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FOREWORD
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of Aerospace Rasearch, U3SAF, with Lt John Anderson as Task Scientist.

The thaoretical analysis and axperimental work were carried out by
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ABSTRACT

A solution to the problem of strong interaction between the
ghock wave and the boundary layer has been obtained for the case where
velocity slip and temperature jump boundary conditions are consistent
at the wall. It is shown that the addition of slip boundary conditions
ylelds a correction of order [§/X] to the no slip solution.

Estimates are made of the effect of slip on induced pressures
and skin friction for the case of the adiabatic wall. In addition, it
1s shown that the inclusion of slip boundary conditions does not change

the energy transfer to the wall from the no slip values,
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STRONG INTERACTION WITH SLIP BOUNDARY CONDITIONS

J. Aroesty

1  INTRODUCTION

The status of the hypersonic leading edge problem has not changed
appreciably in the period since the earliest recognition of the shock wave-
boundary layer interaction phenomenon. The theoretical aspects of the problem
have mainly been considered from the viewpoint of boundary layer theory, with

few exceptions[1’2’3]‘ There has been some work by Charwat[a]

on the
application of a near-free-molecule technique to the region very close to
the tip. This approach, which actually considers the various types of
collisions encountered by molecules which have been reflected off the plate
surface, is similar to the 'physical iteration' scheme used by Charwat and

[5]

Baker in their consideration of near-free-molecule-flow over a sphere.
This counting of collisions becomes quite complicated as more and more
coliisions occur and it becomes increasingly difficult to assign a mean
free path to each type of molecular encounter.

Another attack on the problem, not within the scope of boundary

(6]

layer theory, was carried out by Laurmann °, who considered the problem of
slip flow over a short flat plate., The solution was based on a linearization
of the full Navier-Stokes equations about the free stream velocity. The
interesting possibility was railsed that for tﬁis problem, with sufficient
slip at the surface, the Ogeen solution could be valid over the entire short
plate, Although it is difficult to relate this problem of the short plate

to that of the leading edge region of a long flat plate on physical grounds,

(6]

Laurmann's result of a near linear displacement thickness 1is certainly

suggestive of the possible effects of slip boundary conditions at the surface.

1



[ 7]

Except for a recent paper by Oguchi ; the remainder of the analytical

attempts using the continuum approach have been within the framework of hypersonic
{
similar solutions of the boundary layer equations. The earliest solutions‘SJ

suggested the possibility of a strong-interaction region, where the pressure

1/2

- 4
grows like x / and the boundary layer grows like xa/'. The important

parameter in this region was shown to be r13VE_ , and all solutions were
glven as functions of this hypersonic interaction parameter, .

Although the early measurements of the pressure distributions on the
sharp leading edge flat plate in hypersonic flow seemed to confirm the existence
of this strong interaction region, later work done at Berkeley and at Schenectady
demonstrated clearly that this parameter alone is certainly not able to describe
the pressures as the plate tip is approached. Starting from the downstream side,
it becomes apparent that the pressures increase, at least qualitatively, as
predicted by the strong interaction results until they reach a plateau of
constant pressure, and then decrease. The level of the pressure plateau is a
function of Mach number for sufficiently large values of ;}‘ . S8ince the
various data have been taken at a variety of wall temperatures, it is simplest
te characterize the experiments done at Berkeley as the insulated case, and
the experiments done at General Electric Company as the highly cooled case.{g’lo]

Even the strong interaction theories suggest that the induced pressures
increase with increased Tw/To’ so that it is not surprising that the level of
this pressure plateau is also a function of this temperature ratio. Examination
of the available data suggests the possibility that the extent of the strong
interaction region, where the pressure grows like x-l/z, is probably gquite
small, if it exists at all.

Prior to the publication of the data which showed the existence of

a pressure plateau near the tip, attempts to modify the early strong interaction

2



solutions were made by Oguchi and Stewartson[ll’lglusing hypersonic smail

disturbance theory. On purely analytical grounds, these more recent solutioms
are attractive in that they provide a complete solution to the flow field
between the shock wave and the boundary layer, whereas the early work, which
utilized the tangent wedge formula, gave no information at all concerning the

nature of the flow field external to the boundary layer.

