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INTRODUCTION

The mathematical formulation of the most general problem
of Gptinmsl Gentrel ean be considered as a problem of Mayer
subJected to unilateral constraints, i.e., to certain restric-
tions expressible in terms of inequalities [ref. 2, 10, 12,
17 amel 194 .

The results of the classical calculus of variations in
their usual forms cannot give a general solution to this
problem because, among other things, the fundamental relation
of the calculus of variations, 1l.e., the equation of Euler-
Lagrange, is valid only 1in the case of points interilor to
the set of admissible points.

To date, the most general solution to this problem is
given by the Maximum Principle of Pontryagin, but in its
present form this principle cannot be appllied in certaln
situations, and 1ts validity has been proved in particular
cases only [ref. 2, 8, 15, 16 and 20]. It is our intention
to give a derivaﬁion of this principle for the most general
case.

This derivation corresponds to a very simple and very
intuitive geometrical interpretation in the event - space,
i.e., the state-space with an extra axis for the time
[ref. 22]. 1In this derivation we will take for granted
different existence theorems when the geometrical interpreta-
tion will be strong enough to motivate these assumptilons.

The existence theorems will be given explicitly in another
paper* [ref. 13]-

With the help of this method we will also treat some

examples which are for the most part the already Velaseteal "

problems of Optimal Control.

¥*

We also do not intend to give in this report a
complete analysis of the connections between these consldera-
tions and other parts of Mathematics, as Calculus of Varia-
tions, Theory of Semi-Groups, etc., or some applications to
Theoretical Physics, Operations Research, etc. All these
aspects will be considered later.
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SECTION I. GENERAL FORMULATION OF THE PROBLEM

We assume that the system under consideration can be
") 1in the

n-dimensional state-space x™ and that its evolution is

completely described by the point x = (xl, cees X
given by the system of ordinary differential equations:

1 = fi(xl, cee, X ul, N .. ur) = f
(1)
I g
) in U 1is called the control
vector. If u = u(t) 1is known and if appropriate initial

The vector u = (ul, 1..00 W

conditions are given the system (1) can be integrated in a
unique way when the Lipschitz conditions are satisfied.

The problem under consideration is to select a partic-
ular vector function u belonging to a given class F 1in
order to meet certain requirements which will be discussed
later 1n detail.

The specification of the class F 1is given by the
particular problem involved. This specification usually

takes the following form:

u(t) €F if and only if
(1) u(t) 1s piecewise continuous
(im) gi(u) >0 i = Ty ey k

Usually we will write the condition (ii) under the form

u€Q . For instance if (ii) is




@ will be the unlt hypersphere in

2 will be the unit hypercube in U ,
We assume that the 1initial value

x(T) = &,
The problem is to find a vector function

value

that:

(1)

(11)

Some
1) If we

u™

T, or if (11) 1is

N1, 1=1,

r
etc.

x(0) = €, and the final
of the solution of system (1) are given.
u(t)eF such
there exists a T > O for which the integration of
(1) with the control u(t) and the initial condi-
x(0) satisfies x(T) = €

a chosen performance criterion

" [®)
j;Af<x,u(tht

is minimum.

tion &l = o

(2)

particular criteria of (11) will be discussed

consider the case fo(x, u(t) )= 1 we will have

T
% %, u(ti\dt =T
Lro < s

i.e., we will require the process to take place in the minimum

time.

2) 1In the more general case

’ O
fof‘<x,u(tbdt

can for instance represent the total energy cdnsumption,

coBst, ete.

1s fixed before-

hand can be treated with this formulation by conslidering a

3) The particular problem for which T

*
state variable x* for which

LIRE




* *
1 3 X (0) =0 and < (T)

. Let us return to the mostegeneral case (&iip.

introduce the new function

Y
=J'O\ £ <X, u(‘tht

we can add the differential equation

prg1Mt5

x°(t)

XO

to the system (1)

X

f‘<x, u(t)>

with
x = (x°, xl, wanp B
e} 1 n
f—_—(f;f) -)f)
1 2 T
u=(u, u, ..., u

We assume that the functions -

e )

@

b

If we

and we will then have the extended system,

(3)

., n

are defined and sufficiently differentiable for all,

(x,u)GXnUr

Then our problem can be stated:
Find a function u(t)eF such that
there exists a T > O and a x°(T) p

integration of equation (3) with the control

(1)

the initial condition
o
x(T) = (X%, &)

T
Sf(x, u(t)dt is minimum.

0

o]

Cad X

for which the

u(t) and

w0 = (o,gl) satisfies




°

*
SECTION II. SET OF REACHABLE EVENTS

+ ®
Let us consider the (n+2) dimensional space rx 4

of the points (t, x°, xl, e xn). )
A reachable event 1is a point of 'TLXn+1' defined by

o function u(t)eF and a value T > O 1in the following way

T

xi=&‘ f1<x, u(t>dt { =0, 1, «c., N
0

subject to the initilal conditions x(0) = (o,gl)
The set of all reachable points will be called R(&l).
We will assume this set to be dense everywhere and its
poundary hypersurface to belong to R(&l). We will call
this boundary hypersurface S(&l).

Example

A system kl = u2 shall move with the condition

t
2 s 2
X ut dt —> minimum  and (ul) + (u7) <1
o i .

this means:

2 2
with ueQ <=> (ul) + (ug)

i E(@) = (©,0)) Biens K°(0]h= 0 B L0 = ©

s

2 =

The application of this concept in Control Theory has
been introduced independently by E. Roxin (private communica-
tion). See also ref. ZL.




The set of reachable events

R(0) is here the set of

potmte (%, x°, xl) such that %
2 2
&£ wE 4t
%2 0
in other words R(0) 1s the interior, surface included, of
the semicone of revolution around the t axis with the
generatrix «© = t. Thé boundary hypersurface S(0) 4s in
this case the surface of this semicone. See Fig. 1.
| x°
xl - 0, 8] _ i
B
"\
X 5
; \
i y
/ | =
/
\ /
.
%+ i
Figure 1
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PRINCIPLE OF OPTIMAL EVOLUTION

SECTION III.

