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ABSTRACT:  A method Is described for obtaining the average 
resistance of a spark discharging through a granular conductive 
mix (RDX/alumlnum - 97/3, or sugar/aluminum - 97/3) In a non- 
osclllatlng discharge system. The spark resistance Is a linear 
function of the spark gap width for a given electrode arrange- 
ment.  The resistance Is relatively Independent of the density 
of the mix over the range 0.7 to 0.9 g/cm3. For the discharge 
of a 1-mfd capacitor charged to 5.0 kv with total circuit 
resistance of 0.9 ohm (spark resistance of 0.18 ohm — gap 
width 0.25 mm for 30° electrode tips) peak current Is about 
2200 amps, and peak power Is O.89 megawatts reached In 2.0 
mlcroseo.  The energy dissipated by the spark In this Interval 
Is 7,9^ of that stored by the capacitor. 
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THE CHARACTERISTICS OP ELECTRIC SPARK DISCHARGES IN MIXTURES 
OP HIGH-EXPLOSIVE AND ALUMINUM POWDERS 

1.  INTRODUCTION AND BACKGROUND 

In the course of Investigations on electric-spark 
Initiation of hlgh-exploslve "conductive mixes" at this 
Laboratory, a detailed study was made of the electrical 
characteristics of the discharge circuit and of the Initiating 
spark occurring In the mixture.  The more detailed results of 
this phase of the study are considered Important enough. In 
themselves, to be given here separately from the overall results, 
the latter being mostly concerned with the Initiation and 
detonation of the explosive (1,2).  The objective of the portion 
of the Investigation reported here was to determine the resist- 
ance of the spark occurring In an explosive conductive mix and, 
hence, the power and energy delivered to the spark.  In order 
to do this adequately, the behavior of the complete discharge 
system was studied, with and without the spark load. 

The typical explosive conductive mix used In the tests 
was 975^ RDX and 3Jt fine-flake aluminum by weight, commonly 
designated RDX/alumlnum (97/3).  The RDX had a fairly wide 
range of particle sizes, the mean particle size having a 
diameter on the order of 20 to 25 microns.  The aluminum, 
Alcoa 422, had an average diameter of about 10 microns and a 
thickness of 0,3 micron.  It Is estimated that the Alcoa 422 
was 97^ metallic aluminum and 3$ aluminum oxide, based on an 
oxide coating of 50A (3).  The name "conductive mix" Is, 
perhaps, misleading, since the resistance between electrode 
tips may exceed 109 ohms before a high voltage Is applied. 
However, the presence of a few percent of aluminum. In effect, 
reduces the "dielectric strength" of the explosive mixture to 
well below that of the pure explosive. 

This report covers the experimental measurement and 
determination of the values of the circuit parameters used In 
the study; a determination of the average resistance (to 
maximum current) of the spark for a typical explosive conductive 
mix and for a simulated mix of sugar and »aluminum; an evaluation 
of voltage, power, and energy for the three parameters (L, C, 
and R) of the complete firing system; and an evaluation of the 
Instantaneous power and accumulated energy expended In the 
spark region alone.  An appendix Is Included giving an analysis 
of a series LCR discharge circuit. 
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2,  THE DISCHARGE CIRCUIT 

The reaponse of a simple LCR series discharge circuit Is 
well known.  The addition of a spark (either as a switch or a 
load) and a length of coaxial cable, such as used In the 
conductive mix experiments, however, complicates the behavior 
of such a circuit; This type of circuit with the spark and 
cable is shown In Figure 1.  In functioning, the 1.0-mfd 
capacitor Is Initially charged to some high voltage (5.00 kv 
throughout most of this study).  Discharge Is then produced by 
closing the hydrogen thyratron switch. Before spark breakdown 
occurs In the conductive mix at the end of the cable an 
Infinite Impedance effectively Is presented to the electrical 
pulse.  This condition causes voltage doubling at that end 
of the cable and reflections occur until the spark Is 
established.  The spark resistance, once the spark Is 
established, goes through an Intermediate phase, exhibiting a 
resistance of, perhaps, several hundred ohms before It drops 
to a very low value (4).  In the low-potentlal-arc phase more 
reflections occur because of the low Impedance relative to the 
Impedance of the cable.  The picture Is further complicated by 
the presence of high-frequency hash that Is characteristic of 
sparks. 

Although the events occurring In less than 0.1 mlcrosec 
may be quite Important In Initiating an explosive. It was 
found, during the course of the conductive mix study, that the 
spark column must grow (acting as a piston against the 
explosive) for a much longer time If the Initiation Is to 
produce a detonation (l).  (Initiation can be produced without 
detonation necessarily occurring (5).) Because of the 
predominance of the growing spark as the means of producing 
detonation, the early occurring events have been essentially 
disregarded In this analysis. 

