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ABSTRACT

A solution to the problem of strong interaction between the

shock wave and the boundary layer has been obtained for the case where

velocity slip and temperature Jump boundary conditions are consistent

at the wall. It is shown that the addition of slip boundary conditions

yields a correction of order [JIX] to the no slip solution.

Estimates are made of the effect of slip on induced pressures

and skin friction for the case of the adiabatic wall. In addition, it

is shown that the inclusion of slip boundary conditions does not change

the energy transfer to the wall from the no slip values.
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STRONG INTERACTION WITH SLIP BOUNDARY CONDITIONS

J. Aroesty

1 INTRODUCTION

The status of the hypersonic leading edge problem has not changed

appreciably in the period since the earliest recognition of the shock wave-

boundary layer interaction phenomenon. The theoretical aspects of the problem

have mainly been considered from the viewpoint of boundary layer theory, with

[1,2,3) [4)few exceptions . There has been some work by Charwat on the

application of a near-free-molecule technique to the region very close to

the tip. This approach, which actually considers the various types of

collisions encountered by molecules which have been reflected off the plate

surface, is similar to the "physical iteration" scheme used by Charwat and

Baker [5 in their consideration of near-free-molecule-flow over a sphere.

This counting of collisions becomes quite complicated as more and more

collisions occur and it becomes increasingly difficult to assign a mean

free path to each type of molecular encounter.

Another attack on the problem, not within the scope of boundary

layer theory, was carried out by Laurmann [6, who considered the problem of

slip flow over a short flat plate. The solution was based on a linearization

of the full Navier-Stokes equations about the free stream velocity. The

interesting possibility was raised that for this problem, with sufficient

slip at the surface, the Oseen solution could be valid over the entire short

plate. Although it is difficult to relate this problem of the short plate

to that of the leading edge region of a long flat plate on physical grounds,

Laurmann's (6 result of a near linear displacement thickness is certainiy

suggkstive of the possible effects of slip boundary conditions at the surface.
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Except for a recent paper by Oguchi ( the remainder of the analytical

attempts using the continuum approach have been within the framework of hypersonic

similar solutions of the boundary layer equations. The earliest solutions[8]

suggested the possibility of a strong-interaction region, where the pressure

grows like x-1/2 and the boundary layer grows like x3. The important

parameter in this region was shown to be M , and all solutions were

given as functions of this hypersonic interaction parameter, 7
Although the early measurements of the pressure distributions on the

sharp leading edge flat plate in hypersonic flow seemed to confirm the existence

of this strong interaction region, later work done at Berkeley and at Schenectady

demonstrated clearly that this parameter alone is certainly not able to describe

the pressures as the plate tip is approached. Starting from the downstream side,

it becomes apparent that the pressures increase, at least qualitatively, as

predicted by the strong interaction results until they reach a plateau of

constant pressure, and then decrease. The level of the pressure plateau is a

function of Mach number for sufficiently large values of . Since the

various data have been taken at a variety of wall temperatures, it is simplest

to characterize the experiments done at Berkeley as the insulated case, and

the experiments done at General Electric Company as the highly cooled case.E[910'

Even the strong interaction theories suggest that the induced pressures

increase with increased TJTo, so that it is not surprising that the level of

this pressure plateau is also a function of this temperature ratio. Examination

of the available data suggests the possibility that the extent of the strong

interaction region, where the pressure grows like x- /2, is probably quite

small, if it exists at all.

Prior to the publication of the data which showed the existence of

a pressure plateau near the tip, attempts to modify the early strong interaction

2



[11, 12]
solutions were made by Oguchi and Stewartson , using hypersonic small

disturbance theory. On purely analytical grounds, these more recent solutions

are attractive in that they provide a complete solution to the flow field

between the shock wave and the boundary layer, whereas the early work, which

utilized the tangent wedge formula, gave no information at all concerning the

nature of the flow field external to the boundary layer.

2 OGUCHI'S ANALYSEBS

Recently Oguchi [1I gave a more complete Joining of the boundary

layer and the inviscid flow, where the vorticity and temperature at the edge

of the boundary layer are no longer taken to be zero, as in the earlier

solutions, but rather at the values that obtain from the solution of the zero

order inviscid equations. Thus, the complete similarity of the flow field

enables one to obtain information which is not at all available in the tangent

wedge approach, which yields p/p. alone at the edge of the boundary layer.

