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ERRATA

Correction

In the second equatioﬁ of (1~5), change = I, to - I, x1
to show that the equation is dimensionally correct and

also change 122 to Iz.
In eqs. (2-8) and (2-9), change num EvV to num EvY,.
Change all impedances denoted by ¢ to Co-

Theorem E and the discussion following it in Section R.4
may be better stated as follows:
Theoren E

The numerators of the even parts of a series of
cascaded V operators are related by

num EvV = (num EvVi)(num EVVZ) eeo (num EvVﬁ)*

(2-15)
and, assuming that no common (surplus) factors have been
cancelled in the numerator and denominator of Z, which
is given by

Z = le2 vee Vn‘x] (2‘16)

*The proof appears in Appendix 1.B.

it follows that

num EvZ = (num Evvl)(num Esz) veee (num EvVn)(num Evcgr
(2-17)

Thus the zeros of num EvZ are split between the V
operators and the terminating impedance as described in
section 1l.9.

X .
The invalidity of eq. (2~17) if common factors have been
cancelled from Z is discussed in the following section.
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86

9R

96

97

100

105

128
132

Correction

The sentence in lines 4 and 5 and the subsequent V para-
meters should be changed to read as follows:

The components of Vl and V2 are derived from eq.
(2-8). For example

numEvVl=1-252=(1+ J28)(1 - V2 s)

1 1. 1+ V28 1
Vp =3 Ve "5 iz T = — =52 VR
2L
The second term in the denominator of eq. (R-4l) is
b a
S(E- + E——'.
a 1b

In the line above eq. (3-34), change (eq. 3-2) to eq.
(3-12).

Change clb to glb in line 7.

The denom%nator of the third term of V,, in eq. (3-58)
2 1

is s~ +

Bé' .

2R

The last sentence in Sectlion 3.9 should be changed to
read as follows:

vese &y is eight less in rank than Z whereas, if they
are of first order, C4 is four less in rank than Z.

The last equation should be changed to read

k° 4 (gs ’1)
CZ % % s +2

In the first sentence in Section 4.2, change (3-49) to
(3-48).

In line 8, change eq. (5-17) to eq. (5-15).

The value of the resistive termination in Fig. (5-5) is
2 olms,



Page Correction
153 In line 5, remove the s from procedures.

164 In the second line from the bottom, change Fig. (6-2b)
to Tig. (6-3b).

168 In the first line of Appendix 1.D, change eq. (2-85) to
eq. (2-36).

170 Label the second equation (A-21) and change the third
equation to (A-22).



ABSTRACT

An approach to driving point impedance synthesis is developed,
using the concept of an impedance operator, which is general, syste-~
matic, flexible and easily applied. It is shown that the synthesié
procedures of Brune, Darlington, Bott-Duffin and Miyata readily lend
themselves to this impedance operator approach. It is furtbzr shown
that, through the impedance operator and the flexibility it provides,
new driving point impedance realizations can be achieved and existing
realizations can be rade rore general,

The mathematical properties of the impedance operator are in-
vestigated in detail. Specific impedance operators of rank 2, 4 and
6, derived from repeated applications of Richards' Theorem and
extension thereof, are exarined. Through these operators, it is
shovm that thirteen realizable network sections containing one or
more arbitrary constants ray alwvays be removed from a prf driving
point impedance function leavin~, in cascade, a terminating impedance
which is realizable and contains the same arbitrary constants.

Using the impedance overator approach, three cascade synthesis
procedures are develoned. The first ic an extension of the Bott-
Duffin procedure. The second is a general reciprocal synthesis pro-
cedure applicable to any prf driving point impedance. The third is a

general non-reciprocal synthesis procedure not requiring transforrers.

-4i=
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CHAPTE®R I
YORMULATION OF THE PROBLEM AND A REVIEW AND
EXTENSION OF EXISTING TECHNIQUES

1.1 Statement of the Problem

In the study of driving point impedance synthesis procedures,
one encounters many methods and techniques which are interrelated.
Each method has certain limitations, advantages and disadvantages.
It is the purpose of this thesis to develop an approach to driving-
point impedance synthesis using the concept of an impedance opera-
tor (to be defined presently) which is general, systematic, flexible
and easy to apply. It is to be shown that the well-known synthesis

procedures of Bx'une,1 15

7 Darlington,® Bott and Duffin,® and Miyata
readily lend themselves to this impedance operator approach, It
is also to be shown that, through the impedance operator and the
flexibility which it provides, additional driving point impedance
realizations can be achieved and existing realizations can be made
more general.

The impedance operator concept to ve developed herein stems
from the Darlington synthesis pmcedure.* This procedure realizes

a prf** driving point impedance given by

*Thia procedure is reviewed in detail “n Section 1.2,
**Poaitive real function,
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(1-1)
m, +n,

in terms of a lossless network terminated in a pure resistance

(usually one ohm) as shown in Fig. (1-1). The procedure is

T ‘u-s 211 "5,

n n

2 2
A Z,, = — 2,y = — 10

22 n, 2 m, g

G |z| - n_l. |z' -m_l

N )

(a) (b)

Fig. (1-1) Darlington Realizations

a cascade rather than a distributed one in that only a single ter-
mination is included.

A greater flexibility can be obtained in the syntheai.s of Z
if the constraint of a resistive termination is relaxed to permit
a prf terminating impedance, (. To investigate this possibility,

let the following transformation be constructed:

and m, are even polynomials in s while nlandn are odd poly-

nomials s. These polynomials are further natrictod by the
fact that Z is prf.
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mn +ny

z-"‘z +n.C

(1-2)
It is necessary to investigate the conditions under which the right
hand side of eq. (1-2) represents a prf driving point impedance in
the physical sense of Fig. (1-1) with the cne-ohm termination re-
placed by (. Define an impedance operator, V, which is equal to Z
when { is a one-ohm resistance and which operates on { to give Z.
Thus V is given by

mtn
TR o
and
Z =V(¢ (1-4)

where eq. (1-4) is to be interpreted as "V operating on (".

Theorsm A

There is a theorem due to Hazony? which states that if a prf
V can be constructed such that { has no right half plane poles,
then ¢ is prf if Z is prf.

Thenrem A relates only to the transformation given by eq.
(1-2) and does not, in itself, quarantee the cascade representation
of Pig. (1-1) with a { termination. To achieve this cascade repre-
sentation, it 1s necessary in addition that V in eq. (1-5) represent

a lossless network terminated in one olm. Then V may be synthesised
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using Darlington's procedure and the { termination added. Thus, in
Fig. (1-1), the Z parameters in the boxes are replaced by V,;, V,,
and |V|, respectively,and the one-ohm termination is replaced by {
in Fig. (1-la) and 1/¢ in Fig. (1-1b).*

V and { can take many forms in the representation of a given
Z, since arbitrery constants may be incorporated in both V and (.
These constants may be chosen to produce desired characteristics in
either the removed network sections (V) or the teminating impedance
(¢). The constants build a definite flexibility into the impedance
opéi-ator approach,

The similarity of eqs. (1-1) and (1-3) is important. In
effect, this similarity means that the networks derived by Darling-
ton's procedure with a resistive termination are also applicable
in the case of a prf { termination. It is appropriate, therefore,
to review in detail the basic Darlington synthesis procedure and
the types of lossless networks which it gives ard to seek gener-
alizations which will yield additional useful networks. | Also,
since the impedance operator approach is generally applicable to
the cascade synthesis of driving point impedance functions through
the removal of network sections, a brief review of existing casoade
synthesis techniques is in order.

In view of the above considerations, the objectives for the
reminder of Chapter I may be formulated as follows:

The mechanics of this procedure are discussed in detail in
Chapter II.



A) A review of the reciprocal and non-reciprocal Darlington
synthesis procedures.

B) A discussion of the residue and extended residue condi~-
tions and their use in cascade syntheses.

C) The derivation of the uZ parameters of certain loaded
gyrator networks which are useful in the non-reciprocal
Darlington syntheses of driving point impedances of rank*
4 and above,

D) The derivation of non-reciprocal cascade Darlington
syntheses for prf driving point impedances of rank 2, 4

and 6.

E) A review of existing cascade synthesis procedures and the

network sections which result therefrom.

1.2 The Reciprocal Darlington Synthesis Procedurel’ 314

The conventional Z-parameter four-terminal network equations

for the case of a one-olm resistive termination are:

Bi=21 L+ 2%, 1,
(1-5)

I, =2 Il*Z I

21 22 "22

Solving for the driving point impedance yields

*
sum of degrees of numerator and denominator.



1+ F11 %ae

A
252, T, + 1 (1-6)

4 2., 2

12 “21

Eq. (1-1) may be rearranged in two ways to match eq. (1-6).

n
1+ -2

i U

Z* T
272,

y

(1-7)

— 1-8
B, (1-8)

Bq. (1-7) corresponds to Fig. (1-1a) and suggests the identifica-
tion

2. -, 5 "2 Tufehla n
-—— ——— ’ —
11 n, 22 n, Zn m
(1-9)
while Eq. (1-8), corresponding to Fig. (1-1b), suggests that
2 o, L2 mfatheln
1 m" ™22 m 7, n
(1-10)
The third relation in eq. (1-9) reduces to
e S Tl U R 7
holn 2 — Tz (1-1)
. nz nz

’mm EvZ = numerator of the even part of Z.



while the third relation in eq. (1-10) becomes

- m <+
2, = ™ M2 ” P2 _ - num!EvZ (1-12)

ma ny

Z12

Hereafter, eq. (1-7) is referred to as the "n-type® and ec. (1-8) as
the "m-type" Darlington procedure, the n and 1 denoting the term in
the denominators of the Z parameters in each case.

In the reciprocal Darlington procedure, le - 221 so that
eqs. (1-11) and (1-12) become

num EvZ

Z1p =2y = n, (1-13)
215 = 2y Jnﬂ; (1-14)

The conditions for realizability of a lossless reciprocsl
four-terminal network are that Z11 and 222 be reactance functions

and that the residue condition

R

kyy kop = kyp 20 (1-15)

11

be satisfied at all poles. Since n + np, m, *n,, m +n, and
m, +n, are all Hurwitz polynomials, Zn and 222 are necessarily
reactance functions. Furthermore, assuming that num EvZ is a
perfect square, the residne condition holds with the equal sign at

all finite poles. For a pole at infinity, the equal sign applies



only if n, is not greater in rank chan n,.

In order that num EvZ be a perfect square so that 212 is a
rational function of s, it is necessary that the zeros of num EvZ
be of even multiplicity, a condition which is not true in general.
It is possible to avoid this difficulty by multiplying the numera-
tor and denominator of Z by an auxiliary Hurwitz polynomial so
chosen that num EvZ becomes a perfect square.5 However, since this
procedure is not in general permissable in the case of the impe-~
dance operator, it will not be considered further here.* Rather,
the restriction that 212 = 221 is relaxed and attention is re-
focused on eqs. (1-11) and (1-12).

1.3 Non-Reciprocal Darlington Synthesis

In this and the following four sections, a non-reciprocal
Darlington synthesis procedure applicable to any prf driving point
impedance is developed and applied to impedances of rank 2, 4 and
6. The resulting networks may be considered not only as syntheses
of Z with a one-ohm termination but also as syntheses of specific
impedance operators., This latter feature receives considerable
attention in Chapters III and IV,

The starting point in the development of the non-reciprocal
Darlington synthesis procedure is a consideration of the zeros of
an even polynomial in s. In terms of 32, these zeros may be real

and positive, real and negative or complex. In terms of s, these

#¥The fact that this procedure is not applicable in the case of the
V operator is justified in Appendix II.



Fre—
'

S
1

»

zeros must have quadrantal aymnetrys. This requirement, coupled
with the restriction that the even part of a prf impedance be posi-

tive everywhere on the jw axis, necessitates that num EvZ have only
the following types of terms (or powers thereof)

(a® - &%)
2 . 2%
(d® + s8°) (1-16)
(32 +cs ¢ d)(s2 -cs +d)
Whatever combinations of these terms may occur, it is always possi-
ble to write num EvZ in the form
numEvZ-mz-nz-(m +n)m -n) (1-17)
o () o o’‘o 0

where m, and n, are even and odd polynomials in s, respectively.

Because of eq. (1-17), eqs. (1-11) and (1-12) may now be separated to
yield"

" * % P " T
- s 2 d (1‘18)
z12 n, 21 n, |
n, * o % "™ )
Z2,, * 5 2, = (1-19
12 mz 21 m2

Theorem B

Using the forms of Z,, and Z,, in eqs. (1-18) and (1-19), it
is possible to achieve a Darlington synthesis of any prf driving

*This split assigns the left-half plane seros of num EvZ to Z;5 and

those in the right half plane to Z5;. The reasons for this parti-
cular choice are indicated by Theorem B.



point impedance without the use of surplus factors.

To begin the proof of Theorem B, Z,, and Zpy in egs. (1-18)
end (1-19) may be expanded by partial fraction expansions. The
result has two general forms,” where B> o and K are positive real

constants.

8 28 0 2928 X Bo

zg-z °1z”°§ ;2”'2 e 2Ky
(1-20)
1128 1"1’2 X128 1“2“2
Lyt iy 2y Y i Ky
21 s to 8" to,

(1-21)

The denominators of eqs. (1-20) and (1-21) are correct since the
zeros of the even and odd parts of a Hurwitz polynomial must all

lie on the jw axis. The numerators are justified by considering
a particular example.

Emle 1

Let
4 R

7 =8 + 118> ¢+ 96 ¢ 845 + 2
8 *‘gs ’-2-3’2-!*8
num EvZ = (-8° + 1)(~s> + 4)(s? + 4)

- (34 v me2 + 2)2 - 32(502 + 10)2

-
Terms of the form k__s and k_/s may also occur in eqs. (1-20) and

(1-21), depending on’the rank of Z.
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Attempting to synthesize Z by the m-type Darlington procedure
gives the following Z parameters:

5
164 32 + ;)

7.. = 3(1132 + 34)

9 z = ——
1 a4+_2_k7_"§a <o 22 84*%7_’2,8
3552+10 + 34+]_ng+2
29 ® 7
2 s +3s +8

Each of these expressions may be expanded by partial frac-
tions.

I 15 L b
SICET SR

Chkae® | Zkae®

8 *ﬂl 8 *ﬁz

Zoo

z, - K128 %1% et +10sf 42
o P P

vhere (szﬂnf)(sz+¢§) -340-2213208 .

The last term in 212 may be expanded in several ways to yield
21

etoewefes 2
340!-;:!*8 :r*;f s *w, 1




=12-

8 +n1 -1 +m2

261 26232
= + + X

2, 2 4
s +a 8t

Considering only the first two forms, since the last two are
not essentially different, 212 may be expressed in the following
two general ways which are sSdn to agree with eqs. (1-20) and (1-Q).

izt th et 2h

= 2 +K
AR ET A T
2 2
g wgp 11200 | 29008
12 p — Iz xk
21 - 2

For impedances of higher rank, the form of le is the same
except that more @ and § (but not K) terms are pm&nt.

1.4 Extended Residue Conditions

Returning now to eqs. (1-20) and (1-21), the question of the
validity of the residue condition in eq. (1-15) for the non-recipro-

cal case arises, Near a je axis pole, the Z parameters have the



general form

k..8 Koo8
2y =2 gy 2 2 i
n s +mo = 8 *mo
(1-22)
k,,8 *+ as ko8 * B
ST 12° =
Z%§ 2 T, 0r2—7——78 +¢o
2.4 2 -~2., 2
Consider the fumction 222y 12 2 . g 1s given by either
ny 1l m
eq. (1-9) or eq. (1-10) as it or = « Sincem) +n, is a Ruowitz
I |
polynomial, q and o are positive real reactance functions. It
1
follows that
2:4 2, - 2,,2
Be 2 32 B .o for Bes =0
11
(1-28)
Z2.. 2., - 2
Re AL_22 %12 2L .0 for Re s >0
1

Now let 8 = :)oo + ¢, where ¢ is a small positive real quan-
tity which appmaches zero, and substitute this value of s into
eqs. (1-22) and (1-28), considering the first form of Z), in eq.
(1-22). After simplificatiun, eq. (1-23) reduces to 1

2 2 2y, .2 P4 222 .
(Ko koo = ki, - a0 )(e® ¢+ 20°) ¢+ 4a"m"e

kn‘(? * “'3 )

In order that this expression be positive for all positive real &,

it is necessary that

'3 22
kyy kpp = kyp ~ '@ >0 (1-25)
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A similar development using the second form of le in eq.

