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ABSTRACT

A method proposed by Taniguchi has been used to compute the
performance characteristics of vertical axis propellers having
cycloidal blade motion and semi-elliptic blades. Numerical results
of thrust and torque coefficient and efficiency are preseated for
a wide range of advance coefficients, maximum blade angle, and
blade solidity.

Good agreement between the experimental performance and the
computed results is obtalned for two, three, and six-bladed
cycloidal propelilers.

INTRODUCTION

In a series of three papers, Taniguchi presented a methcd for numeri-
cally evaluating the performance characteristics of vertical axis pro-

1,2,3

pellers. In the first pap:-r he derived expressions for the thrust,
torque, and efficiency of a vertical axis propeller based on certain simpli-
fying assumptions and estimates. After conducting experiments with a six-
bladed vertical axis propeller he modified the earlier expressions for the
propeller performance. The final form of the computational method proposed
by Taniguchl was presented I1n detail as a doctoral thesis,3
To assess the validity of Taniguchi's method over a wide range of con-
ditions, computations were carried out at the David Taylor Model Basin using
his method. The results of the DIMB computaticns were compared with avail-
able data from DIMB experimental investigations on two, three, and six-
laded cycloidal propeliers. iIn additicn, numerical evaluation of propeller
performance characteristics were carried out over a large range of propeller
eccentricity and blade solidity. The results of all the computations and

the comparison are presented in graphical form.

OUTLINE CF TANIGUCHI'S METHOD

The me*hod propesed by Taniguchi for computing the performance charac-
teristics of verticai axis prcpellers is based on the assumption that quasi-

steady state motion existe.* The total thrust and torgue of the propeller

References sare listed on page 10.

* An attempted un<teady thecry for vertical axils propelliers was analyzed
in a recent reportﬂu



is evaluated by integrating the 1ift and drag forces exerted on each blade
section. For this purpose numerical values of 1lift and drag coefficients
of the blade sections are required. In addition, an estimate of the mag-
nitude and direction of the induced velocity at every blade section must
be made. Taniguchi assumed (1) that only the longitudinal velocities
induced by the trailing vortex system {i.e., those in the direction of
propeller advence) contribute to the thrust and torque of the propeller,
(2} that they are of constan: megnitude over the length of blede, (3) that
the induced velocity is not a function of the orbital position of the blade.
The value of the induced velocity 1s cbtained from momentum considerations
with modificatione based on experimental performence of a six-bladed vertical
axis propellier.

The details of the derivalion of Taniguchi's method are as folliows:

FEach propeller blsde 1s assumed to rotate with constant angulsr
velocity gbout the center "0" which advances at constant speed u,
(Figure 1). As & consequence of the motion, the fluid exerts a force on each
section of the blade. This force can be rerclved intc two components: the
section 1lift force and the section drag force. These forces can be expressed
in terms of the forne coefficient and dynamic head, namely

A=c¢ B vic
d=cfhvic

where the 1lift is in & direction perpendicular tc the resultant field
velocity past each blade section, while the drag is parallel to the resultant
velocity.

Taking the components of the 1ift and drag force on the blade section
in the direction of forward mction of the propeller, the thrust forze due to
each blade sectinn 1s c¢btained:

t= Leos (O-p+ao) +dsin (O-P+ax)

where & 1s the blade orbit sangle, @ is the blade angle, and X iz the
angle of attack ¢f tlade secticn. For mest of the orbital positions of the
blade, the drag contribuicn to the section thrus* will! be small in com-
parison to the 1ift contribution. An exception occurs at orbit angles in
the neighborhood cf 90 and 270 degrees. Gince the integrated effect over
the entire orbit is cf concern here, Taniguchi neglected the drag term. Thus

-
[



4+ = € %vic cosc@-p+ot)
The moment abcut the propeller origin acting on each blade section
is (see Figure 2)
m=f cos(&-p+a)R<in G - lsin(9~cp+*d) Fcos &
+d.aos[?0-9+-¢p’—0()?~liv~9" “+ d sen (90- 8+p—x) R cos &
Using trigonometric simplification, we obtain
me= £ R anlP-o) + d T coal(P-a)
m = %vic R [¢) sin{p-a) + <4 cosfp-at)]