However, the means necessary to achieve complete similarity is to

assume that the shock wave grows like Axn where I > n Z /3. With the

application nf the approximate conservation Iws across the shock, this implies

that the pressure and temperature approach a singularity as the leading edge is

approached. Thus, this simple form of the shock shape, essential to a similar

inviscid flow field, is then responsible for the high pressures near the leading

edge, and also for the perhaps spuriously hot gas at the edge of the boundary

layer.

The matching between the shock layer and the boundary layer problem

is effected by an expansion in a small parameter, , which

is suggested by the forms of the temperature and vorticity variation at the

3



edge of the viscous regions. For air, the small parameter is effectively of

order i , which introduces some question concerning its validity in a

boundary layer solution. The additional consideration of the vorticity due

to the curved leading edge shock wave yields pressure levels which are higher

even than those of the earlier solutions,

In the light of experiments that seem to point to a pressure plateau

as the leading edge is approached, it is possible that the leading edge shock

wave is not very highly curved, and in fact, it is certainly possible that it

is nearly straight. With this in mind, Oguchld7Ls recently attempted to

settle this problem of shock-boundary layer interaction in a manner which is

similar to the viscous layer problem on a blunt body. Oguchi has assumed

that the flow in the entire region between the shock wave and the body may

be represented by the boundary layer equations. This implies that the

entire pressure field in the very leading edge region is constant, since the

assumption is also made that the shock wave is straight. In addition to the

usual condition that u = u. at the shock, it is also required that the

mass flow entering the shock wave is equal to the mass flow in the boundary

layer. This is done by equating the boundary layer stream tunction at the

still unknown shock wave height, yso to the stream function corresponding

to the free stream at that height.

Using the nomenclature of reference [ 8], this new condition is

= /00(2)

where

4,



It is Oguchi's hope that the solution of the boundary layer equations,

with this additional boundary condition,yield a zero value for the shear stress

just behind the shock wave. This is critical to the justilication of the use of

the boundary layer equations in the entire field, since the shock wave is assumed

to be a straight discontinuity, satisfying the appropriate Eankine-Hugoniot

conditions. Since the shock thickness varies inversely as the strength, it is

more likely that one is able to give an a priori justification for the neglect

of the shock structure in the case of a very strong shock, such as a normal

shock, than for this case of a comparatively weak shock.

In attempting to meet the boundary conditions for this problem,

Oguchi utiliuss an assumed form for the stream function which is inconsistent

with the resulting equations, except for the region where IS << , corres-

ponding to the region closest to the tip. For larger values of • , a

numerical solution is proposed which is called a "local similarity solution".

By means of these two solutions, one analytic and one numerical, the induced

pressures over the entire leading edge region are predicted, and are shown to

agree quite well with the more recent experiments.

However, if the value for the shear behind the edge of the shock

is evaluated properly, i.e.,

'rr Nt.v46X~C- (4)

,% ' _ _ -(5)
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the solution for the limiting case of Jr . .c, yields the result that

rX.._= I throughout the boundary layer. Similarly, for the case

corresponding to the "locally similar" solutions, is always
"J~ALL.

greater than zero, and in fact, is always greater than 0.3. Thus, we see

that the requirement of the vanishing of the shear behind the shock wave is

not met, and an inconsistency develops at the shock wave. The way out of this

inconsistency is certainly not clear, but it is apparent that the solution, as

it stands now, is certainly open to question.

3 EFFECTS OF SLIP

Laurmann's suggestion that, a linear displacement thickness is possible

for large slip velocities, and the well known incompressible result, that small

slip at the surface decreases the displacement thickness, all point to the

likelihood that inclusion of first order slip boundary conditions in the strong

interaction problem will tend to reduce the curvature of the boundary layer

thickness, and consequently reduce the pressure levels from the no slip value

as the leading edge is approached. Street (13] and Laurmann[14] have considered

this problem, the latter using an integral technique, and the former using an

expansion procedure somewhat analogous to the Oguchi procedure for matching

the vorticity.

