential is assumed to vanish except for

iki and I1 near k . .
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To evaluate the surface resistance we assume the condition of

specular reflection of the quasi-particles at the boundary of the

superconductor. We should not expect our results to be too sensitive

to the boundary conditions. For example, the penetration depth com-

puted under the specular reflection condition differs little from

that calculated in the random scattering limit. Also, the condition

of random scattering involves mathematical complexities beyond the

scope of our calculation.

With the specular reflection boundary condition the instan-

taneous field inside a bulk superconductor is given by13

M'o) /(5.20)
7T 

h

where H(O) is the magnetic field at the surface. The quantity 2/c2

is neglected since we are interested in the infrared region where the

wavelength of the electromagnetic wave is large compared to the

penetration depth of the sample. For our rough calculation, we also

neglect KColl in the denominator, so that K = KO, the ordinary kernel.

We further approximate K0 by I/X which is valid for t0q < 1. The

quantity XL is the London penetration depth.

The rate of absorption of a wave of frequency w is

&27)" R )01d (5.21)
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With the substitution of our approximation for a(q,a) into (5.21),

we get

Thus we are interested in evaluating the imaginary part of

K 01( ,q ) given by equation (5.19). In section 111(2) explicit

expressions could not be obtained for the integrals involved in

A(M ) and r,('), and approximations were used to second order in

the momentum transfer sq . Similar approximations are made in this

section for the evaluation of A,T and subsequently Im K coll(,W).

With these approximations, the coupling constants gL defined by (3.8),

and x = (-fiw/2A) we can obtain

q)-0"" ( .)

S-q-p))

L C,- 1 
+Ez < ,2,

( ) 2.j(Av n)

(5. 23)
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The quantity q() is the solution to the equation P(q,w) = 0 which

gives the dispersion relation for the exciton spectrum. The presence

of the delta function term indicates the absorption by the system of

a photon of frequency w resulting in the creation of an exciton of

energyc and center of mass momentum hq(a). Because of the delta

function, the integral in expression (5.22) for RS(w) is easy to

evaluate. We are interested in obtaining the ratio of Rs(c) to the

resistance of a normal metal. In the extreme non-classical (anomalous)

limit, and with the boundary condition of specular reflection, the

14/surface resistance of a normal metal is given by-

(t 3) A& *)q( 3' (5.24)

From the data of Ginsberg, Richards and Tinkham the absorption

in the gap has a maximum at a frequency near three-quarters of 2A.

For the strong-coupling metals involved in their experiments, we may

take a value of go = 0.5. In Fig. 9 the particle-hole excitation

energies are plotted as a function of (-g2 ) in the q = 0 case for

this value of go" We see that an excitation given by x = occurs

for a value of g2 = -0.75. With these values of g0 and g2 the ratio

RS (w)/R.(c) becomes
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_ _ _- I

This ratio has been evaluated as a function of x =Aw/26, and

the results are indicated in Fig. 10. We see that our results do

indicate the presence of absorption due to the creation of particle-

hole excitons. We do not observe the peak-like structure of Tsuneto's

results since our approximations are not valid beyond the regions

plotted. However, as in the case of Tsuneto's work, our absorption

is at least an order of magnitude too small to explain the observed

experimental data. For example, with O/XTL equal to 4 for lead, our

results indicate an absorption ratio of about 0.003 at x = 0.825,

while the observed value is of order 0.1. Therefore, we can conclude

that the particle-hole exciton absorption cannot explain the lead and

tin precursor absorption observed by Ginsberg et al.,-/ within the

approximations of this weak coupling calculation.

It should be noted that our work, as well as that of Tsuneto,

has been based on a bulk sample calculation while the experiments

have been performed on thin films. The wave vectors, q, of importance

are of the same order as the thickness of the films. Therefore, an



62

improved calculation might be one in which the original unperturbed

wave functions are not three dimensional plane waves, but ones in

which the finite thickness of the film is taken into account, ioe.,

a wave function which is an infinite plane wave in two dimensions

and sinusoidal in the third with boundary conditions appropriate to

the thickness of the film taken into account.

