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ANNOTATION 

The book presents the basic tenets of stereometric metallography, i.e. 

the combination of methods of quantitative evaluation of spatial microscopic 

structure of metals and alloys. Methods are described in detail for estimating 

the most important parameters of spatial microstructure. 

It is demonstrated that the basic properties of metals and alloys and 

their behavior in the processes of hot and cold working are directly connected 

■jpMKM quantitatively with parameters of stereometric structure. 

instructors 
The book is of interest for engineering-technical workers and XMKMMü 

at higher educational institutions, engaged in the field of investigating, 

processing and inspecting the quality of metals, as well as for students of the 

pertinent specialties. 
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PREFACE 

The purpose of the book is to give a systematized and, as far as possible, 

complete portrayal of present-day methods of quantitative evaluation of spatial 

microscopic structure of metals and alloys. Such an evaluation, being the most 

effective and feasible from the physical viewpoint, has received wide recognition 

and is being used more and more by Soviet and foreign metallurgists. At the same 

time, XX descriptions of methods of stereometric evaluation are dispersed among 

numerous journal articles, often hard to Obtain, which complicates the use of 

these methods. In comparison with the first äMöüM edition, the present book 

has been revised and supplemented. Included is a description of new methods 

published in Soviet and foreign press from the time of Xjffi appearance of the first 

publication, as well as methods developed by the author in the metallurgical 

laboratory of the Yerevan Polytechnic Institute tmeni KX Karl Marx. Considerable 

attention has been diverted to an analysis of foreign researches, which confirms 

that both in respect to priority, as well as in general state of the arl, the 

stereometric MötHSgXpiJf metallography in the Soviet Union is ahead of that in 

foreign countries. The methods of quantitative evaluation of a plane structure 

are presented only to the extent necessary for obtaining the initial data being 

used for computing the parameters of spatial microstructure. 

The author hopes that the book will promote the further popularization of 

particular, will 
methods of stereometric evaluation and, in pöfÜMlßöööSGCI stimulate the transition 

from semiquantitative methods of rough approximation to more precise and objective 

characterization of the structure with the aid of parameters of actual spatial 

structure. 

HCL-905/1+2 iii 

. 



"New Methods Lead to New Results" 

N.S.Kurnakov 

CHAPTER I 

MICROSCOPIC STRUCTURE OF ALLOYS AND METHODS OF THEIR 

CHARACTERISTICS 

Section 1. Qualitative and igMä Quantitative Appraisal of Microscopic Structure 
of Alloys 

The dependence of the quality of steel upon its structure, was first established 

by P.P.Anosov, who had used that successive combination of methods which now is 

called the microscopic method and comprises the basis of metallography 

(N.S.Kurnakov) (Bibl.2). 

P.P.Anosov first introduced the semiquantitative scale for MM  evaluating 

the quality of steel based on its maorostructure (3ibl.3). 

Later D.K.Chernov developed this tendency, and established the quantitative 

dependence of properties of steel (viscosity) on the actual parameter of its 

structure (size of grain) (Bibl.i.). 

In modern machine construction, the conditions of the work of metal in 

parts, tools and construction, and also the technology of its processing, compels 

the posing of JÖS|öi^ especially rigid and numerous requirements for the quality of 

8MXI metal. Often these requirements relate directly to the structure of metal 

and the conformity of the quality of metal to the requirements should never be 

checked by any methods other than metallographic ones. Even if it is sometimes 

possible, such a checking is not very graphic, reliable^r advantageous. Some 

äMäpä examples are the determination of purity of steel with respect to content 

of nonmetallic inclusions, degree of heterogeneity of distribution of carbides, sizes 

of grain, depths of decarbonizatior. and carbonization, presence of structurally free 

. 



cementite in soft steel and the nature of its arrangement, etc. The wide 

distribution of the network of factory laboratories in our time permits a 

realization of an analysis of metal structure everywhere. In many cases, 

metallographic analysis is conducted as a mandatory inspection method for testing 

metals, semifinished products and finished products, along with chemical analysis 

and mechanical testing. The inspection functions of metallographic analysis also 

required a new approach to an evaluation of the structure and to a portrayal of the 

results of analysis. In the standards, technological charts, and technical 

specifications, it is necessarj to include quite definite and concise quantitative 

and dümensional requirements for structure, clearly and accurately defining the 

characteristics of the metal. 

Examining the structure of metal and the products from it at various stages of 

the technologi»al process and in finished production, the plant laboratories ovar 

a period »f time aiseuimilate extensive experimental material» In order that th» 

accumulated valuable data can be advantageously used for controlling and Improving 

tho  technological processws and raising the quality of the production by the plant, 

it is necessapy to pj'eeess these data systematically, to link the Individual factors 

of the technological process With a structure, and the structure with the quality of 

production» In this case, the use of statistical methods of processing experimental 

data often permits one to find important and sometimes unexpected dependences and 

leads to conclusions which are valuable in practice. Using only a qualitative 

by 
evaluation of structure, we cannrt link it ÄßK any quantitative dependence with the 

values i$ß& typifying the.  tech.iolc •'...".l process. A statistical processing of results 

of micro analysis is also unrealizable under these conditions. Only with a quantitative 



or dimensional numerical evaluation of microstructure can one effectively use the 

experimental material being accumulated by the plant laboratories. 

No less important is a quantitative appraisal of the structure in the 

researches especially in those connected with a study of such processes, in which 

the structural elements change under the effect of mechanical, thermal and chemical 

factors only quantitatively or dimensionally. Some examples are the growth of 

pQffi grain during heating, degree of StöfffifäT coagulation of cementite during 

isothermic annealing, increase of jpQpä quantity of perlite during cementation etc. 

In such casese the onl;f effective means -nail be a quantitatlr» or dimensional 

evaluation of structural elements (sizes ef grain, number« of earbid« particles, 

quantity of perlite)» 

For instance^ a study of th» resrystalllzation process many year« ago compelled 

the development and introduction into metallographic procedures of a method (b«ing 

used until the present) for estimating the sizes of grain based on its average 

area on a slide, 

austenlte, 
In the investigation of the kinetics of decomposition of a«*«p**e, there la 

determined th« ®?nt«nt of various phases at various stages of the process. Indirect 
o 

methods (magnetie, resistometrls, IfHHMWyi dllatometric) are less eowlnsing 

and not as reliable as the method of micro Investigation, sinue the properties can 

change not-entirely proportional to the change In the phase composition (3ibl#5)» 

Advances in the techniques of large magnifications permitted a solution of 

problems of the formation of a number of structures and permitted one to establish 

that the structures which were considered earlier to be qualitatively different in 

actuality have mainly a single type structure and the difference in them one from 

in 
another reduces only to a quantitative difference 8X fixed parameters of structure. 

^^,:, 



Such for example are pli'lite, sorbite, troostite having a flaky structure and 

differing in degree of JÖQJjSöüffl^t dispersion of flakes of cementite and ferrite. 

It is evident that the concrete expression of the characteristics of such structures 

requires quantitative estimation. 

In many cases, even a purely qualitative estimate of the structure proves to 

not supported 
be äßöGS very well grounded and is discussed in various ways if it is not äMKSSKM 

by quantitative characteristics. For instance, a case of a diametrically opposite 

A/ 
definition of the concept "point perlite" is noted by A.N.Chervyakov and 

A.N.Podvoyskly (3ibl,6). KXKMSXHffiqf Whereas N.A.Minkevich IMKmM identifies 

point perlite with granular pfelite, according to A.L.Baboshin "granular perlite 
h n A 

has nothing in common with point perlite" (Bibl,7, 8). This contradiction is caused 

by a qualitative evaluation of the structure of perlite of this tjrpe and obviously 

It can bs avoided if we Introduce the quantitative characteristics of grains of 

ewienttt® into perlite, »peaking of "point", "fine", "average" or "large" grains. 

Bsoomlng familiar vdth any object, physical phenomena or process, we first of 

all obtain a qualitative aensept concerning It, During a more profound study of 

the same object, we tT insfef from an initial qualitative cognition to a 

quantitative definition. In this connection, cases are possible when the quantitative 

study refutes the initial qualitative concept. Therefore qualitative-descriptive 

microscopic metallography Is only the first, beginning stage of development of the 

science MMJfIX studying the microscopic structure of metals and alloys. The 

transition to HfflffiXIfflöCßüfiöXKIXXiX dimensional-quantitative characteristics of 

microscopic structure is a natural and unavoidable path of further development of 

metallography. Based on a number of conditions, mainly enumerated above, it is quite 



necessary to develop those methods of evaluating the structure and its elements, 

in which they would be characterized not by words but by numbers, especially since 

the majority of metallurgists agree with this approach. IMXJpHMIKX 

The quantitative methods cf evaluating the structure, originating simultaneously 

with the advent of microscopic metallography, received especially wide acceptance and 

intensive development in the last 25 - 30 yrs. However, the vast majority of 

evaluation methods being applied, including the standard ones, are far from the 

best examples of quantitative evaluation of structure. 

Section 2. Methods of Numerical Rating of Microstructure 

The number of methods published until now for rating the structure by 

conventional points, numbers, marks etc., continues to grow incessantly. Several 

dozens of such methods and scales are standardized and included in the pertinent 

state standards (COST). All these scales and methods can be divided into two 

main categories, based on the method of constructing the scales. 

To the first, most numerous category of scales, there belongs the series of 

phtomicrographs 
rtdxJECjtotxsgESpßs of single type structures (usually in a number ranging from 2 to 10, 

most often k - 5),  chosen and renumbered in a series of gradual ZXX change of element 

of structure, typifying the given scale. The degree of this change from one point 

to the following one is chosen arbitrarily, being Xjof. appraised subjectively by eye, 

and not connected by any fixed dependence with the index number of the structure in 

the scale (with the piKKXj point). In this case, an appraisal of the structure 

being analyzed can be conducted only visually by way of comparing it wich a set of 

fmicrctthoto^raphs of the scale. 

high- 

Examples of such scales are as follows:   scale of carbide heterogeneity of %£§&■ 

snee-i typifying 
CKfe&Cg steel based or. COST 5952 - 51,  scales KffiQJgX   the degree of rectilinearity^ 



• 

nature of distribution and orientation of graphite of gray iron based on COST 

3hU3 -  46, scales for appraising the structurally free cementite and striated thin- 

layered paTTOnCTt high-quality steel based on COST 5640 - 51, scales of 

nonmetallic inclusions px based on COST 1778 - 42 and COST 801 -47 and others. 

are 
The scales of the second category/basecl on a fixed dependence between the 

index number of the structure in the scale and the value of the geometric parameter 

microstructure 
of the MlöfSXXKifiQÖQiM (or of its elements), being measured and being characterized 

by the given scale. In certain cases, this dependence is expressed by a formula, 

linking the number (point) with the value of the parameter, but more often the values 

of parameter for any given number are established arbitrarily. The estimate of the 

structure can be conducted both approximately by visual comparison with uüJäöpKäX 

/microphotographs of a standard scale as well as more objectively and accurately by 

way of direct measurement of the pertinent parameter of the structure under a 

microscope or on a ^icroj^hotoferaph. However the structure 1B evaluated not by an 

actual figure derived, but by a conventional number or point connecting the fixed 

limits of values of the parameter being measured, 

Irf^this category of scales, there belong the scales fw evaluating the value 

of grain of steel based on COST 5639 - 51 and the standafd E 19 ASTM, a MMSä series 

of scales COST 3443 - 46 for estimating the various elements of structure of 

gray iron (quantities and dispersions of pefclite, quantity of graphite, lengths of 

deposits), method of contamination 
graphite ffJfpsmKpgffijmiMK determining the index of faaädog of steel by nonmetallic 

inclusions based on COST 1778 -42 and others. 

The main disadvantage of using these scales is the planar estimation of 

microstructure and of its separate elements, upon which we will dwell separately 

(see Section 5). Mere we will examine only the secondary but very substantial 

i 
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shortcomings of estimating the structure by points with the aid of scales. 

In visually comparing the analyzed structure vdth (fidcrophotoßraphs of the 

scale in place of direct measurements or calculations we naturally decrease the 

accuracy of the appraisal and deprive it of objectivity.    Therefore the results 

of such an appraisal can be regarded as approximate, having a semiquantitative 

nature. 

For instance, let us examine the MX results of the use of four seven-point 

scales developed by V.Ye.Kuksinskoy,  V.N.Tyulenev and M.D.Chaykovskiy for 

evaluating four basic elements of the structure of gray iron (graphite, KX peflite, 

phosphorous 
ferrite and ffiJMjSKMM eutectic)»   These scales are typical for scales of the 

first eategory«   In an evaluation of the structures by three observers (based on 

the same |f|j{yannnryffin{ microslides) the discrepancies in the estimates, based on 

data of the actual authors of the method (Blbl,9), amounted to:  divergences by 

3 points • 4 cases, by 2 points - 10 cases,^ 
fypffWp|yyyCT«]^Y^j^^»jf)nrfflTO3nmgyfhy l point - 27 cases and the estimates 

eolr.sided in 7 cases,, 

Thus it turned out that enly in 15% of the cases did the data of all three 

obsei'ver-s soincide«   Obviously, such a Tnethod ear. by no means be termed quantitative. 

KM Certain modifications of the method of visual appraisal, reducing to a 

« 
separate determination of points for a number of fields of v-m-on vdth a ...'"sequent 

calculation of the average point etc., did not increase the accuracy of results 

accurately, 
substantially.    In Fig.l we show the dependence or, more $MKJ!MYjQ^ the MH total 

lack of dependence between results of appraising the nonmetallic inclusions by the 

mean arithmetic point based on the scale COST 801 - U7 in comparison with the data 

obtained by the method of P.I.Melikhov (Bibl.10), based or. direct calculation of 

nonmetallic inclusions and their measurement. 



l'.Ä.i'i'ÜFiiJilüU CraHTTTT 
Figure 1 is based on experimental data, obtained by EXKMXR|MBX 

for samples of ball MAI bearing steel SHKH15. 

A second important disadvantage of the principle of constructing scales of 

this type is their gradated nature and the system of evaluation by conventional 

actual 
points and not by JOffflSiff values of geometric parameters of structure. In this 

connection, vfe cannot extend, in case of necessity, the scale in any direction or 

y 
sjfmoi differentiate«more finely jn a sector of interest to us. The gradated structure 

of the scale predetermines the standards of requirements for any given parameter of 

the structure or for the structure as a whole, whereas the establishment of these 

standards Is the matter of the pertinent technical specifications or qualitative 

standards.  Applying the gradated appraisal 1^1 by points or by numbers, we 

clarify 
move beyond the limits of visibility of the method of analysis. Wt will ffifTOre 

this proposition by an example. 

Let us suppose that the mechanical or physical properties required of the 

given items made of gray Iron are guaranteed by the amount of free carbon 

(graphite) in the iron vdthln the limits from 2.4 to 3.0$ (by weight), or from 

7.7 to 9.5$ of the volume of iron, JÜQtäjaiH occupied by graphite. According t« 

Steel 
Fie.l - Comparison of Appraisals of Fouling of S£K  by Nonmetallic 

Inclusions, Using the Mean Arithmetic Point KX Based on COST POl - hi 

and Based or. the Method of P.I.Melikhov. Based on Data of P.A.Dvoryanov (Bibl.ll) 

a) Appraisal according to Kelikhov; b) Mean arithmetic point TOST 801 - 47 

■ü^i^kst;;,;;^ 



COST 3443 - 46, we have the following IXMX. gradations by series of graphite; 

G 08  6 ~ 8%  (volumetric) 

G 11 9-11^ 

Adhering to the standard classification, we cannot select a suitable type 

of structure based on quantity of graphite, since the limits of graphite content 

established for them do not coincide with the limits needed by us. We are 

compelled either to depart from the standard classification or else to introduce 

into the technical specifications both categories of graphite; both G 08 as well 

as G 11, known beforehand to be used for the omission of a considerable fraction 

substandards. 
of ^(nstoidtidmjia^ac Obviously in the given case one should not use the graduated 

scale of standard classification and should reject the product based on actual 

quantity of graphite and the established concrete standards of its content. 

The MX scales of structures predetermined the gradation of variations in 

elements of structures over the entire range of the scale, which often decreases 

the accuracy of estimate. In the same COST 3443 - 46, for instance, provision 

is made for the following classes of structure of gray iron according to content 

of perlite: 

P 15 less than 25% of pgrlite 

P 40 25 - 54^ of polite 
A 

P 65 55 - 7/$ of perlite 

Even in a simple visual appraisal, the actual content of p?rlite in the 

SXXäiöM structure can be established much more accurately. 

In the research studies, one often uses fractional numbers in order to 

differentiate more finely the structure in a fixed interval and to determine the 

connection between the structure and properties or composition of the alloy. However, 

this can be done only in case the dependence of the point upon the parameter of the 

9 



structure is expressed by a definite formula. 

Thus in investigating the effect of copper upon properties of gun iron, 

V.A.Davidenkov estimates the values of graphite deposits in fractional points 

(by numbers) of the scale ASIM (Bibl.12). The data obtained by V.A.Davidenkov 

(Bibl.13) are presented in Table 1. 

Table 1 

«) to 
c>                           ' 

d) e)           1 
5 
6 
7 

8 
9 

1           10 
11 
12 

none 
0,27 
0,40 
0,62 
0,82 
1,02 
1,20 
1,53 

6,00 
6,50 
6,75 
7,00 
7,00 
7,25 
7,50 
7,50 

5,00 
6,50 

6,50 
7.00 
7,00 
7,00 
7.50 

I 

a) No. of smelting; b) Copper, %;  c) Amount of M. deposits of graohite based 
xajqgcjgftgic melt; 

on the ASTM scale; d) First IKgäK* e) Second JKps mSBWgkxxx.  melt 

An evaluation using decimals permitted us to clearly establish here the 

gradual fragmentation of flakes of graphite vdth an increase in copper content in 

the iron. Using in the given case only the whole numbers of the ASTM scale, it 

was impossible tc obtain such a definite and clear dependence, using the estimate 

of graphite based on OST 260^9, in which the graphite based on sizes of flakes has 

only four gradations, it was necessary to estimate all samples by the same point G k 

and we did not succeed in revealing any kind of general dependence. 

A similar evaluation using decimals (vdth an accuracy up to tenths of a 

numb er) is used by N.A.Minkevioh for the characteristics of the (size jf yfrrainjin 

high-speed 
.-raBPfcooofcttog: steel based on the ASTM «MKl scale (Bibl.li). 

10 



The use of fractional numbers, to which researchers are forced to resort, 

deprives the point evaluation of one of its advantages, namely to express the 

result of analysis by a simple unequivocal number, and to reduce the data of the 

analysis to a simple code. 

In many cases, the method of point rating of structure leads to explicitly 

observed results. The size of grain of steel based on the standard E19 - 33 of 

is 
the ASTM XM determined as a function of the number of grains located in one 

square inch of the area of the slide at magnification by 100 times (Bibl.l6)» 

For various numbers of grains, the standard! establishes the following limits of 

number of grains (in calculation per 1 mm of area of the slide)j 

Mo.8 . . . 1488 and more 

No.7 ... 744 - 1488 

No,6 » • e 372 • 744 

!!o#5 ... 186 * 372 

etc. At such a construction of the scale, it turns out that if *fe have three 

samples of steel In which the numbers of grains per 1 fflra of ffilcroseatlonj as a 

M result of direct ealeulitlon, are found to equal 740, 750, and 1480, we are 

compelled to designate the first sample with the number 6 and the second and third 

ones with the rmmber 7» KöüöLJpSKI tlence the practically identical first two samples 

obtained a different code number, while the second and third samples in which the 

numbers Of grains differ by almost twice, are designated by the very same number. 

In any other type of analysis or tests (chemical, mechanical) such a gradated method 

absurd, 
of evaluation would prove to be>0&3aW9äf, Unfortunately, it is permanently accepted 

in microscopic MUTTKpXffHX metallography and the scale COST 5639 - 51 is similar to 

the one examined above. 

From what has beer, said above, it follows that the main disadvantage of the 

method of standard scales is the appraisal using conventional points ■£%%  numbers and 

11 



the stepwise, äÖQßHiä erratic nature of the scales caused by this. To the extent 

that the method of visual estimate of structure is distinguished by great simplicity 

and Sji requires a minimum, of time and effort, it can be used effectively in all 

cases when the approximate evaluation results obtained prove to be acceptable in 

practice. However, for the reasons presented above, one should gnw ap the 

evaluation of structures of standard scales and results of analysis by conventional 

points, numbers KXX etc. It is necessary to replace them by geometric parameters 

of structure or of its elements whenever this is technically realizable. 

To obtain more accurate and-rsliable results, the same parameters can be 

rated not visually but directly measured or computed under a microscope or in 

\micr^photo^raphy. 

Section 3. SKffK Standard Methods of Rating the Microstructure 

All the methods of quantitative estimatio'.j of microstructure comprising both 

the Soviet COST as well as the foreign standards^ proceed from the principle of a 

point rating. Therefore the typical disadvantages considered in the previous 

paragraph are inherent to them. Along with them, there exist numerous inaccuracies 

and technical shortcomings in almost all standard scales and methods of estimation 

and in the means of their practical accomplishment« Let us consider here several of 

the most important standard methods having the most widespread use in raetallographic 

practice. 

One of the oldest methods of such t  type is an estimation of grain size of 

steel, which «BS first standardized in the USA in 1933 (standard of the 

ASTM 
SXSK E 19 - 33). This scale was used even before its standardization over a number 

of years in factories of the USA, and later received wide use in many countries, 

including the USSR. It turns out that both the scale itself and the methods of its 

_ 
use should be greatly revised. 

12 
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At the same time, the scales being introduced both in American standards as 

well as in COST 5639 - 51 are unsatisfactory. The series of^micrqphotcgraphs of 

hypereutectoid steel consisting of eight numbers, and the scales (identical to it) 

in the standards E 19 - 33 and GOST 5639 - 51, provide an incorrect concept of the 

grain size, corresponding to the given number on the scale. As was shown by us, 

the structures for grain sizes No.2 and No.3 of the scale actually belong to 

No.3 and No./i respectively, i.e. higher by one number than that indicated (Bibl.17). 

Similar ^YXiHBfjSrayryx divergences are also observed in a varying degree for 

structures corresponding to other numbers of a standard scale. The scale of sketched 

structures and also the limits established by standards for sizes of grains of each 

number are also unsuccessful. In the sketched scale of the standard of the 

ASM E 19 - 38 T and GOST 5639 - 51, the grains are quite uniform in sizes and 

the limits of fluctuations of these sizes within the confines of an individual number 

of grain are considerably less than is usually observed In actual structures. As 

UK W.Johnson correctly notes, at the most favorable circumstances not more than 

half of the grains visible on a microsectlon cf commercial metal fall within the 

limits set by a single number of the scale of the standard (Bibl.18). 

In GOST 5639 * 51« geometrls parameters of grains of various numbers are 

presented» In three solumns 01* the same table of the fX standard, it is indicated, 

for examplei that grain No#8 characterized by an average area of 500 microns , by a 

0 

number of grains from 1 mm of area of the microsectlon, equals 20/^8, while the 

number of grains visible under a microscope at a magnification of 100 for an area of 

2 
10 cm equals 192. A simple comparison of these figures indicates that JCCäM they 

2 
contradict one another. If the average area of one grain equals 500 microns , 

13 
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obviously the number of grains for an area of 1 mir should equal 2000 and not 20/iß. 

At the same time, since the area of 10 cm^ at magnification of 100 corresponds to 

2 
the natural area of the microsection equaling 0.1 mm"", the number of grains in this 

area should equal 200 and not 192, The parameters of grain of all the remaining 

numbers of the scale are characterized by just such contradictory data. 

The techniques of calculating the grains are not generally accepted. In certain 

cases it is MSMMa recommended, in calculating the number of grains on the slide, 

not to take into consideration the "random fine grains, representing sections through 

angles of actually large grains" ftigpOTpSI (3ibl.l9, 20, 21). Therefore, the 

researcher quite arbitrarily rates the structure to the JffiX extent that by actual 

inspection he must solve XM an unsolvable problem, namely which of the fine grains 

visible on the slide are sections of really small grains and which of them represent 

"sections through angles" of actually large grains. In other cases, it is recommended 

not to determine the average size of grains but their maximum size (Bibl.22). 

Understandably, such a diverse approach to calculating the grains makes their 

appraisal arbitrary and decreases the accuracy of results. 

It is also inefficient to estimate such a practically important element of 

steel structure as nonmetallic inclusions. Indicative in this respect is the 

conclusion reached in 1939 by the subcommittee on a method of estimating nonmetallic 

steel 
inclusions of the British committee on the heterogeneity of a Mali ingot, which 

examined many different methods proposed for characterizing the MI fouling of 

steel by nonmetallic inclusions (Bibl.23): "A. All attempts of quantitative and 

qualitative determination of nonmetallic inclusions failed to lead to the development 

o'1 methods permitting the control of the steel production process; B. None of these 

numbers 
methods provide the possibility of obtaining sufficiently constant MiaMKM and cannot 

U 



serve as a reliable method for estimating the quality of steel during its delivery 

acceptance; 
and SBBBtpt; C, Further studies are necessary for finding a satisfactory method for 

I 

defining a nonmetallic fJQOMIäKX inclusion". 

In spite of the great number of studies in this area, SKX the methods (standardized 

later) of estimating the nonmetallic inclusions in steel (COST 1778 - 12, 

G05T 801 - kl)  received no better responses than that presented above. 

We will restrict ourselves to data of the investigation of M.K.Sokolov and 

MEöHMgMif M.I.Vinograd in which there was used extensive test material of the 

current inspection of the smeltings of ball bearing steel type SK ShKhlJ for several 

years, and also of a number of experimental smeltings (Bibl,2ii). The research 

indicated that;using the method of rating according to the COST 801 - k7  (rating 

according to maximum point), suitable metal is often rejected in practice and steels 

with considerably fouled nonmetallic inclusions are passed (accepted). 

At a properly constructed method of rating, the increase in the quantity of 

samples from smelting should lead, generally speaking, to an increase in accuracy 

of analysis and reliability of the result obtained. According to the actual 

standard method, the increase in number of samples always leads to an increase in 

probability of rejection, independently of the degree of fouling of the given 

smelting. This is explained in that the reading of the smelting is conducted on 

the basis of the maximum point, while the samples being characterized by a fixed 

are 
point according to oxides,/found in any smelting, but with a frequency typical for 

it. The more samples that are IMfXXypffiMjpCKM investigated from the smelting, the 

higher the probability of finding a field of v»84B» with a rating point higher than 

! 

that permitted, which also leads to a rejection of the smelting. Thence it follows 

that a rating based or. 3-5 samples, as is provided for by the standard, often yields 

random results. 
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The authors of the investigation arrive at the conclusion that the standard 

method is unsuitable as a result of the insufficient reliability of inspection, 

that is^the results of rating depend to a considerable degree not upon the quality 

of the smelting but upon the quality of the control samples. Figure 1 presented 

above also confirms the fortuitous nature of the estimation being obtained during 

the use of the standard methodology, 

In our opinion the most important disadvantage of existing rating scales for 

the impure state of steel with nonmetallic inclusions is the attempt to combine 

in one scale the- rating of two indexes which generally speaking are independent 

of each other» These indexes, mainly determining the effect of inclusions of the 

given type upon the quality of steel, arei a) The general state of impurity of the 

steel, characterized by the part of the volume of steel occupied by the inclusions, 

and b) The dispersed state of inclusions which can be estimated by their quantity or 

sizes« 

The overall impurity of steel by Inclusions of the given type deteriorates the 

quality of steel* However the inclusions occurring in the same part of the volume 

of metal may have a different dispersed state, which in its turn reflects upon the . 

quality, of the steel. As P.A.Dvorysnov demonstrated, the sizes of the inclusions. 

influence 
■extending to the surface of contact, exercise a decisive äfXäXX upon the fatigue , 

chipping of the hardened bearing steel. The less the area of contact of the 

bodies of turning, the less the maximum permissible sizes of inclusions (Bibl,172). 

fouling of steel 
At a low overall MjfiößCQÜQÜÖtXM by inclusions of the given type, quite large 

inclusions are permissible and vice versa. Thence it is apparent that it is 

to 
necessary SX have a separate evaluation of the total impurity of steel and dispersed 
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state of the inclusions. Moreover, the existing scales are so constructed that this 

factor is not taken into account in them at all. The division of scales into two 

groups (being used in certain cases) according to criterion of dispersed state of 

inclusions is insufficient. 

In gray irons, an important element of the structurejmainly determining the 

jftWffipnCYX properties of MMä iron is graphite. Based on COST 3443 - k6,  provision 

is made for a quite detailed appraisal of the graphite deposits. Graphite in 

gray iron is classified according to quantity (6 category's), according to nature 

of distribution (5 types), according to length of graphite deposits (6 groups), 

according to ratio of their length to thickness (6 subgroups), according to degree 

of rectilinearity (3 kinds), according to nature of distribution (4 forms) and 

(3 variants), MJÄ However 
according to orientation t£WSMMKl/$MMMlffiBtf$   in practice even this diversified 

characteristic of the structure of graphite often proves unsatisfactory and compels 

one to resojt to scales other than the standard ones. At the same time, certain 

X$$8M types of standard evaluation are superfluous and usually are not applied. 

The ^ quantity ef graphite is characterized by an average percent of the area 

occupied by a graphite in the field of vision of the microscope. This value, as we 

shall see later, coincides Vlth the volumetric content of graphite in iron. In 

quantity standard 
Table 2, along with the norms of the pKJ!i5$ of graphite, according to MÄMM 

we also present exemplary numbers of the corresponding weight content of graphite 

which were computed by us.  Carbon content in castings made of construction gray iron 

of various types (from SChOO XK to SCh38-60) usually falls within the limits from 

2.5 to U-0% by weight (3ibl.25). Insofar as the quantity of bonded carbon usually 

comprises around 0.5 - 0.7!?, the weight content of free carbon (graphite) proves to 

fall within the limits from 1.8 to 3,3^. A comparison of these figures with the 

'■■ 
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Table 2 

a b) cj 

ft 02 bslow 3 betow  0 9 
0,05 3- 5 0,9-1,5             | 
(508 6- 8 1,8-2,4             i 
511 9-11 2,7-3,4              i 
GI4 12-If» 3.7-4,7 
dl? iaboi/tlS ■3A»ve 4,7 

a) Categories; b) Quantity of graphite, % of area; c) Content of graphite, 

%  (by weight)/ 

data in Table 2 indicates that, although the standard provides for six gradations 

according to quantity of graphite, PXPIS practically all types of castings are 

included by only two categories, that is G08 and Gil. The remaining four categories, 

comprising two thirds of the scale, remain unused and the quantitative evaluation 

W£L actually is converted to a qualitative one. 

Depending upon the principal length of graphite deposits, the structure of 

gray iron is subdivided in COST 3443 - 46 into eight tjrpes. A similar scale which 

was proposed by Macon and Hamilton ^MHXIXjK (Bibl.12), or standardized in the USA 

in 1941 (standard A247 - 41T ASTM). The norms of our standard are presented in 

Table 3. In the same place the ncrras of the ASTM scale are also presented. 

According to data of ffißSISaaüa^SP^ N.G.Girshovich, in practice the most 

frequently encountered range of sizes of graphite deposits comprises from 20 to 

700 microns (Bibl.25). The data of Norber^ and Bolton, who investigated the sizes 

of graphite deposits in six groups of castings with a structure of graphite ranging 

from extremely fine to ififi^üi very coarse, coincide with these data. According to 

these data, the average length of deposits dq^not exceed 150 microns, and the 

maximum did not exceed TO microns (Bibl.26). ECOEQilKHap G.N.Troitskiy considers 
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Table 3 

I 
fl) b) 

c) 

dl e] f) 

691 

fas 

0*5 

Pi 

dl'oi'e 1000 
500-1000 
250-490 
120-240 
60-110 
30-50 
15-25 

batoiV 13 

960 
480 
240 
120 
60 
30 
15 

1280 
640 
320 
160 
80 
40 
20 
10 

960 
480 
240 
120 
60 
30 
15 

a) Group; b) Principal length of graphite deposits based on COST 3^3 - 46, microns; 

c) IK Length of graphite deposits based on the JStK ASTH scale, microns; d) Minimum; 

e) Average; f) Maximum 

that the practically most important range of sizes of graphite deposits have a 

length from 50 to 500 microns, while the actual range amounts to from 1 to 100 microns 

(Bibl.27). In Table k,  we present data of measurements of graphite deposits found 

in six groups of MMKMP castings, obtained by NorberMj and Bolton. 

The data presented indicate that only four or five groups from the eight groups 

of the standard, characterizing relatively fine deposits (ranging from Gg4 to Gg8 

based on GOST 3/^3 - k.6  or from No.4 to No.8 based on the ASTM scale) can have 

practical interest and wide use. Understandably, this quantity of gradations is 

insufficient for a differentiated appraisal of the dimensions of graphite deposits of 

Ml diverse machine construction castings It represents only half of the number of 

iron 
types of construction gray XSÖCE established by GOST 1412 - 48. Hence, not only- 

samples of various smeltings of the same type of gray iron, but also samples of 

castings of related types are usually rated by the same group based or the measurement 

of graphite deposits. This sharply limits the possibility of metallographic control 

of the iron casting and, in particular, makes impossible the introduction of statistical 

19 



control for the length of graphite deposits. Therefore, in many cases, the 

Table k 

1   ■          *>            1 
t>) c) d) 

1   1 4 20 
2 10 30 

!    5 25 100 
1    10 100 200 

15 125 250 
40 150 700 

a) Actual length of graphite deposits, microns; b) Minimum; c) Average; 

d) Maximum 

factories use their own scales, differentiating more finely the graphite deposits 

according to length and consisting, e.g. of 16 numbers. Above we have already 

presented another example of a more precise appraisal, with the -use of decimals of 

the ASTM scale (see Table 1). 

S.M.Skorodaiyevskiy measured a large number of graphite deposits in the 

castings of tractor bushings, type KK33 ChTZ (approximately based on 2000 

measurements for each sample) Öf (Blbl.28), Based on these data, we have constructed 

curves of the distribution of deposits based on theif lengthy shown-in Flg»2-for 

four samples. The mean length of deposits for each of them is expressed by the 

following numbersl 

No. of sample • « « . . 

Average length, microns 

1 2 2 U 

32   36   31   U2 

These figures indicate that the examined samples correspond in average length 

of graphite deposits to the numbers 6 and 6.5 in the ASTM scale (see Table 3)» At 

the same time, the distribution curves indicate that deviations in length of deposits 

go beyond the artificial and unfounded limits of the ASTM scale, which does not refer 

e 
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to the COST 3443 - 46 scale, inasmuch as in it there are established the standards 

of the "principal" length of deposits, and not the minimum and maximum as in the 

ASTM scale. 

We will limit ourselves to the above-considered standard scales, assuming that 

they show quite clearly the disadvantages of the most widely used methods of rating 

the structure with the aid of SXX scales. All of the methods of rating considered 

in the present section are relatively the best, inasmuch as an estimation based on 

these scales is connected with äXMZJMKä definite geometric parameters of the 

visible structure of the metal. Nevertheless, the use of these methods quite often 

creates only the semblance of a quantitative estimation of the structure^ 

Four Castings of 

Fig. 2 - Distribution of Lengths of Graphite Deposits in aKSSSaSSigFSFäX 

Tractor Bushings. Based on data of SSXJWiMWS^OEBOi  S.K.Skorodziyevskiy (Bibl.28) 

a)Frequency, %;  b) Limits based on the ASTK scale; c) Microns 
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Additional errors are caused by the planar estimation of the structure, 

instead of its spatial characteristics. In a number of cases, this to a considerable 

degree devalues the standard methods of analysis. 

Section 4« Spatial Structure of an Alloy and Methods of Studying It 

From the point of view of its spatial structure, any metal or alloy can be 

regarded as a conglomerate, consisting of a multitude of microscopic bodies, filling 

A 

the investigated sector of XM space, and permanently interconnected by surfaces •* 

contact with each other. Depending upon geometric outlines or process of formation, 

these bodies are usually called crystals, crystallites, deposits, inclusions, grains, 

globules, spheroids, nests, flakes, plates, small leaves, needles etc. A most common 

term for these microscopic bodies can be the concept "crystallite", if they all have 

a crystalline inner structure. However, taking into account that among them are 

e 
found the formations of amorphous structure (for instance, vitrlous nonmetallic 

inclusions), 
IMIäKIMKJ we propose a Mä more rational term "taicroscopic particle" or MESM 

"micro-particle", which we will use in the subsequent discussion. 

Each micro-particle (metallic or nonmetallic) is a structural individual of 

microscopic structure of the given metal alloy^ in the same way that the elementary 

cell is such for the crystal structure of a body. Micro-particles represent 

micro-volumes of crystal lattices, of one or another phase|| of alloy (elements, 

MI solid solutions, chemical compounds, etc,) if they have a crystal structure. 

In pure metals and alloys having a single-phase structure, all micro-particles 

are usually characterized statistically by a single type geometric form, for instance 

by the form of a regular but on the average of equi-axial polyhedrons. In other cases, 

there is possible the presence of two or more groups of micro-particles belonging to 
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the same phase of alloy MM and having a uniform crystal lattice, but differing 

in geometric form. For instance, in soft steel we note two groups of micro-particles 

a. 
of ferrite; the particles of one of them, entering the composition of perlite are 

characterized by a thin-lamellar form, whereas particles of the second group 

have the form of polyhedrons ("of a grain" of ferrite). 

The inner structure of the vast majority of micro particles is characterized 

by a crystal lattice, determining the pattern of spatial arrangement of atoms, 

comprising the micro particle. However the actual micro particles constitute, as 

is known, complex formations consisting of blocks of a mosaic structure. Also of 

complex structure are the transitional boundary zones between adjacent micro-particles 

^äffiKDDSM and blocks; these zones are not simple geometric MKKMX interfaces, but 

have a fixed actual thickness. The composition and, hence the inner structure of 

MMffi^SMiaQM micro-particles ^are heterogeneous within the volume of a separate 

micro-particle etc. We shall dwell in more detail on these problems later on. 

The actual, three-dimensional microscopic structure of metal is not 

accessible to direct observation, since metal is not transparent. We can see only 

the structure, obtained in the intersection of metal by the plane of a raetallographic 

microsection, i.e. the two-dimensional structure of a cut or section of metal. 

idea 
Nevertheless, such a structure gives us a direct SM and graphic 1MÄ  of the 

microstructure 
microscopic structure of the metal. The visible two-dimensional älMäXJÜSEMQüCS should 

serve as initial material for recreating according to it the patterns of actual 

and micrgphotoVraphy, 
three-dimensional microscopic metal structure. In metallography 

or when observing in a microscope, the planar structure is considered, with very rare 

exceptions, as the final goal of the analysis being conducted, in spite of the fact 
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that with appropriate processing, they could yield a more complete data concerning 

the spatial microscopic structure of the metal. As we noted above, the object of 

all standardized methods of metallographic analysis is also comprised by planar 

microstructure. 

An important advantage of metallographic analysis is the clarity of the pattern 

being observed; however this clear pattern is rarely used for a more precise spatial 

estimation of the geometric parameters of the structure; this is the source of the 

disadvantages. The metallographer often overlooks the fact that the visible 

structure of a microsection is only a portrayal on the surface of a spatial 

microscopic structure of the alloy. 

The plane elements of the visible microstructure exist only on the slide, 

comprising random sections of microparticles of various phases of the alloy. All 

those geometric parameters of two-dimensional structure which we can measure or 

compute on a microsection, do not exist in an actual three-dimensional structure 

of an alloy, although they are connected with it and are determined unequivocally 

by it, 

A knowledge of the form of dependence of geometric parameters of a plane 

structure upon the spatial structure of an alloy is quite mandatory in developing 

any method of quantitative appraisal of the microstructure. The disregarding of this 

condition often leads to the obtainment of distorted, and sometimes of quite erroneous 

concepts concerning the actual structure of the alloy. 

A study of the SKMfiöä structure of alloys in connection with the processes 

of thermal, mechanical and other types of action upon it can give us a correct 

concept of the physical nature of the transpiring processes of conversions or changes, 

in an alloy only when wa quantitatively link the factors of outer effect and indexes 
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of properties of the alloy with the geometric parameters of its actual spatial 

structure. To seek a quantitative dependence among these factors, indexes of 

properties of allojjand parameters of plane microstructure of it is iust as 

unfeasible as establishing a dependence between the properties and behavior of a 

maascrystal and its x-ray photograph, not having determined in advance according to 

it the parameters of true structure of the crystal lattice. 

If we limit ourselves to a quantitative characteristic of only the plane 

microstructure of the alloy, in the optimum case we succeed in establishing only 

semiquantitative 
the empirical, JfflMffifMKyiOfflf  dependences among its parameters on the one hand, 

and on the other between the composition, properties and machining of the alloy. 

One can establish the physical nature of these dependences, find or verify the 

laws determining them, generalize and extend them to other cases only when one 

proceeds from the true three-dimensional structure during the evaluation. 

Section 5» Inadequacy of a Plane Evaluation of Microstructure 

In metallographic terminology, there is much confusion in the definitions of 

the geometric form of various elements of structure» this confusion is caused by 

the fact that in the MäläMXMS selection of a definition, sometimes one proceeds 

from a plane picture, being observed on the äJMMIiää microsection, and sometimes 

uses the actual spatial structure of the alloy as a basis. Therefore one can find 

in metallographic practice such definitions as "twinning plane" and "twinning line", 

"plate of ferrite" and "strip of ferrite" (in pCTlite), "boundary surfaces" and 

"lines of boundaries", "cementite shell" and "cementite grid", etc. Therein, almost 

never are indications made as to what exactly is intended - a plane structure of a 

spatial structure. For instance, in COST 3iA3 - ^6, one speaks of the "thickness" 

of graphite deposits of gray iron, whereas actually what is meant is the width of 

sections of graphite plates visible on the microsection. As a result of the vagueness 
25 
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composition 
in terminology, there develops an erroneous concept of the Sööüüöüfä of a given 

element of the structure. 

the micrqjsartigles 
For instance, according to a generally accepted definition,SZCTinffiiiffiJTKIKIft 

of the phase Cu^Sn,- in MMfflftjf babbitfe have a "needlelike" structure and are 

usually called "needles".    In their time, M.P.Slavinskiy and N.L.Kleyman extracted 

these micro particles from XäMäJ semiliquid babbit B-83 by the method of hot 

quartzitic 
filtration in vacuo.    Filtration was done through a filter made of XpfflfißGalXDt sand 

microparticles 
at temperatures of 280 and 2^0°.    XM In Fig.3 we show a view of solid MäMX$s&WU£ 

microparticles 
(Bibl.29) filtered off at 240°.    We observe that the Cu^nj MWXßMUMl actually 

have the shape of rods or needles.    These rods prove to be the centers of 

microparticles, 
crystallization of the SnSb Mm/OffiBBlMMSQi having a MX cubic form.    On the 

microparticles 
surface of the microsection, the sections of Cu^Snc MäMI$iXMMM& have the form 

more or less 
of iiHHBtfflgfflS extended elipses and sometimes, when the axis of the "needle" 

coincides closely äöiäg enough with the plane of the microsection, have the form of 

with reference to microparticles 
mSUSM "needles".    Hence, iKXXKJO iMiMwqMipmmtfmmm& of the 

MMäp; type SÄ Cu/Snc the concept "needles" refers to actual three-dimensional 

structure of micro particles of this phase of alloy and is quite correct. 

At the same time, over a period of decades the MMpK concept has been retained 

or acicular 

of the martensite of hardened steel as of a structure having a "needle" structure, 

, . 0 

which does SX not correspond at all to reality«    A.P.Gulyayev and Ye.V.Petunina 

convincingly demonstrated that in M reality martensite has a platelike spatial 

structure, while the ffiutoMK "needles" visible on the micro^section are traces of 

martensite plates on the plane of the «tiOWsmc microsection (3ibl,30, 31).    The 

authors measured the thickness of plates 
XM}gü30«15eeflaM}^6pffilM!öße^ of martensite in type 16G1 steel, which 

fell with& the limits of from 3.92 up to A.52 microns.    At such a slight thickness. 
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the chance of coincidence of plane MKK of a plate with the plane of a microsection 

is quite trivial. Nevertheless, A.P.Gulyayev and Ye.V.Petunina managed to detect 

and photograph several martensite 

plates which coincided with the plane 

of the microsection. One of them is 

shown in Fig.4 which also constitutes 

M. an additional confirmation of the 

platelike structure of martensite. Hence, 

in this case the MKS concept "needle" 

MM.  already refers not to a 

three-dimensional structure but to a 

two-dimensional section of micro particles 

being observed on the microsection. 

Fig.3 - Needle-Shaped Micro'T'articles 

of Cu^Snj and SnSb Micro Particles of 

Cubic Form Taken from Babbittby the 

Method of Hot Filtration. The diagram 

is based on a photograph -»f w. 

M.P.Slavinskiy and N.L.Kleyman (Bibl.29) 

A similar duality of approach to evaluation of the form of micro particles in 

itself leads sometimes to serious results. For instance, the author of one paper 

suggested three formulas for computing the volume of the transformed phase as a 

function of the time of isothermic delay, at differing uniform state of growth of 

O"1^",. 
nuclei: m««edimensional ("of a needle"), two-dimensional ("plate") and three- 

dimensional ("spherolite"). An experimental checking of the formula for 

monodimensional growth was conducted for the isothermic transformation of supercooled 

möötti austenite infoiKMimyMM "needlelike" troostite, where« there was 

obtained a good coincidence of calculation with experiment (Bibl.32). However since 

in reality the "needlelike" troostite as well as the "needlelike" martensite have a 

lamellar form, experimental checking actually refuted the formula of the author and 

did not confirm its validity. 
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Fig.i. - Martensite Formation (White Component), not Having a 

Needlelike Form, - js6 Plane of Microsection Coincided with 

Plane of Martensite Plate [after A.P.Gulyayev and Ye.V.Petunina 

(Bibl.31)] 

Obviously, it is necessary to stick to a single approach in the choice of 

terms typifying the geometric form of structural elements, which should be 

microparticles. 
chosen based on the actual three-äi^ dimensional structure of JEDÖÖKjSXiffiiSIiXX In 

those cases when one is discussing the parameters of two-dimensional structure, the 

use of the appropriate terms should be specifically spelled out. 

In a quantitative evaluation of the microscopic structure of metal, it is 

quite necessary to link the parameters of plane structure with the parameters of 

spatial structure. The lack of such a linkage may comprise a source of grave errors 

and of incorrect conclusions. For instance, IX I.L.Mirkin, having investigated the 

processes of secondary crystallization of steel, remarks: "A simple counting of the 

grains (this means the two-dimensional grains in the plane of a microsection - S.S.) 

or a measurement of their size leads to a quite untrue conclusion concerning the 

linear rate of crystallization and rate of nucleation. Analysis and experience 

indicate that a large number of grains in the microsection sometimes can be 

detected during a ÄXX low value of rate of nucleation and, contrariwise, a small 
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number of grains are detected in case of a high rate of nucleation. Such an 

externally paradoxical phenomenon ensues from the inequality of sizes of grains 

and the need of referring them to the volume of steel, whereas the counting is 

conducted on the plane (surface) of the microsection. This same circumstance needs 

to be taken into account in a determination of the quantity and size of slag 

inclusions, carbides, oxides and other deposits usually being determined under a 

microscope; based on the latter condition, the existing methods of their 

the 
microanalysis required a reexamination, and our concepts regarding MMä number 

■ 

of them present in steel are basically erroneous" (Bibl.33). 

Fig.5 • Individual Grain Taken from a Piece of Coarse-Grained Steel. 

Drawing by D.K.Chernov (Bibl,4) 

We will show how, using'the standard method of JiX determining the/size a<^rain| 

of steel, one can obtain iM\_concept opposite to that of the actual average size of 

three-dimensional grains. In Fig.5 is shown an individual grain removed from a 

piece of coarse-grained steel by D.K.Chernov, based on his actual drawing (Bibl.i.). 

We can easily see that if the plane of the microsection passes along the line AB, 

perpendicularly to the fcigfaQg of tno drawing, we will see ir the microsection two 
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sections of this grain, not connected one with the other in the plane of the 

microsection. Therefore we will naturally take them for two independent, grains 

in the counting of the number of plane grains and in a determination of the average 

area. The more complex the shape of the three-dimensional grains, at one and the 

same average volume of them, the gMTOtiKIMffiöt more the two-dimensional grains that 

will be observed per unit jgF area of microsection, the greater will be the lack of 

correspondence between the actual and apparent size of the grain. 

In case of especially complex forrttof spatial grains, on the microsection there 

may even be observed tj& so-called "isolated grains", described first by 

V.N.Sveshnikov (3ibl.34) and later noted by V.M.Zamoruyev in 3üö$Ia samples of 

cuprous soft M steel (Bibl.35). Such a grain would be more correctly termed " a grain 

within a grain", since the boundaries of the "isolated" grain on the microsection 

represent a closed curve^f, not contacting the network of lines of boundaries of 

other grains. In Fig.6 we show the miorostructure of MäMMÜ austenite steel, 

containing 18^ Cr and B%  Ni (Bibl.36), in which one can see three such "isolated" 

grains, indicated by arrows. Judging by the orientation of/lines _fl<yboundartjh# on 

the microsection, two of them located farther to the right belong to one and the 

to 
same spatial grain/which MXMMlf there evidently belongs the elongated flat grain 

located somewhat lower. 

Isolated nMEBKSt grains occur relatively rarely. However, very often in 

microslides one finds grains located close together, revealing a uniform color in 

case of deep pickling or a uniform orientation of lines .of -etifpago, which serves as 

a confirmation of their belonging to one and the same volumetric grain. 

30 



Fig.6 - Isolated Grains in Austenitd Steel {18%  Cr and 8% Ni) 

(Sibl.36) 

The Üg regular shape of grains approaching a spherical shape also does not 

protect us from mistakes, if the judgment of the average size of a three- 

dimensional grain is based on measurement of the average area of two-dimensional 

grains or on a counting of the number of grains in a fixed area of a cut |tXX 

>sag, equiaxial 
(microsection). At single-phase structure and mpqeaoaack shape of grains, the 

dependence between the quantity of KM three-dimensional grains per unit ßp 

volume of metal and the number of their sections per unit ^ area of microsection 

may be expressed by the following equation 

N = kn 
3/2 

(5.1) 

where N is the number of three-dimensional grains per 1 mnK of metal; 

n is the number of their two-dimensional sections per 1 mm of cut. 

.*- .h The value of coefficient k depends uponiluctuation in sizes of three-dimensional 

grains. For the usually observed structures, the values of this coefficient change 

within limits ranging roughly from 0.75 to l.C. Thus, even at an ideally regular 

form of grains and at one and the same number of two-dimensional grains occurring 

in the cut, the quantity of three-dimensional grains per unit-^ volume of metal 

ar.d the average volume of grain xa;: differ within the limits of around 25/^owirfT only 
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to the fluctuation of their sizes. Thence it is clear that the value of only 

the number n is not enough for judging the actual dimensions of average 

three-dimensional grain/? Therefore the standard method of determining the grain 

size based on COST 5639 - 51 cannot furnish a correct concept of the true grain 

size, even if it is ideally uniform in shape*. The presence of grains with concave 

surface increases the error. 

The same takes place in a determination of the quantity and sizes of nonmetallic 

inclusions. We present the following example (according to I.L.Kirkin): if, per unit 

. ■#■ volume of one type of steel ^here are 1000 inclusions 20 microns in diameter, 

while in another type of steel there are 2000 inclusions with a diameter of 10 microns, 

in a micrcanalysis of the MM^IS samples of both steels, we will observe approximately 

the same quantity of them per unit 0C area of the microsection (Bibl.37). In any 

steel, the inclusions are heterogeneous in sizes. Thence it follows thatjbased on 

the quantity of inclusions in a cut, one can by no means obtain a proper concept of 

the fraction of large and small inclusions, concerning the total quantity of 

inclusions or the degree of contamination of the steel. 

The parameters typifying the kinetics of the process of crystallization are 

determined according to the change in quantity of micrcPparticles of the newly forming 

phase and their sizes 3« function of time of the isothermic soaking. For round 

micro^particles, the following mathematically precise relationship between the 

* Here it is appropriate to note that the term "actual prain", being used in 

COST 5639 - 51 for signifying the actual size of plane grains of steel, is quite 

unsuccessful. 3y "actual" grain it is natural to MMK understand the true 

three-dimensional grair^of steel, in contradiction to the visible size of two 
KK in 
dimensional-grainsäjrthe microsection, which could lead to XX rdsunderstandings. 
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microparticles 
quantity of SfiiMXjßHtöHQHä per unit «t volume of metal N and number of their 

sections per unit tS area of cut, n is valid: 

n = ND, (5.2) 

where D JX is the ajü—ge arithmetic value of diameter of microparticles. 

The number n may increase owing to an increase in average diameter of HW' 

microparticles, 
fBÜßöö^JöfXIJJIäffiJ in case of their unchanged quantity per unit 5f-volume of metal N, 

or even owing to an increase of this number at unchanged average diameter oi-ffo, 

microparticles D,    It is also possible thats4if will grow owing to a simultaneous 

increase in N and D,    Thence it follows H£K quite obviously that neither the rate 

of nucleation of crystallisation nor the linear rate of growth can be determined. 

04. 
proceeding only from one number n and the kinetics of its change im a function of 

time of isothermic soaking. 

Meanwhile, G.Tamman proposed a formula for calculating the linear rate of 

displacement of( boundaries ^/grainf at isothermic recrystallization, based on 

the kinetics of change in the quantity of two-dimensional grains (Bibl.38): 

y-' (5.3) 

where a is the linear rate of displacement ofgrainjli- boundaries 

z is the duration of annealing. 

In £MI the light of what has been stated above, it is clear that the 

G.Tamman formula is inaccurate. Moreover, the very concept of rate of 

displacement of boundaries lacks physical meaning in application to single.phase 

polycrystalline aggregates in case of collective recrystallization and is 

unsuccessful. 
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Fig.7 - Displacement of(Lines ^ffifffltp^BoundarJ)^ of Aluminum 

Grains on a Cut at 600°. Solid lines equal after two minutes of 

soaking, broken lines equal after an additional 30 sec soaking. 

The diagram is taken from amicrojSmJtqgraph (3ibl,39) 

. In Fig.7, based on photomicrography (Bibl.39), there is shown the 

grain boundary lines 
displacement of ajfflssx^pcpasgs^xis^^^   on a cut of aluminum: the solid 

lines show the position of boundaries after two minutes of soaking at 600°, 

while the broken lines show the same after an extra 30 sec soaking at the same 

temperature. The displacement of any sector of the/line ^fc^ounSanTVe between 

two adjacent grains may be characterized by a fixed linear velocity, but if this 

rate is positive with reference to one grain (growth), then it is negative in relation 

to the second. If we examine the polycrystal as a whole, the average rate of 

displacement will obviously equal zero. One could have taken into consideration 

the displacement of boundaries only of growing grains, but from the drawing it is 

shift at 

apparent that the boundaries of the same grain may 8i8f5HM:>;*ü?Sh a positive rate 

at. 
at one place, and tföfti a negative rate at another place. Hence, "linear rate of 

proves a 
displacement of boundaries" in the given case IX/very indefinite and conditional 

concept. 

In spite of the fact that more than 20 yrs ago,  L'. I.L.Mirkin proved the 
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impossibility of a correct calculation of ^rameter^sj^^rystallizatioi^ without 

taking into account the connection of plane structure with spatial structure 

(3ibl.33), up to recent times attempts of such a kind have been continuing. For 

instance, one can point to the criticism »* S.R.Lilly and ^ I.K.Stanley of 

the method of studying the rate of crystallization on a plane, which S.F.Rejrter 

used in investigating the kinetics of recrystallization of low-carbon steel (Bibl.40). 

At the same time, if the forms are known of the connection of geometric parameters 

of spatial structure and of plane structure, one cannot only calculate correctly the 

parameters of crystallization but also compute in advance the geometric parameters 

of plane structure, proceeding from the propositions at the basis of the theory of 

the crystallization process. Then it is easy to compare these computational 

parameters with test data for checking the validity of the theoretical assumptions. 

For instance, to the process of graphitization of white iron, there is usually 

attributed a normal crystallization kinetics, typified by the nucleation of 

pxpim graphitization and by the growth of graphite läQQMDMI deposits. If the 

rate of nucleation of graphitization is constant during the process of isothermic 

soaking or even gradually decreases, the total quantity of graphite deposits per 

unit of volume of iron should continuously increase. The quantity of sections of 

graphite deposits visible per unit -tf area of cut should increase still more 

intensively, as follows from formula (5.2), inasmuch as the dimensions of deposits 

increase during the process of graphitization. The computational curve of the change 

in number of deposits of graphite per unit af cut area is shown in Fig.8 (curve l). 

Curves 2, 3, and k  in the same figure are drawn for the first stage of graphitization 

of samples of three smeltings of white iron based on test data of B.F.Sobolev {Bihl.hl). 
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They show how the quantity of deposits on a SHM microsection actually changes 

depending upon the duration of äJüöüCßf annealing at 970OC. 

Comparing the computational and test SMK curves, it is easy to see that 

between them there exists neither a quantitative or even a qualitative correspondence: 

ÖCüQ&M in place 
XKäöäM/of the expected growth of the number of clusters, IX the number decreases. 

It is obvious that the process of graphitization transpires at prepared centers 

(nuclei), while the quantity of deposits continually decreases in the process of 

■ 

isothermic annealing owing to their coagulation. The actual term "nucleation" 

under these conditions lc«ges meaning and our concept of the kinetics oFvUs 

graphitization process should be reexamined. 

The example presented ghows that a 

study of the spatial structure of alloy 

proves quite effective in checking by 

experiment the correctness of any 

hypotheses and theories KX connected with 

transformations in alloys. According to 

the successful expression of S.S.Smith and 

L.Guttman, the thinking of scientists is 

dimensionality 
usually limited by the same 

which is possessed SQEKK by the structures 

Fig.8 - Kinetics of Change in Quantity n 

2 
studied by them (Bibl.43). Therefore only 

from 
of Graphite Deposits per 1 mm of Cut in 

the Process of First Stage of Graphitizationyt change Kg a study of plane structure to 

of Three Smeltings of White Iron (Curves 2, 

3 and k).    Based on data of B.F.Sobolev 

(3ibl.42) 

a study of three-dimensional structure 

correct 
can give a JÖQSpöDütäM concept of the 

a) Time (hrs) 
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nature am physical essence of phenomena being observed in alloys. 

What has been stated shows convincingly enough the helplessness and 

inadequacies of the quantitative evaluation of a plane structure, if it is not- 

tied in with the spatial structure of the alloy. The rational and most effective 

way of developing metallographic analysis requires the use, not of tho quantitative 

characteristic of structure in general, but such an evaluation which would be based 

on the spatial structure of the alloy. Both the parameters of spatial structure 

as well as the parameters of plane structure, on the basis of which they may be 

quantities     kind 
computed, should be evaluated as natural geometric flSSaaSf without any KIM of 

coding or designating them with conventional point symbols or numbers. 

Section 6. Basic Parameters of Spatial Structure 

The form of particles making up a metallic aggregate is rarely geometrically 

uniform. The microparticles can be convex geometric bodies, but can also be 

bounded by concave surfaces. Quite often the microparticles have dimensions 

which are about uniform in all directions ( microparticles - grains, 

globules, spheroids). However, microparticles can also occur in which the 

dimensions in two directions predominate considerably over the dimension in a 

lamellae 
third direction (plates, M small Ibesme), or actual {articles having a predominating 

dimension only in one direction (needles, threads, rods). In certain cases, the 

microparticles are relatively massive formations with closed internal cavities, 

filled with microparticles of other phases or structural components (ferrite with 

oearlite, peariite, 
granular ^S¥SS5»^ cementite in ledeburit^ etc.). 

The sizes of microparticles also change within wide limits in a given small 

volume of alloy, which is the object of miorcPänalysis. 

The mutual arrangement of microparticles of one or of several phases is random 
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and even in the presence of certain laws (for instance, during transcrystallization 

or in plastically deformed metal) it can never be presented as geometrically regular, 

instance, 
similar, for KXMjSMJ to the arrangement of atoms in the points of a crystal lattice. 

It would seem as if these circumstances would create insuperable difficulties 

in the desire to evaluate the structure of an alloy by am geometric parameters, 

characterizing the shape, dimensions, quantity and arrangement of microparticles. 

These however, are only apparent difficulties. 

It is quite convenient to apply the statistical study methods to the 

microscopic structure of an alloy. Just as any geometric body, the microscopic 

particles possess fixed linear dimensions, volume, size of surface, shape, and are 

present in some quantity in a unit l£ volume of the alloy. Therefore the most 

efficient method of characterizing these microscopic geometric bodies is to 

evaluate them by the same parameters which were adopted for characterizing tS 

geometric bodies in general: their size, by linear dimensions or volume; fetexsurface, 

the number of 

by their areaj ^i.diikfcafe dispersed state by .jgaPuufey of microparticles per unit 

form factor; etc. 

^■volume; ijlfoef shape, by the ^§@i^iä^^"W;5W90?8¥fiPeW. Understandably, here we 

quantities. 

are discussing only the statistically average values for these ^iSj^SBSfe. In many 

cases, there is no need to typify any given group of microparticles of fixed phase ) 

at the 
even :a9c average values 0/parameters of their sizes and shape. It is usually enough 

to evaluate the entire combination of particles of a given phase by such parameters^« 

as the total volume of particles or the total surface of them per unit ja* volume of 

the alloy, if a more complete characteristic is inaccessible to us.  The combination 

of dimensional and quantitative parameters, obtained for particles of each structural 

a 
group or phase, is/quite objective, accurate and sufficient characteristic of the 
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microscopic structure of the object being analyzed, as a whole. 

