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INTRODUCTION 

The mathematical formulation of the most general problem 

of 0pt4mal Control can he considered as a problem of Mayer 

subjected to unilateral constraints. I.e., to certain restric- 

tions expressible in terms of inequalities [ref. 2, 10, 12, 

17 and 19]- 
The results of the classical calculus of variations in 

their usual forms cannot give a general solution to this 

problem because, among other things, the fundamental relation 

of the calculus of variations, i.e., the equation of Euler- 

Lagrange, is tralid only in the case of points interior to 

the set of admissible points. 
To date, the most general solution to this problem is 

given by the Maximum Principle of Pontryagin, but in its 

present form this principle cannot be applied in certain 

situations, and its validity has been proved in particular 

cases only [ref. 2, 8, 15, 16 and 20].  It is our intention 

to give a derivation of this principle for the most general 

case . 
This derivation corresponds to a very simple and very 

Intuitive geometrical interpretation in the event- space. 

I.e., the state-space with an extra axis for the time 

[ref. 22].  In this derivation we will take for granted 

different existence theorems when the geometrical interpreta- 

tion will be strong enough to motivate these assumptions. 

The existence theorems will be given explicitly in another 

paper  [ref. 13 J• 
With the help of this method we will also treat some 

examples which are for the most part the already "classical" 

problems of Optimal Control. 

We also do not Intend to give in this report a 
complete analysis of the connections between these considera- 
tions and other parts of Mathematics, as Calculus of Varia- 
tions, Theory of Semi-Groups, etc., or some applications to 
Theoretical Physics, Operations Research, etc.  All these 
aspects will be considered later. 



SECTION I.  GENERAL FORMULATION OP THE PROBLEM 

We assume that the system under consideration can be 

completely described by the point  x = (x , ..., x ) in the 

n-dimenslonal state-space  xn  and that its evolution is 

given by the system of ordinary differential equations: 

= f1(x1, ..., xn; u1, ..., ur) = f1(x,u)  1=1, n 

(1) 

r \       r , u )  in  U  Is called the control The vector u = (u , . 

vector. If u = u(t) is known and if appropriate initial 

conditions are given the system (l) can be Integrated in a 

unique way when the Lipschitz conditions are satisfied. 

The problem under consideration is to select a partic- 

ular vector function  u  belonging to a given class  P  in 

order to meet certain requirements which will be discussed 

later in detail. 

The specification of the class  P  is given by the 

particular problem involved.  This specification usually 

takes the following form: 

u(t) eF    if and only if 

(D 
(11) 

u(t)   is piecewise continuous 

g1(u) > 0       1 = 1, ..., k 

Usually we will write the condition (li) under the form 

uen .  For instance if (ll) is 

uJ < 1 

- 2 



i  will be the unit hypersphere In  U ^ or If (ll) Is 

ju1»! <1,  1 = 1, ...,r 

ü     will be the unit hypercube In  U , etc. 

We assume that the Initial value  x(O) = £,  and the final 

value  x(T) = CO  of the solution of system (l) are given. 

The problem Is to find a vector function  u(t)eF  such 

that: 

(I) there exists a T > 0 for which the Integration of 

(l) with the control u(t) and the Initial condi- 

tion  I, = x(0) satisfies x(T) = £2 

(II) a chosen performance criterion 

0 

fYx, u(tndt (2) 

Is minimum. 

Some particular criteria of (ll) will be discussed 

1)  If we consider the case  f0(x;, u(t) ) = 1  we will have 

„T 

0 

r0fx,   u(t)S)dt = T 

I.e., we will require the process to take place In the minimum 

time. 

2)  In the more general case 

-T 

0 

fYx, u(tndt 

can for Instance represent the total energy consumption, 

cost, etc. 

3)  The particular problem for which  T  Is fixed before- 

hand can be treated with this formulation by considering a 
n* state variable x   for which 

3 



n* 
f   = 1 Ln*(0) = 0   and    xn*(T) = T 

, Let us return to the most«general case (il).  If we 

Introduce the new function 

x0(t) 

0 

f0/x. u(t)) dt 

we can add the differential equation 

io = fYx, uctf 
to the system (l) and we will then have the extended system, 

x = /x, u(t)) (3) 

with 

/ o   1       nN x=(x,x,...,x; 

f = (f0, f1, ..., f") • 

u = (u , u , . .. , u J 

We   assume   that   the   functions 

f Vx,   u(t n 1  =   0,    . . . ,   n 

are defined and sufficiently differentlable for all. 

(x,u)6XnUr 

Then our problem can be stated: 

Find a function  u(t)ep  such that 

(1)  there exists a  T > 0  and a x0(T) = X0 for which the 

Integration of equation (3) with the control  u(t) and 

the initial condition  x(0) = (0,^) satisfies 

x(T) = (X0, k0) 

(11) X0 = fffx, u(tndt  is minimum. 

- 4 
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SECTION II.  SET OP REACHABLE EVENTS* 

n+1 . s 

Let UB consider the (n+2) dimensional space  TX 

of the points (t, x0, x\ " *- ^ *      n+i   deflned by 
A reachable event is a point ot  1 A 
A reacnau^ ,. x n  in the following way 

a function  u(t)eF  and a value  x > 0  in t^ 

r t = T 

< x1 = r f^x, ud^dt 

V^ subject to the initial 

i = 0, 1, -•• >   n 

conditions  x(0) = (0,^) 

The set of all reachable points will be called  R^) 

We will assume this set to be dense everywhere -d its 
we VMX-LO. ^.^^  o/s \   We will call 
boundary hypersurface to belong to  R^)- 

thi is boundary hypersurface  S(l1) 

MäE£^  ,    • !   u2  shall move with the condition A system x  = u  farid-Lj- 

.2 -pS 
1\       ,    (i,d\       ■   1 

ul   dt  ._> minimum       and      (u   )     +   (u   )     < 

0 

this  means: 
• o 1 x     = u 

•1 2 x     =  u 
i    2 2   2 

wlth     uen  <=>   (u   )      +   (u   )     <   1 ^ 

and     x(o)   =   (0,0),      i.e.,   x°(0)   =0       and       x   (0)   =0 

f   ^hic,   mncept   in  Ccntrol  Theory  has 
The   application  of   this   ^°n|ep^in   (prlvate   communica- 
ntroduced   independently  by  E.   Koxm   ^ been   introduc 

tion).     See   also  ref.   21. 

