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Page Correction

S In the second equation of (1-5), change - 12 to - 12 x 1

to show that the equation is dimensionally correct and

also change 122 to 120

39 In eqs. (2-8) and (2-9), change num EvV to num EvVI .

42 Change all impedances denoted by C to C2 "

43-44 Theorem E and the discussion following it in Section 2.4

may'be better stated as follows:

Theorem E

The numerators of the even parts of a series of

cascaded V operators are related by

num EvV -(num EvVl)(num EvV2 ) ... (num EVVn)*
(2-15)

and, assuming that no common (surplus) factors have been

cancelled in the numerator and denominator of Z, which

is given by

Z - V1 V2 ... (2-16)

*The proof appears in Appendix l.B.

it follows that

num EvZ - (num EVV)(num EvV2 ) .... (num EVV n)(nm E4

(2-17)

Thus the zeros of num EvZ are split between the V

operators and the terminating impedance as described in

section 1.9.

*The invalidity of eq. (2-17) if common factors have been
cancelled from Z is discussed in the following section.



Page Correction

48 The sentence in lines 4 and 5 and the subsequent V para-

meters should be changed to read as follows:

The components of V1 and V2 are derived from eq.

(2-8). For example

n-n EvVI 
= 1 -2s 2 = (I + VI s) (1 - 2 s)

V 1 1 + s 1+

V118 -S- V2 ," 1221

56 The second term in the denominator of eq. (2-41) is
( aL + a_)

a lb

86 In the line above eq. (3-34), change (eq. 3-2) to eq.

(3-12).

92 Change CIb to Cib in line 7.

96 The denonator of the third term of V22 in eq. (3-58)

is s 2 + q1

97 The last sentence in Section 3.9 should be changed to

read as follows:

.... C4 is eight less in rank than Z whereas, if they

are of first order, C4 is four less in rank than Z.

100 The last equation should be changed to read
5

C2  cs + 2

105 In the first sentence in Section 4.2, change (3-49) to

(3-48).

128 In line 8, change eq. (5-17) to eq. (5-15).

132 The value of the resistive termination in Fig. (5-5) is

2 ohns.
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IPg Correction

153 In line 5, remove the s from procedures.

164 In the second line from the bottom, change Fig. (6-2b)

to Fig. (6-3b).

168 In the first line of Appendix I.D, change eq. (2-35) to

eq. (2-36).

170 Label the second equation (A-21) and change the third

equation to (A-22).



ABSTRACT

An approach to driving point impedance synthesis is developed,

using the concept of an impedance operator, which is general, syste-

matic, flexible and easily applied. It is shown that the synthesis

procedures of Brune, Darlington, Bott-Duffin and Miyata readily lend

themselves to this impedance operator approach. It is furtthr shown

that, through the impedance operator and the flexibility it provides,

new driving point impedance realizations can be achieved and existing

realizations can be rade wore general.

The mathematical properties of the impedance operator are in-

vestigated in detail. Specific impedance operators of rank 2, 4 and

6, derived from repeated applications of Richards' Theorem and

extension thereof, are exarined. Through these operators, it is

shomn that thirteen realizable network sections containing one or

more arbitrary constants ray al.ays be removed from a prf driving

point impedance function leavin, in cascade, a terrinating impedance

which is realizable and contains the saie arbitrary constants.

Using the impedance onerator approach, three cascade synthesis

procedures are develooed. The first is an extension of the Bott-

Duffin procedure. The second is a general reciprocal synthesis pro-

cedure applicable to any prf driving point impedance. The third is a

general non-reciprocal synthesis procedure not requiring transformers.

-ii -
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CHAPTER I

P ?FOMLTION OF THE PROBLEM AND A REVIEW AND

EXTENSION OF EXISTING TECHNIQUES

1.1 Statement of the Problem

In the study of driving point impedance synthesis procedures,

- one encounters marv methods and techniques which are interrelated.

Each method has certain limitations, advantages and disadvantages.

It is the purpose of this thesis to develop an approach to driving-

point impedance synthesis using the concept of an impedance opera-

tor (to be defined presently) which is general, systematic, flexible

and easy to apply. It is to be shown that the well-known synthesis

procedures of Brune,17 Darlington I Bott and Duffin,6 and Miyata15

readily lend themselves to this impedance operator approach. It

is also to be shown that, through the impedance operator and the

flexibility which it provides, additional driving point impedanceI
realizations can be achieved and existing realizations can be made

more general.

The impedance operator concept to be developed herein stems

from the Darlington synthesis procedure. This procedure realises

a prf** driving point impedance given by

*This procedure is reviewed in detail 'n Section 1.2.

"-Positive real function.

-1-
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m 2 + n2

in terms of a lousless network terminated in a pure resistance

(usually one ohm) as shown in Fig. (i-I). The procedure is

nn

Z __

V

( a) (b)

I Fig. (I-i) Darlington Realizations

a cascade rather than a distributed one in that only a single ter-

mination is included.

A greater flexibility can be obtained in the synthesis of Z.

if the constraint of a resistive termination is relaxed to permit

a prf terminating impedance, . To investigate this possibility,

let the foflowing transformation be construicteda

z z i f z -n

m1 and m. are even polynomials in a while nI and n2 are odd poly-
nomials s *. These polynomials are further restricted by the
fact that Z is prf.
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m- + n, 
(1-2)I m2 + n2C

It is necessary to investigate the conditions uider which the right

hand side of eq. (1-2) represents a prf driving point impedance in

the physical sense of Fig. (1-1) with the one-ohm termination re-

placed by C. Define an impedance operator, V, which is equal to Z

when C is a one-ohm resistance and which operates on C to give Z.

i Thus V is given by

Vam I + n,1 (1-5)

m2  n2

and

z -VC (1-4)

where eq. (1-4) is to be interpreted as "V operating on CO.

Theorem A

There is a theorem due to Hazony 4 which states that if a prf

V can be constructed such that C has no right half plane poles,

then C is prf if Z is prf.

Theorem A relates only to the transformation given by eq.

(1-2) and does not, in itself, quarantee the cascade representation

of Fig. (1-1) with a C termination. To achieve this cascade repre-

sentation, it is necessary in addition that V in eq. (1-5) represent

a lossles network terminated in one obo. Then V may be synthesised

Ii\
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using Darlington's procedure and the C termination added. Thus, in

Fig. (1-1), the Z parameters in the boxes are replaced by V11  V22

and JVj, respectively, and the one-ohm termination is replaced by C

in Fig. (1-1a) and 1/C in Fig. (1-lb).

V and C can take many forms in the representation of a given

Z, since arbitrary constants may be incorporated in both V and C.

These constants may be chosen to produce desired characteristics in

- - either the removed network sections V) or the terminating impedance

(C). The constants build a definite flexibility into the impedance

operator approach.

The similarity of eqs. (1-1) and (1-5) is important. In

effect, this similarity means that the networks derived by Darling-

ton's procedure with a resistive termination are also applicable

j in the case of a prf C termination. It is appropriate, therefore,

to review in detail the basic Darlington synthesis procedure and

the types of lossless netmorks which it gives and to seek gener-

alizations which will yield additional useful networks. Also,

since the impedance operator approach is generally applicable to

the cascade synthesis of driving point impedance functions through

the removal of netork sections, a brief review of existing cascade

synthesis techniques is in order.

In view of the above considerations, the objectives for the

reminder of Chapter I my be formulated as follow

*The mechanics of this procedure are discussed in detail in
Chapter II.
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A) A review of the reciprocal and non-reciprocal Darlington

synthesis procedures.

I B) A discussion of the residue and extended residue condi-

I tions and their use in cascade syntheses.

C) The derivation of the Z parameters of certain loaded

1 gyrator networks which are useful in the non-reciprocal

Darlington syntheses of driving point impedances of rank*

I 4 and above.

D) The derivation of non-reciprocal cascade Darlington

syntheses for prf driving point impedances of rank 2, 4

I and 6.

E) A review of existing cascade synthesis procedures and the

I netmork sections which result therefrom.

1 1.2 The Reciprocal Darlington Synthesis Procedure 1 ' 3 ' 1 4

The conventional Z-parameter four-terminal network equations

I for the case of a one-ohm resistive termination are:

El" ZIl Ii + Z1 2 
1 2

-12 Z21 II + Z2 2 122

Solving for the driving point impedance yields

sum of degrees of numerator and denominator.
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z11 Z22 - Z12 Z21

Z Z n z22 +1 (1-6)

Eq. (I-I) may-be rearranged in two ways to match eq. (1-6).

1 + nl

Z - (1-7)
n 2m2+

2

n +

n n
z 1 -- (1-8)m .n2  +

m2

Eq. (1-7) corresponds to Fig. (1-la) and suggests the identifica-

tion
- M, m2  Zn Z22 -Z12 Z2 1 . n

(1-9)

while Eq. (1-8), corresponding to Fig. (1-lb), suggests that

Z 2  ZllZZ2Z " Zl2 Z21 mlzil "a M 22 "' il

The third relation in eq. (1-9) reduces to

Z3.2 zn3  " '3 2 f f - DUl3Z (1-n)
n2  n2

nm EvZ - numerator of the even part of Z.
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while the third relation in eq. (1-10) becomes

- n1  2 +n l n2 num vZ
z12 z21 - 2 (1-12)

m 2  m2

Hereafter, eq. (1-7) is referred to as the "n-type" and e7. (1-8) as

the "m-type" Darlington procedure, the n and m denoting the term in

the denominators of the Z parameters in each case.

In the reciprocal Darlington procedure, Z1 2  Z so that

eqs. (1-11) and (1-12) become

Z12 " Z21  ' n2

Z12 -Z 21  m2(1-14)

The conditions for realizability of a lossless reciprocal

four-terminal network are that Z and Z22 be reactance functions

and that the residue condition

k k 2k1 1 k22 -k 1 2 > o (1-15)

be satisfied at all poles. Since ml + nl, m2 + n2 , mi + n2 and

m2 + n, are all Hurwits polynomials, zi and Z22 are necessarily

reactance functions* Furthermore, assuming that nmn KvZ is a

perfect square, the residue condition holds with the equal sign at

all finite poles. For a pole at infinity, the equal sign applies
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only if n1 is not greater in rank than n 2 .

In order that num EvZ be a perfect square so that ZI2 is a

rational function of s, it is necessary that the zeros of num EvZ

be of even multiplicity, a condition which is not true in general.

It is possible to avoid this difficulty by multiplying the numera-

tor and denominator of Z by an auxiliary Hurwitz polynomial so
5

chosen that num EvZ becomes a perfect square. However, since this

procedure is not in general permissable in the case of the impe-

dance operator, it will not be considered further here. * Rather,

the restriction that Z12 - Z21 is relaxed and attention is re-

focused on eqs. (1-11) and (1-12).

1.3 Non-Reciprocal Darlington Synthesis

In this and the following four sections, a non-reciprocal

Darlington synthesis procedure applicable to any prf driving point

impedance is developed and applied to impedances of rank 2, 4 and

6. The resulting networks may be considered not only as syntheses

of Z with a one-ohm termination but also as syntheses of specific

impedance operators. This latter feature receives considerable

attention in Chapters III and IV.

The starting point in the development of the non-reciprocal

Darlington synthesis procedure is a consideration of the zeros of

an even polynomial in a. In terms of s 2 , these zeros may be real

and positive, real and negative or complex. In terms of s, these

fact that this procedure is not applicable in the case of the
V operator is justified in Appendix II.
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zeros must have quadrantal symmetry 3 . This requirement, coupled

with the restriction that the even part of a prf impedance be posi-

tive everywhere on the jo axis, necessitates that num EvZ have only

the following types of terms (or powers thereof)

(2 2

(b2 . s) 2  (-16)

(a2 + cs + d)(s 2 - ca + d)

Whatever combinations of these terms may occur, it is always possi-

ble to write num EvZ in the form

2 2num EvZ a M -o n (m + n)(m -n (1-17)

where m0 and no are even and odd polynomials in B, respectively.

Because of eq. (1-1?), eqs. (1-11) and (1-12) may now be separated to

yield

m_ +e % n°  m -n°

" n2 Z M (1-19)

Theorem B

Using the forms of Zl2 and Z21 in eqs. (1-18) and (1-19), it

is possible to achieve a Darlington synthesis of any prf driving

*This split assigns the left-half plane zeros of num vZ to Z1 2 and

those in the right half plane to Z2I. The reasons for this parti-
cular choice are indicated by Theorem B.
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point impedance without the use of surplus factors.

To begin the proof of Theorem B, Z1 2 and Z21 in eqs. (1-18)

and (1-19) may be expanded by partial fraction expansions. The

result has tvo general forms, where P, a and K are positive real

constants.

ik 1 2 s - Pi 2 12s + P2Z 12 2 .+ 2 2- + ... •
22 2 + 1

21 a 5 2 (1-20)

2 *+a 2

- 12 '2 +2 • 2 + 2 •"" + 2
1  k1 s • z1  - m2

21 + 1  0 (1-21)

The denominators of eqs. (1-20) and (1-21) are correct since the

zeros of the eyen and odd parts of a HPrwitz polynomial must all

lie on the jo axis. The numerators are justified by considering

a particular example.

Example 1

Let
Z.a4 + lls +9a2 +34s *2

a 5 3 271+7 a+ 8
F3 T r

num EvZ (-s2 + 1)(-s 2 + 4)(s 4 + 4)

(S4 4-]082 + 2)2 - a(2 ( 10) 2

Terms of the form k a and k /s may also occur in eqs. (1-20) and
(1-21), depending onthe rang of Z.



Attempting to synthesize Z by the m-type Darlington procedure

gives the following Z parameterst

,el2  2 , ( ,_7j

I ,(s. • + 5) ,0-,.,le ,2
3. 0 +2 8 +8 22 84+27 8

Z12 4 27 2

a21 +8

Each of these expressions may be expanded by partial frac-

tions.

21kljs 22 k1 1 s= s11 2' + + 82 + 2

222 21k22 s +22k228

Z..kl 2 s +2 2 s + + l0s + 2212 -2 + 4+2
21 a, 103 a+ s+

whr~2  2 2 2 4 272.8

The last term in Z12 may be expanded in several ways to yield

21

4 V 2 2 i 292

S+8 a a 02
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2als2 2a 2 s 2

1 92 ' 2 2K
s + 2 +

2r 1 s2  22

5 01 52

2261 28628
2" 2 +  2 2 +4
a + - a + M2

Considering only the first two forms, since the last two are

not essentially different, Z1 2 may be expressed in the following

two general .ays which are sain to agree with eqs. (1-2) and (I-2).

21 a1 +2
-2 3k1 2 s + i 2  

2 k12  2 2

2 -~-- 2

21 '' _

For impedances of higher rank, the form of Z2 is the same

except that more a and P (but not K) terms are presnt.

1.4 Extended Residue Conditions

Returning now to eqs. (1-2D) and (1-21), the question of the

validity of the residue condition in eq. (1-15) for the non-recipro-

cal case arises. Near a ja axis pole, the Zparameters have the



general form

~kl k ae

k 2 1 1s Z 2 22u
Z 1 1  -2 + 2 22 s 52 , 2

5 +% .
00 0

2 (1-22)

kla + as k s
-Z 1 2 - - 2 " o r 2 21f2 "2 2 "2

21 a m

Zl Z22 - Z1 2 Z21
Consider the fmction 2 This is given by either

eq. (1-9) or eq. (1-10) as -or Si nem *n 1 ia rit
nl r Since m1 + n is a Huwitz

polynomial, ! and are positive real reactance functions. It

follow. that

Zll Z22 - Z12 Z21
'Be ... ,0 for Re s -0

Re al 11Z 2 - Z12 Z21 > 0 for Re a > •0 -3

Now let a - Je0 + , where C is a small positive real quan-

tity which appmaches sero, and substitute this value of s into

eqs. (1-22) and (1-23), considering the first form of Z12 in eq.

(1-22). After simplificati".,n, eq. (1-23) reduces to 21

(k11  k 2  _ a 2m)(62 + + 4 .2.220 0
k1k2 1 0 4.) > 0 (1-24)

In order that this expression be positive for all positive real 6,

it is necessary that

2 2 2
k k22 - - a s >0 (1-25)
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A similar development using the second form of Z1 2 in eq.

(1-22) yields 31

T- (kl1k22 - k 2  2 ~)(c 2 +,m2
k ~ ~ 2 C22+4

11 0 0" kl'( * )(1-26)

In order that this expression be positive for all positive real e,

it is necessary that

k1  k2  - k 2~ (1-27)
(a 0

Eqs. (1-25) and (1-27) are called extended residu condi-

tions 2' 1 4 and are more severe than the residue condition of eq.

(1-15).

Theorem C

The two extended residue conditions of eqs. (1-25) and (1-27)

are equivalent.

To verify Theorem C, let [31 and K2 in eqs. (1-2) and (1-21)

be expanded to yield

K1 a 21 2"1 2 +

(1-28)

K2 "221 + 2K22 +

Now eqs. (1-2D) and (1-21) may be rewritten in the form

This form is derived in References 2 and 14.
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I 2 2 .. 2(1-29)

I k1 2 a (a.,s 2 + K a2 + K2 1~
1 2 - 2 12 1 -212 214 ) +2 ~8 + 2 ..

21 ml l-so)

These two expressions for ZI2 must be equal and therefore

21

K11 al K21

Solving these equations for p, gives

- 2

or 2 (1-32)or 2
21 2

01

A similar result follows at all other poles of Z2-

21

1.5 Gyrator - Transformer Networks*

To synthesize the expressions in eqs. (1-20) and (1-21),

certain gyrator - transformer networks are employed. The Z para-

meters of these networks are now derived. Wonsider the network of

Fig. (1-2).

*The networks in Fig.. (1-2) and (1-5) have T and n equivalents whdch
are sometimes more useful than the transformer forms. These equiva-

lent forms are developed-and utilized in Chapter III.
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Ix

1 1  siI,+S y 2 ~

MS
+ +

L115L 2 2s
1 "9r 2

Fig. (1-2) Gyrator-Inductive Transformer Neter a

The following relations apply:

E i L1 II -I KI

E 2  1" + AL2 2 Iin KI p

I o (1-53)

2 1a1Expressing l and E 2 in termis of I ad I. gives the Z parameters as

42 we2 L a
z 0 oil~ - o 22

11 2 2 22 

5-S S

0 0 (1-54)

ezM0 K- 2 - K?
12 82+ 02 *0

21 0 oi

Now consider the network of Fig, (1-3).

1I



)0 -1?-

i 1I

=p. . B.

Fig. (i-S) Gyrator-Capacitive Transformer Network

The pertinent relations are

E 1 + KI

E xE2- Ix  8= 2 y- i

I " Ip + Ix

which yield s a

zu -Iel 2 z 2 2 Ii 2
0 0

oo. 2
2 1 ( 1

21 o0 m
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The networks of Figs. (1-2) and (1-5) exhibit certain

unusual properties.

A) The transformers do not have unity coupling. This can

be seen from an examination of the extended residue con-

ditions.

B) If the coefficients of coupling become unity, the effect

of the gyrators disappears (02 becomes infinite in eq.1 (1-34) anero in eq. (1-36)eq
C) If -o> 0 in eqs. (1-34) and (1-36), all impedance para-

meters vanish unless the coefficients of coupling become

unity at the same time. In this latter case, e2 remains

finite and non-zero, the residue condition of eq. (1-15)

applies and the networks reduce to loaded perfect trans-

formers.

D) The networks of Figs. (1-2) and (1-5) satisfy the extend-

ed residue condition with the equal sign as may be veri-

fied by substituting the residues from eq. (1-54) into

eq. (1-25) and those from eq. (1-36) into eq. (1-27) to

obtain zero in each case.

1.6 Non-Reciprocal Syntheses for Impedances of Rank 2 and 42'4'14

The non-reciprocal Darlington syntheses of impedances of rank

2 and rank 4 are well-covered in the references and are therefore

only briefly reviewed here. Fbr the case of a rank 2 impedance, let
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Z 0b , nwEvZ a.b o  a (1-37)
0

HThe n-type and m-type non-reciprocal Darlington syntheses are shown

in Figs. (1-4) and (1-5) respectively, where, in Fig. (1-4) the

hi termination ir scaled to avoid the use of a capacitive transformer.

I a

b" _0

0

I a

Fig. (1-4) n-Type Rank 2 Fig. (1,5) .u-Type Rank 2

For the rank 4 case, let Z be given by

2a0 
+ als + a

I Z =
-

n o -
2 [&bl

*(a2 + v/a-7--~-*~

where e2 is positive from the requirement that num EYZ > 0 every-



where on the jo axis. The n-type synthesis is straightforward (since

n2 has only one zero) and the result appears in Fig. (1-5), where

again the terminating impedance has been scaled to avoid the use of

a capacitive transformer.

e" 0
a a0

a 0 0b

b 01 10 ol1

Tbu

Fig. (1-6) n-Type Rank 4

For the m-type synthesis, the Z parameters are

- , Z -"

1 a 2 + b

Z12 2 +

21 o

The Zl2 expression may be rewritten as

21'a

z12  ~ _ 0(1 )es + a b %_
0

or2 2 b

or
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Z12 2 _1+ (-41)
21 s + b°021o

Eqs. (1-39) and (1-40) may be readily identified with eq. (1-54) to

yield the m-type rank 4 inductive transformer network shown in Fig.

