UNCLASSIFIED

AD 267700

Repraduced
 by the

armed servicas techical information agency ARLVIVGTON HALL STATION ARLAGCTON I2, VIRCINIA

UNCLASSIFIED

NoTITM: When government or other drawings, specifications or culiv- aata are used for any purpose other than in connection with a definitely related government procujement foperation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Govern ment may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.

$$
\begin{gathered}
\text { Best } \\
\text { Available } \\
\text { Copy }
\end{gathered}
$$

TECHNICAL DOCUMENTS LIAISON OFFICE
 UNEDITED ROUGH DRAFT TRANSLATION

STEROMETRIC NETALJURGY
BY: S. A. Saltykov
Erglish Pages: 604
PAGES 1 - 309, PART I OF II PARTS

THIS TRANSLATION HAS BEEN PIEEPARED IN THIS MANNEH TO PROVIDE THE REQULSTEF/USET WITH INFORMATION IN ThE Shohtest poesible time:. Funthifl f.diting will NOT UE ACCOMPL_ISHED iiy THI: PREFARING AGENCY UNLess fully justififd in writing to the chef. techNICAL DOCUMFNTS LIAISON OFFICF., MCLT'D, WI2-AFG, OHIO

PREPAKED BY:
TECHNICAL DOCUMENTS IIAISON ORFICE MC'LTD
KH-ATB, OHO

S. A. SALTYKOV

STEREOMETRICHESKAYA METAJIOGRAFIYA
[Second Revised and Supplemented Edition!

444 Pages

ANNOTATION

The book presents the basic tenets of stereometric metallography, i.e. the combination of methods of quantitative evaluation of spatial microscopic structure of metals and alloys. Methods are described in detail for estimating the most important parameters of spatial microstructure.

It is demonstrated that the basic properties of metals and alloys and their behavior in the processes of hot and cold working are directly connected Wriaxtua quantitatively with parameters of stereometric structure.
 at higher educationaj institutions, engaged in the field of investigating, processing and inspecting the quality of metals, as well as for students of the pertinent specialties.

Devoted to the memory of
Academician Nikolay Timofeyevich Gudtsov

The purpose of the book is to give a systematized and, as far as possible, complete portrayal of present-day methods of quantitative evaluation of spatial microscopic structure of metals and alloys. Such an evaluation, being the most effective and feasible from the physical viewpoint, has received wide recognition and is being used more and more by Soviet and foreign metallurgists. At the same time, $X X$ descriptions of methods of stereometric evaluation are dispersed among numerous לournal articles, often hard to obtain, which complicates the use of these methods. In comparison with the first $\overline{X X X X X X X}$ edition, the present book has been revised and supplemented. Included is a description of new methods published in Soviet and foreign press from the time of appearance of the first publication, as well as methods developed by the author in the metaliurgical laboratory of the Yerevan Folytechnic Institute imeni KX Karl Marx. Considerable attention has been diverted to an analysis of foreign researches, which confirms that both in respect to priority, as well as in general state of the art, the
 freign countries. The methods of quantitative evaluation of a plane structure are presented orly to the extent necessary for obtaining the initial data being used for computing the parameters of spatial microstructure.

The author hopes that the book will promote the further popularization of
particular, will

from semiquantitative methods of rough approximation to more precise and objective
characterization of the structure with the aid of parameters of actual spatial
structure.

CHAPTER I

MICROSCOPIC STRUCTURE OF ALLOYS AND METHODS OF THEIR

CHARACTERISTICS

Section 1. Qualitative and Whad Quantitative Appraisal of Microscopic Structure of Alloys

The dependence of the quality of steel upon its structure was first established by P.P.Anosov, who had used that successive combination of methods which now is called the microscopic method and comprises the basis of metallography (N.S.Kurnakov) (Bibl.2).
P.P.Anosov first introduced the semiquantitative scale for evaluating the quality of steel based on its macrostructure (Bibl.3).

Later D.K.Chernov developed this tendency, and established the quantitative dependerce of properties of steel (viscosity) on the actual parameter of its structure (size of grain) (Bibl.4).

In modern machine construction, the conditions of the work of metal in parts, tools and construction, and also the technology of its processing, compels the posing of axyzay especially rigid and numerous requirements for the quality of K $x_{X Z X I}$ metal. Often these requirements relate directly to the structure of metal, and the conformity of the quality of metal to the requirements should never be checked by an: methods other than metallographic ones. Even if it is some"imes possible, such a checking is not very graphic, reliable, or advantageous. Some axaro examples are the determination of purity of steel with respect to content of nonmetallic inclusions, degree of heterogeneity of distribution of carbides, sizes of grain, depths of decarbonization and caroonization, presence of structurally free
cementive in soft steel and the nature of its arrangement, etc. The wide distribution of the network of factory laboratories in our time permits a realization of an analysis of metal structure everywhere. In many cases, metallographic analysis is conducted as a mandatory inspection method for testing metals, semifinished products and finished products, along with chemical analysis and mechanical testirg. The inspection functions of metallographic analysis also required a new approach to an evaluation of the structure and to a portrayal of the results of analysis. In the standards, technological charts, and technical specifications, it is necessary to include quite definite and concise quantitative and dimensional requirements for structure, clearly and accurately defining the characteristics of the metal.

Examining the strunture of metal and the products from it at various stages of the technologisal process an in firished production, the plant laboratoples oper a period of time atermuiate extensive experimental material. In order that the accunulated valuable data can be advantageously used for controlling and improving tho technological processes and raising the quality of the production by the plant, it is necessam to precess these data systematically, to link the Individual factors of the technological process with a structure, and the structure with the quality of production. In this case, the use of statistical methods of processing experimental data often permits one to find important and sometimes unexpected deperdences and leads to conclusions which are valuable in practice. Using only a qualitative by evaluation of structure, we cannct link it inKK any quantitative dependence with the values typifying the tect. 0 :...? process. A statistical processing of results of micro aralysis is also unrealizable urder these conditions. Only with a quantitative
experimental material being accumulated by the plant laboratories.

No less important is a quantitative appraisal of the structure in the
researches, especially in those connected with a study of such processes, in which the structural elements change under the effect of mechanical, thermal and chemical factors only quantitatively or dimensionally. Some examples are the growth of gixak grain during heating, degree of adagiow coagulation of cementite during isothernic annealing, increase of duxit quantity of perinte during cementation etc. In such cases the only effective means will be a quantitativ or Aimensional evaluation of structural elements (sizes of grair: numbere of carbide particles, quantity of perile)

For instance, a study of the zerystallization process many years ago compelled the development and introduction into metallographic procedures of a mothod (being used until the oresent) for estimating the sizes of grain based on its average arez on a sijde.
austenfte,
In the Investigation of the kinetics of decomposition of eatentwe, there 13 detemined the ecrtant of varlous phases at various stages of the process. Indirect \circ methods (magnetic, resistometric, drumuraviz dilatometric) are less convincing and not as reliable as the method of micro investigation, since the properties can change not entire y proportional to the change in the phase composition (3ibl.5).

Advances in the techniques of large magniflcations permitted a solution of problems of the formation of a number of structures and parmitted one to establish that the structures which were considered earlier to be qualitatively differe:it in actuality have mainly a single type structure and the difference in them one from ir
another reduces only to a quantitative difference $\quad \ddot{Z}$ fixed parameters of structure.

Such for example are perlite, sorbite, troostite having a flaky structure and
 It is evident that the concrete expression of the characteristics of such structures requires quantitative estimation.

In many cases, even a purely qualitative estinate of the structure proves to not supported
 by quantitative characteristics. For instance, a case of a diametrically opposite defiriticn of the concept "point perlite" is noted by A.N. Chervyakov and
 point pexlite with granular perlite, according to A.L.Baboshin "granular peflite has nothing in common with point perlite ${ }^{*}$ (Bibl.7, 8). This contradiction is caused by a qualleative evaluation of the structure of perilite of this type and obviously 2t ean be avrsued if we Introduce the quantitative characteristics of grains of comentite into perlite, speaking of "point", Mine", "average" or Marge" grains. Beoming familiar with sny object, physical phenonena or process, we first of all obtaln a qualitative soneept concerning it. During a more profound study of the same ojject, we trinsfer Prom an Initial qualitative cognition to a quantleative deflnItion. In this connection, cases are possible when the quantitative study refutes the initial qualitative concept. Therefore qualitative-descriptive microscopic metallography is only the first beginning stege of development of the science kxiduth studying the microscopic structure of metals and alloys. The
 microscopic structure is a natural and unavoidable path of further development of metallography. Based on a number of conditions, mairly enumerated above, it is quite
necessary to develop those methods of evaluating the structure and its elements,
in which they would be characterized not by words but by numbers, especially since
the majority of metallurgists agree with this approach. xhaxaraxaxad

The quantitative methods of evaluating the structure, originating simultaneously with the advent of microscopic metallography, received especially wide acceptance and intensive development in the last $25-30 \mathrm{yrs}$. However, the vast majority of evaluation methods being applied, including the standard ones, are far from the best examples of quantitative evaluation of structure.

Section 2. Methods of Numerical Rating of Microstructure

The number of methods published until now for rating the structure by conventional points, numbers, marks etc., continues to grow incessantly. Several dozens of such methods and scales are standardized and included in the pertinent state standards (GOST). All these scales and methods can be divided into two main categories, based on the method of constructing the scales.

To the first, most numerous category of scales, there belongs the series of phtomicrographs macrophotograptes of single type structures (usually in a number ranging from 2 to lo, mest often 4 - 5), chosen and renumbered in a series of gradual $\mathbb{X X X}$ change of element of structure, typifying the given scale. The degree of this change from one point to the following one is chosen arbitrarily, being apy appraised subjectively by eye, and not connected by any fixed dependence with the index number of the structure in the scale (with the porkxXt point). In this case, an appraisal of the structure being analyzed can be conducted only visually 'y way of comparing it with a set of (microphotokraphs of the scale.

Examples of such scales are as follows: scale of carbide heterogeneity of race speed typifying

nature of distribution and orientation of graphite of gray iron based on GOST

3443 - 46, scales for appraising the structurally free cementite and siriated thinlayered quackidxafia high-quality steel based on GOST $5640-51$, scales of
nometailic inclusions $8 X X$ based on GOST $1778-42$ and GOST $801-47$ and others. are
The scales of the second category/based on a fixed dependence between the index number of the structure in the scale and the value of the geometric parameter microstructure

by the given scale. In certain cases, this dependence is expressed by a formula, linking the number (point) with the value of the parameter, but more often the values of parameter for any given number are established arbitrarily. The estimate of the structure can be conducted both approximately by visual comparison with iaxamakX microfhototraphs of a standard scale as well as more objectively and accurately by way of direct measurement of the pertinent parameter of the structure under a microscope or on a ficrophotokraph. However the structure is evaluated not by an actual figure derived, but by a conventional number or point eonnecting the fixed limits of values of the parameter being measured.

In n_{0} this category of scales, there belong the scales for evaluating the value of grain of steel based or GOST 5639-51 and the standard E 19 ASTM, a serix series of scales GOST 3443-46 for estimating the various elements of structure of gray iron (quantities and dispersions of perlite, quantity of graphite, lengths of deposits), method of contamination

inclusions based or GOST $1778-42$ and others.

The main disadvantage of using these scales is the planar estimation of microstructure ard of its separate elements, upon which we will dwell separately
(see Section: 5). Here we will examine orly the secordary but very suistantial
shortcomings of estimating the structure by points with the aid of scales.

In visually comparing the analyzed structure with fincrophotographs of the scale in place of direct measurements or calculations we naturally decrease the accuracy of the appraisal and deprive it of objectivity. Therefore the results of such an appraisal can be regarded as approximate, having a semiquantitative nature.

For instance, let us examine the XXX results of the use of four seven-point scales developed by V.Ye.Kuksinskoy, V.N.Tyulenev and M.D.Chaykovskiy for evaluating four basic elements of the structure of gray iron (graphite, $\mathbb{E X} \mathrm{p}_{\mathrm{f}}^{\mathrm{r}}$ lite, phosphorous
ferrite and
first eategory. In an evaluation of the structures by three observers (based on the same (texdroxzary microslides) the discrepancies in the estimates, based on
data of the actual authors of the method (Bibl.9), amounted to: divergences by 3 points - 4 cases, by 2 points - 10 cases,

colnclded in 7 cases.

Thus it turned out that oniy in 15% of the cases did the data of all three observers coincide. Obviously, such a method can by no means be termed quantitative.

EK Certain modifications of the method of visual appraisal, reducing to a separate determiration of points for a number of fields of vist with a \therefore...sequent calculation of the average point etc., did not increase the accuracy of results accurately,
 lack of dependerce between results of appraising the nonmetallic inclusions by the mean arithmetic point based on the scale GOST 801-47 in comparison with the data obtained by the method of P.I.Melikhov (Bibl.10), based or direct calculation of

[^0]
for samples of ball BXiKX bearing steel SHKH15.

A second important disadvantage of the principle of constructing scales of this type is their gradated nature and the system of evaluation by conrentional actual points and not by Kaxkuax values of geometric paraneters of structure. In this connection, we cannot extend, in case of necessity, the scale in any direction or differentiate more finely in a sector of interest to us. The gradated structure of the scale predetermines the standards of requirements for any given parameter of the structure or for the structure as a whole, whereas the establishment of these standards is the matter of the pertinent technical specifications or qualitative standards. Applying the gradated appraisal by points or by numers, we move beyond the limits of visiblizty of the method of analysis. We wll Karyiky this proposition by an example.

Let us suppose that the mechanical or physical properties required of the given items made of gray iron are guaranteed by the amount of free carbon (graphite) In the iron within the 1 imits from 2.4 to 3.0% (by weight), or from

b)

Steel
Fig. 1 - Comparison of Appraisals of Fouling of XKK by Nonmetallic Inclusions, Using the Mean Arithmetic Point KX Based on GCST क1 - 47 and Yased or the Method of P.I.Nelikhov. Based or Data of P.A.Droryarov (Bibl.11)
a) Appraisal according to Nelikhov; b) Mean arithmetic point COST $801-47$

GOST 3443-46, we have the following Ryadx gradations by series of graphite:

$$
\begin{aligned}
& \text { G } 08 \text {. 6-8 8\% (volumetric) } \\
& \text { G } 11 \text {. } 9-11 \%
\end{aligned}
$$

Adhering to the standard classification, we cannot select a suitable type of structure based on quantity of graphite, since the limits of graphite content established for them do not coincide with the limits needed by us. ie are compelled either to depart from the standard classification or else to introduce into the technical specifications both categories of graphite: both $G 08$ as well as G 11 , known beforehand to be used for the omission of a considerable fraction substandards.
of wase scale of standard classification and should reject the product based on actual quantity of graphite and the established concrete standards of its content.

The stales of structures predetermined the gradation of variations in elements of structures over the entire range of the scale, which often decreases the accuracy of estimate. In the same $\operatorname{COST} 3443-46$, for instance, provision is made for the following classes of structure of gray iron according to content of per dite:

$$
\begin{aligned}
& \text { P } 15 \text {. less than } 25 \% \text { of } \underset{\text { perlite }}{a} \\
& \text { P } 40 \text {. } 25 \text { - } 54 \text { of perifite } \\
& \text { P65............. . 55-74 of per }{ }^{2} \text { lite }
\end{aligned}
$$

Even in a simple visual appraisal, the actual content of perlite in the syzuratura structure can be established much more accurately.

In the research studies, one often uses fractional numbers in order to differentiate more finely the structure in a fixed interval and to determine the connectior between the structure ard properties or composition of the alloy. However, this can be done orly in case the dependence of the point upon the parameter of the
structure is expressed by a definite formula.

Thus in investigating the effect of copper uoon properties of gun iron, V.A.Davidenkov estimates the values of graphite deposits in fractional points (by numbers) of the scale ASTM (Bibl.12). The data obtained by W.A.Davidenkov (Bibl.13) are presented in Table 1.

Table 1

	a)	c) 	
	b)	d)	e)
5	none	6,00	
6	0,27	6,50	5,00
7	0,40	6,75	6,50
3	0,62	7,00	-
9	0,82	7,00	6,50
10	1,02	7,25	7,00
11	1,20	7,50	7,00
12	1,53	7,50	7,00
			7,50

a) No. of smelting; b) Copper, $\%$ c) Amount of d deposits of graphite based xafyax why melt;

An evaluation using decimals permitted us to clearly establish here the gradual fragmentation of flakes of graphite with an increase in copper content in the iron. Using in the given case only the whole numbers of the ASTM scale, it was impossible tc obtain such a definite and clear dependence, using the estimate of graphite based on OST 26049, in which the graphite based on sizes of flakes has only four gradations, it was necessary to estimate all samples by the same point $G 4$ and we did not succeed in revealing any kind of general dependence.

A similar evaluation using decimals (with an accuracy up to tenths of a
number) is used by N.A.Minkevich for the characteristics of the (size (erain) in
high-speed

The use of fractional numbers, to which researchers are forced to resort, deprives the point evaluation of one of its advantages, namely to express the result of analysis by a simple unequivocal number, and to reduce the data of the analysis to a simple code.

In many cases, the method of point rating of structure leads to explicitly observed results. The size of grain of steel based on the standard E19-33 of is
the ASIM diry determined as a function of the number of grains located in one square inch of the area of the slide at magnification by 100 times (Bibl.16)e For various numbers of grains, the standard establishes the following limits of number of grains (in calculation per $1 \mathrm{~mm}^{2}$ of area of the slide)s

No. 8 . . 1488 and more	No. $6 . .372=744$
No. 7 . . . $744=1488$	N0.5.. $186=372$

etc. At such a construction of the scale, it turns out that if we have three samples of steel in which the numbers of grains per $1 \mathrm{~mm}^{2}$ of microsection as a道 result of direct celcuistiong are found to equal 740,750 , and 1480 , wo are compelled to designste the first sample with the number 6 and the second and third
 obtained a different code number, while the second and third samples in which the numbers of grains differ by almost twice, are designated by the very same number. In any other type of analysis or tests (chemical, mechanical) such a gradated method absurd.
of evaluation would prove to be xowsonged. Unfortunately, it is permanently accepted
 the one examined above.

From what has beer said above, it follows that the mair disadvantage of the method of stardard scales is the appraisal usirg conventional points for numbers and
the stepwise, arratian erratic nature of the scales, caused by this. To the extent that the method of visual estimate of structure is distinguished by great simplicity and rid $_{\mathrm{l}}$ requires a minimum of time and effort, it can be used effectively in all cases when the approximate evaluation results ontained prove to be acceptable in practice. However, for the reasons presented above, one should \qquad afandon evaluation of structures of standard scales and results of analysis by conventional points, numbers $K X Y$ etc. It is necessary to replace them by geometric parameters of structure or of its elements whenever tinis is technically realizable.

To obtain more accurate andreliable results, the same paraneters can be rated not visually but directly measured or computed under a microscope or in

Cmicrobhotography.

Section 3. SKXH Standard Methods of Rating the Microstructure

All the methods of quantitative estimatio: of microstructure comprising both the Soviet COST as well as the foreign standards, proceed from the principle of a point rating. Therefore the typical disadvantages considered in the previous paragraph are inherent to them. Along with them, there exist numerous inaccuracies and technical shortcomings in almost all standard scales and methods of estimation and in the means of their practical accomplishment. Let us consider here several of the most important standard methods having the most widespread use in metallographic practice.

One of the oldest methods of such : type is an estimation of grain size of steel, which was first standardized in the USA in 1933 (standard of the ASTM
YCXN E 19 - 33). This scale was used even before its standardization over a number of years in factories of the USA, and later received wide use in many countries, ircluding the l:SSR. It turns out that both the scale itseif and the methods of its use should be greatly revised.

At the same time, the scales being introduced both in American standards as well as in $\operatorname{COST} 5639$ - 51 are unsatisfactory. The series of (micrdphotographs of hypereutectoid steel consisting of eight numbers, and the scales (identical to it) in the standards E $19-33$ and $\operatorname{COST} 5639-51$, provide an incorrect concept of the grain size, corresponding to the given number on the scale. As was shown by us, the structures for grain sizes No. 2 and No. 3 of the scale actually belong to No. 3 and No. 4 respectively, 1.e. higher by one number than that indicated (Bibl.17). Similar dxmmanamar divergences are also observed in a varying degree for structures corresponding to other numbers of a standard scale. The scale of sketched structures and also the limits established by standards for sizes of grains of each number are also unsuccessful. In the sketched scale of the standard of the ASTM E 19 - 38 T and $\operatorname{COST} 5639$ - 51, the grains are quite uniform in sizes and the limits of iluctuations of these sizes within the confines of an individual number of grain are considerably less than is usualiy observed in actual structures. As HXKX W.Johnson correctly notes, at the most favorable circumstances not more than half of the grains visible on a microsection of commercial metal fall within the Iinfts set by a single numer of the scale of the standard (Bib1.18).

In $\cos 5639$ 51, geometrie parameters of grains of various numbers are presented. In three columns of the same table of the x standard, it is indicated, for example that grain No. 8 characterized by an average area of 500 microns ${ }^{2}$, by a number of grains from $1 \mathrm{~mm}^{2}$ of area of the microsection, equals 2048, while the number of grains visible under a microscope at a magnification of 100 for an area of $10 \mathrm{~cm}^{2}$ equals 192. A simple comparison of these figures indicates that $\begin{gathered}\text { axan } \\ \text { they }\end{gathered}$ contradict ore anotrer. If the average area of one grain equals 500 micror. ${ }^{2}$,
obviously the number of grains for an area of $1 \mathrm{~mm}^{2}$ should equal 2000 and not 2048 . At the sanse time, since the area of $10 \mathrm{~cm}^{2}$ at magnification of 100 corresponds to the natural area of the microsection equaling $0.1 \mathrm{~mm}^{2}$, the number of grains in this area should equal 200 and not 192. The parameters of grain of all the remaining numbers of the scale are characterized by just such contradictory data.

The techniques of calculating the grains are not generally accepted. In certain cases it is manauran recommended, in calculating the number of grains on the slide, not to take into consideration the "random fine grains, representing sections through angles of actually large grains" (Byy researcher quite arbitrarily rates the structure to the extent that by actual inspection he must solve $\mathbb{X} X \mathbb{X}$ an unsolvable problem, namely which of the fine grains visible on the slide are sections of really small grains and which of them represent "sections through angles" of actually large grains. In other cases, it is recommended not to determine the average size of grains but their maximum size (Bibl.22). Understandably, such a diverse approach to calculating the grains makes their appraisal arbitrary and decreases the accuracy of results.

It is also inefficient to estimate such a practically important element of steel structure as nonmetallic inclusions. Indicative in this respect is the conclusion reached in 1939 by the subcommittee on a method of estimating nonmetallic steel inclusions of the Eritish committee on the heterogeneity of a sxaxx ingot, which examined many different methods proposed for characterizing the XXX fouling of steel by nonmetallic inclusions (3ibl.23): "A. All attempts of quantitative and qualitative determination of nometallic inclusions failed to lead to the development of methods permitting the cortrol of the steel productior. process; B. None of these numbers methods provide the possibility of obtaining sufficieritly constart fatamade and carnot
serve as a reliable method for estimating the quality of steel during its delivery
acceptance;
and suresest; C. Further studies are recessary for finding a satisfactory method for
defining a nonmetallic racruarax inclusion".

In spite of the great number of studies in this area, $X X X$ the methods (standardized later) of estimating the nonmetallic inclusions in steel ($\operatorname{CosT} 1778-42$, GOST 801 - 47) received no better responses than that presented above.

We will restrict ourselves to data of the investigation of NoK.Sokolov and
 current inspection of the smeltings of ball bearing steel type XN ShKhl5 for several years, and also of a number of experimental smeltings (Bibi.2L). The research indicated that, using the method of rating according to the COST $801-47$ (rating according to maximum point), suitable metal is often rejected in practice and steels with considerably fouled ronmetallic inclusions are passed (accepted).

At a properly constructed method of rating, the increase in the quantity of samples from smelting should lead, generally speaking, to an increase in accuracy of analysis and reliability of the result obtained. According to the actual standard method, the increase in number of samples always leads to an increase in probability of rejectior, independently of the degree of fouling of the given smelting. This is explained in that the readirg of the smelting is conducted on the basis of the maximum point, while the samples being characterized by a fixed are
point according to oxides,/found in any smelting, but with a frequency typical for it. The more samples that are smacrinazadxana investigated from the smelting, the higher the probability of firding a field of with a rating point higher than that permitted, which also leads to a reiection of the smelting. Thence it follows that a rating based on 3-5 samples, as is provided for by the stardard, ofter. :ields rardom results.

The authors of the investigation arrive at the conclusion that the standard metnod is unsuitable as a result of the insufficient reliability of inspection, that is, the results of rating depend to a considerable degree not upon the quality of the smelting but upon the quality of the control samples. Figure 1 presented above also confirms the fortuitous nature of the estimation being obtained during the use of the standard methodology.

In our opinion the most important disadvantage of existing rating scales for the jmpure state of steel with nonmetallic inclusions is the attempt to combine in one scale the rating of two indexes which generally speaking are independent of each other. These indexes, mainly determining the effect of inclusions of the given type upon the quality of steel, are a) The general stata of impurity of the steel, characterized by the part of the volume of steel occupied by the inclusions, and b) The dispersed state of inclusions which can be estimated by their quantity or sizese

The overall impurity of steel by inclusions of the given type deteriorates the quality of steel. However the inclusions occurring in the same part of the volune of metal may have a different dispersed state, which in its turn reflects upon the quality of the steel. As P.A.Dvorysnov demonstrated, the sizes of the inclusions -. influence
 chipping of the hardened bearing steel. The less the area of contact of the bodies of turning, the less the maximum permissible sizes of inclusions (Bibl.172). fouling of steel
At a low overall domarack
inclusions are permissible and vice versa. Thence it is apparent that it is
to
necessary αx have a separate evaluation of the total impurity of steel and dispersed
state of the inclusions. Moreover, the existing scales are so constructed that this
factor is not taken into account in them at all. The division of scales into two groups (being used in certain cases) according to criterion of dispersed state of inclusions is insufficient.

In gray irons, an important element of the structure, mainly determining the
 is made for a quite detailed appraisal of the graphite deposits. Graphite in gray iron is classified according to quantity (6 categor: s), according to nature of distribution (5 types), according to length of graphite deposits (8 groups), according to ratio of their length to thickness (6 subgroups), according to degree of rectilinearity (3 kinds), according to nature of distribution (4 forms) and (3 variants). Maraz However according to orientation characteristic of the structure of graphite often proves unsatisfactory and compels one to resolt to scales other than the standard ones. At the same time, certain

报 types of standard evaluation are superfluous and usually are not applied.

The quancity of graphite is characterized by an average percent of the area occupled by a graphite in the field of shall see later, colncides with the volumetric content of graphite in iron. In quantity standard Table 2, along with the norms of the guxizur of graphite, according to yaxiaxid we also present exemplary numbers of the corresponding weight content of graphite which were computed by us. Garbon content in castings made of construction gray iron of various types (from SChOO $\alpha \mathbb{K}$ to $\operatorname{SCh} 38-60$) usually falls within the limits from 2.5 to 4.0% by weight (Bibl.25). Insofar as the quantity of bonded carbon isually comprises around 0.5-0.7\%, the weight content of free carbon (graphite) proves to fall within the limits from 1.8 to 3.3%. A comparison of these figures with the

Table 2

a)	b)	cl
$G O 2$	below 3	below 0,9
$G O 5$	$3-5$	$0,9-1,5$
$G O 8$	$6-8$	$1,8-2,4$
$G 11$	$9-11$	$2,7-3,4$
G14	$12-15$	$3,7-4,7$
$G 17$	above 15	above 4,7

a) Categories; b) Quantity of graphite, \% of area; c) Content of graphite, \% (by weight) (\%
data in Table 2 indicates that, although the standard provides for six gradations according to quantity of graphite, practically all types of castings are included by only two categories, that is $G 08$ and Gll. The remaining four categories, comprising two thirds of the scale, remain unused and the quantitative evaluation axak actuaily is converted to a qualitative one.

Depending upon the principal length of grapinte deposits, the structure of gray iron is subdivided in $\operatorname{GOST} 3443$ - 46 into eight types. A similar scale which was proposed by Macon and Hamilton (BXXXXXXXX (Bibl.12), or standardized in the USA in 1941 (standard A247-41T ASTM). The norms of our stardard are presented in Table 3. In the same place the ncrins of the ASTM scale are also presented.
 frequently encountered range of sizes of graphite deposits comprises from 20 to 700 microns (Bibl.25). The data of Norber and Bolton, who investigated the sizes of graphite deposits in six groups of castings with a structure of graphite ranging
 these data, the average length of deposits dognot exceed 150 microns , and the maximum did not exceed 700 microns (3ibl. 26). $\mathbb{E} X X X X X X X K X X$ G.N.Troitskiy considers

a)	b)	c)		
		d)	e)	f)
Ggl	above 1000	960	1280	-
Gg 2	500-1000	480	640	960
Gg 3	250-490	240	320	480
Gg 4	120-240	120	160	240
G95	$60-110$	60	80	120
Gg ${ }^{\text {g }}$	30-50	30	40	60
$G 97$	15-25	15	20	30
Gq8	below 15	-	10	15

a) Group; b) Principal length of graphite deposits based on GOST 3443-46, microns; c) KX Length of graphite deposits based on the KXXN ASTM scale, microns; d) Minimum; e) Average; f) Maximum
that the practically most important range of sizes of graphite deposits have a length from 50 to 500 microns, while the actual range amounts to from 1 to 100 microns (Bibl.27). In Table 4, we present data of measurements of graphite deposits found in six groups of kwerring castings, obtained by Norber and Bolton.

The data presented indicate that only four or five groups from the eight groups of the standard, characterizing relatively fine deposits (ranging from Gg4 to Gge based on COST 3443-46 or from No. 4 to No. 8 based on the ASTM scale) can have practical interest and wide use. Understandably, this quantity of gradations is insufficient for a differentiated appraisal of the dimensions of graphite deposits of axX diverse machine construction casting It represents only half of the number of iron types of construction gray exabl established by GOST 1412-48. Hence, not onl.y samples of various smeltings of the same type of gray iron, but also samples of castings of related types are usually rated by the same group based on the measurement of graphite deposits. This sharply limits the possibility of metallographic control of the iror casting and, in particular, makes jmpossible the irtroduction of statistical
control for the length of graphite deposits. Therefore, in many cases, the

Tabie 4

a)		
b)	c)	d)
1	4	20
2	10	30
5	25	100
10	100	200
15	125	250
40	150	700

a) Actual length of graphite deposits, microns; b) Minimum; c) Average;
d) Maximum
factories use their own scales, differentiating more flnely the graphite deposits according to length and consisting, e.g. of 16 numbers. Above we have already presented another example of a more precise appraisal, with the use of decimais of the ASTM scale (see Table 1).
S.M.Skorodziyevskiy measured a large number of graphite deposits \sin the castings of tractor bushings, type CNEX ChTZ (approximateiy based on 2000 measurements for each sample) (By (Bl.28). Sased on these data we have constructed curves of the distribution of deposits based on their length, shown. In Fig. $2 \cdot$ for four samples. The mean length of deposits for each of them is expressed by the following numbers:

No. of sample	2	2	3	4
Average ler.gth, microns	32	36	31	42

These figures indicate that the examined samples correspond in average length of graphite deposits to the numbers 6 and 6.5 in the ASTM scale (see Table 3). At the same time, the distributior curves indicate that deviations in length of deposits go beyond the artificial and urfounded limits of the ASTM scale, which does not refer
to the $\operatorname{GOST} 3443$ - 46 scale, inasmuch as in it there are established the standards
of the "principal" length of deposits, and not the minimum and maximum as in the ASTM scale.

We will limit ourselves to the above-considered standard scales, assuming that they show quite clearly the disadvantages of the most widely used methods of rating the structure with the aid of $\mathbb{X X X}$ scales. All of the methods of rating considered in the present section are relatively the best, inasmuch as an estimation based on
 visible structure of the metal. Nevertheless, the use of these methods quite often creates only the semblance of a quantitative estimation of the structure.

Four Castings of

a) Prequency, 所; b) Limits based on the ASTN scale; c) Microns

Additional errors are caused by the planar estimation of the structure,
instead of its spatial characteristics. In a number of cases, this to a considerable degree devalues the standard methods of analysis.

Section 4. Spatial Siructure of an Allov and Methods of Studying It

From the point of view of its spatial structure, any metal or alloy can be regarded as a conglomerate, consisting of a multitude of microscopic bodies, filling the investigated sector of $\mathrm{KK} \times \mathrm{C}$ space, and permanently interconnected by surfaces contact with each other. Depending upon geometric outlines or process of formation, these bodies are usually called crystals, crystallites, deposits, inclusions, grains, globules, spherojids, nests, flakes, plates, small leaves, needles etc. A most common term for these microscopic bodies can be the concept "crystallite", if they all have a crystalline inner structure. However, taking into account that among them are found the formations of amorphous structure (for instance, vitreous nonmetallic inclusions).
 "micromparticle", which we will use in the subsequent discussione

Each micromarticle (metallic or nonmetallic) is a structural individual of microscopic structure of the given metal alloy, in the same way that the elementary cell is such for the crystal structure of a body. Microoperticles represent micro-volumes of crystal lattices, of one or another phase of alloy (elements, idX solid solutions, chemical compounds, etc.) if they have a crystal structure.

In pure metals and alloys having a single-phase structure, all micro-particles are usually characterized statistically by a single type geometric form, for instance by the form of a regular but on the average of equi-axial polyheirons. In other cases, there is possible the presence of two or more groups of micro-particles belonging to
the same phase of alloy axK and having a uniform crystal lattice, but differing
in geometric form, For instance, in soft steel we note two groups of micro-particles of ferrite; the particles of one of them, entering the composition of perlite are characterized by a thin-lamellar form, whereas particles of the second group have the form of polyhedrons ("of a grain" of ferrite).

The inner structure of the vast majority of micro particles is characterized by a crystal lattice, determining the pattern of spatial arrangement of atoms, comprising the micro particle. However the actual micro particles constitute, as is known, complex formations consisting of blocks of a mosaic structure. Also of compiex structure are the transitional boundary zones between adjacent micro-particles fank have a fixed actual thickness. The composition and, hence the inner structure of
 micro-particle etc. We shall dwell in more detail on these problems later on.

The actual, three-dimensional microscopic structure of metal is rot accessible to direct observation, since metal is not transparent. We can see only the structure, obtained in the intersection of metal by the plane of a metallographic microsection, i.e. the two-dimensional structure of a cut or section of metal. idea
 microscopic structure of the metal. The visible two-dimensional inthraywhrackinc should serve as initial material for recreating according to it the patterns of actual

or when observing in a microscope, the planar structure is considered, with very rare
exceptions, as the firal goal of the aralysis beirg conducted, in spite of the fact
that with appropriate processing, they could yield a more complete data concerning
the spatial microscopic structure of the metal. As we noted above, the object of
$a l l$ standardized methods of metallographic analysis is also comprised by planar microstructure.

An important advantage of metallographic analysis is the clarity of the pattern being observed; however this clear pattern is rarely used for a more precise spatial estimation of the geometric parameters of the structure; this is the source of the disadvantages. The metallographer ofter overlooks the fact that the visible structure of a microsection is only a portrayal on the surface of a spatial microscopic structure of the alloy.

The plane elements of the visible microstructure exist only on the slide, comprising random sections of microparticles of various phases of the alloy. All those geometric parameters of two-dimensional structure which we can measure or compute on a microsection, do not exist in an actual three-dimensional structure of an alloy, although they are connected with it and are determined unequivocally by it.

A knowledge of the form of dependence of geometric parameters of a plane structure upon the spatial structure of an alloy is quite mandatory in developing any method of quantitative appraisal of the microstructure. The disregarding of this conditior often leads to the obtainment of distorted, and sometimes of quite erroneous concepts concerning the actual structure of the alloy.
a study of the EXGindira structure of alloys in connection with the processes of thermal, mechanical and other types of action upon it car give us a correct concept of the physical nature of the transpiring prncesses of conversions or changes, in an alloy only when we quantitatively link the factors of outer effect and indexes
of properties of the alloy with the geometric parameters of its actual spatial
structure. To seek a quantitative dependence among these factors, indexes of
properties of alloys, and parameters of plane microstructure of it is just as
unfeasible as establishing a dependence between the properties and behavior of a single
monerystal and its x-ray photograph, not having determined in advance according to it the parameters of true structure of the crystal lattice.

If we limit ourselves to a quantitative characteristic of only the plane microstructure of the alloy, in the optimum case we succeed in establishing only semiquantitative the empirical, zexiquaxtzaxzy dependences among its parameters on the one hand, and on the other between the composition, properties and machining of the alloy. One can establish the physical nature of these dependences, find or verify the
proceeds from the true three-dimensional structure during the evaluation.

Section 5. Inadequacy of a Plane Evaluation of Microstructure

In metallographic terminology, there is much confusion in the definitions of the geometric form of various elements of structure; this confusion is caused by the fact that in the seamericiow selection of a defirition, sometimes one proceeds
 uses the actual spatial structure of the alloy as a basis. Therefore one can find in metallographic practice such definitions as "twinning plane" and "twinning line", "plate of ferrite" and "strip of ferrite" (in pentite), "boundary surfaces" and "lines of boundaries", "cementite shell" ard "cementite grid"; etc. Therein, almost never are indications made as to what exactly is intended - a plane structure of a spatial structure. For instance, in COST $3443-46$, one speaks of the "thickness" of graphite deposits of gray iron, whereas actually what is meart is the width of sections of graphite plates visible on the microsection. As a result of the vagueress
element of the structure.
the micro particles
For instance, according to a generally accepted definition,

usually called "needles". In their time, N.P.Slavinskiy and N.L.Kleyman extracted these micro particles from semiliquid babbit $B-83$ by the method of hot quartzitic filtration in vacuo. Filtration was done through a filter made of quartackerxic sand
microparticles

(Bibl.29) filtered off at 240°. We observe that the $\mathrm{Cu}_{6} \mathrm{Sn}_{5}$ microparticles have the shape of rods or needles. These rods prove to be the centers of microparticles, crystallization of the SnSb
microparticles
 more or less
of Moxemixary extended elipses and sometimes, when the axis of the "needle"
coincides closely enough with the plane of the microsection, have the form of
with reference to microparticles
nस

structure of microf particles of this phase of alloy and is quite correct.
At the same time, over a period of decades the wixat concept has beer retained
or acicular of the martensite of hardened steel as of a structure having a "needle" ${ }_{\wedge}$ structure, : . 0 which does dX rot correspond at all to reality. A.P.Gulyayev ard Ye.V.Petunina

structure, while the Bamaxux "needles" visible on the microfsection are traces of
mariensite plates on the plane of the wixaraix microsection (3ibl.30, 31). The authors measured the thickness of plates X

fell withir the limits of from 3.92 up to 4.52 microns. At such a slight thickness,
the chance of coincidence of pl
than
is quite trivial. Nevertheless, A.P.Gulyayev and Ye.V.Petunina managed to detect

and photograph several martensite
plates which coincided with the plane
of the microsection. One of them is
show in Fig. 4 which also constitutes

XK an additional confirmation of the
platelike structure of martensite. Hence,

Fig. 3 - Needle-Shaped Micro Particles of $\mathrm{Cu}_{6} \mathrm{Sn}_{5}$ and SnSb Micro r Particles of Cubic Form Taken from Babbitt by the Method of Hot Filtration. The diagram is based on a photograph by M.P.Slavinskiy and N.L.Kleyman (Bibl.29)
in this case the kaka concept "needle" zara already refers not to a
three-dimensional structure but to a two -dimensional section of micro particles being observed on the microsection.

A similar duality of approach to evaluation of the form of micro particles in itself leads sometimes to serious results. For instance, the author of one paper suggested three formulas for computing the volume of the transformed phase as a function of the time of isothermic delay, at differing uniform state of growth of nuclei: min- medimensional ("of a needle"), two -dimensional. ("plate") and threedimensional ("spherolite"). An experimental checking of the formula for morodimensional growth was conducted for the isothermic transformation of supercooled
 obtained a good coincidence of calculation with experiment (Bibl.32). However since in reality the "needlelike" troostite as well as the "needlelike" martensite have a lamellar form, experimental checking actually refuted the formula of the author and did not confirm its validity.

Fig. 4 - Martensite Formation (White Component), not Having a Needlelike Form, - Plane of Microsection Coincided with Plane of Martensite Plate [after A.P.Gulyayev and Ye.V.Petunina (Bibl.31)]

Obviously, it is necessary to stick to a single approach in the choice of terms typifying the geometric form of structural elements, which should be microparticles. chosen based on the actual three. 奴 dimensional structure of In those cases when one is discussing the parameters of two-dimensional structure, the use of the appropriate terms should be specifically spelled out.

In a quantitative evaluation of the microscopic structure of metal, it is quite necessary to link the parameters of plane structure with the parameters of spatiai structure. The lack of such a linkage may comprise a source of grave errors and of incorrect conclusions. For instance, XX I.L.Mirkin, having investigated the processes of secondary crystallization of steel, remarks: "A simple counting of the grains (this means the two-dimensional grains in the plane of a microsection - S.S.) or a measurement of their size leads to a quite untrue conclusion concerning the linear rate of crystallization and rate of nucleation. Analysis and experience indicate that a large number of grains in the microsection sometimes can be detected during a KXX low value of rate of nucleation ard, cortrariwise, a small
number of grains are detected in case of a high rate of nucleation. Such an externally paradoxical phenomenon ensues from the inequality of sizes of grains and the need of referring them to the volume of steel, whereas the counting is conducted on the plane (surface) of the microsection. This same circumstance needs to be taken into account in a determination of the quantity and size of slag inclusions, carbides, oxides and other deposits usually being determined under a microscope; based on the latter condition, the existing methods of their microanalysis required a reexamination, and our concepts rogarding kixaz number of them present in steel are basically erroneous" (Bibl.33).

Fig. 5 - Individual Grain Taken from a Piece of Coarse-Grained Steel. Drawing by D.K.Chernov (Bibl.4)

We will show how, using the standard method of ax determining the size grain /a of steel, one can obtain concept opposite to that of the actual average size of three-dimensional grains. In Fig. 5 is show an individual grain removed from a piece of coarse-grained steel by D.K.Chernov, based on his actual drawing (Bibl.4). We can easily see that if the plane of the microsection passes along the line $A B$, plane of the paper, perpendicularly to the care of dhe will see ir the microsection two
sections of this grain, not connected one with the other in the plane of the
microsection. Therefore we will naturally take them for two independent grains
in the counting of the number of plane grains and in a determination of the average
area. The more complex the shape of the three-dimensional grains, at one and the same average volume of them, the graxkaxiangax more the two-dimensional grairs that will be observed per unit area of microsection, the greater will be the lack of correspondence between the actual and apparent size of the grain.

In case of especially complex form of spatial grains, on the microsection there may even be observed so-called "isolated grains", described first by
V.N.Sveshnikov (Bibl.34) and later noted by V.M.Zamoruyev in sperners cuprous soft $X X$ steel (Bibl.35). Such a grain would be more correctly termed " a grain within a grain", since the boundaries of the "isolated" grain on the microsection represent a closed curvef, not contacting the network of lines of boundaries of other grains. In Fig. 6 we show the microstructure of axamax austenite steel, containing $18 \% \mathrm{Cr}$ and $8 \neq \mathrm{Ni}(\mathrm{Bibl} .36)$, in which one can see three such "isolated" grains, indicated by arrows. Judging by the orientation of lines boundar on the microsection, two of them located farther to the right belong to one and the to
 located somewhat lower.

Isolated f grains occur relatively rarely. However, very often in microslides one finds grains located close together, revealing a uniform color in case of deep pickling or a uniform orientation of slines, aingingen which serves as a confirmation of their belonging to one and the same volumetric grain.

Fig. 6 - Isolated Grains in Austenits Steel. ($18 \% \mathrm{Cr}$ and $8 \% \mathrm{Ni}$) (Sibl.36)

The regular shape of grains approaching a spherical shape also does not protect us from mistakes, if the judgment of the average size of a threedimensional grain is based on measurement of the average area of two-dimensional grains or on a counting of the number of grains in a fixed area of a cut $k x$
yөx, equiaxial
(microsection). At single-phase structure and aquatexiat shape of grains, the dependence between the quantity of KKX three-dimensional grains per unit
volume of metal and the number of their sections per unit area of microsection may be expressed by the following equation

$$
\begin{equation*}
N=k n^{3 / 2}, \tag{5.1}
\end{equation*}
$$

where !! is the number of three-dimensional grains per $1 \mathrm{~mm}^{3}$ of metal;
r is the number of their two-dimensional sections per $1 \mathrm{~mm}^{2}$ of cut.
The value of coefficient k depends uponthuctuation in sizes of three-dimensional grains. For the usually observed structures, the values of this coefficient change within limits ranging roughly from 0.75 to l.C. Thus, even at an ideally regular form of grairs and at one and the same number of two-dimersional grains occurring ir the cut, the quantity of three-dimensional grains per unit volume of metal and the average volume of grair: ma: differ within the limits of around 250, owir, only
to the fluctuation of their sizes. Thence it is clear that the value of only
the number n is not enough for judging the actual dimensions of average
three-dimensional grair\& Therefore the standard method of determining the grain
size based on GOST 5639-51 cannot furrish a correct concept of the true grain
size, even if it is ideally uniform in shape\%. The presence of grains with concave
surface increases the error.

The same takes place in a determiration of the quantity and sizes of nonmetallic inclusions, We present the following example (according to I.Lofirkin): if, per unit volume of one type of steel, there are 1000 inclusions 20 microns in diameter, while in another type of steel there are 2000 inclusions with a diameter of 10 microns, in a microanalysis of the KX the same quantity of them per unit area of the microsection (Bibl.37). In any steel, the inclusions are heterogeneous in sizes. Thence it follows that, based on the quantity of inclusions in a cut, one can by no means obtain a proper concept of the fraction of large and small inclusions, concerning the total quantity of inclusions or the degree of contamination of the steel.

The parametors typifying the kinetics of the process of crystallization are determined according to the change in quantity of micro particles of the newly forming phase and their sizes $\frac{\alpha \Delta}{i}$ function of time of the isothermic soaking. For round micro particles, the following mathematically precise relationship between the

[^1]\[

$$
\begin{equation*}
\mathrm{n}=\mathrm{N} \overline{\mathrm{D}}, \tag{5.2}
\end{equation*}
$$

\]

The number n may increase owing to an increase in average diameter of the microparticles,
 or even owing to an increase of this number at unchanged average diameter of the micr \wp particles \bar{D}. It is also possible that will grow owing to a simultaneous increase in N and \bar{D}. Thence it follows quite obviously that neither the rate of nucleation of crystallization nor the linear rate of growth can be determined, proceeding only from one number n and the kinetics of its change a function of time of isothermic soaking.

Meanwhile, GoTamman proposed a formula for calculating the linear rate of displacement of boundaries grain at isothermic recrystallization, based on the kinetics of change in the quantity of two-dimensional grains (Bitl.38):

$$
\begin{equation*}
a=\frac{1}{z \sqrt{n}} \tag{5.3}
\end{equation*}
$$

where a is the linear rate of displacement of grain boundaries;
z is the duration of annealing.

In Xiad the light of what has been stated above, it is clear that the G.Tamman formula is inaccurate. Moreover, the very concept of rate of displacement of boundaries lacks physical meaning in application to single-phase polycrystalline aggregates in case of collective recrystallization, and is unsuccessful.

> Fig. 7 - Displacement of Lines Bindayyy Boundarifh of Aluminum Grains on a Cut at 600°. Solid lines equal after two minutes of soaking, broken lines equal after an additional 30 sec soaking. The diagram is taken from a (micrgphotdgraph (3ibl.39)

In Fig.7, based on photomicrography (Bibl.39), there is shown the grain boundary lines displacement of lines show the position of boundaries after two minutes of soaking at 600°, while the broken lines show the same after an extra 30 sec soaking at the same temperature. The displacement of any sector of the hine boundary between two adjacent grains may be characterized by a fixed linear velocity, but if this rate is positive with reference to one grain (growth), then it is negative in relation
to the second. If we examine the polycrystal as a whole, the average rate of displacement will obviously equai zero. One could have taken into consideration the displacement of boundaries only of growing grains, but from the drawing it is shift at
 at.
at one place, and with a negative rate at another place. Hence, Minear rate of proves a displacement of boundaries" in the given case $\mathrm{K} /$ /very indefinite and conditional concept.

[^2]taking into account the connection of plane structure with spatial structure (Bibl.33), up to recent times attempts of such a kind have been continuing. For instance, one can point to the criticism S.R.İilly and I.K.Stanley of the method of studying the rate of crystallization on a plane, which S.F.Rejter used in investigating the kinetics of recrystallization of low-carbon steel (Bibl.40).

At the same time, if the forms are known of the connection of geometric parameters of spatial structure and of plane structure, one cannot only calculate correctly the parameters of crystallization but also compute in advance the geometric parameters of plane structure, proceeding from the propositions at the basis of the theory of the crystallization process. Then it is easy to compare these computational parameters with test data for checking the validity of the theoretical assumptions. For instance, to the process of graphitization of white cast iron, there is usually attributed a normal crystallization kinetics, typified by the nucleation of
 rate of nucleation of graphitization is constant during the process of isothermic soaking or even gradually decreases, the total quantity of graphite deposits per unit of volume of iron should continuously increase. The quantity of sections of graphite deposits visible per unit area of cut should increase still more intensively, as foilows from formula (5.2), inasmuch as the dimensions of deposits increase during the process of graphitization. The computational curve of the change in number of deposits of graphite per unit cut area is shown in Fig. 8 (curve 1). Curves 2, 3, and 4 in the same figure are draw for the first stage of graphitization of samples of three smeltings of white iron based on test data of B.F.Sobolev (Bibl.42).

They show how the quantity of deposits on a BXXXA microsection actually changes depending upon the duration of ankexar annealing at $970^{\circ} \mathrm{C}$.

Comparing the computational and test duxa curves, it is easy to see that
between them there exists neither a quantitative or even a qualitative correspondence:
 xhymexd/of the expected growth of the number of clusters, XK the number decreases. It is obvious that the process of graphitization transpires at prepared centers (nuclei), while the quantity of deposits continually decreases in the process of isothermic annealing owing to their coagulation. The actual term "nucleation" under these conditions logses meaning and our concept of the kinetics of the graphitization process should be reexamined.

The example presented ghows that a

a) study of the spatial structure of alloy proves quite effective in checking by experiment the correctness of any hypotheses and theories $\mathbb{Z X}$ connected with transformations in alloys. According to the successful expression of S.S.Smith and L.Guttman, the thinking of scientists is dimensjonality

Fig. 8 - Kinetics of Change in Quantity n of Craphite Deposits per $1 \mathrm{~mm}^{2}$ of Cut in the Process of First Stage of Graphitization a change a study of plane structure to of Three Smeltings of White Iron (Curves 2,
3 and 4). Sased on data of B.F.Sobolev
(3ibl.42) $\left\{\begin{array}{c}\text { a study of three-dimensional structure } \\ \text { can give a }\end{array}\right.$ a) Time (hrs)

What has been stated shows convincingly enough the helplessness and
inadequacies of the quantitative evaluation of a plane structure, if it is not tied in with the spatial structure of the alloy. The rational and most effective way of developing metallographic analysis requires the use, not of the quantitative characteristic of structure in general, but such an evaluetion which would be based on the spatial structure of the alloy. Both the parameters of spatial structure as well as the parameters of plane structure, on the basis of which they may be quantities kind computed, should be evaluated as natural geometric way without any XXNa of coding or designating them with conventional point symbols or numbers. Section 6. Basic Parameters of Spatial Structure

The form of particles making up a metallic aggregate is rarely geometrically uniform. The microparticles can be convex geometric bodies, but can also be bounded by concave surfaces. Quite often the microparticles have dimensions which are about uniform in all directions (equiaded microparticles - grains, globules, spheroids). However, microparticles can also occur in which the dimensions in two directions predominate considerably over the dimension in a lamellae
third direction (plates, x small leaves), or actualparticles having a predominating dimension only in one direction (needles, threads, rods). In certain cases, the microparticles are relativelv massive formations with closed internal cavities, filled with microparticles of other phases or structural components (ferrite with pearlite,
granular pearlite,

The sizes of microparticles also change within wide limits in a given small volume of alloy, which is the object of microfanalysis.

The mutual arrangement of microparticles of one or several phases is random
and even in the presence of certain laws (for instance, during transcrystallization
or in plastically deformed metal) it can never be presented as geometrically regular, instance,
similar, for K\#\#ukyay to the arrangement of ators in the points of a crystal lattice.

It would seem as if these circumstances would create insuperable difficulties
in the desire to evaluate the structure of an alloy by anggeonetric parameters, characterizing the shape, dimensions, quantity and arrangement of microparticles. These however, are only apparent difficulties. ル

It is quite convenient to apply the statistical study methods to the microscopic structure of an alloy. Just as any geometric body, the microscopic particles possess fixed linear dimensions, volume, size of surface, shape, and are present in some quantity in a unit volume of the alloy. Therefore the most efficient method of characterizing these microscopic geometric bodies is to evaluate them by the same parameters which were adopted for characterizing tis geometric bodies in general: their size, by linear dimensions or volume; btacxsurface, the number of
by their area; dispersed state, by of microparticles per unit form factor; etc.
 quantities. are discussing only the statistically average values for these cases, there is no need to typify any given group of microparticles of fixed phase, at the even ase average values of parameters of their sizes and shape. It is usually enough to evaluate the entire combination of particles of a given phase by such parametersf f as the total volume of particles or the total surface of them per unit volume the alloy, if a more complete characteristic is inaccessible to us. The combination of dimensional and quantitative parameters, obtained for particles of each structural
a
group or phase, is/quite objective, accurate, and sufficient characteristic of the
microscopic structure of the object being analyzed, as a whole.
The selection of parameters of the Spatial microscopic structure of an alloy, which can feasibly be measured during metallographic analysis, is determined by the role of (elements 2 microstructure) the processes of transformations and alloys and their effect upor upon the properties of the alloy. At the same time, these parameters should be determined by the application of technically accessible but too unwieldy and sufficiently precise methods of metallographic analysis.

From this viewpoint, the most important characteristic of the m croscopic structure of an alloy is its quantitative volumetric structural or phase composition, by which we mean the fraction of each structural component or phase in the volume of the alloy, usually being expressed in volumetric percentages. In a study of the kinetics of structural transformation in alloys, the change of structural and phase composition ${ }^{a}$ function of time, is a necessary and sufficient index of the course of the process.

Knowing the fraction oi the volume of alloy being taken up by each structural component or phase, and having access to the values of their specific weights, we can easily proceed from volumetric structural composition to weight composition. It is just as easy to proceed from weight structural composition to cherical composition of the alloy, if we know the chemical composition of each phase or structural component.

EX Using the simple rule mixture , on the basis of quantitative volumetric structural composition of the alioy, we can also compute its specific weight.

In a number of cases, using simple formulas, one can calculate in first approxiration the indexes of mecharical properties of ar. alloy (hardness, ultimate
 of alloy, it is necessary to have available the corresponding indexes of mechanical uroperties of each structural component.

Hence, a knowledge of the volumetric structural or phase composition of the alloy permits one to connect XX quantitatively its structure with the chemical composition, physical and mechanical properties of the alloy, which serves as a valuable means of reciprocal $\mathbb{Z X}$ checking and correcting of various types of investigation of the metal.

An equally important parameter of microscopic structure is the value of total surface of grains of metal for microparticles of various phases and structural components of ${ }_{n}^{\alpha \mu}$ alloy, referred to unit ande volume. This value,
(specific area) called by us the specific surface/of grains or microparticles plays an exclusively important part both in the processes of well 2.5 in a determination of their diverse properties.