The selection of parameters of spatialijf microscopic structure of an alloy, 

which can feasibly be measured during metallographic analysis, is determined by 

the role of (elements Mjmicrostructure)-ilBS typified by these parameters, in 
AN,   ) 

the processes of transformations and alloys and their effect üjßQt upon the 

properties of the alloy. At the same time, these parameters should be determined 

by the application of technically accessible but too unwieldy and sufficiently 

precise methods of metallographic analysis. 

From this viewpoint, the most important characteristic oimcroscopic structure 

of an alloy is its quantitative volumetric structural or phase composition, by which 

we mean the fraction of each structural component or phase in the volume of the 

alloy, usually being expressed in volumetric percentages. In a study of the 

kinetics of structural transformation in alloys, the change of structural and phase 

composition i^gtfB»-function of time .is a necessary and sufficient index of the 

course of the process. 

Knowing the fraction of the volume of alloy being taken up by each structural 

component or phase, and having access to the values of their specific weights, we 

can easily proceed from volumetric structural composition to weight composition. 

It is just as easy to proceed from weight  structural composition to chemical 

composition of the alloy, if we know the chemical composition of each phase or 

structural component. 

BX Using the simple/rule jaiMtfmixtureV on the basis of quantitative volumetric 

structural composition of the alloy, we can also compute its specific weight. 

In a number of cases, using simple formulas, one can calculate in first 

■ 

i 
approximation the indexes of mechanical properties of an alloy (hardness, ultimate 
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strength XM etc.). For this, in addition to volumetric MMK structural composition    fc 

of alloy, it is necessary to have available the corresponding indexes of mechanical 

properties of each structural component. 

Hence, a knowledge of the volumetric structural or phase composition of the 

alloy permits one to connect XK quantitatively its structure with the chemical 

composition, physical and mechanical properties of the alloy, which serves as a 

valuable means of reciprocal SI  checking and correcting of various types of 

investigation of the metal. 

An equally important parameter of microscopic structure is the value of 

total surface of grains of metal for microparticles of various phases and 

structural components of alloy, referred to »unit aäm&s  volume. This value, 
(\ ~ 

(specific area) 
called by us the specific surface/of grains or microparticles plays an exclusively 

important part both in the processes of XMMKM transformations in alloys as 

well as in a determination of their diverse properties. 

Based on a differing orientation of spatial lattices in each pair of contacting 

microparticles of pure metal, on the boundary of their contact there exists a 

■ 

layer of atoms in which they are arranged irregularly. The same takes place also 

(interface)   crystal 
at the boundary of contact/of various MpööQI lattices of each pair of microparticles 

of different phases. 

In the boundary layer, the position of atoms is fixed by forces acting from the 

side of both adjacent lattices, and constitutes a compromise position between those 

being determined by each of them separately. The layer of irregularly arranged atoms 

has a certain thickness, although it is trivial in comparison with the extent of the 

boundary layer. Therefore the boundaries of grainsand of microparticl-is are not 

areas        regions regions 
geometric saxKSaasas but are sr&sz possessing a fixed volume. These sress  are called 
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intercrystalline interstratifications (Bibl,45) or, more correctly, intercrystallite 

zones (Bibl.^o), 

crystal 
At the boundary of various contacting WgaSMUJMWgMSJDL lattices or of 

uniform but variously oriented lattices, there occurs a XKßflöötXKöüaßöaüQig 

"thickening" of energy. The energy level here is higher than within the volume 

of the crystal lattices, the atoms are connected less stably than those found 

within the regular lattice, the transitional layer is less stable thermodynamically, 

and its atoms are more mobile and inclined toward rearrangement and migration. 

causes the exclusive activity 
This IMEmMSMMXtSMSMj.     of atoms of intercrystallite zones and explains 

why they possess the leading part in the processes of interphase transformations, 

growth of grain, creep of metals, diffusion, nucleation of crystallization of a 

new phase, etc., which has been noted many times in the past by the practice of 

metallography. 

As is known, the mechanical properties of an alloy are -Ww function not only 

of the structural composition but also of the dispersed state. At one and the 

XX same volumetric phase composition of/alloy, the value of specific surface of 

microparticles serves as a reliable standard of the degree of dispersed state of ^ 

microscopic XMflMM structure of the alloy. Therefore, knowing the value of 

specific surface of various phases and structural components, we can in second 

approximation refine the indexes of mechanical properties computed on the basis of 

structural composition. In many cases, the mechanical properties of an alloy prove 

to be connected with the value of the specific surface by simple linear dependences. 

The same can be said concerning a series of physical properties of alloy, specifically 

the magnetic properties and specific weight. 

The plastic deformation of ä£M a metal is accompanied by the appearance of a 

LI 
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fixed orientation of intercrystallite surfaces relative to the direction of the 

forces ÄX acting in the metal. Therefore a study not only »■ the value, but also 

of the spatial orientation of suifacds of microparticles proves quite valuable in 

iffiotMaKXH researching the processes of plastic deformation of metal. 

The inter crystallite boundary zones of pKMX microparticles are not the only 

areas $SXy. of metal having increased energy and therefore actively taking part in the 

processes of transformations and of changes in structure. At formation of 

polycrystalline structure of pure metal or of single-phase alloy, a microparticle 

growing from the center of crystallization, encountering on the path of its 

growth the closest adjacent microparticle and coming into contact with it, forms 

a boundary, which is common to both microparticles. This interface continues 

to increase along with the further growth of the microparticles forming it MX 

until it encounters the surface of the nearest third microparticle. As a result 

of such a meeting, two more faces {-imtBB&f- are formed between this third 

microparticle and the two first ones. All these IHM.  facets are intersected 

along one line, i.e. a lattice edge, common for all three microparticles. The 

growth of this edge is limited by encounters with the surface of the nearest 

vertex 

fourth microparticle, which will be accompanied by the formation of a [point W-?. 

xSföäiS, common 4M» XU the four microparticles, that is polyhedrons. Hence, each 

face^in the polycrystalline aggregate belongs to two microparticles, and each edge 

belongs to three, while each point if thn -pwV  hrlnnrn to four microparticles. 

It is necessary to stipulate that in reality, the process of formation of 

a polycrystalline structure is considerably more complex, since simultaneously with 

the growth of microparticles there proceeds the process of collective re crystallization. 

However, this does not change the main character of the final microscopic structure 

L2 



of the polycrystalline aggregate» Therefore in a polyhedral structure, there 

sides 
are observed intercrystallite zones of three types, namely two boundary (^K^HX 

of polyhedrons), three boundary (edges of polyhedrons) and four boundary (psaikax 
vertices 

of polyhedrons). 

The degree of irregularity of arrangement of atoms in the zones of edges of 

sides 
polyhedrons is higher than in the zones of their faEEfca, since here the atoms 

are situated under the simultaneous effect of crystalline orders of three differently 

oriented lattices. Accordingly the level of energy and activity of atoms of threes- 

boundary intercrystalline zones is higher than that of two-boundary zones, and 

the therraodynamic stability is lower. A still more irregular arrangement is 

possessed by atoms of the four-boundary intercrystallite zones, where their position 

is a compromise one between those being fixed by each of the four crystal orders, 

converging at the points-Qf tlm -wartax«»» of the polyhedrons of the spatial lattices, 
A 

It is known that in the MMffiffiCM submerging of any mineral in a supersaturated 

salt solution, the corners and edges of the crystals prove to be especially active 

(Bibl,47). In metal alloys in many cases the rrlcrostructure serves as a proof that 

the same position is also valid for them. Very often one can observe the formation 

of a new phase at the point of contact of three grains of the original polyhedral 

structure in a microsection. It is clear that this point is the track of a line 

of edge on the surface of the cut. For instance, in Fig.9 one can see the formation 

of KM8 troostite with preference for the points of contacts of three grains in 

^high-speed 
-trTi nf tlir iTff^rmijfi type (Bibl.48). 

The line of the edges of grains is also of great practical interest because 

during the creep of metal, the start of the formation of cracks, leading subsequently 

to final disruption, as a rule is concentrated at the contact points of these 
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grains (Bibl,49). 

The lines of contact points of three microparticles, i.e., the lines of 

edges of polyhedrons, form in the 

metal a continuous spatial network 

which may be estimated quantitatively as 

the total extent of the lines of edges 

per unit 4£ volume of metal. The points 

of contacts of four grains, i.e., the 

vertexes of polyhedrons are estimated 

as their quantity. We have every basis 

for introducing into the list of most 

important parameters of microscopic 

structure of metal the length of lines 

of edges of polyhedrons, and also the 

Fig.9 - Principal Formation of 

Troostite at the Points of Contact 

of Austenite Grains. After 

A.P.Gulyayev (Bibl.48) 

their 
number of points of/vertexes per unit ^fc volume of metal. 

Of great interest is the quantity of microparticles occurring per unit 

volume of alloy. A study of the kinetics of crystallization, re crystallization, 

determination of true parameters of these processes and of actual dimension (volume) 

of microparticles is not realizable, if we cannot determine this parameter of the 

microscopic structure of an alloy. It is necessary to note that the finding of the 

actual number of microparticles in a volume of alloy is one of the most complex 

problems of spatial metallographic analysis. 

The enuinerated parameters cannot give an exhaustive characteristic of the 

spatial microstructure of the alloy. Having the values of all these parameters at 

our disposal, one can by no means fully reproduce on their basis the "architecture" 
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of microstructure of an alloy. For WL instance, knowing the volumetric content 

of graphite in gray iron, its specific surface and linear extent of edges of graphite 

deposits, it is impossible to judge the degree of their "vorticity". Nevertheless, 

the above listed parameters are the most significant and KiQKXKX reflect the 

structure of the alloy to the degree which is necessary for judging the properties 

and behavior of the alloy. 

Not counting the scales of standard structures in effect abroad, in the 

Soviet Union alone more than 30 scales have been standardized, which also do not 

take In all of the requirements of metallographic analysis. To foresee and to 

a/ 
provide for all of the possible cases of/quantitative evaluation is obviously 

impossible, and the present report does not pretend to do this to any degree. To 

evaluate the special elements of microstructure, to the extent that this is required 

introduction 
for practical or research purposes, would possibly require the MKäMK of a number 

of other parameters and the development of methods of their determination. However, 

in all cases it is necessary to proceed from the basic assumption: the evaluation 

of the structure should be conducted quantitatively, with values of geometric 

parameters of spatial microstructure of the alloy in every case when this is 

possible. 

The system of methods of metallographic analysis permitting a determination of 

the geometric parameters of spatial microscopic structure of metals and alloys is 

called by us "stereometric metallography". Quite often, methods of such a type 

are connected by the concept quantitative metallography, which is incorrect, since 

the same concept also includes the methods of quantitative analysis of a plane 

microstructure. In order to emphasize the basic features of the proposed system 

of methods, i.e. the volumetric state of the object of analysis (from Greek $SJiS& 
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stereo - spatial) and the strictly quantitative nature of their evaluation (fr om 

the Greek metron - measure, dimension), we jäK advance the term proposed by us for 

this branch of science concerning metals, as the most acceptable term. Accordingly, 

in the future discussion, we will use the terms stereometric structure, stereometric 

evaluation, stereometric analysis etc. 

Section 7. Development of Kethods of Stereometric MicrcPAnalysis 

As we saw above, the quantitative estimation of the structure of steel, in 

comparison with its mechanical properties and conditions of heat treating was first 

used as early as 1868 by D.K.Chernov, However, the maximum development of the 

method of stereometric evaluation of MMMXXSSJi microstructure occurred mainly 

in the last 20 - 25 yrs. The leading place in the development of this branch of 

knowledge was occupied and continues to be occupied by Russian and Soviet metallurgists 

and petrographers. 

XM|J The problem of/quantitative determination of volumetric phase composition 

was first posed and solved by petrography with reference to rocks. Since there is 

no main difference between the determination of the mineralogical composition 

of rocks and the structural composition of alloys, the methods developed by 

petrography can be mechanically transferred to metallurgy. 

In 18/i7 K.Deless first used the planmetric method of determining the 

mineralogical composition of rocks while in 1898 A.Rozival proposed a more convenient 

linear method of analysis (Bibl.50). 

The quantitative determination of structural composition of alloys in metallurgy 

was first conducted by Ye.P.Polushkin in 192i. For this purpose, he designed a 

"raetallographic planimeter". The volumetric structural composition which was found 

was converted to weight composition (based or. specific weights of structural 
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components) and the data derived showed good agreement in comparison with data 

of chemical analysis (Bibl.Jl). The most improved method of analysis, namely the 

point method was developed by A.A.Glagolev in 1931 with application to rocks 

(3ibl.52, 53) and was proposed by him also for application to the structural analysis 

of alloys in 1935 (Bibl.54). The point method permits the application, during analysis, 

of various devices, to a certain degree mechanizing the process of analysis and 

considerably facilitating the work of the observer, accelerating the process of 

analysis and expediting the obtainment of greater accuracy. A number of such 

devices (push MMMMMgMXMK  integrators) were designed by the author of the 

method. The Glagolev method received widespread fame and dissemination both here 

is 
in the Soviet Union as well as abroad, and MS used with equal success in the 

ffi analysis of rocks and of metal alloys. 

The method of determining the value of specific surface, i.e. of interface of 

microparticles of two phases per unit «f volume of metal,was first developed by 

M.T.Belyayev in 1922 for one special case, namely the structure of lamellar perlite 

(Bibl.55, 56). The method is based on the specific structure of lamellar perlite 

interlamellar spacing in it, 
and the constancy of the intÄEpiafc&aJ^ääI8§ECXIKXii|! therefore it cannot be extended 

to any structure of another type. It has been used many times, right up to recent 

times, bv a number of researchers who had studied the perlite transformation of 
A 

austenite. Specifically, M.T.Belyayev first used the expression "stereometric" in 

application to the volumetric geometric structure of metal ("stereometry of a perlite 

grain"), 

In 1937, J.J.Rutherford, R.H.Aborn, and E.Bain tried to determine the specific 

surface of microparticles of a polyhedral structure (3ibl.57). The method developed 

by them is based on an idealised form of microparticles which are assumed to be 
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geometrically uniform polyhedrons ^ääMäüEQtMXäKKX (cubo-octahedrons) and also 

on a number of other assumptions. Since the actual shape of microparticles is 

far from ideal, the method is not a strict one and is not of interest äffijä at 

present. 

A universal method of determining the value of specific surface, equally 

suitable for any shape of microparticles of nondeformed (isometric)structures, is 

called the method of random secants, developed in 1945 by S.A.Saltykov (Bibl.58, 59). 

The method is mathematically strict and in practice is exceedingly simple, 

devices 
permitting the use of frYifflfyK speeding up the measurement under a microscope or 

in photomicrography. LaLer on, KMä the method of random secants was also extended 

to deformed (oriented) structures. In 1952, S.A.Saltykov proposed a method of 

XfltmSMMM approximate evaluation of specific surface of structures. 

having a linear a* plane statistical symmetry (Bibl.60). In 1954) A.G.Spektor 

proposed a mathematically precise method, applicable to deformed structures only 

with a linear (axial) statistical symmetry (Bibl.6l). The method of random secants 

received complete recognition and is used in research activities, constituting the 

basic method of determining the specific surface of microparticles. 

The method of quantitative evaluation of the second type of intercrystallite 

zones.is that of total extent of lines of edges of microparticles per unit J^S volume 

of metal, developed in 1950 by S.A.Saltykov (Bibl.17*.  The method is also mathematically 

rigorous and is quite simple methodologically. 

L.Guttraan 
» It is noteworthy that considerably later, in 1953, S.S.Smith and MSMMK described 

a method of determining the value of specific surface of microparticles and the linear 

extent of their edges, under the name of the method JSfMä "random sections" (Bibl.43). 

Their method and formulas are quite identical with the methods and formulas published 

respectively in 1945 - 46 (Bibl.58, 59) and in 1950 by S.A.Saltykov (Bibl.17), but 

S.S.Smith and L.C-uttman make no references whatsoever to these studies. 

U' 
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AG was mentioned above, the maximum experimental difficulties are encountered 

in the determination of the quantity of microparticles in the SI volume of alloy. 

serious 
The approximate formulas, not having SMIXKXMKyK bases, have been proposed many 

times for this purpose, however KM|rigorous method was developed only for 

microparticles of spherical form and forms close to it. A precise formula, connecting 

the diameter of volumetric microparticles, the quantity of them per unit ^f volume 

of alloy and the number of sections of particles on a plane was given in 1935 by 

I.L.Mirkin for a system of isodispersed microparticles (Bibl.33). Later, this 

formula was extended by S.A.Saltykov to the polydispersed systems of spherical 

particles. These formulas are insufficient for determining the quantity of 

microparticles in a volume of alloy, however they have great significance in the 

developnent of methods of such a determination. 

A very valuable method of computing the quantity of round microparticles was 

developed by E.Scheil in 1931, and later this was somewhat improved by him 

(Bibl,62, 63, 64). The Scheil method permits one to determine both the total 

quantity of microparticles in a volume of alloy, as well as the distribution of 

microparticles according to their sizes (diameter). A disadvantage of the method 

unwieldiness, 
is its XMIäQipöüüQf which aroused many to work in the direction of its improvement. 

Simplified methods based on the Scheil method were developed by SXSlDKeßütX$MBaiÄ5j 

H.A.Schwartz (Sibl.65), W.Johnson (Bibl.18), S.A.Saltykov (3ibl,66), A.G.Spektor 

(Bibl.67). Nevertheless, even the best of the existing methods of computing the 

distribution of microparticles remain unwieldy and complicated. 

The Scheil method was used many times in a study of the kinetics of crystallization 

for determining the crystallization parameters. Up to the appearance of the method 

of random secants, the Scheil method was also used for computing the specific surface 
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of round microparticles. 

In the above mentioned method of J.Rutherford and others (Bibl.57), the 

quantity of microparticles in a volume is computed,based on the number of their 

sections per unit 0 area of cut. However, since these two parameters are not 

connected by a well-defined relationship, the values obtained can be MS. regarded 

only as very approximate. A precise method of determining the quantity of 

spherical microparticles (without their distribution by sizes) was proposed by 

S.A.Saltjrkov in 1947 under the name "method of diverse diameters" (3ibl.63). The 

method is sufficiently simple experimentally. 

The most poorly represented at the present time M are the methods of 

determining the characteriatics of the form of microparticles. In individual cases, 

the spatial form of microparticles can be established by the method of successive 

grindings with 4 construction of a volumetric model of individual microparticles. 

The above mentioned method of perpendicular sections of A.P.Gulyayev and Ye.V.Petunina 

also permits one to determine the form and dimensions only of individual microparticles. 

Therefore one of the most pressing problems of stereometric (solid geometry) 

metallography is the development of statistical characteristics of the form of 

microparticles of the given type. 

The jäÄßüapi principle first applied by D.K.Chernov of establishing a 

quantitative interrelationship between the properties of metal, its machining and 

the parameters of microstructure receive) development in the activities of Soviet 

metallurgists. The use of methods of quantitative evaluation of spatial structure 

in the reports of M.S.Aronovich, M.Ye.Blanter, S.Z.Bokshteyn, S.K.Vinarov, M.I.Vinograd, 

A.I.Gardin, A.P.Gulyayev, B.B.Gulyayev, K.K.Lebedeva, I.L.Hirkin, L.S.Moroz, 

P.O.Pashkov, G.I.Pogodir.-Alekseyev, A.I.Skakov, S.M.Skorodziyevskiy, A.G.Spektor, 
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A.N.Chervyakov, and of others MMK served for recognition and propagation of the 

methods of stereometric metallography. Of the number of foreign metallurgists, 

from the same standpoint one should make mention of E.Scheil, R.Meil, W.Johnson, 

M.Gensamer, 
KiEÜQßüßöt£ S.Smith, Eüöffi L.Beck, G.Kostron, R.Howard and others. 

Besides the above mentioned methods of determining the parameters of 

microstructure, there is required a development of quantitative evaluation of the 

uniformity and homogeneity of the spatial microstructure. The most important and 

urgent problem is the translation of standard methods characterizing microstructure 

into the language of stereometric evaluation. For instance, now it is already 

possible to note that the evaluation of the granular structurs of steel MM based 

on the value of specific surface of microstructures is methodologically more correct 

and experimentally considerably more improved and more simple, than the standard 

method being used for determining the size of a grain of steel. Therefore we need 

an IM insistent and active struggle for the replacement of obsolete methods of 

evaluating plane microstructure by already developed, more efficient methods of 

stereometric evaluation. 

Section 8, Technical Means and Features of Stereometric Micro*Analysis       l-y i  

The most important advantage of stereometric micrcUanalysis is the fact 

that its use does not require any major new technical resources for any kind of 

basic changes in the process of preparing the microsection. Therefore the methods 

described in the present book are accessible for any laboratory, equipped with tfih. 

simple metallographic apparatus. In this paragraph, we shall examine the general 

conditions and requirements, equally in effect for all methods of stereometric 

evaluatior.. Later, in a description of individual types of stereometric microanalysis, 

accomplishment. 
lire will give special instructions on the techniques of their |GÜ( practical jfltftMffllfljf 
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For a SMM determination of the actual values of parameters of spatial 

microstructure based on the nontransparency of the items being analysed, we will 

pööüßCS proceed only from a plane microstructure. As a result of the intersection 

by the plane of a cut of individual microparticle, we can observe its random section, 

which cannot give us a concept either of the actual sizes of the microparticle or of 

its geometric form. However, while the section of a separate microparticle represents 

of a 
a figure of random form and size, the statistical association of sections IM practically 

infinitely large number of microparticles can already be regarded as an accurate 

reflection of microscopic structure of the alloy. Taking this into account, one 

can determine the geometric parameters of the spatial microstructure of an alloy 

MXflM based on its plane microstructure with any accuracy, which may be required. 

In most cases, SÖOQÖCIX one microsection is enough for this, while in case of 

oriented structures (during transcrystallization, plastic, deformation), the number 

of required miorosections may increase to two. 

In cast or rolled metal the structure as a rule is irregular in cross section 

to a greater or lesser degree. For instance, in Fig.10 is shown the distribution of 

a quantity of deposits of carbon of annealing based on section of samples of forged 

iron 25 mm in diameter based on data of the author (Bibl.69); a similar distribution 

pattern is noted for forged iron by 1.1 .Khoroshev (Bibl./d). 

M.M.Shteynberg, I.N.Bogachev, G.A.Zykov and R.Sh.Shklyar found that the size 

of a grain of transformer steel and the degree of its uniformity change from the 

surface of the sheet to its core, as is illustrated by the data in Table 5 (Bibl.70). 
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Fig.10 - Distribution of Graphite Deposits according to Section 

(Diameter) of Round Sample of Malleable Cast Iron. Decrease in 

quantity of deposits at surface as result of surface decarbonizing 

during annealing 

a) Number of centers per mm ; b) Distance from center, mm 

Fig.11 - Typical Distribution of Ncnmetallic Inclusions in Section 

of Steel Castings Weighing 10 kg, Cast from One Smelting in a 

Ceramic (on left) and Iron (on right) Form. 100 ^V - volunetric % 

of inclusions, n - number of inclusions per 1 ram2 of area of cut 

[B.B.Gulyayev (3ibl.71)] 

a) Distance from surface, mm 

53 

.. 



Table 5 

W                                                  | 

c) ' d) e) 

■...'.•  750 ' 
900 

1200 

0,03 
0,05 
0,075 

0,034 
0,06 
0.26 

0,04             1 
0,068 

-'0,46 

a) Annealing temperature, 0C-,  b) Size of grain, ram2; c) On the surface of 

sample; d) At a depth of 0.04 mm; e) At a depth of 0.06 mm 

In Fig,11 is shown the distribution of a number of nonmetallic inclusions 

and their volumetric percent according to section of steel castings 10 kg in weight, 

which were hardened in ceramic and iron forms, after data of B.B.Gulyayev (Bibl.71). 

On the basis of the data presented and a number of other data, one can notice a 

general regularity, that is, from the surface to the center of the section, the 

dispersed state of the structure decreases. 

Inasmuch as the structure in most cases remains qualitatively uniform in 

cross section, the choice of location of.plane of cut during conventional^* 

qualitative determinations does not play a substantial part. It is another matter 

in quantitative microanalysis; here the place and direction or plane of cut needs 

to be chosen very carefully, taking into account the possible irregularity of 

structure along the section. 

Let us examine IX how the choice of section of cut is reflected upon the 

results of quantitative microanalysis if the structure is irregular. For simplicity, 

we will limit cor selves to a case when the ground sample car. be divided into two 

zones according to uniformity of structure. Let us assume, that in zone 1, the 

pa rair.eter of structure interesting to us is characterized by the value C,, while in 
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zone 2,, by value C2. Let us also assume that the diameter of zone 2 equals half 

the diameter of the sample (Fig.12). 

In a transverse cut, the area of zone 1 

comprises 0,75 of the area of the cut, while 

in zone 2 it comprises 0.25. Therefore, in 

a determination of the value of parameter C 

for the sample as a whole according to transverse 

cut, lire get the value: 

Cj.= 0,75^ + 0,25^. 

b) 

t«l Fig.12 - Effects* Location of 

Plane of Cut upon Result of 

Quantitative Microanalysis at 

Irregularity of Structure 

Having an Axial Symmetry 

a) Zone 2; b) Zone 1 

In a longitudinal cut, passing along the 

axis of the sample, the areas of both zones will 

be uniform and will equal 0.50 of the area of ' 

cut. Therefore in evaluating the structure of 

the sample as a whole based on longitudinal 

cut, the value of oarameter C will differ 

considerably from the value found in the transverse cut: 

Cn  =0,500! +0,50 C2. 

It is easy to see that the volume occupied by zone 2 constitutes 5 of the 

volume of the sample, i.e. coincides with the part being occupied by this zone in 

the transverse cut. Therefore the quantitative result of the analysis, obtained in 

the transverse cut, will correspond to the actual average parameter of spatial 

structure, whereas in the longitudinal cut, we get an incorrect result. If the 

plane of the longitudinal cut will not coincide with the axis of the sample, the 

error of the evaluation will be all the greater, the farther this is separated from 

the axis. In the plane, located at a distance of half the radius frorri the center, 

55 



zone 2 will not be represented at all. 

The situation does not change if the parameter of the structure changes 

regularly from the surface to the center, as this is shown in Figs.10 and 11. Here 

we can divide the samples into a number of concentric zones and the pattern of 

deliberations, just as in the final result, will remain the same as in the above 

considered schematic example. At a given IMS increase, any field of vnaien on the 

transverse cut represents the same volume of metal, while on the longitudinal cut 

the volume of metal being represented by the given field of JIBJOII KMSI constitutes 

a function of the distance of this field from the axis of rolling or casting. The 

given field of vieiefl represents a lesser volume of metal, the closer it is 

located to the axis of the sample. If in a deterirdnation of any parameter, the 

fields of vision are located uniformly along the entire cut, the result of 

micro-analysis of transverse cut will then provide a correct representation of the 

average value for this parameter KX in the volume of metal. In case of a longitudinal 

cut and in presence of irregularity in structure along the section, the result will 

prove erroneous. 

The longitudinal microsections are widely used in an estimation of the 

contamination of steel by nonmetallic inclusions. Since usually the central zone of 

section of rolling is more contaminated, in the evaluation along the longitudinal cut 

the average degree of contamination will always prove higher than it is in actuality. 

If the longitudinal cut however is not axial, the result of micro-analysis then depends 

upon the äülK distance between the plane of the microsection and the axis of rolling, 

and also upon the degree of heterogeneity along the section. 

Based on what has been presented, the plane of the cut should be so chosen that 

in any other plane parallel to that selected, the structure would be statistically 

56 



identical not only  qualitatively but also quantitatively. In certain cases, there 

proved to be {QüßfäiäJKDSKK unavoidable the use of longitudinal cuts. However in 

this connection, it is mandatory to take into account the importance ("weight") of 

field of ^aBaSw^ determining the parameter, measured in each field of -JMimi, determining the distance from the 

center of field of vision to the axis of rolling, with subsequent calculation of the 

average suspended value of the given parameter according to all fields of vision, 

was 
in which it IS measured. 

Since the visible two-dimensional structure is a geometrically flat section 

of, spatial conglomerate of MM microparticles, it is necessary that the surface 

of the microsection be as close as possible to an ideal plane and have a minimum 

micro relief, unavoidable in the process of preparing the slide. 

A study of micro relief of metallographic WIUMK  sections (cuts) was conducted 

by N.M.Zarubin with the aid of the interferometer of V.P.Linnik (Bibl,72). He 

established that the micro relief is mainly developed as early as in the process 

of polishing, that is the polished surface^of microsections are always obtained as 

relief sections and not as plane sections. The lamae  of relief depends upon the 

method of preparing the section and upon the structure of the sample. The obtainment 

of a greater relief is promoted by i prolonged polishing (and repolishing), by a 

h coarse-grained structure and considerable difference in the hardness of the components 

of structure. Etching (pickling) does not exert a noticeable effect upon the 

of micro relief, being obtained during polishing. 

In high-strength iron, having an almost purely ferrite base, the value of 

micro irregularities (difference in levels) between the grains of ferrite after 

polishing and pickling amount;to 0.17 microns. After «additional polishing, this 

value reached 0.? - 0.9 microns. The depth of hollows of graphite correspondingly 



increased from 0.70 microns to such an extent that it could not be measured 

(more than 20 microns). On the microsection of another sample of high-strength 

iron, the amount of micro irregularlt§: between the ferrite and pej-lite amounted 

to 0.15 microns. 

T 

In coarsely grained chromium alloy, the value of micro irregularity between 

carbides of chromium and pirlite reach 1.2 microns on a pickled microsection; the 

micro hardness of carbides reaches 1200 and of peflite 625. In a finely grained 

chromium alloy, the value of micro irregularity constituted a total of 0.13 microns 

before pickling and increased very little during pickling. 

Inasmuch as the depth of relief (embossing) is mainly determined by the 

duration of polishing (and the use of repolishing), to obtain minimum relief, of 

great Importance is a pood preliminary preparation of the surface, xaavingyto a 

minimum the time needed for polishing. For ferrous metals, M.M.Zarubin recommends 

the following types of processing the microsection, assuring the obtainment of 

micro irregularitj; within the limits up to 0.5 micron: 

a) Grinding the microsection with carborundum stone, files and emftry cloths. 

Polishing with water suspension of aluminum oxide; 

b) The same preliminary processing as in the previous case, polishing with 

passivating suspension (10 - 20 gmspf sodium nitrate, JXgS 3 gms of calcinated soda, 

up to 10 gms of aluminum oxide per liter of water). 

The maximum relief state occurs at electric polishing of ferrous metals and 

at polishing of nonferrous metals by "strong pickling (etching)". In all these 

cases, the micro irregulari1(» reachWt/i microns. 

The xai*»e of micro irregularitjjTwhich can be permitted during quantitative 

micro analysis depends upon the type of structure being analyzed and the type of 
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(of miorostructure) being determined, T*»'minimum micro 
parameter MM^^MmXKXMy^MMp^^ffiMfM^XaSXMMMaCMXiffiäl  relief has to be 

assured in KMffXK samples having highly dispersed granular structure (*Ö8 type of 

granular perlite), especially if we äüöffii determine the sizes of microparticles or 

the relative volume of their component phases. The determination of the value of 

specific surface is less sensitive to the presence of micro relief. For determining 

the specific surface of slightly dispersed structures of polyhedral type, one can 

even use an electrolytic polishing. 

The effect of the relief state of the cut on the results of stereometric 

analysis of actual structures will be considered in more detail below. The 

quantitative micro analysis of a well-prepared cut is conducted in conventional 

metallographio or in other microscopes equipped with opaque-illuminators, and equipped 

with standard optics and devices. 

The microscope bench should assure the smooth cruciform movement of the cut 

in the plane of the bench in two mutually perpendicular directions. The amount of 

displacement of the cut should be measured as accurately as possible. This 

requirement is met in the best way by the bench of the device for determining the 

MMSXMcC micro hardness FMT-3 designed by IMASh, in which the cruciform movement 

of the bench is realized by micrometric screws with an accuracy of 0.01 mm; the 

amount of £X displacement is 12 - 15 mm. Less convenient are the two coordinate 

preparation guide devices of the type ST-5 having rack and pinion movement and scales 

equipped with verniers, which permit the measurement of displacement with an 

accuracy of 0,1 mm; the possible amount of movement is 25 and 60 mm. Least convenient 

are the KX standard stands for the metallographic microscopes type MIM-5, MIK-6, 

MIM-7, in which the amount of displacement is estimated visually by the millimeter 

KM 
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scale. The limits of movement of the microscope stand should assure an inspection 

of the entire surface of the raicrosection being analyzed, from one set up, without 

changing its position on the stand. In order that any point of the cut will be 

accessible for observation, it is desirable that the microsection does not rest 

by a part of its surface against the fastening plate of the microscope stand. Hence, 

one should give preference to a low position of XXX the microsection, as this takes 

place in vertical microscopes. 

In an analysis of the oriented structures, it is necessary to turn the 

microsection relative tcTairection of movement ofstand with an accuracy up to 1°. 

The polarization microscopes of the type MP-2 and MP-3 are g^fflffit equipped with 

rotating stands. One can use rotating cover plates equipped with a degree scale, 

as for instance in the MIM-7 microscope. The preparation of such inserts for any 

microscope does not present any technical difficulty. The insert should have one 

or two clamps for fastening the sample, in order to avoid the possibility of its 

displacement during the rotation of the insert. 

In certain cases, it is feasible to make the measurement of,elements öf 

thg, grgund camera. 
rtmSBge onTSEE-h'glass of the microscope iSSfipöPUfiSWE. For this it is necessary 

that the microscope have a sufficiently powerful source of äX illumination. 

Among the existing designs of microscopes, the most handy for our purposes 

its microscopic 
is the micrtTViardness meter PMT-3 under the condition that %M2MMMM$L    stand is 

equipped with a rotating insert having a degree scale. Also convenient are the 

polarization 
-"■pfiWaKfeatto; microscopes having an opaque-illuminator, rotating stand and with a two- 

coordinate preparation guiding device, mounted on the stand. It is quite desirable 

that in the development of new designs of metallographic microscopes, one take into 

account the requirements of quantitative metallographic analysis, 
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In addition to the standard set of objectives ar.d eyepieces, attached to 

each microscope, it is necessary to have a set of eyepieces for quantitative 

measurements during visual observations. The main items in this set are: 

a) An eyepiece-micrometer having a ruler divided into 100 parts, prepared 

with magnifications of 7 and 15. It is desirable that the scale of this eyepiece^ 

shown in Fig.13) does not exceed in length 0.75 - 0.8 of the diameter of the field 

of vision. Quite necessary is the presence of a longitudinal diametral line which 

not 
is/available in all eyepieces of a similar type; 

b) Square grid-reticulated eyepiece. The scale of the eyepiece, containing 

256 squares, similar to that shown in Fig.lA., is used for eyepieces 23 mm in 

diameter. For eyepieces of larger diameter (30 mm) grids containing U00  squares 

can be used. Polarization microscopes 

have such eyepieces; 

screw type cross hair 
c) A MMMpkxM eyepiece-micrometer SI  equipped with a MMMMä  shown in 

Fig,15, type AM 9-2. IMj5 The point of the crossing of the threads has a displacement 

of 8 mm, being measured with an accuracy of 0.01 mm. In case of the lack of such 

an eyepiece, one can use an eyepiece having a stationary cross hair. 

With the aid of the object-micrometer, one determines the value of division 

of ruler of the eyepiece micrometer for each of the objectives of the optical set 

of the microscope. The same is done for measuring the cells of the square-grid 

eyepiece and for moving the cross hair of the screw type eyepiece-micrometer. ZZ It 

is advantageous to measure the diameter of the field of vision for all combinations 

of lenses and eyepieces and to compute the visible areas of the fields of vision. 
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Fig.13 - Eyepiece-Micrometer 
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Fig.li - Square-Reticulated Eyepiece 
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In quantitative micro-analysis, it is often necessary to calculate a 

considerable number of certain values (number of grains in field of vision, 

number of points etc.)« The calculation is considerably speeded up and is made 

more reliable if instead of oral counting there is used a counter adding up the 

push-downs, 

number of prageugp^T The simplest counter of such a type, made by the factory 

"Schetmash", is shown in Fig.16. 

It is noteworthy that the 

development and introduction into 

metallographic practice of specialized 

devices for the quantitative microanalysis 

would greatly simplify and accelerate its 

Fig.15 - Screwtype Eyepiece-Micrometer 

conduct, would MKää make more accurate 

and reliable the data obtained,if one could 

. (personal factor) 
eliminate the possibility of the effect of individual traits.of the observer on the 

results obtained. In this respect, an example is the equipping of devices with 

quantitative methods of geometric 

microanalysis of rocks. Many of the devices 

being used in petrography can also Mi be 

used in metallographic quantitative analysis. 

The use of stereometric evaluation of 

the structure of alloy does not exclude the 

Fig.16 - Manual Counter "Schetmash" 

evaluation 
use of the method of visual MMMUZM  by 

way of comparing the structure^7being fot 

i/wi ob served/"with the structure of standard scales, which had received wide distribution 
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in metallographic practice. The visual evaluation is distinguished by unique 

speed and simplicity, therefore XKM its use is desirable in large-scale 

inspection tests under conditions of plant laboratories. However one should in no 

way forget that these qualities of visual evaluation are achieved owing to the 

accuracy of determination. It is subjective and therefore is inferior to the 

results of direct measurements or calculations of the parameters of interest to us. 

The scales of standard structures being used in stereometric metallography, 

are basically different from the scales being used for most standard semiquantitative 

analyses. Each standard structure should be evaluated as a precise value of that 

parameter, for the visual evaluation of which it is intended, but not in any case 

by conventional index points or numbers. Gradations between adjacent standard 

structures in the scale are selected in conformity with that accuracy which is 

required by us from the given control test and which one can attain in practice during 

visual evaluation. 

IMl  For instance if we conduct large-scale control tests of steel, evaluating 

its structure on the basi^ of two criteria, namely the quantity of polite and its 

structure (disperse^ state), we should have two series of standard MSM 

photomicrographs. One of them, under magnificatiooj let us say, ^p«W 100, corresponding 

to the working magnification during control inspection, should contain a number of 

photos(or sketched structures) with an increasing content of perlite. 

a. 
If the accuracy of identification of perlite during visual evaluation is assumed 

^ 

A'. 
to equal 5%  of the absolute content of perlite, the standard iSX photomicrographs 

should be prepared with the appropriate gradations (0, 5, 10, 15, 20 ... ^ of 

perlite according to area). The character of the structure as a whole (ferrite in 

the form of a network, perlite and ferrite in the form of separate grains etc.) in the 
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control samples of steel and in the standard photomicrographs should be identical,      I 

since this promotes a greater accuracy of identification during visual evaluation. 

In calibrating the JQÖE actual standard structure, the content (area of perlite) 

should be determined directly in the actual photomicrograph, and not on the 

fiDSMÄÄKiäM microsection from which the photos are made. 
■ 

Just as for an estimation of the dispersed state of perlite, which we assume 

is conducted at magnification of 1000, we prepare a set of standard photomicrographs 
I 

at this magnification. In each iHXMffM photomicrograph there is indicated precisely 

the measured (specifically on Bug it) and then KM in a similar manner the computed 

spatial 
parameter of Xffincrar structure of perlite, characterizing its dispersed state, namely 

the value of interlamellar distance or the actual value of specific surface of 

cementite. 

In an evaluation of the quantity of perlite and its dispersed state, one does 

not use any kind of conventional symbols or codes. The estimation is conducted by 

natural values of geometric parameters of spatial structure, namely the volumetric 

percent of perlite, interlamellar distance in microns, specific surface of cementite 
A 

in ram /mm-'. In the described method of construction of scale, we always have the 

possibility of prolonging(or dividing^more finely in any individual sector. 

The sets of standard photomicrographs should be of a nature DUCKM inherent to 

the structures being inspected in the given production. For instance, one should 

never use the same scale of quantity of perlite for cast steel, for rolling with 

the absence or presence of striation. Any standardization of sets of standard 

structures inevitably decreases the accuracy of the evaluations obtained. 

If great accuracy is required and the tests are not large-scale, the measurement 

of parameters then should be conducted by the methods described in the following chapters. 
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It needs to be emphasized that all these methods are statistical and therefore the 

accuracy of estimation is all the higher the more the readings or measurements 

that are conducted for obtaining the average value of the parameter being measured. 

Therein, in determining any average value, it is necessary to choose the items 

being measured at random, without any preference in relation to any given category 

of values being measured and without rejecting those •^Mmn which are even quite 

substantially different from the vast majority of measurements. In the history 

of statistical analysis, the following quite indicative case is known. 

In the past Century, measurements were conducted in England for determining 

geographic longitudes. In the first processing of the data obtained not all the 

data were used but only those afi-iWtom which agreed best of all with each other. 

The results proved so inaccurate that the measurements were completely rejected. 

However, the data of measurements were retained and when subsequently they were 

reprocessed, wherein in the calculation all data were accepted, even those which 

appeared contradictory, the results proved excellent (3ibl,73). Therefore, also 

in the JüööüffilMM determination, e.g. of the value of average grain it is necessary 

to take into account all grains without exception in a fixed area, without disregarding 

even the smallest of them. 

In the further discussion it is convenient to adopt a system of symbols of 

geometric parameters of spatial and plane structures, which were used in previous 

studies. Various geometric parameters of individual microparticles are signified 

with 
by letters of the Latin alphabet,/which it is conventional to denote the corresponding 

parameters of geometric bodies and figures: volume V, surface S, area F, linear 

dimensions L and D etc. The corresponding average values are signified by the same 
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letters with a vinculum drawn over them. The total values, referred to a unit 

volume of metal or to a unit area of microsection, we .TKgrygSy with the sum XIK 

sign 
«sgnatZ, placed before the symbol of the appropriate parameter. The phase 

of any component of the structure, to which the given parameter is referred, is 

written on the right in the form of xsoöcaäSBtKx a subscript. 

Table 6 

Title of Parameter 

Volume of individual microparticle   

Surface of individual microparticle ....... 

Diameter of spherical microparticle   

Length of linear element of spatial microstructure 

Number of microparticles per unit volume of alloy 

Total volume of n^BStf microparticles per 

unit volume of alloy     

Total surface of microparticles per unit 

MX volume of alloy  

Total length of linear elements of spatial 

microstructure per unit volume of alloy .... 

Area of individual section of microparticle in 

microsection   

Perimeter of individual section of microparticle 

on the cut .....   

Diameter of section of round microparticle on cut 

Length of linear element of plane microstructure 

Number of sections of microparticles per unit 

area of cut   

Total area of sections of microparticles per 

unit area of cut   

Total length of perimeters of sections of 

microparticles per unit area of cut   

Symbol 

V 

s 

D 

L 

M 

ZL 

P 

d 

L 

V F 

ZP 

Dimensiomäügc 

mm 

ram 

mm" 

iim-Vmnr 

rr/mnr* 

mm/mm 

mm 

ram 

mm 

nVmm 

mm/nim<: 
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For instance, the total surface of graphite deposits per unit volume of iron 

IS SJ ZS , the average volume of carbide particle by ft etc. The system 

of notations and the corresponding units of measurements of parameters are 

presented in Table 6. 
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CHAPTER II 

QUANTITATIVE PHASE AND STRUCTURAL VOLUMETRIC COMPOSITION 

OF AN ALLOY 

Section 9. Phase and Structural Composition of Alloy 

Regarding alloy as a conglomerate of microparticles, one can refer these 
A 

microparticles to one or the other phase or structural component. The total 

volume of microparticles of any phase, occurring in a unit volume of alloy, 

determine the part-^being occupied by this phasei'of the volume of alloy, whi 

M.  can also be expressed in volume percentages. In metallography, the phase 

ch 

HO i 

and structural composition of an alloy is often determined,using the "rule of 

segments", permitting one to determine (based on relative quantity of phase or 

structural component) the composition ofalloy and vice versa. A classic example 

of such a type is the determination of the content of carbon in steel.based on the 

amount of perlite in its structure. 
A 

Originally, the methods of quantitative analysis of phase composition of 

complex aggregates were developed by pM geologists and petrographers with reference 

to rocks more than 100 yrs agOjfor finding their mineraJLogical composition. At present, 

these methods have received a high state of improvement both in iä^äi rapidity of 

carrying out the analysis, as well as in accuracy, agreeing successfully with 

chemical analysis and supplementing it. A great contribution to the development of 

improved methods and the development of appropriate devices was made by 

A.A.Glagolev, whose valuable monograph (Bibl.50) is quite useful not only for 

petrographers but also for each metallurpisti interested in quantitative microanalyais. 

r 
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inadmissibly 
In this respsct, metallography has MXflMJfiftTfflTXIMMKyXifflWjf lagged. As 

V.Yum-Rozeri and others (3ibl.277) testify, many metallurgists have an erroneous 

concept even of the relationship between the quantities of phases on an area of 

a cut and in the volume of the alloy, assuming that the ratio of areas of 

phases on the cut should be raised to the power 3/2, in order to obtain the ratio 

of volumes of phases in the alloy.    Up to the present, KKM the most primitive 

methods are being used for determining the areas of phases and structural 

components on a microsection, and in the textbooks for metallography and metallurgy, 

it is almost a rule that no other methods of determining the phase and structural 

composition, other than an estimation of areas "by sight", are mentioned ^SESI 

(Bibl.74, 75)t At the same time, a knowledge of the phase and structural 

composition of the alloy is quite important for the metallurgist. The structural 

composition of an alloy provides us with such data about it, which cannot be 

obtained by the methods of chemical analysis, as for instance the content in steel 

of structures of varying degree of decay of austenite (perlite, sorbite, troostite 

etc.). 

Evidently the reason for the lagging of metallography in this field is the 

lack of familiarity of metallurgists with the potentialities of qualitative 

determination of structural composition and JÜÖÜÖLXMX the widespread incorrect concept 

of it as a very inaccurate type of analysis, which IHKMKXgXM can yield only 

approximate figures,  considerably inferior to the chemical analysis data.    We will 

show in a number of examples taken from the practice of petrography and metallography 

that this is far from the case. 

In a description of the Ahumada palasite, given by O.Farrington, a photograph 

/ 
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was presented of the polished surface of palasite.and its specific weight was 

given. N.P.Chirvinskiy conducted measurements of quantities of components (well 

visible on a photograph)of components of rock (nickel iron and olivine), and using 

theoretical specific weights of the components, computed the specific MfYgwy» weight 

of palasite, which proved higher than the figure presented by O.Farrington. 

N.P.Chirvinskiy writes HJJf.M  "I asked him to conduct a checking determination of 

the specific weight of palasite, and it turned out that I was correct, which was 

testified to not only by a letter in my name, but also in one of the later reports" 

(3ibl.76). Hence, the quantitative microanalysis proved more reliable and more 

accurate than such a methodologically simple determination as that of specific 

weight. 

As early as 1924, Ye.P.Polushkin, having made a "metallographic planimeter" 

of the most primitive design, conducted a determination of structural composition 

of a number of samples of steels, irons and pffiXpoffiH phosphoritic bronze. 3ased 

on specific treights of structural elements of alloy and of the alloy itself on 

the basis of planimetric measurements of areas^bfiaag occupied by these elements 

on the cut, he computed the SMMSäl chemical composition of the alloy and compared 

it with the chemical analysis data. The data obtained are presented in Table 7 and 

indicate the good convergence (correlation) of figures obtained by way of microscopic 

and chemical analyses (Bibl.51). The same kind of deviation (sic) is also often 

observed during repeated chemical analyses. 

In recent times, the use of mors improved methods and special devices increased 

even more the accuracy and reliability of determining the phase composition of alloys 

and permitted its use in the area of metallurgy, requiring an especially accurate and 
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reliable method, namely in the construction of equilibrium diagrams. 

Recently, L.Beck and S.Smith, using the method of quantitative microanalysis, 

successfully conducted an investigation to refine the position of the lines 

of the equilibrium diagram of copper and zinc alloys, delimiting the areas of 

existence ot a,a   + ß, ß ß + yand y-phaseS (3ibl.77). By way of quantitative 

Table 7 

o) 

Rolled steel   ..... 
Cast crucible steel, annealed at 

1000oC   
The same  
The same .  
White iron with traces of graphite .... 
Gray iron (3.0/$ C and 2.89,^ Si) .... 
Phosphoritic copper   

bj 

C) 

*) e) 

0,20 

0,46 
0,74 
1,24 
3,93 
1,43 

10,38 

0,24 

0.50 
0.78 
1,32 
3,80 
1,40 

10,33 

a) Characteristic of alloy; b) Element; c) Weight content, %,  determined; 

d) Planimetrically; e) By chemical analysis; f) Carbon; g) Phosphorus 

micr oanalysis, there was determined the phase composition of each two-phase alloy. 

In Fig.17 are shorn types of derived dependences of quantity of 

ß-phase in the structure as a function of the content of copper in the alloy at 

was 

various temperatures of phase equilibrium. The group of lines in Fig.l7,a 

^ \ 
w 

\ 

^««7 
a 

jan 0 N \ 

V ̂  . 
41 liS «9 » 58 62 

(b) . 
a o 

Yig.Y1 - Metall .graphic Determination of Content of ß-Phase in Alloys of Copper 

with Zinc, in State of Equilibrium withy-Phase (a) and with a-Phase (b) at Various 

Temperatures [L.Beck and S.Snlith (Bibl.77)] 

a) Weight content of ß-phase; b) Weight content of copper, % 
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obtained for equilibrium of ß-phase with the jT-phase, while in Fig.17,b for 

equilibrium of P-phase with the^-phase. There was established, as we shall see, 

a very distinct linear relationship, which permits one, by way of slight extrapolation, 

to find concentrations of copper MMK corresponding to the 0 and 100^ content of 

0-phase at various temperature. These concentrations also fix the position of XX 

lines of an equilibrium diagram at given temperatures. Measurement of parameters of 

the lattice agrees well with the data obtained by way of quantitative microanalysis, 

However, along with the successful use of this method, it is noteworthy that 

ih the practice of metallurgy there also takes place such cases when the results of 

metallographic analysis prove unsatisfactory. For instance, J.R.Lane and N.J.Grant, 

using methods of quantitative microanalysis (3ibl.78), were unable to reveal the 

kinetics of change in content of carbides of chromium, niobium 

and tantalum during the aging of heat-resistant steels. This only confirms the 

need for familiarizing metallurgists with the actual potentialities of individual 

methods of determining the phase composition with the purpose of their more correct 

application. 

Cavalieri 
Section 10. Rrinciple of SStjOÜS^ and Its Application to Quantitative Metallographic 

Analysis 

Existing methods of quantitative phase and structural analysis both of rocks and 

of metal alloys are based on the so-called principle of JBOBOSHQEXX Cavalieri. 

A student SHRXXI of Galileo, the Italian geometrician Bonaventura Cavalieri 

(1598 - 16ZI7) proposed methods of measuring and comparing the areas of plane figures 

and also the volumes of bodies vdth the aid of a unique type of infinitely small 

values, namely "indivisible «jrgn continuous" (79)« Cavalieri regards plane figures 

as consisting of a infinitely large number of mutually parallel lines, and bodies as 
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consisting of infinitely large number of mutually parallel planes, 
A 

Therefore for comparison of areas of two figures, straight lines are used which 

right 
are parallel to a certain given ^gg^kt line (called the regulus). An infinite 

number of parallel straight lines Jöffi is located between the two straight lines 

tangent to these figures from opposite sides. These two lines are called "pared 

tangents" and one of them is usually taken as the regulus. If the lengths of the 

segments^ cutting off the outlines of the figures at each of the straight lines, 

equal each other by pairsp or are located in a fixed position constant for all 

pairs of segments, then the areas of the figures under consideration will also 

equal each other or will be located in the same MIXM relationships as the segment. 

Let FEHG and ABCD (Fig.18) be compared with one another, wherein both figures 

are enclosed between the parallel lines IK and LM bounding them; we can take either 

of the parallel lines for the regulus. Let us intersect them with a number of 

straight lines parallel to the regulus, and we will compare segments RS with NO, 

FH with 3D, and TV with PQ. If all these pairs of segments equal each other (as 

occurs in Fig.18), and also any other straight line parallel to the regulus, 

IKMMM intersecting the figure, yields |( segments, which are equal to each other by 

pairs, then the actual figures FEHG and ABCD will be of equal area. However if all 

pairs of segments were situated in a fixed position with relation to each other, 

the areas of figures would occur in the very same relationship. 

Similarly to what has been said JQtMK above, the principle of Cavalieri ifflggXlflOf 

ffiÄSKIKgXöiSX is used to compare the volumes of two bodies, the only difference being 

that the straight lines are replaced by plane figures, and the segments by sections. 

about 

Let us consider tiro bodies, formed by rotation äK3ÖSgl¥f¥ the axis 00' of the 

Ih 
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semicircle A0»3, MMI written into the rectangle A3DC and the triangle COD (Fig.19). 

"cup" 
The semicircle forms a 'tWÄBj the axial section of which is hachured in the drawing, 

while the XMg triangle forms a cone. It may be shown that in any horizontal section 

surface of revolution, "cup" surface of 
the ameapcBfxrBtgtabaia, formed by the segment within the ^SBCJ* ab, equals the äSSS^SPt 

revolution 
gBtacbtma formed by the segment within the cone cd. To the extent that this is 

"Eup" 
so, according to the principle of Cavalieri, the volumes of the HOW in the cone 

also equal each MMjC other, which takes place in reality. 

Fig.18 - Comparison of Areas of Two Figures according to Lengths of 

filired Segments (according to Cavalieri) 

As we see, using the Cavalieri principle, we can replace the measurement of 

areas of two figures, being compared, by a measurement of segments of straight lines, 

and the measurement ZX of volumes of two bodies (being compared) can be replaced by 

a measurement of areas. Otherwise expressed, vra get the chance to decrease the 

degree of dimensionality of the elements being measured in comparison with the 

dimensionality of the objects themselves. This permits a determination of the 

volume of microparticles based on their plane sections on a microsection or based 

on segments of lines passing within the microparticles. 

The Cavilieri principle was generalized in 1929 with application to quantitative 

microscopic analysis by A.Aker in the following form; if several groups of contours 
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on a plane, located between parallel straight lines,  have intersections (segments). 

whose are in proportion 
x>We lengthsxjtosbdDJJOOODQHete constant rsia'lxiiTDsfaip with any line, parallel to the 

areas 
two given lines, the MM. of these groups of contours will then occur in the same 

proportion or ratio 
xjoeiaifflODSbd^x themselves. 

Fig.19 - Comparison of Volumes of Two Bodies (#of a b«*^ and 
Paired 

of a cone) Based on Areas of Baped Sections 

In exactly the same way,  if several groups of bodies located between two 

whose are at a constant ratio 
parallel planes have sectionsjotfasc areas aßa^aiidDDomxr^oi/aaoc^ 

in any plane, parallel to the M. two given ones, the volumes of these groups of 

be at the same ratio 
bodies will then ooffliocäiK^BosameaiJSOölMjODSb 

(Bibl.50). 

In the volume of a XMXZ two-phase alloy, distinguished by aj, uniform 

distribution of micropartides of phases a and ß, let us set off the cube (l), shown 

in Fig.20, and wa "will compare it with cube (2) of the same size. The plane of the 

bases of both cubes A we will accept as the regulus and draw a series of planes 

parallel to it and intersecting both cubes. On the upper faceV of cube (2) we 

set off the area abde, equaling the area occupied by the a-phase on the upper face1| 

of cube (1). If the phase composition of the alloy is ideally uniform, then in 

any plane, jSHQtXKBi: parallel to the regulus, the area occupied by the a-phase will 
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have one and the same value. Therefore the relationships of iß£Iä$ volumes of A 
phases a and ß in the alloy, in conformity with the proposition of Cavalieri-Aker, 

vdll equal the relationship of volumes of hachured and nonhachured JKÖÖÖÖÜÖf sectors 

ratio 
of cube (2) or, which is the same, will equal the of rectangles abde 

KP and beef. 

on 
Moreover, if we accept the IXKMXi line ik for the regulus, then IK any line, 

face 

parallel to it, drawn on the upper tsX&i&of  the cube (or on any parallel section), 

the total length of the segments passing within the a -phase vdll be constant and 

will equal the value ab. Therefore the relationship of volumes of phases in the 

alloy will also equal the relationship of lengths of segments ab and be. 

Consequently from the proposition of Cavalieri-Aker, one can form the following 

quantities,namely the volume occupied 

conclusion: the three iväSÄisipliMeljroEn^^ by any phase JDC in the 

interior of the alloy; the area occupied 

^S^^SKS^xarea^xJSBlri^aKxiipiiad by the same phase per unit MXa&area of cut; 

and the total length of segments of a straight line passing within this phase, 

referred to the length of a straight line intersecting the alloy (or cut), are 

numerically equal to one another. Otherwise expressed, the percent content of a 

interior of an 

giver, phase in the mbamsxffi&cäilSP^i alloy, on the area of the cut,or on the length of 

the straight line is expressed by the same saiaESX  quantitAy. 

In actual alloys with which we must deal, the phase composition is not 

ideally uniform in volume, and the samples being studied under the microscope have 

finite dimensions. Therefore in the diagram shown in Fig.21 there will occur a 

in 
fluctuation of area being occupied by the a-phase, KM differing sections, parallel 

to the regulus A, and also a fluctuation of lengths of segments passing within the 

a-phase, on various lines parallel to regulus ik (as is illustrated by the wavy lines 
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a        b 

Fig,20 - Application of Cavalieri-Aker Principle at Uniform Structure 

of Alloy 

in Fig.20), Hence, these values can be regarded as statistically constant and, 

strictly speaking, the content of given phase in the microsection coincides 
A 

mathematically exactly with the volumetric content of this phase in an infinitely 

thin layer directly contiguous to the plane of the microsection. The matching of 

data, obtained in a random microsection, to the volumetric phase composition 

depends upon the chemical and structural uniformity of the alloy and also upon the 

correctness of choice of position of the SKJM microsection's plane. 

M.S.Aronovich and I.M.Lyubarskiy made measurements of an area of microsection 

occupied by nonmetallic inclusions, in a number of samples of rolled steel, wherein 

for each sample a pair of transverse cuts was prepared. The curve shown in Fig,21 

drawn on the basis of their data (Bibl.SO), confirms the practical constancy of 

the total areas of nonmetallic inclusions in pared microsections of each sample. 

It is quite obvious that the variation in readings for various cuts, being 

caused by fluctuation in chemical and structural composition in the volume of the 

ingot, castingjOr rolled piece, should in no way be confused with the accuracy of 

the method of determining the phase composition in the volume based on relationship 

^important, 
of areas in the cut or, what is more\ should not raise doubt as UK to the correctness 
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of its mathematical basis. The method, permitting the exposure and estimation 

of the degree of heterogeneity of phase composition is more sensitive and therefore 

v"} more valuable than the method incapable 

- ^l 1 "I—"—I 7 
of revealing it. 

Therefore the fluctuation in readings 

of individual cuts is fully regular. At 

the same time, it is necessary to note a 

number of factors, upon which there 

30 

/ \ 

/ 

a]zo / 
/ 

to 

0 

/ 

/ 

5 

b) significantly depend the maxmum conformity 

<* 

Fig.21 - Total Areas of Nonnetallio of the phase and structural composition, 

Inclusions in Paired Sections of Rods of the ratio of 
determined on the basis ofjgg^äö®^} 

Rolled Metal [after M.S.Aronovich and 

I.M.Lyubarskiy   (Bibl.SO)] >!SJ!: areas in the microsection to the actual 

a)  Second section; b) First section 
volumetric composition of the alloy. 

Section 11, Spatial Symmetry of Microstructure and Selection of Microsection 
Surface 

occurs 
As a rule, in alloys there tadsftKxpikaae a zonal heterogeneity ofmicroscopic 

structure in general and «£ phase composition,  specifically caused by the process of 

formation of the ingot and its subsequent njaxSifca&tigKx   working. 

In most cases, the curve of change in phase composition in the direction from 

center ttrrsurface of ingot, rolled, or cast piece, runs evenly and jj^ is symmetrical 

relative to the axis or to the surface of symmetry of the item.    The Cavalieri-Aker 

principle will unconditionally remain in force in these cases also, but great 

significance is acquired by the proper choice of a section,  intended for microscopic 

investigation. 

Let us examine two main types of nonuniformity of phase composition,  found 

most frequently; 
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Nonuniforraity 
a) feycSiSiaasüy with 'ßgt  axial symmetry, typical for articles which have 

a predominant dimension in one direction, namely rolled or cast pieces of 

vw  equiaxed wire, axles, 
approximately ai TTjillflLj, transverse section, MäM^SÖfe, shafts, etcj 

b) Nonuniformity with surface synmietry, 

spread 

typical for articles in which the «iggss^ in 

directions exceeds 
two ffflSfSmamte markedly ^^«aasxg*«? the 

direction, 

dim.ension in the third n^feSJEOBttest, namely 

rolled sheets, plate-tjnpe castings,etc. 

In Fig,22, vre show schematically the 

disproportion in the composition in a rolled 

piece of round profile, having axial symmetry. 

It is clear that the structure in all cross 

sections proves similar and the content of 

the given phase in all such sections will be a 

quantity, 

statistically constant xsraicsc Deviation in 

Fig,22 - Irregularity of Structure   this value, determined in a number of cross 

with Axial Symmetry and Its Effect 
sections, reflects the disproportion in the 

upon the Surface Structure, as a Function 

of the 
Depecdto^oapc«! the Position of the    chemical and structural composition along the 

Plane of the Microsection 

a) Along ab; b) Along cd 
length of the rod, and its statistically average 

value coincides exactly with the content of 

given phase in the volume of alloy. Limiting ourselves to a single cross section 

for judging the volumetric phase composition, we risk lilmi WBJKJmgBeS  an error in the 

value which is relatively small, being determined by deviation in composition 

along the 

>tjoo63iOD(5^pSöS the length of rod. 