(1-7). A similar capacitive transformer network can be derived us-

ing eqs. (1-39), (1-41) and (1-36).

z 10 0
* es a

O*O

Fig. (1-7) m-Type Rank 4 Inductive

The transformer in Fig. (1-7) may be replaced by its T or in

equivalent. It is then possible, by scaling the termination, to

eliminate one element in the T or n network. This matter is con-

sidered in detail in the discussion of the impedance operator of

rank 4 in Chapter III.

1.7 Non-Reciprocal Synthesis for Impedances of Rank 6

Let a general rank 6 impedance, assumed to be non-uinimm

resistance, be given by

I.
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I a2 3

o + a 1 a + 2
z 2 (1-42)

b +bs +b a +s
0 1 2

num. vZ (a + a2s2)(bo + b2s2 a 2(a, + v2)(b + 82

1. (1-43)

(A 2 - 2) [ +2 B)2 _ c 2 ] (1-44)

[ + +(A + C)s a+(AC +B)s + AB]

-,33+ (A + c),a2  (AC * B)s + AB] (1-45)

The forms of eqs. (1-44) and (1-45) are justified from the

discussion in Section (1-3). For the n-type synthesis, the Z

parameters are (using eqs. (1-9) and (1-18) and letting the ter-

mination be E 0 to eliminate a transformer)
0 a
a a2 + a a a 2 - 0 a

1I s(s2 + b1 ) a + bI

baa 2- ( bo
0 01z + (1-48)

C s b) 1+ +b

[(A + c),2 + AB 9(,2  AC + B) °

12 +-'21i "(5 b1)
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The equation for Zl may be separated to give

21

(A + C) + +(b AC B

al.-- s b 1  - 1  'I

21 1
(1-47)

or

o(A + C) _62}:(AC + B )/ I
al 0 J 1 1b 0  a

21 + b1

21 1 (1-48)

The first terms in Z11 2 Z2 2 " Z12 form a capacitor. The

last terms in eqs. (1-47) and (1-48) arlnon-loaded gyrators. The

residues of the second terms in Zll and Z22 , along with the residues

of the middle terms in eqs. (1-47) and (1-48) satisfy the extended

residue conditions with equal signs in eqs. (1-25) and (1-27). Tha

my be verified by direct substitution and recognition of the iden-

tities

2
2AB(A +C) - (AC + B) . a2bo  aob2 - alb,

(1-49)

(A, C) 2 - 2(AC * B) - a 2b 2  al - bi

which are obtained by matching coefficients of like terms in eqs.

(1-45) and (1-45). Thus eqs. (1-46) and (1-47) may be realized us-

Ing the netmork of Fig. (1-2). The complete synthesis is shown in

Fig. (1-8). A similar capacitve transformer synthesis can be devel-

oped using eq. (1-4e) and Fig. (1-5).
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AC + B

Z) 1.1 - 0 -a

,=--

00

Fig. (1-8) n-Type Rank 6 Inductive

The w-type synthesis proceeds in exactly the same fashion.

SThe Z parameters are 5(2

go o

'z b0 ab 20

a~s

z ~ b o
Fig (18 n-p Ran 6Inuciv

2 a,

Separating Z12 gi2+

21

bI
B~s + b1) + U2-,( b, p s ( -5I
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(A B -s 2 SZ) o 2 ,AB
12 b b -b
21 2 + 0 0

S2

(1-51)

and

-b

2 1 2 2 b - b 2
S2-

(1-52)

The complete synthesis of eqs. (i-SO) and (i-51) appears in

Fig. (1-9). A similar capacitive transformer synthesis can be

derived using eq. (1-52).

pb

0

16 b
(a-b . 1 1 (

0 2 *~- (AC+B 07 b

z -

I(
Fi.(-)r-yeRn nutv
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Em a -e 2

To illustrate the rank 6 synthesis procedure, let it be re-

quired to synthesize the following driving point impedance:

5 + 2s + 9. + 1

a 5 +9s + 5s +16

numEvZ (s 3 + 4s 2 + 6s + 4)(-s 4s - 6s + 4)

A + C -4, AC + B 6, AB- 4

The network corresponding to Fig. (1-8), obtained by direct

_ substitution of the known quantities, is shown in Fig. (1-10). The

ip network corresponding to Fig. (1-9) can be obtained in a similar

~ manmer. The extended residue condition from eq. (1-25) yields

o(Lll2 - a0 xx 1 0

The coefficient of coupling of the transformer is

kc M 16 -. 99

V r* ; SV3



3D

I, - s I
[ 9 142

L 29

Fig. (1-10) Network Corresponding to Fig. (1-8)

1.8 Impedances of Higher Rank

The extension of the foregoing synthesis procedure to impe-

dances of higher rark is straightforward with eqs. (1-2D) and (1-21)

serving as a guide. Thus in the case of a rank 8 impedance, the

m-type synthesis yields networks similar to those in Fig. (1-9),

but with the inductor replaced by a second gyrator-transformer net-

work. The n-type synthesis yields networks similar to Fig. (1-8),

except for the addition of a transformer to synthesize the pole of

the Z parameters at infinity.

For impedances of odd rank, the poles and zeros at the origin

and infinity may be removed until the impedance becomes even in rank

and the remainder synthesized by the foregoing procedure.

Thus it is possible to synthesize any prf driving point impe-

dance through the non-reciprocal Darlington procedure and the net-

works of ?igs. (1-2) and (1-3).
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1.9 Existing Cascade Synthesis Techniques 7 ' 5

A cascade synthesis procedure in which the zeros of Z12

(denoted as transmission zeros) are controlled by individual net-

7
work sections has been developed by Guillemin, leading to a number

of network structures, among which are the Darlington A, B, C and D

sections. Balabanian3 also discusses the development of these four

network sections.

In the derivation of cascade impedance operator syntheses in

Chapters III, IV and V, networks similar to these Darlington sec-

tions, but containing arbitrary constants, result. Thus it is per-

tinent at this point to review and summarize the results of Guilemidn

and Balabanian.*

Consider the configuration of Fig. (1-11), where each box is a

lossless reciprocal network.

Z lZ22 ZI  2Z22  Z2  3Z22 i

lZ12 2 z12

Fig. (1-ii) Cascade Representation of Z

*The following discussion summarizes material presented in Chaptem

6,7,9 and 10 of Reference 7 and Chapter 6 of Reference 5.

**It is assumed that surplus factors have been added so that all
zeros of nm EvZ are of even multiplicity.
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The following relation applies

1  Z 12 x• 2Z1 2 + 3 Z 1 2
12 22 1 222 5Z22 +

(1-53)

Eq. (1-53) points out that the zeros of Z12 are made up of theI -
zeros of IZI 2 , 2 Z1 2 and 3 Z1 2 . The zeros of Z are the same as

the zeros of the even part of Z given by eq. (1-11). As discussed

in Section 1.3, the zeros of num EvZ have quadrantal symmetry and

thus only three types of terms, as given by eq. (1-16) are per-

mitted. If all three of these terms were present in the even part

of a given driving point impedance, one term could be assigned to

each of the boxes in Fig. (1-11). The syntheses of Z would thereby

become the syntheses of the three boxes.

In the realization of Z with its types of even part zeros given

by eq. (1-16), four types of network sections are useful. These are

the Darlington A, B, C and D sections shown in Fig. (1-12). The

branches in the A and P sections are single inductances or capaci-

tances or series or parallel resonant circuits. These two sections

realize Jo axis zeros and poles of Z. The type C section is similar

to the Brune network but the transformer polarity is additive. It

is used to realize real axis zeros of Z 12 . The type D section

*Guillemin points out that no additional zeros are introduced

because of the denominator poles in eq. (1-55).
• By using the Brume form of this network (with a subtractive
transformer) Jm axis zeros of Z12 can be realized. Or by using
Guillemin's method of "zero shifting", these zeros may also be
realized using a ladder network development.



U

is employed in the realization of complex zeros of Z1 2 .

A B

S 0

00

C D
Fig. (1-12) Darlington Sections

The synthesis of a given driving point impedance, Z, would

proceed as follows. Sections A and B are first employed to remove

poles and zeros of Z on the jo axis. The remaining impedance is prf

ed its even part has the three types of soeos-of eq. (1-16). If then

zeros are not initially of even order, it is necessary to use sur-

plus factors to create these forms. Next a type C section is re-

moved to realize a pair of real axis zeros of Z12(or a Brune sec-

tion to remove an imaginary axis pair). The remaining prf impe-

dance is reduced in rank by 2, because of cancellation of a term of

2 -2 2 2the form a - s (or s + 2 ) from the numerator and denominator of
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this impedance, and its even part is missing the pair of real axis

(imaginary axis) zeros. In a similar manner, the Type D section

may be removed to realize a quadruplet of complex zeros. Once again

surplus factors may be required. The remaining prf impedance is

reduced in rank by four.

Very little has been said as yet about the actual syntheses

of the networks represented by the boxes in Fig. (1-11). Following

Guillemin's approach, assume that the first box is to realize a

quadruplet of zeros. The Z-parameters of this box may be

written in the general form

K(s 2 + as + b)(s 2 - as + b)
1z12  s(2 + 2

0

KT(s) (-)(-4)
s(s 2 + (A2)

0

k 2kS

l 12l + -ll 2 + " 8" + 0 2 (-S
- K1s , s 12

k Zk22a5 + I
0

k 2k a
+~l _2,s +a 11- (1-55)

1Z2 2 -K2 2 s +2 +22(-6
8 *0

*Thin generally leads to the Darlington D section but, as Guillemin

poisits out, can also often be made to yield umbalanced networks

in the form of lattice, bridged T or twin T structures.
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The functions Z, Z i , Z and Z are related by the cus-

tomary driving point impedance equation

z-a 1 Zl Zl 9 1 Z22" z2(-T
1Z22 + Z1

which can be rearranged to yield

zn - z) (1Z2 2 + zl) - 1z 2- K2 2 s -)2

S (a +% (158

The impedance Z may be written in the general form*

za.- f . (1-59)

where P(s) and Q(s) are polynomials of the same rank in a and A is

a constant. The next step is a key point in the Guillemin proce-

dure. The two terms on the left hand side of eq. (1-58) are

separately expressed as

ll " Z - T.a)f T- Hs) (-(O)

$(2  z Q ( a (1-61)
, (s ) x

1Z22 5( + .)2 H(s)
0

It is assumed that any required surplus factors are included in
Z.



~-53'-

I*
where H(s) is a specified polynomial in a. The synthesis problem

is thus reduced to the construction of H(s) and the determination

of %p after which iZll, iZ 2 2 , iZ12 and ZI may be found. The

result is generally the Darlington D section of Fig. (1-12) with a

termination Z1 reduced in rank by four.

Thus the Guillemin synthesis procedure, like the impedance

operator synthesis procedure to be developed in Chapter III, pro-

vides a method of obtaining a cascade synthesis of any driving point

impedance for any configuration of transmission (even part) zeros.

The two methods start from the save point (the idea of removing

sections as in Fig. (1-11) and arrive at the same general results
L

(the Darlington sections) but the actual procedures are quite dif-

ferent as the development in Chapter III will show. Also, an additional

flexibility is included in the impedance operator approach in that

non-reciprocal elements are permitted and arbitrary constants are

present in the removed sections and the terminating impedances.

These constants may or may not be chosen for rank reduction at the

discretion of the designer. These features could also undoubtedly

be included in the Guillemin procedure but are not discussed in

17
Reference 7. It is also possible to derive the Brune synthesis

procedure using either Guillemin's approach or the impedance opera-

tor approach. This is discussed in Section 3.4.

As mentioned, it is always possible to realize a quadruplet

The philosophy behind eqs. (1-60) and (1-61) is explained in de-
tail on page 251 of Reference 7.

XI



of transmission zeros by the Darlington D section using either of

the two cascade synthesis procedures. The D section contains

mutually coupled elements. Guillenin points out that it is some-

times possible to arrive at alternative unbalanced network struc-

tures not requiring mutual coupling. The requirements are that

the set of impedances 1 Zll, 1 Z1 2 and 1 Z2 2 be analytic in the

right half plane, satisfy the residue condition of eq. (1-15),

satisfy the real part condition3 given by

irll ir 2 2 - ir 12  (1-62)

and in addition, satisfy the Fialkow3 condition that the numerator

coefficients of 1 Z1 2 be positive and no greater than the corres-

ponding ones in IZ and 1 Z2 2 . Applying these requirements to

the Darlington D section, Guillemin shows that the additive trans-

former may be eliminated to yield the structure of Fig. (1-13) if,

in eq. (1-54), 2 k 1 2 :_ ko, which in turn requires that the trans-

mission zeros lie in the shaded region of Fig. (1-14)*.

*Guillein also discusses in detail the application of the Fialkow
condition to other two-port structures to achieve unbalanced
structures without mutual coupling.
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Fig ( 1 1 3) V aria tio n in the D arlin gton D S e t o

S/ a Plane

Fig. (1-14) Location of Transmission Zeros of rig. (1-15)
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One further observation will complete the work of Chapter I.

Throughout the discussion in this section, it has been assumed that

Z has already been augmented so that num EvZ has zeros of even

multiplicity only. Let it now be assumed that this is not the case.

Consider the non-reciprocal syntheses of Sections 1.6 and 1.7. The

lossless networks in these syntheses still realize the real and

complex zeros of num EvZ but these zeros are no longer identical

with the zeros of ZI 2 . Rather the zeros of Z are the left-half

plane zeros of num EvZ, the remaining zeros being assigned to Z2 1 .

For example, the lossless network sections in Figs. (1-4) and (1-5)

realize a pair of real zeros of num EvZ where Z 1 2 contains the one

in the left half plane. The sections in Figs. (1-6) and (1-7)

realize a quadruplet of complex zeros of nun EvZ, whereas the sec-

tions in Figs. (1-8) and (1-9) realize one pair of real zeros and

one quadruplet of complex zeros of num EvZ.

I



CHAPTER II

PROPERTIES OF THE IMPEDANCE OPERATOR

2.1 Introduction

In Chapter I, several non-reciprocal lossless networks were

derived using the Darlington synthesis procedure with each network

being terminated in a pure resistance. It was pointed out that the

constraint of a resistive

termination could be re-

W OSSLESS laxed to permit a general

prf termination, C. Then

Z is represented in terms

V) of an impedance operator,

V, operating on C, as

shown in Fig. (2-1). Suf-Fig. (2-1) Z - v
ficient conditions for

this representation are that Theorem A be satisfied and that V be a

lossless network.

The Darlington synthesis of V, the mathematical properties of

V and C and the utilization of V in the analysis and synthesis of

networks are the subject matter of this chapter.

2.2 Darlington Synthesis of the V Operator

Let eqs. (1-2), (1-5) and (1-4) be rewritten slightly to

-57-
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give

z - 0€ + n (2-1)
m2  + n2cI

m2 ,+ ni (2-2)

z vicl (2-.)

To relate the right hand side of eq. (2-1) to the network of Fig.

(2-1), the equations for the latter are written as

E1  .IlZll + 2Z12

(2-4)

E2  w 11Z21 + I2Z22  I2

Solving for the driving point impedance yields

SzZ22 - ZI2Z21

zz 2 2 + (2-5)

Eq. (2-1) my be rearranged in two ays to match eq. (2-5) in the

same manner as was done in Section 1.2.

*The subscripts on V and C are introduced to distinguish this impe-

dance operator and termination from others to be presented later
in the chapter.
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nl

n2  (2-6)

Z 1 + C

z -.... (2-7)

M2  Cl

where, in eq. (2-6)

/m V-, V 2 & an num EVV (2-8)
2 "2

and, in eq. (2-7)

l n a -numlvV
11 22 a12 nd V V2  --- (2-9)

m2

Eqs. (2-6) and (2-7) represent extensions of the two Darlington

synthesis procedures discussed in Chapter I whereby the usual one-

ohm resistive termination is replaced by CI in eq. (2-6) and I/C1

in eq. (2-7). VII, V22 , VI2 and V21 are the *Z parameters" of the

lossless V1 operator network.

The cascade nature of the V operator may be developed by

letting CI in eq. (2-1) be expressed by

S m 2 * n. 
(2-10)l -m4 + n4 C2 V2 C2
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m3 + nl

where V2  
(2-i)

2 m +n4 4

Introducing eq. (2-10) into eq. (2-3) gives

z - Vl(V2C2) (2-12)

The form of eq. (2-12) suggests a cascade representation of Z in

terms of two V operators and a terminating impedance. The result

can be extended to include additional V operators.

The concept of the V operator is useful in both the analysis

and synthesis of networks. In an analysis problem, the network is

subdivided into four-terminal lossless cascaded sections and a ter-

minating impedance. The driving point impedance of the overall

network is calculated by considering that each four-terminal sec-

tion operates on the ones following it. Each V is derived by

determining the driving point impedance of its four-terminal sec-

tion with a one-ohm resistive termination.

In a synthesis problem, Z is given as the ratio of two poly-

nomials in s and from this function, the V and C functions must

be found. Then each V is synthesized by either eq. (2-6) or eq.

(2-7) with a one-ohm resistive termination and the resulting net-

works are cascaded and terminated in C.

These concepts of analysis and synthesis are illustrated by

examples in the following sections. The use of impedance operabors

in cascade synthesis procedures is developed in detail in Chapters
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III through V.

2.3 The Associative Law

Theorem D

The impedance operator V obeys the associative law of multi-

plication.

The proof of Theorem D involves the straightforward expansin

of three general V operators and appears in Appendix l.A. Because

of the theorem, the parentheses in eq. (2-12) are unnecessary. This

is illustrated by the following example.

Example 1

- II2

s 1
z 5

V1  " 2  C2
Fig. (2-2) Analysis Using the V Operator

It is desired to compute the driving point impedance Z of the

network of Fig. (2-2) by using the impedance operators V1 and V2.

This is done in two ways, to illustrate the associative property of

the impedance operators. Each operator may be derived by placing

a one-ohm resistance at its output terminals and computing its in-



V

put impedance. The procedure yields

aV s2 + 2a . as2 + 12 1, 2  , -1

a + 2s +4 s + a + 1

Since each operator network is purely reactive, the operation indi-

cated by eqs. (2-1) and (2-10) may be applied.

2
12 2 + 1

v 2 +4 + 29<a2 + 1s

3 2

+ 3s +2 6 + 4

(s 4 + 3s21 + 2s5 + 2s

*2s 5 ~51

s5 4 8a 3 + S 2 + s
+5 + +883s 5s2 +10s +4

2 1 2
v (' +1 J + s +1

a=  = + a + 2 + 1

s *+!sT +2s+1

2 +8 1 2



4 3 2

z 3s + 2s + 5s + 2s

as + 4+ 8 + 5s2  0los + 4

The two Z functions are identical, illustrating the validity

of the associative property.

2.4 Even Part Relationships

The even part of VI in eq. (2-2) is given by

Ev 1 ,m2 -nr1E2 2 (2-13)
m2 -- n2

and similarly for all other V operators. Let V be given by

V -VV 2 .... V (2-14)

Theorem E

The numerators of the even parts of a series of cascaded V

operators are related by

nm ZvV w (nm EvV1)(num EvV2 ) .... (nu EvV)*

(2-14)

It follows from eq. (2-15) that if Z is given by

Z - VV Z .... Vn4n (2-16)

*The proof appears in Appendix l.B.
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then

num EvZ (num EvVl)(num EvV2 ) .... (num EvV )(num Evcn)*

(2-17)

Thus the zeros of nn EvZ are split between the V operators and

the terminating impedance in soriwhat the same fashion as described

in Section 1.9. The difference lies in the fact that, generally,

arbitrary constants are incorporated in each operator and these can

cause the elimination of the zeros of num EvVI, .e nm EvV from

num EvZ as explained in the following section.

2.5 Specific V Operators

In the general synthesis problem, Z is known but V and C are

not. Eqs. (2-6) and (2-7) provide a useful synthesis procedure

only if V and C can be separated and C can be reduced in rank com-

pared -with Z. The relationship given by eq. (2-17) is necessary

in the separation of V and C and in reducing the rank of C, but is

not sufficient by itself. To pursue the problem further, let Z

in eq. (2-1) be given specifically by

Z aC + 8% (2-18)

a

*Assuming no cowmn factors have been cancelled from the numrator
and denominator of Z after the expansion Z n VC,

qI
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and let C, in eq. (2-I0)be given specifically by

bC2 + SClbCl - (2-19)

b +
lb

where a and b are positive real constants and Za and C1b are the

values of Z and C1 at s - a and s - b, respectively. The V

operators corresponding to eqs. (2-18) and (2-19) are

a + sZa vl (2-2D)
Sa+

a

2 b +sCib (2-21)J b + e-L-t v2 s _( -l

lb +

Theorem F

According to a theorem by P.I. Richards, S 1 in eq. (2-18)

is prf if a is a positive real constant and Z is prf. Also C2 in

eq. (2-19) is prf if b is a positive real constant and C1 is prf.