G(€1,€2) the set of reachable events
By definition G(&l,ﬁg)
More formally this i1s equlvalent

Let us call
satisfying the end conditions.’
is a subset of- R(&l).
to .

i, . 2 n
G(€1,€2) = {P:PER(Ql) and (s s oo B )P = &Ez}
Among the elements of G(&l,€2) we will assume that

A is the one with the smallest x°.
in other words that the infimum of

We will assume that

such a point exists,
G(€1,€2) with respect to %x° Dbelongs to G(€1,€2).
A “1is the end point of the optimal

By definitilon
u(t) associated with this

trajectory and the function

trajectory 1is the solution of our problem.
We see immediately that by definition

s(&,) of R(&).

A Dbelongs to

the boundary hypersurface

Theorem 1
Every event of the optimal t
is immedilate.

nstitutes what we call the Principle of

rajectory belongs to S(&l).

The proof, by contradiction,

This theorem CO

Optimal Evolution. In the next paragraph we will express

analytically how to construct traJectorieS'belonging to

s(&)-

Examples

Let us first consider the example irntroduced at the end

i)
1s a glven value

of Section II. 1In that case G(0,a) where a
of Xl will be the set of all points to the right of the right
obtained by intersecting the semicone

branch of the hyperbola
R(O) by the plane x¥ — a. It 1s obvious that in such a case
G(0,a) for which %x° 1s minimum. Then

particular problem has no solutlion.

there 1s no point of
we conclude that this




Figure 2

2) Let us now consider the system

ko = ul + 1
kl = u2 + 1

* 2 2
with uef <=> (ul) + (ug) £ 1
1
and El =0 _ i.e., x (0)
g, =1 i.e., x(T)

= 8 =

!




The set of reachable events 1s defined bg

{(Xo—t)2 & fat- witg &5
N

“

[}

i.e., a semicone _entirely situated in the octan

rs® 5 #2230 , £ 20

G(0,1) 1s the set of events defined by
{(xo-t)2 + (1-t)2 < €2

t >0

These equations describe a parabola shown in Figure ke

The minimum acceptable value for x°  is

we see that in that case
=1

u' (t)

W(t) =0

W
|
]

X

° _ o

and

Figure 3
3 = gha




SECTION IV. GENERALIZED HUYGENS' PRINCIPLE

In geometrical optics there is a simple construction
based on Huygens' Principle, which gives the wavefront at
ot diff - Blpls Mt * dt); when the wavefrent at ¢, i.es,
WEE N Ta lenawm [oef 11 ]

Figure 4

From every point of W(t) a small circle of radius
cdt, called wavelet, is drawn and the exterior envelope of
the small.circles is W(t + dt). (See figure 4).

This is the procedure in the case of an homogeneous
isotropic medium, where ¢ is the light velocity. This

= IG =




construction can be generalized when these wavelets are no
more cilrcular, for instance in the case of the propagagion SLyal
a homogeneous anlsotropic medium.

The extension to the case of wavelets which are connected,
continuous, and differentiable has been extensively studied
(Theory of Contact Transformatlon, Hamilton-Jacobi Partial
Differential Equation, etc.), [Refs. 1, by B By, by 18, €8l

We will generalilze this construction to the cdse ©)
arbitrary wavelets, 1.e., wavelets for which the conditions
of connectedness, continulty and differentiability have been
dropped.

Examples
1) Let us assume that the wavelet assoclated to the point A
1s the line segment BC (see fig. 5).

b x°

B/

Figure 5

The construction of the new wavefront 1s described in Plig, .
One starts with a wavefront A A' A" .... and ene obfaims

+he new. wavefront C C' @




Wt + dt)

Figure 6

2) As the next example let us assume that, the wavelet
associated to the point A 1is represented by two points
| B and C (see. fig. 7).

=

x7h

\
4

- Figure 7




The construction of the new wavefront 1s described in fig. .

W(t + dt)

W(t)

Figure 8

In our particular problem we can consider the inter-
section of the boundary hypersurface S(&l) by an hyperplane
t =1 as a wavefront W(t). Then the wavefront W(t + dt)
can be constructed by the above described method. 1In fact
this will allow us to construct the whole surface S(&l)
from the point (O,&l) which is the intersection of S(&l)
by the hyperplane t = O.

Example

In the second example of Section III, W(t) is a circle
in the plane (xo,xl) with the center at (1,T) and a radius
equal to 1T. (See fig. 9).




t
r

The wavelet corresponding to a point

circle of radius
(See fig. 10).

The construction of W(t + dt) 1s given in fig. 11.

dt

x4

Figure 9

e
¥

T

A will be a

and of center (dt,dt) relative to

Figure 10

- 14
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<y
%2 | /
/ W(t + dt)

£t .+ dt

1
t £t + dt

Figure 11

Usually we will draw the wavelet in a space in without
the factor dt. Thls wavelet 1s then the mapping of & (set

of allowable u) into X7 by the relation

x. = f£(x,u)

The example under discussion 1s described by the differential

equations

"
]

u + 1
2 5 2
with ueq <=> (u’) + (u7) <1
1 2
u_ + 1

5
I

This means that a circle in the utu® plane (fig. 12) is

mapped into a circle in the x° x! plame (Tigs 18.):

In general the wavelet will vary with x, but since we
assumed that the functions f(x,u) are sufficiently differ-
entiable in x and u, we can nevertheless be sure that the‘
successive construction of the wavefronts W(t) is always
possible.

- 15 -

-




Y
o

I._I
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SECTION V. ANALYTICAL FORMULATION
OF THE PRINCIPLE OF OPTIMAL EVOLUTION

Let A Dbe a point of W(t) where W(t) 1s differentlable
and where p 1is the normal to W(t). Then the question arises,
by which value of u will the point A be transferred to a
point B of W(t +dt)°®

If we define H(x,p,u) = <p(f(x,u)>, that means the scalar
product of p and f, then the approprlate control function

*
u is determined by

u(x,p) = argmax H(x,p,u) v
uen

In other words the point AeW(t) wi1lll be transferred
into a point BeW(t + dt) if and only 1f we choose the control
u for which H(x,p,u) 1s maximum.

Justification: We see immedlately in fig. 14 that
BeW(t + dt) is the point corresponding to max <pl]f(x,u)> and
that to C, not on W(t + dt) corresponds a u* such that:

<p le(x,u*)> < <plf(x,u)>

For the time being we will assume that the conditions V

determine one and only one u.

