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FOREWORD 

The present study is part of a program of "Theoretical 

Research in Combustion Aerodynamics" being conducted by the 

Division of Engineering, Brown University, under United 

States Air Force Contract No. AF U9(638)-6U6, Project 

No. 9751, Task No. 37510. The work was administered by 

the United States Air Force Office of Scientific Research. 
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SUMMARY 

r : 

The effects of conduction and viscosity on the stahility of laminar 

flame are examined. If <L denotes the ratio of the wave length of a dis- 

turbance to the flame width and « is the ratio of the ultimate temperature 

of the burned gas to the initial temperature of the fresh mixture, the flame 

is found to be stable if 

•»-« Re P. 
where Re is the Reynolds number of the flame based on the flame width and 

Pr denotes the Prandtl number of the mixture. It is further shown that 

the stabilization is achieved primarily through the effect of heat con- 

duction on the flame speed rather than the influence of viscosity. 
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Effects of Conduction and Viscosity on the Stability of Flame 

1.  Introduction   We consider a mixture of two gases reacting with one another 

in accordance with the formula 

-^n t »ft (1.1) 

Let t**t  Y< , Yo*    be respectively the molecular weight of the species ex , 

the mass-fraction of the species in the mixture and the mass-fraction of the 

species at upstream infinity. The composition of the mixture can be con- 

veniently expressed by a variable ^  defined by 

\«( = Jo« -t- rrv« no (1.2) 

We consider a low speed one-dimensional flow with a rapid change of tempera- 

ture occurring in a narrow zone (width L) in which the chemical reaction (l.l) 

takes place. The low speed condition is expressed by saying that the Mach 

number of the flame satisfies 

n« (1.3) 

We shall study the stability of such a flame by considering a small perturbation. 

This allows us to linearize the problem. Let the x-axis be directed along the 

flow, y and z-axes parallel to the flame. We assume the solution is Independent 

of z and that its dependence on y and time t are of the form: e 

where V        is known and represents the wave length of the perturbation, while 

w is unknown.  If the real part of w is positive, the flame is stable; if it 

is negative, it is unstable. 

The flame profile is defined in terms of the temperature rather than 

the position coordinate x. It will be preferable to use T instead of x as one 
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of the independent variables inside the flame. 

2. Flame Profile   Suppose that the enthalpy of the o<  species is given by 

\-U = cp~r+ n< (2.1) 

where Cp is the specific heat at constant pressure, assumed to be equal for 

both species, and How  denotes the enthalpy of formation. Let us define A by 

A= miniLHoi- n«d (2.2) 

If the Lewis number of the flame is equal to unity, the flame profile, expressed 

as a function of T, can easily be shown to be described by 

U.=LU,I 
T.- 

when P / f / u denote respectively the density, pressure and velocity of 

the raisture; the subscript "o" signifies that these quantities are associated 

with the unperturbed profile while subscript "oo " signifies the value of the 

quantity (to which it is appended) at upstream infinity. The flame profile 

is not completely defined until the position coordinate x is specified as a 

function of T. This last quantity, written as X0\T), depends on the produc- 

tion terms in the flame.  Instead of specifying these terms, it is more con- 

venient to assume a suitable form x  such as that shown in Fig. 1.  It is 

clear from this figure that the flame width L cannot be defined exactly. 

However, its order of magnitude is known. 

3« Remarks on the Perturbed Flow   Consider a point Xo(T) on the constant 

temperature surface T in the flame. When the flame is perturbed, this point 

-k- 
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(3.1) 

If    D(T) is the displacement of the constant temperature surface whose 

temperature is T,   it is  clear that 

X^D;  Xo^L 

When the flame displacement is much less than the flame thickness. 

D«l- 

(3-2) 

(3.2)' 

it is easy to see that D is independent of T. For, the flame thickness is 

related to the mean free path T  by 

n (3-3) 

where M denotes the Mach number of the flame. Since the fluid dynamic equations 

apply only within the continuum limits, all length scales must be much greater 

than 1  .  In. particular. 