Thus Richards' Theorem is a special case of Theorem A in

Section (1.1). Eq. (2-18) may be solved for C1 to yield

aZ - sZa
C a (2-22)

a

The term s - a is a factor of both numerator and denominator in

eq. (2-22); therefore C1 is the same rank as Z. But if EvZ* O,
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then s + a is also a factor of both the numerator and denominator

in eq. (2-22) and C, is two less in rank than Z. Similarly, if

EV~lb - , C2 is two less in rank than CI and thus four less in

rank than Z. But EvClb - 0 requires that EvZ - 0.* Thus making

EvZa *EvZb - 0 insures that C2 is four less in rank than Z. This

is the principle of zero-cancellation synthesis. 4

Conversely, let s - a in eq. (2-22). Then, if EvZa J 0,

L Cl(_a) - Za. In this case, Z in eq. (2-18) has the factor s + a

7 in both its numerator and denominator.** Cancellation of this

factor causes eq. (2-17) to be invalid as mentioned in the footnote

to that equation. Effectively num EvV1 is eliminated from num EvZ

when the a + a factor is cancelled.
I*

aZb - bZ and -a Z(_b) -b Za
Clb a b - (-b) a + (b)aa

To make EvClb o 0, ie Clb -Cl(.b) , requires that

22 2 2(a 2 - b ) Z(b) w -.(a 2  b b

This is guaranteed if =- Z(b) or EvZb 0

a Z + a Za  num vZa

Cl(-a) aa num RvZa
a* (-a)a

Thus Cl(-a) " Za if numEvZa j0
Then a - a makes Z in eq. (2-18) indeterminate (o) and tus(-a) )0a common factor can be cancelled from both the numerator and

denominator of Z.



Example 2

To illustrate these principles and the use of tha V operator

in networ* synthesis, the following driving point impedance is

fsynthesized using the operators of eqs. (2-20) and (2-21) and the

form of eq. (2-12).

Z- 2B + 2s + 92 + 5B + 1
2s 3 + 2s 2 + 59 + 2

The constants a and b are chosen such that EvZa - EvZb - 0. Then,

since Z is of rank 7, CI is of rank 3.
t2

num EvZ - (2 - s2)(1 - 2s )

choosing a - 1 and b - r gives

Z- aV1 b 3/ 2 sz-VnZ
11

4/ '- 1 * 2s

- 1  - -

i__r -- 8
*- ..2 Z - 2e

2a +a +1
s3 2s+s+
a 3 +a 2 + +2

*It is permisaable to multiply the nuerator and denominator of
V by a constant to simplify the computations.
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4

VV /7 V47 42
C2 ~ 4 . + s+ 2

2  4s + 4

The complete synthesis of Z is shown in Fig. (2-3). The components

of V1 are derived from eq. (2-8).*

n u m E v v , 1 -2 2  -( l + V E s ) ( l - T )

21

Note that in the syntheses of VI and V2, non-reciprocal

gyrators are required since n1m2 - n2 is not a perfect square.

Methods of eliminating such gyrators are discussed in Chapter III.

1! 
a

T T
Fig. (2-3) Synthesis by Cascaded V Operators

*Eq. (2-9) could also have been used.
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Since the parentheses in eq. (2-12) have no significance, it

is permissable to combine V1 and V2 into a single operator and

synthesize the combination.

1 + s94 ~2 9s
1 1+ s +2s 4s+ s + I

Y1 2 - 1a52 4- . .... ,i +sl+- 4

229

Sum Ev VlV2  (s + 1)

The components of the combined operator are obtained from eq.

(2-8) .
(22

U 2  + 1 
i

VII s V22 " 3s

s2 +1+ 3

V712  3
21

The complete synthesis of Z using the combined operator

appears in Fig. (2-4).

Eq. (2-9) could also be used and would lead to a netmork of the
form of Fig. (1-7).
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I Fig. (2-4) Synthesis -using the Combined V Operator

2.6 Inversep Unit and Squared V Operators

Eq. (2-1) may be solved for C1 to yield

21

mZ n n (2-23)

52

Eqs. (2-1) and (2-23) permit the definition of an inverse V

operator such that b s
oprto uh htm.,- nI  ..........

-1 '7m 2 - nln2
V .- n2 (2-24)

m'm2 - nln2

Fro this definition, it follows that

-1 = 1l (2-25)
II

which defines a unit V operator.

It should be noted that any operator which is the ratio of

two equal even polynomials in s, when operating on CI, yields CI.
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Furthermore, any operator which is the ratio of two equal odd poly-

nomials in a, when operating on CI, gives l/Ci. The former acts

like a unit operator and the latter is an inverting operator.

The squared V operator may be derived directly from eq. (2-2).

2 ~(ml + n1n.) + nl(m1 + in.) -6

1M V+V . (= nln2) + n( m -2)

If a prf impedance is squared in the usual sense, the result is

meaningless. However, if the squaring is done in the sense of eq.

(2-26), the result does have meaning in that VI is prf if V1 is prf.

2.7 The Comutative Law

Generally the commutative law does not hold for the V operator.

However under certain conditions, VV 2 " V2VI. These conditions are

now derived using the V operators in eqs. (2-2) and (2-11).

(mlm5  n+n4 ) + (mln, + nlm4 )
1 V2 w(me. 4 + n 2P3) + (men4 + nem3) (-

(m,!,3 + n2n5 ) + (men5 + nlm5)

V2V1  ~ 4. nn 4 ) + (m1n4 4nm)(-8

For V1 and V2 to cormute, it is necessary that

n2n = nln4

n( (m4 - m.) " n,(m2 " ) (2-29)

n2N 4 - ms ) n4(m2 - ml)

Theorem G

The necessary and sufficient conditions for the commutation of

two V operators is E n4 - (2-
n5 fn4 3 4 - 3 (-)
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Eq. (2-30) follows directly from eq. (2-29).

With V1 restricted to the form of eq. (2-2), it is pertinent to

compose a general form of V2 which satisfies eq. (2-30) and is prf.

UThis general form is

2 F(s) + G(S)] + n2F?(s) (-1

where F(s) and G(s) are even polynomials in s, G and 0 are

reactance functions, and G(s)F(s)(ml + i 2 ) - G(s)2 + F(s)(mlm 2-nl k>O

on the Jo axis.

One case of interest results if V1 and V2 are represented by
h2

the equations V2 + 2n

V, 2 +n2 (2-52)vn 2  n2

2
n 4 + a2 n(4

2 m4 + n 4

where a is a positive real constant. These tuo operators satisfy the

conditions of eq. (2-30) and thus arm commutative. Also their form

is such that each may be synthesized by the non-reciprocal Darlington

procedure without transformers. Furthermore the combined operator,

V1V2 , may also be synthesized without transformers.

*These statements are verified in Appendix 1.C

*IFbr example, num ET7V1 .in2a 2 n2
-i m2  " n 2+a

:. I V22 = n2 a V12 n2
21

The same general fom results for the synthesis of VIV2-
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These syntheses are shown in Fig. (2-5).

V1V2
lfl or 1CVVVl 2

M 2m,2m 4  CL ',nn4

nm 2n4 +nm 4

IFig. (2-5) Commutative Operator Syntheses

A second case of interest illustrates a pseudo-commutative

property possessed by two prf impedance functions represented by

yI and as follows:

m1 +n,
- 11124 fl 2 (2-34)Y1 m 2 +n 2

-
1  1 (2-35)

2  M2  + N2

Define two new operators V ani V such that
x y

(m 1 + n1 ) + K (m2 + n2 )
V M-(2-36)

,(m + nI) + (m2 +n2 )

V (M_ + Nl) + K2(M2 + N2 )
Y (Ml + NI ) + (M2 +N 2 )

w)ere K is an arbitrary positive real constant. By rearranging
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V and Vy, it is easy to show that each is prf if and y. are
x y 9Y

prf. Let Vx operate on Y. in the following manner to yield a new

function denoted by Z1

I ~(ml + n) 2 + K (m2 + n2

( 1  (2-8)
Z I ml + nl+ Y2 (m2 + n2)

Similarly, let V operate on yl in the same way to yield a second

new function Z
22 z2 i + "l) YI K2(M 2 + )

- * ) + 2) (2-39)

2 , + Nl*yj 1X2 + N2 1'

Eq. (2-38) may be rearranged to yield

mI + n, Y" + K2 m2 + n 2

Z1 -2 + n 2 ml + n, '-0

m 2 + n 2

Since all terms on the right hand side of eq. (2-40) are prf, eq.

(2-40) may be matched term-for-term with eq. (2- 5) and thus Z

represents a prf driving point impedance. A similar proof may be

applied to eq. (2-39) to show that Z2 represents a prf driving
point Alternatively, from the definitions of 1 and

y 2 ' Z2 and Z1 are identical and therefore V2 - VyY1 a Z1 Z2 0 Z.

Darlington-type syntheses of Vxy 2 and Vy11 yield the two netmorks

of Fig. -6.**

This is proved in Appendix I.D.

These syntheses are presented in Appendix I.E.
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z v z - 1

TFig. (2-6) Pseudo-Commutative Operator Syntheses

The operations defined by eqs. (2-58) and (2-39) are considerably

different from the original operation defined in eq. (2-3) since each of

the terms in eqs. (2-38) and (2-39) is a mixture of even and odd polynom-

ials ins. Stated another way, the operations in ecp. (2-38)and (2-59)

do not require that resistance be present only in the terminating im-

pedance. Y1 and Y2 in ig. (2-6)are generally RLC impedances and thus

resistance is permitted in both the operator and the termination. The

two networks in Fig. (2-6) illustrate the pseudo-commutative property

in that y and 72 may be interchanged without changing the driving

point impedance, Z.

It should be understood that the intention of this discussion

was to show the existence of the pseudo-commutative property. No sta4

has been made of ways in which a given driving point impedance might

be separated to obtain V and 2 or V and Y1 . Ts latter problem is di-

cussed further as a proposed topic for future investigation in Chapter VI.

A third case of interest is the possible commutation of the

Richards' Theorem operators of eqs. (2-20) and (2-21). Combining

these operators yields
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.2 La + s(bZa + a~ib ) + ab
vlv2 - 2 b a (2-41)

!2 1lb b a

a aJb

2 Clb
a 7 + s(bZa + aClb) + ab

V2l z (2-42)

2l ay b ab

The requirement for comutation is b a Za and, when this

requirement is met, no transformers are required in the synthesis

of VlV2. The necessary and siffida t conditions for satisfying this

requirement and its use in cascade synthesis procedures are devel-

oped in Chapters III and V.

2.8 The Distributive Law

The distributive law for the V operator is written as

(V1 + v2 )C1 - vl*l + V2C1  (2-43)

where VI and V2 are given by eqs. (2-2) and (2-11), respectively.

Sq. (2-43) does not hold for all V1 and V2 unless C1 is a one-ohm

resistance. For a general CI' a constraint is needed on V1 and V2

in order that eq. (2-43) be valid. To obtain this constraint, the

two sides of eq. (2-43) are expaded to give
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(V +m2 1 2 + n2 + 4 + n 4CI (2-44)

I l m5C, + n (-)
VIC1 + V2Cl m + n2C1 m + n421

In eqs. (2-4) aid (2-45), make the substitution

m4 0ki2, n4 -kn2 (2-46)

where k is a positive real constant. This requires that the ratio

of the denominators of V2 and VI equal k. The result is

m+ '- CI n, n 3

(Vl + V2 )Cl a VlC1 + V2 C1  m 2 + n2Cl

(2-47)

The result of eq. (2-47) may be extended as follows&

Theorem H

The V operator obeys the distributive law given by

(Vi + V2 + .... V)C - Vic + v2C + . . . . V C

(2-a)

only if the denominators of V1 , V2 0... Vn are equal or differ by

a positive real constant.

Theorem H can be verified by expressing the left side of eq.

(2-48) in the form
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k, (2-49)m2 + n2C

iwhich, when expanded, is identical to the right side of eq. (2-48).

ii Theorem I

With the constraint of Theorem H, the even part numerators

are related by

num EvV - nun EvV1 + num EvV2 + .... num Evv (

(2-50)

Theorem I may be verified by direct expansion.

The distributive law, under the constraint of Theorem H, is

useful in synthesis procedures using impedance operators.

For exemple, let V in eq. (2-2) be distributed to give

1 r + n , +m n. lVl + 2Vl (2-51)
V' 2  "2 "2 2 11 2

and 2Vl satisfy eq. (2-46) with k - 1. Thus they may be

separately synthesized, each terminated in C1 ' and then smmed to

give Z, assuming lVl and 2Vl are prf.

V1 may be distributed in an infinite number of ways to suit

the requirements of the particular synthesis desired. Hbwever the

individual parts of V1 must each be prf if they are to represent

realizable networks.
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Example 3

Consider the impedance given by

(s2 + 2)%1 s

t +ru + Sow

1 s s + 2

2

V1 is not a minimum resistance function. However it may be

easily synthesized without first removing resistance if it is dis-

tributed as followst

a2 +*

+ s * I

+1)2 +1

The parts of VI are each prf and may be synthesized directly

from eqs. (2-6) and (2-8) without the use of gyrators (since both

even part numerators are perfect squares). The result appears in

Fig. (2-7).

*Guillemin7 describes a method known as *resistance padding'

which permits certain impedances to be realized by simple net-
works. Application of this method to V1 yields the separation
indicated and the network of Fig. (2-7).

I
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B

z

Fig. (2-7) Distributed Operator Synthesis

2.9 Impedance Operators in Matrix Form

The operations described in the previous sections may be more

concisely stated using matrix notation. These relations all of

which may be verified by direct matrix expansion, are now presented.

mln

V2 * - (2-53)

- (2-54)

The partitioning of the first operator in this and other equations
is necessary to make the matrices compatible and to obtain a ratio
of polynomials as a final result.



When~~~ 34 n m n/r

{Cmin[m S n,E~n~ nf

(V v 2)c, + 2-6

[n2 m2 n 4 ]

When m4 km2 and n4 a k2'

nn

(2-58)

The nuerator of the even part of V13 in ratrix form, is

DWEV, 1viIm 34 m i 2 11n (-9

lvii deterwdnant of V1



-62-

The syntheses of V1 by the two Darlington procedures using

eqs. (2-8) and (2-9) may also be formulated in matrix notation

(assuming IVI is a perfect square, ie V1 2 - V21 ).

ii~V1 V121  , [ I 1111/21(-)

V 2 1 2 J n 2 ItvI1/2 m12 J

Theinvrseandunit operators may also be expressed in matrix form.

(2-62

- (2-61)

-11

vy - r (2-s)
ad 1 . (2-62)

"n2 rol1

vi-.r2

V,(2U

[t l
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1v iiv J n-1  0-

The Richards' Theorem operators of eqs. (2-20) and (2-21) and

the combined operator operating on C2 can be concisely expressed in

matrix form.

rr v- ( (2-68)

I2
1- sbi-(2-8)

?1bbcb]c

a 4Z bJ J

- *a ?Tb~ 
2-9

ab~

ab+a ;C1, Z ab

I a



CHAPITER III

CASCADE SYNTHESIS USING IMPEDANCE OPERATORS OF RANK 2 AND 4

3.1 Introduction

In this chapter impedance operators of rank 2 and 4 are in-

vestigated in detail. Through these operators, it is shown that

nine realizable network sections (Fig. 3-1)* containing one or more

arbitrary constants may always be removed from an rLC driving point

impedance function leaving, in cascade, a terminating impedance

which is realizable and contains the same arbitrary constants. These

constants may be used to produce desired characteristics in either

the removed sections or the terminating impedance.

Seven of the removed sections contain gyrators. Methods are

developed whereby, through proper choice of one or more of the

arbitrary constants, the gyrators may be eliminated so that the

removed sections are purely reactive and reciprocal.

3.2 Rank 2 Operator Formulation and Synthesis

Let Z be represented by eq. (2-18) and the associated V opera-

tor (which is of rank 2) by eq. (2-20). These equations are re-

peated below:

aC1 + sZaZ a a (3-1)

*some of the sections in Fig. (3-1) have non-cascade representatis

which do not include gyrators or transforrers. These are not con-
sidered since the purpose here is to develop cascade synthesis
procedures.

-64-
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a + sZ
a + --

'I a

I (a) (b)()

60- T

(d) (e)(f

(g) 01)

(continued on next page)
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Fig. (3-1) Network Sections which may Always be Removed from Z

The n- and rn-type Darlington representations of eq. (3-2) are

the network sections of Figs. (3-1a) and (3-1b), respectively. These

sections may always be reroved from an RLC driving point impedance.

The element values and terminating izmpedances are shownl in Fig. (3-2)

for the n-type and in Fig. (3-3) for the rn-type synthesis. The

constant appearing in each figure is completely arbitrary except

that it must be positive real.
-l

! ~~~Th a en ndiscussed inSeton 2.5.nttosofe.(52 r

he+ Zewr se aln of Zis (a1)ad(-brepciey hs

Fig.th n-5ype an p Ran Fig Fi-g. (3-3 the Rankp syteis2h

Thti hast be dicsed inrectn.5
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The n-type network of Fig. (3-2) is derived using eq. (2-8) as

follow:

I numEvV I m a2  a2

aZ a

VI2 AI + Z S(3-3)i 21
aZa

V11 mV22  s

Eq. (2-9) is used in obtaining the m-type network of Fig.

(3-3). The terminating impedance (1/Cl) is scaled to Za/ to

avoid the use of a transformer in the synthesis of VI . ThusaZ2 C+i
a +Z + sZ

z a

a SZa - -Iz

2aZ +sZ a
+ a z (3-)

12 saand thensyntEviV Iof V -

21
Vi 22 2

21 Za

V11 -y a -
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3.3 Equivalent Rank 2 Operator Networks

p Consider the network section shwn in Fig. (3-4). Its Z

parameters are

z - z22 a K2 3

P (3-7)

Z12 K -5 + K

21

rig. (3-4)

a"- etY3 and K =Z . Then eq. (3-7) becomes

aZa
zl - z 2 -a

aZ
Z12 + Z a
21

Similarly let Y3  
= k and K - Za- Then

ZaaZll "Z22 a ;

(3-9)
Za

Z12 a "- -a
21

Syntheses of eqs. (5-8) and (3-9) directly yield the sections of

Figs. (3-2) and (3-5). Therefore the networks of Figs. (5-5) and

(3-6) are equivalent to those of Figs. (3-2) and (3-3), respec-
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tively, and their sections may always be removed from Z. The sec-

tions appear in Figs. (3-ic) and (3-1d).

ZaS aZal~ ~ -9--

a 
a

+ Za  + Za

101

Fig. (3-5) n-Type Rank 2 Fig. (3-6) m-Type Rank 2

3.4 Eliminating the Gyrator from a Rank 2 Operator

A method of eliminating the gyrators which appear in the net-

work sections of Figs. (3-1a) through (3-Id) is now derived so that

a network section containing only reactive reciprocal elements can

always be removed from Z. Let Ci be expressed by eq. (2-19) and

-its associated V operator by eq. (2-21). These equations are re-

peated below,

--bC2 + sqb (1)~~b + -- C2 ."lb

b aCb 
(3-11)

b + Clb

where b is a positive real constant. Substituting eq. (3-10) into

eq. (3-1) gives Z in terms of C2.
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(ab a) C2 * (bZa * Clb)(121 ~z- - (3-12)
2 JCIb a(abs + B + s( aN+

I,. The associated impedamce operator is

ab + s(bZa + ac)lb + 2  -

S - , (3-13)

ab + b- + a + 2*M(-- ---

Theorem J

As a corollary of Theorem A in Section 1.1, Hazony4 has shown

that, if Z is prf, then V in eq. (3-13) and C2 in eq. (3-12) are

prf for a and b positive real or complex conjugates with a non-nega-

tive real part.*

The numerator of the even part of V may be obtained directly

from eq. (3-13) or, more easily, by the use of eq. (2-15). The

result is

num vV- (a - s 2)(b 2 - a) (3-14)

In order to synthesize V without a gyrator, it is necessary

that eq. (3-14) be a perfect square so that V12 - V21 . This require-

ment means that

b-+ a (5-15)
b 2

nun E V (a2  2 (a-)

Ci is no longer prf if a is complex even though Z is prf.
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Thus a and b must be real and equal or' imaginary and opposite in

sign.

For the case b - + a, V in eq. (3-13) becomes*
VZ

a2  2 a * 82a
V a as(Za (3-16)

2 Il 1 2Cla'a Cla a

The n-type reciprocal Darlington synthesis of eq. (3-16)

extracts the network section of Fig. (3-le)in which the transfomer

polarity is additive. The element values and terminating impedance

appear in Fig. (3-7). The removed section is purely reactive and

contains one arbitrary positive real constant which is also con-

tained in the C2 termination.