Theorem II

If there exists a control u(t) transferring A€W(t)
into BeW(t + h) and CeW(t + h + k) where h and k > O,
then the "topology" of W(t + h) at B 1is larger or equal
to the "topology" of W(t) at A.

We define the symbol "argmax" by

X = argmax f(x) 1f and only if PUK ) = -mmg, £
X€E X€E

= IF =




Figure 14

Topology of a wavefront W at a point P 1s defined
as the set'of properties of W 1in the neighborhood of P,
for instance: existence, continuity; differentiability of
W 1in the neighborhood of P.

The topology at B 1s said to be larger or equal to
the topology at A, 1f all such properties of W(t) at A

-+ are also properties of W(t + h) at B.

The validity of this theorem is easily checked in the
previous examples. The general proof will be given in another
paper. The practical importance of this thecrem will be
stressed in Section XII of tQis report.

Corollary II
Let W*(t + dt) ©be the hypersurface obtained from
W(t) by using for all its points the same control u which

= &=




transfers AeW(t) into BeW(t+ dt).

By definition W*(t + dt) and W(t + dt) intersect at
the point B, and by application ofe Theorem II, W*(t + dt)
and W(t + dt) are even tangent at the point B.

wWH(t + dt)

Wit + dt)

W*(t + dt)

Figure 15 w(t)

In particular if W(t) admits a normal w(A) at A,
so will .W*(t + dt) admit a normal w(B) at B, by defini-
{ tion. Moreover the Corollary II states that W(t + dt) will
; also have a normal at B and that this normgl will also be
|
|

T(B).

= 19 =




SECTION VI. GENERALIZED HAMILTONIAN,
FORMULATION OF THE PROBLEM

The results obtained in the previous section allow us
to construct a trajectory belonging to S(El) if we know the
nermal p to W(t) for all points of the trajectory.

For this reason we will now establish a system of
differential equations for p.

Let us define:

I
(@]
'_1

I
—
n
‘e
o]

<p|(6X)i>

Vi

I
I
jos

<p|(6X)O>

where the (6x)i are n 1independent vectors tangent to
-W(t) at the point A and (6x)O is an arbitrary vector
independent of the (6x)i and directed toward the inside of
W(t).

We will assume that we choose the same control vector
for the point x and for all‘tﬁé n+l points X + (Sx)i,
1 =0, 1, 2, «..5 n3 which we will assume to be 1in the
nelghborhood of X.

We will require the invariance, along a trajectory, of

the relations VI, in virture of Corcllary II of the preceding

. *
sectlon. This gilves

<p‘(éx)i>' =0 i=0, 1, 2, 2 m
MEs 5 S
< l(ex),> + <pl(ex)};> =0
But (ox); = A(éx)i.
sy
The "dot" indicates differentiation with respect to
time.

- 20 -




where A =S

Jk X
Hence <p"(c5x)i> L <p|A(6x)i> = &
or <p'l(6x)i> + <Kb'(5x)i> = @

where KX 1s the transpose of A, a real matrix.
Hence

<p'+Ap|(ex)>=0 1

]
O
‘-
o
e
‘-
o

since the (ch)i are n+l independent vectors in the space
n+l
X ]

Hence

This last relation can be written in the form

Py = - ) (),

J
J
But &), = 5., = 2L
1J 4 il axl
. J
Hence p, = - af. D.
1 : dx- Y
J
- . i
If we define H(x,p,u) = <p|f(x,u)> = ; py T (% )
i
we see that
x* = fi(x,u)

is strictly equivalent to

- . ii _ S (p s

Bpi

- 21 -




and that p. = -

The complete integration along a trajectory on S(&l),
il.e., the integration of the state variable and of the asso-
cilated normal is given by

i _ 9H(x,p,u
2y

argmax H(x,p,u)
UERN

[
]




CHAPTER VII. PONTRYAGIN'S MAXIMUM PRINCIPLE

The results obtained at the end of the previous paragraph

form what is called the Maximum Principle of Pontryagin.

The derivation developed in this report gilves a geo-
metrical inteppretation of the vector function p 1intro-
duced in the formulation of this principle by Pontryagin
and his assoclates.

The interpretation of the vector function p as the
normal to the boundary hypersurface S(&l) of the set of
reachable events R(&l) allows us to overcome, with the
help of the Theorem II previously introduced, most of the
difficulties which usually arise in this application of
the Maximum Principle to a particular problem.

These are generally of two different natures:

1) How to choose the initilal value of the vector
function p, i.e., p(0).

2) What 1s to be done when the relation

u = argmax H(x,p,u)
ueq

does not determine a unlique value for u.

With our geometrical interpretation it 1s easy to answer

these questilons as we will show in the section devoted to
the synthesis of the solutilon.

L B3 =

2




SECTION VIII. CONTROL WITH NONZERO INERTIA

In the general formulation of the problem we have®defined
the class F of acceptable u(t) by

(B u(t) 1is piecewise continuous.

(i1) gi(u).z 0 § EWpmear; B LoBe s uen

For some particular problems the restriction (1) is not
strong enough: the rate of change of the control itself is
bounded, for instance for control devices wiéh nonzero
inertia, and the corresponding reinforced condition (i) should

read:

" .
1)) ui(t) 1s continuous and ui(t) <M
From the theoretical point of view 1t is very easy to
*
transform a problem with such reinforced conditions (i) into

a new problem with usual conditions (1).

Example

= ui(t) is to be continuous with ﬁi(t) < M we will
replace this control varlable ui(t) by a new one called
uk(t) and we will consider ui(t) as a new state variable
to which willl be assoclated the differential equation

- o4 -




SECTION IX. CHATTERING

In order to be sure that the solution proposed at the
end of the paragraph VI satisfies the requirements expressed
in the general formulation of the problem we have still to
check that the control function obtained by this method be-
longs to F.

F was defined as the set of functions w(t) ocush

that
(1) u(t) 1s piecewise continuous
(11) |ueq

The condition (ii) is satisfied by construction but it
could happen that the condition (1) is not.

In that case the control function given by the Maximum
Principle 1is an osclllating function of infinite frequency
characterized only by its mean value.

