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NOTE 

This is a revised version of a previous  research report, 

"Extensions of a Theorem by Clark," by A.   Chfrnes, W    W     Cooper, 

and Q    L    "RiompBon,  issued as ONE Research Memorandum No    U2, by 

the Systems Research Group, A.   Charnes, Director, The Technological 

I.is^itute and The Transportation Center, Northwestern University, 

August 10,  V/bl      The present report    see Section 5 ff.--extends the 

pre/ious work to include the generai case of mixed systems of 

enactions and inequalities, which had not been included in the 

previous  release 



I.  Introduction 

In [31, F, E, Clark established the following reeu'XtJ 

THEOREM  If a linear programming problem [ written in inequf-Iity 

form] has a solution, ti-ien either the primal constraint set or the 

duel constraint set is unbounded  The parenthetical remark is our 

addition to the statement of the theorem, but is implicitly assumed 

by Clark, as any reader of his paper will be aware  The inequality 

form of the general linear programming problem is- 

Max ex Min wb 

subject to subject to 

(1^               Ax < h wA > c 

x > 0 ^ * 0 

This is sometimes referred to as the  canonical  form and used as a 

standard point of departure for further analyses. Yet some care 

may be needed,  as  is true here,   if a  full degree of generality and 

understanding is to be achieved      Note,  for  instance, that the 

parenthetical remark must be included,  as above,  or the stated theorem 

is wlnerable to counter examples      For consider the following self-dual 

'ineAir programming problem? 

Max    1   •£ Min     J^   i 

(2  i subject to subject to 
- 

1/      Vide  [l»j pp    6U  ff,,  from which we quote, as  follows;" such 
problem pairs  [of luixed equations and inequalities] are essentially 
no more general   than the    canonical    ones   .   " 



Here both the primal and the dual constraint set conaiat of exactly 

one point and are certainly bounded 

It is true that the letter system is not In canonical form  Also 

the followin£ equivalent system, which is in canonical form. 

Max Xj  x?      Min fc^  Wg 

Subject to Subject to 

x    - x, < 1 w.   - w    > 1 
(2  ?) 12- 12- 

-Xj^  ♦ x? <   -1 fc^  *  w? >  -1 

xl' xv    - 0 wi' "o * 0 

obviously has both constraint sets  non empty end unbounded      Evidently 

the  theorem as stated does not provide  3nough light to illuminate fully 

whrt  is involved even for the two simple  situations displayed  in (2 1) 

end (2 ?)      A  further development end extaasion therefore appears to be 

in order. 

While  it is true  that every  linear prograraminf, problem written 

in inequality form can be written as an equivalent problem in equality 

form, and vice versa,  it is  important to observe that this concept of 

equivalence does not imply that the constraint sets  in the  two ways 

of writing th& problem are identical or even have similar properties 

Exa.iples  (? 1)  and (2  2)  snow that boundedness properties of equivalent 

problems may be widely different      All that the concept of equivaleace 

implies is that from a solution of a iineür programming problem in one 

form it  ia possible  to obtain a solution in the other form 
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In the first part of this jiaper we reformulate the above theorem 

to obtain a sharper and more general statement which we prove via a 

linear programming formulation that gives cLrect access to the duality 

theorem of linear programming      Thei we show  that  the  situation of  (2.1) 

is essentially the only possible exception if the constraints involve 

ver^ables thet rre unrestricted as to sign  and involve  only equality 

constrrints      We show that any such problem is equivalent,  in a  sense 

to be defxnedj,  to a problem having these characteristics      We then 

return to a further  variant of the above examples,   (2-1) and  (2  ?) 