*lim Cib

b-b. is a positive real number. This may be shown by writing:
a

_1b a Zb  b za
a a Za - b z

For b = + a, this expression becomes indeterminate (2). Using

L'IHspital's Rule yields I
Slim CIb Za "aa

b a " Z + az '
a a a

This limit is positive real since Cla and Za are positive real for

any positive real value of a by Richards' Theorem.
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a aCi aD ZaDa

I

Ii I a
Fig. (3-7) Gyrator Elimination for a Rank 2 V, b m + a

The element values in Fig. (3-7) are obtained from eqs. (2-8)

and (3-16). They are

a + a2 z 2

VI 2  - . 1 Pa - s,

sa

2 2 Za

V a r

a

V a -a a
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For the case b - - a, two subcases result depending on

whether Ev Za is or is not equal to zero. For Ev Za  O, eq.

(3-13) becomes

v s -a (3-18)
a -a

This gives the trivial result Z - C2"

For Ev Z -0, V in eq. (3-13) becomes*

aZ

-a2  as(Z a + la- s
vla (3-19)

-a 2  a 1 + ) 2 Ca

* b a Z - b Za

Za  a Za - b

For b -a,
Cla-a. a Z (-a) + a Z a

a a Z (a + & Z(a)

This expression is unity unless Ev Za - 0, in which case it be-

comes indeterminate (E). Using L'lHspitals' Rule in the latter case

gives

lim C aZ Za
b--a Z a Za - a

a aa
This limit is a positive real nmber since the coefficients of a

in eq. (5-13) must be positive real. This follows from the fact

that V is positive real for any a and b which are complex conjugates

with a non-negative real part.

AU1 coefficients in eq. (3-19) are positive real since a is imaginary.

Also Cl(-a) "l since Ev Za a 0.
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The n-type reciprocal Darlington synthesis of eq. (3-19) again

yields the section of Fig. (3-le) but, in this case, the transformer

polarity is subtractive since

In n EV 'Ca2  2 2 2 22whcnils oiim utual s-a z) .(' ) a- (s

which yields a.positive mutual inductance term in V12 and V21. This

network is shown in Fig. (3-8). It is obtained only if Ev Za .

Za

Cla(-.a) (-a) ZaD(-a)

z

a

- T sD~~

Fig. (3-8) Gyrator Elimination for a Rank 2 V, b = - a, Ev Z a  0

The element values in Fig. (3-8) are derived from eqs. (2-8)

and (5-19).

1. - - 2  2

V12 
(-V21 a )

2  2 Za
-a -

V 1 1  eD (-a)_sD(()

(3-21)



-2 C (3-21)
-a2  a 2s l

V22  -asD(-a)

b- +_a) 1 J

The section of Fig. (3-7) appears to be identical with the

Darlington Type C section, ,7 but there are two important differ-

ences. First, realization of the Type C section demands that
222

nun Ev Z have a factor of the form (A2 - a ) , requiring a pair

of real even art zeros of even multiplicity. Often this requires

the use of surplus factors. By contrast, the section of Fig. (3-7)

may be removed from Z for any configuration of even part zeros. In

essence surplus factorq are already built into the impedance opera-

tor. Secondly, the section of Fig. (5-7) contains an arbitrary

constant whereas the Type C section does not. If this constant is

chosen so that Ev Za -0, then, if these real zeros of Ev Z are of

second order, C2 is four less in rank than Z whereas, if they are

of first order, C2 is two less in rank than Z.

The section of Fig. (3-8) is identical to the Brune networt 7

and requires that nm Ev Z have a jo axis zero (Z must be a mini-

mm resistance function or the minimm resistance must have been

removed). Thus the-Brune network results from the impedance

*D is a positive real nmber.
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operator approach for the special choices b - - a and Ev Z. 0 0.

In the event Z is not a minimum resistance function, the mini-

mum resistance may be removed at the outset. Then the remaining

impedance can be expressed by eq. (3-2). Choosing b - - a and

also choosing a so that Ev Za = 0 again permits the removal of the

section of Fig. (3-8) and the termination C2 is four less in rank

than Z. Now the winiium resistance may be removed from and the

remaining impedance expressed by eq. (3-12), again permitting the

removal of the section of Fig. (3-8). The process may be continued

until the termination is reduced to a rank of two or less. This

yields the same result as the Brune procedure, where each step

using the impedance operator has its counterpart in the Brune

cycle.

To summarize the results of Sections 3.2 through 3.4, it has

been shon that the network sections of Figs. (3-1a) through (3-le)

may always be removed from a prf driving point impedance and that

the gyrators appearing in Figs. (3-la) through (3-1d) may always

be eliminated to yield the reactive section of Fig. (3-le). The

first four sections contain a pair of real axis even part zeros

whereas the section of Fig. (3-le) contains either a pair of real

axis or a pair of imaginary axis even part zeros. In each of the

*The cascade synthesis procedure of Guillemin, 7 which was summarized

in Section 1.9, yields the same result whon'applied to the Brune
procedure as does the impedance operator approach above. In this
case, T(s) in eq. (1-54) denotes imaginary, rather than complex,
zeros.
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five sections, one arbitrary constant is available for choice. The

selection of this constant is now considered.

Assume the driving point impedance to be synthesized is not

a minimum resistance function. Several synthesis paths may be

followed. First, if Ev Z contains real axis zeros, the method of

zero cancellation synthesis 4 can be used in which a is chosen to

reduce the rank of CI of C2. This choice permits a realization in

terms of any of the network sections of Figs. (3-1a) through (3-le)

(excepting the case b - - a, Ev Z a O). Secondly, the minimum

resistance may be removed at the outset, after which the remaining

impedance is synthesized by tie zero cancellation method using the

rank 4 V operator with b -a, Ev Za M O. This yields the Brune

network. Third, assuming again that the minimum resistance has

been removed from Z, a may be chosen to create a jo axis zero or

pole in CI or C2. This method is essentially the Bott-Duffin pro-

cedure, but in this case is designed to yield a cascade, rather

than a distributed, result. 9

3.5 Extended Bott-Duffin Cascade Synthesis Procedure

3s6
First, the conventional Bott-Duffin procedure is revieved

and the points essential to its extension are discussed. Let Z

as given by eq. (3-1) be a minimum resistance function. Then the

even part of Z has a J3 axis zero at s - Jo and Z appears either

inductive or capacitive at that point

1
ZasL or 1 at s -3e o (3-22)
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Solving eq. (3-1) for ci gives

a Z -sZ a

a

The zeros of the even parts of and Z are identical from eq. (2-17f

V Therefore Ev 0 at s - jo

Let a be chosen so that C, has a jw axis zero or pole at sJ O.

This requires that

a Z - sZa -0 for a zero at s - J o

(3-24)

SaZa - sZ - 0 for a pole at s - Jo

The first form of eq. (3-24) is applicable when Z appears

inductive at s - Jwo" Assum this to be the case. Then

a Z L Z at s - Jm (3-25)

a s

It follows that
T

Za -aL -o (3-26)

Eq. (3-26) has one positive real root since the function Z - sL

3has one positive real zero.

in eq. (3-23) is the same rank as Z since there is a

common factor s - a in the numerator and denominator of the right

*EV Z a 0. Therefore num Ev V1 does not appear in num Ev Z
(see discussion following eq. (2-22)).
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hand side. Creating a Jw axis zero in C1 insures that the impedance

remaining after the removal of this resonant circuit is four less in

rank than Cl(and therefore Z).

Customarily, the distributed Bott-Duffin network is obtained

from the foregoing procedure, but it is also possible to obtain
9Ithe cascade representations of Figs. (3-2) and (3-3).9

With these concepts in mind, the Bott-Duffin procedure can be

extended. Let C1 be given by eq. (3-10) and Z by eq. (3-12). Solv-

I ing eq. (3-I0) for C. gives

C2 M l b (3-27)b - -I- rl

choosing b equal to + a so that the pertinent V operator in eq.

(3-13) may be synthesized without a gyrator causes eq. (3-27) to

take the form

C2  a " 'Cla (3-28)a - -I - I

I Cia C

The even part of CI is zero at s - Jco . Therefore,

1C1  sL1  or at s -~

- and all of the previous arguments apply with Z replaced by CI' CI

by C2 ' L byL and C by CI. The even part of C 2 is zero at sa J o

*This is shown in Fig. (5-9).
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and a is chosen to create a zero or pole in C2 at that point.

-0 for a zero at s ujm

aCla - Srl -0 for a pole at s jo

Again considering the inductive case,

-l C1 .- ta Jo (3-30)

Cl a - L o (3-31)

Eq. (3-31) has one positive real root. C2' and Z are of the

same rank and, when the resonant circuit is removed, the remain-

ing termination is four less in rank than Z. The network is that

of Fig. (3-7), where (2 contains a removable resonant circuit.

3.6 Rank 2 Operator Examples

The syntheses which result for the various choices of a are

illustrated by considering the following driving point impedance

function:

2 2s +s +1 2
24where numEv Z -( + 2)

Solution A

Since Z is a minimum resistance function, the Bott-Duffin
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procedure may be used with the rank 2 V operator to synthesize Z.

Z behaves like rats j and a is chosen so that C1 has a jo

axis zero (aZ - sZa - 0) at that point. The resulting a is posi-

tive real and therefore C1 is prf. The calculations yield

i" Za 2

a I1, Z 1/2, 1 = *2
4s + 6s + 8

S+

I V1 =, num EvV = 1 - s

The cascade syntheses of V1 and C1 give networks corresponding to

Figs. (3-2) and (3-3). Tz results appear in Figs. (3-9) and

(3-10).

+ -' ,,
1

T 3.

Solution B 2  T
The extended Bott-Duffin procedure may be used with the Rank

4 V operator to synthesize Z. a is chosen so that C2 has a ja axis

zero at a a J VT. The a obtained is again positive real and b a + a.
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Carrying through the calculations yields

a~l -Sl a  0 at a - J

but a a-]
af- a at a - J VT

Therefore _ Za(a -"- s a 2(a +2)

Expanding and collecting terms gives

a6 -a 5 + 2a4 -12a 3 -8a 2 - 20a -16 - 0

(a 2  -2a 2)(a2 + a +4)(a 2 + ) -0

The positive real root is a 1 1 +VT. Then

Za a - Cla =

2
=2 a + 2

-2 4(B + 2) + 4(3 - s

252 + 3 + ,*S +4 + 2/

V 2
aT + 6V/s a + 4 + 2/

num Ev V - (4 + 2 /g -2) 2
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The syntheses of V and €2 corresponding to Fig. (3-7) appear in

Fig. (3-11).

V0

-3 +

_24T 12.

Fig. (3-11) Gyrator Elimination, b - + a

Solution C

The method of zero-cancellation synthesis may also be used

to synthesize Z. In this case, a - JyTmakes Ev Z -0 and thus

fl is two less in rank than Z. The results are

Za jL' 2 C V
q'14 2s'

Because a is not positive real, CI and VI are not prf. Therefore

no syntheses corresponding to Figs. (3-2) and (5-3) are showm.

However, a synthesis corresponding to Fig. (3-8) is possible if

b - J VL Choosing this value for b makes Ev Clb -n y

which makes C2 four less in rank than Z. Carrying out the calcu-

lations gives



-84-

Clb la ' 2 4

I2
2s + + 2 2

V - --- , numEv V (s + 2)

2 + 2s+ 2

The synthesis of Z is given in Fig. (3-12) and is identical with

that which results if the Brune synthesis procedure is used to

synthesize Z.

Vc

a s

_

Fig. (3-12) Gyrator Elimination, b = - a, EvZanO

There is no loss in generality from having considered a rank

4 minimum resistance impedance in this example. For the case of a

non-minimum resistance rank 4 impedance, the minimm resistance may

be extracted from Z initially. For impedances of higher rank, the

procedures are the same but C1 and C2 are correspondingly higher

in rank.
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3.7 Rank 4 Operator n-Type Realization

The procedures developed in Sections 3.2 through 3.6 do not

consider the realization of complex even part zeros. The synthesis

of the rank 4 operator in eq. (3-13), in which a and b are generally

complex conjugates with a non-negative real part, fulfills this need.

The two Darlington procedures are applied to eq. (3-13) resulting in

additional netuork sections which may always be removed from Z.

These appear in Fig. (3-if) through (3-li).

The n-type Darlington synthesis of eq. (3-13) is obtained by

putting eq. (3-14) in the form

2 2 2 2

numEvV- (s2 +ab) -s2 (a +b) (3-32)

and employing eq. (2-8). The results are

s ab)+ a + bV12 - Ds

21

sZ' ai b 2 Clb+ b

4 +ab s r.- 3)abVII1 " s 'V22 Ds (-S

D b a

The removed section appears in Fig. (5-If) and the complete netork

in Fing. (3-13). The two constants a and b are still completely

arbitrary.
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+a+b

z a

a l ne.(a 3)wihi eqivlnt torqirn ha h

! €Ib ZaD

3.8ig. (3-1) n-4pe eane 4

It is often possible to simplify the network of Fig. (-13)

by replacing the transforer by an inductor. This requires that

Za )b in eq. (5-3 ) which is equivalent to requiring that the

Soperators VI and V 2 be comutative. This condition in investi-

~gated in Appendix III.

3.8 Rank 4 Operator m-Type Realization

The m-type Darlington synthesis of eq. (3-13) may be obtained

directly using the negative of eq. (3-32) in conjunction with eq.

(2-9). However it is possible to eliminate an element if the ter-

minating impedance is first scaled. Let Z in eq. (3-2) be rewritten

asa

Z - l (5-54)
+l sk -VL ? -

aSa
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where k is an arbitrary positive real constant and the termination
C2

is nowj . The associated V operator is
kz

s 2k2  a + s(bZa + aCcb) + k2 abv - l (3-35)
s! 2 Cb '.sk r~ + a)+ ab

za za l

and
2 2

num Ev V - k2(s2 + ab) -k 2a 2( a + b) (3-36)

The n-type Z parameters for eq. (3-35) are
z

a (bZa + )s

Cib

2 za

V22  2 Za (-T
k +ab

Cb C
Z Z

k a (a + b)s + k a . ab

V1 2  2 Z

21 s 2 + ab-
C~b

The V12 expression in eq. (3-37) may be rewritten in tuo ways.
21 ga 2122 a (a + b)s + k a ? -D1

V1 2  ? __Za Cl _ + k

21 a + aCb (3-58)
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k Z& (a + b)s_±+k ab a (I a

V 1 2  Cl Clb f~) *k-

21 52 + ab - C )

Clb (3-39)

The similarity of eqs. (3-57), (3-38) and (5-39) with eqs.

(1-34) and (1-36) should be noted. By direct substitution of eqs.

(3-37) and (3-38) or (3-39), the extended residue condition of

either eq. (1-25) or (1-27) may be shown to hold with the equal sign.

Therefore Z in eq. (3-34) may be realized by networks having the

form of Figs. (1-2) and (1-5) except that the termination is k 2/ 2

instead of one ohm and an extra gyrator is required to take care of

the last term in eqs. (3-38) and (3-39) (see Fig. 1-7).

Eqs. (3-37) and (3-38) are identified with eq. (1-34) to yield

K

1M k(a + b)

(3-40)
bl a + aClb

L22  ab

Similarly, eqs. (3-37) and (3-39) may be identified with eq. (1-36)

to yield



z

--

S1 Z
U- -k & (a +b)

m b
(5-41)

1 Za ('-I Z bza + ac b

1 2Za b -

T22 1b l

Each of the transformers represented by eqs. (3-40) and (3-41)

has a T equivalent. For the inductive transformer of eq. (5-40) the

T equivalent values are

h "Li -M
L " - M (3-42)

2 22

L3- M

while for the capacitive transformer of eq. (3-41), they are

1 1 1

1 1
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It is now shown that the scaling constant k may always be

chosen to make either or L2 zero in eq. (3-42) or 1- or"- zero

in eq. (3-43) while insuring that the remaining transformer elements

are positive. Consider the inductive transformer case first. To

make h - 0 requires that

bZ a+ aClbk a- (3-44)
,a e

The quantities bZa + aClb and a + b are positive real. Hence a

positive real k can always be found to satisfy eq. (3-44). The

extended residue condition holds for all positive real k.

_ 2

I L 22 > 0 for all + k (3-45)

With h - O, eq. (3-45) becomes

M(L2 - M) > 0 (3-46)

Since M is always positive from eq. (3-40), L2 must be positive.

Similarly k may be chosen to make L2 zero in which case L is

always positive. The required value of k is

k a + b (5-47)k=b a

Za ib

A completely parallel development for the capacitive trans-

formers yields eq. (3-44) to make 1/c1 zero and eq. (5-47) to make

i/0. zero.
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The syntheses of Z with k satisfying eq. (3-44) appear in Figs.

(3-14) and (3-15). The constants a and b in these netvorks

aab a

Zk(a b)s

!+ k

Fig. (3-14) m-Type Rank 4 Inductive

+kfa

z 1 k2

- - -C 2

(.Z- k(a +b)

Fig. (3-15) m-Type Rank 4 Capacitive

are still comrpletely arbitrary. The network sections in Figs. (5-14)
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and (3-15) may always be removed from Z and thus appear in Figs.

(3-1g) and (3-1h). Note that only four elements are present in

each of these removed sections, whereas five elements are necessary

in the n-type section of Fig. (3-1f).

A further simplification may often be made in the m-type

synthesis of V in eq. (3-13). Consider the V1 2 expression in eq.
21

(3-37). If clb --•, the entire non-reciprocal term reduces to a

non-loaded gyrator. This is discussed in Appendix III.

3.9 Eliminating the Gyrator from a Rank 4 Operator

Following the pattern of Section 3.4, a means of eliminating

the gyrators in Figs. (3-13), (3-14) and (3-15) is now derived.

The result is the network section of Fig. (3-li), a purely reactive

section with two arbitrary constants. The gyrator elimination is

accomplished through the following transformations.

Let
C2  

3 + SC2c
c + C-..c C3

C dC4 + sC3dd + ddC 4

Substituting eq. (3-49) into eq. (3-48) gives

(d + 32 .c4 + a(dC20 + cC.3)
C2  (C C C (5-)

d + a,-so)
(C p_ 8&c-+cCd
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Eq. (3-50) should be compared with eq. (3-12). 4 is prf if C2 is

prf (and thus Z prf) and if c and d are either positive real con-

stants or complex conjugates with a non-negative real part.

It is now necessary to substitute eq. (3-50) into eq. (3-12)

in order to express Z in terms of a new V operator (of rank 8)

operating on C4. The new V has four arbitrary constants. Proper

choice of two of these permits a synthesis of the new V without a

gyrator. The results of the substitution are

(A + A2 s 2 + A s 4 )C +s(A + A3s2)
(B0 + B 2  + B4s 4 ) + s(B1 

+ Bs 2)C4  (3-51)

where

A - abcd - B
0 0

A1 - ab(d 2c + cC d ) + cd(bZa + aCl b )

d C + a

i 2c a~ ziba
rZa Za+I

bh a- a+ cd lbCA b + a oetri
Z C2c Z a a Cb. 20bcZ

A 3 a-4a (dCc~ + cC~d) + ?; (bZ a + CbCl 20

B . Cib (d +c +Cc b a

A4  aCzc 1

The associated V operator is
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A A2 3 4
A + s A 'A 2 s. *A 3 S5 'A 4

s 4

Bo + 1BS + B2s + B3s + B4s

Its even part numerator may be easily formulated using eq.

(2-15).

num Ev V - (a2 - s2)(b2 - s2)(c2 - a2)(d2 - 82)

(3-54)
-[a2b 2

- (a 2 * b 2)S2 + s 4 c 2 d2 
- (c 2 + d 2 )s 2 + s 4 ]

To synthesize V without a gyrator, it is necessary that eq.

(3-54) be a perfect square. This requirement is satisfied if*

c a + a, d - + b (3-55)

which causes eq. (3-54) to become

nun Ev V - [a 2  - (a 2 + b 2 )s 2  s J (3-56)

V in eq. (3-53) may now be synthesized by the n-type Darlington

procedure to yield the section of Fig. (3-1i) and the network of

Fig. (3-16).

*The minus signs are applicable only if a and b are pure imaginaris
since c and d may not have negative real parts. If a and b are
imaginary, then b a - a and the conditions of eqs. (3-18) through
(3-21) apply. Thus either the synthesis is trivial or the gyrator
has already been removed. Therefore only the plus signs in eq.
(3-55) are of importance.
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A T

Fig. 3-16 Gyrator Elimination for a Rank 4 V

The components of V are obtained from

A4s4 + A2s2 + a 2

S-V V* (az +b +ab

12 21 B 3
2 + D

33

SPerforming partial fraction expansions, eq. (-57) becomes

aI A s A7 I

22 3<8 2 1
(358

33

Promnpata frcto "xass eq (3-57 eoe

I~ 
4B1

2I a 5B
-D F



22 ab2  Bs (~ 2 2 b2  B B)
2 (-58)

A2  1 BI3V a D B4s + 3 1

1 2 2 •WIT + B1

22 B 2

V12 _V21 "a -b ,+ B
=,a+ 32 + B

B 3

The first terms yield a capacitor. The second terms give an ideal

subtractive transformer. The third terms yield a capacitive-loaded

ideal additive transformer. This last statement may be verified by

considering the network in Fig. (3-17) and its Z parameters in eq.