2 OGUCHI 'S ANALYSES

Recently Oguchi[lll

gave a more complete jJoining of the boundary
layer and the inviscid flow, where the vorticity and temperature at the edge
of the boundary layer are no longer taken to be zero, as in the earlier
solutions, but rather at th; values that obtain from the solution of the zero
order inviscid equations. Thus, the complete similarity of the flow field
enables one to obtain information which is not at all available in the tangent
wedge approach, which yields p/po alone at the edge of the boundary layer.
However, the meauns necessary to achieve complete similarity is to
assume that the shock wave grows like Axn, where 1> n2 /3, With the
application of the approximate conservation lsws across the shock, this implies
that the pressure and temperature approach a singularity as the leading edge is
approached. Thus, this simple form of the shock shape, essential to a similar
inviscid flow field, is then responsible for the high pressures near the leading
edge, and also for the perhaps spuriously hot gas at the edge of the boundary
layer.

The matching between the shock layer and the boundary layer problem

'-
{8 effected by an expansion in a small parameter, ‘Iji ) , which

S +ad b
[+ I

is suggested by the forme of the temperature and vorticity variation at the



edge of the viscous regions. For air, the small parameter is effectively of
order J&* s Wwhich introduces some question conceraibeg its validity in a
boundatgflayer solution. The additional consideration of the vorticity due
to the curved leading edge shock wave yields pressure levels which are higher
even than those of the earlier solutions.

In the light of experiments that seem to point to a pressure plateau
as the leading edge is approached, it is possible that the leading edge shock
wave 1s not very highly curved, and in fact, it is certainly possible that it
is nearly straight., With this in mind, Oguch£7gas recently attempted to
settle this problem of shock-boundary layer interaction in a manner which is
similar to the viscous layer problem on a blunt body. Oguchi has assumed
that the flow in the entire region between the shock wave and the body may
be represented by the boundary layer equations. This implies that the
entire pressure fleld in the very leading edge region is constant, since the
assumptlon 1s also made that the shock wave is straight. In addition to the
usual condition that u = u,, at the shock, it is also required that the
mass flow entering the shock wave is equal to the mass flow in the boundary
layer., This is done by equating the boundary layer stream function at the
8till unknown shock wave height, Yg» tO the stream function corresponding
to the free stream at that height,

Using the nomenclature of reference [ 8], this new condition is

’y"_e = %eaurm—/ (1)
V:’,?FCZ) = /ooo “oy_( )