When such a case occurs, the problem has no solution,
mathematically speaking. It corresponds to a varlational
problem with a bounded minimizing sequence whose infimum
does not belong to the sequence.

Example

Find the shortest continuous and differentiable curve
Joining two given points A and B of a plane such that the
tangents to the curve at A and B have given directlons,
one of which at least being different from AB .

From a physical point of view, nevertheless, such a
pseudo solution is not without interest: it gives the i1nfimum
of xO(T), l1.e., a value impossible to actually obtain per-
haps, but such that it 1s possible to get closer and closer
to it from above.

In a specific problem when such a case arises the
problem must be reformulated and the modification (1)* given
in the paragraph VIII is to be performed.




SECTION X. MOVING TARGET

In some problems the terminal condition x(T) = €2 is
to be replaced by x(T) = €2(T) where ég(t) is a given
continuous trajectory and T 1is the time when the target
is hit. The interpretation in the space of events of such
a case 1s easy and we see immediately that the Principle
of Optimal Evolution 1s still valid with all its consequences.
In such a case T 1is the smallest value of ¢t for
which €2(T) € R(él)u Since we assume ég(t) to be continuous
Wwe can even say: T 1s the smallest value of t for which

ég(t) € S(él) where S(él) is the boundary hypersurface
of R(el).

Example: Brachistochrone tracking of a target with known

trajectory.

Let S Dbe the system to be controlled and T the
target. We assume that S and T are both moving in the
plane xlxg. We know the trajectory é(t) of the target
and we want to steer the system 1n order to hit the target
in minimum time (see fig. 16). At t = O the system X 1is
assumed to be at the point xl = 0, x2 = 0. The speed of the
system 1s bounded: x17 4 x2 < 1. Formally the-problem is:
Find the functions ul(t) and ug(t) which give the minimum

value T for which
x(R) = E(T)

where E(t) 1is a given function
x(t) 1is the solution of the system

= 26 =




e
(0 E(t)
£(0)
sS(0) )
Figure 16
-1 1
2 = u
x° = u°

with ul2 + u22 L
and x(0) = (0,0)
1

Solution: let us consider the event - space (t, x, x2) where

we have the trajectory ABCD of the target and the semilcone

of the reachable events of the system (see fig. 17).
1
[

v ]

Figure 17 Y
-

- ?'I'_'




The problem will have a solution if and only i‘f the
trajectory ABCD intersects the semlcone of reachable
events. Let C be the first such intersection, we see that
i =ril and that the optimal trajectory for the system is

OEC.

C

- 28 -




SECTION XI. SYNTHESIS OF THE SOLUTION

Preliminary Remarks

The Maximum Principle leads to a solution which 1is a
relatively strong minimum but not necessarily an absolute
strong minimum.

Example:

The two points A and B of Ww(t) (see fig. 18), not
in the same neighborhood on W(t), can be transferred to the
same point C of W(t + dt) (see fig. 19).

Figure 18 Figure 19

In such a case the trajectory t passing through the
point D for instance will give a relative strong minimum
*

but not an absolute strong minimum.

*
Example . =
xt = ul(sind x* + sin® x2)
x° = u2(sin2 x* + sin® x2)
2 2
with ueqQ <=> (ul) 4 (ue) £ 4
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In the followlng developments we will assume that such
cases willl not arise.

The next problem is to analyze the situation at a point
A of W(t) where W(t) 1s not differentiable.
Example: Consider the wavefront of fig. 20.

Figure 20

to which corresponds the wavelet of filg. 21.

Figure 21

In such a case the maximum principle applied to PL
will give the control vector corresponding to the point B,

and applied to PR will give the control vector corresponding
to the point C.

We see immediately that a control vector corresponding
to any point D, on the boundary of the wavelet between B

= 30 =




and C, will also transfer the point A to W(t + dtl. * BB
such a case we see that the transformation of W(t) 1into

W(t + dt) is not pointwlse one to one.

Such a problem could also arise in the case of a dif-

ferentiable wavefront at A 1if the relation

u = argmax H(x,p,u)
uen

does not determine a unique control u.
Example: *Consider the wavefront of fig. 22

P

w(t)

Figure 22

and wavelet at A of fig. 23.

P

e
A

Figure 23

In this particular case, the controls corresponding

respectively to B and C will both transfer
W(t + dt).

A into




l

Conclusions

If we consider the set of trajectories.obtained by
choosling all possible values of p(0) and all possible
values of the control vector satisfying the Maximum Principle,
we will obtain a generalized field of trajectories, corre-
sponding to the set of all rays in geometrical optics.

This generalized field may contain

1) branching points (see fig. 24%)

Figure 24

2) disparition points (see fig. 25)

Flgure 25

3) 1indeference reglons

i.e., a subset of Xn+l where all trajectories passing
through all its points and corresponding to all possible
controls belong to the generalized field.

Example

ol |

1
X7 = u




with X

o

0) = ©
dnd Iullg 1 <=> ueQ

It is easy to see that the wavefront W(t) is determined

by
x%(t) = t

|xt(t)] <t (see fig. 26)

0
X
S 4 -
X &
N /
N /
AN /
N +t  W(t) s
r 4
I\‘ & a
| N . Y !
| N i l
| N y |
' S ! 1
=it 0 +t =
Figure 26

and that if A € W(t) any lul <1 will transfer A to
W(t + dt).
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SECTION XII. IMBEDDING METHOD

We will present a general method for avoiding the dif-
ficulties arising in the case of a non-differentiable wave- o
Breont. - o

In the formulation given earlier the wavefront at, t = @
i.e., W(0) 1is reduced to a single point, namely (O,&l)._
Let us now assume that W(0O) 1is a n dimensional circular
manifold* of center (O,&l) and of radius €, a small positive
quantity. The orientation of this W(0) 1is completely
determined by i1ts normal p(0). By applying the Maximum
Principle to this new starting wavefront W(0) we may obtain
W(t) for any t > O. Because of the Theorem II (see Section
V), we know that W(t) 1s differentiable at A, a point of
W(t) corresponding to the point (O,&l) of W(0).