and then establish a generalthcoren for mixed systems of equations and 

inequalitieo      Finally, we consider u.iconstrained problems that are 

projection equivalent  to such mixed problems 

2        Proof of  the Dual Constraint  Theorem 

Since Clark s result is really one concerning dual sets of 

contstrainta, we shell reformulate  it more generally as follows- 

THEOREM 1      If    X   -  {x / Ax < b, x > 0)  is nonempty and 

bounded then    W ■•  Iw /wA > cy w > 0}     is nonempty and 

unboundedj also if    W    is nonempty and bounded then    t     is 

nonempty and unbounded 

PROür      Consider the dual problems 

Max    ex Min    wb 

subject to subject to 

Ax < b wA > e 

x   - 0 w    > 0 
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vhere e  "  (1, 1,  ..   , 1)       If   X    is nonempty and bounded 

then, by the dual theorem of linear proErarnmlng,  there 

exist optimal  solutions x» to the maximization problem and 

w* to the maximization problem ind w» to the minimization 

problem     Of course, such e w« satisfies w» r» 0 and w»A > e, 

Now let    a    - max {1, c  ,  ..., c  )  for any collection 

c -  (c. , ,  c  )-     Then  for all    a > a   defining, w r    aw« 
In •-    o ^ 

we have 

wA ■ c w*A >ae >ae >c. 
- -    o    - 

Also, since w* > 0 it is clear that w > ü      Thus    W    contains 

the infinite ray 

{w /w - aw*^    a > a  ) 

and is thereby unbounded 

On the other hand,  if W   ■   {w / wA ->    c, w > 0)   is nonempty 

and bounded,  we observe that equivalent expressions for    X    and 

W    tire i 

W  -  (w 1 (  A)TwT <   .cT. wT > Oj 

X - {x /xT(-A)T > (  b)T, xT > 0 

where T is the transpose operation. Then, to complete the 

proof, we need only consider the dual linear progranming 

problems 

Max (-b)V Min xl(c)T 

Subject to Subject to 

(-A)TwT < ( c)T xT(-A)T > ( b)T 

T T 
w  • ü x > 0 . 
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and apply the previous result to show that    X    iß nonempty and 

unbounded 

Dual Problems  in Unrestricted VariableB 

Next we consider the dual problems  in unrestricted variables, 

Max      a £ Min 7^ b 

(3) subject to 

i 
subject to 

in order  to prove  the following  theorenfi 

THEOREM 2      U Hi   '   { £   U £   - bi  in nonempty end bounded 

and H    -  { 7^ / 7| A  *> cJ  is bounded,  then both 3s!L   and  H 

consist of a single point.. 

PROOF Suppose that there could be two points, £ . t C „, 

in HI Then  ^ £ ? satisfie«    A^ £ j        £ ?)  " 0 

Henr.e the  infinite  lir« 

<   £   ' ^     "   f 1 * «C £l        f ?)i  
a^ real a' 

