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NOTE

This is a revised version of a previous research report,
"Extensions of a Theorem by Clark," by A. Chcrnes, W. W. Cooper,
and G. L. Thompson, issued @s ONR Research Memorandum No hz; by
the Systems Research Group, A. Charnes, Director, The Technological
I.stitute and The Transportation Center, Northwestern University,
August 10, 1961 The present report--see Section 5ff,--extends the
previous work to include the general case of mixed systems of
equetions and irequalities, which had not been included in the

previous release
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I. Introduction
In [3]), F. E. Clark established the following result:

THEOREM- If a linear programming problem [ written in inequality

igzg] hes & solution, then either the primel constraint set or the
dual constraint set is unbounded The psrenthetical remark is our
addition to the statement of the theorem, but is implicitly assumed
by Clerk, as any reader of his paper will be zware The inequality

form of the general linesr programming probiem is:

Max c¢x Min wb

subject to subject to
(1) Ax <D wh > ¢
x>0 w > Q

T™his is sometimes referred to as the canonical form and used as a
standsrd point of departure far further analysest/ Yet some care
mey be needed, as is true here, if a full degree of generality and
understanding is to be achieved Note, for instance, that the
perenthetical remark must be included, as sbove, or the stated thsorem
is vulnerable to counter examples For coneider the following self-dual
linear programming problem:

Max 1 g; Min 72 1

(2.1 subject to subject to

&2 -1

v 7/

1y Vide [Lj pp 64 ff., from which we quote, as follows:" such

problem pairs {of nixed equatiocns and inequalities | are essentially
no more general than the ‘cenonical’ ones .




Here both the primal and the dual constraint set consist of exactly
one point and are certainly bounded.
It is true that the latter system is not in canonical fcrm  Also

the following equivalent system, which is in canonical form,

Max Xy - %, Min W, - ¥y
Subject to Subject to
(2.2) x1 - X, < 1 LI P k!
xl*x?ii wl‘w?zvl
X109 X, > 0 Vi Wy 2 0

cbviously has both counstraint sets norn-empty end unbounded Evidently
the theorem as stated does not provide snough light to illuminate fully
whet is involved even for the two simple situaticns displayed in (2 1)
end (2 ?). A further develo:ment :nd extension therefore appears to be
ia order.

While it is true thet every linear programming problem written
in inequality form can be written &s an equivalent problem in equality
form, and vice versa, it is important to observe that this concept of
equivalence does not imply that the constraint sets in the iwo ways
of writing the problem are identical or even have similar properties
Exa.ples (7 1) and {2 2) snow that boundedness properties of equivalent
problems may be widely different  All that the concept of equivalsace
implies is that from & solution of a Jinear programming problem in one

form it is possible to cbtuin a solution in the other form
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In the first part of this jpaper we reformulate the above theorem
to obtain a sherper &nd more general statement which we prove via =
linear programming formulation that gives d.rect access to the duality
theorem of linesr programming. The. we show that the situation of (2.1)
is essentially the only possible exception if the constreints involve
ver.ables that ¢re unrestricted 28 to sign and involve only equality
constraints We show that any such problem is equivalent, in a sense
to be defined, to a problem having these charscteristics We then
return to a further var;ant of the above examples, (2.1) and {2 ?)
and then establish a general theoren for mixed systens of equations and

inegualitises  Finally, we consider uiconstrained problems that are

projection equivalent to such mixed problems

2 Proof of the Dual Constraint Theorem

Since Clark's result is really one concerning dusl sets of

constraints, we ghell reformulate it more generally as follows:

THEOREM 1 If X = {x[Ax < b, x > O} is noneapty and

bounded then W » {w [wA >c, w> 0! is nonempty and

unbounded; alsc if W 1is nonempty and bounded then X is
noiv2mpty and unbounded

PROOTY Consider the dual problems

Max ex Min wb
subject to subject to
Ax < b vih > e

x>0 w >0




wiere e » (1, 1, ..., 1) If X is nonempty and bounded
then, by the dual theorem of linear programming, there
exist optimal solutions x# to the maximizgtion problem and
wi#* to the maximization problem ¢nd w# to the minimization
problem Of course, such & w# satisfies wi > 0 and w#h > e.

Now let a = max {1, « o cnl for any collection

1’

¢ = (¢ cn) Then for all « > a_ defining W = awx

1’ ¥y

we have

WA = g With > g a > aoe > cC.