where

= Um fx“_l

s E,{/"'7

~~~
Y
St



It is Oguchi's hope that the solution of the boundary layer equations,
with this additional boundary condition,yield a zero value for the shear stress
just behind the shock wave. This 18 critical to the justification of the use of
the boundary layer equaticns in the entire fileld, since the shock wave is assumed
to be a straight discontinuity, satisfying the appropriate Rankine-Hugoniot
conditiona. Since the shock thickness varies inversely a3 the strength, it is
more likely that one is able to give an a priori justification for the neglect
of the shock structure in the case of a very strong shock, such as a normal
shock, than for this case of a comparatively weak shock,

In attempting to meet the boundary conditiona for this problem,

Oguchi utiligzes an assumed form for the stream function which 1is inconsistent
with the resulting equations, except for the region where Y)S €</ , corres-
ponding to the region closest to the tip. For larger values of ') s ;s 8
numerical solution is proposed which is called a "local similarity solution".
By means of these two soluticna, one analytic and one numerical, the induced
pressures over the entire leading edge reglon are predicted, and are shown to
agree quite well with the more recent experiments.

However, if the value for the shear behind the edge of the shock

is evaluated properly, i.e,, N
= N/:W" U 6-) (ﬂl)
&? v 4)

o Ted

(€))




the solution for the limiting case of ‘7: «<| yields the result that
o= throughout the boundary layer. Similarly, for the case
e Tl
corresponding to the "locally similar" solutioms, eAL is always
wWALL
greater than zero, and in fact, is always greater than 0.3, Thus, we see
that the requirement of the vanishing of the shear behind the shock wave is
not met, and an inconsistency develops at the shock wave. The way out of this

inconsistency is certainly not clear, but it is apparent that the solution, as

it stands now, is certainly open to question.

3 EFFECTS OF SLIP

Laurmann's suggestion that a linear displacement thickness is possible
for large slip velocitles, and the well known incompressible result, that small
slip at the surface decreases the displacement thickness, all point to the
likelihood that Inclusion of first order slip boundary conditions in the strong
interaction problem will tend to reduce the curvature of the boundary layer
thickness, and consequently reduce the pressure levels from the we alip wvalue

(13] (14]

as the leading edge is approached. Street and Laurmann have considered

this problem, the latter using an integral technique, and the former using an
expansion procedure somewhat analogous to the Oguchi procedure for matching
the vorticity.

The procedure which Street and Laurmann used is the expansion of
certain flow quantities in terms of a small parameter, which is related to the

[i5])

local mean free path at the wall., This technique is quite well known , and

is characrerized as possessing solutions which are related to the y-derivatives

o’

th .
of the zero order solutions.

{

{15} ; i
Cassaccio 2 has attempted to generalize this result to the case of a

similar compressible flow, where no effect on the external flow is considered,

6



The solutions obtained are characterized by this linear dependence on the
y-derivatives of the zeroth order solutien.
8
If the expansion is cast in the Howarth-Dorodnits:n variables[ ],

the appropriate expansion parameter becomes evident from the expression for

_D_}f_ at the wall, i.e., slip boundary conditions.

3
1 Yro) = 4 A %"" @)
' )
Uo) = 67

The appropriate expansion parameter becomes

VIF

-

Expanding

¥ | - \
W &7) -+ Eﬁfq) -:-0(52/*" -~ - (%)

(i.e., perturbing a similar solution), and inclusion in the momentum equation

yields

NA.].” 4((7\7 "'F(Jo_g‘;) =0 zero™ order In & (1)

,V["?‘?? 'ff£€77+ f*/:-é- + ,5/33:'25(96-76 first order ' -