VI. CONCLUSIONS

While we have approximated the Lt h spherical harmonic of the

two-body interaction by a separable potential, V , k') = - V for
L , L

I k ' I Ek'I <Aw c and zero, otherwise, in general, if the

potential is independent of crystallographic orientation, the numbers

L and M remain good quantum numbers for the excitations in the limit

q- 0. For a nonseparable potential, ioe., if VLIk,k') is not of

the form ( P ' ), there may be more than one exciton state for

a given L and M. While the excitons should give a negligible contri-

bution to the specific heat, it may prove possible to observe the

thermally-excited odd L excitons (spin waves) by magnetic resonance

techniques. The precursor infrared absorption observed in Pb and Hg

cannot be explained within the framework of a bulk sample calculation.

It would be interesting to carry out an explicit calculation of the

absorption coefficient for a thin film geometry in an attempt to

reconcile the difference between the theoretical predictions and

experiment.
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Fig. 1 The two vertices occurring in the full equations

of motion for bk(q). In the linearized equations

only vertices with certain values of ' and q?

are retained.
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Fig. 1 The two vertices occurring in the full equations

of motion for bt(q). In the linearized equations
k

only vertices with certain values of p' and q1

are retained.
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Fig. 2 The vertices retained in the full linearized

equation of motion for b(-q). Vertices f, g, h,

and i were neglected by Anderson and by Rickayzen.

The particle-hole excitons are obtained only if

the interactions shown in h and i are included.
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Fig. 3 The vertices retained in the full linearized

equation of motion for pkV(). vertices a,

e, and f were neglected by Anderson and

Rickayzen.
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Fig. 4 A typical diagram retained within the random-

phase approximation to Pk (q) in the normal

state.

Fig. 5 The random-phase approximation to the screened

interaction line.
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Fig. 7 The p-state exciton energy as a function of

momentum q for g0 = 0.25 and gI = 0.24 or 0.25.

The parameter e0 is the coherence length

- 10"4 cm. Notice that the exciton states are

strongly bound only for q > 0'
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Fig. 9 The energy of the D-state particle-hole exciton,

in the limit of q - 0, as a function of the

D-wave coupling constant g 2 with g 0 = 0.50.
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Fig. 10 The ratio of the surface resistance of a

superconductor due to creation of D-state

particle-hole excitons to that of a normal

metal in the extreme anomalous limit cal-

culated for the D-wave coupling constant

2= -0.75 and go = 0.50.
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Part II

Lifetime Effects in Condensed Fermion Systems
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I. THE ROLE OF LIFETIME EFFECTS

In a many body system a particle in an excited state does not

remain there indefinitely due to its interacting with the other

elementary excitations of the system. The presence of this lifetime

can be taken into account in the description of the excited state

by specifying its energy as E = E0 + iE,, where E0 and E are both

real. From this we see that a well defined excitation energy only

has significance when the state is long lived; i.e., when E1 << Eo0

The effects of finite lifetimes on the excitation spectrum

cannot be investigated easily using an equation of motion approach

or a variational one such as that used in the original-- BCS theory

of superconductivity in which exact eigenstates are obtained for a

reduced Hamiltonian containing no damping effects. The mathematics

of a Green's function formulation provides the most convenient means

for investigating the lifetimes. The basis for an analysis of this

type is the calculation of the fermion self-energy diagram of Fig. 1

whose imaginary part is related to the damping rate The solid line

represents the fermion and the dotted one is the full interaction

line.

2/Migdal- has evaluated the electron self-energy for a normal

metal with the interaction line representing the phonon propagator.

For excitation energies ek (measured relative to the Fermi surface)

much less than the maximum phonon energy Xw he finds the imaginary
0

part of the self-energy to be
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E k)%0 70~o (. ~ 3  (1.1) A

In this expression, X is a dimensionless parameter of the order of 1/2

related to the coupling strength betwien the electrons and phonons.

For energies E k > 'Kc Migdal finds that the damping rate due to real

phonon emission saturates out to a constant value. For the range of

excitation energies larger than about ten times the maximum phonon

energy, damping due to hole-electron pair production becomes important

and has been obtained by Quinn and Ferrell-/ by allowing the inter-

action line in the self-energy diagram to represent the screened Coulomb

interaction. For values of ek < EF, the Fermi energy, they obtain

,) ( 7T2 F3 (1.2)

where al = (4one2/m)1/2 is the plasmon frequency.

In the case of a transition to a superfluid state, the effect

of damping on the required energy gap and the transition temperature

is closely related to the relative roles the phonon and Coulomb inter-

actions play in constructing a criterion for the possibility of a

transition.