Also, since w# > O it is clear that w > 0. Thus W contains

the infinite ray
{w/weaws, a> al

and is thersby unbounded
On the other hand, 1f W =« {w | wh > ¢, w >0} is nonemply
and bounded, we observe that equivalent expressions for X and

W are:

W fw | (T < ~cT, W > 0
X = ix IXT(-A)T > ( b\T, x> 0,

where T is the transpose operation. Then, to complete the

prcof, we need only consider the dual linear programming

problens
Max (-b)Tw! Min x'(.e)7
Subject to Subject to
FEL LgT xT(<A'T > )T
Wl » 0 £ >0,



(3)

and apply the previous result to show that X is nonempty and

unbounded .

Dual Problems in Unrestricted Variables

Next we consider the dual problems in unrestricted variables,

Max c§ Min T b

subject to subject to

A€ -1 Na e,

in ordexr Lo prove the following theorem

THEOREM 2. If =2 = (§ ) § ~ b} is nonempty &nd bounded
and H - {7? | TZ £ = ¢} is bounded, then both =. and |+
consist of a single point.

N
PROOF  Suppose that there could be two points, é ; # § 29

in = . Then §1 £, satisfies A( §1 £ ,) "0

Hence the infinite line
{§l§ § a(§1 §?\yallreala‘

is wontained in == , contradicting the boundedness which was

assumed to hold for this solution set  Therefore, if = is
nonempty and bounded it must consist of only one point

By the dual theorem, we immediately have H is nonempty
But then if }'“‘4 is also bounded, sn argument which is wholly
analogous to the one already given shows that H cannot

consist of more than one point

Another result concerning linear pregramming problems in

unrestricted variables js the following




THEOREM 3  1f = is nonempty end bounded then (&) =. and
f4 each consist of only one point when the rows of A are
linearly independent, and (b) —. consists of one point and
F{ is unbounded when the rows of A are linearly dependent.
PROOF For case (a) we have, by the previous argumeat, that
EE: consists of only cne point and F* is nonempty  Suppose
that F% could contain two distinct points 7?1, 7Z‘ Then
71} Tza £ O But ( 7?1 7zl‘ﬁ 0; i.e., the rows of
A are linearly dependent--a contradiction Thus F% consists
of only ome point
For (b) we obtain thet .= consists of a single .oint and

F{ is nonempty @s before Since the rows of A are linearly
depen ent, there must exist an 57 # 0 such that 37 b =0
I8 T( is any point in H then T( a?{ is also in H for

&ll real « This meansf‘{conteina an infinite line end hence

it is unbounded

L Projection Eauivalemce

It is very essy to change a pair of constreint sets of the type
described in Theorem 2 (of which (2.1) is a specific example) into s
pair of constraint seils both of which ere unbounded This cen be done
by merely adding & row and & column of zeros to A &nd adding & zero
entry to each of the vectors b and ¢ This operation turns the
constraint sets into "cylinder sets" in one higher dimension, and such

sets are always unbounded.




The nonverse operation is also possible, namely, if A has a
rovw or a column that is all zero and if the corresponding entry in
b or ¢ is also zero, then it is possible to project the problem into
8 lower dimension by eliminating the corresponding direct or dual
variable

We elaborate on this idea as follows: First recall (see [1]
p 7280, Theorem 13) that if & is an mxn matrix then there exist

nensinguler metrices S end T so that
SAT =~ D

whera D is & matrix of the form

(L-1) I

0 y
rxr x{nr

o(m r)xr Ofn r)x(n-r}

with I representing the identity matrix, O a zero matrix end the
subscripts are used to indicate the dimansions in each case Evidently
the rank of A is r Hence, if we define the projection matrices P &nd

Q as follows

( )]
P‘xm Irx 0r*x(m r)
“rxr
nxr
C'n-'\xr
®
then we swve that
4 3 PSATQ = PDQ ~ I

BXT
Here P projects m dimens.ocnal column vectors into r dimensional
row vectors, while Q projects n dimensional row vectors into r

dimensional row vectors




We now return to the dual problems (3), and introduce changes

in varistles of the form
(5) & - ox
(6) N« yps

where P and Q are projection matrices as above (except thet r
her& reed not be the rank of A), S and T are nonsingular, and T
is such that the last n-r columns of AT are all zeros end § is
such thet the last m-r rows of SA are all zeros. it is clear itnat
r is greater then or equal to the rank of A

he now want to introduce the idea of projection squivaleat linear
progremming problems and therefore produce the following dua! linear

programming problems:

Max ¢ TQx Min yPSb
¢abject to subject. to
(7)
PSATQx ~ PSb yYPSATQ = cTQ
Then we say that the linear programming problems (3) and are

prejection equivalent when we can obtein a solution to one of them

foom the solution to the other by mesns of the change of variable

equatinne (5) and (6
THEGREHM 4 If the linear programming problem in unrestrictad
variables (5, has & solution then it is projection equivelient
to tne problem

Max TQx ® Min yPSh
subject Lo subjuct to

X PSb y ,.TQ




where P, 5, A, T, and Q sstisfy (4 3) and r is the rank
of A.
Remark  Note that the dual constraint sets of (8)

cash consist of a single point and hence are bounded.
PROOF  As already remarked, given A, it is possible to
find P, S, T, and Q so that (L 3) is satisfied Hence
the changes of varisbles (5) and (6) sre well defined, with
r being the rank of A The soiution to {6) is obvious and
the two dusl problems share the common value c¢TQPSb If we
set

®

£+ 1epsp snd T cTQPS
then these values will make the objective functions of
(3) shsie a common value snd this will be an optimum for
(3) if these § and Tz satisfy the ccnstraints To show
thie we observe first of all that & - S DT ang that

QP ~ DT Then we have
(9) p & - arpsv - s lor lrosy - s lopTn - b
The final reduction, indicated on the right, follows
from the assumotion that (3} has a solution For, from
SA ~ DT}, and the definition of D - see (L 1) - we observe
that the last m-r rows of SA consist entirely of zeros.
This implies, if (3) hes a solution, that the last m-r
entries of Sb consists entirely of zeros; for otherwise the

LS
equations A » b, which ere equivalent to SA =~ Sb, would
9

be incoasistent.
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Thus on the assumption that (3) has a solution we have
established é: ~ TQPSb satisfies the constraints of this
problem. Similarly, one can show that 7? = cTQPS setisfies
the dual constraints and therefore these velues for é; and

.

72 sre optimal for (3).

5 The Mixed Constraint Case

As we observed maiediastely after (?.2), the geometric
properties ‘o- squivalent linear programming problens mey be
strikingly Jdifferent 1In fact, quite trivisl alterations can
bring this about For instance, one can always replace a problem
in which the rows of & are linearly independent by sn equivalent
problem whose matrix hes linearly dependent rows--e ¢., by meraly
repeating some of the originally ststed constraints--in order to
bricg Thgorem 3 into play and alter the dual solutlon set from one
which is bounded to one which is unbounded

Preperatory to dealing with the general case of mixed equatlions
and inequalities, we exhibit still another variation of (?.1) and

Fa

(2 2) Evidently the problum

Mex §'
Subject to
10.2) §~ 1
g2
does not alter any solution property for the direct problem in {22

The only point in = continues to be §L 1. the dual to {10.1), wig.,
°




M:’mTZ

(10.2) Subject to

7Z_>_l

admits of an unbounded solution set, H , 80 that the mere adjunztion

of a redundant non-negativity requirement produces & markedly
different situaticn from the dual to (2 1)

It is this kind of situation that Clark's theorem fajls to
illuminate and so we now elaborate for the general situation as
fol ows

THEOREM 5 If = is nonempty and bounded for

Max c1§10~‘2§d

Subject to
R TRAN
‘a §‘n A?:>§ 2P
€,z o0

then H is unbounded for

Minrzlbl . TQ'Q Z

Surject to
byt Mpn v o
My s MAn e
N,z o

PROOF If = is nonempty and bounded then a finite opbtimun

erists for every  in the problem

p—




Subject to
AR Ty A
Aafl"A??fz‘bz

§220

vhere p 1is a3 scalar, Aij’ for i, J=i, 2, 1is a partitioning

¥
o

of the matrix A, ¢nd e, is, as before, & vector with all

components equal to unity. By the duslity theorem, the

foliowing .roblem then also has a solution for every u ¢

L

Min 7yb, » Tp,

Subject to
Midyy * Npn = o
7I‘A 2 7“12 - Uy
7?3 % 10
Since Ke : for some K 0, every solution with . - K

is, 8 fortiori, 8 solution of
A .
MTay s NPy o o

77 A') 7??A?? = "R
n,>o0,

end hence is in I

ontrary to the asssertion of the theorem, that

4 ware bounded  But k| bounded implies therg exist
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. K:\>O’ i=1, 2, such that 'Kie:l,f- Tlif Kiefé