To obtain quantitative evaluation of propelier performance, values
must now be asgigned to these coefficients. In his earlier paper,1 Taniguchi
used the following valuei for the drag anu lift zoefficient:

Cp =d, A = 534 (& in radizns)

4
Ca = Cdothot =010 + 6 o
These values were based o2 aversges obtained from wind tunnel tests on

alrfolil sections. In his sezcnd paper,2 Teniguchi revised the expression
for the drag coefficient ba.ed on the experiments conduct~d by him on six-
bladed cycloidal prcpeliers with semi-elliptic blade outline. The revised
expression is ax fellows:

Ci= Cao+ kat® = 0.019 + 2.24 *

Subotituting into the expression for thrust and moment of the hlade section
we obtaln
t= Hvica, o cos (@~ + o)

and m= $avicR [, dim (§-a) + (Cap+ ko) cos (¢-x))

To evalua*e the thrust and torgie ¢f a given propeller, the follcwing
relationships must e known:

(1) The variaticn of re=ultant veiocity (v) at each blade section
with blade orbit. angle (€).

(2) The variat:icn of hlade angle {@) with blade crbit angle (8).
From a knowledgs of v and @ at every biade crbit position, we can derive
a relationship be'ween ang.e of attack «f blade (&) and orbit angle (&).

In eveluating “he r sultant velcci*y v past each biade ection,
Taniguchi inzludeg cnly the induced velecity in the direction of forward

motion of the props lier. Thi he taker

A



VR = (ne D) (o +0)% = 2(y + ) 0D i &
Dividing by (nmwD Ywe cbiain
2 ‘ )
(+45)2 = | + A+ NP = 2(0+2) an &
He further assumed tha* ‘the induced velocivy iz constant over the entire
length c¢f blade and is independent of blade orbit positicn.

For cycloidsl blade motion, the tangent of the blade angle varies

with the orbit angle in the following manner:
Yan P = q cos &
t—m A O
where n is the eccentricity setting of the propeliler and is related to
the maximum blade sngle as indicated in Figure 3.
By approuriate substitution we obtain an expression for ces( 9-—19-1—0()
in terme of &, A, and },, namely
cos 9’
YU+ a+2)2 =200+ X)) w6~
Where the positive signs applier <o values of @ between-%h and "Zz ;5 While

cos (6-pto) = X

the negative sign applies to vaiues of @ between %% snd %W . By further
substitution, we obtain the foliowing relstion between sngle of attack (&)
of the blade secticn and Ylade orbiw angle [ &):
+an o - (’1’2—7\‘;3“056" i
A3 40D ~(q+A+X) aem O

where the same sign conv-ation as glven sbove holds. For small angles o

i.e., for angles of attack b-low the #vell angle (12 to 16 degrees) Hand 24,

Thus the rsechtion thrust a* a given crbit position in

_ a2 N AL+ DAF )220+ X)) de B— 20
t= % (T D) AN s e At ens S

The thrus* of each *lade a* a glven crbitel position 1g then obtained

by integrating over the bladje length. Thus
L]
T(e) = {-t db
Fer blades with semi-elliptic cutline, the thrust ¢f esch blade becomes
3 = - - N
T(0)=L pa, &b D (-2-% ) LEEAT /0 i) hm & 0076

(4@ (A+N) ~ (Y+A+) 4an O
With the assumpticn of constan’ induced veloctity and symmetry of blade

motion (Figare 3), *he thrist of each biade if symmetric in the forward and

aft half cf the crti*. To chtain the average thrurt of each blade (7. )
av

we neasd ¢ average cwver helf . f the orhit enly. Thus

L



e % z N <
{ 2 2 Vi+3+A) L 2(2+)) oo &

The total thrust of the propeiler is then obtained by muitiplying by the
number of blades

m

T =2 Tgy
The moment of the blade section shout the propeller origin becomes

D 2 NN - VI+2+2)2-2(242.) acn O
= A2 DY [a, (A+2) ~ A=) 29
m %C 7 (rn ) o (9= A~} l+’y{’,\+7|;)—-(7+2+];)&:w6'cos