In general the trajectory  (les) obtained by the gset of
points of W(t) corresponding to (O,&l) of W(0O) for all
t > 0 will belong to the generalized field defined in the
previous paragraph and the whole field will be the set of all
such trajectories corresponding to all possible cholces of
W(0) 1.e., of p(0). This method gives a good interpreta-
tion of the initial choice of p(0) and its application will
help greatly the solution of most practical problems.

x
o 1By an dimensional circular manifold of centﬁr (O,&l) =

(T ¥ ss'de sy ) and of radius €, in the space X+ we
mean the set of points such that

11 .
Z pi(xi—yl) =0
1=0
n

(xt_y1)2 < &2
1=0

where the vector p 1s the characteristic orlentation of the
manifold. Example: 1if n =2 the circular manifold is an
ordinary circular disk of radius €.




SECTION XIII. APPLICATIONS

I. A second order system subject fto inertial forces only

shall be controlled in such a manner that a fixed target

i1s reached 1n minimum time.

'This'problem is usually given in the form:
How to choose the forcing term U with Iul < 1 in order
to find the quickest path of integration of

ax® _
at®
between x = O, %% = 0, and X = &, %% = 3

This system 1s equivalent to a system described by:

= d

v 2

X = X

+ 2

= u

with

x1(0) = x°(0) = O

(1) = a, x°(T) =Db
and |u| <1 <= ueQ . .

One should note that %x° =1 and x°(0) = 0 imply

x°(t) = t. It allows us to forget the variable x°  and

analyze the problem in the three dimensional space ¢t, xl, x2.

u = argmax H = sgn Py
uen

_35_




hence

il p{0) = (e

Construction of the

We have found

hence,

e cl = 0 and
i0e g

pihi Cl = 0 and
i € ey

il ¢y > 0 we
i.e.,

AL ol'< 0 we
i.e.,

_______ P o
Dl mifias QET = 1§
ox
> JH
By = = = =P
2 BXQ 1
py (£) = ¢q
p2(t) = -c;t + ¢,
1,02) i.e., pl(O) =c, and pQ(O) = ¢y
_____ trajectory_corresponding to_a_particular p(0):
u = sgn p,
Py, = —clt +cy
¢, < 0, we will have pg(t) <0 for t >0
the control will always be u = -1
c, > 0, we will have pg(t) >0 for t >0
the control will always be u = +1
o
will have for t > — » BL(E) < ©
cq 2
and otherwise , pg(t) > 0
c
the control will be u = -1 for t > —=
il
u = +1 otherwise.
€2
will have for t > + == , p,(t) >0
cy 2
and otherwise , pg(t) e e
the control will be u =41 for t > + Eg
; 1
u-= -1 otherwise.




In other words, there will be two types of trajectories:
- one type will be formed by a first arc with u = +1
followed by a second arc with u = -1
- the second type will be formed by a first arc with
u = -1 followed by a second arc with u = +1
with, in both cases, the possibility of having one such
arc of length zero.
The integration of the initlal system for

u=+1"  gives xl(t) =-% £2 + xg(o)t + xl(O)
x2(t) = t + x°(0)

u = -1 gives xl(t) = —-% £2 4 xg(o)t + xl(o)
x2(t) = -t + x2(0)

For an arbitrary trajectory of the first type we will

have

u = +1 for 0 <t <7 with @£ T LT
and
u = -1 Ter T8 & < T

This gilves the coordinates of a point reached at time T
after starting at xl(O) = 0 and XE(O) = @

xl(T) -% 2 —-—é—(T—T)2 + t(T-1) =-% ° (T—T)2

(=)
2
x“(T) =1t - (T-1) = 21-T
For a given T the system o represents parametrically

half of the wavefront W(T), the parameter <t being restricted
to 0< 1< T




The elimination of T 1n system a gives a segment ABC
of the parabola

2 bl (2 +T)

x(T) =5 T° - (T -
If we repeat the same procedure for the second type of tra-
jectory we obtain a segment ADC of the parabola

b
P I
—J‘:lll:"]'_":,l - 1 T= - fT = x_(g._}'l'_T]

=1
&

e

(see fig. 27). A 2 v\ -7

Figure 27

The trajectories for O < t < T are given in fig. 28,




Wavefront |
— Trajectory

Figure 28

If we congider the successive wavefronts we will have the

configuration given in fig. 29.

Wavefront

‘Trajectory

Figure 29




In this example we see clearly the structureof the
covering of the whole (xlx2) plane by the fleld of trajec-
tories from the origin. Between the origin and an arbitrary
point of this plane there is one and only one such trajectory,
hence the solution corresponding to the given end point. exists
and is unilque.

If we consider the trajectory OABC we can see how the
Theorem II applles: At any point X on OA the wavefront
1s one sided differentiable and this property 1ls conserved
for any point of the trajectory beyond X. At any polnt Y
on AC the wavefront admits a unique normal and thils property
1s conserved for any point of the trajectory beyond Y.

A direct construction of the field of trajectories wilth-
out applying the Imbedding Method would have given the follow-
ing results:

For any point X of O¥ we have the cholce between
u=+1 and u = -1, but this possibility of choice 1s con-
served if and only if we choose always u = +1.

If we compare this result with the content of Theorem II
we can say: When the topology on a wavefront 1s high, the
number of choices is low and reciprocal.

»

ITI Bushaw's Problem, i.e., Problem of Minlmum Settling Time

for a Second Order System with Subcritical Damping.

x7 =1
Xt = —x° (1)
2o = ™ = o

For simplicity zero damping is assumed.

xl(

0) = x°(0) = ©
with °
xl(T) =gy &K




and u <1 <=> ueq
One should note that x° can be ignored as in I.

Maximum Principle

o

h = <pl|f> = pl + p2f2 = —plx + p2(xl + u)

Optimal control: u = argmax H = sgn p, (2)
' uen

Differential System for

with the solution A cos(t + ¢)

A sin(t + ¢)

But as the differential system (3) and the switching function
(2) are linear and homogeneous in p, and p, we can normalize
the vector p, i.e., let A =1, which gives

P, cos(t + ¢)
’ (&)

P, sin(t + ¢)

where ¢ 1s determined by p(0) (see fig. 30).