Based on a differing orientation of spatial lattices in each pair of contacting nicroparticles of pure metal, on the boundary of their contact there exists a layer of atoms in which they are arranged irregularly. The same takes place also at the boundary of contact/of various miferaxix lattices of each pair of microparticles of different phases.

In the boundary laver, the position of atoms is fixed by forces acting from the side of both adjacent lattices, and constitutes a compromise position between those being determined by each of them separately. The layer of irregularly arranged atoms has a certain thickness, although it is trivial in comparison with the extent of the boundary laver. Therefore the boundaries of grainsand of microparticles are not
areas regions regions
geometric but are areas possessiry a fixed volume. These zraxs are called

 "thickening" of energy. The energy level here is higher than within the volume of the crystal lattices, the atoms are connected less stably than those found within the regular lattice, the transitional layer is less stable thermodynamically, and its atoms are more mobile and inclined toward rearrangement and migration. causes the exclusive activity

why they possess the leading part in the processes of interphase transformations, growth of grain, creep of metals, diffusion, nucleation of crystallization of a new phase, etc., which has been noted many times in the past by the practice of metallography.

As is known, the mechanical properties of an alloy are function not only of the structural composition but also of the dispersed state. At one and the $X X$ same volumetric phase composition of/alloy, the value of specific surface of microparticles serves as a reliable stardard of the degree of dispersed state of the microscopic KKixizaja structure of the alloy. Therefore, knowing the value of specific surface of various phases and structural components, we can in second approximation refine the indexes of mechanical properties computed on the basis of structural composition. In many cases, the mechanical properties of ar. alloy prove to be cornected with the value of the specific surface by simple linear dependences. The same can be said concerning a series of physical properties of alloy, specifically the magnetic properties and specific weight.

The plastic deformatior of a metal is accomparied by the appearance of a forces $N X$ acting in the metal. Therefore a study not only the value, but also of the spatial orientation of sufaces of microparticles proves quite valuable in Whaxdrazin researching the processes of plastic deformation of metal. The intercrystallite boundary zones of whacy microparticles are not the only areas $K \mathbb{K X X}$ of metal having increased energy and therefore actively taking part in the processes of transformations and of changes in structure. At formation of polycrystalline structure of pure metal or of single-phase alloy, a microparticle growing from the center of crystallization, encountering on the path of its growth the closest adjacent microparticle and coming into contact with it, forms a boundary, which is common to both microparticles. Tnis interface continues to increase along with the further growth of the microparticles forming it $X X$ until it encounters the surface of the nearest third microparticle. As a result of such a meeting, two more faces are formed between this third microparticle and the two first ones. All these XXXX facefs are intersected along one line, i.e. a lattice edge, comnon for all three microparticles. The growth of this edge is limited by encounters with the surface of the nearest vertex fourth microparticie, which will be accompanied by the formation of a point XFY. rem, common the four microparticles, that is polyhedrons. Hence, each face hin the polycrystalline aggregaie belongs to two microparticles, and each edge pertex belongs to three, while each point of themone belongs to four microparticles.

It is necessary to stipulate that in reality, the process of formation of a polycrystalline structure is considerably more complex, since simultaneously with the growth of microparticles there proceeds the process of collective recrystallization. However, this does not charge the main character of the final microscopic structure

> of the polycrystalline aggregate. Therefore in a polyhedral structure, there are cobserved intercrystallite zones of three types, namely two boundary (sides of polyhedrons), three boundary (edges of polyhedrons) and four boundary (pacicix vertices of polyhedrons).

The degree of irregularity of arrangement of atoms in the zones of edges of sides polyhedrons is higher than in the zones of their faresta, since here the atoms are situated under the simultaneous effect of crystalline orders of three differently oriented lattices. Accordingly the level of energy and activity of atoms of threeboundary intercrystalline zones is higher than that of two-boundary zones, and the thermodynamic stability is lower. A still more irregular arrangement is possessed by atoms of the four-boundary intercrystallite zones, where their position is a compromise one between those being fixed by each of the four crystal orders, vertex converging at the points of the of the polyhedrons of the spatial lattices.

It i.s known that in the ck salt solution, the corners and edges of the crystals prove to be especially active (Bibl.47). In metal alloys in many cases the ricrostructure serves as a proof that. the same position is also valid for them. Very often one can observe the formation of a new phase at the point of contact of three grains of the original polyhedral structure in a microsection. It is clear that this point is the track of a line of edge on the surface of the cut. For instance, in Fig. 9 one can see the formation of kial troostite with preference for the points of contacts of three grains in high-speed kifimexppry steel of the Faceorywyen type (Bib1.48).

The line of the edges of grains is also of great practical interest because during the creep of metal, the start of the formation of cracks, leading subsequently to final disruption, as a rule is concentrated at the cortact poirts of these

The lines of contact points of three microparticles, i.e., the lines of
edges of polyhedrons, form in the

metal a continuous spatial network which may be estimated quantitatively as the total extent of the lines of edges per unit volume of metal. The points of contacts of four grains, i.e., the vertexes of polyhedrons are estimated as their quantity. We have every basis for introducing into the list of most

Fig. 9 - Principal Formation of Troostite at the Points of Contact of Austenite Grains. After A.P.Gulyayev (Bibl.48)
important parameters of microscopic structure of metal the length of lines of edges of polyhedrons, and also the
their
number of points of/vertexes per unit volume of metal.

Of great interest is the quantity of microparticles occurring per unit
volume of alloy. A study of the kinetics of crystallization, recrystallization, determination of true parameters of these processes and of actual dimension (volume) of microparticles is not realizable, if we cannot determine this parameter of the microscopic structure of an alloy. It is necessary to note that the finding of the actual number of microparticles in a volume of alloy is one of the most complex problems of spatial metallographic analysis.

The enunerated parameters cannot give an exhaustive characteristic of the spatial microstructure of the alloy. Having the values of all these parameters at our disposal, one can by no means fully reproduce on their basis the "architecture"
of microstructure of an alloy. For n instance, knowing the volumetric content
of graphite in gray iron, its specific surface and linear extent of edges of graphite deposits, it is impossible to judge the degree of their "vorticity". Nevertheless, the above listed parameters are the most significant and xaxanckx reflect the structure of the alloy to the degree which is necessary for judging the properties and behavior of the alloy.

Not counting the scales of standard structures in effect abroad, in the Soviet Union alone more than 30 scales have been standardized, which also do not take in all of the requirements of metallographic analysis. To foresee and to provide for all of the possible cases of $/$ quantitative evaluation is obviously impossible, and the present report does not pretend to do this to any degree. To evaluate the special elements of microstructure, to the extent that this is required introduction for practical or research purposes, would possibiy require the whindak of a number of other parameters and the development of methods of their determination. However, in all cases it is necessary to proceed from the basic assumption: the evaluation of the structure should be conducted quantitatively, with values of geometric parameters of spatial microstructure of the alloy in every case when this is possible.

The system of methods of metallographic analysis permitting a determination of the geometric parameters of spatial microscopic structure of metals and alloys is called by us "stereometric metallography". Quite often, methods of such a type are connected by the concept "quantitative metallography, which is incorrect, since the same concept alsc includes the methods of quantitative analysis of a plane microstructure. In order to emphasize the basic features of the proposed system of methods, i.e. the volumetric state of the obect of analysis (from Creek gtoked
stereo - spatial) and the strictly quantitative nature of their evaluation (from the Greek metron - measure, dimension), we 偤 advance the term proposed by us for this branch of science concerning metals, as the most acceptable term. Accordingly, in the future discussion, we will use the terms stereometric structure, stereometric evaluation, stereometric analysis etc.

Section 7. Development of Methods of Stereometric Micro Analysis

As we snw above, the quantitative estimation of the structure of steel, in comparison with its mechanical properties and conditions of heat treating was first used as early as 1868 by D.K.Chernov. However, the maximum development of the method of stereometric evaluation of in the last 20-25yrs. The leading place in the development of this branch of knowledge was occupied and continues to be occupied by Russian and Soviet metallurgists and petrographers.

KNay The problem of 0 /quartitative determination of volumetric phase composition was first posed and solved by petrography with reference to rocks. Since there is Kax ro main difference between the determination of the mineralogical composition of rocks and the structural composition of alloys, the methods developed by petrography can be mechanically transferred to metallurgy.

In 1847 M . Deless first used the planmetric method of determining the mineralogical composition of rocks, while in 1898 A. Rozival proposed a more convenient linear method of analysis (Bibl.50).

The quantitative determination of structural composition of alloys in metallurgy was first conducted by Ye.P.Polushkin in 1924. For this purpose, he designed a "metallographic planimeter". The volumetric structural composition which was found was co:verted to weight composition (based on specific weights of structural
components) and the data derived showed good agreement in comparisor with data of chemical analysis (Bibl. 51). The most improved method of analysis, namely the point method was developed by A.A.Glagolev in 1931 with application to rocks (Bibl.52, 53) and was proposed by him also for application to the structural analysis of alloys in 1935 (Bibl.54). The point method permits the application, during analysis, of various devices, to a certain degree mechanizing the process of analysis and considerably facilitating the work of the observer, accelerating the process of analysis and expediting the obtainment of greater accuracy. A number of such
 method. The Glagolev method received widespread fame and dissemination both here is
in the Soviet Union as well as abroad, and fax used with equal success in the an analysis of rocks and of metal alloys.

The method of determining the value of specific surface, i.e. of interface of microparticles of two phases per unit volume of metal, was first developed by N.T.Belyayev in 1922 for one special case, namely the structure of lamellar perilite (Bibl.55, 56). The method is based on the specific structure of lamellar perlite interlamellar spacing in it, and the constancy of the intecopasten to any structure of another type. It has been used many times, right up to recent times, by a number of researchers who had studied the per ${ }^{2}$ lite transformation of austerite. Specifically, N.T.Belvayev first used the expression "stereometric" in application to the volumetric geometric structure of metal ("stereometry of a perlite grain"),

In 1937, J.J.Rutherford, R.H.Aborn, and E.Bain tried to determine the specific surface of microparticles of a polyhedral structure (Bibl.57). The method developed by them is based or ar. idealized form of ricroparticles which are assumed to be
geometrically uniform polyhedrons and also on a number of other assumptions. Si:ce the actual shape of microparticles is
far from ideal, the method is not a strict one and is not of interest at present.

A universal method of determining the value of specific suriface, equally suitable for any shape of microparticles of nondeformed (isometric)structures, is called the method of random secants, developed in 1945 by S.A.Saltykov (Bibl. 58, 59).

The method is mathematically strict and in practice is exceedingly simple, devices
permitting the use of diafory speeding up the measurement under a microscope or in photomicrography. Lacer on, zKara the method of random secants was also extended to deformed (oriented) structures. In 1952, S.A.Saltykov proposed a method of
 having a linear of plane statistical symmetry (Bibl.60). In 1954, A.G.Spektor proposed a mathematically precise method, applicable to deformed structures only with a linear (axial) statistical symmetry (Bibl.61). The method of random secants received complete recognition and is used in research activities, constituting the basic method of determining the specific surface of microparticles.

सRex The method of quantitative evaluation of the second type of intercrystallite zones is that of total extent of lines of edges of microparticles per unit volume of metal, developed in 1950 by S.A.Saltykov (Bibl. 17%. The method is also mathematically
rigorous and is quite simple methodologically.

L.Guttman

\because It is noteworthy that considerably later, in 1953, S.S.Smith and KXGWXXXK described a method of determining the value of specific surface of microparticles and the linear extent of their edges, under the name of the method Nixak "random sections" (Bibl.43). Their method and formulas are quite idertical with the methods and formulas published respectively ir 1945-46 (Bibl.5E, 59) and in 1950 by S.A.Saltykov (Bibl.17), but S.S.Smith and L.Cuttman make no references whatsoever to these studies.

As was mentioned above, the maximum experimental difficulties are encountered
in the determination oi the quantity of microparticles in the volume of alloy.
serious
The approximate formulas, not having tariccurasis bases, have been proposed many
times for this purpose, however a rigorous method was developed only for
microparticles of spherical form and forms close to it. A precise formula, connecting
the diameter of volumetric microparticles, the quantity of them per unit volume
of alloy and the number of sections of particles on a plane was given in 1935 by
I.L.Mirkin for a system of isodispersed microparticles (Bibl.33). Later, this
formula was extended by S.A.Saltykov to the polydispersed systems of spherical
particles. These formulas are insufficient for determinirg the quantity of
microparticles in a volume of alloy, however they have great significance in the
development of metheds of such a determination.

A very valuable method of computing the quantity of round microparticles was developed by E.Scheil in 1931, and later this was somewhat improved by him
(Bibl.62, 63, 64). The Scheil method permits one to determine both the total
quantity of microparticles in a volume of alloy, as well as the distribution of
microparticles according to their sizes (diameter). A disadvantage of the method unwieldiness,
is its
 H.A.Schwartz (Sibl.65), W.Johnson (Bibl.18), S.A.Saltykov (Bibl.66), A.G.Spektor
(Bibl.57). Nevertheless, even the best of the existing methods of computing the distribution of microparticles remain unwieldy and complicated.

The Scheil method was used many times in a study of the kinetics of crystallization
for determining the crystallization parameters. Up to the appearance of the method of random secarts, the Scheil method was also used for computing the specific surface
of round microparticles.

In the abcve mentioned method of J.Rutherford and others (Bibl.57), the quantity of microparticles in a volume is computed, based on the number of their sections per unit area of cut. However, since these two parameters are not
 only as very approximate. A precise method of determining the quantity of spherical microparticles (without their distribution by sizes) was proposed by S.A.Saltykov in 1947 under the name "method of diverse diameters" (Bibl.63). The method is sufficiently simple experimentally.

The most poorly represented at the present time $W K$ are the methods of determining the characteristics of the form of microparticles. In individual cases, the spatial form of microparticles can be established by the method of successive grindings with construction of a volumetric model of individual microparticles. The above mentioned method of perpendicular sections of A.P.Gulyayev and Ye.V.Petunina also permits one to determine the form and dimensions only of individual microparticles. Therefore one of the most pressing problems of stereometric (solid geometry) metallography is the development of statistical characteristics of the form of microparticles of the given type.

The fraxaxpax principle first applied by D.K.Chernov of establishing a quantitative interrelationship between the properties of metal, its machining and the parameđers of microstructure receivel development in the activities of Soviet metallurgists. The use of methods of quantitative evaluation of spatial structure in the reports of M.S.Aronovich, M.Ye.Blanter, S.Z.Bokshteyn, S.M.Vinarov, M.I.Vinograd, A.I.Gardin, A.P.Gulyayev, B.B.Gulyayev, N.K.Lebedeva, I.L.Mirkin, L.S.Moroz, P.O.Pashkov, G.I.Pogodir-Alekseyev, A.I.Skakov, S.M.Skorodzivevskiy, A.G.Spektor,
A.N.Chervyakov, and of others and served for recognition and propagatior. of the
methods of stereometric metallography. Of the number of foreign metallurgists,
from the same standpoint one should make mention of E.Scheil, R.Meil, W.Johrson, M.Gensamer

Besides the above mentioned methods of determining the parameters of microstructure, there is required a development of quantitative evaluation of the uniformity and homogeneity of the spatial microstructure. The most important and urgent problem is the translation of standard methods characterizing microstructure into the language of stereometric evaluation. For instance, now it is already passible to note that the evaluation of the granular structurs of steel ka*d based on the value of specific surface of microstructures is methodologically more correct and experimentally considerably more improved and more simple, than the standard method being used for determining the size of a grain of steel. Therefore we need an insistent and active struggle for the replacement of obsolete methods of evaluating plane microstructure by already developed, more efficient methods of stereometric evaluation.

Section 8. Technical Means and Features of Stereometric MicroAnalysis The most important advantage of stereometric micronalysis is the fact that its use does not require any major new technical resources for any kind of basic changes in the process of preparing the microsection. Therefore the methods described in the presert book are accessible for any laboratory, equipped with simple metallographic apparatus. In this paragraph, we shall examine the general conditions and requirements, equally in effect for all methods of stereometric evaluation. Later, in a description of individual types of stereometric microanalysis,

For a daxa determination of the actual values of parameters of spatial microstructure based on the nontransparency of the items being amalysed, we will pirnduay proceed only from a plane microstructure. As a result of the intersection by the plane of a cut of individual microparticle, we can cbserve its random section, which cannot give us a concept either of the actual sizes of the microparticle or of its geometric form. However, while the section of a separate microparticle represents of a a figure of random form and size, the statistical association of sections XX practically infinitely large number of micropariicles can already be regarded as an accurate refleciion of microscopic structure of the allov. Taking this into account, one can determine the geometric parameters of the spatial microstructure of an alloy zased based on its plane microstructure with any acsinacy, which may be required. In most cases, Forxoxir one microsection is enough for this, while in case of oriented structures (during transcrystallization, plastic deformation), the number of required microsections may increase to two.

In cast or rolled metal the structure as a rule is irregular in cross section to a greater or lesser degree. For instance, in Fig. 10 is shown the distribution of a quantity of deposits of carbon of annealing based on section of samples of forged iron 25 mm in diameter based on data of the author (Bibl.69); a similar distribution pattern is noted for forged iron by I.I.Khoroshev (Bibl.1,).
M.M.Shteynberg, I.N.Bogachev, G.A.Zykov and R.Sh.Shklyar found that the size of a grain of transformer steel and the degree of its uniformity change from the surface of the sheet to its core, as is illustrated by the data in Table 5 (Bibl.70).

Fig. 10 - Distribution of Graphite Deposits according to Section (Diameter) of Round Jample of Meable Cast Iron. Decrease in quantity of depesits at surface as result of surface decarbonizing during annealing
a) Number of centers per mm^{2}; b) Distance from center, mm

Fig. 11 - Typical Distribution of Nonmetallic Inclusiors in Section of Steel Castings Weighirg 10 kg , Cast from One Smeltirs in a Ceramj.c (on left) and Iror. (on right) Form. 100 ZV - volumetric of inclusions, n - number of irclusions per $1 \mathrm{mn}^{2}$ of area of cut [3.B.Gulyayev (3ibl.71)]
a) Distance from surface, mm

a) Annealing temperature, ${ }^{\circ} \mathrm{C}$; b) Size of grain, mm^{2}; c) On the surface of sample; d) At a depth of 0.04 mm ; e) At a depth of 0.05 mm

In Fig.ll is show the distribution of a number of nonmetallic inclusions ard their volumetric percent according to section of steel castings 10 kg in weight, which were hardened in ceramic and iron forms, after data of B.B.Gulyayev (Bibl.7l). On the basis of the data presented and a number of other data, one car notice a general regularity, that is, from the surface to the center of the section, the dispersed state of the structure decreases.

Inasmuch as the structure in most cases remains qualitatively uniform in cross section, the choice of location of A plane of cut during conventional, qualitative determinations does not play a substantial part. It is another matter in quantitative microanalysis; here the place ard direction of plane of cut needs to be chosen very carefully, taking into account the possible irregularity of structure along the section.

Let us examine $\mathbb{Z X}$ how the choice of section of cut is reflected upon the results of quantitative microanalysis if the structure is irreguiar. For simplicity, we will limit ourselves to a case when the ground sample car be divided into two zones according to uniformity of structure. Let us assume, that in zone 1 , the parameter of structure irteresting to us is characterized by the value δ_{1}, while in
zone 2 , by value C_{2}. Let us also assume that the diameter of zone 2 equals half the diameter of the sample (Fig.12).

In a transverse cut, the area of zone 1

Fig. 12 - Effect Location of Plane of Cut upon Result of Quantitative Microanalysis at Irregularity of Structure Having an Axial Symmetry
comprises 0.75 of the area of the cut, while in zone 2 it comprises 0.25 . Therefore, in a determination of the value of parameter C for the sample as a whole according to transverse cut, we get the value:

$$
C_{\perp}=0,75 C_{1}+0,25 C_{2}
$$

In a longitudinal cut, passing along the axis of the sample, the areas of both zones will be uniform and will equal 0.50 of the area of 1 cut. Therefore in evaluating the structure of the sample as a whole based on longitudinal cut, the value of parameter C will differ
considerably from the value found in the transverse cut:

$$
C_{\|}=0,50 C_{1}+0,50 C_{2}
$$

It is easy to see that the volume occupied by zone 2 constitutes $\frac{1}{4}$ of the volume of the sample, i.e. coincides with the part being occupied by this zone in the transverse cut. Therefore the quantitative result of the analysis, obtained in the transverse cut, will correspond to the actual average parameter of spatial structure, whereas in the longitudinal cut, we get an incorrect result. If the plane of the longitudinal cut will not coincide with the axis of the sample, the error of the evaluation will be all the greater, the farther this is separated from the axis. In the plane, located at a distance of half the radius from the center,
zone 2 will not be represented at all.

The situation does not change if the parameter of the structure changes regularly from the surface to the center, as this is shown in Figs. 10 and 11. Here we can divide the samples into a number of concentric zones and the pattern of deliberations, just as in the final result, will remain the same as in the above considered schematic example. At a given Xymy increase, any field of vaten on the transverse cut represents the same volume of metal, while on the longitudinal cut
the volume of metal being represented by the given field of constitutes a function of the distance of this field from the axis of rolling or casting. The given field of viep represents a lesser volume of metal, the closer it is located to the axis of the sample. If in a determination of any parameter, the fields of vision are located uniformly along the entire cut, the result of micro-analysis of transverse cut will then provide a correct representation of the average value for this parameter $N X$ in the volume of metal. In case of a longitudinal cut and in presence of irregularity in structure along the section, the result will prove erroneous.

The longitudinal microsections are widely used in an estimation of the contamination of steel by nonmetallic inclusions. Since usually the central zone of section of rolling is more contaminated, in the evaluation along the longitudinal cut the average degree of contamination will always prove higher than it is in actuality. If' the longitudinal cut however is not axial, the result of micro-analysis then depends upon the $\mathbb{X X X X}$ distance between the plane of the microsection and the axis of rolling, and also upon the degree of heterogeneity along the section.

Based on what has been presented, the plane of the cut should be so chosen that in ary other plane parallel to that selected, the structure would be statistically
identical not only" qualitatively but also quantitatively. In certain cases, there proved to be wajajancxakk unavoidable the use of longitudinal cuts. However in
this connection, it is mandatory to take into account the importance ("weight") of the parameter, measured in each field of distance forming the distant center of field of vision to the axis of rolling, with subsequent calculation of the average suspended value of the given parameter according to all fields of vision, was
in which it x measured.

Since the visible two-dimensional structure is a geometrically flat section
 of the microsection be as close as possible to an ideal plane and have a minimum micro relief, unavoidable in the process of preparing the slide.

A study of micro relief of metallographic sXXXXY sections (cuts) was conducted by N.M.Zarubin with the aid of the interferometer of V.P.Linnik (Bibl.72). He established that the micro relief is mainly developed as early as in the process of polishing, that is the polished surfaces of microsections are always obtained as relief sections and not as plane sections. The deter of relief depends upon the method of preparing the section and upon the structure of the sample. The obtainment of a greater relief is promoted by prolonged polishing (and repolishing), by a 18 coarse-grained structure, ard considerable difference in the hardness of the components of structure. Etching (pickling) does not exert a noticeable effect upon the
of micro relief, being obtained during polishing.

In high-strength iron, having an almost purely ferrite base, the value of micro irregularities (difference in levels) between the grains of ferrite after polishing and pickling amounts to 0.17 microns. After additional polishing, this value reached $0.0-0.9$ microns. The depth of hollows oi graphite correspondingly
increased from 0.70 microns to such an extent that it could not be measured
(more than 20 microns). On the microsection of another sample of high-strength iron, the amount of micro irregularity between the ferrite and perlite amounted to 0.15 microns.

In coarsely grained chromium alloy, the value of micro irregularity between carbides of chromium and penile reach 1.2 microns on a pickled microsection; the micro hardness of carbides reaches 1200 and of ${ }^{0}$ R lite 625 . In a finely grained chromium alloy, the value of micro irregularity constituted a total of 0.13 microns before pickling and increased very little during pickling.

Inasmuch as the depth of relief (embossing) is mainly determined by the duration of polishing (and the use of repolishing), to obtain minimum relief, of great importance is a good preliminary preparation of the surface,
 minimum the time needed for polishing. For ferrous metals, N.M.Zarubin recommends the following types of processing the microsection, assuring the obtainment of micro irregularif within the limits up to 0.5 micron:
a) Grinding the microsection with carborundum stone, files and emery cloths. Polishing with water suspension of aluminum oxide;
b) The same preliminary processing as in the previous case, polishing with passivating suspension (10-20 gnspf sodium nitrate, $3 X \underset{F}{ } 3$ gas of calcinated soda, up to 10 gms of aluminum oxide per liter of water).

The maximum relief state occurs at electric polishing of ferrous metals and at polishing oi nonferrous metals by "strong picking (etching)". In all these cases, the micro irregularity reach 4 microns.

The amount micro analysis depends upon the type of structure being analyzed and the type of
assured in ander having highly dispersed granular structure (ype of granular perite), especially if we deran determine the sizes of microparticles or the relative velume of their component phases. The determination of the value of specific surface is less sensitive to the presence of micro relief. For determining the specific surface of slightly dispersed structures of polyhedral type, one can even use an electrolytic polishing.

The effect of the relief state of the cut on the results of stereometric analysis of actual structures will be considered in more detail below. The quantitative microfanalysis of a well-prepared cut is conducted in conventional metallographic or in other microscopes equipped with opaque-illuminators, and equipped with standard optics and devices.

The microscope bench should assure the smooth cruciform movement of the cut in the plane of the bench in two mutually perpendicular directions. The amount of displacement of the cut should be measured as accurately as possible. This requirement is met in the best way by the bench of the device for determining the HXerwhana micrô hardness PMT-3 designed by IMASh, in which the cruciform movement of the bench is realized by micrometric screws with an accuracy of 0.01 mm ; the amount of KX displacement is $12-15 \mathrm{~mm}$. Less convenient are the two coordinate preparation guide devices of the type ST-5 having rack and pinion movement and scales equipped with verniers, which permit the measurement of displacement with an
accuracy of 0.1 mm ; the possible amount of movement is 25 and 60 mm . Least convenient are the $K X$ standard stands for the metallographic microscopes type MIM-5, MIM-6, MIM-7, in which the amourt of displacement is estimated visually by the millimeter

5×3

scale. The limits of movement of the microscope stand should assure an inspection of the entire surface of the microsection being anelyzed, from one set up, without
changing its position on the stand. In order that any point of the cut will be accessible for observation, it is desirable that the microsection does not rest by a part of its surface against the fastening plate of the microscope stand. Hence, one should give preference to a low position of $\mathbb{X X X}$ the microsection, as this takes place in vertical microscopes.

In an analysis of the oriented structures, it is necessary to turn the microsection relative to thedirection of movement of stand with an accuracy up to 1°. The polarization microscopes of the type MP-2 and MP-3 are equxpy equipped with rotating stands. One can use rotating cover plates equipped with a degree scale, as for instance in the MIM-7 microscope. The preparation of such inserts for any microscope does not present any technical difficulty. The insert should have one or two clamps for fastening the sample, in order to avoid the possibility of its displacement during the rotation of the insert.

In certain cases, $\therefore t$ is feasibie to make the measurement of ${\underset{A}{A}}^{\text {elements of }}$
 tike ground that the microscope have a sufficiently powerful source of $\mathbb{Z X}$ illumination. Among the existing designs of microscopes, the most handy for our purposes
its microscopic
 equipped with a rotating insert having a degree scale. Also convenient are the polarization
moder microscopes having, an opaque-illuminator, rotating stand and with a two coordinate preparation guiding device, mounted on the stand. It is quite desirable that in the development of new designs of metallographic microscopes, one take into account the reguirements of quantitative metallographic analysis.

In addition to the standard set of objectives ard eyepieces, attached to each microscope, it is necessary to have a set of eyepieces for quantitative measurements during visual observations. The main items in this set are:
a) An eyepiece-micrometer having a ruler divided into 100 parts, prepared with magnifications of 7 and 15. It is desirable that the scale of this eyepiece, shown in Fig.13, does not exceed in length $0.75-0.8$ of the diameter of the field of vision. Quite necessary is the presence of a longitudinal diametral line which not is/available in all eyepieces of a similar type;
b) Square grid-reticulated eyepiece. The scale of the eyepiece, containing 256 squares, similar to that show in Fig.14, is used for eyepieces 23 mm in diameter. For eyepieces of larger diameter (30 mm) grids containing 400 squares can be used. Sivan have such eyepieces;
screw type
cross hair
c) A Fig. 15, type AM 9-2. TH a The point of the crossing of the threads has a displacement of 8 mm , being measured with an accuracy of 0.01 mm . In case of the lack of such an eyepiece, ore can use an eyepiece having a stationary cross hair.

With the aid of the object-micrometer, one determines the value of division of ruler of the eyepiece micrometer for each of the objectives of the optical set of the microscope. The same is done for measuring the cells of the square-grid eyepiece and for moving the cross hair of the screw type eyepiece-micrometer. IR It

Fig. 13 - Eyepiece-Micrometer

Fig. 14 - Square-Reticulated Eyepiece

In quantitative micro-analysis, it is often necessary to calculate a considerable rumber of certair values (number of grains in field of vision, number of points etc.). The calculation is considerably speeded up and is made more reliable if instead of oral counting there is used a counter adding up the push-downs,
number of preswe The simplest counter of such a $t_{y} p e$, made by the factory "Schetmash", is show in Fig.16.

It is noteworthy that the

development and introduction into
metallographic practice of specialized
devices for the quartitative microanalysis
would greatly simplify and accelerate its
conduct, would $\begin{gathered}\text { diade make more accurate }\end{gathered}$
Fig. 15 - Screwtype Eyepiece-Micrometer
and reliable the data obtained,if one could
(personal factor)
eliminate the possibility of the effect of individual traits $\boldsymbol{\Lambda}$ of the observer on the results obtained. Ir this respect, an example is the equipping of devices with
quantitative methods of geometric

Fig. 16 - Manual Counter "Schetmash"
microanalysis of rocks. Many of the devices being used in petrography can also wix be used in metallographic quantitative analysis.

The use of stereometric evaluation of
the structure of alloy does not exclude the evaluation
use of the method of visual manariaxion by way of comparing the structure being ojserved $\zeta_{\text {with }}$ the structure of stardard scales, whic! hed received wide distribution
in metallographic practice. The visual evaluation is distinguished by unique
speed and simplicity, therefore ZxXX its use is desirable in large-scale
inspection tests under conditions of plant laborateries, However one should in no way forget that these qualities of visual evaluation are achieved owing to the accuracy of determination. It is subjective and therefore is inferior to the results of direct measurements or calculations of the parameters of interest to us.

The scales of stardard structures being used in stereometric metallography, are basically different from the scales being used for most standard semiquantitative analyses. Each standard structure should be evaluated as a precise value of that parameter, for the visual evaluation of which it is intended, but not in any case by conventional index points or numbers. Gradations between adjacent standard structures in the scale are selected in conformity with that accuracy which is required by us from the given control test and which one can attain in practice during visual evaluation.

Hoid For instance if we conduct large-scale control tests of steel, evaluating its structure on the basis of two criteria, namely the quantity of per lite and its

 photomicrographs. One of them, under magnificatiop, let us say, 100, corresponding to the working magnification during control inspection, should contain a number of photos(or sketched structures) with an increasing content of p 8 flite.

If the accuracy of identification of perlite during visual evaluation is assumed to equal 5\% of the absolute content of $\mathrm{pa}^{\boldsymbol{a}}{ }^{\text {lite }}$, the standard XX photomicrographs should be prepared with the appropriate gradations ($0,5,10,15,20 \ldots \%$ of perile according to area). The character of the structure as a whole (ferrite in the form of a network, perlite and ferrite in the form of separate grains etc.) in the
control samples of steel and in the standard photomicrographs should be identical, since this promotes a greater accuracy of identification during visual evaluation. In calibrating the $\alpha{ }_{C O}$ actual standard structure, the content (area of perlite) should be determined directly in the actual photomicrograph, and not on the

Just as for an estimation of the dispersed state of pefilite, which we assume is conducted at magnification of 1000 , we prepare a set of standard photomicrographs at this magnification. In each winamix photomicrograph there is indicated precisely tor
the measured $A^{\text {(specifically on }} \mathbf{X Z X}$ it) and then, XKY in a similar manner, the computed
spatial
parameter of xpazXXX structure of perlite, characterizing its dispersed state, namely
the value of interlamellar distance or the actual value of specific surface of

cementite.

In an evaluation of the quantity of perfite and its dispersed state, one does not use any kind of conventional symbols or codes. The estimation is conducted by natural values of geometric parameters of spatial structure, namely the volumetric percent of perinite, interlamellar distance in microns, specific surface of cementite in $\mathrm{mm}^{2} / \mathrm{mm}^{3}$. In the described method of construction of scale, we always have the possibility of prolongingfor dividing/more finely in any individual sector.

The sets of standard photomicrographs should be of a nature $X K X X K K$ inherent to the structures being inspected in the given production. For instance, one should never use the same scale of quantity of perlite for cast steel, for rolling with the absence or presence of striation. Any standardization of sets of standard structures inevitably decreases the accuracy of the evaluations obtained.

If great accuracy is required and the tests are not large-scale, the measurement of parameters then should be conducted by the methods described in the followirg chapters.

It needs to be emphasized that all these methods are statistical and therefore the accuracy of estimation is all the higher the more the readings or measurements that are conducted for obtaining the average value of the parameter being measured. Therein, in determining any average value, it is necessary to choose the items being measured at random, without any preference in relation to any given category of values being measured and without rejecting those which are even quite substantially different from the vast maiority of measurements. In the history of statistical analysis, the following quite indicative case is known.

In the past Century, measurements were conducted in England for determining geographic longitudes. In the first processing of the data obtained, not all the data were used but only those onem which agreed best of all with each other. The results proved so inaccurate that the measurements were completely rejected. However, the data of measurements were retained and when subsequently they were reprocessed, wherein in the calculation all data were accepted, even those which appeared contradictory, the results proved excellent (Bibl.73). Therefore, also in the dakarmand determination, e.g. of the value of average grain it is necessary to take into account all grains without exception in a fixed area, without disregarding even the smallest of them.

In the further discussion it is convenient to adopt a system of symbols of geometric parameters of spatial and plane structures, which were used in previous studies. Various geometric parameters of individual microparticles are designated with
by letters of the Latin alphabet,/which it is conventional to denote the corresponding
parameters of geometric bodies and figures: volume V, surface S, area F, linear
dimensions L and $D e t c$. The corresponding average values are signified by the same
letters with a vinculum drawn over them. The total values, referred to a unit volunle of metal or to a unit area of microsection, we designate
sign \sum, placed before the symbol of the appropriate parameter. The phase of any component of the structure, to which the given parameter is referred, is Written on the right in the form of acoudexax a subscript.

Table 6

Title of Parameter	Symbol	Dimensiontedodge
Volume of individual microparticle	V	mm^{3}
Surface of individual microparticle	S	$n m^{2}$
Diameter of spherical microparticle .	D	mm
Length of linear element of spatial microstructure	L	mm
Number of microparticles per unit volume of alloy	N	$m m^{-3}$
Total volume of microparticles per		
unit volure of alloy	ΣV	$\mathrm{mm}^{3} / \mathrm{rm}{ }^{3}$
Total surface of microparticles per unit		
保X volume of alloy	$\sum_{J} S$	$\mathrm{mm}^{2} / \mathrm{mm}^{3}$
Total length of linear elements of spatial		
microstructure per unit volume of alloy.	$\sum L$	$\mathrm{mm} / \mathrm{mm}^{3}$
Area of individual section of microparticle in microsection	F	$m m^{2}$
Perimeter of individual section of microparticle		
on the cut.	P	mm
Diameter of section of round microparticle on cut	d	mm
Length of linear element of plane microstructure	l	mm
Number of sections of microparticles per unit		
area of cut	n	$m m^{-2}$
Total area of sections of microparticles per		
unit area of cut	ΣF	$\mathrm{mm}^{2} / \mathrm{mm}^{2}$
Total length of perimeters of sections of		
microparticles per unit area of cut	$\sum P$	$\mathrm{mm} / \mathrm{mm}^{2}$

For instance, the total surface of graphite deposits per unit volume of iron IX denoted by is sjoifind $\sum S_{g r}$, the average volume of carbide particle by V_{k}, etc. The system of notations and the corresponding units of measurements of parameters are presented in Table 6.

CHAPTER II

QUANTITATIVE PHASE AND STRUCTURAL VOLUNETRIC COMPOSITION
 OF AN ALLOY

Section 9. Phase and Structural Composition of Alloy

Regarding ${ }_{A}^{\text {alloy }}$ as a conglomerate of microparticles, one can refer these microparticles to one or the other phase or structural component. The total volume of microparticles of any phase, occurring in a unit volume of alloy, ađ axy determine the part being occupied by this phase of the volume of alloy, which VEX can also be expressed in volume percentages. In metallography, the phase and structural composition of an alloy is often determined, using the "rule of segments", permitting one to determine (based on relative quantity of phase or structural component) the composition of alloy and vice versa. A classic example of such a type is the determination of the content of carbon in steel, based on the no a/ amount of perrlite in its structure.

Originally, the methods of quantitative analysis of phase composition of complex aggregates were developed by geologists and petrographers with reference to rocks more than 100 yrs ago, for finding their mineralogical composition. At present, these methods have received a high state of improvement both in ifatay rapidity of carrying out the analysis, as well as in accuracy, agreeing successfully with chemical aralysis and supplementing it. A great contribution to the development of improved methods and the fandixadxan development of appropriate devices was made by A.A.Glagolev, whose valuable monograph (Bibl.50) is quite useful not only for petrographers but alsc for each metallurgist interested in quantitative microanalysis.

In this respect, metallography has גれ
V.Yum-Rozeri and others (Bibl.277) testify, many metallurgists have an erroneous concept even of the relationship between the quantities of phases on an area of a cut and in the volume of the alloy, assuming that the ratio of areas of phases on the cut should be raised to the power $3 / 2$, in order to obtain the ratio of volumes of phases in the alloy. Up to the present, knew the most primitive methods are being used for determining the areas of phases and structural components on a microsection, and in the textbooks for metallography and metallurgy, it is almost a rule that no other methods of determining the phase and structural composition, other than an estimation of areas "by sight", are mentioned (Bibl.74, 75). At the same time, a knowledge of the phase and structural composition of the alloy is quite important for the metallurgist. The structural composition of an alloy provides us with such data about it, which cannot be obtained by the methods of chemical analysis, as for instance the content in steel of structures of varying degree of decay of austenite (peflite, sorbite, troostite etc.).

Evidently the reason for the lagging of metallography in this field is the lack of familiarity of metsllurgists with the potentialities of qualitative determination of structural composition and $\operatorname{KKXXXXXXX}$ the widespread incorrect concept of it as a very inaccurate type of analysis, which XXKKAXXXXian can yield only approximate figures, considerably inferior to the chemical analysis data. We will show in a number of examples taken from the practice of petrography and metallography that this is far from the case.

In a description of the Ahumada palasite, given by O.Farrington, a photograph縣
was presented of the polished surface of palasite, and its specific weight was
given. N.P.Chirvinskiy conducted measurements of quantities of components (well visible on a photograph)oí components of rock (nickel iron and olivine), and using theoretical specific weights of the components, computed the specific kaxyoc weight of palasite, which proved higher than the figure presented by 0. Farrington.
N.P.Chirvinskiy writes Rwate "I asked him to conduct a checking deternination of the specific weight of palasite, and it turned out that I was correct, which was testified to not only by a letter in my name, but also in one of the later reports" (Bibl.76). Hence, the quantitative microanalysis proved more reliable and more accurate than such a methodologically simple determination as that of specific weight.

As early as 1924, Ye.P.Polushkin, having made a "metailographic planimeter" of the most primitive design, conducted a determination of structural composition of a number of samples of steels, irons and on specific weights of structural elements of alloy and of the alloy itself, on the basis of planimetric, measurements of areas beiog occupied by these elements
 it with the chemical analysis data. The data obtained are presented in Table 7 and indicate the good convergence (correlation) of figures obtained by way of microscopic and chemical analyses (Bibl.51.). The same kind of deviatior (sic) is also often observed durirg repeated chemical analyses.

In recent times, the use of more improved methods ard special devices increased even more the accuracy and reliability of determining the phase composition of alloys and permitted its use in the area of metallurgy, requiring an especially accurate and
reliable method, namely in the construction of equilibrium diagrams.

Recently, L.Beck and S.Smith, using the method of quantitative microanalysis, successfully conducted an investigation to refine the rosition of the lines
of the equilibrium diagram of copper and zinc alloys, delimiting the areas of existence of $a, \alpha+\beta, \beta \beta+\gamma$ and γ-phases (3ibl.77). By way of quantitative

Table 7

a)	b)	c)	
		d)	e)
Rolled steel	f)	0,20	0,24
Cast crucible steel, annealed at $1000^{\circ} \mathrm{C}$	*	0,46	0,50
The same.	*	0,74	0,78
The same	*	1,24	1,32
The same •		3,93	3,80
White iron with traces of graphite	g)	1,43	1,40
Gray iron (3.04\% C and 2.89\% Si) . .	\%	10,38	10,33
Phosphoritic copper			

a) Characteristic of alloy; b) Element; c) Weight content, \%, determined;
d) Planimetrically; e) By chemical analysis; f) Carbon; g) Phosphorus
microanalysis, there was determined the phase composition of each two-phase alloy.

In Fig. 17 are shown types of derived
β-phase in the structurz as a function of the contert of copper in the alloy at
was
various temperatures of phase equilibrium. The group of lines in Fig. 17, a dow

Fig. 1^{7} - Ketall graphic Determination of Content of β-Phase in Allovs of Copper with Zinc, in State of Equilibrium with γ-Phase (a) and with a-Phase (b) at Various Temperatures [L.Beck and S.Smith (Bibl.77)]
a) Weight content of β-phase;
b) Weight content of copper, \%
obtained for equilibrium of β-phase with the γ-phase, while in Fig.17, b for equilibrium of β-phase with the α-phase. There was established, as we shall see, a very distinct linear relationship, which permits one, by way of slight extrapolation,
 β-phase at various temperature. These concentrations also fix the position of EX lines of an equilibrium diagram at given temperatures. Measurement of parameters of the lattice agrees well with the data obtained by way of quantitative microanalysis. However, along with the successful use of this method, it is noteworthy that in the practice of metallurgy there also takeq place such cases when the results of metallographic analysis prove unsatisfactory. For instance, J.R.Lane and N.J.Grant, using methods of quantitative microanalysis (3ibl.78), were unable to reveal the
 and tantalum during the aging of heat-resistant steels. This only confirms the need for familiarizing metallurgists with the actual potentialities of individual methods of determining the phase composition with the purpose of their more correct application.

Cavalieri Section 10. Principle of $\frac{\text { Analysis }}{\text { Andration }}$ Existing methods of quantitative phase and structural analysis both of rocks and of metal alloys are based on the somcalled principle of axiadadax Cavalieri.

A student CXEXX of Galileo, the Italian geometrician Bonaventura Cavalieri (1598-1647) proposed methods of measuring and comparing the areas of plane figures ard also the volumes of bodies with the aid of a unique type of infinitely small values, namely "indivisible continuous" (79). Cavalieri regards plare figures as consistirg of a irfinitely large number of mutually parallel lines, and bodies as

an

consisting of infiritely large number of mutually parallel plares．

Therefore for cumparison of areas of two figures，straight lines are used which
right

number of parallel straight lines $火$ dra is locatad between the two straight lines
tangent to these figures from opposite sides．These two lines are called＂parred
tangents＂and ore of them is usually taken as the regulus．If the lengths of the
segments，cutting off the outlines of the figures at each of the straight lines， equal each other by pairs or are located in a fixed position constant for all pairs of segments，then the areas of the figures under consideration will also equal each other or will be located in the same $\mathfrak{z a x a x y ~ r e l a t i o n s h i p s ~ a s ~ t h e ~ s e g m e n t . ~}$

Let FEHG and ABCD（Fig．18）be compared with one another，wherein both figures are enclosed between the parallel lines $I K$ and $I M$ bounding them；we can take either of the parallel lines for the regulus．Let us intersect them with a number of straight lines parallel to the regulus，and we will compare segments $R S$ with No， FH with $B D$ ，and $T V$ with $P Q$ ．If all these pairs of segments equal each other（as occurs in Fig．18），and also any other straight line parallel to the regulus， Irkarara intersecting the figure，yields segments，which are equal to each other by pairs，then the actual figures FEH and $A B C D$ will be of equal area．However if all pairs of segments were situated in a fixed position with relation to each other， the areas of figures would occur in the very same relationship．

Similarly to what has been said axaxy above，the principle of Cavalieri mataza
 that the straight lines are replaced by plane figures，and the segments by sections．
about

"cup"
The semicircle forms a
while the $\begin{array}{r}\text { widy } \\ \text { triangle forms a cone. It may be shown that in any horizontal section }\end{array}$
surface of revolution, "cup" surface of

revolution
xotation formed by the segment within the cone cd . Th the extent that this is
"sup"
so, according to the principle of Cavalieri, the volumes of the the in the
also equal each あKKKX other, which takes place in reality.

Fig. 18 - Comparison of Areas of Two Figures according to Lengths of Paired Segments (according to Cavalieri)

As we see, using the Cavalieri principle, we can replace the measurement of areas of two figures, being compared, by a measurement of segnerts of straight lines, and the measurement $X X$ of volumes of two bodies (being compared) can be replaced by a measurement of areas. Otherwise expressed, we get the chance to decrease the degree of dimensionality of the elements being measured in comparison with the dimensionality of the objects themselves. This permits a determination of the volume of microparticles based on their plane sections on a microsection or based on segments of lines passing within the microparticles.

The Cavilieri principle was generalized in 1929 with application to quantitative microscopic analysis by A.Aker in the following form: if several groups of contours
on a plane, located between parallel straight lines, have intersections (segments).
whose
are in
proportion

areas
two given lines, the arras of these groups of contours will then occur in the same proportion or ratio
xopededionsdiup. themselves.

Fig. 19 - Comparison of Volumes of Two Bodies (of a "cunt" and Paired
of a cone) Based on Areas of Bored Sections

In exactly the same way, if several groups of bodies located between two
whose
are at a constant ratio

in any plane, parallel to the $\mathcal{K X X}$ two given ones, the volumes of these groups of
be at the same ratio

(Bibl. 50).

distribution of microparticles of phases α and β, let us set off the cube (1), shown in Fig. 20, and compare it with cube (2) of the same size. The plane of the bases of both cubes A we will accept as the regulus and draw a series of planes, parallel to it and intersecting both cubes. On the upper faces of cube (2) we set off the area abde, equaling the area occupied by the α-phase on the upper face of cube (1). If the phase composition of the alloy is ideally uniform, then in any plane, paranaxa parallel to the regulus, the area occupied by the a-phase will
have one and the same value. Therefore the relationship of
phases α and β in the alloy, in conformity with the proposition of Cavalieri-Aker,
will equal the relationship of volumes of hachured and nonhachured nexk
ratio
of cube (2) or, which is the same, will equal the rectangles abde
ay and bcef.
on
Moreover, if we accept the XXXXXX line ik for the regulus, then XK any line,
face
parallel to it, draw on the upper of the (or on any parallel section),
the total length of the segments passing within the α-phase will be constant and will equal the value ab . Therefore the relationship of volumes of phases in the
alloy will also equal the relationship of lengths of segments $a b$ and $b c$.

Consequently from the proposition of Cavalieri-Aker, one can form the following quantities, namely the volume occupied

interior of the alloy; the area occupied
x
and the total length of segments of a straight line passing within this phase, referred to the length of a straight line intersecting the alloy (or cut), are
numerically equal to one another. Otherwise expressed, the percent content of a interior of an
given phase in the molumexeray alloy on the area of the cut,or on the length of the straight line is expressed by the same valusexy quantithy.

In actual alloys with which we must deal, the phase composition is not
ideally uniform in volume, and the samples being studied under the mi.croscope have
finite dimensions. Therefore in the diagram shown in Fi.g. 21 there will occur a
fluctuation of area beirg occupied by the α-phase, differing sections, parallel
to the regulus A, and also a fluctuation of lengths of segments passing within the
a-phase, on various lines parallel to regulus ik (as is illustrated by the wavy lines

Fig. 20 - Application of Cavalieri-Aker Principle at Uniform Structure of Alloy
in Fig.20). Hence, these values can be regarded as statistically constant and, strictly speaking, the content of ${ }_{A}^{\alpha_{0}}$ given phase in the microsection coincides mathematically exactly with the volumetric content of this phase in an infinitely thin layer directly contiguous to the plane of the microsection. The matching of data, obtained in a random microsection, to the volumetric phase composition depends upon the chemical and structural uniformity of the alloy and also upon the

M.S.Aronovich and I.M.Lyubarskiy made measurements of an area of microsection occupied by nonnetallic inclusions, in a number of samples of rolled steel, wherein for each sample a pair of transverse cuts was prepared. The curve shown in Fig. 21 drawn on the basis of their data (Sibl.80), confirms the practical constancy of the total areas of normetallic inclusions in patred microsections of each sample.

It is quite obvious that the variation in readings for various cuts, being caused by fluctuation in chemical and structural composition in the volume of the ingot, casting, or rolled piece, should in no way be confused with the accuracy of the method of determining the phase composition in the volume based on relationship of areas in the cut or, what is more λ importart, should raise douist as x to the correctress
of its mathematical basis. The method, permitting the exposure and estimation of the degree of heterogeneity of phase composition is more sensitive and therefore
more valuable than the method incapable

Fig. 21 - Total Areas of Nonmetallic Inclusions in Parred Sections of Rods of Rolled Metal [after M.S.Aronovich and
I.M.Lyubarskiy (Bibl.80)]
a) Second section; b) First section
of revealing it.

Therefore the fluctuation in readings of individual cuts is fully regular. At the same time, it is necessary to note a number of factors, upon which there significantly depend the maximum conformity of the phase and structural composition, determined on the basis of the ratio nd rok areas in the microsection to the actual volumetric composition of the alloy.

Section 11. Spatial Symmetry of Microstructure and Selection of Microsection Surface

occurs

As a rule, in alloys there tadsexplate a zonal heterogeneity of microscopic structure in general and phase composition, specifically caused by the process of formation of the ingot and its subsequent morning.

In most cases, the curve of change in phase composition in the direction from the center tollourface of ${ }^{\operatorname{an}}$ relative to the axis or to the surface of symmetry of the item. The Cavalieri..Aker principle will unconditionally remain in force in these cases also, but great significance is acquired by the proper choice of a section, intended for microscopic investigation.

Let us examine two main types of nonuniformity of phase composition, found most frequently:
a) 和equkaricy with axial symmetry, typical for articles which heve
a predominant dimension in one direction, namely rolled or cast pieces of

b) Nonuniformity with surface symmetry,

disproportion in the composition in a rolled piece of round profile, having axial symmetry. It is clear that the structure in all cross sections proves similar and the content of the given phase in all such sections will be a quantity. statistically constant xpadaco. Deviation in

Fig. 22 - Irregularity of Structure this value, determined in a number of cross with Axial Symmetry and Its Effect
sections, reflects the disproportion in the upon the Surface Structure, as a Function of the
Bependibacupon the Position of the chemical and structural composition along the Plane of the Microsection
a) Alone ab; b) Along cd
length of the :od, and its statistically average
value coincides exactly with the content of
given phase in the volume of alloy. Limiting ourselves to a single cross section
for judgirg the volumetric phase composition, we risk deamanerin an error in the
value which is relatively small, being determined by deviation in composition along
the
toxtedronedownex the length of rod.

In a series of longitudinal microsections, the surfaces of which coincide with
the axis of the rod, the content of given phase will also be a statistical constant.

However the statistically average figure for this value, even though determined for
at a very high number of samples, will not coincide with the content of ${ }^{a} /$ given phase Section 8.
in the volume of the alloy, as was shown in Maray
along
longitudinal cuts there is reflected not only the change in composition accosidngex
the
along the cross section, to length of rod, but also the distribution of disproportion
if its symmetry deviates from axial (for instance, in the presence of a segregation in rolled stock of
square incarcosbedxpiecexof round profile).

Therefore, in the case of
axial symmetry of heterogeneity of
phase composition, it ix is most
cuts.
feasible to use cross sextziens. This
proposition was reflected in a number
for
of methods determining the
contamination of steel by nonmetallic

Fig. 23 - Diagram 6 X for Conclusion of Eq.(11.3)
Ukrainian KKK Institute of the Metals
etc.), although basically for this purpose the longitudinal axial cuts are used. Using
 having a differing effect upon the properties of steel, with a division of them into brittle, plastic and solid inclusions, determining them quantitatively. Therefore, let us consider the conditions under which an estimate based or a longitudinal cut will
the interior of agree with the content of the given phase in metal.

In Fig.23, there is show a cross section of round rolled iron, the structure of
which, as we assume, has axial symmetry. If the radius of the field of
HX
of of the microscope equals ρ, while the center of the field is located at
the distance R from the center of the section (i.e. from the axis of symmetry), this
field then represents the structure of the hachured annular zone in the cut, the area of which equals:

$$
\begin{equation*}
F=\pi\left[(R+\rho)^{2}-(R-\rho)^{2}\right]=4 \pi R \rho . \tag{11.1}
\end{equation*}
$$

Let us assume that we determined the relative area of the given phase in a
 of cross section of the rolled iron. If in the fields of viefins the centers of which are located at the distances $R_{1}, R_{2}, R_{3} \ldots$ from the axis of symmetry, there are obtained respectively the values of content of the unknown phase, equaling a_{1}, $a_{2}, a_{3} \ldots$, then the average suspended content, typifying the entire area of the section as a whole, will equal:

$$
\begin{equation*}
\bar{a}=\frac{a_{1} F_{1}+a_{2} F_{2}+a_{3} F_{3}+\ldots . .}{F_{1}+F_{2}+F_{3}+\ldots} \tag{11.2}
\end{equation*}
$$

or, having substituted the corresponding values of annular areas from eq. (11.1),
we get:

$$
\begin{equation*}
\bar{a}=\frac{a_{1} R_{1}+a_{2} R_{2}+a_{3} R_{3}+\ldots \ldots . .}{R_{1}+R_{2}+R_{3} \ldots .} \tag{11.3}
\end{equation*}
$$

The last formula is a mathematically precise expression of average content of phase both in the area of the cut, as well as in the volume of the alloy. Moreover, this formula is suitable for computing the average suspended value of ary other structural parameter, variable in cross section,

cross
properties of the alloy, the value of which is not constant in section. For instance, based or eq.(11.3), one can compute the mean value of hardness, typifying as a whole
a speciren, the entire volune of hardened steel cylindrical sarpla, incompletely annealed.
weighed
maky The need for computing the average mate and not merely the average arithnetical view,
 noted at an earlier data. To estimate the content of nonmetallic inclusions in a volume of steel, there are known, e.g., the methods of Gerti for cast steel
(Bibl.82) and Fert-Brown for rolling (Bibl.23), taking into account the importance view.
of evaluating each field of vieqge Nevertheless, in most cases, there is adopted
 view specimen. field of wistion from the center of the osapte. Depending upon the degree of dissimilarity of phase composition, this may lead to the obtainment of high readings (estimates).

Based on data of B.B.Gulyeva, presented in Fig.12, the volumetric percentage varies along of nonmetallic inclusions changeschong the radius of a steel casting approximately as follows:

Distance from Center, mm

10	0,041
20	0,051
30	0,048
40	0,043
45	0,023
47,5	0,014

The a we get 0.0327%. Hence, for the case of relatively slight dissimilarity owing only

KXZ to incorrectness of the mathematical calculation, the error in determination comprises more than 12% of the actual average content of inclusions in the volume of steel.