(5-59).

302

SC 
Z lo ll [ 0 1 1

B, am sL 2 2

I /s 2L
M S 22 s2 o o222

0 (3-59)
Fig. (3-17) Capacitive Loaded 2M35

Transformer Network o 2

0

20 C(hL + L 22 + 'M)

Matching terms between eq. (3-59) and the last terms in eq.

(5-58) gives
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A2  a2 b2B3 A4

LI1 B 2  B
B1

B2  a2b2B B
2 a 3 4L22 B1  2 B

B1  3 (3-eO)

2 b2 a2 b2 B3 1
a2 b 3 1

M B -
1 B1  3

B
h (LI + L + 2M)" E3 11 22

The network sections of Figs. (3-13) through (3-16) each have

a quadruplet of even part zeros. The section of Fig. (3-16) is

identical in forn to the Darlington D section but again there are

two differences. Firstgrealization of the D section requires that4 2 2
num EvZ have a term (s4 + As2 + B) , which often necessitates the.

use of surplus factors. These surplus factors are effectively built

into the impedance operator. Secondly, the section of Fig. (3-16)

contains two arbitrary constants also contained in C4. If these

constants are chosen so that Ev Za a Ev Zb a O, then, if these com-

plex zeros of Ev Z are of second order, C4 is four less in rank

than Z.

3.10 A General Cascade Reciprocal Synthesis Procedure*

*The specific procedure is new but the philosophy behind it is that
of Guillemin as discussed in Section 1.9.
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The combination of the principle of zero cancellation synthesis

with the syntheses developed in Sections (3-4) and (3-9) results in

a general cascade reciprocal synthesis procedure applicable to any

prf driving point impedance. The overall procedure has been out-

lined in Section 1.9. The network sections of Figs. (3-7), (3-8)

and (3-16) are used to realize real, imaginary and complex zeros,

respectively, of num Ev Z. In each case the arbitrary constants are

chosen to make Ev Za m Ev Zb 0 in order to reduce the rank of the

terminating impedance. The procedure is illustrated by the follow-

ing examples.

5.11 Rank 4 Operator Examples

The principles developed in Sections 3.7 through 3.10 are

illustrated by considering the following driving point impedance

function.

1 4

a5 L4s2 + 2s +4

3 2 44

where

nunEv Z M (2-s )(s2 + 2s + 2)(s 2s 2)

Solution A.

Zero cancellation synthesis may be used in conjunction with

the rank 4Voperatorto synthesize Z. a and b are chosen to make

Ev Z a  Ev Zb 0 and thus C2 is reduced in rank by four. The cal-

culations yield



a -j , b 1 + j

Z a.8'
Then, from eq. (3-1),

IZ
Clb - Za

From eqs. (3-13) and (3-32),

V 3 5
V= 3 2 17

Ss +Ks+2

num Ev V (s 2 + 2) -4s2

and using eq. (3-12), 3

'2 S + numEv C2 "2-s

The n-type synthesis of V is obtained by means of eq. (3-33). The

network appears in Fig. (3-18). Note that the removed section

realizes the quadruplet of even part complex zeros and that V1 2

contains the left-half plane pair and V2 1 the right-half plane pair.



-100-

S17

41 1125

k - _
~5

Then, from eqs. (3-35) and (3-36),

36 2 68

17a5

4 2 16 + 2

numEvV =-- (s 2  2 16s

and the termination is

5

V may now be synthesized using eqs. (3-40) and (5-42) or eqs. (3-41)

and (3-43). The netwrks appear in Figs. (3-19) and (3-), respec-

tively. One again the removed section realizes the quadruplet of
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complex even part zeros and the set is split between VI 2 and V21

as in the n-type case.

25

2

Z 4 82 & a

Iss

4 T

i5

Fig. (3-19) m-Type Rank 4 Inductive

2
25

Z K 182 41

8. I
4

Fig. (3-20) m-Type !Rank 4 Capacitive
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Solution B

Zero cancellation synthesis may also be used in conjunction

with the Rank 8 V operator to synthesize Z. a and b are chosen as

before to make the termination four less in rank than Z, and cC4

and d are chosen equal to a and b,respectively, to synthesize with-

out a gyrator. The results are

357445J123 357 - J123

C2a 4 ' t2b 445

C3d 80

Then, from eqs. (3-52), (3-53) and (3-54)

13 4 242 s3 139 U 2 92 a + 4

V 17 24 13
16 4 31 3 812 2 361
13 +S + +4

2

num Ev V (s 4 + 4)

and from eq. (3-50)

16 1
C4" ,1 num Ev C4 -2-s

s+l1

The components of Fig. (3-16) may be computed from eqs. (3-58)

and (3-60).
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+ +S

vi i Ms 2 '+36

V 96 + 128 + 3.88s22 T WF 2 + 61

93

96 8s 1.27sV 1 2 ' V 21 361s - 2 36
93

The network appears in Fig. (3-21). Note that the removed section

is reactive and reciprocal and that the termination is four less

in rank than Z, as anticipated. Once again the quadruplet of even

part zeros is realized by the removed section but in this case V1 2-

V21 so that V12 contains the entire quadruplet instead of Just the

left-half plane pair.

* •256

13. 88 128s

Z 

6.83 F

S

1.008 82 1312

3.06

Fig. (3-21) Gyrator Elimination, c *a and d b



CHAPTER IV

CASCADE SYNTESIS USING AN' IRMDANCE OPERATOR OF RANK 6

4.1 Introduction

In this chapter, the impedance operator of rank 6 is discussed.

Four additional network sections are derived (Fig. 4-1) which may

always be removed from an RLC driving point impedance function. Each

section contains three constants also contained in the terminating

impedance. In Figs. (4-1a) and (4-1b), one constant must be posi-

tive real while the others may be complex conjugates with non-negative

real parts. In Figs. (4-Ic) and (4-1d), all three constants must, in

general, be positive'real with two of them equal. As i.n the pre-

vious chapter, the constants may be chosen to produce desired char-

acteristics in either the removed sections or the terminating impe-

dance.

(a) (b)

(continued on next page)
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h

-I.05-

0

(c) (d)

Fig. (4-1) Additional Sections which may Alieiays be Removed from Z

4.2 Rank 6 Operator Formulation

Let Z, CI and C. be represented by eqs. (2-i), (2-19) and

(3-49), respectively. These equations are repeated below.

Z aC1 + sZa  (4-1)
a + s- Clz a

bC2 + SClbbC2 + asCb (4-2)

bb Ci€b g2

SCC3 + C2c

y2 cobnn (4-)
c+ ?2 -c 5

BY combining these equations, Z may be expressed in terms of "
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(C0 + C s2 )C5 + s(C1 + C3s2 )Z z2... (4-4)
(DO + D2s2 ) + s(D1 + D3s 2 )1 3

where

C -abc =D0 0

SC
1 M ab2 c + bcZa+ caC lb

D aZb +bc +a

C~~c Z a Cl b(4 S
Clb Za ZaC a -'c + Cc clb
C2c C2c c Clb

D2 a ?1 + b -ta +

2  1IC3 ZaC2c . 1

The associated V operator is

V C 0 + Cls + 2 3 (46
2

D 0o + D s + C2s + DG3aV 2 (4-6)
I DO~~ +DS+D 2 s 2 +D3 s 3

Its even part numerator, from eq. (2-15), is

num Ev V - (a2  s 2 )(b 2 - s 2 )(c 2 - 2)

S[(a + b + c)s2 + abc] 2_ 2s 2  ab + bc + ca]

(4-7)
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In each of the equations (4-1), (4-2) and (4-3), the impedance

on the right (€I, C2 or C3 ) is prf if the impedance on the left

(Z, CI or C2) is prf and if a, b and c are real. Also C2 is prf if

a and b are complex conjugates ith a non-negative real part and

Z is p rf. It follows that C3 is prf if c is positive real.

Similarly, if a is positive real, Cl is prf. Then, if b and c are

complex conjugates with a non-negative real part, C3 is prf.

Theorem K

In eq. (4-4), r. and V are prf if b is positive real and a

and c are complex conjugates with a non-negative real part.

To verify Theorem K, it is sufficient to show that the coef-

ficients of the V operator in eq. (4-6) are unchanged by a permu-

tation of the three constants a, b and c. Then, letting a -> b,

b -> c and c -> a does not change V and thus does not change C .

For example, a - 1, b 1 1 + J and c - 1 - J is a permissable set

of constants to insure that V and CS are prf if Z is prf. It

follows that a - 1 - J, b - 1 and c - 1 + J is also a permissable

set.

4.3 Rank 6 Operator Synthesis

The general n - and m-type Darlington syntheses of eq. (4-6)

are now derived. The procedure is much the sane as that used in

The invariance of V under a permutation of the three constants is
proved in Appendix IV.
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connection with the general rank 6 impedance in Section 1.7 except

that the termination is no longer one ohm.

For the n-type synthesis,

2 abC2 abc )abc ~~~,, f- l

Sabca3

.1 2 D +lD
s (D a + D) 1 2 1_

D3

2 2 abc
D ~+ abc d- 77 \J (-

VI2 3 ss + D1 D1 s 2 + !)

2 2
v 2'(a + b + c)s 2+ abcz+1 8(3s + ab + bc + ca)

21 s (D 3  + D1)

The equation for V1 2 may be separated in two ways to give:

21
_ _____+ + abc sa 1aa D , - a-c. . _2 e - ab - bc-ca

= abc s 3 +ablb(D3a) ab+bc+ca
Ds + 2 Di - D

21 
a + =D 

(4-9)

or ab (+b+ - )s (ab,+ bc +ca~~
3abc -3

v12 !R s 2 3l
21 + B- )

As eiplained in Section 1.7, the first terms in V1 1 , V2 2 and

V1 2 form a capacitor. The last term in V1 2 is a non-loaded gyrator.

21
The residues of the last term in V1, and R2 along with those of
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the middle terns in V12 satisfy the extended residue conditions of

eqs. (1-25) and (l-275 with the equal sign, indicating the use of

Figs. (1-2) and (1-5). The complete synthesis of Z, using the

inductive form of Fig. (1-2) and eqs. (1-34), (4-8) and (4-9),

appears in Fig. (4-2) where

K 1 ab +bc +cal D3  DI

- ~ (c -abc

(4-11)

L 2 mi(D, 2 - abc~'

M -- (a + b + c-abcr

ab + bc + ca
D1

ia

Sabc

iFig. (4-2) n-Type Rank 6 Inductive
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In order to avoid a second transformer in the m-type synthesis

of V, the terminating impedance C3 may be scaled. Let the new ter-

mination be C /-2, where k is an arbitrary positive real constant.

Then V in eq. (4-6) becomes

Ck2 + Cs + 22 + Css5

V a 2 2 3 (4-12)
DO + Dlk2s + D2 s + D3 ks

and eq. (4-7) becomes

num Ev V k 2(a + b + c)s 2 + abc -k2s 2 s2 + ab bc +ca 2

(4-15)

Then 1lr abc CC 3sB D 2  1 D2 -s

l1 =D2 s2 + abc

D2

2 ( abc D

DVk 2s D2  - D2  (4-14)
22 2 2 +abc

D2

ks(s 2 + ab + bc + ca) _+ k [(a.tb+c),2.abcl
V21 D 2  + abc

Rearranging the V12 expression yields
i 21

S(ab+bc + ca - as + +>2 *k

21 2 -12(4-15)



or

k abc) abck aab + bc + ca - s + -Bk-2b-c

. 2 2 f - 22 , k(aJb+c)v12 D 2 82 4-arc - - D 2
21 D

(4-16)

If k - C r ,the first terms in VI, V22 and V12 reduce to3 21

j- an inductor. The complete synthesis of Z, using the inductive form

of Fig. (1-2) and eqs. (1-34) and (4-14) appears in Fig. (4-3), where

in this case,

a+ b+c

1 (4-17)
2 DI C3

L22 - C3  .

ab +bc +ca '3
S "C 3  abc -l 2

O2

* Cs

3

i2

Fig. (4-3) r-Type Rank16 Inductive

22 3a
x b+bc+c

3 b



The syntheses appearing in Figs. (4-2) and (4-3) are perfectly

7 general and the constants a, b and c are still arbitrary in both the

removed network section ard the termination C.. Each of the sections

of Figs. (4-2) and (4-3) c:.n always be removed from Z and therefore

they are included as the first two sections in Fig. (4-1). Also,

each section realizes six even part zeros, two of which are real and

7' the remaining four complex.

For imoedances of rank 6, 10, 14 .... , the even part numerator

of Z always contains at least one positive real root in addition to

its pairs of complex conjugate roots. Hence, for such impedances,

it is always possible to choose a, b and c such that Ev Za a Ev Zbu

Ev Zc a 0. This synthesis procedure reduces the rank of C3 by six.

For impedances of rank 4, 8, 12 .... , there is no guarantee of a

positive real even part zero and thus the reduction in rank of C3 by

six is not always possible. In these latter cases, the rank 4 V

operator discussed in Chapter III may be employed and a reduction

in rank by four obtained.

The arbitrary constants may also be utilized to simplify the

networks of Figs. (4-2) and (4-3). This choice of the arbitrary

constants is now investigated.

4.4 Eliminating a Gyrator from Figures (4-2) and (4-3)

In the discussion of the m-type Darlington synthesis of the

rank 4 V operator, the terminating impedance was scaled to eliminate

an element from the reAoved sections. In the case of the rank 6 V



operator, scaling has already been employed to obtain the single

capacitor in Fig. (4-2)* and the single inductor in Fig. (4-3).

V Thus further simplification of these netwrks requires a proper

choice of one or more of the arbitrary constants.

A considerable simplification results if the non-reciprocal

portions of the middle terms in the V1 2 expressions of eqs. (4-9),

(4-10), (4-15) and (4-16) can be made2i vanish. To obtain this

simplification requires that

V
D Za2c ab be cala3 -  (ab + bc 4 ab + bc + ca (4-18)

in eqs. (4-9) and (4-10) and that

€2 ~2 c Zlb
D 2 a 2 + b c + C a + b +c (4-19)

in eqs. (4-15) and (4-16). Eq. (4-18) applies to the n-type and

eq. (4-19) to the m-type Darlington synthesis. Using eqs. (4-1)

and (4-2Z), it is possible to express eqs. (4-18) and (4-19) in

terms of a, b, c, Za, N and Zc . The result for eq. (4-18) is

2 _2 3 2 _2 3 2 _? Iab + b + ca (b 2  c c2)a Z a + (c 2  a a2) b3 b (a 22 - c

(b _ c )aZa + (c - a2)bZb + (a -b2 )cZe

(4-2D)

*The scaling factor is unity for the n-type synthesis.
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which reduces to

aZa(b -c) + bZb(c -a) + cZc(a -b) -0  (4-21)

Iwhile the result for eq. (4-19) is

(b2 - c2 )bcZa + (c 2 - a2)caZb + (a2 b 2)abZc
a + b + c -(b 2  c 2)aZa + (c2 _ a2)bZ + (a2 -b )cZab c

L- (4-22)

which reduces to

Za(b - c) Zb(c - a) + Zo(a - b) a 0 (4-23)

If any %w ' of the arbitrary constants are chosen equal, eqs. (4-21)

and (4-23) are satisfied. But if, for example, b is chosen equal

to a, then a and b must be positive real and therefore c must be

I positive real, if V and C. are to be prf. Thus the arbitrariness

of the constants is reduced.

The question arises as to whether a positive real c can be

found such that eqs. (4-21) and (4-25) are satisfied with a and b

remaining arbitrary. These constraints are investigated in detail

in Appendix V, where it is shown that it is often, but not always,

possible to choose such a value of c.

With the conditions of eqs. (4-21) and (4-23) satisfied, the

V1 2 expressions in eqs. (4-9) and (4-10) become

21
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a + b + d abc)

abc + 1 (4-24)
V1 2 "~ 2 4-412 D a DI - D 5

21 5+

while those in eqs. (4-15) and (4-16) become, (with k a C3 -

3 (ab + bc + ca- abc s

1 3 2 2 + (4-25)
2 2 2 abc - D -S21 

+

The n- and m-type syntheses appear in Figs. (4-4) and (4-5), respec-'V
tively, where in Fig. (4-4)p

I i abc

L abc

L2 2  1 D2 - ab + bc + ca)

1 (4-26)

M (a "ab +bc +ca

- (ab + bc + ca)(hI* + L2 2 + 2M)

and in Fig. (4-5),*

L11 a rc- a +b +c

10-D 1  C3
a22 - a b+c

*The values for L1 1, L22 , N and C are Justified by eq. (3-M0). (427)
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M ab + bc + ca C3 (4-27)

abc a +b+c

1 abc
i a b + c Lli + L2 2 + 2")

These two network sections can always be removed from Z through

proper choice of the arbitrary constanbs and thus are included in

I Fig. (4-1).

D ,1

z sBL2 2  C

abc

Fig. (4-4) n-TypeRank 6 Simplification
D

14 
2_ ac

5C
.- 2

Fig. (4-5) n-Type Rank 6 Simplification

!1!



A second simplification in the network sections of Figs. (4-2)

and (4-3) results if the arbitrary constants are chosen to make an

element vanish in the T equivalent circuits of the transformers in

these sections. The components of the T equivalent circuits are

given by eq. (3-42). To make L2 vanish in Figs. (4-2) and (4-3)

requires that L22 - M - 0 for each case. For Fig. (4-2),

L22 - M -0 means that D2 - a + b + c, while in Fig. (4-3) the require-

ment is that DI/D3 - ab + bc + ca. But these are eqs. (4-19) and

(4-18), respectively, which can always be satisfied by choosing two

of the arbitrary constants equal. With L2 - 0, L is positive by

an argument similar to that presented in eqs. (3-45) and (3-46).

Thus, when eq. (4-18) is satisfied, the n-type synthesis in Fig.

(4-2) is simplified to that in Fig. (4-4) and L2 vanishes in the

m-type synthesis of Fig. (4-3). Eq. (4-19) performs a similar

double function.

To make vanish in Figs. (4-2) and (4-3) requires that

I- M - 0 for each case. For Fig. (4-2), this requirement is

met if

Clb Za Z
2 a b c -- a + b + c (4-28)

while for Fig. (4-3), it is necessary that

cc Clb

r- a ( abC2 c + bcZa + caCl b )  ab + be + ca

(4-29)



It may be shown that each of these equations is also satisfied if

any two of the arbitrary constants are chosen equal. It should
1 1.

also be noted that if - in eq. (4-4) is synthesized using in eq.

(4-6), eqs. (4-28) and (4-29) would have to be satisfied to obtain

the network sections of Figs. (4-4) and (4-5).

4.5 Rank 6 Operator Example

The principles developed in this chapter are illustrated

by considering the following driving point impedance function

3 142
s5 +-L42s + 2s +4

Z 3
3 2 44

+4 4s - +2

where

num Ev Z = (2 - s 2)(s 2 + 2s + 2)(s 2 - 2s +2)

Zero cancellation synthesis may be used in connection with

the rank 6 V operator to synthesize Z. Since Z is of rank 6, a,

b and c may be chosen so that Ev Za a Ev Zb = Ev Zc = 0, which

guarantees that C3 will be six less in rank than Z. The calcu-

lations yield

a 1 + j b I - j c

a 7-1,b -17 c 5

Za 5 3V2
Clb 3' -,C2C= 5 'C
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From the above values, V in eq. (4-6) is

V .
,

2 V r , 4 2 + +_...T

and
nd2 2 2

Snu Ev v - (2 - a)(s + 2s + 2)(s -2s + 2)

U(2 +V2)s + 2V'r2] + 2+22j

The n-type synthesis of V follows directly from eq. (4-1)

and Fig. (4-2). The result appears in rig. (4-6).

+

57+ 66 C
484

145s 255a

Fig. (4-6) n-Type Rank 6 Inductive

For the m-type synthesis of V, a scaling factor of

k - C" f is used. Then the synthesis follows directly from eq,

(4-17) and Fig. (4-5). The result appears in Fig. (4-7).
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*Vf

4. +5 "3 y

3 41s1

Fig. (4-7) m-Type Rank 6 Inductive

Note that the lossless sections in Figs. (4-6) 
and (4-7)

each realize to real and four complex zeros of the even part of Z.



CHAPTER V

CASCADED AND DISTRIBUTED V OPERATOR SYnTTESES

5.1 Introduction

In Chapter IV the rank 6 V operator was introduced and syntheses

were developed which treated the operator in its entirety. In the first

part of this chapter, the rank 6 V operator is split into two operators,

of rank 2 and rank 4, and the synthesis procedures of Chapter III are

applied to these two operators in cascade.