5  - 
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The   set   of  reachable   events     R(0)   IS   here   the   set   of 

joints      (t,   x0,   x1)   such  that 

2 -,2 o O 1        ,   , 2 X +   x <   t 
» 

t   >   0 
® 

in other words  R(0)  Is the Interior, surface Included, of 

the semlcone of revolution around the^ t  axis with the 

generatrix x0 = t.  The boundary hypersurface  S(0)  is In 

this case the surface of this semlcone.  See Fig. 1. 

x0 = CKx1 = t 

Figure 1 

- 6 - 
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SECTION III.  PRINCIPLE OF OPTIMAL EVOLUTION 

Let UB call  GU^) the set of reachable events 

satisfying the end conditions. By definition GC^^ 

is a subset of- !(%)..  More formally this is equivalent 

^2) =rp:P6R(41)    and    (x
1^2, ..., xn)p - i2 j 

to 

Among the elements of 9(1^^) we will assume that 

A is the one with the smallest x°. We will assume that 

such a point exists, in other words that the infimum of 

GU ^ ) with resPect to x0 belonss to Q(h*h'm 
1
 By definition  A " is the end point of the optimal 

trajectory and the function  u(t)  associated with this 

trajectory is the solution of our problem. 
We see immediately that by definition  A  belongs to 

the boundary hypersurface  S ( ^ )  of RU-L)- 

Theorem I or &   \ 
 "" Every event of the optimal trajectory belongs to  SU-J- 

The proof, by contradiction, is immediate. 
This theorem constitutes what we call the Principle of 

Optimal Evolution.  In the next paragraph we will express 

analytically how to construct trajectories-belonging to 

Examples 

D  Let us first consider the example introduced at the end 

of Section II.  In that case  G(0,a) where  a  is a given value 

of  x1  will be the set of all points to the right of the right 

branch of the hyperbola obtained by intersecting the semicone 

R(0) by the plane  x1 = a.  It is obvious that in such a case 

there is no point of  G(0,a)  for which  x0  is minimum.  Then 

we conclude that this particular problem has no solution. 

-   7 - 



Figure 2 

2)  Let us now consider the system 

i0 = u1 + 1 
•1    2   , x  = u  +1 

w 
1 2 ,22 

1th  uen <=> (u ) + (u ) < 1 

and       ^1 = 0 1-e' ' xl(0) 

^2=1 1-e., x1(T) 

0 

1 



The set of reachable events Is defined by 

(x0-t)2 + (x1- t)2 < t2 

t > 0 

I.e., a semlcone .entirely situated In the octan 

t > 0 xu > 0 x1 > 0 

G(0,1)  is the set of events defined by 

(x0-t)2 + (1-t)2 < t2 

t > 0 

These equations describe a parabola shown In Figure 3- 

The minimum acceptable value for  x0  Is  x  = 0  and 

we see that In that case 

T 

uX(t) = -1 

u (t) = 0 

''x 

x^ = 1 

Figure 3 

- 9 - 
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SECTION IV.  GENERALIZED HUYGENS' PRINCIPLE 

In geometrical optics there Is a simple construction 

based on Huygens' Principle, which gives the wavefront at 

t + dt,, i.e.., W(t + dt) , when the wavefront at t. I.e., 

W(t), Is known [ref.ll]. 

W(t + dt) 

W (t) 

Figure 4 

Prom every point of  W(t)  a small circle of radius 

cdt, called wavelet, is drawn and the exterior envelope of 

the small- circles is  W(t + dt).  (See figure 4). 

This is the procedure in the case of an homogeneous 

Isotropie medium, where  c  is the light velocity.  This 

- 10 - 



construction can be generalized when these wavelets are no 

more circular, for Instance In the case of the propagation in 

a homogeneous anisotropic medium. 
The extension to the case of wavelets which are connected, 

continuous, and differentiable has been extensively studied 

(Theory of Contact Transformation, Hamilton-Jacob 1 Partial 

Differential Equation, etc.), [Hefs. 1, 4, 5, 6, 1*, l8, 22]. 
We will generalize this construction to the case of 

arbitrary wavelets, i.e., wavelets for which the conditions 

of connectedness, continuity and differentiability have been 

dropped. 

Examples 
ivelet associated to the point  A 

Is the line segment  BC (see fig. 5)• 

0 

1)  Let us assume that the wa^ 

:nt 

•A 

Figure 5 

The construction of the new wavefront is described in fig. 

One starts with a wavefront  A A' A" .... and one obtains 

"the new wavefrpnt  C C C  .... 

- 11 
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I 

ft 

+ dt) 

Figure 6 

2)  As the next example let us assume that.the wavelet 

associated to the point 

B and C (see.fig. 7)• 

A  is represented by two points 

x0* 

B •c 

A* 

Figure 7 

12 

x 



..:....       ....       . ..      ..  : 

The construction of the new wavefront Is described In fig. 8, 

j, x 

(t + dt) 

W(t) 

Figure 8 

In our particular problem we can consider the Inter- 

section of the boundary hypersurface  S(£-,)  by an hyperplane 

t = T  as a wavefront  W(T).  Then the wavefront  W(T + dt ) 

can be constructed by the above described method.  In fact 

this will allow us to construct the whole surface  S(^-|) 

from the point  (O,^,)  which Is the Intersection of  S(l^) 

by the hyperplane  t = 0. 

Example 

In the second example of Section III, W(T) Is a circle 

In the plane  (x ,x ) with the center at  (T^T) and a radius 

equal to  x. (See fig. 9). 

- 13 - 



W(T) 

X 

Figure 9 

The wavelet corresponding to a point  A will be a 

circle of radius  dt  and of center (dt,dt) relative to  A, 

(See fig. 10). 

x 

Figure 10 

The construction of  W(T + dt) Is given In fig. 11 

14 - 
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t   + dt) 

t   + dt 

t t   + dt 
Figure   11 

* n Usually we will draw the wavelet In a space  X  without 

the factor  dt.  This wavelet is then the mapping of  fi  (set 

of allowable  u) Into  Xn  by the relation 

x = f(x,u) 

The   example   under discussion   is   described  by  the  differential 

equations 

i0  = u1   +  1 
1 

1 2 
u     +  1 

with     uen    <=>   (u   )     +   (u   )     <  1 

1 P 
This means that a circle in the  u u   plane (fig. 12) is 

mapped into a circle in the  x x plane (fig. 13)- 

In general the wavelet will vary with  x, but since we 

assumed that the functions  f(x,u) are sufficiently differ- 

entlable in  x  and  u, we can nevertheless be sure that the 

successive construction of the wavefronts  W(t) is always 

possible. 

- 15 
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SECTION V.  ANALYTICAL FORMULATION 

OF THE PRINCIPLE OF OPTIMAL EVOLUTION 

Let  A  be a point of W(t)  where  W(t)  Is differentlable 

and where  p  Is the normal to  W(t).  Then the question arises, 

by which value of  u will the point  A  be transferred to a 

point  B  of  W(t + dt)? 
If we define  H(x,p,u) = <p|f(x,u)>, that means the scalar 

product of  p  and f,   then the appropriate control function 

u  Is determined by 

u(x,p) = argmax H(x,p,u) y 
uen 

In other words the point  AeW(t)  will be transferred 

Into a point  BeW(t + dt)  If and only If we choose the control 

u  for which  H(x,p,u)  Is maximum. ' 

Justification:  We see Immediately In fig. 14 that 

BeW(t + dt) Is the point corresponding to  max <p|f(x,u)>  and 

that to  C, not on W(t + dt)  corresponds a u* such that: 

<p|f(x5u*)>  <  <p|f(x,u)> 

For the time being we will assume that the conditions V 

determine one and only one  u. 

Theorem II 
If there exists a control  u(t)  transferring  A6W(t) 

into BeW(t + h) and  CeW(t + h + k) where  h  and  k > 0, 

then the "topology" of  W(t + h) at  B  is larger or equal 

to the "topology" of  W(t) at  A. 