(1-22) yields 21
(k.. .k -k2 - ¢ )(52-02@2)02922
1122 ~ %12 T‘L'ie .o o TL’e . o
0 0
RN 20
kppe(e” ¢ don))

(1-26)

In order that this expression be positive for all positive real ¢,

it is necessary that

R

%
k11 kpp = kqyp -

>0 (1-27)

osm'u 2

Eqs. (1-25) and (1-27) are called extended residue condi-

214

tions and are more severe than the residue condition of eq.

(1-15).

Theorem C

The two extended residue conditions of eqs. (1-25) and (1-27)
are equivalent,

To verify Theorem C, let K

, and K, in eqs. (1-20) and (1-21)

be expanded to yleld

K

1= %

11 ’ alz ‘ (X XN ]

(1-28)

Kz - ﬂzl + sz * ceee

Now eqs. (1-20) and (1-21) may be rewritten in the fomm

*m. form is derived in References 2 and 14,



=15-

2 2
, Lo Fagt 2 (Epye v B Ky @)

12\ _15 . T * eeee
21 8 Te (1-29)
4 2 2
- TN 1Tt T,
+
21 8 ‘l (1-%0)

These two expressions for 212 must be equal and therefore

21
K1 "% *Ky
Koy + B = Kney
Solving these equations for §1 gives
2

Pp=-®9

b 22

3 o%h

ﬂl

A similar result follows at all other poles of 212.
’ pal

1.5 Qyrator - Transformer Networks"

To synthesize the expressions in eqs. (1-20) and (1-21),
certain gyrator - transformer networks are employed. The Z para-

meters of these networks are now derived, Consider the network of
Fig. (1-2).

#The networks in Figs. (1-2) and (1-3) have T and n equivalents which
are sometimes more useful than the transformer forms. These equiva-
lent forms are developed-and utilized in Chapter III. .
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= ©
I
1
I
.o .
£ ) E,
%4 O
Fig. (1-2) Gyrator-Inductive Transformer Network
The following relations apply:
El = sl.llIx + SMIy =- KIs
E2 - aHIx + °L22Iy = - KIp
= (1-55)
Il Ip + Ix
I2 = Ia + Iy

Expressing El and Ez in terms of I1 and I2 gives the Z parameters as

2 2
- o Lll . 7 = LR Lzz s
11 2 2’ 22
s * oo s ¢ oo
(1-34)
2
wMs Ks 0 K

z - » - - .
BUFCE T T

Now consider the network of Fig. (1-8).

e ot o



-17=-

o —0

— -

I le lxy I,

IPl - ;]é— lIa
. L .
1 ) R - A <: 2
oy Com
+K /

o ©

Fig. (1-5) Gyrator-Capacitive Transformer Network

The pertinent relations are

1 1
B, I ¢+— I = K1
1 scn x scm Yy s
1 1
E, = I_+ I =-KI
2 sCm x 3522 y P
(1-35)
Il-Ip*Ix
Iz-?[l’*Iy
which yield ] 3
o, L &
" Tz YT 2
8 +m 8 *to
° (J
(1-86)
& o m
n
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The networks of Figs. (1-2) and (1-3) exhibit certain

unusual properties.

A)

B)

c)

D)

The transformers do not have unity coupling. This can

be seen from an examination of the extended residue con-
ditions.

If the coefficients of coupling become unity, the effect
of the gyrators disappears (?5 becomes infinite in eq.
(1-34) and sero in eq. (1-36) ).

If K —> 0 in eqs. (1-34) and (1-36), all impedance para-
meters vanish unless the coefficients of coupling become
unity at the same time., In this latter case, ¢§ remains
finite and non-zero, the residue condition of eq. (1-15)
applies and the networks reduce to loaded perfect trans-
formers.

The networks of Figs. (1-2) and (1-3) satisfy the extend-
ed residue condition with the equal sign as may be veri-
fied by substituting the residues from eq. (1-54) into
eq. (1-25) and those from eq. (1-36) into eq. (1-27) to

obtain zero in each case.

1.6 Non-Reciprocal Syntheses for Impedances of Rank 2 and 4%* 414

The non-reciprocal Darlington syntheses of impedances of rank

2 and rank 4 are well-covered in the references and are therefore

only briefly reviewed here. For the case of a rank 2 impedance, let



=]10=
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Z = :#e’ numEvz-aﬁbc’-'s2

(1-57)

The n~type and m-type non-reciprocal Darlington syntheses are shown
in Figs. (1-4) and (1-5) respectively, where, in Fig. (1-4) the
termination is scaled to avold the use of a capacitive transformer,

o0— —

>:/§-< ) +vV & (

a 0

Z bi z 1
[+]

1. ,

2 b

IS °

[ — A O

Fig. (1-4) n-Type Rank 2 Fig. (125) m-Type Rank 2

For the rank 4 case, let Z be given by

z_‘o"l' + 8
N 1

bo + bla +s
(1-38)

num EvZ 'Csz *»/E)z - ’2[‘1""1 '(‘ﬁ: '“‘:)2]
= (8% +,/'a_°F°')z - ezaz

where e° 1s positive from the requirement tht num EvZ > O every-



LYY
'

where on the jo axis. The n-type synthesis is straightforward (since
n, has only one zero) and the result appears in Fig. (1-5), where
again the terminating impedance has been scaled to avoid the use of

a capacitive transformer.
00—

O’I @
U" 0”

ol °

)
z | § ﬁ%'?:_

o

Fig. (1-6) n-Type Rank 4

For the m-type synthesis, the Z parameters are

a,s b,s
2yt Iy
8 Obo s 0b°

es + 5% (8° ,‘/%53 (1-39)

12 2
21 s +bo

A

The 212 expression may be rewritten as

21 a
es + sz<1 -\/%) o
22 " .-’-/;;

2
ral s ’bo

(1-40)

or



£

0
es:bod;-1>

o +

12 © p)
21 8" *+b,

z

1 (1-41)

Eqs. (1-39) and (1-40) may be readily identified with eq. (1-34) to
yield the m-type rank 4 inductive transformer network shown‘ in Fig.
(1-7). A similar capacitive transformer network can be derived us-

ing eqs. (1-39), (1-41) and (1-36).

b+ /2 4

(o]

z & 1
® [-1-] ®

o Je—

b a,s bo b1
=

NIl

Fig. (1-7) m-Type Rank 4 Inductive

The transformer in Fig. (1=7) may be replaced by its T or n
equivalent. It 1s then possible, by scaling the termination, to
eliminate one elerment in the T or n network. This matter is con-
sidered in detail in the discussion of the impedance operator of
rank 4 in Chapter III.

1.7 Non-Reciprocal Synthesis for Impedances of Rank 6

Let a general rank 6 impedance, assumed to be non-minimum
resistance, be given by
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a + a,8 + azaz + 35
Z = ~—5—7% (1-42)
bo + bla + bzs + 8 .

num EvZ = (a.o + azsz)(bo + bzsz) - 32(51 + 32)(bl + 32)
(1-43)
- (a% - &°) [6° + B)° - P6?] (1-44)
= [55 + (A + C)s2 + (AC + B)s + AB] :
[.-e"’* (A + c)az - (AC + B)s + AB] (1-45)

The forms of eqs. (1-44) and (1-45) are justified from the
discussion in Section (1-3). For the n-‘fype synthesis, the Z
parameters are (using eqs. (1-9) and (1-18) and letting the ter-
mination be ;o_ to eliminate a transformer)

o

a
azaz ‘a a (‘2 - F;'D s
z - - +
11 a(a! + bl) b8 s! *+ by

b,a a a
o0 2 C:Zo 0

By =~ el s+ 2 (1-46)
22 s(s" ¢ bl) l:’la ;! * b1
[(A +C)s% +AB ¢ s(s® + AC + B) 52
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The equation for le may be separated to give

[f-(A+c)- ]u-—(b -AG-B)f-
o AC*B/—

12b

21 8 Ob

1
(1-47)

[F(Aﬂ'C)-ao]a-t(AC*B-b)‘/E
SN A S b N
32*b1 - B:

or

zlzfle "5

(1-48)

The first terms in zu, z22 and 212 form a capacitor. The

last terms in eqs. (1-47) and (1-48) a.rglnon-loaded gyrators. The
residues of ths second terms in Zn and Zzz, along with the residues
of the middle terms in eqs. (1-47) and (1-48) satisfy the extended
residue conditions with equal signs in eqs. (1-25) amd (1-27). This
may be verified by direct substitution and recognition of the iden-
tities

2AB(A +C) - (AC +B)® =a_b +ab

2% * 3,02 ~ by
(1-49)

(A +C)% - 2AC + B) =agb, -2, - b

wvhich are obtained by matching coefficients of like terms in eqs.
(1-45) and (1-45). Thus eqs. (1-46) and (1-47) may be realized us-

ing the network of Fig. (1-2). The complete synthesis is shown in

Fig. (1-8). A similar capacitive transformer synthesis can be devel-

oped using eq. (1-48) and Fig. (1-8).
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o
N
¥ig. (1-8) n-Type Rank 6 Inductive
The m-typé sfnthesis proceeds in exactly the same fashion.
The Z parameters are b
‘ . .l.(: %
s(s“ +2a)) , b, H "6,
VA - _..2__._ = ¢
1 bzs +b Fz' 2 1)o
() 8+
2
b
1 0
s(s® +b,) F'(bl - Fé)’
A - 1 - 8 * R (1-5))
22 . 2 .. b, b
bzs +b 2 2 (<]
o s ¢ 5
2

s(s® +ac +8) +[(a + C)a* ABJ

z -
12 2
21 bys” + b,

Separating le gives
21

e e T



yo——4
v 5

2 ~ Y0 Y2 AB
7. =2 & * —
12 ” b, .5 b,
1)
(1-51)
and
b b
1 0 1 0
=~ (AC +B = 8 + = |AB - (A +0)
2 ,L*bz< FED ‘bz[ be ]*uc
12 " b 2.5 %
b,
(1-52)

The complete synthesis of eqs. (1-50) and (1-51) appears in
Fig. (1-9). A similar capacitive transformer synthesis can be
derived using eq. (1-52),

O-
P
.5 8 q
0
(4 1
-]
by
[

Fig. (1-9) m-Type Rank 6 Inductive



K -26=~

To illustrate the rank 6 synthesis procedure, let it be re-

du quired to synthesize the followlng driving point impedance:
N

‘ 5 428% 495+

- 7 = % 25{ 9s +1

- 8" + 98" + S8 +16

num EvZ = (ss + 432 + 68 + 4)(-53 + 432 - 68 + 4)

A*C'4, AC*B-G’ AB = 4

The network corresponding to Fig. (1-8), obtained by direct
I substitution of the known quantities, is shown in Fig. (1-10). The
T network corresponding to Fig. (1-9) can be obtained in a similar

: mamner, The extended residue condition from eq. (1-25) ylields

":(’111'22 M) - azof - 25(%:% - 31%) - 2156" 5«0

I, The coefficient of coupling of the transformer is




Fig. (1-10) Network Corresponding to Fig. (1-8)

1.8 Impedances of Higher Rank

The extension of the foregoing synthesis procedure to impe-
dances of higher rarnk is straightforward with eqs. (1-20) and (1-21)
serving as a guide. Thus in the case of a rank 8 impedance, the
m-type synthesis yields networks similar to those in Fig. (1-9),
but with the inductor replaced by a second gyrator-transformer net-
work. The n-type synthesis yields networks similar to Fig. (1-8),
except for the addition of a transformer to synthesize the pole of
the Z parameters at infinity.

For impedances of odd rank, the poles and zeros at the origin
and infinity may be removed until the impedance becomes even in rank
and the remainder synthesised by the foregoing procedure.

Thus it is possible to synthesize any prf driving point impe-

dance through the non-reciprocal Darlington procedure and the net-

works of Figs. (1-2) and (1-3).
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1.9 Existing Cascade Synthesis Techniques >

A cascade synthesis procedure in which the zeros of 212
(denoted as transmission zeros) are controlled by individual net-
work sections has been developed by Guillemin", leading to a number
of network structures, among which are the Darlington A, B, C and D
sections. Balabaniam3 also discusses the development of these four
network sections.

In the derivation of cascade impedance operator syntheses in

' Chapters III, IV and V, networks similar to these Darlington sec-

tions, but containing arbitrary constants, result. Thus it is per-
tinent at this point to review and summarize the results of Guillemin
and Balabanian.”

Consider the configuration of Fig. (1-11), where each box is a

lossless reciprocal netuork.**

. in———
1211 2211 5211
Z 1222 Z, 2822 Z, | sP22 10
— > —
—1 142 2212 5212

Fig. (1-11) Cascade Representation of 2

"rhe following discussion summarizes material presented in Chapters
6,7,9 and 10 of Reference 7 and Chapter & of Reference 5.

HIt is assumed that surplus factors have been added so that all
zerogs of num EvZ are of even multiplicity. :
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The following relation applies

z Z z

5 - 142 . 2h2 L 342
12 T Tn YT T plap Y2y Tyt

(1-53)

Eq. (1-53) points out that the zeros of Z,, are made up of the
zeros of 1212, 2212 and 5212.*“ The zeros of Zlé are the same as
the zeros of the even part of Z given by eq. (1-11). As discussed
in Section 1.3, the zeros of num EvZ have guadrantal symmetry and
thus only three types of terms, as given by eq. (1-16) are per-
mitted. If all three of these terms were present in the even part
of a given driving point impedance, one term could be assigned to
each of the boxes in Fig. (1-11). The syntheses of Z would thereby
become the syntheses of the three boxes.

In the realization of Z with its types of even part zeros given
by eq. (1-16), four types of network sections are useful. These are
the Darlington A, B, C and D sections shown in Fig. (1-12), The
branches in the A and B sections are single inductances or capacl-
tances or series or parallel resonant circuits. These two sections

realize jwo axis zeros and poles of Z. The type C section is similar

to the Brune network but the transformer polarity is additive, It
is used to realize real axis zeros of 212.*‘ The type D section

'buillemin points out that no additional zeros are introduced
because of the denominator poles in eq. (1-53).

"by using the Brune form of this network (with a subtractive
transformer) jo axis zeros of 212 can be realized. Or by using
Guillemin's method of "zero shifting®, these zeros may also be
realized using a ladder network development.



is employed in the realization of complex zeros of 212.

o— — °- =i —e
°- ° > l -
A B

) )
2
°
‘= ),
=
o T -0 o o

C D
Fig. (1-12) Darlington Sections

The synthesis of a given driving point impedance, Z, would
proceed as follows. Sections A and B are first employed to remove
poles and zeros of Z on the jw axis. The remaining impedance is prf
and its even part has the three types of seros.of eq. .(1-16).If these
zeros are not initially of even order, it is necessary to use sur-~
plus factors to create these forms. Next a type C section is re-
moved to realize a pair of real axis geros of le(or a Brune sec-
tion to remove an imaginary axis pair). The remaining prf impe- .
dance is reduced in rank by 2, because of cancellation of a term of

R R

the form a” - sz(or 8" + os) from the numerator and denominator of
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this impedance, and its even part is missing the pair of real axis
(imaginary axis) zeros. In a similar manner, the Type D section

may be removed t60 realize & quadruplet of complex zeros. Once again

surplus factors may be required. The remalning prf impedance is
reduced in rank by four.

Very little has been said as yet about the actual syntheses
of the networks represented by the boxes in Fig. (1-11). Following
Guillemin's approach, assume that the first box is to realigze a
quadruplet of 7.12 zeros.* The Z-parameters of this box may be

written in the general form

_K(sz + as *b)(s2 - as +b)

3(32 + mcz))

KT(s) T(-s
= -—E—J-é-l (1-54)
(

212

Puthtty i (1-55)

*
This generally leads to the Darlington D section but, as Guillemin
points out, can also often be made to yield unbalanced networks
in the form of lattice, bridged T or twin T structures.

