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SUMMARY 

A decomposition principle for linear programming is pre- 

sented.  The technique may be viewed as a dual of the Dantzig - 

Wolfe decomposition principle for linear programs L 7 J .  The pro- 

gram matrix in what we may call the basic problem is considered as 

having many (an infinite number of) columns.  As in the Dantzig - 

Wolfe treatment, one visualizes a basic problem, in primal form, 

where, however the set of permissible columns is not finite, as in 

the usual primal form, but is a given convex polyhedron.  The basic 

problem is solved by the modified simplex method [llj  , but at 

each iteration the column to enter the current basis emerges as the 

solution to an auxiliary linear program and is, in fact, an extreme 

point of the given convex polyhedron. 
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A DUAL DECOMPOSITION PRINCIPLE 

I.   Introduction and Notation 

One of the main obstacles to the full application of 

linear programming is the inability of most current computational 

methods to cope with problems yielding program matrices of large 

order.  However, many of these problems have program matrices which 

exhibit special structures, e.g. diagonal or block triangular and 

which are very sparse in non-zero elements.  A large order trans- 

portation problem is an example.  The size of the problems we have 

in mind make it infeasible to attempt to solve them by a general 

technique even on the most modern digital computers. 

Much current research is being directed toward developing 

special techniques taking advantage of these matrix structures in 

order to facilitate solution of such problems as: (i) traffic flow 

problems and network problems |_1, 4, 12J , (ii) gasoline blending 

problems L3j , (iii) communications problems L9j , (iv) ware-housing 

|       problems \^2 \   , (v) production planning problems \_5,   13]   ,   (vi) the 

(caterer prob lern |_ 8 J , and (vii) von Neumann's model of a constantly 

expanding ecomomy Ll4j , 

One recent technique for handling certain intrinsically 

large order problems is embodied in the Dantzig - Wolfe decomposition 

principle.  We shall review the basic notions of their principle. 
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taking the Liberty of using our own notation»  We then develop our 

dual decomposition principle, so as to compare the two.  Dantzig and 

Wolfe apply their technique to some problems of block triangular form. 

Consider the general Linear programming probLem in the form: 

(I) max XQ 

where    XQPO + ä X = S 

A X =  b,  X >   0   . 

We  think of    A    as being of  Large order,  but  fairLy easy  to handLe. 

For exampLe,  we may have: 

Ai    0   . 

0       A2 

.   0 

0 « •    U       •    A'p 

where, without any coupLing constraints, A X = b wouLd break down into: 

Ai X^ ■ b^, i ■ L,2, ..., T . 

In generaL, our aim is to treat efficientLy the case where A has 

bLocks of zeros, variousLy pLaced. 

We consider one "iteration" of the Dantzig - WoLfe aLgorithm. 

We assume, which Dantzig and WoLfe do not, that the convex set 
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{x|AX=b,X>oJ     is bounded.*    So,  in our discussion of their 

algorithm we will not  consider the possibility of homogeneous  solutions 

to   (1)  which may arise when the above  set is not bounded. 

We may pose  the problem in the  form: 

(2) max XQ 

where     XQ  PQ + P = b   , 

where    P    belongs  to    C = {P|P = ÄX;  AX=b,  X>oJ   . 

Dantzig and Wolfe  assume  that  one has  a  feasible  solution 

(XQ,   X),   and  in  fact  points Xi,   X2,   .   *   .   ,  X^ such  that: 

(3)       X=       Y\  ^    Xi ;     2IA     =   L'           X^0   * 
1-1 i =  1 

where  the    X^    are  extreme points of|XJAX = b,  X>  0)   . 

Thus,   if    P^ = K Xj_,   then: 

m 
(4)       P = Ji       ^   ' 

1=1 

One may then pose the problem in the form: 

(5) max XQ 
m 

where   XQ PQ + X P +  ^^ AA Pj - D, 

m 

i = 1 

1=1 

* This is readily realized by the technical device of adding the 
constraint Xi +..,.+ Xn S K   where  K is sufficiently large. 
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where P is any point in C.  We thus think of (5) as the "basic 

problem," 

One further assumes that the matrix; 

B 

"n * • 1 •  •  •  •  • 

WI   Ly • ■ * «  | 

, P, 

(6) 

is non-singular. 

We shall now review one "iteration" of the Dantzig 

Wolfe technique.  If we write: 

(7) 
(B-1)1 - 

then IT 

1 m 

p.Pi • • • . P 

* If3'/ is the Set of "siinPlex 'nultipliers" associated with 

the "basic feasible solution" obtained by setting XQ = XQ , Ac = /\ 

and A = 0 in (5). Hence IT is the unique point satisfying the con- 

ditions: 

T 
*0%        =1 

P. TT,  +^ = 0 .   , i - I, 2, m 

We assume that the inverse (7) has been computed. 
A     A 

The solution (XQ, X) is optimal if: 

(8)   TZ,1 P +^> 0 

for all pec. 