(o)

Figure 30
= B =




Phae ihtegeatleon gf (1) for

xl(t) =dbcos (t+¥) + 1

2(t) =efsin(t+¥)

with £ and ¥ determined by x(0).
This trajectory is a circle of center (+41,0) and of frequency
1 (e.p.s.). Similarly the integration of (1) for u = -1

glves

l(‘c) = ofcos (t+¥)
()"

2(t) =clcos (t+¥)
where ¢ and ¥ are also determined by x(0).

This trajectory 1s a circle of center (-1,0) and of frequency
1.

We have found

. and

u(t) = sgn sin(t+9¢) (6)

In other words, the control function u will be alternatively

+41 and -1 the length of an interval belng 1w, with the ex-
ception of the first and the last intervals which may have a
length smaller than .

Conclusions: if 0< ¢ <7 u(t) will be




+1 on [0, m-¢]
-1 on [T-¢, 2m-¢]

(-1)" on [nT-¢, (n+l)m-¢] , etc., (see fig. 31).

“du(t)

0 ‘ T3¢ 2m-¢ 37T-9 Ar-¢ = %

Figure 31

Similarly 1f -7 < ¢ < 0, u(t) will be

-1 on [0, -¢]
) “on [=p, =24m]

(-1)" on_ [-¢4nm, -¢+(n+l)m]

An example for ¢ = 900 is given in fig. 32.

Switéhing Curves

If we call N1 the locus of the first switching of a
solution starting with u = -1 (such as the point A on
Flhee 32); N, will be the upper half unit circle around (-1,0)
(eee flg. 33). Similariy P,, the locus of the first switch-
ing of a solutlion starting with u = 41, will be the lower

half unit circle around (+1,0).

= gy =




Figure 32




Figure 33

If Ni is the locus of the ith switching of a solu-

tion starting with u = -1, and Pi the 1th switching of
a solution starting with u = +1, and if we use the operator
n to mean an inversion through (-1,0) (see dashed lines in

fig. 32), and p an inversion through (+1,0), we obtain

immediately:
Nop = PNo g
Nons1= "oy
Pon = 0Pong
Pon+1 = PPop
These rules and the knowledge of Nl and P1 give us by
induction the whole switching curve [ref. 5] (see fig. 34).
2
| %
N. P N

"
=
"
=

I_
"
bl

Figure 34
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The whole set of trajectories is shown in fig. 35.

Figure 35

Obviously every point of the plane is reached by one
and only by one trajectory.
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NG

Let x(T,¢) Dbe the value of x(T) corresponding to

p(0) = (cos ¢, sin ¢)
(see fig. 30).
The wavefront for t = T 1s the locus of x(T,¢) for all
Py Loz,
um) ={x(m0): v <o)

We know that

u(t) sgn sin(t + ¢)
By integration of the initial system with such a control we
find after tedious but simple computations (see Appendix)
*
that:
2
(

1(T+¢p) AT ik

L 8™ % (7a)

X(T,¢) = x (T,9) + 1x(T,¢) = -2ke
1r 0< ¢ < ml-ky)

= —2(k+l) o1(T+) _ AT _ 7k
iF v(l—kl) <o <7

= -2(k+l) e1(T+¢) § BT 4 gTVE

where Lk, and k are defined by

-

- .
Flease noke thet 4 =y=1, the imaginary unit, and not
an integer as in other places. ;

* 3¢
By definition [x] 1s the largest integer smaller or
equal to x.

s W =




In other words W = Tr(k1 + k)

8% & € L and
k integer

with

If we analyze the expressions (7) we can see that in

general W(T) will be constituted of four circular arcs

joined with continuous slope (see fig. 36).

(k%]

Figure 36
T:
T -1 T + l-wm which glves Kk, = 3

7 which can be writteni
e, and % = 1.

noj

This drawing is made for

2
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This general structure can degenerate and glve the follow-
ing situations:

(1) 1f k =1 the length of the two arcs of radius
2(k+1) is zero and the two other arcs of radius 2k Join
tangentially (in fact they form a circle, see fig. 37

| x?

=_}tl
Figure 37
This drawing is made for T = 7 which can be written
T =0mT+11m, L.e., kq =0, k =1 .

1

(2) 1if k = O the two arcs of radius 2k disappear
and the two other arcs join, but not tangentially (see fig. 38).

= b®-




x
-~ - _H\ H_r'__,..--+
rd %]
/ 2 N
l -ag, mdls
{ T X
(+1,0)!
/
_‘__.r’
a—
Figure 38
This drawing is made for T = % which can be written
1 ; 1 -
™= 5 T 4+ 0-m , 1.e., kl =5 and k = 0.
Situation (2) happens if and only 1f T < 7
In figure 39 we have drawn the successive wavefronts
T 27 b 51 . .
for T = =y 3 T [ B 27, °+-° and the trajectories
corresponding to ¢ = O, i<%,‘i<g, + %W, .
If we consider the trajectory OABCDEF -:- corresponding
to ¢ = —4% T We can repeat the remarks of example I on the
)

applications of Theorem II and Corrolary II. In short at
A and B W(t) 1is not differentiable, but from C outward,
W(t) 1s and remains differentiable.




— =— — — Switching line

Wavefront

Trajectory

Figure 39

4 B &




APPENDIX

DERIVATION OF THE EQUATION FOR THE WAVEFRONT W(T)
IN BUSHAW'S PROBLEM

As we have sgeen, from equation 5 in Section XIII,
Integration of the system, eq. Section XIII, for u
gives

xl(t) =dbcos (t+y) 2 1 (u

xg(t) =bsin(t+y)
With the convention
X(t) = xT(t) + 1x°(t)

(1) can be written

X(t+6_) = [X(t_) - 1]ett

t T We have

and in the particular case
X(W+to) = - X(to) + 2

Similarly the integration of the system, eq. (1)

Section XIII for

U -1 gives:
Xl(t) =dbcos (t+¥) - 1

x2(t) =ofsin(t+y)

With the convention (2), (5) can be written
t

_ i
X(t+to) = [X(to) + 1le =
and in the particular case Tt =7
X(w+to) = = x(to) -2

the
+1

)

(%)

The formulae (3) and (6)

formula

X(t+to)

The formula (8) is valid

be either +1 or -1.

can be replaced by the unique

(x(t,) - ule?® 4y (8)

for a constant u which can

Similarly (4) and (7) can be replaced by

e =




X(W+to) = - X(to) + 2u (9)

We have seen, Section XIII, eq.(6), that

u(t) = sgn sin(t+¢) (10)

In Section XIII, eq.(8), we have introduced the unique

decomposition
T = W(kl + k)

T
with k =i[=]

L iy )
and k= = = =]
In other words k 1is integer
and 0] S_kl <1

In the following computations we will have to distinguish
different cases depending on the périty of k. For this
purpose we will introduce further decomposition

k = k2 + 2k3
with

k2= O or 1

and k3 Integer.