We define the symbol "argmax" by 

X = argmax f(x) 
X€5 

if and only if    f(X) = max f(x) 
xeE 

17 - 
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Figure Ik 

Topology of a wavefront W at a point P Is defined 

as the set of properties of ¥ In the neighborhood of P, 

for Instance: existence^ continuity^ differentiability of 

W  In the neighborhood of  P. 

The topology at  B  Is said to be larger or equal to 

the topology at  A, If all such properties of  W(t)  at  A 

are also properties of W(t + h) at  B. 

The validity of this theorem is easily checked in the 

previous examples.  The general proof will be given in another 

paper.  The practical Importance of this theorem will be 

stressed in Section XII of this report. 

Corollary II 

Let  W*(t + dt)  be the hypersurface obtained from 

W(t) by using for all its points the same control  u which 

- 10 - 
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transfers  AeW(t)  into  BeW(t+dt), 

By definition W*(t + dt) and W(t + dt) intersect at 

the point B, and by application of« Theorem II, W*(t + dt) 

and W(t + dt) are even tangent at the point  B. 

Figure 15 W(t) 

In particular If W(t) admits a normal  7r(A)  at  A, 

so will .W*(t + dt) admit a normal  7r(B)  at  B, by defini- 

tion.  Moreover the Corollary  II states that  W(t + dt) will 

also have a normal at  B  and that this normal will also be 

Tr(B). 

- 19 - 



SECTION VI.  GENERALIZED HAMILT0NIANo 

FORMULATION OP THE PROBLEM 

The results obtained In the previous section allow us 

to construct a trajectory belonging to  S{|^|  If we know the 

normal  p  to W(t)  for all points of the trajectory. 

-■ For this reason we will now establish a system of 

differential equations for p. 

Let us define: 

<p|((5x).>  =0    1 = 1, 2, ...,n 

VI 

<p|(öx) >  = -1 

where the  (6x).  are  n  independent vectors tangent to 

W(t)  at the point  A  and  (<5x)o  is an arbitrary vector 

independent of the  (6x),  and directed toward the Inside of 

W(t). 
We will assume that we choose the same control vector 

for the point  x and for all the  n+1  points  x + (6x)1, 

1 = 0, 1, 2, ...,   n;   which we will assume to be in the 

neighborhood of  x. 
We will require the invarlance, along a trajectory, of 

the relations  VI, in virture of Corollary II of the preceding 

section.  This gives 

i.e.. 

<pl(6x)1>-  =0    i = 0, 1, 2, ..., n 

<p- |(öx)1>  +  <p|(6x)p  = 0 

But (öx)^ = A(öx) 

* 
The "dot" indicates differentiation with respect to 

time . 

20 - 



where 
> 

Ml 
ax1 

Hence 

or 

Hence 

i.e.. 

<p-|(6x)1> + <p|A((5x)1> = 0 

<p- |(öx)1> + dfej-i^x)^ = 0 

where 'K     Is the transpose of  A, a real matrix. 

<p"+ Ap I (6x)1> = 0    1 = 0, 1, ..., n 

p * + Ap = 0 

since the  (öx)   are  n+1  independent vectors in the space 
Xn+1. 

Hence 
P ' = - Ap 

This last relation can be written in the f orm 

P., = - a)u PJ 

But 

Hence 

(A)ij " Aji 

E 

bf3 

ox1 

öx1 

If we define    H(x,p,u) = <p|f(x,u)> = Y^ p  f1(x,u) 

we see that 

x1 = f1(x,u) 

is strictly equivalent to 

i 

x1 = 5H(x,p,u) 
opj 

21 
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and that P1 = 
^    ox1   J 

Is strictly equivalent to 

Pl = 
dH(x,p,u) 

ax1 

The complete Integration along a trajectory on S (^, ), 

I.e., ^the integration of the state variable and of the asso- 

ciated normal is given by 

"1 = aH(x,p,u) 
~5PY~ 

Pi = 
BH(x,p,u) 

ax1 

u  = argmax H(x,p,u) 
uen 

22 



CHAPTER VII.  PONTRYAGIN'S MAXIMUM PRINCIPLE 

• 

The results obtained at the end of the previous paragraph 

form what is called the Maximum Principle of Pontryagin. 

The derivation developed in this report gives a geo- 

metrical interpretation of the vector function  p  intro- 

duced in the formulation of this principle by Pontryagin 

and his associates. 
The interpretation of the vector function  p  as the 

normal to the boundary hypersurface  S(^)  of the set of 

reachable events  R(41)  allows us to overcome, with the 

help of the Theorem II previously Introduced, most of the 

difficulties which usually arise in this application of 

the Maximum Principle to a particular problem. 

These are generally of two different natures: 

1) How to choose the initial value of the vector 

function  p, i.e., p(0). 

2) What Is to be done when the relation 

u = argmax H(x,p,u) 
uen 

does not determine a unique value for  u. 

With our geometrical interpretation it Is easy to answer 

these questions as we will show in the section devoted to 

the synthesis of the solution. 

23 - 
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SECTION VIII.  CONTROL WITH NONZERO INERTIA 

In the general formulation of the problem we have defined 

the class  P  of acceptable  u(t)  by 

(i)   u(t)  Is plecewise continuous. 

(ll)  g.,(u)2l0   1 = 1., ...,k   I.e. j   uen 

For some particular problems the restriction (l) is not 

strong enough:  the rate of change of the control itself is 

bounded, for instance for control devices with nonzero 

inertia, and the corresponding reinforced condition (l) should 

read: 

(i)     u. (t)  is continuous and   u. (t)  <C M 

Prom the theoretical point of view it is very easy to 

transform a problem with such reinforced conditions (i)  Into 

a new problem with usual conditions (l). 

Example 

If  u.(t)  is to be continuous with u.(t)  < M we will 

replace this control variable  u.(t)  by a new one called 
u, (t)  and we will consider  u, (t)  as a new state variable k' 
to which will be associated the differential equation 

u1(t) uk(t) 

24 
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SECTION IX.  CHATTERING 

In order to be sure that the solution proposed at the 

end of the paragraph VI satisfies the requirements expressed 

In the general formulation of the problem we have still to 

check that the control function obtained by this method be- 
longs to  P. 

P was defined as the set of functions  u(t)  such 
that 

(I) u(t)  Is plecewlse continuous 

(II) uea. 

The condition (11) is satisfied by construction but It 

could happen that the condition (l) Is not. 

In that case the control function given by the Maximum 

Principle Is an oscillating function of Infinite frequency 

characterized only by Its mean value. 

When such a case occurs, the problem has no solution, 

mathematically speaking.  It corresponds to a varlatlonal 

problem with a bounded minimizing sequence whose Inflmum 

does not belong to the sequence. 

Example 

Pind the shortest continuous and dlfferentlable curve 

Joining two given points  A  and  B  of a plane such that the 

tangents to the curve at  A  and  B  have given directions, 

one of which at least being different from ÄB . 

Prom a physical point of view, nevertheless, such a 

pseudo solution is not without interest:  It gives the inflmum 

of  x (T), i.e., a value Impossible to actually obtain per- 

haps, but such that it is possible to get closer and closer 
to it from above. 