In a series of longitudinal microsections, the surfaces of which coincide with 
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ft/ 
the axis of the rod, the content of given phase will also be a statistical constant. 

However the statistically average figure for this value, even though determined for 

a very high number of samples, will not coincide with the content of^fiven phase 

Section 8. 
in the volume of the alloy, as **tf was shown in ^JSJpXjöKJÜC Moreover, in the 

along 
longitudinal cuts there is reflected not only the change in composition accoanttegc 

the    J*^» along the cross section, 
±x> length of rod, but also the distribution of disproportion ajocösrijfaijpcticfceectiöisj 

if its symmetry deviates from axial (for instance,in the presence of a segregation 

in rolled stock of 
square round profile). 

Therefore, in the case of 

axial symmetry of heterogeneity of 

phase composition, it IM is most 

outs, 
feasible to use cross sasj^ians« This 

Fig.23 - Diagram M for Conclusion of Eq.(11.3) 

proposition was reflected in a number 

for 
of methods af determining the 

contamination of steel by nonmetallic 

inclusions (the method of the 

Ukrainian IM Institute of the Metals 

etc.), although basically for this purpose üJE longitudinal axial cuts are used. Using 

the latter, we can estimate the inclusions MMSXMMMIiSfcjSay.  according to the types, 

having a differing effect upon the properties of steel, with a division of them into 

brittle, plastic and solid inclusions, determining them quantitatively. Therefore, 

let us consider the conditions under which an estimate based or. a longitudinal cut will 

the interior of 
agree with the content of the given phase in xxxaiinnKxsf metal. 

In Fig.23, there is shown a cross section of round rolled iron, the structure of 
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which, as we assume, has gep axial symmetry. If the radius of the field of 

«iai»n of the microscope equals f, while the center of the field is located at 

the distance R from the center of the section (i.e. from the axis of symmetry), this 

field then represents the structure of the hachured annular zone in the cut, the 

area of which equals: 

f =«[(;?+ p)2 -(/?-,))*] = 47t/? p. (11.1) 

Let us assume that we determined the relative area of the given phase in a 

number of fields of wUmsi*■ WiMSMMXl  characterizing the various annular zones 

of cross section of the rolled iron. If in the fields of the centers of 

which are located at the distances R,, Rg, R3 ... from the axis of symmetry, there 

are obtained respectively the values of content of the unknown phase, equaling an, 

a.2, 3-1  ..., then the average suspended content, typifying the entire area of the 

section as a whole, will equal: 

a = 
a1F1 + ajf 2 + aaFa 

h + F* + Ft+ (11.2) 

or, having substituted the corresponding values of annular areas from Ml eq.(ll.l). 

we get: 

a = UiRt + fyRi + «3^3 + 

Ri+Ji+R* (11.3) 

The last formula is a mathematically precise expression ofaverage content of fa vi 

phase both in the area of the cut, as well as in the volume of the alloy. Moreover, 

this formula is suitable for computing the average suspended value of any other 

structural parameter, variable in cross section, 

.faKSESisrjcfifcddraxSBtoöäi«^ also of other indexes of 

cross 
properties of the alloy, the value of which is not constant in section. For instance, 

based or. eq.(11.3), one can compute the mean value of hardness, typifying as a whole 

a specimen, 

the entire volume of hardened steel cylindrical xasipia, incompletely annealed. 
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weighed 

SKM The need Tor computing the average äste and not merely the average 

arithmetical view' 
äüSXMXXXMl value based on data obtained in a number of fields of HÄ ^SSSft, was 

noted at an earlier data. To estimate the content of nonmetallic inclusions in 

a volume of steel, there are known, e.g., the methods of Gerti for cast steel 

(3ibl.82) and Fert-3rown for rolling (3ibl.23), taking into accoimt the importance 

view, 
of evaluating each field of viSf^fi*. Nevertheless, in most cases, there is adopted 

the simple arithmetic mean without taking into account KMM the distance of the 

view specimen, 
field of flteton from the center of thessampie. Depending upon the degree of 

dissimilarity of phase composition, this may lead to the obtainment of high readings 

(estimates). 

Based on data of B.B.Gulyeva, presented in Fig.12, the volumetric percentage 

varies along 
of nonmetallic inclusions afaangBOOtolg the radius of a steel casting approximately 

as follows: 

Distance from Center, mm Volumetric Percent 
of Inclusions 

10 
20 
30 
40 
45 

47,5 

0,041 
0,051 
0,048 
0,043 
0,023 
0,014 

The ytfayygy arithmetic mean comprises 0.0367?! by volume, whereas based on eq.(ll.3), 

we get 0.0327/!. Hence, for the case of relatively slight dissimilarity owing only 

to incorrectness of the mathematical calculation, the error in determination 

comprises more than 12^ of the actual average content of inclusions in the volume of 

steel. 

SJX       Equation (11.3) is valid both for transverse as well as for Ir-.gitudinal cuts, 

but IK  its use presupposes a mandatory linear uniform arrangement of the fields of 

siaifiH along the radius or diameter of the section of the article (in a transverse 
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fields of $2a*«fl» 
or longitudinal cut). If the ISSMIMIMtäSi   take in the entire area of the 

transverse cut or are distributed statistically {fifSCMT evenly along it, one should 

compute the overall estimate as the arithmetic mean, since the areas of annular zones 

and hence the number of fields of vffiiinn occurring in them are proportional to the 

radii of the corresponding zones. In a lengthwise cut, even at uniform distribution 

of fields of vtai!»« along the cut, the use of eq.(11.3) is quite mandatory, since 

here the area of sections of all annular zones are the same and do not depend upon 

their radius. 

yffja v^Aeterogeneity of 
Ä-is a simpler matter in the presence of plane symmetry of 

phase composition. In Fig.24 we show schematically a part of the volume of a 

rolled sheet, having the form of a ffifMYiyTiC parallelepiped (l), which we will 

compare with the same parallelepiped (2). In the upper facel of the latter we 

set off the area abde, equaling KX the area occupied by the a-phase in the same 

sideS of parallelepiped (1). Havinp assumed the plane of base A for the 

regulus, we draw a number of sections, parallel to it and intersecting both 

parallelepipeds. Since in each section the area, occupied by the a-phase, is 

statistically constant, according to the Cavalieri-Aker principle, the ratio of 

**«- volumes of the a- and ß-phases in the alloy will equal the ratio of volumes of 

the )i^|^»hatched and noncBCw»»hatched sectors of the parallelepiped (2) or to the 

ratio of areas of the rectangles abde and beef. Moreover, if we take the line ik 

for the regulus, then on any line parallel to it and intersecting both parallelepiped^ 

the total length of segments passing within the a-phase will be constant and equal 

to the segment ab. Therefore the ratio of volumes of phases in the alloy will also 

equal the ratio of lengths of the segments ab and be. 
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From the diagram in Fig.24 it is clear that it is quite irrational to locate 

the planes of the cuts parallel to the surface of the sheet. In a number of such 

mean-square 
outs, there will occur abrupt changes in the phase M$. composition, the Jaazecaigec 

3tig9Pff6$& deviation of content of each phase will prove quite considerable with 

relation to the average contents of phases and a large number of cuts will be 

needed for obtaining more or less reliable values, reflecting the actual phase 

composition in the volume of alloy. 

Thence it follows that a mandatory condition which must be observed during 

quantitative microanalysis of alloys with plane sjnimetry of heterogeneity, is the 

perpendicularity of the plane of the cut or of the intersecting lines to the plane 

the 
of symmetry of heterogeneity, or which is the same, to the surface of the sheet 

(or to the plane of the MH side of the casting, ingot, surface of plate etc.). 

the 
Only under this condition does the ratio of the phases in the area of cut and in 

phase ratio 
the intersecting line coincide with the actual Eatiayi^tsiaäBKskip^xHfxiskasEB in 

the volume of the alloy. 

Fig.24 - Use of the Cavalari-Aker Principle in Case of Structure with Flare 

Symmetry: H - Thickness of Sheet 

P5 
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Here we exandjied only two types of symmetry of nex.erogeneity,' however they 

ourselves 
take in the vast majority of objects of raicroanalysis, Wi We restrict MKä 

to the above presented examples, because they are sufficient for tSfc metallurgists 

to be able to approach knowingly the selection of a plane of cut and ^ the use of 

the primary data obtained during fflDffiSößffil microanalysis and KX in more complex 

cases, which here we shall in no way foresee or describe. 

Section 12. Effect of Nature of Structure 

The jSMffSXK proposition of Cavalieri-Aker proceeds from the assumption that 

a cut of a multicomponent aggregate represents a geometric plane. Moreover, from 

data adduced in Section 8 it follows that the surface of Jit metallographic cuts 

is not ideally flat, but has a microrelief with depth of the order of 0.1 - 0.5 micron, 

which can even prove to be considerably greater in case of improper preparation of iL 

cut. 

If the sizes of microparticles considerably surpass the depth of microrelief 

upon the 
of the cut, its influence äüLX2 result of KM quantitative determination of phase 

composition can then be disregarded. However, the error becomes quite noticeable 

when the depth of microrelief is comparable with the sizes of the particles. Thence 

it follows that tG^ difficulties should arise in an analysis of highly disperseli 

phases, especially during investigation under an electron microscope. Among the 

phases of such a type, XX of great interest are above all the carbide phases and the 

nonmetallic S&& inclusions in steel. 

In the electron-microscopic analysis of dispersed ferrite-carbide mixtures. 

there occurs as a rule an increased content of carbide phase as compared with 

theoretical calculation. An electron-microscopic investigation of the structure 

of troostite and of annealed martensite, conducted by N.N.Buynov and R.K.Lerinman, 
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gy CSSCiS 
showed that the area being occupied by carbides considerably .^mipii.iiji.'T. the area 

determined by the ratio ox ferrite and carbide in those structures. A similar 

observation was made earlier by KXMIMXiHK R.Heidnreich and V.Pek (3ibl.83). 

n  cor P.K.Lyulicheva obtained the follovdng dependence of content of carbide phase, Ijaipp- 

photomicrographs, 
observed in electron CTyMyroyKg-Kypfify upon the temperature of 10-hr annealing of 

type U7 steel (the content of carbon was 0,69^j the volume of carbide phase by 

calculation was ISXMS 10.6^): 

Annealing Temperature, C 

450 
550 
650 
700 

Volume of Carbide 
Phase, % 

L5 
38 
29 
15 

Only a prolonged annealing at a temperature of 680 - ''OO0 assured a sufficient 

enlarging of the microparticles of carbides and the coincidence of data of 

raicroanalysis with the theoretical calculation (Bibl.84). It is noteworthy that 

the observed increase in content of carbides along with the increase of their 

degree of dispersion, 
cfepSDSSdcxSia^P, possibly is by no means fully attributable to the shortcomings 

of the techniques of microanalysis, since there is no assurance of the constancy of 

the composition of carbides, obtained under various conditions and having a differing 

degree of dispersion, 
dispaJMSGfotöisdtö;« For example, based on B.A.Apayev's data, obtained on the basis of 

magnetic analysis ofxJdtgiSBFölS steel, the content of carbide phase can constitute 

2"' - U5%  (3ibl.85). At the same time, N.M.Popova 2p found that the composition of 

tempered and 
carbides, deposited by an electrolytic solution of carbon steels, tgSSfafi 

annealed at temperatures ranging from 200 - 400oC, is constant and corresponds to 

the formula for cementite (3ibl.86). In any case, the apparent increase in content 

of carbide phase follows logically from the fact of abrupt differing corrodibility 

of carbides and of ferrite base, ard the surface of cut beir.p obtained owing to this 
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•elief. 

In the case of a granular form of carbides, the ideal plane a - a (Fig.25,A) 

intersects a number of grains, wherein the MMMKMMX occurrence of a body of 

intersected grains on one or KHMä the other side of the surface ir, equally probable, 

the 
At polishing and pickling,M carbides hardly change at all, whereas the ferritc base 

is easily pickled and its average level is determined by the plane b - b (Fig.25,3). 

'       *       J i "Of 

' OilöiCiiQiär 
Quantity 

Fig.25 - Effect of Microrelief of Cut upon the Visible MMM of 

Carbide Phase at Granular Form of Carbides 

Owing to this, there will occur: 

a) An increase in the visible dimension of the part of grains, intersected 

by the original plane a - a, the body of which is located within the volume of 

the cut (grains 1 and 5 in Fig.25); 

b) The appearance of new grains in the field of SLsion', occurring earlier 

below the level of cut, i.e. below the plane a - a (grain 4); 

c) The disappearance from the field of 

view of grains whose body 

o^a^i«iirffogcg±nay8Mte±xKiyatffe' 

iu :u^ 
vfe«»it ancufi wt outside of the volume of cut, while the height of the marked-off 

plane a - a of the segment is less than the depth of relief (grains 2 and 6). 

d) Preservation almost without change of the original visible size of grains, 

the body of which üsa&rs  outside of the volume of cut, but the height of the marked- 

off plane a - a of segment is greater than the depth of relief (grains 3 and 7). 

As the result of such a complex change ir the j&M pattern of the surface of 
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the cut, there also occurs an apparent increase in the content of carbide phase. 

To this one should add that the grains of carbides, especially their sharp edges, 

also are partly dissolved during pickling, and the level of the ferrite base is 

evidently irregular, increasing in places of contact with the grains of carbides. 

If the carbides are lamellar in form, the pattern obtained during pickling, schematically 

shown in Fig.26, explains the cause of the apparent increase in content of carbide 

phase in this case. The correct relationship of the carbide and ferrite phases 

can be obtained by measuring the thicknesses of ferrite and cementite plates in 

right angle 
those grains of perlite in which these platss form a SXMigMKXIIM with the plane 

of the cut. 

The quantitative electron-microscopic analysis of dispersed carbide phases 

is of great interest. Specifically, in the presence of an accurate method of 

determining the phase composition of the structure, it is possible to solve in a 

well-defined manner the problem of the constancy of composition of cementite and 

the existence of intermediate carbide phases, at the present time constituting a 

debatable problem. Recently A.I.Gardin stated the concept that if we had at our 

disposal a pickling agent, possessing the capability of selective dissolving of 

cementite, the possibility would appear for revealing the inner MMJÖM structure 

of a cementite crystal (3ibl.8?). 

Fig.26 - Effect of Kicrorelief of Cut upon Visible Amount of Carbide 

Phase at Lamellar Form of Carbides 

k, 
.■■ . ■■■■■■ 



In working with optical microscopes, if we use cuts with a minimum microreiief, 

in this case it is then easy to get quite satisfactory results of determining the 

phase composition. S.Z.Bokshteyn (Bibl,88) investigated in carbon and alloyed steels 

the average diameter of sections of carbide particles visible cut, which usually fell 

within the limits from 0.3 to 0,7 microns. The diameter of grains was measured in 

enlargement 
photomicrographs, taken at magnification of 2000 with a subsequent {öOSSpSSK to 

10,000. In samples of hardened steel, containing by chemical analysis 0.40^ C, 

annealed at 630° with varying soaking (from 10 min up to 25 hrs), the carbon content 

figured on the basis of microanalysis data constituted: 

Mean Diameter of      Carbon Content, % 
Grains, microns 

0,34 0,37 
0,42 0,36 
0,44 0,40 
0,50 0,38 
0,56 0,39 

Taking into KM account the high dispersed state of the structure, the 

accuracy obtained can be considered quite satisfactory. Hence, the determination 

composition 
of the phase MMJÖÖÜfä of less dispersed structures should have an even greater 

accuracy. 

In structures pickled with picric or nitric acids, the shiny "small islands" of 

carbides as a rule are surrounded by dark rings of greater or less'iwidth. Based on 

the observations of S.Z.Bokshteyn, the best coincidence of the data of chemical and 

of microscopic analyses are obtained if the size of carbides is determined on the 

basis of the average result among the measurements based on the outer and inner 

contours. The pickling with sodium picrate removes the need for measurements on 

the basis of two contours and promotes the obtainment of more accurate data. 

Somewhat different phenomena, accordingly leading to other results, occur during 
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the determination of content of nonraetallic IMpffi inclusions in steel. In this 

case, the specific features of microanalysis are: the use of mostly lengthwise 

cuts and an examination of the inclusions in the unpickled cut. 

As is known, the results of estimations of lamellar (platelike) inclusions 

(sulfide, silicate) based on standard scales, at the use of lengthwise cuts, greatly 

depend upon the degree of pressure during rolling. Table 8 shows the change in 

average index point based on the IK scale and tha width of sulfide XJ impurities as 

a function of the diameter of section, being obtained from the initial ingot with 

a section of 325 x 325 mm (3ibl.89). 

Table 8 

1                 0) b) c) 

87 3,28 4 
51 3,42 3 
28 2,21 1 
15 1,05 1 
9 0,82 <l 

6,5 0,71 <1 

a) Diameter of section, mm; b) Average index point according to IK scale; 

c) Average width of impurities, microns 

As we see, there occurs a simultaneous decrease both of the total length of 

inclusions (expressed as an IMXM index point), as well of their width. Hence, 

with an increase in pressure during rolling, the area of inclusions -ifl visible äM 

on the cut constantly decreases, which understandably does not point to wit actual 

decrease in content of inclusions in the steel but to ^0 technical shortcomings 

of the method of microanalysis being used. This is oonfirinsd by the fact that in 

the use of transverse cuts, the deviations in estimation of area practically are 

independent of the degree of pressure, and ßüöäitüKIÜ the variations in estimations 
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do not go beyond the limits of usual random errors. In Table 9, we present data 

on the weight content of impurities (coraputsd according to microanalysis data) in 

sheets of 5 mm thickness in comparison with their content in rods of various CM<. 

se ction, from which these sheets were obtained (Bibl.ßü). 

Table 9 

b) 

a) 
c) d) 

30X30 0,0186 0,0163 
35X35 0.0397 0.0379 
36X36 0.0663 0.0654 
45X45 0,0443 0.0489 
70X70   ; 0.0945 0.0875 
diam   45 0<0641 0,0761 

»    45 0,0773 0.0750 
»    50 0,1104 0.1107 
»     65 0,0584 0,0536 
»     65 0,0599 0,0581 

a) Size of rods, mm; b) Content of impurities, %  (by weight) (based on 

microanalysis); c) In rods; d) In sheets 

M.I.Vinograd, having investigated the effect of deformation upon different types 

of estimation of nonmetallic inclusions, arrived at the following conclusions: 

a) The index point of estimation of lamellar M inclusions in lengthwise cuts 

based on standard scales decreases with an increase in the degree of deformation; 

b) The content of oxides in volume percentages, being determined in a transverse 

does 
cut, M  not depend upon the degree of deformation; the content of sulfides decreases 

somewhat at greater degrees of deformation, since therein a part of the sulfide 

impurities go beyond the limits of visibility (Bibl.Sl). 

An estimation based on standard scales is connected with the XXXK mandatory use 

of standard magnification, usually taken to equal 100. Therefore, with an increase 

ir. the degree of pressure, a fixed part of the lamellar inclusions become invisible. 
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At individual measurement of inclusions in a transverse cut, the observer is not 

connected with magnification and tnerefore the systematic error is many times 

less than in comparison with standard scales. 

Moreover, in the preparation of the cut, a part of the inclusions "are smeared" 

studied 
by the metal. Since the cut is fflSBSSM without pickling, this part of inclusions 

is not considered during micr©analysis. The phenomenon of "smearing" is promoted 

by a decrease in diameter ofinclusions and such an arrangement of the surface 

of the cut at which it does not intersect the extended inclusions crosswise, as 

this is shown in Fig.27,a, but passes almost as a tangent plane with reference to 

the round surface of the M  Inclusion (Fig.27,b). The fact of "smearing" of 

Fig.27 - Diagram of "Smearing" and Crumbling of Nonmetallic IM. Inclusions 

at Lengthwise Arrangement of Plane of Cut 

(a - Transverse cut; b and c - Lengthwise cuts) 

with this, 

inclusions is confirmed by the experimental data of KKSi 3.3.Gulyayev, who 

inclusions V*1 

counted the number of sulfide mß&MML**  a slide and pmmjf parallel 

on 

sulfuric impressions taken from this same cut (microsection). Results of calculations 

according to section of steel casting with a diameter of 100 mm, cast in a sand MM^f 

mold, are shown in Fig.28 (Bibl.71). 

While a sulfuric impression gives a correct picture of XMi the increase 

the degree of dispersioii<^_usions th^      the 

inxMspewedoetiateoof HpiMMS ir proportion to^ncrease inlrate of hardening, 
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! 
inclusions, 

microanalvsis reveals a lesser fraction of Söp^SSSSSy the more they are dispersed. 

larger M deposits, 
The fact of "smearing" and of considerably «äXMäÖffiSXBCmxIMiqi: for instance, 

deposits of graphite in gray iron, is known in metallographic practice, 
A 

There can also occur a crushing of the inclusions, the body of which is 

located beyond the volume of the cut and a very small part of it is out off by the 

surface fcgpg? (Fig.27,c). 

In the transverse cut, we observe and are able to measure the actual diameter 

inclusions, 
of IMfßWSiM,  whereas in the lengthwise cut, the visible width of M. inclusions 

^inclusion, 
depends upon the distance between the plane of the cut and the axis of^Söij&SXJäS^, and 

inclusion, 
therefore is always less than the diameter of the M$WW$,  coinciding with it only 

in isolated cases, when the axis of inclusion matches the plane of the cut. On the 

average, the visible width of KX inclusions comprises around three-fourths of their 

actual diameter. 

Finally, in the lengthwise MM.  cut, we have the chance to see and to measure 

plastic 
considerably less %Mi£%M¥- inclusions than in a transverse cut. If we represent the 

inclusions in the form of threads (fibers) with a diameter D and length L, and their 

amount is denoted by 
^SäMS» per unit M  volume of steel mx^^MMm^ N, then, as we shall show 

below, the quantity of inclusions visible per unit M area of lengthwise cut, will 

determined 
be proportional to the diameter of inclusions and is äMSMIM by the equation 

n^DN, 

per unit area 
while the quantity of inclusions, M. visible te>axra±bcH£xarHH of cross cut,  is 

inclusions 
proportional to the length of j^ääjäiMifflSSä and equals: 

nx =LN. 
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Inclusions    CtgS^' 
Fig.28 - Distribution of Sulfide MJßöäMM along^ection of Ä/ 

Steel Casting 100 mm in Diameter Based on äX Data of Computations 

in a Cut (Circles) and in a Sulfuric Imprint (Dots). [After 

B.B.Gulyayev (Bibl,71)]. 

From the equations presented, it follows that the ratio of quantities of 

inclusions 
PP£SÖ$S per unit ■«£ area of transverse and lengthwise cuts is equal to the 

inclusions 
ratio of the length of öqSiffiKlXX^JÜÜüaäS to their diameter. Since the length 

of plastic inclusions exceeds their diameter by dozens and hundreds of times, the 

inclusions 
MpöüXIäli in the cross section are greater by just as many times as in comparison 

with the lengthwise cut. 

In microanalysis of lengthwise cuts, there is lost a considerably greater part 

inclusions 
of MjffiiKEÖ than in cross cuts, which decreases the accuracy of determinations. 

Moreover, in the use of lengthwise cuts, it is necessary to compute additionally 

the average weight index of SX estimation based on iöps eq.vll.3). 

The distribution of inclusions in steel by sizes is subjected to the asymmetric 

curve of distribution with a maximum. The impurities which are smallest in size are 

also present in steel in the least quantity. Therefore the loss ever, of a considerable 

inclusions 
part of fine Mji'Böüäa does .-ot lower significantly the total area of Sji inclusions, 
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being determined on the basis of a cut of XX cast steel or rolled steel (if the 

cut is located perperdicularjj,/ to the axis of rolling). A comparison of 

microanalysis data and of chemical data shows a good convergence. In Fig,29, 
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Fig,29 - Dependence between Results of Determining the Content of 

Nonmetallic Inclusions by Microscopic and Chemical Methods of 

Analysis. After data of M.S.Aronovich and I.M.Lyubarskiy (Bibl.80) 

a) Microscopic method; b) Weight, » of inclusions 

we show the dependence between results of chemical and microscopic analysis, 

obtained for rail steel by M.S.Aronovich and I.M.Lyubarskiy (Bibl.PO). A similar 

verification, conducted by P.Ya.Kravtsov also showed 1ft conformity of the data of 

both types of analysis (3ibl,90). 

Summing up the data and concepts presented in the present paragraph, we can 

state that fully satisfactory results of determining the phase composition can also 

under the 
be obtained IKXSHMXM most unfavorable cases, caused by a hiphftdispersed state and 

7 
low content of the phase being analysed. Decisive significance is possessed by the 

proper choice of plane of cut, a careful preparation or cut and minimum relief of 

its surface, the use of sufficiently large magnifications, as well as the use of 

optical microscope; 
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Section 13. Planimetrie Method of Determining the Phase and Structural Volumetric 
Composition of Alloy 

The planimetric method of analysis of rocks was proposed and first applied 

by M.Deless in 18h.7. 

The outlines of grains of individual minerals, composing the rook, visible on 

the polished surface of a sample, were transferred by Deless to transparent paper, 

coloring the grains of each of the minerals with a designated color. Then he glued 

the transparent parer to a metal sheet, for greater accuracy of weighing, cut the 

grains with shears, sorted according to conventional colors (by minerals), and then 

detached and weighed the foil separately for each of the minerals. The weight values 

obtained for each of the KMpMKXiMZXiKM minerals composing the rock were proportional 

to the area of the corresponding minerals in the microsection and hence to the volume 

being occupied in the rook. 

At present, in an äd analysis of the microstructure of alloys and rocks, the 

following basic methods are used for measuring the areas of components: 

a) Jä^ftätermination of area, occupied by a given phase, at visual observation 

with the aid of a square-reticulated eyepiece, namely the cellular method; 

b) Individual measuring off of the sections of microparticles at visual observation 

with Wi  aid of an eyepiece-micrometer with igKsubsequent calculation or other type 

of estimation of the area of each section and with their summation; 

c) Measurement of area of sections of microparticles by various methods, 

JthfMs 
being conducted in photomicrography or in a drawing, conducted with the aid of the 

Abbe drawing equipment; 

d) Dstermiriation of relative area of given phase at visual observation by way 

of comparing the visible structure with a standard scale. 
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fry 
It is feasible to use the planimetric method at low content of/given phase 

in the structure (not more than 5 - 10^), since in these cases it is more effective 

the following 
than the linear or point methods. We will explain this in XXXiWM^MM example. 

In the point method, the relative area ofpgiven phase is determined by the fraction 

nodal      jfa, 
of joMK points ofTsquare-grid eyepiece, occurring in a grain of the phase being 

analyzed. If, for instance, the content of nonmetallic inclusions in steel equals 

0.013) by volume, then the probability of üfc occurrence in them of a separate point 

equals 0.0001, and of one of the 441 nodal points ofsquare-grid eyepiece (containing 

Otherwise 
400 cells), correspondingly 0.0441. UXXipp expressed, on the average the 

occurrence of one single nodal point of the eyepiece in an inclusion (impurity) will 

take place only once during the inspection of 23 fields of yaeiow, and for the 

obtainment of more or less reliable data, the number of fields should be many times 

greater. Moreover, using the planimetric method, we can estimate the area of all 

view, 
inclusions, visible in a field of ifltsto», and obtain reliable data in a small number 

of fields of visaxaK view. 

The measurement of area of a given phase in ööMäpiM photomicrographs or 

drawings can be conducted more accurately than in visual observation directly under 

photomicrographs 
a microscope^ however (the preparation of m^Bflpbafcae or drawings limits the number 

of fields of view in which the measurements are conducted. 

Therefore a more accurate estimation of single fields of view can be obtained 

by measurements in photomicrographs and drawings, and the more accurate estimation 

of the sample as a whole can be obtained at direct measurements under a microscope, 

photomicrographs 
The method of planimetry in miEKHphHtnB and drawings, intended for standard scales 

is 
of quantitative estimation, XM mandatory,independently of the content of the given 
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phase. Moreover, it is often used in an XMUS analysis of highly dispersed 

structure, containing a great number of grains on the microsection even at use 

of large magnifications, which complicates the measurement during visual 

observation. 

In addition to the planimetric method, there is also the cellular method of 

determining the phase composition, •However.this method has a number of major 

disadvantages, which greatly restrict its use in metallurgy} therefore there are 

no bases for considering it here. 

In metallographic practice, the relatively most widespread use is made of 

methods of individual measurement of linear dimensions of sections of microparticles 

in a cut with the aid of an eyepiece-micrometer (see Fig.13) with ^.subsequent 

estimation of the part of the area of the cut occupied by microparticles of the 

given phase. This method found application mainly for estimating the content of 

nonmetallic inclusions in steel and graphite in iron. Usually transverse cuts are 

used in determining the content of nonmetallic inclusions in rolled steel. 

The sections of microparticles are measured in two mutually perpendicular 

directions, if they are not equS=aja€ti. Therein, the sections visible in the field 

of view usually do not match the ruler of the eyepiece-micrometer, but their length 

and width are estimated in divisions of the scale by eye. Then one determines the 

area of each section taking into account its shape, the total area of all sections 

in each field of view and in all fields of view and;finally, the relative area 

occupied by the given phase in the cut and hence in the volume of the alloy. 

For making the calculations easier, the sections of microparticles having 

approximately equal areas are grouped and estimated by a fixed index point based 
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on special scales. The number of inclusions of each group are then fflffil multiplied 

by the appropriate factor ('Magnitude"), taking into account the average area of 

sections of the given group, the products are added together and yield the "index", 

proportional to the fraction of area being occupied by the given phase in the cut. 

For estimating the nonmetallic inclusions in steel and the graphite in forged iron, 

there was proposed a large number of various scales which were similar in tdÄr 

construction. As an example, we consider the method developed by M.S.Aronovich, 

I.M.Lyubarskiy, and Ye.K.Yefanova, also known as the method of the Ukrainian 

Institute of Metals (UIM) (Bibl.80, 91). 

Using the UIM method, one can determine the content of nonmetallic inclusions 

/y, (in transverse cuts), 
in cast metal, in sheet, strip and bar rolled M^ttto^ämopossoaeotaEDna). In a 

number of fields of view, at magnification of 200 - 250, there is measured the 

the inclusions, 

length and width of ixnaparxEfctes^ whereupon their area is estimated in square 

divisions of the ruler of the eyepiece-micrometer. Therein it is assumed that the 

cross sections of the inclusions elongated 
^eet^6ßgo©ecöSp5jfg>e£&6 in the cut can have the form of circles, ellipses and ^'SBefiö&l 

elongated inclusions 
rectangles (threadlike inclusions). The area of ö8§©fi§§9c34snpaod?bd}esc is determined 

the 
by the product of the length of inclusion times its width, and the area of 

inc.LUSions 
SR^ elliptical xmss as 0.8 of this product. Depending upon the area obtained, all 

inclusions of the given field of view are classified by groups, according to the 

standards presented in Table 10. Then the number of inclusions in each group is 

("weighed") 

multiplied by the corresponding index-'P'^SSSf^Jf') equaling the average area of inclusions 

of the given group in square divisions of the scale of the eyepiece-micrometer. 

Totaling the obtained products by all groups, one obtains the complete area of 

Impurities in ÖÖQE the given field of view. The ratio of the obtained total to the 

area of the field of view, measured in the same square units of the scale o," the 
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evepiece, provides the unknown value of relative area (or volume),  occupied 

t 

by the inclusions in the piven field of vision. 

Table 10 

cb 6) c) d) <0 

i 0,10-0,25 0,3-0,5 V« 0.18 
2 0,25-0,50 0,5-0,8 Va 0,38 
3 0,50-1,50 0,8-1,4 1 1 
4 1,50-2.50 1,4-1,8 2 2 
5 2,50-5,50 1,8-2,5 4 4 
6 5,50-10,50 2,5-4,5 8 8 
7 10,50-21,50 4,5-5,2 16 16 
8 21,50-42,50 5,2-7,4 32 32 

a) Group; b) Limits of area of impurities in square divisions of scale of 

eyepiece; c) Limits of diameter in divisions of scale; d) Weight (index); 

e) Average area in the group 

Calculation in a number of fields of view demonstrated that the accumulated 

average value quickly becomes stabilized, as this is apparent from the curve 

or the basis of test data (Fig.30). Therefore it is sufficient to measure all the 

inclusions in 10 fields of view. However, this conclusion can in no way be 

considered universal, because the obtained accuracy is determined by the number 

being 
of measured impurities, and hence,M limited by the standard number of fields of 

view, we set the accuracy of analysis as a function of the purity of the steel. 

One can agree in no way with the method proposed by the authors for computing the 

obtained volumetric content of inclusions in the^we feight/oortenJ^lSuch a calculati or. 

can IMM scarcely be justified because the choice of specific weight of inclusions 

is arbitrary, and the feasibility of such a type of calculation is lacking. It is 

quite obvious that specifically the total volume of inclusions (and also their form 

and dispersed state), disrupting the continuity of the metal, exerts ar. effect upon 

the strength of the steel, which depends in no way upon the specific weight of the 
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Fig,30 - Index of Contamination of Steel by Hometallic Inclusions 

in Individual Fields of View (l) and Stabilizations of Accumulated 

Average Value (2). After data of K.S.Aronovich and I.M.Lyubarskiy 

(3ibl.80) 

a) Index; b) Mumber of field of vision 

inclusions; therefore iMM their weight content is not indicative. 

The data presented indicate that the method described yields sufficiently 

reliable results and good agreement with the data of chemical analysis (see 

Fig.29). The methods of estimating the content of nonmetallic inclusions, not 

haiirig essentially important differences from the above-described method, were 

also proposed by P.M.Dontsov (3ibl.92), P.I.Melikhov (Bibl.lO), 
Ye.Ye.Malyshsvoy 

(3ibl.93), S.G.Voinov, and V.A.Boyarshinov (Bibl,9i.). A similar method for 

malleable 
estimating the graphite of fKtf&ft  iron was proposed by V.H.Shpeyzman and 

Ye.V.Yelenevskaya (Bibl.95). 

The scales of all these methods of evaluation were constructed in such a 

way that the diameters of inclusions XMM increase from group to group in an 

arithmetic or in most cases a geometric progression, and the rate of growth of 

average area of inclusions in a group is correspondingly even higher. Such a 
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construction of scales is unfeasible and decreases the accuracy of the method, 

since the total area of inclusions is determined basically by the inclusions of 

large sized and these inclusions are specifically estimated as the most approximate, 

in a rough manner, since the interval of change in area of inclusions in the group 

increases from group to group. Since the purpose of analysis is the determination 

of total area of Si inclusions of various sizes, the scale should be constructed, 

proceeding from a uniform increase of the specific area of inclusions from one 

group to the other, i.e. based on arithmetic progression of average area and not 

of diameter of impurities. 

A somewhat different method of determining the total area of inclusions and 

the above^ 
graphite in gray iron, differing from KKMS^listed MMK  calculation based on 

scales, was described by S.M.Skorodziyevskiy (Bibl.28, 96). According to this 

method, in a number of fields of view three statistically average values, namely 

the quantity of impurities in the field of view, the length and width of inclusions 

(or of graphite deposits) are determined by way of calculating and measuring the 

sizes. The average area of impurities is found as the product of their average 

length times average width, and the total area of inclusions in the field of view 

is found as the product of average area of inclusions times their average quantity 

in one field of view. It is desirable that all three values be measured or calculated 

in the same fields of view. The obtainment of total area of inclusions (or of 

graphite) by the method described somewhat complicates the determination, since it 

requires a separate determination of three average values. 

The determination of average area of sections of micropartides and, specifically, 

of nonmetallic impurities may be considerably simplified and accelerated, and 
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accuracy increased correspondingly, in the iiffifij use of specdal eyepiece inserts, 

similar to that shown in Fig.31. In estimating the inclusions of rounded form in 

cast steel or in the cross cut of rolled steel, they are compared with a number of 

dark circles, for which the value of area, changing in the sequence of a simple 

arithmetic series of numbers, is indicated on the insert, wherein for a unit there 

°is adopted the area of the smallest circle. The entire area of the square, measured 

in the same units, equals ^800. XX The SM determination of relative area of 

inclusions is conducted as follows. 

The magnification of microscope should be so chosen that the largest inclusions 

found on the cut are close in area to the largest circles of the insert. In 

calculating, all inclusions falling within the square are taken into account, as 

well as those from the inclusions intersected by the perimeter of the square, the 

greater half of which proved to fall within the square. All these impurities are 

Fig.31 - Ocular Insert for Estimating the Area of Inclusions of 

Rounded Form 

compared with the circles, and the area of each inclusion is estimated. These 
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numbers are totaled for all Impurities of a given field of vision or by way of 

oral counting, or even vd.th the aid of two hand counters (see Fig.16), of which 

one counts the units, and the second counts the groups of ten. The inclusions 

smaller than circle (1) of the smallest size on the insert, are mentally combined 

into 
into groups. The IfipßöK square of the insert, is divided SQE four equal sectors for 

facilitating the calculation in the presence of a large number of inclusions. 

inclusions 
The total of the figures for all XäjpXötfiüf of the given field of view, divided 

by AS, directly expressTthe percent of area, occupied by inclusions on the cut, or 

in the volume of steel. The calculation is repeated in several fields of view and 

the entire 
there is derived an average estimation for SMK/cut. Since the area of the cut, 

inclusions 
on which the calculation of area of MpJuoSlM is conducted, and also the area of 

the actual inclusions, are measured by one and the same units, the result obtained 

is independent of the MK magnification being used and does not require any further 

conversions. 

In the use of special ocular insert, the need is done away with of recording 

the number of inclusions by groups, as well as the subsequent multiplication of 

these numbers by index and adding, which greatly facilitates the process of analysis, 

the duration of which is much less than for example in computation based on the 

method of M.S.Aronovich and I.M.Lyubarskiy. 

The method described is/most simple, rapid and accurate aawftg all £X of the 

methods of estimating the content of nonmetallic inclusions in steel. 

The method of measuring the area of sections of microparticles in micrfJphotoferaphs 

and drawings has limited use. The area of its use is mainly as/Sstimation of structures 

of standard scales^for obtaining their precise characteristics. ^ 

three 
The accuracy of all äIXSM variations,  examined in the present paragraph, of the 
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planimetric method of estimating the phase and structural composition of an 

alloy is determined SffiX by the quantity of individual grains which were measured 

by one or another method in the process of analysis. From the rich experience of 

petrographic structural analysis, it follows that y» error/riot exceeding 1^ of 

the value MX being determined/^is assured at a number of measured grains equaling 

1000 (3ibl.50). Since the error is inversely proportional to the square root of 

the number of measurements, one can determine the value of possible error as a 

function of the number of grains being measured during analysis, by the following 

numbers. 

Number of 
Grains 

Measured 

50 
100 
200 
300 
400 
500 

ror,^ Number of 
Grains 

Measured 

Er 

4,47 600 1,29 
3,16 700 1,20 
2,24 800 1,12 
1,83 900 1,05 
1,58 1000 1,00 
1,41 2000 0,71 

Error,^ 

The figures adduced may be used for determining the error of identification 

of content of phases or components of MMMM structure by the methods of individual 

measuring of sections of various phases in a microscope or in MX photomicrographs and 

drawings of structure. 

A fourth type of planimetric method is the determination of relative area of 

-4L 
phase or structural component by way of visual comparison of structure with standard 

scales; this is least accurate, since it introduces the element of subjectivity into 

the evaluation. However the simplicity of this type of estimation and the possibility 

of a ffi^ rapid examination and evaluation of large areas in a short time make this 

method quite effective, if a great accuracy of analysis is not required. 
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Scales for estimation of pnase or structural composition are numerous. Among 

the great number of standard scales serving for characteristics of the most diverse 

elements of structure of steel and iron, one can note two scales of such a type 

listed in COST 3443 - 46. These scales are intended for determining the content of 

p^Plite and graphite in gray iron, but are not distinguished either by accuracy or 

by technical improvement of reproduction of standard structures. 

A number of scales intended for evaluation based on structure of steel of 

inclusions 
weight/content JBf nonmetallic JjSptKXKIM of various type, were developed by 

R.B.Malashenko (Bibl.98). In supplement to the index point estimation, 

S.G.Voinov and ItüM V.A.Boyarshinov introduced values of areas occupied by oxides 

and Sulfides in standard photomicrographs of known scales of nonmetallic inclusions 

COST 801 - 47 [based on data of the metallographic laboratory, TsNIIChM (Bibl.99)]. 

These data show the complete lack of regular dependence between the value of the 

area M.  occupied by the inclusions and the index point. 

The value of area being occupied by nonmetallic impuritioc is set at the 

basis of the new scale shown in Fig.32, developed by N.K.Lebedev, MDOT 

M.I.Vinograd, and S.A.Kiseleva (3ibl.37). Here, the area of inclusions increases 

in geometric progression with the denominator (2). The construction of this drawn 

scale may be considered exemplary, if the number of index points were proportional 

to the area of impurities, i.e. also were determined by a geometric series with a 

denominator (2). In the opposite case, the average JMäö£J5 index point determined 

on the basis of a number of fieüds of view, will not correspond to the average area 

of inclusions in these fields. 

- 
A poor polygraphic reproduction of scales sharply decreases the accuracy of 
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determination, and sometimes makes it impossible. 1 
More convenient and accurate are the scales placed directly in the eyepiece 

of the microscope, which permits the conduct of evaluation without moving away 

from the eyepiece and makes it possible to make a better comparison of the 

analyzed structure with the standard structure. Therefore worthy of attention 

is the design of an eyepiece with revolving inserted scales, manufactured by the 

Bestand Lomb Firm (USA) for determining the value of a grain of steel according 

to ASTM. 

A very significant disadvantage of all types of planimetric determination of 

phase and structural composition is the impossibility of its 

mechanization or automation by way of using various counting devices, which would 

facilitate the work of the observer. In calculating the squares or in IMIMX individual 

measurement of sizes of sections under a microscope, it is easy to go astray; one can 

count the same äMXgiKK grains twice or not count others at all etc. Therefore the 

new methods of analysis (linear and point) have practically crowded out the 

planimetric method in the petrographic analysis of rocks. 

Nevertheless, the specifics of metallographic analysis fully justify the use 

of certain types of the planimetric method in a number of cases. Here first of all 

MM. one can include cases of determining the phase composition by the method of 

individual measurement of sections of microparticles at very low content of phase 

being determined and its high dispersed state (nonmetallic inclusions in cast steel 

and in the cross cuts of rolled steel of e^ga-axial section, carbide phase at 

granular form, of carbides, graphite at rounded form of deposits, etc.). The 

measurement of area of sections of microparticles of the riven phase in photomicrographs 

of sketched structures, i^er.ded fcr standard scales, serving for estimating the area 
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?ig.32 - Scale of Comparison for Estimating the Contamination of 

Steel by Nonmetallic Inclusions (TsNIIChM) (Dibl.f1?) 

Brittle Inclusions - Oxides 

a) Area of inclusions 0.27 x 10"^ mm ; b) Area of inclusions 0,55 x 10"^ ram2; 

c) Area of inclusions 1.10 ^ 10"^ ram2; d) Area of inclusions 2.20 x 10"^ mm2; 

e) Area of inclusions L.kC  x 10"-^ ram2 
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a) b) 

d) 

e) 

Fig.32 (Continuation) 

Plastic Inclusions - Sulfides 

a) Area of inclusions 0.50 x 10"-^ mm2; b) Area of inclusions 1.00 x lO"^ mir; 

c) Area of inclusions 2.00 x 10-3 mm2; d) Area of inclusions ^.00 x lO"-3 mm2 ; 

e) Area of inclusions 8.00 x 10"^ mm2 
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c) dl 

e) 

Fig.32 - (Continuation) 

Brittle Inclusions - Silicates 

a) Area of inclusions 0,37 * lO--^ mir. ; b) Area of inclusions 0.75 x 10"^ nun^; 

c) Area of inclusions 1.50 *  10"3 mir.2; d) Area of inclusions IX 3.00 x lO"-5 mm2; 

e) Area of inclusions 6.00 x lO--^ mm2 

111 



^ 

a) b) 

c) a) 

Fig,32 - (Continuation) 

Kondeforming Glubular Inclusions (SiO?, KläMIMX Silicates) 

a) Area of inclusions 0.2? x 10~3 nm^; b) Area of inclusions 0.55 x 10~3 mm2; 

c) Area of inclusions 1.10 x 10-3 rm  ; d) Area of inclusions 2.20 * 10"^ mm ; 

e) Area of inclusions h.LO  x 10"-^ ran2 
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or volumetric content of this phase, MS. most feasibly conducted with the aid of 

the Amsler planimeter, independently of the content of/given phase. 

Very promising is the use of specialized inserted ocular scales, especially 

the removable ones, intended for individual estimation of area of separate 

sections of microparticles, and also for overall evaluation of relative area of 

a given phase in the field of view as a whole (of noranetallic inclusions and 

perlite in steel, graphite, ferrite and phosphide eutectics in irona/etc). 

Section 14. Linear Method of Determining Phase and Structural Volumetric Composition 
of an Alloy and Its Application 

The linear method first proposed in I? 1898 by A.Rozival for determining the 

mineralogical composition of rocks i»- a microscope is based on the Cavalieri-Aker 

principle, according to which the measurements of M bodies can be replaced not 

only by measurement of areas but also of lengths of segments. The advantage of 

the linear method over the planimetric one consists firstly in greater simplicity 

and accuracy of measurement of lengths of segnents as compared with measurement 

of areas and secondly in the possibility of automating the process of totaling the 

lengths of segments, falling in each of the phases of the structure being analyzed. 

In Fig.33, a diagram is presented illustrating the use of the Cavalieri-Aker 

principle in the linear method of microanalysis (3ibl,50). In an area, consisting 

of 200 squares, 10 squares are scattered irregularly, the area of MJM each of which 

equals lääKXM L  squares and her.ce the part of area of the drawing taken up by the 

squares arcou-.ts to 0.2 or 20^. If we measure the lengths of segments of horizontal 

and vertical lines, passing through the area of squares and set off in iMI the 

drawing by thick lines, add them up, and divide the total obtained by the entire 

length of lines intersecting the drawing, the value obtained will be all the closer 

to 0.2 the more lines we draw or hence, the giüüööffi more ÄXk  segments we measure. 
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Principle 
Fig.33 - Application of the fflßfäQ33öffi Cavalieri-Aker HIXigKP« in the 

Linear Method of Microanalysis (after A.Rozival) 

The essence of the linear method consists in that the structure, visible 

%» a microscope or in a M. photomicrograph, consisting of any quantity of phases M 

or structural components, is intersected by a straight line or a number of lines. 

The contours of sections of [fflS microparticles of individual phases on 

the cut a«^- 

hXJailxAiMJ 

these lines into individual segments. If we add up separately 

the lengths of the segments falling on each of the phases of structure, and divide 

the total by the total length of intersecting lines, the quotients obtained, 

according to the Cavalieri-Aker principle, will equal the parts of area of the cut 

or the volume of alloy which each of these phases occupies. The correspondence will 

be all the more accurate, the longer the intersecting lines, drawn on the cut or 

on the photomicrograph. 

As A.Rozival demonstrated, these lines should not necessarily be straight, 

but can also be curves, which does not affect the final result. The lines can be 

drawn arbitrarily, and not necessarily in the form of a grid of parallel and 

equidistant lines. It is only important that the lines take in the entire area 
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being analyzed and that they are equally distributed over the area. In practice, 

AJJP^ 
there are accomplished two types of use of the linear method in analysis ip- a 

microscope, which can be called the methods of stationary and mobile microsection. 

In working by the first method (method of stationary microsection), we use 

the usual eyepiece-micrometer equipped with a ruler, divided into 100 equal parts 

(see Fig.13). For instance, in the examination of the SMMMM structure of 

pre-eutectoid annealed steel, of the 100 divisions of the diametral line on the 

fall 
scale of the eyepiece, a part of the divisions HUS to ferrite, and the remaining 

pearlite inclusions), 
ones, to^KIS4& (if we disregard the content of nonmetallic apSSffiaS@(K, as this 

is shown in Fig.34« At the given position of the ruler, 62  divisions fall to 

Fig.34 - Determination of Structural Composition of Steel by the 
pearlite 

Ruler Method at Stationary Cut. For the jMfflfflEfe component, 18 

divisions of the ruler out of 100 were taken up 

pearlite. pearlite 
ferrite, and 18 to $MMM.    Therefore the content of ferrite and jpgEffißfe on the 

lines of the scale is determined by the figures 82%  and 18^ respectively. MäM 

Understandably, in an adjacent field of view, or even in the same one, upon turning 

or a slight displacement of the ruler, the number of divisions falling to ferrite 

pearlite 
and P&MXfe will prove to be different. However, the statistically average value 

of number of divisions falling to the given structural component, in conformity with 

the Cavalieri-Aker principle, will equal the content of this structure in the area 

of the cut and in the volume of the alloy. To obtain a reliable average value, 
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the measurement needs to be repeated in a number of fields of view, equallj'' 

distributed about the area of the cut and all the area surrounding it. It is 

feasible to compute the divisions, falling to all structural components, in 

addition to that one which is present in the maximum amount, and the number of 

divisions falling to it can be determined by the difference. 

lengths 
The XüötpK of segments of the ruler of the eyepiece, falling to the individual 

range 
MM$  of phases being analyzed or structural components, are usually estimated as 

v«iiole numbers of divisions of the ruler. Since the actual length of these segments. 

«i' 
generally speaking, does not equal whole number of divisions, the error of 

determination will be all the greater, the shorter the segments, i.e. the more 

dispersed the structure and the less the magnification. Therefore, it is 

desirable MX. to use ttwai: magnifications at which the length of one segment, on 

the average, equals at least 5-10 divisions of the eyepiece scale. The segments, 

the lengths of which are less than one division, are mentally combined into groups 

and are estimated as whole numbers of divisions. 

if*l*3' A. The larger the fields of vicaan that ara chosen for calculation at given 

magnification, the more accurate will be the result of analysis. However, at the 

same time its unwieldiness also increases^ therefore.the problem of the minimum number 

of fields of väqgSfV which should be examined in order to assure obtaining a given 

accuracy of analysis, is quite considerable and will be considered separately. 

In distinction from that examined above, the analysis in case of a movable 

i/ii cut/'is conducted at continual displacement of the cut in one direction.at 

A* 
simultaneous observation of structure in the eyepiece with ■ws cross-hair. Therein, 

we add up the lengths of the path of cut during passage through the point of the 

eyepiece cross hair for each of the structural components separately. Figure 35 
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17. 3      4 

Fig.35 - Determination of Structural Composition of Iron 

by Linear Method at Movement of Cut 

explains the method of linear analysis in case of movable microsection. A straight 

line, intersecting the structure of gray iron, is the path of the point of cross hair 

of the eyepiece in the microsection during its displacement. Usually the 

microsection is moved from one edge to the other, then in opposite direction along 

a line parallel to the first and standing off from it at a certain distance, etc. 

If the movement of^cut is realized by a micrometer screw, the length of path is 

totaled automatically. Since we need to measure the lengths of paths of the 

microsection during passage through the point of cross-hair for each of the 

structural components separately, the passage through a sector of each of them 

separately 
should be conducted by different micrometer screws, each of which IäXM|SüfMä and 

independently of 
IMä^äMäMXöM the others, move the cut in the same direction, and also register 

the length of this movement. Thence it follows that the number of micrometer 

screws, moving the cut independently one from the other and in the same direction 

should be not less than the number of the structural components, the content of 

which is subiected to determination. 

In the case of a structure shown in Fig.35, Miu muVUIlftuL'O? cut is accomplished 

by the first micrometer screw, until a sector of ferrite has advanced along the 

- 
line 1-2 through the point of eyepiece cross-hair in the direction indicated 
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by the arrow.  When the point of cross-hair reaches the bo'indary KK of the 

pearlite 
ferrite and ^töliJK sector at point 2, the movement of the cut begins to be 

accomplished by the second micrometer screw along the line 2-3.    The advance 

through the sector of phosphoritic euteotics 3 - 4 is ifltMiiQSIM accomplished by 

pearlite 
a third micrometer screw, while for movement through the PÜJHXM sector h - 5,  one 

again returns to the second micrometer Klüöf screw, etc. After the cut has been 

examined along a number of parallel lines, the micrometer screws determine the 

pearlite, 
total lengths of path of cross-hair point of eyepiece through the ferrite, pfitllXK^ 

phosphoritic eutectics, graphite and nonmetallic MpSiKJf inclusions. The ratios 

of each of these values to their total determine the portions occupied by each of 

the enumerated components of the structure on the iX lines conducted, areas of 

cut and in the volume of the alloy. IMI The lines of displacement of the cut 

can be run in different directions and cannot be mutually parallel. These lines 

can also be curves, for instance a spiral. The sole requirement is the uniform 

encircling by the IX lines of the entire surface of the cut. 

In this method, no kind of calculations or recordings are necessary. 

stages 
Since the microscope ataffffs and the two coordinate preparation guides have 

only one micrometer screw for moSjMtvni  of cut in a given direction, for using this 

stages 
method of analysis, special :SSäMSXXM equipped with several micrometer screws, 

moving (independently of one another) the microsection in the same direction are 

Stages 
then necessary. ^aaSSOSSSBä^of various types exist, äj^jtipt equipped for setting up 

/IO^: stages 

with standard 'asR«h«-s of polarization microscopes. Since these ^St&Sts automatically 

add up the lengths of segments, they are called integrational. 

stages 
Any of the &S«*i>3J«S»)ilS intended for determining öffi# the phase or structural 

composition by the linear method, should assure the accomplishment of two operations: 
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a)JS^* sequential movement of the microsection and 

b)>3äa5 (tecording of out values of displacement separately for each phase 

or component of the structure. 

i 
In earlier type btmdj-tSLssrts, the conduct of both operations was combined 

in one device, and in more improved later designs, these operations are carried 

out separately by separate devices. 

The first device of such a type, a diagram of which is shown in Fig.36, 

was proposed in 1916 by S.Shend. The device of S.Shend consists of a stationary 

frameUJ, fastened on sU>e««hsa*SSJ of a microscope, and of two movable frames (2) 

and (3), the displacement of which is realized by the independent micrometer 

Mf screws (4) and (5). Microsection (6) is mounted in the internal movable 

frame (3). Shend's device permits one to analyze an alloy, the structure of which 

A 
-/> 

\ 

i 
-WftW 

J 

p vszzssmmsm. 

^»»»»»»»t»)!)*»») m®. 

Fig.36 - Diagram of S.Shend's Device (Bibl.50) 

MJS consists of two components. One can also determine the content of one of 

the components of the structure, if their number is greater than 2. In this 

case, the movement through the point of the cross-tiair by the component being 

analyzed is accomplished by one micrometer screw, and the movement of all remaining 

components of alloy structure is accomplished by a second screw. 

A shortcoming of the Shend device is the small number of components of 

structure being determined simultaneously and the possibility of moving the cut 
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only in one direction; after having finished inspection along one line, it is 

necessary to move by hand the cut, in order to carry or. inspection along a second 

line. The second of these disadvantages was removed in the device of K.Sheumann, 

which has a third micrometer screw, located at right angles to the two first 

screws. 

ng   stage 
Wentworth integrati^aal baaäfa tk\ud  (1923) permits a simultaneous 

The KT^in-y^^MM^«MT«yyTMY^XT¥My^MKyif^TYXMpMMi{yp^?yyy^y 

stage, 
KMMSK determination of five structural components. In this ä&aaä, five micrometer 

äMK screws are set on one axis and movement of the cut is accomplished by way of 

turning one of the five heads (drums), on which the reading is conducted.XXXX 

Wentworth 
Displacements in transverse direction cannot be realized on the .fefeaxtonrac device. 

This device was improved by Ye.K.Smirnov, who introduced cross movement of the 

stage of the instrument 
microsection, having mounted on theX9S)aßdOO!f"3<t(teaodaaÖ!OB a common twe—coordinate 

integrating stage 
preparation guide. Of such a type, the improved isatsgsaSjtoKDbaaxatasdsasad of the 

type ISA, intended for determining the content of six structural components, is 

made by the Test Optical-Mechanical Plant of the Trust ÖüiMiM "Russkiye Samotsvety". 

stage 

As is evident from Fig,37, the g*§SS£ ISA has six heads (drums), the division scale 

of which corresponds to movement of the cut by 0.01 mm. Three heads can move the 

cut by 25 mm each, while the three remaining ones can move it by 15 mm each. The 

maximum.total movement equals 90 mm. The two-coordinate preparation guides mounted 

on the test stand (not shown in Fig.37) permits the displacement of the cut in 

transverse direction, and also permits one to determine the content of the seventh 

structural component, if this is necessary. 

integrating stages        Scheumarm-Leitz 
The iSÖs^ättBKxSasastxKtexitxi of K.SfcEajffiUKKfcEittz (1929), A.Dollar (1937) and 

also 
many others/permit one to conduct simultaneous determination of six structural 

components. In the above cited study of L.Beok and 3.Smith, the determination of 
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Integrating Stage 
Fig.S7 -xMssSödasaJDdSKataättsrad, Type ISA, 

for Simultaneous Deterrair.atior. of Content 

of Six Structural Components by Linear 

Method 

phase composition of brass was 

determined with the aid of a 
integrating s^age^. 

hydraulic SffBggPSeS^ecetoW«»^ 

permitting one to determine the 

content of three components (Bibl,77)« 

The listed designs of beaboaiancis, 

especially for determining several 

phases, are unwieldy and IMMMffi 

inconvenient in operation.    Therefore, 

the new approach, $M$ä proposed in 

1931 by A.A.Glagolev,  to a design of 

such devices is very valuable and 

boils down to a division IMäXKM 

.stilse 

of the device into two or three 

independent mechanisms. On the 

of the microscope are mounted only 

'sleds) 
runners tsJg^is) for movement of the 

microsection, while the counting 

device (recorder), measuring and 

totaling the segments, is mounted 

separately.  The connection between 

sled 
the jääÄS^ss and the recorder can either 

be electric or mechanical. A.A.Glagolev 

developed a number of designs of devices 
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Integrator: 
Fig.38 - Diagram of A.A.Glagolev's Electric KäMMMM 

1 - Small battery; 2 ~ Current breaker; 3 - Svdtchj i. - Electromagnetic 

counters; 5 - Microscope; 6 - Cut being analyzed (Bibl.50) 

of such a type, namely, integrators, with both types of connection, being 

accomplished by a flexible electric cord (electric integrator) or flexible 

shaft (rotor-integrator) (3ibl.50). 

Let us examine the diagram of the electric integrator of Glagolev, shown 

in Fig.3?. Direct current with an intensity of 6 - 8 volts from the KMIT 

small battery I enters the current breaker (2), connected with the aaaafea of 

the microscope, serving for moving the microsection. The breaker is arranged 

sleds 
in such a way that at movement of the ^S&Sfe with the microsection mounted on them. 

the number of interruptions of current is jSiM proportional to the length of 

movement of the XlSää cut in the field of view. Then current enters switch (3), 

which consists of a number of buttons or keys. Pressing on one key or another, the 

observer directs the current to one of the five electromagnetic counters of MM 

the current 
recorder (U),  which totals the number of interruptions x»£o{Kißß>efit, proportional to 

displacement of the cut. Each of the counters of the recorder has been designated 

in advance for taking into account a definite structural component of the alloy 

being analyzed. 
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An observer, working with the Glagolev electric integrator, turns with his 

right, hand the head of the micrometer screw of the microscope ^fiidnn, moving the 

cut and at the same time bringing into action the current breaker connected with 

the head. At the same time, he presses with one of the fingers of his left hand 

intended 
that switch key which is äöOJMM for XJIKXKp taking into account the structural 

component located at the given moment in the point of the eyepiece cross-hair'in 

transition from the sector of one sector of the structural component to the section 

of another, the observer releases one key and at the same time presses on another. 

observer 
The äpößüCM can carry out the entire operation without moving his eye from the 

microscope eyepiece. After finishing the inspection of a series of lines, which 

uniformly take in the entire surface of the M8MM raicrosection, the figures shown 

by the electromagnetic counters are proportional to the content of the corresponding 

structural components in the alloy. The calculation of structural composition reduces 

to a determination of ratios of readings of each counter to the sum of readings and 

to a multiplication of the obtained quotients by 100 for finding the composition in 

volumetric percentages. 

Using the ideas of Glagolev, a number of foreign firms manufactured integrators, 

comprising variants of the Glagolev electric and rotor integrators. Such for 

5S-EteB, the OM C.Hurlbut electric 

counter (Bibl.lOO) and others. 

The integrators facilitate and accelerate the laborious work and raise the 

accuracy of determinations. For instance, the electric integrator and rotor-integrator 

permit a determination of the structural composition of five or six component alloys 

in 30 min with an error not exceeding 1%, 
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All the devices described above are adapted for polarization microscopes, 

although several of them can also be mounted on the SIäS» of a mete.llographic 

microscope. It is much more convenient to use as a microscope the device for 

determining microhardness of type FMT-3 with a low-position^atam or even to use 

conventional polarization microscopes, äjpfijSS equipped with opaque-illuminators 

and a monocular insert for transferring the optical axis of the eyepiece from 

vertical to horizontal position, which facilitrtes the observation. 

Section 15. Accuracy of Linear Method 

Let us examine the determination of content of pearlite in steel, conducted 

by the method of stationary microsection in 30 fields of view. Taking the calculation 

of lengths of segments in each field of view as an independent analysis, we get 

30 results. In the second column of Table 11,these 30 results, obtained experimentally. 

are presented. At an actual content of pearlite in steel, equaling 19$ 

(by volume), in individual fields of view, the number of divisions of the ruler 

falling to pearlite will vary from 12 to 31'  In the third column of Table 1 is 

presented the increasing total, while in  the fourth graph are shown the accumulated 

average values of content of pearlite for the same 30 fields of view.  In Fig.39, 

we show graphically the change in the EßffiäXH results obtained in separate 

cumulative 
fields of view (broken curve 1), and of the sssMmiafeaä average (curve 2). 