This suggests that we consider the auxiliary problems: 
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(9) tnin 2f X 

where   A X = b, X^O, 

- T 
where Y =  A  TT, 

If X is an (extreme point) solution to this auxiliary 

problem, then (XQ , X) is the optimal solution if Y    A -t-p ^ O 

If not, then 

(10) P = Ä X 

is introduced into the basis B in the usual simplex method manner 

and the iteration is then completed. 

In summary, with reference to the "basic problem" (5), one 

examines, in the usual simplex method way, the "relative costs" of 

each "column" P, using the multiplier (77",; ß^       to ascertain whether 

or not optimality is reached, as indicated by IT,    r + p>   ■£ O       for 

all such columns.  However, here this means examining all the points 

P of a convex polyhedron C, suggesting the auxiliary problem. 

Now with reference to (9), notice that at each iteration 

only the functional in the auxiliary problem changes.  When one has 

a new functional, and wishes to solve (9) one starts from the optimal 

solution to the previous auxiliary problem and continues on (possibly 

in a few iterations) to the minimum of the new functional. 

The Dual Algorithm 

Both our algorithm and the Dantzig - Wolfe algorithm agree 

in (i) having the "basic problem" in the form (5), (ii) having the 
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non-singular, current basis matrix in the form (6); (iii) assuming 

that the current inverse, given by (7), has been computed; and (iv) 

having the same convex set C 

Our algorithm, which is in one sense, a dual of the Dantzig- 

Wolfe technique, is applied to the dual of the "basic problem" de- 

fined by (5), namely: 

(U) 

where 

mm (b IT, 

PoT-rr( = i 

PJTTT,      +£2o,j   =   l,2,   ..,.,m 

P1?^        +(3 >   o,   for all  P £   C   . 

We of course assume  that both  (11)   and  (1)  have solutions. 

At the start of one iteration we also assume, as so Dantzig 

and Wolfe, that we have a starting feasible solution (77"/ P ) to (11) 

and a   7/].    such that   lo  "^ - (3 • 

As was mentioned previously,  we  assume that  the convex set 

|x|AX=b,X>0|     is  bounded.     Dantzig  and Wolfe  do not make  this 

assumption which  is an essential part of the derivation of our auxiliary 

problem. 

Our algorithm first of all differs  from the Dantzig  - Wolfe 

technique  in assuming  that  their optimality  criterion,   given by   (8), 

is   satisfied.     The optimality  criterion  for our  dual  technique  is 

given by  the  following: 

I 
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♦     tnin rAk* 
Theorem:  Let  r be such that  /W =  i j ^ I 

If A r > 0, then (XQ, X) is optimal. 

So at the start of each iteration, we compute A r.  jf 

A r > 0, then we are finished.  If A r < 0, then the column 

is the VGO (vector going out of the current basis). 
(W 

In order to determine a vector / P V coming into the 

basis, VCI, we solve the auxiliary problem given by: 

(12)     min jVy -f^j 

where A y - TT^ « 0 

and yT(I pr) + ^ ^ = -)  .  y > Q, ^ > 0 . 

The solution of (12) yields P = KJ   which is the VCI. 

Expressing F in terms of the basis, we get: 

(U) -      /p( 
=  P. 

\o 

The  new X^ A,, t. 4.    the   Xj*   \ are computed from 

the  formulas: 

and 

where    7.   = 

A jLsT 
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1 T 
(B" )    is computed by algorithm from B 

simplex formula: 

-T 
by the usual 

/Pr 

B  = B 
/pr\T/-5\ 

[t 

(* 

where 

The new functional value X()  is computed by means of: 

■%\ . Jvf 
+ 6 A' 

P  / • 

This completes one iteration. 

Now, unlike the Dantzig - Wolfe Technique our auxiliary 

problems differ not only in the functional but also in the addition- 

al constraint.  So, if we solve (12), we will not be able to take 

maximum advantage of the previous computations as do Dantzig and 

Wolfe when they solve their auxiliary problems.  This suggests that 

we solve the dual of (12) as a primal problem.  The dual of (12) is 

given by 

max 9 

(14)  where    -kl[^      -  9 (A1 Pr) < Ä TT, 

bTTra     -  9   ^ If 

We   solve   (14)   by  the modified  simplex  technique  LllJ  ■     We will 

now    show  that by means  of one  artificial  iteration we  can  avoid 
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the problem caused by the additional constraint and hence start from 

the optimum solution to the previous problem and continue on to the 

inaximum of the new functional thereby taking maximum advantage of the 

previous iteration. 