#Zfd .(,) £ b ) (an



The requirement for similarity in the zeroth order solution was that

F Zd/ui_f Ha

U, dj' ‘\t
/% u“i. = £
PP &f

For the assumed first order expansion to be consistent, it is clearly necessary

(12)

13)

that & must be of the form EJF'K when K is a constant. Since 3&7‘»
is independent of F s being determined only by the wall temperature, this
15 equivalent to requiring that L“ vary like a power of f . This is

Inconsistent with the requirement for the zeroth order solution, which is that

/o
[
Ug = {__f; ;fj

T
Only for the special cases of ‘g-o s, corresponding to a flat plate, H‘ )'),’

(14)

3
corresponding to hypersonic flow, or M‘ <</ corresponding to low speed flow,

[17] gave the complete

is the expansion procedure completely consistent. Maslen
solution tor the case where p!a , corresponding to compressible slip flow
over a flat plate. Otherwise, it is possible to show that the only solution
satisfying this assumed foruw for f is the cnewhich drives theterm in the brackets
in equation (11) ldentially to O, or E" Ag . However, this is
certainly a very special case, since we have only given one solution to a

third order differertial equation for fl. In general, we can gsee that this

assumed expansion is not satisfactory.



4 PRESENT ANALYSIS

The present analysis will consist of a perturbation about the strong
interaction solution, in order to represent the effects of the slip boundary
conditions.

The following assumptions will be made in order to obtain the familiar
zero order equations given in [ 8 ], page 305.

1, The boundary layer equations are valid,

2, Pr=1l

3. %‘— ==m N = (constant)

4, * ﬁ:>>) ’ HS = constant

5. Tangent wedge formula is valid to describe the interaction

between the displacement thickness and the induced pressure.

The boundary layer equations, with first order slip, for Pr = 1 may be
written as:

2LP9) "'sa?(/’") =0 s

Y

<

/Duﬂ'*/or“t';"“i"" y(/“'%!”) (16)

,aua_H. 4/;1,—9_& ?,(/ué#_) an)

= =V (v) = = local mean free
Y 0, VD, U< aa;.ﬁo (18) A = local free path
Tey=Twt bﬂ-ﬂ:’ (19)
dy o

y=§, u=ds ks (20)

D



4.1 Derivation of the Zero & First Order Equations

The Howarth Doradnytsin transformations are applied in order to

render the equations amenable to a similar solutions analysis.

f=f)f/"xua dy (21)

I e

= ’%& @
’z’(/s ﬁ;fr[i’?,j‘} il { = 'E& (24)

The momentum equation becomes

Mgy +F6,I +2JE~ (f’J -1‘ ) Zf(f;, 77) (25)
The energy equation becomes

/1/@77 + f 2 E(£ 3 éj;) (26)

The momentum equation can be put in a somewhat different form for

ks
the case where the external flow is hypersonic-- i.e., H: >)I .

d o 5

s

deg  Je 4

(27)

s f = —an/"z Uy J), (21)

10



1f we set

/"'b ug f?c/){

Thus
df . Mude p
dx RTe

or then

. 2%

£
df W * 4

U, = constant, in the integral ,

(28)

(29)

JH,

———

2%

assuming a perfect gas.

(30)

Since we are assuming an isentropic external flow,

Ahdy =-dp
X

(33

(31)

for perfect gas

r ™
for f#J ;>;>l



'—'-‘-6' < —Z or perfect gas
"’,é;‘ s T . o perfect g
¢ - .2 - ‘
LG (2R AT) e
o hi
=H-#%h" = -ﬂ‘-g"gl) (35)
Ay 44

The momentum équation may then be written

ey iy - L & =t 0 6t) = 25066, - ay

The slip boundary conditions may be written, (to first order inA ) ag

90 =3 +4 z‘,ﬁ,ﬁ ’] (37

\_)/y =0 Temgx;ture
or g0 = jp-.&z,,ﬁu‘gl ]

Ule) = az@y . } Ve;?;;ty
(38)

or us@/ YN £

nee f 770

i2



The form of the slip boundary conditions suggests that the appropriate

expansion parameter for a perturbation solution about the zero order strong

E;.- 25;”

<
P %_EL /ﬁ‘/ v & . Rvaluation of this small
* <

7
parameter in terms of M and Re shows that 5 -JdX ‘/

e &= (UE) B [22] . Gon appendix

The expansion is applied directly to the transformed equationsg =—

£ hey) + EAt) + . - (39)
3“30073-0- £<7,(7)+ e @)
B=pL!tep - ] (1)
F=££|+E§~f¢..J 2)

interaction solution would be s where

At the edge of the boundsry layer, as 7-—; ® , the following terms are