In Chapter III considerable emphasis was given to eliminating the

gyrator which appears in the synthesis of rank 2 and rank 4 operators.

In each case, elimination of the gyrator resulted in the inclusion of a

perfect transformer in the V operator synthesis. In this chapter, the

emphasis is changed and it is shown that any prf driving point impe-

dance may be realized by a series of cascaded network sections termina-

ted in a realizable impedance of reduced rank, where each networic sec-

tion is reactive and contains one gyrator but no transformer.

In the second part of this chapter, the Darlington split even

part and the Miyata synthesis procedures are reviewed. These proce-

dures are then discussed in terms of the V operator and it is shown

that each procedure may be considered as the synthesis of the V opera-

tor distributed in a prescribed way, with Foster-type expansions neces-

sary in the Darlington split even part procedure and Cauer-type expan-

&ions required in the Miyata procedure. Lastly, the Bott-Duffin net-

work is shown to result from a synthesis of the rank 2 distributed

V operator.

-121-
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5.2 Synthesis of Impedance Operators in Cascade

Consider the three impedance operators defined by eqs. (4-1),

(4-2) and (4-3). These equations are repeated below.

Ii a + sZ b

v1 - (5-1)
a +

a

b + sClb (5-2)
b +- ai1qb

V3 = a (53)

Z may be represented in terms of these operators as

Z - VVV 3C3  (5-4)

It is desired to synthesize Z in terms of a rank 2 and a rank 4

V operator terminated in C3. Such a synthesis may be accomplished

in two ways in eq. (5-4); either V and V2 or V2 and V3 may be

combined into a rank 4 V operator.* The combinations are

*The combination of V1 and V is prohibited since neither VI and
V2 nor V2 and V3 are comuttive in general.
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ab + s(bZ + al b ) + . 2  a
a arb) Cb (5-5)b~ a 2Clb

+ 2 CIbbc + s(c~lh+bC2 c ) + (v~v3 - ..... (5-6)
2b 2c) Cl

bc +. c 2~+~L b z

Z may now be synthesized using either eqs. (5-1) and (5-6) or eqs.

(5-3) and (5-5). Using the former two equations requires that a

be positive real while b and c may be complex conjugates with non-

negative real parts. The latter two equations require c to be posi--

tive real while a and b may be complex conjugates with non-negative

real parts. As pointed out in Section 4.3, if Z is of rank 6, 10,

14 .... , then num Ev Z contains at least one positive real root.

For such impedances, the arbitrary ccnstants may be chosen so that

C3 is reduced in rank by six while still insuring that both V opera-

tors are prf. For impedances of rank 4, 8, 12 .... , the arbitrary

constants may be chosen to reduce the rank of C3 by four with both

V operators prf.

The n-type syntheses of the rank 2 and rank 4 V operators have

been developed in Sections 3.2 and 3.7, respectively and will be

used here. The synthesis of Z using eqs. (5-5) and (5-5) appears

in Fig. (5-1) while that for eqs. (5-1) and (5-6) appears in Fig.

(5-2). In Figs. (5-1) and (5-2),
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D +, a57
za Clb (7

E c b (5-8)
?lb + 2 c

Lb~c

D CCc5

2c.~c

Fig. (5-2) Cascade Operator Synthesis Using Eqs. (5-i) $(5-5)

z 4
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The first section in Fig. (5-1) realizes a quadruplet of com-

plex even part zeros whereas the second section realizes a pair of

real even part zeros. These realizations are ceversed in Fig. (5-2).

5.5 A General Cascade Synthesis Procedure not Requiring Transformers

Theorem L

Any prf driving point impedance function may be realized by

a series of cascaded network sections terminated in a realizable

impedance of reduced rank without the use of transformers.

The networks of Figs. (5-1) and (5-2) each contain one trans-

former. Consider the transformer in Fig. (5-1). It becomes an

inductor if Za -- b' ie if V1 and V2 are comutative. This con-

straint was investigated in Appendix III, where it was shown that

it is often, but not always, possible to choose the arbitrary con-

stants such that the condition Za - Clb is satisfied.

Consider next the transformer in Fig. (5-2). In order that

it reduce to an inductor it is necessary thatI
C2c - (5-9)

It is shown in the following development that it is always possible

to choose a positive real value of a such that eq. (5-9) is satis-

fied with b and c remaining arbitrary complex conjugates with non-

negative real parts. Thus, by sacrificing one of the constants, a,

it is possible to achieve a cascade synthesis without transformers

in which the termination (C.) is four less in rank than Z.
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Using eq. (4-2), eq. (5-9) takes the form

C2c bCic - cC-

b bClb - cCc)

or

(b + c)(Clb l ic)" 0 (5-li)

Eq. (5-11) gives three alternative conditions similar to those in

eq. (A-35) in Appendix III, namely

c = +b and Cb=0

c -- b andEvClb °  (5-12)

b - C c (ie CIb and Cic real and equal)

The first two conditions are discarded since they restrict b and

c to be either both real or both imaginary. The third condition,

using eq. (4-1), requires that

a b - bKa  aZc - cZaaZ -'b K aZ - cz (5-15)

a -

Solving eq. (5-13) for Za gives

2 (a 2 _ bc)(Z c - Zb)
Za + Za a(b - c) Zc 0 (5-14)

*CIb is the derivative of C1 with respect to a evaluated at a - b.
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(a2  hc)(, - Z) (a 2 - bc) (Zb - Zc)
a bc) 2Z__ 2 + ZbZc

a =.. a(b -77 - 4a (b - c)b

(5-15)

Thus the problem reduces to finding whether a positive real value

of a always exists such that eq. (5-15) is satisfied with b and c

remaining arbitrary.

J Define the following,

b - x + jy, c - x -jy
(5-16)

Zb  u -+ jv, Z u - jv

where, as in the discussion in Appendix V, x and u are always posi-

tive and y may always be chosen positive. Then v may be either

SI positive or negative.

For large values of a, eq. (5-15) can be put in the form

a(Zb - Zc) v
-7-- CT u a - (5-17)

For small values of a, eq. (5-15) becomes, using the first

two terms of L binorial expansion to represent the radical,

Z- - Z 2a(b - c)ZbZc

(w-18)

which reduces to
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Z 2aCb - c)ZbZc 2 + 2 (5-19)1 a "bc( b  Zc7 v 2 2 -9

Let Z be expressed in general fom by~a

a 4 aa+ 2a + .... ana"- ma°2a (5-2.0)
a b + ba + b2a + .... bn a n

and require that none of the coefficients vanish.

For large a, Za in eq. (5-20) approaches the value an/b n

while, for small a, it approaches a0/b0 . Each of these ratios

is finite and non-zero if Z has no pole or zero at the origin or

infinity. Therefore Za in eq. (5-17) is greater than an/b n as

a--oo and less than a0 /b 0 as a- o. Since both expressions for

Za are continuous functions of a, their curves must cross at least

once and yield a value of a which satisfies each equation and

permits the transformer in Fig. (5-2) to be replaced by an inductor.

The resulting network is shown in Fig. (5-3).' By choosing b and

c such that Ev Z Ev Zc  3
,  3 is four less in rank than Z.

This network, in essence, was derived by Fialkow and Gerst
using a different procedure1 1 and hence it will be called the
Fialkow-Gerat network.
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+ Z a h + c b

z!F ib
aZ

a! T bcClb

____ ___ ____ __ b+c)s

Fig. (5-3) Elimination of the Transformer from Fig. (5-2)
(the ?Fialkow-Gerst Network)

Figs. (5-1), (5-2) and (5-3) all represent n-type syntheses.

Consider now the possibility of an m-type synthesis of V2V3 in eq.

T- (5-6),. Normally this would require loaded gyrator networks similar

1. to those in Figs. (3-14) and (3-15). But if a is chosen such that

C2c -Cib , the network section of Fig. (A-2) in Appendix III results.

Then the complete syntheses 6f Z is as shown in Fig. (5-4).

q b(b~c ) s  Cib(b -c ) 2

bc T

Fig. (5-4) m-Type Transformerless Synthesis of Eq. (5-6)
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The syntheses in Figs. (5-3) and (5-4) are perfectly general

and the rank of the terminating impedance may always be reduced by

four.

5.4 Cascaded Operator Examples

The preceding principles are illustrated by considering the

following driving point impedance function.

3 4a +L- s2 + 2s + 4

S 2 44
s +4s +-s +2

3

where

num Ev Z s (2- s2)(4 + 4)

Solution A

Since Z is of rank 6, the arbitrary constants may be chosen

to reduce the rank of the termination by six. Then, to develop

the network of Fig. (5-2) require, that

a-V , b-l+j, c -lj, Za 55

It follows that

V 1 "  , numEvV-1 2-s

r2+r
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1 5T 2 29

_ S__ 8z 4 6

Note that CI is two less in rank than Z since a was chosen to make

Ev Z -O. Further calculations yielda

36 1- 3-1 C..
Clb~ 5~ 9 icS'29} b 2

From these results, V2V3 and C may be found as

22 + 6fs + s + 24

(s % +e)C 1 - ...
5 2)

S2 +2 29 2

C5 is six less in rank than Z since b and c were chosenso that

Ev Zb EvZ - 0. V2V3 may now be synthesized directly by the

n-type procedure. The entire synthesis of Z appears in Fig.

(5-5).
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+ 12

5 8

112

Fig. (5-5) Synthesis which Reduces Rank by 6

Solution B

The constant a is now chosen to eliminate the transformer

in Fig. (5-5). The constants b and c remain the same so that

is four less in rank than Z. For this case,

8Z 2 u 8- 2
Zb 1717

and thus eq. (5-15) becomes

2 a
2, /a 64a2 + 4

a 17a

Also 3 14 2
a + a + 2a + 4

ZaM 44
a + 4a + a+ 2

The approximate solution to these tvo equations is

11
a Os 'r Za -~ .872



I
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Then V1 and C1 become

VI 5.5 + .872s -EvV,5
2  2

55 + .-"-s

-. 872s + 2.78s2 + 2.43s + 4.13
€i 1.15s + 6.16s2 + 14.2s + 1.96

Note that CI is the same rank as Z since a was not chosen to make

Ev Za 0 0. Further calculations yield

Clb " Cic - C20 .3'

2
2 ,676s+2 , nu Ev V 2V 4 + 4

a + 5.92s + 2

.872s + 2
C3 "1.15s +l

The complete synthesis appears in Fig. (5-6), where V2V3 has been

synthesized using the n-type procedure and C3 is four less in rank

i than Z.

4.78

Fig. (ransformerless Synthesis
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Solution C

The m-type synthesis of V2V3 may be obtained directly since

the required value of a is the same as that in Solution B. Both

C3 and V2V3 are scaled so that

2
V2Y M 114 2 .676B + .228

a + .676s + 2

C_ .872s + 2

b 2 . S1319 " .114

The entire synthesis appears in Fig. (5-7).

87 + .34

.06

Z Eiz

4.8
j _ ... 8.34e. .04s .09

Fig. (5-) m-Type Transformerless Synthesis

5.5 Even Part St-thesis Procedures

It is well known that a prf driving point impedance is deter-

mined by its even part within an arbitrary reactance function.

Utilizing this fact, a number of synthesis procedures have been
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developed in which the even part is split into two or more parts

and each part is synthesized separately. The Darlington synthesis

14 13
of a split even part and the Miyata synthesis are two such

procedures. The first method permits a synthesis without gyrators,

the second without gyrators or transformers, in return for which

the number of elements is increased and the cascade nature of the

synthesis is lost.

These two methods are now briefly reviewed, after which it

is shown that each may interpreted as the synthesis of the impe-

dance operator V distributed in a prescribed way.

A. Darlington Synthesis of a Split Even Part 1 4

Let Z be given by

aI nn an + an_isan-l + ,.a ao

. . . . .. ... . . (5-21)
m2  n 2  bn n n bln-1 a + .... bo

where
mim2 -n 1n

Ev Z - 2- 2 - (5-22)
m2 -n 2

Assume for the moment that num Ev Z is a perfect square so

that a reciprocal Darlington synthesis -is possible. Also assume

that only eq. (5-22) is given. Then, since m2 and n2 are known,

Z12 can be obtained directly. Also Z2. is foumd from m2 /n 2 , since

the n-type Darlington procedure is applicable in this case.

*Z does not have a pole or zero at s o.
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Ii Since the residue condition is satisfied with the equal sign at

all Jo axis poles (the degree of n is not greater than n2 ), the

components of ZII may be obtained from those of Z1 2 and Z22.

Thus the entire synthesis of Z is accomplished using only the even

part of Z.

Now let the even part of Z be expressed as

2n n-2
An( - s ) A .... Ao

Ev Z - 2 2 (5-23)
m 2 - n 2

I or
(_a2 2 n-2AA (-) An_2(-s ) A

Ev Z - 2 2 + 2 2 + 7--7
m 2 - n2  m 2 - n2  m2 - n 2

(5-24)

If the coefficients in eq. (5-24) are all positive then each

term on the right is positive everywhere on the JO axis. Further-

more all denominators are identical, equal to that of Z, and hence

are Hurwitz polynomials. Thus each term on the right hyand sidi

of eq. (5-24) is the even part of a realizable, minimum reactance

impedance. The sum of these impedances is Z.

The Darlington synthesis of a split even part may be con-

sidered in another manner. Let the driving point impedance func-

tion be given by

2
a 2+ as +ao
s b(5-25)
a +*bin +b
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s4 -l -

Ev z 1 1 0 b 0  0 0 (5-26)2 + b2 b 2

V Assume the nunerator coefficient in the parentheses is posi-

tive, a necessary condition for the split even part procedure to

be applicable. Lev Z in eq. ( =) be 4--etten a

b a : b ao2 + 1 E s (a1 -0 b1 0 )s ao0 +-S-10

Z 1 1 + +
2 2

a + bS a b s blS + b s + bS +b

(5-27)

z 4  + z2  + zo

Computing the numerators of the even parts of Z4, Z2 and Z° gives

values identical with those in the numerator of eq. (5-26).

num Ev Z4 = a

num Ev Z2 . - (alb, - a° - b)s 2  (5-s)

num Ev Z - a b0 00o

In general, if Ev Z is given by eq. (5-24) with all coeffi-

cients positive, then Z may be written as

Nn(S) Nn. 2 (s) No(s)

z- - +Z - .... -
Z m 2  + n2 +"2 + 2 + .M 2  + 2 (5sw )

Zn +Zn-2 +o00

!,z
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where each term on the right is prf. Thus, in general, the

Darlington synthesis of a split even part may be considered as

the synthesis of the parts of Z, distributed in such a way that

2qnum Ev Z - A (-2 ) (q - 0,2,4 ... n). This concept of synthe-q q
sizing the distributed Z is useful in the impedance operator dis-

cussion to follow.

B. Miyata Synthesis

The chief di-sadvantage of the previous procedure is that

perfect transformers are often required. The Miyata procedure

avoids their use, Again consider Z in eq. (5-21) and its even

part given by eq. (5-22). If a - O, ie Z has a zero at the origin,
0

21then A -0 ar numEv Z has the factor - s2 . Thus Y-1has a pole

at the origin which can be removed as a shunt inductance L. Re-

moving this pole from the reciprocal of eq. (5-21) gives

m2 + n2 1 _1_(n2 _AD _(1_2

(5-31)
mn" 2 " nfl2

- Ev Y (5-32)EvYI 2' 2
ml n,

-s

The denoxinator of eq. (5-32) has no zero at the origin. Its

nerator may be expressed as



num Ev Yl" num Ev Z (5-33)
1 -s

If A is also zero, then the constant term in the numerator of YI

is zero and Y has a zero at origin. Hence ZI has a pole there11
V! which may be removed as a series capacitance. if num Ev Z has its

last k terms missing, k reactive elements may be removed from Z in

this fashion.

In a similar marner, if a n O, thenA -0 and Z has a zeron n

at infinity. This can be removed as a shunt capacitance. If the

first I terms of num Ev Z are missing, A reactive elements may be

removed. If k + I - n, which implias that num Ev Z has zeros only

at the origin and infinity, Z is synthesized by n reactive elements

and a resistive termination.

The Miyata synthesis procedure utilizes the above properties.

Consider the individual parts of Ev Z as given in eq. (5-24). For

each part, k + I = n and thus each part may be realized by n reac-

tive elements and a resistance, assuming all the numerator coef-

ficients are positive. However this process would be computation-

ally laborious were it not for the fact that a prototype impedance

can be found and all other impedances computed from it. The pro-

totype is defined by its even part as

EvZ p 2" 2 (5-54)
i 2 -n
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Zp is now obtained (using the ewertz procedure., for example) and

the numerator of each even part term is multiplied by Zp. The

resulting expressions are not in general prf, but their even parts

are always positive on the jw axis. Each expression is "divided

out" until the order of its numerator no longer exceeds that of

its denominator. The result is the sum, of an odd polynomial in s

(whose even part is zero) plus a rational function of s. Each

rational function so obtained has the same denominator (that of

Z) and an even part identical with the portion of the even part

of Z from which it was derived. Thus it is the desired impedance.

Each such impedance may now be synthesized by n reactive and one

resistive element and the resulting networks added in series to

give Z.

The Miyata procedure may also be int.erpreted in terms of a

distributed Z rather than a split even part of Z. Consider Z4 in

eq. (5-2?). The numerator of its even part is a4 . Thus for Z4 ,

A and A2 are missing in eq. (5-24). This neans that two reactive

elements may be removed from Z4 and Z4 may be expanded into the

following form

Z 1 (5-35)

s b
blS

Thus a sunt inductor (i)and a series capacitor ( i.) may bebi bo Jmyb

removed from Z4 leaving a resistive termination (1 or.). The
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process may be repeated for Z2 and Z° and the results added in series

to give the Miyata synthesis of Z.

Eq. (5-35) is a Cauer-type expansion of Z4 whereas the previous

Darlington syntheses are Foster-type expansions. Once again, this

concept of synthesizing the distributed Z is useful in the develop-

ment of Miyata-type networks using the impedance operator. This is

dis cussed subsequently.

5.6 V Operator Split Even Part Synthesis

In this and the following section, the principles of the pre-

vious section are applied to the V operator. It is shown that the

Darlington split even part procedure and the Miyata procedure may

be interpreted as syntheses of the V operator distributed in a

prescribed way.

The im'pedance operator lends itself readily to even part

synthesis largely because of three relations developed in Chapter

II. These relations are eqs. (2-17), (2-48) and (2-50), which are

repeated below in slightly revised form.

nun Ev Z - (nuwr Ev V)(num Ev C) (5-36)

VC - (V1 + V 2 ... Vn)d - + V2C + ... VC (5-57)

num Ev V num Ev V num Ev V2 + ... nwu Ev V (5-58)

Eq. (5-55) points out that the zeros of num Ev Z are split between

num Ev V and num EvC. Thus any of the zeros of num Ev Z which

iV
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appear in num Ev V are absent from num Ev C. This equation also

points out that num Ev V can be split without interfering with the

relationship between num Ev Z and num Ev C. Eqs. (5-57) and (5-38)

are valid only if the denominators of VI, V2 """ Vn are equal or

differ by a positive real constant. The three equations taken

together demonstrate that the Darlington split even part procedure

may be readily applied to the V operator, in-otber words num Ev V

may be split, the individual parts synthesized, C included as the

termination in each synthesis, and the resulting networks assembled

in series to give the desired Z. Eqs. (5-57) and (5-38) point out

that the synthesis may be considered in two ways, either as a

synthesis of the parts of Ev V or as a synthesis of the parts of the

distributed V operator. To further illustrate this latter concept,

let Z in eq. (5-25) represent an impedance operator such that

VC-(2 + a 0)C + als

s+ b°0 + bl1S C

Eq. (5-59) may be distributed in the following way.

C b s + -o +bo- a o
6 C+0 a -0 b a aoC +b 0

VC + 1 +2 1
V + bo +bS s b +blsC s + bo blsC

V4C + v +C + %C
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V4, V2 and V0 may now be synthesized by the Darlington procedure,

the proper terminations added, and the resulting networks placed

in series, assuming, as in eq. (5-25) that the numerator coefficient

V2C 'a positive.

Example 1

Let it be required to synthesize Z given by

(s (2 + 2)C2 + 31 a7

(s + +5C

by synthesizing the distributed V operator and also by synthesizing

the split even part of V. The V operator and its even part are

2 + 7 + 2 4 2

V - , EvV 2 2
a + 3s +5 (s + 3) - 9

The coefficients in num Ev V satisfy the requirements for a slit

even part synthesis. Let V be distributed according to eq. (5-27).