志KX
Ecruation (11.3) is valid both for transverse as well as for la-gitudinal cuts, but ix its use presupposes a mandatory linear uniform arrangement of the fields of view
rision along the radius or diameter of the section of the article (in a transverse
or longitudinal cut). If the RXGXXGXUSA: take in the entire area of the
transverse cut or are distributed statistically dian evenly along it, one should
compute the overall estimate as the arithmetic mean, since the areas of annular zones and hence the number of fields of occurring in them are proportional to the radii of the corresponding zones. In a lengthwise cut, even at uniform distribution of fields of along the cut, the use of eq. (11.3) is quite mandatory, since here the area of sections of all annular zones are the same and do not depend upon their radius.

> N台
> heterogeneity of phase composition. In Fig. 24 we show schematically a part of the volume of a rolled sheet, having the form of a panamax parallelepiped (1), which we will compare with the same parallelepiped (2). In the upper faces of the latter we set off the area abde, equaling $K X$ the area occupied by the α-phase in the same (1). Having assumed the plane of base for form the regulus, we draw a number of sections, parallel to it and intersecting both parallelepipeds. Since in each section the area, occupied by the α-phase, is statistically constant, according to the Cavalieri-Aker principle, the ratio of volumes of the $\alpha-$ and β-phases in the alloy will equal the ratio of volumes of the epsehatched and nonceremhatched sectors of the parallelepiped (2) or to the ratio of areas of the rectangles abode and beef. Moreover, if we take the line in for the regulus, then on any line parallel to it and intersecting both parallelepipeds, the total length of segments passing within the α-phase will be constant and equal to the segment $a b$. Therefore the ratio of volumes of phases in the alloy will also equal the ratio of lengths of the segments $a b$ and $b c$.

From the diagram in Fig. 24 it is clear that it is quite irrational to locate
the planes of the cuts parallel to the surface of the sheet. In a number of such
mean-square
cuts, there will occur abrupt changes in the phase composition, the emercogex
quaderexar deviation of content of each phase will prove quite considerable with
relation to the average contents of phases and a large number of cuts will be
needed for obtaining more or less reliable values, reflecting the actual phase composition in the volume of alloy,

Thence it follows that a mendatory condition which must be observed during
quantitative microanalysis of alloys with plane symmetry of heterogeneity, is the perpendicularity of the plane of the cut or of the intersecting lines to the plane
the
of symmetry of heterogeneity, or which is the same, to the surface of the sheet
(or to the plane of the $\mathrm{F} \mathrm{a}_{\mathrm{XX}}$ side of the casting, ingot, surface of plate etc.).
the
Only under this condition does the ratio of the phases in the area of cut and in
phase ratio
the intersecting line coincide with the actual rativx (rekatienshim)
the volume of the alloy.

Fig. 24 - Use of the Cavalari-Aker Principle in Case of Structure with Plare
Symmetry: :1 - Thickness of Sheet

Here we examined only two types of symnetry of hererogeneity; however they take in the vast majority of objects of microanalysis. We restrict baxianay to the above presented examples, because they are sufficient for metallurgists to be able to approach knowingly the selection of a plane of cut and the use of the primary data obtained during cases, which here we shall in no way foresee or describe.

Section 12. Rffect of Nature of Structure

The prapowx proposition of Cavalieri-Aker proceeds from the assumption thet a cut of a multicomponent aggregate represents a geometric plane. Moreover, from data adduced in Section 8 it follows that the surface of $\begin{aligned} & \text { metallographic cuts }\end{aligned}$ is not ideally flat, but has a microrelief with depth of the order of $0.1-0.5$ micron, which can even prove to be considerably greater in case of improper preparation of the cut.

If the sizes of microparticles considerably surpass the depth of microrelief upon the of the cut, its influence $\mathbb{X} X X Z$ result of $X N \mathbb{Z}$ quantitative determination of phase composition can then te disregarded. However, the error becomes quite noticeable when the depth of microrelief is comparable with the sizes of the particles. Thence it follows that difficulties should arise in analysis of highly disperse phases, especially during investigation urder an electror microscope. Among the phases of such a type, $\mathbb{X X}$ of great interest are above all the carbide phases and the

In the electron-microscopic analysis of dispersed ferrite-carbide mixtures, there occurs as a rule an increased content of carbide phase as compared with theoretical calculation. An electron-microscopic irvestigation of the structure of troostite and of anmealed martensite, conducted by N.N.Buynov and R.M.Leriman,
showed that the area being occupied by carbides considerably saxceeds the area
bace determined by the ratio of ferrite and carbide in those structures. A similar observation was made earlier by KXucararian R.Heidrreich and V.Pek (Bibl.83). 1.N.Irulicheva obtained the following depencience of co photomicrographs,

type U7 steel (the content of carbon was 0.69%, the volume of carbide phase by

$$
\begin{gathered}
\text { Annealing Temperature, }{ }^{\circ} \mathrm{C} \quad \begin{array}{c}
\text { Volume of Carbide } \\
\text { Phase, }
\end{array}, \% \text {. }
\end{gathered}
$$

450	45
550	38
650	29
700	15

Only 2 prolonged annealing at a temperature of $580-700^{\circ}$ assured a sufficient
enlarging of the microparticles of carbides and the coincidence of data of microanalysis with the theoretical calculation (Bibl.84). It is noteworthy that
the observed increase in content of carbides along with the increase of their
degree of dispersion,
diwpensedustate, possibly is by no means fully attributable to the shortcomings
of the techniques of microanalysis, since there is no assurance of the constancy of
the composition of carbides, obtained under various conditions and having a differing degree of dispersion.
dispersectrstacter. For example, based on B.A.Apayev's data, obtained on the basis of
magnetic analysis of xcex

2 . -15% (3ibl.85). At the same time, N.M.Popova found that the composition of
tempered and carbjdes, deposited by an electrolytic solution of carbon steels, taypurax xandr. annealed at temperatures ranging from $200-400^{\circ} \mathrm{C}$, is constant and corresponds to the formula for cementite (Bibl.86). In any case, the apparent increase in content of carbide phase follows logically from the fact of abrupt differing corrodibility of carbides ard of ferrite base, ard the surface of cut being obtained owing to this
relief.

In the case of a granular form of carbides, the ideal plane a - a (Fig. $25, \mathrm{~A}$)
intersects a number of grains, wherein the minderwaxk occurrence of a body of
intersected grains on one or whe other side of the surface is equally probable. the At polishing and pickling, \mathbb{K} carbides hardly change at all, whereas the ferrite base is easily pickled and its average level is determined by the plane b-b(Fig.25,B).

Quantity
Fig. 25 - Effect of Microrelief of Cut upon the Visible Kरix,
Carbide Phase at Granular Form of Carbides

Owing to this, there will occur:
a) An increase in the visible dimension of the part of grains, intersected by the original plane $a-a$, the body of which is located within the volume of the cut (grains 1 and 5 in Fig.25);
b) The appearance of new grains in the field of evion, occurring earlier below the level of cut, i.e. below the plane a - a (grain 4);
view of grains whose body
c) The disappearance from the field of lies outside of the volume of cut, while the height of the marked-off plane a - a of the segment is less than the depth of relief (grains 2 and 6).
d) Preservation almost without change of the original visible size of grains, lies the body of which geares outside of the volume of cut, but the height of the marked off plane a - a of segment is greater than the depth of relief (grains 3 and 7).

As the res:lt of such a complex change ir the parir pattern of the surface of
the cut, there also occurs an apparent increase in the content of carbide phase.

To this one should add that the grains of carbides, especially their sharp edges, also are partly dissolved during pickling, and the level of the ferrite base is evidently irregular, increasing in places of contact with the grains of carbides. (f) If the carbides are lamellar in form, the pattern obtained during pickling, schematically show in Fig.26, explains the cause of the apparent increase in content of carbide phase in this case. The correct relationship of the carbide and ferrite phases can be obtained by measuring the thicknesses of ferrite and cementite plates in
right angle
those grains of perlite in which these plates form a EXTXXGKXKXNX with the plane of the cut.

The quantitative electron-microscopic analysis of dispersed carbide phases is of great interest. Specifically, in the presence of an accurate method of determining the phase composition of the structure, it is possible to solve in a well-defined manner the problem of the corstancy of composition of cementite and the existence of intermediate carbide phases, at the present time constituting a debatable problem. Recently A.I.Gardin stated the concept that if we had at our disposal a pickling agent, possessing the capability of selective dissolving of cementite, the possibility would appear for revealing the inner bikubuda structure of a cementite crystal (Bib1.87).

Fig. 26 - Effect of Kicrorelief of Cut upon Visiole Amount of Carbide
Phase at Lamellar Form of Carbides

In working with optical microscopes, if we use cuts with a minimum microrelief, in this case it is then easy to get quite satisfactory results of determining the phase composition. S.Z.Bokshteyn (Bibl.88) investigated in carbon and alloyed steels the average diameter of sections of carbide particles visible cut, which usually fell within the limits from 0.3 to 0.7 microns. The diameter of grains was measured in
enlargement
 10,000. In samples of hardened steel, containing by chemical analysis $0.40 \% \mathrm{C}$, annealed at 630° with varying soaking (from 10 min up to 25 hrs), the carbon content figured on the basis of microanalysis data constituted:

Mean Diameter of	
Grains, microns	Carbon Content,
0,34	0,37
0,42	0,36
0,44	0,40
0,50	0,38
0,56	0,39

Taking into axa account the high dispersed state of the structure, the accuracy obtained can be considered quite satisfactory. Hence, the determination composition
 accuracy.

In structures pickled with picric or nitric acids, the shiny "small islands" of carbides as a rule are surrounded by dark rings of greater or lessifidth. Based on the observations of S.Z.Bokshteyn, the best coincidence of the data of chemical and of microscopic analyses are obtained if the size of carbides is determined on the basis of the average result among the measurements based on the outer and inner contours. The pickling with sodium picrate removes the need for measurements on the basis of two contours and promotes the obtainment of more accurate data.

[^3]the determination of content of nonmetallic ingion inclusions in steel. In this
case, the specific features of microanalysis are: the use of mostly lengthwise
cuts and an examination of the inclusions in the unpickled cut.

As is know, the results of estimations of lamellar (platelike) inclusions (sulfide, silicate) based on standard scales, at the use of lengthwise cuts, greatly depend upon the degree of pressure during rolling. Table 8 shows the change in average index point based on the IK scale and tho width of sulfide $X \mathbb{X}$ impurities as a function of the diameter of section, being ootained from the initial ingot with a section of $325 \times 325 \mathrm{~mm}(3 i b l .89)$.

Table ε

a)	b)	c)
87	3,28	4
51	3,42	3
28	2,21	1
15	1,05	1
9	0,82	<1
6,5	0,71	<1

a) Diameter of section, mm; b) Average index point according to IK scale;
c) Average width of impurities, microns

As we see, there occurs a simultaneons decrease both of the total length of inclusions (expressed as an IndaxX index point), as well of their width. Hence, with an increase in pressure during rolling, the area of inclusions visible ara on the cut constantly decreases, which understandably does not point to an actual decrease in content of inclusions in the steel but to techical shortcomings of the method of microanalysis being used. This is confirned by the fact that, in the use of transverse cuts, the deviations in estimation of area prantically are indeperdent of the degree of pressure, and mafariate the variations ir estimations
do not go beyond the linits of usual random errors. In Table 9, we present data on the weight content of impurities (computad according to microanalysis data) in sheets of 5 mm thickness in comparison with their content in rods of various cho section, from which these sheets were obtained (Bibl.81).

Table?

a) Size of rods, mm; b) Content of impurities, 腯 (by weight) (based on microanalysis); c) In rods; d) In sheets
M.I.Vinograd, having investigated the effect of deformation upon different types
of estimation of nonmetallic inclusions; arrived at the following conclusions:
a) The index point of estimation of lamellar inclusions in lengthwise cuts
based on standard scales decreases with an increase in the degree of deformation;
b) The content of oxides in volume percentages, being determined in a transverse does
cut, \mathbb{d} rot depend upon the degree of deformation; the content of sulfides decreases
somewhat at greater degrees of deformation, since therein a part of the sulfide impurities go beyond the limits of visibility (Sibl.81).

An estimation based on standard scales is cornected with the $\underset{X X X X}{ }$ mandatory use of standard magnification, usually taken to equal 100. Therefore, with an increase ir. the degree of pressure, a Eixed part of the lameilar inclusions become invisible.

At individual measurement of inclusions in a transverse cut, the observer is not connected with magnification and tnerefore the systematic error is many times
less than in comparison with standard scales.

Moreover, in the preparation of the cut, a part of the inclusions "are smeared"
studied
by the metal. Since the cut is yx.
is not considered during microanalysis. The phenomenon of "smearing" is promoted by a decrease in diameter of inclusjons and such an arrangement of the surface of the cut at which it does not intersect the extended inclusions crosswise, as this is show in Fig. 27, a, but passes almost as a tangent plane with reference to the round surface of the $z_{\text {zix }}$ inclusion (Fig. $27, \mathrm{~b}$). The fact of "smearing" of

Fig. 27 - Diagram of "Smearing" and Crumbling of Nonmetallic x Inclusions at Lengthwise Arrangement of Plane of Cut

$$
\text { (a - Transverse cut; b and } c \text { - Lengthwise cuts) }
$$

inclusions is confirmed by the experimental data of KXXX B. B. Gulyayev, who
 on
sulfuric impressions taken from this same cut (microsection). Results of calculations according to section of steel casting with a diameter of 100 mm , cast in a sand F mold, are shown in Fig. 28 (Bibl.?1).

While a sulfuric impression gives a correct picture of KKAX the increase the degree of dispersiof onclusions

larger did deposits,
 deposits of graphite in gray iron, is all known in metallographic practice.

There can also occur a crushing of the inclusions, the body of which is
located beyond the volume of the cut and a very small part of it is cut off by the surface (Fixguryt (Fig.27, c).

In the transverse cut, we observe and are able to measure the actual diameter
inclusions,

theinclusion, depends upon the distance between the plane of the cut and the axis of radaratext, and inclusion,
 in isolated cases, when the axis of inclusion matches the plane of the cut. On the average, the visible width of XX inclusions comprises around three-fourths of their actual diameter.

Finally, in the lengthwise $\mathbb{W M}$ cut, we have the chance to see and to measure plastic
considerably less Xanderax inclusions than in a transverse cut. If we represent the inclusions in the form of threads (fibers) with a diameter D and length L, and their
amount is denoted by

below, the quantity of inclusions visible per unit $O \mathbb{O}$ area of lengthwise cut, will
determiried
be proportional to the diameter of inclusions and is ackaynay by the equation

$$
n_{1}=D N,
$$

per unit area

irclusions
proportional to the length of

$$
n_{\perp}=L N .
$$

Inclusions Cuasa
Fig. 28 - Distribution of Sulfide KMpXXXZXX along Section of a Steel Cast,ing 100 mm in Diameter, Based on $d x$ Data of Computations in a Cut (Circles) and in a Sulfuric Imprint (Dots). [After 3.3.Gulyayev (Bibl.71)].

From the equations presented, it follows that the ratio of quantities of inclusions XYPXYKXAB per unit area of transverse and lengthwise cuts is equal to the inclusions ratio of the length of of plastic inclusions exceeds their diameter by dozens and hundreds of times, the inclusions

with the lengthwise cut.

In microanalysis of lengthwise cuts, there is lost a considerably greater part
inclusions
of expayzeras than in cross cuts, which decreases the accuracy of determinations.

Noreover, in the use of lengthwise cuts, it is necessary to compute additionally

The distribution of inclusions in steel by sizes is subjected to the asymmetric curve of distribution with a maximum. The impurities which are smallest in size are also present in steel ir the least quantity. Therefore the loss even of a considerabie inclusions
part of fire xifirytures does rot lower significartly the total area of inclusions,
being determined on the basis of a cut of $X X$ cast steel or rolled steel (if the cut is located perpendicular to the axis of rolling). A comparison of microanalysis data and of chemical data shows a good convergence. In Fig. $\cdot 29$,

Fig. 29 - Dependence between Results of Determining the Content of Nonmetallic Inclusions by Microscopic and Chemical Methods of Analysis. After data of M.S.Aronovich and I.M.Lrubarskiy (Bibl.80)
a) Microscopic method; b) Weight, 䛇 of inclusions
we show the dependence between results of chemical and microscopic analysis,
obtained for rail steel by M.S.Aronovich and I.M.Lyubarskiy (Bibl.80). A similar verification, conducted by P.Ya.Kravtsov, also showed conformity of the data of both types of analysis (Bibl.90).

Surging up the data and concepts presented in the present paragraph, we can state that fully satisfactory results of determining the phase composition can also under the be obtained $\begin{gathered}\text { under the } \\ \text { KKXZXAKXXR }\end{gathered}$ most unfavorable cases, caused by a higblydispersed state and low content of the phase being analyzed. Decisive significance is possessed by the the proper choice of plane of cut, a careful preparation of cut and minimum relief of its surface, the use of sufficiently large magnifications, as well as the use of optical microscopes.

Section 13. Planimetric Method of Determining the Phase and Structural Volumetric Composition of Allov

The planimetric method of analysis of rocks was proposed and first applied by M.Deless in 1847.

The outlines of grains of individual minerals, composing the rock, visible on the polished surface of a sample, were transferred by Deless to transparent paper, coloring the grains of each of the minerals with a designated color. Then he glued the transparent parer to a metal sheet, for greater accuracy of weighing, cut the grains with shears, sorted according to conventional colors (by minerals), and then detached and weighed the foil separately for each of the minerals. The weight values
 to the area of the corresponding minerals in the microsection and hence to the volume being occupied in the rock.

At present, in an analysis of the microstructure of alloys and rocks, the
following basic methods are used for measuring the areas of components:
a) Determination of area, occupied by a given phase, at visual observation with the aid of a square-reticulated eyepiece, namely the cellular method;
b) Individual measuring off of the sections of microparticles at visual observation with ado of an eyepiece-micrometer, with subsequent calculation or other type of estimation of the area of each section and with their sumnation;
c) Measurement of area of sections of microparticles by various methods, being conducted in photomicrography or in a drawing, with the aid of the Abbe drawing equipment;
d) Determination of relative area of given phase at visuel observation by way oi comparing the visible structure with a standard scale.

It is feasible to use the planimetric method at low content of given phase
in the structure (not more than 5-10\%), since in these cases i.t is more effective
the following
than the linear or point methods. We will explain this in XXKMasaikant example.

In the point method, the relative area of $/$ given phase is determined by the fraction nodal
of iderra points of (square-grid evepiece, occurring in a grain of the phase being analyzed. If, for instance, the content of nonmetallic inclusions in steel equals 0.01% by volume, then the probability of occurrence in them of a separate point equals 0.0001 , and of one of the 1.41 nodal points of square-grid eyepiece (containing Otilerwise
400 cells), correspondingly 0.0441 . ExyXXZXX expressed, on the average the
occuझrence of one single nodal point of the eyepiece in an inclusion (impurity) will
take place only once during the inspection of 23 fields of

Greal

take place only once during the inspection of 23 fields of womer, and for the obtainment of more or less reliable data, the number of fields should be many times greater. Moreover, using the planimetric method, we can estimate the area of all view,
inclusions, visible in a field of won, and obtain reliable data in a small number
of fields of vixsions view.

The measurement of area of a given phase in wikw photomicrographs or drawings can be conducted more accurately than in visual observation directly under photomicrographs
a microscope; however, the preparation of mawings limits the number of fields of view in which the measurements are conducted.

Therefore a more accurate estimation of single fields of view car be obtained by measurements in photomicrographs and drawings, and the more accurate estimation of the sample as a whole can be obtained at direct measurements under a microscope. photomicrographs
The method of planimetiny in micxophotens and drawings, intended for standard scales
is
of quantitative estimation, are mandatory, independently of the content of the given
phase. Moreover, it is often used in an $X X X Z$ structure, containing a great number of grains on the microsection even at use of large magnifications, which complicates the measurement during visual observation.

In addition to the planimetric method, there is also the cellular method of determining the phase composition. However, this method has a number of major disadvantages, which greatly restrict its use in metallurgy; therefore there are no bases for considering it here.

In metallographic practice, the relatively most widespread use is made of methods of individual measurement of linear dimensions of sections of microparticles
in a cut with the aid of an eyepiece-micrometer (see Fig.13) with subsequent estimation of the part of the area of the cut occupied by microparticles of the given phase. This method found application mainly for estimating the content of nonmetallic inclusions in steel and graphite in iron. Usually transverse cuts are used in determining the content of nonmetallic inclusions in rolled steel.

The sections of microparticles are measured in two mutually perpendicular directions, if they are not equatedeat. Therein, the sections visible in the field of view usually do not match the ruler of the evepiece-micrometer, but their length and width are estimated in divisions of the scale by eye. Then one determines the area of each section taking into account its shape, the total area of all sections in each field of view and in all fields of view and, finally, the relative area occupied by the given phase in the cut and hence in the volume of the alloy. For making the calculations easier, the sections of microparticles having approximatel., equal areas are prouped ard estimated by a fixed index point based
on special scales. The number of inclusions of each group are then wixk multiplied
by the appropriate factor ("magnitude"), taking into account the average area of sections of the given group, the products are added together and yield the "Index", proportional to the fraction of area being occupied by the given phase in the cut.

For estimating the nonmetalic inclusions in steel and the graphite in forged iron, there was proposed a large number of various scales which were similar in
construction. As an example, we consider the method developed by M.S.Aronovich, I.M.Lyubarskiy, and Ye.K.Yefanova, also known as the method of the Ukrainian Institute of Metals (UIM) (Bibl.80, 91).

Using the UIM method, one can determine the content of nonmetallic inclusions
(in transverse cuts). in cast metal, in sheet, strip and bar rolled mandinoocossxectivons). In a
number of fields of view, at magnification of $200-250$, there is measured the the inclusions,
length and width of ximpumitttess, whereupon their area is estimated in square
divisions of the ruler of the eyepiece-micrometer. Therein it is assumed that the cross sections of the inclusions elongated
, elongated inclusions
rectangles (threadike inclusions). The area of ertereex the
by the product of the length of inclusion times its width, and the area of
inclusions
ther elliptical roces as 0.8 of this product. Depending upon the area obtained, all
inclusions of the given field of view are classified by groups, according to the
stardards presented in Table 10. Then the number of inclusions in each group is ("weighed")
multiplied by the corresponding index (herang) equaling the average area of inclusions
of the given group in square divisions of the scale of the eyepiece-micrometer.

Totaling the obtained products by all groups, one obtains the complete area of
impurities in the given field of view. The ratio of the obtained total to the
area of the field of view, measured in the same sauare ririts of the scale on the
eyepiece, provides the unknown value of relative area (or volume), occupied
by the inclusions in the given field of vision.

Table 10

a)	b)	c)	d)	e)
1	$0,10-0,25$	$0,3-0,5$	$1 / 1$	0,18
2	$0,25-0,50$	$0,5-0,8$	$1 / 2$	0,38
3	$0,50-1,50$	$0,8-1,4$	1	1
4	$1,50-2,50$	$1,4-1,8$	2	2
5	$2,50-5,50$	$1,8-2,5$	4	4
6	$5,50-10,50$	$2,5-4,5$	8	8
7	$10,50-21,50$	$4,5-5,2$	16	16
8	$21,50-42,50$	$5,2-7,4$	32	32

a) Group; b) Limits of area of impurities in square divisions of scale of eyepiece; c) Limits of diameter in divisions of scale; d) Weight (index);
e) Average area in the group

Calculation in a number of fields of view demonstrated that the accumulated average value quicicly becomes stabilized, as this is apparent from the curve on the basis of test data (Fig.30). Thersfore it is sufficient to measure all the inclusions in 10 fields of view. However, this conclusion can in no way be considered universal, because the obtained accuracy is determined by the number being of measured impurities, and hence, XY limited by the standard rumber of fields of view, we set the accuracy of analysis as a function of the purity of the steel. One can agree in no way with the method proposed by the authors for computing the obtained volumetric content of inclusions ir the weight contentfy Such a calculation can suxare scarcely be justified because the choice of specific weight of inclusions is arbitrary, and the feasibility of such a type of calculation is lacking. It is quite obvious that specifically the total volume of inclusions (ard also their form and dispersed state), disrupting the continuity of the metal, exerts an effect upon the strergtr. of the steel, which deperds in no way upon the specific weipht of the

Fig. 30 - Index of Contamination of Steel by Nometallic Inclusions in Individual Fields of View (1) and Stabilizations of Accumulated Average Value (2). After data of K.S.Aronovich and I.M.Lyubarskiy (Bibl.80)
a) Index; b) Number of field of vision

The data presented ir:dicate that the method described vields sufficiently reliable results and good agreement with the data of chemical analysis (see Fig.29). The methods of estimating the content of nonmetallic inclusions, not showing haves estially important differences from the above-described method, were

(Bibl.93), S.G.Voinov, and V.A.Boyarshinov (Bibl.94). A similar method for malleable
ustimating the graphite of Exffac iron was proposed by V.M.Shpeyzman and

Ye.V.Yelenevskaya (Bibl.95).

The scales of all these methods of evaluation were constructed in such a way that the diameters of inclusions $\overline{\text { mader }}$ increase from group to group in an arithmetic or, in mosi cases, a geometric progression, and the rate of growth of averace area of inclusions in a group is correspondirgly ever. higher. Such a
construction of scales is unfeasible and decreases the accuracy of the method,
since the total arta of inclusions is determined basically by the inclusions of large sizef and these inclusions are specifically estimated as the most approximate, in a rough manner, since the interval of change in area of inclusions in the group increases from group to group. Since the purpose of analysis is the determination of total area of inclusions of various sizes, the scale should be constructed, proceeding from a uniform increase of the specific area of inclusions from one group to the other, i.e. based on arithmetic progression of average area and not of diameter of impurities.

A somewhat different method of determining the total area of inclusions and
the abovegraphite ir gray iron, differing from scales, was described by S.M.Skorodziyevskiy (Bibl.28, 96). According to this method, in a number of fields of view three statistically average values, namely the quantity of impurities in the field of view, the length and width of inclusions (or of graphite deposits) are determined by way of calculating and measuring the sizes. The average area of impurities is found as the product of their average length tines average width, and the total area of inclusions in the field of view is found as the product of average area of inclusions times their average quantity in one field of view. It is desirable that all three values be measured or calculated in the same fields of view. The obtainment of total area of inclusions (or of graphite) by the method described somewhat complicates the determination, since it requires a separate deternination of three average values.

The determination of average area of sections of microparticles and, specifically, of nometallic impurities may be considerabiy simplified and accelerated, and
accuracy increased corresponaingly, in the $\begin{gathered}\text { nden } \\ \text { use } \\ \text { of } \\ \text { special evepiece inserts, }\end{gathered}$ similar to that shown in Fig. 31. In estimating the inclusions of rounded form in cast steel or in the cross cut of rolled steel, they are compared with a number of dark circles, for which the value of area, changirg in the sequence of a simple arithmetic series of numbers, is indicated on the insert, wherein for a unit there is adopted the area of the smallest circle. The entire area of the square, measured in the same units, equals 4800. XX The determination of relative area of inclusions is conducted as follows.
the
The magnification of microscope should be so chosen that the largest inclusions found on the cut are close in area to the largest circles of the insert. In calculating, all inclusions falling within the square are taken into account, as well as those from the inclusions intersected by the perimeter of the square, the greater half of which proved to fall within the square. All these impurities are

Fig. 31 - Ocular Insert for Estimating the Area of Inclusions of Rounded Form compared with the circles, and the area of each inclusion is estimated. These
numbers are totaled for all impurities of a given field of vision or by way of oral counting, or even with the aid of two hand counters (see Fig.16), of which one counts the units, and the second counts the groups of ten. The inclusions smaller than circle (l) of the smallest size on the insert, are mentally combined into into groups. The EqXaife square of the insert is divided four equal sectors for facilitating the calculation in the presence of a large number of inclusions.
inclusions
The total of the figures for all 伿putaxay of the given field of view, divided by 48 , directly express the percent of area, occupied by inclusions on the cut, or in the volume of steel. The calculation is repeated in several fields of view and the entire
there is derived an average estimation for dax/cut. Since the area of the cut, inclusions
 the actual inclusions, are measured by one and the same units, the result obtained is independent of the magnification being used and does not require any further conversions.

In the use of special ocular insert, the need is done away with of recording the number of inclusions by groups, as well $2 s$ the subsequent multiplication of these numbers by index and adding, which greatly facilitates the process of analysis, the duration of which is much less than for example in computation based on the method of M.S.Aronovich and I.M.Lyubarskiy.
the methods of estimating the content of nonmetallic inclusions in steel.

The method of measuring the area of sections of microparticles in (nicrophotographs and drawings has limited use. The area of its use is mainly as estimation of structures of standard scales for obtaining their precise characteristics.
three
The accuracy of all oxdtuk variations, examired in the presert paragraph, of the
planimetric method of estimating the phase and structural composition of an
alloy is determined ajaX by the quantity of individual grains which were measured
by one or another method in the process of analysis. From the rich experience of
petrographic structural analysis, it follows that

error not exceeding 1% of the value \mathbb{E} a 1000 ($3 i b 1.50$). Since the error is inversely proportional to the square root of the number of measurements, one can determine the value of possible error as a function of the number of grains being measured during analysis, by the following numbers.
$\left.\begin{array}{rccc}\begin{array}{c}\text { Number of } \\ \text { Grains }\end{array} & \text { Error, } \% & \begin{array}{c}\text { Number of } \\ \text { Grains } \\ \text { Measured }\end{array} & \\ & & \text { Error, } \% \\ \text { Measured }\end{array}\right]$

The figures adduced may be used for determining the error of identification of content of phases or components of KKXXKW以 structure by the methods of individual measuring of sections of various phases in a microscope or in kX photomicrographs and drawings of structure.

A fourth type of planimetric method is the determination of relative area of
the
phase or structural component by way of visual comparison of structure with standard scales; this is least accurate, since it introduces the element of subjectivity into the evaluation. However the simplicity of this type of estimation and the possibility of a rif rapid examination and evaluation of large areas in a short time make this method quite effective, if a great accuracy of analysis is not required.

Scales for estimation of pnase or structural composition are numerous. Among the great number of standard scales serving for characteristics of the most diverse elements of structure of steel and iron, one can note two scales of such a type listed in $\operatorname{GOST} 3443$ - 46. These scales are intended for determining the content of pflite and graphite in gray iron, but are not distinguished either by accuracy or by technical improvement of reproduction of standard structures.

A number of scales intended for evaluation based on structure of steel of (weight content fof nonmetallic inclusions R.B.Malashenko (Bibl.98). In supplement to the index point estimation, S.G.Voinov and HXEX V.A.Boyarshinov introduced values of areas occupied by oxdes and sulfides in standard photomicrographs of known scales of nonmetallic inclusions GOST 801 - 47 [based on data of the metallngraphic laboratory, TsNIIChM (Bibl.99)]. These data show the complete lack of regular dependence between the value of the area occupied by the inclusjons and the index point.

The value of area being occupied by nonmetallic is set at the basis of the new scale shown in Fig.32, developed by N.K.Lebedev, NXXXB
M.I.Vinograd, and S.A.Kiseleva (Bibl.37). Here, the area of inclusions increases in geometric progression with the derominator (2). The construction of this drawn scale may be considered exemplary, if the number of index points were proportional to the area of impurities, i.e. also were determined by a geometric series with a denominator (2). In the opposite case, the average xamay index point determined on the basis of a number of fields of view, will not correspond to the average area of inclusions in these fields.

A poor polygraphic reproduction of scales sharply decreases the accuracy of

More convenient and accurate are the scales placed directly in the eyepiece of the microscope, which permits the conduct of evaluation without moving away from the eyepiece and makes it possible to make a better comparison of the analyzed structure with the standard structure. Therefore worthy of attention is the design of an eyepiece with revolving inserted scales, manufactured by the Bausel Post and Lomb Firm (USA) for determining the value of a grain of steei according to ASTM.

A very significant disadvantage of all types of planimetric determination of phase and structural composition is the mechanization or automation by way of using various counting devices, which would facilitate the work of the observer. In calculating the squares, or in measurement of sizes of sections under a microscope, it is easy to go astray; one can count the same Hzaydin grains twice or not count others at all etc. Therefore the new methods of analysis (linear and point) have practically crowded out the planimetric method in the petrographic analysis of rocks.

Nevertheless, the specifics of metallographic analysis fully justify the use of certain types of the planimetric method in a number of cases. Here first of all aye one car include cases of determining the phase composition by the method of irdividual measurement of sections of microparticles at very low content of phase being determined and its high dispersed state (nonmetallic inclusions in cast steel and in the cross cuts of rolled steel of equiaxed granular form of carbides, graphite at rounded form of deposits, etc.). The measurement of area of sectiors of microparticles of the given phase in photomicrographs of sketched structures, irterded for stardard scales, servir.f for estimatirg the area

Fig. 32 - Scale of Comparison for Estimating the Contamination of Steel by Nonmetallic Inclusions (TsMIChM) (Bjbl.e7)
Brittle Inclusions - Oxides
a) Area of inclusions $0.27 \times 10^{-3} \mathrm{~mm}^{2}$; b) Area of inclusions $0.55 \times 10^{-3} \mathrm{~mm}^{2}$;
c) Area of inclusions $1.10 \times 10^{-3} \mathrm{~mm}^{2}$; d) Area of inclusions $2.20 \times 10^{-3} \mathrm{~mm}^{2}$;
e) Area of inclusions $4.40 \times 10^{-3} \mathrm{~mm}^{2}$

Fig. 32 (Contiruation)
Plastic Inclusions - Sulifides
a) Area of inclusions $0.50 \times 10^{-3} \mathrm{~mm}^{2}$; b) Area of inclusions $1.00 \times 10^{-3} \mathrm{~mm}^{2}$;
c) Area of inclusions $2.00 \times 10^{-3} \mathrm{~mm}^{2}$; d) Area of inclusions $4.00 \times 10^{-3} \mathrm{~mm}^{2}$;
e) Area of inclusions $8.00 \times 10^{-3} \mathrm{~mm}^{2}$

Fig. 32 - (Cor:tiruation)
3rittle Inclusions - Silicates
a) Area of inclusions $0.37 \times 10^{-3} \mathrm{~mm}^{2}$; b) Area of inclusiors $0.75 \times 10^{-3} \mathrm{~mm}^{2}$;
c) Area of inclusions $1.50 \times 10^{-3} \mathrm{~mm}^{2}$; d) Area of irclusiors $\mathrm{IX} 3.00 \times 10^{-3} \mathrm{~mm}^{2}$;
e) Area of inclusions $6.00 \times 10^{-3} \mathrm{~mm}^{2}$

Fig. 32 - (Continuation)
Nondeforming Clubular Inclusions (SiO_{2}, Enfarixy Silicates)
a) Area of inclusions $0.27 \times 10^{-3} \mathrm{~mm}^{2}$; b) Area of inclusions $0.55 \times 10^{-3} \mathrm{~mm}^{2}$;
c) Area of inclusiors $1.10 \times 10^{-3} \mathrm{~mm}^{2}$; d) Area of inclusions $2.20 \times 10^{-3} \mathrm{~mm}^{2}$;
e) Area of inclusiors $4.40 \times 10^{-3} \mathrm{~mm}^{2}$
or volumetric content of this phase, affer most feasibly conducted with the aid of the Amsler planimeter, independently of the content of $/$ (iven phase.

Very promising is the use of specialized inserted ocular scales, especially the removable ones, intended for individual estimation of area of separate sections of microparticles, and also for overall evaluation of relative area of a giver phase in the field of view as a whole (of nommetallic inclusions and perlite in steel, graphite, ferrite and phosphide eutectics in irongetc.). Section 14. Linear Method of Determining Phase and Structural Volumetric Composition of an Alloy and Its Application

The linear method first proposed in $X \mathbb{X}$ I 1898 by A.Rozival for determining the mineralogical composition of rocks

unoder

 ineralogical composition of microscope is based on the Cavalieri-Aker principle, according to whici the measurements of kX bodies can be replaced not only by measuremert of areas but also of lengths of segmerts. The advantage of the linear method over the planimetric one consists firstly in greater simplicity and accuracy of measuremert of lengths of segments as compared with measurement of areas and secordly in the possibility of automating the process of totaling the lengths of segments, falling in each of the phases of the structure being analyzed.In Fig. 33, a diagram is presented illustrating the use of the Cavalieri-Aker principle in the linear method of microanalysis (Dibl.50). In an area, consisting of 200 squares, 10 squares are scattered irregularly, the area of whyan each of which equals Rawderik 4 squares and herce the part of area of the drawirg taken up by the squares amour.ts to 0.2 or 20%. If we measure the lengtins of segmerts of horizontal and vertical lines, passing through the area of squares and set off in KKad the drawing by thick lines, add them up, and divide the total obtained by the entire lengt. of Lires intersectire the drawirg, the value ootained will je all the closer

Principle
 Linear Method of Microanalysis (after A.Rozival)

The essence of the linear method consists in that the structure, visible nuthos microscope or in a ${ }^{[x}$ photomicrograph, consisting of any quantity of phases or structural components, is intersected by a straight line or a number of lines.
 the cut Aeparate the lengths of the segments falling on each of the phases of structure, and divide the total by the total length of intersecting lines, the quotierts obtained, according to the Cavalieri-Aker principle, will equal the parts of area of the cut or the volume of alloy which each of these phases occupies. The correspondence will be all the more accurate, the longer the intersecting lines, drawn on the cut or on the photomicrograph.

As A.Rozival demonstrated, these lines should not necessarily be straight, but can also be curves, which does not affect the final result. The lines can be draw arbitrarily, and not necessarily in the form of a grid of parallel and equidistant lines. It is only important that the lines take in the entire area
being analyzed and that they are equally distributed over the area. In practice, there are accomplished two types of use of the linear method in analysis a microscope, which can be called the methods of stationary and mobile microsection.

In working by the first method (method of stationary microsection), we use the usual eyepiece-microneter equipped with a ruler, divided into 100 equal parts (see Fig.13). For instance, in the examination of the KKinadrax structure of pre-eutectoid annealed steel, of the 100 divisions of the diametral line on the
fall scale of the eyepiece, a part of the divisions riorg to ferrite, and the remaining pearlite
 is shown in Fig.34. At the given position of the ruler, 82 divisions fall to

Fig. 34 - Determination of Structural Composition of Steel by the pearlite

Ruler Method at Stationary Cut. For the perixide component, 18
divisions of the ruler out of 100 were taken up
pearlite.
pearlite
ferrite, and 18 to perdikex. Therefore the content of ferrite and porndite on the lines of the scale is determined by the figures 82% and 18%, respectively. Understandably, in an adjacert field of view, or even in the same one, upon turning or a slight displacement of the ruler, the number of divisions falling to ferrite pearlite
 of number of divisions falling to the given structural component, in conformity with the Cavalieri-Aker principle, will equal the content of this structure in the area of the cut and ir the volume of the alloy. To obtain a reliable average value,
the measurement needs to be repeated in a number of fields of view, equally
distributed about the area of the cut and all the area surrounding it. It is
feasible to compute the divisions, falling to all structural components, in
addition to that one which is present in the maximum amount, and the number of
divisjons falling to it can be determined by the difference.
lengths
The XXKGKK of segments of the ruler of the eyepiece, falling to the individual range
YXZXX of phases being analyzed or structural components, are usually estimated as
wnole numbers of divisions of the ruler. Since the actual length of these segments, generally speaking, does not equal whole number of divisions, the error of determination will be all the greater, the shorter the segments, i.e. the more dispersed the structure and the less the magnification. Therefore, it is
desirable K KX to use magnifications at which the length of one segment, on the average, equals at least 5-10 divisions of the eyepiece scale. The segments, the lengths of which are less than one division, are mentally combined into groups and are estimated as whole numbers of divisions.
 magnification, the more accurate will be the result of analysis. However, at the same time its unwieldiness also increases; therefore the problem of the minimum number of fields of venty which should be examined in order to assure obtaining a giver. accuracy of analysis, is quite corsiderable and will be considered separately.

In distinction from that examined above, the analysis in case of a movable cut is conducted at continual displacemert of the cut in one direction, at
simultaneous observation of structure in the eyeriece with cross-hair. Therein, we add up the lergths of the path of cut during passage through the point of the eyepiece cross hair for each of the structural components separately. Figure 35

Fig. 35 - Determination of Structural Composition of Iron by Linear Method at Movement of Cut
explains the method of linear analysis in case of movable microsection. A straight line, intersectjng the strunture of gray iron, is the path of the point of cross hair of the eyepiace in the microsection during its displacement. Usually the microsection is moved from one edge to the other, then in opposite direction along a line parallel to the first and standing off from it at a certain distance, etc. If the movement of ${ }_{\text {a }}$ cut is realized by a micrometer screw, the length of path is totaled automatically. Since we need to measure the lengths of paths of the microsection during passage through the point of cross-hair for each of the structural components separately, the passage through a sector of each of them separately should be conducted by different micrometer screws, each of which ISXXGXXHXXI and independently of

the length of this movement. Thence it follows that the number of micrometer
screws, moving the cut independently one from the other and in the same direction
should be not less than the number of the structural components, the content of
which is subjected to determination.

In the case of a structure show in Fig.35, onement is accomplished
by the first micrometer screw, until a sector of ferrite has advanced along the
line 1-2 through the point of evepiece cross hair in the direction indicated
by the arrow. When the point of cross-hair reaches the boundary $K K$ of the pearlite
ferrite and paraxxy sector at point 2, the movement of the cut begins to be accomplished by the second micrometer screw along the line $2-3$. The advance

pearlite
a third micrometer screw, while for movement through the pearlizk sector $4-5$, one again returns to the second micrometer bark screw, etc. After the cut has been exarnined along a number of parallel lines, the micrometer screws determine the total lengths of path of crosshair point of eyepiece through the ferrite, pearlite, phosphoritic eutectics, graphite and nonmetallic of each of these values to their total determine the portions occupied by each of the enumerated components of the structure on the $\mathcal{Z X}$ lines conducted, areas of cut and in the volume of the alloy. XYXX The lines of displacement of the cut can be run in different directions and cannot be mutually parallel. These lines can also be curves, for instance a spiral. The sole requirement is the uniform encircling by the $X X$ lines of the entire surface of the cut.

In this method, no kind of calculations or recordings are necessary. stages
Since the microscope and the two coordinate preparation guides have ariftingthe only one micrometer screw for mop of cut in a given direction, for using this stages
method of analysis, special surd ex equipped with several micrometer screws,
moving (independently of one another) the microsection in the same direction, are Stages
then necessary.

+ jus stages
with standard benet of polarization microscopes. Since these wizes automatically
add up the lengths of segments, they are called integrational.
stages
Any of the composition 0, the linear method, should assure the accomplishment of tho operations:
a) Sequential movement of the microsection and
b) Recording of the values of displacement separately for each phase or component of the structure.

In earlier type berets, the conduct of both operations was combined in one device, and in more improved later designs, these operations are carried out separately by separate devices.

The first device of such a type, a diagram of which is show in Fig. 35 , was proposed in 1916 by S.Shend. The device of S.Shend consists of a stationary frame (4), fastened on the fore a microscope, and of two movable frames (2) and (3), the displacement of which is realized by the independent micrometer MaX screws (4) and (5). Microsection (6) is mounted in the internal movable frame (3). Shend's device permits one to analyze an alloy, the structure of which

Fig. 36 - Diagram of S.Shend's Device (Bibl.50)
edit consists of two components. One can also determine the content of one of the components of the structure, if their number is greater than 2 . In this case, the movement through the point of the crosshair by the component being analyzed is accomplished by one micrometer screw, and the movement of all remaining components of alloy structure is accomplished by a second screw.

A shortcoming of the Shend device is the small number of components of structure being determined simultaneously and the possibility of moving the cut
only in one direction; after havir:g finished inspection along one line, it is
necessary to move by hand the cut, in order to carry on inspection along a second
line. The second of these disadvantages was removed in the device of K. Sheumann,
which has a third micrometer screw, located at right angles to the two first
screws.
Wentworth integrati ng stage (1923) permits a simultaneous The Ex
stage,
y

Exifi screws are set on one axis and movement of the cut is accomplished by way of
turning one of the five heads (drums), on which the reading is conducted. XxXX
Nentworth
Displacements in transverse direction cannot be realized on the thantronar device.

This device was improved by Ye.K.Smirnov, who introduced cross movement of the
stage of the instrument

integrating stage

type ISA, intended for determining the content of six structural components, is made by the Test Optical-Mechanical Plant of the Trust Kriw stage
As is evident from Fig. 37, the ISA has six heads (drums), the division scale of which corresponds to movemert of the cut by 0.01 mm . Three heads can move the cut by 25 mm each, while the three remaining ones car move it by 15 mm each. The maximum total movement equals 90 mm . The two-coordinate preparation guides mounted on the test stand (not show ir. Fig.37) permits the displacement of the cut in transverse direction, and also permits one to determine the content of the seventh structural component, if this is necessary.
integrating stages Scheumann-Leitz
The also
many others/permit one to conduct simultaneous determination of six structural
components. In the above cited study of L. 3eck ard 3.3mith, the determination of
plase composition of brass was
determined with the aid of a integrating stage

permitting one to determine the
content of three components (Bibl.77).

The listed designs of testrostends,
especially for determining several
phases, are unwieldy and Zntratand
inconvenient in operation. Therefore,
the new approach, wink proposed in 1931 by A.A.Glagolev, to a design of such devices is very valuable and
boils down to a division Intaxaxa
of the device into two or three independent mechanisms. On the stage
of the microscope are mounted only
runners
(sleds)
microsection, while the counting
device (recorder), measuring and
totaling the segnents, is mounted
Integrating Stage

for Simultaneous Determinatior of Content of Six Structural Components by Linear Method

Integrator:

1-Small battery; 2 - Current breaker; 3-Switch; 4 - Electromagnetic counters; 5 - Microscope; 6-Cut being analyzed (Bibl.50)
of such a type, namely, integrators, with both types of connection, being
accomplished by a flexible electric cord (electric integrator) or flexible
shaft (rotor-integrator) (3ibl.50).

Let us examine the diagram of the electric interrator of Clagolev, shown
in Fig. 38. Direct current with an intensity of $6-8$ volts from the \mathbb{K} small battery I enters the current breaker (2), connected with the sled of the microscope, serving for moving the microsection. The breaker is arranged in such a way that at movement of the sfueds with the microsection mounted on them, the number of interriptions of current is propin proportional to the length of movement of the sKXXXe cut in the field of view. Then current enters switch (3), which consists of a number of buttons or keys. Pressing on one key or arother, the observer directs the current to one of the five electromagnetic counters of yario the current
recorder (4), which totals the number of interruptions doceroperst, proportional to
displacement of the cut. Each of the counters of the recorder has been designated
in advance for taking into account a definite structural component of the alloy
beirg analyzed.

An observer, working with the Glagolev electric integrator, turns with his
right hand the head of the micrometer screw of the microscope cut and ai the same time bringing into action the current breaker connected with the head. At the same time, he presses with one of the fingers of his left hand
intended

component located at the given moment in the point of the eyepiece cross hair; in
transition from the sector of one sector of the structural component to the section
of another, the observer releases one key and at the same time presses on another. observer

microscope eyepiece. After finishing the inspection of a series of lines, which

by the electromagnetic counters are proportional to the content of the corresponding
structural components in the alloy. The calculation of structural composition reduces to a determination of ratios of readings of each counter to the sum of readings and to a multiplication of the obtained quotients by 100 for finding the composition in volumetric percentages.

Using the ideas of Glagolev, a number oî foreign firms marufactured integrators, comprising variants of the Glagolev electric and rotor integrators. Such for

Guess (s, instance, are the "sigma" device made by the Ffuss Firm, the KXKX C.Hurlbut electric courter (3ibl.100) and others.

The integrators facilitate and accelerate the laborious work and raise the accuracy of determinations. For instance, the electric integrator and rotor-integrator permit a determination of the structural composition of five or six component alloys in 30 min with an error rot exceeding $1 \mathrm{I}_{\mathrm{N}}$.

All the devices described above are adapted for polarization microscopes, although several of them can also be mounted on the
of a metellographic microscope. It is much more convenient to use as a microscope the device for determining microhardness of type PMT-3 with a low-position stad or even to use conventional polarization microscopes, $\begin{gathered}\text { adxpar } \\ \text { equipped with opaque-illuminators }\end{gathered}$ and a monocular insert for transferring the optical axis of the ejrepiece from vertical to horizontal position, which facilitetes the observation.

Section 15. Accuracy of Linear Method

Let us examine the determination of content of pearlite in steel, conducted by the method of stationary microsection in 30 fields of view. Taking the calculation of lengths of segments in each field of view as an independent analysis, we get 30 results. In the second column of Table 11 , these 30 results, obtained experimentally, are presented. At an actual content of pearlite in steel, arydoxuryxag\% equaling 19\%
(by volume), in individual fields of view, the number of divisions of the ruler falling to pearlite will vary from 12 to 31. In the third column of Table 1 is presented the ircreasing total, while in the fourth graph are shown the accumulated average values of content of pearlite for the same 30 fields of view. In Fig. 39, we show graphically the change in the $\begin{aligned} & \text { axamXXX results obtained in separate }\end{aligned}$ cumulative fields of view (broken curve 1), and of the ersourdaterat average (curve 2).

As is obvious from the data in Xavacraxiry Table 11 and especially in the curve of Fig. 39, the results of determination in individual fields of view will vary within cumulative wide limits, whereas the curve of andinixatat average has a damping appearance.

Ir the examination of more than $17-18$ fields of view (in the given case), the cumulative average is so stabilized that the actual deviation in one direction or fith arother from the actual cortent of pearlite (19\%) does rot exceed 0.5% of it. Xay̌.

a) No. of field of view, n; b)
further increase in the number of fields of view, the limits of variations of cumulative average become narrower and narrower. Hence, continually increasing the number of fields of vision, we can get the required accuracy of analysis in working with the method of stationary microsection. Strictly speaking, the accuracy of linear analysis is determined not by the number of fields of or by length of intersecting lines, but by the number of segments obtained and measured during the process of analysis.

In examining the cut under a microscope, the number of intersected segments dogerer of diapason depends upon the optical magnification and upon the disperse of the str ctural

Fig. 38 - Results of Determination of Content of Pearlite by Linear Method in Individual Fields of View (1) and Stabilization of Cumulative Average (2)
a) Content of pearlite, \%; b) Number of field of view
component under analysis. It is disadvantageous to get a large number of segments by using smaller magnification, since the shorter the average length of the segment, the less the accuracy of measuring the segments. Therefore, it is feasible to use large magnifications;and to assure obtaining the necessary number of segmerts, it is better to examine a large number of fields of view.
S.Shend notes that conducting the examination of a cut on the basis of a number of parallel lines, it is necessary to set them by a distance which is greater than the average cross section of the grain of structure under analysis, in order not to intersect the same grain more than once. This is not mandator": The same grain ma" be intersected any number of times under the
stipulation that the intersecting lines uniformly cover the entire surface of the cut.

Curve (2)in Fig. 39 gives only a qualitative picture of increase in accuracy of analysis along with increase in

the

to obtain concrete values of \boldsymbol{f}_{A} expected error, it is necessary to have a value of mean-

gowars

quation of results of repeated analyses, conducted under uniform

in the alloy. Let us grant that we conducted a number of analyses of the same cut, preserving the constancy of conditions of analysis, namely measuring in each analysis the same number of kX segments, using a uniform magnification, etc.

Conducting n independent analyses, we get, generally speaking, n different results, although many of them can coincide one with another. Let us ferete these results, expressed in percentages of volume of alloy, by $F_{1}, F_{2}, F_{3}, \ldots F_{n}$. Then the structural mean arithmetic value of content of (given strax

$$
\begin{equation*}
\bar{F}=\frac{F_{1}+F_{2}+F_{3}+\ldots \ldots+F_{n}}{n} \tag{15.1}
\end{equation*}
$$

The mear anare deviation of results of analysis, which constitutes the initial value for computing the error of determination, is conveniently computed on the basis of the equation:

$$
\begin{equation*}
\sigma^{\prime}\{F\}=\sqrt{\bar{F}^{2}-(\bar{F})^{2}} \tag{15.2}
\end{equation*}
$$

$$
\begin{equation*}
\bar{F}^{2}=\frac{F_{1}^{2}+F_{2}^{2}+F_{3}^{2}+\cdots \cdots+F_{n}^{2}}{n} \tag{15.3}
\end{equation*}
$$

The mear gikadratis deviation computed accordirg to eq. (15.2) depends upon the number of independent determinations conducted for ostaining the mean values of the
quantities
for
ropuride F and F^{2}. In order to get a corrected value $\left\{\begin{array}{c}\text { at } \\ \sigma\end{array} \mathrm{F}\right\}$, not depending the number of
uponxepractiderocef determinations, the result obtained from eq. (15.2) needs to
be multiplied by a coefficient.

$$
\begin{equation*}
\sqrt{\frac{n}{n-1}} \tag{15.4}
\end{equation*}
$$

Let us examine now, as an example, the data of 30 independent determinations adduced in Table 11. From these Cata, it follows that

$$
\bar{F}=18,93 \% \text { and } \overline{F^{2}}=380,93 .
$$

the mean-square

Therefore, computing according to eq.(15.2) the value of xnerarxaquadxatorc deviation, we get:

$$
\sigma^{\prime}\{F\}=\sqrt{380 ; 93-(18 ; 98)^{2}}=5 ; 04 \%
$$

In order to obtain the corrected value of the mexmanare deviation, we multiply the obtained value bgik by the coefficient, computed on the basis of eq. (15.4), in which n equals 30 , i.e. according to the number of independent determinations:

$$
\circ\{F\}=5,04 \sqrt{\frac{30}{30-1}}=5,13 \%
$$

The last value (5.13%) is final and sufficient for computing the possible error of analysis, intersecting lines).

According to the theory of probability, no more than half the results of Indoy independent analysis can deviated from the true value by a value greater than
-souare
0.6745 of the mear quadicebic deviation, in one direction or another. In our case, the lower limit will equal $18.93-(0.6745 \times 5.13)=15.47 \%$, while the upper limit will be $18.93+(0.6745 \times 5.13)=22.39 \%$ of pearlite. Ir actualitr, from the data
of the second column in Table 2, it follows that out of 30 analyses, within the computed limits there fall the results of 15 analyses, and the remaining 15 go
beyond these limits.
It is practically inpossible
 square qupetic deviation. In our case, this corresponds to the limits from $18.93-(3 \times 5.13)=3.54 \%$ up to $18.93+(3 \times 5.13)=34.32 \%$ of pearlite. In the second column of Table 12, there actually are no results going beyond the limits found.

In the first case, the reliability of results of analysis is characterized by a probability of 0.5 or 50% this means that, of the large number of independent analyses, not less than 50% of their results fall within the computational limits. In the firsi case, reliability equals 1 or 100% (more precisely, 0.9973 or 99.73%); hence, the results of all analyses practically fall within the computational limits.

The theory of probability conelates the value of deviation of analysisplaulte from the true value of the unknown (i.e. absolute error of analysis), the reliability of obtaining the error, not exceeding the caused error, and the value of mean- oquase
deviation:

$$
\begin{equation*}
\Delta=t \sigma\{F\} \tag{1.5.5}
\end{equation*}
$$

where Δ is the absolute error of aralysis in percerts of area of cut or volume
of alloy;
t is the standardized deviation, clearly connected with the probability or
reliability of expected error P;
$\sigma\{F\}$ is the mear- - fluale deviation.

Ir. its turn, the value of standardized deviation t is conrected with the
probability or reliability of result of determination P by the following
dependence:

$$
\begin{equation*}
P=\sqrt{\frac{2}{\pi}} \int_{0}^{t-\frac{t^{i}}{2}} e^{2} \cdot d t \tag{15.6}
\end{equation*}
$$

Since the integral in (15.6) is not choser, we adduce in Table 12 the values of probability P for various values of standardized deviation t and vice versa.