is contained in JZL. , contradicting the boundedness which was 

assumed to hold for this solution set Therefore, if 31 is 

nonempty and bounded It must consist of only one point 

By the dual  theorem, we immediately have   H   is  nonempty 

But then if H   is also bounded,  en argument which is wholly 

analogous  to  the one  already given shows that r       cannot 

consist of more than one point 

Another result concerning linear progruning problems in 

unrestricted variables  is  the  following 



THEOREM 5      If .-SL. is nonetipty end bounded then (a)^«   and 

each conaiat of only one point when the rowa of    A    are 

linearly independent, and (b)_-r^.   conaiata of one point and 

is unbounded when the rows of    A    are linearly dependent 

PROOF        For case  fa) we have, by the previous argument,   that 

ZZm   consists of only one point end r t   Is nonempty      Suppose 

thnt H   could contain two distinct points      7J 77 Then 

TJj ^ (. / 0      But  ( 7) j   .    7{,)A • 0{   i.e   ,  the  rows of 

A    are  linearly dependent  -a contradiction      Thus H   consists 

of only otts   point 

For  (b)  we obtain that .S-, consists of a single ..^oint and 

H   is nonempty aa before      Since the rohs of    A    are  linearly 

depen ent,  there must exist an   77 / 0 such  that   7? A  « 0 

If  7^  is any point in H   then   77      a 7^   is also in H   for 

all real    a        This meansHcontaina an infinite lino and hence 

it Is  unbounded 

^        ^rojg^lc" Equivalenr:e 

It  ia   very easy to chanje a pair of constraint sets of the type 

described in Theorem ^ (of which (2.1)  ia a specific exaiuiiie)  into a 

pair of constreint seta both of which sre unbounded      This o«n be done 

by merely adding a row and a column of  zeros to A and adding a  zero 

entry to each of the  vectors    b    and    c        This operation turnö the 

constraint sets into  "cylinder sets" in one higher dimension,  and such 

seta are always unbounded. 
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The converse operation is also possible,  namely,  if    A    has a 

row or a column that is all zero and if the corresponding entry in 

b or c is also zero,  then it is possible to project the problem into 

a  lower dimension by eliminating the corresponding direct or dual 

variable 

We elaborate on this  idea as follows:    first  recall  {see   flj 

p    ^80, Theorem 13^   that if A  is an mxn matrix then there exist 

noMlngular matrices    S    and    T    so that 

SAT  - D 

where D is  e matrix of the  form 

(li 1) I 0       , X r x r        rx(n r; 

(ra-.r)xr    (.r rjxfn-r)' 

with    I    representing the  identity matrix,    0    a aero matrix tnd the 

subscripts are used to indicate  the dimenaions in each case      Evidently 

the  rs.ik of A  la r      Hence,  if we define the projection matrices    P    end 

Q    as  follows 

P •  fl 0 . 
rxm       '  rxr rx(re r) 

rxr 

nxr 
(n-r)xrJ 

then wo see that 

(U i) FSATQ »    PDQ - I rxr 

Here P projects in dimens onal column vectors into r dimensional. 

row vectors, while Q projects n dimensional row vectors into r 

dimensional row vectors 
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We now return to the dual, problems (3), and introduce ObABfM 

in variables of the form 

(5) £- TQK 

(6) 7^- yPS 

whero    F    and    Q    are projection matrices as above  (except th£t    r 

herfe need not be the rank of A), S end T are nonsingalar,  and T 

is euch that the list n r columns of AT are all  zeros end    S    is 

such thet the lost m r rows of SA are all zeros.     It is clear tnat 

r    is greater than or equal  to the  rank of A. 

V\e novi want  to introduce the  idea of projection equivalent  lines; 

prograaalnt problems and therefore produce the  foliowing dua;  linear 

procr^rnnj ng probleins I 

Max        cTQx Min    yPSb 

6abject to subject to 

(7) 
PSATQx  -  PSb yPSATQ - cTQ, 

Then we sey  ü;at the  linear protramming probleras  (ö) and (7)  are 

Eü-li9£Ü?i} equivaletit Uien w© can obtain a  solution to one  of  them 

from the eolution to the other by means of the change of variable 

•qustioiui  (5) and (6) 

THEOREM h      If the  linear programming problem in unrestricted 

LabLaa  (.5,   has a  solution then it  is projection equivalent 

to tne problem 

Max      <;TQx • Min    yFSb 

/gs subject to sub joet  to 

x - PSb y  . eTQ 
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where P, S, A, T, and Q satisfy (U 6) and r is the rank 

of A 

Remark      Nate that the dual conatraint sets of (8) 