The procedure which Street and Laurmann used is the expansion of

certain flow quantities in terms of a small parameter, which is related to the

[15]local mean free path at the wall. This technique is quite well known , and

is, characterized as possessing solutions which are related to the y-derivatives

of the zero order solutions.

Cassaccio has attempted to generalize this result to the case of a

similar compressible flow, where no effect on the external flow is considered,

6



The solutions obtained are characterized by this linear dependence on the

th
y-derivatives of the zero order solution.

If the expansion is cast in the Howarth-Dorodnitsi-i variablest 8J

the appropriate expansion parameter becomes evident from the expression for

aI at the wall, i.e., slip boundary conditions.

t(AC(a) t ~ j 0 (7)

The appropriate expansion parameter becomes

Expanding C LA ~i, - 9

(i.e., perturbing a similar solution), and inclusion in the momentum equation

yields

47zero order i

~ I -r first order 1Iii1

7



The requirement for similarity in the zeroth order solution was that

Z4 j ��a(12)

1.... .(13)

#7 I-
For the assumed first order expansion to be consistent, it is clearly necessary

that $ must be of the formeyB when K is a constant. Since )w0-

is independent of f , being determined only by the wall temperature, this

is equivalent to requiring that Lh vary like a power of . . This is

inconsistent with the requirement for the zeroth order solution, which is that

1/2. (14)

Only for the special cases of 9 mfG , corresponding to a flat plate, /id

corresponding to hypersonic flow, or (, IC( corresponding to low speed flow,

is the expansion procedure completely consistent. Maslen(17J gave the complete

solution tor the case where P.O , corresponding to compressible slip flow

over a flat plate. Otherwise. it is possible to show that the only solution

satisfying this assumed form for f is the onewhich drives theterm in the brackets

in equation (11) Identially to 0, or A 4 7 . However, this is

certainly a very special case, since we have only given one solution to a

third order differential equation for f1. In general, we can see that this

assumed expansion in not satisfactory.
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4 PRESENT ANALYSIS

The present analysis will consist of a perturbation about the strong

interaction solution, in order to represent the effects of the slip boundary

conditions.

The following assumptions will be made in order to obtain the familiar

zero order equations given in [ 8 ], page 305.

1. The boundary layer equations are valid.

2. Pr- l

3. 4 d. =: N - (constant)

4. , - constant

5. Tangent wedge formula is valid to describe the interaction

between the displacement thickness and the induced pressure.

The boundary layer equations, with first order slip, for Pr - 1 may be

written as:

~ +~y~v>~c~ (15)

"B ' (18) - local mean free path
B.C.U Q 18) ocalmeanfre path

0? TW b (19)

. 4:LZI 
(20)



4.1 Derivation of the Zero & First Order Eguations

The Howarth Dorodnytsin transformations are applied in order to

render the equations amenable to a similar solutions analysis.

(21)

(22)

(23)

The W eqato (24)

The momentum equation becomes

Mt% -. #) ~(25)

The energy equation becomes

Algofj = 2 -(26)

The momentum equation can be put in a somewhat different form for

the case where the external flow is hypersonic-- i.e., H • .

- - (27)

10



If we set L4A = constant, in the integral

ft(28) assumi~ng a perfect gas.

Thus

(29)

or then

-L (30)

Since we are assuming an isentropic external flow,

'0 4- (31)

-- -- __ ,__ (32)

or

zfor perfect gas

df Q4

a.(33) f or f1



Rewriting

AA& 7,r •for perfect gas

-=_(34)

- - J ~ ~ / 1 ) ( 3 5 )
The momentum equation may then be written

The slip boundary conditions may be written, (to first order in ) as

~r~y:QTemperature

Jimpor 
Jump

Q 
Vel eiy

.12



The form of the slip boundary conditions suggests that the appropriate

expansion parameter for a perturbation solution about the zero order strong

interaction solution would be -, where

S. AEvaluation of this small

parameter in terms of X and Re shows that - 6Z

where C.- (See Appendix A.)
6I

The expansion is applied directly to the transformed equations -

4 -ý- ] (9
?'0 C) 4 1, 7) +(40)

1 (41)

T = I$ j(42)

At the edge of the boundary layer, as 7-40 , the following terms are

expanded

0 (43) where pl, ul, hl
(0 .'. are constants

'0 .(45)
Because the external flow is adiabatic, the stagnation enthalpy remains

constant at Hs.