It follows from eq.(15.5) and rawraxis Table 12 that, for the actual case, being examined by $u s$, of determining the amount of pearlite, the absolute error of determination, at reliability fixed by the probability 0.5 or 50, , equals

$$
\Delta=0,6745 \cdot 5,13=3,46 \%
$$

of pearlite. This signifies that of the results of a large number of independent analyses conducted under identical corditions, rot less than 50% of all results will have an absolute error not exceeding 3.46% of area of cut or volume of alloy. Such an erron characterized by the reliability of 0.5 or 50, , is called the probable error and comprises the chief characteristic of accuracy of analysis.

\boldsymbol{t}	\boldsymbol{p}	\boldsymbol{t}	\boldsymbol{P}	\boldsymbol{P}	\boldsymbol{t}
-					
0,10	0,0796	1,40	0,8384	0,50	0,6745
0,20	0,1586	1,50	0,8664	0,60	0,8416
0,30	0,2358	1,60	0,8904	0,70	1,0364
0,40	0,3108	1,70	0,9108	0,80	1,2816
0,50	0,3830	1,80	0,9282	0,90	1,6449
0,60	0,4514	1,90	0,9426	0,95	1,9600
0,70	0,5160	2,00	0,9544	0,98	2,3263
0,80	0,5762	2,20	0,9722	0,99	2,5758
0,90	0,6318	2,40	0,9836	0,998	3,0902
1,00	0,6826	2,60	0,9906		
1,10	0,7286	2,80	0,9948		
1,20	0,7698	3,00	0,9973		
1,30	0,8064	4,00	0,999936		

If we, not changing the conditions of conducting the analysis of the given structure, pose more rigorous izagianion requirenents for the reliajility of the results being obtained, assuming for instance a reliability P, not equaling 0.5 but 0.7, the absolute error of determination increases to

$$
\Delta=1,0364 \cdot 5,13=5,32 \%
$$

of pearlite. Hence, increasing the value P, it is necessary to change at the same time the allowable absolute error (at the assigned conditions of analysis).
 should reguiate its precision, being determined by the value of acceptable absolute error and by the reliability of assuring it. However, being affected at the same time by fixed standards of value for Δ and P, we by the sane token predetermine the necessity of obtaining a fully concrete value of mean quadratic deviation, as this follows fror eq. (15.5). This last value depends upon the conditions of analysis, i.e. upon the wade nature of the structure being analyzed, upon the length secants. and position of the dodexiekchund establish a dependence betweer conditions of analysis and value of mean way

geometric validity of contours of structure does not permit one to do this theoretically.

Therefore we will strive to establish it empirically.
TK.
HMR hence also the value of mean - oquate deviation of results of a number of repeated analyses from the actual content of giver. structural component are determined in a well-defined manner by the number of individual segments measured in the process of aralysis (2ibl.50). Data of a series of aralyses of various structures indicated,
however, that the mear of deviation depends both upon the content of the component being analyzed in the alloy as well as upon the nature of the
structure.
The value of mean quidratic deviation is inversely proportional to the square root of number of observations or measurements. As stated above, in our case a unit of measurement is a separate segment obtained at intersection a secant.
of a microparticle by dependence between the number of segments measured during determination of content of aniven structural component, and the value of mean quaction deviation. For each cut, by the stationary microsection method (with the of an ocular-micrometer), we conducted a series of identification of the same strictural component. In each series, a different number of segments was obtained for each determination. This was achieved either by the use of various magnifications
 do different lengthsof calibrated part of the eyepiece. Typical dependences between the number of measured waymaxid segments and the value obtained for mean-square
quation, shown in Fig.40, reliably confirm that for each given
structure there exists a dependence of the type

$$
\begin{equation*}
\sigma \cdot\{F\}=\frac{A}{\sqrt{2}}, \tag{15.7}
\end{equation*}
$$

where z is the quantity of individual segments measured in the process of each independent determination.

The number of segments is directly proportional to the length of ind secarts,
secarts, which the measuremerts were conducted. Therefore it is clear that the effect of the length of secart upon the value $\sigma\{F\}$ is taken into account by the
denominator of eq. (15.7), while its numerator depends only upon the nature of
secants.

secants does not play a part unless the structure is XWKK isotropic, i.e., if
its nature does not depend upon the direction, (even if only in the plane of the cut).

From the curves, similar to those shown in Fig. 40, we obtain the following values for numerator A of eq.(15.7) for diverse structures and structural components:
$A=\sqrt{2} \sigma\{F\}$Graphite of gray iron, lamellae sliphtly $\mathbb{Z} X \mathbb{X}$unevenly, isolated one from the other. Content of graphiteequals 5.8\% by vclume (line 1 in Fig.40) 14.5equiaxial14.522.1
β-phase in transverse cut of rod of two-phase brass having an equiaxial 29.7
Pearlite component in transverse cut of rod of pre-eutectoid equiaxial
annealed steel having aduaxixima structure . Pearlite.content, 288XI
28.7% 28.9Ferrite, forming a broken network with traces of Widmanstaettenstructure in cross cut of rod of pre-eutectoid steel. Ferritecontent, e 32.8\% (line 2 in Fig. 40)32.8
Pearli.te component in cross cut of rod of pre-eutectoid steel equiaxial having BXXXXXXX structure. Pearlite cortent, 35.8\% 29.2
Martensite component in troostite-martensite structure of Kadida
tempered steel. Content of martensite component, 40.5% 31.9Analjzing the results obtained, one can note that the product $\sqrt{2} \cdot \sigma\{F\}=A$depends upon the content of the structural component being analyzed in the alloy.With an increase in this content (within the limits investigated), the value of Aircreases rapidly at first and then slowly.

Fig. 40 - Dependence of Value of Mean - Suthare Deviation $\sigma\{F\}$ upon Number 2 of Segments Measured

In the two-phase structures, the number of segments of a secant falling
on each of the structural components is evidently uniform. By timple substitution of the value ($100-F$) instead of F in equations (15.1), (15.3), and (15.2), it can be shown that such a substitution does not affect the result of computing the mean ququar deviation. Thence it $\mathrm{E} \%$ follows that the values for A, found for two-phase structures, are actual for both structural components, in spite of their different content in structure. For instance, the uniform value of the product $\sqrt{\mathrm{z}} \cdot \sigma\{F\}$, equaling 14.5 , is obtained both for content of 5.8% (graphite) as well as for content supplementing this value by 100%, i.e. for 94.2 (metallic base of iron), etc.
include
 the contert of the component F being analyzed and XhX having identical values at substitution in it both of the value F as well as (100-F). The appearance of this factor is as follows:

$$
\begin{equation*}
\sqrt{F(10 C-F)} \tag{15.8}
\end{equation*}
$$

Transforming in the appropriate manner the earlier obtained dependence (15.7),
we get a formula permitting us to fird the value of mean - quadretic deviation by a calculational method:

$$
\begin{equation*}
\sigma\{F\}=K \frac{\sqrt{F(\mathrm{IC}} F)}{\sqrt{z}} . \tag{15.9}
\end{equation*}
$$

Substituting the data of seven different analyses into eq.(15.9), we can observe that K is constant. It turns out that this factor for the investigated structures changes within relatively narrow limits, namely from 0.60 to 0.73 . The mean value of the coefficient for structures, the nature of which is independent The of direction of secants on the piane of the cut, is fixed by the value 0.65 . In Fig. 41 , we show the dependence between the content of structural component being analyzed in alloy F, and the value of the product $\sqrt{2} \cdot \sigma\{F\}$, constructed on basis of experimental data presented above. The curve presented in Fig. 41 corresponds to eq.(15.9), in which the factor of proportionality is assumed to equal 0.65. The dependence obtained confirms the adequate reliability c.f eq. $(.25 .9)$, and the possibility of its use for computing the value of the expected mean quadratic deviation.

In those cases when the structure has a definite orientation, the direction of secants affects the value of factor K. By a $\wedge^{\text {inear method, we determined the pearlite }}$ contert in soft steel, the structure of which on a lengthwise cut had a sharply striation. manifestedxtaredectrasatsack In one series of determinations, the secants were located the the striation

It turned out that in both ceses, there was derived a distinct dependence between the number of segments, at sirgle determination, and value of mean quatuare deviation, similar to that show in Fig. 40 . However, in the first case the product $\sqrt{2} \cdot \sigma\{F\}$
proved to equal 13.2, whije in the second it was considerably greater, namely
32.9. The pearlite content in the structure was found to equal 17.8% and 18.3%
respectively. The substitution of the obtained values into eq.(15.9) permits

Fig. 41 - Dependence between Content F of Component Being Analyzed and Value of the Product

$$
\sqrt{z} \cdot \sigma\{F\}
$$

in the sase of
striation, one to establish thatyat secants, parallel to the bromax
i.t is
equals 0.85 , while at perpendicular ones, 0.34 in all.

Hence, in a determination of the content of structural component by linear method in striated structures, the K to the direction of striation. Therein, measuring an even number of segments, we the
get a considerably smaller error thar at random orientation of secants, and much less than at their arrangement parallel to the direction of lamination.

It is noteworthy that in addition to the examined factors, the vaiue of factor K of ea.(15.9), is affected by the uniformity of distribution of component being analyzed according to field of microsection. The method of objective buduradzu quantitative estimation of uniformity of structure has not yet beer proposed, therefore ke are deprived of the chance to take this factor irto consideration in eq. (15.9).

However, it is worth mentioning that in the most unfavorable case, the maximum
value of factor K does not exceed 1 . In an analysis of any structure, the network of secants should evenly cover the entire surface of the cut. If the skouraxir is irregular, the fulfillment of this requirement is especially important. It is quite evident that it is not difficult to measure the necessary number of segments for a small part of the area of the cut, especia.lly if the structure is dispersed. However the result achieved thereby will not typify the cut as a whole, but only that part of it on which the secants were located.

Combining eqs.(15.5) and (15.9), we get a final equation for computing the value of absolute error of the linear method of analysis:

$$
\begin{equation*}
\Delta=K t \sqrt{\frac{F(100-F)}{z}} . \tag{15.10}
\end{equation*}
$$

The necessary number of segments are computed on the basis of the equation:

$$
\begin{equation*}
z=K^{2}\left(\frac{t}{\Delta}\right)^{2} F(100-F) \tag{15.11}
\end{equation*}
$$

Now we determine the error of analysis, being fulfilled by linear method. Here two cases are possible, which we shall examine below: a) determination of error of analysis already conducted a posteriori and b) determination of number of segments which need to be measureu for assuring the given accuracy of analysis.

We assume that in the process of an analysis already conducted, there was
while
measured a total of 500 segments, $\quad \mathrm{bx}$ the content of structural components was found to equal 32\%. Substituting these values z and F into eq.(15.10) and setting the factor K equal to 1 , we get:

$$
\Delta=2,08 t
$$

For computing the probable error of determination ($P=0.50$ or 50%), we find in Taile 12 the correspording value ${ }^{\circ}{ }^{2}$ standard deviatior. t and we determine tre
probable absolute error of analysis:

$$
\Delta=2,08 \cdot 0,6745=1,4 \% .
$$

Hence the real content of component being analyzed may differ from the value found by us (32%) by not more than 1.4%, with a reliability equalirg 50%.

For a preliminary calculation of required number of segments, it is first necessary to set a value of allowable absclute error $\boldsymbol{\Delta}$ and with $\underset{\sim}{\boldsymbol{a}}$ reliability of assurance P. Let us set up a probable error of determination ($\mathrm{P}=0.50$ or 50%, not exceeding 1% of the area of the cut or the volume of the alloy. From Table 12,
 addition, we need to know, ever, if only approximately, the unknown content of the structural component F being analyzed. Let us assume that this content, appraised visually, equals 20\%. Substituting the listed values into eq.(15.11), and setting the factor K equal to 1 , we get:

$$
z=\left(\frac{0,6745}{1}\right)^{2} \cdot 20(100-20)=728 .
$$

Having examined the cut in such fields of view or on secants of such total length that the total rumber of segments amounts to 728 , we get a result of analysis ciffering from the true content of ${ }_{\Lambda}$ given structural component by not more than 1% in 50 cases out of 100 . Let us now examine the remaining 50% of cases of
 conditions of analysis selected by us, the value of mean quaveratic deviation being determined by eq.(15.9) will equal (at $K=1$):

$$
\sigma\{F\}=\sqrt{\frac{20(100-20)}{728}}=1,48 \%
$$

Substituting this value ir eq.(15.5), we get:

$$
\Delta=1,48 t
$$

According to this dependerce, one car sompute the probabiinty of obtaining errors
exceeding 1, Let us whiskaytax substitute instead of Δ, in sequence, the numbers
1.5; 2.0; 3.0; 4.0 etc., and based on the ootained values of standerd deviation t,
we find from Table 12 the pertinent probabilities of such errors. It turns out that, if in 50 cases out of 100 the error does not exceed 10%, then in 68% of the cases it will be less than 1.5%, in 82% of the cases less than 2% in 96% of the cases

fairly improbable.

The example preserted shows that aithough \mathfrak{Z} of aralysis, typified by the probability of 0.50 , a large percentars of tests can deviate from, computed value of absolute error, nevertheless the absolute value of error at these deviations will not la reach inadmissibly great values. The probability of gettirg an error greater thar that computed, quickly decreases with ar increase in absolute value of error. Therefore one इसकXX should not attain an exceedirgly high reliability of aralysis. Subsequently in the majority of cases, we will eveluate the accuracy of aralysis with the value of probable error.

To avoid calculations based on eq. (15.10) for obtaining value of absolute error or based on daxa eq.(15.11) for determining the needed number of segments, we have compiled the refererce Fables 13-16. The data of Tables 13 and 15 are intended for the reliability of the result of analysis, beine determined with a probability of 0.50 or 50% (standard deviation 0.6745), while Tables 14 and 16 are for a considerably higher reliability, 0.954 or 95.44% (standard deviation 2.00). Ir the compilation of all $\overline{\mathrm{j}}$ ables, we proceeied from the most urfevoracle corditions of aralysis, assuming the factor k

Kanxixux

Table 13
Probable Absolute Error of Determination at Linear and
Point Analysis

a)	b)													
						10 90	15 85	20 80	25	30 70	35 65	40 60	45 55	50
$10\|2,10\| 2,96\|3,60\| 4,14\|4,60\| 6,33 \mid[, 53\|8,44\| 9,13\|9,65\| 10,05\|10,31\| 10,48 \mid 10,52$														
20	1,48	2,08	2,54	2,92	3,25	4,47	5,32	5,96	6,46	6,83	7,11	7,30	7,41	7,45
50	0,94	1,32	1,61	1,85	2,06	28	3,36	3,77	4,08	4,32	4,49	4,61	4,69	4,71
100	0,65	0,93	1,14	1,31	1,45	2,00	2,38	2,67	2,89	3,06	3,18	3,27	3,32	3,33
200	0,47	0,66	0,80	0,92	1,03	1,41	1,68	1,88	2,04	2,16	2,25	2,31	2,34	2,36
300	0,38	0,54	0,66	0,75	0,84	1,15	1,37		1,67		1,83	1,88	1,91	1,92
400	0,33	0,47	0,57	0,65	0,73	1,00	1,19	1,33	1,44	1,53	1,59	1,63	1,66	1,67
500	0,30	0,42	0,51	0.58	0,65	0,89	1,06	1,19	1,29	1,36	1,42	1,46	1,48	1,49
600	10,27	0,38	0,46	0,53	0,59	0,82	0,97		1,18	1,25	1,30	1,33	1,35	1,36
700	0,?5		0,43	0,49	0,55	0,761	0,90	1,01	1,09	1,15	1,20	1,23	1,25	1,26
800	0,23	0,33	0,40	0,46	0,51	0,71	0,84	0,94	1,02	1,08	1,12	1,15	1,17	1,18
990	0,22	0,31	- 38			O		0,89		1,02	1,06	1,09	1,11	1,11
1000	0,21	0,30	0,36	0,41	0,46	0,63	0.75	0,81	0,91	0,97	1.00	1,03	1,05	1,05
2000	0,15	0,21	0, 25	0,29	0,32	0,45	0,53	0,60	0,65	0,68	0,71	0,73	0,74	0,74
3000	0,12	0,17	0,21	0,24	0,27	0,37	0,43	0,49	0,53	0,56.	0,58	0,60	0,61	0,61
4000	0,10	0,15	0,18	0,21	0,23	0,32	0,38	0,42	0,46	0,48	0,50	0,52	0,52	0,53
5000	0,09	0,13	0,16	0,18	0,21	0,28	O 34		0.41	0,43	0,45	0,46	0,47	0,47
10000	0.07	0,09	0,11	0,1	0,15	0,2	0,24	0,27	0,29	0,31	0,32	0,33	0,33	0,33
15000	0;05	0,08	0,09	0,1	0,1	0,1	0,19	0,22	0,24	0,25	0,26	0,27	0,27	0,27
20000	0,05	0.07	0,08	0,0	0,	0,1	0,17	0.19	0,20	0,22	0,22	0,23	0,23	0,24
25000	0,04	0,06	0,07	0,08	0,0	0,13	0,15	0,17	O,	0,19	0,20	0,21	0,21	0,21
30000	0,04	0,05	0,07	0,08	0,0	-, 12	0,14	0, 15	0,	0,18	0,18	0,19	0,19	0,10
40000	10,03	0,05	0,06	(0,07	0,07	0,10	0, 12	0,13	0, 14	0,15	0,16	0,16	0,17	0,17
50000	10,03	0,04	0,05					0, 12		0,14	014	0.15	0.15	0,15
100000	0,02		0,04	0,04		0,06	0,08	0,08	0,09	0,10	0,10	0,10	0,10	0,11

a) Number of points (of segments); b) Content of phase F, is
of eqs.(15.10) and (15.11) as equal to 1 . However even in this case, a uniform
distribution of secerts over the entire area of the cut was mandatory.

If the analysis has already been conducted and it is required to establish
its error a posteriori, we use Tables 13 and 14. According to the content, determined
by analvis, of the examined structural component F and according to the rumber of
segments measured in the process of analysis, we find from Table 13 the prohable
absolute error of deternination. According to the same initial data, we find from

Table 14 the value of absolute error which not exceeded in 95 cases of
aralysis out of 100 .

If it is required that we conduct an analysis, the probable assolute error

a) Number of points (segments); b) Content of phase F, \%
of which should not exceed the earlier value Δ, then based on this value and the approximate content

we find from Table 15 the appropriate number of segments which need to be measured.

If it is required that we assure the obtainment of a fixed value of error Δ with
a higher degree of reliability than the probable error, we can use the data in

Table lt.

If the result of analvsis differs substantially from that value which we estimated visually, determining the necessary number of segments, we should make the appropriate correction, taking into account more reliable data obtained as a result of anal:rsis.

Tables 13 - 16, the factor K
was assumed to equal 1.

Analyzing the structures, the
nature of which does not
depend upon the direction
(in the plane of cut), we get
a factor K which is always less
than unity.

mean value can
be assumed to equal 0.65 , as
follows from the earlier
presented test data. Equation
(15.11) indicates that the
required number of segments
is proportional to the square
Therefore,
of the factor K. Karin
the number of segments which
is determined based on tabular
data can almost always be
considerably decreased by
multiplying it times the
square of the factor K, that
is by 0.42 , if only the
Table If
Minimun Number of Points or Segments during Point and Linear Analysis Necessary

$$
\text { for Obtaining an Error not Greater Than } \Delta \text {, with Probabilityr of } 0.9544
$$

品	
108	
ㅇ：	111 ర్ర్రి
ณٌ8	
\％ 9	
ลٌำ	
ง	
上00	
요	
＊\％	｜
¢¢	
\cdots	
－ヵ\％	
उ	

structure is isotropic (isometric) and uriform. If the structure is banded,
 striation, the required number oif segmerts then decreases still more. In this case, the value of the factor K can be assumed to equal 0.4 and hence the necessary number of segments found from the tables can be multiplied by 0.16 . For instance, if at content of analyzed component equaling 20, and probable error not surpassing 1%, we are required to measure 711 segments (see Table 13), in case of banded arrangement of the component being analyzed and with secants directed perpendicularly to the striation, then for getting the same accuracy of analysis, it is sufficient to measure a total of $711 \times 0.4^{2}=114$ segments, namely six times less.

If the objects of aralisis are at the same time several components, in an analysis or: the same length of secarts, then the error of determination of each of the components will differ, since their content in the alloy, dimensions and form of microparticles are different. Therefore the calculation of error needs to be made for each of the structural components separately.

XKKX the linear method of determining the structural or phase composition of an alloy, owing to the possibility of using various devices, especially integrators, is very effective both in accuracy and in speed. It is especially effective in the analysis of structural components having a banded arrargement, sirce here we are required to measure the minimum number of segments to get sufficient accuracy. In particular, it is feasible to determine by such a method the very small amounts of structural components, having a linear orientation (for instance, content of exterded nonmetallic inclusiors in a 1 دr.gthwise cut); by the method of stationary microsection. We snould recall that ir. the use of lengthwise cuts, the mean
suspended vclumetric content of phase should be computed on the basis of
eq.(11.3) (see Section 11).

For analysis of the metallic structures, it is convenient to use the linear method. Determiring by this method the structural composition, it is easy to compute (with the measurement and summation of lengths of segments) the number of segments, especially since this is necessary also for a determination of accuracy of the analysis conducted. This number of segments, referred to a unit Qf length of secants, along, which they were measured, provides the possibility of determining the second most important parameter of spatial structure of alloy, namely the $X X$ value of specific surface of the structural component under analysis.
 in Fig. 38 , the number of segments is not computed; however, this can easily be done by modifying the system slightly. Such a type of device was proposed by A.A.Glagolev in one of the designs of the integrators developed by him (Bibl.50).

In conclusion, we present an example of incorrect use of linear analysis.
 tantalum in various alloys by the linear method and striving for exceedingly high accuracy of determination, namely $0.01 \%, J . R . L a n e$ and N.J.Grart could not detect changes ir structure in the process of adatag aging of alloys (31bl.?). Actually, if we assume the probable error as equaiing 0.01%, at content of about 5% of the given type of carbides, we are then required to measure more thar two million
segments. Naturally, this could rot be done, although the praceman process of linear analysis, according to the testimony of authors, lasts for several days. It is suite evider that it is necessary to reckor with the possibilities dra of each type of anal:rsis. The data presented ir this paragraph permit one to compute in
advance the possible acruracy of determination for the given actual conditions and requirements.

Section 16. Point Method of Determining Phase and Structural Volumetric Composition of Alloy

The point method of quantitative analysis was first proposed in 1931 by A.A.Clagolev (Bibl.52) with reference to rocks*. This method is based on conclusions drawn from the theory of probability and its essence can be illustrated as follows.

Let us assume that there
 areas are
 wherein we know the total number of grains used in sowing. It is required to establish how many grains have fallen on each of the sectors separately. The solution of this problem is quite elementary, since it is obvious that the number of grains which had fallen on any of the sectors of an evenly strewn field, is Whan proportional to the area of this sector. Thence there follows the quite valid opposite proposition, namely if know the quartities of grains which have fallen on each sector, but we do not know the areas Х 2. * In the American metallurgical literature, the point counting metrod is often
 first introduced this method into metallographic practice in 1947 (3ibl.273, 374).
 structure of alloys was wayder recomended by the actual author of the method, Glagolev, as early as 1935 (3 ibl .54) and was used in practice by the author of the sxaydxay present book in 1939 (Bibl.275).
of the sectors, then using the same law of proportionality, we can determine
the areas of sectors. This proposition forms the basis of the point courting method.

From the theory of probaivility it is known that if we draw a point at random in the area G, the probability of the occurrence of the point in any part of this area is proportional to the size of this part (length, area, etc.) and does wopend upon its location and shape (3ibl.101). Therefore, if the area is a plane, the area of which equals G, the probability of placing at random a sketched point on the part of the surface, the area of which equals g, will equal

$$
\mathrm{p}=\frac{\mathrm{g}}{\mathrm{G}}
$$

wherein this probability is andy independent of the shape and ary ing location of the part of surface g. Specifically, this part can consist of a large number of individual sectors, the total area of which equals g .
on
 on points z, then $X \mathbb{Z}$ sector g of the surface there will fall x points, wherein the number x terds towards the value $p z$ and the ratio of values $p z$ and x are all the closer to unity, the greater number of points there drawn on the surface. Therefore the part of area of sector g on the surface G will be ever closer to the value $\frac{g}{G}=\frac{x}{z}$, the greater the value for z (and herce for x).

With reference to the quantitative microanalysis, the point counting method reduces to a jumplike movement of the cut in the field of view of the microscope, whereir. $K X$ in each new position of the cut, it is noted just which of the structural
the crossing

Let us assume that the structure under consideration contains three components,
wich we desigrate by 4, 3 and C. If ir the process of examiring the cut in 1000
fields of view, the point of cross-hair (reticle) fell 204 tines on component \AA,
ic tiuts on component 3 and 708 times on C, the relative content of these components in the area of cut, and also in the volume of alloy then comprises in
A $20.4 ~$
B 8.8
C
$\frac{70.8}{100.0}$

In the point analysis the points on the microsection can be arranged, by continually movirg the cut by the same amount (for instance, by 0.2 mm) with the aid of slides mourted on the microscope stand. Having finished one series, we WNOM move to a second parallel series, etc. As a result, the points prove to be located in the nodes of a quadratic or rectangular grid. In petrographic analysis, there is used the special gtana developed by Glagolev, with the aid of which the cut is moved along a spiral line, by the same amount each time. The observance of XX a fixed geometric regularity of placing the points is quite unnecessary, if the main requirement is fulfilled, namely uniformity of their distribution. However, this last requirement is assured most reliably at a regular arrangement of points over the entire field of the cut. The important advartage of the point courting数 method $\begin{aligned} & \text { rankux } \\ & \Lambda\end{aligned}$ Even in the use of the simplest method, the movement of the cut by hand and a recordirg of results, only $30-1.0 \mathrm{~min}$.

TXä The point courting method of analysis permits the mecharization of the process of moving the cut and the computation of points, which considerably simplifies Ard speeds up the aral-rsis, at the same time ircreasing its pradizecisior. A device for poirt arai.-sis, called a pasin irterrator was proposed b. Clazolev ir several
variants, the first of which was developed in 1731 (Bibl.50). In simplest form, the push integrator is a recorder consisting of several mechanical counters of ordinary type. The counters count off the number of presses made on a key, each of which is intended for a fixed structural component. Simultaneously with pressing on any key, by means of a flexible lead (for instance the trigger from a camera), a jolt is given to the micrometer screw of the slides of the microscope \qquad of a two-coordinate conveying the, which displaced the cut into a r:ew position. At the start of analysis, all counters are zero-set. The observer working with the push integrator, observing the structure in the eyepiece, presses on that key which is dented for counting the number of points falling in the structural component, located at the giver position of cut in the center of field of view (i.e. in the point of reticle of the eyepiece). During pressure, the microscope
 corresponding to this new position, etc. In the process of the entire analysis, there is X 就 no need to look away from the eyepiece, which has to be done many times in working without a push integrator and which has a bad effect upon vision. In certain models of the push integrator, there are special devices which automatically indicate the attainment of a fixed total number of points, set beforehand deperding, upon the required accuracy of analysis. After examinirg by the described sequence the entire area of cut, the number of pressures (recorded by the counters) on each of the keys are proportional to the content of the corresponding structural components in the alloy; therefore, the calculation of percentual composition of allow requires no more thar several minutes. Thus, the push integrator permits ore to determine simultaneously the cortert of all structural components of the $a 110 y$, the number of which rarely surpasses 6 , wherein.
the duratior of analysis in case of 1000 points reduces to $15-20 \mathrm{~min}$, also including the calculation.

The poirt counting method is quite useable in the analysis of highly
dispersed structures when the lirear inethod of akz analysis cannot be used as
a result of ${ }^{[i x}$ very short lengths of the segments being obtained, which therefore carnot be measured with enough precision, even using maximum magnifications. In the work with the point counting method, high skill of observer is not needed, recognition of the structural since all the determination reduces to a $\mathbb{X X X X X X}$ the point of cross-heir of the eyepiece and pressure on the awoizope appropriate key of the recorder. Therefore the point counting method of aralysis should be given preference over other methods of determining the structural composition of alloys (with the exception of individual specific cases, which were discussed in

Section: 13 ard 15).

Glagolev's poirt courting method was wax recogrized ard widely used in the practice of petrographic analysis in the Soviet Union as well as abroad, although
the USA
this was considerably delayed. For irstance, in $\mathcal{K W X X X}$ the description of the

Glagolev point counting methed, with a reference to its early publications
(1933-1934) was given only in 1949 by F.Chares (Bibl.102). Basing or the experience of corducting around 300 analyses of microsections of rocks, Chayes gives a very high appraisal of the point counting method, although he was evidently unaware of the morograph published in 1947 by Glagolev (Bibl.50), describing improved devices and methods of aralysis usirg the point counting method. Chayes remarks that the device for poirt aralysis, which can easily be assembled from marufactured parts beirg used ir microscope technology (mecranical ghen for the microscope ard cour.ters of corvertional type), exceedsall other devices
interded for determining the structural composition, in ecuromy, rapidity of analysis and accuracy of resulte obtained. Comparing the speed of analysis in the point counting and linear methods of analysis, Chayes aduces the
when using the Wentworth integrating stage

comprises 1 hr , ir the electrical counter used by Hurlbut, the aralysis is conducted in 30 min , while in the point counter (primitive construction) it takes but 15 mir. Subsequently, conductirg over 600 analyses of rocks by the poirt courting method, Chayes confirmed his initial estimation of this mears of analysis (3ibl.103).

The accurace and reliability of results of analysis conducted by the point counting method are determined in a well-defined manner (for the given structure) by the total number of points, computed in the process of aralysis. In distinction formulas, from the linear method, where we use empirical wophary, in case of the point analysis, the geometrical probability of the falling of a point in one or the other structural comporent is easily subjected to calculation. Therefore, basing Laplace
on data of the probability theory ard specifically the papxye theorem, 敢 one can determire computationally the conditions of analysis assurirg the obtainment of an error not in excess of that assigned, with an earlier established reliability.

Let us assume that ore of the structural components, the content of which we desire to idertify, occupies on the cut $F \%$ of $k \neq$ its entire area, which is taken to equal l00, If we take a sufficiently large number of poirts z, distributing them randomly but uniformly over the extire area of the cut, the probability of the occurrence of ar individual point on the structural componert of interest to us will equal p, wherein, as was stated above,

$$
p=\frac{F}{100}
$$

The chance of $\mathbb{E x}$ ä the opposite occurrence, i.e. of the falling of a separate, randomly selected point on an area occupied by all the other structural
 obviously,

$$
q=\frac{100-F}{100}
$$

If we the number of points (from the total number of points z), which have fallen on the area of the cut, occupied br the measured structural component, by x, $\mathbb{K R H X X}$ then the error of determiration will equal

$$
\delta=\frac{x}{2}-p
$$

while the absolute error of determination, expressed in percents of ar area of cut, Δ will be 100 times larger:

$$
\Delta=100 \delta=100 \frac{x}{2}-F
$$

The probability theory provides the following relationship between the value of error of determiration δ, the number of measurements for countings made durirg test (in the given case, the number of points) z_{λ} and the probabilities p ar.d q :

$$
\begin{equation*}
\delta=t \sqrt{\frac{p q}{z}} \tag{16.1}
\end{equation*}
$$

or substituling irstead of δ, p and q their value is expressed in percentages of area of cut:

$$
\begin{equation*}
\Delta=t \sqrt{\frac{F(100-F)}{z}} \tag{16.2}
\end{equation*}
$$

The coefficiert t enterire dicaux eqs.(16.1) and (16.2) thow the same stardard ad deviation, which we mertiored above (see Section 15). It is
connected with the reliability of the obtained result of analysis by eq.(15.6), and the appropriate numerical data are adduced in Table 12.

To determine the error of aralysis Δ, it is necessary to know values F and z and to assign a definite reliability of result of determiration P , according to which there is found the corresponding value of standard deviation (from Table 12).
 a posteriori a)/determination of error of already conducted analysis, when we already know the values listed above and b) preliminary calculation of conditions of analysis (i.e. of required number of points), assuring the obtainment of an arror not surpassing that assigned beforehand. In the latter case, the unknown content of the structural component F being analyzed is determined approximately in advance, pletiong visually, and after of analysis, a refined calculation of error is conductea.

Let us assume that we have conducted by the point counting method an analysis of an alloy, wherein of the examined 1200 points, 452 fell in the assigned structural component, while 748 fell in all the remaining components of the structure. Hence the uniknown content of the assigned component of the structure will equal (in percents of area of cut or volume of alloy):

$$
F=\frac{452}{1200} 100=37,7 \%
$$

We find the error of determination according to eq.(16.2), having substituted
in it the derived values:

$$
\Delta=t \sqrt{\frac{37,7 \cdot(100-37,7)}{1200}}=1,40 \% \cdot t
$$

[^4]
EXX

fixed values of reliability of widaty analytical results, we get actual values of
certainty.
certainty

obtaining error, not surpassing the value

$$
1,40 \cdot 0,6745=0,94 \%
$$

then equals 0.50 or 50% (see Table 12). In other words, in the conduct of a large number of independent analyses, according to 1200 points in each aralysis, in 15%
of the analvses the error does not surpass 0.94% of the area of the cut. The
a certainty of

its value most often
realized by this or another method.
certainty
If we assign a higher axelicabdadaty, equalirg e.g. 0.99 or 99%, for which the standard deviation equals 2.5758, then only in one case out of 100 analyses (with exceed
1200 points in each) can the absolute error somewhat strypacsz the value

$$
1,40 \cdot 2,5758=3,6 \%
$$

In the calculation of the minimum necessary number of points, in order to get the required accuracy of analysis, we use the formula obtained from eq.(16.2):

$$
\begin{equation*}
z=t^{2} \frac{F(100-F)}{\Delta^{2}} . \tag{16.3}
\end{equation*}
$$

To compute the number of points z, we assign in advance the values Δ and t, proceedirg from the purpose and importance of the analysis, while we determine F in first approximation visually. From eq.(16.3), it follows that the required number of points quickly ir:creases with a \#xarid decrease in the permissible absolute error of determination Δ and with ${ }_{\wedge}^{\text {ancrease }}$ in the reliability of result of analysis, being determined oHfalue of standard deviation t, $\mathcal{H X X X}$ since these two values enter the formula ir the secord power.

Let us examine the above presented example when the content of x Kia structural component being analyzed ir the alloy equals 37.7%. The probable absolute error, exceeding lis of area of volume of cat, may be obtained at number of points 2 , being determined by eq.(16.3):

$$
z=(0,6745)^{2} \frac{37,7(100-37,7)}{(1,0)^{2}}=1069 .
$$

Conducting a determination with the same reliability, but with a permissible error not surpassing 0.5 莒 of volume of alloy, we get the necessary number of points exceeding the former by 4 times:

$$
z=(0,6745)^{2} \frac{37.7(100-37,7)}{(0.5)^{2}}=-=4276 .
$$

If at the same permissible error, we increase the reliability of result of analysis from 50% to 95% (at which the standard deviation t equals 1.9600), the number of points which reed to be calculated will increase to

$$
z=(1,9600)^{2} \frac{37,7(100-37,7)}{(0,5)^{2}}=9023
$$

The numerator of the eq. (16.3) acquires maximum $\mathcal{X X}$ importance when the given structural component takes up exactly half of the volume of alloy and symmetrically decreases at /decrease of its content to zero or at an increase to 100%, as is evident from the data in Table 17. However, the required number of points, at small contents of the component being analyzed nevertheless increases, in spite of the corresponding decrease ir the numerator, since the lower the content of assigned component in the alloy, the smaller should be the value of permissible absolute error Δ, which enters the denominator of eq.(16.3) in squared form. Thus if, $a^{ \pm} a$ content the ven component equaling 50%, even in case of a high requirement for accuracy of anairsis, ar. error of 0.5% of the volume is quite acceptable (relative
error equals $1 \%)$, then at ${ }^{a \prime \prime}$ content of themponent being analyzed equaling 0.5% of volume of alloy, the absolute error should be counted in hundredths of a percent
of volume Accordirgly there also increases the rumber of points required for obtaining such an accuracy.

Table 17

F. \%	$F(100-F)$	F. \%	F. \%	$F(100-F)$	P. \%
1	99	99	26	1924	74
2	196	98	27	1971	73
3	291	97	28	2016	72
4	384	96	29	2059	71
5	475	95	30	2100	70
6	564	94	31	2139	69
7	651	93	32	2176	68
8	736	92	33	$221!$	67
9	819	91	34	2244	66
10	900	90	35	2275	65
11	979	89	36	2304	64
12	- 1056	88	37	2331	63
13	1131	87	38	2356	62
14	1204	86	39	2379	61
15	1275	85	40	2400	60
16	1344	84	41	2419	59
17	1411	83	42	2435	58
18	1476	82	43	2451	57
19	1539	81	44	2464	56
20	1600	80	45	2475	55
21	1559	79	46	2484	54
22	1716	78	47	2491	53
23	1771	77	48	2496	52
$\underline{24}$	1824	76	49	2499	51
25	1875	75	50	2500	50

For instance, if we conduct a determination of the component of structure
occurring in a total of 0.5% by volune, while the value of absolute error should not surpass 0.025% (which wiokir corresponds to the relative error equaling 5\%) at o probability of 50%, then the required accuracy is assured by calculating the following number of points:

$$
z=(0,6745)^{2} \frac{0,5(100-0.5)}{(0,025)^{2}}=36214
$$

Rax Practice indicates that in one minute, one can compute 75 - 100 points (3ibl.102). Uence Sor computir. 36 , 224 points, more than 6 hrs would oe required,

In such cases, it is advantageous to use the RKXKM proposed by Glagolev (Sibl.50). According to the method of fields, in one field of riew there is examined not one point of crossing of the eyepiece with the nodal
cross-hair, but sederama several hundred nodixa points of the grid of the
eyepiece. Noving the cut in the field of view of the microscope, at each new nodal
position of it there is computed the number of nodxax points of the grid of the syepiece, falling in the structural component being analyzed. For instance, in the determination of content of component, present in the alloy in the amount of 0.5% in all, let us use the square-grid eyepiece, shown in Fig. 14 which has 289 Radicaxiri nodal points (17×17). Conducting the calculation in about 125 fields of riew, distributed evenly over the entire field of cut, we already get the required total number of points:

$$
125 \cdot 289=36125
$$

This calculation may be done quite rapidly, since in all 125 fields of view, in the analyzed structural component, there fall approximately

$$
36125 \frac{0,5}{100}=180 \text { points }
$$

which we also have to compute, and this takes up 10-15 mir in all. Hence, the Glacolev method of fields permits one to expand considerably the area of efficient use of the puirt counting method for cases of low content of components of structure being analyzed. However, it must be kept in mind that in the use of
 of points and hence the principle of uniform distribution of points over the entire area of the cut, placed at the basis of the conclusion of eq.(15.2), is disrupted. Therefore the accurac; of the method depends rot ordy upor the total nurber of points,
but also upon fluctuation in content of themponent being analyzed in various fields of view. As a result of this, the actual error will exceed the computational
one to an ever greater degree, the more irregular the distribution of the analyzed component over the field of the cut.

If the content of structural component is less than 0.1% of the volume of alloy, the number of required points increases to such an extent, that even the use of XX the method of fields does not permit the attainment of a practically acceptable duration of microanalysis. In such a case, as noted above (see Sections 13 and 15), it is more feasible to use the planimetric or linear methods.

In order to avoid the reed for calculations using eq.(16.3), one can use compiled reference tables. It is easy to see that eq. (16.3) for the point counting method is quite identical to eqs.(15.10) and (15.11) for the linear method, adduced in Section 15, under the condition that the factor K in the latter ones is equal to 1 . Since Tables $13-16$ were computed under the observance of this condition,
 counting method. In the latter case, the number of segments is equivalent to the number of points.

The above-presented calculations of error take into account the random errors of statistical analysis. In addition to these errors, there can occur a systematic error, caused by the fact that the point of crossing of the eyepiece with the cross-hairs ard the nodal points of the square-grid eyepiece are rot geometric points but have fixed, although small, dimensions. This systematic error is coupled with the random derail error and as a result the total error of analysis may prove in certain. cases to be quite considerable, as this was indicated by A.G.Spektor (3ibl.104). In Fig. 42 , we show systematically the effect of width of lines forming a phikxis point
upon the obtainment of a systematic error. If the width of lines equals a, while
the diameter of sections of microparticles, havirg a spherical form, which for simplicity we will assume of equal size, equals d, then the "point" partially or completely falls on all sections of microparticles, the centers of which prove to be located within the contour A (Fig.42,a). However, if the point is geometric, not having dimensions, it can fall only in those sections of inicroparticles, the centers of which prove to be located within the circumference with a diameter d, with a center iri the point of the crossing (Fig. $/ 2, b$). Hence, the actual "point" always will fall on the structural component being analyzed,
 will be all the greater, the less the diameter of sections of microparticles d ir comparison with the size of "point" a, i.e. the more disfersed the structural component beire analyzed.
 type ShKhl5 steel in a Khazy transverse microsection. The determinatior was made by the method of fields, whereir the total number of points comprised 1,770,000, of which 580 points fell in the nonmetallic inclusions. If we disregard

Pig.L2 - Effect of hidth of Lines Formirg the Point of Cross-itair Oi Erepiece, durirg Point Sourtirg Kethod of Arclysis [after Speistor (3iol.104)]
the dimensions of nodal "points" of the eyepiece grid, the volumetric content of nonmetallic inclusions in steel is determined by the figure

$$
\frac{580}{1770000} 100=0,0328 \%
$$

Fig. 43 - Eyepiece Insert with Dark Sector Replacing the Eyepiece with Cross-Hairs, and Free of Systematic Error

her
Heath of projection of line of the grid of eyepiece on the surface of the cut was found as equal to one micron, while the average dimension of sections of round inclusions
 calculation of content of nonmetallic
inclusions, conducted by Spektor with a correction, taking into account the effect
twice as
of actual width of lines of the eyepiece grid, fielded a result almost/small as that obtained without correction, namely 0.0176%. A control analysis, conducted br y the planimetric method, yielded a figure very close to the latter, that is $0.017 L_{i 0}$. According to the Splat Spektor data, one should never disregard the dimensions of the "point", even in the case when its cross section is 20 times less than the mean diameter of sections of microparticles (in the example considered, the cross section of the "point" is 4 times less thar the mean diameter of inclusions i) the cut).
I. an anal."sis of the dispersed structure br the point method, we car, use a correction coefficient, for calculation of which we need to know the width of ines forming the "point", the mean diameter of sections of microparticles and their number correction. per unit area of the cut. The method of computing this developed br A.c.Spektor (3ib1.104); however, we do rot present it here because it is
fan de under and requires determination of a numen of additional parameters of

Fig. 44 - Byepiece Insert, Replacing the Square-Crid Eyepiece durirg Foint Counting Analysis, Free of Systematic Frron
microstructure (anand average diameter of inclusions, and their quantity).

We show in Fig. 43 an eyepiece insert with a dark sector. The point of the
peak of this sector is a geometric point and therefore, using such an insert, one can be rid of sustematic error. In Fig. 44 , we show another insert, cortaining a number of dark squares, replacing the square-grid eyepiece for purposes of point analusis by the nethod of fields. In the analysis, there is iedratiderified the structural component, on which there falls each of the points of wentue of the squares.

Section 17. Structural and Cherical Composition of Alloy
The
KKXZ result of quartitative metallographic analysis conducted by planimetric, lirear or the point counting method, is the complete or partial structural composition. of allor, expressed in percertages or fractions of area of aiduc cut or volume of allo." (witich has the sare wearing at proper chuice of surface of cut). Breguentlü
it is feasible to convert the structural composition to chemical or vice versa;
this permits not only a checking of results of both types of aralysis by way of
their cüllparison, but also develops additional data on the composition of individual
phases and structural components

In the formulas connecting the chemical and structural composition of the
zhey there
alloy, zhax ${ }^{2} /$ mandatorily enter the values of specific weights of phases and structural
components, ard also of the alloy as a whole. Therefore a valuable supplement to the data of structural and chemical compositions of alloy is the amount of specific weight of the alloy itself. This value can be determined experimentally with high accuracy and is very simple methodologically.

The specific weight of individual phases and structural components of alloys Á ${ }^{\text {Ĺ }}$ far from being know in every case. However if we have access to data both of structural and chemical composition of alloy, then we can determine by a computational method the specific weight of any phase and structural component, which it is not possible to differentiate in a pure form for the test determination のf its specific weighi.

Since in the future it is recessary to deal with a number of values, expressing the structural and chemical composition of alloy, the chemical composition and
 introduce the following sumools:

1. Individual phases and Kt 谵 structural components of allov a, b, c
2. Content of
in percents of area of cut or volume of alloy F_{a}, F_{b}, F_{c}
3. Fraction of volume of alloy occupied by phase or structural
component, $\operatorname{mm} 3 / \mathrm{mm}^{3}$ or $\mathrm{cm}^{3} / \mathrm{cm}^{3}$. $, ~ \Sigma V_{a}, \sum V_{b}, \mathrm{~L}_{\mathrm{C}} V_{c}$
4. Content of phase or structural componert in allor, ir weifht
percertages . G_{a}, G_{b}, G_{c}
5. Specific weight of individual phase or structural component, $X X$ $\mathrm{gm} / \mathrm{cm}^{3}$. r_{a}, r_{b}, r_{c}
6. Content in individual phase or in structural component of any element (for instance, of carbon), in weight percentages . . . $\mathrm{C}_{a}, \mathrm{C}_{\mathrm{b}}, \mathrm{C}_{\mathrm{c}}$

In the case of mandan b, c replace
the indexes signifying the actual structural componerts of steels and irons:

F (ferrite), P (pearlite), Ts (cementite), G (graphite), M (martensite), T (troostite), S (sorbite), etc. The content of phase expressed in volumetric parkario percents, F_{a}, is equal to the fraction, magnified 100 ky times, of volume of alloy being occupied by the same phase ΣV_{a}.

If we know the full structural composition of the alloy, the weight content of any of kwa its structural components is then found according to the equation:

$$
\begin{equation*}
G_{a}=\frac{\gamma_{a} \Sigma V_{a}}{\gamma_{a} \Sigma V_{a}+\gamma_{b} \Sigma V_{b}+V_{c} \Sigma V_{c}+\ldots} 100 \% . \tag{17.1}
\end{equation*}
$$

If the actual specific weight of the alloy itself is known, we can substitute its value in the denominator of the formula, since the denominator equals the specific weight of the alloy as a whole. This permits one to compute the weight content of any phase or component of the structure of the alloy, if we know the volumetric content of the given specific weight.

The unknown specific weight of a structural component is easy to find based on the same formula, if we know its weight content G_{a}, the volumetric content $\Gamma \mathrm{V}_{\mathrm{a}}$ and the actual specific weight of alloy, comprising the denominator of $\begin{gathered}\text { ax } \\ \text { eq. (17.1). }\end{gathered}$ As ar example, we determine the specific weight of graphite component of six samples of gray and malleable irony, using the test data of C.I.Pöodir-Alekse"ev (3ibl.105), adduced in Table 18. Samples 1 - 3 represent malleable iron with a ferrite or
perlite base，while samples $4-6$ refer to gray gray iron d，of which the metallic base errant consists of perlite or of perlite combined with cementite．

The volumetric content of graphite was determined by planimetry based on photomicrographs，determining the sectors of cuts with average graphite demand cont for $a x$ each sample，wherein the accuracy of determination was low．The weight content of graphite was determined by the difference between the content of Loused total carbon and carbon；these contents were presented by Pogodin－Alekseyev for all six samples．

Table 18

 e）C graphite ；f）Content of graphite，思（by volume）；g）Specific weight of iron， $\mathrm{mm} / \mathrm{cm}^{3}$

The calculation was done or the basis of eq．（17．1）．The specific weight of the graphite component is not know．The left side of the equation is set equal to the weight content of graphite in iron．Thus，for the first sample，we set up the equality：

$$
2,53=\frac{0,08 \gamma_{g}}{7,384} 100,
$$

From whin we＂ind $\gamma_{\xi} 2.34 \mathrm{Em} / \mathrm{cr}^{3}$ ．Similarly for ail six samples we get， $\mathrm{Em} / \mathrm{cm}^{3}$ ：

1	2,34
2	2,21
3	2,34
4.	2,1
5.	2,18
6	
mean	2,2

Based on literature data ($3 \mathrm{ibl} .106,107,108,109$), the specific weight of graphite anies quite inconsistently between 2,20 and 2.55 , while the theoretical calculation oased on parameters of crustal lattice provides the figure 2.24 .

In spite of the above-mentioned low accuracy of determining the volumetric contert of graphite, the results of all aralyses are very close to results obtained by other methods and deviate but little from the mean value (not more than by $3-3.5 \%$ of the value being determined).

Since in the example considered, the phase under analysis is a pure element, the value its weight content determined by chemical analysis may be equated to $\mathbf{x} \mathbf{x Z} \mathbb{K}$ computed on the basis of eq.(17.1). In a similar way, we can find the dependence betweer. the weight and volumetric content of graphite in iron. In conformity with the above-adduced data, the specific weight of eraphite can be assumed to equal $2.25 \mathrm{~mm} / \mathrm{cm}^{3}$. The specific weight of the ferrite base depends upon the content of admixtures dissolved in the ferrite. The specific weight of pure ferrite, containing not over 0.01% of impurities, equals $7.874 \mathrm{gm} / \mathrm{cm}^{3}$ (3 ibl .110). The sperific weight of silicic ferrite of malleable ard gray iror is the lower, the higher the silicon content in them: at 1 着 Si , the specific weight of ferrite can be assumed to equal $7.79 \mathrm{gm}^{2} / \mathrm{cm}^{3}$, while at 2 Si , it is $7.70 \mathrm{gm} / \mathrm{cm}^{3}$ (Bibl .111).

Usirg these data, it is easy to formate ar equatior for the case of fron

$$
\begin{equation*}
G_{g}=\frac{2,25 \Sigma V_{g}}{2,25 \Sigma V_{g}+7,70 \Sigma V_{f}} 100 \% \tag{17.2}
\end{equation*}
$$

Since the fraction of volume, taken up by ferrite and graphite, are equal to 1 as a total, eq.(17.2) provides a clearly defined dependence between the weight and volume content of graphite. The specific weight of cementite, based on data of K.Khond and his researchers equals $7.662 \mathrm{gm} / \mathrm{cm}^{3}$ (Bibl.112), that is, almost exactly coincides with the specific wejght of siliceous ferrite, containing 2% silicon.
 but also for iron with a base of pearlite on of pearlite Kxymxk combined with cementite. In Fig. 45 , the dependence being determined by eq.(17.2), is shown
graphically by a solid iine (for alloys, containing 2% silicon). The broken line

Fie. 45 - Dependence between Volume and Weight Content of Graphite Sortained ir Irow-Carbonallors Containing Silicon (solid line) ard with 0, Silicon (broken line)
a) Carbon, weight in $\underset{\sim}{\circ} ;$ b) Graphite, volume in $\underset{\sim}{\circ}$
ivan-
corresponds to pure
carbonife alloys, and as we see, almost coincides with
the lire for allovs containing silicon.

The derominator in eg. $(17,2)$ detemires the specific weicht of alloys as a
whole. The dependence of specific weight of alloy upon ontent of graphite, expressed ir weight percents, is presented in Fige 46. Iine (1) in this drawing corresponds to

2睘 silicon. The points located between these lines correspond to test data obtained for steels and irons with a varying content of silicon, by Pogodin-Alekseyev and N.T.Gudtsov with their coworkers (Bibl.105).

In those cases when the structural component of interest to us is a chemj.cal compound or a complex formation (eutectic, eutectoid), the weight content of component obtained by eq.(17.1) can by no means be compared directly with chemical aralvsis data. The weight content determined by the equation must be first multiplied by the value determining the weight content of the element of interest
to us in the given structural component,

b)

Fic. Lf - Dependence of Specific
Iron-Carbon Weight of Femporsaizatronde Alloys
upon Content of Graphite
a) Specific weight of iron, $\mathrm{gm} / \mathrm{cm}^{3}$;
b) Graphite, wt. ot
and be divided by 100 .

Let us assume that the structure hypoeutectoid of presercectaid steel consists orily of
ferrite and pearlite. Just as above, the specific weight of ferrite is assumed to equal 7.874, while that of pearlite is $7.848 \mathrm{gm} / \mathrm{cm}^{3}$ (the calculation of this last value is given below). The carbon content in ferrite is assumed to equal 0.006%, while ir pearlite, it is assumed to be 0.8% [according to I.J. Yornilov (3ibl.21)].

$$
\begin{aligned}
G_{f} & =\frac{7,874 \Sigma V_{f}}{7,874 \Sigma V_{f}+7,848 \Sigma V_{p}} 100 \% \\
G_{p} & =\frac{7,848 \Sigma V_{f}}{7,874 \Sigma V_{f}+7,848 \Sigma V_{p}} 100 \%
\end{aligned}
$$

Since in the given case, carbon is contained in both components of the structure, its total computed content in steel, expressed ir weight percents, will equal

$$
\begin{equation*}
\% C=\frac{7,874 \cdot 0,006 \Sigma V_{f}+7,848 \cdot 0,8 \Sigma V_{p}}{7,874 \Sigma V_{f}+7,848 \Sigma V_{p}} \tag{17.3}
\end{equation*}
$$

the fractions being
Since in the total, WXXKKXXZAKKXGN of volume of alloy/ occupied by ferrite and
the fractions being
Since in the total, wRXKKXXFHKXW of volume of alloy/ occupied by ferrite and pearlite equal unity, eq.(17.3) permits one to determine unequivocally the content of carbon in steel based quantity of pearlite in its volume (or ir the drava area of cut). The dependence is considerably simplified if we disregard the difference of specific weights of ferrite and perlite, and also the content of carbon in ferrite, as is usually done in metallographic practice, then

$$
\begin{equation*}
\% C=0,8 \Sigma V_{P} \tag{17.4}
\end{equation*}
$$

From Table 19, it is evident that the difference in results computed according to eqs.(17.4) and (17.3) is slight.

Table 19

a) Fraction of pearlite in volume of steel; b) Carbon content, \%; c) By exact formula; d) 3:- approximate formula
on microanalysis data is conducted according to the equation:

$$
\begin{equation*}
\% C=\frac{7,848 \cdot 0,8 \leq V_{p}+7,662 \cdot 6,69 \pm V_{c}}{7,848 \sum V_{p}+7,662 \pm V_{c}} \tag{17.5}
\end{equation*}
$$

in which the KX figure 6.69 denotes the carbon content in cementite*. Disregarding the difference of specific weights of pearlite and ferrite, we get

$$
\begin{equation*}
\% \mathrm{C}=0,8 こ V_{p}+6,69 \Sigma V_{c} . \tag{17.6}
\end{equation*}
$$

The determiration of carbon contert by structure is less accurate $\begin{aligned} & \mathrm{ax} \\ & \text { d }\end{aligned}$ in hypereutectoid steel, in comparison witif hypoeutectoid. In general the accuracy of microanalysis decreases with an increase in the content of element of interest
in the structural component being measured. In ferrous alloys containing carbon, therefore, bNe the maximum accuracy is achieved during measurement of the pearlite component, sliphtly less accurate in measuring the cementite component, and still less accurate in measurirg the volume of free graphite. If, in the determination of volume of structural component, there is admitted the same absolute error, the error of calculational determination of content of carbon ther will be proportional to 0.8 in case of pearlite structure, ard $h .69$ in case of cementite and 100 in case of graphite.

As is krown, the carbor. content in pearlite car. often deviate corsiderably canonical
from the wainali figure as a result of formatior of quasi-eutectoid structures.