In the original BCS theory the general criterion for super-

conductivity is that the attractive electron-phonon interaction as

calculated by Bardeen and Pines- / dominate the Coulomb interaction for

those matrix elements which are important in the superconducting wave
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function. The specific model treated by BCS is one in which the

two-body interaction is taken to be the separable potential

-Vkk'= (k4hro~ (1-3)

_fOr I I J<*,4( 0 and

V-,/ 0- , otherwise.

In this expression, V and V are the Coulomb and phonon interactionsc ph

and

-L- ElF,

The BCS criterion has been further investigated by Pines- / who

considers the sign of the interaction (V + V ) = -V in the
cph kk' kkt

zero excitation energy limit, i.e , when bothIl-and k are taken

equal to the Fermi momentum kF. In this model the ionic charge is

considered to be a continuous fluid whose vibrational spectrum pro-

vides the frequency distribution of the phonons used in the problem.

With this model, Pines finds Vkk , will be positive at the Fermi surface

if Umklapp processes are considered (which are calculated without

including periodicity effects) Using this criterion, that the net

interaction must be positive at the Fermi surface., predictions are

made as to which elements in the periodic table ought to be super-

conducting. In the case of those elements for which the neglect of

periodicity in calculating the matrix elements may be valid, certain

qualitative results are obtained which agree with experiment.
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Another investigation into the criterion for superconductivity

has been made by Bogoliubov,6 and Abrikosov and Khalatnikov.-/ In

their treatments, the Coulomb and phonon interactions are considered

explicitly in order to determine the relative roles played by these

two interactions in the criterion. In their method, the attractive

potential due to the phonon interaction only is taken into account by

inclusion of a separable potential (1.3), and is characterized by the

positive coupling constant g = N(O)V > 0. The quantity N(01 is the

density of Bloch electron states of one spin at the Fermi surface. The

Coulomb interaction is accounted for by a constant repulsive potential

acting within the momentam band, 26w', which is larger than the range,

2Kw , over which the attractive potential acts. This corresponds to

the fact that the Coulomb interaction is screened at distances of the

order of the lattice spacing and will be explained in greater detail

below. The repulsive potential's coupling constant is denoted by

g' = -N(0)V' > 0. With these definitions the gap, &, is *.he solution

of

I = - j .%n /, (1,4)

From this equation we see that the criterion for superc7rductivity in

this model is

/

> ---- ) ) (1o5)

replacing the condition g > g' given by the separable potential model
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of BCS. The role of the Coulomb interaction is thus reduced by the

factor ln(Wct/ac) which is typically about 5 if huc - EF. Furthermore,

when

> > (1.6)

the net potential may be everywhere repulsive in momentum space and still

lead to a superconducting state. This result may be more clearly under-

stood if we consider the relationship between an interaction in coordinate

space and its momentum space Fourier transfcrm. For the limiting case

of a constant potential having infinite extent in momentum space, the

coordinate space interaction takes the form of an infinitely sharp delta

function. As the extent of the interaction in momentum space is shortened,

the corresponding delta function broadens increasing the interaction's

extent in coordinate space. We can now apply this notion to the

Bogoliubov potential in which the Coulomb irt-rection has a greater

extent in momentum space than the phonon interaction. With o ' > w,
c c

the coordinate space extent of the screened Coulomb interaction Kthe

order of a lattice parameter) is less than that of the phonon inter-

action. From the BCS theory we know -.hat the superconducting state

is characterized by the formation of b:,' Pd pairs of electrons whose

relative coordinate wave function has at ext. n of %_ 10- 4 cm. Since

a lattice parameter is roughly 10 8 cm, the bound pair of electrons

rarely experiences the Coulomb potential, although its effects may not

be totally neglected since it is of large magnitude. The bound state

is mainly determined by the attractive phonon Interaction even though
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its average magnitude may be less than that due to Coulomb effects.

In this way a net repulsive interaction in momentum space can lead to

a superconducting transition. Of course, when the range of the two

interactions is the same so that w I w , the Bogoliubov criterion

reduces to that of Pines and the model solved by BCS. One difficulty

in greatly reducing the Coulomb effects is that the critical tempera-

ture increases so that most metals might be expected to exhibit super-

conductivity.