2 22. .+s +
2 a 4 8 + Z 2+ 3

a + 3s + 5 a + 3s +5 a + 3s + 5

=V 4 + V2 + V0

num Ev V s 4 - 2s2 + 6

= num Ev V4 + num Ev V2 + nm Ev V°
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V4 and V are synthesized by the n-type procedure while V2 requires

the m-type procedure. In the cases of V2 and V0, the terminations

are scaled to avoid transformers. The complete synthesis appears

in Fig. (5-8).

s C2

Z2 98 2 9

S -2t

T 3s

z9 2 T
Fig. (5-8) Split Even Part Synthesis of V

The synthesis in Fig. (5-8) may also be achieved by synthe-

sizing the split even part of V given by

sVV 4  +2 - 9s2 9
EvV 2 +9 T 2 T F 2

Rm2 - n 2  m 2 - n 2  m 2 - n 2

2 2
where the y and gscaling factors again permit the synthesis of Z

~without transformers.

5.7 V Operator Miyata-Type Synthesis

The Yiyata procedure also applies in the case of the V

operator, again largely because of the relations in eqs. (5-36)

through (5-38). Alternatively, the V operator may be distributed,

each part expanded into a Cauer network, the appropriate termina-
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tions included, and the resulting networks placed in series. To

further illustrate the latter procedure, consider the Cauer expan-

sion of V4C in eq. (5-40). This is given by

V1
1 4 (5-41)

s b

-1

Note the similarity between eqs. (5-35) and (5-41). The only

difference is that the one-ohm termination in eq. (5-35) is re-

placed by C in eq. (5-41). Stated another way, eq. (5-40) does

not specify the manner in -,hich the individual V operators are to

be synthesized; it merely states that each is to oAerate in a pre-

scribed way on C and the results sumied to give VC.

Example 2

Let it be required to synthesize the Z of examrple 1 through

Cauer expansions of each part of the distributed V operator and

also by applying the Niyata procedure to the split even part of V.

The Cauer expansions of V4 , V2 and V0 are

V4 " 1 1

1

+ +
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1
0V 30 s 1

9 3

When the terminations are included and the syntheses summed, the

netwoirk of Fig. (5-8) results.

The Miyata prototype in this case has an even part given by

Ev V 2 2
p (a + -3) 9a

SynthesizIng Ev V gives

= -a +3s +3

Multiplying the terms in num Ev V from example 1 by Vp gives
Ip

- . 8 . 4(s + 3)
V4+ 9(s2 + Ss + 3)

V -2s 2(s + 3)
V2+ 9(s 2 + 3s + 3)

6(s + 3)

V°+ 9( +Ss + 3) o

V4+ and V., are non-prf. The even parts of V4+ V2,+ and V0+ are
V nV r4
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equal to those of V4, V2 and V0 , respectively.

Dividing out V4 + and V2 + until the numerator degrees do not exceed

those of the denominator yields

3 2ss a + S + s, - - v4V4+ = _ + 3S+ +V

SV2+ a 2a + 3 " " + V2

s +3s+3

The reactive elements may now be removed from V4 , V2 and V, again

yielding the network of Fig. (5-8).

5.8 The Bott-Duffin Network from the Distributed V Operator

The Bott-Duffin network may be shown to result from a parti-

cular distribution of the rank 2 V operator developed in Chapter

III. To show this relationship, let Z,as given by eq. (3-1),be

rewritten as 

ClaZa ra + s Za

C1- (5-42)
a r s

Za

*The networks resulting from the split even part Darlington and

iyata procedures are not always identical as in Examples 1 and
2, since it is not always possible to achieve a split even part
Darlington synthesis without transformers, especially for impe-
dances of rank greater than four.
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or a

1 z a(5-43)
a +s C-b a

If the pertinent driving point impedance is considered to be Z/Za
aa

and the termination is defined as ZI -I/Zas the Bott-Duffin V

operator is

a + s (5-44)VBD a

Let eq. (5-44) be distributed to give

a s

D - a+s + a +s(5-45)D a +S a +s

where

EVVMBaD (5-46)
VBD 2a -S a -s

The requirement of positive coefficients is satisfied and

thus the first and second parts of V ray be synthesized by the

n - and m-type Darlington procedures, respectively. The result is

the network of Fig. (5-9), which is the non-cascade representation

of the Bott-Duffin network. 6  The positive real constant a is

arbitrary and may be chosen so that Z,, given by

aZ - sZa
Z a - (5-47)
aZa 3 Z



-149-

has a jo axis zero or pole at the point where the even part of Z

is zero,according to the Bott-Duffin procedure.a Z
jj a

L' Z/Za

Fig. (5-9) Bott-Duffin Network

Guillemin7 also has an alternate method of obtaining the

Bott-Duffin result* which is now reviewed so as to compare it with

the distributed operator procedure. Let Z,given by eq. (1-1) and

here assumed to be a minimwn resistance function, be augmented by

the polynomial a + a to yield

(mi + n 1 )(S + a) (am, + snl) + (an, + sm,) YI,+N,

(m2 + n2)(s + a) (am2 + n2) + (an2 + M 2 +N2

(5-47)

The even part of Z is given by

(m nln)(a 2
Ev Z (5______48)_____

2 N2
*The method is actually a special application of a general proce-

dure for extending the Miyata synthesis procedure. In the general
procedure the polynomial s + a is replaced by mo + no



Eq. (5-48) may be separated to give

a2(m 2  n1n2) + a(mlm2 " nn 2) (5-49)Ev Z -_ _ _ _ _ _ _ _ _

M2 N2MZ N
2  2 2 2M - 2 M2 -N2

The polynomial a + a is now specified to fulfill the condition

that M. vanish at the point s a J ° where the even part of Z is zero.

It follows that N also vanishes a-t a a since - vanishesNI  J %ml m2  n ln2

there.

Each term in eq. (5-49) represents the even part of a prf

impedance. These impedances may be found from their even parts.

Since (mlm2 - n1 n2 ) is a factor of both M2 and NI, the first impe-

dance in eq. (5-49) has jo axis zeros at s - oo and at s - J.o and the

second impedance has J axis zeros at s - 0 and at a - jo . These
0

zeros may be removed from each impedance.

The impedance operator approach utilizes the synthesis of the

distributed V operator (with its built-in surplus factor) to achieve

the Bott-Duffin network whereas, in the Guillemin approach, Z is

augmented by the auxiliary polynomial at the outset and a split-

even part synthesis is used. Both methods employ the constant a

to create a finite jo axis zero or pole in the two resulting impe-

dances.

*If this requirement yields a negative a, then M1 can be required

to vanish at a j J o"



CHAPTER VI

St?4'ARY, ODNCLUSIONS, FUTURE INVESTIGATION

6.1 Introduction

The final chapter consists of two parts. In the first portion,

a summary of the results of the previous chapters is presented and

conclusions are drawn therefrom. The summary is two-fold. rirst the

overall contribution of the thesis in terms of the development of the

j impedance operator concept and its application to network synthesis is

discussed. Secondly, a summary of the specific contributions result-

ing from a consideration of the properties of the various impedance

operators and their network realizations is presented.

The second portion of the chapter deals with possible further

applications of the impedance operator approach to network analysis

and synthesis. Special emphasis is given to the distributed impedance

operator and the possibility of achieving syntheses which do not in-

clude gyrators or transformers by relaxing the requirement of a single

termination.

6.2 Overall Contribution

In Section 1.1 it was stated that the purpose of ths thesis

was to develop a general, systematic, flexible and easily applied

approach to driving point impedance synthesis using the concept of

the impedance operator. This purpose has been achieved in the pre-
vious five chapters. The impedance operator approach is, general in

-151-
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that it is applicable for any configuration of even part zeros and

therefore permits the synthesis of any prf driving point impedance

-through its use. It is systentatic in that the same basic operations

are required no matter what the rank of the driving point impedance

or the type of cascade realization desired. The method is flexible

because of the arbitrary constants incorporated in each impedance

operator and the terminating impedances. These constants permit

considerable latitude in the network structures which realize a given

driving point impedance. The method is easy to apply, in that the

required computations for a given driving point impedance are straight-

forward and involve only a reasonable amount of algebra.

It has been shown that the synthesis procedures of Brune,

Darlington, Miyata and Bott-Duffin readily lend themselves to the

impedance operator approach. The Brune procedure results from a

specific synthesis of the rank 4 impedance operator in Section 3.4.

In Sections 5.6 and 5.7, it is shown that the split even part

Darlington and Miyata procedures may be conmidered as syntheses of

the distributed impedance operator in conjunction with Poster and

Cauer expansions, respectively. The Bott-Duffin network is shown to

result from a particular distribution of the rank 2 impedance

operator in Section 5.8.

From the impedance operator approach, three cascade synthesis

procedures have been developed. These are the procedures of Sec-

tions 3.5, 3.1D and 5.3. The procedure of Section 3.5 is an exten-

sion of the Bott-Duffin procedure and is a specific contribution of
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this thesis. It differs from the usual Bott-Duffin procedure in

that tvx applications of Richards' Theorem are employed rather than

one. The extended procedure perrits realizations of the for of

Fig. (5-11) which do not occur in the usual Bott-Duffin synthesis pro-

cedures. The procedure of Section 3.10 is a general cascade recipro-

I. cal synthesis procedure applicable to any prf driving point impedance.

As pointed out in the footnote to Section 3..0, this synthesis proce-

dure is new but the philosophy behind it is that of Guillemin as

described in Section 1.9. The procedure of Section 5.3 permits any

prf driving point impedance to be realized by a non-reciprocal cas-

J cade synthesis procedure which does not require mutual coupling.

Again the procedure is new but one of the resulting networks has been

obtained by Fialkow and Gerst by a different method, as mentioned in

Section 5.3.

6.3 Specific Contributions

In addition to the overall contribution summarized above, there

are a nunber of specific contributions which are dispersed throughout

the thesis. The more important of these will now be summarized in

¥.1 the order of their occurrence.

A. A general non-reciprocal Darlington synthesis procedure appli-

cable to any prf driving point impedance (Theorem R) has been devel-

oped in Section 1.5 and applied to impedances of rank 2, 4 and 6 in

Sections 1.6 and 1.7 using the network sections of Figs. (1-2) and

4,14(1-5). The results in Section 1.6 are not original I whereas
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those in Section 1.7 are. The procedure is a non-cascade type since

all of the even part zeros are realized in one "box" rather than in

cascaded "boxes" as in Fig. (I-II). The realization is always in the

form of a lossless (generally non-reciprocal) network terminated in a

pure resistance.

B. Tho extended residue condition of eq. (1-25) and the fact that

the two extended residue conditions of eqs. (1-25) and (1-21) are

eq, dvalent (Theorem C in Section 1.4) are specific contributions of

this thesis. The extended residue condition of eq. (1-27) is not. 2 '1 4

Eq. (1-27) permits realizations in terms of the capacitive structure

of Fig. (1-5) whereas eq. (1-25) applies when the inductive structure

of Fig. 1-2 is desired.

C. The associative, commutative and distributed laws have been

applied to the impedance operator in Chapter II. The operator is

shown to always obey the associative law through Theorem D in Sec-

tion 2.3; it is shown to obey the commutative law only if the condi-

tions of Theorem G in Section 2.7 are satisfied; and it is shown to

obey the distributive law only if the conditions of Theorem H in Sec-

tion 2.8 are satisfied.

D. Two important theorems concerning the even parts of a series of

impedance operators are developed in Chapter II. These are Theorem

E in Section 2.4, which relates the even part numerators of a series

of cascaded impedance operators, and Theorem I in Section 2.8, which

relates the even part numerators of a distributed impedance operator.

The former has been used extensively in the development of impedance
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operator cascade syntheses throughout the thesis while the latter

has been applied in the distributed impedance syntheses in Chapter V.

E. The pseudo-commutative property of the impedance operator dia-

cussed in Section 2.7 is included here because it permits resistance

to be included in the removed network section. This property merits

further study and thus is also included in the discussion of proposed

future investigations later in the chapter.

F. The representation of the basic impedance operator relations in

matrix form has been presented in Section 2.9. No immediate advan-

tage of these matrix forms has been found (other than their concise-

ness) but it is very possible that they could be of value in the

development of two-port synthesis procedures using the impedance

operator approach.

0. The non-reciprocal network sections of Figs. (3-7), (3-8) and

(3-16) (similar to the Brune section and the Darlington C and D sec-

tions) merit inclusion here, not because they are new sections, but

rather because they have been arrived at in a new way, contain .-abi-

trary constants and can always be obtained through the elimination

of gyrators from other network sections. These points have been dis-

cussed in detail in Chapter III.

H. The non-reciprocal network sections of Figs. (4-1a) and (4-1b)

are of interest largely because of the fact that they realize six

even part zeros (generally two real and four complex).

I. In the discussion of the rank 6 impedance operator in Section

4.2 (Theorem K), it was shown that a permutation of the three arbi-



I

-156-

trary constants in no way changed the impedance operator or the ter-

minating impedance, C.. Thus Theorem K permits the "middle constant",

b, to be positive real while a and c are complex conjugates with a

non-negative real part. No application of this result has as yet been

fol"d.

6.4 Future Investigation

... A- ,Distribiited fOperators .

In Section 5.8, the rank 2 V operator of eq. (3-2) was changed

slightly in form and distributed into two parts. The resulting

synthesis yielded the Bott-Duffin network of Fig. (5-9).

No other specific distributed operator syntheses have been

developed in this thesis and thus there is a considerable amount of

work still to be done in this area.

'To illustrate a possible course for future study of the dis-

tributed impedance operator, consider the rank 4 V operator given by

eq. (3-13), which is repeated below.

ab + s(bZa + aC ) + 2Za

aV Cb (6-1)

Sa ?.b) a a

Its even part may be split as follow:

a~2 a +b2s s4

E v a b -2 (6-2)

I2 '2 2 to 2 a 2

In order to achieve a Darlington split even part or a M'iyata synthesis
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of eq. (6-2), it is necessary that all nizerator coefficients be posi-

4
tive. The quantity a 2 b is always positive and the s coefficient is

2 2
unity. The quantity a + b may or may not be positive, depending on

the values of a and b. It is positive if

Re a > Irm aI* (6-5)

It is always possible to choose a (and therefore b) so that eq. (6-3)

is satisfied but, in so doing, it may not be possible to make Ev Za-

Ev Zb . 0 so as to reduce the rank of the terminating impedance

through zero cancellation synthesis. Thus a constraint is imposed on

the synthesis of eq. (6-2) by eq. (6-4).

Following the pattern of Section 5.6 and eq. (5-40), the syn-

thesis of eq. (6-2) may also be interpreted as the synthesis of V

distributed in the following way.

Za .s2 +a b ~ ab Clb a Z , Clb-,

V ____ _ a irb )]a
V "2 + 22 + 2 ' 2 + '2

V4  + V2  + V0  (6-4)

A similar constraint is given by Guillemin for driving point impe-
dances of all ranks to the effect that all even part nw"erator
coefficients are positive if the even part zeros of the given impe-
dance do not lie within 450 of the Ja axis.
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where D b as eq. (3-53) and

num Ev V4 - a

num Ev V2 - - (a2 + b2)s2  (6-5)

num Ev V  - a% 2

Eqs. (6-2), (6-5) and (6-4) raise several questions regarding

distributed operator synthesis procedures which should be investi-

gated.

1) Is it desirable to distribute the impedance operator in ways

other than that of eq. (6-4) (where only one powr of s appears in

Ev V4' Ev V2 and Ev Vo). Are there other distributions of V which

will always permit syntheses without transformers and/or gyrators or

will allow a reduction in the number of elements riquired in a given

synthesis?*

This latter question has been discussed by Kuh 18 with regard to

splitting the even part of a driving point impedance function. Kuh's

procedure splits the even part of Z into only two parts. Then

reactive elements are removed from each of these parts leaving ter-

minating impedances of reduced rank. The process is repeated on

these terminations.

*It has been suggested by Darlington 20 that a useful approach would
be to try to develop a synthesis without transformers and with no
more than k rednant eleents.
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Possible application of Kuh's procedure to the impedance opera-

tor should be investigated. Furtheniore, other even part separation*,

in which more than one power of a appears in each of the parts of the

even part numerator, should be studied.

2) Is there any advantage to be gained by distributing the rank 8

impedance operator of eq. (4-6) with its three arbitrar7 constants?

Is it possible to choose one of the arbitrary constants to simplify

the distributed operator synthesis while retaining the other two con-

stants for rank reduction of the terminating impedance? Is it pos-

sible to, choose one or more of the arbitrary constants so as to signi-

ficantly reduce the number of elements required in the synthesis of

the distributed operator?

3) In eqs. (5-1), (5-2) and (5-3), three specific impedance opera-

tors were presented. These operators were then cascaded in various

ways to achieve several cascaded operator syntheses, two of which did

not require transformers. The question arises as to whether it might

not be possible and desirable to develop syntheses in which one or

-more of these three operators is distributed. Could a synthesis pro-

cedure be developed which requires neither gyrators nor transformers,

perhaps again through proper choice of one or more of the arbitrary

constants?

4) All of the distributed operator syntheses suggested by items 1,

2 and 5 above should also be investigated from the Yiyata synthesis

point of view, in which Cauer, rather than Fostez) expansions are used.

It is again entirely possible that syntheses which do not require
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transformers or gyrators may be achieved, although in this case

undoubtedly at the expense of an additional number of elements.

B. Driving Point Impedances of Odd Rank

Throughout this thesis, driving point impedances of even rank

have been considered. It has been assumed that, if impedances of

odd rank were encountered, the poles and zeros at the origin and

infinity could be removed prior to the application of the impe-

dance operator approach. The question arises as to whether it is

always desirable to remove such poles and zeros at the outset from

a driving point impedance function. Consider, as a first example,

the discussion in Appendix V. There it was shown that it is often,

but not aliays, possible to choose the constant, c, with a and b

remaining arbitrary, so as to achieve the syntheses of Figs. (4-4)

and (4-5). The lack of generality in Appendix V results from the

fact that Z was assumed finite and non-zero at both the origin and

infinity. Suppose, for example, that Z has a zero at both the

origin and infinity. Then it is always possible to find a positive

real value for c such that the synthesis of Fig. (4-4) is guaranteed

when v is positive and the synthesis of Fig. (4-5) when v is nega-

tive.

As a second example, consider the discussion in Appendix III.

There it was shown also that it is often, but not always possible,

to choose the constants a and b so as to achieve the transformerless

syntheses of Figs. (A-1) and (A-2). Suppose that Z in eq. (A-35) has



-161-

a pole at a - oo. Then the numerator of Z will contain a term

n+l
an+ l and therefore eq., (A-36) will also contain this term (and

its coefficient is always positive)e Thus, employing the reasoning

following eq. (A-S6), it is always possible to find two suitable

roots of eq. (A-36) except in the case where the first coefficient

yields the minimum value of a. Thus the presence of the pole at

infinity eliminates one-half of the exceptional cases of eq. (A-36).

As a third example, consider the network section of Fig. (6-1).

Its Z parameters are

31 Y +Y

zKj. Zl yy 5 +

o. - 1 (6-6)
- 1

SFig. (6-1) 5-Kqs
I-

12

Let YI " sC and 13 " l Then eq. (6-6) becomes

K2  sK2 CL

Y,,

m~ +2-z

F K- (6-7)
1s(K C L)

- - L-- KLz2 2 ") C L

21 s( K C + L) K C + L

12
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The resulting network appears in Fig. (6-2a). Now consider the net-

work of Fig. (6-2b). By inspection, its Z parameters are given by

eq. (6-7) and thus the networks of Figs. (6-2a) and (6-2b) are equi-

valent.
S sL KC KL

2 I 2

Ki C I KKC+
22

I I

s(K2C L)

(a) (b)

Fig. (6-2) Equivalent Networks

The network section to the right of the dotted line in Fig.

(6-2b) is a familiar one, being identical in form to that of Fig.

(3-2), which was obtained from the n-type synthesis of the rank 2 V

operator of eq. (3-2). Thus the two parts of Fig. (6-2) suggest two

options in the synthesis of a driving point impedance of odd rank

which has a pole at infinity. Either the pole can be removed first

and the synthesis leading to Fig. (3-2) employed or the impedance

can be synthesized directly without removing the pole leading to the

network of Fig. (6-2a). To handle other types of impedances of odd

rank, I and Y can be selected differently than in eq. (6-7).Y,
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The three above examples show a need for a further investi-

gation of the impedance operator approach as applied to driving point

impedances of odd rank.

C. Equivalent Networks

ii The impedance operator approach, because of the fact that the

basic operation of eq. (2-1) may be applied as many times as desired

in a givn synthesis and because an additional arbitrary constant (s)

is included with each basic operation, can yield many equivalent

realizations for the sane driving point impedance function. This

has been illustrated throughout the thesis, notably in Chapters III

and IV and in item B of Section 6.4. It has also been pointed out in

Section 1.9 that equivalent realizations can sometimes be obtained in

the form of bridged T, twin T, or lattices structures. 7  These results

indicate the desirability of making a study of the use of the impe-

dance operator approach in obtaining equivalent networks.

D. Four-Terminal Network Synthesis

This thesis has almost entirely concerned itself with the pro-

blem of driving point imped&nce synthesis. The use of the impedance

operator in transfer impedance synthesis and in the synthesis of two

terminal pair networks has not been discussed. Thus, the following

questions may be raised.