3.  THE CIRCUIT ELEMENTS AND EXPERIMENTAL 
DETERMINATION OP CIRCUIT PARAMETERS 

3.1 The Energy Source 

For much of the conductive mix study a 1.0-mfd capacitor 
(General Electric Type CP70EIEN105K) was used to supply the 
spark energy, A periodic check was maintained on the capacitor. 
If the capacitance fell appreciably below the original measured 
value, the capacitor was replaced. The measurements of capacity 
were made with an Impedance bridge (General Radio Type 65OA). 
A standard mica, 1.0-mfd capacitor (♦ 0.25^) was used as a 
check.  It was suspected that the capacitance of the energy- 
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supplying capacitor might deviate appreciably« during a high- 
current discharge, from the value measured on the bridge. 
However« oscilloscope measurements of the half-period (T/2), 
maximum current (l max)« and the time to reach maximum current 
(ti max) Indicated that the capacitance of the capacitor during 
discharge remained unchanged at the value given by the Impedance 
bridge measurements, 

3.2 The Coaxial Cable 

The 7.6-meter long coaxial cable« connecting the pulse 
generator with the explosive charge« was type C« having a 
nominal characteristic Impedance of 30 ohms. Measured values 
of the resistance« capacitance« and inductance of the cable 
were 0.218 ohms« 0.001153 mfd« and 1.68 mioroh, respectively. 
The calculation of the impedance« Z - VL/C « thus gives a 
value of 38.2 ohms.  (This high value may have been due to 
manufacturing deviations from nominal values.) 

The resistance and inductance of the cable at frequencies 
near and above that of the natural discharge frequency (0.1 Mc) 
of the circuit« including the 7.6-meter cable« were obtained 
with a radio frequency bridge (General Radio Type 916-A).  It 
is likely that the skin effect of the cable becomes important 
only at frequencies above 0.33 Mc« as Indicated in Table I and 
Figure 2.  This would be true if the straight-line relation of 
R vs. VT" held down to its Intersection with the D.C. 
resistance line (0.22 ohm) extending parallel with the abscissa. 
The Inductance (L)« also Table I and Figure 2« rose at both 
the high and low ends*of the frequency scale.  The deviation 
at the higher frequencies can be explained by the approach 
toward infinite impedance at the anti-resonant frequency of 
7.2 Mc.  This corresponds to a wave-length of four times the 
length of the shorted-out cable (6).  The rise in inductance 
at the low end was due, at least in part« to poor readability 
of the dial scale in this region.  The inductance value was 
reasonably linear between 0.75 and 2.50 Mc, being 1.68 microh 
near the minimum portion of the curve. 

3»3 The Current Measuring Resistor 

Current pulses from the capacitor« discharging into the 
coaxial cable which was shorted out at the far end, were 
obtained for 7.6 meters and 15,2 meters of cable.  (Although 
7.6 meters was used throughout most of the conductive mix 
study, the longer cable also was used to enable a check to be 
made on the circuit parameters. The additional length of 
cable gave a known increase in inductance and resistance to the 
circuit.)  The current-measuring resistor was of a folded-ribbon 
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typ« (7) which effectively cancelled the Inductance, Figure 1. 
The resistance values of several such resistors (manganln 
ribbon) used In this study were between 0.010 and 0.020 ohm. 
The skin effect at the natural discharge frequency, neglecting 
reflections, would be negligible.  For any one resistor, the 
current values were reproducible to t 3$  over an Interval of 
several months.  A typical current pulse, with the far end of 
the cable shorted out. Is shown In Figure 3A.  The time scale 
Is about 1.0 mlcrosec/dlvlslon and the maximum current about 
2U00 amp.  (A Tektronix 517 oscilloscope was used with No. 44 
Polaroid film In a DuMont Type 302 oscilloscope camera to 
obtain these records.) 

3.4 Simultaneous Vo1tage-Current Measurements 

The voltage-current osclllograms, typical examples shown 
In Figures 3B and 3C. were obtained with a dual-trace oscillo- 
scope (Tektronix 551;. The current signal was obtained from 
the current-reading resistor.  The voltage signal was obtained 
by a low-Inductance voltage divider located at the Input to 
the energy-carrying coaxial cable. I.e. across X-X, Figure 1. 
The hash at the beginning of the traces was due largely to 
the hydrogen thyratron switch and to reflections In the main 
coaxial cable.  The shape of the voltage curves and the time 
to reach zero voltage check very well with the calculated 
(voltage vs. time) curve for the capacitance. Figure 7,   thus 
giving added validity to the measurements.  The current and 
voltage traces of Figure 3B (7.6-meter cable) were made at 
Initial capacitor voltages of 2, 3, 4 and 5 kv.  The current 
and voltage traces of Figure 3C were made using 7.6- and 15.2- 
meter cables with Initial capacitor voltages of 5 kv.  A 5-Mc 
crystal-controlled oscillator was used to check the sweep 
speed of the oscilloscope.  (Each horizontal division ^n th" 
prints Is about 1.0 mlcrosec.) 

3.5 Total Circuit Resistance and Inductance 

Average values of the current (l), half-period (T/2), and 
time to reach peak current (tt max)« starting with the capacitor 
charged to 5.0 kv, were obtained from traces as shown In 
Figure 3C, for both 7.6- and 15.2-meter cables.  These are 
given In Table II.  Using these values, a determination of the 
total circuit resistance and Inductance was made.  To find 
these values, the equations 

L - -L.R (1) 
2a 

and 
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i*    /I     -   /3 2R2 
L -   c     »/ca     r (2) 

(derived from equations (A5) and (A9) In the appendix) were 
solved simultaneously for L In terms of R.  The value of the 
constant "a" was found from equation (A15).  The capacitance 
of the circuit* was experimentally determined to be O.985 n»fd. 
(The Initial capacitor voltage was, of course, positive, the 
pulse voltage therefore being negative.) 

For the 7.6-meter coaxial cable;  the half-period was 
4.80 mlcrosec, giving a frequency of 0.10420 Mc; the 
constants, a and /8, were 0.16145 and O.65470, 
respectively; and the time to reach peak current was 
2,03 mlcrosec. 