£t e, e o



The functions Z, Zl’ 1212, 1211 and 1222 are related by the cus~
tomary driving point impedance equation

2
g Lttt n 1% - ik (1-57)
T2z * 0
vwhich can be rearranged to yield
(Zyq ~2) (2 NI o (O} €
111 122 1 1712 s°(s° + o)
(3 (1-58)
The impedance Z may be written in the general foruf“r
z « A5(s (1-59)

where P(s) and Q(s) are polynomials of the same rank in s and A is
a constant. The next step is a key point in the Guillemin proce-
dure. The two terms on the left hand side of eq. (1-58) are

separately expressed as

% )" i(s) (1-60)
e(a *+ o) Q(s)

1211‘2'

Pz * 4" _(_Ej,(_s_%__ (1-61)

s(s” + &) H(s)

’It is assumed that any required surplus factors are included in

z.

= e — . ——



o

g

33

where H(s) is a specified polynomial in e.* The synthesis problem
is thus reduced to the construction of H(s) and the determination
of ® s after which 1211, 1222, 1212 and Zl may be found., The
result is generally the Darlington D section of Fig. (1-12) with a
termination Zl reduced in rank by four,

Thus the Guillemin synthesis procedure, like the impedance
opefator synthesis procedure to be developed in Chapter III, pro-
vides a method of obtaining a cascade synthesis of any driving point
impedance for any configuration of transmission (even part) zeros.,
The two methods start from the same point (the idea of removing
sections as in Fig. (1-11» and arrive at the same general results
(the Darlington sections) but the actual procedures are quite dif-
ferent as the development in Chapter III will show. Also, an additional
flexibility is included in the impedance operator approach in that
non-reciprocal elements are permitted and arbitrary constants are
present in the removed sections and the terminating impedances.
These constants may or may not be chosen for rank reduction at the
discretion of the designer. These features could also undoubtedly
be included in the Guillemin procedure but are not discussed in
Reference 7, It is also possible to derive the Brune17 synthesis
procedure using either Guillemin's approach or the impedance opera-
tor approach. This is discussed in Section 5.4. |

As mentioned, it is always possible to realize a quadruplet

¥ .
The philosophy behind eqs. (1-60) and (1-61) is explained in de-
tail on page 251 of Reference 7.
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of transmission zeros by the Darlington D section using either of
the two cascade synthesis proceduree. The D section contains
mutually coupled elements. Guillemin points out that it is some-
times possible to arrive at alternative unbalanced network struc-
tures not requiring mutual coupling. The requirements are that
the set of impedanées lzll, 1212 and .1222 be analytic in the
right half plane, satisfy the residue condition of eq. (1-15),

satisfy the real part cond:l.t:lon5 given by

1711 1722 T 171220 (1-62)

and in addition, satisfy the Fialkow5 condition that the numerator
coefficients of 1Z12 be positive and no greater than the corres-
ponding ones in 1211 and 1222. Applying these requirements to

the Darlington D section, Guillemin shows that the additive trans-
former may be eliminated to yield the structure of Fig. (1-13) if,
in eq. (1-54), 2 k), <k s which in turn requires that the trans-

mission zeros lie in the shaded region of Fig. (1-14)*;

*Guillemin also discusses in detail the application of the Fialkow
condition to other two-port structures to achieve unbalanced
structures without mutual coupling.
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alanis

Fig. (1-13) Variation in the Darlington D Section

Fig. (1-14) Location of Transmission Zeros of Fig. (1-18)



One further observation will complete the work of Chapter I.
Throughout the discussion in this section, it has been assumed that
Z has already been augmented so that num EvZ has zeros of even
multiplicity only. Let it now be assumed that this is not the case,
Consider the non-reciprocal syntheses of Sections 1.6 and 1.7. The
losaless networks in these syntheses still realize the real and
complex zeros of num EvZ but these zeros are no longer identical
with the zeros of Z

Rather the zeros of Z., are the left-half

12° 12
plane zeros of num EvZ, the remaining zeros being assigned to 221.
For example, the lossless network sections in Figs. (1-4) and (1-5)
realize a pair of real zeros of num EvZ where 212 contains the one
in the left half plane. The sections in Figs. (1-6) and (1-7)

realize a quadruplet ofr complex zeros of num EvZ, whereas the sec-~

tions in Figs. (1-8) and (1-9) realize one pair of real zeros and

one quadruplet of complex zeros of num EvZ,



CHAPTER 1I1I
PROPERTIES OF THE IMPEDANCE OPERATOR

2.1 Introduction

In Chapter I, several non-reciprocal lossless networks were
derived using the Darlingtoh synthesis procedure with each network
being terminated in a pure resistance. It was pointed out that the

constraint of a resistive

termination could be re-

o1 LOSSLESS laxed to permit a general
prf termination, {. Then
Z NETWORK ¢
Z is represented in terms
o1 (V) of an impedance operator,

V, operating on (, as

shown in Fig. (2-1). Suf-
Fig. (2-1) z = v¢
ficient conditions for
this representation are that Theorem A be satisfied and that V be a
lossless network.
The Darlington synthesis of V, the mathematical properties of
V and £ and the utilization of V in the analysis and synthesis of

networks are the subject matter of this chapter.

2.2 Darlington Synthesis of the V Operator

Let eqs. (1-2), (1-3) and (1-4) be rewritten slightly to



[ ——

give* ¢
mé
2 = (2-1)
my  * 0ol
mtn
vl- m2 +n (2-2)
z =76 (2-8)

To relate the right hand side of eq. (2-1) to the network of Fig.

(2-1), the equations for the latter are written as

E) " 52y * 1%
(2-4)
Ep = L2y * Ip%pp = - IxC
Solving for the driving point impedance yields
¢ o 22~ hala
2=2, - 2 (2-5)

Eq. (2-1) may be rearranged in two ways to match eq. (2-5) in the

same manner as was done in Section 1.2,

*‘l'he subscripts on V and { are introduced to distinguish this impe~
dance operator and termination from others to be presented later
in the chapter,



n

1

m 1w
- = (2-6)

N n

2T,

n2 1

1 ,M

n, G F{
z = ilnl (2-7)

2% 1

m &

where, in eq. (2-6)
m1 m num EvV
11 my Voo == and V0 = =—=— (2-8)

and, in eq. (2=7)
n
! .72 e L
Vi1 i Vo g, and Viplpy 3 — (2:9)
2 2 n,

Eqs. (2-6) and (2-7) represent extensions of the two Darlington
synthesis procedures discussed in Chapter I whereby the usual one-
ohm resistive termination is replaced by ¢, in eq. (2-6) and 1/;1
in eq. (2-7). Vi Voo Vl2 and V,, are the ®"Z parameters" of the
lossless Vl operator network.

The cascade nature of the V operator may be developed by
letting (, in eq. (2-1) be expressed by

my Cp * Mg
ARG )



oA

s (2-12)
where v, = 2=11
2 m, + n,
Introducing eq. (2-10) into eq. (2-3) gives
Z =V (V,(,) (2-12)

- li{'%: { Ry

The form of eq. (2-12) suggests a cascade representation of Z in
terms of two V operators and a terminating impedance. The result
can be extended to include additional V operators.

The concept of the V operator is useful in both the analysis
and synthesis of networks. In an analysis problem, the network is
subdivided into four-terminal lossless cascaded sections and a ter-
minating impedance. The driving point impedance of the overall
network is calculated by considering that each four-terminal sec-
tion operates on the ones following it. Each V is derived by
determining the driving point impedance of its four-terminal sec-
tion with a one-ohm resistive termination.

In a synthesis problem, Z is given as the ratio of two poly-~
nomials in s and from this function, the V and { functions must
be found. Then each V is synthesized by either eq. (2-6) or eq.
(2-7) with a one-ohm resistive termination and the resulting net-
works are cascaded and terminated in (.

These concepts of analysis and synthesis are illustrated by
examples in the following sections. The use of impedance operators

in cascade synthesis procedures is developed in detail in Chapters



IIT through V.

2.3 The Associative Law

Theorem D

The impedance operator V obeys the associative law of multi-
piication.

The proof of Theorem D involves the straightforward expansion
of three general V opérators and appears 11; Appendix 1l.A. Because
of the theorem, the parentheses in eq. (2-12) are unnecessary, This
is illustrated by the following example,

Example 1
| L
o mlr —— l >—
° 1
8
e l
A 5 ! T ?®
s
- i . > .
N N e S
1 Y2 C

Fig. (2-2) Analysis Using the V Operator

It is desired to compute the driving point impedance Z of the
netwc.u-k of Fig. (2-2) by using the impedance operators vV, and V,.
This is done in two ways, to illustrate the associative property of
the impedance operators. Each operator‘ may be derived by placing

a one-ohm resistance at its output terminals and computirig its in-

B ——




put impedance. The procedure ylelds

Q 2

V. =8 _* 28 , Vv, =8 +1 y €= 1
Z .o . 2 1
1 g a28 44 2 gf e R 8¢

Since each operator network is purely reactive, the operation indi-

cated by eqs. (2-1) and (2-10) may be applied.

2
278 +1
] - + 28
<; + 8 + 1‘>
YV - 3
32 +4 + 2s (h t1

T

8 +s8 +

- st + 2% + 35° + 28
¢, 7T

s” + 38" + 532 + 68 ¢+ 4

4 4 1 3
(8 ’58)—1023 + 28
Z = (V)0 = g 1
s +58 + 4 + (3s *Ga)m

534
5

s +

+ 285 + 58° + 28
4;4 + 6;3—§ Ss! +10s ¢+ 4




_ st 4265 + 55% 4 20
2% 3

8 +s4+83 +552*105 +4

The two Z functions are identical, illustrating the validity

of the associative property.

2.4 Even Part Relationships

The even part of V, in eq. (2-2) is given by

EvVl = —5——5—- (2-13)
2

and similarly for all other V operators. Let V be given by

V=TV, ... vh (2-14)

Theorem E

The numerators of the even parts of a series of cascaded V

operators are related by

num EvV = (num EvVl)(num Evvz) eses (num EvVn)‘

(2-14)

It follows from eq. (2-15) that if Z is given by

2 = vlvz eees vncn (2'16)

*'rhe proof appears in Appendix 1.B.
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then

num EvZ = (num EvVl)(num EVV2) eoss (nUM EvVn)(num Evgn)*
(2-17)
Thus the zeros of num EvZ are split between the V operators and
the terminating impedance in somewhat the same fashion as described
in Section 1.9. The difference lies in the fact that, generally,
arbitrary constants are incorporated in each operator and these can
cause the elimination of the zeros of num EvVl, ese MUM Evvn from

num EvZ as explained in the following section.

2.5 Specific V Operators

In the general synthesis problem, Z is known but V and ¢ are
not. Eqs, (2-6) and (2-7) provide a useful synthesis procedure
only if V and ¢ can be separated and { can be reduced in rank com-
pared with Z. The relationship given by eq. (2-17) is necessary
in the separation of V and { and in reducing the rank of ¢, but is
not sufficient by itself. To pursue the probvlem further, let 2
in eq. (2-1) be given specifically by

(2-18)

Assuming no common factors have been cancelled from the numerator
and denominator of Z after the expansion Z = V(.



and let , in eq. (2-10) be given specifically by

G - e * %y *:clb (2-19)
b + z—; Ca
where a and b are positive real constants and Za and clb are the
values of Z and (et s =aands = b, respectively. The V
operators corresponding to eqs. (2-18) and (2-19) are

a + :sZ'l 4
v, - 3 (2-20)

b + s
1b
V. & comeen——ae (2-21)
2 b+ L

ST
Theorem F
According to a theorem by P.I. Richa.rda,s ¢ in eq. (2-18)
is prf if a is a positive real constant and Z is prf. Also Cz in
eq. (2-19) is prf if b is a positive real constant and ¢, is prf.
Thus Richards' Theorem is a special case of Theorem A in
Section (1.1). Eq. (2-18) may be solved for ¢, to yleld

aZ - aza

(S e (2-22)

‘ -
%

The term s - a is a factor of both numerator and denominator in

eg. (2-22); therefore €y 1s the same rank as Z. But if EvZ_ =0,
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then s + a is also a factor of both the numerator and denomirator
in eq. (2-22) and €y is two less in rank than Z. Similarly, if
Evclb = 0, cz is two less in rank than < and thus four less in
rank than Z. But Ev() = O requires that EvZ, = 0." Thus making
EvZ, = EvZ, = O insures that (, is four less in rank than Z. This
is the principle of zero-cancellation synthesis.4

Conversely, let s = - a in eq. (2-22), Then, if EvZ, £ O,
€)(-a) = 25+ In this case, Z in eq. (2-18) has the factor s + a
in both its numerator and denominator.“ Cancellation of this
factor causes eq. (2-17) to be invalid as mentioned in the footnote
to that equation. Effectively num EvV:L is eliminated from num EvZ
when the s + a factor is cancelled.

¥
&Zb - bz. -a Z(_b) -b Za
w " RSV E Rl g
%% TS

To make Evclb =0, ie Cp = -Cl(-b)’ requires that

(a® - b¥) Z(p) -(a® - bz)zb

This is guaranteed if Zb = - z(«-b) or Evzb =0

e
.az( )*aza-z numEvZ‘
€1(~a) a+dg a num
z, “(-a)

Thus gl(_a) = Z, if num EvZ, £O

Then s * - a makes Z(_a) in eq. (2-18) indeterminate (%) and this
a common factor can be cancelled from both the numerator and
denominator of Z.
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Example 2

To illustrate these principles and the use of the V operator
in network synthesis, the following driving point impedance is
synthesized using the operators of eqs. (2-20) and ( 2-21) and the
form of eq. (2-12).

&8‘4"‘285"’982"’58 + 1

28° + 28° + 58 + 2

7=

The constants a and b are chosen such that EvZa = Eva = 0, Then,

since Z is of rank 7, Cl is of rank 3.

num EvZ = (2 - s%)(1 - 25%)

1
choosing a = E and b = /2 gives

3y2
Z, " V2 g
.z
v-\/i 3-1*25*
1" I+ L, T+
v V2
1
._.z-,,/E
g.ﬁ _Z 2i
1 1 1, 1-8
vZ V2
_ez#a+1
=

*
It is permissable to multiply the numerator and denominator of
V by a constant to simplify the computations.



- Y2
G "2
-\/50-5-34.14-.2.
2 . 4 T

N

'\/'551‘8-@4 -32+s+2

L 7z - 4s + 4

V2

The complete synthesis of Z is shown in Fig. (2-3). The components

of V, are derived from eq. (2-8).*

"

numzvvlal-zsz-(1+\/§s)(1-\/Es)

1+ 8
V., sa;e, V,_ =i, v, s —V2_.1, 31
11 25’ "2 %’ 12 2s 2‘;_2'/.5
21

Note that in the syntheses of Vi and Vz, non-reciprocal
gyrators are required since mm, = nyn, is not a perfect square.

Methods of eliminating such gyrators are discussed in Chapter III.

.._l — VY Y\
b ¢ Prad ! i
L L T# 8
Ta

Tz:

Fig. (2-3) Synthesis by Cascaded V Operators

'Eq. (2-9) could also have been used.
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Since the parentheses in eq. (2-12) have no significance, it
is permissable to combine Vl and V2 into a single operator and

synthesize the combination.

1+8
12 25 4° 4284
V.V, = 1l +2s - 4
1°2 148 ;2
1+s 'y =~ +38 +1
T+ 28

R g2 9 2
nmEvV1V2 (s“ +1) -5

The components of the combined operator are obtained from eq.
(2-8).%

2
-]
v wtefer o T 1
11 2s 22 Ss
32+11.§_8..
V12 ® %s
21

The complete synthesis of Z using the combined operator
appears in Fig. (2-4).