As is obvious from the data in XXmXXKMg Table 11 and especially in the curve 

of Fig.39, the results of determination in individual fields of view will vary within 

cumulative 
wide limits, whereas the curve of äKHMCHKM average has a damping appearance. 

In the examination of more than 17 - 18 fields of view (in the piven case), the 

cumulative average is so stabilized that the actual deviation in one direction or 

With 
another fror, the actual content of pearlite {19%)  does rot exceed 0.5$ of it. StX 
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Table 11 

i IP 
!    ^ 

F IP 

i 

n F' 

i 23 23 23,0 529 
2 20 43 21,5 400 
3 19 62 20,7 361 
4 12 74 18,5 144 
5 16 90 18,0 256 

1    6 27 117 19,5 729 
1    7 31 148 21.1 961 

8 18 166 20,8 324 
1    9 28 194 21,5 784 
1   10 16 210 21,0 256 

H 15 225 20,5 225 
12 17 242 20,2 289 
13 19 261 20,1 361 
14  . 16 277 19,8 256 
15 14 291 19,4 196 

!  16 15 306 19,1 225 
-17 12 318 18,7 144 
18 18 336 18,7 324 
19 " 21 357 18,8 441 
20 16 373 18,7 256 
21 17 390 18,6 289  1 
22 21 411  j 18,7 441  | 
23 26 437 19,0 676 
24 25 462 19,3 625 
25 15 477 19,1 225 
26 20 497 19,1 400 
27 14 511 18,9 10(5 
28 19 530 18,9 361 
29 15   i 545 18,8 225 
30 23   1 568 18,0 520 

Tolal  ' 568   j — — 1M28 
M«ar)  | 18,93 — — 380, 93 

a) Mo. of field of view, n; •v)  Amafeiu 

further increase in the number of fields of view, the limits of variations of 

cumulative average become narrower and narrower. Hence, continually increasing the 

number of fields of vision, we can get the required accuracy of analysis in working 

with the method of stationary microsection. Strictly speaking, the accuracy of 

linear analysis is determined not by the number of fields of v#5i*p or by length of 

intersecting lines, but by the number of segments obtained and measured during the 

process of analysis. 

In examining the cut under M a microscope, the number of intersected segments 

depends upon I he optical magnification and upon the ESte of the str' ctural 
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Fig.38 - Results of Determination of Content of Pearlite by Linear 

Method in Individual Fields of View (l) and Stabilization of Cumulative 

Average (2) 

a) Content of pearlite, %;  b) Number of field of view 

component under analysis. It is disadvantageous to get a large number of 

segments by using smaller magnification, since the shorter the average length of&r-C-' 

segment, the less the accuracy of measuring the segments. Therefore, it is 

feasible to use large magnificationajand to assure obtaining the necessary number 

of segments, it is better to examine a large number of fields of view. 

S.Shend notes that conducting the examination of a cut on the basis of a 

number of parallel lines, it is necessary to s»% them 0(W tPHty  imit+iflr by a s*% then 

distance which is greater than the average cross section of the grain of structure 

inder analysis, in order not to intersect the same grain more than once. This is 

not mandatorv: The same rrair. mav be intersected any number of times under the 
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stipulation that the intersecting lines uniformly cover the entire surface of the 

cut. 

Curve (2)in Fig,39 gives only a qualitative picture of increase in accuracy 

of analysis along with increase in number of measured segments. In order 

to obtain concrete values of^expected error, it is necessary to have a value of mean- 

ie deviation of results of repeated analyses, conducted under uniform 

conditions, from the XHMXJK actual content of given JÖ3ÜÜÖSÜS structural components 

in the alloy. Let us grant that we conducted a number of analyses of the same cut. 

preserving the constancy of conditions of analysis, namely measuring in each 

analysis the same number of M.  segments, using a uniform magnification etc. 

Conducting n independent analyses, we get, generally speaking, n different results, 

although many of them can coincide one with another. Let us si-gasfy these results. 

expressed in percentages of volume of alloy, by Fj_, Fj, Fo, ,,, F , Then the 

(JL,    structural 
mean arithmetic value of content ofi'given MMXMMXäl component equals 

f   =   ^1 + f 2 + ^3 + + fn 
(15,1) 

The mear'qulfoatic deviation of results of analysis, which constitutes the 

initial value for computing the error of determination, is conveniently computed 

on the basis of the equation: 

{F)=V P-(F)\ 
quantity    mean square 

(15.2) 

where the vaiM« F4- constitutes thexja^jj arithmetic nfxüiExsquaxBS of results of 

individual analysis, i,e. 

P = Il±Ii±Ii± + n (15.3) 

-square 
The mean fS&fet5&%S  deviation computed according to eq.(l5.2) depends upon the 

number of independent determinations conducted for obtaining the mean values of the 
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quantities for 

ya&absxks F and F2,    In order to get a corrected value   JpCja[ F), not depending 

the number of 

uponxqHaoddcfejcxaf determinations, the result obtained from eq,(l5.2) needs to 

be multiplied by a coefficient. 

V^ (15.4) 

Let us examine now, as an example, the data of 30 independent determinations 

adduced in Table 11. From these data, it follows that 

}| = 18(93o/o «»M f
5« 380,93. 

the mean-square 

Therefore, computing according to eq.(l5.2) the value ofOTaaKxqasdtKadskc deviation. 

we get: 

a' [P] *= Y 380,93 — (W;93)a = 5,04%. 

In order to obtain the corrected value of rsgggi^^a^fcaaaä deviation, we multiply 

the obtained value lipK by the coefficient, computed on the basis of eq.(l5.4), in 

which n equals 30, i.e. according to the number of independent determinations: 

«in w v^ 5,13%, 

The last value (5.13^) is final and sufficient for computing the possible error of 

analysis, ^öedsigc conducted under the given actual conditions (structure, length of 

intersecting lines). 

According to the theory of probability, no more than half the results of 

XKä|5 independent analysis can M deviated from the true value by a value greater than 

-square 
O.&^W of the mean qosdoaüc deviation, in one direction or another. In our ease, 

the lower limit will equal lg.93 - (0.6745 * 5.13) = 15.47^, while the upper limit 

will be 18.93 + (0.6U5 x 5.13) = 22.39P of pearlite. In actuality, from the data 
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of the second column in Table 2,  it follows that out of 30 analyses, within the 

computed limits there fall the results of 15 analyses, and the remaining 15 go 

beyond these limits. 

It is practically impossible 
Twyyyyxymyymwmfifra   to get results of analysis with the tripled mean- 

qaaipffttc deviation. In our case, this corresponds to the limits from 

18.93 - (3 x 5.13) = 3.5/$ up to W 18.93 + (3 x 5.13) = 34.32^ of pearlite. In 

the second column of Table 12, there actually are no results going beyond the 

limits found. 

In the first case, the reliability of results of analysis is characterized 

by a probability of 0,5 or 50?; this means that of the large number of independent 

analyses, not less than 50% of their results fall within the computational limits. 

In the first case, reliability equals 1 or 100;? (more precisely, 0.9973 or 99.73?)J 

hence, the results of all analyses practically fall within the computational limits. 

. The theory of probability ö»»«««t^ the value of deviation of rinilüil4, rP-inilj"'"'" 

from the true value of the unknown (i.e. absolute error of analysis), the reliability 

of obtaining the error, not exceeding the caused error, and the value of mean— 

r^mii aJiTn deviation: 

L = ta{F], (15.5) 

where A is the absolute error of analysis in percer.ts of area of cut or volume 

of alloy; 

t is the standardized deviation, clearly connected with the probability or 

reliability of expected error P; 

cr[P} is the mean^qatdimtitt deviation. 

In its turn, the value of standardized deviation t is connected with the 
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probability or reliability of result of determination P by the follovang 

depondence: 

e     . dt. (15.6) 

Since the integral in^15.6) is not chosen, we adduce in Table 12 the values of 

probability P for various values of standardized deviation t and vice versa. 

It follows from tfr eq.(l5.5) and WSMUJ  Table 12 that, for the actual 

case, being examined by us, of determining the amount of pearlite, the absolute 

error of determination, at *«« reliability ^mmg  fixed by the probability C.5 or 

50^, equals 

A = 0,6745 • 5,13 = 3,46% 

J«eär of pearlite. This signifies that J^flgrthe results of a large number of independent 

analyses conducted under identical conditions, not less than 50% of all results 

will have an absolute error not exceeding 3«46^ of area of cut or volume of alloy 

Such an erron characterized by the reliability of 0,5 or 50%,  is called the 

probable error and comprises the chief characteristic of accuracy of analysis. 

Table 12 

' P j    , P p , 

0,10 0,0796 !        1,40 0,8384 0,50 
I 

0,6745    j 
0,20 0.1586 1,50 0,8664 0,60 0,8416 
0,30 0,2358 1,60 0,8904 0,70 1,0364 
0.40 0,3108 1,70 0,9108 0,80 1,2816     I 
0,50 0,3830 1,80 0,9282 0,90 1,6449     i 
0,60 0,45H 1,90 0,9426 0,95 1,9600    , 

•      0,70 0,5160 2.00 0,9544 0,98 2,3263 
0,80 0,5762 2.20 0,9722 0,99 2,5758 
0,90 0,6318     l 2,40 0,9836 0,998 3,0902 
1,00 0,6826 2,60 0,9906 
1,10 0,7286 2,80   • 0,9948 
1,20 0,7698     | 3,00      i 0,9973     | 

h    1,30 0,8064 4,00 0,999936 
1 
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If we, not changing the conditions of conducting the analysis of the given 

structure, pose more rigorous MjpXM requirements for the reliability of the 

results being obtained, assuming for instance a reliability P, not equaling 0.5 

but 0.7, the absolute error of determination increases to 

A = 1,0364 • 5,13 = 5,32% 

of pearlite. Hence, increasing the value P, it is necessary to change at the 

same time the allowable absolute error (at the assigned conditions of analysis). 

Taking into account the requirements posed fo -esults of analysis, MS we 

should regulate its precision, being determined by the value of acceptable absolute 

error and by the reliability of assuring it. However, being affected at the same 

time by fixed standards of value for fa  and P, we by the same token predetermine 

the necessity of obtaining a fully concrete value of mean quadratic deviation, as 

this follows from eq.(l5.5). This last value depends upon the conditions of 

analysis, i.e. upon the M%& nature of the structure being analyzed, upon the length 

secants, 
and position of the )DSÜ6£SBBÖtogCite@4 Therefore it appears KX necessary to 

establish a dependence between conditions of analysis and value of mean jpiM 

i« deviation being derived under these conditions,' however the absence of 

geometric validity of contours of structure does not permit one to do this theoretically. 

Therefore we will strive to establish it empirically, 

IK8MSMSXMXMII According to A.A.Glagolev, 
XSMMiffi the error of linear analysis, and 

hence also the value of mean qu8irlinft»ic deviation of results of a number of repeated 

analyses from the actual content of/giver, structural component are determined in a 

well'defined manner by the number of individual segments measured in the process of 

analysis (3ibl,50). Data of a series of analyses of various structures indicated, 
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however, that the mean qsaAPStit: deviation depends both upon the content of the 

component being analyzed in the alloy as well as upon the nature of the 

struct m'e. 

The value of mean c deviation is inversely proportional to the 

square root S»m a number of observations or measurements. As stated above, in 

our case a unit of measurement is a separate segment obtained atfintersection 
K 

a secant, 
of a microparticle by MHfflMäfiüffiüKpiiMX Therefore we verified the 

dependence betv/een the number of segments measured during determination of 

content ofgiven structural component, and the value of mean'quaeratic deviation. 

For each cut, by the stationary microsectr.on method (with use of an 

ocular-micrometer), we conducted a series of identification of the sams ctructural 

component. In each series, a different number of segments was obtained for each 

determination. This was achieved either by the use of various magnifications 

at 
(by changing the lens), or by a calculation with the same magnification but TM. a 

different lengthjof calibrated part of the eyepiece. Typical dependences between 

'ormej the number of measured SSJpSKKiiy segments and the value obtained formean-JM^WA^' 

qijä^s*t*c deviation,  shown in Fig,A0, reliably confirm that for each given 

structure there exists a dependence of the type 

{F} vr 
(15.7) 

where z is the quantity of individual segments measured in the process of each 

independent determination. 

The number of segments is directly proportional to the length of üffigfi&äöDEÖgC 

secants, 
10]g§; on which the measurements were conducted. Therefore it is clear that the 

effect of the length of secant upon the valuecr{FJ is taken into account by the 
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denominator of eq.(15.7), while its numerator depends only upon the nature of 

secants, 
structure and the location of the iMMKMXKIKpiiMSI The direction of the 

secants does not play a part unless the structure is JKXM Isotropie, i.e., if 

its nature does not depend upon the direction.(even if only in the plane of the 

cut). 

From the curves, similar to those shown in Fig.40, we obtain the following 

values for numerator A of eq.(15.7) for diverse structures and structural components: 

A = y 20(f) 

Graphite of gray iron, lamellae slightly MM bent, distributed 

unevenly, isolated one from the other. Content of graphite 

equals 5,8$ by volume (line 1 in Fig.40) ......     14.5 
equiaxial 

Eerrite, forming a network about XJpßßüööäl grains of Jöffi 

pearlite. Content of ferrite^.l^      22.1 

R-phase in transverse cut of rod of two-phase brass having an 
equiaxial 
äfpaGSÖäSCK structure. Content of ß-phase^ 21.0^      29.7 

Pearlite component in transverse cut of rod of pre-eutectoid 
equiaxial 

annealed steel having äpäßQÜÖäl structure • Pear lite, conteut,   MI? 

28.7^   28.9 

Ferrite, forming a broken network with traces of Widmanstaetten 

structure in cross cut of rod of pre-eutectoid steel. Ferrite 

content e^wSB 32.8,^ (line 2 in Fig.40)     32.8 

Pearlite component in cross cut of rod of pre-eutectoid steel 
equiaxial 

having MXXäüaXI structure. Pearlite content, 35.8$   29.2 

Kartensite component in troostite-martensite structure of KM^äK 

tempered steel. Content of martensite component;40.5$ ....  31.9 

Analyzing the results obtained, one can note that the product -fz'   cr[Fi = A 

depends upon the content of the structural component being analyzed in the alloy. 

With an increase in this content (within the limits investigated), the value of A 

increases rapidly at first and then slowly. 
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Fig.iO - Dependence of Value of Mean^oJ^Sr Deviation ff{F) 

upon Number Z of Segments Measured 

In the two-phase structures, the number of segments of a secant falling 

on each of the structural components is evidently uniform. By tÄ simple 

substitution of the value (100 - F) instead of F in equations (15.1), (15.3), 

and (15.2), it can be shown that such a substitution does not affect the result 

of computing the mean'q^Äc deviation. Thence it ISM  follows that the 

values for A.found for two-phase structures;are actual for both structural 

components, in spite of their different content in structure. For instance, the 

uniform value of the productfT- cr{F] , equaling 14.5, is obtained both for 

J^ content of 5.&%  (graphite) as well as forJAe content supplementing this 

value by 100?!, i.e. for 94.2^ (metallic base of iron), etc. 

include 
Hence, the numerator A of eq.(15.7) should SÜOMS a factor, depending upon 

the content of the component F being analyzed and KM having identical values at 

£5. substitution in it both of the value F as well as (100 - F). The appearance 

of this factor is as follows: 

(15.8) / f (lOC-f) . 

Transforming in the appropriate manner the earlier obtained dependence (15.7)^ 
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-^ 
we get a formula permitting üS to find the value of mean quiö-psrtdx deviation by a 

calculational method: 

c{F)=K 
V  F{\C       F) 

VT (15.9) 

Substituting the data of seven different analyses into eq.(15.9), we can 

observe that K is constant. It turns out that this factor for the investigated 

structures changes within relatively narrow limits, namely from 0.60 to 0.73. 

The mean value of the coefficient for structures, the nature of which is independent 

of direction of secants on the plane of the cut, is fixed by the value 0,65. In 

Fig,41, we show the dependence between the content of structural component being 

■Mf. 
analyzed in alloy F, and value of the product \/z ' ff[F) , constructed on oasis of A ■ on basi! 

experimental data presented above. The curve presented in Fig./(I corresponds to 

eq,(l5.9), in which the factor of proportionality is assumed to equal 0.65. The 

dependence obtained confirms the adequate reliability c*" eq.(l5.9), and the 

possibility of its use for computing the value of the expected mean^qiiedratTc 

deviation. 

In those cases when the structure has a definite orientation, the direction of 

secants affects the value of factor K. ByJ-inear method, we determined the pearlite 

content in soft steel, the structure of which on a lengthwise cut had a sharply 

striation. 
manifestedxteHOksßbariacbsaü; In one series of determinations, the secants were located 

'tyt-' the striation 
perpendicular to direction of bS8$MxSfeÄ£S, and in the second, parallel to it. 

It turned out that in both cases, there was derived a distinct dependence between 

the    -soua^e 
the number of segments, at single determination, and value of mean cpaailxixcc deviation, 

in 
similar to that shown in Fig.40. However,IX the first case the product /s • aJFJ 

135 



proved to equal 13•2, while in the second it was considerably greater, namely 

32.95 The pearlite content in the structure was found to equal 17.8?> and 18,3!? 

respectively. The substitution of the obtained values into eqt(]5»9) permits 

Fig.Al - Dependence between Content F of Component Being 

Analyzed and Value of the Product 

in the case of striation, 

one to establish thatxa± secants, parallel to the BäM88xg&Ö>8, the factor K 

it is 

equals 0.65, while at perpendicular ones, 0.34 in all. 

a 
Hence, in a determination of the content of structural component by linear 

method in striated structures, the KSKMS secants need to be arranged perpendicularly 

to the direction of striation. Therein, measuring an even number of segments, we 

the 

get a considerably smaller error than at random orientation of secants, and much 

less than at their arrangement parallel to the direction of lamination. 

It is noteworthy that in addition to the examined factors, span the value of 

,   ,    is affected by the 
factor K of eq.(15.9), I^RSDOcJcmöfMcßMa: the uniformity of distribution of component 

being analyzed according to field of microsection. The method of objective fflfJCMyXKTif 

quantitative estimation of uniformity of structure has not yet been proposed, therefore 

we are deprived of the chance to take this factor into consideration in eq.(l5.9). 
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However, it is worth mentioning that in the most unfavorable case, the maximum 

value of factor K does not exceed 1, In an analysis of any structure, the network 

structure 
of secants should evenly cover the entire surface of the cut. If the XXMKKM is 

irregular, the fulfillment of this requirement is especially important* It is quite 

evident that it is not difficult to measure the necessary number of segments for 

a small part of the area of the cut, especially if the structure is dispersed. 

However the result achieved thereby will not typify the cut as a whole, but only 

that part of it on which the secants were located. 

Combining eqs,(15.5) and (15.9), we get a final equation for computing the value 

of absolute error of the linear method of analysis: 

A = W 
f (100- F) 

(15.10) 

The necessary number of segments are computed on the basis of the equation: 

z = /(a [_LJ2 F (100 - F). 
(15,11) 

Now we determine the error of analysis, being fulfilled by linear method. Here y lin 

two cases are possible, which we shall examine below: a) determination of error of 

analysis already conducted a posteriori and b) determination of number of segments 

which need to be measured for assuring the given accuracy of analysis. 

We assume that in the process of an analysis already conducted, there was 

while 
measured a total of 500 segments, M the content of structural components was found 

to equal 32%.    Substituting these values z and F into eq,(15.10) and setting the 

factor K equal to 1, we get: 

A = 2,081. 

For computing the probable error of determination (P = 0.50 or 50^), we find in 

able 12 the corresponding value OS standard deviation t and we determine the 
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probable absolute error of analysis: 

A = 2,08 • 0,6745 = 1,4%. 

Hence the real content of'cbmponent being analyzed may differ from the value found 

by us {32%)  by not more than l,45Lwith a reliability equaling 50^. 

For a preliminary calculation of required number of segments, it is first 

necessary to set a value of allowable absolute error i* and with reliability of 
A 

assurance P. Let us set up a probable error of determination (P = 0,50 or 50^), 

not exceeding 1^ of the area of the cut or the volume of the alloy. From Table 12, 

we  find the corresponding value of MMMMMM  standard deviation 0.6745« In 

addition, we need to know, even if only approximately, the unknown content of the 

structural component F being analyzed. Let us assume that this content, appraised 

visually, equals 20%.    Substituting the listed values into eq,(15.11), and setting 

the factor K equal to 1, we get: 

z = 0,6745 \2 
) • 20 (100 - 20) = 728. 

Having examined the cut in such fields of view or on secants of such total 

length^that the total number of segments amounts to 728, we get a result of 

analysis differing from the true content ofTgiven structural component by not more 

than 1%  in 50 cases out of 100. Let us now examine the remaining 50^ of cases of 

analyses in which the error can %MZ  surpass the computed value, namely 1%.    Under 

conditions of analysis selected by us, the value of mean qsSdrsrfcic deviation being 

A 

determined by eq.(15.9) will equal (at K = l): 

o [f] = l/". 20 (100 - 20) 

728 
= 1.48 «/ 70- 

Substituting this value in eq.(15.5), we get: 

A = 1.48/. 
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According to this dependence, one car. compute the probability of obtaining errors 

^.    exceeding 1%,   Let us üMMSÜCSS substitute instead of A, in sequence, the numbers 

1.5; 2.0; 3.0; i..O etc., and based on the obtained values of  standard deviation t, 

vfe find from Table 12 the pertinent probabilities of such errors. It turns out that 

if in 50 cases out of lOO^the error does not exceed 1%,  then in 6S%  of the cases 

it will be less than 1,5%,  in 32% of the cases less than 2%,  in 96^ of the cases 

an 
less than 3%,  in 99%  of the cases less than k%,  while XM error exceeding L%  is 

fairly improbable. 

The example presented shows that although XM at relatively high reliability 

of analysis, typified by the probability of 0.50, a large percentage* of tests can 

deviate from .computed value of absolute error, nevertheless the absolute value of 

error at these deviations will not M reach inadmissibly great values. The 

probability of getting an error greater than that computed quickly decreases with 

an increase in absolute value or error. Therefore one MMJ should not attain an 

exceedingly high reliability of analysis. Subsequently in the majority of cases, 

we will evaluate the accuracy of analysis with the value of probable error. 

To avoid calculations based on eo.(15.10) for obtaining value of absolute 
A 

s£ 
error or based or. ä^ÜL eq.(15.11) for determining the needed number of segments, we 

have compiled the reference'Tables 13-16. The data of Tables 13 and 15 are 

intended for the reliability of the result of analysis, being determined with a 

probability of 0.50 or 50^ (standard deviation 0.67/i5), while Tables li. and 16 are 

for a considerably higher reliability, offS^ffii^ typified by the probability of 

0,95LL  or 95.Wi^ (standard deviation 2.00). In the compilation of all tables, we 

proceeded from the most unfavorable conditions of analysis, assuming the factor K 

> 
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Table 13 

Probable Absolute Error of Determination at Linear and 

Point Analysis 

4) 

f>) 

l 
99 

2 
98 

3 
97 

4 
96 

5 
95 

10 
90 

15 
85 

20 
80 

25 
75 

30 
■o 

) 

35 
65 

40 
60 

10 
20 
50 

100 
200 
300 
400 
500 
ß00 
700 
ßOO 
900 

1000 
2000 
3000 
4000 
5000 

10000 
15000 
20000 
25000 
30000 
40000 
50000 

100000 

2,10 
1,48 
0,94 
0,66 
0,47 
0,38 
0,33 
0,30 
0,27 
0,55 
0,23 
0,22 
0.21 
0,15 
0.12 
0,10 
0,09 
0.07 
0-.05 
0.05 
0.04 
0.04 
0.03 
0.03 
0,02 

2.96 
2.08 
1,32 
0.93 
0,66 
0.54 
0.47 
0,42 
0,38 
0,35 
0,33 
0,31 
0,30 
0,21 
0,17 
0,15 
0,13 
0.09 
0,08 
0.07 
0,1)6 
0,05 
0.06 
0,04 
0.03 

3,60 
2,54 
1,61 
1.14 
0,80 
0.66 
0,57 
0,51 
0.46 
0.43 
0.40 
0,38 
0,36 
0,25 
0,21 
a, 18 
0,16 
0,11 
0,09 
0,08 
0,07 
0,07 
0,06 
0,05 
0,04 

4,14 
2,92 
1,85 
1,31 
0.92 
0.75 
0,65 
0.58 
0,53 
0,49 
0.46 
0,44 
0,41 
0,29 
0,24 
0,21 
0,18 
0,13 
0,11 
0,09 
0,08 
0,08 
0,07 
0,06 
0,04 

4,60 
3.25 
2,06 
1.45 
1,03 
0,84 
0,73 
0,65 
0,59 
0,55 
0,51 
0.48 
0,46 
0,3? 
0,27 
0,23 
0,21 
0.15 
0.12 
0.10 
0.09 
0.08 
0,07 
0,06 
0,05 

6,33 
4,47 
2,83 
2,00 
1.41 
1,15 
1.00 
0,89 
0.82 
0,76 
0,71 
0,67 
0,63 
0,45 
0,3/ 
0,32 
0,28 
0,20 
0,16 
0,14 
0,13 
0,12 
0,10 
0,09 
0,06 

7,53 
5,32 
3,36 
2,38 
1,68 
1,37 
1,19 
1,06 
0,97 
0,90 
0,84 
0,79 
0,75 
0,53 
0,43 
0,38 
0,34 
0,24 
0,19 
0,17 
0,15 
0,14 
0,12 
0,1 
0,08 

8,44 
5,96 
3,77 
2,67 
1,88 
1,54 
1,33 
1,19 
1,09 
1,01 
0,94 
0.89 
0.8! 
0.60 
0,49 
0,42 
0,38 
0,27 
0,22 
0.19 
0.17 
0,15 
0,13 
0,12 
0.08 

9,13 
6.46 
4,08 
2,89 
2,04 
1,67 
1,44 
1,29 
1,18 
1,09 
1,02 
0,96 
0,91 
0,65 
0,53 
0,46 
0,41 
0,29 
0,24 
0,20 
0,18 
0,17 
0,14 
0,13 
0,09 

9,65 
6,83 
4,32 
3,06 
2,16 
1.76 
1.53 
1,36 
1,25 
1,15 
1,08 
1,02 
0,97 
0,68 
0,56 
0,48 
0,43 
0.31 
0.25 
0.22 
0,19 
0,18 
0.15 
0,14 
0,10 

10.05 
7.11 
4.49 
3,18 
2,25 
1,83 
1,59 
1,42 
1,30 
1,20 
1.12 
1,06 
1.00 
0,71 
0,58 
0,50 
0,45 
0,32 
0,26 
0,22 
0,20 
0,18 
0,16 
0 14 
0,10 

10,31 
7,30 
4,61 
3,27 
2,31 
1,88 
1,63 
1,46 
1,33 
1.23 
1,15 
1,09 
1,03 
0,73 
0.60 
0,52 
0,46 
0,33 
0.27 
0,23 
0,21 
0,19 
0.16 
0,15 
0,10 

45 
55 

10,48 
7.41 
4.69 
3.32 
2.34 
1.91 
1,66 
1.48 
1,35 
1,25 
1,17 
1,11 
1,05 
0,74 
0,61 
0,52 
0,47 
0,33 
0,27 
0,23 
0,21 
0,19 
0,17 
0.15 
0,10 

50 

10,52 
7,45 
4.71 
3.33 
2.36 
1.92 
1.67 
1,49 
1,36 
1,26 
1,18 
1,11 
1,05 
0,74 
0,61 
0,53 
0,47 
0,33 
0,27 
0,24 
0,21 
0,19 
0,17 
0,15 
0, 

a) ?!uraber of points (of segments); b)  Content of phase F,  % 

of eqs.(15.10) and (15.11) as equal to 1.    However even in this case, a uniform 

distribution of secants over the entire area of the cut was mandatory. 

If the analysis has already been conducted and it is required to establish 

its error a posteriori, we use Tables 13 and Ik.    According to the content, determined 

by analysis, of the examined structural component F and according to the number of 

segments measured in the process of analysis, we find from Table 13 the probable 

absolute error of determination.    According to the same initial data, we find from 

is 
Table 1U the value of absolute error which MM. not exceeded in SJSXX 95 cases of 

analvsis out of 100. 

If it  is required that we conduct an analysis,  the probable absolute error 

1UQ 
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Table 1U 

Absolute Error of Determination during Linear and Point 

Analvsis with^Probability of 0.954i- 

a) 
»; 1 

0 
100 

i 
99 

2 
9S 

3 
97 

4 
95 

5  10 
95  90 

15 
85 

20 
80 

25 
75 

30 
70 

35 40 
65  60 

45 
55 

1 
50 

50 
100 
200 
300 
400 
500 
600 
700 
800 
900 
1000 
2000 
3000 
4000 
5000 
10000 
15000 
20000 
25000 
30000 
40000 
50000 
100000 

— 

  

0.45 
0,36 
0,30 
0,27 
0,21 
0,15 
0,15 
0,12 
0,12 
0.09 
0.09 
0,06 

1,14 
1,05 
1,00 
0,93 
0,90 
0,63 
0,51 
0,45 
0,39 
0,27 
0,24 
0,21 
0,18 
0.15 
0,15 
0,12 
0,09 

1,53 
1,38 
1,29 
1,20 
1,14 
1,08 
0,75 
0,63 
0,54 
0,48 
0,33 
0,27 
0,24 
0,21 
0,21 
0,18 
0,15 
0,12 

1^95 
1,74 
1,59 
1,47 
1,38 
1,32 
1,23 
0.87 
0,72 
0,63 
0,54 
0,39 
0,33 
0,27 
0,24 
0,24 
0,21 
0,18 
0,12 

2,52 
2,19 
1,95 
1,77 
1,65 
1,53 
1,44 
1,38 
0,96 
0,81 
0,69 
0,G3 
0,45 
0,36 
0,30 
0,27 
0,24 
0.2! 
0,18 
0,15 

4,23 
3.45 
3,00 
2,67 
2,46 
2,28 
2,13 
2,00 
1,89 
1,35 
1,11 
0,96 
0,84 
0.60 
0,48 
0,42 
0,39 
0,36 
0,30 
0,27 
0,18 

7.14 
5,04 
4,11 
3,57 
3,18 
2,91 
2,70 
2,52 
2,37 
2,25 
1,59 
1,29 
1,14 
1,02 
0,72 
0,57 
0,51 
0,45 
0,42 
0,36 
0,33 
0,24 

8,00 
5,64 
4,62 
4,00 
3.57 
3.27 
3,03 
2,82 
2,67 
2,52 
1,80 
1,47 
1,26 
1.14 
0,81 
0.66 
0,57 
0,51 
0,45 
0,39 
0,36 
0,24 

8,67 
6,12 
5,00 
4,32 
3,87 
3,54 
3,27 
3,06 
2,8P 
2,73 
1,95 
1,59 
1,38 
1,23 
0,87 
0,72 
0,60 
0,54 
0,51 
0,42 
0,39 
0,27 

9.18 
6,48 
5,28 
4,59 
4,08 
3,75 
3,45 
3,24 
3,06 
2,91 
2,04 
1,68 
1,44 
1.29 
0.93 
0,75 
0.66 
0,57 
0,54 
0,45 
0,42 
0,30 

9,54 
6,75 
5,49 
4,77 
4,26 
3,90 
3,60 
3.36 
3.18 
3,00 
2,13 
1.74 
1,50 
1,35 
0,96 
0,78 
0.66 
0,60 
0,54 
0,48 
0,42 
0,30 

13,83 
9,81 
6,93 
5,64 
4.89 
4,38 
4,00 
3,69 
3,45 
3,27 
3,09 
2,19 
1,80 
1,56 
1,38 
0,99 
0,80 
0,69 
0,63 
0.57 
0,48 
0,45 
0,30 

14,07 
9,96 
7,02 
5,73 
4,98 
4,44 
4,05 
3,75 
3,51 
3,33 
3,15 
2,22 
1,83 
1,56 
1.41 
1.00 
0,81 
0,69 
0.63 
0,57 
0,51 
0,45 
0,31 

14.13 
10,00 
7,08 
5,76 
5,00 
4,4" 
4,08 
3,78 
3,54 
3,33 
3,15 
2,22 
1,83 
1,59 
1.41 
1,00 
0,81 
0.72 
0.63 
0.57 
0,51 
0,45 
0,33 

a) Number of points (rf segments); b) Content of phase F, % 

of vMch should not exceed the earlier caaed value A, then based on this value 

and the approximate content of component F being analyzed (appraised visually), 

we find from Table 15 the appropriate number of segments which need to be measured. 

If it is required that we assure the obtainment of a fixed value of error .A with 

a higher degree of reliability than the probable error, we can use the data in 

Table 16. 

If the result of analysis differs substantially from that value which we 

estimated visually, determining the necessary number of segments, we should make 

the appropriate correction, taking into account more reliable data obtained as a 

result of analysis. 
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Tables 13-16, the factor K 

was assumed to equal 1. 

Analyzing the structures, the 

nature of which does not 

depend upon the direction 

(in the plane of cut), we get 

a factor K which is always less 

than unity. JjiJ* mean value can 

be assumed to equal 0.65, as 

follows from the earlier 

presented test data. Equation 

(15.11) indicates that the 

required number of segments 

is proportional to the square 

Therefore, 
of the factor K. IMZ 

the number of segments i^hich 

is determined based on tabular 

data can almost always be 

considerably decreased by 

multiplying it times the 

square of the factor K, that 

iS by 0.^2, if only the 
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structure is Isotropie (isometric) and uniform. If the structure is banded, 

and the MSMKK secants are located perpendicularly to the direction of the 

striation, the required number of segments then decreases still more. In this 

case, the value of the factor K can be assumed to eoual 0.4 and hence the necessary- 

number of segments found from the tables can be multiplied by 0.16. For instance, 

if at ttw content of analyzed oomponentf equaling 20%,  and/probable error not 

surpassing 1%,  we are required to measure 711 segments (see Table 13), in case of 

banded arrangement of the component being analyzed and with secants directed 

perpendicularly to the striation, then for getting the same accuracy of analysis, 

it is sufficient to measure a total of 711 x 0,k   = Ilk  segments, namely six times 

less. 

If the objects of analysis are at the same time several components, in an 

analysis or; the same length of secants, then the error of determination of each of 

the components will differ, since their content in the alloy, dimensions and form 

of micropartides are different. Therefore the calculation of error needs to be 

made for each of the structural components separately. 

The linear method of determining the structural or phase composition of 

an alloy, owing to the possibility of using various devices, especially integrators, 

is very effective both in accuracy and in speed. It is especially effective in the 

analysis of structural components having a banded arrangement, since here we are 

required to measure the minimum number of segments to get sufficient accuracy. In 

particular, it is feasible to determine by such a method the very small amounts of 

structural components, having a linear orientation (for instance, content of 

extended nonmetallic Inclusions in a lengthwise cut), by the method of stationary 

microsectior.. We should recall that in the use of lengthwise cuts, the mean 

ILL 
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iSuspended volumetric content of phase should be computed on the basis of 

eq,(11.3) (see Section 11). 

For analysis of the metallic structures, it is convenient to use the 

linear method. Determining by this method the structural composition, it is 

easy to compute (with the measurement and summation of lengths of segments) the 

number of segments, especially since this is necessary also for a determination 

of accuracy of the analysis conducted, This number of segments, referred to a unit 

flfi  length of secants, along which they were measured, provides the possibility of 

determining the second most important parameter of spatial structure of alloy, 

namely the AX value of specific surface of the structural component under analysis. 

In an electric iKXä^MKäK integrating instrument, the diagram of which is shown 

in Fig,38, the number of segments is not computed,' however this can easily be done 

by modifying the system slightly. Such a type of device was proposed by 

A.A.Glagolev in one of the designs of the integrators developed by him (Bibl.50), 

In conclusion, we present an example of incorrect use of linear analysis. 

Determining the content of ÖtJ carbides of chromium, niobium ^nd 

tantalum in various alloys by the linear method and striving for exceedingly high 

accuracy of determination, namely 0.01^, J.R.Lane and II,J«Grant could not detect 

changes in structure in the process of £g£ aging of alloys (3iblf78), Actually, if 

we assume the probable error as equaling 0,01^, at content of about %  of the 

given type of carbides, we are then required to measure more than two million 

segments. Naturally, this could not be done, although the ffiäMMä process of 

linear analysis, according to the testimony of authors, lasts for several days. It 

Is suite evident that it is necessary to reckon with the possibilities 'SIM.  of each 

type of analysis. The data presented in this paragraph permit one to compute in 

1« 

:.;■■ . ■ 



I 
advance the possible accuracy of determination for the given actual conditions 

and requirements. 

Section 16. Point Method of Determining Phase and Structural Volumetric 
Composition of Alloy 

The point method of quantitative analysis was first proposed in 1931 by 

A.A.Glagolev (Bibl.52) with reference to rocks-"-. This method is based on 

conclusions drawn from the theory of probability and its essence can be illustrated 

as follows. 

Let us assume that there 
mmXXSMMnSIX&M  ~lis a field consisting of a number of individual 

areas        ÜäSv 
sectors, the MSK of which äSKnälknown to us. The entire field is sown evenly, 

wherein we know the total number of grains used in sowing. It is required to 

establish how many grains have fallen on each of the sectors separately. The 

solution of this problem is quite elementary, since it is obvious that the number 

of grains which had fallen on any of the sectors of an evenly strewn field, is 

jSMjffi proportional to the area of this sector. 

'(we 
Thence there follows the quite valid opposite proposition, namely iAknow the 

quantities of grains which have fallen on each sector, but we do not know the areas 

■"- In the American metallurgical literature, the point counting method is often 

KXUm called the ^mMXMUMßMMSpSnSUMIS^. method of Cohen, who allegedly 

first introduced this method into metallographic practice in 19^7 (3ibl.273, 37^). 

Moreover, the use of the point MI counting method for quantitative analysis of 

structure of alloys was MMMM recommended by the actual author of the method, 

Glagolev, as earlv as 1935 (3ibl,5i) and was used in practice bv the author of the 

present book in 1939 (3ibl.275). 

K6 



of the sectors, then using the same law of proportionality, we can determine 

the areas of sectors. This proposition forms the basis of the point cou-ting 

method. 

From the theory of probability it is known that if we draw a point at random 

in the area G, the probability of the occurrence of the point in any part of this 

area is proportional to the size of this part (length, area etc.) and does depend 

upon its location and shape (Bibl.lOl). Therefore,if the area is a plane, the 

area of which equals G, the probability of placing at random a sketched point on 

the part of the surface, the area of which equals g, will equal 

wherein this probability is iM$ independent of the shape and äiffiMgä location 

of the part of surface g. Specifically, this part can consist of a large number 

of individual sectors, the total area of which equals g. 

If J3C the surface being considered we draw not one but a large number of 

on 
points z, then IK sector g of the surface there will fall x points, wherein the 

number x tends towards the value pz and the ratio of values pz and x are all 

the closer to unity, the greater number of points that aye drawn on the surface, 
A 

Therefore the part of area of sector g on the surface G will be ever Ml.  closer to 

the value -o_ = _iS_ , the greater the value for z (and hence for x). 
G   z 

With reference to the quantitative microanalysis, the point counting method 

reduces to a jumplike movement of the cut in the field of view of the microscope, 

wherein KX in each new position of the cut, it is noted just which of the structural 

the crossing 
components is located in the point of 8MMXMIX of the eyepiece with the cross hairs. 

Let us assume that the structure under consideration contains three components, 

which we designate by A, 3 and C. If ir. the process of examining the cut in 1X0 

mBffi 
147 



fields of view, the point of cross-hair (reticle) fell 20L times on component A, 

22 times on component 3 and 708 times on C, the relative content of these components 

in the area of cut, and also in the volume of alloy then comprises in %: 

A 20.4 

3 8.S 

C 70.8 

100,0 

In the point analysis the points on the microsection can be arranged, 

by continually moving the cut by the same amount (for instance, by 0.2 mm) with 

the aid of slides mounted on the microscope stand. Having finished one series, 

we 
M2 move to a second parallel series, etc. As a result, the points prove to be 

located in the nodes of a quadratic or rectangular grid. In petrographic analysis, 

there is used the special Jjfia«»-developed by Glagolev, with the aid of which the 

cut is moved along a spiral line, by the same amount each time. The observance 

of X2 a fixed geometric regularity of placing the points is quite unnecessary, if 

the main requirement is fulfilled, namely uniformity of their distribution. However, 

this last requirement is assured most reliable*at a regular arrangement of points 

over the entire field of the cut. The important advantage of the point counting 

it 
method MMfK  consists in that can be used without any kind of special equipment. 

Even in the use of the simplest method, the movement of the cut by hand and a 

recording of results, MMM.  one can conduct an analysis of structure in a total of 

only 30 - /i0 min. 

XMjs The point counting method of analysis permits the mechanization of the 

process of moving the cut and the computation of points, which considerably simplifies 

and speeds up the analysis, at the same time increasing its jSMai precision. A device 

for point analysis, caller! a push integrator was proposed by Glagolev in several 
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variants, the first of which was developed in 1:J31 (Bibl.50). In simplest form, 

the push integrator is a recorder consisting of several mechanical counters of 

ordinär;/- type. The counters count off the nunber of presses made on a key, each 

of which is intended for a fixed structural component. Simultaneously with pressing 

on any key, by means of a flexible lead (for instance the trigger from a camera), 

a jolt is given to the micrometer screw of the slides of the microscope siioMi  or 

of a two-coordinate conveying tube, which displaced the cut into a new position. 

At the start of analysis, all counters are zero-set. The observer working with 

the push integrator, observing the structure in the eyepiece, presses or that key 

which is dented for counting the number of points falling in the structural 

component, located at the given position of cut in the center of field of view 

(i.e. in the point of reticle of the eyepiece). During pressure, the microscope 

stand is moved into a new position XMK and the observer again presses the key, 

corresponding to this new position, etc. In the process of the entire analysis, 

there is MK no need to look away from the eyepiece, which has to be done many 

.times in working without a push integrator and which has a bad effect upon vision. 

In certain models of the push integrator, there are special devices which 

automatically indicate the attainment of a fixed total number of points, set 

beforehand depending upon the required accuracy of analysis. After examining by 

the described sequence the entire area of cut, the number of pressures (recorded 

by the counters) on each of the keys are proportional to the content of the 

corresponding structural components in the alloy; therefore the calculation of 

percentual composition of alloy requires no more than several minutes. Thus, 

the push integrator permits ore to determine simultaneously the content of all 

structural components of the alloy, the number of which rarely surpasses 6, wherein 
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the duration of analysis in case of 1000 points reduces to 15 - 20 rain, also 

including the calculation. 

The point counting method is quite useable in the analysis of highly 

dispersed structures when the linear method of XMJt analysis cannot be used as 

a result of M. very short lengths of the segments being obtained, which therefore 

cannot be measured with enough precision, even using maximum magnifications. In 

the vrork with the point counting method, high skill of observer is not needed, 

recognition of the structural 
since all the determination reduces to a IffiöEXJSKmM   component in 

the point of cross-hair of the eyepiece and pressure on the SfjSjMpI appropriate key 

of the recorder. Therefore the point counting method of analysis should be given 

preference over other methods of determining the structural composition of alloyf 

(with the exception of individual specific cases, which were discussed in 

Sections 13 and 15). 

Glagolev's point counting method was MM recognized and widely used in the 

practice of petrographic analysis in the Soviet Union as well as abroad, although 

the USA 
this was considerably delayed. For instance, in KMJdS the description of the 

Glagolev point counting method, with a reference to its early publications 

(1933 - 193i) was given only in 1949 by F.Chayes (Bibl.102). Basing or. the 

experience of conducting around 300 analyses of microsections of rocks, Chayes 

gives a very high appraisal of the point counting method, although he was 

evidently unaware of the monograph published in 1941 by Glagolev (3ibl.50), describing 

Improved devices and methodSof analysis using the point counting method. Chayes 

remarks that the device for point analysis which can easily be assembled from 

manufactured parts being used in microscope technology (mechanicalJaiJfet for the 

microscope and counters of fcS8 conventional type), exceed?all other devices 
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intended for determining the structural composition, in economy, rapidity of 

analysis, and accuracy of results obtained. Comparing the speed of analysis 

in the point counting and linear methods of analysis, Chayes adduces the 

when using the Wentworth integrating stage 
following data: duration of analysis ^'qß«pq3XS}««pä«Ö«äP^XSmDq^^«»KXJöaQJ 

comprises 1 hr, in the electrical counter used by Hurlbut, the analysis is 

conducted in 30 min, while in the point counter (primitive construction) it 

takes but 15 mir. Subsequently, conducting over 600 analyses of rocks by the 

point counting method, Chayes confirmed his initial estimation of this means 

of analysis (3ibl.l03). 

The accuracy and reliability of results of analysis conducted by the point 

counting method are determined in a well-defined manner (for the given structure) 

by the total number of points, computed in the process of analysis. In distinction 

formulas, 
from the linear method, where we use empirical :>R§H0SEL, in case of the point 

analysis, the geometrical probability of the falling of a point in one or the 

other structural coraporent is easily subjected to calculation. Therefore, basing 

Laplace 

on data of the probability theory and specifically the SSffiS&e  theorem, M one 

can determine computationally the conditions of analvsis assuring the obtainment 

of an error not in excess of that assigned, with an earlier established reliability. 

Let us assume that one of the structural components, the content of which we 

desire to identify, occupies on the cut ?%  of of its entire area, which is taken 

to equal 100!?. If we take a sufficiently large number of points z, distributing 

them randomly but uniformly over the entire area of the cut, the probability of 

the occurrence of an individual point on the structural component of interest to 

us will equal p, wherein, as was stated above, 

F 
P = 

100 
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The chance of XKM the opposite occurrence, i.e. of the falling of a 

separate, randomly selected point on an area occupied by all the other structural 

components (other than SMM that of interest to us), we ^ipni fy-^y q. Then 

obviously. 

100-F 

100 

Lf we "ifTify the number of points (from the total number of points z), which 

have fallen on the area of the cut, occupied by the measured structural component. 

by x, KMM then the error of determination will equal 

8 = — - p, 
2 

while the absolute error of determination, expressed in percents of ar area of 

cut,/\ will be 100 times larger: 

A = 1008 - 100 —-f. 
z 

rhe probability theory provides the following relationship between the 

value of error of determination 5, the number of measurements for countings made 

during test (in the given case, the number of points) z.and the probabilities p 

ana q: 

8 = n / P Q 
(16.1) 

or substituting instead of 5, p and q their value is expressed in percentages of 

area of cut: 

A = t 
/^ 

00 - F) 
(16.2) 

/JU«^ 
The coefficient t entering gffim eqs.(16.1) and (16.2) «»»-the same 

stardard ää deviation, which we mentioned above (see Section 1J). It is 
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connected with the reliability of the obtained result of analysis by eq,(l5.6), 

and the appropriate numerical data are adduced in. Table 12. 

To determine the error of analysis^, it is necessary to know values F and z 

and to assign a definite reliability of result of determination P, according to 

which there is found the corresponding value of standard deviation t (from Table 12). 

In the practice of quantitative microanalysis, M  two types are possible: KjXffiSäK 

a posteriori 
a)/determinatior. of error of already conducted analysis, when we already know the 

values listed above and b) preliminary calculation of conditions of analysis 

(i.e. of required number of points), assuring the obtainment of an error not 

surpassing that assigned beforehand. In the latter case, the unknown content of 

the structural component F being analyzed is determined approximately in advance, 

visually, and after eeadMt offlknalysis, a refined calculation of error is 

conducted. 

Let us assume that we have conducted by the point counting method an analysis 

of an alloy, wherein of the examined 1200 points, L52  fell in the assigned 

structural component, while 7i.P fell in all the remaining components of the 

structure. Hence the unknown content of the assigned component of the structure 

will equal (in per cents of area of cut or volume of alloy): 

F = -i-^-lOO = 37,7 o/0. 
1200 

We find the error of determination according to eq.(l6.2),  having substituted 

in it the derived values: 

A = t     /   37,7.(100-37,7)    ^Q f 

V 1200 

Having assigned to the MMM standard deviation t various values, corresponding to 

m 
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fixed values of reliability of KMIgK analytical results, we get actual values of 

certainty. certainty 
error for each i^aOiiateliU^:. For instance, if t = 0.6745, the i<gH&ga9iia$E of 

obtaining error, not surpassing the value 

1,40 • 0,6745 = 0,940/0, 

then equals 0.50 or 50^ (see Table 12). In other words, in the conduct of a large 

number of independent analyses, according to 1200 points in each analysis, in 15^ 

of the analyses the error does not surpass 0,yU%  of the area of the cut. The 

a certainty of 

error obtained with ?SJM8®39?^Qi2fi' 0.50 or 50^ is called the probable error and 

its value IX most often SfjßJ'XM  typifies the accuracy of determination being 

realized by this or another method. 

certainty 

If we assign a higher^osüiabcifkfcfe^, equaling e.g. 0.99 or 99^, for which the 

standard deviation equals 2.575S, then only in one case out of 100 analyses (with 

exceed 

1200 points in each) can the absolute error somewhat i^^SSf? the value 

1,40 • 2,5758 = 3,6%. 

In the calculation of the minimum necessary number of points, in order to 

get the required accuracy of analysis, we use the formula obtained from 

eq.(l6.2): 

-'•^F^,     '      (16.3) 

To compute the number of points z, we assign in advance the values A and t, 

proceeding from the purpose and Importance of the analysis, while we determine F 

in first approximation visually.    From eq.(16.3),  it follows that the required 

number of points quickly Increases with a äMM decrease in the permissible absolute 

error of determination^  and with^increase in reliability cf result of analysis, 
A 

being determined bv^value of standard deviation t, ÄXX since these two values 
"A 

enter the formula in the second power. 
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Let us examine the above presented example when the content of SXä structural 

component being analyzed in the alloy equals 37.7$. The probable absolute error, 

exceeding 15? of area of volume of cut, may be obtained at number of points s, being 

determined by eq.(l6.3): 

z = (0,6745)« 37-7<100-37'7) = 1069. V '   ;     (l,0)a 

Conducting a determination with the same reliability, but with a permissible 

error not surpassing Q.5%  of volume of alloy, we get the necessary nimber of points 

exceeding the former by U tines; 

z = (o,6745)' 
37-7n00-37'7) ^ 4276. 

(0,5)2 

If at the same permissible error, we increase the reliability of result of analysis 

from 50% to 95^ (at which the standard deviation t equals 1.9600), the nomber of 

points which need to be calculated vail increase to 

z = (1,9600)? 37'7('00~37-7) = 9023. 
(0,5)2 

The numerator of the eq,(l6.3) acquires maximum XK importance when the given 

structural component takes up exactly » half of the volume of alloy and symmetrically 
A 

; i 
A 

decreases at/decrease of its content to zero or at increase to 100^, as is evident 

from the data in Table 17. However, the required number of points, at small 

contents of the component being analyzed nevertheless increases, in spite of the 

corresponding decrease in the numerator, since the lower the content of assigned 

component in the alloy, the smaller should be the value of permissible absolute MMM 

error A^ which enters the denominator of eq.(l6.3) in squared form. Thus if,at A«"' 
J 

4*. 
content ofTgiven component equaling 50%,  even in ease of a high requirement for 

accuracy of analysis, an error of 0,5%  of the volume is quite acceptable (relative 
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error equals 1^), then at content oT^component being analyzed equaling 0,5%  of 

volume of alloy, the absolute error should be counted in hundredths of a percent 

Dlume of^lloy. of volume Accordingly there also increases the number of points required 

for obtaining such an accuracy, 

Table 17 

p.x P (lOO-F) F. % j P.  % iMioo-.") P. % 

1 99 99 26 1924 74 
2 196 98 27 1971 73 
3 291 97 28 2016 72 
4 384 96 29 2059 71 
5 475 95 1   30 2100 70 

{    6 564 94 31 2139 69 
7 651 93 32 2176 68 
8 736 92 1   33 2211 67 

I    9 819 91 34 2244 66 
10 ■ 900 90 35 2275 65 
" 979 89 36 2304 64 

1   12 ' 1056 88 37 2331 63 
13 1131 87 1   38 2356 62   1 
14 1204 86 39 2379 61   1 

1   15 1275 85 40 2400 60 
i   16 1344 84 41 2419 59   | 

17 1411 83   1 42 2436 58   | 
1   18 1476 82 43 2451 57 

19 1539 81 44 2464 56   1 
20 1600 80   i 45 2475 55 
21   | 1659 79   i 46 2484 54   ! 
22 1716 78 47 2491 53   i 
23   1 1771 77   1 48 2496 52 
24 1824 76 49 2499 51   1 
25  • 1875  1 75 50   j 2500 50   | 

For instance, if we conduct a determination of the component of structure 

occurring in a total of 0.5%  by volume, while the value of absolute error should 

not surpass 0.025^ (which MM&  corresponds to the relative error equaling 5%)  at 

pr obability of 50%,  then the required accuracy is assured by calculating the 

following number of points: 

z = (0,6745)
a O^m^M = 36214. 

v    '   (0,025)* 

MM Practice indicates that in one minute, one can compute 75 - 100 points 

(3ibl.l02). Hence for computing 34, 12U  points, more than i  hrs would ne required, 
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i.e. ffiSQHSBDCIffi practically an entire MK working day. 

In such cases, it is advantageous to use the MäffiMXKM "method of fields", 

proposed by Glagolev (Bibl,50), According to the method of fields, in one field 

of view there is examined not one point of crossing of the eyepiece with the 

nodal 
cross-hair, but MiäMIK several hundred KSäälä points of the grid of the 

eyepiece. Moving tho cut in the field of view of the microscope, at each new 

nodal 
position of it there is computed the number of MäüQS points of the grid of the 

eyepiece, falling in the structural component being analyzed. For instance, in 

the determination of content of component, present in the alloy in the amount of 

0,5^ in all, let us use the square-grid eyepiece, shown in Fig.li. which has 

229 KMäELXÄg nodal points (17 x l7). Conducting the calculation in about 

125 fields of view, distributed evenly over the entire field of cut, we already 

get the required total number of points: 

125- 289 = 36125. 

This calculation may be done quite rapidly, since in all 125 fields of view, 

in the analyzed structural component, there fallä( approximately 

36125 ^- = 180 P^ts 
100 

which we also have to compute, and this takes up 10 - 15 min in all. Hence, the 

Glagolev method of fields permits one to expand considerably the area of efficient 

use of the point counting method for cases of low content of components of 

structure being analyzed. However, it must be kept in mind that in the use of 

the method Sä of fields, one gets a pMftPKMpttKM grouped, congested arrangement 

of points and hence the principle of uniform distribution of points over the entire 

area of the cut, placed at the basis of the conclusion of eq,(l6.2), is disrupted. 

Therefore the accuracy of the method depends not only upon the total number of points, 
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but also upon fluctuation in content of component being analyzed in various 

fields of view. As a result of this, the actual error will exceed the computational 

one to an ever greater degree, the more irregular the distribution of the analyzed 

component over the field of the cut. 

If the content of structural component is less than O.lju of the volume of 

alloy, the number of required points increases to such an extent, that even the 

use of IX the method of fields does not permit the attainment of a practically 

acceptable duration of raicroanalysis. In such a case, as noted above (see 

Sections 13 and 15), it is more feasible to use the planimetric or linear methods. 

In order to avoid the need for calculations using eq.(l6.3), one can use 

compiled reference tables. It is easy to see that eq,(l6.3) for the point counting 

method is quits identical to eqs.(15.10) and (15.11) for the linear method, adduced 

in Section 15, under the condition that the factor K in the latter ones is equal 

to 1. Since Tables 13 - 16 were computed under the observance of this condition, 

they are JpiiK quite applicable not only for the linear but also for the point 

counting method. In the latter case, the number of segments is equivalent to the 

number of points. 

The above-presented calculations of error take into account the random errors 

of statistical analysis. In addition to these errors, there can occur a systematic 

error, caused by the fact that the point of crossing of the eyepiece with the 

cross-hairs and the nodal points of the square-grid eyepiece are not geometric points 

but have fixed, although small, dimensions. This systematic error is coupled with 

the random ÖSäXit error and as a result the total error of analysis may prove in 

certain cases to be quite considerable, as this was indicated by A.G.Spektor (3ibl.l04), 

In Fig.42, we  show systematically the effect of width of lines forming a $ffiDöüi point 
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upon the obtainment of a systematic error. If the width of lines equals a, while 

the diameter of sections of microparticlss, having a spherical form, which for 

simplicity we vrf.ll assume of equal size, equals d, then the "point" partially 

■or completely falls en all sections of microparticles, the centers of which prove 

to be located within the contour A (Fig.42,a). However, if the M. point is 

geometric, not having dimensions, it can fall only in those sections of 

microparticles, the centers of which prove to be located within the circumference 

with a diameter d, with a center in the point of the crossing (Fig.42,b). Hence, 

the actual "point" always will fall on the structural component^being analyzed, 

in a greater number of cases than the ideal point. As IM is evident, the error 

will be all the greater, the less the diameter of sections of microparticles d 

ir. comparison with the size of "point" a, i.e. the more dispersed the structural 

component being analyzed. 

Spektor determined the content of norrmetallic MpiMMäK inclusions in 

type ShKhl5 steel in a 3ÜÜÖQF. transverse microsection. The determination was 

made by the method of fields, wherein the total number of points comprised 

1,770,000, of which 520 points fell in the nonmetallic inclusions. If we disregard 

Fig.4.2 - Effect of '.,:idtr. of Lines Forming the Point of Cross-Hair 

of Eyepiece, during Point Counting Method of Analysis [after 

Spektor (3ibl.l04)] 
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the dimensions of nodal "points" of the eyepiece grid, the volumetric content 

of norar.etallic inclusions in steel is determined by the figure 

O 
580 

1770000 
100 = 0,0328%. 

Fig.43 - Eyepiece Insert with 

Dark Sector Replacing the Eyepiece 

with Cross-Hairs, and Free of 

Systematic Error 

Eh of projection of linex of the grid 

of eyepiece on the surface of the cut was 

found as equal to one micron, while the 

average dimension of sections of round 

inclusions 
nonmetallic MpÄiSäS was k microns. The 

calculation of content of nonmetallic 

inclusions, conducted by Spektor with a correction, taking into account the effect 

twice as 
of actual width of lines of the eyepiece grid, yielded a result almost/small as 

that obtained without correction, namely O.Ol^ö^. A control analysis, conducted 

by the planimetric method, yielded a figure very close to the latter, that is 

0,01rjL%.    According to the äj5ä Spektor data, one should never disregard the 

dimensions of the "point", even in the case when its cross section is 20 times less 

than the mean diameter of sections of microparticles (in the example considered, the 

cross section of the "point" is k  times less than the mean diameter of inclusions 

In an analysis of the dispersed structure by the point method, we can use 

correction coefficient, for calculation of which we need to know the width of lines 

forming the "point", the mean diameter of sections of microparticles and their number 

cer unit. 
correction 

area of the cut.    The method of computing this iftTi{flTXyyM coefficient was 

developed by A.C-.Spektor (Bibl.104);  however-we do not preser+  it here because it is 

faii.y unwieldy and requires determination of a number of additional parameters of 
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?ig.UU -  Eyepiece Insert, Replacing the Square-Grid Eyepiece 

during Point Counting Analysis, Free of Systematic Error 

microstructure tSKä (^K average diameter of inclusions, and their quantity). 

We show in Fig.43 an eyepiece insert with a dark sector. The point of the 

peak of this sector is a geometric point and therefore, using such an insert, 

one can be rid of systematic error. In Fig.4^, we show another insert, containing 

a number of dark squares, replacing the square-grid eyepiece for purposes of point 

analysis by the method of fields. In the analysis, there is MMp identified the 

structural component, on which there falls each of the points of jaate of the 

squares. 

Section 17, Structural and Chemical Composition of Alloy 

The 
XSXX result of quantitative metallographic analysis conducted by planimetric, 

linear or the point counting method, is the complete or partial structural composition 

of alloy, expressed in percentages or fractions of area of MM.  cut or of volume of 

alloy (which has the same meaning at proper choice of surface of cut). Frequently 
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it is feasible to convert the structural composition to chemical or vice versa; 

this permits not only a checking of results of both types of analysis by way of 

their ocmiparison, but also develops additional data on the composition of individual 

phases and structural components. 

In the formulas connecting the chemical and structural composition of the 

XMJf there 
alloy, KKäöfä/mandatorily enter the values of specific weights of phases and structural 

components, and also of the alloy as a whole. Therefore a valuable supplement to the 

data of structural and chemical compositions of alloy is the amount of specific 

weight of the alloy itself. This value can be determined experimentally with high 

accuracy and is very simple methodologically. 

The specific weight of individual phases and structural components of alloys 

a*« far from being known in every case. However if we have access to data both 

of structural and chemical composition of alloy, then we can determine by a 

computational method the specific weight of any phase and structural component, 

which it is not possible to differentiate in a pure form for the test determination 

of its specific weight. 

Since in the future it is necessary to deal with a number of values, expressing 

the structural and chemical composition of alloy, the chemical composition and 

specific weight of individual phases and MMM.$MM  structural components, we 

introduce the following symbols: 

1. Individual phases and KM structural components of alloy a, b, c 

2. Content of jOQUf phase or structural component in alloy, 

in percents of area of cut or volume of allov ........... F0, F, , F 
a»    o'    c 

3. Fraction of volume of alloy occupied by phase or structural 

component, mrrv/mmy or cm3/cnP         2^ > 2^b» Z ^ 

i.  Content of phase or structural component  in alloy,  in weigh4. 

percentages         , G .  G. . G a'     D'    c 
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5.  Specific weight of individual phase or structural component, gX 

Tai lb' ■ c gm/cm3  . Y . YbJ Y, 

6. Content in individual phase or in structural component of any 

element (for instance, of carbon), in weight percentages .... C , C. , Cc 

In the case of I8MMM ffriBiwts-carbonffl alloys, the uidoieea'a, b, c replace 

the indexes signifying the actual structural components of steels and irons: 

F (ferrite), P (pearlite), Ts (cementite), G (graphite), M (martensite), T (troostite), 

S (sorbite), etc. The content of p3f phase expressed in volumetric jääüMüM percents, 

Fa, is equal to the fraction, magnified 100 KS^ times, of volume of alloy being 

occupied by the same phase 2v . 