expanded

’p/f.,’ -ﬂ (I L LR ) (43) where p;, ug, by

N h N are constants
Us = Bo(ir&BlUr+eny {44)

hy ® hu(l+ehit.--) (45)
Because the external flow 1s adiabatic, the stagnation enthalpy remains
conidtant at HS'
When these forms are placed in the transformed equations, the following

sets of equations are obtained

Ze::t::th order in g -

NF..m + \‘oﬁn + po(;,,-ﬁ?‘) = @)

Ng"m T ‘J-; =0 (1)

13



Yoo 4@ & ke (KO

At "}-)oo; | A 047-’1 (%S>
e

"nio solutions of the zeroth order equations are tabulated in [ 18 _]
First Order in § \
Nbyyy + fodyy +4hpy + A(Fi-2614;)
YEARG ) = - B4 thihy o

and

Wiy = G ~hap = - Fyp + 63y o

-Rewriting

- é
NF.T” + G'F:t” *‘F;?€7 256‘) 7 N
= -£0g) - %R (5= Fy)
(

\
and N"?’) - 5;,7 - F?J' * 0 \ (53)

(52)

Where B. C. are

£y = a b't) s
f@y=o } v \
f (o) = © o
- —g=bk g, (o) 553

9,(®)= O

14



4.2 Solution

The energy equation may be integrated immediately

3= 43, o)+ 3;9'(7)/0?):’ J7 (56)

The perturbation velocity f€ 2') can be written
_f"ﬁ./-, & .,
((?) c7) + DF('?)[(": +V A

VFo @u)‘_ J7 s7)

where V1 and V2 are obtained by variation of parameters.

"
l(ﬁo@o)'ffaru ['\‘[ll 6_@7 (58
e /&7 4/

2?30 1“‘& F.(3% fr ) "
= 4 J; (59)

The condition at n=y permitg the constants A and C
to be evaluated, since all the othex terms vanlsh there,

However, the condition at eo i3 ldentically satisfied by the
functions, irrespective of the value of the constants B and D, It is
then necessary to introduce some other requirement on the solution in order
to establish a physically sensible solution. 1If the requirement is made that
the various thicknesses which characterize the boundary layer possess finite

dimensions, 1t is possible to evaluate the constants B and D, (See Appendix

c).

15




When these constants gre evaluated, the solution vo the first order

energy eguation becomes
9 (7) » LJD‘[y) (60)

The solution to the first order momentum equation can be written

6«'() = 06”() -+ fg 9-7“/ ﬁﬁ;u 3TN i
/ )+ hif e F /n _‘gz £k,
5%

+ &) [ [Bby raf s WA
'))/ Méjj _2][ /6)‘ Z./ NG

Since the functiong f o £ "', g 0' and 8o have already been calculated [1&],

it would be possible to evaluate the velocity and energy perturbations as
numerical functi-ns of ? .

In ordex to calculate P> it is necessary to first calculate the
displacement thickness, and then utilize the tangent wedge formula.

If we neglect terms of o[:,l',_7 s the displacement thickness can
Ly

§7«f = ‘@_’{L O/w&’ﬁz)efy 2)

A U

K]

be written

Expanding in the small parameter & , using the perfect gas law, and the

results that  Fe2) and U, %o , we may write

f*=F )/JB +:c/’/ (63)
ﬂf%

16



b = «[w@ ‘g'z) J7 (64)
4 = ,{?J, -25%}/; (65)

The integral, S‘ , will be in the form o&f -f-ﬁ,@ » 8ince the perturbation
velocity profile is given as a linear function of Py Since 0\': *“-{!ZEQ 7;:!-,

g‘* may be written J‘i‘-,- J;*[l"'é %] k’o %

The use of the tangent wedge formula requires that the slope of the

displacement thickness be evaluated

or

¥ L
.;J_'-g- =_°./.‘."i.[/+ é_%-‘-'—] (69)
-Ll v
The tangent wedge formula, as given in reference [ 8] 1is

% = %—(?ﬂ)éf—jk%b 0)

th® B[ 1+€R] %(uﬁ@ﬁ(n +defey ur on

or

17



- 2
Since vﬁ’ z %61"1)/‘7&@2 (72)

then h = _%L_gs_:_ 73)

The calculation of p, for the general case is quite complicated,

since the numerical evalvation of several integrals is required in order to

evaluate fl' and hence, é‘:' . Although the complete calculation is
°

possible in principle, it is of questionable utility, since the expansion

parameter is of order % . However, in order tc give an estimate of

the magnitude of Pis We shall consider the case of the adiabatic wall. In

addition, we shall set P1eo whenever 1t appears in the velocity profile.

This 1s equivalent to setting the non-homogeneous terms to zero in the
differential equations. If we suggest, on intuitive grcounds, that the primary
effect of slip on the velocity profiles is not through the change in the