In a specific problem when such a case arises the 

problem must be reformulated and the modification (i)* given 

in the paragraph VIII is to be performed. 
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SECTION X.  MOVING TARGET 

In some problems the terminal condition x(T) = !„  Is 

to be replaced by  x(T) = 42(T)  where  |g(t)  is a given 

continuous trajectory and T° is the time when the target 

is hit.  The interpretation in the space of events of such 

a case is easy and we see immediately that the Principle 

of Optimal Evolution is still valid with all its consequences. 

In such a case  T  Is the smallest value of  t  for 

which  60(T) e R(41)o  Since we assume  40(t)  to be continuous 

we can even say:  T  is the smallest value of  t  for which 

|0(tl e SKI-, )  where  £>(!-,)  is the boundary hypersurface 

of R^). 

Example:  Brachlstochrone tracking of a target with known 

trajectory. 

Let  S  be the system to be controlled and  T  the 

target.  We assume that  S  and  T  are both moving In the 
1 2 plane  x x .  We know the trajectory  4(t)  of the target 

and we want to steer the system In order to hit the target 

in minimum time (see fig. 16).  At  t = 0  the system X  is 
1       2 assumed to be at the point  x  = 0, x  =0.  The speed of the 

•i2   -Q2 

system Is bounded:  x^-  + x^  < !•  Formally the-problem Is: 
1 2 Find the functions  u (t)  and  u (t)  which give the minimum 

value  T  for which 

x(T) = £(T) 

where       4(t)  is a given function 

x(t)  is the solution of the system 
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r 

s(o) 

T(0' 

C(o) 
l(t) 

u 

Figure l6 

u 

with  ul2 + u22 < 1 

and  x(0) = (0,0) 

1   2 Solution:  let us consider the event - space (t, x , x ) where 

we have the trajectory  ABCD  of the target and the semlcone 

of the reachable events of the system (see fig. 17)« 
1 



The problem will have a solution If and only If the 

trajectory  ABCD  Intersects the semicone of reachable 

events.  Let  G  be the first such intersection, we see that 

T = t^  and that the optimal trajectory for the system is 

OEC. 
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SECTION XI.  SYNTHESIS OP THE SOLUTION 

Preliminary Remarks 
The Maximum Principle leads to a solution which Is a 

relatively strong minimum but not necessarily an absolute 

strong minimum. 

Example: 
The two points  A  and  B  of W(t) (see fig. l8), not 

in the same neighborhood on W(t), can be transferred to the 

same point  C  of W(t + dt) (see fig. 19). 

Figure l8 Figure 19 

(t+dt) 

In such a case the trajectory t passing through the 

point D for instance will give a relative strong minimum 

but not an absolute strong minimum. 

Example 
i1   =  u^sin2  x1   +  sin2  x2) 

1 

o Pi 
u   (sin     x     + 

2s2 

iln     x   ) 

with     uefl  <=>   (u   )     +   (u   )     <  1 
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In the following developments we will assume that such 

cases will not arise. 

The next problem Is to analyze the situation at a point 

A  of  W(t)  where W(t)  Is not dlfferentlable. 

Example:  Consider the,wavefront of fig. 20 

W(t) 

Figure 20 

to which corresponds the wavelet of fig. 21 

Figure 21 

In such a case the maximum principle applied to  P 

will give the control vector corresponding to the point  B, 

and applied to  PR will give the control vector correspondini 
to the point  C. 

We see immediately that a control vector corresponding 

to any point  D, on the boundary of the wavelet between  B 
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and  #, will also transfer the point  A  to W(t + dt).  In 

such a case we see that the transformation of W(t)  into 

W(t + dt)  is not pointwise one to one. 
Such a problem could also arise in the case of a dif- 

ferentiable wavefront at  A  if the relation 

u = argmax ll(x»p,u) . 
uen 

does not determine a unique control  u. 

Example: Consider the wavefront of fig. 22 

W(t) 

Figure 22 

and wavelet at  A  of  fig. 23« 
* P 

B 

Figure 23 

In this particular case, the controls corresponding 

respectively to B  and  C will both transfer  A  into 

W(t + dt) . 

- 31 - 
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Conclusions 

If we consider the set of trajectories obtained by 

chooslng all possible values of  p(0)  and all possible 

values of the control vector satisfying the Maximum Principle, 

we will obtain a generalized field of trajectories, corre- 

sponding to the set of all rays in geometrical optics. 

This generalized field may contain 

1)  branching points (see fig. 24) 

Figure 214- 

2)  dlsparltion points (see fig. 25) 

Figure 25 

3)  Indeference regions 

I.e., a subset of  X   where all trajectories passing 

through all its points and corresponding to all possible 

controls belong to the generalized field. 

Example 

xC = 1 

1 
X  = u 

>2 - 
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with x1(0) = 0 

and |u | < 1 <=> uefl 

by 

It Is easy to see that the wavefront W(t)  Is determined 

x0(t) = t 

|x1(t) | < t   (see fig. 26) 

\ 
\ 
\ 
\ 
\ 

\ 

0 

/ 
/ 

/ 

/ 
/ 

+t  w(t)  / 

/ 

N.^. 

/ 

/   I 

I 
I 

0 +t 

Figure 26 

and that if  A e W(t)  any  lul < 1  will transfer  A  to 

W(t + dt). 

■■ : ■ ■  ■  ■  ■ ' 
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SECTION XII.  IMBEDDING METHOD 

- 
— ■ 

We will present a general method for avoiding the dif- 

ficulties arising in the case of a non-differentiable wave- « 

front. 
In the formulation given earlier the wavefront at  t = 0, 

i.e., W(0)  Is reduced to a single point, namely  (O,^)- 

Let us now assume that  f(0)  is a n dimensional circular 

manifold* of center  (0,^) and of radius  e, a small positive 

quantity.  The orientation of this  W(0)  is completely 

determined by its normal  p(0).  By applying the Maximum 

Principle to this new starting wavefront  W(0) we may obtain 

W(t)  for any  t > 0.  Because of the Theorem II (see Section 

V), we know that  W(t)  is differentiable at  A, a point of 

W(t)  corresponding to the point  (0,^)  of  W(0). 

In general the trajectory (ies) obtained by the set of 

points of  W(t)  corresponding to (0,^)  of W(0)  for all 

t > 0  will belong to the generalized field defined in the 

previous paragraph and the whole field will be the set of all 

such trajectories corresponding to all possible choices of 

W(0)  I.e., of  p(0).  This method gives a good interpreta- 

tion of the initial choice of  p(0)  and its application will 

help greatly the solution of most practical problems. 

*By a n dimensional circular manifold of center  (0,^) 
(y^y1;--• >yri) and of radius e,   in the space  Xn+1  we 
mean the set of points such that 

< 

n 

1=0 

n 

1=0 

P1(x -y = 0 

(x -y )  < e 

where 
manlfo 
ordlna 

the vector  p 
d.  Example: 

is the characteristic orientation of the 
if  n = 2  the circular manifold is an 

ry ilrcular disk:  of   radius     e. 

■ ■■ ■    ■■■■■■.■  ■■■ ■   ■   ■■.■,■:.;■.■...  .  . 
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SECTION XIII.  APPLICATIONS 

!   A second order astern sub.leot to Jjlgrtla^ forces only 

shall be controlled In such g manner that a fixed target 

Is reached in minimum time. 