D»»I (3.M 

A comparison of (3.2) and (3.^) shows that D is independent of T so that inside 

the flame* 

^x _ 0 
ST 

It is possible to show that for 

D~L  (or D»L);   Riwl   ,   R e <N* 

(3-5) 

(3.6) 

where Pr denotes Prandtl number and Re denotes Reynolds number based on the 

flame thickness,  viscosity and heat  conduction effects are negligible and    the 

flow is unstable.    For the viscous effect to Influence the flame stability, we 

*If D~L or greater,   (3.1)  shows that  (3.5)   is  still true. 
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and, for the conduction to affect the flame stability, 

V L 

(3.7) 

(3.8) 

In order that conduction and viscosity may affect the flame stability and a 

continuum analysis be meaningful, it is sufficient that 

D~L ; Re, R«i ; kL « \ (^9j 

It is tine the condition Re, Pr (^   1 is unrealistic. However, we shall show 

later that the more significant case encountered in practice and characterized by 

D<L  )   kLO    ;     Re/^<i (3.io) 

can be considered as a limiting case of (3.9)»  It is, therefore, sufficient 

to focus our attention on (3.9) which is easier to handle from the mathematical 

viewpoint. 

• The condition, x =D= a constant, valid inside the flame naturally indicates 

the interest of dividing the flow field into three regions: 

1) Upstream:  U». <£ I 
To» 

2) Flame: (3.11) 
T.. 

3) Downstream: T-^.T»y ^ I 

where o(, is the ratio of the temperature at downstream infinity to that at 

upstream infinity. Since the temperature profile is a continuous function 

of x, the definition (3.11) for the combustion zone is not well-defined. On 

the other hand, we may define the combustion zone by: 

-6- 
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1) Upstream:     IJs» «l   ^        J^» ^- ^ 

2) Flame: 4& «u .L 

3) Downstream: T'jgff ((I   )        ^ )>^- 

(3.12) 

The new definition tolerates a discontinuity in derivatives. However, such 

a profile is not so well adapted for studying the effect of viscosity. 

\.    Basic Equations   The basic equations governing the motion of a reactive 

mixture are well known.  (See for example, ref. 1 or 2). These equations may 

be rewritten in terms of the new variables 

T-To^t) 

r-7 
T-.t 

(^.D 

inside the flame. When the flame is slightly perturbed, the disturbances are 

governed by the linearized version of these equations. The nondimensional 

form of these linearized equations is given below. We shall use the same 

letter for a physical quantity, whether or not it has a dimension. Table I 

shows how the various quantities are nondimensionalized. Let us 

TABLE I 

Physical Quantity Notation Nondimensionalized by 

Unperturbed velocity 

Perturbed velocity 

Position coordinates 

Position coordinate 

Time 

Composition variable 

u. 
u/v 

1 

*,*. CrT.-/A 
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Physical Quantity 

Pressure 

Density 

Temperature 

Introduce the quantity 

L.iMjr1 »• 

TABLE I (Continued) 

Notation Nondlmenslonallzed by 

T 

(^.2) 

which Is the ratio of flame thickness to the wave length of the disturbance. 

2 
Neglecting terms of the order of M In comparison with unity, we obtain the 

following-system of equations:  (cf., ref. 5) 

Continuity Equation 

Momentum Equations 

.4.Ä4_/^.f . t5 iii .S& . J.^- fell 
^- 

where 

7= v 1- i-^S 
Jo ^y 

Diffusion Equation 

where Lewis number has been taken to be unity. 
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Energy Equation 

If we subtract (^.8) from (^.7)* we get a second order homogeneous equation 

In ^   . The solution of this equation satiefylng the boundary conditions 

% = 0  at both the upstream and the downstream infinity is obviously 

l~0 {k.9) 

so that, when Lewis number is taken as one, the temperature and composition 

variables play exactly the same role. 

Notice that inside the flame terms containing £*.       and 2i 

omitted from all the equations. Outside the flame,    Mi  ►• <• 

as far as stability is concerned the energy equation will Intervene only inside 

can be 

so that 

the flame where it assumes the form 

^X 
(^.io) 

We thus see that conduction will Influence the stability of flame if. Re B-<L 

is of the order of unity. The mechanism of its action is also clear. In 

Landau's case (ref. 3) the assumption of a constant flame velocity is Justified 

as   oU ^ 1 in which case (^.10) becomes 

-t^h0   .••■•■ (u.ii). •■ 
Eq. (U.ll) shows that when Sit    is not too large, conduction modifies the flame 

speed: in such a way that the latter depends on the flame curvature. Thus we 

have a case similar to that considered by Markstein (ref. k), 

5. Complete Solution with Conduction   In this calculation we shall neglect 

the effect of viscosity. We shall limit ourselves to the case: 