eacl) consist of a single point and hence are bounded 

PROOP      As already remarked,  given A,  it is possible to 

find P, S, T, üu-i Q so that (1| 5) 1» eetlsfied      Hence 

the changes of variables  (5) and (6) ere well defined, with 

r being  the  rank of A      The solution to ^6)  is obvious and 

the two dual problems share  the common value cTQPSb       If we 

set 

£ ■ TQPSb and       7?  ■ cTQPS 

then these valuer will  make the objective functions of 

(3)  shS7e  a common value and this will be an optimum for 

{5'»  if these   £    and   7^   satisfy the  constraints      To show 

this we observe first of all that A - S ^DT ^ and that 

T 
QP «• D        Then we have 

(v) A  £     ATQpsb - s ^ Wsb - a'hsPsb - b 

The final reduction, indicated on the ri^ht, follows 

from the assumption that (5) has a solution   For, from 

SA ■ DT , and the definition of D   see (l».l)  - we observe 

that the last m r rows of SA consist entirely of zeros 

This implies, if (3) has a solution, that the last m-r 

entries of Sb consists entirely of zerosj for otherwise the 

equations A ^ " b, which «re equivalent to SA £ - Sb, would 

be inconsistent 
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Thus on the assumption that (5) has  a solution we have 

established  C - TQPSb satisfies the constraints of this 

problem  SlmiUrly, one can show that 7^ - cTQPS sctisfxes 

the dual constraints and therefore Ihese velues for £   and 

7? sre optimal for (3) 

5   The Mixed Cons braint Csse 

As we observed InnadiatMly after (2-2), the geometric 

properties tor öquivalent linear pro£;rämming problems may be 

strikingly different  In fact, quite trivial alterations can 

bring this about  for instance, one can always replace a problem 

in which the rows of A are linearly independent by en equivalent 

problem whose matrix hva    linearly dependent rows--e i   > hy  merely 

repeating some of the originally stated constraints--ia order to 

brxug Theorem 3 into p(ay and  alter the dual solution set from one 

whi< h is bounded to one which is unbounded 

Preparatory to dealing with the general case of mixed equations 

end inequalities, we exhibit still another variation of (? I) and 

(2 ?)      Evidently the problem 

Max £ 

Subject to 

'10 O £ ... l 

£-« 
does not alter any aolution property for the direct prob]em in I?.!) 

The only point in Hi. continues to be £" ■ 1  The dual to (.IU 1), viz , 
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Min 7? 

(10 i>) Subject to 

admits of an unbounded solution set, H   ,  so that the mere adjunction 

of a redundant non-negativity requireraent producee a markedly 

different situation from the dual to (<? 1) 

It is this kind of situation that Clark's theorem faj la to 

illuraiaate and so we now elaborate for the general situation as 

follows 

THBORErt 5        If ^   is  nonempty and bounded for 

Max        c^   «J • 1    ■? s ^ 
Subject to 

Aii ii *\?i?-\ 
A.i £i 1 k?? L 1 b2 

£*>-<> 
Usen H   is unbounded for 

Min 7^ bj^ • nzh 
Subject to 

\*n ■ ^/n - *i 

liV Vt'tt*    a2 

PROOF If ^L  is nonempty and bounded then a  finite  optiinuin 

exists   for every    p.    in the problem 
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Max (c1£1 ^e? £2) 

Subject to 

where    p    Is a scalar,    A        for i, j-l, 2,    is a partitioning 

of the matrix A,  rnd e,   is, as before, a vector with all 

components equal  to unity.    By the duality theorem,  the 

following  problno then also hae a  solution for every    \x I 

Min  7J1b1 *   7J^2 

Subject to 

Since     Ke , > •-     for  some K      0, every solution with ^ »   K 

iB; a fortiori,  a  ablution of 

^1*11        ^Al"0! 

7l2>o, 

end hence   is in H 

■^upposy,    ontraiy  to the assertion of the theorem,  thst 

H were bounded      But H   bounded iiq)lles then* exist 
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K .   > 0,    i « 1, 2, such that       " ±ei *    'll -        ie2 