This' problem is usually given in the form: 
How to choose the forcing term u with  |u| < 1  In order 

to find the quickest path of integration of 

dx2 

 2 = U dt 

between x = 0, gf = 0, and  x = a, ^ - b  . 
This system is equivalent to a system described by: 

i0 = 1 

•1    2 x  = x 

•2 x  = u 

with 
^(O) = x^O) = 0 

^(T) = a,     x2(T) = b 

and  |ul < 1 <=> uen 
One should note that  x0 = 1  and  xO(0) = 0 ^mply 

x
0(t) = t.  It allows us to forget the variable  x  and^   ^ 

analyze the problem in the three dimensional space  t, x , x' 

Maximum_Princlple 

H = <p\f> = P^1 + P2f2 = Plx2 + P2U 

u = argmax H = sgn P2 
uen 
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Pi = - TT = 0 

hence P1(t) = c1 

P2(t) = -c1t + c2 

with  p(0) = (c1,c2)   I.e., P1(0) = c1  and  P2(0) = Cg^ 

Construction of_the_traJectory_correspondlng_to_a_partlcular_p{0}: 

We have found     u = sgn p2 

Po = -c t + c, 

hence, 

If  c  = 0  and  c  < 0, we will have  P2(t) < 0  for t > 0 

i.Boj the control will always be  u = -1 

If  c  = 0  and c^  > 0, we will have  P2(t) > 0  for  t > 0 

I.e., the control will always be  u = +1 

If  c-, > 0 we will have for  t > —   ,  p (t) < 0 

and otherwise ,     p (t) > 0 
C2 

i.e., the control will be  u = -1  for  t > — 
cl 

u = +1  otherwise. 

c2 

If  c, < 0  we will have for  t > + —-  ,  Po(t) > 0 
1 1 

and otherwise  ,  p0(t) < 0 
2 i.e., the control will be  u = +1  for  t > + -— 
.1 

u = -1  otherwise. 

...  ,...:    .   .....  ..,.;:.._  .... , . . , ,    ,. . . , ■  ,    .  ■. .,   . 



In other words, there will be two types of trajectories: 

- one type will be formed by a first arc with  u = +1 

followed by a second arc with  u = -1 

- the second type will be formed by a first arc with 

u = -1  followed by a second arc with  u = +1 

with, in both cases, the possibility of having one such 

arc of length zero. 

The integration of the initial system for 

x1(t) = i t2 + x2(0)t + x1(0) u = +1 

u = -1 

gives 

x2(t) = t + x2(0) 

gives    x1(t) = - i t2 + x2(0)t + x1(0) 

x2(t) = -t + x2(0) 

Construction of the_wavefront_for__t_=_T 

For an arbitrary trajectory of the first type we will 

have 

u = +1    for  0 < t < T   with   0 < T < T 

and 

u = -1 for  T < t < T 

This gives the coordinates of a point reached at time  T 
1 2 after starting at  x (0) = 0  and  x (0) = 0: 

xV) =| T2 i(T-T)2 + T(T-T) = J T2 - (T-T) ^ 

> 

x (T) = T - (T-x) = 2T-T 

(°) 
J 

For a given  T  the system  a  represents parametrically 

half of the wavefront  W(T), the parameter  x  being restricted 

to  0 < x < T. 
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The elimination of  x  In system  a  gives a segment ABC 

of the parabola 

x1(T) = i T2 - (T - 
p      p 

■) 

If we repeat the same procedure for the second type of tra- 

jectory we obtain a segment  ADC  of the parabola 

(see fig. 27) 

Figure 27 

The trajectories for  0 <^ t ^C T  are given in fig. 28, 



•  

Wavefront 

Trajectory 

Figure 28 

If we consider the successive wavefronts we will have the 

configuration given in fig. 29- 

*- x 

Wavefront 

■Trajectory 

Figure   29 

;9 



In this example we see clearly the structureof the 
1 2 covering of the whole  (x x ) plane by the field of trajec- 

tories from the origin.  Between the origin and an arbitrary 

point of this plane there is one and only one such trajectory, 

hence the solution corresponding to the given end point, exists 

and is unique. 

If we consider the trajectory  OABC  we can see how the 

Theorem II applies:  At any point  X  on  OA  the wavefront 

is one sided differentlable and this property is conserved 

for any point of the trajectory beyond  X.  At any point  Y 

on  AC  the wavefront admits a unique normal and this property 

is conserved for any point of the trajectory beyond  Y. 

A direct construction of the field of trajectories with- 

out applying the Imbedding Method would have given the follow- 

ing results: 

For any point  X  of  0^ we have the choice between 

u = +1  and  u = -1, but this possibility of choice is con- 

served if and only if we choose always  u = +1. 

If we compare this result with the content of Theorem II 

we can say:  When the topology on a wavefront is high, the 

number of choices is low and reciprocal. 

II  Bushaw's Problem, i.e.. Problem of Minimum Settling Time 

for a Second Order System with Subcritical Damping. 

' o   ■, x =1 

•1     2 
X = -X (1) 

X +x  + u 

For simplicity zero damping is assumed. 

with 

x1(0) = x2(0) = 0 

x-L(T) = a,  X (T) = b 

- 40 - 



and u < 1 <=> uen . 

One should note that  x  can be Ignored as In I. 

Maximum Principle 

h = <p|f> = p1f
1 + p2f

2 = -p1x
2 + PgCx1 + u) 

Optimal control: 

pl = 

P2 = - 

u = argmax H = sgn p^ 
u€n 

Differential System for _p 

(2) 

Ox 

ÖH 

r = -P2 

(3) 

ox' 
= +P, 

with the solution p  = A cos(t + 0) 

p  = A sln(t + 0) 

But as the differential system (3) and the switching function 

(2) are linear and homogeneous In  p-,  and p_  we can normalize 

the vector  p. I.e., let  A = 1, which gives 

p., = cos(t + 0) 

Pp = sln(t + 0) 

where  0  Is determined by p(0)  (see fig. 30). 

(4) 

Figure 30 
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Analytlcal_Fovms_of_the_T^q_TYpes_of_Arcs 

The Integration of (l) for  u = +1  gives 

x1(t) =o^cos(t+^) + 1 

■ x2(t) =^Bln(t+^) 

(5) 

with <J# and   f determined by x(0). 
This   trajectory   Is   a   circle   of  center   (+1,0)   and  of  frequency 

1   (e.p.s.)-     Similarly  the   Integration  of   (l)   for     u =  -1   __ 

gives 
x1(t)   =ö/cos(t+^)   -   1 

(5)' 
x2(t)    =^03(1+?//) 

where c^ and f  are also determined by x(0). 

This trajectory Is a circle of center (-1,0) and of frequency 

1. 

ConstruetIon_of_the_TraJectory_Corresponding_to_a 

Particular  p(0). I.e., to_a_Partlcular_0. 

We have found 

.. and 

u = sgn p 
2 

hence 

u 

P2 = sln(t+4>) 

(t) = sgn sln(t+0) (6) 

In other words, the control function  u  will be alternatively 

+1  and  -1  the length of an Interval being ir,   with the ex- 

ception, of the first and the last Intervals which may have a 

length smaller than  TT. 