For the 15.2-meter cable:  the half-period was 6.24 
mlcrosec, the frequency was 0.08000 Mc; the constants 
a and /9, were 0.12503 and 0.50266, respectively; and 
the time to reach peak current was 2.64 mlcrosec. 

(Although the fifth decimal place was preserved throughout the 
calculations, the measured values may have been off by severalo 
percent In some of the parameters.) 

A graphical solution for L and R Is shown In Figure 4, 
using the above values.  The values of L *and R which satisfy 
the equations, using 7.6- and 15.2-meter cables, are 2.232 
mlcroh, 0,721 ohm and 3.78 mlcroh, 0.945 ohm, respectively. 
The value of 0.224 ohm obtained for AR Is In good agreement with 
the D.C. resistance measurement for 7.6 meters of type C coaxial 
cable. Table I and Figure 2.  The value of 1.55 mlcroh for 
AL Is about 8%  lower than 1.68 mlcroh obtained by the 
Impedance-bridge method, also Table I and Figure 2.  This Is 
considered to be a satisfactory cheek, considering the diffi- 
culties Involved In making the measurements.  An extrapolation 
to zero cable length In Figure 4 shows that the Inductance and 
resistance of the pulse generator alone were 0.70 mlcroh and 
0.50 ohm, respectively. 

4.  MEASUREMENT OP SPARK RESISTANCE 

4.1 The Approach to Obtaining Spark Resistance 

If the simultaneous current through and voltage across a 
spark are measured, the Instantaneous power developed In the 
spark Is easily determined.  This Is simply the product, at a 
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given time, of the voltage and current.  However, It Is 
extremely difficult to get reliable oacllloscope meaauremento 
of the component of voltage developed across the spark gap that 
Is the result of the spark resistance alone.  The difficulty Is 
due to several things. 

First« the Inductance existing in the spark can generate 
a large inductive voltage component.  (This inductance 
includes the portion of the electrodes which are between 
the contact points of the leads of the measuring cable.) 
This signal swamps the desired resistive-voltage 
component. 

Second, hash from the hydrogen thyratron switch obscures 
early detail. 

Third, a voltage divider used across the spark is subject 
to extraneous radiation pick-up because of its relatively 
high impedance as compared to that of the current- 
measuring resistor. 

With care it may be possible to subtract out the inductive 
voltage component, provided no other distortions exist. However, 
a way of obtaining spark resistances, which does not have these 
difficulties, was used in this study and is presented here. 

Before.describing the method actually used, it is to be 
noted that the spark energy could be measured if the circuit 
were permitted to oscillate. A fairly good indication of the 
total circuit resistance could be obtained, in an oscillatory 
(LCR) discharge, from the decrement of the sine-wave variation 
of the current. Naturally, this method cannot be used if a 
uni-directional switch, such as a hydrogen thyratron, is used 
in the circuit. Also, the method cannot be used when the 
circuit is nearly critically damped or if it is over-damped. 

4,2 Spark Resistance with a Switch in the Circuit 

When a hydrogen thyratron is used, as in the conductive 
mix experiments, the spark resistance can be obtained by 
measuring the peak current with the spark gap in operation. 
This is compared with the peak current measured with the gap 
shorted out. Then the change in peak current essentially is 
due to the resistance of the spark.  (A change may also take 
place in the switch resistance, but this is assumed to be quite 
small.)  The circuit is kept as nearly the same as possible, 
with and without the spark. Small differences in the short 
leads at the end of the cable, that occur from one test to the 
next, do not change-the overall inductance appreciably.  This 
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Is because most of the circuit Inductance Is contributed by the 
coaxial cable leading to the spark gap. 

The values of the circuit parameters used to determine the 
spark resistance were those given In the preceding section« 
I.e. C - O.985 mfd, L - 2,232 mlcroh, and E - 5.00 kv.  In 
Table III are shown, as functions of the circuit resistance (R), 
the frequency of oscillation (f), the peak current (l max)* and 

the time to reach that peak (ti max)»  The latter. In micro- 
seconds, was calculated from (A15T of the appendix.  The total 
circuit resistance Is In ohms, and the capacitance In micro- 
farads. The frequency. If the circuit were allowed to oscillate. 
I.e. without the unl-dlrectlonal switch. Is In megacycles per 
second.  (Proof of the oscillatory condition Is shown In 
Figure 3D.  This shows a current trace which Is oscillating 
at 0.104 Mc.  Here the current through the hydrogen thyratron 
reversed due to an abnormal arc-over.  The conditions otherwise 
were as those used In making the trace of Figure 3A.)  The 
peak current was calculated for various values of circuit 
resistance from Equation (A?) of the appendix, i.e. 

^max K   -^ exp 
^ 

{   " atl max]' aln/9 '1 max 

or 

-max exp {" at 1 max )' 

(3) 

(4) 

^Equations (3) and (U) can be shown to be equivalent from 
Equation (A8), appendix, since at ti max, dl/dt - 0 and 

coa /3  t! max - a sin fi t^  max. «It follows that 

sln/St! max - £L cos^ «ax " £ 
o P 

a 
Va'^: ^ 

-/S>v
rLC'.] 

Figure 5 shows the maximum current as a function of the total 
resistance. 