If we know the full structural composition of the alloy, the weight content 

of any of KM its structural components is then found according to the equation; 

Qa = ^^ 100%.    fl7 .s 

If the actual specific weight of the alloy itself is known, we can substitute 

its value in the denominator of the formula, since the denominator equals the 

specific weight of the alloy as a whole. This permits one to compute the weight 

content of any phase or M^ component of the structure of the alloy, if we know 

the volumetric content of the given SMMKMKZM structural component and its 

specific weight. 

flL 
The unknown specific weight of structural component is easy to find based 

on the same formula, if we know its weight content G , the volumetric content Zv a 

galley. and the actual specific weight ofTalloy, comprising the denominator of ä$X eq.(l7.1). 

As an example, we determine the specific weight of graphite component of six samples 
A 

of gray and malleable iror.^, using the test data of G.I.Pogodir-Alekseyev (.3ibl.l05), 

adduced in Table IP, Samples 1-3 represent malleable irons with a ferrite or 
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pearlite base, while samples L - 6  refer to PX^I gray ironj^, of which the 

metallic base MMIK consists of pearlite or of pearlite combired with cementite. 

The volumetric content of graphite was determined by planimetry based on 

photomicrographs, determining the sectors of cuts with average graphite MMM content 

for KK each sample, wherein the accuracy of determination was low. The weight 

content of graphite was determined by the difference between the content of 

total carbon and batidcd- carbon; these contents were presented by Pogodin-Alekseyev 

for all six samples. 

Table 18 

b) 

1       a3 /J *) 
0 ol) «J 

i 2,71 0,18 2.53 8 7,384 
1        2 3,18 0 3,18 10,5 7,282     1 

3 2,80 0,92 1,88 6 7,459     j 
'» 3,30 1,24 2,06 7 7,440     j 
5 2,86 1,12 1,74 6 7,505 
6 2,76 0,89 1,87 6 7,466 

1 

a) No. of sample; b) Carbon SMI  content, %  (by weight); c) Ctotalj d) C^-gg^g^ 

e) C   , ^e; f) Content of graphite, %  (by volume); g) Specific weight of iron, 

gm/cnr 

The calculation was done on the basis of eq,(l7.l). The specific weight of 

graphite component is not known. The left side of the equation is set equal to 

the weight content of graphite in iron. Thus, for the first sample, we set up 

the equality: 

2,53 = -Q'08^ 
7,384 

100, 

from which we find v >3i gm/cm-5. Similarly for all six samples we get, gm/cm-': 
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1  2,34 
2  2,21 
3  2.34 
4  2,19 
5  2.18 
6  2,33 
mean    2,27 

Based on literature data (3ibl.l06, 107, 106, 109), the specific weight of 

graphite ewwigaa quite inconsistently between XM 2, 20 and 2,55, while the 

theoretical calculation based on parameters oHcrystal lattice provides the 

figure 2.24.. 

In spite of the above-mentioned low accuracy of determining the volumetric 

content of graphite, the results of all analyses are very close to results obtained 

by other methods and deviate but little from the mean value (not more than by 

3 - 3.5« of the value being determined). 

Since in the example considered, the phase under analysis is a pure element, 

the value 
its weight content determined by chemical analysis may be equated to KMK computed 

on the basis of eq.(17,l). In a similar way, we can find the dependence between 

the weight and volumetric content of graphite in iron. In conformity with the 

above-adduced data, the specific weight of graphite can be assumed to equal 

2,25 gm/cnK, The specific weight of the ferrite base depends upon the content of 

admixtures dissolved in the ferrite. The specific weight of pure ferrite, containing 

not over 0,0152 of impurities, equals i.^L  gm/cm- (Sibl.llO). The specific weight 

of silicic ferrite of malleable and gray iror.jj is al* the lower, the higher the 

silicon content in them: at 1^ Si, the specific weight of ferrite can be assumed 

to equal 7.79 PKX gm/cm3, while at 2%  Si, it is 7,70 gm/cm- (Bibl.lll), 

Using these data, it is easy to formulate an equation for the case of 

^«rWMe-carbo"i^ alloys, containing 2%  silicon and having a ferrite metallic base: 

165 



„       2,25 S Kg 
J«   2,25? Vq +7,70 2 Vf 

100%. 
(17.2) 

Since the fractions of volume, taken up by ferrite and graphite, are equal to 1 as 

a total, eq.(l7.2) provides a clearly defined dependence between the weight and 

volume content of graphite. The specific weight of cementite, based on data of 

K.Khond and his researchers equals '7.662 gm/cm? (3ibl.ll2), that is.almost 

exactly coincides with the specific weight of siliceous ferrite, containing 2/o silicon. 

Therefore eq,(l7.2) proves SUCK valid not only for iron with a IMM. ferrite base, 

but also for irons with a base m4e  of pearlits or of pearlite MffilM combined with 

cementite. In Fig.45, the dependence being detennired by eq,(l7.2), is shown 

graphically by a solid line (for alloys, containing 2%  silicon). The broken line 

Fig.45 - Dependence between Volume and V/eight Content of Graphite 

Contained in Cüääats-CarbonJ^.Alloys Containing 23 Silicon (solid 

line) and with 0% Silicon (broken line) 

a) Carbon, weight in %;  b) Graphite, volume in % 

corresponds to pure fappogfl-carbonifef alloys, and as we see, almost coincides with 

the lire for alloys containing silicon. 

The denominator in eq.(l''.2) deterniines the specific weight of alloys as a 
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whole. The dependence of specific weight of Alloy upon\Tontent of graphite, expressed 

in weight percents, is presented in Fig.46. Line (1) in this drawing corresponds to 

pure foinigins-carbon^t- alloys, while line (2) corresponds to alloys containing 

2%  silicon. The points located between these lines correspond to test data obtained 

for steels and irons with a varying content of silicon, by Pogodin-Alekseyev and 

N.T.Gudtsov with their coworkers (Bibl.105). 

In those cases when the structural component of interest to us is a chemical 

compound or a complex formation (eutectic, eutectoid), the weight content of 

component obtained by eq.(17.1) can by no means be compared directly with chemical 

analysis data. The weight content determined by the equation must be first 

multiplied by the value determining the weight content of the element of interest 

to us in the given structural component, 

and be divided by 100. 

Let us assume that the structure 

hypoeutectoid 
of praaemfaegtaaig steel consists only of 

ferrite and pearlito. Just as above, 

the specific weight of ferrite is assumed 

to equal 7.874, while that of pearlite is 

7,8/18 gm/cnr  (the calculation of this last 

Fig,46 -    Dependence of Specific 
Iron-Carbon 

V/eight of RäwasSÄto&SKte Alloys 

upon Content of Graphite 

a) Specific weight of iron,gm/cm-', 

b) Graphite, \it,% 

value is given below). The carbon content 

in ferrite is assumed to equal 0.006^, 

while in pearlite, it is assumed to be 

0.8^ [according to I.I.Kornilov (3ibl.21)]. 

rhe weight content of structural components, in conformity with eq,(l".l), is 

determined by the values: 
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Q    -= 7.874 £ Vf 
f       7.874 2^+7,848 1^ 

G   = 7,848 2: ty 
p      7.874 J; Vf + 7.848 £ Vp 

lOOo/o 

100%. 

Since in the given case, carbon is contained in both components of the 

structure, its total computed content in steel, expressed in weight percents, 

will equal 

%c = 
7.874 ■ 0,006 m + 7,848 ■ 0,8 1 Vp 

7,874 SVf +7.848 SVp (1^.3) 

i the fractions being 
inoe in the total,MXXMXfiöMiM of volume of alloy/ occupied by ferrite and 

pearlite equal unity, eq.(17.3) permits one to determine uneouivocally the content 

of carbon in steel based on quantity of pearlite in its volume (or in the XMKä 

area of cut). The dependence is considerably simplified if we disregard the 

difference of specific weights of ferrite and pearlite, and also the content of 

carbon in ferrite, as is usually done in metallographic practice, then 

% C = 0,8 E V? (17.4) 

Prom Table 19, it is evident that the difference in results computed according 

to eqs^l^.Zt) and (17.3) is slight. 

Table 19 

1»                           1 
a) 

0 a) 

0 0,006 o 
0,1 0,085 0,08             1 

1          0,2 0,164 0,16 
1          0,3 0,244 0,24 
i          0,4 0,323 0,32 

0,5 0,402 0,40 
0,6 0,482 0,48            1 
0,7 0,561 0.56            | 

1          0,8 0,64! 0,64 
!         0,9 0,720 0,72 

1,0 0,800 0,80 

a) Fraction of pearlite in voluT.e of s^eel; b) Carbon content,;?; c) 3y exact 

formula; d) 3y approximate formula 
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hypereutectoid 
For jääfflöSöXMSMM steel, the calculation of weight content of carbon based 

on raicroanalysis data is conducted according to the equation: 

%c = 7,848 ■ O.Sll/p + 7,(ir;2 ■ G.ffllVc ^^ 

7,848 iVp + 7,662 i; Vc 

in which the Kip figure 6.69 denotes the carbon content in cementite*.    Disregarding 

the difference of specific weights of pearlite and ferrite, we get 

o/o C = 0,8 I V> +6,69 21^. (17.6) 

The determination of carbon content by structure is less accurate MS. in 

hypereutectoid steel, in comparison wit'n hypoeutectoid. In general the accuracy of 

raicroanalysis decreases with an increase in the content or element of interest 40 

Hguin the structural component being measured. In ferrous alloys containing 

carbon, therefore, KKM the maximum accuracy is achieved during measurement of 

the pearlite component, slightly less accurate in measuring the cementite component, 

and still less accurate in measuring the volume of free graphite. If in the 

determination of volume of structural component, there is admitted the same 

absolute error, the error of calculational determination of content of carbon then 

will be proportional to 0.8 in case of pearlite structure, and 6,69 in case of 

cementite and 100 in case of graphite. 

As is known, the carbon content in pearlite car. often deviate considerably 

canonical 
from the MMMI figure as a result of formation of quasi-eutectoid structures. 

This however does not interfere with the establishment of actual carbon content in 

* Usually the carbon content in. cementite is assumed to equal 6.67^, However, 

the calculation conducted MX on. the recent data of values of atomic weights yields 

gXngW  the figure presented in. the text. 
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only 
such pearllte and its specific weight, if/there are several samples of steel with 

varying content of pearlite identical in internal structure, and hence with 

varying content of carbon in the steel. For instance, if there are two samples 

of steel containing pearlite of homogeneous structure, the carbon content in which 

is known, as well as the volume content of pearlite, determined by one of the 

methods of quantitative microanalysis, one can then compute the unknowns, namely 

the specific weight of pearlite and content of carbon in it. Disregarding the 

carbon content in ferrite, we formulate for each of the samples individually an 

equation of the following type: 

%c CpYp • S Vp 

7,874(1 -lVf) + Yp ■ ^ l/p (17.7) 

In these equations, only two values are unknown to us, namely the carbon content 

i.'i the quasi-eutectoid C and its specific weight Yp* Therefore, having at XXX 

our disposal two equations with two unknowns, we easily find both unknowns. 

If we were also interested in the values which we disregarded in the above 

calculation, namely the carbon content in ferrite and the specific weight of 

ferrite, then we would have reeded not two but four samples with MJf^flK varying 

carbon content, but with identical pearlite structure. Such a method of calculation 

car prove quite effective for investigating the structure and properties even of 

submicroscopic elements of structure, for instance the metal of intercrystallite 

zones. 

If a determination of structural composition by methods of quantitative 

metallography becomes difficult or unrealizable by way of direct experiment as a 

result of high dispersed state of structure being analyzed, we can get the data of 

interest to us by way of calculation. For instance, the volumetric composition of 
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stratified pearlite is quite difficult to determine by direct measurement of ifa/ 

content of ferrite and cementite, as a result of a number of difficulties of a 

technical nature, which we mentioned in Section 12. Nevertheless, having at our 

disposal values of specific weights of ferrite and cementite, the content of 

carbon in them, and knowing the carbon content in pearlite, we can formulate an 

equation similar to eqs.(l7.3) and (17,5): 

08 - 7874 :0'006 IZL± 
7'622:6'fi9 - Vc 

'    "" ' 7,874 1 Vf + 7,662 i Vc 
(17.8) 

in which there is contained but one unknown, ^ V^. , since the fractions of volume 

of pearlite occupied by ferrite and cementite are equal to unity in the total. 

Solving this equation, we find the volumetric content of ferrite and cementite 

in the pearlite: 

EV£= 0,122 or  12,2%, i:yf--=0,878 or     87,8%. 

The specific weight of pearlite, being determined by the law of displacement, 

is equal to the denominator in eq.(l7.?), specifically 7.8i.8 gm/cnP. This figure 

correlates well with the literature data, according to which the specific weight 

of normal pearlite equals TLUH  7.846 - 7.85 gm/cm3 (3ibl.l09, 10"). The ratio 

of volume of ferrite to the volume of cementite in pearlite, in conformity with 

derived data, equals: 

0,878 : 0,122 = 7,2. 

In a series of researches, there was proved the inconstancy of chemical 

composition of cementite (3ibl.85, 113). If KMäi this is so, the calculation based 

on eq.(l".8) is not rigorous. In particular,XM A.?;.Rozanov conducted direct 

Cof thickness measurementSc sses of ferrite and cementite plates of pearlite of eutectoid 

steel ir a microsection pickled with XXX sodium picrate, wherein the ratio of these 

thicknesses (identical to the ratio of volumes of ferrite and cementite in pearlite) 
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provgito equal 5.68, but not 7.2 as was computed by us, and not ^.O as M. was 

found by other äXX researchers (also by way of calculation). The author also 

showed that the carbon content in cementite increases with temperature, while the 

hardness of cementite changes during tempering depending upon the temperature of 

heating (Bibl.lU.), 

Using the data of quantitative microanalysis and of share of pure metals 

found experimentally, one can determine by calculation the share of metal in the 

intercrystallite zorej The samples should differ from one another by tJCKBffi value 

of specific surface of grains (or f^ value of grain). Using an electron microscope, 

quite 
Gardin showed that one can determine ÄJÖffi precisely the volume of the intercrystallite 

zones(3ibl.115). For M a specimen of technical iron, he found that the specific 

volume of intercrystallite zones equals 0,03 mr/mtP, or 3% of the total volume of 

metal. The specific surface of grains of this specimen equaled 120 mm /mm-, while 

the average thickness or boundarv zone amounted to 0.25 micron. Determination of 

specific weight of samples can be conducted with great accuracy and is quite 

simple methodologically. 

The calculation of specific weight of metal as a whole is conducted, as 

normally, based on the rule of displacement according to the formula: 

Tf - 0,97 TKH-0,03 v (17>9) 

where y^ and y are respectively the specific weight of intracrystallite and 

intercrystallite metals (unknown to us); 

Y is the calculated value of specific weight of metal as a whole, 

which is enuated to the value found from experience. 

Since the specific weights of two samples can be determined experimentally, 

there remair two unknowns y and y , which we also find from the two equations. 
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The introduction (into the calculation of structural composition) of values 

of specific weight determined from experiment is quite efficient, since the 

specific weight is very sensitive to the least changes in the structure 

of the alloy. However, it is noteworthy that the value of specific weight is also 

affected by differencejin value of specific volume of intercrystallite zones and 

of change fflC in structure as a result of cold plastic deformation (of cold' ■ wi**y> 

'lifTtoHÜii):). This needs to be kept in mind and considered in the production of 

precise calculations. 

For instance, K.Kayer determined by test that the specific weights of 

rystal and polycrystal of copper (gm/crrr) differ considerably, as this is 

apparent from the following figures, 

Monocrystal   8.95235 

Polycrystal 8.9^-53 

The specific weight of polycrystal is lower by 0.12$ owing KM to the presence 

in the structure of a lighter metal of intercrystallite zones (3ibl,i.5). 

M.G.Oknov showed that cold plastic deformation of metal is accompanied by 

a decrease in its specific weight. The swaging of samples of annealed steel, 

containing from 0.23 to 1,67$ C, in which the height of samples decreased from 

15 to 10 mm, was accompanied by a decrease in specific weight of steel by values 

ranging from 0.02 to 0,16$. In alloyed steels, especially austenitic, there 

occurred a ä&MK decrease in specific weight by 0,^5 - 0,52$. Subsequent 

annealing of cold-hardened metal is accompanied by an increase in specific weight. 

Thus, the specific weight of steel wire (0.1$ C), decreased by stretching from k it 

to 0." mm without intermediate annealing, as a result of later annealing increased 

0.2W; (3ibl,116). 
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According to data of T.Ishigaki, the specific weight of a steel sample, 

which had broken during a tensile test, was lower by 1,06%  in the breaking zone 

than in the undeformed one during the testing of a part of the sample [ 

headJS^- (Bibl.ll?)]. 

Although changes in specific weight of steel during plastic deformation and 
A 

annealing are not great, in certain cases of combined calculations M^Sfthey 

should still be taken into account. 

According to data of quantitative microanalvsis, chemical analysis and of 

determination of specific weight, combined calculation can prove quite effective 

in many cases of research, having the purpose of explaining the chemical composition, 

physical properties and structure of individual components of structure. Since at 

present, such M a method is used relatively rarely, it is feasible to expand its 

use in metallographic practice. The reader can find additional information in the 

report by M.Ye.Blanter (Dibl.llB). 
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Table 20 

Specific Weights of Pure Metals and of Certain 

Structural Components 

Name 

Ferrous-Carhon Alloys 

Ferrite .   
Cementite . . ,   
Graphite   
Pearlite .....   
Ferrous phosphide   r • • 
Binary phosphide eutectic(5t(jdit§)t 
Ferrous sulfide   
Manganese sulfide ....'..... 
Silica  
Alumina    
Manganese orthosilinate (2 MnO • Si02) 
Ferrous orthosilicate (2 FeO • SiC^). . 
Alumina silicate (A^Og • SiC^) . . . < 
Magnesium oxide  

Manganese oxide ...,,.   

Pure Metals 

Aluminum . 
Beryllium 
Vanadium . 
Bismuth    . 
Tungsten . 
Cadmium    . 
Cobalt 
Silicon    . 
Manganese 
Copper .  . 
Molybdenum 
Nickel .  .. 
Tin    .  ,  . 
Lead .  .  . 
Antimony . 
Tantalum . 
Titanium . 
Chromium . 
Zinc      .  . 

Y gV cm-' Source 

7, ,974 
7.662 
2,25 
7.848 
6.74 
7.14 
4,30 
3,99 

2,26-2.31 
3,85—4,10 
3,58-3.70 

4,35 
3,05 

3,50—3,65 
4,73-5,50 

2.7 
3,5 
8,97 

21,33 
9,58 

12,99 
8,90 
2,4 
7,44 
8,94 

10,2 
8,9 
7,3 

11,34 
0,62 

16,6 
4,5 
7,14 
7,14 

1110) 
!112| 
1109] 

1261 
1261 
I'M 
1261 

1247] 
12471 
12471 
1247| 
12471 
12471 
1247] 

[248] 
|2481 
12481 
12481 
12481 
(2481 
12481 
12481 
12181 
|218| 
1248] 
(248| 
12481 
'12481 
12481 
(2481 
12481 
12481 
(2481 

a) Name; KjXXpXM b) Source 

In conclusion, in Table 20 we adduce values of specific weights of a number 

of metallic and nonmetallic structural components of alloys, mainly IMMM. 

AM* ~ 
••carbonjl*, which can be used in the  calculations. 
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Chapter III. Measurement of Boundary Surfaces of Grains, Phases, and 

Structural Components 

Section 18. Specific Surface and Special Methods for Its 

Determination 

In pure polycrystalline metals, boundaries separating crystallites 

appear as continuous surfaces similar to a film of soap suds in a cy- 

linder. In contrast to the latter, the facets of cells of the boundary 

surface in metals are not flat but more or less curved, Just as the 

edges of the cells. In alloys the interfaces of different phases or 

structural constituents may be shaped as continuous surfaces. However, 

closed contours, which limit the volume of individual micropartlcles 

are also frequently observed. 

In certain structures, closed surfaces, which limit the volume of 

individual mioroparticles, may have a more or less irregular geome- 

trical configuration approximating the shape of a sphere, a flat plate- 

lot, etc. The thickness of all interfaces, which would show this 

separately, was quite insignificant in comparison to their extent 

through space. For this reason they may be considered as geometrical 

surfaces. 

The extent (or amount) of interfaces of grains of pure metal, 

measured in units of area, divided by the unit volume of metal is 

called the specific surface of grains.  In alloys, too, the surfaces 

of various phases or structural constituents may bo characterized by a 

definite value of the specific surface of each one of them.  Generally 

speaking, the total specific surface in an alloy is not equal to the 

sum of specific surfaces of constituent structures, for '.hey are par- 

tially superinposed. For example, in hypereutectoid steel, the surface 

of the pearlite constituent is coincident with the surface of coiaen- 

tite.  For this reasor; the total, specifio surface is equal to the spe- 

cific surface of any constituent and, consequently, in this case the 

surfaces are completely superimposed.  In low carbon steel the surface 

of ferrite grains partially coincides with the surface of pearlite 
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formations. Further in this article, we shall naasure the value of 

2  ^ 
the specific surface in all cases in mm /mm . 

Even during the initial stage of development of this science of 

metals, interfaces attracted the attention of scientists, for they are 

precisely the region where the initial stages of the formation of new 

structures are localized during structural modifications. Moreover, 

the size of the specific surface is directly related to the dispersity 

of the structure which essentially affects the most diversified pro- 

perties of metals and alloys. The interest in interfaces in metals 

increased particularly after 1912, when W, Hosenhain applied to them the 

hypotheses of G. Beilhy on the amorphous structure of fine metal 

films. Despite that., the methods of quantitative evaluation of the 

extent of interfaces were developed considerably later. 

The specific surface of crystallites in a pure metal, and the 

specific surface of any group of microparticles in an alloy, are depen- 

dent (l) upon the average size of fas crystallite or microparticle, 

(2) upon the shape of crystallites or microparticles and (3) upon the 

degree of fluctuation of their sizes. Therefore, when determining the 

magnitude of the specific surface, all of the aforementioned factors 

should be taken into account. 

A method for determining the specific surface '.ras developed for 

the first tine by N, T, Belaiev/ in 1922,  It is applicable to one 

specific structure, lamellar pearlite, I',  T, Belaiew utilized the pe- 

culiarities of the geometrical structure of lamellar pearlite, which 

may be considered, with a certain degree of idealization, as a block 

of plane-parallel platelets of ferrita and cementite having a different 

spatial orientation i? each i dividual grain of pearlite. It is as- 

sumed that platelets of ferrite and cementite are of equal thickness 

throughout the entire volume of pearlite subjected to a similar heat 

treatment. 

Inasmuch as the carbon content in the cementite, ferrite, and 

normal lanellar pearlite is stable, the ratio between the thicknesses 

of ferrite and cementite platelets remains constant regardless of the 

fineness of the pearlite structure. The dispersity of pearlite is 

/// 



characterized by the total thickness of a single pair of ferrite and 

cementite platelets. It is measured in microns and is known as inter- 

lamellar distance A Q.    On a microsection the apparent interlamellar 

distance differs with each grain of pearlite, for the plane of the 

microsection intersects pearlite grains forming different angles with 

the planes of ferrite and cementite in each individual grain. It is 

obvious that the actual interlamellar distance coincides with the 

interlamellar distance which is the minimum one of all interlamellar 

distances visible in the microsection; i, e,, it coincides with the 

visible interlamellar distance of those pearlite grains in which the 

platelet planes happen to be perpendicular to the plane of the micro- 

section. 

Let us mentally cut out a cube from the individual grain of lamellar 

pearlite, so that its two opposite faces are parallel to the surfaces 

of ferrite and cementite platelets. The edge of the cube we shall take 

as unity.  In that case the total number of pairs of ferrite and cemen- 

tite platelets, found within the cube, would be 

z = x* 
Since each pair of platelets has two planes which separate ferrite and 

cementite, and the ares of each plane is equal to unity (inasmuch as 

the edge of the cube is unity), the total surface of phase interfaces 

within the cube, i. e., within the volume equal to unity, will be de- 

fined by the formula: 

c : JL MM'/MM" 

(18.1) 

In practice, in order to determine the specific surface of phase 

interfaces in lamellar pearlite, it is necessary to know only the value 

of the interlamellar distance .A Q. 

The determination of the interlamellar distance by the method 

described becomes more difficult with increasing dispersity of pearlite. 

When the interlamellar distance is very small, it is impossible to 
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measure it, since even at, high magnification the internal structure of 

pearlite it not resolved preciatily in tliose grains in which the measure- 

ment has to be made. At the same time, eve»; in the pearlite with a 

very fine structure there are always observed individual grains in 

which the rr.icrosection plane forms a small angle with the planes of 

platelets and, for this reason, it, is possible to measure only the 

apparent ir.terlamellar distance which, however, is not equal to the 

actual one but is always greater than the latter. 

Let us examine again the internal structure of an individual 

graii. of geometrically ideally constructed lamellar pearlite.  The 

number of cementite platelets, intersected by an intercept of a defi- 

nite length directed normally to the surface of platelets, we assume 

to be 100 per cent. At any other angle between the intercept and the 

surfaces of platelets, the intercept of the same length would inter- 

sect a smaller number of platelets than at the- angle of 90 degrees. 

According to K, T, Belaiew, the relationship between the number of 

intersected platelets and the angle formed by the intercept and the 

surface of platelets is given by the following number« [55) 3"J! 

ayy^A rf .ovtctdortx-o - 90   64   53   45   36   ^   2/.   1,,   12    , 

rU..<tf' C*^rujU*-%>   100 90 SO 70 60 50 40 30 10 5 

In accordance with the numbers presented above, the apparent 

intorlamellar distance will be the greater the smaller the angle be- 

tween the platelets of a given pearlite grain and the plane of the 

microsection. The nature of the internal structure of the grain 

remains constant, until this angle reaches the value of aboul 17 to 

12 degrees, although the pearlite appears to bo increasing the "cores'" 

as the angle decrease:;. However, if the angle is less than (  degrees, 

the appearance of the internal structure of the pearlite grain changes 

quite characteristically, the cementite platelets become curved and 

broker.. Thi;; circumstance was noted by N. T. Belaiew, who utilized 

i!. t ) -naasure the interplatelet distance in dispersed pearlite, when 

^'li;- iistance cannot 1 e measured in those grain;-; ■.■■'.■ärv its value is 

nini--...;,. The author of this method postulated thai r'.'.\   practice it 
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is possible to determine with  suffioiont accurac.y the angle at vhich 

the plane of the microsection interHe^ts the platelets of a given pear- 

lite grain from the nature of the disposition and the shape of cementite 

platelets. However, if we know this angle and also the apparent 

interlamellar distance in a given grain, the actual interlamellar 

distance can be calculated on the basis of an elementary geometrical 

construction. For this reason, if dispersed pearlite contains at 

least cevara] grains in which ferrite and cemenlite platelets are dis- 

tinguishable, the actual interlamellar distance may be ic-termined by 

the method Inscribed [55)5^']. The characteristic change in the arrange- 

ment of cementite platelets in 'he pearlite grain, when they are almost 

parallel to the surface ox the nicrosection, Kay be explained by a 

certain space curvature of cementite platelets, v/hich for the first 

time was noted by ", G. Okanov [119] ?-■-- £-fter that confirmed by the 

investigations of ]', T. jr;laiev; [55, 5''] and K. F. Starodubov [I20j, 

The method, developed by X, T, Belaiew in 1920 to 192?, was com- 

paratively recently verified r.nd applied by G. Felliss:e:" and his as- 

sociates [121], 3y means of direct experimentation they found that a 

special arrangement of cementite platelets in the pearlite grain does 

exist when the angle between the platelets and the plane of the micro- 

secticn is less than 7 degrees. Therefore, having measured the apparent 

interlamellar distance in pearlite grains of this type, the actual 

interlamellar listance is calculated by u.ang the formula: 

do   = A: sln ?0 . 
(18.2) 

where A . is the apparent interlamellar distance. 

Having determine.1 the unknown value of the actual interlamellar 

distance,  p, the specific surface of phase interfaces ii-  determined 

in pearlite from Formula (l?,l)t 

The actual interlamellar distance in pearlite grains, the plate- 

lets rf which are perpendicular to the plane of the microsection, .-.ay 

be determined more readily and accurately,  2ven when the angle be- 

tveen 'lie platelets and the piar.e of the raicrosec-tion is 10 degrees 

greater than a right angle, the error is only 1.5 per cent.  The 
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shortcoming of this method is its applicability only to pf-arlite with 

a relatively coarse structure, whei. ferrite and cementite platelets 

are resolvable in all pearlite grains. 

The situation is different in the second case when the apparent 

interlamellar distance is measured in grains with a very small .-ingle 

between the platelets and the plane of the microsection and Formula 

(13.2) is used for calculations.  In this case a change in the angle 

of intersection of only 1 degree produces considerable error. For 

example, if the specific change in the type of the pearlite grain occurs 

not at 7 degrees but at 6 degrees, the sine of the angle of intersec- 
Ü 

tion would change from 0,122 to 0.105 and the error would be 14 per 

cent. 

In view of the aforesaid it is more expedient to determine the 

interlamellar distance in pearli to of high dispersity by the method 

developed by ;J. Gensamer and his associates [122]. In accordance with 

their method, the interlamellar distance is measured on a microsection 

in several grains of pearlite along directions rangling between di- 

rections perpendicular to the platelets and directions parallel to 

them, and the mean value is taken.  In other words, if a straight 

line of a definite length is drawn across the structure of lamellar 

pearlite (on the microsection or photomicrograph), which intersects 

cementite platelets in several grains at all possible angles, ranging 

between 0 and ^0 degrees, and after that if the length of the line is 

divided by the number of cementite platelets intersected by it, the 

resulting mean length of an intercept between adjacent cementite 

platelets v/ill be precisely the initial value of A needed for calcu- 

lations. Gensamer and his associates experimentally determined that 

the value derived in ']\l2,  manner is proportional to the actual inter- 

lamellar distance: 

4 =k A,, 
(13.3} 

and thai the coefficient k is found within the limits 1.9 and 2.0. 

This relationship is a special case of a general method for the 

determir.atioi. of specific surface, thp r.ethod cf random ser-ante. 

/// 



which •nill  be described further in this book.  In agreement with the 

method of random secants, the coefficient in Formula (18.3) must be 

precisely 2, which can be proved mathematically. Therefore, the cor- 

rected formula of M. Gensamer must have the following form: 

(18.4) 

The specific surface of the phase interface in lamellar pearlite is 

calculated from Formula (13,1), using the value found for the actual 

intsrlamellar distance, ^1 ,-.. 

LI, Gensamer'3 corrected formula (18,4) has been used by A. I. 

Gardin in an extensive structural study of tho products of isothermal 

deconiposition of austenite, including highly dispersed products [87, 

12}]. Among the structures investigated under the electron microscope 

were decomposition products with the magnitude of specific surface 

0 1 
reaching 25.OCC wn /ir.xJ , for which the actual Lntorlamellar distance 

Ls only 800A.  liven u.:der such disadvantageous conditii Formula 

(18,4) was quite valid and the methud reliable. 

Thus, for the determination of the specific surface of the phase 

interface in lamellar pearlite there exists simple specific methods 

verified in practice: 

1, The method of direct measurement of interlamellar 

distance, developed by N. T, Belaiew, which ii suit- 

able for relatively coarse lamellar pearlite, and 

2, The method of measuring the mean length of the 

intercept between adjacent platelets of cementito 

or. a straight line intersecting a number of pearlite 

grain:- with differently oriented platelets. 

The latter method was developed by L'. Oensamer and his associates, and 

the formula used for calculating the ir.terplatelet distance lias been 

defined by us. The second method is suitable for pearlite of any 

dispersity but requires magnification sufficient for resolving the 

internal structure of all pearlite grains. 

A second type of structure, posser-sing a definite geometrical 

reg-.'arity, which pcnr.it 3 the application of special methods of deter- 

il 
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.Tiination of specific surface, is a structure coi.sistine of a multitude 

of rnicropartioles of spherical shapes belonging to one phase, which 

rnicroparticles are uniformly distributed through the volume of the 

second phase (matrix). Typical structures of this type are granular 

pearlite or granular nementite in ferrite, the structure of magnesium 

cast iron with spheroidal graphite inclusions, the structure of stool 

containing non-metallic inclusions of spheroidal shapes, and certain 

others. 

In structures containing spheroidal mioroparticles, both the 

total number of particles per unit volume of metal and their size dis- 

tribution (with respect to the size of diameter) may be calculated by 

methods presented in the following chapter.  In the case where we know 

the number of particles of each size per unit volume of metal, the 

calculation of the total surface of rnicropartioles is reduced to simple 

arithmetic. However, the technique of determining the number of 

rnicroparticles and their size distribution is one of the most effort 

oonsumine processes of quantitative metallographic analysis.  For 

this reason, it is not reasible to use this technique for the special 

purpose of determining this specific surface, particularly since 

there is available a quite simple and accurate method, the method of 

random secants. 

Here we shall consider two approximate methods. The first of 

these, proposed by us, is based on the assumption that all spheroidal 

rnicroparticles are of equal size [124].  If the diameter of these 

rnicroparticles is D mm and their number is, 1 nun is ;i, then the speci- 

fic surface of rnicropartioles will be: 

i' 5 S = TfH K mm /mm 
(18.5) 

At the same time the total volume of all rnicroparticles in 1 imr , 

i. e,, the fraction of the volume of alloy occupied by them, will bo 

defined by the quantity: 

< ,.  TTD
3
 N  3/3 

2. ■ = -LL7- mm / mm , 

(13.6) 
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By simultaneous solution of Formulas (18.5) and (18.6) we derive: 

^ 3 = -«— mm /mm , 
(18. 

The fraction of the alloy volume occupied by the phase consisting 

of spheroidal microparticles, may he determined directly by one of 

the methods of stereometric metallography presented in Chapter 2, 

If this phase is cementite or graphite, then its volumetric content 

may be readily calculated from the data of chemical analyses, as de- 

scribed in Section 17• The diameter of spheroidal microparticles of 

equal size may be determined directly on the microsection, for the 

section diameter of maximum size is, of course, the actual diameter of 

the volumetric microparticles. Having obtained the values of both 

quantities found in Formula (1S.7), by the method described, it 13 

possible also to calculate the v-ilue of the specific surface. 

The number of sections of microparticles per unit area of the 

microsection, n, may be substituted into Formula (13.7) for the 

diameter of microparticles of equal size. For this purpose v;e shall 

use the expression which correlates the diameter of spheroidal micro- 

particlea of equal size, D, and their number per unit volume, N, and 

the number of sections per unit area, n: 

DN. 
(is.a; 

Having squared both sides of equation   (l".5))  ^y means  of  simple 

conversions which  tak.e  into account  relationship  (18.8),  we derive; 

Z. 3  = l/6    n    V = 4. 34 Vn    V . 
(13.9) 

Consequently, on the assumption of equal size of all spheroidal 

microparticles of a giver phase, WP derive Formulas (13.7) and 18,9) 

for the calculation of the specific surface of this phase. This does 

not account for fluctuations in article size.  Therefore from 

Formulas (18,7) and 18.9) we derive approximate and always high values 

Another type of approximate formula for the calculation cf the 

specific surface (as applied to granular cementite) was proposed by 

?, Z,   ""L.r.hteyn [125, 126],  If the total volume of all spheroidal 
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rnicroparticles of a given phase per unit volume of the alloy isSV, 

and their munber is II, then the mean volume of an individual nicro- 

particle will be 

V -¥• 
(18.10) 

The surface of an individual microparticle may be expressed by its 

volume and diameter in the following fashion, 

b - // JJ  -  -^—   -a     -n-, 
6 

(18.11) 

and, consequently, the total surface of all nicroparticles in the unit 

volume of the alloy will be 

^o - ä.i -  5   I)- . 

(18.12) 

Applying the precise calculation of the total number of micro- 

particles and their distribution by the complex method of E. Schoil, 

I. L, Mirkin showed in o;;e of his papern that the mean diameter d of 

sections of spheroidal micropartides, measured or. tho plane of the 

microsection, may be substituted for the value of the diameter of the 

volumetric rnicroparticles, D, in Formula (18.8). This substitution, 

according to I. L. Mirkin, introduces ar. error which does not exceed 

7 per cent [127]. 

Replacing the diameter of volumetric micropartiolos, D, by the 

mean diameter of their cross sections, d, we finally derive the ap- 

proximate formula of S. Z. Bokshteyn; 

d (I3,lj) 

The formula of 3. Z, Bokshteyn also produce.; high values of the 

specific surface. Accounting for Ihe fluctuatior jf siso of volumet- 

ric grain.?, the formula (18,13) would appear aa: 

. = LS 
T  (A ■ r+ x /' a C4 V 

(18.14) 

where ö is  t'.B  ratio of the root-mean-square deviation of   tho diameter 

i.icroparticles,    cr'P/  -,   '-'   their i.ean diameter,  D, 01    VOUJ'.fil 

i 
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This ratio for- ordinary structures quite frequently varies between 

0.2 and 0.5.  The correction coefficient for S. Z. Bokshteyn's formula 

(18,13) has the following valuss, depending upon the value of S [in 

agreement with Formula (l8.14)]: 

0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 

0.785 
0.778 
0.756 
0.720 
0.677 
0.628 
0.577 

Moreover, there is a formula which was used by L. S. Lores in 

his studies to calculate the total surface of spheroidal grains of a 

enrbide phase [ic0]: 

(18.15) 

in which C, is equal to the ratio of total volume of carbides per unit 
k 

volume of steel to the carbon content of the carbide in weight per 

cent, 6.68. 

Al] of the approximate formulas include some two parameters, the 

values of which must be found experimentally. Therefore, it. should 

be remembered that the simpler and more accurate method for the deter- 

mination of the specific surface is the method of random se mts. 
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Soction 19. Approximate Letliods for Determining the Specific Surface 

of Polyhedral Structurcn 

TLe firut attotnpt to determine experimentally the magnitude of 

the specific surface '■:   crystal] ites of a einöle-phase polyhedra] struc- 

ture was made by I. P. Lipilin in 1937 [129]. The air. of I. P. Lip- 

ilin's studies, for which he developed his method, v.;a;-. to determine 

the influer.ee of the magnitude of the specific surface of austenite 

grains on the isothermal decompositio" tii.e. I, P. Lipilin's reason- 

ing was based on the assiomption that the unknown quantity of the grain 

surface per unit volume of steel is directly proportional to the 

length of grain boundaries per unit area of polish. This assumption, 

quite valid in the case of equiaxed grains, is accepted by I, P, 

Lipilin without any proof, as we shall see later. The length of boun- 

dary line, which could be measured experimentally and directly (for 

example with the aid of a curvimetor from the photomicrograph), was 

determined by I, P. Lipilin indirectly from the number of planar 

grains per unit area of polish. 

If various isoonal grids are examined on a plane, that is, grids 

constructed from figures (or groups of figures), which are equivalent 

and identical, with respect to shape, then for the general case the 

total linear extent of parimeters of these figures per unit area, 

^P, and the number of plane figures on the same area, n, are related 

by an equation of the following type: 

^ ? = a -/n" , (19.1) 

where the coefficient a is  dependent only upon the ..nape of the figure; 

cor.r.titutir.g the grid. For example, for an isoonal grid, consisting 

■: regular and equivalent 'riangles, tin. coeff icic: t is 1,86. For 

a gri^ jf identical squares, i.ii.-  coefficient is 2.0C and for a grid 

of regular hexagon;, it is 2,2", 

For his calculations, 1. P. Lipilin arbitrarily assume!; that the 

-■■"-'efficient a is 2  ana that the number r. in each iniivldual case is 

eqval  ■ '■he actual n-Laber f austenite grains per unit area of polish, 

Consequently, it is not 'he specific surface :■: austenite grains that 
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is determined by the method, accepted by I. P. Lipilin, but a value 

which is proportional to it, the total perimeter of plane grains per 

unit area of polish. Moreover, substituting the calculation from 

Formula (19.1) for the direct measurement of this perimeter, the author 

of this method disregards a number of factors which essentially affect 

the value of the specific surface, such as the difference in the cur- 

vature of grain surfaces and the degree of variation of their size 

rfithin the volume of steel subject to investigation. At the same time, 

in different specimens of steel with the same size of planar grain, 

the values of specific grain surfaces may differ precisely due to the 

difference in the aforementioned quantities which the Method does not 

consider. 

"evertheleBs, I. P. Lipilin succeeded in establishing the fact 

that the rate of austenite decomposition is a linear function of the 

length of grain boundaries per unit area of polish and, consequently, 

a linear function of the value of specific grain surface of austenite, 

proportional to it. It should also be noted that the value of the co- 

efficient in Formula (19.l), chosen by I. P. Lipilin, is quite close to 

the mean value which is usually observed. However, generally speak- 

ing, this coefficient is not a constant value but is dependent upon 

1;:c aforementioned factors. 

Sometime after publication of the paper by I. P, Lipilin, 

Rutherford, Aborn and Bain published their studies. Their aim was 

also to determine the quantitative relationship between the parameters 

of plans and spatial structures, specifically, the specific grain 

surface.  These studies differ in principle from Lipilin's work in 

that 'he authors assumed the crystallites to have equivalent and geo- 

metrically regular bodies, which differs from the real structure of 

metals [57].  There are known five geometrically regular bodies, shown 

in Figure -17, v/hioh are capable of completely filling space. Of these 

the authors investigated the cubic octahedron with 14 faces of which 

8 are regular hexagons and 6 are squares (see Figure 47e). All edges 

of the cubic octahedron are equal. According to the data of ',V, Kelvin, 

the cubic octahedron with 14 faces is a body which has a minimum 
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surface for a giver, volume (among the bodies v/hich fill the space). 

Per this; reason, the authors assume that in a state of equilibrium 

the crystallites of metals precisely conform to the shape of a 14-faoe 

cubic octahedron. This has been confirmed by the observation accord- 

ing to -.vhich the crystallites of thoroughly annealed metals have 9 to 

19 faces; on an average about 14 faces. 

5     f      r ü 

Fig. 47, Geometrically regular bodies, capable of completely filling 
space. 

A cube B hexagonal prism  C rhombic dodecahedron  D elongated dodecahedron 
E cubic octahedron 

Different sections of a geometrically regular body are examined 

for i.lie pofisibilities of obtaining polygons, -.,111. different numbers 

of angles, on a plane. The authors also calculate the mean area of a 

section of cubic octahedron and after that equate it to the area of 

grains corresponding to different numbers of the standard ASTM grain 

si/.e scale.  Values of specific surface of equivalent cubic octahedrons 

arc- calculated respectively for each number of the grain size. They 

are listed in Table 21,  It is possible to agree with a choice of a 

cubic octahedron as an idealized shape of a crystallite, since actually 

the mean number of faces, separated from the metal aggregate of cry- 

stallitos, is close to LI (see for example Figure 5.)» However, in 

reality the crystallites are not equivalent and, moreover, have cur- 

vilinear edges and faces with different curvature. Therefore, these 

assumptions reduce the methed ar.d t..e results, calculated by it, to 

an extren.cl • tentative state. 

UK.i.lr  AM M 
Hi-Mt p ncfin 1 

•1.7 
l>.T 
'1.5 

M.I 
18.'.I 
2(i,7 
37.8 

II 

5 i, 1 
75.1". 

107 
151 

302 Table  21 
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In 1938, Kaiser [45] calculated the Uniting value of the specific 

surface.  Kaiser's calculations are based or: Ya, S. Fedorov's notions 

that in approximation polycrystals may be regarded as a system of 

equivalent polyhedrons, closely packed in space.  Kaiser considers 

four basic types of polyhedrons v.hich can fill space; a cube, a hex- 

agonal prism, a rhombic dcdecahedron, and a cubic octahedron. For 

all types of polyhedrons, Kaiser determines the specific grain surface 

as a function of the number of grain« (olyhedrons) per ur.it volume: 

2s = ^ -fr , (19.2) 

where the coefficient  is dependent on the type of the polyhedron, 

which v/e assume to be the shape of metal crystallites. According to 

Kaiser, the coefficient   has the following values; 

Per the cube 3.000 

For the hexagonal prism     2.fi'6 

For the rhombic dodecahedron 2,673 

For the cubic octahedron    2,659 

Inasmuch as Formula (19,2) defines the specific surface through 

the quantity V  (the number of crystallites per unit volume of /netal), 

which is unkno.vn to us, Kaiser carries his calculations only for the 

limiting case, assuming that the minimum possible crystallite size is 

of the same order as the block size of mosaic structure. Accepting, 

as it is assumed by Kaiser, that the crder of volume cf 1 mosaic block 

-11  3 
is 10   m and that accordingly the number of blocks per uni t. volume 

i- 10  , v.c find the uniting values of the ..^ocific surface ranging be- 

tween 12,3000 rur. /mir.- (for a cubic aciahedron) tc 13^900 .n'/mm (for 

a cube;. As has beer, calculatec; by Kalvin, the minimun surface of 

equivalent crystallites correspond;; to U;e shape of a cubic octahedron. 

If the shape of microparticles differs from equiaxed, the limiting 

values of the specific surface may be considerably higher than those 

calculated.  For example, we have already mentioned that the specific 

area of the interfacial surface of lamellar pearlito lias been exper- 

imentally measured to be 25,000 mm /ram . 

The desire to approach the real structural shapes of polycry- 

stalline metaljic ar, ■:'■.;, ;:.4 es, pron.ited sc:..e 
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the assumption of the equal size and identical shape of all its con- 

stituent crystallites, D. Keijering determined analytically the para- 

meters of the spatial structure of a metal polycrystal, which ia formed 

by means of simultaneously commencing growth of all crystallites at an 

equal and constant rate of growth in all directions (spherical n syngene 

of growth), with the centers of crystallization randomly arranged in 

the volume [130], ?or the specific surface area, lie derived the fol- 

lowing relationship as a function of the number of crystallites per 

unit volume (or the number of centers of crystallization): 

5:s = 2.91 VT . (19.3) 

Other conditions for the formation of a polycrystalline structure 

have been considered by Johnson and ilelil. The authors' reasoning is 

based on the postulate that crystallites grow from centers which 

nucleate gradually and uniformly in time, at a rate constant the 

entire process at a spherical syngene of growth.  If the nucleation 

rate of crystallization centers is a cm  sec  , and the linear growth 

rate is v orn .;ec_ , then the final number of crystallites per unit 

volume can be determined from the formula [l30]s 

3/4 
N = O.896O 

(^ (19.4) 

and the specific, interfacial area of crystallites will bei 

2s = 2.479 (\) 
(19.5) 

Prom these two formulas, eliminating the value of crystalliza- 

tion parameters, we find the relationship between the specific area and 

the number of crystallites per unit volune of metal; 

£3 = 2.572 VT . (19.6) 

The conditions for the formation of a polycrystalline aggregate, ac- 

cepted in D, MeiJering's model, as well as in calculations of W, 

Johnson and H, F. Kehl, do not correspond to the real course of the 

process. Although the growth ^f crystallites does commence practi- 

cally simultaneously, as is assumei by D, Keijering, the prüOe:-,£ of 
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crystallite impingement, which has not boar, reflectud in ai.-j  of the 

considered schemes, commences simultaneous!/ with the crystallite 

growth and continues to the end of crystallization (and under certain 

conditions even after it). 

Nevertheless, from a comparison of the coefficients of Formulas 

(19.6), and (19.2) for the case of the cubic octahedron, it follows 

that for a given number of crystallites per unit, volume none of the 

polycrystalline aggregates with equivalent grains have a minimum 

specific area and, consequently, a maximum thermodynamic stability. 
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Section 20,  The lüethod of Random Secanlc. on a Plane.  Isometric 

Systems of Lines on a Plane, and Determination of Their 

Lengths 

The method of random secants, developed by us in 1945 [58) 131, 

59], is a universal method of direct determination of actual specific 

Hurface of grains, phases and structural components by means of measure- 

ments carried out upon a flat section (microsection). In this case, 

no assumptions of any kind are nade on the shape and disposition of boun- 

dary surfaces in space, as it '.ras done in methods reviewed in Section 

19; a true interface is measured just as it is in reality.  The meas- 

urement of the total length of a system of lines per unit area of the 

plane upon which they are located. The measurement of the specific 

surface ia carried out by the method of random secants in space and 

the specific length of lines in a plane is measured by the method of 

random secants in a plane. 

In two-dimensional and three-dimensional problems it is necessary 

to do identical measurements on a plane. However, operations carried 

out within a two-dimensional problem are more illustrative and the 

results obtained may be directly verified by other methods or  measure- 

ment, which cannot be done in a thr'-.■■/-dimensional variant. For this 

reason, we "tart the description of Ihe method by describing its ap- 

plication between the solution of a two-dimensional problem and after 

that we shall consider a problem for .space. 

We shall begin the analysis with an isometric system of lines; 

i. e,, a system of lines en a plane such that the properties are iden- 

tical in any direction. Boundary lines of cetnentite and ferrite in 

the structure of granular pearlite may serve as examples of such 

systems on a plane called a microsection: also, lines which separate 

the graphite constituent and metal base in cast irons with laminar or 

globular graphite, boundary linos of grains of a single-phase poly- 

hedral structure, etc.  It is not important whether the lines of a 

J, stem form bound cor.taurs on a plane (just as in the first two ex- 

amples) or appear as a continuous grid without breaks in it, as ir, the 

case of the polyhedral strusture of a pure metal or a solid solution, 
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which structure consists of equiaxed flat grains. The system will 

be isometric if separate groups of lines in it have a definite direc- 

tivity and it is not duplicated in other groups of lines. For example, 

in the structure of lamellar pearlite on a plane of a microsection, 

lines which separate the cementite and ferrite phases have a strict 

directivity to each individual grain. However, this directivity 

differs for each individual grain of pearlite and, if we are to examine 

a sufficiently large group of lamellar pearlite grains, that is, its 

structure as a whole, we shall find no definite direction in which the 

lino of platelets division are preferentially oriented. 

The notion of the isometric systora may be characterized in a 

somewhat different way.  If all the lines of the system, which generally 

speaking are curves, are divided into infinitely small intercepts of 

equal length and all intercepts are grouped with respect to their 

directivity, then it will happen that each group will have a statis- 

tically constant number of intercepts. 

The method of random secants on a plane is based on the case of 

geometrical probability of intersecting a randomly drawn line by a 

system of lines on a plane (noniaometric case), which in the theory 

of probability is known as"Buffon's needle problem".  In essence, it 

consists in the following. 

A system of equally spaced lines, with the distance between them 

a are drawn or, a horizontal plane. An intercept of ■: straight line 

("needle") is randomly located in Die ruled plane.  The length of this 

intercept, 1, is smaller than the distance between parallel line«, 

1 ^ a. Jpeaking of random location, we have in mind '.':ie  fact thai' 

the middle point of the intercept (the center of the needle) has an 

equal probability of being at any distance from any line on a plane, 

and any angle between the needle and the direction of those .ines is 

equally probable. The needle, tossed randomly on a plane as described, 

may either intersect or not intersect any of the parallel lines on 

the plane.  Inasmuch as the needle is shorter than the distance betv/oen 

the straight lines, a_, it cannot simultaneously intersect more than 

jr.e straight line (figure 43). 
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Thus, as a result of one random toss of a Koedle, we can demon- 

strate either the facts of intersection or its absence. It is nec- 

essary to determine the probability of intersection by the needle with 

one of the straight lines on the plane. 

In the theory of probability, this problem is solved on the basis 

of elementary geometrical considerations, which in our opinion would 

be superfluous here and which are found in any textbook on the theory 

of probabili'-.v [lOl], The probability of intersection is dyfined by 

the formulaJ 

P = 21/77a (20.1) 

If the number of repeated tossos of the needls is large, the number of 

its intersections with the straight lines or. the plane .vili be defined 

by the equation; 

t1 = pt = (2l/rra)t, (20.2) 

where t is the total number of tosses of the needle on the plane, 

1- iz  the number of intersections of the needle with the straight 

lines on the plane. If we know the distance between the parallel 

lines on the plane, a, and the length of the needle, 1, then the va- 

lidity of formulae (20.1) may be confirmed by  experimental determina- 

tion of the quantity 7T found in the formula, bj- repeated tossing of 

the needle. This was done at different tinea by several experimenters. 

The values of TT obtaii.el by us, are presented in Table 22 [132]. 

i itr-:,..:±:: t 
I.  iXJolf- 

3KcnepuucHTaTop 

I. 
BOJIW))    .  . 

KHUHT    .    .   . 
|<I>OKC    .    .    . 
f/Taunapiiiiii 

OÖlUfC   'IHCJIO 

öpocaiiHfl Hrviw 

50(10 
3204 
1120 
3408 

HaflAeirHOe H3 f^rnjia 
roA 

3,15!« 
3,1553 
3.1419 
3,1415929 

1850 
1855 
1894 
1901 

Table 2? 
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The absolute deviation of experimentally obtained values of Tf 

from its true value does not e^ueed 0.018, that is, about 0.6 per cent 

of the value which is being determined. 

From the viewpoint of the theory of probability, the end result 

is independent of the shape and location of lines drawn on a plane. 

The location of lines shown in Figure 48, was needed to obatin the 

possibility for calculating the geometrical probability of the number 

of interseotiona, which would not change as long as the total length 

of line per unit area of our plane remains the same. 

/" 

UD \ 

Figure .| 
0 Diagram for Buffon's proposition "about the needle" 

It is equally true that an intercept of a straight line (a needle), 

which is placed or. a plane, may be replaced by a line of any length 

or curvature, or by any rigid contour being rectilinear, curvilinear, 

smooth or broken, bound or open; it is absolutely the same. 

From aquation (20.2) it follows that the mathematical expecta- 

tion (L. E.) of the number of intersections, A, when tossing on a 

plane with a system of parallel equidistant lines (Figure 48), a 

needle with length 1 and the number of tosses of the needle t, is equal 

to: 

M. E, (Z) = (2i/77a)t. (20.3) 

When a rigid contour (or any other straight line) the length of which 

is equal L, is substituted for the needle, we can subdivide the former 

into elementary sections of length, 1 each. According to the law of 

condition of probability, the Mathematical expectation of the number 

of intersections of the contour with the straight lines on a plane is 

dependent only upon its length and tl.e number of tosses of the contour 
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on a plane (with a system of lines on the plane being the same) and 

will be defined by the formula: 

M. E. (Z) = 2Lt/77a (20.4) 

It is obvious that the product Lt is equal to the total length of lines 

intersecting the system of lines or. a plane for any nuii.ber of tosses 

on it of a rigid contour or any other line of length L, Here and fur- 

ther in this article we shall designate as in the iinber of intersec- 

tioiu ^er unit of the total lengths of the contour (or generally 

speaking, by any lines, which \ra  shall call random secants) of lines 

drawn or; a plane by lines of the rigid contour (i. et, per unit length 

of secants).  In this case, this nur.ter wil] be defined by tiie formula: 

k\_E1_(z)_ _2_ 
(20.5) Lt     -rra 

It should be noted that in all foruulas presented above the value 

l/a is the total length of parallel lines drawn on a plane divided by 

unit area, i. e,, the specific length of lines on a plane. Actually, 

if a square, the side and the area of which equal unity, is isolated 

on a planej, and two sides of the square are parallel to the grid of 

lines drawn on a plane, then the length of each intercept of these 

lines found within the square wil] be equal to unity and their number 

within the square will be equal to l/a.  The number of intercepts, 

other conditions being equal, is determined only by the total length 

of the linos of the system per unit, area, v/hich is also equal to l/a, 

and v/hich further in this article we shall designate as ,S P (the total 

perimeter of lines per unit area measured in mm/ mrn^). On the basis of 

the aforesaid, we can rewrite formula (20,3) as follows: 

ra = (2/77)^? - 0.633') £P 
(20,6) 

Correspondingly, the total length of the lines of the system per unit 

area will   be defined by the formula which further in this article we 

shall call the basic formula of the method of random secants; for u 

%? * -&- m =  1,571m (20,7) 
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For the actual number of intersections of the lines of a system on 

a plane by secants, we shall take v/ith respect to Imr. of the total length 

of all secants. For this reason, the average number m of intersections 

per unit length of the secants, obtains the dimension of mm , The 

total length of a system of any lines on the plane of a microsection per 

unit of its area is measured in mm/nun , that is, it. has the same dimen- 

sionality as the number m. Values ^P and m do not have to be neces- 

sarily expressed in millimeters. However, the unit measurements of these 

two values must be identical, '.'•'hen taking measurement!! on photomicro- 

graphs, it is necessary to consider the actual linear magnification. 

Let us derive the basic formula of the method of random secants 

for a plane. 

Let a secant posisess a certain   ^  small width j/\ , that is, 

let us consider the large number of extremely narrow bands of equal 

widths /\, , instead of secants on a microsection, The location of these 

.-.arrow bands is absclutely random but statistically uniform over the 

entire area of the niicrosertion. They are directed randomly, that is in 

sac;, a manner that any dirsction of a Land is equally probable. Let 

us designate the total length of all bands as L..  Inasmuch as their width 

is equal to £\  , the total area of the microsection coverod by the band, 

will be equal to L Zl.  In this case we are ignoring those sections of 

the microsection in which bands are superimposed, since the areas of 

the sections are insignificantly small of the order of z\,     and are 

numbered as finite and relatively small. 

By intersecting the lines of grain boundaries (or some other 

iiici'oparticles), the bands form intercepts these lines which we can ac- 

cept a3 straight, inasmuch is the width of bands, zl , is disappearingly 

small, '..her. in the limit this width becomes zero, the band itself would 

transform into lines, secants.  If the acute angle formed by the direction 

of banis and lines of grain boundaries, which they intersect, are desig- 

nated as 0(\i   oi 2> o'V" i  an^ ^'■e length of intercept on the lines of 

jrain boundaries are as A^, Aoi AT • • > respectively, then for each 

of the intercepts it is possible to write an equation of the type! 

Iff 



: 

i 

4 = ^. sind.. (20.8) 

For this reason the total length of all intercepts per ur.it area of the 

rnicrosection will he  called :       x 

Let us divide and multiply the right half of the latter equation by the 

nuiiber of all intersections, Z. Here v,:e take into consideration the fact 

that the ratio Z/L at a large number of intersections, A, in the limit at 

^=0, is equal to the average number of intersections of boundary lines 

by secants per ur.il length cf ehe latter, that is, it is equal to the r.ur.be 

:.:, and the ratio C ^/L ^d is equal to the total ]ongth of boundary lines 

per unit area of the rr.icrcsection, that is, it is equal to %?,    Making 

appropriate changes j.n the formula (20.9) we derive: 

K 

z 'a-—'   sin 
i 

am. 
i = 1      i (20.10) 

The quantity, which in formulas (20.10) has been designated as A, 

is the average value of the reciprocal of the sine of the angle   for 

ali possible valuer- of this angle on the plane with each value being 

equally probable. 

Let us find the value of quantity A under the condition of equal 

probability of any value of angle   within the limit of zero to  /2, 

Let us take a circle, the diameter of which is equal to unity, and 

the center at the origin of rectangular coordinates. The angle between 

the shifting radius of the circle and x axis we shall designate as 

Then: 

sine* = l/l - x2  , (20.11) 

and the  reciprocal vaiue of the sine of angle   is equal to; 

2 
l/sind = 1/ yi - xd  . (20.12) 

The unknown quantity A is equal to the mathematical expectation of tho 

function (20.12) with x varying between zero and unity. For this reason, 

by integrating we derive: 

A=M. 0./^-- 
dx 

Yl - x^ 
v 

(20.13) 
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By inserting the thus calculated value of quantity A into Equation (20.10] 

■ve have the basic formula of the method of random secants for a plane 

derived analytically: 

2;p = -fm = 1.571 m. 

In the analytical derivation of Formula (20,7), we substituted 

bands for secants. Ths width of the bands is the disappearingly small 

width ZA , which in the limit becomes zero and bands become secants.  In- 

asmuch as the width of the bands is disappearingly small and approaches 

zero, the course cf the proof obviously will not be changed if curves, 

fir example, rings with a disappearingly small width but with a finite 

diameter, are substituted for straight lines (bands).  If we can accept 

/Jt —} Q, without committing an error, then the area of the ring is equal 

to the length of its circumference multiplied by the width Zli. This 

assumption would not change the end result nor change the oourse of the 

proof. Hence, it follows that secants may be replaced by any curves 

and the average number of interseotionis per unit of their length, m, is 

independent of the shape of secants. 

It is very important to note a very important prequisite condition 

for the analytical derivation of Formula (20.7),  The oqual probability 

of all possible values of angle ^ , i, c, of the angle at which the 

secant intersects the line of the system -.vhich has beer, measured. The 

formula is not applicable if this condition is not observed. This pre- 

requisite condition is fulfilled in the following three instances: 

a. The system of lines on a plane is isometric. Then secants may 

run in any direction, including a cories of usually parallel 

straight lines disposed at any angle, 

b. The system of lines on a plane is not isometric-, i, o,, the 

lines have a definite preferential directivity, but secants are 

randomly located, i, e., all directions of secants are equally 

probable, 

c. The system of lines or, a plane is isometric and directions of 

secants are random and any of these directions are equally probable. 