This however does not irterfere with the esteblishmert of actual carbor. content in

[^5]such perlite and its specific weight，if／there are several samples of steel with
varying content of pearlite identical in internal structure，ard hence with
varying content of carbon in the steel．For instance，if there are two samples of steed containing pearlite of homogeneous structure，the carbon content in which is known，as well as the volume content of pearlite，determined by one of the methods of quantitative microanalysis，one can there compute the unknowns，namely the specific weight of pearlite and content of carbon in it．Disregarding the carbon content in ferrite，we formulate for each of the samples individually an equation of the following type：
\[

$$
\begin{equation*}
\% C=\frac{C_{p} Y_{p} \cdot \Sigma V_{p}}{7,874\left(1-2 V_{p}\right)+\gamma_{p} \cdot \Sigma V_{p}} . \tag{17.7}
\end{equation*}
$$

\]

Ir these equations，only two values are unknown to us，namely the carbon content in the quasi－eutectoid C_{p} and its specific weight γ_{p} ．Therefore，having at $d X X$ our disposal two equations with two unknowns，we easily find both unknowns． If we were also interested in the values which we disregarded in the above calculation，namely the carbon content in ferrite and the specific weight of ferrite，then we would have needed not two but four samples with 就护猃 varying carbon contert，but with identical pearlite structure．Such a method of calculation can prove quite effective for investigating the structure and properties even of submicroscopic elements of structure，for instance the metal of intercrystallite zones．

If a determination of structural composition by methods of quantitative metallography becomes difficult or unrealizable by way of direct experiment，as a result of high dispersed state of structure being analyzed，we can get the data of interest to us bey of calculation．For instance，the volumetric composition of
stratified pearlite is quite difficult to determine by direct measurement of the
content of ferrite and cementite, as a result of a number of difficulties of a
technical nature, which we mentioned in Section 12. Nevertheless, having at our
disposal values of specific weights of ferrite and cementite, the content of
carbon in them, and knowing the carbon content in pearlite, we can formulate an equation similar to eqs.(17.3) and (17.5):

$$
\begin{equation*}
0,8=\frac{7.874 \cdot 0,006 \Sigma V_{f}+7.622 \cdot 6,69 \pm V_{c}}{7,874 \unlhd V_{f}+7,662 \pm V_{c}} \tag{17.8}
\end{equation*}
$$

in which there is contained but one unknown, $\sum V_{t s}$, since the fractions of volume of pearlite occupied by ferrite and cementite are equal to unity in the total.

Solving this equation, we find the volumetric content of ferrite and cementite in the pearlite:

$$
\Sigma V_{c}=0,122 \quad \text { or } \quad 12,2 \%, \dot{\Sigma} V_{f}=0,878 \quad \text { or } \quad 87,8 \%
$$

The specific weight of pearlite, being determined by the law of displacement, is equal to the denominator in eq.(17.8), specifically $7.848 \mathrm{gm} / \mathrm{cm}^{3}$. This figure correlates well with the literature data, according to which the specific weight of. normal pearlite equals $\mathbb{X X X X X} 7.846-7.85 \mathrm{gm} / \mathrm{cm}^{3}$ (9 ibl.109, 107). The ratio of volume of ferrite to the volume of cementite ir pearlite, in conformity with derived data, equals:

$$
0,878: 0,122=7,2 .
$$

Ir a series of researches, there was proved the inconstancy of chemical composition of cementite (Biol. 55 , 113). If kXZXi this is so, the calculation based on eq.(17. E) is not rigorous. In particular, XRK A.N. Rozanov conducted direct measurementsof thicknesses of ferrite and cementite plates of pearlite of eutectoid steel ir a microsectior pickled with $X X X$ sodium ficrate, whereir the ratio of these thicknesses (identical to the ratio of rolumes of ferrite and cementite in pearlite)
provedto equal 5.58 , but not 7.2 as was computed by us, and not 7.0 as was found by other $\mathbb{E X X}$ researchers (also by way of calculation). The author also showsd that the carbon content in cementite increases with temperature, while the hardness of cementite changes during tempering, depending upon the temperature oí heating (Bibl.114).

Using the data of quantitative microanalysis and of share of pure metals found experimentally, one can determine by calculation the share of metal in the intercrystallite zones The samples should differ from one another by faddem value of specific surface of grains (or value of grain). Using an electron microscope, quite Gardin showed that one can determine what precisely the volume of the intercrystallite zones (Bibl.115). For $X X$ a specimen of technjcal iron, he round that the specific volume of intercrystallite zones equals $0.03 \mathrm{~mm} / \mathrm{mm}^{3}$, or 3% of the total volume of metal. The specific surface of grains of this specimer equaled $120 \mathrm{~mm}^{2} / \mathrm{mm}^{3}$, while the average thickness of boundary zone amounted to 0.25 micron. Determination of speciric weight of samples can be conducted with great accuracy and is quite simple methodologically.

The calculation of specific weight of metal as a whole is condurted, as normally, based or the rule of displacement according to the formula:

$$
\begin{equation*}
i_{f}=0,97 i_{k}+0.03 i_{m} \tag{17.9}
\end{equation*}
$$

where γ_{k} and γ_{m} are respectively the specific weight of intracrystallite and
intercrystallite metais (unknown to us);
γ_{f} is the calculated value of specific weight of motal as a whole, which is equated to the value found from experience.

Since the specific weifhts of tho samples car be determined experimertally, there remair two urknowrs γ_{l} and Y_{m}, which we also find from the two equations.

The introduction (into the calculation of structural composition) of values of specific weight determined from experimert is quite efficient, sirce the specific weight is very sensitive to the least changes in the sknuakioky structure or the alloy. However, it is noteworthy that the value of speciric reight is also affected by differencesintalue of specific volune of intercrystallite zones and of change KX in structure as a resuit of cold plastic deformation (of cold-(roleing),
padenint. This needs to be kept in mind and considered in the production of precise calculations.

For instance, K.Mayer determined by test that the specific weights of Dingle apparert from the following figures,

> Monocrystal 8.95235
> Folycrystal 94153

The specific weight of polycrystal is lower by 0.12% owing KKZ to the presence in the structure of a lighter metal of intercrystallite zones (3ibl.45).
M.C.Oknov showed that cold plastic deformation of metal is accompanied by a decrease ir its specific weight. The swaging of samples of arnealed steel, contairing from 0.23 to $1.67 \% \mathrm{C}$, in which the neight of samples decreased from the 15 to 10 mrin , was accompanied by a decrease in specific weight of steel by values ranging from 0.02 to 0.16 . In alloyed steels, especially austenitic, thers occurred a draxa decrease in specific weight ty $0.45-0.52 \%$. Subsequent
arnealing of cold-hardened metal is accompanied by an increase ir specific weight. Thus, the specific weight of steel wire ($0.1 \% \mathrm{C}$), dereased by stretching from 4 mm to 0.m without irtermediate annealing, as a result of later arrealing increased $350.244^{\circ}(3 i=1,116)$.

According to data of T.Ishigaki, the specific weight of a steel sample,
which had broken during a tensile test, was lower by l. $08^{\prime \prime}$ in the breaking zone
than in the undeformed one during the testing of a part of the sample
heading (3ibl.117)].

Although changes in specific weight of steel during plastic deformation and annealing are not great, in certain cases of combined calculation they should still be taken into account.

According to data of quantitative microanalysis, chemical analysis and of determination of specific weight, combined calculation can prove quite effective in many cases of research, having the purpose of explaining the chemical composition, physical properties and structure of individual components of structure. Since at present, such a method is used relatively rarely, it is feasible to expand its use in metallographic practice. The reader can find additional information in the report by M.Ve.Slanter (3ibl.118).

Specific Weights of Pure Metals and of Certain
Structural Components

Name	$\gamma \mathrm{gm} / \mathrm{cm}^{3}$	Source
Ferrous-Carbon Alloys		
Ferrite	7,274	11101
Cementite	7,662	[112]
Graphite	2,25	[109]
Pearlite • -	7,848	-
Ferrous phosphide . . ${ }^{\circ}$ (${ }^{\circ}$	6,74	[26]
Sinary phosphide eutectic(stedite). .	7,14	1261
Ferrous sulfide .	4,30	[i1]
Manganese sulfide :	3,99	[26]
Silica	2,26-2,31	[247]
Alumina	3,85-4,10	[247]
Manganese orthosilicate ($2 \mathrm{MnO} \cdot \mathrm{SiO}_{2}$)	3,58-3,70	[247]
Ferrous orthosilicate ($2 \mathrm{FeO} \cdot \mathrm{SiO}_{2}$). .	4,35	[247]
Alunina silicate ($\mathrm{Al}_{2} \mathrm{O}_{2} \cdot \mathrm{SiO}_{2}$) . .	3,05	[247]
Magnesium oxide.	3,50-3.65	[247]
Manganese oxide	4,73-5.50	[247]
Pure Metais		
Aluminum .	2.7	[248]
Beryllium . . .	3.5	[248]
Vanadium . . .	8,97	[248]
Bismuth	21.33	[248]
Tungsten .	9.58	[248]
Cadmiun	12,99	[248]
Cobalt	8,90	[248]
Silicon .	2,4	[248]
Manganese	7,44	[248]
Copper . . -	8,94	[218]
Molybdenum	10,2	[248]
Nickel . .	8.9	[248]
Tin	7,3	[248\|
Lead .	11,34	[248]
Antimony .	6,62	[248]
Tantalum .	16,6	[248]
Titanium	4.5	[248]
Chromium	7,14	[248]
Zirc .	7,14	[248]

In conclusion, in Table 20 we adduce values of specific weights of a number
of metallic ard nonmetallic structural components of alloys, minly fanorak
-carbonth, which can be used in the calculations.

Chapter III. Measurement of Boundary Surfaces of Grains, Phases, and Structural Components

Section 18. Specific Surface and Special Methods for Its Determination

In pure polycrystalline metals, boundaries separating orystallitos appear as cortinuous surfaces similar to a film of soap suds in a cylinder. In contrast to the latter, the facets of celis of the boundary zurface in inetals are not fiat but nore or less curved, just as the edges of the cells. In alloys the interfaces of different phases or structural constituents may be shaped as continuous surfaces. However, closed contours, which li:ait the volume of individual microparticles are also frequently obseryed.

In certain struotures, olosed surfaces, wich limit the volume of individual microparticles, nay have a more or less irrogular geometrical configuration approximating the shape of a sphere, a flat platelot, etc. The thickness of all interfaces, which would show this separately, was quite insignificant in conparison to their extent through space. For this reason they may be considered as geometrical surfaces.

The extent (or amount) of interfaces of rains of pure metal, measured ir units of area, dividel by the unit volume of metal is called the specific surface of grains. In alloj3, too, the surfaces of various phases or structural constituents may bo maracterized by a definite value of the syecific surface of each one of them. Generally speakine, the total specific suriace in an alloy is not equal to the sum of specific surfaces of constituent structures, for ther are partiall" superimposed. For example, in hJpereutectoid steei, the suriace of the pearlite constituent is coincident with the surface of comentite. For this reasor: the total specific surface is equal to the specific surface of any constituent ard, consequertly, in this case the surfaces are completely superimposed. In low carbon steel the surface of ferrite grains partially coincides with the surface of pearlitc
formations. Further in this article, ve shall measure the value of the specific surface in all cases in $\mathrm{mm}^{2} / \mathrm{mm}^{3}$.

Even during the initial stage of development of this science of metals, interfacos attracted the attention of scientists, for they are precisely the region where the initial stages of the formation of new structures are localized durinz structural modifications. Moreover, the size of the specific surface is directly related to the dispersity of the structure which essentially affects the most diversified properties of attals and alloys. The interest in interfaces in metals increased particularly after 1912, when W. Rosenhain applied to them the hypotheses of G. Beilby on the amorpious structure of fine metal films. Despite that, the methods of quartitative evaluation of the axtent of interfaces :rere developed considerably later.

The specific surface of cristallites in a pure metal, and the srecific surface of any kroup of misroparticles in an alloy, are dependent (1) upon the average size of tia crystallite or microparticle, (2) upon the shape of crystallites or microparticles and (3) upon the degree of fluctuation of their sizes. Therefore, when determining the magnitude of the specilic surface, all of the aforemertioned factors should je taken into account.

A method for determining the specific surface wes developed for the first time by N. T. Belaiew in 1922. It is applicable to one specific structure, lamellar pearlite. I. T. Felajew utilized the peculiarities of the cometrical structure of lanellar pearlite, which mey be considered, with a certain degree of idealization, as a bloci of plane-parallel platelets of fermita and cemertite havjne a djfferent spatial oriertation is face i Aividual grain of pearlite. It is assumed that platelets of ferrite and cementile are of equal thickness throughout the entire volume of peurlite subjected to a similar heat treatnert.

Inasmuch as the carbon zortent in the cementite, ferrite, and nornal lamellar pearlite is stable, the ratio between the thicknesses of ferrite and cementite platelets remains constant resariless of the fineness of the pearlite strictire. The dispersity of pourlite is
characterized by the total thickness of a single pair of ferrite and cementite platelets. It is measured in microns and is known as interlamellar distance A_{0}. On a microsection the apparent interlemeller distance differs with each erain of pearlite, for the plane of the microsection intersects pearijte grains forming different angles with the planes of ferrite and cementite in each individual grain. It is obvious that tho actual interlamellar distance coincides with the interlamellar distance which is the minimum ore of all interlamellar distances visible in the aicrosection; i, e., it coincides with the visible interlamellar distance of those pearlite fraiss ir which the platelet planes happen to be perpendicular to the plane of the microsection,

Let us mentally cut out a cube from the individul urain of lamellar pearlite, so that its two opposite faces are parallel to the surfaces of ferrite and cenertile flatelets. The edge of the cube we shall take as unity. In that case the total number of pairs oif ferrite and cementite platelets, fourd vijthin the cube, would be

$$
z=-\frac{1}{\Delta_{0}}
$$

Since each pair of platelets has tro plares which separate ferrite and comentite, and the aree of eacl plane $i s$ equil to unity (inasmuch as the edge of the cube is urity), the total surface of phase interfaces withir the cube, i. e., within the volume equal to unity, will be defined by the formula:

In practice, in order to determine the specific surface of phase interfaces in lamellar pearlite, it is necessary to know ondy the value of the interlamellar distance Δ_{0}.

The determination of the interlamellar distance by the nethod described becomes more lifficult with increasine dispersity of pearlite. When the interlanclar distarce is very s:mall, it is irfossitle to
...easure it, since even athigh magnification the interral structure of yearlite is rot resolyed precisely in those frazns in which the measurement has to be mede. nt the same tire, even in the pearlite with a very fine structure there are always observed individual grains in Whioh the microsection plure forms a small ancle with the planes of platelets ard, for this reason, it is yossible to refesure only the apparent interlanellar distanco mint, however, is not equal to the actual one tiot is always greater thar tho latter.

Let us examine again the internal structure of an individuel frair. of geometrically ideally constructod lamejlar pearlite. The number of cementite platelets, intersected by an intorcept of a definite leneth directed normally to the surface of platelots, we assume to be 100 per cent. At any other angle between the intercept and the surfaces of platelets, the intercert of the same length would intersect a smaller mutber of platelets than at the angle of 90 degrees. According to N. T. Relajew, the relationship between the number of intersented platelets and the and fe formed by the intersept and the surface of platelets is efiven ty the rollowine mumoers [55, 50]:

| angle of incidence- 90 | 64 | 53 | 45 | 30 | 30 | 24 | 17 | 12 | is |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Ne. of Cannedla 70,100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 10 | 5 |

In accordance with the rumbers preselited above, the aprarert inforiamellar distance :uill be the greater the sinaller the arele be,ween the platelets of a given pearlite frian and wo plane of the nicrosention. The nature of the irternal structure of the grain remains corstant, until this angle reaches the value of about $1 ?$ to in degrees, althoneh tho pearlite appears to ve increasine the "cores" as the angle decreases. However, if the and-e is less than decreon, the appearance of the irternal structure of the pearlite grain chanees quite characteristicaily: the cementite platelets become curved and broker. This ririustarce was noted by \therefore. T. Beluiew, who utilized i: i) neasure the interpatelet distance in dispersed pearlite, when

is possible to determine :"ith suifioient accurac; the are at mich the plane of the microsection intersects the platelets of a given pearLite grain from the nature of the disposition and the shape of cementite platelets. However, if we kno:y this angle and also the apparent interlamellar distance in a given grain, the actual interiameilar distance can be calculated on the basis of an elenentar: geometrical construction. For tilis reaso:, if dispersed pearlite contains at least ceveral grains in which fer:ite ard cementite platelots are dis-
 the nothod lescribea [55,5$]$. The characteristic change in the arrangement of cemertite platedets in 're pearlite frain, when they are almost parullel to the surface of the macrosection, may be explained by a certain space curvature of cerent:te platelets, which for the first
 irvestigations of $\because: \mathrm{A}$. Selaiew [55, 56] ard K. P. Starodubov [120].

The method, develoned br M. M. Belaiew in 1920 tor 1925, was comparatively recently verified ind applied by G. Pellissie: and his associates [121]. By means of direct experirientation they found that a special arranement of cementite platelets in the pearlito grain does oxist when the ande between the platelets and the flane of the microsection is less than 7 degrees. Therefore, havine neasured the apparent interlanellar distance in pearite grains of this ture, the actual interlame?lar listance is calculated b_{j} using the forrula:

$$
\begin{equation*}
\Delta_{0}=\Delta_{1} \sin 7^{\circ}, \tag{18.2}
\end{equation*}
$$

where Δ_{k} is the apprent interlanevar distance.
Having dotermirel the unknown value of the actual interduriellar iistarce, G, the recific maface of phase inferfuces is deternired : parlite fron Formia (In.I.

The actial interanellar distance ir pearlite grairs, the plato-
 ¿a betermined more realit, and accurately Ever wher the arple be-
 Ereater then a racht angle, the errov is oriy 1.5 per cert. The
shortcoming of this net上od is its applicability orlly to pearlite with a relatively coarse structice, wae ferrite and cementite platelets are resolvable in all pearlite Crains.

The situaticn is difierent in the second case when the apparent interlamellar distance is measured in grains with a very small angle between the platelets and the plane of the microsection and formula (13.2) is used for calculations. In this case a change in the angle of intersection of only 1 degree produces considerable error. Fou example, if the specific change in the type of the pearlite grain occurs not at 7 degrees but at 6 degrees, the sine of the anele of intersection would chance from 0.122 to 0.105 and the error would be 14 per ceat.

In view of the aforesaic it is more expedient to determine the jnterlamellar distance in pearlite of high dispersity by the method developed $b_{i}:$ I. Gensamer and his associates [122]. In accordance with their method, the irterlemellar distance is reasured on a microsection in soveral grains of pearlite along directions randing between diroctions perpendicular to the piatelets and directions parallel to then, and the moan value is taker. In other mords, if a straight Iine of a definite length is drawn across the structare of lamellar pearlite (on the microsection or photomicrograph), which intersects cenentite patelets in several erairs at all possible ancles, ranging between 0 and 90 degrees, and after that if the length of the line is divided by the rumber of cenentite platelets intersected by it, the resulting mean length of an intercept between adjacent cementite platelets will be preciscly the initial value of Δ r.ceded for calculations. Censamer and his associates experimondly determined thet the value deriven in this maner is proportional to the actual interlamninar distance:

$$
\begin{equation*}
\Delta=\therefore \Delta_{0} \tag{18.3}
\end{equation*}
$$

and that the coefiniert k is found within the 1 inits 1.9 and 2.0 .
This relatiorshif is a special ase of a general :tethod for the determination of thir specific zurface, tho rethod of rardem somete,
which yill be described further in this book. In agreement with the method of random secants, the coefficient in Fornuia (18.3) must be precisely 2, which can be proved aithematically. Tharefore, the corrected formula of \mathbb{M}. Censamer must have the following form:

$$
\begin{equation*}
\Delta_{0}=0.5 \Delta . \tag{18.4}
\end{equation*}
$$

The specific surface of the phase interface in lamellar pearlite is calculated from Formila (18.1), using the value found for the actual interlamellar distance, Δ_{0}.
M. Gensamer's correcteú formula (18.4) has been used by A. I. Gardin in an extensive structural study of tho products of isother:al decomposition of austenite, includine highly dispersed products [87, 123]. Among the structures investigated under tae electron microscope were deconposition products with the marnitude of specifia surface reaning $25.000 \operatorname{mon}^{2} / \mathrm{man} 3^{3}$, for which the acturi irterlanellar distance is only 8004. Ever L...der such disedvantageous cordition, the Forma (18.4) was quite valid and the nelhna roliable.

Thus, for the dejermination of the specific surface of the phase interface in latellan pearlite there caista simple specific methods verifiod in practios:

1. The method of diroct measurement of interiamellar distance, developed by N. T. Belaiew, which is suitable for relatively coarse lamellar pearlite, and
2. The method of measuring the mear. loneth of the intercept between adjacent platelets of cementito or. a straiflat le intersecting a number of pearlite crains $\%$ th differentiy oriented platelets.

The latter method was developed by l. Gersamer and his associates, and the formia used for calculatine the irterplatelet distance has been defined by us. The second method is suitalice for jearlite of ary dispersity but requires magnification sufficient for resolving the A.terral stzucture of all peariite erains.
h second tive of structure, posseasing a dafirite geonetricul res arity, which perm:is the applicatior of aposin methode of deter-
mination of specific surfece, is a structure corsistine of a multitude of microparticles of spherical shapes belorfirs to one phase, which nicroparticles are uniformiy dictributed througit the volune of the second phase (matrix). Typical structures of this type are granular pearlite or granular cementite in ferrite, the structure of marnegium Gast iron with spheroidal graphite inclusions, the structure of stool containing nor-metallic inclusions of spheroidal shapos, and certain others.

In structures contairing spheroidal microparticles, both the total number of particles per unit volume of metal and their size distribution (with respect to the size of diameter) may be calculated by methods presented in the following chapter. In the case where we know the number of particles of each size per unit volume of metal, the calculation of the total surface of microparticles is reduced to simple arithmetic. However, the technique of determining the number of microparticies and their size distribution is one of the most effort culsuning processes of quantitative metallographic analysis. For this reasor, it is not reasible to use this technique for the special purpose of deterniring this specifio surfice, particularly since there is available a quite simple and accurate method, the method of randor. secarte.

Fere :re shall consier two approximate methods. The first of these, proposed by us, is based on the assumption that all spheroidal microparticies are of equal size $[124]$. If the diameter of these microparticles is D mm am their muber is. 1 ma 3 is I, then the specific surace of micropartiolas will he:

$$
\begin{equation*}
\Sigma S=\pi D^{2} \mathrm{~F} \quad \mathrm{~mm}^{2} \mathrm{~mm}^{3} \tag{18.5}
\end{equation*}
$$

At the same time the total volume of all mioroparticlos in 1 , ${ }^{3}$, i. e., the fraction of the volume of alloy occupied by them, will bo defined by the quantity:

$$
\Sigma V=\frac{\Pi D^{3} N}{6} \mathrm{~mm}^{3}, \mathrm{~mm}^{3}
$$

By simultaneous soiution of Formulas (18.5) and (18.6) we derive:

$$
\begin{equation*}
\Sigma S=\frac{6 \Sigma V}{D} \mathrm{~mm}^{2} / \mathrm{mm}^{3} . \tag{18.7}
\end{equation*}
$$

The fraction of the alloy volune occupied by the phase consisting of sphercidal microperticles, may be determined directly by one of the methods of stereonetric mstallography presented in Chapter 2. If this phase is cementite or graphite, then its volumetric content may be readily calculated from the data of chemical analses, as described in Section 17. The diameter of spheroidal microparticles of equal size may be determined directly on the ricrosection, for the section diameter of maximen size is, of rourse, tho sctual diameter of the volumetric microparticies. Favine obtaind the values of both quantities fourd ir Formula (io.7), by the method described, it is possible also to calculate the vilue of the specific burface.

The number of sections of microparticles per urit area of the microsection, n, may be substituted into Formila (1?.?) for the diameter of microparticles of equal size. For this purpose we shall use the expression which correlates tine diameter of spheroidal microparticlos of equal size, D, and their number per unit volurte, N, and the number of sections per unit area, n :

$$
\begin{equation*}
n=D N . \tag{18.8}
\end{equation*}
$$

Having squared both sides of equation (18.5), by means of simple conversions which take into account relationship (18.8), we derive:

$$
\begin{equation*}
\Sigma S=\sqrt{5 n V}=4.34 \sqrt{n V} \tag{13.9}
\end{equation*}
$$

Consequently, on the assumption of equal size of all spheroidal microparticles of a efive phase, we derive Forriulas (13.7) and 18.9) for the calculation of the specific surface of this phase. This does not account for iluctuations in article size. Therefore from Formulas (18.7) and 18.9) we derive approximate and always high values.

Another type of approximate forma for the cuiculation of the specific arface (as applied on eranular cemertite) was zorwsed iy

microparticles of a given phase per unit volume of the alloy is ΣV, and their mumber is M, then the mean volune of an individual microparticle will be

$$
\begin{equation*}
V=\sum_{\sum_{V}} V \tag{18.10}
\end{equation*}
$$

The surface of an individual microparticle may be expressed by its volume and dianeter in the following fashion,

$$
\begin{equation*}
\mathrm{S}=\pi \mathrm{D}^{2}=\frac{\pi \mathrm{D}^{3}}{6} \cdot \frac{6}{D^{-}}=-\frac{6 \mathrm{~V}}{\mathrm{D}} \tag{18.11}
\end{equation*}
$$

and, consequently, the total surface of all microparticles in the unit volume of the alloy will be

$$
\begin{equation*}
\Sigma S=S: T=\frac{6 V}{D} \cdot N=\frac{E \Sigma}{D} . \tag{18.12}
\end{equation*}
$$

Applying the precise calculation of the total number of microparticles and thein distribution wy the complax method of E. Schoil, I. L. Mirkin showed in one of his papers that the nean diameter \bar{d} of sections of spheroidal microparticles, measured or the plane of the microsestion, may be substitured for the value of the dianeter of the volunetric nicroparticles, D, in Formula (18.8). This substitution, according to I. L. Mirkin, introduces ar error which does not exceed 7 per cent [127].

Replacing the dianeter of volumetric microparticles, D, by the mean diameter of their cross sections, \bar{d}, we finally derive the approximate formala of S. Z. Bokshtem:

$$
\begin{equation*}
\Sigma S=\frac{6 \Sigma V}{\bar{d}} \tag{18.13}
\end{equation*}
$$

The formula of 3. 2. 3ns.itegn also produces sigh values of the srecific surface. Accountine for the fluctuation of size of volumetric grains, the formula (18.13) would appear as:

$$
\begin{equation*}
\Sigma S=\frac{6 \Sigma V}{\bar{\alpha}}\left(-\frac{\pi}{4} \cdot \frac{1}{1}+\frac{\delta^{2}}{2}\right), \tag{18.14}
\end{equation*}
$$

where δ is tha ratio of the rootmean-square deviation of formeter Oi volunetu: zoroparticias, $\sigma\{\bar{\sigma}\}$, their rean diameter, $\overline{\mathrm{D}}$.

This ratio for ordinary structures quite frequently varies between 0.2 and 0.5. The correction coefficiont for S. 2. Bokshteyn's formula (18.13) has the following valuss, depending upon the value of s [in agreement with Formula (13.14)]:

0	0.785
0.1	0.778
0.2	0.756
0.3	0.720
0.4	0.677
0.5	0.628
0.6	0.577

Moreover, there is a formula which was usec hy L. S. Loroz in his studies to calculute the total surface of spheroivel eraini of a arbide fase [12?]:

$$
\Sigma S=1.68 \sqrt{C_{k} n}
$$

in which C_{k} is equal to the ratio of total volunc of carbides per unit volumo of steel to the carson contert of the carbide in woight per cent, 6.68.

All of the approximate ramulas include sone two paraneters, the values of which must be found experimentally. Therefore, it should be remembered that the simpler and more accurate method for the determination of the specific surface is the methol or random se ats.

Soctior 2?. bppoximate Zehods for Determiniru tie Speciric Suriare Oi iolohedrel Structures

Thc first attompt to dotorme experinert:11: the magritude oi
 ture :was made bu I. P. Lipilin in 1937 [129]. The aim of I. 3. Lipilin's studies, for which he developed his method, was to deternine the influerce of the magnitude of the specific surface of austenite grains on the isothermal decompositio tire. I. F. Lipilin's reasoning vas based on the assumptior that the unknown quartity of the arain surface per unit volune of steel is directlï proportional to the leneth of grain bourderios fer unit area of polis.l. Fhis assumption, quite valid in the case of equiaxed grains, is accepted by I. P. Lipilin without any proof, as we shall see later. The lenth of boundary line, wich could be measured experimentaliy and directly (for example with the aid of a curvimeter from the photomicragraph), was determined by I. P. Lipilin indirectly fron the number of planar crains per unit area of polish.

If various isoonal erids are examined on a plane, that is, grids constructed from figures (or groups of figures), which are equivalent and identical, with respect to shape, then for the generai case the total jinear extent of parimeter: of these ficures per unit area,
 by an equistins. of the following tope:

$$
\begin{equation*}
\Sigma=a \sqrt{n}, \tag{19.1}
\end{equation*}
$$

 a exim of idertical square, iAi: coefficiert is 2.00 ind for a grid of regarar hexagor: it in $2.2 ?$.

Fon tis calculation, Z. P. Lipiln arbitrarily assumes thet the

is deternired by the method, accepted by I. F. Lipi?in, but a value which is proportional to it, tho total perimeter of plare grains per urit area of polish. Moreover, substituting the calculation from Formula (19.1) for the direct measurenent of this perimeter, the author of this metind disregards a number of factors which essentially affect the value of the specific surface, such as the difference in the curvature of grain surfaces and the degree of variation of their size withir: the volume of steel subject to irvestigation. Lit the same time, in different specimens of steel with the same size of planar grain, the values of specific erain surfaces may differ precisely due to the difference in the aforementioned quantities which the nethod does not amsider.

Nevertheless, I. P. Lipilin succeeded in establishing the fact that the rate of austenite decomposition is a linear function of the leneth of erain boundaries per mit area of polish and, consequertly, a linear function of the value of specjfic graira surface of austeaite, mroporional to it. It should also be noted that the value of the coofficiert in Pormula (19.1), choser: by I. P. Lipilin, is quite close to the mean value which is ususlle jucorved. However, fenerally speakiné, thi ; coefficient is not a constant value but js: wopement uror tic aforeastioned factors.

Sometime after publicatior, of the paper by I. P. Lipilin, Rutherford, Aborn and Bain published their studies. Their aim was also to determine the quantitative relationship betweer the parameters
 surface. Theze studies differ in principle from Lipilin's work in that the uuthors assumed the cryotalites to have equivalent ard geometrically recular bodies, wich differs from the real structure of netal: [57]. There are knowr five ge netrically regulur briden, shown in Figure 47 , minch are capable of completely filling space. Of these the authors investigated the cubic ostahedron with 14 faces of wich 8 are revular hexajons and 6 are squares (see Figure 470 . 411 edges of the anbic a tahedror are equal. According to the Cata of i. Kolvin, the cubic oranedron with 24 faces is a body which has a minimus
surface for a fiver volume (among the bodies wich fill the space). For this reason, the authors assume that in a state of equilibrium the crystallites of metals precisely corforin to the shape of a 14 -face cubic octahedron. This has been confirmed by the observation according to which the crystallites of thoroughly ameuled netals have 9 to 19 faces; on an averafe about i4 faces.

Fig. 47. Geonetrically regular bodies, capable of completely filling space.

A cube E hexagonel prism C rhombic dodecahedron Delongated dodecahedron E cubic octahedron

\footnotetext{
Different sections of a čonetrically recular bod are examined for he pasibilities oi ubainine polygon, :ith different rumers argles, on a plane. Tine authors also calculuto the near area of a section of culis cotanodron and after thas equatio it to the area of errains oorresponding to different numbers of the atankrd ASTM grain sige scale. Values of speciric surface of equivalent cubic octahedrons are calculated respectivily for each muber of the grain size. They are listed in Table 21. It is possible to agree with a choice of a cubic aitahedran as an idealized chape of a crystallite, since actually the mean nuber of faces, cepinuted from the metal acioregate of crystallites, is close to ll (see for example Figure 5.). Hovever, in reality the orstaljites are not equivalent and, moreover, have curvilineü dioses and faces with different curvatire. Therefore, these ascumptions reduce the metricu and cace results, calculated j_{i} it, to an extrencl: tentative cti.ac.

1.	8	3.	4.	1. the. of graixes per ASTM beale.
Hrwer rematu werac $1:=11$				2. spucefic curface 7 grains. $4 \mathrm{Mr}^{2} / \mathrm{MN}^{3}$.
-		--	- -	3. pame a 1.
1	4.7	6	51.1	
1	6.7		25:8	4. Dame as 2.
1	4.5	\cdots	107	
?	1.1.1	"	151	
;	18.3	111	214	
$\frac{1}{5}$	26.7	11	302	mabic 21
5	37.8			-ubuc 21

In 1938, Kaiser [4j] calculated the limiting value of the speciris surface. Faiser': © aldetions are based or. Ya. S. Fedorov's nutions tiat in approximation pol.ycrystals may be regardod as a system of equivalent polyhedrons, closely packed in space. Kaiser considers four hasic types of polyhedrons whinh can fill space: a cube, a hexaconal prisn, a rhombic dedecahedron, and a cubic octahedron. for all types of polyhenchs, Kaiser deternines the specific grain surface as a furctior of the number of grains (olyhedrons) per anit volume:

$$
\begin{equation*}
\Sigma S=j \sqrt[3]{N}, \tag{19.2}
\end{equation*}
$$

where the coefficient is dependent on the type of the polyhedron, wich :ee assume to be the shape oi metal crystallitoz. Accordine to raiser, the coefficient has the following values:

For the cube $\quad 3.000$
For the hexagonal prisn 2.3%
For the riombic dodecahedron 2.173
For the cubic octanedron 2.659
Inasmich as Pormula (19.2) defines the specific surface through the quartity i (the number of argajizites per unit volurie of metal), which is undam to us, Kaiser carries 'lis calculations oniy for the limiting case, usouming that the minimum possible crystallite aize is of the same order as the block size of mosaic structure. Acuepting, as it is asaumed by Kajer, that the crier o? volume of 1 racsaic 110 h is $10^{-11} \mathrm{~m}^{3}$ ard that accordingly the moner of block fer urit. volume 1. 10^{12}, we find the initire viluee of the vecific surface rantac betweer. 12, $3000 \mathrm{mr}^{2} / \mathrm{mm}^{3}$ (for a cull: xtahedror:, to $13,000 \mathrm{mi} / \mathrm{mm}^{3}$ (for a cubs). As has ljeen calcuiatos \because arivin, the minimus surface of equivalert orestallites corressonds to the shape of a cutic notahedron. If the shape of microparticiea differs from equided, the limiting values of the specific surface mat be considerably higher than those calculated. For example, we have already mentioned that the specific area of the interfacial surface of lanellar pearlite has beon experimentally measured to be $25,000 \mathrm{~m}^{2}$, man^{3}.

The desire to approaci the real structural shapes of polycri-

the assumption of the equal size ard identical shape of all its oonstituent crystallites. D. Keijering deternined analytically the parameters of the spatial structure of a metal polycrystal, which is formed by means of simultaneously commencing growth of all crystallites at an equal and constant rate of growth in all diractions (spherical n sygene of growth), with the centers of crystallization randomly arrarged in the volunc [130]. For the specific surface area, he derived the following relationsif as a furction of the namer of crystallites per urit volune (or the nuriver of certers of crjstalifzation):

$$
\begin{equation*}
\Sigma S=2.91 \sqrt[3]{\therefore} \tag{19.3}
\end{equation*}
$$

Other condidions for the formation of a polyoystalline structure have been corsidered ij Johnson and Wehl. The authors' reasonine is based on the postulate thet crystallites frow from certers which nucleato friadually and unformiy in tirie, at a rate constart the ontire process at a sherical syngere of erowth. If the nucleation rate of crystallization centers is a $\mathrm{cm}^{-3} \mathrm{sec}^{-1}$, and the linear growth rate is V car sec^{-1}, then the fimal nurber of crystalites per unit volume can be deternined from the formula [130]:

$$
\begin{equation*}
N=0.8960\left(\frac{a}{v}\right)^{3 / 4} \tag{19.1}
\end{equation*}
$$

and the specific interfarial area of crystallites will be:

$$
\begin{equation*}
\Sigma S=2.479\left(\frac{a}{v}\right) \tag{19.5}
\end{equation*}
$$

Fron these two formulas, eliminating the value of crystailization parameters, ferd the rejationsaip between the specifio arta and the number of crystallites per urit voluae of metal:

$$
\begin{equation*}
\Sigma S=2.572 \sqrt[3]{3} \tag{19.6}
\end{equation*}
$$

The corditions for the formation of a polycrystalisne ageregate, accepted in D. ...eijering's model, as well as in calculations of f. cohnson and R. F. lehi, do not correspond to the reai course of the process. Although the growth of arystallites does "omence practicaliz simatareously, as is assume by D. Mei jerint, the imosac of
crystalite impingement, which has not been reflectud in ary of the considered schemes, comences simultaneously with the crystallite growth and contirues to the ard of crystallization (and under certain conditions even after $i t$).

Nevertheless, from a comparison of the coefficients of Formulas (19.6), and (19.2) for the case of the cuic octahedron, it follows that for a given rumber of crystallites per urit volume none of the polycrystalline aggregates \because :ith equivalent grains have a minimum specific area and, consequently, a maximun thermodynamic stability.

Section 20. The Fiethod of Pandom Secants or a Plane. Isometric Systems of Lines on a Plane, and Determination of Their Lengths

The method of random secarts, developed by us in 1945 [58, 13l, 59], is a universal method of direct determination of actual specific surface of grains, phases and structural comporerts by means of measurements carried out upon a ilat section (inicrosection). In this case, no assumptions of any kind are made on the shape and disponition of boundary surfaces in space, as it was done in methods reviened in Section 19; a true interface is measurel just as it is in reality. The measurement of the tobai length of a system of lines per unit area of the plane upon which they are located. The measurement of the specific surface is carried out by the method of random secants in space and the specific length of lines in a plane is measured by whe method of randon secauts in a plane.

In two-dimensioral and three-dimensional proklems it is necessary to do identical measurements or a plane. However, openations carried out within a two-dinensional problom are more illustarative and the results obtained may be directier verified by other methods o: measurement, which cannot be dore ir a thra-dimersional variant, For this reason, \because e start the description of the method by descritine its aypidcation between the solution of a two-dimensional prokien and after that we shall comsider a problen for space.

We shall begin the walusis with an isonetric system of lines; i. e., is srstem of line: on a plane such that the propertios are idertica: Er any direction. Boundary lires of cementite and ferrite ir the structure of eramular pearlite may servo as examples of such Sistems on a plane calied a microsection; also, lines which separate the sraphite constituent and netal base in cast irons with laminar or globular sraphite, bourdary linos of trains of a single-phase polyhedral stmoture, etc. It is not important whether the jings of is 3. stem form bound cors)urs on a plane (fust as in the first two examples) or efpear as a cortinubis frid without breaks in it, as ir the case of the polfheural strusture of a pure metal or a solid solution,
whioh structure consists of equiaxed flat grains. The system will be isometric if separate groups of lines in it have a definito directivity and it is not duplicated in other groups of lines. For example, in the structure of lamellar pearlite on a plane of a microsection, lines which separate the cementite and ferrite phases have a strict direstivity to each individual grain. However, this directivity differs for each individual grain of pearlite and, if we are to oxanine a sufficiently large group of lamellar pearlite erairs, that is, its structure as a whole, we shall find no definite direction in which the lins of platelets division are preferentially onianted.

The notion of the isometric systern may be characterized in a somewhat different way. If all the lines of the system, which generally speaking are curves, are divided into infiniteiy smail intercepts of equal length and all intercepts are grouped with respect to their directivity, then it will happen that each group will have a statistically constant rumber of intercepts.

The method of randon secants on a plane is based on the case of geometrical probability of intersecting a randomly drawn line by a system of lines on a plane (nonisonetric (ase), which in the theory of probability is know as"Buffon's needle problem". In essence, it consists in the following.

A sustem of equally spaced ines, with the distance between them a are drawn or a horizonte? plare. An intercept os atraight line ("needle") is ratiomly located in the ruled plane. The length of this irtercept, i, As critiler eran the distance betweer farallel lines, $\therefore<\operatorname{s}$. speakine of rando. location, we have in mink fact that lie wi...o point of the intercept (the center of the nesdle) has an eçal probability of beine at anj distance from ary line on a plane, and ary ance between the needle and the directior of those , ires is equell: probable. The needle, tossed randomly or a plene as described, may aither intersect or not intersect any of the parallel lines on the plane. Inasmuch as the needle is shorter than the distance bettreen the straicht jines, it cannot simuluanoly intersect more than ne straieht linc (aioure 48).

Thus, as a result of one random toss of a roedle, we can demonstrate either the facts of intersection or its absence. It is necessary to determine the probability of intersection by the needle with one of the straight lines on the plane.

In the theory of probability, this problem is solved on the basis of elementary geometrical considerations, which in our opinion would be superfluous here and which are fourd in any textbook on the theory of prohabili:y [101]. The probability of intersectior j:s dufined ber the formula:

$$
\begin{equation*}
\xi=21 ; \pi \tag{20.1}
\end{equation*}
$$

If the number of repeated tossos of the needle is larce, the number of its intersections vith the struiotıt lires or the planc :تin be defined by tle equation:

$$
\begin{equation*}
t_{1}=p t=(21 / \pi a) t \tag{20.2}
\end{equation*}
$$

where t is the total munber of tossos of the roedle on the plane, t is the number of intersections of the needle with the straight lines w: the ? ane. If we know the uistance tetreen the parallel lines on the plare, a, and the levetit of the needle,], thon the validity of formulae (20.1) may be corifimed by experimental deternination of the quantity π found in the formin, by repeated tossine of the needle. This was done at different tincs by soveral experimenters. The values of π obtainei o_{j} us, are preserted in Table 22 [132].

The absolute deviation of experimentally obteined values of Π from its true value doss rot exceed 0.018 , that is, about 0.6 per cont of the value which is being determined.

From the viewpoint of the theory of probability, the end result is independent of the shape and location of lines drawn on a plane. The location of lines shoum in Figure 48, was noeded to obatin the possibility for calculating the geonetrical probability of the number of intersections, which would not change as long as the total length of line per unit area of our plare remains the same.

Ficure fhe $^{\text {Diagram for Buffon's proposition "about the needle" }}$
It is equaliy true that an intercept of a straight line (a needle), which is placed on a plane, may be replaced wa line of any lensth or curvature, or by anj rigid contour being rectilinear, curvilincar, smooth or broker, boum or oper; it is absolutely the same.

From Equation (20.2) it follows that the mathematical expectatior: (i.. E.) of the number of intersections, A, when tossing on a plane with a systen of parallel equidistant lines (Fieure 48), a needle with lenthil ani the number of tosses of the needle t, is equal to:

$$
\begin{equation*}
\text { M. E. }(z)=\left(2_{1} / \pi a\right) t . \tag{20.3}
\end{equation*}
$$

When a rigid contour (or any other straight line) the length of which is equal L, is substituted for the needle, we can subdivide the former i::to elementary sections of length, l each. According to the law of condition of probability, the mathematical expectation of the number of intersections of the cortour vith the straight lines on a plane is dependent only upor its iereth and tre number of tossee of the contour
on a plane (with a system of lines on the plane being the same) and will be defined by the formula:

$$
\begin{equation*}
\mathrm{H}, \mathrm{E} \cdot(Z)=2 \mathrm{~L} t / \pi \mathrm{a} \tag{20.4}
\end{equation*}
$$

It is obvious that the product L it is equal to the total length of lines intoracting the sjetem of lires on a plane for any number of tosses on it of a rigid contour or any other line of lemth L. Here and further in this article we shail desierate asm the humer of intersections per unit of the total zeneths or the contour (or generally spealinä, B_{j} any lines, which :u shall call rancom sucuntw; of lines drawr. or a piere by lines oi the rid contour (i. e., pen wid lergth of secanta, In this case, this number will he definea l_{j} the formula:

It should be noted that in all formias presented above the value l/a is the total length of parallel lines draw on a plane divided by urit area, i. e., the specific lenerth of lines on a plane. Actually, if a square, the side and the area or wioh equal urity, is isolated on a plane, and two sides of the square are parallel to the grid of line: drawn on a plane, then the length of each intercept of these lines round within the square will be equal to unity and their number within the square will be equal to i/a. The number of intercepts, other conditions being equal, is cietermined only by the total length of the lires of the system per urit area, which is also equal to $1 / a$, and which further in this article we shell deaignate as $\sum P$ (the total perimeter of lines per unit area measured in mon $/ m^{2}$). On the basis of the aforesaid, we can rewrito formula (20.5) as follows:

$$
\begin{equation*}
m=(2 / \pi) \Sigma P=0.6335 P \tag{20.6}
\end{equation*}
$$

Corresporidingly, the total lencti: of tire lines of ine systern per urit area vill be deared by the formia winch further ir this articic :e shan cay the beic formula of the methoi of randor secante for is

$$
\begin{equation*}
\Sigma P=-\frac{\pi}{2} m=1.571 \mathrm{~m} \tag{20.7}
\end{equation*}
$$

For the actual number of intersections of the lines of a system on a plane by secants, we shall take with respect to lme. of tie total longth of all secants. For this reason, the average number in of intersections per unit length of the secants, obtains the dimension of mm^{-1}. The total length of a system of any lines on the plane of a microsection per unit of its area is measured in mm, ${ }^{2}$, that is, it has the same dinensionality as the number m. Values $\sum P$ and m do nut have to be necessarily expressed in millimeters. However, the unit measurements of these too values must be identical. "hen taking measurements on photomiorographs, it is necessary to consider the actual linear magnification.

Let us derive the basic formula of the nethod of random secants for a plane.

disappuacing

Let a secant possess a certajn λ small width Λ, that is, let us consider the large number of extremely narrow bands of equel widths Δ, instead of secants on a microsectior. The location of these :arrow bards is absclutely randorn but etatistically uniform over tho entire area of the microsection. They are directel mandomy, thet is in Such is manner that ir. \ddot{u} biraction of a kard is equilly probable. Let us designate the total lemgth oi all bands as L.. Inasmach as their width is equal to \triangle, the total area of the microsection euvered oy the band, wi] be equal to $L \Delta$. In this case we are isnoring those sections of the microsection in which bands are superimposed, since the areas os the sections are insignificantly small of the order of Δ^{2} and are mabered as finite and relativel ${ }_{j}$ mall.

By intersectinc the lines of prain bourdaries (or some other micoparticles), the bards form intercepts these lines :utich we can accept as straight, inasmuch as the width of bands, Δ, is disappearingly small. "her in the limit this width jecomes zero, the band itsclf would transform into lines, secarts. If the acute angle formed by the direction of bands and lines of grain boundaries, which they intorsect, are designated as G^{\prime}, $\alpha_{2}, 0^{\prime} 3 \ldots$, and the length of intercept on the lines or srain boundaries aro as $\lambda_{2}, \lambda_{2}, \lambda_{3} \ldots$, respectively, then for each of the intereepts it is possibje ot wr te an equatior on the trpe:

$$
\begin{equation*}
\Delta=\lambda_{i} \sin \alpha_{i} . \tag{20.8}
\end{equation*}
$$

For this reason the total length of all intercepts per writ area of the microsection will be called :

$$
\begin{equation*}
\sum \lambda / L \Delta=(1 / L) \quad \sum_{i=1}^{2}-\frac{1}{\sin \alpha_{i}} \tag{20.9}
\end{equation*}
$$

Let us divide and multiply the right half of the latter equation by the nu: jer of all intersections, z. Here we take into consideration, the fact that the ratio $4 / \pm$ at a large number of intersections, i, ir. tare limit at $\Delta=0$, is equal to the average rubber of intersections of boundary lines
 π, and the ratio $\Sigma \lambda / L \Delta$ is equal to the total :or eth of boundary ines yer unit area of the ficrosection, that jos, it is equal to $\sum P$. Making appropriate changes the formula (20.9) we derive:

$$
\begin{equation*}
\Sigma P=\frac{m}{2} \quad \sum_{i=1}^{Z} \frac{1}{\sin a_{i}}=A m \tag{20.10}
\end{equation*}
$$

The quantity, which in formulas (20.10) has been designated as A, is the average value of the reciprocal oi ute sine of the angle for all possible values of this angle on the plane with each value being equally probable.

Let us find the value of quantity / under the condition of equal probability of and value of angle within the limit of zero to $/ 2$. Let us take a circle, the diameter of which is equal to unity, and the center at the origin of rectangular coordinates. The argyle between the shifting radius of the circle and x axis we shall designate as The::

$$
\begin{equation*}
y=\sin \alpha=\sqrt{1-x^{2}} \tag{20.11}
\end{equation*}
$$

and the reciprocal value of the sine of angle is equal to:

$$
\begin{equation*}
1 / \sin \alpha=1 / \sqrt{1-x^{2}} \tag{20.12}
\end{equation*}
$$

The unknown quantity h is equal to the mathematical expectation of the function (20.12) with x varying between gers and unity. For this reason, by integrating we derive:

$$
\begin{equation*}
A=x \cdot 0 \cdot\left(\frac{1}{3} \frac{1}{n} \alpha\right)=\int_{0}^{1} \frac{d x}{\sqrt{1}-x^{2}}=-\frac{\pi}{2} \tag{20.13}
\end{equation*}
$$

By inserting the thus calculated value of quaritity \& into Equatior: (20.10) :i:e have the basic formula of the method of randon secants for a plane derived analytically:

$$
\Sigma \mathrm{P}=\frac{\pi^{2}}{-m}=1.571 \mathrm{~m}
$$

In the analytical derivation of pormula (20.7), we substituted bands for secants. The width of the bands is the disappearingly small width \triangle, which in the ininit becomes zero and bands become secants. Inasmuch as the width of the bands is disappearingly small and approaches zero, the course of the proof obviously will not be changed if curves, for example, rings with a disappearingly small width but with a finite diameter, are substitutod for straight iines (bands). If we can accept $\Delta \rightarrow 0$, without committing an erron, then the area of the ring is equal to the length of its circunference multiplied by the width Δ. This assumption would not chenge the end result nor change the course of the proof. Hence, it follows that secants may be replaced by any curves and the average number of intersections per unit of their lencth, m, is independent of the shape of secants.

It is very important to note a very important prequisite condition for the analytical derivation of Formia (20.7). The equal probability of all possible values of arcle α, i. e., of the angle at which the secant interseots the line of the system which has beer reasured. The formula is not applicable if this condition is not observed. This prerequisite condion is Rullilled in the follonime three instances:
3. The system of lines on: ia plane is isometric. Then secants may rus in ang dinection, including a sories of usually parallel straight lines disposed at any angle.
b. The system of lincs on a plane is not isometric, i. e., the Iines have a definite preferential diroctivity, but secants are randomly located, i. e., all directions of secants are equally probable.
c. The system of lines or a plane is isometric ard directions of secants are rarinom and ary of these directions are equally probable.

In practice, it is frequently convenient to use a circumference or a spiral instead of a striaghl secant. The convenience of this substitutior consists in that the secant conveniently changes its direction with respect to the systen of lines on a plane and for this reasor any angle at which the secant intersects the lines of the system automatically becomes equally probable, even in the case when the location of the lines on the plane is not randon (is orionted) but have a certain directivity (orientation).

Now let us corsider ceses of practical application of the method of rendom secants or: a plane and of formula (20.7). An ordinary polyhedral structure (ferrite) is shown in Figure 49, linear magnification 100, Wich completely satisfies the notion of isometricity.

1. nu: of intersectione		2. \qquad	13 Пронзведепие $m_{i} x_{i}$
2. No. of accurences x_{i}.	7 8	-	$\overline{32}$
	9	10	90
3. Prodect mix ${ }_{2}{ }^{\text {a }}$	10	$\stackrel{24}{32}$	240
	11	32	352
4. Sotal	12	34 22	408 286
	14	\therefore	168
	15	4	60
	16	3	48
	17	1	17
	18	-	-
	*'cero	146	1701

Table 23
The true area of the drawinc, that is on the plane of a iniorosection (is ore squar millimeter). A secant, 100 millimeters lonc, correspondirect to true lergth of 3 millintera is drawn across the acea. This straight line intersects the Erain boundiry lines at 3 poirts. It is upparent that the number of intersections maj be somewhat differert at difserent positioning of tic line. However, for eacn Eiver structure there exists a definite concrete mean value of the number of intersections, which is dependent upon the totel length of lines per unit area.

If a straight line is randomly dram across Figure 19 a large muber of times, each time recording the rumber of intersectiors betweer the straight line and the irsin touncaries ri, it woile eive a series of $\because a i d s$ for the rumien of intergects. The resul: 0 , \because "tossing "

20.9. 49

Fig. 49. Polyhedric structure and random secant intersecting boundary lines at 8 points

number of intersections

Fig. 50. Curve of frequencies of the mammanmindomanatrad by the random secant with the boundary lines of the polyhedrons of Fig. 49
are shown ir Petsle 23. The lines were disposed across the area of the drawing randomly in rardom direchions. The mean number of intersections of secants and boundary lines, according to the data obtained, is equal 50

$$
\sum L_{\phi} \frac{\pi m}{2}=1701: 146=11.6 \mathrm{~mm}^{-1}
$$

Here the number of intersentions, m, is no lonere a random value, which it is when tossing a needle. At a sufficiently liigh total number of intersections, the nurber a al moaches a quite deririte quantity, the value of vich foliows fron fumala $(20,7)$. Tho frequency curve for the number of intersections, a istructed from the data in Table 23, is shom i.. Fioure 50. It is a typical curve of statistical distribution. Consequently, the value of m :a, be determired with ar, ascuracy for ary concrete sjstem of lines on a microsection. This accurace is deperdert upon the t.)tan rumber of intersecuions calculated ir the course of analyses. It is novious that this rumber is proportional to the total lereth of secante. For this reason, the accuracy ror each given structure is singularly determined by a length of the seca:t. Ir the example considered ubove, the rumker of intersecis was 1701 for the length of 246 :wisimeters (under real conditions, on the plane of tie aicrosectior., rhici apparert ir Tavif ?

If the value of the mean number of intersections length of secants, in, is determined with required accuracy, we further find froni formula (20.7) the total length of ferrite joundaries per unit area of the microsection:

$$
\Sigma I_{f e r}=\frac{\pi}{2} m=1.571 .12 .6=18.2 \mathrm{~mm} / \mathrm{mn}^{2} .
$$

Inasmuch as we have considered the secant as if found in the plane of the microsection and for this reuson have assumed its loneth equal to 1 millimeter (accounting for the magnification), the value obtained is also related to the area of the microsection, that is, it is real. In Figure 49, the longth of the secant is 100 millimeters, therefore, the total leneta oi iines in the drawing is 100 times greater than the calculated ore arlis 1820 millimeters. This nay be readily verified with the aid of a curvineter.

precipitations
Fig. 51. Circuler secents intersecting the graphite immmaname of grey cest iron
In order to use a circular secant, a circle is marked on cellophane and the diameter of which is measured as accurately as possible. After that, the cellophane is superimposed on the drawing or microphotograph of the structure which is being analyzed and the number of intersoctions of the cirumfersoe vith the suster. of li.es, vibich is of interest so us, is calculated. Calculations are rejeated, each time shiftime the circumference over the photcnicrocraph.

Calculations, similar to the one descrited, yas done by us for the strature of graphite flakes in gray cast iron ard are shown in Figure 51, ard the magnification of 100 , the aid of circular secart 50 mr is diameter n drawing or 0.5 m in diameter on a microsection. "e wish to urieri inc the fuct that in this ca: 0 \%osiculated precisel.
the number of intersected ilakes and not the interface boundaries "Inetal base-graphite." For this reason in our further calculations we shall derive a value for tae total length of cross sections of graphite flakes and not the lençth of inturiace boundaries which will be approximately tivice as large as the one found.