Bardeen- / has suggested that lifetime effects due to the Coulomb

excitation of particles out of the Fermi sea could be used to determine

the cutoff, Kw c ', for the Coulomb interaction. When the energy E is

sufficiently large, the excitation may decay so rapidly that it is

not well defined. For a rough estimate of Coulomb damping effects we

can use the Quinn and Ferrell result of equation (1.2) From this

equation we see that for ck ! EF, the imaginary part of the self energy

is

Fkk3r~ (1.7)

As we will see in the next section, damping begins to affect +he gap

equation when E1 (k) and ek are equal. Although equation (2.1) does not

hold for ek > EF, the result (1.7) indicates that the desired equality

would not take place until ck > E But for these values of ck the

matrix elements of the screened Coulomb interaction are small, indi-

cating that Coulomb damping effects play a small role in determining

the cutoffw '
c
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This result shows that the inclusion of Coulomb damping effects

cannot reduce the logarithm term in the Bogoliubov result (1,5). This

reduction is necessary if the role the Coulomb interaction plays in

establishing a criterion is to be increased, On the other hand, as a

consequence of (1.5), most metals would be expected to be superconducting.

We can only conclude that a careful examination of periodicity effects

in the electron-phonon interaction would be necessary in order to estab-

lish a satisfactory criterion for superconductivity This problem is

not considered in this thesis.

Below, we outline a formalism for working with damping effects in

a fermion system and consider the consequences of certain assumed forms

for this damping. We also consider the problem of He3 for which no

superconducting transition has been observed in experiments down to

T > 5 x 10- 3OK, although theoretical predictions neglecting damping

have predicted a critical temperature an order of magnitude larger than

this value. We find that +he dam-ing of -xc!,ed states will tend to

reduce the net attractive interactic necessitating a corresponding

lowering of the critical temperature.

II. EVALUATION OF THE SELF-ENFPGY DIAGRAM

In calculating the self energy diagram of Fig 1 we will follow

most closely the formulations of Nambu -9 / a Eiiashberg It is

useful to introduce the two-component form for the electron wave

fields
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along with the Pauli spin matrices

(i+ 00(.

The operators C+  and Cp, are the usual electron creation and annihila-
pa p

tion operators whose only non-vanishing anti-commutators are

from which we see that

(2-3b)

In evaluation of Feynman diagrams within the new notation of )2.l)

and (2.2), all the usual rules hold with the I's taking thE roles of

the c's of the old notation. The only new rule is the addltion of a

factor of T3 at each vertex, This can be seen, for example by con-

sidering the familar kinetic energy and electron-phonon interaction

Hami ltonians

and

2 2
where C = 2 - EF) gq is the strength of the interaction, and ap an E' ~ q

is a bare phonon operator. In our new notation equations (2.4) become



91

and

If we consider the Fermi sea as our vacuum, O> we define

the Green's function for free electrons (H HK) by

(oj7~~4 I i) +I j) (2.6a)

where T is the time ordering operator, Taking the Fourier transform

of (2.6a), it follows that
0

where p = (?,p ). The Green's functicn, G fcr the total Hamiltonian

H = HK + H' is related to the self energy, Z and the lowest order

Green's function (2.6b) through the Dyson equation

f Ti (Y-KZ?. (2.7)

The most general form for E would be one having components along allP

four orthogonal axes; i.e.,

However, the first order Hamiltonian (2.5a) is invariant under rota-

tions in a plane orthogonal to the unit matrix and :3" Therefore, we

can set Z = 0 in (2.8) and take
P

% 
(2.9)
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This equation, together with (2.6b) and (2.7), gives

(T ) (2. 10)

where

/ -1 (2.11)

The Dyson equation connecting the self-energy, Z , with the

exact Green's function for the probulem and the total vertex, Pp, is

[74;~' TK~~'IP' (2.12a)

where D is the propagator for the I nteraction. The self-energy is

pp,

generally obtained from a perturbation expansion. in the case of an

electron-phonon interaction, D i +he phonon propag=.tor and I'

represents the coupling constan+t For this case Migdal- has snown

that rP , to order (m/M) where M is the ion mass. If the

vertex function for any intere.ction iS approximated by its zeroth order

value, this is equivalent to summing a perturbation series for the self-

energy only involving diagrams in which no two intere.ctien lines cross.

The result of this amounts to evalua o.ing the self-energy d:agram of

Fig. 1 in which the solid line represen'.s the full Green 's function for

the problem and the dotted one the full interaction. For a general

potential, Vpp,, this approximation to equation (2.12a) ie expressed by

Zz~~ = :,C (b) O(.1b



93

where the i's appear for the reasons discussed previously. Substituting

(2.10) into (2.12b) and considering the r1 component of the result. we

obtain the gap equation

'24-

The integration over p' can be carried out by the considerations of
0

EliashbergolO/ The Green's function G ,, when considered as a function

of P., is analytic in the upper (lower) half plane for ro > (<) 0.