&OÖ 



In practice, it is frequently convenient to use a circumference or 

a spiral instead of a striaghb secant. The convenience of this substi- 

tution consists in that the secant conveniently changes itn direction 

with respect to the system cf lines on a plane and for this reason any 

angle at which the secant intersects the lines of the system automat- 

ically becomes equally probable, even in the case when the location of 

the lines on the plane is not random (is oriented) but have a certain 

directivity (orientation). 

Now let us consider cas?-es of practical application of the method 

of random secants or: a plane and of formula (20.7). An ordinary poly- 

hedral structure (ferrite) is shown in Figure 49,  linear magnification 

"100, which completely satisfies the notion of isometricity. 
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Beer o 146 1701 

Table 23 

The true area of the drawing, taat is on the plane of a miorosection 

(is one square millirneter), A secant, 100 millimeters long, correspond- 

ing to a true length of ] millineter is drawn acrosn the area. This 

straight line intersects the grain boundary lines at 8 points,  It is 

apparent that the number of intersections may be somewhat different at 

different positioning of tho line. However, for each given structure 

there exists a definite concrete mean value of the number of intersec- 

tions, which is dependent upon the total length of lines per unit area. 

If a straight line is randomly drawn across Figure 49 a large number 

of times, each time recording the number of intersections between the 

otraight line and the grain boundaries ir.. , it v/ould give a series of 

values for the number cf intersects.  The results of i4J "tossings" 
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Fig. 49, Polyhedric structure and random secant intersecting boundary lines 
at 8 points 

number of intersections 
Fig, 30.    Curve of frequencies of the mnminmrrmmrfimitmiiminniitanrii by the random 

secant with the boundary lines of the  polyhedrons of Fig.  49 

are  shown in Table 23,     The lines v,-ere disposed across   the area of  the 

drawing randomly in random directions.     The mean number of intersec- 

tions  of  secants and  boundary lines,  according to  the data obtained,   is 

equal   to 

XiJ^ = 1701   : 146 = 11,6 mm-1 

Here the number of intersections, in, is no longer a random value, 

which it is when tossing a needle. At a sufficiently high total number 

of intersections, the number m a;poaches a quite definite quantity, 

the value of v.-hich follows from i\. :;,ula (20,7). Tho frequency curve 

for the number of intersections, c istructed from the data in Table 

23, is shown in Figure 50.  It is a typical curve of statistical dis- 

tribution. Consequently, the value of in r.a,/ be determined with any 

accuracy for any concrete system of lines on a microsection. This 

accuracy is dependent upon the total number of intersections calculated 

in the course of analyses.  It is obvious that this number is propor- 

tional to the total length of secants. For this reason, the accuracy 

for each given structure is singularly determined by a length of tht- 

secant.  In the example considered above, the number of intersects 

was 1701 for the length of 146 millimeters (under real conditions, on 

the plane of the v.icrosectior.), which IK apparent it Table ?3. 
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If the value of the mean number of intersections       length 

of secants, m, is determined with required accuracy, we further find 

from formula (20.7) the total length of ferrite boundaries per unit 

area of the microsection: 

2Lfer = ^ ni = 1.571 . 11.6 - 18.2 mm/mm . 

Inasmuch as we have considered the secant as if found in the plane of 

the microsection and for this reason have assumed its longth equal to 

1 millimeter (accounting for the magnification), the value obtained is 
r 

also related to the area of the microsection, that is, it is real.  In 

Figure 49, the length of the secant is 100 millimeters, therefore, the 

total length of lines in the drawing is 100 times greater than the cal- 

culated one and is 1820 millimeters. This may he readily verified with 

the aid of a curvimeter. 

precipitations 

Fig. 51. Circular secants intersecting the graphite iMismmmmimB of grey cast iron 

In order to use a circular secant, a circle is marked on cello- 

phane and the diameter of which is measured as accurately as possible. 

After that, the cellophane is superimposed on the drawing or micro- 

photograph of the structure which is being analyzed and the number of 

intersections of the circumference with the systerr of lines, which is 

of interest to us, is calculated. Calculations are repeated, each 

time shifting the circumference over the photon.icrograph. 

Calculations, similar to the one described, ras done by us for the 

structure of graphite flakes in gray cast iron and are shown in Figure 

51, and the magnification, of 100, the aid of circular secant 50 mm in 

diameter in a drawing or 0.5 ran in .iiarr.eter on a microsection. "'e 

wish to underline the ract that in this ca. c ■.■.••3 calculated precise],. 
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the number of intersected flakes and not the interface boundaries 

"metal base—graphite." For this reason in our further calculations we 

shall derive a value for the total length of cross sections of graphite 

flakes and not the length of iiileriace boundaries which v/ill be approx- 

imately twice as large as the one found. 

The mean number of intersections of the circumference and cross 

sections of graphite flakes, on the drawing, was 15.6, the number of 

different positions of the circumference being 170, 

Taking into consideration the fact that the length of the secant 

in this case is equal to the perimeter of the circumference, the real 

diameter of which is 0,5mm, we find the mean number of intersects per 

1 mm of length of secants, is 

m = 5i5^_ = 10#0 ^-i 

Further, from Formula (20,7) '■'■'e find the unknown value of the total 

length of cross sections of graphite flakes per unit area of the micro- 

sectior.: 

-3£ m = 1.571 . 10.0 = 15.71 mm/mm2 , 

In order to determine the length of lines, which separate the 

graphite and metal base in cast iron, the nirnuer of intersections ob- 

tained should be doubled. Therefore, the total length of boundary 

lines "metal base - graphite" will be 31,42 mra/nm of the microsection. 

The examples considered demonstrate the application of the method 

of random secants for the determination of the length of lines on 

structural sketches or photomicrographs. For a structural analysis 

directly under the microscope, which in practice is most common, one 

of the following methods is used. 

By the first method, one field after another of the structure is 

examined through the ocular-micrometer (Figure 13) and the number of 

intersections between the diameter line of ocular scale and lines of 

the structure, which is of interest to us, is calculated in each field 

of vision in the microsection. The fields of vision in this case must 
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be disposed uniformly over the field of the microsection and should en- 

compass its entire area. After that, having determined the length of 

the image of the ocular scale or; the plane of the microsection, /\   in 

mm, with the aid of the object-fflicrometer, and knowing the of fields 

of vision, Z, which have been examined in the course of the analyses, 

we find the total length of secants,  /\ Z. After that, the total number 

of intersections calculated for all examined fields of vision, is 

divided by A. 2 and the mean number of intersects per 1 mm of secants, 

in, is obtained. Further, from Formula (20,7) the specific length of 

boundary lines on the microsection is calculated. 

By the second method, the structure is examined through the ocular 

with a cross hair.  By continually shifting the microsection along a 

straight line, using the micrometer screw of the carriage on the micro- 

scope stage, wc simultaneously calculate (in the head or with the aid 

of an ordinary counter) the number of times the boundary lines, which 

are of interest tc us, pass the point of the cross hair of the ocular. 

Having completed the examination along one line of one edge of the micro- 

section to another, the length of the path, recorded by this scale and 

by the head of the micrometer screw, is jotted down and the operation 

is repeated along the second line, etc.  Thus, the examination 

uniformly encompasses the entire area of the microsection. Having di- 

vided the total number of intersects, calculated for the entire analyses, 

by the total length of microsection displacement, wo derive the number 

"i, arte." which v/e calculate the specific length of boundary lines or. 

the microsection from (20.7). 

By the third method, a straight line, a circumference, or a spiral 

is marked on Hie ground (dass of the microsjope camera 

and the determination is carried out in the same manner as on a photo- 

micrograph or a sketch. 

From the examples described, it is possible to compute that the 

method of random secants is one cf the least effort consuming .i.othods 

among other methods of stereometric; metallography. Of the Methods con- 

sidered above, the second method, which is reduced to a si-iplc dis- 

placemer.' cf the ::icrosectio;. arid simultaneous calculatio:. of 4.he 
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number of intersects, is the most effective. Calculations may be car- 

ried on at a rate ox an ordinary oral count, V.lien using a counter, 

they may be even more rapid. In one minute it ia possible to record 

100 to 120 intersections. For this reason, an analysis, for example, 

of IjOOO points, takes up only about 10 minutes. As we have already 

mentioned, the total number of intersections obtained during the 

analysis determines the accuracy of the obtained results. A technique 

for choosing the required number of intersections, varying with require- 

ments of precision and reliability of the analysis by the method of 

random secants, will be presented further in thic article. 
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Section 21. Nonisometrio Systems of Lines on a Plane and Their 

Characteristics 

The systems of boundary lines, which separate the crossectiqna • 

of microparticles on a plane of microsections and which .are y{        ob- 

served in alloys and A       , are far from being always isometric. 

Cold plastic deformation of metal and frequently hot deforraatior. at 

sufficiently temperature, (of directed crystallization) transcrystal- 

lization (certain other causes are responsible for the presence of 

certain preferential directivity or orientation of boundary lines on 

a plane.  In contrast to isometric systems, these systems of lines v.-e 

shall call oriented. L'oreover, systems may be completely oriented or 

oriented only partially.  If lines of an oriented system are divided 

into elementary sections of a very small but, equal length, which we 

shall assume to be straight, then it may happen that all .■■•.ections are 

parallel to one or several definite lines which we shall call the 

orientation axes of a system of lines on a plane. In this case, a 

system of lines is regarded as completely oriented on one or in several 

directions, that is along one or several orientation axes. 

Several different variants of completely oriented systems of lines, 

having one orientation axes, are schematically drav/n in figure 52.  In 

tins case all lines are usually parallel, which is the only condition 

which defines a system as completely oriented with one axis.  The 

lines themselves may be continuous or interrupted and the distance 

between parallel lines may be either constant or not constant. One 

t/pe of a completely oriented system of lines with the one orientation 

axes is, specifically, a system of equidistant parallel straight lines, 

shown in Figure 4CA. 

Fig. 52. Completely oriented syrems of line» on KMhi a plane with on? exis 
of oripntation 
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Among the structural elements of metal alloys, the case of the 

coraplete orientation where one axis haa been observed relatively in- 

frequently. For example, usually parallel rectilinear fine fibers of 

plastic nonmetallic inclusions, elongated by rolling or drawing, may 

be cited. The,/ may be observed in the longitudinal cross section of a 

rod or wire. 

' sorts 
A system of boundary lines of nonmetallic inclusions A    free- 

cutting steel corresponds almost precisely to a diagram shown in Figure 

52C, The axes of a rod is the orientation axis in sucli structures. 

Another type of complete orientation of lines on a plane, with two 

orientation axes, is shown schematically in Figure 53. The angle 

formed by the orientation axes may be a right angle or an acute angle. 

The distance between the lines, parallel to one of the orientation axes, 

may be constant or may bary. Lines themselves may be continuous or 

interrupted. In this case, a system of lines may be regarded as con- 

sisting of two completely oriented systems with one orientation axis 

(Figure 52) which are superijiiposed in sue), a manner that the orienta- 

tion axes form at an ^     »ngle. 

The type of the system of lines oriented in two directions de- 

scribed above, has beer, observed almost in its pure form in metal 

structures in individual grains during their rccrystallization when the 

dendrite axes of different orders form a definite angle in the plane of 

the microseotior.. Another case of almost complete orientation along 

two usual perpendicular lines may be observed in several photomicro- 

graphs in Ya. E. Haucin and Sh. E, Zhelesnyakova1s studies [133]. 

Further, let, us consider a case of complete orientation along three 

axes disposed at an angle of 120 degrees to each other.  The regular 

geometrical systems of lines of this kind, an isogonal grid of regular 

hexr.gons deserves attention.  It was used by a laboratory of Timken 

plant for constructing a first scale for the grain size of steel [^"l]. 

Here the size of the hexagons that appear a^ 3 systems of equidistant, 

parallel, interrupted straight lir.es, v.Mch are superimposed in such a 

way that the orientation axes of any one system form an angle of 120 

degrees .vith the other two axes. An absolutely similar orientation ia 

ZO? 



,i .. 53m   Completely orinnted systen^of lines on a 
Plane with two axes 

of ori' ntation. 

found in a.  grid constructed from regular triangle.  It differs from 

the preceding o.y;2 in that the lines which form it are continuous. The 

length of lines are oriented in three directions, is the same with both 

of these systems shown in Figures 54A and B, At the same time, with 

the number of orientation axes exceeding one, there is always a pos- 

sibility of a relatively greater length of lines in one or several 

directions than in other directions. Generally speaking, a different 

degree of or i er. tali on is possible along each axis which ixists in a 

given system. These is, for example, the isogonal grid, shown in Figure 

54C, also with J orientation axes, but the length along tv;o axuj per- 

pendicular to each other is less than the length alon^ the third c.xes 

which is disposed at an angle of 45 degree::, to the first two axes [135]. 

The greater number of orientation axes in a system, the closer 

it is to the isometric plane of the line systems which may be regarded 

as having an infinitely large number of orientation axes. Thuri, for 

example, when isogonal grid, shown in Figure 55) having only 6 orien- 

tation axes, resembles a system of boundary lines of an ordinary poly- 

hedral structure with equiaxed grain (see Figure 49). 

In plane crossections of real structures, the boundary linos of 

micropartic] e crossections arc usuallv dither isometric r,r ci/.iy iar- 
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tially oriented systems.  Completely oriented boundary line systems 

occur as an exception. The partial orientation of a system of lines on 

a plane we understand to mean such systems of lines in which only a 

part of the total length of lines is oriented in a definite line, or 

more brequently being parallel only to one orientation axes. Thus, 

Figure 56 shows structures of hot rolled steel annealed at different 

temperatures. It is quite obvious that in both cases a quite definite 

directivity of grain boundary lines of ferrite may be observed. How- 

ever, this orientation is incomplete in contrast to the schemes as shown 

in Figures 52, nor does it approach completeness in any v/ay, A typ- 

ical example of a partially oriented system of lines on a plane, when 

not all lines of a system but only a certain portion of the total 

length of grain boundary lines of ferrite is parallel to the orienta- 

tion axis, which axis in this case corresponds lo the direction of 

rolling, is shown in Figure $6, 

Fig. 54. Completely oriented systems of 
axes of orientation 

lines on a place with three 

Besides the fact that partial orientation of boundary lines ij 

preseit in both structures, shown Li Figure j'', \e also note thai the 

relative length of the oriented portion of lir.es in the structure in 

the drawing at the left is considerably greater than in the drawing on 

the right.  In other words, the degree of orientation of boundary lines 

in steel annealed at 600 C is notably greater than in steel annealed 

at 35C C, 

Quantitative determination of the degree of partial orientation 
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is quite effective and many times attracted the attention of the metal- 

lographers. As far back as 1900      studying the deformation of mild 

steel in the cold state fron Y. Geyn measured the visible length and 

width of ferrite grains [13-]. Later, P. Rapaggs made an attempt to 

determine the magnitude of a reduction of alloyed steel by forging 

from the degree of deformation (elongation) of the carbide 

which was characterised by a ratio between the length of cells on the 

network and their width [137]. P. Rapaggs correlated the value of 

this ratio of to the degree of the reduction through a special formula. 

The degree of orientation of a system of lines in a plane may be 

estimated quantitatively by a value which is the ratio of the oriented 

portion of lines to their total length; this evaluation, seems natural. 

This is necessary to have a possibility to determine separately the 

aforementioned values, whereas the method of random secants makes it 

possible to determine only the total length of lines of a system 

in its area. 

sf 
S6 

Fig, 55.  Isogonal laUice with 6 axes of orientation 

Fig. 5^« Examples or partial orientation of lines of grain boundaries 
of industrial iron tempered at 600o (a) at 8500 (b) fill 

If the oriented portion of lines is removed, then the remaining 

portion of lines of the system will be isometric. The validity of this 

supposition and its hardnescability, :.'. least for practical purposes 

of geor.etric metallography, has been demonstrated by us on a number 

of examples [138], For this reason, a partially oriented system of 
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lir.es or. a plane may be regarded as consisting of two  superimposed 

system, of which one is particularly oriented and the second is com- 

pletely isometric. For this case, the numerical expression for the 

degree of orientation of the system: of the lines of a plane, providing 

it has one orientation axis, will be determined in per cent from the 

formula 

d ^ For 1QOf0 g For +    Pis ' 
(21.1) 

where  Por is the specific length of tho oriented nortior. of lines, 

mm/mm";   P.  is the specific length of the isometric portion of lines, 

mm/mm , 

It should be noted that when dividing the lines of a system into 

elementary sections of equal length, for the purpose of determining 

which of them are oriented and which are isometric, we can assume these 

elements infinitely small as to length. For this reason, predeter- 

mination of the degree of orientation by the method described above, 

is applicable not just to systems in which the rectilinear sections of 

boundary lines, parallel to each other (as in Figure 56)j al'e clearly 

distinguishable. The degree or orientation may be also determined in 

such systems of lines which consist of small curves /^^ ^----^recti- 

linear elements, for example, in a system of ellipses on a plane, the 

large axes of which are usually parallel. 

A method for measuring the total linear length of lines of any 

system or. a plane by the method of random secants is presented in 

Section 20,  IiO.v, the notion "isometricity" of a system of lines may 

be elaborated fron, the viewpoint of this method.  If from any random 

point oi". a plane, on which a system of lines is drawn, straight lines 

(secants) are drawn in all possible directions, then the mean number 

of intersections per ur.it length of each straight line would have the 

same mean, statistically constant, value as an isometric system of lines 

on a plane.  In other words, the mean number of intersections per unit 

length of secants in an isometric sy^stem of lines is independent of 

the direction of the secant. 

The more visual characteristics of the orientation of the system 
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of lines on a plane is afforded by "the rose of the number of inter- 

sectio.is" which shows the actual relationship between the mean and 

number of the ir.tersectici.s per 1 ;nm of length of the secant and its 

direction, constructed in polar coordinates. From the aforesaid, it 

is obvious that for any isometric system of lines on a plane the rose 

of the number of intersections is described by a circumference with its 

center at the origin of polar coordinates. 

The shape of the rose of the number of intersections is quite 

sensitive to the presence Df ^rKOJU-  preferential directivity of line 

systems.  In those cases when the degree of directivit;/ is insigni- 

ficant and cannot be observed visually, the rose of the number of inter- 

sections doesn't deviate from its circular shape. 

The experimental construction of the rose of the number of inter- 

sections i-; quite simple, A series of initially parallel secants, 

forming a definite angle ^ with the orientation axis, it.; drawn upon a 

microsectiorj or a photomicrograph, providing that the direction of the 

axes may be clearly determined by visual observation or the topography 

of the plane of the microsectior.. Thus, for example, it is possible 

that to assume that the orientation, axes on the longitudinal microsec- 

tion of a rod or a wire coincides with their geouetrica] axes. Secants 

of a giver, group are randomly distributed but uniformly over the entire 

surface of the microsectior, or over the area of the photomicrograph; 

directions of all secants must be exactly the same with the respect to 

the orientation axis. Having determined the mean number of intersec- 

tions per 1 nrn of secants in a given direction, m^ , the next group 

of secants is drawn but in a different direction, etc. Having derived 

a number of values of mean ..umbers of intersections for many directions 

of a plane, the rose of the number of intersections is constructed. 

For this purpose, the radii-vectors, which, fonn the same angles with 

the 0-0 axis as were formed by individual groups of secants and the 

orientation, axes, are drawn from the origin of coordinates.  The length 

of each radius-vector expresses, or. a definite scale, the values of 

mean, numbers of intersections for corresponding direi'tions of secants. 

0,1 3 
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After that, the ends of radii-vectors are connected by a smooth curve 

which is precisely the rose of the number of intersections constructed 

from the data of the expreiment. 

The roae of the number of intersections for the polyhedral struc- 

ture of almost pure iron with equiaxed grains is shorn in Figure 57. 

The circular shape of tho rose indicates that the system of boundary 

lines of ferrite in this case is actually isometric. The rose of the 

number of ir.teraections was constructed similarly for the syctem of 

ferrite lines of rolled sheet, on a microsection, the plane of which 

was perpendicular to the plane of the sheet, has an entire!;/ different 

shape. In this case, the 0-0 axis of the graph coincides with the di- 

rection, of rolling, which is precisely the orientation axis of ferrite 

grain boundaries. The rose, shown in Figure 52» has one maxiinum of 

the number of intersections in the direction perpendicular to this 

axis, (that is, to the plane of the sheet) and one minimum in the di- 

rection that which coincides with the orientation, axis 0-0, as show): 

by the values of the respective radii-vectors. 

rJpon the basis of our assumption, according to which partially 

oriented system of lines may be regarded as co>.sisti;.g of two super- 

imposed systems, of which one is completely oriented and the second is 

completely isometric, the plot of the rose of the number of intersec- 

tions may be calculated. 

For this purpose it is necessary to measure how many micro- 

section mean and numbers of intersections en bhe in tool and not in 

many directions (as is the case in a system of 11).es with one orien- 

tation axis, which is a more oommon case it; real structures on plane). 

The orientation of lines of a system on a plane may Vj c;.arac- 

tcrised not graphically, not by the chape of the rose of I he nuj.-iber of 

intersections, v.hich generally sneaking, is practically inconvenient, 

buy by o;;o definite number which characterizes the degree of orienta- 

tio) in conjunction with Formula 21,1. Two groups of secants, forming 

a right angle (in systems with one orientation axis), are used both for 

calculating the plot of the rose of the number of intersections and 

for determii.ing the degree of orientation.  Inasmuch as in this method 
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the secants are not randomly directed, but have a quite definite di- 

rection, we have called the method of using these secants the method of 

directed secants. 

of the 
Fig. 37.    Plane  rose SHsW the number of intersections for M system of 

boundary lines  of the grain of industrial  iron with equiaxial grain 

Sfc'   "«»« 

Fig. 55.   Plane  rose of the number of intersections for the system of 
boundary lines  of the grain of industrial   iron deformed by rolling 
(on a raicros^cticn of sheet  iron) 



Sectioi, 2.". The Method of Directed Secants and the Analyses of 

Partially Oriented Structures on a Plane 

Let us consider a system of mutually par;.]lei und equidistant 

lines, shown in Figures 4S and 52A, There the nun.ber of intersections 

of the secant and the grid lines of the system, depending upon the 

angle formed by the secant and the orientation axis, is expressed lv: 

the formula 

sin   _l —-— mm -". 
(22.1) 

where a is the distance between parallel lines and   is the angle 

formed by them and the secant. 

Secants directed parallel to the orientation axis would not run 

into a single line of the system and for this reason the number of 

intersections UIQ or n. will be sero. Conversely, secants directly per- 

pendicular to the orientation axis will run into the greatest number 

of lines of the system and a number of intersections, m0p or inn, will 

happen to be greater than at any other direction of secants. The 

graph of the relationship, expressed by the Formula (22.1) is plotted 

in polar coordinates in a form of two circumferences of equal diameter 

opposite to each other and the orientation axis 0-0 at the origin of 

coordinates, as shown in Figure 59.  The shape show); in Figure 59 is 

the rose of the number of intersections for the giver, case and the dia- 

meters of circumferences, which comprise it, correspond to the maximum 

number of intersections per 1 mm of the secant, mnn  or m-,. The roso of 

the number of intersections of t'aii type occurs foi all syyiems of lit,es 

or. a plane which are completely oriented and possess only one orienta- 

tion axis (Figure 52 a, b, and c). 

For a system of lines which has two orientation axet; located at 

right angles to each other forming a continuouc grid of identical square.: 

(Figure 53A), or rectangles (Figure 5oT,)) ;-a j' ae regarded as en..-Siting 

of two systems of parallel and equidistant straight liies, '.he oricnta- 

tic: n-vi- cf ...e systems being nsnallj perpendicular.  For each system 

separately the nuir.bci cf intersections, which is dep- .lent upon the di- 
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rection of the secant, is expressed by the Formula (22.1), By applying 

the rule of the addition of means, for the entire system, we derive a 

relationship between the number of intersections and direction: 

in. (j = sinc^/a + sinp /h  mm 
-1 

(22.2) 

where a and b are the distances between parallel lines in each system; 

c>C  and jf are angles formed by the secant and corresponding orientation 
/ 

ajcis of both systems. 

If degrees of orientation are identical in directions of both axes, 

that is, the system is a grid composed of squares (Figure 53A) values 

of a and b are equal. Moreover, taking into consideration, the fact 

that there is perpendicularity of orientation axes, the sum ofr^ and 

/&  angles is 90 degrees. We simplify the'Formula (22,2) for the case 

of square grid: 

m rxi = (V'*1) [sin oC. + sin (90-f-/- )] mm ^ 
(22.3) 

The rose of the number of intersections for a square grid (Figure 53A), 

calculated from this formula, is shown in Figure 60. 

Fig. 59. Plane rose of t he number of intersections for the completely 
oriented system of lines with one axis of orientation 

Fig. 60  Plane rose of the SMMMM number of intereections for the comnletelv 
oriented system of lines with two mutualy perpendicular axel or orlenJa- 
tion with identical decree of orientation elon« both axes (souare lattice) 

The maximum number of intersections occurs in the direction which 

forms an angle of 45 degrees with both orientation axes. 

hß T*C S £ c 

;c bv diffe 

•.jer of  ir.tercectio:.j fix a  systen   if Vli.cs, 

•1.   ' ed  groupf   of r.u1vüi.„   ifirallel  and  eqtj 
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straight lii.cf, i-a-j  be readily cci.sli-ufced (jraphicallj' v/ithou",, calcu- 

latioiis from Promulas (22,l)-(22.3). For example, let us consider the 

cor.struction of the rose of the number of intersections for the system 

of regular rectangles, shown in Figure 533. 'The distance between hori- 

zontal straight lines vie  shall designate as a und the distance between: 

vertical lines as b (a>b). First let us construct two separate roses 

for the number of intersections for each syste::. of straight lines, 

horizontal and vertical. 

For the system of horizontal lines, the rose of the number of 

intersections will be comprised by two circumferences with diameters 

a, which will be tangent to each other and to the axes of horizontal 

orientation, at the origin, of coordinates,  Sinilfirly, the rose of the 

number of intersections for the system of vertical lines formerly de- 

scribed by two circumferences, the diameters of which are 1, is tangent 
b 

to each other and the a,3:is of vertical orientation at the origin of 

coordinates. rose of the number of intersects shov.n in 

Figure 61, where two circumferenciis (l) are for the sytiei;; of horizon- 

tal lines and two circumference;: (?) are for the s,; Liter, ef vertical 

lines. Further, we add the radii-vectors of both roses of tue number 

of intersectiony for each direction anC thus obtaii the radii-vector, 

the length of which correspond to the total number of intersections in 

the same direction, Ey connecting the ends of the total radii-vectors 

with a smooth curve, we obtaii curve three which is precisely the contoi, 

of the rof-e of the number )1 intersections for a .;,;jicrr. cf lines forni- 

i.;j a ilane grid of rectangles (in plotting, the ratio of the height 

Fig. 61, Graphic construction of the flat o- 
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tersections ror the compieteiy orientated system ol' lines with two 
mutually perpendiculsry axes of orientation.  The orientation along 
each of the axes is different (rectangular lattice) 

A graphic plotting of the rose of the nuinber of intersections, 

similar to the one just described, was made bj us for the case of uni- 

form orientation of lines of a system with three orientation axeu 

located at an angle of 120 degrees to each other. This plot, which is 

valid for isogonal grids made up of regular hexagons (see Figure 43-0 

or triangles (Figure 54B), is shown in Figure 62, 

na    62 Pline rose of the number of intersections for the fully oriented 
30 s^tem of line, -ith three axes of orientation placed a an ang e of 

120°   The degree of orientation along all three axes is identical, 

(lattices from regular hexagons or triangles 

As the number of orientation axes is increased further, the ahape 

of the rose of the number of intersections approaches still closer to 

a circumference. Therefore, an isometric structure may be regarded as 

one that does not have orientation axes, as well as one that has an 

infinitely large number of aices. 

Let us examine the analytical and the graphical construction of the 

rose of the number of intersections partially oriented struc lures and 

their lypcr L'o:  -i^. terns of lines of this type, which are more commonly 

encountered in practice. 

Let a partiall;- oriented syster. cf liner, be comprised of two sys- 
o 

terns, the oriented system and the isometric system. The number of 

intersections of the secant with the oriented portion of lines of the 

system is defined, depending upon the direction, by Formula (22,1), 

it is --j-iown (See Section 20) that the value of 1 is equal to the speci- 
a 

fie length of the oriented portion of the lines of the system,  P_ 
or 

tnn/mm^.  Therefore, we can rewrite Formula (22,l) as follows: 
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= ainoi . ^ P 
-1 

or 
(22.4) 

where mL,  is the number of intersections of tie aocant with only the 

oriented portion of lines per 1 mm of its length. 

The number of intersections of the secant and the isometric portion 

of the lines of the system is defined by the Formula: 

(22.5) 

In that case the total number of intersections in a given direc- 

tion will be: 

aV  =m;   +m" = sin tf . ^ Por +.* £Pia. 

(22.6) 

Prom Formula 22.6 it is possible to plot the rose of the number of 

intersections, knowing the length of the oriented and isometric portion 

of a system of lines. 

The graphical plot of the rose of the number of intersections for 

partially oriented systems of line is even simpler, "or this purpose 

we Lave to know two values, ...oasured on the pla.-.o of the microsectior. 

■■     tue mean number of intersecLions of the oriented portion of 

lines of a system v/ith the secant perpendicular to the orientation axis, 

iTt'or, and f.e mean number of intersections for the isometric portion 

of liner, of i system, m". If we know the specific lengths of both por- 

tions of lines of a system, ^ FQP anil ^Pig» v/e can calculate the 

values we need from Formulas (22.4) and (22,5), respectively. 

Prom the first of these value?, we plot the rose cf the number of 

intersections for the oriented portion of lines.  It will be described 

by two circumferences, the diameters of which are m  tangent to the 

orientation. e.xia  at the origin of c-crdinatea (see Figure 59). 

In using the second value, we plot the rose of the number of inter- 

sections for the isometric portion of lines of tu.o System. It will be 

a circumference with its center at the origin of coordinates. The 

radius of the circumference v.il_ be m" (see Figure 57). 

The rose of the number of intersections for a partially oriented 

system of lines, as a whole., we shall derive Ji.f.t n-.   before bj acdir^ 
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radii-vectors of tlio plotted auxiliary rose for each direction. In 

the plot shown in Figure 63, it has teen assumed that the specific 

length of the oriented portion of the lines is 3/4 and that of isometric 

portion is l//] of the total specific length of the lines of the system 

as a whole. 

Fig. 63. Graphic construction of the plane rose or the  number or intersec- 
tions for the partially oriented system of lines in accornance with the 
the numbers of intersections on secants parallel and perpendicular 
to the axis of orientation. 

To have an accurate comparison hetweer. cor tour:;: of tLeorotifHlly 

D.-J.ci-lated and experimental!; plo'ted rov.eti of the nunber of L.ter- 

Loci-'.:..   A: par-iallj oribntu' ;.t; .e...., <f lines, it is neneüaaj'j- to 

determine dire-tly or. the tr.icrosection the mean rumhers of intersec- 

tions of «enai '" '.'ith oriei ted arc ■!r;"'...t trio portjoni-. <-"  line.. .>i  a 

systen. separatelj. 

Let us ex amir.e the partially oriented systen of ferrite houndaiv 

lines show, in Figure 5', Secants, directed parallel to the orienta- 

tion axis of boundary lines, do not intersect these elements of boundary 

lines which are parallel to thest secai lö, 1, c;. :F., the; have the ^a: .e 

direction as the orientation axis of Lho L-ysiem. Hence, it follows 

that secants directed parallel to the orientation axis intersect onl; 

z'.i3  lines of the isoiretrin portion of cci sidered aystenis of boundarj 

lines. 

Therefore, the nuwher of intersections determined on the secants 

parallel to the orientation axis, will he the actual numher of inter- 

sections wit}', the isometric portion of lines of a system in any direc- 

tion and, ii aexordancs 'ith the symtclF accented previously, •.vin ^qual; 

m.. mr. .,-1 
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v.here m,, is the mean numter of intersections of the directed secant, 

parallel to the orientation axis, per 1 iTim of its length. 

On the basis of this value it is possible to determine directly the 

length of the isometric portion of linos of a partially oriented system 

on a planes 

-rr o 

57 P.!a =0 
lr"i = i'STl m„ mm/mm . 

13  ^ (22.8) 

The second group of secants are directed perpendicularly to the 

orientation axis and the mean number of intftr&ec'. ioi.s per 1 nr: cf their 

length is designated as :.;,, This number is obviously made up of the num- 

ber of intersections cT the isometric: portion of lines of the Ly leu, 

1,1, end with the orienteO. portion of Ii)ccJ, i-'1™. Therefore, the number 

of intersections with onlj-- the oriented portion of lines and the secant 

directed perpendicular to the orientation t.vic ill be 

■ 

m'  = n.], - ::.„ mm 
9C   - (22.9) 

Later we shall prove that the specific length of lines, completely 

oriented along one orientation axir, .." -e.  system, is precisely equal to 

the mean number of intersections per 1 mm of length of the secant directed 

perpendicular to the axis, that is 

z\ = m' m., - m„ iran. /mm2 .    (22.10) 
or    90 

Thus using two groups of secants, of which one is directed parallel 

to the 'orientation axis and the second is perpendicular to it, will de- 

termine independently the mean number of intersections for lines of the 

oriented and isometric portions ^f h  system. Formulas ?2,r; and 22.10 

make it possible to measure separately the specific length of the oriented 

and the isometric portion« of lines of the system themselves. The total 

length of all lines of a partially oriented system of lines on a plane 

will be defined by the Formulas 

r ? =£ pis 
+ r^or = mi+ o'571 m" ^i™*2' 

Knowing the same two values, determined by calculating the inter- 

sections on the microseotion i; two mutually perpendicular directions. 
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m-, and. m,,, it is possible also to calculate the degree of orientatioij of 

lines af a system using (Formula 21.1),     taking into account For- 

mulas (22.8) and (22.10), as converted to the following formula! 

CK. 
"■or 

or    is 

E^ - mil 

100 = «--=--—-- lOO/o 
m-^ + 0.571 m,,       /22 i^) 

Mow we shall illustrate from a concrete example the application of 

the method of directed secants tc a partially oriented system of boundary- 

lines, .vhich has been proposed previously. The system of lines is shewn 

ir. Figure 64, It is a system of boundary lines of silicon ferrite grains 

on a rr.icrosection of transformer steel. The plane of the microsection 

is perpendicular to the surface of the steel sheet and parallel to the 

rolling direction. The number of intersections on secants lying perpen- 

dicular and parallel to the orientation axis: 

m. 
792 _2 ^yg _i 

-■TT— = 23.3 mm   and m„ = -rp— = 7.6 ran . 

(22.13) 

•ttcno Tieptce- 
«cnl ■■ 1 MM 

ctKjnud 

*• 
MIICJIO 

cjiyiac« 

9 • 
npOH3BtÄCHBe 

mlxl 

MHCJIO ncpece- 
MetiHA l<a 1 MM 

ceKymefl 

MIICJIO 
c^y4aeB 

3. 
npoH3Bf.MH«e 

m, m, 

A. Cttyuiaa nepneHduKt/AHpHa ocu 
oputHmanuu 

B. CeKiju {an napoAAc 
opuenmQuuu 

ib/ia ocu 

20   — 4 1 4 
21 1 21 5 ■1 20 
22 2 44 6 9 54 
23 5 115 7 10 70 
24 G 144 8 11 8« 
25 8 200 9 8 7'' 

26 5 130 10 4 40 
27 3 81 11 3 ■ 'i 

28 1 28 12 — 
29 1 29 Bcero 50 r/v 

Bcero U 792 

Table 24 

Using Formula (22.8) we find the specific length of lines the positioning 

of which is isometric: 

Pis = 1'571 * ^ = 11,9 "^/n™2. 

From Formula (22.10) we find the oriented portion of the bo'aidary lino 

per unit area of the microsection: 

JJ3 
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por = 23,3 " 7•6 = 15,7 min/nlr-1 • 

The total length of grain boundary lines is equal J.o  the sune of 

separately determined values, that is 27.6 mm/mr, . The degree of 

orientation of boundary lines, in Figure 64, we determine from Forr.mla 

(22.12) : 

C*- 
._i£3a_r_2i6l_iOO__ = 57^ ( 

23,3 + C.571 . 7.6 
Using here the values obtained for the mean numbers of intersections, 

:.- and .?.„, we can plot the rose of the number of ir.teroections for the 

structur-; shown in Figure (4,  that is, we can determine graphically the 

relationship between the nujr.ber of intersections per 1 mm of the directed 

secant and its direction, with respect to the orientation axis. The 

ploJ. is shown in Figure 65. Only jne quadrant of Die polar system of 

coordinates is shown, inasmuch as :;.u configuration cf the rose of the 

number cf intersections is symmetrical vith respect to the coordinate 

ai e s, 

The mean numbers of intersections in two mutually perpendicular di- 

rections can be measured as directly on the microsection.  This can be 

carried out most conveniently in an apparatus for the determination of mi- 

01 microhardness, PLT-3 with the ocular that has the cross hair. 

Fig. 64. ftrtially orientated system of lines of grain boundari 
silicon ferrite of sheet transformer steel      boundari es of 

fia.  65 Graphic construction of th<, ^1 
tions  fnn .u " . .^   the  Plsne  rose  of 
tions for the system of bounda^y^ines^o? tL^ T^ 0l'  intersec- 
(Fig.   64) ry ilnes of ^e grain of silicon ferrite 
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Section 23, The Rule of Total Projection for a Plane and the Verifica- 

tion of the L'eti.o.i of Directed Secants 

?or the verification of relationships between true parameters of 

a plane structure and para.neterB measured ir. quantitative microanalyaes, 

what is frequently feasible is to calculate ir, advance the peranetcrs 

subject tc Dieasurement and öfter thai to compare the value., obtained 

with actual measurements. 

Let us assume that it is recescurv tc determine the tot'il length of 

fibers of plastic nonmetallic inclusions, stretched out along the di- 

rection of colling, on a longitudinal microsection. An area of a micro- 

section, magnified o.r.e hundred times, is drawn schematically in Figure 66, 

The actual dimension of this area (on the miorosectioi J ia 1 x 1 mm , 

Let us draw on this sketch a network of equidistant parallel lines per- 

pendicular to the orientation axis of fibers. We assume that these lines 

are directed secants. The distance between adjacent lines is taken equal 

to /\. Thus, we have a number of ■■.arrow strips ^J wide and 1 mm long. 

The number of strips (or secants) on the area in Figure 66 is obviously 

enual to 1  , 

how let us calculate the number of intercepts of fibers of non- 

:..etallic inclusions ir. each strip. If there shows or.lv a fraction in 

the strip widt^i, (that is, the end of fiber falls within the strip) we 

count it in providing that this fraction is greater than 0,5 ^, and 

neglect it if it is not.  Let us assume that the first, slrip ha;; oi. 

number cf filers ir., , the second one has nin, the third has nu, etc. In 

that case the sum cf lengths of all intercepts of inclusions in the first 

strip i? in Z\; in the second it would be mp Z^, etc. The total length 

of all fiber's of nonmetallic inclusions in the area of Figure Ci (that 

is, per 1 r.r. cf the ;..icrosectior.) would te: 

Z?
0T = A (^ + m2 + m, + ...) ■ 

m-T + E0 + m-j + .., „ 
J.   t   j id = = m-, mm/mm 

(1 :A) - 
(23.1) 

ft 
r.^lV of striis (secant 

The value/-! , found in the denominator, is oqua] to the nurlcr a;,1 

the area of 1 rnr.'" numerator is the 
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total number of intercepts, which is equivalent to the total number of 

intersections of directed secants and fibers cf nonmetallic inclusions 

2 
in an area 1 mir.'". Hence, it follows that the total length of inclusions 

elongated by rolling per unit area of longitudinal microsection is equal 

to the mean number of intersections of inclusions and secants, directed 

perpendicular to the orientation axis of fibers, per 1 mm of length of 

these secants, 

V/G have derived in Section 22 an equation, identical to Formula 

(23.1), for a system of parallel equidistant lines, where the validity 

of this relationship is  obvious, Now we can see tlat the same relation- 

ship is valid for a system ,>r parallel lines whose length and location 

X'I a plane may be randoni. Previously, when deriving Formula (22.10), 

we already used the relationship now obtained. 

Let us consider another system of lines, consisting of a nujnber of 

closed contours of different configurations and of Dther sections of 

straight lines and curves, disposed randomly, as shown in Figure 67. 

In Figure 67 we take the abscissa as the axis to which we project all the 

lines of the drawing.  In this case we consider not ordinary projections 

of lines but their total projection, by which we mean the sou of lengths 

of proji-ctions cf absolutely aüi elements of line:, cf the urawing, re- 

gardlesj .)f vhether they are superimposed or net, Thut,, i'jr esample, 

tht- i< tua. projection cf a circumference is double its diameter. The 

total projection cf lines or, a piano, and also of planes in space, has 

a practical use in derivation and verification of methods of quantita- 

tive geometrical analyses of plane and spatial structures, 

dust as in the preceding case, we draw a series of parallel equi- 

distant lines ii Figu"-j ''",  perpendicular to the base line of the drawing 

which we have chosen as the axis. It may readily be seen that the number 

of intercepts of tue lines of the system in each strip will equal the 

number of their projections or. the base line of Figure 67 in the same 

strip. Using the same logic as in the derivation, of Formula (23,l), 

we come to the conclusion that the mean number cf intersections pel' 1 inn 

of ;..( straight lines pcr^endiculai i( the txij Ji.jsen 1;, 11 , if. pn c ii.üiy 

■rif] Jc J}( tctal -:.0ccticn, «nit the sar, ( ^. , of all lues of tl.-. 
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aysteir. four.d ir. unit area. 

Flg. 6b. Diagram of the derivation of 1he formula (23, 1) 

Fig, 67. Diagram of the derivation of the rule for summary projection for 
a plane 

Previously derived formula (23.1) is a specific case of this general 

rule inasmuch as in a system of  lines similar to one shown in Figure 66, 

the notion of the total length of lines of a systerr: ia ü^uivalönt ic 

the total projection of these lines onto the direction parallel to them 

(that is, perpendicular to directed secants.) 

The rule of the total projection makes it possible to predetermine 

the mean nuaLer of intersections i'ür a chosen geometrically definite 

systei: o£  lirx-f;. Tin.,1;, for example, if a ] n.''  area of ;i ■licrosccl icr. 

rf graJUiai1 pearlite contains u  ...jiber i.;% i;cj'.ticr£ :. :.." .  :i.(r.tite grain«, 

j.r average diametür is d, then inasmi-ch ■ 

an c'v•,-z'r^c v.i„.. 1 c ■'' j ? each grair or. 

Ill he defined tj   („    equeiior.! 

:-i. n.ri'.er of ir.terr.eet: 

In this case the.direction of secants :i;. 'f r.c importance, for the 

; ^j'-.itude of J.he total ii- „.ction of a system cf this kind on the axes 

of any iirection is one and the same. The specific length of the boundary 

lines of cementite, £ P is obviously TTd-n, For this reason the latter 

eiruation nay be inserted int" the preceding: 

2i ?r» 77    ^ "C 

which  is  the  basic   forr-ula of the method  o; .■Mdom sec&r.tc  fcr fl 
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(20.0. 

Let us apply our rule of total projection to verify our assumption 

that a partially oriented system of linea may be divided into two systems, 

a system completely oriented and a system which is completely isometric. 

Let us examine a plane which coiitains a large number of identical el- 

lipses, randomly disposed or the plane but oriented in such £ manner that 

all large axes of the ellipses are mutually parallel. This system of 

elliptical lines on a plane, oriented in the manner described above, we 

regard as a partially oriented system of lines with the orientation axis 

parallel to the large axes of the ellipses. Let us designate the peri- 

meter of each ellipse as P, the large half-axis as a, the small half- 

axis as b, and the number of ellipses per unit area as n. 

The first group of secants is drawn perpendicular to the direction 

of large half-axes of ollipse-s. For this case, -he mean number of inter- 

sections per i-j.it length of secantsi, equal ic  the total projection of 

ellipses oil- Ihe uirectior. cd' large axe:, wil] be: 

The average number of intersections per unit length of secants for the 

second group of recants, pcrpc-ndiculf'-r to the secants of the first group, 

and, consi-quently, to the direction of a small axes of ellipses, wil] lie: 

m„ = 4 on (23.3) 

The total length of perimeters of whole ellipses, per unit area 

can be found fron: the formula of the ir.ethod of directed secants for a 

plane (22,11): 

£ ? - m-, + 0.571 m,, = 4n (a + 0,571 b), 

from which we find the perimeter length of one ellipse; 

P = 4 (a + 0.571 b). (23.4) 

The exact value of the length of the perimeter of an ellipse is 

expressed by the formula Ll39j! 

P =77(a + b) k, (23.5) 

where the value of the coefficient k ia Oufi.isr bv the ir.fir ite seriea: 
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1 +(l/A)vc  + (1/64 )r4 + (1/256 )r6 + ... 

with 

r = (a - b) (a + b). 

We can calculate exact values of the perimeter length of an ellipse 

from Formula (23.5) and approximate values by the method of directed 

secants from Formula (23.4). The magnitude of error, expressed in 

per cent, versus the ratio of the lengths of the ellipse axes, is shew, 

in Figure 68. The highest possible error, equal to a 6.8 per cent, occurs 

at the ratio of | of about 3. Beyond this narrow range the magnitude of 

the error rapidly decreases, the fact should be taker, into consideration 

that an ellipse has smoctulj changing curves, in wuich rectilinear 

elements are absolutely absent. At the ^en.e tii.e even in this favorable 

case the ::.^1.. ' of ^:^JoC  ^..u.it  v^ n.-i   r.ufficlcnMj ;-ccurate. The 

shape of £r. ellipse v:as chosen t. verify the accurac, of .he method of 

directed secants, on the ground that some investigators accept the "grain 

shape" of an elongated volumetric grain as a figure of rotation of a 

longitudinal cross section which is an ellipse. The results of another 

method of verification will be presented when considering the method of 

directed secants for a spact. 

If it is necessary to determine the total length of boundary lines 

on a plane, it is possible to apply an earlier variation of the method of 

directed secants [59]. The total length of lines in an isometric Bystem 

is principally expressed by the equation of the method of random secants 

for a plane, the application of vhich is valid for any direction of secant. 

3.". a plane; 

I- 
77- 

'.m/mm 

5 10 20 
OmuomtHue nonvoceu alb 

Fig. 68, Error in the deteminatit 

rthod of ^::.:r:^z:T:\i\zvT:: O\T eiiipse ^ - 
lengths of the .emiaxes of the ellipse 0M 0f ^ 
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The length of lines of a completely oriented system is defined hy 

Formula (22,4), a2:d an appropriately different mean number of inter- 

sections is obtained for each direction D!" the secant with respect to 

the orientation axes: 

^Por = iIrS< m^ ^Z™2 ' 
We cannot apply either of these formulas to the determination of the 

total length of boundary lines of a partially oriented system by the 

method of directed secants, for the coefficients of m in these formulas 

are different, and would tend not to classify the intersections obtained 

fron oriented or isometric pcrtionr of lines of s.  yystem separately, 

"■.■..over, for a definite value ot&C >  formed 1; 11.e recants f-.nd il 1' oriöü- 

tation axii;., the c-uofficient ii tlic IH-OJ:  formula may be made precisely 

equal 1c the coefficient of the 1asi^ formula for a plane, that is -*-, 

In that case the need for separate computation of ii tersections with 

oriente.i. and jsoir.etric portions cf boundary lines is eliminated. We 

eouate, 

5rr-r = -5- = 1.571. 

From this equation we find that it is necessary to maintain an angle ^ , 

0 
formed by directed secants and tue orientation axis, of 35,5 or ap- 

0 
proximately 40 . 

Consequently, if directed secants forming an angle of 40 with the 

orientation axis are used, and the jiaan number of intersections per 1 mm 

of length of these secants is determined, then the lengths of boundary 

linos of partially oriented systems may be calculated from the basic 

formula of the method cf random secants (20.7). ^e conclusion just 

derived is verified for the structure shown in Figure 64. For ICG se- 

cunts located at an i:-gle of 40 to the orientation axis and actual length 

equal to C,^ rx. (fO mm in Figure f4), a very fine agreement between the 

length of grain boundary with the length calculated from the basic formula 

is ol tained. 

The mean number of intersections per cne secant is 14.05, and ±~i.C 

intersections per 1 an of the length of secants. The specific length of 

lines in Figure 54, olaculated fror, the basic formula for a piano, will 
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be 

^P = 1.571 . 17.6 = 27.6 mm/mm2 . 

Previously for the same structure we found the aame value ohtair.ed 

hy the tnethcfi of separate determination of oriented and isometric portions 

of lines using 2 groups of mutually perpendicular sooante (see the data 

in Table 24 or.  page 173). This absolutely identical agreement tetv/eer. 

the results it, naturally, accidental, rhe control r.-.e£,cv.ro.üant, carried 

out 1; Iho :;:ethcd of circular ^ccaits, gave e  close figure, 2f.; ni/'n.'''. 

ül-iö Kov;s that the nethed. ^f ctcEnte, directed at u.  angle ci 4C degi'e^o 

to the <" rio ta,-'ic. a:;iE, cr the nx-thed tf -"lique tecfnir, t: r: u^-u^ correct 

result:;. 

I'JI the deterrr.inatio;. . the total specific ^c:-£;th of lines of a 

partially oriented syutetr. or. a plane v;e can use the method of random 

secants. The method of oblique secants cr. a plane is not the only one 

and is not ever the Ico* '-re for solving probidms of this kind.. It is, 

„jv.over, of irtereat, for it is possible to develop in analogy with it 

ar appropriate method for spatial structures in which drawing of secants 

in alD possible directions is practically impossible. 

Ihe method of directed secaJ.ts, although it ic not as rigorous- fron 

the Mathematical viewpoint, it is quite valuable due to the fact that it 

is the only method permitting qualitative evaluation of the degree of 

orientation of syatoms of lines or. a plane, 
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Section 24. The Ketliod of Random Secants for Three-Dimensions; Systems of 

Boundary Surfaces ir. Three Dimensions 

Considering the boundary surfaces of microparticles in three dimen- 

sions, v.-e can approach their cia^cification and ch&rauteriaation from 

differert viewpoints, First of all, a giver, systec. of svirfaces must 1'3 

:.ei'ined by the nature of the microparticles v/hich they separate. In 

pure polycrystalline metals and dr. .solid solutions, the crystal!initj 

and the composition of microparticles (crystallites, grains) are the same; 

adjacent microparticles differ only as to crystallographic orientation of 

lattices in space. In more complex foi-mations, surfaces luay separate 

iiiicropiarticleö of different pl.dse;. er structuaj con3tlluent6, In this 

case, the surface of or.o puur.c or struciural c-Cü.iiituent u<i-^  coincide 

..-,:.■]. let ruy, iL.;i i. ^1;, , or not.tt iV.  \.'ii '^b surf r re of tittle phase 

or s-'ructural (-:._titup.r+, TLi.r, fcj- .^amjle, i) jcrcil-r ir granular 

pear] it; , surfaces of loth pi :-CE, of icr, c;i.iJo t...d I'trrite, are coiüjletoly 

superimposed, In hypoeutectoid steel grain surfaces of fei.T.ite and pe&r- 

jito are or.lj paitia]!; r.i.pc'.iimpcseä, fcr srirf ,ar7cices of ferrile ^raii s 

maj coincide v.ltlo ulc surface of oilier ferrite grains and not pearlite 

grains, "or this reason, ir. hypoeutectoid steel there may occur surfaces 

if '."■.■3 followij g struoiurcu constituent pairas  ferrite-ferrite, forrite- 

pearlite, pearlite-pearlitc, CAoluding ferri'e-oc.or.tite interfaces in 

the pearli'.e itsel-'' and hoirfaces of nonmetallic inclusions which nave 

■boundaries hcth ''it]; ferrite and pearlite (predominantly with the first 

one). 

Prom the aforesaid it follows that systems of surfac-ec nay he re- 

garded either as the total surface of the given phaeu or structural 

constituents, or as an irterface of two phases or t'vo ; iructural consti- 

tuents. For this reason, i. each concrete cast it si ould be specified 

precise]; v.hat system "  surfaces: v.-e wish to ueasure, Quantitai.ivelj' 

the e^icil cf e gl'■ - s-ystem of surfaces i; -pc-ce is deter:.:.) ud .j the 

magnitude of the -..ecific surface, that is, b; the tote] surfucc area of 

i,he s;.cte;., divider, by the u;i{ vcl^: i measures ir. nj "/..m. 
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As to its configuration ir. space, a system of surfaces may consist 

of closed contours isolated from each other, or it may be one practically 

continuous surface, forming a three-dimensional similar network.    Inter- 

mediate shapes are also possihel. 

Just as the  systems of lines on a plane,  the systems of surfaces 

are classified aa isometric and partially or completely oriented.    It is 

ohvious that a greater variety of orientations are possible in three- 

dinensional  space than in two-dimcnsiona]   y-uriacf , 

Let us  ii HgLvj  J.hat a]]   surf arc:     ■; .. 6-i\ei   r^; :
.LI. hie I:-'..-;.   .}' 

:LJ,f   i   '...i '..   '-1--JI   rvrli:   < ;" <'." (r ■ ) : a ^   im.-,   x .' ■ ^i.f?   ; 1.:J.    !"y ersu. ii,_ 

that they are plane we erect normals to each area.    If  it happens  thai 

rorual." are orientc-il ran^v^i'ly, but statistical!,,  iniforit'ly,   i,  e,,  tlie 

M'U'her of remain foil'-'"!   li   any sol id a.ngle is dependent only upon in- Mag- 

nitude of the angle and not upon the direction, we regard   the  s-iysteifl of 

surface-,, a^ r»c space, v s ele! 

r. 

-;ir.inec   !■;, 

(■>■.    i^    ;i_:-._..&     1 (-IT   lllij^t      •(    -.i,-...;, t'iYf. I 

.    pleric!?   :•■: ?: ' t  .'-   )   thei:   i.'rfr  the  •.■i.C'rJr. thai  1hi   ; 

netric  ii. space,     Tic diart. + ij   el ■'hi   ; p' .:: lea]   wrfatt   .! r- 

11 (■ :■ £-,ci-ii   \   cf  c.pei irif   ■ i.; "c.     Jor E  t'^'-'-   ■-•■■' ' ^ • 

;sten  cf grain, f-urfa-^!:  cf a iolicryf/ij^Ilx. i   f£"t]coc 

ii  tl.i.  L
1

'
1
 

1! ;   :       i'„uicocc1   :;!   tit'.L.    "": >. ref ore,   'itj-    '     +'  i   grcbrc'  it 

>;;;(_'.   'he   ''average   jrhape"   ■" equiaxed  grairis cl  d   to  sphericf-l, 

I;.  „ :.'   instances  iwlivi^af-.]   types of ndci-cparti'.dee i.vv Lf.c.h.i iri* S 

"i dice  cf c;iitc l.sy^'tv configure tic   ,  A..-, from. Figure  3 it   i.s apparent 

:. K- 

Lcn pc-r-icles  cf Si JV 1 DT-    r 1   1 

: ; ■ : c.r: particles ci >. \ 

prarli--, i :r:^:.' -lic]f-: 

:!;:•-.    ' 'v/ever > 

in ra "ilt are  shaped  as  il'.ior.t  i oguliu 

jhase are  sh%.peu  as  rj.vlir.ders.     In ] .■■J 

;.■   axes ci   L;r.:cti„.     f rany pearlite-type 

■-"tier: '-■ ■-'■."  "■-    f an alloj  have randoi   directiens,   !.hc sy-tcr; of 

their surface: a^ a v.holo are isonetri"  ir. space.     Giver, that each group 

of particles has an identical   Lpa.tla.1 orientation, a:--  -,   j.,  a colony 

cf al' cr ■.■■•'inj -lcJc]eJs '. f   '" rrdte and  cen-etlit: ■.vithin   '•'.(■  lii 'ii   c' » 

"!  ^^ c   iTfii   (i lai f 1"' -  pearli^e vi ( rf  f zit"..•.'.:.Mo»   ecet  ; r";  c i ij   ' _'. 

■ ;':    'he   t r: c; ■'.;,• I '       .   ether   c:!   : ' ■        :   '        ,.ui: e   ; a; ' ' i ' ', . ,   '; ■ ■    '   . 

■sten. as  r.  v.hcle   i r ■..:.:-■..htedl -  isw.c'r;.". 
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The isometricity of a spatial structure may be given another defi- 

nition. From some point within a volume of an alloy we direct straight 

lines in different directions  OJ three-diinensiona/# jpace. If 

the number of intersections 01 these lines with the surfaces of a system, 

which is of interest to us, divided by a length which is the same for 

all lines, is identical for all lines and independent of their direction 

in space, then this system of surfaces is isometric. 

Since there may be a great number of different types of space 

orientation of boundary surfaces, we shall consider here the basic, the 

more typical ones which frequently occur in real structures. They are 

shown schematically in Figure 69.  The schematic drawing in Figure 69a 

corresponds to the case of disoriented or isometric system of surfaces. 

It shows a three-dimensional structure of a polycrystalline aggregate 

with grains equiaxed in space.  It is obvious, that a structure may be 

more complex, for example, it may consist of many phases or structural 

constituents. Thus, surfaces of graphite precipitate in cast irons 

(except the so-called XXX "decomposition graphite"), surfaces of the ce- 

mentite and fcrrite phases in granular or lamellar pearlite, surfaces of 

twinning pl^r.cs in'oopper or austenite, surfaces of brittle equiaxed 

particles of nonrnetallic inclusions (although the particles themselves 

may be oriented as a "chain" in the direction of rolling) and many others 

may serve as examples of systems of isometric surfaces in space.  In 

one and the same complex structure, surfaces of micropartioles of certain 

phases or structural constituents may be oriented, whole surfaces of 

micropartioles of other constituents may be isometric. 

Plastic deformation, carried out at temperatures sufficiently low 

to produce residual strain of micropartioles, is responsible for the 

appearance 1 f space deformation of their surfaces, generally for a large 

group of micropartioles or even for all micropartioles without any ex- 

ception.  It should be noted that on a flat section we have frequently 

observed identical structure types of the orientation of grain boundaries, 

whereas the space orientation of corresponding boundary surfaces radically 

differs.  Sometimes an isometric system of grain boundaries may be ob- 

served in a microsection, whereas the corresponding surfaces have a 
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clearly manifested spatial orientation. For example, on a transverse 

microsection of metal, deformed by drawing, we can observe an isometric 

network of boundary lines on a plane whereas the corresponding boundary 

surfaces possess a quite considerable spatial orientation. Hence it fol- 

flowa that it is important to correctly choose planes of a microsection 

in the case of oriented structures. For example, from a transverse 

microsection of metal, deformed by drawing or by rolling, we cannot form 

a correct idea either about the true grain size or about their shape. 

In some cases one microsection is not sufficient at all, in order to 

form an idea on a three-dimensional structure of an alloy. 

6 
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Fig. 69. Diagram of the kinds of orientation of the systems of the boundary 
surfaces in space. 

a—isometric system; b—linearly oriented; M c—oriented in a  plane; 
d--linearly oriented and plane-priented syptem of surfaces 

The shape of grains subjected to various types of plastic deforma- 

tion changes to quite a degree. Drawing or rolling of rods of approx- 

imately equiaxed cross section modified the spherical shape of the grain■ 

surface, elongating it in the direction of drawing or rolling, whereas 

the cross section of grains in the plane perpendicular to this derection 

is reduced. As a result, grains acquire shapes of more or less elongated 

fibers.  In this case of deformation, the system of surfaces of micro- 

particles acquires the orientation, the nature of which is illustrated 

by the schematic drawing in Figure 69d.  In this type of deformation, 
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a ceratin part of elements of surfaces of microparticles, which (ele- 

ments) we regard as flat areas of an infinitely small but similar size, 

happen to be not disoriented but parallel to the axis of drawing or rol- 

ling. In a section perpendicular to this axes, the plane system of boun- 

dary lines appears isometric and grains appear equiaxed, A system of 

surfaces of this kind (Figure 69d) has a linear (axial) symmetry, the axis 

of wire or rolled product, of equiaxed cross section, being the axis of 

symmetry. The structure in any plane passing through the axis of symmetry 

is statistically identical. 

A system of surfaces, similar to one analyzed, the elements of which 

have a preferred orientation parallel to one line, deformation axis (which 

we understand as the direction of action of the force causing the de- 

formation), we shall call a system of surfaces with linear orientation. 

The same kind of orientation is observed in crystallized structures: 

the axis of symmetry of surfaces of columnar crystallites is the line 

perpendicular to the surface giving off heat. 

The elongated shape of microparticles (Figure 69b) does not neces- 

sarily predetermine the linear orientation or their surfaces (for example, 

the structure of babbit) )Figure 4). It is not the shape of micropar- 

ticles that is important but the regularity of their orientation in space. 

Basically the different type of orientation of surfaces is produced 

by compressive deformation (upsetting), which reduces the size of micro- 

particles in the direction of action of the force and uniformly increase 

their sizes in directions perpendicular to the deformation axis. From 

the viewpoint of space symmetry, the shape of flat grains and the system 

of surfaces of grains deformed by compression (Figure 69c) have the same 

axial symmetry as the systems of surfaces with linear orientation, with 

the axis of symmetry being also the axis of deformation, that is the di- 

rection of action of external forces. 