Re r^ I , <L » PrJL*>l (5.1) 
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Inside the flame, we have 

f;(-i^T=e 

^ n 0 

^c«- . I ^x \ ^ 
lit'* 

(5.2) 

(5.3) 

(5.M 

(5.5) 

This system of equations can also be obtained by an expansion procedure in 

a power series of t'   .  (See ref. 5)  Since |= = 0   ,  we see that eq. (5*5) 

implies eq. (5.2), the latter, therefore, need not be considered further. If . 

we assume that x/v»De       ,  eq. (5.5)> applied to two sides of the 

flame, gives the two relations; • 

ry    äK>  • •      ■ ■ •      (5-7) 

-■   crf-   ,. 
where we have reverted to the use of quantities with dimensions.  From (5.1+) 

Finally from (5.3), 

(5.8) 

(5.9) 

Outside the flame the equations governing the disturbances are given by: 

S+£K.-J-^ <5-10) 
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in the region ahead of the flame front and by 

(5.11) 

in the region occupied by the burned gas. Assuming a solution which depends 

on y and t through the factor e and that Re u ^ 0  (the unstable 

case), the solution can be written down without difficulties (see ref. 3)« 

At x = o, these solutions yield the values: 

kA. 
(5.12) 

tvl=. 

?.«u.«,(n-o<) 
kA, 

where 

n.-iL 
U..|c .(5-13) 

We have to determine the four unknowns: A,, A2, Bo* D using the.four . 

homogeneous equations; (5.?)* (5.8), (5*9). Since A,, Ap, Bo* D cannot be . 

zero simultaneously, the determinant of the coefficients must be zero. This 

provides us with an eigenequation for Xi. . Simplifying the determinant, we 

obtain the following equation: 

^♦^i^'Wife-H-* (5.1M 

-11- 
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If RePrJC-*»   , (5«1^) reduces to Landau's equation 

which always admits a solution whose real part is positive (unstable), 

An examination of (5«lM shows that it will have two roots with negative real 

parts if 

ReRJK ^2L (5*l6) 

which gives us a stability criterion. The number 2«/(o<-l) is close to 2 for 

large ot. It is always bigger than 2. Note that (5«l6) agrees with the state- 

ment we made regarding (3«8). 

6. Extension to the case Represented by (3«10)  As mentioned before, if we 

should limit the application of (5.l8) to the case o6)^l> Re, Pr «  I, 

the importance of the stability criterion would be mainly theoretical. We 

now attempt to extend the range of validity of (5.18) by reducing Jj   . The 

decrease of *G will have two effects: 

1) New terms will become important in the equations, 

2) It will alter the locations where the boundary conditions are applied. 

Of course, an intrinsic difficulty associated with a small JO  (e.g., X N 1) 

-1 
is to know' what happens to our assumption of a fluid continuum. Since D ^C K , 

the displacement of the constant-temperature surfaces becomes smaller and 

smaller as JL—»1. In such a case, it should have no effect at all on the 

flame so that the terra  «»   ir.side the flame can again be neglected. As a 

consequence, the energy equation inside the flame is still given by (5.5)• 

The equation (^.9) is, of course, still valid. We shall limit ourselves to 

the study of conduction effect while ignoring the viscous effect so that the 

viscous terms in the momentum equation need not be considered for the moment. 

As X decreases, terras of the form JL illu ..,    appear in the continuity 

-12- 
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and momentum equations. Since these terms invariably contain the factor i*± 

which is of the order of |/«<  , these terms are actually of the order of l/«A 

Now in an actual flame, o«. is of the order of 10 so that unless cD becomes 

too small, these terms can again be neglected.  It thus follows that the 

equations valid inside the flame remain the same as those given in eqs, (5.2) 

to (5.5). The equations governing the disturbance outside the flame are of 

course unchanged when viscous effect is suppressed. 

Next we examine the effect of decreasing the quantity X on the locations 

where :,he boundary conditions are applied. The solution valid outside the 

-£kx 
flame contains terms of the form e~""   and e      . This solution is 

joined to the solution inside the flame at the two borders of the flame. 