Therefore, the ill , term may be dropped in the integrand when the p

integration is taken along the contour C of Fig. 2. We will now

assume that the potential Vpp is real and independent of p and p'
ppt  0 0'

With this condition, consideration of the complex function G(pz)

which coincides with G(p,p 0) on the uyper (lower) half plane for

PO > (<) 0 allows the contour C1 to be deformed to C2 of Fig. 3.

Since the values of iG(p,z) on the opposite sides of the cut (O, )

are complex conjugates., we obtain

0

where

+ -(2-15)

Since the integrand is symmetric in p0 ' the lower limit in (2.14) may
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be replaced by -o and the result multiplied by 1/2. Assuming that

the analytic continuation of Gp into the lowez half plane for p0 > 0

has a simple pole corresponding to an elementary excitation of energy

the integral equation becomes

(__  /d, I/'7)

Ani e:i ' qult V'~ 1~ *(2.l7)

In this expression the quantity C, related to Zp through (2.12),

satisfies an integral equation similar to (2.13) obtained by considering

the unit matrix element component of equation (2.8) and gives the

normal state self-energy in the limit of A -, 0o The imaginary part
p

of gives rise to damping effects in the energy gaT equaticn. When

is set equal to zero (Z 1> the integrand of (2,17) becomes real

and the equation reduces to that of BCS.

III. DAMPING EFFECTS FOR ENERGY INDEPENDENT V

We will investigate the effects of damping on equalion (217) by

considering various forms of the function The real part of

will not be needed since it serves to renormallze the excitation ener-

gies c.p and the interaction V Pt It is the imaginary part of %

which provides for the damping effects, We consider a general form

for Z in which the damping is proportional to a power of p00 i.e.,

p0

PO
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It should be noted here that our assumed form for ;'s imaginary

part is not entirely satisfactory since this quantity must vanish

for 1p01 <A . Therefore, for n ;- 0 in (3.1) we may onl:j consider
0 p

the A - 0 situation. For n = . the approximation is much better,
p

and for the case where n = 2, the error introduced is entirely

negligible. For n 0 0, substitution of (3.1) into (2.17) gives

where p0' is the solution to p0' - r
-pa

We will consider the three cases n 6 0, 1, and 2.

(1) n = 0

The n = 0 case corresponds to constant damping. For the

separable two body interaction

PP
(3.3)

setting A = 0 in the n = 0 integral equation allows us to determine
p

the minimum value of a such that no transition to the superconducting

state occurs; i.e., Tc = O°K. Although equation (3.') does not hold

for n 0 0, it is easy to show that the A - 0 equation for this case
p

is

were(o)isthedenityofBoho on e3.nr )

where N(O) is the density of Bloch states of one spin per un,.t energy
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at the Fermi surface. The solution to (3.4) gives the critical

value for a,

O- % r-llAo V]. (35)

This result agrees with that of SuhloIL /

(2) n "I

With the separable potential of case (1), the gap equation (3.2)

gives

S__(3.6)

The solution is of the BCS type with

a(3.7)
A 0 , otherwie.

p

Thus, the inclusion of linear damping modifies the BCS solution only

through the introduction of a reduced effective coupling constant

N(O)V!( + 2 ).

(3) n-2

For the case of quadratic damping, the T = 00K gap equation

is

From the result of (1.7) we have seen that the screened Coulomb
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interaction leads to I/a > EF so that the effects of Coulomb damping

on equation (3.8) are negligible since the screened Coulomb matrix

elements, V pp.,are small for energies cp > E . Therefore, inclusion

of Coulomb damping cannot serve to decrease the extent of the Coulomb

interaction in (3.8). Consequently, the parameter w ' in the

Bogoliubov criterion (1.5) for a superconducting state in metals is

essentially unchanged from its value computed in the absence of

damping.