FCao 1 = (AN 1 OV TF Grea) - R(A+ ) nn &
RN R RN W L/ LY D10y DL Y

[1+q(3+7.) -1+ 242) arn 8>
The total torque of *the propell.r is then given by

i (% ob
q z ‘{;—'_J;/ .X wmdb d6
For brevity, let "

i

%
i+ (2422 =2 042%) amm B
) < (4R e & oS TEde

-

PR 1

-

-3

Yo
Iy =-§=:£ 1=+ )03V T+ +0.)° ~2(A+ %) am& 46

I o= .sz [1- (1420 20m 83 V1 + (1402 20043 Lon b N

P T T R) A+ ) ke 672

The thrust and torque cf the propelier therefore become
T="% zpe¢bn*D%a, (7-21-2.) T,
Q="%,2pCbnD3 [a,(BaX)(M-2-2) I, +Cao Lo+ k (-2-%) I, ]

Define th= thrus:. and torque ccefficlents ax followe:

K. = T
i ? nzD'S b
&.nd K = .____.@....,..._.,._
QR en2D*p
In addition, le: O"—'—i—;% te the rolidity of the blades. We, therefore,

obtain the following expressicns for the thruri and *crque coefficient
4
K—j = W/g a-oo (’q—]—ll\b) Il

- A+ Ly o T Ll AT
KQ_. = .fl.:;:,.it.i(_r_ -+ /(6 o] LCda .Lz +K(’7“A"‘ll;1 _'3]

=
7



Further the propeller efficiency is given by

The integrals Il’ IE’ and I3 can be evaluated numerically for vaiues
of eccentricity, advance coeffi~sient and induced velocity factor. There
novw remains the problem of estimating values of the induced velccity
factor. To obtain this estimate, Taniguchi used a momentum relation,

namely

T - 2pDb u":ztka i.qm;:LLL —-Lco]

Nondimensionalizing we oktain
a2 At ﬁﬁi.-}J
KT--.Q'IT ~ [,K

where & is a cocrrection factor to account for ncon-uniformity of induced
velocity over the blade length. In Reference 1, Taniguchi estimated the

value of & as 1.176. After conducting experiments on a six-bladed

propeller, and obtaining & large discrepancy between computed and experimental
values of advance ccefficient at zero thrustJTaniguchi modified the momentum
relation for KT to

Kp = 25 (42N

The factor & is now a projected area reduction factor. This modification
resulted 1n a revised value of &, namely 1.301.

Values of induced velcclty factor as a function cf propeller thrust
coefficient for varicus advance zouefficlent are given in Figure L.

To cbtain perfocrmance charascterictics «f a prepeller, of specified
solidity over a range of advsnce coefficien*tn, the two expressions for KT
nmust be solved simultancously. This Is done by graphical soluticn as
indicated by the exampirs =hown in Figure 5, whers the two expressions for
thrust coefficient have bheen plotted for an eccentricity of 0.7 over a range
of solidity and advance ccefficlent. The intersection of the ¢ = constant
and A = constant curves gives the vslue of thrust coefticient desired.

Using his revised values for section drag coefficient. and & , Tani-
guchi computedg the performance charecceristics of vertical axis propellers

wirh gemi-elliptic blade cutline and sclidity of 0.40.

6



RESULTS OF DTMB NUMERICAL EVALUATIONS

Using the procedure outlined above and the revised values of section
drag coefficisnt and induced velocity factor, the thrust coefficient, torque
coefficient and efficiency of verticael axis propellers with cycloidal blade
motion and semi-elliptic blade cutline were evaluated by the David Taylor
Model Basin over a range of advence coefficients, maximum blade angles
(eccentricities), and solidities. The results of these computations are
given in Figures 6 and 7. Propeller performance at values of eccentricity
and solidity other then those given in the flgures can easily be obtained
by cross plotting.

As seen in the figures, the performance characteristics were evaluated
at eccentricities up to 0.95. It is clear, however, that in some cases the
angles of attack wili be large and the angle of stall will be exceeded.
Since small angles of at*sck were agsumed in the derivation and since reduced
1ift characteristics of the blade sections are chtalned for angle of attack
exceeding the stall angle, relisble predictions of the performance charac-
teristics cannot be expected for those cases. To illustrate this limitation,
a typical variastion of the angle of a%tack with blade orhit angle 1is shown
in Figure 8. From the expresuion for =f given in the preceding section, it
is seen that for a given eccentricity, the maximum asngie of attack always
occurs at zero advance coefficient. Thus, values of maxzimum at. zero
advance were computed cver s range of eccentricity and sclidity and are
given in Figure 9.