The mean numker of intersections of the circumference and cross sections of graphite flakes, on the drawing, was 15.6 , the number of different positions of the circumference being 170.

Taking into consideration the fact that the lencth of the secant in this case is equal to the perineter of the circumference, the real diameter of :hich is 0.5 mm , we find the nean number of intersects per 1 mm of length of secarits, is

$$
m=\frac{15.6}{0.5} \frac{6}{\pi}=10.0 \mathrm{~mm}^{-1}
$$

Further, from Formula (20.7) \%e find the unkrover value of the totel lereth of orosi gections of errehita ilakes per urit arou of the microsection:

$$
\sum L_{0 r}=\frac{\pi}{2} m=1.571 \cdot 10.0=15.71 \mathrm{~mm} / \mathrm{mm}^{2} .
$$

In orier to determine the lergth ol lires, which separate the Graphite ard meta] base in cast iron, the numer of intersections rletained shouid be doubleu. Therefore, the total length of bourdary lines "metal base - graphite" will be 31.42 mri/m m^{2} of the microsection.
mhe examples considered donorstrate the application of the method Of ranion secants for the determination of the lereth of lines on etructurai getches or photomerographs. For a structural analysis directly uncr whe microscope, whin in practice is nost comon, ore of the folioning metions is used.

By the first method, one field aiter another of the itrioture is examined throuri the ocular-microneter (rigure 13) and the number of interseotions between the dianeter ine of ocular scale ard anes of the structure, which is of irterest to us, is calculated in each field of vision in the microsectuan The fields of vision in thin case must
be disposed uniformly over the field of the microsection and should encompass its entire area. After that, having determined the length of the image of the ocular scale on the plane of the microsection, λ in mm , with the aid of the object-micrometer, and knowine the of ficlds of vision, Z, which have been eaminod in the course of the analyses, we find the total length of secants, λz. Lifter that, the total rumber of intersections calcukated for all examined fields of vision, is divided by λz and the mean number of irtersectis for 1 mm of secants, in, is obtained. Further, from Formula (20.7) the specific length of boundary lines on the microsection is calculated.

By the second method, the structure is examined through the ocular with a cross hair. By continually shifting the microsection along a strajigh line, using the micronater sorev of the carriage on the microscope stage, wo simultaneously calculate (in the head or with the aid of an ordinar, counter) the number of times the boundary lines, which are of interest to us, pass the point of the cross hair of the ocular. Having completed the exanination along one line of one edge of the microsection to another, the length of the path, recorded by this scale wat by the head of the microneter screw, is jotted dom and the operation is repeated along the second line, etc. Thus, the examination uniformy encompasses the entire area of the microsection. Having divided the total momer of intersects, calculated for the entive analybes, by the total length of microsection displacemert, wo derive the number a, afte: which we calculate the specific length of bourdary lines or the minrosection from (2c.7).

By the third methol, a straight line, a circurference, or a spiral in warked or the crount elass of the mincros upe camera and the determination is carriec out in the same morner as on a photomicrooraph or a sketch.

Fror the examples described, it is possible to comple that the method of raniom secarts is ore of the least effort cursuning wethods amone cther methods of stereometric metallography. Of the methods corsidered ajove, the secord method, with is reduced to a simplo displaceme:. © the ricrosection and simutarecus calculation or the
number of intersects, is the most efrative. Calculations may be carried on at a rate of an ordinary oral court. inen using a counter, ther may be even more rapid. In one minute it is possible to record 100 to 120 intersections. For this reason, an analysis, for example, of 1,000 points, takes u_{F} only about 10 minutes. As we have already mentioned, the total number of intersections obtained during the analysis determines the accuracy of the obtained results. A techriqua for choosing the required number of intersections, varying with rcquirements of precision and reliability of the analysis by the method of sandom secants, $\because i] j$ be preserted further in this article.

Section 21. Nonisometric Systens of Lines on a Plane and Their Characteristics

The systens of bourdary Jines, which separate the crossections.
 served in alloys and A, are far from being always isometric. Cold plastic deformation of metal and frequentiv tot deformation at sufficiently temperature, (of directed orystallization) tranecrystallization (certain other causes are responsible for the presence of certain preferential directivity or orientation of boundary lines on a plane. In contrast to isometric systems, these systems of lines we shall call orientei. Woreover, systens thay be completely oriented or oriented only partially. If lines of an oriented system are divided into elementary sections of a very small but equal length, which we shall assume to be stiaight, then it may happen that all sections are parallel to one or several definite lines which we shall call the orientation axes of a systern of lines on a piane. In this case, a system of lines is regarded as completely oriented on one in several directions, that is alone one or several orientation axes.

Several different variants of completely oriented systens of lines, having ore orientation axes, are schematically dravm in Figure 52. In this case all lines are usually parallel, which is the orl, condition which defines a systern as completel; oriented with one axis. The lines themselves may be continuous or interminted and the distance betweer paralicl lines may be either constant or not constant. One The of a completely oriented syster of lines with the one orientation axes is, specifically, a system of equidistant parallel straight lines, shown in Figure 4R.

Fig. 52. Completely oriented sycems of linec on ame plane with one axis of oripntation

Among the structural elements of metal ailoys, the case of the complete orientation where one axis has been observed relatively infrequently. For example, usually parallel rectilinear fine fibers of plastic nonmetallic inclusions, elongated by rolling or arawing, may be cited. They may be observed in the longitudinal cross section of a rod or wire.

A system of boundary lines of nonmetallic inclusions 'ire freecutting steel corresponds almost precisely to a diegram shown in Figure 506. The axes of a rod is the orientation axis in such structures.

Another type of complete orientation of lines on a plane, with two orientation axes, is shown schematically in Figure 53. The angle formed by the oriontation axes may be a rigint angle or an acute angle. The distance between the lines, parallcl to one of the orientation axes, may be constant or may bars. Lines themselves may be continuous or interrupted. In this case, a system of lines may be regarded as consistine of two conpletely oriented systems witr one oriertation axis (Figure 52) which are superimposid in suci. a manner that the orientation exes form at an

The type of the system of lines oriented in two directions described above, hás been observed almost in its pure form in hetal structures ir irdivicusl srairs durire their rocrgstallization when the dendrite axes of different orders form E Gefinite angle in the plare of the microsectior. Arother case of almost complete orientation along two uaual perpendicular lines may be ooserved in several photomicrographs in Ya, R. Raucin and Sh. R. Zheleznyakova's studie: [133].

Further, let us consider a case of complete orientation alon three axes disposed at an ancle of 120 degrees to each other. The regular geometrical systems of iines of this kind, an isogonal grid of regular hexegors deserves attendion. It was used by a iaboratory of Timaten plant for constructir: a finst scale for the Erain size of steel [134]. Here the size of the hexagons that appear az 3 systems of equidistant, parallel, interrupted straight lines, which are superimposed in such a
 defrees with the other two axes, an absolutely sinilar orientation is

- 53 Completely oricnted systemfof lines on a plane with two axes of ori ntation.
found in exrid constructed from revular iniangle. It differs from the precedine one in hat the lines which form it are cortinuous. The length of lines are oriented in three directions, is the same with both of these systems shom in Ficrures 54 A and B . At the same time, with the number of orieriation axes exceeding one, there is alwass a possibility of a relatively greater leneth of lines in one or several dircotions thal in otier directions, Gererally speaking, a different degree of orientarion is possible alomg each axis wheh ixiutu in a given systerf. Mhese is, for example, the isngoral grid, showr in fidure 54C, also $\because: i t h 3$ orientation axes, but thc length along two axos ferPeraicular iu wach other is lose thas. 'ic lergth aione the thad wxes which is disposed at an ancle of 45 deurees to the first wo dxas [135].

The greater rumber of orientation axes in a system, the closer it is to the isometric plane of the line sifstems which may be regarded as having an infinitely lerge rumber of oriendation axes. Thus, for example, when iscenal grid, shown in Figure 55, having only 6 orientation axes, resenties a system of boundary lines of an ordinary polyl:edral structure witi equiaxed grain (see Figure 49).

In plane crossections of real structures, the bourdary lines of micropartibe arowsections are lisually ajther isontetric or oüjar-
tially oriented systems. Completely oriented boundary line systems occur as an exception. The partial orientation of a system of lines or a plane we understand to mean such systers of lines in which only a part of the total length of lines is oriented in a delinite line, or more brequently being parallel only to one orientation axes. Thus, Figure 56 shows structures of hot rolled steel anmealed at disferent temperatures. It is quite obvious that in both cases a quite definite directivity of grain bourdary lines of ferrite may be oiservad. Aowever, this orientation is inconplete in contrast to the schemes is shown in Figures 52, nor loes it approach completeress in any vaj. b tyjpical example of a partially oriented sustem of lines on a rlane, when not all lines of a system but orly a certain portion of the toial length of grain boundary lines of ferrite is parallel to the orientation axis, which axis in this case correspords to the direction of roiling, is shown in Figure 56.

Fig. 54. Completely oriented systems of lines on a place with three axes of orientation

Besides the fact that partial oricetation of boundary lines is
 riative lergth of the orierted portion of lines in the structure in We irawing at the left is corsiderably ereater than in the drawing o: the rifit. In other words, the degree of orientainor of joundary lines in steol anealed at 600 C is notably greater than ir steel annealea at 350 c .

Quantitative deternination of the degree of partial oriertation
is quite effective and meny tines attracted the attentior of the metallographers. \&is rar back as 1900 studyine the defornation or milá steel in the cold state fron Y. Geyn measured the visible length and width of ferrite grains [136]. Later, F. Rapaggs made an attempt to deternine the magnitude of a reduction of alloyed steel by forging from the degree of deformation (alongation) of the carbide which was characterized by a ratio between tho length of cells on the network and their width [137]. F. Rapaggs correlated the value of this ratio of to the degree of the reduction throug a special formalit. The degree of orientatior of a system of lincs in a plane may be estinated quantitatively b_{j} a value which is the ratio of the oriented portion of lines to treir total ienget this evaluation seems natural. This is necessary to have a possibility to determine separately the aforementioned values, whereas the method of random secants makes it possible to determine only the total lenth of lines of a system
ir its area.

55

a
56

Fig. 55. Isogonal latilice with 6 axes of orientation

Fi. . 5t. Examples of partiel orientetion of lines of grain bounderies of industrial iron tempered at 600° (a) at 850° (b) [21_7

If the oriertel portion of lines is removed, then the remainire fortior of lires of the system wiln be isometric. The validity of this supposition and its herdnescabilitu, : loest for practical purposes of georetriv :..etallography, has been iemorstrated ly his on a number of exarples [-38]. For this reasor, a partially oric.ted suster of
lines or. a piane may be regarded as consisting of two superimposed system, of which one is particularly oriented and the second is completely isonetric. For this case, the numerical expression for the degree of orientetion of the syste!: of the lines of a plane, providing it has one orientation axis, will be determined in per cent from the formula
where Por is the specific lencth of the orionted nortior: of lines, $\mathrm{mm} / \mathrm{mm}^{2}$; $P_{\text {is }}$ is the specific length of the isometric portion of lines, mug mim^{2}.

It should be noted that when dividing the lines of a system into elementary sections of equal length, for the purpose of deternining which of thom are oriented and which are isometric, wo can assume these elements infinitely small as to lencth. For this reason, predetermination of the degree of oriontation by the method describod above, is applicable not just to systems in whict the rectilinear sections of boundary lines, parallel to each other (as in Figure 56), are clearly distinguisheble. The degree or oriontatior may be also deђermined in such systens of lines which consist of small curves not coretainixd linear elements, for example, in a system of ollipses on a plane, the large axes of thich are usually parallel.

A method for measuring the total linear lenth of lines of any systom on a plane b_{y} the method of random secarts is preserted ir Section 20 . .o.", the notion "isometricity" of a system of lines may be claborated from the viewpoint of this method. If from any randon poirt or a plane, on which a system of lines is drawn, strajent lines (secants) are drawn in all possible direcions, then the mean :wnber of intersectiors jer urit length of each straight line would have the same mear, statistically constant, value as an isometric systen of lines on a plane. In other words, the mean number of irtersections per unit length of secants ir an isometric system of lines is independent of the direction of the secant.

The more visual characteristics of the oriestation of the systen
of lines on a plane is afforded by "the rose of the number of intersections" which shovs the actual relationship betweer tie mean and number of the intersectic:s per 1 arn of length of the secant and its directior, constructed in polar cooriinates. From the aforesaid, it is obvious that for $2 n_{y}$ isometric system of lines on a plane the rose of the number of intersections is described by a circumference with its certer at the oricin of polar coordinates.

The shape of the rose of the number of intersections is quite sersitivo to the preserce of mall preferential directivity of line systens. In those cases when the degree of directivity is insignificant and cannot be observed visually, the rose of the rumber of intersections doesn't deviate fron its circular shape.

The experinental construction of the rose of the number of intersections is quite simple, h series of initially parallel secants, formine a definite angle α with the orientation axis, is drawn upon a microsection or a photomicrograph, providing that the direction of the axes mar be clearly determined by visual observation or the topography of the plane of the microsection. Thus, for example, it is possible that to assume that the orientation axes on tho lorgitudinal microsection of a rou or a wire coincides with their \%eonetrica] axes. Secuts of a Eiver group ane randomly distributed but uniformly over the entire surface of the aicrosectior. or over lie area of the photomicrograph; dilectione fill secants must le exauly the same with the respect to the oriestalion axig. Kavirg deter.insod the mean muber of intersections per 1 run of secants in a given direction, m \mathcal{C}, the next group of secants is draw but in a differert direction, etc. Having derived a number of values of mear anbers of intersections for many dircctions of a plare, the rose of the anmer of intersections is constructed. For tris purpose, the radii-vectors, which form the same angles with the $0-0$ axis as were forred by infividual groups of secarots and the orientatio: axes, are drawr. from the origin of coorainates. The length of each raciius-vector expresses, or a definite scale, the values of miea: rumines of irtersections $x=$ corresponcire dirention of secants.

After that, the ends of radii-vectors are corrected by a smooth curve which is precisely the rose of the nuber of intersections constructed from the data of the expreiment.

The rose of the number of irtersections for the polyhedral structure of alnost pure iror with equiaxed grains is shown in Figure 57. The circular shape of the rose indiates that the system of boundary lines of ferrite in this case is actually isometric. The ruse of the nunter of $i=t e r s e c t i o n s$ was corstructed similarly for the system of ferrite lines of rolled sheet, on a microsection, the plane of wich was perpendicular to the plane of the sheet, has an entirely differer.t shape. In this case, the $0-0$ axis or the eraph coincides with the direction of rolling, which is precisely the orientation axis of serrite grain bourdaries. The rose, showr ir Figure 58, has one maximun oi' the number of interseations in the direction perpendiculer to this axis, (that is, to the plare of the sheet) and one minimum in the direation that which coincizes vith the oriantation axis $0-0$, as slow y the values of the respective radi-vectors.

Jpon the basis of our assumption, accordife to which partialiy oriented system of lines lay be regarded as corsisting of two superimposed systems, of which one is ompletely orierted and the second is ompletely isometric, the plot of the rose of the rumber of intersections maja be calculated.

For this purpose it is necessar, to :neasure how many microsection mean and numbers of intersections on the in tool and not in may directiors (as is the case in a syston of lines with one oriertation axis, which is a more emon case ir reul striothes on plane).

The oriertation of lince of a syctem on a plane maj ju charac-
 intorsection, which generally sieking, is practicaliy jnconvenient, Whe by one definite mimber wich characterizes the de ree of orientatjo: En cor.juncticr. with Formula 21.1. Two erours of secarts, forming a right arifle (in systems with one orientatior axis), are used both for (alculating the plot of the rose of the rumber frirtersections and for deterninirg the degree of onertation. Irasmuch as in this method
the eecants are not randomy directed, but have a quite definite direction, we have called the method of using these secants the method of directed secants.

of
the
Fig. 57. Plane rose the numer of intersections for system of boundary lines of the grain of industrial iron with equiaxial grain

Fig. 55. Plane rose of the number of intersections for the system of boundary lines of the grein of industrial i.:on deformed by rolling (on a microsaction of sheet iron)

Sectior. 2n. The liethod of Directed secants and the Anajuses of Partially Oriented Structures or. a Plane

Let us consider a system of mutually parallel and equidistant linss, shown in Figures 48 and 524 . There the number of intersections of the secart and the grid lines of the system, deperding upon the angle formed b_{y} the secant and the oriertation axis, is expressed b_{i} the formula

$$
\begin{equation*}
m=\frac{\sin }{2}-m^{-1} \tag{22.1}
\end{equation*}
$$

where a is the distance between parallei lines and is the angle formed by them and the secant.

Secants directed parallel to the orientation axis wouli not run into a single line of the system ard for this reason the minuer of intersections lno or the will be zero. Converselj, secarts directiy perpendicular to the orientation axis wil? man ilto the greatest number of Inios of the system ard a manter of irtersections, whoul will happen to be greater than at any other direction of secants. The Eraph of the relationskip, expressed by the Formula (22.1) is plotted in polar coordinates in a form of two sircunferences of equal dianeter oppasite to each other and the orientation axis $0-2$ at the origin of coordinates, as shown in Pigure j2. The shape shom in Figure 59 in the rose of the munter of intersections for the giver case ard the diameters of circunforences, which omprise it, correspord to the nazimum number of irtersectiors per i ran of he secant, mo or mi. The rose of the wimber of intersections of this ture occurs for ali sublems of lines or: a planc which are completely oriented ane poscoss only one orientation axis (Figure $52 \mathrm{a}, \mathrm{b}$, and c).

For a system of lines which has two orientation axes loceted at

 of two syster: of parallel and equicietant istraigh jinte, arionta-

rection of the secant, is exprossed by the Formula (22.1). By applying the rule of the addition of mears, for the crtire sjatern, we derive a relationship betweer the number of intersections and direction:

$$
\begin{equation*}
{ }^{n} \alpha \beta=\sin \alpha, a+\sin \beta / b m^{-1} \tag{22,2}
\end{equation*}
$$

where a and b are the distances between parallel lines in each systen; α and β are angles formed b_{j} the secant and corresponding oriertatios: axis of both systems.

If degrees of orisrtation are identical in directio:s of both axes, that is, the system is a erid composed of squares ($\mathrm{F}_{\text {- rure }} 53 \mathrm{~A}$) values of a and b are equal. Voreover, taking into consideration, the fact the there is perpendicularity of orientation axes, the sum of \sim ard Facles is 90 degrees. We simpiry the Formula (22.2) for the case of squane frid:

$$
\begin{equation*}
m \alpha=(1 / a)[\sin \alpha+\sin (90-\alpha)] m^{-1} \tag{22.3}
\end{equation*}
$$

The rose of the number of intersections for a squere grid (Figure 53A),

Fig. 59. Plane rose of the number of intersections for the coupletely oriented system of lines with one axis of orientation

Fig. 60. Flane rose of the number of intersections for the completely oriented system of lines inth two mutualy perpendicular axes or orientation with identical degree of orientation along both axes (sauare lattice)

The maximum rumber of intersections occurs in the direction whol forrs an argle of 45 cegreos vith both oriertetion axes.

 lations from Eromulas (22.1)-(22.3). For example, let us consider the construction of the rose of the rumber of intersections for the syster. of regular rectangles, shown in Figure 53D. The distance betwee: horizontal straight lines we shall designate as and the distance betweon vertical lines as $b(a>b)$. First let us construct two separate roses for the nunber of istersoctions for each systea of straight lines, horizortal and vortical.

For the system of horizortal lines, the rose of we number of irtersectiors will be comprised by two circumfererces with diameters a, wich will be tangert to each otwer and to the axes of horisontal orientatior, at the origin of cocranates. Siralary , the rose of the number of intersections for the system of vertical lines formerly deacribed by two circunferences, the dianeters of which are $\frac{1}{b}$, is tangent to each other and the axis of vertical orientation at the oriein of coordirates, rose of tho number of intersects showr. in
 tal -ines as two circumfererces (3) ure for tho suter un Yertical lines. Furthei, we add the radi-mactors of both roses of tio nuber
 the lereth wish corresfre t, \because o total nurber of intorsections in the sanc ineectior. By comecting the erds of the totar palid-vectors with a smooth curve, we obtail curve three which is precjsely the corton-

 of reotracles to their width ww taken $\frac{a}{b}=2$).

Fig. 61. Graphic construction of the flat 0 plane rose of the number of in-
tersections lor the completely orlentated system of lines with two mutually perpendiculary axes of orientation. The orientation along each of the axes is different (rectangular lattice)

A graphic plotting of the rose of the number of irtersections, similar to the one just describea, wes made by us for the case of uniAorm orientation of lines of a system with three orientetion axes located e.t ar. arole of 120 degrees to each other. This plot, which is velid for isogoral grids made up of regular hexagons (see figure 454) or triangles (Figure 54B), is shom in Figure 62.

Fig. 62. Plane rose of the numier of intersections for the fully oriented system of lines \because ith three axes of orientation placed at an angle of 120°. The degree of orientation along all three axes is identical. (lattices from regular hexagons or triangles

As the number of orientation axes is increased further, the shape of the rose of the rumber of intersections aproaches still closer to a circumference. Therefore, an isometric structure may be regarded as one that does rot have orientation axes, as well as one that has an infinitely large mater gi axes.

Let us examine the analytical and the oraphical corstruction of the

 encourtereci in prictice.

Let a partial Z_{i} oriented syster. of Ines he comprised of two $2,0-$ tems, the oriented syistem and the isometric syotem. The rumber of intorsections if the socsin wisth the orierted postion of lines of the system is defined, depe.dire upor the direction, by Formula (22.1). It is inown (See Sectior 20) wint the value of $\frac{1}{a}$ is equal to the specific lenrth of the oriented portion of the lines of the syster, $P_{\text {or }}$ $n \mathrm{~m} / \mathrm{mm}^{2}$. mherefore, we can rewite Formule (22.1) as follovs:

$$
\begin{equation*}
m_{\alpha}^{\prime}=\sin \alpha \cdot \sum P_{o r} m i n^{-1} \tag{22.4}
\end{equation*}
$$

where $m^{\prime} \alpha$ is the number of intersectiors of tise socant with only the oriented portior of lines per 1 mm of its leneth.

The number of intersections of the secant and the isometric portion of the lines of the system is defired by the Formula:

$$
\begin{equation*}
m^{\prime \prime}=\frac{2}{\pi} \sum P_{i s} \tag{22.5}
\end{equation*}
$$

In that case the total munber of intersections in a siven directior vill be:

$$
\begin{equation*}
m_{\alpha}=m_{\alpha}^{\prime}+m^{\prime \prime}=\sin \alpha \cdot \sum P_{o r}+\frac{2}{\pi} \sum P_{i s} \tag{22.6}
\end{equation*}
$$

From Formula 22.6 it is possible to plot the rose of the number of intersections, knowing the length of the oriented and isometric portion of a systen of lires.

The graphical plot of the rose of the number of intersectiors for protially oriented sustenj of iire is cro. sirples. For this purpose we save to know two valurs, wasured or the ple of the microsectior the nean number of istersuctions of the orientel portion of lires $f i=$ systar with the secart perperdicular to the oriendaion axis, m'nc, ar. be mean number of intersections for the isometric fortion of lises c_{n}^{n} a sutem, $m^{\prime \prime}$. If we know the specific lengths of botk portiors cf lives of asystem, $\sum \mathrm{F}_{\text {or }}$ and $\sum P_{i s}$, we can calculete tho values ve need from Pomilas (22.4) and (22.5), respectively.

Fon the first of these values, we plot the rose of the nuber of intersections for the oriented portion of lines. It will be described by twic circurfererces, the diameters of which are mgo targent wo the oriertation Exis at the origir of vocidrates (see Eigure 55).

In using the second vaiue, we plot the rose 0_{i}^{2} the number of indersectiors for the iscredicic rortion of lires of tas system. It wis be a circurference vith its ceiter at the origir of coorinates. The vabibu of tite circunfererce :iz- se m" (see Figure 57).

The rose of the numer oi intersections for a partially oriented

redii-vectors of the plotied auxiliary rose for eech direction. Ir the plou shown in Figure 63, it has been assumed thet the specific length of the oriented portion: of the lines is $3 / 4$ and that of isonetric portion is $1 / 4$ of the total specific length of the lines of the syatem as a whole.

Fig. 63. Graphic construction of the plane rose of the number or intersections for the partially oriented system of lines in accorciance with the the numbers of intersections on secants parallel and perpendicular to the axis of orientation.

To have an accurate sonparisor hetweer contours of theorcticenty

 systen scperatel.

Iet us ex amine the pantially oriented systen of ferrite bounday lines shovr ir Fienre 5^{\prime}. Secarts, directed parallel to the oricritathon axis of bounaiary lises, do not intersect thonc elements of loundury
 directior as the orimtetior axis of tho yaten. Hence, it follows that secants directed parallel to the oriertaidu. axis intervect onju
 2nes.

Therefore, the rimuer of intersections determined or the secar. t s perallel to the orientation axie, will he the actual rumber of irtersectiors with the isometric portion of lires of en system ir. Ery direc-

$$
m^{\prime \prime}=m_{n} m^{-1}
$$

Where m_{1} is the mear numer of intersections of the directed secant, parallel to the orientation axis, per 1 mm of its length.

On the basis of this value it is possible to determine directly the length of the isometric portion of lines of a partially oriented system on a plane:

$$
\begin{equation*}
\sum P_{i s}=\frac{\pi}{2} m_{11}=1.571 \mathrm{~m}_{11} \mathrm{~mm} / \mathrm{mm}^{2} \tag{22,8}
\end{equation*}
$$

The secord Eroup of secants are directod perpendicularly to the oriertation axis and tio mean number of intersections por 1 rur: of their Zength is desigrateci as an $_{2}$. This number is obviously made up of the nunDer of intersections of tise isometric portion of ince of the sy fen,
 of intersections with orly the orierted portinn of lines and the sectrat Cirected ferpendicina to the orientation ain all be

$$
\begin{equation*}
m_{1}^{\prime} g_{0}=r_{1}-n_{1} n_{n}^{-1} \tag{22.9}
\end{equation*}
$$

Later we shall prove that the specific lereth of lires, anoletely oriertec alore ore oriertation axis \therefore a systen, is rrecisely equal to the meal amber of intersections Fam of lergth of the secant directed jerpenifular to the axis, that is

$$
\begin{equation*}
\sum F_{o r}=m^{\prime}{ }_{90}=m_{2}-2 m m m / m^{2} \tag{22.10}
\end{equation*}
$$

Thus using two groups of secants, of whick ore is dipoted parallel to the oriertatior axis and the second is perpendiculaf to it, will determine inapendertiy the nicar maner of intersections for lines of the orierted and isometric portjor, or a system. Formulas 22.0 ard 22.10 make it possible to meachre serarately the specific jencti of the orierted ard the isonetric portions of lines of the system therselves. The total leagth of all lines of a rartiall: nriented system of lires on a plane will be defired by the Formuia:

$$
\begin{equation*}
\sum P=\sum P_{i s}+\sum P_{o r}=m_{\underline{l}}+0.571 \mathrm{~m} \mathrm{~mm} / \mathrm{mm}^{2} \tag{22.11}
\end{equation*}
$$

Knowing the same two values, determined by calcuating the intersections on tremicrosection i: two sutually perferdicular directions,
m_{1} anci m_{11}, it is possible also to calculate the degree of orientation of Iires aí a system usirg (Formula 21.1), taking into account Formules (22.3) ard (22.20), as converted to the followince formula:

$$
\begin{equation*}
c x^{\prime}=-\frac{P_{\text {or }}}{F_{\text {or }}+F_{\text {is }}} 100=\frac{m_{1}-m_{n}}{m_{\underline{1}}+0.571 m_{1 \prime}} 100 \% \tag{22.12}
\end{equation*}
$$

Now we shall illustrate froin a ouncrete example the aplication of the method of birected secarts to a partielly orierted syster of bourdary lines, winch has been proposed previously. The systom of lines is shown ir. Figure jf. It is a system of bourdary lines of silicor ferrite grains or a rricrosection of transforner steei. The plane of the microsection is perpericular to the surface of the steel sheet and parallel to the rolling direction. The number of intersections on secarts lying perpendiculer and parallej to fle ortentation axis:

$$
\begin{equation*}
\mathrm{m}_{\underline{1}}=\frac{792}{34^{-}}=23.3 \mathrm{mn}^{-1} \text { and } \mathrm{m}_{11}=-\frac{378}{50}=7.6 \mathrm{~m}^{-1} \tag{22.13}
\end{equation*}
$$

A. Seewnt perperdiculas z the ountation apds B. Secant paralle to the oucestation afeo. Tabje 24

Using Formula (22.8) we fir: the specific lereth of lines tre positionire of which is isonetric:

$$
P_{\text {is }}=1.571 \cdot 7.6=11.9 \mathrm{~mm} / \mathrm{mm}^{2}
$$

From Formula (22.10) we find the oriented pertion of the bovedary line per u:it wrea of the microsection:

$$
P_{\text {or }}=23.3-7.6=15.7 \mathrm{~mm} / \mathrm{rm}^{2} \text {. }
$$

The total lemeth of erain boutary lines is equal to the sume of separatel ioturmired ralues, that is $27.6 \mathrm{~mm} / \mathrm{mm}^{2}$. The degree of oriertation of houndary lines, in Fiemre 6 , we determine from Formia (22.12) :

$$
\alpha=\frac{-(23.3-1.6) 100}{23.3+0.571 \cdot 7.6}=57 \%
$$

Using here the values obtaindi for the meen numers af antections, \therefore win an pe can plot the rose or the nunter of irtersections for the sirccturs showr ir. Fieure 64, that is, we can determine uaphically the relationshif between the numer of intersections Ier In of the directed secast and its dirccticr, with respect to the orientation axis. The plos is siove in Figure 65. Orae s.e quadrent of the foiar systeni of
 muner of indorections is symetrical yith respect to the cuowinate axes.

The mear mmbers of irtersections in two nutualy perveaioular directions can be measured as directiy on the microsection. This can be carried out most corveriertly in an aparatus for the detemination of riof :iciohardness, Plif-3 with the ocular that has the cross hair.

64

Fig. 64. Partially orientated system of iines of grain boundaries of silicon ferrite of sheet transformer steel

Fis. 65 Graphic construction of the plane rose of the number of intersections for the system of boundary lines of the grain of silicon ferrite
(Fig. 64)

Section 23. The Rule of Total Projection for a Plane and the Verificathor. of the Lethal of Directed Secants

For the verification of relationships between true parameters of a plane structure and pownetors measured in auntivetive microanalyses, What is frequently feasible is to calculate ir adverse the parameters subject to measurement and after that to ware the valued cutained ritter actual? ...easurene:te.

Let us aw ore that it is recescuin to determine the tots. Length of fillers of plastic rornetallic incisions, stretched out along the direaction of rolling, on a longitudinal microsection. Ar i area of a microsection, magnified one hundred times, is drawn soleraticaily in Figure gif. The actual dimension of this area (on the nicrosection) is $1 \times 1 \mathrm{~mm}^{2}$. Let us draw on this sketch a fretwork or equidistant parallel lines perredware to the orientation ais of fibers. We assume that these lines are directed secants. The distance between adjacent lines is taken equal to \triangle. Thus, we have a number or narrow strips Δ wide and i uni long. The number of strips (or secants) or the area in Figure (6 is otvicusly equal to $\frac{1}{\Delta}$
dow Lot us calculate the thur of intercepts of rivers of nortetanic inclusions ir: each stria. In there shove orle a fruition in the strip lati, (that is, the ord of fiver falls within the stain) we court it ir providing that this fraction is greater then $0.5 \triangle$, and neglect it if it is not. Let us assume that the first strip has α mimer of fikore N_{1}, wise second one has m_{2}, the third has m_{3}, etc. In that case the sur of lengths of all intercepts of inclusions in the first torn i: ${ }^{2} \Delta$; in the second it would be $m_{2} \Delta$, etc. The total length of all fibers of :metallic inclusions in the area of figure fr (then is, fer 1 mr. ${ }^{2}$ of the i..icrosectior.) word. 1 e :

$$
\begin{align*}
& \sum P_{\text {or }}=\Delta\left(m_{1}+m_{2}+r_{2}+\ldots\right)= \\
& =\frac{m_{1}+m_{1}+m_{3}+\ldots}{(1: \Delta)}=m_{\underline{1}} m m_{1}^{2} . \tag{23.1}
\end{align*}
$$

The value $\left(\frac{1}{J}\right)$, force in the denominator, is equal to the niter are

total number of intercepts, which is equivalent to the total mumber of irtersections of directed secants and fibers of rometallic irclusions in an aiea $1 \mathrm{~mm}^{2}$. Herce, it follows that the totai lergth of inclusions elorgated by rolling per unit area of iongitwhinal microsection is equal to the mean rumber of intersectiors of irciusions and secarts, directed perperdicular to the orientation axis of fibers, per 1 ma of length of these secants.
:He lave derived in Scction 22 an equation, identical to Formula (23.1), for a systen of farallel equidistant liras, where the valỉity oi tiois relationsliy ic cuvicus. Now we car see tiot the same relatiorwip is valid for a systor fe paralle lines vhose iergth and locatior a E plane maju be rardon. Freviously, wher deririme Formula (22.10), ve elready used the relationship now obtained.

Let us corsider anothen system of lines, consistirg of a number of closed contoure of differor venfigurations asd of sui.er sections of straight lines and curves, disposed randomly, as shown in Figure 67. In Figure 57 we take the abscisse es the axis to which we project all the lines of the drawing. In this case we consider not oriorary projections of lines but their total proicction, by which we moar the sur of lengthe

 total proiection of lires or. Eplane, ind also of planes ia space, hes a practical use ir derivation ax. vorisication of methods of quantitative geometrical analyses of lane and spatial struetures.

Thist as in the preceuing case, we drew a selies of parallel eciuidistert lires ir Fighe fi, perpendicular to the base line of the drawing which we have chosel as the axis. It may readily be seer thet the narucy of irtercerts of tac jines of the syster: ir: etol strip will equal tho number of thejry yovidons or the base lino of Figure 67 in the same三trip. Usire the gatie Iouic as ir the derivatio: of Enrmule (23.1), we core to the corclusic: wrat the meer. runter of intorsecticra jes ? in

Fig. 66. Diagram of the derivation of the formula (23, 1)
Fig. 67. Dlagram of the derivation of the rule for summary projection for a plane

Frevjously derived formia (23.1) is a specific case of this genere] rule irasmuch as in a syster of lines similar to one sitown in Figure 66, the rotion of the total lereth of lines of a gystor: is uquivicurt io the totel projection of thesc lines onto the direction parallel to them (that is, perpendicular to directed secants.)

The rule of the total projection makes it possible to predeternine the meas rumer of intersections ior a chosen geonetrically definite

 vill re defired bu cqueticas

$$
\therefore=\text { irrere }{ }^{-} \text {. }
$$

In this case the directior of secarts is uf inportance, for the
 of ary Eirection is one ard the aume. The syecific ? $\begin{gathered}\text { ath of the bourdary }\end{gathered}$ lines cener.tite, $\sum F_{c}$ is oviously $\pi d-n$. For this reasor the latter सR, in ion rey be irserted irot the preceding:

$$
\mathrm{v}_{1}=\frac{2}{\pi} \quad \sum \overline{\mathrm{~F}}_{\mathrm{c}} .
$$

(20.6).

Let us apply our rule of total projection to verify our assumption that e partially oriented system of lines may be divided into tiv systems, a system: completely oriented ard a system which is completely isometric. Let us examine a plane which contains a large number of identical ellipases, randomly disposal on the plane but oriented in such ε mercer that all large axes of the eclipses are mutually parallel. This system:. of elliptical lines on: Plane, oriented in the manner described above, we regard as a partially oriented system of lines with the orientation axis parallel to the large axes or the ellipses. Let us designate the perimeter of each ellipse as P, the large half-axis as a, the small halfaxis as b, and the number of ellipses per mint area as a.

The first group of secants is drawn perpemtoular to the dircotion of Edge helf-wes on apses. For this case, he meat number of intersections zen at lust of secants, aqua ic the total mojecifo of ellipses (ute the urretion withe med, wild be:

$$
\left.r_{0}\right]=4 \varepsilon x \quad(c, 0)
$$

The, average number of intersections pour wit length of secants for the second erour of secants, fophadicula 0 the secants of the first group, one, consequently, to the direction of a small axes of ellipses, will bo:

$$
\begin{equation*}
m_{11}=4 \mathrm{on} \tag{23.3}
\end{equation*}
$$

The total length of perimeters of whole ellipses, jer writ area can be four from tine formal of the retrod of directed secants for a pare (22.1.):

$$
\sum \bar{F}=\dot{a}_{2}+0.571 m_{11}=4 n(a+0.571 b),
$$

from which we find the perimeter Ienetin of ore ellipse:

$$
\begin{equation*}
F=f_{1}(a+0.571 b) . \tag{23.4}
\end{equation*}
$$

The exact value of the lergti of the perimeter of an ollipso is expressed by the formula [139]:

$$
\begin{equation*}
\hat{r}=\pi(a+b) k, \tag{23.5}
\end{equation*}
$$

where the value of the coefficient k is define be the irfirite surlou:

$$
\begin{aligned}
\text { with } & =1+(1 / 4) r^{2}+(1 / 64) r^{4}+(1 / 256) r^{6}+\ldots \\
r & =(a-b)(a+b) .
\end{aligned}
$$

We can calculate exact values of the perimeter length of en ellinge fron Formula (23.5) ard approximate values by the nethod of ajrected secarts from Formula (23.4). The magnitude of error, expressed in per cert, versus the ratio of the lengths of the eliipse axes, is shown in Ficure 68. The highest possible error, equal to a 6.8 per cert, nocurs et the ratio of $\frac{a}{E}$ of about 3. Beycia this narrow rance the machithide of the error wopidiy decrease: the dat should te taker into consideration thet un ellipge kas mocoily chargire curves, in wach rectininear

 ciferdea sconts, or the ground that scme investigators accept the "frein shepe" of ar ciorgated volumetric grain as a figure of rotation of a lorgitudiral cross section wich is an ellipse. The rosults of another method or verification yill bo presented wher corcilering the wethod of dipected sebarts fry a space.

If it is necessary to determine the total length of bourdary lines or a plane, it is possiole to apply an earlier veriation of the method of directed secarts [59]. The total loneth of lines ir an isnnetric system is principaly expressel v_{y} the equation of the method of rardon secarte for a plane, the application of wich is valid for aty wirection of secants วn a plare:

Fig. 68. Frror in the determination of the perimiter of the ellipse by the
method of directed secants as a function of the resiom of the lengths of the semiaxes of the ellipse of the ratiom of the manam

The leneth of lines of a completely oriented systen is defired hj_{j} Fornula (22.4), are an appropriately different mean number of intersectiors is oltained for each directior 21 the secant with respect to the orientatior axes:

$$
\Sigma P_{\text {or }}=\frac{1}{\sin \alpha} m \times \pi \mathrm{min} / \mathrm{mm}^{2} .
$$

We cannot apply either of these formulas to the determiration of the total iencth of boundary lines of a partially oriented syster by the method of dircoted secants, for the coefficierts of n in these formulas

 tetior axis, the (vifficjert it tho lat dormule nay be mace pecisely Cqual to the cuefficiort ca thic lain formula for a plane, that is -

In that case the need. for separate computetion of ir tersections with oxicate? and ienctric portaon of boundary lines is eliminated. We equata,

$$
\frac{1}{\sin \alpha}=\frac{\pi}{6}=1.571 .
$$

From this equatior we find that it is necessary to nairtain an angle \mathbb{A}, formed by dinected secarte ard the (rientaticn axis, or 35.5° or epproximatejy 40°.

Consequerti,; if directer secuts Enrming an argle of 40° with the oriertation nris are used, ard the wann number of jrterzections fer l man of lergth of these secarts is determined, then the leneths of bourdary iines of partially orientes systems may te calculated from the lensic formia of the rethod of ardom secents (aC.7). The corclusior fust derived is verified for the structure show in Zigure (4. For 300 se-
 equal to C. in (fo mir. Figure f4), a ver. fire agreener.t letueen the length of emin burcary with the jenzo calculated from the basic fomia Lis 01 tained.

The mear nurien of irtersecticrs per che secant is 14.05 , ard ij. 6 irtersections per i arm of the length of secarts. The specific length of lines in Figure fi, claculated from tie besic formila for a plas, will

$$
\sum P=1.571 \cdot 17.6=27.6 \mathrm{~mm} / \mathrm{mn}^{2}
$$

Previously for the same structure we found the same value obtaire？ 3 the methoo of separate determination of ondented and isometric portions of lines usine 2 eroups of mutucily perpendicuiss sosants（see the date in Caile 24 or pace 173）．This absolutcly idol．tical agreencht letwem：

 シャッブさ。

10 the ceterrimation－we tctal specific－cecth of lines of a partially oriented sjuter or a plare ve car uso the method of random secants．The method of coizque secarts cr a plare is rot the only oro
 ．．owever，of irteros，yor it is possible to develop in analoey with ith an appropriate nethod for spatial structure is which arawine of socants in all possilla $\dot{\text { arections }}$ ie practicelly impossille．

THe method of directeci suants，althoust it is nu ins rigorous fron the nathemeal viencin，it is quite valuable due to the fact thet it is the only methoi permitting qualitative evaluation of the cogroc of orientation of sutens of lines or a plate．

Sectioin 2i. The Letiod of Random Secants ion Three-Dimensions; Systens of Boundary Surfaces in Three Dinersicus

Considering the boundary surfaces of mionoparticles in three dimensions, ve can aproch their ciasification wh blarauterisatior from
 ceitned by the rature of the microparticles mich they separate. In pure polycrystalline metals and ir solia solutions, the drystal"inity and the compation of microparticles (crystallites, grains) are the sane; adjacent microparticles differ only as to crystailographic orientation of lattices ir spoce. In more complex fomations, sureces way separate

 superimposed. Za hypoutectoid steod urain surfaces or fowite exd perr-
 mej caircide ritt. ulo surface of other ferrite grains and : 10 pearlite Erains. For tilis reasor, ir hypewiectoid steel deac raj wocus suraces

 the peanizie itse? - wid surfaces of norretallic inclusions wich have boundarite loli: fit: ferrite ayd fariite (prodominartly with the first 0!: © \cdot

Wran the aforesaid it folions that systems ni surfaceo may be reBracici eather as the tutal sixiace of the Eiver theoc or structural

As to its corficuration ir space，a system of surfaces may consist of closed contours isolated from each other，or jt may be ore practically cortimous surface，forminç a three＊dmensioral sininan retwork．Inter－ neliate shapes are also possibel．

Just as the ayatems of lines on a plane，the systems of surfeces are classinien as icometric and rartinlly or comrletely oriented．It is obvious thet a greater variet；oriertations are possible in three－

 that they are plane we erert momals to each urea．If it happers that

 nitude of the ando and rot ipor the dirt tion，we regard the syatem of

 their surace an axhole ere jeretrin is space．Giver that each group

 cther Cここ：\therefore
\therefore Ste\％as \％サRa？e

The isometricity of a spatial structure may be given another definition. Fron some point within a volume of an alloy we direct straight lines in different directions of three-dimensional ipace. If the number of intersections ol these lines with the surfaces of a system, which is of interest to us, divided by a length which is the same for all lines, is identical for $a l l$ lines and independent of their direction in space, then this system of surfaces is isometric

Since there may be a great number of different types of space orientation of boundary surfaces, we shall consider here the basic, the more typical ones which frequently occur in real structures. They are shown schematically in Figure 69. The schematic drawing in Figure 69a corresponds to the case of disoriented or isometric system of surfaces. It shows a three-dimensional structure of a polycrystalline aggregate with grains equiaxed in space. It is obvious that a structure may be more complex, for example, it may consist of many phases or structural constituents. Thus, surfaces of graphite precipitate in cast irons (except the so-called $x \times x$ "decomposition graphite"), surfaces of the cementite and forrite phases in granular or lameilar pearlite, surfaces of twinnins fiwats ir coppor on mastonito, surfaces of brittle equiaxed particles of nonmetallic inclusions (although the particles themselves may be oriented as a "chain" in the direction of rolling) and many others may serve as examples of systems of isometric surfaces in space. In one and the same compler structure, surfaces of microparticles of certain phases or structural constituents may be oriented, whole surfaces of microparticles of other constituerts may be isometric.

Plastic deformation, carried out at temperatures sufficientij low to produce residual strain of microparticies, is responsible for the appearance of space deformation of their surfaces, generally for a large group of microparticles or even for all microparticles without any exception. It should be noted that on a flat section we have frequently observed identical structure types of the orientation of grain boundaries, whereas the space orientation of corresponding boundary surfaces radically differs. Sometimes an isometric system of grain boundaries may be observed in a microsection, whereas the corresponding surfaces have a
clearly manifested spatial orientation. For example, on a transverse microsection of metal, deformed by drawing, we can observe an isometric network of boundary lines on a plane whereas the corresponding boundary surfaces possess a quite considerable spatial orientation. Henco it folflows that it is important to correctly choose planes of a microsection in the case of oriented structures. For example, from a transverse microsection of metal, deformed by drawing or by rolling, we cannot form a correct idea either about the true grain size or about their shape. In some cases one microsection is not sufficient at all, in order to form an idea on a three-dimensional structure of an alloy.

Fig. 69. Diagram of the kinds of orientation of the systems of the boundary surfaces in space.
a--isometric sy tem; b--linearly oriented; MM c--oriented in a plane; d--linearly oriented and plane-priented syotem of surfaces

The shape of grains subjected to various types of plastic deformation changes to quite a degree. Drawing or rolling of rods of approximately equiaxed cross section modified the spherical shape of the grain surface, elongating it in the direction of drawing or rolling, whereas the cross section of grains in the plane perpendicular to this derection is reduced. As a result, grains acquire shafes of more or less elongated fibers. In this case of deformation, the system of surfaces of microparticles acquires the orientation, the nature of which is illustrated by the schematic drewing in Figure 69d. In this type of deformation,
a ceratin part of elements of surfaces of microparticies, which (elements) we regard as flat areas of an infinitely small but similar size, happen to be not disoriented but parallel to the axis of drawing or rolling. In a section perpendicular to this axes, the plane system of boundary lines appears isometric and grains appear equiaxed. A system of surfaces of this kind (Figure 69d) has a linear (axial) symmetry, the axis of wire or rolled product, of equiaxed cross section, being the axis of symmetry. The structure in any plane passing through the axis of symmetry is statistically identical.

A system of surfaces, similar to one analyzed, the elements of which have a preferred orientation parallel to one line, deformation axis (which we understand as the direction of action of the force causing the deformation), we shall call a system of surfaces with linear orientation. The same kind of orientation is observed in crystallized structures: the axis of symmetry of surfaces of columnar crystallites is the line perpendicular to the surface giving off heat.

The elongated shape of microparticles (Figure 69b) does not necessarily predetermine the linear orientation or their surfaces (for example, the structure of babbit))Figure 4). It is not the shape of microparticles that is important but the regularity of their orientation in space.

Basically the different type of orientation of surfaces is produced by compressive deformation (upsetting), which reduces the size of microparticles in the direction of action of the force and uniformly increase their sizes in directions perpendicular to the deformation axis. From the viewpoint of space symmetry, the shape of flat grains and the system of surfaces of grains deformed by compression (Figure 69c) have the same axial symmetry as the systems of surfaces with linear orientation, with the axis of symmetry being also the axis of deformation, that is the direction of action of external forces.

Just as in the case of systems of surfaces with linear orientation, plane systems of boundary lines in cross sections perpendicular to the axis of symmetry are isometric, the grains are equiaxed and in cross section, passing through the axis of symmetry or parallel to it, a statistically identical structure is observed. Nevertheless the difference in orien-
tation of surfaces of micronarticles of the type shown in Figure 69b and c attracts attention: in the first drawing; in the first approximation, the oriented portion of the grain surface is cylindrical whereas in the second type it appears as plane areas. The principal difference between these two systerns of surfaces (Figure 69b and c) is clearly manifest when the systems are regarded as broken down into elementary plane areas, as it was done previously. In the case of an isometric system of surfaces, these areas are completely disoriented in space; in systems with linear orientation a certain part of areas is oriented parallel to the axis of symmetry; in the latter case (Figure 69c) the oriented part of areas is disposed perpendicular to the axis of symmetry or to the direction of forces causing deformation. For this reason, this system of surfaces we shall call a system with plane orientation.

Speaking of systems with linear or plane orientations, we always have in mind oniy a partial orientation of a given type, sinco in practice a complete orientation is never encountered.

Schematic drawing of the systen of surfaces, simultaneously corresponding to the presence of both considered types of orientation, linear and plane, is shown in Figure 69\%. This type of a structure may be produced by forge rolling, by rolling as strip, etc., when microparticles are flattened and simultaneously widened but not to the sane degree i: the sirection of rolling or forge rolling and perpendicular to it. In this case, microsections, made in all three planes (parallel to the surface of the strip, perpendicular to it and simultaneously parallel to the axis of rolling, and also perpendicular to the axis of rolling) have different plane structures.

From Figure 69 it is apparent that there is a great diversity of grain shapes and systems of surfaces of microparticles, which is determined by the type of plastic deformation and, naturally, by its degree. Previously we have examined only the simplest cases, whereas in practice there occur other, more or less complex, types of deformation and, correspondingly more or less complex types of orientation of surfaces (for example, in torsion, bending, removing of the chip by different types of cutting, etc.).

The type of orientation of boundary surfaces is the most important characteristic of nonisometric structures. With the plane structuic being the same with respect to quality as well as quantity, the space structure and, consequently, the behavior and property of the metal, dependent upon this structure, may differ a great deal. For example, a structure, shown in Figure 64, may occur on a microsection of metal which may possess linear and plane orientations. The values of specific surface, the radius of its curvature and, consequently, the degree of thermodynamic stability of the structure, are precisely dependent upon the orientation present in a given case.

For this reason, the value of the grain axis ratio as a characteristic of a plane structure, as was proposed by Ye. Geyn, F. Rapatts, et e.l., is meaningless if we do not know the type of spatial orientation of microparticle surfaces. At the same time, many investigations frequently indicate the precise degree of deformation but without mentioning its type, which deprives us of the possibility of estimating the spatial orientation of surfaces at least from the type of deformation used and responsible for this orientation.

On the basis of the aforementioned consideration, we come to the conclusion that the magnitude of specific surface alone is not sufficient as the characteristic system of boundary surfaces. The quantitative evaluation of the degree of a given orientation in terms of the basic types, is also needed. It is all the more needed, for as we shall see further the determination of the value of specific surface itself reauires that the type of the orientation be known.

Section 25. Measuring Specific Surface by the Method of Random Secants for Space

For the measurement of extent of surfaces in spade we shall use the same principal which underlies the method of measuring the length of lines on a plane by the method of random secants. In space there also exists a singular relationship between the mean number of the intersects and the value of specific surface of a given boundary system. The solution of Buffon's 2-dimensional "needle" problem, which underlies the method of random secants on a plane must be revised to be applicable to a 3-dimensional space problem.

The analogy is confirmed by the complete agreement between the dimensionalities of quantities measured and calculated in both cases. Both on a plane and in space, the dimensionality of the mean number of intersections per unit length of secants is expressed in mm ${ }^{-1}$. However, dimensionalities of these specific length of lines on a plane (measured in $\mathrm{mm} / \mathrm{mm}^{2}$) and specific surface in space (measured in $\mathrm{mm}^{2} / \mathrm{mm}^{3}$) are also expressed in mm^{-1}. Thus, the coofficient of proportionality between the mean number of intersections per 1 mm of lengths of random secants and the specific length of lines on a plane, or surfaces in space, is a nondimensional quantity.

The derivation of the basic formula of the method of random secants for space, similar to the corresponding formula derived for a plane (20.7), may be based on any system of surfaces in space. The surfaces of a system may be plane or curved, with any curvature, continuous or interrupted, composed of individual surfaces isolated from each other bounding a definite section of space or leaving it open; the surfaces may intersect each other or not come into contact at all; the elementary areas, comprising surfaces of a system, may be completely oriented, that is, laated parallel to one (or several) planes or lines; they may be orientel only partially for, finally, they may be completely disoriented. In other words, a system of surfaces may have an absolutely arbitrary shape as well as location of surfases, that is, of its componenta. There is only one uniquely essential requirement; the magnitude of the total area
of a given system of surfaces in a unit of volume of the epecimen, which is being analyzed, must be representative of the entire volume of the aggregate which is the object of studies.

A large numbor of straight lines (secants) are drawn through the volume of metal or alloy, their location being random and their direction random. Under these conditions, the mean number of intersections of random scconts witt surfaces or a given boundary systex, in the structure of metal, divided by the urit length of secants (1 mr), which we shall designate as m, will be proportional to the value of total surface of boundaries in the unit volume of metal; i. e., it will be proportional to the value of specific surface; it will be dependent exclusively upon the latter. The relationship between these two values is expressed by the basic formula of the method of random secants for space:

$$
\begin{equation*}
\Sigma S=2 \mathrm{~m} \mathrm{~mm}^{2} / \mathrm{mm}^{3} \tag{25.1}
\end{equation*}
$$

Let us prove analytically the validity of Formula (25.1). For this purpose, we shall isolate a large number of cylinders leaving the volume of metal or alloy which is being investigated. The axes of these cylinders will be secants that we have drawn. The cross section of cylinders, F, is assumed to be disappearingly small, so that when the limit F approaches zero, the cylinders themselves become straight lines coinciding with the axes of cylinders; that is, secants. The total length of all random secants and, consequently, of all cylinders in the volume of metal in question we shall designate as L.

Surfaces of cylinders intersecting boundary surfaces of the metal structure, found in the volume in question, will carve out a large number of elementary areas from boundary surfaces, which we regard flat, inasmuch as the section of cylinders, F, approaches zero. In that case, the shape of these elementary areas will be elliptical. Let us designate the total number of these elementary ellipses as Z; their areas as $S_{1}, S_{2}, S_{3}, \ldots . S_{z}$; and acute angles, formed by the areas to the axes of cylinders as $\gamma_{1}, \gamma_{2}, \gamma_{3}, \ldots \gamma_{z}$, respectively. Then we may write 2 nunber of similar equations:

$$
s_{1}=\frac{F}{\sin \gamma_{1}} ; S_{2}=\frac{F}{\sin \gamma_{2}} ; s_{3}=\frac{F}{\sin \gamma_{3}} ;
$$

and so on.
Hence we find the total ares of all elementary areas carved out by the cylinders:

$$
\begin{align*}
& \mathrm{S}_{1}+\mathrm{S}_{2}+\mathrm{S}_{3}+\ldots+\mathrm{S}_{z}=\mathrm{F}\left(\frac{1}{\sin \gamma_{1}}+\frac{1}{\sin \gamma_{2}}+\frac{1}{\sin } \gamma_{3}+\ldots+\right. \\
& \sin Y_{z} . \tag{25.2}
\end{align*}
$$

The total volume of all cylinders is obviously FL. Since a large number of cylinders were taken and they were located periodically and randomly throughout the entire volume subject to investigation, now we may believe that the total area of body surfaces found within the cylinders, divided by their total volume, corresponds to the value of specific boundary surface characteristic for the entire volume of metal in question, that is to the value of S. Therefore,

$$
S=-\frac{S_{1}+S_{2}+S_{3}+\cdots+S_{z}}{F L}=
$$

$$
=\frac{1}{I}\left(\frac{1}{\sin } \gamma_{1}+\frac{1}{\sin } \frac{1}{2}+\frac{1}{\sin } \frac{1}{3}+\ldots+\frac{1}{\sin \gamma_{2}}\right)
$$

In the limit, when the cross section of cylinders, F, is reduced to zero, the cylinders will be straight randomly directed lines (random secants) and the total number of elementary areas, Z, carved out by the cylinders, divided by the total length of all secants, L, will be equal to the mean number of intersections of the secants with surfaces of structural boundaries divided by unit length of secants; that is, it will be equal to m. For this reason,

$$
\begin{equation*}
\Sigma S=m\left[\frac{1}{2}\left(\sin \gamma_{1}+\frac{1}{\sin \gamma_{2}}+\frac{1}{\sin \gamma_{3}}+\ldots+\frac{1}{\sin \gamma_{z}}\right)\right]=\mathrm{Bm} \tag{25.3}
\end{equation*}
$$

Since the cylinders, carved out in space, are directed randomly and chaotically, any position of a cylinder axes with respect to elementary areas carves by it, estimated by angle γ, is equally probable. For this reason, the part of the equation (25.3) found in brackets and designated as B is the mean reciprocal value of the sine of angle γ formed by the axes of cylinders and elementary araas; this angle varies
between zero and $\frac{\pi}{2}$. Let us find the value of B, assuming that any value of angle γ is equally probable, with-in the aforementioned limits.