With no spark In the circuit. I.e. with the end of the 
cable (spark end) shorted out, the peak curr?nt1

f?;.a. «lf;2Ult 
with the above values for C, E, and L was calculated to be 
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2392.9 amp« H being 0.721 ohm. These values are Indicated by 
the dashed lines in Figure 3 end are used as reference 
coordinates. The actual current measurements for this shorted- 
out condition over several months gave values of 2200 to 2500 
amp, indicating small drifts in the values of the circuit 
parameters. For each conductive mix test, one or two calibration 
pulses also were recorded, i.e. current pulses with the spark 
end of the cable shorted out. The ratio of the current 
through the conductive mix spark to the peak current of the 
calibration pulse was used to get the total circuit resistance. 
This ratio was multiplied by 2392.9 amp, the calculated (no 
spark) value for the idealized circuit. This adjusted value of 
peak current was used to find the total resistance of the 
circuit (with spark) from Figure 5.  (This process thus minimizes 
the error that occurs due to parameter drift of the circuit 
components.)  Having obtained the total circuit resistance 
with the spark, subtraction of the resistance of the circuit 
without the spark, i.e. 0.721 ohm, gave the average resistance 
of the spark itself. 

4.3 The Effect of Electrode Configuration 

Current pulses were measured for a number of conditions of 
the electrodes and the conductive mix. To speed the work, 
eliminating the need of a firing chamber, a simulated mix 
made up of powdered-sugar/alumInum (97/3; was used In most of 
these experiments.  The experimental cartridge was a thin disc 
of mix held in a Plexiglas container. Figure 1.  The range of 
electrode-gap widths used was from 0.1 to 3.2 ram.  Most of the 
electrodes were of copper produced by a printed circuit 
technique.  The thickness of the copper was 0.04 mm and the 
width was 1.6 mm with a 30° taper, angle ex in Figure 1, A 
few shots were made with aluminum electrodes, 0.05 mm thick 
and 3.2 mm wide with the same 30° taper.  Two densities of the 
sugar/aluminum mixture were used, one about 0.7 g/cm3 and the 
other 0.9 g/cm3.  In some of the experiments with copper 
electrodes the space between the electrode tips was painted 
with a dispersion of fine flake aluminum in ethylene chloride. 
Table IVB. This was found to aid electrical breakdown, 
especially with gap widths greater than about 1.3 mm, without 
appreciably altering the spark resistance. 

The resistance of the spark (R«), measured in sugar/ 
aluminum under these various conditions, is shown in Tables 
IV A, B, and C and plotted as a function of gap width (S) in 
Figure 6. Note that most of the points, using 30° electrodes, 
fall close to the straight line. 

Rs - 0.154 ♦ 0.116 S, (5) 

8 
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Irrespective of the electrode material or the loading density« 
The resistance is in ohms and the gap width In millimeters. 
Measurements with RDX/aluminum (97/3), Tables IVD and IVE, also 

1      fell close to the line. Equation (5)» except for one low point 
and one high point. The loading densities used in these 
experiments were 0.8, 0.9, and 1.2 g/ccP. 

Further experiments were made to clear up the question of 
why the line in the graph has an intercept with the abscissa 
at minus 1.3 mm.  Two explanations were considered. First, the 
metal tips of the electrodes erode rapidly, causing an«effective 
widening of the spark gap.  Second, there Is an appreciable 
contact resistance between the plasma and the surfaces of the 
very hot metal electrodes. Copper electrodes with a 1200 
taper were tried with sugar/aluminum (97/3) at densities of 0.7 
and 0.9 g/cm3. These blunter electrodes should not widen with 
erosion as much as the sharper tips.  Therefore, any given 
initial spark-gap width should give a lower average spark 
resistance than is produced by the sharper tips.  This was 
confirmed as seen by the results in Table IVF and in the lower 
line in Figure 6, 

R8 . 0.058 + 0.122 S   . (6) 

The intercept with the abscissa is about minus 0.3 mm as 
compared to the intercept of 1.3 mm for the 300 electrodes. 

Framing camera pictures (Beckman-Whitley Model 189) were 
made of the erosion of 0.03-ram thick aluminum electrodes in a 
sugar/aluminum mixture. The electrodes were with a 30° taper 
and spaced 0.8 mm apart. The rate of gap erosion was fairly 
linear, 0.28 mm/microsec, up to the limit of observation, 
3.5 microsec. The predicted erosion, based on the graph. Is 
1.3 mm in about 2.0 microsec (ti max).  Th« observed erosion 
in the same Interval Is about one-half this value (O.56 mm). 
It Is likely, then, that both a rapid erosion of the electrode 
tips and an appreciable contact resistance of the plasma with 
the electrodes are responsible for the negative abscissa 
Intercept. 

4.4  Spark Resistances In Different Media 

A spark occurring In air was found to have about one- 
fourth the resistance of a spark occurring In sugar/aluminum 
(97/3) at 0.7 g/cm3.  In both eases the aluminum (30°) 
electrodes were backed by glass slides, forming 3.0-mm gaps. 
The establishment of the spark in air was aided by dusting a 
very small amount of conductive mix onto the gap region. The 
resistance of the spark was determined to be 0.14 ohm In air and 
0.59 ohm In the mix. 
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The resistance of a spark In pure RDX was not obtained, 
(Measurement could not be easily obtained, since the spark. If 
established at all, would not be reproducible In time.)  However, 
there Is no apparent reason for believing the resistance of the 
spark In RDX to be appreciably different from that of the spark 
In the conductive mix, RDX/alumlnum (97/3). 

5.  CALCULATION OF POWER AND ENERGY DELIVERED TO THE SPARK 

Once the evaluation of the spark resistance Is completed. 
It Is possible to calculate the Instantaneous power going Into 
the spark and the energy absorbed or dissipated by the spark. 
Many of the constants used In these calculations have been 
evaluated In previous sections. Already given were: 

C - 0.985 mfd 

E - 5.00 kv 

L - 2.232 ralcroh 

R « 0.721 ohm (without spark). 