At the start of one iteration in the solution of (14) we 

assume that we have a basis Bj^ The columns of ^ are selected 

from the matrix: 

-A 

b 

i d 

0   1 

(14).  Let Bi    be given by 

where 

I    0   -A"T Pr 

T    o   i  - PA\ 
is associated with slack variables introduced into 

(15) B 

-I P 
r-i 

where the columns of -B* 

b* 

-B* 

b*      - p' 

are selected from the columns of 

"-A1  I 

bT  0 

We also assume that we have a i    ^  and 0 determined 

from the previous solution of (14). 

Now, at the start of the modified simplex technique, we 

(-* ?r) ( o\ 
by the column   1 .  This replace, in Bl,  the column 
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initial replacement eliminates the problem of the additional con- 

straint in (12) and yields a new basis for (14) as we will now show. 

(14) may be written in the form: 

(16) 

where 

max 0 

B*         -ST Pr ' M 
b*       -     f _ W le 

N/* is composed of elements of 77^ and the slack variables correspond- 

ing to the basis columns.  But we may write: 

-B* 

b* 
V 

—T 
ATI, 

A1"//. 

+ 9 
/ ÄT PrN 

V 

p 

I 

I 

1 

I 

7?% 

/0 

In order to show that B,  is a basis we express I   in terms of 

V 
the previous basis Bi  to get: 
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(19) 
b* 

e + 
AT prV 

B 

lx    will be a basis if and only if ^0 4  0.  Now, utilizing the fact 

that the constraints in (12) may be written in the form: 

.T 
■A 

b       -? 

we may write, with (19): 

(yT,^) 

AT Pr 

r = (O1, i), 

(20) (y1,^) 
u 

■ (y .^ ) B 1\ He 

or 7 = (OT. i)(y^- 

If we assume that A X = b, X>0 has a solution X and 

Ay = 0, y i 0 has a solution y ^ 0, then, for all ^ > 0, 

A(X +*y)   = b, X +0^9 > 0.  But this contradicts our assumption 

that the convex set {x|AX- b, X > o] is bounded.  Hence 

Ay = 0, y > 0  if and only If y - 0.  So we will not get^ =0 in 

(12).  Therefore 66 >^ and BL is a basis for (14).  We get (auto- 

inatically) a starting feasible solution  ( ^  for (14) from which 

we proceed with the modified simplex technique. 

The solution of the Dantzig-Wolfe auxiliary problem yields 

an X, say X*. which in turn yields a P* = A X* as the VCI.  The 

VGO in the Dantzig - Wolfe technique is determined after the aux- 

iliary problem has been solved.  In our dual technique the VGO is 

determined at the beginning of the iteration.  The solution of our 
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auxiliary problem, given by (15), yields a solution (y, ^ ) to (12) 

and, hence, a ? = 7i y-      as the VCI.  As we noted before, ^>0, 

We make no direct use of the X's  in our auxiliary prob- 

lem as do Dantzig and Wolfe in the direct technique.  However y = ^ X 

X is an extreme point of fX [ A X = b, X > o] .  For, if it were 

not, then there would be no Lower bound for y   tf + y[P     and the 

above convex set would not be bounded, contrary to our assumption. 

In the development of the dual decomposition technique no 

mention was made of the structure of the matrix A.  However, in the 

direct decomposition principle the composition of the current basis 

matrix B changes as the structure of A changes.  For example, for 

a matrix A of the form: 

AL  0   0 

A = 0 

0 

A2  0 

the current basis matrix is no longer given by an expression com- 

parable to (6) but assumes the form: 

■pL1 P12 . . . PLkl P21 P22- • •  p2k2 
p31 P32 — • P3k3 

1   1...1    0 0 . . . 0 0   0...0 

0  0...0   1 I . . , 1 0  0...0 

0  0 . . . 0   0 0...0 1  1...1 

B = 
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In the dual technique the structure of B will essentially remain 

unchanged as the structure of A changes. 

In summary, our dual technique is essentially the modified 

simplex technique, as was stated before, with the exception that the 

column to enter the current basis is obtained by solving an auxiliary 

problem given by (14).  By means of one artificial iteration we are 

able to eliminate the presence of the additional constraint in the 

dual to (14) and obtain an initial feasible solution for the auxiliary 

problem while, at the same time, taking maximi n benefit of the previous 

computations» 

Assuming non-degeneracy the iterative process is finite 

since the number of extreme points of the convex set] X AX = b, X 2 0^ 

is finite. 
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