Just as in the case of systems of surfaces with linear orientation, 

plane systems of boundary lines in cross sections perpendicular to the axis 

of symmetry are isometric, the grains are equiaxed and in cross section, 

passing through the axis of symmetry or parallel to it, a statistically 

identical structure is observed. Nevertheless the difference in orien- 
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tation of surfaces of micropartioles of the type shown in Figure 69b 

and c attracts attentions  in the first drawing, in the first approxi- 

mation, the oriented portion of the grain surface is cylindrical whereas 

in the second type it appears as plane areas. The principal difference 

between these two systems of surfaces (Figure 69b and c) is clearly man- 

ifest when the systems are regarded as broken down into elementary plane 

areas, as it was done previously. In the case of an isometric system of 

surfaces, these areas are completely disoriented in space; in systems 

with linear orientation a certain part of areas is oriented parallel to 

the axis of symmetry; in the latter case (Figure 69c) the oriented part 

of areas is disposed perpendicular to the axis of symmetry or to the 

direction of forces causing deformation. For this reason, this system 

of surfaces we shall call a system with plane orientation. 

Speaking of systems with linear or plane orientations, we always 

have in mind only a partial orientation of a given type, since in practice 

a complete orientation is never encountered. 

Schematic drawing of the system of surfaces, simultaneously cor- 

responding to the presence of both considered types of orientation, 

linear and plane, is shown in Figure 69d. This type of a structure may 

be produced by forge rolling, by rolling as strip, etc., when micropar- 

tioles are flattened and simultaneously widened but not to the same degree 

in the direction of rolling or forge rolling and perpendicular to it. 

In this case, microsections, made in all three planes (parallel to the 

surface of the strip, perpendicular to it and simultaneously parallel to 

the axis of rolling, and also perpendicular to the axis of rolling) have 

different plane structures. 

From Figure 69 it is apparent that there is a great diversity of 

grain shapes and systems of surfaces of micropartioles, which ic deter- 

mined by the type of plastic deformation and, naturally, by its degree. 

Previously we have examined only the simplest cases, whereas in practice 

there occur other, more or less complex, types of deformation and, 

correspondingly more or less complex types of orientation of surfaces 

(for example, in torsion, bending, removing of the chip by different 

types of cutting, etc.). 
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The type of orientation of boundary surfaces is the most important 

characteristic of nonisometric structures. With the plane structure 

being the same with respect to quality as well as quantity, the space 

structure and, consequently, the behavior and property of the metal, de- 

pendent upon this structure, may differ a great deal. For example, a 

structure, shown in Figure 64, may occur on a microsection of metal which 

may possess linear and plane orientations. The values of specific surface, 

the radius of its curvature and, consequently, the degree of thermody- 

namic stability of the structure, are precisely dependent upon the orien- 

tation present in a given case. 

For this reason, the value of the grain axis ratio as a character- 

istic of a plane structure, as was proposed by Ye. Geyn, F. Rapatts, et 

c.l., is meaningless if we do not know the type of spatial orientation of 

microparticle surfaces. At the same time, many investigations frequently 

indicate the precise degree of deformation but without mentioning its 

type, which deprives us of the possibility of estimating the spatial 

orientation of surfaces at least from the type of deformation used and 

responsible for this orientation. 

On the basis of the aforementioned consideration, we come to the 

conclusion that the magnitude of specific surface alone is not sufficient 

as the characteristic system of boundary surfaces. The quantitative 

evaluation of the degree of a given orientation in terms of the basic 

types, is also needed.  It is all the more needed, for as we shall see 

further the determination of the value of specific surface itself requires 

that the type of the orientation be known. 
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Section 25. Measuring Specific Surface by the Method of Random Secants 

for Space 

For the measurement of extent of surfaces in spade we shall use the 

same principal which underlies the method of measuring the length of 

lines on a plane by the method of random secants. In space there also 

exists a singular relationship between the mean number of the intersects 

and the value of specific surface of a given boundary system. The solu- 

tion of Buffon's 2-dimensional "needle" problem, which underlies the 

method of random secants on a plane must be revised to be applicable to 

a 3-dimensional space problem. 

The analogy is confirmed by the complete agreement between the 

dimensionalities of quantities measured and calculated in both cases. 

Both on a plane and in space, the dimensionality of the mean number of 

intersections per unit length of secants is expressed in mm . However, 

dimensionalities of these specific length of lines on a plane (measured 

in mm/mm ) and specific surface in space (measured in mm /mm ) are also 

expressed in ram" . Thus, the coefficient of proportionality between the 

mean number of intersections per 1 mm of lengths of random secants and 

the specific length of lines on a plane, or surfaces in space, is a non- 

dimensional quantity. 

The derivation of the basic formula of the method of random secants 

for space, similar to the corresponding formula derived for a plane (20,7)} 

may be based on any system of surfaces in space. The surfaces of a 

system may be plane or curved, with any curvature, continuous or inter- 

rupted, composed of individual surfaces isolated from each other bounding 

a definite section of space or leaving it open; the surfaces may inter- 

sect each other or not come into contact at all; the elementary areas, 

comprising surfaces of a system, may be completely oriented, that is, 

Icmted parallel to one (or several) planes or lines; they may be oriente.i 

only partially for, finally, they may be completely disoriented.  In 

other words, a system of surfaces may have an absolutely arbitrary shape 

as well as location of surfaces, that is, of its components. There is 

only one uniquely essential requirement; the magnitude of the total area 
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of a given system of surfaces in a unit of volume of the sipeoimen, which 

is being analyzed, must he representative of the entire volume of the 

aggregate which is the object of studies, 

A large numbbr of straight lines (secants) are drawn through the 

volume of metal or alloy, their location being random and their direc- 

tion random. Under these conditions, the mean number of intersections 

of random secants with surfaces of a given boundary systea, in the struc- 

ture of metal, divided by the unit length of secants (l mm), which we 

shall designate as m, will be proportional to the value of total surface 

of boundaries in the unit volume of metal; i, e,, it will be proportional 

to the value of specific surface; it will be dependent exclusively upon 

the latter. The relationship between these two values is expressed by 

the basic formula of the method of random secants for space: 

^S = 2m mm2/mm 

(25.1) 

Let us prove analytically the validity of Formula (?5«l), for this 

purpose, we shall isolate a large number of cylinders leaving the volume 

of metal or alloy which is being investigated. The axes of these 

cylinders will be secants that we have drawn. The cross section of 

cylinders, P, is assumed to be disappearingly small, so that when the 

limit P approaches zero, the cylinders themselves become straight lines 

coinciding with the axes of cylinders; that is, secants. The total length 

of all random secants and, consequently, of all cylinders in the volume 

of metal in quesion we shall designate as L, 

Surfaces of cylinders intersecting boundary surfaces of the metal 

structure, found in the volume in question, will carve out a large 

number of elementary areas from boundary surfaces, which we regard flat, 

inasmuch as the section of cylinders, F, approaches zero.  In that case, 

the shape of these elementary areas will be elliptical. Let us desig- 

nate the total number of these elementary ellipses as Z; their areas as 

3,, S„, S-,, ,,,, S ; and acute angles, formed by the areas to the axes 

of cylinders as y-p y,) Yy •••• Y   » respectively. Then we may 

write Z number of similar equations: 

F    o     F     a     F si = SIHT^; 
; 32= iiinr; ' s3= iirr ; 
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and so on. 

Hence we find the total area of all elementary areas carved out by the 

cylinders: 

s1 +s2 + S   + .., p/l        +     1 
sin y,       sm -ri y2     sinY3 

sm 17' 

+... + 

(25.2) 

The total volume of all cylinders is obviously FL, Since a large 

number of cylinders were taken and they were located periodically and 

randomly throughout the entire volume subject to investigation, now we 

may believe that the total area of body surfaces found within the cylin- 

ders, divided by their total volume, corresponds to the value of specific 

boundary surface characteristic for the entire volume of metal in question, 

that is to the value of S, Therefore, 

S, + S,, + S, + ... + S 
q .  1   2   3        z _ 

1 /_ 1__    1      1 1_  \ 
= I   ^siny- + ilHy" + iin y- +--+ sin J^j ' 

In the limit, when the cross section of cylinders, F, is reduced 

to zero, the cylinders will be straight randomly directed lines (random 

secants) and the total number of elementary areas, Z, carved out by the 

cylinders, divided by the total length of all secants, L, will be equal 

to the mean number of intersections of the secants with surfaces of 

structural boundaries divided by unit length of secants; that is, it will 

be equal to m. For this reason, 

SS =m 1 +      ^    +      1 
Z   (  sfny" +iinY2  +sinY3  + " sm V: 

Bm, 

(25.3) 

Since the cylinders, carved out in space, are directed randomly 

and chaotically, any position of a cylinder axes with respect to elemen- 

tary areas carves by it, estimated by angle Y, is equally probable. 

For this reason, the part of the equation (25.3) found in brackets and 

designated as B is the mean reciprocal value of the sine of angle j 

formed by the axes of cylinders and elementary areas; this angle varies 
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between zero and ~ . Let us find the value of B, aasuming that any 

value of angle Vis equally probable, with-in the afora-montioned limits. 

We choose a system of rectangular coordinatos with axes x, y, and 

z, with the radius-vector (the length of which is equal to unity) 

through the origin of coordinates. The coordinates of the second, non- 

stationery end of the radius-vector, we shall designate as x, y, and z. 

Let the angles, formed by the radius-vector and coordinate planes yz, 

xz, and xy respectively, be equal to <?<. , JS  ,  and V , 

Now, by simple geometrical relations we find the value of the sine 

of angle■»!/ formed by the coordinate plane xy and the radius-vector, 

as a function of direction of the vector in space, determined by coordi- 

nates of its nonstationery end: 

)      -1/    2   2 siny= |/l-x -y . 

It is obvious that the choice of any of the three angles, formed by the 

radius-vector and coordinate axes, is equally correct, and identical 

results would be obtained in all three cases. The reciprocal value of 

the sine of the chosen angle will be equal; 

1  _     1 
3in7 -/i'"-?'-^2 * (25.4) 

The mean reciprocal value of the sine of angle   we shall find by 

integrating the function (25.4) within the limits of the first octant of 

the coordinate system, using the theorem of the mean value of a function; 

dx . dy  

V^2-/2" 
(=2) 

/ - A     *  dx 

(25.5) 0 

As a result of integration of function (25.5) within the above-mentioned 

limits, we derive the exact figure w. By substituting this value of the 

coefficient B into Formula (25,3), we finally derive the basic formula on 

the method of random secants for space: 

^ S = 2m mm /mm , 

exactly in the form presented (25,1). 



i 
This formula is applicable for any system of surfaces in space under 

the condition of equal probability of the direction of secants, for which 

addition was used as a basis for the derivation of values of coefficient 

B. 

However, to satisfy this only requirement under conditions of'3- 

dimensional space is far from being simple, in contrast to the analyses 

by the method of random secants on a plane. The specimens used in raetal- 

lographic investigations are not transparent. For this reason, it is 

impossible to draw random secants in the volume and to calculate direct- 

ly the produced intersections between secants and boundary surfaces. It 

is true that it would be possible to prepare a quite large number of micro- 

sections, through the specimens of the investigation, locating them 

uniformly in all possible directions, and having drawn one or several 

secants on each raicrosection, we find the total mean value of the number 

of intersections per 1 mm of length of secants for all microsections, 

which mean value would be characteristic for the entire subject as a 

whole. However, this method is extremely inefficient, although it may 

be realized. For this reason, we have to find some means for the appli- 

cation of the derived basic formula, which would permit us to limit the 

analysis to the plane of the microsection instead of in space. In this 

case, the number of required microsections should be minimum. 

The mean number of intersections, m, is independent of the shape of 

secants drawn in space; they may be not only straight but also curves 

having a bound or open contour line in the plane, or they may be space 

curves.  The equal probability of the direction of secants, needed for 

the coefficient B to be equal to the value calculated by us, is absolutely 

identical to the requirement of equal probability for any angle with which 

the secant intersects the surface. If the angle   with which the secant 

intersects the surface, assumes all possible values, then the validity 

of Formula (25.5) is completely retained.  Let us examine under what 

conditions the equal probability of any angle, at which the secant inter- 

sects a small elementary area (into which we can break down any system 

of boundary surfaces), is maintained. 

Let us assume that all elementary areas or at least a definite 

fraction of them have a regular spatial orientation, for example, para- 
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■'-/ llel to a certain one or several planes or lines. In that 

case the equal probability of any angle, at which the secants intersect 

elementary areas, is satisfied only in the case when any direction in 

space of secants themselves is equally prahahle. If all of tho elemen- 

tary areas are completely oriented in space, then a system of arbitrarily 

directed secants or even only one straight or curved secant, possessing 

a sufficient length, assures us that any angle of intersection with ele- 

mentary areas may be obtained with equal probability. In other words, 

of the two systems which are simultaneously present in the space which is 

being examined (systems of elementary areas into which we broke down the 

analyzed boundary surfaces and systems of secants), at least one must be 

disoriented in space and randomly and periodically directed. 

In a system of surfaces isometric in space, the mean number of inter- 

sects per 1 mm of length on any secant, directed arbitrarily, will be 

one and the same. Therefore, random secants may be arranged, in parti- 

cular, in one plane and consequently, to limit the analyses only to one 

microsection. 

By intersecting the isometric system of boundary surfaces by a plane 

we obtain a plane structure with equiaxed grains, similar to one shown 

in Figure 49. Traces of intersections of grain boundary surfaces on an 

arbitrarily located plane of the microsection create on it an isometric 

system of boundary lines. For this reason, the mean number of intersec- 

tions per 1mm of length of secants, determined on several microsections 

the planes of which are arbitrarily directed, will happen to be the same 

for all the microsections and, consequently, the actual number of inter- 

sections, ra, for a system of boundary surfaces of the subject as a whole. 

Hence, it follows that the method of random secants for space and 

its basic formula (25,1) are directly applicable for the study of spatial 

isometric systems of boundary surfaces. 

Therefore, in many instances, which occur in metallographio practice, 

the mean number of intersections may be determined on a single micro- 

section, as has been described for plane systems of boundary lines. For 

example, for the afore-mentioned Figure 49, the mean number of intersec- 

tions, m, on the plane of the microsection is found to be equal to 11,6 
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mm-1 to -1 (see Table 23), Therefore, the specific surface of grain 

boundaries in this case is 

2]S = 2 . 11.6 = 23.2 mm'/mm . 

The area of graphite flakes in 1 mnr of gray iron, the structure of which 

2 
is shown in Figure 51» similarly happens to be 20.0 mm and the specific 

?  3 
surface of graphite is 40.0 mm /ram . 

Prior to applying the above-described methods and Formula (25.1), 

it is necessary to prove that the system of boundary surfaces, which is 

of interest to us, is actually isometric in space. Here it should be 

kept in mind that the isometricity of a given system of boundary lines 

on a microsection does not prove that boundary surfaces are spatially 

isometric. For example, the system of boundary lines on a transverse 

microsection of a round or a wire is isometric, but the spatial iso- 

metricity of boundary surfaces must be confirmed by the same isometri- 

city of a system of lines on a longitudinal microsection. 

We raust warn that it remains to be shown that Formula (25.1) 

is valid and universal for any systems of surfaces in space, since the 

coincidence of the mean number of intersections determined on a plane of 

microsection, and the value m, which is found in Formula (25.1), occurs 

only for systems with isometric surfaces in space. For those systems, 

we can write: 

2    -TT ' 

as follows from Formulas (20,6) and (25.1), Hence it follows that 

JS = -|-£ P = 1.273 rP mm-1 . 

(25.6) 

The latter relationship shows that the assumption made by I, P, 

Lipilin [129], as a first order approximation, that the total length of 

boundary lines on a microsection is proportional to the total grain 

surface in a volume, happens to be absolutely invalid. The condition for 

the validity of this postulate and for Formula (25,6) is the isometricity 

of a system of grain boundary surfaces (or of micropartiolas of structural 

constituents) in space. 

The validity of the method of random secants and that of its basic 
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formula for a plane could "be   ••■■'■' very nicely experimentally, since 

the length of lines on a plane may be measured by several different 

methods. The experimental verification of the method and formula (25.1) 

for the case of 3-dimensional space presents a different problem, for 

besides the method of random secants there are no other methods permit- 

ting control measurements of the length of complex surfaces. For this 

reason, the validity of the method for space connot be verified experi- 

mentally on a wide number of surface systems characterized by different 

geometrical shapes and space distribution. 

Besides the existing complete analogy with corresponding postulates 

for a plane, the validity of the method and of the formula of random 

secants for space is confirmed experimentally on two specific structures 

distinguished by a definite geometrical regularity which makes it pos- 

sible to measure the specific surface by other methods. Such types of 

structures are structures of lamellar and granular pearlites, the methods 

for measuring the specific surfaces of these boundaries of which have 

been considered previously in Section 18. 

For lamellar pearlite, Formula (18.l), based on considerations of 

the geometry of pearlite structure, consisting of alternating platelets 

of ferrite and pearlite each pair of which has the same thickness within 

the limits of a given volume, is valid: 

E^,r -  i;scem *-,- nunV, 
2/.„„3 

cem   4 

where Zln is the distance betwee- the platelets, in mm.  If the basic 

formula of the method of random secants is valid, then by comparing the 

latter formula with Formula (25.1) it is possible to establish the rela- 

tionship between the mean number of intersections per 1 mm of length of 

secants, m, and the value of interlamellar distance: 

1     -1 
m = —~  mm (25.7) 

The mean number of ceraentite platelets intersected by the random 

secants on a microsection of eutectoid steel, then equals Z per 1mm of 

length of secants. In this case we assume that the secants pass through 

a sufficiently large number of pearlite grains and roughly into platelets 

at all possible angles to their planes, since the structure of lamellar 
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pearlite is i3omei,ric in space. In that case, the mean number of inter- 

sections of secants with oementite-ferrite interfaces will be twice as 

large as the number of intersected platelets, Z, inasmuch as each plate- 

let is intersected by a secant at two points of its plane. Therefore, 

m = 2Z mnT1-, (25.8) 

Let us designate as /a the value of mean intercept of secants be- 

tween the edges of adjacent cross sections of cementite platelets (or 

of ferrite), on planes intersected by secants at all possible angles, 

as shown in Figure 70. This value obviously is 

A- min. 

Comparing ZJ with Formula  (25.8) we derive: 

_2 

2" 
-i 

(25.9) 

(25.10) 

Now, by removing the quantity m from Formulas (25.7) anti (25.10) we 

find the relationship between the mean length of that intercept on secants, 

/\,  measured on the plane of a microsection as shown in Figure 70, 

and the actual value of the interplatelet distance; 

A'  2Z\ . (25.11) 

Fig. 70. Structure of laminar petlite andianinteräefeting straight line. 

The investigation carried out by M. Gensamer and his associates has 

established from the results of careful measurements that the mean distance 

between the edges of cross sections of adjacent cementite platelets on 

a microsection, which varies with the direction that may be perpendicu- 

lar to the cross section of platelets or parallel to it, is 1.9 to 2.0 

times treater than the actual interplatelet distance (directly measured 

L 
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in the same grains of pearlite whose platelets are perpendicular to 

the plane of the microsection) [122], \X'J~Q&'   ^  that the value measured 

by M, Gensamer, et al., is identical to the one which we have desig- 

nated as   . 

The coefficient of proportionality between the quantity^! and 

interplatelet distance An>  experimentally found by M, Gensamer and 

his associates, is 1.9 to 2.0. Precise mathematical calculations, pre- 

sented above based on the formula of the method of random secants for 

space (25.1), gives the value of this coefficient as 2.  This agreement 

between experimental and calculated data concerns the validity of the 

method of random secants for a spatially isometric system of surfaces 

of phase boundaries in lamellar pearlite.  It is obvious that the method 

applied by M. Gensamer and his associates is a specific case on the uni- 

versal method of random secants. 

When cementite or carbides in steel are spheroidal, their specific 

surfaces may be measured by several methods distinguished by a different 

degree of accuracy (see Section 18), The most accurate results are 

produced by calculations based on the number of carbide grains per unit 

volume and distribution of their size, which can be determined by the 

method of E. Scheil,  Comparative measurement of specific surface by 

this method and by the method of random secants, carried out by M, Ye, 

Blanter, concerned the validity of the method for this type of struc- 

tures [140].  Similar verification by producing the same results, was 

carried out by S. Z, Bokshtein [188], 

Thus, experimental verification of the method of random secants 

for space, carried out on 2 types of structures, which permit measure- 

ments of specific surface by other methods, confirms the validity of 

the method itself and of its basic formula for space.  It is noteworthy 

that over a short space of time, less than 10 years, the method of 

random secants for space has been developed, three times [58, 59» 131, 

43, 141], This shows how great is the need for experimental measure- 

ment of metal science. 

The experimental confirmation of Formula (25.1) also automatically 

confirms the validity of Formula {2'j,C),  which establishes a direct 

proportionality between the values of the specific surface of boundaries 



in space and the specific length of corresponding boundary lines on a 

plane, which is valid for surfaces that are isoinetric in space. On 

the basis of this relationship, the values of specific surfacfc^s of grain 

boundaries have been determined for all eight numbers of grain size 

specified by the standard scale in COST 5639-51.  It should be kept in 

mind that the specific surface may differ, even if the number of planar 

grains per unit area of the microsection are the same, for there is no 

singular relationship between any two of these values.  Therefore, the 

figures made by us and shown in Table 25 are valid only for concrete 

structures on a standard scale. 

/• 
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Table  25, 

]   no rOCT 5039 
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10 
15 
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1   no IOCT 5035-51 

1 
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1                5 
6 
7 

1                8 

42 
59 
85 
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For a rapid, but approximate, determination, of the value of 

specific surface of grain boundaries we have developed a special scale. 

The evaluation of this scale is carried out by means of visual compari- 

son of the picture, visible through the microscope or on a photomi- 

crograph, and the scale shown in Figure 71,  In contrast to the standard 

scale, which has a step-like representation, the proposed scale de- 

scribes the structure with a continuously and smoothly changing value of 

the specific grain surface [142],  Values of the specific surface, 

given on the right, correspond to each horizontal section of the scale, 

if the magnification of the structure, which is being analyzed, is 100, 

200, 1, and 500, At other magnifications the value of specific surfaces, 

derived from the scale, must be divided by 100 and multiplied by the 

actual magnification at which the structure was examined. 
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Section 26, Measuring the Specific Surface by the Method of Directed 

Secants for Space 

As it has been previously mentioned, the basic formula of the 

method of random secants for space is universal and valid for any sys- 

tem of surfaces. However, its application for cases, when system of 

surfaces are not isometric in space, is difficult due :;o the fact that 

the determination of the mean number of intersections, m, requires that 

secants must be arranged in space in different directions.  Therefore, 

to determine the mean number of intersections which would characterize 

the entire space system of boundaries as a whole, theoretically an 

infinitely large number of microsections with planes differently oriented 

in space, is needed; in practice the number of such microsections should 

be at least six. Although the application of formula (25,l) in the 

case of space oriented systems of surfaces is theoretically valid and 

permissible, due to the aforementioned reason in practice it is more 

expedient to use varieties of the method of random secants developed 

for the application to oriented systems of boundary surfaces.  Such 

methods have been proposed by us [59) 60] and by A. G, Spektor [61], 

When applying these methods, the secants are arranged not randomly but 

are directed in a definite manner and rectilinear secants are used ex- 

clusively. For this reason, methods of this kind, in contrast to methods 

of random secants, may be grouped together under the name of methods 

of directed secants. 

The method of A, G. Spektor is intended for the measurement of 

specific surface of boundary systems having a special axis of symmetry. 

According to our classification (see Section 24) structures of this 

type belong to systems of boundary surfaces having either linear or 

plane orientation (but not both types of orientation simultaneously). 

For systems of surfaces having an axis of symmetry, the mean number 

of intersections, just as for any other system, is singularly defined 

by the value of a specific surface in accordance with the basic formulai 

m = 5 y,S    mm 
(26.1) 

Moreover, in this case the number of intersections at individular se- 

cants is the function of angle^ formed by these secants and the axis 



of symmetry. 

The number of intersections per unit length of the secant, found 

within the elementary solid angle dw, the apex of which lies on the 

axis of symmetry, will be: 

1 

j 
(w) dw. 

(26.2) 

The magnitude of the elementary solid angle dw is defined by the dif- 

ferentials of two angles, angle   formed by the secant and the axis 

of symmetry, and angle   , which determines the rotation of the plane, 

in which the secant lies, about the axis of symmetry. In conformance 

with the rule of computation of mean values of directed quantities. 

we have; IT, 

0 0 
m=r7f ra {$,<§]  sin S ,  i J . ig). 

(26.3) 
f-0  .-'--o 

Inasmuch as, for the type of surface systems in question, the 

structure is identical in any plane passing through the axis of symmetry 

(or parallel to it), the number of intersections is dependent only upon 

the magnitude of angle /? and is independent of angle d',  which de- 

termines the rotation of the secant about the axis of symmetry. For 

this reason, expression (26.3) is converted into the following expres- 

sion; 
^ 
Z7 

2 IT 
- 2 r" ( y ) sin J . i jf 

o 

= [ m f A» ) sirWd^ J     ' 
0       (26.4) 

By bringing from Formula (26.,4) the value of the mean number of 

intersections, derived for the case of axial symmetry of boundary sur- 

faces, into the basic formula (26.1), we derive: 

(26.5) ^3=2 '    ra ( v) sin,- . d.y , 

4, '      ' 
or in a more convenient form for calculations; 

r-S = 2 ; m ( .-' ) d [cosy]. (26.6) 

The latter formula is the working formula for the measurement of 

specific surface of boundary systems with an axial symmetry by the 
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method of A, G. Spektor. The mathematical derivation of Formula (26.6) 

is rigorous without any approximations or assumptions which would re- 

flect on the accuracy of calculations of the specific surface. 

A raicrosection, whose plane intersects the axis of symmetry or is 

parallel to it, is used in practical applications of Formula (26.6). 

For articles, produced hy rolling or drawing, which have an equiaxed 

cross-section profile, the plane of the microsection must intersect 

the axis of the rod, which is precisely the axis of symmetry of the 

structure. For sheets the plane of the microsection is arranged per- 

pendicular to the surface on a sheet and the axis of symmetry is also 

perpendicular to the plane of the sheet; in the latter case Formula 

(26,6) is applicable if the system of measured boundaries is isometric 

in the plane of the sheet and the grains are equiaxed, that is, bhere 

is no linear orientation, but only plane orientation.  In specimens 

deformed by upsetting, the plane of the microsection must coincide .vith 

the axis of the specimen (or with the direction of action of external 

compressive forces), which is precisely the axis of symmetry. 

Several groups of secants are marked on the microsection, and a 

definite angle formed by the axis of symmetry and the direction of se- 

cants of a given group, is maintained in each group. Among chosen di- 

rection of secants, two must be always present, perpendicular and parallel 

to the axis of symmetry.  In addition to these several other directions 

are chosen and the number of which is determined by the need for a 

smooth plotted curve. For secants of each group, a mean number of 

intersections per 1 mm of their lengths, is calculated separately, A 

graph with coordinates "cosine of angle  formed by secants and the axis 

of symmetry versus mean number of intersections in a given direction" 

is plotted from the data obtained. After that graphical integration 

is carried out: the area under the plotted curve is determined from 

the graph, which is equal to the mean number of intersections, defined 

by Formula (26,4) or to the half of the value of the specific surface, 

defined by Formula (26,6),  By doubling the found value we find the un- 

known specific surface. 

Let us consider an example given in the paper by A, G, Spektor 

[61],  The specific surface of the interface between pearlitic and fer- 
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ritic constituents was measured in the central portion of a cross 

section of preannealed steel wire after it had been drawn from 5.5 mi 

to 3.8 mm in diameter, The obtained mean number of intersections, m 

(p),  for each of seven directions, characterized by angle X1 formed 

by the intersection and the axis of the wire, are listed in Table 26. 

The graph of the relationship between the mean number of intersections 

and the cosine of angle z? is given in Figure 72. The area under the 

curve, shaded in the drawing, is 

m =  m (^ ) d [cos/f ] = 252 ram"" . 
(/ 

To find the. specific surface, vie  double the latter figure and find; 

V S = 2.252 = 504 rmn2/mm3 . 

Table 26 

VrOfl iiaKJToHa 
cos ? 

WHCJIO nepeMHena« 

ccKymefl   ,'1 m (?), MM   '    -f 

0 1,00 101 
2,5 1.00 103 

14 0,97 135             ■ 
28 0.88 175 
44 0,72 226             i 
76 0,24 310 
'Hi 0.00 316 

In the example considered, the system of boundary surfaces between 

pearlitic and ferritic constituents is linearly oriented, according to 

our classification. 
100 

m{ß) 

11 

Fig. 72. Determining spatially the average number of intersections for the structu» 
sjmmelricalrelative '•o the axis (A. 0.  Spector /"6l_7) 

Fig. 73- Determining spatially the average number of intersections for the 
structure symmetrical relative to the axis (sheet rolling), by the 
method of A. G. Spektor. 

Let us cite another example for a case of plane orientation. '.Ve 
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have carried out measurements on a specimen of sheet transformer steel 

with the structure of silicon ferrite, the grain surfaces of which 

have a plane orientation (that is, preferred orientation parallel to 

the surface of the sheet)., In planes which are parallel to the surface 

of the sheet, the structure is isometric. In this case, the axis of 

symmetry of the structure, as well as the plane of the raicrosection, 

are disposed perpendicular to the surface of the sheet. The number of 

intersections was calculated on secants the direction of which with 

respect to the axis of symmetry varied with interval of 10 degrees. 

The obtained mean numbers of intersects for each direction are listed 

in Table 27. For graphical integration a graph has been plotted of 

the relationship between the number of intersections and the cosine 

of angle ß , which, as it may be seen in Figure 73, may be regarded 

as rectilinear. The slope of the line is opposite to the one which 

took place in linear orientation (Figure 72), which is understandable: 

in a rod or wire the highest number of intersections occurs on secants 

perpendicular to the axis of symmetry (that is to the axis of the wire 

or rod), whereas in a sheet it occurs on secants parallel to this axis 

(that is perpendicular to the plane of the sheet).  By measuring the 

area under the graph in Figure 73, which is made easier due to the 

fact that it is rectilinear, we find that the mean number of inter- 

sects is 9.'-> mm-1. By doubling this number, we derive 19.2 mm /mm , 

which is the specific surface of grains of silicon ferrite. 

In practice, calculations of the number of the intersections 

on different directed secants can be more readily conducted if the 

microscope has a rotating stage with a scale graduated in degrees, 

as for example microscopes MT- -2, M ^-3, and others.  Satisfactory 

results are produced when an attachable rotating ring with a scale 

graduated in degrees is used.  This ring goes with Ml' M-7 microscopes 

but can be used with any other metallographic microscope. 

We have developed two variants of the analyses by a method of 

directed secants. One of these methods (the method of oblique micro- 

sections) makes possible to determine only the total value of the 

specific surface. The second method (the method of directed secants 

for space), besidca that, maces it possible to estimate quantitatively 

ZfJ 



Tahlc   -5 7. 

/ 

*/%          J*'    . *. j* /yy) i _ 

VrOJI   MKJiOU 
co»p 

m tf>. *«   ' 

0 1,000 17,0 10 0,985 16,8 20 0,940 16,0 
30 0,866. 15,5 40 0,766 13,6 50 0,643 11,8 60 0,500 9,9 
70 0,342 7,3 80 0,174 3.8 90 0,000 2,3 

- ■ 

xtrs~<*~ 



the orientation of surfaces of a system [59, 60], Both methods are 

based on the assumption that a real system of oriented boundary sur- 

face? may be regarded as consisting of two systems of which one is 

completely isometric and the second is completely oriented, 

A. Linear Orientation of Boundary Surfaces 

By breaking up boundary surfaces into equal, infinitely small 

elementary areas, in conformance with the original assumption, we 

take that a certain number of these areas are disposed parallel to 

the orientation axis, whereas the rest of areas are completely dis- 

oriented in space and, consequently, represent an isometric system. 

In rolling rounds of equiaxed cross section, in drawing rounds or 

drawing wire, the axis of orientation coincides with the axis of 

produced round or wire. 

The total surface of the isometric number of elementary areas may 

be calculated from the basic formula of the method of random secants 

for space (25,1) under the condition that we know the mean number of 

intersections only and exclusively with those elementary areas which 

are disposed isometrically. Let us consider a case when the secants 

are directed precisely parallel to the orientation axis. Areas with 

linear orientation are also disposed parallel to this axis, therefore, 

secants of chosen direction cannot intersect then. Consequently, the 

mean number of intersections on secants, parallel to the orientation 

axis, is determined exclusively by the number of isometric areas. 

Therefore, having determined the mean number of intersections per 1 mm 

length of secants, parallel to the orientation axis which we shall 

designate as m,r, we can from Formula (25.1) find directly the specific 

surface of tho isometric number of boundary surfaces: 

3.  = 2 m„ , 

(26,7) 

Now, let us determine the specific surface of the oriented portion 

of boundary surfaces.  Inasmuch as the elementary areas of this portion 

are parallel to the orientation axis, they are simultaneously perpen- 

dicular to any plane located at a right angle to this axis, that is, 

they are perpendicualr to the plane of any transverse microsection of a 

round or wire. On a longitudinal microsection, the plane of which in- 

tersects the symmetry axis, or is parallel to the latter, traces of 



areas with linear orientation form a system of lines parallel to the 

orientation axis. Let us place on the longitudinal miorosection secants 

perpendicular to the orientation axis and let us determine the mean 

number of intersections per 1 mm of their length, m,,. These secants 

willintersect both the oriented and iiäometrio elementary areas. However, 

inasmuch as we know the mean number of intersections with thß iso- 

metric portion of areas, m , which is independent of direction, we can 

determine from the difference the number of intersections only with 

the oriented portion of areas. It will be 

m^ - m,, . (26.8) 

Traces of areas with linear orientation form on the transverse 

miorosection boundary lines, whose length will be defined by the basic 

equation of the method of random secants for a plane (20.7): 

rP .  = -~ (m-, - m„) mm/mm . 
lin   2   J- 

(26.9) 

on the basis that the length of traces of areas with linear 

2 
orientation per 1 mm of the area of transverse miorosection is defined 

by the Equation (26.9) and that areas themselves are disposed perpen- 

dicular to the plane of the miorosection, it is possible to conclude 

that 

57 3, ,  =rP   . 1 mm . 
^ lin  ''lin 

Hence it follows that the specific surface of the portion of boundary 

surfaces with linear orientation is defined by the Formula: 

^S   = -f^(m1 - raj ram /mm  . 
lln   2  - (26.10) 

For this reason, in order to measure the specific surface of boun- 

daries, with linear orientation, one longitudinal miorosection would 

suffice, the plane of which intersects the orientation axis or is para- 

llel to it. Correspondingly, two mean numbers of intersections, m, 

and m,, are determined. After that, the specific surface of the iso- 

metric portion of boundary is calculated from Formula (26.7):  the 

portion of boundaries with linear orientation is calculated from Formula 
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(26.10). The total value of the spucific surface, derived by adding 

the results obtained from both formulas, will equal: 

^Stotal =2:Sis^Slin = 0.429 m,l+ 1.571 mi . 

(26.11) 

The degree of linear orientation of boundary surfaces is determined 

by the ratio of the specific surface of the portion with linear orien- 

tation to the total value of specific surface, expressed in per cent. 

From Formulas (26.10) and (26,11) it follows that the degree of linear 

orientation of surfaces, ,_/■., .  is defined by the formula: 
' ^Im 

100 2 hm    _  100 K -m
i|)    , 

G,273 m,, + m-. ^-^SÜn^Ts 

(26.12) 

In the case of wire analyses, carried out by A. G. Spektor (see 

Table 26), the mean number of intersections on longitudinal and trans- 

verse secants was 101 and 316 mm- , respectively. From our formula 

2  3 
(26,11) we find that the total specific surface is 540 mm /mm , which 

differs approximately by Tfo  from the result obtained by A. G. Spektor, 

2  3 
which is 504 mm /mm . From Formula (26,12) we determine that the degree 

of linear orientation of a given system of boundary surfaces is 62,60/o, 

B, Plane Orientation of Boundary Surfaces 

Just as in the preceding case, we break down surfaces of a system 

into elementary areas, A certain number of these areas will be para- 

llel to the orientation plane and others will form as isometric system 

of surfaces. Surfaces of grains of a rolled sheet, if sections of grains 

on microsections, parallel to the plane of the sheet, are equiaxed, 

serve as an example of a system with plane orientation. The plane of 

orientation is the plane of the sheet; perpendicular to this plane vie 

locate the plane of the microsection subject to analyses. 

Secants, parallel to the orientation plane, do not contain inter- 

sections with oriented elementary areas, for they and the secants are 

usually parallel. Consequently, the mean number of intersections per 

1 mm length of secants, parallel to the orientation plane, will be 

determined exclusively by the length of the isometric portion of surfaces. 



This mean number of intersections we shall designate as m,,. Therefore, 

it is possible to write a formula which defines this specific surface 

of the isometric portion of boundaries in correspondence with the basic 

formula (25.1): 

f]S      = 2 m  mm /mm , 
is (26.13) 

The second group of secants we arrange perpendicular to the orien- 

tation plane, designating the mean number of intersections per 1 mm of 

their length as m. ,  If from this number of intersections are excluded 

those which are formed by the isometric portion of surfaces and the 

number of which per 1 mm of length of secants of any direction is m,,, 

then the mean number of intersections only with oriented elementary 

areas, located perpendicular to secants, will be defined as the dif- 

ference: 

m 
-1 

1 m,, mm . (26,14) 

From the law of total projection for space, which will be presented 

further in this article, it follows that the total area of mutually 

parallel areas per unit volume of space is numerically equal to the mean 

number of intersections of these areas by secants directed at right 

angles to them, per unit length of secants. Using this postulate, we 

directly find: 

2  3 
j£S  = m.. - mi| mm /mm . (26.15) 

Prom Formulas (26.13) and (26.15) it follows that the total mag- 

nitude of the specific surface of both portions of the system is: 

2  3 
>? S  , , = X S.  + £ S , = m-, + m,, ran; /mm  . 
^ total  ^ is  ^ pi   1   "    ' 

(26.16) 

The degree of plane orientation,^ . , is d.Bfined as the ratio of 

the portion of surfaces with plane orientation to their total specific 

surface expressed in per cent, that is: 

100 (m, - mj 

-pi -—^-A: ^ • (26-1^ 
From the aforesaid it follows that the analyses of structures with 

plane orientation also requires only 1 microsection, the plane of which 

must be perpencidular to the orientation plane.  Two groups of secants 
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are marked on the microsection parallel to this plane and perpendicu- 

lar to it,  Correspondingly, two mean numbers of intersections, m,, and 

m, , are determined. After that, from Formulas (26,13) and (26.15) it 

is possible to calculate separately the specific surfaces of the iso- 

metric and plane-oriented portions of boundaries and their total length 

from Formula (26.16). The quantitative expression for the plane orien- 

tation we find from Formula (26.17). 

In the above presented example of the analyses of transformer steel, 

which was carried out by us (see Table 27), the mean numbers of inter- 

sections on secants parallel and perpendicular to the orientation plane 

(which is perpendicular to the symmetry axis of the structure) were 2.3 

and 17.0 mm-1, respectively.  From Formula (26.16) the total value of 

2  3 
the specific surface is 19.3 mm /mm , which differs only by 0.5 per 

cent from the result obtained by the method of A. G. Spektor, which is 

2   T 
19.2 mm /mm . From Formula (26.17) we find that the degree of plane 

orientation of a given system of boundaries is 76.2 per cent. 

C. Planar-Linear Orientation of Boundary Surfaces 

As has been previously noted, this system of surfaces has no sym- 

metry axis and, for this reason, the method of A, G, Spektor is not 

applicable in this case, A system of surfaces with a planar-linear 

orientation has one orientation plane and one orientation axis para- 

llel to that plane, Elementary areas in such a system are subdivided 

into three groups! Areas of the first group are parallel both to the 

orientation plane and to the orientation axis simultaneously; areas 

of the second group are parallel only to the orientation axis, forming 

all possible angles with the orientation plane, each of which is equally 

probable; the arrangement of areas of the third group is isometric in 

nature, that is they are completely disoriented. 

This type of orientation occurs, for example, in a sheet, strip 

or band, in which grains on microsections parallel to the plane of the 

sheet are not equiaxed but elongated in one preferred direction. For 

example, in a band the plane of the band is the orientation plane and 

its orientation axis is its longitudinal axis.  In systems of the type in 
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question, schematically drawn in Figure 69<i, quantitative analysis re- 

quires that not one hut two miorosections be prepared. The plane of the 

first microsection must be perpendicular to the orientation plane and 

parallel to the orientation axis. This microsection we shall call long- 

itudinal. The plane of the second microsection is arranged perpendi- 

cular both to the orientation plane and orientation axis. We shall call 

this microsection the transverse microsection. 

Inasmuch as in this case we have two types of orientation, which 

have been previously considered each separately, it is possible to 

apply formulas similar to formulas (26.7), (26,10), and (26.15). The 

only requirement is separate determination of mean numbers of inter- 

sections for each of the three aforementioned groups of elementary areas, 

v/hich comprise a system of boundary surfaces with a planar linear orien- 

tation. Let us make an attempt to do just that. 

Let us draw a group of secants on a longitudinal microsection, 

which secants are parallel to the orientation plane (that is to the 

plane of the band) and which are simultaneously parallel to the axis of 

linear orientation, inasmuch as the plane of the longitudinal micro- 

section is also parallel to it. The mean number of intersections per 

1 mm length of such secants, which we designate as m,,, is determined 

exclusively by areas with isometric orientation. Actually, under the 

given conditions, areas both with planar and linear orientations are 

parallel to secants and the latter cannot intersect them. Therefore, 

in accordance with the basic formula, or Formula (26.7) we have; 

VS.. = 2m„ mm'/mm    . 
(26,18) 

The second group of secants we also draw parallel to the orien- 

tation plane (i. e., to the plane of the band) but on a transverse mi- 

crosection the plane of v/hich is perpendicular to the orientation axis. 

The mean number of intersections per 1 mi.i length of this group of secants 

we shall designate as m,.  Inasmuch as these secants are parallel to 

the orientation plane, they will not intersect the elementary areas 

with plane orientation.  However, inasmuch as they are perpendicular to 

the orientation axis, they shall intersect areas with linear orientation 
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and, simultaneous with that, areas with isometric disposition. There- 

fore, if the mean number of intersections varies with areas of linear 

orientation, we shall find from the difference 

tn, -mlt mm- , (26.19) 

and the specific surface of the portion of boundaries with linear orien- 

tation, in correspondence with Formula (26.10), will be defined by the 

expression: 

^-»■Mn = "^ (mi - m") mniVimn3 . 
iln   2   - (26.20) 

Third group of secants is arranged perpendicular to the orienta- 

tion plane and orientation axis (i. e., perpendicular to the plane of 

the band). Secants may be drawn on any one of the two microsections, 

for the results will be identical. In this case, the secants will inter- 

sect all three groups of areas. The mean number of intersoctions with 

these groups per 1 mm of secants we shal] designate as m,.  The mean 

number of intersections formed only be areas with plane orientation and 

secants, which are perpendicular to them, we shall find from the dif- 

ference by subtracting mean numbers of intersections with isoraetrically 

disposed areas, m , and the areas with linear orientation, which is de- 

fined by the expression (26.19), from the number m,, We deriv : 

m, - m,, - (mi - m,,) = m, - tn, -I 

(26.21) 

For this reason the specific surface of the portion of boundary surfaces 

with plane orientation, in correspondence with Formula (26.15), will 

be; 

/is pl m, - m,  mm /mm 
(26.22) 

Knowing how to determine separately the specific surfaces of each 

one of the three differently oriented portions of boundary surfaces, 

we can find without any difficulty the total specific surface by ad- 

ding the right half  of Formulas (26.18), (26.20), and (26.22). The 

degree of each type of orientation may be readily determined as the 

ratio of corresponding specific surfaces to their total magnitude 

expressed in per cent. 

The method of oblique microsections 39) 1?], first of developed 
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methods intended for the measurement of total magnitude of the specific 

surface of structures with linear and planar orientation, lost its im- 

portance after othex' methods, which had the same purpose and were de- 

scribed previously appeared. Therefore, it is necessary to discuss it 

here. Let us compare methods of analyses of oriented structures, de- 

scribed previously, and let us determine the scope of their application. 

As it has been already mentioned, the method of A, G. Spektor is rigor- 

our from a mathematical viewpoint and may be applied for the size 

measurement of the total specific surface of systems of boundaries with 

axial symmetry. A shortcoming of this method is its inapplicability 

to the case of a more complex orientation, in the absence of axial 

symmetry, and the impossibility of quantitative estimation of the degree 

of orientation,, Moreover, the method of A. G. Spektor, as compared 

with other methods, is more time consuming for it requires the deter- 

mination of the mean number of intersections in several directions and 

subsequently graphic integration, 

S, A. Saltykov's method of directed secants is approximate, but 

it has a number of advantages which are quite important in practice. 

It is applicable not only in the presence of axial symmetry but also in 

its absence.  It also permits quantitative evaluation of the degree of 

various types of orientations of surface systems. Its procedure is 

simpler than that of A. G. Spektor's method and less time consuming, 

for average numbers of intersections are determined in only two 

(maximum three) directions and further, calculations use simple for- 

mulas, We shall show further that the procedural error of the method of 

directed secants, which is based on the assumption that any system of 

surfaces may be broken down into several systems with a definite type 

of orientation, does not exceed 5 per cent, which is quite acceptable 

for the great majority of carried-out measurements. 

In cc-ijunction with the aforesaid, the method of A. G. Spektor may 

be recommended for a more precise measurement of the total specific 

surface of boundary systems with axial symmetry, when tt.e aim of the 

analyses is not the quantitative evaluation of the degree of or:eritation. 
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Section 27. The Rule of Projection for 3-(iimensions and Verification 

of the Method of Directed Secants 

Let us consider a system of mutually parallel and equidistant 

planes. Let us isolate within this system a cube with the edge equal 

to unity, so that two faces of the cube would be parallel and the rest 

perpendicular to the planes of the system.  If the distance between 

parallel planes is Zj, then the number within the volume of the cube 

will be --t-,  and the total areaof planes within the cube, i. e., per 

unit volume, will be: 

CS = -i- (1.1) = ~- mm2/mm3 . 
*     A A (27.1) 

In a more complex case we shall have a system of parallel plane 

areas of different dimensions and configurations, the planes of which 

will be disposed at different distances from each other, as shown in 

Figure 74. Let ui3 break down the volume of the cube into several 

identical prisms, whose bases are squares with the side equal to a. 

These prisms will carve out from the planes of the system a number of 

2 
areas, the maximum dimension of which may be equal to a .  Let us arbi- 

trarily agree to round off dimensioms of areas, considering the dimension 

equal to a square if it exceeds half of this value, and equal to zero 

if it is less than this value. 

Let us designate the number of these areas in each prism as m , 

fHo) "I-,, .... .  Then the total surface of all areas within the cube 

along the edge of which is unity and two faces are parallel to the areas, 

will be: 

CS = a  (.n-, + m0 + m + ....). 
^      1   2   3 (27#2) 

Since the total number of prisms in the cube, the edge of which is unity, 

will obviously be -2~i   then the mean number of areas in one prism vail 
a 

be: 
m + m0 + m-, + 

- _ __1 £_ _3 |i|i|...|. -1 
l^a2 

(27.3) 

In the limit, when the cross section of prisms approaches zero and 

prisms themselves are transformed into secants, the mean number of 



areas in one priam, m, will be equal to the mean number of intersections 

between plane sections of the system and secants perpendicular to them, 

per unit length of secants, i, e., it will be equal to nu.  Therefore, the 

specific surface of the system in question, in correspondence iwth Equations 

(27.2) and (27,3), will be equal to: 

2/ 3 
y S = m-i mm /mm , (27.4) 

This equation corresponds to the previously derived equation for a system 

of parallel equidistant planes (27.-1), since the ratio --r-  precisely ex- 

presses the number of planes intersected per unit length of secants and 

directed perpendicular to the planes. Formula (27.4) has been used by us 

previously when deriving the relationship (26,15). 

0/ 

Figure 74. 

Diagram to the derivation of th^ formula (27.4) 

Besides the regularity determined here, we are also interested in 

the quantity which we shall call the total projection and which we under- 

srand to mean the sum of areas of superimposed projections, when projecting 

all surfaces found in a unit volume of the system in question, to some 

plane. In both cases, considered above, the systems consist of mutually 

parallel planes.  For this reason their total projection on a plane para- 

llel to them, obviously precisely coincides v/ith the value of specific 

surface. Therefore, it may be stated that for the two considered specific 

cases the total projection of surfaces of a system onto a plane is equal 

precisely to the mean number of intersections per unit length of secants 

directed perpendicular to the chosen plane.  Let ua demonstrate that this 

postulate is general for any system of surfaces. 
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In the most general case, a sj/stem of surfaces may consist of 

surfaces that are open or bound, convex or concave, continuous or iso- 

lated from each other, plane or curves. Just as in the preceding case, in 

such a system 'Figure 75) we break down the volume in question, which has 

a shape of a cube whose edge is unity, into a number of prisms whose 

bases are squares with the side a. Let us examine the projections of sec- 

tions of the surface of the system, carved out by lateral faces of prisms, 

onto the base of a plane of a cube. Within each prism, those projections 

which are greater than a /2 we round off to a , and ignore the others. 

The further course of logical consideration coincides with the derivation 

of Formula (27.4) for a system shown in Figure 74. For this reason we are 

not going to repeat it. The result is the law of projections for space, 

according to which the total projection onto any plane for any system of 

surfaces is precisely equal to the mean number of intersections between 

surfaces and secants directed perpendicular to chosen planes, per unit 

length of these secants. 

Fig. 75. Diagram to the derivation of the 
space, 

rule of the total projection for 

This important law makes it possible in many instnaces to deter- 

mine parameters of planar structures, for preselected dimensional systems 

of surfaces. As an example let us consider a group of spherical surfaces 

periodically but uniformly distributed through space. The diameter of 

spheres is D and the number per unit volume is N, The total projection of 

a sphere onto any plane is equal to twice the area of its central crosj 

section, as follov/d from the definition of "total projection", which 

states that the projections of two half spheres are superimposed and the 



areas of projections are added. For this reason the total projection of 

N spherical surfaces, which according to the law of projections is equal 

to the mean number of intersections formed by secants and surfaces, will 

be defined by the expression: 

ra = H? 211 = * £ S mm"1 . 
4        ^ (27.5) 

This means that we derived the basic formula of the method of 

random secants for space (25.1) by other means. Further, using Formula 

(20,7), inasmuch as a system of spherical surfaces is isometric in space, 

we can find the specific        of perimeters of cross sections of 

spherical surfaces from any plane intersecting a system of spheres: 

& 2 4        4   Z 

We shall use the rule of total projection for determining the 

accuracy of the method of directed secants for space. For verification of 

this method we shall carry out a system of surfaces, representing identical 

ellipsoidal figures, which are periodically but statistically-uniforrnly 

distributed through space and arranged in such a manner that large axes of 

all ellipsoids are mutually parallel.  Such a system is an example of a 

system of surfaces with  linear orientation, in which the direction of 

large axes of ellipsoids is the orientation axes (also the symmetry axis). 

As compared with real structures, the system chosen for the verification 

of the method is not suitable for its evaluation, since in real systems of 

boundary surfaces there are always present sections parallel to the orien- 

tation axis (particularly at high degrees of orientation), whereas in this 

case oriented sections are absent. We assume that the large half axis 

of the ellipsoid is a and that the small half axis of the ellipsoid is b 

and that their number per unit volume is N, 

In accordance with the method of directed secants, we mentally 

draw two groups of secants, parallel to the orientation axis and perpendi- 

cular to it,  The mean number of intersections of these secants, m,, and 

ra,, we shall determine by the rule of total projection. The ellipsoid is 

projected onto a plane, perpendicular to the first group of secants, as a 

circle the diameter of which is 2b. Twice the area of li  such circles will 

be equal to the mean number of intersections of secants parallel to the 
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orientation axes 

rr m  = —  
4 

m =_^l2b):_-2K = 27-b2Nmm-i. 

(27.6) 

The ellipsoids are projected onto a plane perpendicular to the second 

group of secants (that is which is parallel to the orientation axis) as 

ellipses with half axes a and b. Twice the area of JJ such ellipses will 

be equal to the mean number of intersections on secants perpendicular to 

the orientation axis: 

m, = 277" abN mm 
(27.7) 

How putting at our disposal mathematically exact values of mM 

and m,, we calculate the specific surface of the system of surfaces of 

rotation of ellipsoids, in question, the formula of the method of directed 

secants for the case of linear orientation (26.11): 

r S = 1.571 m, + 0.429 m,, ram /mm-^ , 

Substituting the values of the number of intersections, derived from for- 

mulas (27.6) and 27,7)) and dividing both sides of the equation by the 

number of ellipsoidal sides per unit volume, K, we derive a formula which 

makes it possible to calculate approximately the surface of rotation as a 

function of the half axes: 

S = 277'b (l.^la + 0.429b). 
(27.8) 

The verification of the derived formula unexpectedly revealed the 

following circumstance:  its accuracy is approlimately twice as high if 

the ratio of half axes of the ellipsoid is less than 3, and it becomes 

many times higher as this ratio increases, as compared with the approx- 

imation formula which is listed in reference books for the calculation of 

the surface of rotation of an ellipsoid.  [143], [144]: 

S = 2 yT77b Ya2 + b2 . 
(27.9) 

The formula is coincidental with a positive error (the results of calcu- 

lations happens to be greater than the actual value), and Formula (27.9) 

is coincidental with the negative error. 
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Under the most adverse conditions, the procedural error, which is 

due to the assumption that any system of surfaces may he broken down into 

elements isoraetrically arranged and oriented in a definite manner, does 

cot  exceed 5 per cent. 

The principal of breaking down surfaces, v/hich are being measured, 

into groups of elementary areas, oriented in space, in a definite manner 

(or disoriented), may be applied also in cases of a more complex orien- 

tation than the three types considered by us v/hich are most commonly found 

in systems of boundary surfaces of metallic structures. 
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Section 28. Orientation Analysis of Systems of Boundary Surface Areas 

Besides the total extent (area) of boundary surface areas per unit 

volume of a metal alloy, their space orientation is also of great interest; 

the spatial orientation is generally dependent chiefly on the processes 

of plastic deformation or directional crystallization. Therefore, spec- 

ifically, the orientation study of boundary surface areas, which is quite 

effective in determining local deformations, their heterogeneity and distri- 

bution in the volume of metal, is quite promising for the revealing and 

understanding of the mechanism of plastic metal flow in alloys. The 

spatial orientation of boundary surface areas may be considered from dif- 

ferent viewpoints, on the basis of which appropriate methods of its quan- 

titative characteristic are developed. 

On the basis of purely geometrical notions, the orientation of an 

isolated elementary area may be defined by the size of angles which it 

forms with predetermined directions (axis, planes). From this viewpoint 

the orientation of complex systems of boundary surface areas may be esti- 

mated, for example, in the terms of relative fractions of elementary areas 

(or a fraction of these specific surface area), oriented in a definite 

manner. The method of this kind, developed by us [60], v/hich permits 

numerical evaluation of lineal, plane and mixed lineal-plane orientations 

with the aid of coefficients of the degree of orientation, was described 

previously (see Section 26). Although this method is based on a certain 

assumption, its accuracy is quite sufficient for the most cases of orien- 

tational structural analysis. A rigid method for the estimation of orien- 

tation with the aid of a polar distribution diagram of the function of 

density of normals was developed by A. G. Spektor [146], This method is 

applicable for systems of surface areas with axial symmetry, which accord- 

ing to our classification corresponds to lineal orientation or plane orien- 

tation. 

From the other viewpoint, the orientation of boundary surface areas 

may be characterized by the density of their disposition in various special 

directions.  The quantitative estimation of orientation, based on this 

notion, is expedient for several reasons.  It is precisely the density of 

disposition of surface areas in various directions that determines the 
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anistropy of properties of a metal or an alloy in the same measure in which 

it is dependent upon the interfacial boundaries of microparticles of like 

or unlike phases. The appearance of certain types of orientations of 

boundary surface areas is singularly connected with the regular distur- 

bance of the initially uniform density of their disposition in various 

directions, Therefore, on the basis of the density of disposition of 

surface areas it is; also possible to obtain, if it is necessary, a purley 

geometrical interpretation of their orientation. The method of estimating 

the orientation, based on the density of disposition of surface areas in 

various directions, is reduced to construction of a space rows of the 

number of intersections [138], similar to the plane rose of the number of 

intersections, described in Section 21. 

Finally, it should be mentioned that it is possible to estimate 

indirectly the orientation of boundary surface areas by the ratio of 

lineal dimensions of microparticles (or their sections), measured in de- 

finite directions. The evaluation of oriented structures by the ratio of 

diameters of plane grains was proposed long ago by Ye, Geyn [136], In- 

asmuch as this value almost always has a singular relationship to the degree 

of deformation of a given kind, it has been successfully used for the es- 

timation of local deformation [145) 175]. It can be demonstrated that 

this characteristic of an oriented structure can be also derived from the 

density of disposition of areas in different directions, that is from the 

space rose of the number of intersections. 

From the aforesaid it follows that the space rose of the number of 

intersections is a universal and comprehensive characteristic of orien- 

tation of surface areas, for it permits to calculate the value of the speci- 

fic surface area and also to determine the quantitative indices of the 

orientation of surface areas of any interpretation which may seem more 

expedient to us. 

If from any point within a system of surface areas rays are drawn in 

many directions, that is, secants with directions uniformly disposed in 

space, it is possible to calculate the number of intersections for each 

secant separately and to derive the mean number of intersections for each 

direction which is of interest to us.  This postulate may be expressed 
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in a somewhat different way, which has a greater conformity with the method 

used in practice: the mean number of intersections for any given direc- 

tion is determined by calculating the number of intersections for one group 

of mutually parallel secants, having had the same direction in space. 

Knowing the mean numbers of intersections for several directions, which 

obviously express the density of disposition of surface areas in these 

directions, we construct the space rose of the number of intersections in 

polar coordinates. The shape of the rose is singularly defined by the re- 

lative probability of intersection of surface areas of the system by se- 

cants in various directions, that is it is determined by the density of 

disposition of surface areas in these directions. For this reason the 

shape of the rose gives a complete characteristic of the orientation of 

these surfaces in space. The absolute dimensions of the rose, constructed 

on a definite scale, are singularly dependent upon the size of the specific 

surface area of a boundary system in question. 

If a system of surface areas has an axis of symmetry, then the con- 

struction of the rose of the number of intersections is extremely simple. 

In such systems the structure is identical in all planes of polish which 

intersect the axis of symmetry (or are parallel to it).  Therefore the rose 

of the number of intersections by corresponding boundary lines, constructed 

for any axial plane of polish on a plane, is obviously the axial intercept 

of the space rose. The shape of the latter is defined as the shape of 

the rotational body, obtained by rotating the grain rose of the number of 

intersections about the axis of symmetry. 

For example, a system of parallel planes has the axis of symmetry 

perpendicular to them and in a section, which intersects this axis, it 

appears as a system of parallel lines. For the latter, the plane rose of 

the number of intersections is represented by two circumferences of equal 

diameter tangent at the origin of coordinates, the centers of which lie on 

the axis of symmetry (Figure 59).  The rotation about the axis of symmetry 

makes it possible to produce a space rose of the number of intersections 

for a system of parallel planes, which is represented uy two spheres 

tangent at the origin of coordinates, whose centers lie on the axis of 

symmetry of the system ari whose diameters are equal. 
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In the case of space isometric system of surface areas, the mean numbers 

of intersections on secants of any direction coincide, just as it follows 

from the definition of the notion of isometricity itself. For this reason 

the space rose of the number of intersections is shaped as a sphere, the 

center of which is found at the origin of coordinates. The axial section 

of such a rose is identical with the shape shown in Figure 57. 

If we accept our conjecture that it is possible to break down any 

system of surface areas into groups of identical elementary areas, of which 

areas of one group are arranged isometrically (completely disoriented in 

space) and areas of other groups are in one or another way completely 

oriented, the space rose of the number of intersections may be constructed 

by the method of adding vectors of each direction, as it is done on a 

plane (see Section 22). By this method a space rose may be constructed 

from mean numbers of intersections in few directions (two or three), 

both for systems with axial symmetry and for systems without it, 

A series of sections of space roses of the number of intersections,, 

intercepting the axis of symmetry (which is simultaneously the axis of 

rotation) is shown in Figure 76 for systems of boundary surface areas with 

the degree of plane orientation ranging between 0 and 100 per cent, A 

completely isometric system of surface areas is characterized by a spheri- 

cal rose of the number of intersects (Figure 76)1).  In the presence of 

plane orientation, "necking" appears which narrows down with increasing 

degree of orientation (Figure 77>2to 5). '//hen a system of surface areas 

becomes completely oriented, the rose transforms into a pair of spherical 

surfaces tangent to each other (Figure 76, 6), 

Oft 

Fig, 76.    Axial sections of apace roses of the number of intersections with 
different degrees of plane  orientation.    The vertical axe? are  the axes 
of symmetry,  and the axis 0—Ois the plane of orientation. 
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In the case of lineal orientation, the space roses of the number of 

intersections have different shapes. A series of axial sections of roses 

for systems of surface areas with the degree of lineal orientation, 

gradually increasing from 0 to 100 per cent, is shown in Figure 77. In 

contrast to the preceding case, here the initial sphere contracts with 

the increasing degree of orientation; contraction characterizes the iso- 

metric system along the axis of symmetry (Figure 77» 2 to 5). When a 

system becomes completely linearly oriented, the rose of the number of 

intersections becomes a torus, whose radius of the internal circle is 

equal to zero (Figure 77-6). 

|P%- 

Fig. 77. Axial sections of space ros^s of intersections with different 
degrees of linear orientation.  Tte vertical axes are the axes of 
symmetry and orientation. 3 0l 

In Figures 76 and 77, vertical axis of all shapes are simultaneously 

the axis of space symmetry of the structure and the axis of rotation for 

the formation of space rose from its section.  In the case of a plane 

orientation, its plane is perpendicular to the axis of symmetry (Figure 

77). 