A total circuit resistance of 0.900 ohm, with spark, was chosen 
for the following calculations. This gives 0.179 ohm for the 
spark resistance, a reasonable value for a 0.25- or a 0.50-mm 
gap, as Indicated In Figure 6.  In Table III values correspond- 
ing to the case where R - 0.900 ohm are underlined.  These are: 
f - 0.10243 Mc, ti max - 1.9690 mlcrosec, and imax ■ 2233.0 
amp.  The constants, a and^3, were 0.20161 and 0.54359» 
respectively. 

An evaluation of the current (l) as a function of time for 
this particular case was made using Equation (A7) of the 
appendix.  The current values are shown in Table V. Also given 
are the voltages developed across the total circuit resistance 
(*R), the lumped Inductance (er), and the capacitance (ec) as 
functions of time.  Equations TA19), (A20), and (A2l) were 
used In these latter determinations, the results being shown 
graphically In Figure 7. 

The Instantaneous power distribution (Table VI and Figure 
8) for R. L, and C was calculated from Equations (A24), (A25), 
and (A265, Appendix A. The total power developed by the three 
components at any Instant Is equal to zero. Equations (A22) and 
(A23). The energies stored or dissipated by each of the three 
components were obtained from Equations (A28), (A29) and (A30). 
The total energy, W, available from the capacitor Is 12.31 

10 
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Joules. The energy dissipated In the resistance Includes that 
dissipated In the spark. These results are given In Table VII 
and In Figure 9. 

The fraction of the power and energy going Into the total 
circuit resistance  that Is due to the spark Is 0.179/0.900 or 
about 20#.  The power developed In the spark and the energy 
absorbed by the spark were determined as functions of time« 
Table VIII and Figure 10.  It Is seen that maximum power Is 
reached In about 2.0 mlorosec, the same time that maximum 
current Is reached.  The energy Is absorbed rather slowly at 
the spark, only about 1.55^ of the total available energy being 
absorbed In 1.0 mlcrosec. 

6.  SUMMARY 

A method of obtaining the average resistance of a spark 
discharging through a granular conductive mix in a non- 
oscillating discharge system has been described.  The spark 
resistance is shown to be a linear function of the spark-gap 
width for a given electrode arrangement.  This resistance is 
relatively independent of the density of the conductive mix 
over the range 0.7 to 0.9 g/cm3, and of the electrode material, 
whether aluminum or copper.  Sugar/aluminum (97/3) or RDX/ 
aluminum (97/3) mixtures gave comparable results. The power 
delivered to, and the energy absorbed by, the spark was 
determined for a typical conductive mix.  In the case of 
discharge of a 1.0-mfd capacitor charged to 5.00 kv, when the 
spark resistance is taken to be 0.179 ohm or about 20$ of the 
total circuit resistance, the peak power in the spark (for the 
conditions used) is about O.89 megawatt, reached in 2.0 mlcrosec 
The energy is dissipated by the spark rather slowly, about 
1,5%  of the 12.3 Joules available in 1.0 mlcrosec and only 
7.9$ in 2.0 mlcrosec. 

11 
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APPENDIX A 

ANALYSIS OF A SERIES RLC DISCHARGE CIRCUIT 

The type of pulse generator used in the conductive mix 
study was of the RLC, series-discharge type. Figure 1,  The 
effect of the coaxial cable in such a circuit is predominantly 
inductive, neglecting the very early effects of cable 
reflections and spark loading of the cable. The capacitance 
of the cable and stray inductance and capacitance are assumed 
to cause only secondary effects and are neglected here. 

The differential equation for the discharge of a series 
RLC circuit is 

Ri + L ü + £ - 0, (Al) 
dt  c 

or, the equivalent, 

RISUL^UI-O, (A2) 
dt    dt2  C 

where i • current and q ■ charge (8).  These equations simply 
state that the sum of the three voltage components is equal to 
zero. Differentiating (Al) gives 

RÜ+L^il+i-O. (A3) 
dt    dt2  C 

The general solution to equation (A3) is 

i - -1 exp (-at) » exp<.bt } - exp^-bt)    (A4) 
bL    I  J o 

(A5) 

(AO 

where E - initial voltage. 

'■äl 
and 

K/4L2  LC 

13 
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There are three forms of the solution and the derivatives 
depending on the value of R: 

L) For the under-damped circuit fR2 < -_.)  ; 

E 
(3L 

dt " /3L  "'r t     'J   M~    '' (AS) 

1 - i expZ-atj • sin/9 t, (A?) 

31   E  - exp r-at|.( ^9 cos ^ t - a sin /3 t) 

and 

ß   - 2 7rf - /-I - -S| , (A9) 
A/ LC  4L2 

where f Is the frequency.  The expression for /3 ,  &  real 
quantity. Is obtained by rearranging equation (A6), I.e. 

V LC   4L2    ' 

where J Is V-l . 

b) For the critically damped circuit (R2 - -—j ; 

I - ^ t • exp (-at) (All) • 

and 

II - i exp (-at}.(l - at)   . (A12) 
dt  L    ^   J 

c) For the over-damped circuit (R
2
 > iü) ; 

I - -1 exp -[-at J . slnh bt (A13) 

and 

II - -£. exp ■T-at'l (b cosh bt - a slnh bt) . 
dt  bL    L   J (A14) 

From these equations It Is seen that the Initial rate of rise 
of current Is governed only by E and L, I.e. dl/dt - E/L at 
t - 0 for all three cases. 