*Eq. (2-9) could also be used and would lead to a network of the
form of Fig. (1-7).
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Fig. (2-4) Synthesis using the Combined V Operator

2,6 Inverse, Unit and Squared V Operators

Eq. (2-1) may be solved for {; to yield

mzz - n:l

O R N

Eqs. (2-1) and (2-23) permit the definition of an inverse V

operator such that

- m2 -’nl
vt . L2 172 :1"2 (2-24)
™ " fp
b L TR L ]
From this definition, it follows that
vlvil . v{lv1 . % (2-25)

which defines a unit ¥ operator.
It should be noted that any operator which is the ratio of

two equal even polynomials in s, when operating cn < yields 6

e v ooy e st



Furthermore, any operator which is the ratio of two equal odd poly-
nomials in s, when operating on Cl, gives l/cl. The former acts
like a unit operator and the latter is an inverting operator.

The squared V operator may be derived directly from eq. (2-2).
(m3 + nyny) ¢ my(my ¢ m)
(x5 + myny) + ny(m + m,)

If a prf impedance is squared in the usual sense, the result is

(2-26)

2
ven"n

meaninglegss., However, if the squaring is done in the sense of eq.

(2-26), the result does have meaning in that Vf is prf if Vv, is prf.

2.7 The Commutative Law

Generally the commutative law dces not hold for the V operator.
However; under certain conditions, V1V2 = V2V « These conditions are

now derived using the V operators in eqs. (2-2) and (2-11).
(mymg + nyng) + (mng +nym,)

2 T TR, T hgmg) F g, 7 nohy) (2-27)
(mym; + npg) + (mong + nymg)
R e 0 B U = ) (e-e2)
For V1 and Vz to commute, it is necessary that
Mg = NNy
nl(m4 - ms) = ns(xu2 - ml) (2-29)

ny(my = mg) =n,(my - m)
Theorem G

The necessary and sufficient conditions for the commutation of
two V operators is

Mg MMy

fig "Hg " Ag =Wy (2-50)
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Eq. (2-30) follows directly from eq. (2-29).
With V, restricted to the form of eq. (2-2), it is pertinent to
compose a general form of V, which satisfies eq. (2-%0) and is prf.

This general form is

m.lF(a) + G(a)] + an(s)
sz(s) + G(s)] + nzF(s)

7, (2-31)

where F(s) and G(s) are even polynomials in s, ?%s'n% and ersnz are
reactance functions, and G(s)F(s)('ml + mz) - G(s)? + F(s)(mlmz-nlnz)zo

on the Jeo axla.*

One case of interest results if Vl and Vz are represented by

the equations

mz + CIzn2
v, - D (2-52)
m4 + a2n4
V, ® ————————e (2-33)
2 n, + n4

where a 1s a positive real constant. These two operators satisfy the
conditions of eq. (2-30) and thus are commtative. Also their form
is such that each may be synthesized by the non-reciprocal Darlington
procedure without transformers. Furthermore the combined operator,

V,V,s may also be synthesized without transformers.

*'i‘hese statements are verified in Appendix 1.C

For example, num Ev'vl - mg - aang
M ma

oo vll 'V22 -n—andvﬁ-n—ia

The same general form results for the synthesis of vlvz.



These syntheses are shown in Fig. (2-5).

a3 o e
) tao ( “ D +a (
V1V
v 10 or
! | Yo'y lz
™ momy *amon,
n') m2n4 + n2m4
o > l

Fig. (2-5\) Commutative Operator Syntheses

A second case of interest illustrates a pseudo-commutative

property possessed by two prf impedance functions represented by

15 and Y, as followg:

ml + nl
Yy = — (2-34)
l m, + n,
M, + N
1 1
Yo = g————m (2-55)
2 M2 + N2
Define two new operators vx and Vy such that
2
v_= (my +my) + K (my +mp) (2-36)
x Gnl *n17+ (m:a *nz)
2
v - (Hl . Nl) + K (M2 + NZ) (2-57)
y WLem) s M, +F,)

vwhere K is an arbitrary positive real constant. By rearranging

10
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V:‘t and Vy, it is easy to show that each is prf if Yl'and Yo are

prf.* Let Vx operate on Yo in the following manner to yield a new
function denoted by Zl

2
g oM tm) Ty * Ky ¢ mp)
1 m o+ y,(m, +ny)

(2-38)

Similarly, let Vy operate on Ty in the same way to yleld a second

new function 22

Oy eN) vy e KE(M, + )

Z (2-39)
RN SR LA
Eq. (2-38) may be rearranged to yield
2 M2 * M
+n, T2 *K +n
2y " :1 + n:L +n 1 (2-0)
2T P2M T
+n Y2
M2 * M

Since all terms on the right hand side of eq. (2-40) are prf, eq.
(2-40) may be matched term-for-term with eq. (2-5) and thus Z,
represents a prf driving point impedance. A similar p&-oof may be
applied to eq. (2-39) to show that Z, represents a prf driving
point impedance., Alternatively, from the definitions of Y1 and
Yos Z2 and Zl are identical and therefore nyz - Vyyl - Zl" 22- z.

Darlington-type syntheses of Vsz and Vle yield the two networks
of Fig. 2-6.""

This is proved in Appendix 1.D.
b These syntheses are presented in Appendix 1.E,



e

—  ——
T — T~
D X D :x
Y2 b1
Z =y, Z =Yy
51 Y2

o
Fig. (2-6) Pseudo-Commutative Operator Syntheses

The operations defined by eqs. (2-38) and‘(2-59) are considerably
different from the original operation defined in eq.(2-1)since each of
the terms in egs. (2-38) and (2-5¢)is a mixture of even and odd polynom-
ials ins. Stated another way, the operations in egs. (2-38)and (2-59)
do not require that resistance be present only in the terminating im-
pedance. v, and v, in Fig. (2-6) are generally RLC impedances and thus
resistance is permitted in both the operator and the termination. The
two networks in Fig. (2-6) illustrate the pseudo-commutative property
in that 1o} and Yo may be interchanged without changing the driving
point impedance, Z.

It should be understood that the intention of this discussion
was to show the existence of the pseudo-commutative property. Nostudy
has been made of ways in which a given driving point impedance might
be separated to obtain annd Y, or Vyand 1. This latter problem is dis-
cussed further as a proposed topic for future investigation in Chapter VI,

A third case of interest is the possible commutation of the
Richards' Theorem operators of eqs. (2-20) and (2-21). Combining

these operators yields



Z
L T s(bZ, + aclb) + ab
s
Vv, = (2-41)

4
2_1.£+ b
s (;: a

g
8? 2& +8(bvZ, + aclb) + ab

a
vzv1 (2-42)

s -—n(-z— >+ab

The requirement for commutation is le = Za and, when this

requirement is met, no transformers are required in the synthesis
of vlva. The necessary and sufficient conditions for satisfying this
requirement and its use in cascade synthesis procedures are devel-

oped in Chapters IIT and V.

2.8 The Distributive Law

The distributive law for the V operator is written as

(V) + V)6, = Vi&y *+ 7oy (2-43)

where V, and V, are given by eqs. (2-2) and (2-11), respectively.

Eq. (2-43) does not hold for all V, and V, unless (, is a one-ohm

resistance, For a general {,, a constraint is needed on vV, and V,

in order that eq. (2-43) be valid. To obtain this constraint, the
two sides of eq. (2-43) are expanded to give



mth T ths
(V +V)Cl <m +n, m4+n4>cl (2-44)

MOt Msb t s

v,¢ ¢ " (2-45)
16 * 21 m, +n,0y m, *n,0y
In eqgs. (2-44) and (2-45), make the substitution
m, =lkmy n, =kn, (2-46)

where k is a positive real constant. This requires that the ratio

of the denominators sf V2 and V1 equal k. The result is

(ml k5>§1’n +_

My * NGy

(V) + V)6 = V96 * Vply =
(2-47)

The result of eq. (2-47) may be extended as follows:

Theorem H

The V operator obeys the distributive law given by

(v1 *V, ¢ .. vn)c1 =G YV e TG
(2-48)
only if the denominators of Vl, V2 cees Vn are equal or differ by
a positive real constant.

Theorem H can be verified by expressing the left side of eq.
(2-48) in the form



1

2 ( G *my,) &

4o e 71 B K,
) ”‘z‘

(2-49)

which, when expanded, is identical to the right side of eq. (2-48).

Theoreml I

With the constraint of Theorem H, the even part numerators

are related by

num EvV = num l‘.v\Tl + num Ev‘»’2 + oo NUM !:vvn
(2-50)
Theorem I may be verified by direct expansion.
The distributive law, under the constraint of Theorem H, is
useful in synthesis procedures using impedance operators.
For example, let V in eq. (2-2) be distributed to give
e M ny

1 -mz +n2 ’mz *nz - lvl * Zvl (2-51)

1V, and oV, satisfy eq. (2-46) with k = 1, Thus they may be
separately synthesized, each terminated in Cl’ and then summed to
give Z, assuming lvl and 2Vl are prf.

V, may be distributed in an infinite number of vays to suit
the requirements of the perticular synthesis desired. However the
individual parts of Vl must each be prf if they are to represent

realizable networks.



Example 3
Consider the impedance given by

(‘s2 + 2)cl +8

VA .-_T—_—
8 +1+sc1

V. = 82+s+2

g5 +s8 +1

Vl is not a minimum resistance function. However it may be
easily synthesized without first removing resistance if it is dis-
tributed as follows:

8% + 1 s+1 ¥

R

s +s8+]1 8 +s8+1

num EvV, = (s%+ 1) +1

The parts of V:l are each prf and may be synthesized directly
from eqs. (2-6) and (2-8) without the use of gyrators (since both
even part numerators are perfect squares). The result appears in

Figo (2-7 )o

’Guilleminv describes & method known as "resistance padding*
which permits certain impedances to be realized by simple net-
works. Application of this method to V; yields the separation
indicated and the network of Fig. (2-7),

OV
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Fig. (2-7) Distributed Operator Syntlesis
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2,9 Impedance Operators in Matrix Form

The operations described in the previous sections may be more
concisely stated using matrix notation. These relations, all of

which may be verified by direct matrix expansion, are now presented.

vl [ ] ( 2"52)

Vz = (2-58 )
4

. l:"’1 "1] o |"
V1C1 [nz mz] 1 (2"54)

P
The partitioning of the first operator in this and other equations

is necessary to make the matrices compatible and to obtain a ratio
of polynomials as a final result.



A v e o . el

I

[ml nl] n ¢
| ["’1 "1] ["‘5 “5] ¢

When m, f kam,, and/or n, A kn,,

[ m] [rg mg]  [m2mp] fms n
g P4 s Ms|] [€

(V, +V,)¢ = nt n
1t )6
l"z “‘2] my D4 1
n nm
’ y (2-57)

Yhen m, = lcm2 and n, = lm2:
ms ns
["‘1 ‘v “1"?] ¢
(V) + V06 = [Tt TG
[ n2 mz ] 1

(2-58)
The numerator of the even part of Vl, in matrix form, 1is
* m_l n
- 1 - -
nun Ev Vl lvll n, m, mm, = 00,
(2-59)

*lvll = determinant of V,




g

The syntheses of Vl by the two Darlington procedures using
eqs. (2-8) and (2-9) may also be formulated in matrix notation

(assuming |V| is a perfect square, ie V,, = V,,).

L - 1/27
n N2 m |V1|

2 1/2
Vll m

|H

(2-60)

o]

21

V1 7y n ('lvl )1 /2]

-1 . (2-61)
"21 Vae| " (_IVIDVZ np J

The inverse and unit operators may also be expressed in matrix form.

- -
r ™ P
v, - (2-62)
Dy M
o .
M ™
adj v, = (2-68)
Me ™
. =
i, -0y
N
vll P2 ™ (2-64)
i
1
v [ml nl] mz -nl 1 0
-1 1
AN (2-65)
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vll ["‘2 "‘1] m o0 10

e - (2-86)
vl ["‘z '"1] ng my |01
1

The Richards' Theorem cperators of eqs., (2-20) and (2-21) and

the combined operator operating on Cz can be concisely expressed in

matrix form.

ViValp =

(2-67)

(2-68)

a sZaJ b 501
8

2 v la
A I |

2 Z‘

[ab +s & s(bZ + aglb)] ¢

(2 ab*,z,?::] .

(2-69)
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CHAPTE®R IITI
CASCADE SYNTHESIS USING IMPEDANCE OPERATORS OF RANK 2 AND 4

3.1 'Introduction

In this chapter impedance operators of rank 2 and 4 are in-
vestigated in detail. Through these operators, it is shown that
nine realizable network sections (Fig. 3-1)% containing one or more
arbitrary constants may always be removed from an RLC driving point
impedance function leaving, in cascade, a terminating impedance
which is realizable and contains the same arbitrary constants., These
constants may be used to produce desired characteristics in either
the removed sections or the terminating impedance.

Seven of the removed sections contain gyrators. Methods are
developed whereby, through proper choice of one or more of the
arbitrary constants, the gyrators may be eliminated so that the

removed sections are purely reactive and reciprocal.

3.2 TRank 2 Operator Formulation and Synthesis

Let Z be represented by eq. (2-18) and the associated V opera-
tor (which is of rank 2) by eq. (2-20). These equations are re-
peated below:
acl + sZ‘

s
S !
*3ome of the sections in Fig. (3-1) have non-cascade representations

which do not include gyrators or transformers. These are not con-
sidered since the purpose here is to develop cascade synthesis

Z =

(3-1)

" procedures,

- 6‘_
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- (3)
Vl = éi
——— vt — o——m—TB —_— e Y Y Y e o
D C D q
T 3
-
~— l > ® O ©
(a) (b) (c)
-
—i} 3*—’ ~—
. ¢
D q
& & T o O T 0
(d) (e) (£)
—— Y [ . 0
D¢ D<—>(
o
D ( D~ < .I.
° © ® ©

(g)

(h)

(continued on next page)
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o

{1)
Fig. (3-1) Network Sections which may Always be Removed from Z

The n- and m-type Darlington representations of eq. (3-2) are
the network sections of Figs. (3-la) and (3-lb), respectively. These
gections may always be removed from an RLC driving point impedance.
The element values and terminating impedances are shown in Fig. (3-2)
for the n-type and in Fig. (3-3) for the m-type synthesis. The
constant appearing in each figure is completely arbitrary except

that 1t must be positive real.

S —
D= DT X
ez, 2,
22

2y 2a®
8 a
[

Fig. (5-2) n-Type Rank 2 Fig. (3-3) m-Type Rank 2

*This has been discussed in Section 2.5.
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The n-type network of Fig. (3-2) is derived using eq. (2-8) as

follows:

V., = 2 ¢ 2 (3-3)

BEq. (2-9) is used in obtaining the m-type network of Fig.
(3-3). The termirating impedance (1/(,) is scaled to 23/¢; to

avoid the use of a transformer in the synthesis of Vl. Thus
2 &

IZ‘ Zz + SZ‘

7 = 2 (3-4)

1 a+s? (3-5)
and the synthesis oi‘V1 is

W2 2
-m:nm‘!.‘vv1 Z‘(a a™)

Vig "2 - (8-6)




3.3 Equivalent Rank 2 Operator Networks

Consider the network section shown in Fig. (3-4), Its Z

parameters are

[ Y5 - ]
21 " 25 " KzYs
(3-7)
D“ax - ( 2,
2, = KYg s K
21
o= 0
Figo (5-4)
a
Let Y, = Z':a' and K = Z,. Then eq. (3-7) becomes
aZ
a
Zy) "2 "5
(3-8)
aZ
&
Z1p "5 L1,
21
-]
Similarly let YS a-z: and K Za. Then
= z = E‘:
213 "% "
(5-9)

Z s
Z12 - _:- hd Z‘
21
Syntheses of eqs. (3-8) and (3-9) directly yield the sections of
Figs. (5-2) and (3-3). Therefore the networks of Pigs. (5-5) and
(3-6) are equivalent to those of Figs. (3-2) and (5-3), respec-



tively, and their sections may always be removed from Z. The sec-

Y tions appear in Figs. (3-lc) and (3-1d).