This gives finally

| = W(kl + k, + 2k3) (am)
with

0<ky <1

k2= O or 1

’k3 integer

Let X(T,¢) be the value of X(T) corresponding to
p(0) = (cos ¢, sin ¢).
The wavefront for t =T is the locus of X(T,¢) for all ¢,

frels

W(T) ={x<T,¢>= r<o< v} (12)
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In order to solve our problem we have to exhibit a
all

general expression for

-Tr < ¢ L W
k2 =0
k2 = 0
k2 =0
k2 =0
bes = I
k2 =1
k2 =1
k2 =1
We see

sy forell T > 0 @Eme
We will distinguish 8 cases
and 0 £ ¢ < W(l—kl) Case no.
and W(l—kl) Lp LT Case no.
and -k T <% £ Q Case no.
and -1 < ¢ < —klw Case no.
and 0 < ¢ < W(l—kl) Case no.
and W(l—kl) <o <o Case no.
and -k, 7 < ¢ <O Case no.
and -7 < ¢ < -k T Case no.
immediately that

X(T,p) = - X(T,¢+m) = - X(T,0-7)

7
8

(13)

because W(T)- is symmetric with respect to the center of

coordinates
With the help of relation (13) the computation of
the cases 3,4,7 and 8 will be particularly easy when the

results of the cases 1,2,5 and 6 will be known.

k

2
From (10) and

E(Os@% = On

= 0

o
]

and

+1

+1

= -1

*d

on
on

on

on

on

Case no. 1

0< ¢ < m(l-ky)

(11) we see that

(O)W‘¢)
(W—¢:2W_¢)
(2m-¢,37-9)

((2k3—1)w—¢,2wk3—¢)
(27rk3—¢)T)

- 54 =

.2)
-3)

- 2K ;
-2k, +1)




Conclusion: in the case no. 1 we will have 2k3+l subarcs.

By assumption
X(0,¢) =0

that means the wave propagation starts at the origin of the
state-space. By application of (1-1) and (8)

X(r-6,8) = [X(0,0)-11e2(T¢) 4 1

= e—i¢ W 1
By application of (1-2) and (9)

X(EW'¢:¢) = - X(W—¢:¢) -2
A 3

By application of (1-3) and (9)
X(3W_¢:¢)

1l

- X(2m-¢,0) + 2

-+ 1?4 5
etc.
By recurrent applications of (1-1) and (9) for 1 =2, 3,---,

2k3 we obtailn

X(Eﬁk3'¢y¢) - X((2k3—l)v'¢:¢) -2

_e~ 10

= - bk + 1
* E
(proof by induction).
By- application of (1-2k3+1)wand (8)
1 (T-27k +0)
X(T,9) = [X(2mky-¢,¢) - 1le 374
i(wkl+¢) 1wk,
= - L4k e - e + 1
3

= _opei(THe) _ AT . dmk

(since k, = 0 in this case)



Case no. 2

k, = 0 and m(l-k,) < ¢

From (10) and (11) we see that

u = +1 on (0,7-¢)

W= =1 on (T-¢,0T-0)

u = +1 on (em-¢,37-0)

u = -1 on ((Ekg—l)v—¢,2vk3—¢)

u = +1 on (2k3—¢,(2k3+l)w—¢)

u = -1 on ((2k3+l)v—¢,T)

Hence we will have

iy (2-i) = (1-1) Tfer

in case no. 2 will be the same as in case no. 1 up to the

point

X(2mk, 6,9) = -e1? - b

1 =1,

By application of (9) and (2'2k3+l)

X((2k,+1)7-¢

3

By application of (8) and (

X(T,9)

= [X((2k3+l)w—¢,¢) + 1l]e

I

—2(2k3+l

—2(k+l)e

.
s

3

2k3

+ 1

<m

2k3+2 subarcs in case no. 2.

the computation

J¢) = -X(2mhkg=0,9) + 2

22k +2)

3

)ei(vkl+¢)

1(T+¢)

4
- e

e

= e 1% 4 up

3

ik

= e

+ 1

i

ik

i[T—((2k3+l)W»¢)]

-1




We use the relation

X(T,¢) = -X(T,¢+7) = -X(T,¢*) (13)

X(T,¢p+w) 1is given by case no. 2 because -k m< 9 <O
implies (1-k,)m < ¢* < T hence

1(T+p+m) _ AT _ e 17K

X(T,¢p) = -[-2(k+1)e
= —2(k+l)ei(T+¢) 4 gt g 4T
Case no. 4
k2 = 0 and -Tr < ¢ < _kl;
We use again the relation
X(T,¢) = -X(T,¢+m) : (13)

X(T,¢+W) is given by case no. 1 because -7
implies O < ¢ + 7 < (l—kl)w, hence

I
S
| A
f
N
I,_l
S|

X(T,¢) = _[_zkei(T+¢+w) o ol

—2kel<T+¢) 4 &I _ Lwk

Case no. 5
k., = 1 and 0< ¢ < W(l—kl)

From (10) and (11) we see that




u = +1 on (O, m-¢)

u= -1 on (m-¢,2m-¢)

a4 em (2m-¢,3m-¢)

u = -1 on ((2k3—1)w—¢,2wk3—¢)
u = +1 on (2wk3—¢;v(2k3+1)‘¢)
u = -1 on (W(2k3+1)‘¢:T)

Hence we 2k3+2 subarcs in case no.
2k, +1

(5'1) = (2'1) 3 1, =-°, 3

case no. 5 will be the same as in case no. 2

will have

for

_X((2k3+1)v—¢,¢) = e

1 4 ak a1

5.