When these forms are placed in the transformed equations, the following

sets of equations are obtained

Zero th order in E

N (46)

~*I~)(47)

13



At

At F/~.~) ~* f *(49'

The solutions of the zero th order equations are tabulated in 18 J

Frrst Order in

w ~ ~ff4~ (50)

and

IVJ'77 41 '7 + "1 (91)

Rewriting

and N. ; WO(53)

Where B. C. are

(14)



4.2 Solution

The energy equation may be integrated immediately

Yi - 4io9.'9) WI 1 (56)

The perturbation velocity A can be written

/ (57)

where VI and V2  are obtained by variation of parameters.

V,~~~ -Z L-(8

C cr(M 7(59)

Tho rendition at 4' tZo permits the constants A and C

to be evaluated, since all the other terms vanish there.

However, the condition at co is Zdentically satisfied by the

functions, irrespective of the value of the constants B and D. It is

then necessary to introduce some other requirement on the solution in order

to establish a physically sensible solution. If the requirement is made that

the various thicknesses which characterize the boundary layer possess finite

dimensions, it is possible to evaluate the constants B and D. (See Appendix

C).

15



When these constants are evaluated, the solution ro the first order

energy equation becomes

Y, .)' (60)

The solution to the first order momentum equation can be written

Q ofc /I , I,-,. %o I,- 1, 12

Since the functions f0 , f g0o and g0 have already been calculated 18]

it would be possible to evaluate the velocity and energy perturbations as

numerical functi"nns of F .

In ordex to calculate pl, it is necessary to first calculate the

displacement thickness, and then utilize the tangent wedge formula.

If we neglect terms of o -",, I the displacement thi-•_ne_-m can

be written

~4: LA j~-~X/~ (62)

Expanding in the small parameter •. , using the perfect gas law, and the

results that , w '2 and V "s ,o we may write

i r.f, (63)

J

16



where

The integral, , will be in the form 0 ( since the perturbation"(- * q. C2.e 7,*,
velocity profile is given as a linear function of p,. Since 0$

Smay be written I* Eo'LI +zJ-a 74q
The use of the tangent wedge formula requires that the slope of the

displacement thickness be evaluated

L + (66)

S01,- (67)

JA/

or

L1/ (69)

The tangent wedge formula, as given in reference f8) is

26"0 Z ý' Irtl(70)

or 
O 

71

17



Since _P r t.. 1 (72)

then P-a ý

The calculation of p, for the general case is quite complicated,

since the numerical evaluation of several integrals is required in order to

evaluate f1 ' and hence, b . Although the complete calculation is

possible in principle, it is of questionable utility, since the expansion

parameter is of order . However, in order to give an estimate of

the magnitude of p_ we shall consider tLe case of the adiabatic wall. In

addition, we shall set pl - 0 whenever it appears in the velocity profile.

This is equivalent to setting the non-homogeneous terms to zero in the

differential equations. If we suggest, on intuitive grounds, that the primary

effect of slip on the velocity profiles is not through the change in the

external flow field (i.e., p) but rather directly through the change in the

boundary conditions, we can write the approximate solution of the momentum

equation as

c 0147)(74)

Evaluating 4 , since g- 0, for the adiabatic wall

a(75)

or

$1 (76)

S, -- -- (77)

and

(718



From Oguchi's paper , is evaluated from a solution of the zeroth order

momentum equation. Oguchi's notation uses 10 to represent our 1,

1 = 1.310 for air (79)

Therefore, the nondimensional coefficient for the pressure perturbatio'. is

p, " a. For the usual case of completely diffuse surface interaction, this

2 -6
constant a may be replaced by 1, since a = x 2 x 0.499.

As demonstrated in Appendix A, &aMZ5. (S IZ

Therefore, our estimate of the induced pressure for the adiabatic wall is

ýt t i -0(80)

or

"= a r(81)

This can be written

/Z
goo ",2 2 (82)

or
since 0 73 (83)

S4i 34 (84)

An examination of equation (61) suggestB that this is a maximum esZ-in•te -
th

the decrease in induced pressure from the zero order values.