[-2 ;' Y'Y\ - J |
— 7 s 11
i _a aZa
| a S
- - Z
; S e Y T ¢
PR - a aad a 1
0 o
) Fig. (3-5) n-Type Rank 2 Fig. (3-6) m-Type Rank 2

: 3.4 Eliminating the Gyrator from a Rank 2 Operator

A method of eliminating the gyrators which appear in the net-
work sections of Figs. (3-1la) through (3-1d) is now derived so that

a network section containing only reactive reciprocal elements can

e e &
\

always be removed from Z. Let (; be expressed by eq. (2-19) and

[}

-its associated V operator by eq. (2-21). These equations are re-

B nm

peated below,

¢ * 80y
S
I by *

(3-10)

1; b + 8¢
! vz - alb
b*-—

| C1p

(3-11)

vhere b is a positive real constant, Substituting eq. (3-10) into

' | eq. (3-1) gives Z in terms of Coo
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(ab + g t—:—:—) o * s(bz‘ + aclb)
¢
G G

The associated impedance operator is

Z =

(3-12)

YA
: 2 “a
; ab + s(bza + aclb) + 8 E-I; :
- C 3‘13)

2

ab*(zb: +Ei;> +8 .z:.

Theorem J

As a corollary of Theorem A in Section 1.1, Hazony4 has shown
that, if Z is prf, then V in eq. (3-13) and §, in eq. (3-12) are
prf for a and b positive real or complex conjugates with a non-nega-
tive real part.*

The numerator of the even part of V may be obtained directly
from eq. (3-13) or, more easily, by the use of eq. (2-15). The

result is

num EvV = (12 - 32)(b2 - 32) (3-14)

In order to synthesize V without a gyrator, it is necessary
that eq. (3-14) be a perfect square so that Vip = Voyo This require-
ment means that

beze 2 (3-15)

num Ev V = (a2 - 32)

*Cl is no longer prf if a is complex even though 2 is prf.



Thus a and b must be real and equal or imaginary and opposite in

sign.
For the case b = + a, V in eq. (3-13) becomes*
A
a® + as(z, + G,) * 8% .c_".
2 71 1 2 Pla
a *+ 2 )+ s
AV AR %,

The n~type reciprocal Darlington synthesis of eq. (3-16)
extracts the network section of Fig. (3-le)in which the transfomer
polarity is additive. The element values and terminating impedance
appear in Fig. (3-7). The removed section is purely reactive and
contains one arbitrary positi;re real constant which is also con-

tained in the €2 termination,

* ¢
l];i‘.-x,n‘ 2}‘2 is a positive real number. This may be shown by writing:

fip 2% =P 2,

Z, T,
For b = + a, this expression becomes indeterminate (%). Using
L'Hospital's Rule yields

\
m S Za - %%,

SR A A
This 1limit is positive real since Cla and Z, are positive real for
any positive real value of a by Richards' Theorem, a

ke e -
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o0—
°
A a8 ml Cl a®
claDa Da ZaDa
°
z Cz
p— a?
8D a
F

Fig. (3-7) Gyrator Elimination for a Rank 2 V, b = + a

The element values in Fig. (3-7) are obtained from eqs. (2-8)
and (3-16), They are

(3-17)

‘ " .G- ’é;bu.(zl_’_l—

a ach
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For the case b = - a, two subcases result depending on
*
vhether Ev 2, 1s or is not equal to zero. For Ev 2, F 0, eq.

(3=13) becomes

V= =3 (3-18)

This gives the trivial result Z = C2'
For Ev 2, = 0, V in eq. (3-13) becomes™

A
R 2 "a
- - &8(2 + C ) - g —
a la [d
7 = la

4

2 1 1 2 *la
- - z_+—. -
a{a Cla) s 2—-3

(3-19)

* glb aZb-bZ‘
T-az‘-EZ;

Yorb = - ay
cl!-a[ - 2 Z -a) *
a a Za +a
This expression is unity unless Ev Z‘ = 0, in which case it be-
comes indeterminate (%). Using L'Hospitals' Rule in the latter case
gives
m S 2% *%,
b=>-a z‘ a Z; - i‘
This 1limit is a positive real number since the coefficients of az
in eq. (5-18) must be positive real, This follows from the fact

that V is positive real for any a and b which are complex conjugstes
with a non-negative real part.

-
All coefficients in eq. (3-19) are positive real since a is imaginary.

Also Cl(-a) = = {;, since Ev 7, = 0,
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The n-type reciprocal Darlington synthesis of eq. (3-19) again
yields the section of Fig. (3-le) but, in this case, the transformer

polarity is subtractive since

2 2
' numEvV'-('sz-az) -(32+m:) s &= o (3-20)

ot which ylelds a positive mutual inductance term in V12 and V21° This

network is shown in Fig. (3-8). It is obtained only if Ev Z‘ =0,

3 et
) '

&

JE———
) ‘

Zs .‘—\‘“

- a - _8 - clas
claD(-a) D(-a) zaD(-a.)

O
' '

2 | , ¢
. l ) a2
T SD(--a)
L

Fig. (3-8) Gyrator Elimination for a Rank 2 V, b = = a, Ev z, =0

[ —'}
s N

| AT |
' .

The element values in Fig. (3-8) are derived from eqs. (2-8)

¥ i

.- and (3-19).
T
R .2
wT v v _-l + s
[L 12 21 8D .y
| _a2_322a
[ v C1a
11 D,
BD(-a)

g (3-21)
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c (3-21)
P RO
%

sD(-a) -

Voo ®

b a 1 1 \#
EESHCARE o W Crhg v
() \Z,  Cippe-a 2, ¢

The section of Fig. (3-7) appears to be identical with the
Darlington Type C section, 5,7 but there are two important differ-
ences. First, realization of the Type C section demands that
num Ev Z have a factor of the fom (A2 - 32)2, requiring a pair
of real even part zeros of even multiplicity. Often this requires
the use of surplus factors. By contrast, the section of Fig. (3-7)
may be removed from Z for any configuration of even part zeros. In
essence surplus factors are already built into the impedance opera-
tor. Secondly, the section of Fig. (3-7) contains an arbitrary
constant whereas the Type C section does not. If this constant is
chosen so that Ev Za = 0, then, if these real zeros of Ev Z are o
second order, o is four less in rank than Z whereas, if they are
of first order, gz is two less in rank than Z.

The section of Fig. (3-8) is identical to the Brune network’
and requires that num Ev Z have a jo axis zero (Z must be a mini-

mum resistance function or the minimum resistance must have been

removed). Thus the-Brune network results from the impedance

*
D is a positive real number,
(=) po
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operator approach for the special choices b = - a and Ev Z‘ =0,

In the event Z is not a minimum resistance function, the mini-
mum resistance may be removed at the outset. Then the remaining
impedance can be expressed by eq. (3-12)., Choosing b = - a and
also choosing a so that Ev Z‘l = 0 again permits the removal of the
section of Fig. (3-8) and the termination ¢, 1s four less in rank
than Z. Now the minimum resistance may be removed from (, and the
remaining impedance expressed by eq. (3-12), again permitting the
removal of the section of Fig. (3-8). The process may be continued
until the termination is reduced to a rank of two or less. This .
yields the same result as the Brume procedure, where each step
using the impedance operator has its counterpart in the Brune
cycle* .

To summarize the results of Sections 3.2 through 3.4, it has
been shown that the network sections of Figs. (3-la) through (3-le)
may always be removed from a prf driving point impedance and that
the gyrators appearing in Figs. (3-1a) through (3-1d) may always
be eliminated to yield the reactive section of Fig. (3-le). The
first four sections contain a pair of real axis even part zeros
whereas the section of Fig. (3-le) contains either a pair of real

axis or a pair of imaginary axis even part zeros. In each of thé

*The cascade synthesis procedure of Guillemin,7 which was summarized
in Section 1.9, yields the same result when applied to the Brune
procedure as does the impedance operator approach above. In this

case, T(s) in eq. (1-54) denotes imaginary, rather than complex,
zeros.
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five sections, one arbitrary constant is available for choice. The
selection of this constant is now considered.

Assume the driving point impedance to be synthesized is not
a minimum resistance function. Several synthesis paths may be
followed. First, if Ev Z contains real axis zeros, the method of
zero cancellation syn‘l:hesis4 can be used in which a is chosen to
reduce the rank of ¢ of Cz' This choice permits a realization in
terms of any of the network sections of Figs. (3-la) through (3-1le)
(excepting the case b = - a, Ev Z, = 0).. Secondly, the minimum
resistance may be removed at the outset, after which the remalning
impedance is synthesized by the zero cancellation method using the
rank 4 V operator withb = - 3, Ev Z‘ = 0, This yields the Brune
network. Third, assuming again that the minimum resistance has
been removed from Z, a may be chosen to create a jo axis zero or
pole in C1 or Cz' This method is essentially the Bott-Duffin pro-
cedure, but in this case is designed to yield a cascade, rather

than a distributed, resmlt.9

3.5 Extended Bott-Duffin Cascade Synthesis Procedure

First, the conventional Bott-Duffin procedures’ 6 is reviewed
and the points essential to its extension are discussed. Let Z
as given by eq. (3-1) be a minimum resistance function. Then the
even part of Z has a jo axis zero at s = ;]coo and Z appears either

inductive or capacitive at that point

Z =sL or ﬁ- at s = jo (3-22)
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Solving eq. (3~1) for ¢, gives

aZ-sZ‘

G- < (3-23)
a - A
Z,
The zeros of the even parts of C1 and Z are identical from eq. (2—17Y

Therefore Ev 6 " Oat s = jmo.

Let a be chosen so that gl has a jo axis zero or pole at s -;juoo.
This requires that

a?Z2=-8Z2 =0 for a zero at s = jo
a o

(3-24)
aZa- sZ =0 fer a pole at s -,jroo

The first form of eq. (3-24) is applicable when Z appears

inductive at s = jaoo. Assume this to be the case, Then

Zl

Y

@ ey

=L at & = jo (3-25)

It follows that

Z‘ -aL =0 (3-26)

Eq. (3-26) has one positive real root since the function Z =~ sL
has one positive real zero.s
Cl in eq. (3-23) is the same rank as Z since there is a

cormon factor s - a in the numerator and denominator of the right

*Ev Z‘ A 0. Therefore num Ev V) does not appear in num Ev Z
(see discussion following eq. (2-22)).

= e S S5 .
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hand side, Creating a jw axis zero in ¢ insures that the impedance
remaining after the removal of this resonant circuit is four less in
rank than ¢,(and therefore z).

Customarily, the distributed Bott-Duffin network is obtained
from the foregoing procedure,* but it is also possible to obtain
the cascade representations of Figs. (3-2) and (5-3).9

With these concepts in mind, the Bott-Duffin procedure can be
extended. Let ¢, be given by eq. (3-10) and Z by eq. (3-12). Solv-

ing eq. {3-10) for (o gives

52 = b - 5 (5'27)

¢
Ly 1

choosing b equal to + a so that the pertinent V operator in eq.
(3-13) may be synthesized without a gyrator causes eq. (3-27) to

take the form
[, ® e (3-28)
The even part of ﬁ1 is zero at s = jmo. Therefore,

Gy =8 or 1 at =

17y or gon b8t iw

and all of the previous arguments apply with Z replaced by Cl’ Cl
bycz, I.byl.ldebyCl. The even part of Cais gero at s -joo

*This is shown in Fig. (5-8).



and & is chosen to create a zero or pole in cz at that point.

agl - scla =0 for a zero at s = jmo

(3-29)
2y, ~ 58y =0 for a pole at s = Joo,
Again considering the inductive case,
cla C1
= 5L at 8= jo (3-30)
€1 ~ 2, =0 o (3-31)

Eq. (3-31) has one positive real root. €y (q and Z are of the
same rank and, when the resonant circuit is removed, the remain-
ing termination is four less in rank than Z. The network is that

of Fig. (3-7), where 52 contains a removable resonant circuit,

3.6 Rank 2 Operator Examples

The syntheses which result for the various choices of a are

illustrated by considering the following driving point impedance

function:
2 2
78, *8*%1 ere nmEvZ= (s +2)
s +8 +4
Solution A

Since Z is a minimum resistance function, the Bott-Duffin
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procedure may be used with the rank 2 V operator to synthesize Z.
Z behaves like %at s = j /2 and a is chosen so that gl has a jo
axis zero (aZ - sz, * 0) at that point. The resulting a is posi-

tive real and therefore Cl is prf. The calculations yield

2
a-l, za-]_/z, gl-_.s_é-;.-z__
48" + 68 + 8
1+3

2
Vl l—r-fs-,numEv\Zl l-=s

The cascade syntheses of V/'1 and C1 give networks corresponding to
Figs. (3-2) and (3-3). Thc results appear in Figs. (3-9) and
(5'10)0

— \ — AAAA
alip—— i 1
1 8 1
D +z 4 % D +7 (
3 -L- 38
/ % z T ¢
1 1 4 8
28 T 33 T 2
o— O
Fig. (3-9) n-Type Rank 2 Fig. (3-10) m-Type Rark 2
Solution B

The extended Bott-Duffin procedure may be used with the Rank
4 V operator to synthesize Z. a is chosen so that cz has a jm axis

zero at 8 = J\/Z. The a obtained is again positive real andb = + a,
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R
'

B e e 4
h '

Carrying through the calculations yields
ag) = 8Ly, =0 at &= J?

¢ -
but 21—‘-%%—% at s = 3v2

1 _ fa Z‘(a-l)
Therefore —s-- : a3 2)

Expanding and collecting terms gives

6 5 4

a =-a + 2a 8 2

- l2a" - 8a -20:-16é0

(12-21-2)(12*a+4)(12+2) =0

The positive real root is a = 1 +\/5. Then

3 +/3 3 +v3
2, -8, -8

52*2

4:(5E +2) +4(3 -/%)s

Cz'

28 + SR04 028
Va ' '

Fr6vEsrarays

4
numEvV-(4+2\/!-sz)
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The syntheses of V and ¢ corresponding to Fig. (3-7) appear in
Tig. (3-11).

N o

3 +2y3 A3 +/3

I L

Fig. (3-11) Gyrator Elimination, b = +a

Solution C

The method of zero-cancellation synthesis may also be used

to synthesize Z. In this case, a = j /2 makes Ev Z, = 0 and thus

"'1 is two less in rank than Z. The results are
1 l -8

’-.'375’ G "7v3s 1T

Because a is not positive real, 51 and Vl are not prf. Therefore
no syntheses corresponding to Figs. (3-2) and (5-3) are showm.
However, a synthesis corresponding to Fig. (3-8) is possible if
b = - J /2 Choosing this value for b makes Ev Gp "Ev 2, =0

which makes ¢, four less in rank than Z. Carrying out the calcu-

lations gives
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”

1
glb"cla")g’ 2%

232+%+2 2

vV o —, numEvV-(sz+2)
8—2- + 28+ 2
The synthesis of Z is given in Fig. (3-12) and is identical with
that which results if the Brune synthesis procedure is used to

synthesize Z.

-
o

INT

[ Lo

Fig. (3-12) Oyrator Elimination, b = - a, BvZ =0

There is no loss in generality from having considered a rank
4 minimum resistance impedance in this example. ¥or the case of a
non-minimm resistance rank 4 impedance, the minimum resistance may
be extracted from Z initially. For impedances of higher rank, the

procedures are the same but (1 and Cz are correspondingly higher
in rank.
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3.7 TRank 4 Operator n-Type Realization

The procedures developed in Sections 3.2 through 3.6 do not
consider the realization of complex even part zeros. The synthesis
of the rank 4 operator in eq. (3-13), in which a and b are generally
complex conjugates with a non-negative real part, fulfills this need.
The two Darlington procedures are applied to eq. (3-13) resulting in
additional network sections which may always be removed from Z,

These appear in Fig. (3-1f) through (3-1i).