Conclusions:   if  0 < 0 < TT  u(t) will be 
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+1 on 

-1 on 

[0,   Tr-<p] 

[TF-f,    2Tr-0] 

(-l)n     on       [mr-0,    in+ljw-0]   ,   etc.,    (see   fig.   31) 

■ 

J-l 

u(t) 

7r-0 3Tr-0 0 
• 

2w-<p kv-d) 

-1 

Figure   31 

Similarly  If     -TT <  0  <   0,   u(t)     will  be 

-1 on        [0,   -0] 

+1 on [-0,   -2+7r] 

-1)        on        [-(P+rnr,   -0+(n+l)77-] 

An example for  0 = 90   Is given In fig. 32, 

Switching Curves 

N,  the locus of the first switching of a If we call 

solution starting with  u = -1 (such as the point  A  on 

fig. 32), N,  will be the upper half unit circle around (-1,0) 

(see fig. 33).  Similarly  P , the locus of the first switch- 

ing of a solution starting with  u = +1, will be the lower 

half unit circle around (+1,0). 
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Figure   32 
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N. 

(-1,0) 
lüiEl 

Figure   33 

If     N.      Is   the   locus   of  the      1 th switching of a solu 
th tlon starting with  u = -1, and  P.  the 1 "  switching of 

a solution starting with  u = +1, and if we use the operator 

n  to mean an inversion through (-1,0) (see dashed lines in 

fig. 32), and  p  an inversion through (+1,0), we obtain 

immediately: 

N_  = pN0  ., 
2n    2n-l 

N0 ,,= nN0 2n+l    2n 

P0  = nP0  n 2n     2n-l 

P     = pP 
2n+l   ^ 2n 

These rules and the knowledge of  N-,  and  P   give us by 

induction the whole switching curve [ref. 5] (see fig. 3^)• 
2 

Figure 34 
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The whole set of trajectories Is shown in fig. 35- 

f 

Figure 35 

Obviously every point of the plane is reached by one 

and only by one trajectory. 
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Wavefront_for  t = T 

Let  x(T,0)  be the value of x(T)  corresponding to 

p(0) = (cos 0, sin 0) 

(see fig. 30). 

The wavefront for  t = T  Is the locus of  x(T,0) for all 

<p,   I.e., 

W(T) =| x(T,0): -TT < 0 < TA 

We know that 

u(t) = sgn sln(t + 0) 

By Integration of the initial system with such a control we 

find after tedious but simple computations (see Appendix) 

that: 

X(T,0) = x1(T,0) + ix2(T,0) -2ke^T+^ - e1T + el7rk    (7a) 

if  0 < 0 < TTU-^) 

-2(k+l) e1^) - e1T - ei7rk 

if  TTU-^) < 0 < TT 
(7b) 

= -2(k+l) e1^^) + e±T  +  ei7rk 

if  -k TT < 0 < 0 
(7c) 

-2ke KT^) + eiT _ el^ (7d) 

If   -TT <; 0 < -k-, TT 

where  k   and  k  are defined by 
** 

Please note that  i = V^T, the imaginary unit, "and not 
an integer as in other places. > 

By definition [x] is the largest integer smaller or 
equal to x. 

^7 

■■■•■.■■■•     ■ ■ ■     ■   ■    ■ v,- . . .•;•: ■.... • 



- 
- 

i 

TT 

T  rTi ki= ¥ ' [7] (8) 

In other words 

with 

T = r(k1 + k) 

0 < k1 < 1 

k Integer 

and 

If we analyze ..the expressions (7) we can see that In 

general  W(T)  will be constituted of four circular arcs 

Joined  with continuous slope (see fig. 36). 

Figure 36 

This drawing is made for 

T = -i- TT + I-TT  which gives 

- 48 - 
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T = i| TT 

k-, 

which can be written 

= -=• and  k = 1. 



This general structure can degenerate and give the follow- 

ing situations: 
(1) If k = 1 the length of the two arcs of radius 

2(k+l) Is zero and the two other arcs of radius 2k Join 

tangentlally (in fact they form a circle, see fig. 37). 

Figure 37 

This drawing is made for  T = TT which can be written 
T - O'TT + I'TT , i.e., k1 = 0,k = l . 

(2)  if  k = 0  the two arcs of radius  2k  disappear 

and the two other arcs join, but not tangentlally (see fig. 38) 
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Figure 38 

This drawln 
rp  _ _  0 

g is made for 

TT + 0- TT , I.e. 

T = TT which can be written 
1 k  = -p  and k = 0. 

Situation (2) happens if and only if  T < TT 

In figure 39 we have drawn the successive wavefronts 
TT       2.TT       „       hlT       ^TT T = -5-^ ^-J rr,   -5S ^-,   2Tr,    •• • •   and the trajectories 
3  J.     J   J 2 

for  T1 - -, ~~-:    v . 

corresponding to 

If we consider the trajectory  OABCDEF •'•   corresponding 
p 

to  0 = - — TT we can repeat the remarks of example I on the 

applications of Theorem II and Corrolary II.  In short at 

A and B W(t)  is not differentlable, but from  C  outward, 

W(t)  is and remains differentlable. 
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W(2Tr) 

Switching line 

Wavefront 

Trajectory 

■a 
Figure 39 
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APPENDIX 

DERIVATION OP THE EQUATION FOR THE WAVEFRONT W(T) 
IN BUSHAW'S PROBLEM 

As we have seen, from equation 5 In Section XIII, the 

Integration of the system, eq. 1 Section XIII, for u = +1 

gives 

x1(t) =o4,cos(t+^) + 1 (1) 

x (t) =fl#sln(t+^) 

With the convention 

X(t) = x1(t) + lx2(t) (2) 

(l) can be written 

X(t+to) = [X(to) - lie" + 1   (3) 

and   In  the   particular  case     t   = ir    we   have 

X(7r+t   )   =   -  X(t   )   +  2 

Similarly the Integration of the system, eq.(l) 

Section XIII for  u = -1 gives: 

CO 

x (t) =erfcos(t+Tp)   -   1 

x2(t) =(j/sln(t+V) 

With the convention (2), (5) can be written 

X(t+to) = [X(to) + l]e 

and In the particular case  t = TT 

X(7r+t ) = - X(t ) - 2 

It 

(5) 

(6) 

(7) 

The formulae (3) and (6) can be replaced by the unique 

formula 

X(t+t0) = [X(to) - u]elt + u    (8) 

The formula (8) is valid for a constant  u  which can 

be either  +1  or  -1. 

Similarly (4) and (7) can be replaced by 
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Si . 

X(7r+to) = - X(to) + 2u (9) 

We have seen. Section XIII, eq.(6), that 

u(t) = sgn sln(t+0) (10) 

In Section XIII, eq.(8), we have Introduced the unique 

decomposition 

T = -^(k-, + k) 
J 

rp 
with k = [i] 

!  T  rTi and k., = — - L—J 
1  TT     TT 

In other words     k  Is Integer 

and 0 < ^ < 1 

In the following computations we will have to distinguish 

different cases depending on the parity of k.  For this 

purpose we will Introduce further decomposition 

with 

k = k  + 2k 

k2= 0  or  1 

and ko  Integer. 