1) Can the impedance operator approach be used with profit in

synthesizing a prescribed Z12 in, say, a filter design problem? Does

the impedance operator, with its arbitrary constants, provide a flexi-

i
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bility in such design problems not possessed by existing synthesis

procedures?

2) Can a general method be devised, using the impedance operator

approach, for the realization of a network whose four-terminal im-

mittance parameters are specified. Do the matrix forms developed

in Section 2.9 offer any advantage in the solution of this problem?

E. Pseudo-Commutative Property

The pseudo-commutative property of the V operator is discussed

in Section 2.7. This property is especially interesting because it

permits resistance to be included in the impedance operator. As

pointed out in that section, no study has been made of methods by

which a given driving point impedance might be separated to obtain

,V and T2 or V and Yl. Such a study should be undertaken.

One example in which the separation is straightforward is

afforded by refering to eqs. (3-1) and (3-2) and comparing the net-

work of Fig. (3-2) with those of Fig. (2-6). In Fig. (2-6), let

r aZa
Y1 " "a- "2 01' K -z a (-)

Then the netvo2*s of ig. (2-6) become those of Fig. (6-3). Fig.

(6-5a) is identical with Fig. (3-2) and Fig. (6-2b) illustrates the

pseudo-commutative property in that the termination, CI, which can

*Some significant results have been obtained in regard to this pro-

blem by H. J. Nain and D. Hksomy in unpublished work.
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i -
aZ

Ts

(a) (b)

'Fig. (6-3) Pseudo-Commutative Networks

contain resistance, is now included as a part of the impedance

operator. The equivalence of Figs. (6-3a) and (6.3b) suggests thatI
it may be possible to develop a Darlington-type synthesis procedure

in which resistance can be included in the removed network sections

but which may require a prescribed (perhaps reactive) terminating

impedance. This matter merits further investigation.

I



APPENDIX I

I Proofs of' V Operator Properties

l.A Proof of' Theorem D
m + n3 +n V m5 + n5

m+n V3  (A-i)

Let VI  + n I +n 3 m6 + 6
2 2 4 4

Then. m+n54-n
-m 3 (m5 + ft) + n3 (m6 + n6)

23 " (A-2)

m4 + n64 m + n m+(m6 + n6 ) + n4(m5 + n5 )

4 m + 6 +m~ [(m 5 + n ) + n(

lV' 2V3) + = + n1 6 3+(M 6 n6)j~
m2 + 2 [m (m+ n,) + n(m, + n5)j

(mlm3 + nln)(m + n5 ) - (mln 3 + nlm4)(m6 + n6 ) (A-)

(m2n4 + n2m3 )(m5 + n5) + (m2m4 + n2n3 )(m6 + n6)

In a similar manner,

m + n
z 1 +  n + n m.( +n) + n (M + )

4 1 3_3_1_4_ 4

V1V2 = z+ (A-4).

m2 + n 2 2m4 + n. m2(m 4  ) n)+ n2(m3 + n3)

and'
(vvI =(mi +IL~ (m6 + n6 ) (mln 3 +

(m1-'3 + n-n4) (m60,+( 1% + n -m 4)

(vlv2)V3 ( (m5 +n 5 )
(m274 + n2 n3 ) + (m2n4 + n2m3 ) 5 + n 5

24(in 6  6)

(mfi3 + y~n)(r5 + "5 ) + (mn3 + y 4 )( 6 + n6 )
(m_4 5)l 24_:x,(m+ 5  (A-5)(m24 + n2n3)(m6 + n6 ) + (M2n + nn2m)(m 5 + n5

Theref.ore (VIV2)V3 = VI(V2V3 ) = VlV2V3  (A-6)

-166-
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The result in eq. (A-6) may be extended by mathematical induc-

I. tion to include any number of prf V operators.

1 1.B Proof of Theorem E

Let Vl, Vo, and'V be given by eq. (A-i) and let V be defined
3

by eq. (A-6). Let V also be given by

V = M_ N1 (A-7)
M2 + N2

where Mi nd N1 are the even and odd parts, re'spetively, of the

numerator of V and M and N are likewise for the denominator of V.
2 2

The numerator of the even part of V may be expressed as

num EvV = MIM2 - NN2 (A-S)

and by either eq. (A-3) or eq. (A-5),

num EvV = (mlm3 + nln,)(m 2mi + n2n3)(mYm 6 - n5n6 )

- (mln3 + nm4)(m2n4 + n2m3 )(m5m6 - n5n6)

= (mlm2 - nln2(m 3ni4 - n3n4)(m5m6 - n5n6)

-= (num EvVl)(num EvV2)(num EvV3) (A-9)

The proof can be extended by mathematical induction to include

any nmber of prf V operators.

l.C Restrictions on 2 in Equation (2=311

SI sF() + () + nIs() m + n-o

2 m 2 (a) + G(s) + n2F(s) 2 + n (A-0)

V': Checking V, and V2 i eq. (2-30) gives:

-V2
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n 1n m - m1  (

Y -s n ()- nFs r'(s)(A)
t y(s) - n2F(s) - m2 F(s) + G(s) - Y s)

Thpreforc V,,'a.a n ' are commutative.

The numerator and denominator in eq. (2-31) must each be

Hurwitz for V to be prf. If they are to be Hurwitz, then.2

m F(s) + G(s) m F(s) + G(s)
n1 (S) and 2- s- (A-12)

must be reactance functions. By expanding each term it -follows that

G(s) Gnd G(s) (A-13)
n9(s) n F(s)

must be reactance functions. In addition,

num Ev 2  .0 (A-14)

everywhere on the jco axis. For eq. (A-14) to be satisfied requires

that

(ml, - nln2 ) F(s) + G(s) F(s) (mI + M2) - G2 (s) > 0

(A-15)

everywhere on the jo) axis (and hence in the right half plane).

L.D PRF Nature of V and V

Consider the operator Vx as 7iven by eq. (2-35).

(m1 + K2m2) + (n1 + 2n2 )
Sx (m1 + m 2 ) +(n, 1 +n 2 ) (A-16)

For V to be_, prf, its numerator and denominator must be Hurwitz and

nun EvV > 0 everywhere on the jco axis.

; --

J
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Th6 ratio of the even to odd parts of a Hurwitz polynomial is

a reactance function. Applyin this test to the numerator of Vx

| lives

1 + (A-17)

2Z~ 2LZm1  M_ 2 m2
m2  2

Each of the four terms on the right hand side is a reactance func-

tion. Therefore the numerator of V is Hurwitz and similarly for

the denominator. Checking the even part relationship gives

num v -- (MI + K m2 )(rn1 + 2) - (n, + K2 n2 )(n_ + 2)

= - nn+ K"(m . 2 + (K2 + 1)mm 2 -Yn2),

S""(A-18)

Each of the terms on the right hand side of eq. (A-18) is

I always positive on the JoN axis (and therefore in the right balf

plane). Therefore Vx is prf.

A similar proor shows that V is prf.Y

1.E S rntheses of the Networks of Finue (2-6)

1 Let Z in eq. (2-38) be rewritten as

m +n-- =2 + 2 --
S + (A-19)

!p 2I = '2 +f2 2M + n2 m+Y!" =2 + n 2

L

The form of Z in eq. (A-19) can be matched to that in eq.

(2-5) to yield

i
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m1 + n1
SZl 2 = m+2 = ', (A-20)

z11 = 22=I+ n m I 
+ nl2 2

2 m, + 2 m +n 2  12 z21
m1 To1 oa1 + n

mn2 + n 2

ml + ni
zL = +f1 + K Y +K (A-21)

21 2 2

The network of ?i-,. (2-6a) follows directly.

To obtain the network of Fig~. (2-6b), eq. (2-39) is rewritten

in the form oC eq. (A-19) and the procedure repeated.

I

,
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! LkPI EDIX II

Use of Surplus Factors in the Synthesis of V Operators

h Let Z be given by

Z= (A-23)

Ii n = 4 - a (A-24)

Num EvZ is not a perfect square but can be made so if Z is multiplied

I: Z = (A-25)
~~~(S + 4)(B + 2) (-5

num EvZ = (4- s 2 ) 2  (A-26)

Z may now be synthesized by the customary reciprocal Darlington pro-

cedure with a one-ohm resistive termination.

Now let Z by given by

Z mlnl +  * (A-27)

V = _ (A.28)

s+ /

Following the above pattern, V is multiplied by 2 to yield

V (s + Me + 2) -
2 + 3g+2 (A-29)

1  (s + 4)(s + 2) a2 + 6s + 8

and 2 )+ 2) +  3 a

V2  = # z (A-30)
Vl 2 + 8 + 6s Ci

Eq. (A-30) does not give the same value of Z as eq. (A-27) and there-

'1 .'

I
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fore, in general,* it is not permissible to utilize surplus factors
I!

in the case of the V operator.

!i
! i
1.

1_

SV may always be multiplied by the ratio of two equal even poly-
I

! nauials in s without changing Z.
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APPENDIX III

Simplifications in the Syntheses of Rank 4 Operators

As mentioned in Sections 3.7 and 3.8, it is often, but not

always, possible to simplify the networks of Figs.. (3-13), (3-14),

and (3-15) by proper choice -of the arbitrary constants. These sim-

plifications require that Za = Cib" The ratio Cib/Za may be ob-

tained from eq.. (3-23) and equated to unity, namely

aZb - bZ
z az bZ b =1 (A-31)

, or

(a + b)(Z a - Zb) = 0 (A-32)

Eq. (A-32) gives three alternative conditions.

b =+ a and Z' = 0
a

b = -a and EvZ 0 (A-33)

Za= Zb (i.e. Za and Zb real and equal)

The condition b = + a is not sufficient by itself to make Za = C1b-

From the foonote to eq. (3-16), it is also necessary that Z' = 0.
a

Similarly, the condition b = - a is insufficient. From the footnote

to eq. (3-18), it is also necessary that EvZa 0.

The first condition in eq. (A-33) requires that a and b be

positive real, while the second condition requires them to be imagi-

nary. The first condition cannot always be satisfied (consider the

simple case Z = s). Assuming proper choice of a, the second condi-

tion can always be satisfied but leads to the trivial result of eq.

(3-18). The third condition requires that the equation

-175-

I

L
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Z -a 0 (A-34)

yield two roots of s (Z- Z 0 and ZZ 0) which are positive
ab

real or complex conjugates with non-negative real part. To inves-

tigate when eq. (A-34) is valid, let Z in its most general form be

substituted therein.

la + a s +. a sn
0 n a = 0 (A-35)4n

b + b 1s + .... bbo n

(a0 - boa) + s(aI - bla) + ...... sn(a. - bna) =0

(A-36)

j One of the coefficients in eq. (A-36) will yield a minimum

value of a for which that term and all others are positive. Let a

be chosen to makB that term zero. If the term chosen is an interior

term, the resulting polynomial is non-Hurwitz (an interior term is

missing) and must have at least one zero in the right half plane.

But all the coefficients in eq. (A-32) are positive for the partic-

ular choice of a and thus the equation can have no positive real

roots. Therefore any right half plane zeros must be complex con-

jugates and there must be at least one such pair. The same argument

applies if c is chosen to make all coefficients negative except the

one which becomes zero.

Thus, except for the case where the first coefficient yields

the minimum a and the last coefficient the maximum a (or vice versa),

it is possible to find at least two roots, s = a and s = b, which

are complex conjugates with a non-negative real part such that Z =

Za
Zb"

iit

Ii
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When eq. (A-31) holds, the network of Fig. (3-13) reduces to

that of Fig. (A-i) but the a and b constants are no longer completely

arbitrary.* The components of Fig. (A-I) are derived from eq.

(3-33) with Cib Za and therefore D = (a + b).
a

T0

I ~±Za

T a+b

I abZ

a o,7- (a+b) s

Fig=. (A-1) Eliminating the Transformer from Fig. (3-13).

It is interestin to note that at s + j /ab, the network of

Fig. (A-I) reduces to a gyrator terminated in C2 (z = Za2/C2 )9 which

illustrates the inverting property of the gyrator.

Similarly, when eq. (A-31) holds, the networks of Figs. (3-14)

and (3-15) are simplified since the non-reciprocal term in eq. (3-31

ro-'ucec to a single _-yrator. Then, choosing k = Z V in eq. (3-35)''

becomes
2, 2 25 + Z (a + b) + Z ab
a a (A-37)
S2 + sZa(a + b) + ab

Ia

nunv Z2 (s2 + ab) -Z s2(a + b)2 (A-38)

The components of V are

* Generally, there is a range of a and b values which satisfies

eq. (A-34).

t1
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oZa(a + b)

sZ b)V = V22 2h s + ab
8z( +b (A-39)

= a +

12 2 - aSs + ab
21

The resulting network appears in Fig. (A-2). Again at s = J/a-b, Z

becomes Z22 as in Fig. (A-I).
a 2

+ z

aa

Sz Za

Z (a+b)s Za(a+b)
I"ab s

Fig. (A-2) Eliminating the Loaded Gyrators from Figs. (3-14)
and (3-15).

TI



APPENDIX IV

Proof of Theorem K

Theorem K: IC a and a are complex conjugates with a non-negative

real part and b is positive real, then C3 as given in eq. (4-4) and

V as given by equation (4-6) are prf.

Proof: If it can be shown that the coefficients of the V-operator

in eq. (4-6) are unchanged by a permutation of the constants a, b,

h and c, then V and C3 remain prf as explained in Section 4.2. The

-. coefficient C3 = (Za 2C)/ ib = l/D3 is examined as follows:

ZC I2  Z (A-40)

Clb a btlb - <lc

aZ - CZ
Cie a a (A-41)
Z aZ - cZ
a a c

=Lb b (A-42)
Z aZa - bZb

Combining these three equations yields

SW2 =bZZ(a2 .a 2  + aZ (2 _ b2 ) + CZ 22(b a

1 Clb bZb (a2 - 2) + aZ a ( c2 - b 2 ) + CZc (b2 - a 2 )

(A-43)

Letting a = b, b = a and c = a in eq. (A-43) produces no

change in this V coefficient. The remaining V coefficients can be

shown to obey the same rule. Thus a permutation of a, b and a p,-. ...

duce no change in V and hence no change in

-177-
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APPENDIX V

Simplifications in the Synthesis of a Rank 6 Operator

Eqv. (4-21) and (4-23), which must be satisfied if the networks

of Figs. (44) and (4-5) are to be valid, are repeated below.

aZa(b - a) + bZb(C - a) + Oc (a - b) = 0 (4-21)

Za(b - c)+ Zb(C - a) + Za(a - b) = 0 (4-23)

Let Zn be the value of Z which makes eq. (4-21) valid (n-type syn-

thesis) and likewise let Z be the value or Zc which makes eq.

(4-23) valid (m-type synihesis). Then, solving eqs. (4-21) and

(4-23) for Z0 gives
ab(Z Zb) aZ b

Zan = - c(a- b) + a bb (A-44)

= c(Za - Zb) aZ bZ(A45)

am a-b a-b

-- To investigate whether a positive real a can be found such that

eqs. (A-4) and (A-45) are satisried with a and b arbitrary, define

the following.
Sa~x+Jy b~x-jy

a(A-46)

Z = u + Jv zb = U - v

Then eqs. (A-44) and (A-45) became

A +o. y2) + u (A-47)

jarg Z(s)I < jarg el for 0 < jarg al Therefore uy - vx =

ux(x- s always positive. It follows that uy + vx is also al-

ways positive.

f ,

i
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Zcm =c_+ UY . (A-48)Y y

In eq. (A-46), x and u are always positive and y may always be chosen

positive. Then v may be either positive or negative. Eqs. (A-47)

and (A-48) are plotted in Fig, (A-3) for v positive and in Fig. (A-4)

for v negative. The curves are shown as never crossing which may be

verified by noting that the difference Z Z does not change
Scm n

sign for all positive real c.

Let Z be expressed in the general form
a 0+ ae+ a a

" c (A-49)
b + blc + ... bcO 1

and require that none of the coefficients vanish (Z has no pole or

zero at the origin or infinity). Intersections of eq. (A-49) with

eqs. (A-47) and (A-48) in the first quadrants of Figs. (A-3) and

(A-4) are the desired solutions.

For small values of c, Za in eq. (A-49) approaches

a
z -2 (A-50)b 0
Zc b--A-)

I while for large values of c, Za approaches

a
z :(A-51)

a b

" larg Z(s)1 < jarg al for 0 < jarg s < Therefore uy - v

ux - is always positive. It follows that uy + vx is also al-

|I ways positive.

! ,

,I
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zz

z 2 F'ig. (A-3) Z~ annd Z mvs c for Positive v

AV-V

Fig. (A-4) Z ar and Z2 vs c for Neg Iative Y
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Let

F i +  X= G (A-52)y y

Four cases must be considered in each figure. These are tabulated

as follows:

Fig. (A-3) Fig. (A-4)

I. - > F Z must intersect Z Z must intersect Zbc am a on

an
),> 0

a

a

2. - > F Z must intersect both no intersection
0

Z and Z guaranteed
aR cm n

b

a
3. - < F no intersection Z must intersect both

0

Sguaranteed Z Zcn
-.D >0
b
n

a
-. a° < F Z must intersect Z Z must intersect Z
b°  an c cm

n-<0

In every instance except Case 3 for a positive v and Case 2

for a negative v, an intersection is guaranteed and thus a positive

real value of c exists with a and b arbitrary such that either the

n-type section of Fig. (4-/) or the m-type section of Fig. (U-5) aj

Ibe removed from Z with a and b arbitrary. In thes two as.,s inter-

ii
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sections may exist but ars nt Suara zteed. This last atatmout is

1! i.llustrated in Example 3.

Synthesize Z given by

! s~3 + 4 s 2 +3s+4~~s + +s4
3

where

nim EZ = (2- 4)(2 + 2s + 2)(s2- 2s + 2)

Choosing a and b so that EvZa = EvZ = Omaker C3 four less in

rank than Z.

a= i+ J b 1 -j

Then
8 + J2 8 -J2.. ~Z= -.-.-- Zb = -

Za 17 17

Thus
x= , y =1, u =,8

7 = 17

This is a positive v, Case 1 example and therefore an m-type syn-

I thesis is guaranteed. Solving eq. (4-23) for c gives

aZb - bZ +(b -)_Z -6+17Z
[ c=Zb -Za  "= 2

which yieldsI 2(2c-7)(c+4)(a 2c+2) 0

7The positive real root is a

No n-type synthesis is possible in this case.

, U

lI
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The calomlations then yield

24-J6 z 5
a

Clb -- b 3

(2+ 2s 2 )z - . 9s+ 30

...(2 + sZ 25s + 15

and from the above relations and eqs. (4-3), (4-5) and (4-6)

2c5~s+l k'

6~+ 4s + 7

8 s3 + s+ + 7

6
v = 83 + J + -1 s+ 7

where
num EvV = (2 2 + 7) 2 _ s2(8 2 + 9) 2

2

The synthesis of V can now be obtained directly through substitution

in eqs. (4-14), (4-25) and (4-27). The result appears in Fig. (A-5).

+

z

Fig. (A-5) m-Type Rank 6, c 7/2.

*1
1l
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Synthesize Z given by

iII  .3 2s2+ 6M +

a3 + 7s2 + 6s + . .. +

where

num EvZ =(2 s 2)(s 2 + 2s + 2)(s 2s + 2 )

Choosing a and b as in example 1,

a1+J b 1-J

Then

Z- 3 +A
a 5 ' b 5

Thus Thus x~= 1,,y=1I, u=5 v -5

This is a -v Case 1 example and thus an n-type synthesis leading to

Fig. (4-4) is guaranteed. The required value of c is 6/3, which

is obtained from eq. (4-21). No m-type synthesis is possible.

iExample 3

Synthesize Z given by

7, yS3 + 2as2 + 98 + I1!3 2s + 92 + 5s + 16

where

nm Ev (  4 s2 )(B2 + 2, +2 )(s 2  
2s 2 )

Again choosing a and b as in examples 1 and 2

a 5 Zb  58
I This is a +v Case 3 exmple and thus neither type of synthesis is

t

[;
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guaranteed and a further check is necessary,

For an n-type synthesis, from eq. (4-21)

- ab(Zb - z)_ 5
c- bZ . aZa+-(a -b)Zc 18 - 29Zc

-i:
which reduces to

(c2 - 2c + 2)(11c2 -77c + 40) 0

The roots are

a + J, 1 - J, .56, 6.43

There are two positive real roots and therefore an n-type synthesis

leading to Fig. (4-4) is guaranteed.

For an m-type svnthesis, using eq. (4-23)

aZ - bZ + (b -a)ZC -26 + 58Z

7, Zb - Z 5
' a

which reduces to

(c - 2c + 2)(- 5c 2 23c - 179) 0

The roots are

c = 1+ J, 1- j, 2.3 + j5.59 2.3 - J5.5

There are no positive real roots and thus an m-type synthesis lead-

ing to Fig. (4-5) is impossible for this choice of a and b.

I

4
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