For He3, damping effects are important in determining A and
p

the transition temperature, TC, for a possible superfluid state. Due

to the hard-core potential, the integral equation must be solved in

coordinate space. However, we can obtain an estimate for the reduction

of T due to damping effects by considering an effective separablec

potential given by (3-3). With this potential, the transition tem-

perature is given by

I -(/a-+-. (,3/2)

where p (kT )

We will now calculate an approximate value for a, For the

thermal conductivity of He3 , Abrlkosov and Khalatnikov- ! obtain the

theoretical expression

y o)a 7- J 1 (3.10)

where pF is the Fermi momentum and m* is the effective mass of a He
3
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atom. The quantity w(e,P) represents the transition rate for the

scattering of a qualsi-particle and is related to the scattering

amplitude, f(e,P), by the usual "golden rule" formula

Since we have chosen an angularly independent separable potential it

is consistent to consier wie5d) as ionstant in the expressions (3.10)

and (3.11). With this assumption, performing the angular a-verage in

(3.10) gives

7rrPr (3-12)
('n)t T

At this point we consider the above quoted work of Quinn and

Ferrell, 5- in which the imaginary part, E1I(p), of the excitation

energy is obtained for electrons interacting under the screened

Coulomb potential. Their results may be used for the He3 problem

if the screened Coulomb matrix elements are rellaced by the scattering

amplitude, f. This straightfcrard generalization gives

3, (p2a*. - 2

where n is the He3 particle density. Substituting f2 obtained from

(3.11) and (3.12) into (3o13) g:ves

(3= (314)

/ 6 kW R:TJ P.
Use is now made of the experimental work of Anderson, Salinger and

Wheatley who obtain
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With this value for the thermal conductivity, equation (3.14) becomes

The values m* = 2. 8 2m and n " 1.64 x 1022 particles/cm3 give the

damping constant

a = 4.27 x 101 5 ergs)-1  (3.17)

When compared to the He
3 Fermi temperature of about 3

0K, a ", 177 EF- 1

indicating that the imaginary and real parts of the excitation energy

are equal at E p E /2. Having arrived at a value of a, we may go

on to compute T .c

The integral of equation (3.9) is approximated by

/0Z + 2 (3 18)

For this approximation to be reasonable we need a ,alue of :. for

which 2 2 << 1 for _ In this way damping effects are

negligible in the c. range of I. and th hyperbolic tangent may be

replaced by unity in 1 . We note that for E 1/10 a the condition

of II is satisfied. Furthermore, if we take T= 0.05K for the1 c

critical temperature without damping as calculated by Emery and

SesslerL/ our choice of C gives tanh( 0 12) a 0.91. Since
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our result for T will be less than T, setting e1 = /0 a also

satisfies the requirement of 12'

The II integral is identical to that arising in the BCS

critical temperature equation. Their numerical evaluation gives

, 4- (3.19)

For e1 = 1/10 a, the upper limit in 12 is essentially infinite, so

that we get

I:-D _oLqO e5p). (3.20)

With these approximate values for I l and I 2 in equation (3o18), the

critical temperature with inclusion of damping effects is given by

1-
e_= s) 3  . ), expU-I O J. (3.21)

The ratio of T to T0 is then

c c

Te /T-e 0 /143o/ ). (3.22)

For c= ll = 10a EF/20 and, A, E ,

/ o. 3 (3.23)

indicating that the effects of damping in our simplified treatment

would reduce the critical temperature by a factor of about. three.

For the Emery and Sessler value of T° = 0.050K, damping effectsc

reduce the critical temperature to T o0.0160 K. Experiments havec

been performed at temperatures T > 5 x 10-3 0K without the appearance

of a superfluid transition, which might indicate that damping is not
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as important in determining T as we had hoped. However, the reductionC

of To by a factor of three could be important if a lower value of T0
C C

were obtained. We should also add at this point that our work was

based on a simplified model in which the potential was assumed to be

of the S-wave type; i.e., Vp, contains no angular dependence. On the

other hand, the work of Emery and Sessler is based on the assumption

of a D-wave term in the potential. Therefore, it might not appear valid

00
for us to use their result of T° c O.05°K in our calculation. We havec

seen, however, that the effect of damping is essentially to reduce the

amount of phase space over which the potential acts. For this reason

the ratio T /To would not be expected to vary significantly with the
c c

choice of angular dependence for the potential, although in a more

exact calculation of T a D-wave term would explicitly be included
c

in the potential in the energy gap equation.
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Fig. 1 Self-energy diagram used to evaluate the integral

equation for the energy gap A.
p

Fig. 2 Contour C1 along which the p; integration is carried

out in the energy gap equation (2.13).

Fig. 3 For an energy independent potential, VpP, the

contour C1 may be deformed to C. leading to the

form (2.14) for the energy gap equation.
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