external flow field (i.e., p) but rather directly through the change in the
boundary conditiuns, we can write the approximate solution of the momentum

equation as

6?7) = aé?;) (74)

Evaluating SI ,» Bince g, = 0, for the adiabatic wall

& ""‘an"ﬁ'c/.? (75)

oY

a*"2a f‘k%”c/? (76)
el 4,5 = 0D

and

7} = ‘;—f (78)
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From Qguchi's paper[ 11], {o is evaluated from a solution of the zeroth order
momentum equation., Oguchi's notation uses I o to represent our ,ﬁ .
I, = 1.310 for air (79)

Therefore, the nondimensional coefficient for the pressure perturbation is
Py = - a. For the usual case of completely diffuse surface interaction, this
constant a4 may be replaced by 1, since a = 37:-§- x 2 x 0, 499

As demonstrated in Appendix A, &= MV N T\V (22)

Qv
Therefore, our estimate of the induced pressure for the adiabatic wall is

% = zilf—.ZZ(ﬁv%’E)‘/z J -

Lty

or

- 3
Pla, = +555F [/—@%{E‘ .z.z.J @1)

This can be written

/s

—?/Pw i '555}7[ / "L;y 2’.22 (82)
or * —I/L

since = .
73_24_ &)

[ 4

c 'P/fm-.xsly[/ 3L ] w

An examination of equation (61) suggests thot tiis is & wmaximum esrimate for

L th
the decrease in induced pressure from the zaro order values.
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4.3 Skin Friction and Heat Transfer

To boundary layer order, the shear stress at the surface is

T. = PLi
Y=o /ngg) g /7 @ O
Although 1t has been assumed that = ” in order to provide a
better fit to the true viscosity-temp *;ure behavior over the entire temperature
range encountered in a hypersonic boundary layer, this approximation is used
only in the differential equations, and is not used to eveluate shear and heat
transfer at the wall.

In our transformed system, thus,
%
T= ppd’ £
i 2 (86)
U

10} imat : b _7292 h ha d that a 14i
e approximate /1(7 ¢) by /U‘ 7 where we have assume a linear
fit is possible over the small temperature range 75'5 .

v /“c\/eo) = /bq,[ |+ gT,:] (87) whereTes) = 1o (It t'l".)

The density at y = 0 1is given by the perfect gas law,

P = Bobo(1+EL)
Y20 RE(’*ET) (88)

where P= ﬁ”}% (/"'él/)
To)= 75 (1#¢ 17))

B : r
/)’ia jl /+ & (ﬂ‘z)](SS)) =~/ 15 the zero™ order density
at the wall .
The shear stress cen then be expanded in the form

T+ET = M pts”

since f - Zpl.

\8]
(]



The skin friction coefficient, defined by

o= T
CF = /;ﬂoun} 1)

is given by

EFr E‘%(li'éCg) (92)

F2Md 5 ['*E—J.L_/ (93)

o Ll‘fg {77
= T
ene Ce, Ee '}4 [‘ + E—&E\:} J (94)
EFo * Cr, U’% jzm’ (95)

Evaluating 6 , We obtain o
X Y w p o P ) ~
'[77 /= 4,4777/ L-L/ % —JP"ZZ “é (96

1f we attempt to estimate the magnitude of this slip correction to

the skin friction on the same basis that we estimated the correction to the

induced pressures, we can approximate the result for 1;7 7 %) Ly

1[‘ = —ﬁ'_;—- = -
'77L 5 286 97)

- Iy

o Cg = .555’7"‘/%[' "-2‘756] (98)
or since 6‘_—- W28 %
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For this case of the adiabatic wall, it is possible to make an estimate of the

magnitude of the sacond term in the expres;ion for € 7,7 by approximating
”n -
fo" by 1its Blasius value, é (o) e 4 7 '

Then, we may write

677 /730 = —‘;;.’[/ -% -ﬁ&/ (100)
where b = Io’ @ -@J,] (64)

& =~ 1,310 for air

If we approximate Py by -1, as suggested earlier, the result is then

F,”Lz — 266 f2-77f (101)

or |« -85
fonl

o g
or C‘_- ".SGW Lf’ ’16’1-?:' (102)
v

-

This also suggests that it may be possible to predict CF from
measured values of Pys which are obtained from the measurements of induced
pressures on adiabatic plates. If the above procedure represents the phenomenon

adequately, then the deviations from the strong interaction pressures could be

used in a formula of the form

C":SLIP = CF’a'/< R eL?‘(l - I.??f,)!’ (103)

where 101 could be estimated from available data,
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The heat transfer to the wall may be estimated more readily, but it