for all ( 71 ^ TJ^"1  ,  H An<l also 

for some    M > 0      This,  however, contradicts the assumed 

existence of a solution satisfying 

Hence H   must oe unbounded Q    E.   D 

Our final resuJt shows that it is possible to reformulate any 

linear programming problem that has a solution in a  finite number of 

waya so that both its constraint sets are bounded one point sets 

THEOHi.M 6        «ny solvable  linear programming or ob lern is 

projection equival^pt to a finite number of linear procramming 

problems hevlng ont;-point (hence bounded) dual constraint 

sets 

PROOI      Suppose that the dual constraints of the problem <re 

A £    < b and     7? A > c, where,  as in the  statement of Theorem $t 

some of the constraints are equalities and some  inequalities, 

and the  nonnegijtivity conditions  are correspondingly dettnndned 

Let   >      and 7?    be solutions to the  linear programming problem 

llien  these two vectors satisfy the above constraintsj   together 

with any normefrativity constraints,  and also satisfy    7?°^ ■ cf 

But then 

Tjo ft£
0     < 71% - c£0<   ^0

A£
0 
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This means that whenever one of the constraints is satisfied 

as a strict  inequality the corresponding dual variable  Is 
»       i « 

naceasBrily zero      Now let    A  , b  , and c    be the corresponding 

matrices wxth rows or columns deleted corresponding to  vero 

components  of f0 and     77°      Let    £"t     and    7?       be similarly 

defined      Then by the above remarks we have 

and also  any remaining nonnetativity conditions are still 

satisfied      Hence      f '  and   7^ Q    are  solutions to the 

unconstrained dual problems 

b Max       c    £ 

."iubjo t to 

'■    S      - h' 

.    Min     7^ 

Subject to 

7/    A     - c 

Moreover,  amonp the  solutions  to the  latter unconstraired 

probiemwiJl  be found ones which satisfy the desired nonne; atl/ity 

oonditloM  that may remain, and hence will be solutions  to  .ht 

original    . oblem.     TYius the unconstrained problem is projection 

equivalent  to the original  probte my  in the sense  that among the 

solutions  to ea^h problem appear solutions to the other 

We can now  ypply Theorem h and make further projection 

equivalence  of the unconstrained problem just  found with o-ie 

whose dual  constraint sets are  one-point 

Finally, we remark that although there can be infinitely 

lofiny soluo.ons to £ linear programming problem it is eviden*; 

thot  there  ure  only a  finite  number of ways of crossing oui 
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rows and eolumns, hence the above described process wiLi   lead 

to only a finite number of different projection equivalent 

problems 

6        Conciusiott 

Vie (3> and (8) and their associated theorems, we have 

at-tftiiptod to illuminate one aspect of the geomeiric properties 

esso'-iated with dual pairs of linear protrimraing problema      T^iese 

results,  together with Theorems 5 and 6, meke it possible eitter to 

remova or to adjoin various constraining conditions   in order  to 

obtain suitable  geometric properties  for the sets 3E1  end   H 

In usny cases,  It is desirable to  secure proofs of various theorems 
1/ 

.instructing so called linear  progmning chains        which alte-" 

the geonifctric properties of direct or dual  solution sets.     The above 

■3118 can be used for guidance  in securing the  geometric properties 

ire wanted in these chains of   "equivalent" problems 

There are otvioos connections between the   'extended  theorem oi 

the       i.enißtive"   (see   [2],  pp    ;^0  ff    and pj^jj and  the   first  projection 

empioyed in the  proof of Theorem 6      This,  in turn,  means that a  vai 

of Interesting applications  (e g   ,   in economics^ can be made  ft*om 

and the related developments in this paper      we cannot pursue  this  topic 

her;,  however      Losteed, we conclude b/ obeervlnf   thet no rssl   trouble 

easrgea  from theee durelopiaents sa  far  as computations or solutions are 

concerned      Kvcty constniutive method for solving  linear pro^rararaing 

1/     See 



16 

prob lens is now designed so that it doe 6 not require one to examine 

more than e bounded set  Indeed, because of 8o called ragulerization 

y 
procedures  that have now bean developed, the computation may be 

prosscuted in a routine fashion to obtain ell relevant information 

ev«.". whon a protlem is not solvable or his en infinit« optimum^ faila 

to have full rank, and so on 

1/  Vide, c g , Chapter Vl ind VII in U) 
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