1 h)
for ald (N, N0 H  And also

My, Ny, < e,

for some M > 0. This, however, contradicts the assumed

existence of a solution satisfying

/ A
Mdo® My N,
Hence H raust be unbounded Qs B. D,

Our final result shows that it is possible o reformulste any
linear programming problem that has a solution in a2 finite number of

ways so that both its constraint sets are bounded one-point sets

THEOREM & Any solvable linear programming vroblem is
projection equivalent to a finite number of linear programming
problems heving onc-point (hence bounded) dual constraint

sats

PROOF  Suppose that the dual constrainte of the problem cre

A § < b and 7? A > ¢, where, as in the statement of Theorem 5,
some of the constraints are equalities and some inequalities,
&nd the nonnegativity conditions are correspondingly deterndned
Let § ° and 7?0 be solutions to the l.near programming problem
Then these two vectors satisfy the above constraints, together
with any nonnegativity constraints, and also satisfy Tzob = cg 2

Dut then

.Izo&lgo fnnb-' .§°< 72°A§°
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This means that whenever one of the constraints is satisfied
as & strict inequality the corresponding dual variable is
nacessarily zero. Now let A‘, b", and r:v be the corresponding
matrices with rows or columns deleted corresponding to zero

t
components of §O and 7?0 Let §°' end 720 be similariy

defined. Then by the above remsrks we have

o~ v ol N ' [} v v
A" E «n, MEA e, and MO 'S0

and also ary remaining nonnepativity conditions are still
i o o]
satisfied Hence § and TI are solutions to the

unconstreined dusl problems

Max ¢ § . Min TIU 2

Subject to Subject to

i § 2 TZ A =

Moreover, among the solutions to the latter unconstrained
probiem will be found ones which satisfy the desired nonne;ativity
cond_tions that may remain, and hence will be solutions to the
original -roblem.  Thus the unconstrained problem is projection
equivaient to the original problem, in the sense that smong the
solutlons to each problem appear solutions to the othor

we can now apply Theorem L and make further projection
equivelence of the unconstrained problem just found with one
whose dual corstraint sets are one-point

Finelly, we remerk tha! although there can be infinitely
many solutions to & linesr programming problem it is eviden?®

that there wre only a finite number of ways of crossing oud
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rows end columns, hence the above described process will lesad
to only a finite number of different projection equivalent

problems

6. Conclusion

Vie {3) and (8) snd their sssociated theorems, we have
attempted to illuminate one aspect of the geometric properties
egsoriated with dual pairs of linear programming problems  These
results, together with Theorems 5 and §, meke it possible either to
refove or to adjoin various constraining conditions in order to
obtain suiteble geometric properties for the sets = &nd Fﬁ
In msny ceses, 1t is desirable to secure proofs of various theorems
by constructing so-called linear programming cheins which aiLer
the geometric properties of direct or dual solution sets. The auhove
thecrems can be used Jor guidance in securing the geometric properties
that are wanted in these chains uf "equivalent” problems

There are otvious connections betweern the “extended thearen ot
the «iternetiver (see (2], pp 750 ff end ;i) and the first prejection
empioyed in the proof of Theorem & This, in turn, means th riety
of interesting spplicalions {e g , in economics) can be made from ihis
and the related developments in this paper  Wwe cannot pursue th Loy
hers, howaver Instead, we conclude by observing that no raal trouole
emarges from these developnents aa far as computations or solutions are
concerned Every constructive method for selving Linear programming

1/ GSee |}
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problens is now designed so that it daes not require one to exardine
more than & bounded set. Indeed, because of so-called regularization
pro ciures& thst bave now been developed, the computation may be
prosacuted ih a routine fashion to obtain all relevant information

even when a problem is not solvable or his en infinite optimum; fails

to have full rank, and so on

1 Vide g , Chapter V1 and Vit in [2]

.o
'
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