This gives finally 

T = TTC^ + k2 + 2k3) (11) 

with 

0 < k, < 1 

k2= 0  or  1 

k^  Integer 

Let  X(T,0)  be the value of  X(T)  corresponding to 

p (0) = (cos 0, sin (p) . 
The wavefront for  t = T  Is the locus of  X(T,0)  for all 0, 

I.e., 
W(T) =< X(T,0): -TT < 0 < TT I (12) 

^ - 
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In order to solve our problem we have to exhibit a 

general expression for X(T,0)  for all  T > 0  and all 

-TT < 0 < TT.  We will distinguish 8 cases 

k2 = 0  and  0 < 0 < TTCI-^) Case no. 1 

k2 = 0  and  7r(l-k1) < 0 < TT Case no. 2 

k  = 0  and  -k1Tr < 0 < 0 Case no. 3 

k  = 0  and  -TT < 0 < -k17r Case no. 4 

k  = 1  and  0 < 0 < Tr(l-k ) Case no. 5 

k  = 1  and  7r(l-k1) < 0 < TT Case no. 6 

k  = 1  and  -^ir < 0 < 0 Case no. 7 

k0 = 1  and  -TT < 0 < -k TT Case no 

We see immediately that 

X(T,0) = - X(T,0+7r) - - X(T,0-Tr)  (13) 

because  W(T)- is symmetric with respect to the center of 

coordinates  X(O,0) = 0. 

With the help of relation (13) the computation of 

the cases 3,J+57 and 8 will be particularly easy when the 

results of the cases 1,,2,5 and 6 will be known. 

Case no. 1 

k  = 0    and    0 < 0 < 7r(l-k1) 

From (10) and (ll) we see that 

u = +1   on   (O,T-0) (l'l) 

u = -1   on   (Tr-0,27r-0) (l-2) 

u = +1   on   (2Tr-0J,37r-0) (1*3) 

u = -1   on   ((2kQ-l)Tr-0,27rk -0)    (l-2k ) 
J ^   VJ ^   —3, 

u = +1   on   (27rk3-0,T) (l-2k3+l) 
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Conclusion:  in the case no. 1 we will have  2k_+l subarcs. 

By assumption 

X(O,0) = 0 

that means the wave propagation starts at the origin of the 

state-space.  By application of (l°l) and (8) 

X(7r-0,0) = [X(O,0)-l]el(7r-0) + 1 

-i0 , i = e  ^ + 1 

By application of (1-2) and (9) 

X(27r-0,0) = - X(7r-0,0) - 2 

-10   „ = -e  ^ - 3 

By application of (1-3)  and (9) 

X(37r-0,0) = - X(2Tr-0,0) + 2 

= +e-^ + 5 

etc, 
By recurrent   applications   of   (l-i)   and   (9)   for     1   =  2,   3, 

2k,-,     we   obtain 

X(27rk3-0,0)   =  -  X((2k3-l)Tr-0,0)   -   2 

■10   -   4k.   + 1 =   -e 3 

(proof by induction) 

By application of (l • 2k3+l). and (8) 

X(T,0)   =   [X(27rk3-0,0)   -   l]e 
l(T-2Trk  +0) 

J        +  1 

l(7rk  +0) iTrk 
-   -   4k e 1 - e        1   + 1 

„    i(T+0) IT iTrk 
=  -2ke   v     ^'   -   e + e 

(since  k0 = 0  in this case) 
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Case no. 2 

k0 = 0    and    ^(l-k, ) < 0 < TT 

Prom (10) and (ll) we see that 

u = +1 

u = -1 

u = +1 

u 

u = +1 

u = -1 

on     (O,7r-0) 

on     {T-<P ,(pir-(p) 

on     (2T-$, STT-^) 

on 

on 

on 

((2k.3-l)7r-0,27rk3-0) 

(2k3-0,(2k3+l)7r-0) 

((2k3+l)ir-0,T) 

(2-1) 

(2-2) 

(2-3) 

(2-2k3) 

(2-2k +1) 

(2-2k +2) 

Hence we will have  2k^+2 subarcs in case no. 2. 

As (2°l) = (1-1)  for  1=1, •••, 2ko  the computation 

In case no. 2 will be the same as in case no. 1 up to the 

point 

X(27rk3-0,0) = -e^   -   4k3 + 1 

By application of (9) and (2-2k +l) 

X( (2k3+l)7r-0,0) = -X(2Trk.3-0,0) + 2 

= e-10 + 4k  + 1 

By application of (8) and (2°2k3+2) 

7r-0,0) 

1 (-rrk   +0)        iirk 

X(T,0)   =   [X( (2k  +l)7r-0,0)   + l]e 
l[T-((2k  +l)Tr-0) 

-   1 

=   -2(2k  +l)e 

o/l    _ x   i(T+0) IT iTrk =   -2(k+l)e    v     ^/   -   e        -   e 
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Case  no.   3 

k     =  0 and -k  TT <  </> <   0 

We   use   the   relation 

X(T,0)   =  -X(T,0+7r)   =   -X(T,0*) (13) 

X(T,0+7r)     Is   given  by  case   no.   2  because     -k-, TT <  0  <  0 
implies   (l-k-, )T <  (p*  <  v    her mce 

X(T,0)   =  -[^(k+De1^-^)   -   e1T   -   e
l7rk] 

=  ^(k+De1^)   +e
1T  + el7rk 

Case  no.   k 

kp  =  0 and ■TT <   0  <   -k   TT 

We use again the relation 

X(T,0) = -XCT,0+Tr) (13) 

X(T,0+Tr)     is   given  by  case  no.   1   because     -TT <  0  <   -k, TT 

implies     0 <  0   + TT <   (l-k, )tr,   hence 

X(T,0)   =  -[-2ke^T+*+7r)   -   e1T  + el7rk] 

=  -ske1^^)   + e1T   -   el7rk 

Case  no.   3 

k2  =  1 and 0 <   0  <  ^(1-^) 

Prom   (10)   and   (11)   we   see   that 
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... . 

u = +1    on    {0,jr-(P) 

u = -1    on    (7r-0,27r-0) 

u- = +1    on    (27r-0,37r-0) 

(5-1) 

(5-2) 

(5-3) 

u = -1 on ((2k -l)Tr-0,27rk:3-0) 

u = +1 on (2Trk3-0,7r(2k3+l)-0) 

u = -1    on    (ir(2k3+l)-0.T) 

(5°2k3) 

(5-2k3+l) 

(5-2k3+2) 

Hence we will have  2k +2  subarcs in case no. 5-  As 

(5-1) = (2-i)  for  1 = 1., -'-,   2ko+'l  the computation in 
case no. 5 will be the same as in case no. 2 up to the point 

X((2k +l)7r-0,0) = e-10 + 4k3+l 

By  application   of   (8) 
i[T-( (2k  +l)7r-0)] 

X(T,0)   =   [X((2k3+l)7r-0,0)   +  l]e -   1 

i-rrk     " i(7rk  +0) 
=  e        J   +  2(2k  +l)e -   1     - 

=  -2ke^T+^   -   e1T  + elTrk 

Case  no.   6 

k     =  1 and Tr(l-k1)   <  0 <   TT 

Prom   (10)   and (11) we   see   that 

u  =   +1 on (O,7r-0) 

u  =   -1 on (Tr-0,27r-0) 

u  =   +1 on (27r-0,3Tr-0) 

(6-1) 