We choose a system of rectangular coordinates with axes x, y, and z, with the radius-vector (the length of which is equal to unity) through the origin of coordinates. The coordinates of the second, nonstationery end of the radius-vector, we shall designate as x, y, and z. Let the angles, formed by the radius-vector and coordinate planes az, $x z$, enc wy respectively, be equal to α, β, and γ.

Now, by simple geometrical relations we find the value of the sine of angle y formed by the coordinate plane $x y$ and the radius-vector, as a function of direction of the vector in space, determined by coordinates of its nonstationery end:

$$
\sin \gamma=\sqrt{1-x^{2}-y^{2}}
$$

It is obvious that the choice of any of the three angles, formed by the radius-vector and coordinate axes, is equally correct, and identical results would be obtained in all three cases. The reciprocal value of the sine of the chosen angle will be equal;

$$
\begin{equation*}
\frac{1}{\sin \gamma}=\frac{1}{\sqrt{1-x^{2}-y^{2}}} \tag{25.4}
\end{equation*}
$$

The mean reciprocal value of the sine of angle we shall find by integrating the function (25.4) within the limits of the first octant of the coordinate system, using the theorem of the mean value of a function;

As a result of integration of function (25.5) within the above-mentioned limits, we derive the exact figure w. By substituting this value of the coefficient B into formula (25.3), we finally derive the basic formula on the method of random secants for space:

$$
\Sigma \mathrm{S}=2 \mathrm{~m} \mathrm{~m} \mathrm{~m}^{2} / \mathrm{mm}^{3},
$$

exactly in the form presented (25.1).

This formula is applicable for any system of surfaces in space under the condition of equal probability of the direction of secants, for which addition was used as a basis for the derivation of values of coefficient B.

However, to satisfy this only requiremont under conditions of $3-$ dimensional space is far from beinf simple, in contrast to the analyses by the method of random secants on a plane. The specimens used in metallographic investigations are not transparent. For this reason, it is impossible to draw random secants in the volume and to calculate directly the produced intersections between secants and boundary surfaces. It is true that it would be possible to prepare a quite large number of microsections, through the specimens of the investigation, locating them uniformly in all possible directions, and having drawn one or several secants on each microsection, we find the total mean value of the number of intersections per 1 mm of length of secants for ail microsections, which mean value would be characteristic for the entire subject as a whole. However, this method is extremely inefficient, although it may be realized, For this reason, we have to find some means for the application of the derived basic formula, which would permit us to limit the analysis to the plane of the microsection instead of in space. In this case, the number of required microsections should be minimum.

The mean number of intersections, m, is independent of the shape of secants drawn in space; they may be not only straight but also curves having a bound or open contour line in the plane, or they may be space curves. The equal probability of the direction of secants, needed for the coefficient B to be equal to the value calculated by us, is absolutely identical to the requirement of equal probability for any angle with which the secant intersects the surface. If the angle with which the secant intersects the surface, assumes all possible values, then the validity of Formula $(\vdots 5.5)$ is completely retained. Let us examine under what conditions the equal probability of any angle, at which the secant intersects a small elementary area (into which we can break down any system of boundary surfaces), is maintained.

Let us assume that all elementary areas or at least a definite fraction of them have a regular spatial orientation, for example, para-
llel to a certain one or several planes or lines. In that case the equal probability of any angle, at which the secants intersect elementary areas, is satisfied only in the case when any direction in space of secants themselves is equally prabable. If all of the elementary areas are completely oriented in space, then a system of arbitrarily directed secants or even only one straight or curved secant, possessing a sufficient length, assures us that any angle of intersection with elementary areas may be obtained with equal probability. In other words, of the two systems which are simultaneously present in the space which is being examined (systems of elementary areas into which we broke down the analyzed boundary surfaces and systems of secants), at least one must be disoriented in space and randomly and periodically directed.

In a system of surfaces isometric in space, the mean number of intersects per I mm of length on any secant, directed arbitrarily, will be one and the same. Therefore, random secants may be arranged, in particular, in one plane and consequently, to limit the analyses only to one microsection.

By intersecting the isometric system of boundary surfaces by a plane we obtain a plane structure with equiaxed grains, similar to one shown in Figure 49. Traces of intersections of grain boundary surfaces on an arbitrarily located plane of the microsection create on it an isometric system of boundary lines. For this reason, the mean number of intersections per 1 mm of length of secants, determined on several microsections the planes of which are arbitrarily directed; will happen to be the same for all the microsections and, consequently, the actual number of intersections, m, for a system of boundary surfaces of the subject as a whole.

Hence, it follows that the method of random secants for space and its basic formula (25.1) are directly applicable for the study of spatial isometric systems of boundary surfaces.

Therefore, in many instances, which occur in metallographis practice, the mean number of intersections may be determined on a single microsection, as has been described for plare systems of boundary lines. For example, for the afore-mentioned Figure 49, the mean number of intersections, m, on the plane of the microsection is found to be equal to 11.6
m^{-1} to -1 (see Table 23). Therefore, the specific surface of grain boundaries in this case is

$$
\Sigma S=2.11 .6=23.2 \mathrm{~mm}^{2} / \mathrm{mm}^{3}
$$

The area of graphite flakes in $1 \mathrm{~mm}^{3}$ of gray iron, the structure of which is shown in Figure 51, similarly happens to be $20.0 \mathrm{~mm}^{2}$ and the specific surface of graphite is $40.0 \mathrm{mn}^{2} / \mathrm{mm}^{3}$.

Prior to applying the above-described methods and Formula (25.1), it is necessary to prove that the system of boundary surfaces, which is of interest to us, is actually isometric in space. Here it should be kept in mind that the isometricity of a given system of boundary lines on a microsection does not prove that boundary surfaces are spatially isometric. For example, the system of boundary lines on a transverse microsection of a round or a wire is isometric, but the spatial isometricity of boundary surfaces must be confirmed by the same isometricity of a system of lines on a longitudinal microsection.

We must warn that it remains to be shown that Formula (25.1) is valid and universal for any systems of surfaces in space, since the coincidence of the mean number of intersections determined on a plane of microsection, and the value m, which is found in Formula (25.1), occurs only for systems with isometric surfaces in space. For these systems, we can write:

$$
m=\frac{\sum S}{2}=\frac{2 \Sigma P}{\pi},
$$

as follows from Formulas (20.6) and (25.1). Hence it follows that

$$
\begin{equation*}
\Sigma S=-\frac{4}{\pi} \sum P=1.273 \Sigma \mathrm{Pmm}^{-1} \tag{25.5}
\end{equation*}
$$

The latter relationship shows that the assumption made by I. P. Lipilin [129], as a first order approximation, that the total length of boundary lines on a microsection is proportional to the total grain surface in a volume, happens to be absolutely invalid. The condition for the validity of this postulate and for Formula (25.6) is the isometricity of a system of grain boundary surfaces (or of microparticles of structural constituents) in space.

The validity of the method of random secants and that of its basic the length of lines on a plane may be measured by several different methods. The experimental verification of the method and formula (25.1) for the case of 3-dimensional space presents a different problem, for besides the method of random secants there are no other methods permitting control measurements of the length of complex surfaces. For this reason, the validity of the method for space connot be verified experimentally on a wide rumber of surface systems characterized by different geometrical shapes and space distribution.

Besides the existing complete analogy with corresponding postulates for a plane, the validity of the method and of the formula of random secants for space is confirmed experimentally on two specific structures distinguished by a definite geometrical regularity which makes it possible to measure the specific surface by other methods. Such types of structures are structures of lamellar and granular pearlites, the methods for measuring the specific surfaces of these boundaries of which have been considered previously in Section 18.

For lamellar pearlite, Formula (18.1), based on considerations of the geometry of pearlite structure, consisting of alternating platelets of ferrite and pearlite each pair of which has the same thickness within the limits of a given volume, is valid:

$$
\sum S_{\text {fer }}=\sum S_{\text {cem }}=-\frac{2}{\Delta_{0}} \mathrm{~mm}^{2} / \mathrm{mm}^{3}
$$

where Δ_{0} is the distance betwee: the platelets, in $m m$. If the basic formula of the method of random secants is valid, then by comparing the latter formula with Formula (25.1) it is possible to establish the relationship between the nean number of intersections per 1 mm of length of secants, m, and the value of interlanellar distance:

$$
\begin{equation*}
\mathrm{m}=-\frac{1}{\Delta_{0}} \quad \mathrm{~mm}^{-1} \tag{25.7}
\end{equation*}
$$

The mean number of cementite platelets intersected by the random secants on a microsection of eutectoid steel, then equals 2 per 1 mm of length of secants. In this case we assume that the secants pass through a surficiently large number of pearlite grains and roughly into platelets at all possible angles to their planes, since the structure of lamellar
pearlite is isomeiric in space. In that case, the mean number of intersections of secants with cementite-ferrite interfaces will be twice as large as the number of intersected platelets, 2 , inasmuch as each platelet is intersected by a secant at two points of its plane. Therefore,

$$
\begin{equation*}
m=22 \cdot m^{-1} \tag{25.8}
\end{equation*}
$$

Let us designate as Δ the value of mean intercept of secants between the edges of adjacent cross sections of cementite platelets (or of ferrite), on planes intersected by secants at all possible angles, as shown in Figure 70. This value obviously is

$$
\begin{equation*}
1=-\frac{1}{2}-\mathrm{mm} . \tag{25.9}
\end{equation*}
$$

Comparing Δ with Formula (25.8) we derive:

$$
\begin{equation*}
\mathrm{m}=-\frac{2}{\Delta} \mathrm{~mm}^{-1} \tag{25.10}
\end{equation*}
$$

Now, by removing the quantity m from Formulas (25.7) and (25.10) we find the relationship between the mean length of that intercept on secants, Δ, measured on the plane of a microsection as shown in Figure 70, and the actual value of the interplatelet distance:

Fig. 70. Structune of láminar perlite and an: intersecting straight inne:

The investigation carried out by \hat{M}. Gensamer and his associates has established from the results of careful measurements that the mean distarce between the edges of cross sections of adjacent cementite platelets on a microsection, which varies with the direction that may be perpendicular to the cross section of platelets or parallel to it, is 1.9 to 2.0 times treater than the actual interplatelet distance (directly measured
in the same grains of pearlite whose platelets are perpendicular to the plane of the microsection) [122]. Uighel that the value measured by M. Gensamer, et al., is identical to the one which we have designated as

The coefficient of proportionality between the quantity Δ and interplatelet distance Δ_{0}, experimentally found by M. Gensamer and his associates, is 1.9 to 2.0 . Precise mathematical calculations, presented above based on the formula of the method of random secants for space (25.1), gives the value of this coefficient as 2. This agreement between experimental and calculated data concerns the validity of the method of random secants for a spatially isometric system of surfaces of phase boundaries in lanellar pearlite. It is obvious that the method applied by M. Gensamer and his associates is a specific case on the universal method of random secants.

When cementite or carbides in steel are spheroidal, their specific surfaces may be measured by several methods distinguished by a different degree of accuracy (see Section 18). The most accurate results are produced by calculations based on the number of carbide grains per unit volume and distribution of their size, which can be determined by the methoc. of E. Scheil. Comparative measurement of specific surface by this method and by the method of random secants, carried out by M. Ye. Blanter, concerned the validity of the method for this type of structures [140]. Similar verification by producing the same results, was carried out by S. 2. Bokshtein [188].

Thus, experimental verification of the method of random secants for space, carried out on 2 types of structures, which permit measurements of specific surface by other methods, confirms the validity of the method itself and of its basic formula for space. It is noteworthy that over a short space of time, less than 10 years, the method of random secants for space has been developed three times [$58,59,131$, 43, 141]. This shows how great is the need for experimental measurement of metal science.

The experimental confirmation of Formula (25.1) also automatically confirms the validity of Formula (25.5), which establishes a direct proportionality between the values of the specific surface of boundaries
in space and the specific length of corresponding boundary lines on a plane, which is valid for surfaces that are isometric in space. On the basis of this relationship, the values of specific surfaces of grain boundaries have been determined for all eight numbers of grain size specified by the standard scale in GOSY 5639-5l. It should be kept in mind that the specific surface may differ, even if the number of planar grains per unit area of the microsection are the same, for there is no singular relationship between any two of these values. Therefore, the figures made by us and shown in Table 25 are valid only for concrete structures on a standard scale.

For a rapid, but approximate, determination, of the value of specific surface of grain boundaries we have developed a special scale. The evaluation of this scale is carried out by means of visual comparison of the picture, visible through the microscope or on a photomicrosraph, and the scale shown ir. Figure 71. In contrast to the standard scale, which has a step-like representation, the proposed scale describes the structure with a continuously and smoothly changing value of the specific grain surface [142]. Values of the specific surface, given on the right, correspond to each horizontal section of the scale, if the magnification of the structure, which is being analyzed, is 100 , 200, 1 , and 500. At other magnifications the value of specific surfaces, derived from the scale, must be divided by 100 and multiplied by the actual magnification at which the structure was examined.

Fig. TiriScale or comparison for the evaluation of the magnitude of the specific surface of the zrein of polyhedric structure. The specific surface is snown in $\mathrm{mm}^{2} / \mathrm{mm}^{3} \times 100$. S. A. Saltykov.

Section 26. Keasuring the Specific Surface by the Method of Directed Secants for Space

As it has been previously mentioned, the basic formula of the method of random secants for space is universal and valid for any system of surfaces. However, its application for cases, when system of surfaces are not isometric in space, is difficult due :"o the fact that the determination of the mean number of intersections, m, requires that secants must be arranged in space in different directions. Therefore, to determine the mean number of intersections which would characterize the entire space system of boundaries as a whole, theoretically an infinitely large number of microsections with planes differently oriented in space, is needed; in practice the number of such microsections should be at least six. Although the application of formula (25.1) in the case of space oriented systems of surfaces is theoretically valid and permissible, due to the aforementioned reason in practice it is more expedient to use varieties of the method of random secants developed for the application to oriented systems of boundary surfaces. Such methods have been proposed by us $[59,60]$ and by A. G. Spektor [61]. When applying these methods, the secants are arranged not randomly but are directed in a definite manner and rectilinear secants are used exclusively. For this reason, methods of this kind, in contrast to methods of random secants, may be grouped together under the name of methods of directed secants.

The method of A. G. Spektor is intended for the measurement of specific surface of boundary systems having a special axis of symmetry. According to our classification (see Section 24) structures of this type belong to systems of boundary surfaces having either linear or plane orientation (but not both types of orientation simultaneously).

For systems of surfaces having an axis of symmetry, the mean number of intersections, just as for any other system, i.s singularly defined by the value of a specific surface in accordance with the basic formula:

$$
\begin{equation*}
m=\frac{1}{2} \sum S \mathrm{~mm}^{-1} \tag{26.1}
\end{equation*}
$$

Koreover, in tis case the number of intersections at individular secants is the function of angle β formed by these secants and the axis
of symanetry.
The number of intersections per unit length of the secant, found within the elementary solid angle dw, the apex of which lies on the axis of symmetry, will be:

$$
\begin{equation*}
m=\frac{1}{2} \pi \int_{0}^{2 \pi} m(w) d w . \tag{26.2}
\end{equation*}
$$

The magnitude of the elementary solid angle dw is defined by the differentials of two angles, angle formed by the secant and the axis of symmetry, and angle , which determines the rotation of the plane, in which the secant lies, about the axis of symmetry. In conformance with the rule of computation of mean values of directed quantities, we have:

$$
m=\frac{1}{2 \pi} \int_{q=0}^{2 \pi} \int_{0}^{\pi / 2} m(2, \phi) \sin 3 \cdot d, 3 \cdot d \phi \cdot
$$ structure is identical in any plane passing through the axis of symmetry (or parallel to it), the number of intersections is dependent only upon the magnitude of angle B and is inkependent of angle \mathcal{P}, which determines the rotation of the secant about the axis of symmetry. For this reason, expression (26.3) is converted into the following expression:

$$
m=\frac{1}{2} \frac{1}{\pi} 2+\int_{0}^{\pi / 2} m(, \gamma) \sin , \alpha, \gamma=\int_{0}^{\pi / 2} m(\beta) \sin \beta d,
$$

By bringing from Formula (26.4) the value of the mean number of intersections, derived for the case of axial symmetry of boundary surfaces, into the basic formula (26.1), we derive:

$$
\begin{equation*}
\sum_{1} S=2 \int_{m}^{\pi} m(p) \sin , \cdot d f, \tag{26.5}
\end{equation*}
$$

or in a more convenient form for calculations:

$$
\begin{equation*}
S_{S}=2 \int_{0}^{\pi / 2} m(\gamma) d[\cos \beta] \tag{26.6}
\end{equation*}
$$

The latter formula is the working formula for the measurement of specific surface of boundary systems with an axial symnetry by the
method of A. G. Spektor. The mathematical derivation of Formula (26.6) is rigorous without any approximations or assumptions which would reflect on the accuracy of calculations of the specific surface.

A microsection, whose plane intersects the axis of symmetry or is parallel to it, is used in practical applications of Formula (26.6). For articles, produced by rolling or drawing, which have an equiaxed cross-section profile, the plane of the microsection must intersect the axis of the rod, which is precisely the axis of symmetry of the structure. For sheets the plane of the microsection is arranged perpendicular to the surface on a sheet and the axis of symmetry is also perpendicular to the plane of the sheet; in the latter case formula (26.6) is applicable if the system of measured boundaries is isometric in the plane of the sheet and the grains are equiaxed, that is, there is no linear orientation, but only plane orientation. In specimens deformed by upsetting, the plane of the microsection must coincide with the axis of the specimen (or with the direction of action of external compressive forces), which is precisely the axis of symmetry.

Several groups of secants are marked on the microsection, and a definite angle formed by the axis of symmetry and the direction of secants of a given group, is maintained in each group. Among chosen direction of secants, two must be always present, perpendicular and parallel to the axis of symnetry. In addition to these several other directions are chosen and the number of which is determined by the need for a smooth plotted curve. For secants of each group, a mean number of intersections per $l \mathrm{~mm}$ of their lengths is calculated separately. A graph with coordinates "cosine of angle formed by secants and the axis of symmetry versus mean number of intersections in a given diraction" is plotted from the data obtained. After that graphical integration is carried out: the area under the plotted curve is determined from the graph, which is equal to the mean number of intersections, defined by Formula (25.4) or to the half of the value of the specific surface, defined by Formula (25.6). By doubling the Eound value we fird the unkrown specific surface.

```
Let ua consider an example given in the paver b; A. G. Spektor
```

[61]. The specific surface of the interface between pearlitic and fer-
ritic constituents was measured in the central portion of a cross section of preannealed steel wire after it had been drawn from 5.5 mm to 3.8 mm ir diameter, The obtained mean number of intersections, m (β), for each of seven directions, characterized by angle β iormed by the intersection and the axis of the wire, are listed in Table 26 . The graph of the relationship between the mean number of intersections and the cosine of angle β is giver in Figure 72. The area under the curve, shaded in the drawing, is

$$
m=\int_{0}^{1} m(\beta) d[\cos \beta]=252 \mathrm{~mm}^{-1}
$$

To find the specific surface, we double the latter figure and find:

$$
\Sigma S=2.252=504 \mathrm{~mm}^{2} / \mathrm{mm}^{3}
$$

Table 26

In the example considered, the system of boundary surfaces between pearlitic and ferritic constituents is linearly oriented, according to our classification.

72

73

Fig. 72. Determining spatially the gverage number of intersections for the structur symmetricalrelative to the axis (A. G. Spector [61])

Fig. 73. Determining spatially the average number of intersections for the structure symmetrical relative to the axis (sheet rolling), by the method of A. G. Spektor.

Let us cite another example for a case of plane orientation. We
have carried out measurements on a specimen of sheet transformer steel with the structure of silicon ferrite, the grain surfaces of which have a plane orientation (that is, preferred orientation parallel to the surface of the sheet!, In planes which are parallel to the surface of the sheet, the structure is isometric. In this case, tine axis of synmetry of the structure, as well as the plane of the microsection, are disposed perpendicular to the surface of the sheet. The number of intersections was calculated on secants the direction of which with respect to the axis of symmetry varied with interval of 10 degrees. The obtained mean numbers of intersects for each direction are listed in Table 27. For graphical integration a graph has been plotted of the relationship between the number of intersections and the cosine of angle \mathcal{P}, which, as it may be seen in Figure 73, may be regarded as rectilinear. The slope of the Ine is opposite to the one which took place in linear orientation (Figure 72), which is understandable: in a rod or wire the highest number of intersections occurs on secants perpendicular to the axis of symmetry (that is to the axis of the wire or rod), whereas in a sheet it occurs on secants parallel to this axis (that is perpendicular to the plane of the sheet). By measuring the area under the graph in Figure 73, which is made easier due to the fact that it is rectilinear, we find that the mean number of intersects is $9.6 \mathrm{~mm}-1$. By doubling this number, we derive $19.2 \mathrm{~mm}^{2} / \mathrm{mm}^{3}$, which is the specific surface of grains of silicon ferrite.

In practice, calculations of the number of the intersections on different directed secants can be more readily conducted if the microscope has a rotating stage with a scale graduated in degrees,
 results are produced when an attachable rotating ring with a scale graduated in degrees is used. This ring goes with MJ: M-7 microscopes but can be used with any other metallographic microscope.

We have developed two variants of the analyses by a method of directed secarts. One of these methods (the method of oblique microsections) makes possible to determine only the total value of the specific surface. The second method (the method of directed secants for space), basiủes that, mazes it possible to estimate quantitatively

Table 27.

angle of Bncuration of Sccants β	Угол паклопа секущер, β	"		Th. of intersectionss me(B), $\mu \mu^{-1}$
	10 10 20 30 40 50 60 70 80 80		$\begin{aligned} & 17,0,0 \\ & 16,0 \\ & 15,5 \\ & 13,56 \\ & 11,98 \\ & 9,9,9 \\ & 3,9 \\ & 3,8 \end{aligned}$	

the orientation of surfaces of a system $[59,60]$. Both methods are based on the assumption that a real system of oriented boundary surfaces may be regarded as consisting of two systems of which one is completely isometric and the second is completely oriented.

A. Linear Orientation of Boundary Surfaces

By breaking up boundary surfaces into equal, infinitely small elementary areas, in conformance with the original assumption, we take that a certain number of these areas are disposed parallel to the orientation axis, whereas the rest of areas are completely disoriented in space and, consequently, represent an isometric system. In rolling rounds of equiaxed cross section, in drawing rounds or drawing wire, the axis of orientation coincides with the axis of produced round or wire.

The total surface of the isometric number of elementary areas may be calculated from the basic formula of the method of random secants for space (25.1) under the condition that we know the mean number of intersections only and exclusively with those elementary areas which are disposed isometrically, Let us consider a case when the secants are directed precisely parallel to the orientation axis. Areas with linear oriontation are also disposed parallel to this axis, therefore, secants of chosen direction cannot intersect theri, Consequently, the mean number of intersections on secants, parallel to the orientation axis, is determined exclusively by the number of isometric areas. Therefore, having determined the mean number of intersections per 1 mm length of secants, parallel to the orientation axis which we shall designate as m_{11}, we can from Formula (25.1) find directly the specific surface of the isometric number of boundary surfaces:

$$
\begin{equation*}
S_{i s}=2 m_{11} \tag{26.7}
\end{equation*}
$$

Now, let us determine the specific surface of the oriented portion of boundary surfaces. Inasmuch as the elementary areas of this portion are parallel to the orientation axis, they are simultaneously perpendicular to any plane located at a right angle to this axis, that is, they are perpendicualr to the plane of any transverse microsection of a round or wire. On a longitudinal microsection, the plane of which intersects the symmetry axis, or is parallel to the latter, traces of
arcas with linear orientation form a system of lines parallel to the orientaiion axis. Let us place on the longitudinal microsection secants perpendicular to the orientation axis and let us determine the mean number of intersections per 1 mm of their length, m_{11}. These secants willintersect both the criented and isometric elementary areas. However, inasmuch as we know the mean number of intersections with tha isometric portion of areas, $m_{"}$, which is independent of direction, we can determine from the aifference the number of intersections only with the oriented portion of areas. It will be

$$
\begin{equation*}
\mathrm{m}_{\underline{1}}-\mathrm{m}_{11} \text {. } \tag{26.8}
\end{equation*}
$$

Traces of areas with linear orientation form on the transverse microsection boundary lines, whose length will be defined by the basic equation of the method of random secants for a plane (20.7):

$$
\begin{equation*}
\sum P_{l i n}=\frac{\pi}{2}\left(m_{1}-m_{11}\right) \mathrm{mm} / \mathrm{mm}^{2} \tag{26.9}
\end{equation*}
$$

On the basis that the length of traces of areas with linear orientation per $1 \mathrm{~mm}^{2}$ of the area of transverse microsection is defined by the Equation (26.9) and that areas themselves are disposed perpendicular to the plane of the microsection, it is possible to conclude that

$$
\sum S_{l i n}=\sum P_{l i n} .1 \mathrm{~mm}
$$

Hence it follows that the specific surface of the portion of bourdary surfaces with linear orientation is defined by the Formula:

$$
\begin{equation*}
\sum S_{l i n}=-\frac{\pi}{2}\left(m_{\underline{l}}-m_{11}\right) \mathrm{mm}^{2} / \mathrm{mm}^{3} . \tag{26.10}
\end{equation*}
$$

For this reason, in order to measure the specific surface of boundaries, with linear orientation, one longitudinal microsection would suffice, the plane of which intersects the orientation axis or is para$11 e l$ to it. Correspondingly, two mean numbers of intersections, $m_{\|}$ and m_{1}, ara determined. After that, the specific surface of the isometric portion of boundary is calculated from Formula (26.7): the portion of boundaries with linear orientation is calculated from Formula
(26.10). The total value of the specific surface, derived by adding the results obtained from both formulas, will equal:

$$
\begin{equation*}
\sum S_{\text {total }}=\sum S_{\text {is }}+\sum S_{\text {lin }}=0.429 m_{11}+1.571 m_{\underline{1}} \tag{26.11}
\end{equation*}
$$

The degree of linear orientation of boundary surfaces is determined by the ratio of the specific surface of the portion with linear orientation to the total value of specific surface, expressed in per cent. From Formulas (26.10) and (26.11) it follows that the degree of linear orientation of surfaces, $\alpha_{l i n}$ is defined by the formula:

In the case of wire analyses, carried out by A. G. Spektor (see Table 26), the mean number of intersections on longitudinal and transverse secants was 101 and $316 \mathrm{~mm}^{-1}$, respectively. From our formula (26.11) we find that the total specific surface is $540 \mathrm{~mm}^{2} / \mathrm{mm}^{3}$, which dift'ers approximately by 7% from the result obtained by A. G. Spektor, which is $504 \mathrm{~mm}^{2} / \mathrm{mm}^{3}$. From Formula (26.12) we determine that the degree of linear orientation of a given system of boundary surfaces is 62.6%.

B. Plane Orientation of Boundary Surfaces

Just as in the preceding case, we break down surfaces of a system into elementary areas. A certain number of these areas will be parallel to the orientation plane and others will form as isometric system of surfaces. Surfaces of grains of a rolled sheet, if sections of grains on microsections, parallel to the plane of the sheet, are equiaxed, serve as an example of a system with plane orientation. The plane of orientation is the plane of the sheet; perpendicular to this plane we locate the plane of the microsection subject to analyses.

Secants, parallel to the orientation plane, do not contain intersections with oriented elementary areas, for they and the secants are usually parallel. Consequentiy, the mean number of intersections per 1 mm length of secants, parallel to the orientation plane, will be determined exclusively by the length of the isometric portion of surfaces.

This mean number of intersections we shall designate as m_{11}. Therefore, it is possible to write a formula which defines this specific surface of the isometric portion of boundaries in correspondence with the basic formula (25.1):

$$
\begin{equation*}
\Sigma S_{i s}=2 \mathrm{~m}_{11} \mathrm{~mm}^{2} / \mathrm{mm}^{3} \tag{26.13}
\end{equation*}
$$

The second group of secants we arrange perpendicular to the orientation plane, designating the mean number of intersections fer 1 mm of their length as $m_{\underline{1}}$. If from this number of intersections are excluded those which are formed by the isometric portion of surfaces and the number of which per 1 mm of length of secants of any direction is m_{11}, then the mean number of intersections only with oriented elementary areas, located perpendicular to secants, will be defined as the difference:

$$
\begin{equation*}
m_{\underline{I}}-m_{11} m^{-1} \tag{26.14}
\end{equation*}
$$

From the law of total projection for space, which will be presented further in this article, it follows that the total area of mutually parallel areas per unit volume of space is numerically equal to the mean number of intersections of these areas by secants directed at right angles to them, per unit length of secants. Using this postulate, we directly find:

$$
\begin{equation*}
\sum_{1} S_{p l}=\mathrm{m}_{\underline{1}}-m_{11} \mathrm{~mm}^{2} / \mathrm{mm}^{3} \tag{26.15}
\end{equation*}
$$

From Formulas (26.13) and (26.15) it follows that the total magnitude of the specific surface of both portions of the system is:

$$
\begin{equation*}
\sum S_{\text {total }}=\sum S_{i s}+\sum S_{p l}=m_{\underline{1}}+m_{11} \mathrm{~mm}^{2} / \mathrm{mm}^{3} \tag{26.16}
\end{equation*}
$$

The degree of plane orientation, $\propto_{p l}$, is dafined as the ratio of the portion of surfaces with plane orientation to their total specific surface expressed in per cent, that is:

$$
\begin{equation*}
\alpha_{\mathrm{pl}}=\frac{100\left(\mathrm{~m}_{1}-m_{1}\right)}{-m_{\underline{l}}+\mathrm{m}_{1}} . \tag{26.17}
\end{equation*}
$$

From the aforesaid it follows that the analyses of structures with plane orientation also requires only 1 microsection, the plane of which must be perpencidular to the orientation plane. Two groups of secants
are marked on the microsection parallel to this plane and perpendicular to it. Correspondingly, two mean numbers of intersections, m_{11} and m_{1}, are determined. After that, from Formulas (25.13) and (26.15) it is possible to calculate separately the specific surfaces of the isometric and plane-oriented portions of boundaries and their total length from Formula (26.16). The quantitative expression fur the plane orientation we find from Formula (26.17).

In the above presented example of the analyses of transformer steel, which was carried out by us (see Table 27), the mean numbers of intersections on secants parallel and perpendicular to the orientation plane (which is pyrpendicular to the symmetry axis of the structure) were 2.3 and $17.0 \mathrm{~mm}^{-\bar{\perp}}$, respectively. From Formula (26.16) the total value of the specific surface is $19.3 \mathrm{~mm}^{2} / \mathrm{mm}^{3}$, which differs only by 0.5 per cent from the result obtained by the method of A. G. Spektor, which is $19.2 \mathrm{~mm}^{2} / \mathrm{mm}^{3}$. From Formula (26.17) we find that the degree of plane orientation of a given system of boundaries is 76.2 per cent.

C. Planar-Linear Orientation of Boundary Surfaces

As has been previously noted, this system of surfaces has no symmetry axis and, for this reason, the method of A. G. Spertor is not applicable in this case. A system of surfaces with a planar-linear orientation has one orientation plane and one orientation axis parallel to that plane. Elementary areas in such a system are subdivided into three groups: Areas of the first group are parallel both to the orientation plane and to the orientation axis simultaneously; areas of the second group are parailel only to the orientation axis, forming all possible angles with the orientation plane, each of which is equally probable; the arrangement of areas of the third group is isometric in neture, that is they are completely disoriented.

This type of orientation occurs, for example, in a sheet, strip or band, in which grains on microsections parallel to the plane of the sheet are not equiaxed but elongated in one preferred direction. For example, in a band the plane of the band is the orientation plane and its orientation axis is its longitudiral axis. In systems of the type in
question, schematically drawn in Figure 69d, quantitative analysis requires that not one but two microsections be prepared. The plane of the first microsection must be perpendicular to the orientation plane and parallel to the orientation axis. This microsection we shall call long-' itudinal. The plane of the second microsection is arranged perpendicular both to the orientation plane and orientation axis. We shall call this microsection the transverse microsection.

Inasmuch as in this case we have two types of orientation, which have been previously considered each separately, it is possible to apply formulas similar to formulas (26.7), (26.10), and (26.15). The only requirement is separate determination of mean numbers of intersections for each of the three aforementioned groups of elementary areas, which comprise a system of boundary surfaces with a planar linear orientation. Let us make an attempt to do just that.

Let us draw a group of secants on a longitudinal microsection, which secants are parallel to the orientation plane (that is to the plane of the band) and which are simultaneously parallel to the axis of linear orientation, inasmuch as the plane of the longitudinal microsection is also parallel to it. The mean number of intersections per 1 mm length of such secants, which we designate as m_{H}, is determined exclusively by areas with isometric orientation., Actually, under the given conditions, areas both with planar and linear orientations are parallel to secants and the latter cannot intersect them. Therefore, in accordance with the basic formula or Formula (26.7) we have:

$$
\begin{equation*}
\sum_{1} S_{i s}=2 m_{11} \mathrm{~mm}^{2} / \mathrm{mm}^{3} \tag{26.18}
\end{equation*}
$$

The second group of secants we also draw parallel to the orientation plane (i. e., to the plane of the band) but on a transverse microsection the plane of which is perpendicular to the orientation axis. The mean number of intersections per 1 ma length of this group of secants we shall designate as m_{1}. Inasmuch as these secants are parallel to the orientation plane, they will nor intersect the elementary areas with plane orientation. However, inasmuch as they are perpendicular to the orientation axis, they shall intersect areas with linear orientation
and, simultaneous with that, areas with isometric disposition. Therefore, if the mean number of intersections varies with areas of linear orientation, we shall find from the difference

$$
\begin{equation*}
m_{1}-m_{11} \mathrm{~mm}^{-1} \tag{26.19}
\end{equation*}
$$

and the specific surface of the portion of boundaries with linear orientation, in correspondence with Formula (26.10), will be defined by the expression:

$$
\begin{equation*}
\sum_{l i n}=\frac{\pi}{2}\left(m_{1}-m_{11}\right) m n^{2} / m n^{3} . \tag{26.20}
\end{equation*}
$$

Third group of secants is arranged perpendicular to the orientation plane and orientation axis (i. e., pernendicular to the plane of the band). Secants may be drawn on any one of the two microsections, for the results will be identical. In this case, the secants will intersect all three groups of areas. The mean number of intersoctions with these groups per 1 mm of secants we shall designate as m_{1}. The mean number of intersections formed only be areas with plane orientation and secants, which are perpendicular to them, we shall find from the difference by subtracting mean numbers of intersections with isometrically disposed areas, m_{11}, and the areas with linear orientation, which is defined by the expression (26.19), from the number m_{1}. We deriv :

$$
\begin{equation*}
m_{1}-m_{11}-\left(m_{1}-m_{11}\right)=m_{\perp}-m_{1} \quad m m^{-1} \tag{26.21}
\end{equation*}
$$

For this reason the specific surface of the portion of boundary surfaces with plane orientation, in correspondence with Formula (26.15), will be:

$$
\begin{equation*}
\sum S_{p l}=m_{1}-m_{1} \quad \mathrm{~mm}^{2} / \mathrm{mm}^{3} . \tag{26.22}
\end{equation*}
$$

Knowing how to determine separately the specific surfaces of each one of the three differently oriented portions of boundary surfaces, we can find without any difficulty the total specific surface by adding the right half of Formulas (26.18), (26.20), ard (26.22). The degree of each type of orientation may be readily determined as the ratio of corresponding specific surfaces to their total magnitude expressed in per cent.

The method of oblique microsections [59, 17], first of developed
methods intended for the measurement of total magnitude of the specific surface of structures with linear and planar orientation, lost its importance after other methods, which had the same purpose and were described previously appeared. Therefore, it is necessary to discuss it here. Let us compare methods of analyses of oriented structures, described previously, and let us determine the scope of their application. As it has been already mentioned, the method of A. G. Spektor is rigorour from a mathematical viewpoint and may be applied for the size measurement of the total specific surface of systems of boundaries with axial symmetry. A shortcoming of this method is its inapplicability to the case of a more complex orientation, in the absence of axial symmetry, and the impossibility of quantitative estimation of the degree of orientation, Koreover, the method of A. G. Spektor, as compared with other methods, is more time consuming for it requires the determination of the mean number of intersections in several directions and subsequently graphic integration.
S. A. Saltykov's method of directed secants is approximate, but it has a number of advantages which are quite important in practice. It is applicable not only in the presence of axial symmetry but also in its absence. It also permits quantitative evaluation of the degree of various types of orientations of surface systems. Its procedure is simpler than that of A. G. Spektor's method and less time consuming, for average numbers of intersections are determined in only two (maximum three) directions and further, calculations use simple formulas. We shall show further that the procedural error of the method of directed secants, which is based on the assumption that any system of surfaces may be broken down into several systems with a definite type of orientation, does not exceed 5 per cent, which is quite acceptable for the great majority of carried-out measurements.

In conjunction with the aforesaid, the method of A. G. Spektor may be recomnended for a more precise measurement of the total specific surface of boundary systems with axial symmetry, when tree aim of the analyses is not the quantitative evaluation of the degree of or:entation.

Section 27. The Rule of Projection for 3-dimensions and Verification of the Method of Directed Secants

Let us consider a system of mutually parallel and equidistant planes, Let us isolate within this system a cube with the edge equal to unity, so that two faces of the cube would be parallel and the rest perpendicular to the planes of the system. If the distance between parallel planes is Δ, then the number within the volume of the cube will be $-\frac{1}{\square}$, and the total areaof planes within the cube, i. e., per unit volume, will be:

$$
\begin{equation*}
\Sigma^{S}=\frac{1}{\Delta}(1.1)=-\frac{1}{\Delta} \mathrm{~mm}^{2} / \mathrm{mm}^{3} \tag{27.1}
\end{equation*}
$$

In a more complex case we shall have a system of parallel plane areas of different dimensions and configurations, the planes of which will be disposed at different distances from each other, as shown in Figure 74. Let uis break down the volume of the cube into several identical prisms, whose bases are squares with the side equal to a. These prisms will carve out from the planes of the system a number of areas, the maximum dimension of which may be equal to a^{2}. Let us arbitrarily agree to round off dimensions of areas, considering the dimension equal to a square if it exceeds half of this value, and equal to zero if it is less than this value.

Let us designate the number of these areas in each prism as m_{1}, m_{2}, m_{3}, \ldots. Then the total surface of all areas within the cube along the edge of which is unity and two faces are parallel to the areas, will be:

$$
\begin{equation*}
\sum S=a^{2}\left(i_{1}+m_{2}+m_{3}+\ldots .\right) \tag{27.2}
\end{equation*}
$$

Since the total number of prisms in the cube, the edge of which is unity, will obviously be $\frac{-1}{a^{-}}$, then the mean number of areas in one prism will be:

$$
\begin{equation*}
\bar{m}=-\frac{m_{1}+m_{2}+m_{3}+\ldots}{1} a^{2}-\cdots m^{-1} \tag{27.3}
\end{equation*}
$$

[^6]areas in one prism, n, will be equal to the mean number of intersections between plane sections of the system and secants perpendicular to them, per unit length of secants, i. e., it will be equal to m_{1}. Therefore, the specific surface of the system in question, in correspondence iwth Equations (27.2) and (27.3), will be equal to:
\[

$$
\begin{equation*}
\sum S=m_{1} \mathrm{~mm}^{2} / \mathrm{mm}^{3} \tag{27.4}
\end{equation*}
$$

\]

This equation corresponds to the previously derived equation for a system of parallel equidistant planes (27.1), since the ratio $-\frac{1}{\Delta}$ precisely expresses the number of planes intersected per unit length of secants and directed perpendicular to the planes. Formula (27.4) has been used by us previously when deriving the relationship (26.15).

Figure 74.

Diagram to the derivation of the formuls (27.4)

Besides the regularity determined here, we are also interested in the quantity which we shall call the total projection and which we undersrand to mean the sum of areas of superimposed projections, when projecting all surfaces found in a unit volume of the system in question, to some plane. In both cases, considered above, the systems consist of mutually parallel planes. For this reason their total projection on a plane parallel to them, obviously precisely coinciles with the value of specific surface. Therefore, it may be stated that for the two considered specific cases the total projection of surfaces of a system onto a plane is equal precisely to the mean number of intersections per unit length of secants directed perpendicular to the chosen plane. Let us demonstrate that this postulate is general for any system of surfaces.

In the most general case, a sysiem of surfaces may consist of surfaces that aro open or bound, convex or concave, continuous or isolated from each other, plane or curves. Just as in the preceding case, in such a system 'Figure 75) we break down the volume in question, which has a shape or a cube whose edge is unity, into a number of prisms whose bases are squares with the side a. Let us eximine the projections of sections of the surface of the system, carved out by lateral faces of prisms, onto the base of a plane of a cube. Within each prism, those projections which are greater than $a^{2} / 2$ we round off to a^{2}, and ignore the others. The further course of logical consideration coincides with the derivation of Formula (27.4) for a system shown in Figure 74. For this reason we are not going to repeat it. The result is the law of projections for space, according to which the total projectior onto any plane for any system of surfaces is precisely equal to the mean number of intersections between surfaces and secants directed perpendicular to chosen planes, per unit length of..these secants.

Fig. 75. Diagram to the derivetion of the rule of the total projection for space.

This important law makes it possible in many instnaces to determine parameters of planar structures, for preselected dimensional systems of surfaces. As an example let us consider a group of spherical surfaces periodically but uniformly distributed throurh space. The diameter of spheres is D and the number per unit volume is N. The total projection of a sphere onto any plane is equal to twice the area of its central cross section, as Sollows from the definition of "total projection", which states that the projections of two half spheres a:e superimposed and tie
areas of projections are added. For this reason the total projection of is spherical surfaces, which according to the law of projections is equal to the mean number of intersections formed by secants and surfaces, will be defined by the expression:

$$
\begin{equation*}
m=\frac{\pi D^{2}}{4}-2 N=\frac{1}{2} \sum S \mathrm{~mm}^{-1} . \tag{27.5}
\end{equation*}
$$

This means that we derived the basic formula of the method of random secants for space (25.1) by other means. Further, using Formula (20.7), inasmuch as a system of spherical surfaces is isometric in space, we can find the specific of perimeters of cross sections of spherical surfaces from any plane intersecting a system of spheres:

$$
\sum P=-\frac{\pi}{2} m=-\frac{\pi^{2} D^{2}}{4} N=\frac{\pi}{4} \sum S
$$

We shall use the rule of total projection for determining the accuracy of the method of directed secants for space. For verification of this method we shall carry out a system of surfaces, representing identical ellipsoidal figures, which are periodically but statistically-uniformly distributed through space and arranged in such a manner that large axes of all ellipsoids are mutually parallel. Such a system is an example of a system of surfaces with linear orientation, in which the direction of large axes of ellipsoids is the orientation axes (also the symmetry axis). As compared with real structures, the system chosen for the verification of the method is not suitable for its evaluation, since in real systems of boundary surfaces there are always present sections parallel to the orientation axis (particularly at high degrees of orientation), whereas in this case oriented sections are absent. We assume that the large half axis of tne ellipsoid is a and that the small half axis of the ellipsoid is b and that their number per unit volume is ?.

In accordance with the method of directed secants, we mentally draw two groups of secants, parallel to the orientation axis and perpendicular to it. The mean number of intersections of these secants, $m_{1,}$ and $\mathrm{m}_{\mathbf{I}}$, we shall determine by the rule of total projection. The ellipsoid is projected onto a plane, perpendicular to the first group of secants, as a circle the diameter of which is 2 b . Twice tine area of : such circles will be equal to the mean number of intersections of secants parallel to the
orientation axes:

$$
\begin{equation*}
m_{11}=-\frac{\pi(2 b)^{2}}{4}-2 \mathbb{N}=2 \pi b^{2} \mathrm{Nm}^{-1} \tag{27.6}
\end{equation*}
$$

The ellipsoids are projected onto a plane perpendicular to the second group of secants (that is which is parallel to the orientation axis) as ellipses with half axes a and b. Twice the area of N such ellipses will be equal to the mean number of intersections on secants perpendicular to the orientation axis:

$$
\begin{equation*}
m_{1}=2 \pi a b N m^{-1} \tag{27.7}
\end{equation*}
$$

Now putting at our disposal mathematically exact values of m_{1} and m_{1}, we calculate the specific surface of the system of surfaces of rotation of ellipsoids, in question, the formula of the method of directed secants for the case of linear orientation (26.11):

$$
\Sigma S=1.571 \mathrm{~m}_{-}+0.429 \mathrm{~m}_{11} \mathrm{mr}^{2} / \mathrm{mm}^{3}
$$

Substituting the values of the number of intersections, derived from formulas (27.6) and 27.7), and dividing both sides of the equation by the nunber of eliipsoidal sides per unit volume, N, we derive a formula which makes it possible to calculate approximately the surface of rotation as a function of the half axes:

$$
\begin{equation*}
S=2 \pi b(1.571 a+0.429 b) \tag{27.8}
\end{equation*}
$$

The verification of the derived formula unexpectedly revealed the foilowing circumstance: its accuracy is approlimately twice as high if the ratio of half axes of the ellipsoid is less than 3 , and it becomes many times highor as this ratio increases, as compared with the approximation formula which is listed in reference books for the calculation of the surface of rotation of an ellipsoid. [143], [144]:

$$
\begin{equation*}
s=2 \sqrt{2} \pi b \sqrt{a^{2}+b^{2}} . \tag{27.9}
\end{equation*}
$$

The formula is coincidental with a positive error (the results of calculations happens to be greater than the actual value), and Formula (27.9) is coincidental with the rerative error.

Under the most adverse conditions, the procedural error, which is due to the assumption that any system of surfaces may be broken down into elements isometrically arranged and oriented in a definite manner, does not exceed 5 per cent.

The principal of breaking down surfaces, which are being measured, into groups of elementary areas, oriented in space, in a definite manner (or disoriented), may be applied also in cases of a more complex orientetion than the three types considered by us which are most commonly found in systems of boundary surfaces of metallic structures.

Besides the total oxtent (area) of boundary surface areas per unit volume of a metal alloy, their space orientation is also of great interest; the spatial orientation is generally dependent chiefly on the processes of plastic deformation or directional crystallization. Therefore, specifically, the orientation study of houndary surface areas, which is quite effective in determining local deformations, their heterogeneity and distribution in the volume of metal, is quite promising for the revealing and understanding of the mechanism of plastic metal flow in alloys. The spatial orientation of boundary surface areas may be consideved from different viewpoints, on the basis of which appropriate methods of its quantitative characteristic are developed.

On the basis of purely geometrical notions, the orientation of an isolated elementary area may be defined by the size of angles which it forms with predetermined directions (axis, planes). From this viewpoint the orientation of complex systems of boundary surface areas may be estimated, \hat{I} or example, in the terms of relative fractions of elementary areas (or a fraction of these specific surface area), oriented in a definite manner, The method of this kind, developed by us [60], which permits numerical evaluation of lineal, plane and mixed lineal-plane orientations with the aid of coefficients of the degree of orientation, was described previously (see Section 26). Although this method is based on a certain assumption, its accuracy is quite sufficient for the most cases of orientational structural analysis. A rigid method for the estimation of orientation with the aid of a polar distribution diagram of the function of density of normals was developed by A. G. Spektor [146]. This method is applicable for systems of surface areas with axial symmetry, which according to our classification corresponds to lineal orientation or plane orientation.

From the other viewpoint, the orientation of boundary surface areas may be characterized by the density of their disposition in various special directions. The quantitative estimation of orientation, based on this notion, is expedient for several reasons. It is precisely the density of disposition of surface areas in various directions that determines the
anistropy of properties of a metal or an ailoy in the same measure in which it is dependent upon the interfacial boundaries of microparticles of like or unlike phases. The appearance of certain types of orientations of boundary surface areas is singularly connected with the regular distur.bance of the initially uniform density of their disposition in various directions. Therefore, on the basis of the density of disposition of surface areas it is also possible to obtain, i.f it is necessary, a purley geometrical interpretation of their orientation. The method of estimating the orientation, based on the density of disposition of surface areas in various directions, is reduced to construction of a space rows of the number of intersections [138], similar to the plane rose of the number of intersections, described in Section 21.

F'inally, it should be mentioned that it is possible to estimate indirectly the orientation of boundary surface areas by the ratio of lineal dimensions of microparticles (or their sections), measured in definite directions. The evaluation of oriented structures by the ratio of diameters of plane grains was proposeà long ago by ye. Geyn [136]. Inasmuch as this value almost always has a singular relationship to the degree of deformation of a given kind, it has been successfully used for the estimation of local deformation [145, 175]. It can be demonstrated that this characteristic of an oriented structure can be also derived from the density of disposition of areas in different directions, that is from the space rose of the number of intersections.

From the aforesaid it foilows that the space rose of the number of intersections is a universal and comprehensive characteristic of orientation of surface areas, for it permits to calculate the value of the specific surface area and also to determine the quantitative indices of the orientation of surface areas of any interpretation which may seem more expedient to us.

If from any point within a system of surface areas rays are drawn in many directions, that is, secants with directions uniformly disposed in space, it is possible to calculate the number of intersections for each secant separately and to derive the mean number of intersections for each direction which is of interest to us. This postulate may be expressed
in a scmewhat different way, which has a greater conformity with the method used in practice: the mean number of intersections for any given direction is determined by calculating the number of intersections for one group of matually parallel secants, having had the same direction in space. Knowing the mean numbers of intersections for several directions, which obviously express the density of disposition of surface areas in these directions, we construct the space rose of the number of intersections in polar coordinates. The shape of the rose is singularly defined by the relative probability of intersection of surface areas of the system by secants in various directions, that is it is determined by the density of disposition of surface areas in these directions. For this reason the shape of the rose gives a complete characteristic of the orientation of these surfaces in space. The absolute dimensions of the rose, constructed on a definite scale, are singularly dependent upon the size of the specific surface area of a boundary system in question.

If a system of surface areas has an axis of symmetry, then the construction of the rose of the number of intersections is extremely simple. In such systems the structure is identical in all planes of polish which intersect the axis of symmetry (or are parallel to it). Therefore the rose of the number of intersections by corresponding boundary lines, constructed for any axial plane of polish on a plane, is obviously the axial intercept of the space rose. The shape of the latter is defined as the shape of the rotational body, obtained by rotating the grain rose of the number of intersections about the axis of symmetry.

For example, a system of parallel planes has the axis of symmetry perpendicular to them and in a section, which intersects this axis, it appears as a system of parallel lines. For the latter, the plane rose of the number of intersections is represented by two circumferences of equal diameter tangent at the origin of coordinates, the centers of which lie on the axis of symmetry (Figure 59). The rotation about the axis of symmetry makes it possible to produce a space rose of the number of intersections for a system of parallel planes, which is represented uy two spheres tangent at the origin of coordinates, whose centers lie on the axis of symmetry of the system ari whose diameters are equal.

In the case of space isometric system of surface areas, the mean numbers of intersections on secants of any direction coincide, just as it follows from the definition of the rotion of isometricity itself. For this reason the space rose of the nunber of intersections is shaped as a sphere, the center of whioh is found at the origin of coordinates. The axial section of such a rose is identical with the shape shown in Figure 57.

If we accept our conjectiure that it is possible to break down any system of surface areas into groups of identical elementary areas, of which areas of one group are arranged isometrically (completely disoriented in space) and areas of other groups are in one or another way completely oriented, the space rose of the number of intersections may be constructed by the method of adding vectors of each direction, as it is done on a plane (see Section 22). By this method a space rose may be constructed from nean numbers of intersections in few directions (two or three), both for systems with axial symmetry and for sysuems without it.

A series of sections of space roses of the number of intersections, intercepting the axis of symmetry (which is simultaneously the axis of rotation) is shown in Figure 76 for systems of boundary surface areas with the degree of plane orientation ranging between 0 and 100 per cent. A completely isometric system of surface areas is characterized by a spherjcal rose of the number of intersects (Figure 76,1). In the presence of plane orientation, "necking" appears which narrows down with increasing degree of oriertation (Figure 77,2to 5). When a system of surface areas becomes completely oriented, the rose transforms into a pair of spherical. surfaces tancent to each other (Figure 76, 6).

Fig. 76. Axial sections of space roses of the number of intersections with different degrees of planc orientetion. The vertical axps are the axes of symmetry, and the axis $0-0$ is the plane of orientetion.

In the case of lineal orientation, the space roses of the number of intersections have different shapes. A series of axial sections of roses for systems of surface areas with the degree of lineal orientation, gradually increasing from 0 to 100 per cent, is shown in Figure 77. In contrast to the preceding case, here the initial sphere contracts with the increasing degree of orientation; contraction characterizes tho isometric system along the axis of symmetry (Figure 77, 2 to 5). When a system becomes completely linearly oriented, the rose of the number of intersections becomes a torus, whose radius of the internal circle is equal to zero (Figure 77-6).

Fig. 77. Axial sections of space roses of intersections with different degrees of linear orientation. The vertical axes are the axes of symmetry and orientation.

In Figures 76 and 77, vertical axis of all shapes are simultaneously the avis of space symmetry of the structure and the axis of rotation for the formation of space rose from its section. In the case of a plane orientation, its plane is perpendicular to the axis of symmetry (Figure 77).

A rose of the number of intersections may be constructed by gwo methods: a simpler one based on measurements in a few directions (two to three) and by a more complex method using a large number of microsections. By comparing the shapes and sizes of roses, constructed by these methods for one and the same system of boundary surface areas, it is possible to determine the permissibility of our assumption that any system of surface areas
consists of completely isometric and completely oriented fractions. We shall cite certain results of such comparisons.

We have analyzed a system of interfacial surfaces of ferrite and pearlite constituents in a sized rod 9.5 mm in diameter from steel 30. The plane of polish coincided with the axis of the rod. The number of intersections between the secants and boundary lines, separating the ferrite and pearlite cuistituents, were counted in ten groups of secants (in ten directions) for every 10 degrees. The total length of secants in a group for each direction was taken such that the tatal number of intersections would be at least 1000. A total of more than 10,000 intersections were counted for the construction of the rose of the number of intersections. One quadrant of an axial section of the rose of number of intersections for a given case is plotted in Figure 78. The line which connects the points of the mean numbers of the intersections in various directions has been constructed graphieally by our method of directed secants (see Figure 63), using the mean numbers of intersections of only two directions, parallel and perpendicular to the axis of symetry (the latter is also the axis of the rod and the axis of orientation). Despite this, the rest of the points have a quite satisfactory agreement with the same curve, which lends evidence that the original postulate of our method of directed secants is permissible. The fact that when the direction of groups of secants varied between 0 and $9 C$ degrees with respect to the axis of symmetry, they were disposed within a tenth to cover uniformly the entire area of the longitudinal plane of polish of the rod, should be taken into consideration. Nevertheless, it is possible that the scatter of points was produced by tie essential difference in the magnitude of the specific surface areas in the periphery and central sections of the sized rod.