»This expression Is obtained by using L' Hospital's rule, since 
Equation (A6) IS In an Indetermlnant form when b - 0. 

14 
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By setting dl/dt - 0 In Equations (A8), (A12) and (Al4), 
the time to reach maximum current (t^ max) l8 obtained for the 
under-damped« critically-damped and over-damped cases, 
respectively: 

tl max " -j^ arctan j| , (A15) 

. 1 
'1 max  a  ♦ (A16) 

and 

t« max - — arctanh —    . (Al?) 
b        a 

These equations come from the expressions within the parentheses, 
The value of the quantity within the parentheses In each case 

c> Is equal to zero, since the factors outside the parentheses, 
0 containing exp £-at^ , can never be zero within a finite time. 

Since the Interest In this study Is mostly In the under- 
damped circuit, the expressions of voltage, power and energy for 
the Inductance, capacitance and resistance are given below for 
this particular case.  The solution to Equation (A2), which Is 
required In the analysis. Is 

j  '        " ■ "« (l - TE )'1/2 • «» £"»*} -l» ((31 * <r ) |AI8) 

where q0 ■ initial charge on the capacitor and cr - arctan ^3/a, 
(9), The expressions for the three voltage components, derived 
from Equations (A7), (A8), and (Al8) are: 

CR - IR - .J£ exp {-at} sin fS t     , (A19) 

eT - - L ^i- - - -— exp f-atl (/3 cos at - a sin & t) L      dt    ^^IJ'^ ^ (A20) 
and 

•c  . 3 . SSL (1 - Sf£ ) " exp f-at \   sin   ( at + cr )   , 0     c       c  V W L       J r- (A21) 

where -2. • £, the initial voltage. 
C 

15 
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The total power of the circuit at any Instant Is equal to 
zero. I.e. 

p - PR + PL ■•■ PC - 0     • (A22)      @ 

The Instantaneous power developed In each of the three components 
Is found by multiplying the corresponding voltage expression by 
the Instantaneous current, 1, 

P - 1 (eR + eL + ec) - 0  . ' (A23) 

The power generated In the circuit resistance Is then 

PR " leR ■ I2R     • (A24) 

The power delivered to the magnetic field Is 

pL - leL - - 1L 11      . (A25) 
dt 

The power delivered to the electrostatic field Is 

PC " l*c- l §        • (A26) 

The  total available energy,  W,   Is  expressed as 

W  - i CE2  . wR + wL + wc . (A27) 

The expressions for the energy, w, stored or dissipated In each 
of the three circuit components are obtained from the following 
relations: » 

(A28) 

(A29) 

and 

(A30) 

•WR  - W -   (wL.- «c) » 

WL-I^2 
* 

In      2 wc   - - C ec • 

*wR may also be found by Integrating the corresponding power 
curve, derived from Equation nA24), (Figure 8), 

16 * 
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TABLE I 

Resistance (R), Inductive Impedance (Z^), and Inductance (L) of 
a 7•6-meter length of type C coaxial cable as a function of 
frequency (f). 

f VT ZL R L 
(Mc) (ohm) (ohm) (microh) 

0.000 0.000 0.0 0.22 mtmi 

♦0.540 0.735 6.8 0.41 ^.02 
0.750 0.866 8.4 0.67 1.77 
1.000 1.000 10.5 0.83 1.67 
1.500 1.225 15.5 1.17 1.68 
2.000 1.410 21.5 1.43 1.72 
2.500 1.580 28.5 1.93 1.82 
3.000 1.730 36.7 2.72 1.95 

•Lower limit on R-P bridge. 

17 
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TABLE  II  * 

Experimental value»  of the half-period   (T/2),   time  to reach 
maximum current   (tj,  max)*  and  the maximum current   (Imax)   for 
the conductive mix circuit with 7.6- and  15.2-meter lengths 
of coaxial cable. 

7.6 meters: 
Print    T/2    ti max 
No.   (mlcrosec)(mlcrosec) 

15.2 

Average: 6.25 2.64 

^max. 
(amp) 

1174 4.81 2.05 2430 
1176b) 4.80 2.02 2470 
1176c) 4.80 2.02 2420 
1177aj 4.81 2.04 2360 
1177b) 4.77 2.02 2375 
1178a) 4.79 2.04 2430 
1178b) 4.81 2.04 2430 

Average: 4.80 2.03 2420 

meters: 
Print T/2 ^i max ,maxx 
No. (mlcrosec) (1 nlcrosec) (amp) 

1176b) 6.25 2.65 1830 
1176cj 6.28 2.65 1830 
1177a) 6.26 2.61 1740 
1177bj 6.18 2.64 1740 
1178a) 6.27 2.64 1750 

1778 

18 
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TABLE III 

Frequency of oscillation (f), maximum current (lmax)* 
and time 

to reach maximum current (t^ max)   as a function of total circuit 
resistance (R). 

R f tl max /maXx 
(ohm) (Mc)* (mlcrosec) (amp) 

0,6 0.10519 2.0732 2513.5 
0.7 0.10440 2.0370 2413.1 

**0.721 0.10421 2.0296 2392.9 
0.8 0.10348 2.0023 2319.9 
0.9 0.10243 1.9690 2233.0 
1.0 0.10124 1.9370 2152.0 
1.1 0.09992 1.9064 2076.2 
1.2 0.09844 1.8767 2005.4 
1.3 0.09682 1.8486 1938.7 
1.4 0.09503 1.8208 1876.3 
1.5 0.09307 1.7993 1814.4 
1.6 0.09093 1.7688 1761.8 

♦ This Is the frequency that would exist If the circuit were 
allowed to oscillate. , 

** Value of R without spark. 

19 
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TABLE IV 

Resistance of conductive mix spark and maximum current through 
the spark as a function of gap width (initial voltage 5.00 kv). 