From Figures 6 and 7 it is further ssen that the total thrust, torque
and maximum efficlen~y «f the cycloidal propeilers increape with increase
in maximm blade angle. Fcr increase in blade scildity, the total thrust
and torque increases. However, *he *hruct and torqie of each blade and the
maximum efficiency ¢f *the propeller decrease with incresse in number of
blades of same dimensicns. uch decrraze in *hrust per blade snd efficiency

is also characteristic of acrew prepellers (see e.g. Reference 5).

—}




COMPARISON WITE DIMB EXPERIMENTS

A comparison was made between the results of the DIMB computations
using Taniguchl's method and DIMB experimental measurements of the per-
formance of vertical axie propellers with blades having semi-elliptic
outline. The experiments were conducted with propellers having two, three,
and six identical blades. Cyecloidal blade moticn was used in the experiments
with eccentricity settings of O.L and 0.6.% The aspect ratio of the DIMB
blades was the same as Taniguchi used in his experiments. The comparison
between experimental and computaticnal results is shown in Figures 10 and 11.
It is seen from the figures that good agreement 1s obtained between the com-
puted and cxperimental values of propeller performance. Of particular
interest is the good prediction of the effect of varying the number of blades
on the propeller.

The correction factor (4 ) and section drag characteristics (o do’ k)
were evaluated by Taniguchi st the zero advance condition. He obtained an
average value of 1.321 based on his experimental results of a six-bladed
propeller at four different eccentricity settinge. Table 1 gives values of
# evaluated from the results of the DIMB experiments.

TABLE 1
Evalustion of «

i 0.k 0.6

z 2 3 6 2 3 6
KT(exp) 0.70 ¢.86 1.13 1.22 1.56 .13
A (exp) | 0.212 0.240 0.277 0.287 0.323 0.375
L 4 1.264 1.312 1.340 1.332 1.312 1.303
Av. ¥ 1.305 1.315

* The results of the DIMB experimental investigation, in which blade mction
and blade cutliine was veried, will be reported in detail in a forthcoming
report.




In Table 2, the quantities used to evaluate the section drag characteristics

are given. A plot of these quantities is also shown in Figure 12.

TABLE 2
Evaluation of Section Drag Coefficilent
M 0.4 0.6
zZ 2 3 6 2 3 6
Kplexp) 0.70 0.86 1.13 1.22 1.56 2.13
KQ(exp) 0.12 0.16 0.219 0.32 0.40 0.58
2+ (comp) 0.212 0.240 0.277 0.287 0.323 0.375
1(comp) 1.034 1.043 1.057 1.062 1.077 1.105
Is(comp) 0.506 0.500 0.492 0.535 0.520 0.k97
Ka-4(1+2K,
lb-§31i£7f%-—f 0.0547 0.0khs5 0.0243 0.1685 0.1124 0.06711
T .
(=32 YT, | 0.0173 0.0123  0.00703|  0.049k 0.0370  0.0229
CONCLUSIONS
The computational procedure proposed by Taniguchi for evaluating the
performance characteristics of vertical axis propellers is adequate for
propellers with cycloidal blade motion and semi-elliptlc blades. For this

type of propeller the procedure glves satisfactory prediction of the effect

of number of blades on propeller performance.

For each blade motiorn other than cyeclcidel motion, experimental

results are required to obtain new values of the correction factor & .

In

addition, large changes in aspect ratio of the blade will affect the mag-

nitude of the correciion factor. HFurther, significant variation in blade

motion would ﬁrobably result in different values of the section charazter-

istiecs.

In summary, the mos% serious limitation of Teniguchi's method lies

in the way the induced velocities are egstimated; specificaliy, in the

assumption that only the longitudinai

components contribute to propeller




performance, in the assumption that the induced velocity is constant over
the entire length of the blade, and finelly in the fact that the induced

velocity cannot be computed without resorting tc determination by experiment.
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Figure 1 - Sketch of Blade Section Showing Forces Exerted

Rsin &

Figure 2 - Sketich of Blade Force System
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