We have made similar measurements for a system of surface areas of silicon ferrite grains in sheat transformer steel (the thickness of the sheet 1 mm). Planes of polish were disposed perpendicular to the plane of the sheet. The control checking has shown that in the plane parallel to the plane of the sheet the ferrite grains were equiaxed, which geve evidence that axial structural symmetry was present. A total of about 1200 intersections have been counted for 10 directiors. A Eraphic plot
of 1 quadrant of the axial section of the rose of the number of intersections is shown in Figure 79. Data obtained only for two directions, parallel and perpendicular to the axis of symmetry, have been used in this case for the construction. Nevertheless, Figure 79 shows that there is no need whatever to consider the mean numbers of intersections for all other directions, inasmuch as they have a fine agreement with the curve plotted only from two points. Consequently, in this case also the possibility of the original postulate of the method of directed secants, developed by us, is also confirmed.

Fig. 78. Axial section of the space rose of the number of intersections for the system of surfaces of the portion of the perlite and ferrite components in a calibrated bar of seel of orard 30 (therd is shown one quadrant of the section of the rose).

Fig. 79. Axial section of the space rose of the number of intersections for the system of the surfaces of the grain of silicon ferrite of sheet transformer steel (one quadrant of the section of the rose is shown).

The results similar to those shown in Figures 78 and 79 have been obtained by us for a number of specimens different as to types of orientation and structure. Roses of the number of intersections for grain boundaries of ferrite in sheet steel, ior interfacial boundaries of ferrite and pearlite constituents in rolled rounds of different diamter, for interfacial boundaries in 2-phase brass rounds, for the same type of interfacial boundaries of ferrite and pearlite constituents in the rupture zone of the specimen deformed by stretching, etc., were constructed expreimentally. In many cases a calculated curve has a fine agreement, with experimentally found values of the mean numbers of intersections for different directions.

Let us consider a system of surface areas, with a plane orientation, having broker dowr the areas into two groups: a group of disoriented
elementary areas and a group of areas usually parallel. The number of intersections on the secants, which are parallel to the plane of orientation, will be determined by the size of the specific surface area of the froup of disoriented areas only and it will be equal to m_{11}. This numuer is independent of the direction of secants. The number of intersections with areas, disposed parallel to the plane of orientation, is dependent upon the angle between the secant and this plane. If the angle is 90 degrees, then we obtain the maximum number of intersections which is

$$
m_{1}-m_{11}=S_{o r} m^{-1}
$$

as it follows from Formula (27.4), inasmuch as the number of intersections with oriented areas only is equal to the total number of intersections minus the number of intersections with disoriented areas, which is equal to m_{11}. It may be easily conceived that the mean number of intersections for any direction, m, will be defined by the expression:

$$
\begin{equation*}
m=\left(m_{-}-m_{n}\right) \sin +m_{n} m m^{-1} \tag{28.1}
\end{equation*}
$$

where is the angle between the orientation plane and the direction of the secant. From the latter equation it follow that the graph of the mean number of intersections in different directions, versus the sine of angle must be a straight line. This is the same relationship expressed by the rose of the number of intersections but plotted in dif-ferent coordinates. Deviation of experimentally found points from the straight line gives a more visible evidence of the error, due to the assumption on which our method of directed secants is based, than the plot of the rose in polar coordinates.

In Figure 30 line 1 shows the relationship for the same case, omploying the same data which vere used for plotting the rose of the number of intersectio.i in Figure 78. Line 2 has been plotted usirg the same data as for the rose in Figure 79. Lines 3 and 4 were plotted by experimental data of A. S. Spektor for interfacial surface areas of ferrite and pearlite constituents in steel wire [61], with the scale on y axis $1 / 10$.

Fig. 80. Dependence of the average number of intersections on the sinus of the angle between the axis (or plane) of orientation and the direction of the interesectins straight line:
1--for calibrated rod of brand 30 steel; $2-$ for sheet transformer steel per our data; 3,4--for wire per the data of A. G. Spektor (scale along the axis of the ordinates $1 / 10$)

When discussing the results obtained the fact should be taken into consideration that the method of secants is a statirtical method which definitely means that a number of intersections is determined with an inavoidable error. Moreover, scatter of points is possible due to nonuniform degree of orientation and the size of the specific surface area in external and in deeper layers of one and the same specimen. The mean angle formed by the secant and interfacial areas continually decreases as the direction shifts from perpendicular to parallel to the axis or plane of orientation. This possibly predetermines the systematic error, the magnitude of which is dependent upon the mean angle betwoen the secant and interfacial surface areas and increases as the latter decreases.

Considering the aforesaid, it is possible to assume that rectilinear relationship between the mean number of intersections and the sine of the angle between the secants and the axis or the plane of orientation is quite justifiable for the purpose of practical application of the method of directed secants when it is necessary to estimate the orientaiion of boundary surface areas.

In summing up we arrive at the final conclusion that the quantitative evaluation of the more common types of orientations lineal and plane (occurring separately or together), is quite reliable and may be accomplished with sufficient accuracy by the coefficients of the degre of orientation, calculated by the method of directed secants with the aid of for-
mulas (26.12), (26.17) and formulas similar to them. In a case of a more complex orientation, a comprehensive and visible picture of the orientation of a surface areas system is given by the space rose of the number of intersections. This, however, is less convenient for it deprives us of the possibility of quantitative study of the relationship between the orientation of boundary surface areas and factors which affect it, inasmuch as the orientation is characterized not by concrete numbers but by a type of complex space shape, its projections or sections.

Now let us consider another method of estimating the oriantation of boundary surface areas, proposed by A. G. Spektor [146]. The orientation of an elementary area with respect to any direction, defined by the straight line 1 , is characterized by the size of the angle ($1, n$) between this straight line and the normal n to the elementary area. Let us designate the size of the elementary area as $d S$ and project all areas, comprising a system of boundary surface areas confined in a unit volume of metal, onto plane Q, perpendicular to a chosen direction, that is perperdicular to the straight line 1. It is not difficult to see that the sum of all projected areas, $d S_{Q}$, is equal to the mean number of intersections of boundary surface areas with the unit length of the straight line l, that is it is equal to m_{l} (see Section 27). At the same time Formula (28.2)

$$
\begin{equation*}
m_{1}=\int_{S}^{0} d S_{Q}=\int_{Q} \operatorname{ons}(1, n) d S . \tag{28.2}
\end{equation*}
$$

Hence it follows that Formula (28.3)

$$
\begin{equation*}
\cos (1, n)=-\frac{\mathrm{m}}{3} 1- \tag{28.3}
\end{equation*}
$$

where the quantity S stands for the same thing as S, that is for the specific surface area.

Formula (28.3) gives the absolute value of the cosine of the angle between the normals to the surface area and the chosen direction, the weighted mean for the entire boundary surface area. For the direction it is more feasible to choose the symmetry axis of the structure. This value, which we shall call the mean cosine of the normals, according to A, G. Spektor is precisely the means for the estimation of the general orientation of boundary surface areas with respect to the axis of symmetry of the
structure, in particular, or with respect to a given straight line, in general. The mean number of intersections, m_{1}, in the direction parallel to the axis of symmetry, may be readily determined from the longitudinal plane of polish. The specific surface area, S, is calculated by the method of directed secanis with the aid of graphic integration by formula (26.6), for which purpose it is necessary to determine the relationship between the mean number of intersections and the direction of the secant with respect to the axis of symmetry of the structure on the longitudinal plane of polish. Let us consider an example illustrating the calculation of the man cosine of normals experimental data of A. G. Spektor, obtained for the interfacial surface area of pearlite and thorite constituents in steel wire drawa from 5.5 mm down to 3.8 mm in diameter. These data are listed in Table 26 and Figure 72. The mean number of intersections in the direction which coincides with the axis of symmetry is $101 \mathrm{~mm}^{-1}$ and the value of the specific surface area, found by graphic integration as in Figure 72, is $504 \mathrm{mn}^{2} / \mathrm{mm}^{3}$. Fron these data we find the mean cosine of normals from the Formula (28.3):

$$
\cos (1, n)=-\frac{101}{504}-=0.20 .
$$

The limiting values of the mean cosine of normals determined by systems of surface areas completely oriented in the direction of the axis of symmetry (complete lineal orientation) and completely perpendicular to it (complete planar orientation). In the first case; the mean cosine of normals with respect to the axis of symmetry is 0 ; in the second case it is 1. From Formulas (25.1) and (28.3) it may be readily concluded that for an isometric system of surfaces the mean cosine of normals is 0.5 with respect to any straight line. Hence it follows that the values of the mean cosine of normals, varying between 0.5 and 0 , characterize the increasing lineal orientation and that valuos varying from 0.5 to 1.0 characterize the increasing planar orientation.

By comparing the mean cosine of normals with coefficients which characterize the degree of lineal or planar orientation (see Formulas 26.12 and 25.17) it may be seen that the latter contain the mean numbers of intersections in the direction perpendicular to the axis of symmetry of the structure (in addition to parameters, which are general for both types of orientation estimation). The mean numbers of intersection, determined
alone the axis ur symmetry and perpendicular to it, vary with increasing orientation in opposite directions. Therefore, the evaluation of the degree of orientation by coefficients is more "sensitive" than the evaluation by the value of the mean cosine of normals, which compensates for a certain lack of rigor in the procedure of deriving formulas which define the coefficients of the degree of orientation. It should be also noted that the experimental determination of the latter is simpler, for it requires measurements only in two directions, whereas the determination of the mean cosine of normals requires measurements in many directions and grapnic integration.

The mean cosine of normals, similar to the coefficients of the degree of orientation, gives oniy a general notion on the orientation of boundary surface areas. For a more detailed characteristic of orientation it is necessary to evaluate the distribution of individual fractions of boundary suríace area wi.th respect to various directions of normals to them. Inasmuch as the solution of such a problem for space is connected with mathematical difficulties, A. G. Spektor considers a similar dimensional problem. "Function of relative density of normals" is introduced, which characterizes the relative length of lineal boundaries, whose normals lie within a definite range of angles. The function of density of normals is defined by the equation:

$$
\begin{equation*}
\psi(\alpha)=-\frac{1}{L}\left(\frac{d I}{d d}\right) \tag{23.4}
\end{equation*}
$$

in which L is the specific length of lineal boundaries in a plane of section intersecting the axis of symmetry of the structure; d and $\left(d=d_{d}\right)$ are the angles formed with the axis of symnetry within the limits of which lie the normals to that fraction of lineal boundaries, the length of which is defined oy the value of dL ,

Sinilar to expression (28.2) we find the mean number of intersections per unit length of the secant, m, which secant has a cortain direction n :

$$
m=\int_{L}^{0} \cos (n, m) d I=L \int_{d=0}^{\pi} \psi(\alpha) \cos (n, m) d d
$$

From the latter equation we have to obtain the relationship between
the function of the density of normals, $\dot{\psi}(d)$ and direction expressed through the angle of d. We introduce an assumption that the angles of inclination of normals to the axis of symmetry vary continually as a multiple of a certain small angle d. If this angle is chosen sufficiently small, the error of this assumption will be slight. Let us consider an example of calculations, cited by A. S. Spektor, in which the angle 0 is taken equal to $\frac{\pi}{-T}$ or 22.5 degrees.

The diagram of directions chosen with respect to the axis of symmetry of the strusture is show in Figure 31. The axis of symmetry coincides with the line 8-0. From this aiagram it is apparent that the mean numbers of intersections in direstions 0 and 8,1 , and 7,8 and 6,3 and 5, coincide for each nair. Assuming that anl values of cosines have a plus sign, we derive from Formula (28.5) a system of five equations, and by solving it with respect to the value of the function of density of normals we find the following working formulas:

$$
\begin{align*}
& \psi_{0}=\psi_{8}=-\frac{1}{L}\left(6,650 m_{3}-6,150 m_{4}\right) ; \\
& \psi_{1}=\psi_{7}=-\frac{1}{L}-\left(3,325 m_{3}+3,325 m_{4}\right) ; \\
& \psi_{2}=\psi_{6}=-\frac{1}{L}\left(3,325 m_{1}-6,150 m_{2}+3,325 m_{3}\right) ; \\
& \psi_{3}=\psi_{5}=-\frac{1}{L}\left(3,325 m_{0}-6,150 m_{1}+3,325 m_{2}\right) ; \\
& 4=-\frac{1}{L}-\left(6,650 m_{1}-6,150 m_{0}\right) . \tag{28.6}
\end{align*}
$$

The specific lenfth of boundaries on the plane of polish L, found in the formula (23.6), is determined from the basic formula of the mothod of random secants for a plane (20.7):

$$
\begin{equation*}
L=\frac{\pi}{2} m=\frac{\pi}{2}, m_{0}+m_{1}+m_{2}+\cdots \tag{28.7}
\end{equation*}
$$

Knowing the mean numbers of intersections in five directions $(0,1,2,3$, and 4 , in the diagram shown in Figure 81) it is possible to calculate the functions of the density of normals for each direction and to plot in anpropriate polar diagram, which is precisely the final characteristic of the orientation of boundary surface areas, done by the method in question. The method described may be illustrated by an example, cited by its
alithor [146]. The subject of the investigation was the interfacial erea of pearlite and thorite constituents in steel wire drawn from 5.5 mm down to 3.8 mm in diameter (reduction 52%). The mean numbers of intersections, shown in Table 28, were determined on the plane of polish intersecting the axis of symmetry of this structure (which coincided with the axis of the wire).

In the same table are also presented the values of the function of the density of normals, \mathcal{V}, calculated by us from formulas (28.6). The value of this function must be always positive, as it follows from the formula (23.4). Therefore, it should be assumed that the value of the function of the density of norrals for the direction coinciding with the axis of symmetry ($\Psi_{0}=-0.04$), is negative either because of inaccuracy of initial data or, which is more probable, due to insufficient accuracy of working formulas (28.6).

Yig. 81. For the computation of the function of the plane of the normals Fig. 82. Diagram of the distribution of the plane of the normals

It should be noted that the mathematical tools of the method are rigorous up to Formula (28.5), inclusive. However, calculations based on this formula are approxirate. Although theoretically it is possible to attain any accuracy be reducing the angle do, in practice it is quite difficult to attain, for the calculation in this case becomes extremely cumbersome. The value of ${ }_{0}=-g$, taken by the author of the method, is clearly too large.

The diagram of the distribution of densities of normals with respect to directions, plotted in polar coordinates (Curve 1), is given in Figure 82. It corresponds to the data found in the table. The same figure shows the rose of the number of intersections for the same system of boundary surface areas, constructed from the mean numbers of intersections, m, given in Table 23 (Curve 2). The function of the test steels normals has a maximum value in the direction which is perpendicular to the axis of symmetry, The minimum value of the function, as it should have been anticipated, coincides with the axis of symmetry. For the sake of comparison, it may be pointed out that in the case of an isometric system of surface areas, the function of density of normals is 0.318 for any direction.

When comparing the diagram of the distribution of the density of normals with the rose of the number of intersections, one cannot fail but note a number of advantages of the latter. The rose is plotted directly from experimental data, whereas when we calculate on the basis of the same date, the function of density of normals we clearly introdune adaitional errors. The rose of the number of intersections is more illustrative for it characterjzes the density of disposition of boundary surface areas in different directions, that is it characterizes the factor which has a direct connection with the degree of anisotropy of properties, Finally, a rose may be constructed for any system of surface areas, whereas the function of the density of normals may be calculated only for a system of surface areas which have an axis of symmetry. The method considered could find applications for the fine analysis of boundary surface areas but only under the condition that a more accurate and at the same time a more simple metiod for calculation of the function of density of normals from Formula (23.5) would be found.

In this discourse we do not consider the evaluation of orientation. by the value of diameter ratio of microparlicley, for this evaluation is concerned rather with the shape or microparticles.

Section 29. Accuracy Norms of the Method of Secants

The basic formula of the method of random secants (25.1), derived with analytical accuracy, establishes a direct proportionality between the vilues of the specific surface area and the mean number of intersections of surfaces per unit length of random secants. Hence it follows that the relative error in the determination of the mean number of intersections, m, predetermines the same kind of relative orror in the unknown value of the specific surface area.

A number of formulas of the method of directed secants also establishes a direct proportionality between the values of the total specific surface area and its isometric and oriented fractions on one hand and mean numbers of intersections in certain definite directions on the other. These formulas are approximate and the measure of their accuracy was discussed previously. The error in determining the mean humbers of intersections in this case is algebraically superimposed on the error, and either decreases or increases it by the value proportional to the error of determination of mean numbers of intersections.

By determining the accuracy of determination of the number m, we, by doing that, also determine the accuracy of the unknown value of the specific surface area in the volume of metal directly adiacent to the plane of polish under the investigation. The question as to how accurately the obtained value characterizes the structure of the metal as a whole is not comoctod to the accuracy of the method of determination and is dependent upon the uniformity of this structure and the volume of metal. For this reason we can assume that the accuracy of determination of the statistical mean value of the number of intersections per 1 mm of length of secants, m, simultaneously represents the accuracy of determination of the value of the specific surface area \sum_{1} S.

A reservation should be made that this is valid in the case of correctly applied method. Thus, for example, transverse surfaces of polish of steel rods are commonly used for standard measurement of steel grain size. As it has been previously mentioned, it is more rational to substitute the measurement of the specific surface area of grains for the
measurement of the grain size. However, if the space grains are not equiaxed, which cannot be revealed on a transverse plane of polish, the application of the method of random secants will turn out to be incorrect. The greater the deviation of the grain shape from equiaxed, the greater will be the secondary error due to the application of the method of random secants to such a structure. In that case, the measurement must be made by the method of directed secants on a longitudinal plane of polish.

Ordinarily two techniques for counting the number of intersections of grain boundaries by secants on a plane of polish are used: a. with a traversing plane of polish and b. with a stationary plane of polish. Each of these methods has its own advantages, short comings, and fields of application.

In the first case an ocular with a cross hair is used. The plane of polish is continually traversed along a straight line by means of a micrometric screw of the microscope stage or by a two-coordinate specimen traverse, simultaneously counting the number of times boundary lines pess the center of the cross hair of the ocular. In this case the length of a secant is equal to the traverse of the plane of polish, recorded by the micrometric screw (in millimeters). By shifting the plane of polish or by turning it, it is possible to ropeat the determination at the second secant, etc., until a reliable mean value of the number of intersections per 1 mm of secants, m , is obtained. In this technique of counting, the length of each secant is limited only by the over-all size of the plane of polish and by the traverse of the microscope stage. / $\mathrm{M} \mathrm{T}-3$ apparatus, used for the microhardness dete inftions, is quite convenient for this purpose.

When structures are oriented and when it is necessary to use secants directed at definite angles to the axis or plane of orientation, it is expedient to use a polarized microscope of $M \%_{T} T-2 \mathrm{M}^{T-3}$ types, etc., equipped with opaque eliminators and rotating stages for the scale graduated in degrees, which, unfortunately, are absent in metallographic microscones. When working with $\because \mathrm{MT}$ - 3 instrument, their rotating disc with a scale graduated in degree is installed or the stage of the instrument. A small bag of the disc (see Figure 83) fits (the fit is nut too
tight) a hole made in the stage. When a specimen is fixed in this manner all of its surface is available for observation. The disc is successively rotated to a definite angle and traversed by l micrometric sores. After that, the stage is traversed to a short distance in perpendicular directdion by the second screw and again traversed by the first screw so that the line of observation passes from one edge of the specimen to another. Thus, groups of mutually parallel secants, with different directions and covering the surface subject to analysis within uniform grid, are formed on the plane of polish.

Figure 83. Device for turning the slide to a definite angle with relation to the direction of the movement of the table of the instrument PMT-3.

Qustaner from the cental uni

Fig. 84. Change in the magnitude of the specific surface of graphite along the cross section (diameter) of grey iron 30 mm in diameter

Then working with ordinary metallographic microscopes it is expedient to set up two-coordinate specimen that traverses on their stages, which prevents traversing of the specimen into mutually perpendicular directions, recording the value of traverse on a scale with pence with accuracy of 0.1 mm . It is particularly expedient to set up a specimen traverse on the stage of $: 1 n-7$ microscope, so that the traverse of the specimen could be made by left hand. In the existing design of this microscope both the traverse and focusing are made by right hand, with the left hand being free, which is quite inconvenient.

The advantage of traversing the specimen with simultaneous counting is the possibility of using maximum magnifications, which makes it possible to a more reliable recording of the fact of inetrsection between the grain boundary and the lire of direction of the center of the cross hair. In this case, the magnification used has absolutely no effect o.
the time of counting of a given number of points.
The method of traversing specimen should be preferred in all cases when it is necessary to determine the mean number of intersections of random or directed secants which characterize the entire area of the plane of polish as a whole. A differentiated determination of the size cif the specific surface area from individual zones of the plane oî polish requires that the numbers of intersections be counted separately for small areas of the plane of polish, usually in separate fields of vision; in these cases the method of traversing the specimen necessarily has to be replaced by the method of counting with a stationary specimen. For example, Figure 84 shows the variation of the dispersjity of graphite in gray cast iron (which is estimated by the value of its specific surface area) across the section of a casting 30 mm in diameter. In such a case the count is made successively in several fields of vision arranged along the diametrical line of the transverse plane of polish separately for each field. The rule of the ocular-micrometer or the cross heir of the ocular may be used as the secant. They make it possible to count in one field of vision a large number of points into mutually perpendicular directions. When applying this method, the length of the secants, that is, the length of the projection of the ocular rule on the nlane of polish or the diametei or visible field of vision are determined with the aid of object micrometer.

Fig. 85. Effect of the width of the sections of the line in determining the number of cross sections by the method of arbitrary secente (A. G. Spektor [104.7]

Fig. 86. Oculer insertions for determining the average number of cross secticns by the method of artibrary sections, these inse tions being free of systematic error

The greater the number of counted points, the more accurate are the results of the determination. In view of that, wher making counts with a
stationary specimen it is desirable to use low magnifications, for the number of intersections in a given field of vision is inversely proportional to the magnification. However, when using low magnifications the error increages due to difficulty of establishing the fact whether grain boundaries are intersected by the secant or pass near it. Miherefore, it is necessary to apply sufficiently high amplifications (which are determined by the disporsity of the structure); the accuracy should be attained oy counting in a greater rumber of fields of vision, which in the final. analysis results in complications and slowing down of the count. For this reason, the use of the method of stationary specimen is rational only when due to conditions of investigation it is impossible to use the method of traversed specimen.

Fig. 87. Measurement of the cumulative average number of cross sections as depends on the computed over-all number of points of the dross sections in analysis by the method arbitrary sections

When making the count by the mon of traversing specimen it is desirable to use an ordinary mechanicai counter (Figure 16), which totals the number of times the pedal is pressed. The countine process is reduced to the traversing of the specimen and simultaneous counting of the number of intersections by the counter. The length of the traverse and the number of intersections in it are fixed only after the specimen has been completely traversed. Then making counts by the method of stationary specimen, it is necessary to record the number of intersections in each field of vision, if a different shade of analysis with respect to the zones of plane of polish is made. If the number of intersections is counted for the entire plane of polish or for one of definite directions, then the number of fields of vision is fixed and the number of intersections may be counted in all fields by the counter.

Counting of the number of intersections using traversing and stationary specimens as a source of a constant error, which was noted by A. G. Spektor [104]. This error is due to the fact that the rule of the ocular micrometer or the center of the cross hain of the ocular are not geometrical lines or a point but have a definite "width" which maly be measured with the aid of an object micrometer. If it is assumed that the visible diameter of sections of microparticles on a plane of polish is d, then the geometrical secant 1 mm long will intersect all spherical sections the centers of whioh lie within the band d wide and 1 mm long, as it may be seen in Figure 85a. If the number of circles per 1 mm square of the plane of polish is n, then the number of intersections per 1 mm of length will be equal (according to the rule of the total projection onto a plane):

$$
\begin{equation*}
m=2 \mathrm{nd} \tag{29.1}
\end{equation*}
$$

However, if the secant is b wide (Figure 85b), it will intersect all oircles the centers of which are within the band the width of which is d plus b and the total number of intersections per 1 mm length will be a greater value thar in the preceding case:

$$
\begin{equation*}
m^{\prime}=2 n(a+b) \tag{29.2}
\end{equation*}
$$

It is obvious that the error will be the greater the more dispersed is the structure subject to observations, that is, the greater the ratio b / d, and its sine will be always positive (the calculated number of points is higher than the true one).
A. G. Spektor proposed to introduce an appropriate correction. To calculate the latter it is necessary to determine secondary parameters of the structure (the number of intersections per $1 \mathrm{~mm}^{2}$ of tne plane of polish), which considerably complicates the determination and is possible only when the sections of microparticles are circles. It is much more simple to reduce to zero the "width" of a secant or of a point, which may be readily accomplished in practice. The rule for counting the number of intersections, which replaces the rule of a conventional ocular micrometer, is siom in Figure 86a. The count is made from lines separatire
the dark and light fields, which are geometrical lines without "width". In order to obtain a greater number of inversections in a given field of vision it is expedient to use an ocular insert with a spiral, shown in Figure 8ób. The count may be made from the internai as well as external contoui of a spiral. It is not difficult to measure the length of the spiral, since it is made up by semicircles. When the analysis is made by the method of traversing specimen, it is expediont to roplace the ocular with a cross hair by an ocular with an insert, having a dark sector, described previously (Figure 43). The apex of the sectcr is the geometrical point and the need for corrections is eliminated.

These means eliminate sourees of the constant error noted by A. G. Spektor and completely eliminate the need for any corrections which complicate the dotormination.

As a result of counts we have two figures at our disposal: the total length of secants, 1 , on which the count was made, and the total number of intersections of a given system of boundary lines ard secants, Z. The mean number of intersections per 1 mm length of secants we find is the ratio of these two quantities:

$$
\begin{equation*}
m=-\frac{2}{2} \min ^{-1} . \tag{29.3}
\end{equation*}
$$

As any other statistical mean value, the number m is more accurate the greater the number of separate observations or measurements, that is, in the given case the greater the number of counted intersections, C. We determined the mean number of intersections of the rule of the ocular micrometer and interfacial boundary lines of thorite and pearlito constituents in hypoeutectoid steei ($\left.0.3^{\prime \prime} \mathrm{C}.\right)$ The count was successively made in 100 fields of vision with fixing the results for each field of vision separately. The length of the rule of the ocular micrometer in the plane of polish was 0.465 mm , with magnification 315 .

Numbers of intersections $3,12,8,3,8$, etc., were obtained in the course of taking measurements in the fields 1, 2, 3, 4, 5, etc. Cumulative numbers of intersections were respectively $3,15,23,26,34$, etc., and cumulative means were 3.0, 7.5, 7.7, 6.5, 6.3, etc. Variaitions oi the curalative mean number of the intersections, \bar{z}, with the cumulative
number of intersections, Z, are shown in Figure 87. As the latter increases, the limits of fluctuations of the cumulative mean value are becoming increasingly narrow and it becomes stabilized approximating the true value. Thus, when the number of points is greater than 500 , the actual deviations from the mean value do not exceed 0.11, that is approximately 2% of the value which is being determined. At the same time, in individual fields of view, the number of intersections varies in a wide range between 2 and 14, which may be seen in combined data for all 100 fields of vision listed in Table 29. On further increase of the number of field of visions, these extreme limits may be widened even more, The common mean number of intersections for all 100 fields of vision is 5.99 for the length of 0.465 mm . The mean quadratic deviation of this number, calculated from the data in Table 29, is 2.48.

Table 29

As we have already stated, the error in the determination and the reliability or probability of producing precisely this error are inalienably related to each other. Ir order to compute the value of errors, produced with a certain probability, it is necessary to know the value of the mean quadratic deviation. In the example cited above this deviation was determined exporimentally and was 2.48 intersections per singular field of vision. Therefor the absolute error of determination, Λ, produced by examining this structure only in one field of vision, will be defined by the equation:

$$
\begin{equation*}
\Delta=亡 \sigma\{2\}=2.48 \mathrm{t} \tag{29.4}
\end{equation*}
$$

where t is the normalized deviation related to the validity or probability of producing an error not greater than the one defined by Formula (29.4). This relationship has seen cited previously in the description of the lineal method of analysis (Section 15), and the values of normalized deviation t for different valies of probability P are listed in Table 12. Using the data in this table it is possible to determine that in the example of analysis cited the probable error (when the probability P is 0.5) will be $=0.675 \times 2.48=1.67$, that is the plus or ininus deviation from the mean value of the number of intersections (5.99) will not exceed the found value of 1.67 in at least 50% of analyses (in the given case in 50% of examined fields of vision). In other words, in at least half of the number of analyses the result must satisfy the limits :.rom 5.99-1.67 = 4.32 to $5.09+1.67=7.66$, or in round figures from 4 to 8 intersections in one field of vision. The examination of Table 29 shows that actually 64 fields of vision from 100 examined are found within these limits.

We cannot for each analysis carry out a series of measurements instead of only one measurement for the sole purpose of finding the mean quadratic deviation needed for the calculation of an error from Formula (29.4). At the same time the complexity of systems of grain boundaries on the plane of polish does not make it possible to calculate the geometric probability of intersection beforehand and to determine the mean quadratic deviation from it, as we had done in calculating the accuracy of the point method of analysis for A. A. Glagolev in Section 16. For this reason, we have to determine regularities which correlate the structure and the conditions of analyses with the value of the mean quadratic deviation which occurs in this case.

If the length of the secant is increased \because times, the mean number of intersections of 1 secant will be increased just as many times. From the theory of probabilities it is known that when all the yalues of the characteristic are multiplied by one and the same number k, both its mean value and the mean quadratic deviation are increased just as many times. It is also known that the value of the mean quadratic deviation is inversely proportional to the square root of the number of observations, which in our case corresponds to the number oi points counted in the course of the
analyses.
Therefore, in the final analyses, we shall have a directiy proportional relationship between the mean quadratic deviation and the square root of the number of noints counted during the determination. This postulate is valid, if having a single-type system of lines on a plane we shall vary the scale of the image, maintaining the length of the secant constant or, conversely, if we shall vary the length of the secant, superimposed on the one and the same system of lines, However, the coefficient of proportionality, as the study of numerous types of structures and shapes of secants has demonstrated, is not a constant value and is dependent both ypon the nature of the structure (to be more exact upon the character of the system of boundary lines on the plane of polish (and upon the conditions of determination). For the structure of lamilar graphite of gray cast iron, iust examined, the relationship between the mean quadratic deviation, Z and the number of intersections; Z; is expressed by the formula:

$$
\begin{equation*}
\sigma\{z\}=k \sqrt{z} \tag{29.5}
\end{equation*}
$$

where coefficient t is 1,06 .
Figure 88 shows the graph for a system of grain boundaries of polyhedral structure with equiaxad grains of uniform size (line l). Here the value of the coefficient of proportionality k is ... The same figure shows the relationship of the mean quadratir. . In to the numbor of inuesentious for interfacial boundaries betis. enentite mad thor ite in granular pearlite (line 2). For this cas t was found that coeficicient k is 1.02 .

At one and the same lonath of secants, the same specific lengti of grain boundaries and, consequently, with the mern nunber of intersections per 1 secant being the same, the mean quac $\perp c$ deviation of this number may vary. Let us consider in tinis connec on a system of boundaries of of equiaxed thorite grains shown in Figu 49. The specific lengths of grain boundaries in firure 89 almost presisely coincides with the specific length of boundaries of equiaxed thorite grains shown in Figure 49. However, if secants of the same length are to be drawn on both figures, it can be predicted that the r se of fluctuations of the number of inter-
sections per l secant will be considerably wider in the case of the structure shown in Figure 89 than in the case of the structure showr in Figure 49. Actually, the numvers of intersections on secants directed parallel and perpendicular to the orientation axis will differ drastically in Figure 89, whereas in Figure 49 they will oe more stable, for they are not dependent upon the direction of the secant. This is valid for rectilinear secants. However, if circular secants or secants shaped as spirals are substituted for rectilinear secants, no essential scatter of intersection points would occur on individual secants even when the toundaries are oriented, for the shape of such secante assures the equal probability of the intersection angle regardless of the orientation of boundaries. In Table 30 are given the numbers of intersections for a system of boundaries, shown in Figures 49 and 89 , with several secants of the same length (100 mm), but shaped either as circles or straight lines, superimposed over the former. For each of the four cases we calculate the mean numbers of intersections per 1 secant, \bar{Z}, and mean quadratic deviations of these numbers, Z, which are given in the bottom lines in Table 30, Also there are listed the values of the coefficient of pro= portionality, k, determined in agreement with Formula (29.5) from actually determined values

Fig. 88. Dependence of the average quadratic deviation of the number of cross sections on theover-all number of computed points of the cross sections

Fig. 89. Structure of sheet transformer steel. Plane of the slide is perpendicular to the plane of the sheet X100

The data obtained indicate that the mean numbers of intersections in all four cases differ little from each other, for the length of boundaries in figures 49 and 39 is almost the same. In the first three cases the valies of the coefficient k are also almost idertical and considerabl.

Чнсло паресеченм』 ал млнве 1)		49. 1uc. 49 degen giver		
Чис.10 cлучасв				
1	-	-	-	2
\because		-	-	
3	-	-	-	5
4		-	-	6
5		-.	-	2
6	-	-	-	
7	-	-	-	$\stackrel{2}{7}$
8	4	4	5	2
9	8	10	6	5
19	3.1	24	25	
11	38	32	51	6 2
12	5	31	49	7
1.16	39	22	35	4
14	15	12	22	11
15	8	4	5	11 9
15	2	3	2	11
18	-	1	-	11
19	\cdots	-	二	1
Bcero	$2(1)$	146	200	${ }^{\text {. }} 1110$
$\underset{\substack{{ }_{k}^{2} \\ Z \\ \hline}}{ }$	11.77	11.65	11,81	11.47
	1.54	1,74	1,54	3.151,52
	11.46	0.51	0.45	

below the value fom tron the graph shown in Figure 88, for in that case the analysis was carried out directly on the plane of polish using many fields of vision, due to which the fact of the fluctuation of the specific length of boundaries over the plane of polish was relt. In the given case the analysis was carried out withir the limits of a small area, Figures 49 and 89, corresponding to one field of vision. Just as it was anticipated, the abnormally high value of the mean quadratic deviation and of wie coefficient k occur wan a system of boundaries is oriented (Figure 89) and when the secant is rectilirear disposed at various angles \therefore tr , orientatic, axis.

Let us discriv ae results obtained. The value of the coefficies: of proportionality k varies within a quite wide range of 0.45 to 1.52 (under different conditions it is possible that this rango is wider). The value of this coefficient is first of all affartrd by the actual fluctuation of the specific length or the density of boundaries in ind: vidaal fields of vision. Therefore, the direct analysis or the plane of polish produces the coefficient k of higher values (0.74 to 1.06) than by the analysis within the lirits of a sirgular field of vision (0.45 to 0.51)

The uniformity of distribution of intersection points along the
secant is of great importance, Thus, under the same conditions of analysis (a singular field of vision, the same length of secants, the same specific length of boundaries), the value of the soefficient k is approximately twice as low for the isometric system of boundaries, shown in Figure 49, as compared with an oriented system, shown.in Fisure 89 (0.51 and 1.52, respectively). It is obvious that as the degree of orientation is increased, this ratio would be even higner. A circular secant automatically assures an equal probability of any angle of intersection with grain houndaries, regardiess whether they a:e oriented or isonetric. Therefore, circular (or spiral) secants prouluce a small coefficient k (0.45 to 0.46); regardless of orientatior.

The nonuniformity of the density of boundaries has an essential influence on the value of coefficient k in microareas even in singular fields of vision; this nonuniformity is due to specific pecularities of certain strustures. If a secant is drawn over a polyhedral structure, similar to the one shown in Figure 49 , then the points of intersections will be reiatively uniformly distributed along the secant and the mean distance between two adjacent points will have a definite value. In this case, just as we have seen, the analyses on the plane of polish produces i minimun of value of the coefficient $k=0.74$ and the analysis in a singular field of vision produces the value of 0.46 to 0.51 . In other pictures observed in structures in which intersection points of secants are distributed as if in paris. Examples of such systems of boundaries may be boundaries of rraphite in gray cast iron, boundaries of thorite or cementite in hypo- and aypereutectoid steel, if the thorite or cementite form a fine network over grain boundaries of pearlite, grain boundaries of cemertite in granular pearlite, et.: In this case the drastic difference in distances between adjacent points is manifest on secant intercepts passing through the graphite and metal base of gray cast iron, through the thorite or cementite or through pearlite grains in steel, through cementite grains and throtie base of granular pearlite, etc.

If a frequency curve is plotted for distances between adjacent points of interseations or secarts for a structure of the tipe show in Figure

49, the curve would show one maximum, However, for types of structures enumerated above each frequency curve would exhibit two maxima. This nonuniformity of distribution of intersection points on secants predetermines their high mean quadratic deviation, obtained in these cases, and, consequently, a high soofficiont of proportionality k (1.02 to 1.06 or higher).

By way of sumining up, it is possible to note that in the analysis directly on the plane of polish the value of the coefficient k in Formula (29.5) on an average is 1 and more frequently is found within the limit of 0.7 and 2.2 . Lower values correspond to the uniform distribution of boundaries over the plane of polish and of intersection points over the length of the secant. Higher values correspond to structures with "paired" or "doubled" boundaries, the examples of which have been presented previously and also correspond to nonuniform distribution of boundaries over the plane of polish. All of the aforesaid is applicable to isometric systems of lines on a plane of polish.

The most adverse conditions are developed in the analysis of oriented systems of boundaries using rectilinear random secants, when the values of coefficient k exceed the upper limit of above given norms. However, it should be noted that in the case of oriented structures ve are using not random but directed secants and in the analysis by the method of oblique planes of polish we may employ circular or spiral secants. Therefore, in practice we have to deal with this unfavorable combination of conditions of analyses.

Further in our discourse we shall assume the coefficient k equal to unity. In connection with previously cited concrete examples in isolated cases it will be possible to introduce appropriate corrections. From Equations (29.4) and (29.5) it follows:

$$
\begin{equation*}
\Delta=h t \sqrt{2,} \tag{29.6}
\end{equation*}
$$

Wher Δ is the absolute error in the numbers of intersection points; Z is the number of intersection points counted in the course of the analysis.

As it has beer previously demonstrated, the error in the determination of the value 0 : specific surface area is equal to the error of the determination of the mean number of intersections. The relative error
in determination of these values may be found from Formuia:

$$
\begin{equation*}
\delta=-\frac{\Delta}{2} 100 \%=\frac{k t}{\sqrt{2}} 100 \% \tag{29.7}
\end{equation*}
$$

The latter equation finally determines the relationship between the relative error of the determination of the specific surface area by the method of secants, the validity of the determination and the number of points counted in the course of the analysis. From this formula it is possible to calculate the relative error of the carried out analysis, having apecified any validity of its derivation and vice versa.

For the preliminary count of the required number of points of intersections, which assures the determination of a definite relative error with a prespecified validity, we are using Formula:

$$
\begin{equation*}
z=-\frac{10000}{\delta} k^{2} k^{2} \tag{29.8}
\end{equation*}
$$

Let us assume that we specify the value of the relative error $5=5 \%$ with the validity $P=0.9$ (at which the normalized deviation t has the value of 1.6449). In that case the required number of pnints of intersections between the secants and boundaries, which has to be calculated, may be found from the Equation (29.8) and will be equal to 1.82 (at the coefficient $k=1$).

If we shall carry out a large series of determinations (1082 points in each), then the obtained relative error will somewhat exceed the figure which we have specified, that is 5%, in not more than 10% of determinations. In other 90%, the error will be less than 5% In other words, by carrying out a singular determination, counting 1082 points, we can assume that the validity of the obtained resuits is 0.9 or 90%.

In order to avoid counting in each individual case, we have compiled Trable 31 which is in agreement with Formulas (29.7) and (29.8).

Specifying the permissibility of the relative error of the anticipated results of the analysis and its validity, it is possible to find directly from this table the required number of points of intersections. When calculating the data in the table the value of the coefficient k was taker as 1. Therefore, for concrete systems of boundaries the number of poirts of irtersections derived from the table is corrected by multiplying by k^{2}.

L Stardacdejed							
2. Probalidity		0.674	0,842	1.067	1.281	1,645	1,960
	2 вероятность P (лостоверность)	005	8.6	80%	0.8.	9.9 90%	9,95
3. Relative errar 8%	3. относитсли наи оиника $\div \%$	4.		ксло точек пересечении			
4. The of Betreection pacxts.	1	4543	7090	10754	16410	27060	38415
	2	1136	1773	2689	4103 1823	6765 3007	9604 4268
	3	1505 284	788 443	1195 672	1826	1691	+ 2401
	5	182	28.4	430	656	1082	1537
	${ }_{1}$	126	197	299	456	752	1067
	7	93	145	219	335	552	784
	y	71	111	168	256	423	600
	9	56	88	133	203	334	474
	10	45	71	108	164	$27!$	384
	11	38	59	89	136	224	317
	12	32	49	75	114	188	267
	13	27	42	64	97	160	227
	14	23	36 32	55 48	84 73	138 120	196
	15	20	32	48	73	120	171

If the analysis has been already carried out and the total number of counted points of intersections is Z, it is possible to find the value of the relative error from Table 32. This quantity obviously will differ, depending upon its validity. Thus, if 1000 points have been counted, the relative error will be 2.1% with the validity of 0.5 (this will be "a probable error"), 2.7% with the validity of 0.6 , and on to 6.2% with a validity of 0.95 .

When calculations are made directly from Formulas (29.7) and (29.8) the values of normalized deviation t for different values of the probability P, which characterizes the validity of the result of the analysis, are found in Table 12.

The carried-out method of calculating the error of determination when using the analysis by the method of random secants is convenient for it does not require determination of any additional values by means of repeated analyses, etc. The total number of points of intersections, counted in a course of the analysis, is also used for the determination of the mean number of intersections, m, and for calculation of the value of the specific surface area, as well as for the calculation and determination of the error of analysis from the tables [147].

1. Standardized variation
2. Probability (authenticity)
3. Ter. of Intersections points
4. Relative error 8,70
 ture of Metals and Alloys

Speaking strictly realistically no elements of spatial structure are possible having only one dimension; therefore, discussing such elements we have in mind formations whose dimensions of cross section are significantly small as compared with their linear extent.

Let us consider the spatial structure of a polycrystalline aggregate consisting of a number of crystallites of different dimensions and shapes. These crystallites are separated from each other not by just a syste:i of boundary surfaces. Surfaces of the system, intersecting with aach other, form a 3-dimensional system of lines which may be called a system of H lines of crystallites. Quantitatively a system of K lines may be estimated by the total length of all the lines per unit volume of polycrystal, measured in $\mathrm{mm} / \mathrm{mm}^{3}$.

By intersecting a polycrystalline aggregate by a plane, we obtain a number of traces where this plane meets with the system of lines of crystallite edges. On the microsection of a polycrystal, these traces are junction intersection points of boundary lines of the cross sections of crystallites; that is, junction points of neighboring flat grains. Extensive experience from metallographic analyses show that, as a rule, vertexes of three flat grains come together at junction points on a microsection of a sing?e-phase polycrsstal. Consequently, in space also the H lines of crystallites belong simultaneously to three adjacent crystallites. However, in some cases junction of a large/number of grains ias been found at a junction point on a microsection. Thus, for example, G. Ya. Vasil ye measured microhardness at junction points not only of three but of four ferrite grains [148]. However, generally in such cases, when it seems to us that four grains come together at a certain junction point, additional clarification always shows that actually this is the case not of one but or two jurction points located quite close to each other.

Since it is possible to draw a plane through any three points, such as three centers of cristallizatior the nearest to each other, let us construct ir this plane the lines at which crystallites, Erowing
at different linear rates of spherical growth, meei. Such a structure, shown in Figure 90, indicates that the three boundary lines which separate adjacent crystallites, meet at one point. The greater the difference in the linear rate of growth of adjacent crystallites, the greater the curvature of the boundary line between them. At equal growth rate, the boundary lines happen to bs straight. If the rate of growth is not spherical, the boundary lines have a more complex curvature, for instance, wavy. However, in all cases the boundary lines of three adjacent crystallites join at one point on a plane.

Fig. 9C. Sketch of the formation of a joint of three grains with spierical syngony of the growth. Plane of the drawing runs through the center of the crystallization of the grain, rate of growth of which varies

In a structure containing more than one constituent, the H lines of microparticles of any one constituent may be exhibited more or less clearly, that is three phases which one of them may be joined at a smaller or greater angle. In the plane of the miorosoctior this will correspond to sharply broken or smooth boundary lines of a given structural constituent. For example, surfaces of graphite platelets in the gray cast iron come together at very small angles forming clearly exhibited edges of platelets. For this reason ir the plane of the microsection also the traces of lines of these edges are clearly manifest in a form of terminal points of cross sections of graphite platelets, Kicroparticles of SnS compound in babbitts are shoped as quite regular cubes and in the plane of a micro section form polygons, with number of sides ranging between three ans six, whose vertexes are clearly manifest. Generally speaking, however, as compared witl: a single-phase structure, the traces of intersections of
edges of micropantisles are less clearly exhibited on the plane of microsection, since in the first casc thoy are marked by junction points of three boundary lines and in the second case they are marked only by a more or less distinct rate in the boundary line.

Besides the lines of edges of microparticles, other elements of structure, in which one dimension clearly predominates over the other two, may be also of interest to us. Such elements are formetions which have a special shape of rods, filaments, fibers, aciculae (should not be confused with "needles" on a plane, for example with asiculae of martensite, which in reality are shpaed as platelets). Microparticles of $\mathrm{Cu}_{6} \mathrm{Sn} 5$ compound in babijitts, which are shaped as thin cylindrical rods (see Figure 3) may be cited as an illustration of such formations.

Let us assume that a system of straight, curved, continuous or broken lines is found in space, which lines are disposed and directed in any Iashion, randomly or with a geometrical regularity. The problem is set up to determine the length of lines in the system in a unit of volume, using for this purpose measurements on its planar cross section.

Let"us draw a number of secant planes which intersect the volume being investigated. The planes are disposed and oriented randomly. After that, let us calculate the number of intersections formed by the planes an' lines of the system as K, expressing it in mm^{-2}. The specific length of lines we shall designate as $\mathcal{\sim}$, expressing it in $\mathrm{mm} / \mathrm{mm}^{3}$. Let us also note that the dimensionality of both quantities is one and the same, mm^{-2}. Let us demonstrate that a unique relationship exists between the quantities $\Sigma \mathrm{L}$ and M, and that the specific length of Iines and the mean number of intersections per unit area of the secant plane are directly proportional to each other. If this is so, then having readily determined the number from the microsection, we shall also find the value of $\sum \mathrm{L}$.

In order to fird the relationship between quantities M and ΣL, we isolate in space a large number of thin flat platelets of disappearingly small thickness Λ, instead of a system of secant plares. In the limit, at $\dot{K}^{\circ}=0$, these platelets become secart planes. The distribution of flatelets in space is statistically uniform and their oriertation
random so that the number of usually parallel platelets is the same for any direction in space. Let the total area of all platelets be equal to F and the total number oi intersections with the lines of the system be $F M$, where M is the mean number of intersections per $1 \mathrm{~mm}^{2}$ of the area of platelets. Then, FM number of intercepts of the lines of the system will be found in volume $F A$. We shall consider the intercepts to be straight lines, since the thickness of platelets, Λ, approaches zero. The total number of intercepts per unit volume of platelets is equal to:

$$
\begin{equation*}
z=-\frac{F M}{F \Lambda}=\frac{M}{A} \tag{30.1}
\end{equation*}
$$

If the acute angles formed by intercepts and planes by which they are intersocted, are designated as $y_{1}, y_{2}, \gamma_{3}, \ldots$ then the length of intercepts will be respectively:

$$
-\frac{A}{\sin \gamma_{1}}, \quad-\frac{1}{\sin \gamma_{2}}, \quad \sin \bar{Y}_{3}, \ldots, \frac{-\dot{\sin } \bar{\gamma}_{2}}{}
$$

The total length of all intercepts per unit volume of platelets, or the same per unit volume of metal, will be:

$$
\begin{align*}
& \Sigma_{1} I=\Lambda\left(1 / \sin \gamma_{1}+1 / \sin \gamma_{2}+1 / \sin \gamma_{3}+\ldots+1 / \sin \gamma_{z}\right)= \\
& =M\left[-\frac{1}{2}-\left(1 / \sin \gamma_{1}+1 / \sin \gamma_{2}+1 / \sin \gamma_{3}+\ldots+1 / \sin \gamma_{z}\right),\right. \tag{30.2}
\end{align*}
$$

The terms found in brackets represent the reciprocal value of the sine of angle), formed by a straight line and a plane (by intercepts and platelets); furthermore, all directions of the straight lines in space with respect to the plane are equally probable and equally possible. This value has been already determined by us when deriving the basic formula of the method of random secarts for space (25.1) in Section 25. It was found that it is precisely 2. For this reason:

$$
\begin{equation*}
\mathrm{Z}_{1} \mathrm{~L}=2 \mathrm{~K} \mathrm{~mm} / \mathrm{mm}^{2}, \tag{30.3}
\end{equation*}
$$

i. e., the total length of lines of a system fourd in a unit of volume of metal, is equal to twice the number of intersections of these lines with the sustem of secant plares found or an average in a unit area of
the latter. The formula derived is the basic formula of the method of secant planes.

For the derivation of formula (30.3), the assumption was wate that all angles at which the intersected lines meet with secant planes are equally possible and equally probable. Therefore, Formula (30.3) is valid only when this condition is satisfied. Formula (30.3) is valid in the case when at least one of the systems, mutually intersecting in space (i. e., either a system of lines the length of which is being measured, or a system of secant planes, or, finally, both of these systems simultaneously) is random and does not have any preferred direction or orientation in space. Therefore, although theoretically Formula (30.3) and the method of secant planes are applicable for any case, in practice, when the analysis is limited to a single microsection, they may be applied only for the measurement of length of isometrical systems of lines. For example, using Formula (30.3) it is possible to determine the total. length of lines of crystallite edges in an isometric polyhedral structure of metal with equiaxed grains.

On the plane of the microsection, intersections between the lines of edges of volumetric grains and the plane of the microsection are junction points of boundary lines of three adjacent flat grains, as has been previously noted. Calculation of the number of junction points per unit area of microsection ($1 \mathrm{~mm}^{2}$) is one of the simpler techniques of quantitative microanalysis. Ey substituting the value of M obtained into Formula (30.3), we find directly the specific length of lines of edges in $\mathrm{mm} / \mathrm{mm}^{3}$.

Before commercing the analysis of systems of lines with partial linear orientation in space, let us discuss a system of completely oriented lines, which obviously must consist of straight lines (or segments) parallel to each other and parallel to the orientation axis. Filamertlike nonmetallic inclusions may serve as an example of such a system of lines, in approximation. These inclusions in rolled rods or in wire are groups of approximately rectilinear fibers of different lengths, parallel to the orientation axis, i. e., to the axis of their round or wire.

Let us irtersect such a wire by a number of plares perpendicular to its axis, maintaining a corstart and very small distarce, /, between
the planes. These planes would intersect all fibers of nonmetallic inclusions into intercepts with lengths up to $\|$. Let us arbitrarily round off the length of these intercepts to Δ, if their actual length is greater than half this valuo and let us disregard these intercepts if their length is less than $0.5 \triangle$. Let us designate the number of intercepts between each pair of adjacent planes as $M_{1}, M_{2}, M_{3} \ldots$. Let us take into accounl that the total number of intercepts per unit volume of wire would be equal to the sum of these numbers for $z=1 / \Lambda$ planes, inasmuch as precisely this number of planes fits the length of wire equal to unity.

In that case, the total length of all intercepts of filamentary inclusions per unit volume of wire will be:

$$
\begin{align*}
\Sigma L & =\Delta\left(m_{1}+L_{2}+M_{3}+\ldots+k_{z}\right)= \\
& =-M_{1}+M_{2}+M_{3}+\ldots+M_{2}=m \mathrm{~mm} / \mathrm{mm}^{3} . \tag{30.4}
\end{align*}
$$

Consequently; the specific length of a systern completely oriented in space is numerically equal to the mean number of intersections between the lines and planes, perpendicular to these lines, per unit area of these planes. On transverse microsections, located along the length of a round or wire, the mean number of intersections with filamentary nonmetallic inclusions (or otner elements of structure which have linear dimensions per unit area of the microsection, is a statistically constant value. Therefore, having determined the mean number of intersections of nonmetallic inclusions per $1 \mathrm{~mm}^{2}$ of microsection (or from several microsections, in the case of a more critical analyses or hetereogeneous distribution of inclusions along the length), we can find from Formula (30.4) their total. length in a unit volume of metal.

If a system of lines has a partial orientation, such as for example a system of lines of grain edges in a round or wire, which are elongated by rolling or drawing, we apply the same procedure for the determination of specific length of lines, just as in the case of using the method of directed secants. The length of lines in the isometric and completely oriented systems are calculated from the different formulas (30.3) ard (30.4). Fo.
this purpose it is necessary to have two microsections. The plare of the first must be parallel to the orientetion axis (the symmetry axis of the structure) and the plans of the second must be perpendioular to i.t. The flane of the first microsection (longitudinal one) does not intersect oriented lines inasmuch as they are parallel to it, and, consequently, the number of junction points per $1 \mathrm{~mm}^{2}$ of such a microsection, \mathbb{M}_{11}, helongs exclusively to lines of the isometric portion of the system. ThereU
? specific length of the isometric portion of lines may be found fore, ta
from (30.3):

$$
\begin{equation*}
\sum L_{i s}=2 M_{11} \mathrm{~mm} / \mathrm{mm}^{3} \tag{30.5}
\end{equation*}
$$

' microsection (transverse one) will intersect
The plane of the secona
71 oriented perpendicular to the plane of lines disposed isometrically as we._ number of these junction the microsection. Let us designate the mear. points per $1 \mathrm{~mm}^{2}$ of the transverse microsection as \mathbb{M}_{1} Inasmuch as the number of intersections with the isometrically disposed elt '
ments of lines is independent of the direction of secant plane and is equal to "M, we may find the number of intersections with oriented elements of lines oi system, exclusively, from the difference:

$$
H_{1}-N_{n} m^{-2}
$$

Then the specific length of thecompletely oriented portion of lines of the system will be found from Formula (30.4):

$$
\begin{equation*}
\sum \mathrm{L}_{\text {or }}=N_{1}-N_{11} \mathrm{~mm} / \mathrm{mm}^{3} \tag{30.6}
\end{equation*}
$$

The total specific length of lines per unit volume of metal is equal to the sum of quantities defined by Formulas (30.5) and (30.6), i. e., equal to:

$$
\begin{equation*}
L_{\text {tot }}=M_{1}+M_{11} \mathrm{~mm} / \mathrm{mm}^{3} \tag{30.7}
\end{equation*}
$$

Using the given formuias, it is possible to calculate also the degree of orientation of lines or edges of the elongated grains or microparticles as the ratio of the specific length of oriented portion of lines to the total specific length, expressed i:- per cont.

[^0]: nometallic irclusions and their measurement.

[^1]: *Here it is appropriate to note that the term "actual grain", being used in $\operatorname{COST} 5639-51$ for signifying the actual size of plane grains of steel, is quite unsuccessful. 3 y "actual" grain it is natural to iamax understand the true three-dimersional grairs of steel, ir contradiction to the visible size of two dimersioral-grairs $\begin{aligned} & \text { in } \\ & K K\end{aligned}$ the microsection, which could lead to $X X$ misunderstandings.

[^2]: In spite of the fact that, more than 20 Mrs ago, E: I.L.Mirkin proved the

[^3]: Somewhat differert phenomera, accordingly leading to other results, occur during

[^4]:

[^5]: * Usually the carbon content in cementite is assumed to equal 6. 67%. However, the calculation conducted $W K \%$ on the recent data of values of atomic weights yields acrandie the figure presented in the text.

[^6]: Ir the limit, whe: the cross section of prisms approaches zero and prisms themselves are transformed into secants, the mean number of