A.  Sugar/aluminum (97/3)* copper electrodes with 30© tips. 

Observed Calculated 
Gap Width Density 

(g/cm3) 
Peak Current Resistance 

(mm) (amp) (ohm) 

0.10 0.9 2266 0.14 
0.36 0.7 «2174 0.25 
0.45 0.9   • 2240 0.17 
O.76 0.7 2174 0.25 
0.89 0.7 2184 0.24 
1.07 0.9 2127 0.31 
1.34 0.7 2123 0.32 
1.^9 0.9 2113 0.33 
2.10 No discharge --   

2.79 No discharge — ~" " 

B. Sugar/aluminum (97/3), copper electrodes with 30° tips, 
aluminum paint In gap. 

Gap Width 
(mm) 

Density 
(g/cm3) 

Observed 
Peak Current 

(amp) 

Calculated 
Resistance 

(ohm) 

0.10 0.9 2226 0.19 
0.30 0.7 2219 0.2C 
0.34 0.9 2211 0.21 
0.91 0.9 2157 0.28 
0.94 0.7 2174 0.25 
1.30 0.9 2143 0.29 
1.36 0.7 2148 0.29 
2.10 0.9 2058 0.41 
2.79 0.9 2001 0.49 

20 
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C. 

TABLE IV 
(cont.) 

Sugar/aluminum (97/3), aluminum electrodes with 30° 
tips. 

D. 

Observed Calculated 
Gap Width Density 

(g/cm3) 
Peak Current Resistance 

(mm) (amp) (ohm) 

0 .21 0.7 2224 0.19 
0 .41 0.7 2224 0.19 
0 .56 0.7 2249 0.16 
3 .05 0.7 2033 0.44 
3 .18 0.7 1937 0.58 

RDX/alumlnum (97/3), copper electrodes with 30° tips, 

Observed Calculated 
Gap width Denslt I Peak Current Resistance 

(mm) (g/cm3 (amp) (ohm) 

0. 51 0.9 2290 0.11 
0. 51 0.9 2235 0.18 
0. 51 1.2 2233 0.18 
0. 51 1.2 2233 0.18 

E.  RDX/alumlnum (97/3), aluminum electrodes with 30° 
tips. 

Gap Width 
(mm) 

Density 
(g/cm3) 

Observed 
Peak Current 

(amp) 

Calculated • 
Resistance 

(ohm) 

0.76 0.8 2169 0.26 
0.76 0.8 2137 0.30 
0.76 0.8 2160 0.27 

• 
0.76 0.8 2075 O.38 
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TABLE IV 
(cont.) 

F.  Sugar/alum In urn (97/3)» copper jelectrodes with 120° tips, 

Observed   Calculated 
Gap Width    Density   Peak Current Resistance 

(mm)       (g/cra3)       (amp)       (ohm) 

0.19 0.9 2302 0.10 
0.25 0.9 2320 0.08 
0.80 -0.9 2280 0.12 
1.13 0.9 2204 0.22 
1.59 0.9 2181 0.25 
2.92 0.9 No Discharge -- 
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TABLE V 

Calculated current and voltagea as a function of time In circuit 
used for conductive mix tests.  (C - O.985 mfd, L= • 2,232 mlcroh, 
E - 5.00 kv, and R - 0.900 ohm.) 

Time 
(mlcrosec) 

Current 
(amp) 

Voltage 
(volt) 

t I eR eL eC 

0.0 0.0 0.0 5000,0 -5OOO.O 
0.5 996.0 896.4 3843,4 -4739.9 
1.0 1707,3 1536.6 2501.2 -4037.8 
1-5 2115.2 1903.7 1151.1 -3054.8 

«1.9690 2233,3 2010,0 0.0 -2009.9 
2,0 2232,8 2009,5 - 69.9 -1939.6 
2.5 2101.2 1891,1 -IO60.8 - 830.2 
3.0 1779.2 1601.3 -1762.6 161.3 
3.5 1334.6 1201.1 -2156.4 955.4 
4.0 834.9 751.5 -2258.4 1506.9 
4.5 341.4 307.2 -2111.3 1804.1 
5.0 - 96.9 »  87.2 -1775.7 1862.9 
5.5 - 445,3 - 400.8 -1320,1 1721.0 

*Tlme to reach maximum current, twmax), 
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TABLE VI 

Calculated Instantaneous power as a function of time for R, L, 
and C.  (Values of circuit parameter are the same as for 
Table V.) 

Time Instantaneous Power 
mlcrosec) (megawatts >) 

t 12R      1L " 1 2 
dt C 

0.0 0.0000   0.0000 0.0000 
0.5 0.8928   3.8281 -4.7210 
1.0 2.6235   4.2703 -6.8938 
1-5. 4.0267   2.4348 -6.4614 

♦1.9690 e 4.4888   0.0000 -4.4887 
2.0 4.4869  -O.1560 -4.3308 
2.5 3.9734  -2.2289 -I.7444 
3.0 2,8490  -3.1360 0.2870 
3.5 1.6030  -2.8779 1.2750 
4.0 0.6274  -I.8856 1.2582 
4.5 0.1049  -O.7207 0.6159 
5.0 O.OO85   0.1721 -O.1805 
5.5 O.1785   0.5879 -0.7664 

tl (max) 
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TABLE VII 

Calculated energy distribution aa a function of time for R, L, 
and C.  (Values of circuit parameters are the same as for 
Table V.) 