(6"2) 

(6-3) 

u  =   +1 on (27rk^-057r(2k,+l)-0) 

u  =   -1 on (Tr(2k.+l)-0,Tr(2kq+2)-0) (6-2kQ+2) 

u   =   +1 on (7r(2k,+2)-0,T) 
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Hence  we will have  2k +3  subarcs In case no. 6.  As 

(6*l) = (2-1)  for  1 = 1, 2,   •-•,   2k-2+l  the computation In 

case no. 6 will be the same as in case no. 2 up to the point 

X((2k +l)7r-0,0) = e-10 + 4^+1 

By application of (9) 

X((2k +2)Tr-0,0) = -X((2k +l)7r-0,0) - 2 

-e •10 4k3 " 3 

By application of (8) ; 

i<T-[7r(2k  +2)-0] 
X(T,0)   =   [X( (2k  +2)Tr-0,0)   -   l]e   L -; 4   J 

=   -e 
i(k +1) i(7r(k  +l)+0) 

1        -   2(2ks+2)e ^ +  1 

_,,   ,, N   i(T+0) IT ivrk -2(k+l)e   v     ^'   -  e        -   e 

Case  no.   7 

k2  =  1 and     -k.. TT <_ 0  <^ 0 

X(T,0)   =  -X(T,0+7r) (13) 

but     X(T,0+7r)      is   given  by   case   no.   6  because      -k, TT J< 

implies      (l-k, )7r <   0+7r <  TT.     Hence, 

X(T,0)   =  -[^(k+De1^^^)-   e1T   -   el7rk] 

<   0 

0/1   .., .   i(T+0) IT    .      i =   -2(k+l)e    v      ^,   +  e        + e 7rk 

Case   no. 

': 

k2  =  1 and -TT <_ 0  <   -k TT 

X(TJ0)   =  -X(T,0+7r) 
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but     X(T,0+7r)     is  given  by   case   no.   5 because     -TT <  0 <   -k-, TT 

Implies     0 <  0 ^   (l-^-, )7r-      Hence, 

X(T,0)   =  -[-2ke
l[T^+7r]   -   e1T  +  el7rk] 

=  ^ke1^)   +  e1T   -   el7rk 

These  results   can be   summarized  by: 

Case  no.   1 k2  =  Q and        0 <   0 <   Tr(l-k   ) 

Wm   ^ ol     l(T+0) IT 1 X(T,0)   =   -2ke   v      ^'   -   e        +  e 
Trk 

Case  no.   2 k2  =  0 TT and 7r(l-k   )   <   0  < 

■wm   ., N r,/'!   .-I^   i(T+0) IT lirk X(T,0)   =   -2(k+l)e   v     ^/   -  e        -   e 

Case  no.   3 k2   =  0 and -k  TT <  0  <  0 

v/m   J\ rt/i   ,T \   i(T+0) IT lirk X(T,0)   -  -2(k+l)e   v     ^y   + e        + e 

Case  no.    h k2   =   0 and -TT  <   0  ^   -k^TT 

X(T,0)   =  -2ke^T+^   + eiT   -   e1 TTk 

Case  no.    5 k2   =   1 and 0  <  0 <   7r(l-k1) 

X(T;0)   =   ^ke1^^)   -   e1T   +  ei77"k 

Case  no.   6 

Case  no.   7 

Case  no.   8 

k2  =  1 and TTCl-k-j^)    <    0   <    T 

X(T,0)   =   -2(k+l)e^T+^   -   e1T   -   el7rk 

k2  =  1 and -k17r <   0  <   0 

X(T,0)   =   ^(k+De1^^)   +  e1T,   el7rk 

k2  =  1 and ■TT  <_  0  <   -k   IT 

X(T+0)   =   ^ke1^)   +  e1T   -   el7rk 
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We see Immediately that the results In cases 5^ 6, "J,   and 

8 are identical with the results in cases 1, 2, 3^ and h 
%i-': 
*•;■ 

V 

respectively.  In other words, k   has no influence on the 

structure of the final answers.  Therefore, we will thus 

restrict our attention to the cases 1, 2,   3,   and 4  only, 

in the consideration of the shape of the wavefront. 

Case no. 1    0 < 0 < irCl-Jc^) 

vfm.,S „,  l(T+0)    iT    iTTk X(T+(?)) = -2ke x  ^/ - e   + e 

This is an arc of a circle of radius  2k  and of center 
,     IT iTrkv (-e        + e        ). 

- 1 T 1 Trie 
Extremal   values: X(T,0)   =  -(2k+l)eXi   + e (l4) 

XiT^ll-k^)   =   (2k+l)el7rk   -   eiT (15) 

Tangent:*                             X(T,0)   =  -2kle1^T+*^ 

Extremal   tangents:        X(T,0)   =  -2kie (l6) 

XCT^TTCI-^))   =  +2kiel7rk (17) 

Case   no.   2 7r(l-k   )   <  <P <  ^ 

X(T,0)   =   -2(k+l)el(T+^   -   e
1T   -   e17* 

This   is   an  arc   of  a   circle   of  radius     2(k+1)   and   of   center 
/ IT iTTkx (-e        -   e        ). 

Extremal   values: X (T,7r(l-k1) )   =   (2k+l)el7rk   -   eiT        (18) 

X(T,7r)   =   (2k+l)elrr   -   el7rk (19) 

The   dot   on     X(T,0)   means   a   derivation  with  respect   to  0 

X(T,0)   = ^| X(T,0) 
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Tangent: X(T,<p)   = -2(k+l)le l(T+0) 

Extremal tangents:  XfT^rCl-k,)) = 2(k;+l)le 
l7Fk 

XCT.TT) = 2(k+l)ie 
IT 

(20) 

(21) 

Case no. 3 -k-jir < 0 < 0 

;(T^) = ~2(k+l)e
1^+^ + e

1T + e
1 rrk 

This is an arc or a circle of radius  2(k+l)  and of center 
/  IT      iTTks (e   + e   ). 

Extremal   values: 

Tangent 

X(T,-k17r)   =   -(2k+l)elk7r + e1T 

X(T,0)   =   -(2k+l)e1T   +  el7rk 

X(T,0)   =   -2(k+l)lel(T+*) 

Ik-jr Extremal tangents:  X(T,-k-,7r) = -2(k+l)le 

1 T 
X(T,0)   =   -2(k+l)le 

(22) 

(23) 

(24) 

(25) 

Case  no.   4 -TT <   0 ;<   -k, TT 

X(T,0)   =   -2kel(T+^   + e1T   -   el7rk 

This   is   an  arc   of  a   circle   of   radius     2k     and   of   center 
/      IT iirk^ (+e        -   e )    . 

Extremal values:    X(T,-ir) = +(2k+l)e:LT - e17^ 

X(T,-k17r: (2k+l)elirk   + eiT 

Tangent: X(T,0) = ^kie1^^) 

(26) 

(27) 

Extremal tangents:  X(T,-Tr) = 2kle IT 

X(T,-k17r) = -2kie 
iTrk 

(28) 

(29) 
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By comparing the formulae (l4) to (29) we can check 

the continuity of  X(T,0) and the continuity, up to a real 

factor, of X(T,0), I.e.,the continuity of the direction of 

the tangent. 
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