The n-type Darlington synthesis of eq. (3-132) is obtained by

putting eq. (3-14) in the fomm

2 2 2 2
num Ev V = (s + ab) - s“(a + b) (3-32)
and employing eq. (2-8). The results are
2
(8" +ab) a+b
V12 Ds z D
21
A ¢
2 2 *1b
s z‘- + ab s T + ab

Vi M Voo T gy  (5-38)
2
1b

b
D =gp-+
Z, ¢

The removed section appears in Fig. (3-1f) and the complete network

in Pig. (3-13). The two constants a and b are still completely
arbitrary.

e T ————
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P—-—_
e .
D +252 ¢
7 /\
Zaﬂ ) c_li Cz
ClbD % zaD
1,
—|- Ds
o—

Fig. (3-13) n-Type Rank 4

It is often possible to simplify the network of Fig. (3-13)
by replacing the transformer by an inductor. This requires that
Z, = 0y, in eq. (3-33) which is equivalent to requiring that the
operators Vl and V2 be commutative. This condition is investi-

gated in Appendix III.

3.8 Rank 4 Operator m-Type Realization

The m-type Darlington synthesis of eq. (3-13) may be obtained
directly using the negative of eq. (3-32) in conjunction with eq.
(2-9). However it is possible to eliminate an element if the ter-

minating impedance is first scaled. Let Z in eq. (3-2) be rewritten

4 ¢
kz(sz a—;—b + ab) ;; + (bz‘ * ‘%)

¢ 4
Zlb‘_kb’a 2
A oz e

a

2 =

(5-34)
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where k 1s an arbitrary positive real constant and the termination

¢
is now --% . The associated V operator is
k

szkz é + s(bz, + aclb) + k° ab

V-
2 c1b

(3-35)

+k_+

_ + ab
2y b

and

R 2
numn Ev V = k2(32 + ab) - kzaz( a+h) (3-36)

1

The m-type Z parameters for eq. (3-35) are

z
a
— (bZ_ + al,, )s
v .clb s 1b
11 > zZ,
s + ab ——
N
z
kz_"_czl-r_‘T}
S Ut (3-37)
22 > f‘
s + ab —
ST
zZ,
(a +b)s +k-—-(a + ab)
7 . Clb _ ‘1
12 2 zZ,
H s +*+ab ——

9"

The V12 expression in eq. (3-37) may be rewritten in two ways.,

2
C]_b (a +Db)s *k SZ(ZE]:-I

Vig " " 7 tk
21 s + ab 2
b (3-38)
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Z

| € 2% (2 +b) 2
a +b)s +k ab 2 (1 - 2
. ﬁb ﬁb ¢ Z,
! V., = +k
12 " z, 2
1 8 + ab >
B iy (3-39)

The eimilarity of eqs. (3-37), (3-38) and (3-39) with eqs.
(1-34) and (1-36) should be noted. By direct substitution of eqs.
(3-37) and (3-38) or (3-39), the extended residue condition of
either eq. (1-25) or (1-27) may be shown to hold with the equal sign.
Therefore Z in eq. (3-34) may be realized by networks having the
form of Figs. (1-2) and (1-3) except that the termination is kz/tz
instead of one ohm and an extra gyrator is required to take care of
the last term in eqs. (3-38) and (3-39) (see Fig. 1-7).

Eqs. (3-37) and (3~38) are identified with eq. (1-34) to yield

(3-40)

h a
L -f\z@top
22 a
Similarly, egs. (3-37) and (3-39) may be identified with eq. (1-36)

to yield
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z
a
S Gl
z
-k-—"—.(l#b)
S Cp
(2-41)
1. 35L.<§z +ap :)
Ci GpN~ ¢ B
Z
1 2 “a a
-k-— ¢
C;; Clb a clb:>

Each of the transformers represented by eqs. (3-40) and (3-41)
has a T equivalent. For the inductive transformer of eq. (3-40) the

T equivalent values are

Ly =Ly -M
I.2 = 1.22 -M (3-42)
Ly =M

while for the capacitive transformer of eq. (3-41), they are
1.1 1
T % g

(3-43)

S
| ]
anb-'
D
]
19

offr
S i



It is now shown that the scaling constant k may always be

chosen to make either L1 or L2 zero in eq. (3-42) or é=~or'%- zero
1 R

in eq. (3-43) while insuring that the remaining transformer elements
are positive., Consider the inductive transformer case first. To

make L1 = 0 requires that
bZ_ + ag
I 1b :
k — 5T (3-44)
The quantities bZ‘ + 'clb and a + b are positive real. Hence a
positive real k can always be found to satisfy eq. (3-44). The

extended residue condition holds for all positive real k.

2
Lll L22 -M*" >0 forall +k (3-45)

Vith L, = 0, eq. (3-45) becomes

M(L, - ¥) >0 (3-46)

Since M is always positive from eq. (3-40), L2 must be positive.
Similarly k may be chosen to make Lz\zero in which case L1 is

always positive. The required value of k is

a+hb

k = T (3-47)

-— P o——

Za clb

A completely parallel development for the capacitive trans-
formers yields eq. (3-44) to make l/c1 zero and eq. (3-47) to make
1/C2 zero.
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The syntheses of Z with k satisfying eq. (3-44) appear in Figs.

(3-14) and (3-15). The constants a and b in these networks

]

+k
a A
D ¢ 2(
k 1b
-1
<C1b )e .
_r‘YYY\ k
Z Ty
»2
- 7 T
k(a + b
Rl
o
Fig., (3-14) m-Type Rank 4 Inductive
—_— .k Z,
- Ty
&~ =
D (
z 2
kab ~“a
s <C1b 1> 2
A | L k™
bl gz
)‘(’,—T‘c kz(a +b) |
o) | T T
o

Fig. (3-15) m-Type Rark 4 Capacitive

are still completely arbitrary. The network sections in Figs. (3-14)
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and (3-15) may always be removed from Z and thus appear in Figs.
(3-1g) and (3-1h). Note that only four elements are presert in
each df these removed sections, whereas five elements are necessary
in the n-type section of Fig. (3-1f).

A further simplification may often be made in the m-type
synthesis of V in eq. (3-13). Consider the V1o expression in eq.
(3-37). It b = 2,5 the entire non-reciprocE% term reduces to a

non-lcaded gyrator. This is discussed in Appendix III,

3.9 Eliminating the Gyrator from a Rank 4 Operator

Following the pattern of Section 3.4, a means of eliminating
the gyrators in Figs. (3-13), (3-14) and (3-15) is now derived.
The result is the network section of Fig. (3-1i), a purely reactive
section with two arbitrary constants. The gyrator elimination is
accomplished through the following transformations.
Let
cbs * Gz

C, = ————¢ (3-48)
C + —— Cs

c2c

a¢, + 5y,
d"‘f—c4

Substituting eq. (3-49) into eq. (3-48) gives

¢ - (3~49)

<Ed +8° 2°>;4 + s(d(2 + °5$d) |
CZ - (5-50)

X C
) (Ed + s E::- 4:6- + E;i>c4

\
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Eq. (3-50) should be compared with eq. (3-12). ¢, 18 prf if (, 1s
prf (and thus Z prf) and if ¢ and d are either positive real con-
stants or complex conjugates with a non-negative real part.

It is now necessary to substitute eq. (3-50) into eq. (3-12)
in order to express Z in terms of a new V operator (of rank 8)
operating on { 4° The new V has four arbitrary constants. Proper
choice of two of these permits a synthesis of the new V without a

gyrator. The results of the substitution are

(Ao + A282 + 14.43‘1)(4 + s(Al + Assz)
Z = 5 vy 5 (3-51)
(Bo +Bys” + B8 ) o+ s(Bl + Bss )54
where
A =abed = B
o o
A =

1 ab(dgzc + cCSd) + cd(bz, + aclb)

to
L}

d
1 “(@;*"‘ te r*

e 2, d . ¢
A, =ab =2 s cd 2+ (b2 +a —
2 fsa Gy : Clb )(C?.c ‘sa)
gSd C1p b a (8-52)
AR ARG Ol

g
Ay = -C_;_. (de,, + °c:'>d) + _& (bz, + agy,)

R D) (r =)

A _zac2c - 1
4 0l B

The assoclated V operator is
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2 3 4
7 - Ao + Als + Azs + Ass + A4s

2 3 4
Bo + Bls + Bza + Bsa + B4s

(3-53)

Its even part numerator may be easily formulated using eq.

(2-15).

nmEv V = (12 - 32)(b2 - 32)(c2 - 82)(62 - 82)
' (3=-54)

- [azbz - (12 + bz)s2 + 34][c2d2 - (c2 + d2)s2 + 34]
To synthesize V without a gyrator, it is necessary that eq.

(3-54) be a perfect square. This requirement is satisfied 1"

c=+a, d=+Db (3-55)

which causes eq. (3-54) to become
num Ev V = [2%% - (12 + b2)32 + 34]2 (3-56)

V in eq. (3-53) may now be synthesized by the n-type Darlington
procedure to yield the section of Fig. (3-1i) and the network of
Figo (5-16) )

*The minus signs are applicable only if a and b are pure imaginaries
since ¢ and d may not have negative real parts. If a and b are
imaginary, then b = - a and the conditions of eqs. (3-18) through
(3-21) apply. Thus either the synthesis is trivial or the gyrator
has already been removed. Therefore only the plus signs in eq.
(3-55) are of importance.
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L
T B8

Fig. 3-16 Gyrator Elimination for a Rank 4 V

-

The components of V are obtained from

As4+ *a?‘b2
v 4 2

11 B{s ﬁ%}

B4s4 + B + azb2

s‘(2 )
-(a +b)¢a2b2
s‘<2

Performing partial fraction expansions, eq. (3-57) becomes

4 AB
ae s G D

(3-57)

12

4
v - —
11 Bla 35 o Bl
8 + 5
3

(5-58)



2
a
\' = + +
22 Bls ES
(3-58)
(_ a.:‘:%-b2 - azb2 - Bl)
B
2 3 1 B
V -v -azb + 8 + e 5
12 21 B.s B, B
1 3 2 1
8 * ——
By

The first terms yield a capacitor. The second terms give an ideal
subtractive transformer. The third terms yield a capacitive-loaded
ideal additive transformer. This last statement may be verified by

considering the network in Fig. (3-17) amd its Z parameters in eq.

(3-59).
- ] —
sC 011
.. 2, "
s + noo
811 sM SL22
* 0L
7 a2 22
o~ ° 22 32 R mg
Fig. (3-17) Capacitive Loaded Y (3-59)
Transformer Network z 2 -0
12 21 2 2
s ¢ (oo
2 1

m =
o Tk * Ly, + )

Matching terms between eq. (3-59) and the last terms in eq.

(3-58) gives



L » A-z- - a2b2B3 - fé
1" B Bi B,
2
2R Bl B]2' D5
(3-60)
T a2+b2 ) azbaB3 _1
B —2 B
1 B 3
1
B
1 . 1
c 5, (Lg +Lpp + )

The network sections of Figs. (3-13) through (3-16) each have
a quadruplet of even part zeros. The section of Fig., (3-16) is
identical in form to the Darlington D section but again there are
two differences. First,realization of the D section requires that

R
2. B) , which ofter necessitates the.

num EvZ have a term (s4 +AS
use of surplus factors. These surplus factors are effectively built
into the impedance operator. Secondly, the section of Fig. (3-16)
contains two arbitrary constants also contained in 54. If these
constants are chosen so that Ev Za = Ev Zb = 0, then, if these com-

plex zeros of Ev Z are of second order, €4 18 four less in rank

than Z.

3.10 A General Cascade Reciprocal Synthesis Procedure#

*
The specific procedure is new but the philosophy behind it is that
of Guillemin as discussed in Section 1l.9.
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The combination of the principle of zero cancellation synthesis
with the syntheses developed in Sections (3-4) and (3-9) results in
a general cascade reciprocal synthesis procedure applicable to any
prf driving point impedance. The overall procedure has been out-
lined in Section 1.9. The network sections of Figs. (3-7), (3-8)
and (3-16) are used to realize real, imaginary and complex zeros,
respectively, of num Ev Z, In each case the arbitrary constants are
chosen to make Ev Za = Ev Zb = 0 in order to reduce the rank of the
terminating impedance. The procedure is illustrated by the follow-

ing examples,

3.11 TRank 4 Operator Examples

The principles developed in Sections 3.7 through 3,10 are

illustrated by considering the following driving point impedance

function.

35 + 14 32 + 28 +4

3
z-

33+432+%is+2

where
num Ev Z = (2 - 32)(32 +2s + 2)(32 - 28 + 2)

Solution A

) Zero cancellation synthesis may be used in conjunction with
the rank 4Voperator to synthesize Z. a and b are chosen to make
Ev Za = Ev Zb =0 and thus €, is reduced in rank by four. The cal-
culations yield



-99 -

a.l‘J,b-l"'J

1 S5 7 -

Then, from eq. (3-1),

.3
ST
From eqs. (3-13) and (3-32),
3 32 + 2 s +2
Vet
-5' s + 38 + 2

R

num Ev V = (32 +2) - 482

and using eq. (3-12), 3

§S*2

52-3—-——, numEvcz-z-s
3'8 +1

4

The n-type synthesis of V is obtained by means of eq. (3-33). The
i network appears in Fig. (3-18). Note that the removed section
realizes the quadruplet of even part complex zeros and that V12
~ contains the left-half plane pair and V21 the ‘right-half plane pair.
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Fig. (3-18) n-Type Rank 4
To obtain the m-type works of Figs. (3-14) and (3-15), k

must be chosen to satisfy eq. (3-44). The required valuve is

2
k=3

Then, from eqs. (3-35) and (3-36),

V =
%az+$—§s+2
nm Ev V = o (2+2)2-1—Gs2
um kv Egs 35
and the termination is
ch. “1>
Ca s+2

V may now be synthesized using eqs. (3-40) and (5-42) or eqs. (3-41)
and (3-483). The networks appear in Figs. (3-19) and (3-20), respec-

tively., Oncec again the removed section realizes the quadruplet of
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‘ complex even part zeros and the set is split between V12 and V21

as in the n-type case.

| 7 82 a .
! 225 378

( Fig. (3-19) m-Type Rank 4 Inductive

2
25
D=, 2>
-3
z — = 34,
458
e, 4 b
> < 3 T
- 4
‘15
>

Fig. (3-20) m-Type Rank 4 Capacitive
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Solution B

Zero cancellation synthesis may also be used in conjunction
with the Rank 8 V operator to synthesize Z. a and b are chosen as
before to make the { 4 termination four less in rank than Z,and ¢
and d are chosen equal to a and b,respectively, to syntheeizerwith-

out a gyrator. The results are

_ 357 + 3123 _ 357 - 4123
C2a +44 * Cap '_5‘144 —

C3a _ 80
E;: 39

Then, from eqs. (3-52), (3-53) and (3-54)

Vs

4 R
nmEv V = (s + 4)

and from eq. (3-50)

The components of Fig. (3-16) may be computed from eqs. (%-58)
and (5-&).
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v =98, 13s _ .415s
1 " 3ls 62 2, 38

8 +

3.888

s 353

V. = 96 , 1288

22  ZBls

V. =y =36 , 8 _1.27s
127 '21 T Fls T BT T 7, B8l
3

The network appears in Fig. (3-21). Note that the removed section
is reactive and reciprocal and that the termination is four less

in rank than Z, as anticipated. Once again the quadruplet of even
part zeros 1is realized by the removed section but in this case V12
V21 so that V12 contains the entire quadruplet instead of just the

left-half plane pair.

o /\/\/\,

o ° 256
- T
13s 8s 128s 18
2 31 0
] L
z o 116,83
]
8 Ja— 82 1312 L
5,56 1.00s ) W% T
8
3.06 °
1.
L 2 e

Fig. (3-21) Gyrator Elimination, ¢ =a and d = b



CHAPTE®R IV

CASCADE SYNTHESIS USING AN IMPEDANCE OPERATOR OF RANK 6

4.1 Introduction

In this chapter, the impedance operator of rank 6 is discussed.
Four additional network sections are derived (Fig. 4-1) which may
always be removed from an RLC driving point impedance function. Each
section contains three constants also contained in the terminating
impedance. In Figs. (4-la) and (4-1b), one constant must be posi-
tive real while the others may be complex conjugates with non-negative
real parts. In Figs. (4-lc) and (4-1d), all three constants must, i
general, be positive real with two of them equal. "As in the pre~
vious chapter, the constants may be chosen to produce desired char-

acteristics in either the removed sections or the terminating impe-

dance.
. © = ——eee
k>_<————9-(j > E Q
o ® L] ®
- .