Since x is of the order of L or D, all the exponentials will tend to I  if 

X y^ 1. As «G is decreased, this simplification does not apply. Taking 

the origin of our coordinate system at the middle of the flame, the boundary 

conditions must now be applied at 

iky-fut 

»W«    .-Ale, 
x r ♦ k 4 t> e (6.1) 

When this is substituted into the exponentials e and e •<    , the result 

can be written as a product of two terms corresponding to the two terms in 

(6.1). The term containing D will, of course, tend to 1, since D ^C K 

The term containing L does not present any difficulties as it enters into 

the formulas as a coefficient. The fact that L is not well defined does not 

matter either, since the coefficients are finally eliminated and do not enter 

into the expression of the stability criterion.  In conclusion, we see that the 

stability criterion (5.18) is valid for J/^l. 

7.  Stable Mode   It is interesting to calculate the form of the stable mode. 

Instead of assuming Re (■fi)> 0 , we take 

1MX1)< 0 (7.1) 

-13- 
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The solution of the system of equation outside the flame can he constructed 

as hefore. At the boundary, we have 

p,S^ (7.2) 

»*»-&,_ ^i 
f.-u..(a+i) 

LISS_ 

LV1=- 

(7.3) 

(7.M 

(7.5) 

(7.6) 

(7.7) 

Substituting these into (5.5) and the integrated form of (5.3); (5.^)> we 

have a system of four equations, homogeneous in the variables A , Ap, B and 

&._     A.      _v{,^ iX^ 

A».« _DL + JLA \ 
f,. u.. (A-«) tf ^ ' 

A^      . e^n ^_ ^U-DWC*-«) 

Setting the determinant of the system zero, we have 

(7.8) 

(7.9) 

(7.10) 

(7.11) 

(7.12) 
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This equation shows that if 

!Ml4<i (7.13) 

there is at least one stable mode. To be more precise, there will be only- 

one stable mode if RePrJC» < _4_     while two such modes are found for 

B.ePrJj      greater than _4_ but less than unity. Finally, if 

i<R%BX<Ai- (7.1M 

the solution is  still stable since there is no unstable solution for RePrX/<_lsL 

Here X2.   is purely imaginary and the detailed structure of the disturbance 

at any instant  can be  calculated by solving an initial value problem. 

8.    Effect of Viscosity        Here we assume the conduction effect  can be 

neglected.    We shall  consider the case 

R«X/vl (8.1) 

Applying a similar reasoning as used in the previous sections,  we find that 

the equations valid inside the flame are 

(8.2) 

If Vv . ft 

>v 

n = o 

(8.3) 

(8^) 

where v is given by (^.6). Substituting (^-.6) into (8.3) and making us.- of 

(8.4), we obtain: 

J-ll-iL_-l_ VjL (8.5) 

which may be used instead of (8.3). 

Outside the flame we must use the linearized form of Navier-Stokes 

equations. Thus, instead of (5.10) and (5.11), we have: 

-15- 
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(8.8) 

where ^ , ,p U  stand for 0 ^       ü _  In the region ahead of the flame, while 

they vtand for P /e< , \J*«0^   in the region behind the flame. The ap- 

propriate solutions, applicable to the upstream and downstream regions, of 

the above system can be easily constructed. To obtain a stability criterion, 

we need only tiie values of the various flow variables at the boundaries of 

the flame. At the border adjoining the region occupied by the unburned gas. 

ft 

v*^-A,/f,»UBia+i) 

At the border adjoining the region occupied by the burned gas. 

It« A* 

where  Xx  is approximately given by 

Now from (8.2), (8.U) and (8.5), we have 

(8.9) 

(8.10) 

(8.11) 

(8.12) 

Substituting (8.9), (8.10), (8.11) into (8.12), we obtain a system of homo- 

geneous equations in A , A2, B2 and D. Setting its determinant equal to zero, 
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One of the so^jgn ^s—, 
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STR, 

(8.13) 

(8.1*) 

as compared wlthll ^JoT      in Landau's case.    Henne,  a necessary condition 

for stability is 

R-<t (8.15) 

A comparison of (5.16) and (8.15) shows that the flame is primarily stabilized 

by the influence of heat conduction rather than the effect of viscosity. 
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Figure 1 
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