should be noted that the energy transferred to & wall in slip flow is given by
g + WT, o)

where q is the Fourier hLeat conduction term
uy is the slip velocity
T 1s the shear at the wall,

In terms of our expansion parameter, & ,
2= - foL) = <ppl [ o) v 509 24 r./,t/;
S Ha LR ED e o
Since “0'7;‘ - E'(;? Q,qﬁj‘g ”‘3 ‘
N

The total energy transfer to the wall is then

7"‘ U T = -f’/l;";_‘; ”S fia’/.)’ 2(:“ 1-2477 £7 ("PV))} (107)
r 9

(106)

For any wall temperature and Pr = 1, g{'/ =p s since

) l‘ {‘: 4e.._f[l_7\ / Ac-lui 17 a . 7]
N = I =
a1 [ (%) =(he?y Ty o,
Thus, for Prandtl Ko. = 1, the slip work term {8 exactly balanced by the change

in the Fourier heat conduction to the wall, and there 18 no net change in the

energy transfer to the wall,
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5  SUMMARY AND CONCLUSIONS

The solution to the problem of the effects of slip boundary conditions
n tne strong interaction regiocn hag besn presented. Since the appropriate
expansion parameter is of ¢ (x) s, the effects of slip, as obtained from
this sclution are only one of several possible higher order effects.

In view of the complexity of the general solutions, crude estimates
of the slip effects on induced pressures and gkin friction were made only for
the adiabatic wall., These are presented in Figures 1 and 2, 1In addition, it
was found that for the case of arbitrary constant wall temperature, and Pr = 1,

there is no change in the heat transfer from zoroth

order strong interaction
solutions.

In order to evaluate the correctness of the estimates for induced
pressure and skin friction, it would be necessary to integrate several functions

of the zoroth

order quentities. It would be desirable to do so, since this
would show whather or not the significant departures from the strong interaction
theory in the induced pressure can be attributed to slip at the surfece, 1If it
is decided that slip phenomena are present, and are important, then the uss of

L%
[13

the complets sclutions would aid 4n tha prediction of skin friction from
pressure data.

Additlonal work ls obviously necessary on the general problem of the
hypersonic leading edge, both from the viewpoint of kinetic theory, starting
from the tip, and also from the viewpoint of a set of continuum conservation
squations such as the Navier-Stokes equations.

The apparent inadequacy of the hypersonic boundary layer equations
in predicting aerodynamic quantities suggests that higher order effects may be

both present and significant,
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25,
‘}i "Jﬂ;“%/e U;.Ja. = z%;ﬁsﬁL'-jaafi dé,
= 2 g YT,
: M Cew
=2 R _
A ;‘”g"/’-:jf% = Do [Be_ M
M o
= e L. 4
fo fﬂ/ﬁ%g on T3 (A-4)
Vo =14
5’@ "'1-;-" % (A-5)
e b'® I"lo

APPENDIX A

EVALUATION OF SMALL PARAMETER

€= DAY D

For adiabatic flow, and Pr =/

!
£ =22 ﬂ_@_)v a6
ey
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APPENDIX B

The expansion of the purely x-dependent quantities
L= hLisepr €I~ ] o
Fo
ﬂ = ﬂ, [ '4‘6#. -+ 069 +»,:J (8-2)
- = Zd____‘t“q‘ th an ==t
whete F Jﬁ,qf 7;:_ d ﬁa T
U= Ue[1+EU +0€) +..]

£ £Li+h 1969 ] ow

7|
where the coefficients . P . #’ )| are constants

To first order in E&.

f = u""z‘f’, from (21) (B-5)

B = s b from (33) (B-6)

[
U = OLWJ from/7’: £ constant (8-7)

Therefore, to hypersonic order

f. =2,h (B-8)
e =Y b, (8-9)
w,*=o. (8-10)
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APPENDIX C

The evaluation of the arbitrary constants in the general solution
requires two additional boundary conditions, since the general solution
identically satisfies the conditions that j’ ; {’_;,, as 7-14% .
On physical grounds, we can require that the displacement and momentum thick-
nesees be finite, since otherwise our entire approach, being based strictly
on the boundary layer hypothesis, would be invalid, This requirement is