(a) (v)

(continued on next page)
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Fig. (4-1) Additional Sections which may Always be Removed from Z

4,2 Rank 6 Operator Formulation

Let 2, ¢, and (, be represented by egs. (2-1¢), (2-19) and

(3-49), respectively. These equations are repeated below.

al, + sz
Z.-l__é-

By comﬁining these equations, Z may be expressed in

(4-1)

(4-2)

(4-3)

terms of CS'
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(C<> + 0252)C5 + s(Cl + Cssz)

z - z 7 (4-4)
(Do + Dzs ) o+ s(Dl + Dss )C5
where
Co = gbc = Do
C, = ab,, *+ bcZ + cacl.b
ab be ca
D B emmmr ¢ b
1 C2:: Za clb . ( )
c A z 45
C2 = g ._]_b- + b __8._ + C —?—
C2c G2 S
Coc .. G2 b
D =L +p =S
2 C1!: Za 2:1_
C. = Zac2c -l
3 [4
1b 3
The associated V operator is
Co + Cls + Czsz + C‘,’s5
V= 5 T (4-6)
Do + Dls + Dzs "+ DS’ .

-

Its even part numerator, from eq. (2-15), is

rum Ev V = (a° - 5°)(b° - s7)(c* - 8%)

2 2
= [(a +b + c)s2 *abc] - 82[52 +ab +bc + ca]

(4-7)
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In each of the equations (4-1), (4-2) and (4-3), the impedance
on the right (cl, G, or Cs) is prf if the impedance on the left
(Z, ¢ or 52) is prf and if a, b and c are real. Also (, is prf if
a and b are complex conjugates with a non-negative real part and
Z is prf. It follows that {z is prf if c is positive real,
Similarly, if a is positive real, Cl is prf. Then, if b and ¢ are

complex conjugates with a non-negative real part, CS ie prf.

Theorem X

In eq. (4-4), gs and V are prf if b is positive real and a
and ¢ are complex conjugates with a non-negative real part.

To verify Theorem K, it is sufficient to show that the coef-
ficients of the V operator in eq. (4-6) are unchanged by a permu-
tation of the three constants a, b and c.* Then, letting a —> b,
b => c and ¢ =—> a does not change V and thus does not change 55.
For example, a =1, b =1 + jand ¢c =1 - j is a permissable set
of constants to insure that V and CS are prf if Z is prf. It

follows that a =1 - j, b =1l and ¢ =1 + jJ is also a permissable

set.

4.3 Rank 6 Operator Synthesis

The general n - and m-type Darlington syntheses of eq. (4-6)

are now derived. The procedure is much the same as that used in

*The invariance of V under a permutation of the three constants is
proved in Appendix IV.
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connection with the general rank 6 impedance in Section 1.7 except
that the termination is no longer one ohm.

For the n-type synthesis,

/02 abe
czs2 + abc B, "D, J°®

abc . 3 1
v - - + —
11 R D.s D
s(Dgs”™ + D)) 1T R, ﬁl
3
2 abc )
D.s> + abe é“, )8
2 abe T "1 }
Yo " T b T, D (4-€)
s(Dss + Dl) 1 82 . _,%
3

v _(a+b+c)sz#abcis(32+ab + be + ca)

12 %
21 s(Dgs”™ + D))

The equation for V12 may be separated in two ways to give:

21
2
<a+g+0_;b.;° s:%_d—l-ab-bc'ca)
v. = 8bc 3 1 +3 s Bipee
12 Dls 2 D, - Dl
21 & *5,
3 (4-9)
D
a+b +c _abc 1 - ok
°r abc 53 -ﬁi-)s:ﬁ;(ab’bc*ca b;> 1
vy =gt ! -,
12 Di® 2, 1 s
21 S
(4-10)

As explained in Section 1.7, the first terms in Vn, sz and
Vlz form a capacitor. The last term in Vl2 is a non-loaded gyrator.

21
The residues of the last term in Vn and %2 along with those of
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the middle terms in V,,

A 1
eqs. (1-25) and (1-27§ with the equal sign, indicating the use of

satisfy the extended residue conditions of

Figs. (1-2) and (1-3). The complete synthesis of Z, using the
inductive form of Fig. (1-2) and eqs. (1-34), (4-8) and (4-9),
appears in Fig. (4-2) where

l__ab+bc+ca
D, D,

o o
=l

1
Lll = b-1-<02 - abc

(4-11)

UlU
-

1
I‘22 ﬁ;<D2 - abc

Ulb

M -DL(a+b*c-abc
1

!

>.£r”___-“ih

ab + bc + ca

Fig. (4-2) n-Type Rank 6 Inductive



In order to avoid a second transformer in the m-type synthesis
of V, the terminating impedance CS may be scaled., Let the new ter-
mination be cs/kz, where k is an arbitrary positive real constant.
Then V in eq. (4-6) becomes | '

Ck? + Cys + Cks® + Cys®
0 1 3 ,
I (4-12)
1ks + Dos g8

V=

DO*D

and eq. (4-7) becomes

2
num Ev V = kzr(a +b + ¢:)s2 + abc]z - k232[32 +ab +bc + ca]

(4-13)
abc C
Thez c -}-CC - 5)3
53 D2 1 D2
n "9, " Z, &b
8"+ =
D,
. ﬁ (D ) abe D5>
Dks D, 71 D,
Voo = —p— * (4-14)
2 2 _ abe
] + —
D,

V. = ks(s® +ab + bc + ca) + k [(ub*c)sz +abcl
12 2 )
pal D28 + abc

Rearranging the V]_2 expression yields

21
k abe a+b +¢ R
‘s b;ab*bc'fca D—;)s:l( Dz -1)
1275, * T, &% +k
21 D

2 (4-15)
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or
k abc abck _a+hb +¢
f-(ab *+bc +ca-pg= s:—ﬁ—Cl S N )
ks R 2 2 3 k(atb+c)
V L~ +
12 D, 2, abc - D,
21 A

(4-16)

1o = -1
If k C5 52 the first terms in v 1’ sz and Viz reduce to

an inductor.

3 21

The complete synthesis of Z, using the inductive form

of Fig. (1-2) and eqs. (1-34) and (4-14) appears in Fig. (4-3), where

in this case,

k- ofrbre )
2
I‘l :ci—c—z-
1 abce D2
(4-17)
L -?a %
22 Z abc D,
b + be + Cq
- a C ca =
K =0 B,
0~
",
D 2¢, C
7
2 %
Ly
o~

Fig. (4-3) m-Type Rank 6 Inductive
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The syntheses appearing in Figs. (4-2) and (4-3) are perfectly
general and the constants a, b and c are still arbitrary in both the
remcved network section and the termination cs. Each of the sections
of Figs. (4=2) and (4-3) can always be removed from Z and therefore |
they are included as the first two sections in Fig. (4~1). Also,
each section realizes six even part zeros, two of which are real and
the remaining four complex.

For imoedances of rank 6, 10, 14 ,..., the even part numerator
of Z always contains at least one positive real root in addition to
its pairs of complex conjugate roots. Hence, for such impedances,
it is always possible to choose a, b and ¢ such that Ev Za = Ev Zb =
Ev 2 c " O. This synthesis procedure reduces the rank of C5 by six.
For impedances of rank 4, 8, 12 ...., there is no guarantee of a
positive real even part zero and thus the reduction in rank of CS by
six is not always possible. In these latter cases, the rank 4 V
operator discussed in Chapter IIT may be employed and a reduction
in rank by four obtained.

The arbitrary constants may also be utilized to simplify the
networks of Figs. (4-2) and (4-3). This choice of the arbitrary

constants is now investigated.

4.4 Eliminating a Gyrator from Figures (4-2) and (4-3)

In the discussion of the m~type Darlington synthesis of the
rank 4 V operator, the terminating impedance was scaled to eliminate

an element from the removed sections. In the case of the rank 6 V
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operator, scaling has already been employed to obtain the single
capacitor in Fig. (4-2)¥ and the single inductor in Pig. (4-3).
Thus further simplification of these networks requires a proper
choice of one or more of the arbitrary constants.

A considerable simplification results if the non-re‘ciprocal
portions of the middle terms in the V12 expressions'of eqs. (4-9),
(4-10), (4-15} and (4-16) can be made %o vanish. To obtain this

gimplification requires that

ZC
1 - 2 (r— =ab +bc + ca (4-18)
3 a

in eqs. (4-9) and (4-10) and that

¢ C C
D-a-ﬂg*b—zzf*cz—n-)-a*bﬂ-c (4-19)

clb a
in eqs. (4-15) and (4-16). Egq. (4-18) applies to the n-type and
eq. (4-19) to the m-type Darlington synthesis. Using eqs. (4-1)
and (4-2), it is possible to express eqs. (4-18) and (4-19) in

terms of a, b, ¢, Z,s %, and Zc.' The result for eq. (4-18) is

(b2 - cz)asz + (cz - az)bzr'zb + (az-bz)csz
ab+bc*ca--jz ¥ —E—aé ———
{(b™ - ¢ )&Za - )bzb + (a®~b )cZ
(4-20)

*The scaling factor is unity for the n-type synthesis,



which reduceé to

8z (b - c) + bz (c - a) +cZ (a =b) =0  (4~21)

while the result for eq. (4-19) is

(b2 - cz)bcza + (02 - az)caZb + (82 - bz)abzc

+b+c =
: © E;EA; cé)aza + (cé - az)bzb *-(aé-

- SEBczc

(4-22)

which reduces to

Za(b -c) + Zb(c -a) + Zc(a -b) =0 (4-23)

If any two of the arbitrary constants are chosen equal, =qgs. (4-21)
and (4-23) are satisfied. But if, for example, b is chosen equal
to a, then a and B must be positive real and therefore ¢ must be
positive real, if V and cs are to be prf. Thus the arbitrariness
of the constants is reduced.

The question arises as to whether a positive real c¢ can b;
found such that eqs. (4-21) and (4-23) are satisfied with a and b
remaining arbitrary. These constraints are investigated in detail
in Appendix V, where it is shown that it is often, but not always,
possible to choose such a value of c.

With the conditions of eqs. (4-21) and (4-23) satisfied, the

Vy, expressions in eqs. (4-9) and (4-10) become
21
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0 1

[Aa—t

[t
' .

[S—"
! .

[E——
' .

<a+b+c abe

- r— 8
V.. = abc DS — ! + L (4-24)
12  D,= D -D
1 2 1 8
1 s + b
3

C
3 - abcy,
C.s i;(ab-*bc*-ca 5——

V.. = -2 . (4-25)
12 D, 2 ab =Dy
21 : g* + %—-"-

2

The n- and m=type syntheses appear in Figs. (4-4) and (4-5), respec-

tively, where in PFig. (

4-2),"
1 abe
ﬁ;(cz “ab +bec +c

(DZ ab + bc + ca, a:c+ ca)

(4-26)
_' 1l - abe
¥ D—;(a*b*c a.‘n—*-bc*ca)
1
z - (ab + bec + ca)(r.n +L, ¢ )
3
and in Fig. (4-5),
4 G
S Tl
. ¢y %
22 abe a+b +¢
¥ (4-27)
The values for Ly, Lag, M and C are justified by eq. (5-60).



e e
' '

3 e e —f
'

_116 -

ab + bc + ca 3

L abe a+hb +c¢

(4-27)

1_ abe P
T o D e My vl v

These two network sections can always be removed from Z through
proper choice of the arbitrary constan.s and thus are included in

Figo (4"1) .
o

oy

Fig. (4-5) m-Type Rank 6 Simplification
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" A second simplification in the network sections of Figs. (4-2)
and (4-3) results if the arbitrary constants are chosen to make an
element vanish in the T equivalent circuits of the transformers in
these sections. The components of the T equivalent circuits are
given by eq. (3-42). To make L, vanish in Figs. (4-2) and (4-3)
requires that L,, - M = 0 for each case. For Fig. (4-2),

Ly, -~ M =0 means that D, =a +b *c, vhile in Fig. (4-3) the require-
ment is that Dl/IJ3 = ab + bc + ca. But these are eqs. (4-19) ard
(4-18), respectively, which can always be satisfied by choosing two
of the arbitrary constants equal. With I.2 =0, Ll 1s positive by

an argument similar to that };resented in eqs. (3-45) and (3-48).

Thus, when eq. (4-18) is satisfied, the n-type synthesis in Fig.

(4-2) 18 simplified to that in Fig. (4-4) and L, vanishes in the

2
m-type synthesis of Fig. (4-3). Eq. (4-19) performs a4 similar
doubie function.

To make L, vanish in Figs. (4~2) and (4-3) requires that
Ly, - M =0 for each case. For Fig. (4-2), this requirement is
met if

¢ z A
C.ma-Lebt stcB ma+b+eo (4-28)

27 G G &y
while for Pig. (4-3), it is necessary that

€ Oy
c; = z—z-z— (abc2c + cha + caclb) = ab 4+ be + ca
a'&c

(4-29)
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It may be shown that each of these equations is also satisfied if
any two of the arbitrary constants are chosen equal. It should

also be noted that if % in eq., (4~4) is synthesized using % in eq.
(4-6), eqs. (4-28) and (4-29) would have to be satisfied to obtain

the network sections of Figs. (4-4) and (4-5).

4,5 TRank 6 Operator Example

The principles developed in this chapter are illustrated

by considering the following driving point impedance function

53 + %é 52 +2s +4
7 =
3 2 . 44

s +4s + Ea s +2
where

num Ev Z = (2 - sz)(s2 + 25 + 2)(52 -2 +2)

~ Zero cancellation synthesis may be used in connection with
the rank 6 V operator to synthesize Z. Since Z is of rank 6, a,
b and ¢ may be chosen so that Ev Za = By Zb = Ev Zc = 0, which
guarantees that gs will be six less in rank than Z. The calcu-

lations yield

a=1+j b=1=~3 c= /T

.8 +2 8 - 2] _2y/3
z, = Spd .z, - e - BYE

17 % [

Gp 3 fe” 58" %



From the above values, V in eq. (4-6) is

2/Z +2{/%s +% /E 8%+ T 8
2,/F+%gﬂs*4/£az*—;-£s3

v

and

num Ev V = (2 - s3)(s° + 28 + 2)(s% - 23 + 2)
2 2
-[(2 +\/§)s2 + 2ﬁ] - 82[82 +2+ 2~,/§]

The n-type synthesis of V follows directly from eq. (4-11)

and Fig. (4-2). The result appears in Fig. (4-6).

-
-~
D« 643 d
57+ 66 12
. 484
°

1458 ) <« A ( 2558

. h m'ilg,_-g_e B

Fig. (46) n-Type Rank 6 Inductive

For the m-type synthesis of V; a scaling factor of
k = (15-./5 is used. Then the synthesis follows directly from eq.
(4-17) and Fig. (4-3). The result appears in Fig. (4-7).
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ST

Fig. (4-7) m-Type Rank 6 Inductive

Note that the lossless sections in Figs. (4-6) and (4-7)

each realize two real and four complex zeros of the even part of Z.



CHAPTER V
CASCADED AND DISTRIBUTED V OPERATOR SYNTHESES

S.1 Introduction

In Chapter IV the rank 6 V operator was introduced and syntheses
were developed which treated the operator in its entirety. In the first
part of this chapter, the rank 6 V operator is split into two operators,
of rank 2 and rank 4, and the synthesis pro;:edures of Chapter III are
applied to these two operators in cascade.

In Chapter III éonsiderable emphasis was given to eliminating the
gyrator which appears in the synthesis of rank 2 and rank 4 operators.
In each case, elimination of the gyrator resulted in the inclusion of a
perfect transformer in the V operator synthesis. In this chapter, t‘;he
emphasis is changed and it is shown that any prf driving point impe-
dance may be realized by a series of cascaded network sections termina-
ted in a realizable impedance of reduced rank, where each network sec-:
tion is reactive and contains one gyrator but no transformer.