Time 
(microsec) 

Energy 

Dissipated  1. T i2 
by R** 2 ijl 

0.0 0.0000 0.0000 
0.5 0.1408 1.1071 
1.0 1.0299 3.2531 
1.5 2.7237 4.9931 
1.9690 4.7567 5.5662 
2.0 4.8960 5.5637 
2.5 7.0460 4.9271 
3.0 8.7669 3.5328 
3.5 9.8753 1.9877 
4.0 10.4161 0.7780 
4.5 10.5795 0.1301 
5.0 10.5928 0.0105 
5.5 10.6325 0.2213 

±Cec2 

12.3125 
11.0646 
8.0295 
4.5958 
1.9896 
I.8528 
0.3395 
0.0128 
0.4495 
1.1184 
1.6029 
1.7093 
1.4587 

* fci , 
**Tota ir?i rcuit resistance, including spark.  (R ■ 0.900 ohm) 
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TABLE VIII 

Calculated power and energy of a spark within a typical conduc- 
tive mix as a function of time. 

Time 
(ralcrosec) 

Power 
(megawatt) 

*M  (max) ♦♦peak power 

Energy 
(Joule) 

0.0 0.0000 0.0000 
0.5 0.1776 0.0280 
1.0 0.5218 0.2048 
1.5 0.8009 0.5417 

♦1.9690 ♦♦0.8928 0.9373 
2.0 0.8924 0.9738 
2.5 0.7903 1.4014 
3.0 0.5666 1.7436 
3.5 0.3188 1.9641 
4.0 0.1248 2.0717 
4.5 0.0209 2.1042 
5.0 0.0017 2.1068 
5.5 0.0355 2.1147 
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FIG. 2 RESISTANCE   AND INDUCTANCE   AS A  FUNCTION   OF 

THE   SQUARE    ROOT   OF   THE   FREQUENCY   FOR   7.6 

METERS OF    TYPE   C   COAXIAL    CABLE. 
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(A)     TYPICAL   CURRENT    VS.    TIME   RECORD. 

.1  4_   .   1    ■   1   .    .    ■    .    ' .4 

■^r 
(B)  SIMULTANEOUS   VOLTAGE   AND CURRENT   RECORDS VS. TIME   FOR   7.6-METER 

COAXIAL   CABLE  WITH   INITIAL   VOLTAGES   OF   2,3,4, AND   5   KV. 

T 

(C)  SIMULTANEOUS    VOLTAGF.   AND  CURRENT   RECORDS  VS. TIME   FOR   7.6-AND 15.2- 
METER   COAXIAL   CABLE. INITIAL VOLTAGE: 5KV. 

'.    .   tJ ~ 

(D) CURRENT   VS. TIME   RECORD   SHOWING OCCASIONAL  OSCILLATORY  NATURE OF 
THE   DISCHARGE   WHEN   THE   THYRATRON   FUNCTIONS   IMPROPERLY. 

FIG 3    TYPICAL   OSCILLOSCOPE   TRACES  OF CURRENTS   AND   VOLTAGES. HORIZONTAL 
SCALE: 1.0   MICROSEC   PER   DIVISION. 
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15.2-METER   CABLE 

AL= 1.55 MICROHENRY 

■L =  2.232 
MICROHENRY 

R =  0.721     OHM 

L = 3.78 
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R = 0.945   OHM 
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FOR NO CABLE: 
L = 070   MICROHENRY 
R = 050  OHM 
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FIG. 4 GRAPHICAL SOLUTIONS OF L AND R FROM EQUATIONS (I) AND (2) 
FOR THE CIRCUIT OF FIG. I, USING 7.6-AND 15.2-METER COAXIAL 

CABLES. 
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FIG. 5        MAXIMUM   CURRENT AS A FUNCTION   OF THE TOTAL  CIRCUIT 

RESISTANCE. 
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FIG. 6 RESISTANCE OF CONDUCTIVE MIX SPARKS AS A FUNCTION OF 
THE ELECTRODE GAP WIDTH. ( DENSITIES WERE 0.7. 0.9 AND 

1.2 g/cm3— SEE   TABLE    JZ.) 
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FIG. 7 VOLTAGES ACROSS THE RESISTANCE, SELF-INDUCTANCE, AND 
CAPACITANCE OF A SERIES LCR DISCHARGE CIRCUIT AS A 
FUNCTION    OF   TIME. 
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FIG. 8 INSTANTANEOUS POWER  AS A FUNCTION   OF  TIME,  COR- 

RESPONDING TO THE  CIRCUIT  VALUES GIVEN  IN  FIG.7 
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TIME   (MICROSEC) 

FIG. 9 ENERGY   DISTRIBUTION   AS A   FUNCTION OF TIME, CORRESPONDING  TO 

THE CIRCUIT VALUES GIVEN   IN  FIG. 7 
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1/2   CE2=  12.31  JOULE 
SPARK   RESISTANCE  = 0.179   OHM 
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FIG.  10      INSTANTANEOUS POWER   AND     ACCUMULATED    ENERGY 

FOR    A    SPARK    WITHIN   A    TYPICAL    CONDUCTIVE 
MIX     AS    A    FUNCTION   OF   TIME,   CORRESPONDING 
TO    THE   CIRCUIT    VALUES    GIVEN   IN    FIG.   7. 
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