also in keeping with our assumption that the effects of first order slip can
be expresged as a perturbation on the no slip solution. 1In addition, this
requirement guarantees that the only singularity in the vertical velocity,
and hence pressure, will occur at the leading edge.

The displacement thickness, in hypersonic flow, can be written as

gre 2 s JUQ'€3J7 (53)

4”4 6&

AR
neglecting terms of LMJ

A rod %) _
Expanding in & yields 5 = 7 Jo ~+ Edr/ (c-1)

© <
where Jpnf: ['[@-4’)6/7_/ X  function of x (C-2)

o
1'-‘ Vad
af' = [5/9‘, ‘25{1)0171_’7X function of x (c-3)

30



The momentum thickness is o0
=__ﬁj_/ 6 0‘6)“7 (c-5)
w (-]

which can be written similarly as

& = B,+E6,

where 90 - [ -[%.7 (/'ﬁ})J?]X function of x (C-5)
(/“2 )#]X function of x (C-6)
-+ [ [é) (I—‘))%] >< function of x (C-7)

The requirement of finite thickness at a station =x thus requires

that the inte als

f@ -f' )Jy (€-2) ) [ Q‘ -24/)‘9
all be boungii (/m")";( /,() (,_26) J7 (c-6)

Since the resultsof the zero th order solution are known to yielid

finite values for (C-2)and £%), we are then led to the condition that

-2 5’49.17

d

/‘am £, (/-2(7)47

be finite.

-

Thus / [w(J, =2 Qiﬁi) ‘147 f IR (-
| [rrak)s | <
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Since the asymptotic expansion for £ ' is (from refereace {19)y

et + [t G- 2R ) g (4] + - - -

(C-10)

we can write

| % =260 + (G = +_«,‘-c»,-;)"f/u,(-£~;§_f)‘),. . ])0/7|

< @ (c-11)
| CE 2 g T (e - ]
< (C~12)

The nature of the general sclutions for fl‘ reveals that the
exponential terms in the integral will yield only a finite contribution.

Therefore, we may write

, {m(}.—Zf,')Jv,f < o (c-13)

/ {wﬁ '0[7/ < 00 (C-14)

This leads to the requirement that

| (o] <= oo

The general solution for g, 1s

g7 A lPhe 8By o

As rl‘-g.g 6 -p 7- 4 , Where F 18 a constant
: . Cn-F.
& f(,.,,) ® ﬁc—w'{l +8e ’%{ A 7 (c-17)
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o st e~¢'{fﬂe@; I

1°F
as 7—'90,

ve 5'(7..,_)-- '73'—-{-'

—+ exponential terms (C-18)

o
The condition for finite f ;,Jv then requires that B = 0. Thus
o

g, . ﬁe'f"é“Lﬂ (c-19)

where A 18 determined by the temperature jump condition at 7 =0,
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APPERDIX £ - {continued)

s #
The requirement that f J\) ,f" be finite as 7 ~»y, enables
us to determine one arbitrary constant in the solution for fl" The general

solution for fl' i8 in the form

" = 6"(C -+ Vu(v))

6“ ‘f-é-JﬂJv] [_D +V‘C7)J 7
(‘al i

Vity) = el [1Lg .‘;;i[io'f J]/Z’[ £./jf‘;/ “é (58)
|/,c7) s - fi **”;_L_lz( -k ) fo by (59)

C 18 detemmined by the slip condition at 7 =p , and D will be determined

where

by the behavior as ')d"ﬂ
Knowledge of the asymptotic behavior of the zero order solution is

essential in order to evaluate .

Writing

2 4 s. . »
6 = Yo =) W“z'ﬁgrfo J R
2 7 / J;f¢7 {C-20)
e’%
since the integral Vlw is finite,
For large values of , the integral can be expanded asymptoticallylw]

=2p+!

2 p
L },-é e ew)ﬁ-(_q_{f)z/Z[Zd,(y-F) + - - (c-21)
qf’ mfevp[-@_:{)j][l + -

rdd

(c-22)

2
o = 8/‘—’f/'(”’ Wi+ - (c-23)

f = f"’)‘f(gﬁ)XE-ﬁZw’ (7 F) ('R” . Zd'?(c -24)
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For the case where & # O , heat tranifer cage
~
- _5 -~ .
V;C?! o V” { DQ"[@]* R 2 &7 (0:25)

For the case where E= 0, adiabatic wal?l

Vaty) « Vao - % Q%E)) dy + - ©®
s Tr-Fye

Since the expansions for tha integrals axe only ¢f exponential order,

and contribute finite quantities,

PAY
\/zc7> = Voo = anpf ] T (e

’7—)&

or

z.
Vz(\?) = Voo =2, @p(‘@—'{i) - - (C-28)

Similarly for Vl’ the expansion for large 7 can be written

[’ ':‘7 - - © 29)

o« V[ ~ 0, (7,F) + oo - (¢-30)
V)"G)

Considering the leading terms in the expansion for f

[fdy = [ @J[/ - A4

f R

Va
The requirement that aj Fi J«o’ be bounded 18 sa tisfied only be setting

the arbitrary constant D equal to = Vzao
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