19



4.3 Skin Friction and Heat Transfer

To boundary layer order, the shear stress at the surface is

r ' 7 1 (85)

Although it has been assumed that V / in order to provide a

better fit to the true viscosity-temp kure behavior over the entire temperature

range encountered in a hypersonic boundary layer, this approximation is used

only in the differential equations, and is not used to evaluate shear and heat

transfer at the wall.

In our transformed system, thus,

(86)

We approximate by S ) where we have assumed that a linear

fit is possible over the small temperature range r .,

114o /Ayt ft[ t7 (87) whe re7 hV7 Itlt

The density at y - 0 is given by the perfect gas law,

C 77('*C ) (88)

where P ?w P0 O tc

A8ý-A is the zerot order density
at the wall

The shear stress can then be expanded in the form

r Z ft/g 74 tell/ (9 0)

since I sip 1 .

20



The skin friction coefficients defined by

fr/ (91)

is given by

a- -

o pr s%-c C 2

(92)

~ (93)

'4here ~ 3~L(94)
CF. ~i~% (95)

Evaluating we obtain ý

Oe (96)

If we attempt to estimate the magnitude of this slip correction to

the skin friction on the same basis that we estimated the correction to the

induced pressures, we can approximate the result- for -7 (By Lj

~ ~26'6 (97)

~(98)

Vj.
or since 42. ;O

90.5 (99)

21



For this case of the adiabatic wall, it is possible to make an estimate of the

magnitude of the second term in the expression for by approximating

'~by its Elasius value,

Then, we may write

where (100)
" -(64)

h ~ 1.310 for air

If we approximate p1  by -1, as suggested earlier, the result is then

~ fz.97 (101)

or li I

or 6 -. (102)•_
o, r

This also suggests that it may be possible to predict CF from

measured values of p,, which are obtained from the measurements of induced

pressures on adiabatic plates. If the above procedure represents the phenomenon

adequately, then the deviations from the strong interaction pressures could be

used in a formula of the form

LI, co < !-E zVc- ,t,,)b <,.(103)

where pi could be estimated from available data.

22



The heat transfer to the wall may be estimated more readily, but it

should be noted that the energy transferred to a wall in slip flow is given by

g + (4, T, (104)

where q is the Fourier heat conduction term

u is the slip velocity

'Av is the shear at the wall.

In terms of our expansion parameter, . ,

Since 7W
Iri,' " (106)

The total energy transfer to the wall is then

7 (~A,~ 
-r~ 

-1(;44 ý e (107)

For any wall temperature and Pr 1, .since

Thus, for Pntl No. 1, the slip work term is exactly balanced by the change

in the Fourier heat conduction to the wall, and there is no net change in the

energy transfer to the wall.

23



5 .W. Y AN CWLUS O

The solution to -the problem of the effects of slip boundary conditions

:n the strong i eca w oKregion, been preeentedo Since the appropriate

expansion parameter is of * the effects of slip, as obtained from

this solution are only one of several possible higher order effects.

In view of the complexity of the general solutions, crude estimates

of the slip effects on induced pressures and skin friction were made only for

the adiabatic wall. These are presented in Figures 1 and 2. In addition, it

was found that for the case of arbitrary constant wall temperature, and Pr * 1,

there is no change in the heat transfer from zeroth order strong interaction

solutions.

In order to evaluate the correctness of the estimates for induced

pressure and skin friction, it would be necessary to integrate several functions

of the zeroth order quantities. It would be desirable to do so, since this

would show whether or not the significant departures from the strong interaction

theory in the induced pressure can be attributed to slip at the surface. If it

is decided that slip phenomena are present, and are important, then the use of

L't1r. 1..a,. al..bjnn got,,¶A aid In ha4 prediction of akin friction from

pressure data.

Additional work Is obviously necessary on the general problem of the

hypersonic leading edge, both from the viewpoint of kinetic theory, starting

from the tip, and also from the viewpoint of a set of continuum conservation

equations such as the Navier-Stokes equations.