* 2k
* 2k

‘- 2k

3)
+1)

3

3+2)

As

the computation in
up to the point

3
By application of (8) |
i[T—((2k3+l)w—¢)]
X(T:¢) = [X((2k3+1)w”¢:¢) + l}e -
ik i(mk, +¢)
e O 4 2(2ky+1)e I |
_ _gkei(T+¢) _ AT | Jimk
Case no. 6
k, =1 and w(l—kl) <o <o
From (10) and (11) we see that
u = +1 on (0,m-¢) (6-1)
u = -1 on (m-¢,27m-9) (6-2)
u = +1 on (2m-¢,37-9) (6-3)
u = +1 on (2wk?—¢,w(2k3+l)—¢) (6'2k3+1)
u=-1 on  (m(2ky+l)-¢,m(2k +2)-0) (6-2k;+2)
u = +1 on (r(2k,4+2)-¢,T) (6°2k +3)
2 2
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Hence we will have 2k3+3 subarcs 1n case no. 6. As
ey = (2-1) fear 1 =1, 85 -+, 2k3+1 the computation in

case no. 6 will be the same as in case no. 2 up to the point

X((2ky+1)7-0,0) = T e M, + 1

By application of (9)

X((2k3+2)w-¢,¢) = —X((2k3+1)v—¢,¢) -2

= —e_i¢ = 41{3 = 3

By application of (8) .
1¢ T-[7(2k +2)—¢]}
[X((2ky+2)T-0,0) - 1le {- 3 + 1

X(TJ¢) = (
1(k +1) 1(m(ky+1)+0)
= -e - 2(2k3+2)e + 1
_ _2(k+1)ei(T+¢) _ GIT _ imk
Case no. 7
k2 =1 and —klv < 0

X(T:¢) = —X(T:¢+7) (13)

but X(T,¢+m) 1s given by case no. 6 because kT <O
implies (l—kl)v < ¢+m < m. Hence,

X(T,4) = _[_2(k+1)ei(T+¢+v)_ 1T eiwk]
= —2(k+1)ei(T+¢) g &T0 5 o IOF
Case no. 8
ko =1 and -Tm < ¢ < —klw
X(T:¢) = 'X(T’¢+7) (13)
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but X(T,p+w) 1s gilven by case no. 5 because -7 < ¢ <
implies O < ¢ S‘(l—kl)w. Hence,
B —2kei(T+¢) 4 g1 _ glms

These results can be summarized by:
Case no. 1 k, = Q and 0< ¢ < W(l—Kl)

X(T,0) = _2ke1(T+¢) 1T | Tk
Case no. 2 k, =0 and W(l—kl) <o <

X(T,0) = -2(k+1)el(T+8) 1T o of™E
Case no. 3 k2 =0 and —le.S p < O

X(T,6) = -2(k+1)el(T+e) AT | imk
Case no. 4 k, =0 and - < ¢ < -k

X(T,¢) = —”kel(T+¢) 4 oiT L1k
Case no. 5 ky, =1 and 0< ¢ < W(l—kl)

X(T,@) 2kel(T+¢) iT |, Jimk
Case no. b6 ky, =1 and W(l—kl) <o <

X(T,6) = -2(k+l)el(T+®) Bl gdaik
Case no. 7 - k2 =1 and —le'g p <O

X(T,0) = -2 (k+1)el(TH®) | AT = imk
Gawe no., 8 kous 2 and -m< ¢ < -k

X (T+3) 2kei(T+¢) 4 1T 1Tk




We see immediately that the results in cases 5, 6, 7, and
8 are identical with the results in cases 1, 2, 3, and 4

respectively. In other words, k2 has no influence on the
structure of the final answers. Therefore, we will thus
restrict our attention to the cases 1, 2, 3, and 4 only,

in the consideration of the shape of the wavefront.

Case no. 1 0< ¢ < m(1-ky)

X(T+¢) = _okel(TH0) _ 1T 17k

This 1s an arc of a circle of'fadius 2k and of center

(1T 4 o174y
Extremal values: ¥ (F0) = —(2k+l)eiT g gtk (14)

X(T,m(1-k,)) = (2k+1)e™ - 1T (15)
Tangent:* BT, ) = —2kiei(T+¢)

: ' 1T
Extremal tangents: X(T,0) = -2kie (16)

X(T,m(1-k,)) = oKk1elTH (17)
Case no. 2 W(l—kl) <o < T

1
X(T,¢) = -2(k+1)et (TH) _ AT _  imk

This is an arc of a circle of radius 2(k+l) and of center
(__eiT _ ei”lTk)

Extremal values: ' X(T,v(l—kl)) = (2k+1)eivk L (18)

X(T,7) = (21c41)e™T - 17K (19)

* -
The dot on X(T,¢) means a derivation with respect to ¢

X(T,¢) = 'a% X(T,¢)



Tangent: X(T,p) = -2(k+1)ie
Extremal tangents: k(T,v(l—kl)) - 2(][{+1)iel-”_k (20)
X(T,7) = 2(k+l)ietT (21)

Case no. 3 —klv_g ¢ <O

X(T,¢) = —2(k+1)el(T+¢" o g0 g, gt T

This 1s an arc or a circle of radius 2(k+l) and of center

(eiT + eivk).

Extremal values: X(T,~k,T) = _(2K+1)eIKT 4 o1T (22)
X(T,0) = -(2k+1)elT 4 17X (23)

Tangent : X(T,6) = -2(k+1)1et(T+e)

Extremal tangents: X(T,—klv) = —2(k+1)ieikv (24)
X(T,0) = -2(k+1)1elT (25)

Case no. 4 R

X(T,6) = opeX(T+0) | AT _ _imk

This is an arc of a circle of radius 2k and of center

(1eIT _ 17k

Extremal values: X(T,-7) = +(2k+1)e T _ 17K (26)
X(T, -k 7m) = -(2k+1)e’ ™ 4 !T (27)

Tangent : X(T,p) = —2kiei<T+¢)

Extremal tangents: X(T,-7) = okielT (28)
X(T,-ky7) = ~2kielTX (29)
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By comparing the formulae (14) to (29) we can check
the contilnuity of X(T,¢) and the continuity, up to a real
factor, of X(T,¢), i.e.,the continuity of the direction of

the tangent.
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