A rose of the number of intersections may be constructed by gwo methods: 

a simpler one based on measurements in a few directions (two to three) and 

by a more complex method using a large number of microsections.  By com- 

paring the shapes and sizes of roses, constructed by these methods for one 

and the same system of boundary surface areas, it is possible to deter- 

mine the permissibility of our assumption that any system of surface areas 
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consists of completely isometric and completely oriented fractions. We 

shall cite certain results of such comparisons. 

We have analyzed a system of interfacial surfaces of ferrite and 

pearlite constituents in a sized rod 9.5 "U11 i" diameter from steel 30, 

The plane of polish coincided with the axis of the rod.  The number of 

intersections between the secants and boundary lines, separating the 

ferrite and pearlite coüstituents, were counted in ten groups of secants 

(in ten directions) for every 10 degrees.  The total length of secants 

in a group for each direction was taken such that the total number of 

intersections would be at least 1000, A total of more than 10,000 inter- 

sections were counted for the construction of the rose of the number of 

intersections. One quadrant of an axial section of the rose of number 

of intersections for a given case is plotted in Figure 78.  The line which 

connects the points of the mean numbers of the intersections in various 

directions has been constructed graphically by our method of directed 

secants (see Figure 63), using the mean numbers of intersections of only 

two directions, parallel and perpendicular to the axis of symmetry (the 

latter is also the axis of the rod and the axis of orientation). Despite 

this, the rest of the points have a quite satisfactory agreement with the 

same curve, which lends evidence that the original postulate of our method 

of directed secants is permissible. The fact that when the direction of 

groups of secants varied between 0 and % degrees with respect to the axis 

of symmetry, they were disposed within a tenth to cover uniformly the entire 

area of the longitudinal plane of polish of the rod, should be taken into 

consideration.  Nevertheless, it is possible that the scatter of points 

was produced by the essential difference in the magnitude of the specific 

surface areas in the periphery and central sections of the sized rod. 

We have made similar measurements for a system of surface areas of 

silicon ferrite grains in sheet transformer steel (the thickness of the 

sheet 1 mm).  Planes of polish were disposed perpendicular to the plane 

of the sheet.  The control checking has shown that in the plane parallel 

to the plane of the sheet the ferrite grains were equiaxed, which gave 

evidence that axial structural symmetry was present. A total of about 

1200 intersections have been counted for 10 directions.  A graphic plot 
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of 1 quadrant of the axial section of the rose of the number of intersec- 

tions is shown in Figure 79. Data obtained only for two directions, para- 

llel and perpendicular to the axis of symmetry, have been used in this 

case for the construction. Nevertheless, Figure 79 shows that there is 

no need whatever to consider the mean numbers of intersections for all 

other directions, inasmuch as they have a fine agreement with the curve 

plotted only from two points. Consequently, in this case also the pos- 

sibility of the original postulate of the method of directed secants, 

developed by us, is also confirmed, .vi 

Fig, 78. Axial sectioa of the space rose of the number of intersections 
for the system of surfacesof the portion of the perlite and ferrite compo- 
nents in a calibrated bar of seel of brand 30 (therä is shown one 
quadrant of the section of the rose). 

Fig. 79, Axial section of the space rose of the number of intersections 
for the system of the surfaces of the grain of silicon ferrite of 
sheet transformer steel (one quadrant of the section of the rose 

is shown). 

The results similar to those shown in Figures 78 and, 79 have been 

obtained by us for a number of specimens different as to types of orien- 

tation and structure, Roses of the number of intersections f^r grain boun- 

daries of ferrite in sheet steel, lor interfacial boundaries of ferrite 

and pearlite constituents in rolled rounds of different diamter, for inter- 

facial boundaries in 2-phase brass rounds, for the same type of inter- 

facial boundaries of ferrite and pearlite constituents in the rupture 

zone of the specimen deformed by stretching, etc,, were constructed 

expreimentally. In many cases a calculated curve has a fine agreement 

with experimentally found values of the mean numbers of intersections for 

different directions. 

Let us consider a system of surface areas, with a plane orientation, 

having broken down the areas into two groups: a group of disoriented 
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elementary areas and a group of areas usually parallel. The number of 

intersections on the secants, which are parallel to the plane of orien- 

tation, will be determined by the size of the specific surface area of 

the ü~OU? of disoriented areas only and it will be equal to mM. This 

number is independent of the direction of secants. The number of inter- 

sections with areas, disposed parallel to the plane of orientation, is 

dependent upon the angle   between the secant and this plane.  If the 

angle  is 90 degrees, then we obtain the maximum number of intersections 

which is 

-1 m, - m,, S   mm or 

as it follows from Formula (27.4), inasmuch as the number of intersections 

with oriented areas only is equal to the total number of intersections 

minus the number of intersections with disoriented areas, which is equal 

to m^. It may be easily conceived that the mean number of intersections 

for any direction, m , will be defined by the expression: 

m   = (m - ra ) sin  +m  mm  , 
-        ' " ' (28.1) 

where  is the angle between the orientation plane and the direction of 

the secant.  From the latter equation it follows that the graph of the 

mean number of intersections in different directions, versus the sine 

of angle   must be a straight line. This is the same relationship ex- 

pressed by the rose of the number of intersections but plotted in dif- 

ferent coordinates. Deviation of experimentally found points from the 

straight line gives a more visible evidence of the error, due to the 

assumption on which our method of directed secants is based, than the 

plot of the rose in polar coordinates. 

In Figure 80 line 1 shows the relationship for the same case, em- 

ploying the same data which were used for plotting the rose of the number 

of intersection in Figure 78.  Line 2 has been plotted using the same 

data as for the rose in Figure 79. Lines 3 and 4 were plotted by exper- 

imental data of A, G, Spektor for interfacial surface areas of ferrite and 

pearlite constituents in steel wire [6l], with the scale on y axis l/lO. 
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steel per our de.e, 3. 4-^ «'" "V™, 
(sale elone the axis of the ordlnetes 1/10) 

V/hen discussing the results obtained the fact should be taken into 

consideration that the method of secants is a statistical method which 

definitely means that a number of intersections is determined with an 

inavoidable error. Moreover, scatter of points is possible due to 

nonuniform degree of orientation and the size of the specific surface 

area in external and in deeper layers of one and the same specimen.  The 

mean angle formed by the secant and interfacial areas continually decreases 

as the direction shifts from perpendicular to parallel to the axis or plane 

of orientation. This possibly predetermines the systematic error, the 

magnitude of which is dependent upon the mean angle between the secant 

and interfacial surface areas and increases as the latter decreases. 

Considering the aforesaid, it is possible to assume that rectilinear 

relationship between the mean number of intersections and the sine of the 

angle between the secants and the axis or the plane of orientation is quite 

justifiable for the purpose of practical application of the method of 

directed secants when it is necessary to estimate the orientation of boun- 

dary surface areas. 

In summing up we arrive at the final conclusion that the quantitative 

evaluation of the more common types of orientations lineal and plane 

(occurring separately or together), is quite reliable and may be accom- 

plished with sufficient accuracy by the coefficients of the degre'f of orien- 

tation, calculated by the method of directed secants with the aid of for- 
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mulas (26.12), (26.17) and formulas similar to them.  In a case of a more 

complex orientation, a comprehensive and visible picture of the orienta- 

tion of a surface areas system is given by the space rose of the number 

of intersections. This, however, is less convenient for it deprives us 

of the possibility of quantitative study of the relationship between the 

orientation of boundary surface areas and factors which affect it, inas- 

much as the orientation is characterized not by concrete numbers but by 

a type of complex space shape, its projections or sections. 

Now let us consider another method of estimating the orisntation of 

boundary surface areas, proposed by A. G. Spektor [146], The orientation 

of an elementary area with respect to any direction, defined by the straight 

line 1, is characterized by the size of the angle (l,n) between this straight 

line and the normal n to the elementary area. Let us designate the size 

of the elementary area as d3 and project all areas, comprising a system 

of boundary surface areas confined in a unit volume of metal, onto plane Q, 

perpendicular to a chosen direction, that is perpendicular to the straight 

line 1. It is not difficult to see that the sum of all projected areas, 

dS , is equal to the mean number of intersections of boundary surface areas 

with the unit length of the straight line 1, that is it is equal to m, 

(see Section 27). At the same time Formula (28.2) 

m = ! dS. = I ens (l, n) dS. 
J  Q  v (28.2) 
s 

Hence it follows that Formula (28,3) 

cos (1, n) = --i- , (28.3) 

where the quantity S stands for the same thing as  S, that is for the 

specific surface area. 

Formula (28.3) gives the absolute value of the cosine of the angle 

between the normals to the surface area and the chosen direction, the 

weighted mean for the entire boundary surface area.  For the direction it 

is more feasible to choose the symmetry axis of the structure.  This value, 

which we shall call the mean cosine of the normals, according to A. 0. 

Spektor is precisely the means for the estimation of the general orienta- 

tion of boundary surface areas with respect to the axis of symmetry of the 
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structure, in particular, or with respect to a given straight line, in 

general. The mean number of intersections, m , in the direction parallel 

to the axis of symmetry, may be readily determined from the longitudinal 

plane of polish. The specific surface area, S, is calculated by the method 

of directed secants with the aid of graphic integration by Formula (26.6), 

for which purpose it is necessary to determine the relationship between the 

mean number of intersections and the direction of the secant with respect 

to the axis of symmetry of the structure on the longitudinal plane of polish. 

Let us consider an example illustrating the calculation of the mean 

cosine of normals experimental data of A. G. Spektor, obtained for the inter- 

facial surface area of pearlite and thorite constituents in steel wire 

drawn from 5.5 n™ down to 3.8 nun in diameter.  These data are listed in 

Table 26 and Figure 72. The mean number of intersections in the direction 

which coincides with the axis of symmetry is 101 mm  and the value of the 

specific surface area, found by graphic integration as in Figure 72, is 

504 mm /mm . From these data we find the mean cosine of normals from 

the Formula (28.3) f 

101 
cos (1, n) = -^- = 0,20, 

The limiting values of the mean cosine of normals determined by sys- 

tems of surface areas completely oriented in the direction of the axis 

of symmetry (complete lineal orientation) and completely perpendicular to 

it (complete planar orientation). In the first case, the mean cosine of 

normals with respect to the axis of symmetry is 0; in the second case it 

is 1. From Formulas (25.1) and (28,3) it may be readily concluded that for 

an isometric system of surfaces the mean cosine of normals is 0,5 with 

respect to any straight line. Hence it follows that the values of the mean 

cosine of normals, varying between 0,5 and 0, characterize the increasing 

lineal orientation and that values varying from 0,5 to 1,0 characterize 

the increasing planar orientation. 

By comparing the mean cosine of normals with coefficients v/hich 

sharacterize the degree of lineal or planar orientation (see Formulas 

26,12 and 26,17) it may be seen that the latter contain the mean numbers 

of intersections in the direction perpendicular to the axis of symmetry of 

the structure (in addition to parameters, which are general for both types 

of orientation estimation). The mean numbers of intersection, determined 
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along the axis uf symmetry and. perpendicular to it, vary with increasing 

orientation in opposite directions. Therefore, the evaluation of the 

degree of orientation by coefficients is more "sensitive" than the evalua- 

. tion by the value of the mean cosine of normals, which compensates for 

a certain lack of rigor in the procedure of deriving formulas which de- 

fine the coefficients of the degree of orientation. It should be also 

noted that the experimental determination of the latter is simpler, for 

it requires measurements only in two directions, whereas the determination 

of the mean cosine of normals requires measurements in many directions and 

graphic integration. 

The mean cosine of normals, similar to the coefficients of the degree 

of orientation, gives only a general notion on the orientation of boundary 

surface areas. For a more detailed characteristic of orientation it is 

necessary to evaluate the distribution of individual fractions of boundary 

surface area with respect to various directions of normals to them.  In- 

asmuch as the solution of such a problem for space is connected with math- 

ematical difficulties, A. G. Spektor considers a similar dimensional 

problem.  "Function of relative density of normals" is introduced, which 

characterizes the relative length of lineal boundaries, whose normals lie 

within a definite range of angles. The function of density of normals 

is defined by the equation: 

ip(^; 
1  / dL i 

T / "dd7 ' (28.4; 

in which L is the specific length of lineal boundaries in a plane of section 

intersecting the axis of symmetry of the structure; ^ and (^ =; d. ) are 

the angles formed with the axis of symmetry within the limits of which lie 

the normals to that fraction of lineal boundaries, the length of which is 

defined by the value of dL, 

Similar to expression (28,2) we find the mean number of intersections 

per unit length of the secant, m, which secant has a certain direction n: 

IT 

m = \    cos (n, m) dL = L l (F ( cC ) cos (n, m) d W . 

L <K--v (28,5) 

Prom the latter equation we have to obtain the relationship between 
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ths function of the density of normals, fiel)  and direction expressed 

through the angle of A   ,    We introduce an assumption that the angles of 

inclination of normals to the axis of symmetry vary continually as a mul- 

tiple of a certain small angle J -.  If this angle is chosen sufficiently 

small, the error of this assumption will be slight.  Let us consider an 

example of calculations, cited by A, 3. Spektor, in which the angle   is 

taken equal to -n- or 22.5 degrees. 

The diagram of directions chosen with respect to the axis of symmetry 

of the strutture. is shown in Figure 31. The axis of symmetry coincides 

with the line 8-0. From this diagram it is apparent that the mean numbers 

of intersections in directions 0 and 8, 1, and 7, 8 and 6, 3 and 5» co- 

incide for asc-h pair. Assuming that all values of cosines have a plus 

sign, we derive from Formula (28.5) a system of five equations, and by 

solving it with respect to the value of the function of density of normals 

we find the following working formulas: 

'i'0 = -g = --- (6.050 m3 - 6,150 m4); 
L 

t'! = r7= ~- (3;325 m3 + 3,325 m4); 

f2 = *6 = -j- (3,325 m1 - 6,ISO m, + 3,325 m^; 

^3 = ^ = -~ (3,325 m0 - 6,150 i^ + 3,325 m,,); 

-I-  (6,650 m - 6,150 m ). (28.6) 
'4 

The specific length of boundaries on the plane of polish L, found in 

the formula (23.6), is determined from the basic formula of the method of 

random secants for a plane (20.7): 

TT „  TT  mo mn + m, + m„ + ... 
m = "T 

2     " . (28.7) 

Knowing the mean numbers of intersections in five directions (0, 1, 2, 3, 

and 4, in the diagram shown in Figure 81) it is possible to calculate the 

functions of the density of normals for each direction and to plot in ap- 

propriate polar diagram, which is precisely the final characteristic of 

the orientation of boundary surface areas, done by the method in question. 

The method described may be illustrated by an example, cited by its 
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ar.thor [146], The subject of the investigatior. was the interfacial area 

of pearlite and thorite constituents in steel wire drawn from 5.5 mm down 

to 3.8 mm in diameter (reduction 52 'fa).    The mean numbers of intersec- 

tions, shown in Table 28, were determined on the plane of polish inter- 

secting the axis of symmetry of this structure (which coincided with the 

axis of the wire). 

biAutayro       (huriU 
QMJUUU. ft»'- Table 28 

HinpiBJWHHf 

(PHC.   81) 

Vroji 
CpcAFice   MHCJIO 

ncpcce'icHHfl 

-1 
(l>yilKUHfl HflOTHOCTH 

HOpMa^cft 

*                         1 

0 
1 
2 

3 
4 

0 
22°, 5 
45°, 0 
67°, 5 
90°, U 

mi 
155 
227 
290 
316 

—0,04 
O.lili 
0,24 
0,40 
1,18 

In the same table are also presented the values of the function of 

the density of normals, f, calculated by us from formulas (28.6). The 

value of this function must be always positive, as it follows from the 

formula (23.4).  Therefore, it should be assumed that the value of the 

function of the density of norirals for the direction coinciding with the 

axis of symmetry Of ^  = -O.O4), is negative either because of inaccuracy 

of initial data or, which is more probable, due to insufficient accuracy 

of working formulas (28.6), 

\ 
'X 

A"'— 

'L \ .r //a 
\ 

SI n 
Fig.  81. For the computation of the  function of th<J plane of the normals 

Fig.  82.  Diagram of the distribution of ths plane of the normals 
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Ix should be noted that the mathematical tools of the method are 

rigorous up to Formula (23.5), inclusive. However, calculations based 

on this formula am approxinate. Although theoretically it is possible 

to attain any accuracy be reducing the angle A   , in practice it is quite 

difficult to attain, for the calculation in this case becomes extremely 

cumbersome. The value of J      = -q-, taken by the author of the method, is 

clearly too large. 

The diagram of the distribution of densities of normals with respect 

to directions, plotted in polar coordinates (Curve l), is given in Figure 82. 

It corresponds to the data found in the table. The same figure ahows the 

rose of the number of intersections for the same system of boundary sur- 

face areas, constructed from the mean numbers of intersections, m, given 

in Table 23 (Curve 2). The function of the test steels normals has a 

maximum value in the direction which is perpendicular to the axis of sym- 

metry. The minimum value of the function, as it should have been antici- 

pated, coincides with the axis of symmetry. For the sake of comparison, 

it may be pointed out that in the case of an isometric system of surface 

areas, the function of density of normals is 0.318 for any direction. 

When comparing the diagram of the distribution of the density of 

normals with the rose of the number of intersections, one cannot fail but 

note a number of advantages of the latter. The rose is plotted directly from 

experimental data, whereas when we calculate on the basis of the same date, 

the function of density of normals we clearly introduce additional errors. 

The rose of the number of intersections is more illustrative for it char- 

acterj.zec the density of disposition of boundary surface areas in dif- 

ferent directions, that is it characterizes the factor which has a direct 

connection with the degree of anisotropy of properties.  Finally, a rose 

may be constructed for any system of surface areas, whereas the function 

of the density of normals may be calculated only for a system of surface 

areas which have an axis of symmetry. The method considered could find 

applications for the fine analysis of boundary surface areas but only 

under the condition that a more accurate and at the same time a more sim- 

ple method for calculation of the function of density of normals from 

Formula (23.5) would be found. 
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In this discourse we do not consider the evaluation of orientation 

by the value of diameter ratio of micropartiülea, for this evaluation is 

concerned rather with the shape of microparticles. 
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Section 29, Accuracy Norms of the Method of Secants 

The basic formula of the method of random secants (25.1), derived 

with analytical accuracy, establishes a direct proportionality between 

the values of the specific surface area and the mean number of intersec- 

tions of surfaces per unit length of random secants. Hence it follows 

that the relative error in the determination of the mean number of inter- 

sections, m, predetermines the same kind of relative error in the unknown 

value of the specific surface area. 

A number of formulas of the method of directed secants also establishes 

a direct proportionality between the values of the total specific surface 

area and its isometric and oriented fractions on one hand and mean numbers 

of intersections in certain definite directions on the other.  These 

formulas are approximate and the measure of their accuracy was discussed 

previously. The error in determining the mean numbers of intersections 

in this case is algebraically superimposed on the        error, and 

either decreases or increases it by the value proportional to the error 

of determination of mean numbers of intersections. 

By determining the acciiracy of determination of the number m, we, 

by doing that, also determine the accuracy of the unknown value of the 

specific surface area in the volume of metal directly adjacent to the plane 

of polish under the investigation. The question as to how accurately the 

obtained value characterizes the structure of the metal as a whole is not 

connoctod to the accuracy of the method of determination and is dependent 

upon the uniformity of this structure and the volume of metal.  For this 

reason we can aäsurae that the accuracy of determination of the statis- 

tical mean value of the number of intersections per 1 mm of length of 

secants, m, simultaneously represents the accuracy of determination of 

the value of the specific surface area SI 5, 

A reservation should be made that this is valid in the case of cor- 

rectly applied method. Thus, for example, transverse surfaces of polish 

of steel rods are commonly used for standard measurement of steel grain 

size. As it has been previously mentioned, it is more rational to sub- 

stitute the measurement of the specific surface area of grains for the 
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measurement of the grain size. However, if the space grains are not 

equiaxed, which cannot be revealed on a transverse plane of polish, the 

application of the method of random secants will turn out to be incorrect. 

The greater the deviation of the grain shape from equiaxed, the greater 

will be the secondary error due to the application of the method of random 

secants to such a structure. In that case, the measurement must be made 

by the method of directed secants on a longitudinal plane of polish. 

Ordinarily two techniques for counting the number of intersections 

of grain boundaries by secants on a plane of polish are used: a. with 

a traversing plane of polish and b, with a stationary plane of polish. 

Each of these methods has its own advantages, short comings, and fields 

of application. 

In the first case an ocular with a cross hair is used. The plane of 

polish is continually traversed along a straight line by means of a micro- 

metric screw of the microscope stage or by a two-coordinate specimen 

traverse, simultaneously counting the number of times boundary lines pass 

the center of the cross hair of the ocular. In this case the length of a 

secant is equal to the traverse of the plane of polish, recorded by the 

micrometric screw (in millimeters).  By shifting the plane of polish or 

by turning it, it is possible to repeat the determination at the second 

secant, etc., until a reliable mean value of the number of intersections 

per 1 ram of secants, m, is obtained.  In this technique of counting, the 

length of each secant is linn ted only by the over-all size of the plane of 

polish and by the traverse of the microscope stage, Z7-M T-3 apparatus, 

used for the microhardness dete  ■'"ations, is quite convenient for this 

purpose. 

When structures are oriented and when it is necessary to use secants 

directed at definite angles to the axis or plane of orientation, it is 

expedient to use a polarized microscope of M TT'T-S M/'-3 types, etc,, 

equipped with opaque eliminators and rotating stages for the scale grad- 

uated in degrees, which, unfortunately, are absent in metallographic 

microscopes. When working with •'■ M T-3 instrument, their rotating disc 

with a scale graduated in degree is installed or. the stage of the instru- 

ment.  A small bag of the disc (see Figure 83) fits (the fit is not too 
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tight) a hole made in the stage. When a specimen is fixed in this, manner 

all of its surface is available for observation. The disc is successively 

rotated to a definite angle and traversed by 1 micrometric sorew. After 

that, the stage is traversed to a short distance in perpendicular direc- 

tion by the second screw and again traversed by the first screw so that 

the line of observation passes from one edge of the specimen to another. 

Thus, groups of mutually parallel secants, with different directions and 

covering the surface subject to analysis within uniform grid, are formed 

on the plane of polish. 
<««««• outtunu «a 

Uw»        i«.    figure 83. Device for turning the slide to a 
^g^ffi«*^ definite angle with relation to the direction 

of the movement of the table of the instrument um i crnxnna     W-T, 
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Fig. fty. Change in the magnitude of the specific surface of graphite 
along the cross section (diamster) of grey iron 30 mm in diameter 

When working with ordinary metallographic microscopes it is expedient 

to set up two-coordinate specimen that traverses on their stages, which 

prevents traversing of the specimen into mutually perpondicular directions, 

recording the value of traverse on a scale v/ith/Z^*^*^^ with accuracy of 

0.1 mm. It is particularly expedient to set up a specimen traverse on the 

stage of M -L-V.-'J  microscope, so that the traverse of the specimen could 

be made by left hand.  In the existing design of this microscope both the 

traverse and focusing are made by right hand, with the left hand being 

free, which is quite inconvenient. 

The advantage of traversing the specimen with simultaneous counting 

is the possibility of using maximum magnifications, which makes it pos- 

sible to a more reliable recording of the fact of inetrsection between 

the grain boundary and the line of direction of the center of the cross 

hair.  In this case, the magnification used has absolutely no effect 0 
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the time of counting of a given number of points. 

The method of traversing specimen should be preferred in all cases 

when it is necessary to determine the mean number of intersections of 

random or directed secants which characterize the entire area of the plane 

of polish as a whole, A differentiated determination of the size of the 

specific surface area from individual zones of the plane of polish re- 

quires that the numbers of intersections be counted separately for small 

areas of the plane of polish, usually in separate fields of vision; in 

these cases the method of traversing the specimen necessarily has to be 

replaced by the method of counting with a stationary specimen, ?or  example, 

Figure 84 shov/s the variation of the dispersity of graphite in gray cast 

iron (which is estimated by the value of its specific surface area) 

across the section of a casting 30 mm in diameter.  In such a case the 

count is made successively in several fields of vision arranged along 

the diametrical line of the transverse plane of polish separately for each 

field.  The rule of the ocular-micrometer or the cross hair of the ocular 

may be used as the secant. They make it possible to count in one field 

of vision a large number of points into mutually perpendicular directions. 

When applying this method, the length of the secants, that is, the length 

of the projection of the ocular rule on the plane of polish or the diameter 

01 visible field of vision are determined with the aid of object micrometer. 

Fig, 85, Effect of the  width of the sections of the line in determining 
the number of cross sections by the method of arbitrary secants 
(A. G. Spektor flOkJ) 

Fig. 86. Oculer inseitions for determining the average number of cross 
secticns by the method of artibrary sections, these inse. tions being 
free of svstematic error 

The greater the number of counted points, the more accurate are the 

results of the determination.  In view of that, when making counts with a 
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stationary specimen it is desirable to use low magnifications, for the 

number of intersections in a given field of vision is inversely propor- 

tional to the magnification. However, when using low magnifications the 

error increases due to difficulty of establishing the fact whether grain 

boundaries are intersected by the secant or pass near it. Therefore, it 

is  necessary to apply sufficiently high amplifications (which are deter- 

mined by tha dicpcroity of the structure); the accuracy should be attained 

by counting in a greater number of fields of vision, which in the final 

analysis results in complications and slowing down of the count. For 

this reason, the use of the method of stationary specimen is rational only 

when due to conditions of investigation it is impossible to use the method 

of traversed specimen. 

200 WO     Z 

Fig. 87. Measurement of the cumulative average number of "osa sections 
as depends on the computed over-all number of points of the dross 
sections in analysis by the method arbitrary sections 

When making the count by the m.thod of traversing specimen it is 

desirable to use an ordinary mechanical counter (Figure 16), which totals 

the number of times the pedal is pressed. The counting process is re- 

duced to the traversing'of the specimen and simultaneous counting of the 

number of intersections by the counter. The length of the traverse and 

the number of intersection, in it are fixed only after the specimen has 

been completely traversed. When making counts by the method of stationary 

specimen, it is necessary to record the number of intersections in each 

field of vision, if a different shade of analysis with respect to the 

zones of plane of polish is made.  If the number of intersections is 

counted for the entire plane of polish or for one of definite directions, 

then the number of fields of vision is fixed and the number of intersec- 

tions may be counted in all fields by the counter. 
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Counting of the number of intersections using traversing and sta- 

tionary specimens as a source of a constant error, which was noted by A. 

G, Spektor [104], This error is due to the fact that the rule of the 

ocular micrometer or the center of the cross hair of the ocular are not 

geometrical lines or a point but have a definite "width" which may be 

measured with the aid of an object micrometer. If it is assumed that the 

visible diameter of sections of microparticles on a plane of polish is 

d, then the geometrical secant 1 mm long will intersect all spherical sec- 

tions the centers of which lie within the band d wide and 1 mm long, as 

it may be seen in Figure 85a, If the number of circles per 1 mm square 

of the plane of polish is n, then the number of intersections per 1 mm 

of length will be equal (according to the rule of the total projection 

onto a plane): 

m = 2 nd. (29.1) 

However, if the secant is b wide (Figure 85b), it will intersect all cir- 

cles the centers of which are within the band the width of which is d plus 

b and the total number of intersections per 1 ram length will be a greater 

value than in the preceding case: 

2n (d + b). (29.2) 

It is obvious that the error will be the greater the more dispersed is the 

structure subject to observations, that is, the greater the ratio b/d, and 

its sine will be always positive (the calculated number of points is higher 

than the true one), 

A, G. Spektor proposed to introduce an appropriate correction. To 

calculate the latter it is necessarj to determine secondary parameters 

of the structure (the number of intersections per 1 mm of tne plane of 

polish), which considerably complicates the determination and is possible 

only when the sections of microparticles are circles.  It is much more 

simple to reduce to zero the "width" of a secant or of a point, which may be 

readily accomplished in practice. The rule for counting the number of 

intersections, which replaces the rule of a conventional ocular micro- 

meter, is shown in Figure 86a,  The count is made from lines separating 
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the dark and light fields, which are geometrical lines without "width". 

In order to obtain a greater number of intersections in a given field of 

vision it is expedient to use an ocular insert with a spiral, shown in 

Figure 86b. The count may be made from the internal as well aa external 

contour of a spiral, It is not difficult to measure the length of the 

spiral, since it is made up by semicircles. When the analysis is made 

by the method of traversing specimen, it is expedient to replace the ocular 

with a cross hair by an ocular with an insert, having a dark sector, de- 

scribed previously (Figure 43). The apex of the sector is the geometri- 

cal point and the need for corrections is eliminated. 

These means eliminate sources of the constant error noted by A, G. 

Spektor and completely eliminate the need for any corrections which com- 

plicate the determination. 

As a result of counts we have two figures at our disposal: the total 

length of secants, 1, on which the count was made, and the total number 

of intersections of a given systerr of boundary lines and secants, Z, 

The mean number of intersections per 1 mm length of secants we find is 

the ratio of these two quantities: 

Z   -1 
m = -a~ mm  , 

(29.3) 

As any other statistical mean value, the number m is more accurate 

the greater the number of separate observations or measurements, that i"?, 

in the given case the greater the number of counted intersections, C, We 

determined the mean number of intersections of the rule of the ocular mi- 

crometer and interfacial boundary lines of thorite and pearlite consti- 

tuents in hypoeutectoid steel (0,3> C,) The count was successively made 

in 100 fields of vision with fixing the results for each field of vision 

separately. The length of the rule of the ocular micrometer in the plane 

of polish was 0.465 mm, with magnification 315. 

Numbers of intersections 3,12, 8, 3, 8, etc., were obtained in the 

course of taking measurements in the fields 1, 2, 3, 4, 5, etc. Cumu- 

lative numbers of intersections were respectively 3, 15) 23, 26, 34, etc., 

and cumulative means were 3.0, 7.5, 7.7, 6.5, 6.0, etc. Variations of 

the ciunula-t ive mean number of the intersections, Z, with the cumulative 
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number of intersections, Z, are shown in Figure 8?. As the latter increases, 

the limits of fluctuations of the cumulative mean value are becoming in- 

creasingly narrow and it becomes stabilized approximating the true value. 

Thus, when the number of points is greater than S00, the actual deviations 

from the mean value do not exceed 0.11, that is approximately 2/0 of the 

value which is being determined. At the same time, in individual fields 

of view, the number of intersections varies in a wide range between 2 

and 14, which may be seen in combined data for all 10Ö fields of vision 

listed in Table 29. On further increase of -.he number of field of visions, 

these extreme limits may be widened even more,  The common mean number of 

intersections for all 100 fields of vision is 5.99 for the length of 

0.465 mm. The mean quadratic deviation of this number, calculated from 

the data in Table 29, is 2.48. 

Table 29 

HHC^O nepece'teHHfl B OAHOM 
nojic speiiHf) MHCJIO nojiefl 

(11a AJiHHe, paBHOA 0,465 MM) 

2 2 
3 16 
4 12 
5 20 
fi 13 
7 11 
8 

12                   ' 
10 ! 
11 2 
12 3 
13 1                  j 

J~otiJ 
Bccro 100 

yfc,. ctf fru-l^ 

As we have already stated, the error in the determination and the 

reliability or probability of producing precisely this error are inalien- 

ably related to each other. In order to compute the value of errors, 

produced with a certain probability, it is necessary to know the value 

of the mean quadratic deviation.  In the example cited abc.e this devia- 

tion was determined experimentally and was 2.48 intersections per singular 

field of vision,  Therefoi  the absolute error of determination, /\, 

produced by examining this structure only in one field of vision, will be 

defined by the equation: 

A  =   > vh}    = 2.43t, (29.4) 

J93 



where t is the normalized deviation related to the validity or probability 

of producing an error not greater than the one defined by Formula (29.4). 

This relationship has beer, cited previously in the description of the 

lineal method of analysis (Section 15), and the values of normalized 

deviation t for different values of probability P are listed in Table 12. 

Using the data in this table it is possible to determine that in the exam- 

ple of analysis cited the probable error (when the probability P is 0,5) 

will be  = O.675 x 2.48 = 1.67, that is the plus or minus deviation from 

the mean value of the number of intersections (5.99) will not exceed the 

found value of 1,67 in at least 50/° of analyses (in the given case in 5^ 

of examined fields of vision).  In other words, in at least half of the 

number of analyses the result must satisfy the limits from 5.99 - 1.67 = 

4,32 to 5,99 +1.67 = 7.66, or in round figures from 4 to 8 intersections 

in one field of vision.  The examination of Table 29 shows that actually 

64 fields of vision from 100 examined are found within these limits. 

We cannot for each analysis carry out a series of measurements 

instead of only one measurement for the sole purpose of finding the mean 

quadratic deviation needed for the calculation of an error from Formula (29,4i 

At the same time the complexity of systems of grain boundaries on the plane 

of polish does not make it possible to calculate the geometric probability 

of intersection beforehand and to determine the mean quadratic deviation 

from it, as we had done in calculating the accuracy of the point method of 

analysis for A, A. Glagolev in Section 15, For this reason, we have to 

determine regularities which correlate the structure and the conditions 

of analyses with the value of the mean quadratic deviation which occurs 

in this case. 

If the length of the secant is increased M times, the mean number of 

intersections of 1 secant will be increased just as many times. From the 

theory of probabilities it is known that when all the values of the char- 

acteristic are multiplied by one and the same number M, both its mean 

value and the mean quadratic deviation are increased just as many times. 

It is also known that the value of the mean quadratic deviation is inversely 

proportional to the square root of the number of observations, which in 

our case corresponds to the number of points counted in the course of the 
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analyses. 

Therefore,   in the final analyses, we shall have a directly propor- 

tional relationship between the mean quadratic deviation and the square 

root  of the number of points counted during the determination.    This pos- 

tulate  is valid,   if having a single-type system of lines on a plane we 

shall vary the  scale of the image, maintaining the length of the secant 

constant or,   conversely,   if we  shall vary the length of  the secant,   super- 

imposed on the  one and the  same  system of lines,     However,  the coefficient 

of proportionality,  as  the study of numerous  types  of structures and shapes 

of secants has  demonstrated,   is not a constant value and is dependent 

both  ypon the nature of  the structure  (to be more  exact upon the  character 

of the   system of boundary lines  on the plane of polish  (and upon the  con- 

ditions  of determination).    For  the  structure of  lamilar graphite  of 

gray cast iron,   iust examined,   the relationship between  the mean quadratic 

deviation,        Z    and the  number of  intersections;   Z,   is  expressed by the 

formula: 

where  coefficient  t is 1,06. 

[23.1 

Figure 88 shows the graph for a system of grain boundaries of poly- 

hedral   structure  with equiaxod grains of uniform size   (line l).    Here  the 

value   of  the coefficient  of proportionality k is 0.7'       The same figure 

shows   the relationship of  the mean  quadratic ..     .on  to the number  of 

intersections  for  interfacial boundaries beti.'r .    .;6mentite and thorite 

in granular pearlite  (line  2).    For  this car      t was   found that  coeffi- 

cient  k  is 1.02. 

At   one and   the same   l^o-th  of   secants,   the  same  specific  length  of 

grain  boundaries  and,  con^aquently,  with  the mf.-tn number of intersections 

per 1   secant being the same,   the mean quad     '±c deviation of this  number 

may vary.     Let us   consider  in  this  connec     m a system of boundaries  of 

of equiaxed thorite grains shown in Figu      49.    The  specific lengths  of 

grain boundaries   in Figure  89 almost pre( isely coincides with the  specific 

length  of boundaries of equiaxed thorite grains shown  in Figure 49. 

However,   if secants  of the  same length are  to be drawn on both figures, 

it  can  be  predicted  that   the  ra  je  of fluctuations  of   the  number of  inter- 



sections per 1 secant will 'be considerably wider in the case of the struc- 

ture shown in Figure 89 than in the case cf the structure shown in Figure 

49. Actually, the numLers of intersections on secants directed parallel 

and perpendicular to the orientation axis will differ drastically in 

Figure 89, whereas in Figure 49 they will be more stable, for they are 

not dependent upon the direction of the secant. This is valid for rec- 

tilinear secants. However, if circular secants or secants shaped as 

spirals are substituted for rectilinear secants, no essential scatter cf 

intersection points would occur on individual secants even when the boun- 

daries are oriented, for the shape of such secants assures the equal 

probability of the intersection angle regardless of the orientation of 

boundaries. In Table 30 are given the numbers of intersections for a 

system of boundaries, shown in Figures 49 a.nd 89, with several secants of 

the same length (lOO mm), but shaped either as circles or straight lines, 

superimposed over the former.  For each of the four cases we calculate 

the mean numbers of intersections per 1 secant, Z, and mean quadratic de- 

viations of these numbers,   Z , which are given in the bottom lines 

in Table 30. Also there are listed the values of the coefficient of pro= 

portionality, k, determined in agreement with Formula (29.5) from actually 

determined values. 
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Fig. 88. Dependence of the average quadratic deviation of the number of 
cross sections on theover-all number of computed points of the 
cross sections 

Fig. 89. Structure of sheet transformer steel. Plane of the slide is 
perpendicular to the plane of the sheet X100 

The data obtained indicate that the mean numbers of intersections 

in all four cases differ little from each other, for the length of boun- 

daries in Figures 49 and 39 is almost the same.  In the first three cases 

the values of the coefficient k are also almost identical and consideraoi, 
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11,77 ll.W 11,81 11,47 
l,5H 1.74 1,54 5,15 
0,41) 0,51 0,45 1,52 

below the value found from Lhe graph shown in P'igure S3, for in that case 

the analysis was carried out directly on the plane of polish using many 

fields of vision, due to which the fact of the fluctuation of the specific 

length of boundaries over the plane of polish was felt.  In the given 

case the analysis was carried out within the limits of a small area, 

Figures 49 and 89, corresponding to one field of vision. Just as it was 

anticipated, the abnormallj' high value of the mean quadratic deviation and 

of the coefficient k occur wuen a system of boundaries is oriented 

(figure 89) and when the secant is rectiliriear disposed at various angles 

', ; tr 1 orientatic ^ axis. 

Let us disc.i.s;; "ne results obtained. The value of the coefficier;', 

of proportionality k varies within a quite wide range of 0,45 to 1,52 

(under different conditions it is possible that this range is wider). 

The value of this coefficient is first of all affantnd by the actual 

fluctuation of the specific length or the density of boundaries in indi- 

vidual fields of vision.  Therefore, the direct analysis or. the plane 

of polish produces the coefficient k of higher values (0,74 to 1,06) 

than by the analysis within the limits of a singular field of vision (0,45 

to 0,51) 

The uniformity of distribution of intersection points along the 
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secant is of great importance, Thus, under the sams conditions of analysis 

(a singular field of vision, the same length of secants, the same specific 

length of boundaries), the value of the coefficient k is approximately 

twice as low for the isometric system of boundaries, shown in Figure 49> 

as compared with an oriented system, shown,.in Figure 89 (0,51 and 1.52, 

respectively).  It is obvious that as the degree of orientation is in- 

creased, this ratio would be even higher, A circular secant automatically 

assures an equal probability of any angle of intersection with grain 

boundaries, regardless whether they ave oriented or isometric. Therefore, 

circular (or spiral) secants produce a small coefficient k (0,45 to 0,4u),' 

regardless of orientatior.. 

The nonuniformity of the density of boundaries has an essential in- 

fluence on the value of coefficient k in microareas even in singular 

fields of vision; this nonuniformity is due to specific pecularities of 

certain structures.  If a secant is drawn over a polyhedral structure, 

similar to the one shown in Figure 49> then the points of intersections 

will be relatively uniformly distributed along the secant and the mean 

distance between two adjacent points will have a definite value.  In 

this case, just as we have seen, the analyses on the plane of polish 

produces 1 minimum of value of the coefficient k = 0,74 and the analysis 

in a singular field of vision produces the value of 0,46 to 0.51. In 

other pictures observed in structures in which intersection points of 

secants are distributed as if in paris.  Examples of such systems of boun- 

daries may be boundaries'of graphite in gray cast iron, boundaries of 

thorite or cementite in hypo- and aypereutectoid steel, if the thorite or 

cementite form a fine network over grain boundaries of pearlite, grain 

boundaries of cementite in granular pearlite, et.'-.  In this case the 

drastic difference in distances between adjacent points is manifest on 

secant intercepts passing through the graphite and metal base of gray 

cast iron, through the thorite or cementite or through pearlite grains 

in steel, through cementite grains and throtie base of granular pearlite, 

etc. 

If a frequency curve is plotted for distances between adjacent points 

of intersections or. secants for a structure of tne type shown in Figure 
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49, the curve would show one raaxiraum. However, for types of structures 

enumerated above each frequency curve would exhibit two maxima. This 

nonuniformity of distribution of intersection points on secants prede- 

termines their high mean quadratic deviation, obtained in these cases, 

and, consequently, a high cosfficiont of proportionality k (1,02 to 1,06 

or higher). 

By way of summing up, it is possible to note that in the analysis 

directly on the plane of polish the value of the coefficient k in Formula 

(29.5) 0n an average is 1 and more frequently is found within the limit 

of 0.7 and 1.2, Lower values correspond to the uniform distribution of 

boundaries over the plane of polish and of intersection points over the 

length of the secant. Higher values correspond to structures with "paired" 

or "doubled" boundaries, the examples of which have been presented pre- 

viously and also correspond to nonuniform distribution of boundaries over 

the plane of polish, All of the aforesaid is applicable to isometric 

systems of lines on a plane of polish. 

The most adverse conditions are developed in the analysis of oriented 

systems of boundaries using rectilinear random secants, when the values 

of coefficient k exceed the upper limit of above given norms. However^ 

it should be noted that in the case of oriented structures we are using 

not random but directed secants and in the analysis by the method of 

oblique planes of polish we may employ circular or spiral secants.  There- 

fore, in practice we have to deal with this unfavorable combination of 

conditions of analyses. 

Further in our discourse we shall assume the coefficient k equal to 

unity.  In connection with previously cited concrete examples in isolated 

cases it will be possible to introduce appropriate corrections. From 

Equations (29,4) and (29,5) it follows: 

Z\ = kt y Z, (29.6) 

When/jis the absolute error in the numbers of intersection points; Z 

is the number of intersection points counted in the course of the analysis. 

As it has been previously demonstrated, the error in the determina- 

tion of the value of specific surface area is equal to the error of the 

determination of the mean number of intersections.  The relative error 



in determination of these values may be found from Formula; 

(29.7) ^ = ^L 100^ = --^-ioo;:,. Y* 
The latter equation finally determines the relationship between the 

relative error of the determination of the specific surface area by the 

method of secants, the validity of the determination and the number of 

points counted in the course of the analysis. From this formula it is 

possible to calculate the relative error of the carried out analysis, 

having specified any validity of its derivation and vice versa. 

For the preliminary count of the required number of points of inter- 

sections, which assures the determination of a definite relative error 

with a prespecified validity, we are using Formula: 

S? (25.8) 

Let us assume that we specify the value of the relative error '5 = 57» 

with the validity P = 0.9 (at which the normalized deviation t has the 

value of 1.6449).  In that case the required number of points of inter- 

sections betv/een the secants and boundaries, which has to be calculated, 

may be found from the Equation (29.8) and will be equal to 1,82 (at the 

coefficient k = l). 

If we shall carry out a large series of determinations (1082 points 

in each), then the obtained relative error will somewhat exceed the figure 

which we have specified, that is 5/°) in not more than 10/^ of determinations. 

In other 90/», the error will be less than S'^.  In other v/ords, by carrying 

out a singular determination, counting 1082 points, we can assume that the 

validity of the obtained results is 0,9 or 90;«. 

In order to avoid counting in each individual case, we have compiled 

Table 31 which is in agreement with Formulas (29.7) and (29,0), 

Specifying the permissibility of the relative error of the antici- 

pated results of the analysis and its validity, it is possible to find 

directly from this table the required number of points of intersections. 

When calculating the data in the table the value of the coefficient k 

was taken as 1, Therefore, for concrete systems of boundaries the number 

of points of intersections derived from the table is corrected by multi- 

plying by k , 
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45 
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20 

7090 10754 16410 270P0 
1773 2689 4103 6765 
788 1 95 11523 3007 
443 672 1026 1691 
284 430 656 1082 
197 299 '166 752 

i  145 219 335 552 
111 68 256 423 
88 33 203 334 
71 08 64 271 
59 89 36 224 
49 75 14 88 

1   ^ 64 97 60 
36 55 84 38 
32 48 73 120 

384 IG 
9604 
4268 
2401 
1537 
1067 
784 
600 
474 
384 
317 
267 
227 
196 
171 

If the analysis has been already carried, out and the total number 

of counted points of intersections is Z, it is possible to find the value 

of the relative error o from Table 32.  This quantity obviously will 

differ, depending upon its validity. Thus, if 1000 points have been counted, 

the relative error will be 2.1^ with the validity of 0.5 (this will be 

"a probable error"), 2.7^ with the validity of 0,6, and on to 6.2/o with 

a validity of 0.95. 

When calculations are made directly from Formulas (29.7) and (29,8) 

the values of normalized deviation X  for different values of the probabil- 

ity P, which characterizes the validity of the result of the analysis, 

are found in Table 12, 

The carried-out method of calculating the error of determination 

when using the analysis by the method of random secants is convenient 

for it does not require determination of any additional values by means 

of repeated analyses, etc. The total number of points of intersections, 

counted in a course of the analysis, is also used for the determination 

of the mean number of intersections, m, and for calculation of the value 

of the specific surface area, as well as for the calculation and deter- 

mination of the error of analysis from the tables [147], 
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50* 9,5 11,9 14,7 18,1 23.3 27.7 
60 8,7 10,9 13.4 16,5 21,2 25.3 
70 8,1 10,1 12,4 15.3 19,7 23,4 
80 7,5 9.4 11,6 14,3 18,4 21.9 
90 7.1 8,9 10,9 13,5 17,3 20,7 

•      100 6,7 8,4 10,4 12,8 16,4 19,6 
110 6,4 8,0 9,9 12,2 16,7 18.7 
120 6,2 7,7 9,5 11,7 16,0 17.9 
130 5,9 7,4 9.1 11,2 14,4 17,2 
140 5.7 7.1 8.8 10.8 13,9 16.6 
150 5,5 6,9 8,5 10.5 13,1 16.0 
160 5,3 6,7 8,2 10,1 13,0 15.5 
170 5,2 6.5 7,9 9,8 12.6 15,0 
180 5,0 6,3 7,7 9.6 12.3 14,6 
190 4,9 6,1 7,5 9.3 11,9 14,2 
200 4,8 6,0 7,3 9,1 11,6 13,9 
250 4.3 5.3 6.5 8,1 10,4 12,4 
300 3,9 4.9 6.0 7,4 9,5 11,3 
350 3,6 4.5 5.5 6.9 8,8 10,5 
400 3,4 4.2 5,2 6.4 8,2 9,8 
450 3,2 4.0 4,9 6.0 7,8 9,2 
500 3,0 3,8 4,6 5.7 7,4 8,8 
550 2,9 3,6 4,4 5.5 7,0 8,4 
600 2,8 3,4 4.2 5.2 6,7 8,0 
650 2,6 3.3 4,1 5.0 6,5 7,7 
700 2.5 3,2 3,9 4,8 6,2 7,4 
750 2,5 3,1 3,8 4.7 6.0 7,2 
800 2,4 3,0 3.7 4.5 5.8 6,9 
850 2,3 2,9 3,6 4,4 5,6 6,7 
900 2,2 2,8 3.5 4.3 5,5 6.5 
950 2,2 2,7 3,4 4,2 5,3 6,4 

1000 2,1 2,7 3,3 4,1 5,2 6,2 
1100 2,0 2,5 3,1 3.9 5,0 5,9 
1200 1,9 2,4 3.0 3.7 4,7 5,7 
1300 1.9' 2,3 2,9 3.6 4,6 5,4 
1400 1,8 2,2 2.8 3,4 4.1 5,2 
1500 1.7 2,2 2,7 3.3 4.2 5.1 
1600 1.7 2.1 2.6 3,2 4,1 4,9 
1700 1,6 ?,0 2,5 3,1 4,0 • 4,8 
1800 1,6 2,0 2.4 3,0 3.9 4.6 
1900 1,5 1,9 2.4 2,9 3,8 4.5 
2000 1,5 1,9 2,3 2,9 3.7' 4.4 
2500 1,3 

1,2 

1,7 

1,5 

2.1 

1,9 

2,6 3.3 3.9 

3,6 3000 
3500 
4000 

2,3 3,0' 
1,1 
1,1 

1,4 
1.3 

1,8 
1,6 

2,2 
2,0 

2,8 
2,6 

3,3 
3,1 4Ö0Ü 1,0 1,3 1,5 1.9 2,5 2,9 5000 

6000 
7000 
8000 
90IW 

1,0 
0.9 
0,8 
0,8 
0.7 

1,2 
1.1 
1.0 
0,9 
0,9 

1,5 
1,3 
1.2 
1,2 
1,1 

1.8 
1,7. 
1.5 
1,4 
1,4 

2,3 
2,1 
2.0 
1,8 
1,7 

2,8 
2,-5 
2,3 
2.2 
2 1 10000 o r 0.8 1,0 1,3 1,6 2,0 
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Section 30, Measurement of Linear Elements of the 3-I'imensional Struc- 

ture of Metals and Alloys 

Speaking strictly realistically no elements of spatial structure are 

possible having only one dimension; therefore, discussing such elements 

we have in mind formations whose dimensions of cross section are signifi- 

cantly small as compared with their linear extent. 

Let us consider the spatial structure of a polycrystalline aggre- 

gate consisting of a number of crystallites of different dimensions and 

shapes.  These-; crystallites are separated from each other not by just a 

system of boundary surfaces. Surfaces of the system, intersecting with 

aach other, form a 3-dimensional system of lines which may be called a 

system of H lines of crystallites.  Quantitatively a system of H lines 

may be estimated by the total length of all the lines per unit volume 

of polycrystal, measured in mm/mm . 

By intersecting a polycrystalline aggregate by a plane, we obtain a 

number of traces where this plane meets with the system of lines of cry- 

stallite edges. On the microsection of a polycrystal, these traces are 

junction intersection points of boundary lines of the cross sections of 

crystallites; that is, junction points of neighboring flat grains. Ex- 

tensive experience from metallographic analyses show that, as a rule, 

vertexes of three flat grains come together at junction points on a 

microsection of a single-phase polycrsstal. Consequently, in space also 

the H lines of crystallites belong simultaneously to three adjacent cry- 
r 

stallites. However, in some cases junction of a large/number of grains 

has been found at a junction point on a microsection.  Thus, for example,, 

G. Ya, Vasil ye measured microhardness at junction points not only of 

three but of four ferrite grains [148], However, genex-ally in such cases, 

when it seems to us that four grains come together at a certain junction 

point, additional clarification always shows that actually this is the 

case not of one but of two junction points located quite close to each 

other. 

Since it is possible to draw a plane through any three points, 

such as three centers of crystallizatior  the nearest to each other, 

let us construct in this plane the lines at which crystallites, growing 
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at different linear rates of spherical growth, meet. Such a structure, 

shown in Figure 90» indicates that the three boundary lines which separate 

adjacent crystallites, meet at one point. The greater the difference in 

the linear rate of growth of adjacent crystallites, the greater the cur- 

vature of the boundary line between them. At equal growth rate, the 

boundary lines happen to ba straight.  If the rate of growth is not 

spherical, the boundary lines have a more complex curvature, for instance, 

wavy. Hov/ever, in all cases the boundary lines of three adjacent cry- 

stallites join at one point on a plane. 

Fig 90. Sketch of the forination of a joint of three grains wtth spherical 
syngony of the growth. Plane of the drawing runs through the center 
of the crystallization of the grain, rate of growth of which varies 

In a structure containing more than one constituent, the H lines of 

microparticles of any one constituent may be exhibited more or less clear- 

ly, that is three phases which one of them may be joined at a smaller or 

greater angle. In the plane of the microsoctior. tiiis will correspond to 

sharply broken or smooth boundary lines of a given structural constituent. 

For example, surfaces of graphite platelets in the gray cast iron come 

together at very small angles forming clearly exhibited edges of platelets, 

For this reason ir. the plane of the raicroseotion also the traces of lines 

of these edges are clearly manifest in a form of terminal points of cross 

sections of graphite platelets. Microparticles of SnS compound in 

babbitts are shaped as quite regular cubes and in the plane of a micro- 

section form polygons, with number of sides ranging between three ans six, 

whose vertexes are clearly manifest.  Generally speaking, however, as 

compared with a single-phase structure, the traces of intersections of 
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edpes of micropartiiles are less clearly exhibited on the plane of micro- 

section, since in the first case they are marked by Junction points of 

three boundary lines and in the second case they are marked only by a 

more or less distinct rate in the boundary lire. 

Besides the lines of edges of microparticles, other elements of 

structure, in which one dimension clearly predominates over the other two, 

may be also of interest to us. Such elements are formations which have 

a special shape of rods, filaments, fibers, aciculae (should not be con- 

fused with "needles" on a plane, for example with aciculae of martensite, 

which in reality are shpaed as platelets), Microparticles of Cu-Sn 
b  5 

compound in babbitts, which are shaped as thin cylindrical rods (see 

Figure 3) may be cited as an illustration of.such formations. 

Let us assume that a system of straight, curved, continuous or broken 

lines is found in space, which lines are disposed and directed in any 

fashion, randomly or with a geometrical regularity.  The problem is set 

up to determine the length of lines in the system in a unit of volume, 

using for this purpose measurements on its planar cross section. 

Let us draw a number of secant planes which intersect the volume 

being investigated.  The planes are disposed and oriented randomly. 

After that, let us calculate the number of intersections formed by the 

-2 
planes an^  lines of the system as M, expressing it in mm . The specific 

length of lines we shall designate as J^L, expressing it in mm/mm , 

Let us also note that the dimensionality of both quantities is one and 

-2 
trie same, mm ,  Let us demonstrate that a unique relationship exists 

between the quantities J"1 L and M, and that the specific length of lines 

and the mean number of intersections par unit area of the secant plane 

are directly proportional to each other. If this is ::o, then having 

readily determined the number V.  from the microsection, we shall also 

find the value of TL. 

In order to find the relationship between quantities M and ? L, 

we.isolate in space a large number of thin flat platelets of disappear- 

ingly small thickness /I, instead of a system of secant planes.  In the 

limit, at/.= 0, these platelets become secant planes. The distribution 

of platelets in space is statistically uniform a^.d their orientation 

S0S 



V 

random so that the number of usually parallel platelets is the same for 

any direction in space. Let the total area of all platelets be equal to 

F and the total number of intersections with the lines of the system be 

2 
PM, where M is the mean number of intersections per 1 mm of the area of 

platelets. Then, PM number of intercepts of the lines of the system will 

be found in volume F /\,    We shall consider the intercepts to be straight- 

lines, since the thickness of platelets, /\, approaches zero. The total 

number of intercepts per unit volume of platelets is equal to: 

PM _ M 

* = "^ = T ' (30.!) 

If the acute angles formed by intercepts and planes by which they 

are intersocted, are designated as  )', , > „, V,,.., then the length 

of intercepts will be respectively: 

A A 
sin^' sin^'  sinY3 '""sin.^ ' 

The total length of all intercepts per unit volume of platelets, or the 

same per unit volume of metal, will be; 

-L = /i(l/sin ^ + l/sin ^ + l/sin ^ + ... + l/sin VJ = 

/ 
= M |-g- / l/sin l-y  + l/sin/2 4 l/sin ^ +...+ l/sin ^1 

(30.2) 

The terms found in brackets represent the reciprocal value of the 

sine of angle j , formed by a straight line and a plane (by intercepts 

and platelets); furthermore, all directions of the straight lines in space 

with respect to the plane are equally probable and equally possible. 

This value has been already determined by us when deriving the basic 

formula of the method of random secants for space (25.1) in Section 25. 

It was found that it is precisely 2,  For this reason: 

■^, L = 2L' mm/mm  , 

(30.3) 

i, e,, the total length of lines of a system found in a unit of volume 

of metal, is equal to twice the r.aiibar of intersections of these lines 

with the system of secant Dlar.es found or. an averare in a unit area of 
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the latter. The formula derived is the basic formula of the method of 

secant planes. 

For the derivation of formula (30.3), the assumption was made that 

all angles at which the intersected lines meet with secant planes are 

equally possible and equally probable. Therefore, Formula (30.3) is valid 

only when this condition is satisfied. Formula (30,3) is valid in the 

case when at least one of the systems, mutually intersecting in space 

(i. e., either a system of lines the length of which is being measured, 

or a system of secant planes, or, finally, both of these systems simul- 

taneously) is random and does not have any preferred direction or orien- 

tation in space. Therefore, although theoretically Formula (30.3) and 

the method of secant planes are applicable for any case, in practice, 

when the analysis is limited to a single microsection, they may be ap- 

plied only for the measurement of length of isometrical systems of lines. 

For example, using Formula (30.3) it is possible to determine the total 

length of lines of crystallite edges in an isometric polyhedral structure 

of metal with equiaxed grains. 

On the plane of the microsection, intersections between the lines 

of edges of volumetric grains and the plane of the microsection are junction 

points of boundary lines of three adjacent flat grains, as has been pre- 

viously noted. Calculation of the number of junction points per unit 

area of microsection (l mm ) is one of the simpler techniques of quanti- 

tative microanalysis. By substituting the value of M obtained into 

Formula (30,3), we find directly the specific length of lines of edges 

/ 3 in mm/mm , 

Before commencing the analysis of systems of lines with partial 

linear orientation in space, let us discuss a system of completely oriented 

lines, which obviously must consist of straight lines (or segments) 

parallel to each other and parallel to the orientation axis. Filament- 

like nonmetallic inclusions may serve as an example of such a system of 

lines, in approximation. These inclusions in rolled rods or in wire are 

groups of approximately rectilinear fibers of different lengths, parallel 

to the orientation axis, i, e,, to the axis of their round or wire. 

Let us intersect such a wire by a number of plar.es perpendicular to 

its axis, maintaining a constant and very small distance, / ,, between 
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the planes. These planes would intersect all fibers of nonmetallic inclu- 

sions into intercepts with lengths up to /].  Let us arbitrarily round off 

the length of thrise intercepts to /_\ , if their actual length is greater 

than half this value and let us disregard these intercepts if their length 

is less than 0,5 ^ .  Let us designate the number of intercepts between 

each pair of adjacent planes as M , M?, M-,.., ,  Let us take into account 

that the total number of intercepts per unit volume of wire would be equal 

to the sum of these numbers for z = l//: planes, inasmuch as precisely 

this number of planes fits the length of wire equal to unity. 

In that case, the total length of all intercepts of filamentary in- 

clusions per unit volume of wire will bes 

5 L =£{1^  +M2 +M3 + ... + Mz; 

M-L + M2 + M3 + ... + Mz . 3 
mm/ mm 

(30.4) 

Consequently, the specific length of a system completely oriented in 

space is numerically equal to the mean number of intersections between the 

lines and planes, perpendicular to these lines, per unit area of these 

planes. On transverse microsections, located along the length of a round 

or wire,  the mean number of intersections with filamentary nonmetallic 

inclusions (or otner elements of structure which have linear dimensions 

per unit area of the microsection, is a statistically constant value. 

Therefore, having determined the mean number of intersections of nonmetallic 

inclusions per ] tmir of microsection (or from several microsections, in 

the case of a more critical analyses or hetereogeneous distribution of in- 

clusions along the length), we car. find from Formula (30,4) their total 

length in a unit volume of metal. 

If a system of lines has a partial orientation, such as for example 

a system of lines of grain edges in a round or wire, which are elongated 

by rolling or drawing, we apply the same procedure for the determination of 

specific length of lines, just as in the case of using the method of di- 

rected secants. The length of lines in the isometric and completely oriented 

systems are calculated from the different formulas (30,3) and (30,4).  Fo" 
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this purpose it is necessary to have two microsections.  The plane of the 

first must be parallel to the orientation axis (the symmetry axis of the 

structure) and the plane of the second must be perpendicular to it. The 

plane of the first microsection (longitudinal one) does not intersect 

oriented lines inasmuch as they are parallel to it, and, consequently, 

the number of junction points per 1 mm of such a microsection, M,,, 

belongs exclusively to lines of the isometric portion of the system, There- 

'* specific length of the isometric portion of lines may be found 
fore, tiiv. 

from (30.3): 

5;Lis = 2MM mm/mm3 . (30.5) 

1 microsection (transverse one) will intersect 
The plane of the secona 

"'I oriented perpendicular to the plane of 
lines disposed isometrically as wex. 

number of these junction 
the microsection.  Let us designate the mean . 

P    ' ■  Inasmuch as the 
points per 1 mm" of the transverse microsection as Mi. 

Titents of lines 
number of intersections with the isometrically disposed elt.'• 

' .^M,!, we may 
is independent of the direction of secant plane and is equal to :' 

'S the 
find the number of intersections with oriented elements of lines o± 

system, exclusively, from the difference: 

_2 
M, - Ivi,, mm  , 

Then the specific length of thecompletely oriented portion of lines of the 

system will be found from Formula (30.4): 

57 L  = M, - :.'.  mm/mm3 (30.6) -J or   '   ii w • / 

The total specific length of lines per unit volume of metal is equal to 

the sum of quantities defined by Formulas (30,5) and (30.6), i. e., equal 

to: , 
Ltot = I-:, +M,, mm/mmJ . (30.7) 

Using the given formulas, it is possible to calculate also the degree 

of orientation of lines or edges of the elongated grains or mioroparticles 

as the ratio of the specific length of oriented portion of lines to the 

total specific length, expressed in per cent. 
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