The apparent inadequacy of the hypersonic boundary layer equations

in predicting aerodynamic quantities suggests that higher order effects may be

both present and significant.

24
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APPENDIX A

EVALU)ATION OF SMALL PARAMTER

e e(AA-2

p,. = ¢,7rL. = .h

w - /a

For adiabatic flow, and Fr -j

8 (A-3)
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APPENDIX B

The expanlion of the purely x-dependent quantities

S-- o ,e- .. jo• .... J (B-2)

wha____- and I

• = s. l +Z q * o9 + -_7 (3-3)

where the coefficients L 4# are constants

To first order in

%- 4+ 1 from (21) (3-5)

__fromi (33) (B-6)

L, 0 L ]from * constant (3-7)

Therefore, to hypersonic order

=• (B-8)

2/ 2 ,. (B-9)
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APPENDIX C

The evaluation of the arbitrary constants in the general solution

requires two additional boundary conditions, since the general solution

identically satisfies the conditions that 4as -0

On physical grounds 1 we can require that the displacement and momentum thick-

nesses be finite, since otherwise our entire approach, being based strictly

on the boundary layer hypothesis, would be invalid. This requirement is

also in keeping with our assumption that the effects of first order slip can

be expressed as a perturbation on the no slip solution. In addition, this

requirement guarantees that the only singularity in the vertical velocity,

and hence pressure, will occur at the leading edge.

The displacement thickness, in hypersonic flow, can be written as

aqj '. (63)

neglecting terms of (•)
Expanding in t yields •"t j o4 - dif (C-i)

where J AT function of x (C-2)

f:[ 9r'• )45 7 fine~tian of x (0-3)
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The momentum thickness iso w_.- j . $ (0-4)¢ <.•
C4-4

which can be written similarly as

where function of x (C-5)

r"2 $x function of x (C-6)

+ 4694 function of x (0-7)

The requirement of finite thickness at a station x thus requires

that the integals

-Ot (0-2) d -Žcz:ý (C -3)3,!,

/C~ 4)~(C-5)'~ r (C -6)
all be bounded. (s

Since the resultsof the zero order solution are known to yield

finite values for (C-2) and (C-5), we are then led to the condition that

and

loo

be finite.

< (C-8)

and /Jri2 4  ~(C-9)
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Since the asymptotic expansion for fo' is (from reference [ 19])

v.' L- •.,, 4-r•' •••-3• - 3 -

we can write

•'- • (c-1L.)

and

tz (C-12)

The nature of the general solutions for f reveals that the

exponential terms in the integral will yield only a finite con tribution.

Therefore, we may write

/ j-(7 II < 00 (C1)

and

This leAda to the reQuirement that

(0cc- 15ý)

The general solution for g, is,

As where F iea constant

+2 
C
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or since e-7m
o ý*z

.fexponential terms (C-18)

The condition for finite then requires that B 0 0. Thus
0

U j-f 1 (C-19)

where A is determined by the temperature jump condition at 2 -
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APPENDIX C - (continued)

The requirement that Fi i be finite as 7 eabe

us to determine one arbitrary constant in the solution for f The general

solution for fl' is in the form

where < ,

_(59)

C is determined by the slip condition at p , and D will be determined

by the behavior as • S .

Knowledge of the asymptotic behavior of the zero order solution is

essential in order to evaluate b.

Writing C

2P ;0 (C-20)

since the integral is finite.

For large values of , the integral can be expanded asymptotically[19 2

-$- ~ ~ -. z21*I (0-21)

JF2)

""(C - 24
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For the case where £ i 0 . heat transf er cas&

z 7  ° +-z (C-?-:

For the case where E - 0, adiabatic wal 1

+ (C-26)

Since the expansions for tea integrals are only of exponential order,

and contribute finite quantities,

AIc 7) -- /0. -E v

for

or

Vze.) - VSo -2d 4 e 4'ý?) - (C-28)

Similarly for V, the expansion for larg.e 7 can be written

or V, r-40 , i-) (C-30)
,.-0

Considering the leading terms in the expanfion for f,.,

sO ) (C-31)

The requirement that O fi be bounded is satisfied only be setting

the arbitrary constant P equal to -- V,., •

or -11 (C-32)
, 
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