In the second part of this chapter, the Darlington split even
part and the Miyata synthesis procedures are reviewed. These proce-
dures are then discussed in terms of the V operator and it is shown
that each procedure may be considered as the synthesis of the V opera-
tor distributed in a prescribed way, with Foster-type expansions neces-
sary in the Darlington split even part procedure and Caver-type expan=-
cions required in the Miyata procedure. Lastly, the Bott-Duffin net-
work is shown to result from a synthesis of the rank 2 distributed

V operator.
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5.2 Synthesis of Impedance Ope:ators in Cascade

Consider the three impedance operators defined by eqs. (4-1),

(4-2) and (4-3). These equations are repeated below.

a+ sZa _
v, - = (5-1)
a +
>

a

b +s(
v, = -—al—b- (5-2)
b+

EYS

C+5c
2
V. ® el (5..3)
3 c + s

Czc

Z may be represented in terms of these operators as

Z = V,V, V(e (5-4)
It is desired to synthesize Z in terms of a rank 2 and a rank 4

V operator terminated in C3~ Such a synthesis may be accomplished
in two ways in eq. (5-4); either V. and V, or V, and V, may be

1 R 3
combined into a rank 4 V operator.* The combinations are

*The combination of Vl and V, 1s prohibited since neither V1 and
V2 nor V2 and V3 sre comutgtive in general.
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R za
ab + s(bZa + aC]b) +s .
’ 1b
v,V = z (5-5)
ab + g(%L + -2 48 E%E
a Cn: a
¢
be + s(cq1b+bc° ) +8? Zlg
, ~¢ 2c
A 7 (5-6)
be + o =S + _b_> + g0 X
ST C1p

Z may now be synthesized using either eqs. (5-1) and (5-6) or egs.
(5-3) and (5-5). Using the former two equations requires that a

be positive real while b and ¢ may be complex conjugates with non-
negative real parts. The latter two equations require c¢ to be posi--
tive real while a and b may be complex conjugates with non-negative
real parts. As pointed out in Section 4.3, if Z is of rank 6, 10,
14 ...., then num Ev Z contains at least one positive real root.

For such impedances, the arbitrary ccnstants may be chosen so that
CS is reduced in rank by six while still insuring that both V opera-
tors are prf. For impedances of rank 4, 8, 12 ...., the arbitrary
constants may be chosen to reduce the rank of C5 by four with both

VY operators prf.,

The n~-type syntheses of the rank 2 and rank 4 V operators have
been developed in Sections 8.2 and 3.7, respectively and will be
used here., The synthesis of Z using eqs. (5-3) and (5-5) appears
in Fig. (5-1) while that for eqs. (5-1) and (5-6) appears in Fig.
(5-2). In Figs. (5-1) and (5-2),
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D % e ¢ e (5"7)
‘ Za clb
| E = =5 + b (5-8)
! | G G2
o o — 4
P! +b
. D +% (¢ D 20z G
|
|
]! N
! Z.s €18
8 1b
| z ) ] ZD G
-+ 0C2c
T 8
ab
! —r Ds
{

cv 3
Fig. (5-1)

Cascade Operator Synthesis

O
- g,
btc
D £z, P £F (
Z cs
T
Fig. (5-2) Cascade Operater Synthesis Using Eqs. (5-1) § (5-6)

S——
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The first section in Fig. (5-1) realizes a quadruplet of com-
plex even part zeros whereas the second section realizes a pair of

real even part zeros. These realizations are reversed in Fig. (5-2).

5.3 A General Cascade Synthesis Procedure not Requiring Transformers

Theorem L

Any prf driving point impsdance function may be realized by
a series of cascaded network sections terminated in a realizable
impedance of reduced rank without the use of transformers.

The networks of Figs. (5-1) and (5-2) each contain one trans-
former., Consider the transformer in Fig. (5-1). It becomes an
inductor if Za = glb’ ie if Vi and V2 are commtative. This con-
straint was investigated in Appendix III, where it ﬁﬁs shown that
it is often, but not always, possible to choose the arbitrary con-

stants such that the condition Za is satisfied.

S
Consider next the transformer in Fig. (5-2). In order that

it reduce to an inductor it is necessary that

C2c = O (5-9)

It is shown in the following development that it is always possible
to choose a positive real value of a such that eq. (5-9) is satis-
fied with b and ¢ remaining arbitrary complex conjugates with non-
negative real parts, Thus, by sacrificing one of the constants, a,.
it is possible to achieve a ‘cascade synthesis without transformers

in which the termination (CS) is four less in rank than Z.
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Using eq. (4-2), eq. (5-9) takes the form

Coc _ Db = Ky
Cip  BCyp = Cyc

-] (5-10)

or

(o +c)(gy, = €)= 0 | (5-11)

Eq. (5-11) gives three altemative conditions similar to those in

eq. (A=33) in Appendix III, namely

*
c=+b andc{b-o
¢c=-b andEv {, F;O (5-12)

€y = Cic (1e ¢, and ¢, real and equal)

The first two conditions are discarded since they restrict b and
¢ to be either both real or both imaginary. The third condition,

using eq. (4-1), requires that

azb-bz aZ - cZ
a _ ‘¢ a _
T T—T“a'% (5-13)

Solving eq. (5-13) for Z, gives

(a® - be)(z, - 2,)

2. +2, 0] -3, =0 (5-14)

+2Z

N

“e{, 1o the derivative of {, with respect to s evaluated at s = b,
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(a® - be)(2y - Z,) (a* - bc)z(Z-b - Zc)E
2y " Zab - c) = 4;§Eb Y MY

(5-15)

Thus the problem reduces to finding whether a positive real value
of a always exists such that eq. (5-15) is satisfied with b and ¢
remaining arbitrary.

Define the following,

b=x+3jy, ¢c=x-=-Jy
(5-186)
Zb =u + jv, Zc =y - jv
where, as in the discussion in Appendix V, x and u are always posi-
tive and y may always be chosen positive. Then v may be either
positive or negative.

For large values of a, eq. (5-15) can be put in the form

(z, -2,)
z, -a—-(z{}—:‘ﬁ—-a% (5-17)

For small values of a, eq. (5-15) becomes, using the first

two terms of = binorial expansion to represent the radiecal,

b -2 b -2 Ra(b - c)zbz
7 - B B =)t T
(5-18)

which reduces to
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2a(b - )BZ. a0 B 42 (5-19)

Z, " Tc(fb - ic) v ry

Let z, be expressed in general form by

R n
a*' a*aa".u;oaa
Z_o €tl 4 n

a (5-20)

2 n
bo + bla + bza + teee bna

and require that none of the coefficients vanish.

For large a, Za in eq. (5-20) approaches the value an/bn,
while, for small a, it approaches ao/bo' Each of these ratios
is finite and non-zero if Z has no pole or zero at the origin or
infinity. Therefore Z_ in eq. (5-17) is greater than an/bn as
a=>00 and less than ao/bo as a=——»0, Since both expressions for
Za are continuous functions of a, their curves must cross at least
once and yield a value of a which satisfies each equation and
permits the transformer in Fig. (5-2) to be replaced by an inductor.
The resulting network is shown in Fig. (5-5).* By choosing b and

¢ such that Ev Zb = Bv Zc =0, CS is four less in rank than Z.

*

This network, in essence, was derived by Fialkow and Gerst
using a different procedure11 and hence it will be called the
Fialkow-Uerst network.
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-
2z, AT
DE—2¢ D«
A Cs
Gp®
L azZ, b
8 beyy
° T (b+c)s

Fig. (5-3) Elimination of the Transformer from Fig. (5-2)
(the Fialkow-Gerst Network)

Figs. (5-1), (5-2) and (5-3) all represent n-type syntheses.
Consider now the possibility of an m-type synthesis of V2V5 in eq.
(5-6). Normally this would require loaded gyrator networks similar
to those in Figs. (3-14) and (3-15). But if a is chosen such that
Coc = S’ the network section of Fig. (A-2) in Appendix III results.

Then the complete syntheses ¢f Z is as shown in Fig. (5-4).

Oy v

*Z, b 21N

D> <>
» C1,°

Z ‘ TS—

1 az

C 8 i

-

Fig. (5-4) m-Type Transformerless Synthesis of Eq. (5-6)
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The syntheses in Figs. (5-3) and (5-4) are perfectly general
and the rank of the terminating impedance may always be reduced by

four.

5.4 Cascaded Operator Examples

The preceding principles are illustrated by considering the

following driving point impedance function.

3,14 2
*Ts

s5 + 482 + ?é s +2

] +2s + 4

Z =

vhere

mm By Z = (2 - 8°){s% + 2)

Solution A
Since Z is of rank 6, the arbitrary constants may be chosen
to reduce the rank of the termination by six. Then, to develop

the network of Fig. (5-2) requires that

a=+2, b=1+3 c=1-3j za-iis(Z

It follows that
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Zr-BE. Fefefeez
& - “§ % .29
/Z _?5932 it *-6—8 +1

Note that Cl is two less in rank than Z since a was chosen to make

Ev Za = 0, Further calculations yield

¢
Cip ~ C ‘31c"’ C ) = '-

[

From these results, V_V, and 55 may be found as

'3
% I AR 4
v, y, = y nmEBEy V.V, =8 +4
R3S a° + .+ 2 '3
2 c
-(za *2)‘1’?8 ~2
s 72 75

Cs is six less in rank than Z since b and ¢ were chosen-so that
Ev Zb = Ev Zc =0, vzvs may now be synthesized directly byvthe
n-~type procedufe. The entire synthesis of Z appears in Fig.
(5-5).
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o o
» 248 3 '
e
D q D «—>(
’ . é
D
2 128 Q  6a s >
145 2 29
=L
T Ss
12
T2
o=
Fig. (5-5) Synthesis which Reduces Rank by 6
Solution B

The constant a is now chosen to eliminate the transformer
in Fig. (5-5). The constants b and ¢ remain the same so that CS

is four less in rank than Z. For this case,

8.2 =8 -2]
Z, 7 % 17

and thus eq. (5-15) becomes

_az-zg/a4+e4a§+4
Za . 17a
Also
a.5 + %? a2 + 22 +14
Z -T‘_‘E
& 2% ¢+ 4a + %} a+?

o

The approximate solution to these two equations is

a z-lzl-, 2, % 672
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Then vy and 6, become

. 5.5 + .872s

‘Vl A . “umEvVI-S..S -8
e 872
3 2
. _s8728" + 2,788 + 2,435 + 4,13
5] ] ]
1.158° + 6,168° + 14.28 + 1,96

Note that Cl is the same rank as Z since a was not chosen to make

Ev Za = 0, Further calculations yield

Qb ™ €3¢ = Cpc ™ -3%8

2
vy, =St .676s +2

=3 37*5.923 + 2

. = B7%s + 2
32 1,158 +1

The complete synthesis appears in Fig. (5-6), where

synthesized using the n-type procedure and C5 is four less in rank

than Z.
[

+ .87 + .34
S R

z l
4.8 178
8
i 54
> : 1=

num Ev V2\75 =

4

+ 4

V.V, has been

2’3

Fig. (5-6) n-Type Transformerless Synthesis
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Solution C
The m~type synthesis of V2V5 may be obtained directly since

the required value of a is the same as that in Solution B. Both

CS and V2V3 are scaled so that

. 2
vy = sllds” + .676s + .228

'3 32 + ,676s + 2

s _ .8728 + 2
I31s + .114
C1p? .

The entire synthesis appears in Fig. (5-7).

P —
+ .87 + .34
D> ( D« & 06
A
4—;‘3 548 268 L .0ds .09

— il

Fig. (5-7) m-Type Transformerless Synthesis

5.5 Even Part S-nthesis Procedures

It 1s well known that a prf driving point impedance is deter-
mined by its even part within an arbitrary reactance function.

Utilieing this fact, & number of synthesis procedures have been
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developed in which the even part is split into two or more parts
and each part is synthesized separately. The Darlington synthesis

of a split even part14 and the Miyattal:5

synthesis are two such
procedures. The first method permits a synthesis without gyrators,
the second without gyrators or transformers, in return for which
the number of elements is increéased and the cascade nature of the
synthesis is lost.

These two methods are now briefly reviewed, after which it
is shown that each may interpreted as the synthesis of the impe-

dance operator V distributed in a prescribed way.

A. Darlington Synthesis of a Split Even Partl4

Let Z be given by

n=1
7 = mn + ny . ansn + a ° + cresdy (5-22)
M * o b sn +b sn.l + ...4b
n n-=1 o
where _
' : m, - n.n
EvZ = rrl—%——-—%—’i (5-22)
My = Dy

Assume for the moment that num Ev Z is a perfect square so
that a reciprocal Darlingtcon synthesis is possible. Also assume

that only eq. (5-22) is given. Then, since m, and n, are known,

,...2.12 can be obtained directly. Also Z,, 18 found from mz/nz, since

the n-type Darlington procedure is applicable in this case.*

*Z does not have a pole or zero at s = o,
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Since the residue condition is satisfied with the equal sign at
all jo axis poles (the degree of n, is not greater than n2), the
components of Z11 may be obtained from those of 212 and 222.

Thus the entire synthesis of Z is accomplished using only the even

part of 2.

Now let the even part of Z be expressed as
-2

n n
An(-sa) + An_z("'sz) + [ X XN AO
Ev 2 = g (5-23)
m2 - l’l2
2 2
or
2 n=-2
2 2
A (-s%)  A__,(-%) I

EVZ'-% E‘f 7 r#....ﬁ
m2-n2 mz"n

N
3

)
[}
=]

»

(5-24)

If the coefficients in eq. (5-24) are all positive then each
term on the right is positive everywhere on the jw axis. TFurther-
moere all denominators are identical, equal to that of Z, and hence
are Hurwitz polynomials., Thus each term on the right hand side
of eq. (5-24) is the even part of a realizable, minimum reactance
impedance. The sum of these impedances is Z.

The Darlington synthesis of a split even part may be con-
sidered in another mamner. Let the driving point impedance func-

tion be given by

pd
s +as +a
2'-2-—:-1——9- (5-25)
s #bls¢b°
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4 2
s - (albl 0 " bo)s +abd

7 T (520
(s 18

EvZ =

+b)§-b
o :
1
Assume the numerator coefficient in the parentheses is posi-
tive, a necessary condition for the split even part procedure to

Y e
-2 - [ SONLE X i T P B A SR
& 21l &Y. G=20; Le rewritien as

be applicable. ILei

2 bo ao - bo ao
s #B-IS (al- bl )8 ao"’t—’;s
7 = + +
2 2 =
s + bls + bo s + bla + bo s ¢+ bls + bo
(5-27)
= z4 * z2 * zo

Compﬁting the numerators of the even parts of 24, 22 and Zo gives

values identical with those in the numerator of eq. (5-26).

num Ev Z4 = s4

2
num Ev Z, = - (alb1 -a - bo)a (5-29)

nmEvZ = ab
(e} o0

In general, if Ev Z is given by eq. (5-24) with all coeffi-

clents positive, then Z may be written as

’ - Nn(s) . Nn_z(s) No(a)
M thp MRy "2 o e
= z ’ z ’ eore Z
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vhere each term on the right is prf. Thus, in general, the
Darlington synthesis of a split even part may be considered as
the synthesis of the parts of Z, distributed in such a way that
nun Ev Zq = Aq(-sz)q (q = 0,2,4 ... n). This concept of synthe-
#izing the distributed Z is useful in the impedance operator dis-

cussion to follow,

B, Miyata Synthesis

The chief disadvantage of the previous procedure is that
perfect transformers are often required. The Miyata procedure
avoids their use, Again consider Z in eq. (5-21) and its even
part given by eq. (5-22). If a, =0, ie Z has a zero at the origin,
then Ao = 0 ard num Bv Z has the factor - 32. Thus I-%‘- has a pole
at the origin which can be removed as a shunt inductance L. Re-

moving this pole from the reciprocal of eq. (5-21) gives

. my +n, 4 %(“2'2%9*%(”2'%)
1 m +n sh %(ml’nl)

(5-31)
o oy T

EVYl C— " Bv Y (5-32)

The denominator of eq. (5-32) has fio zero at the origin, Its

numerator may be expressed as
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num Ev 2
#

num Ev Y, = (5-33)

If Az is also zerov, then the constant term in the numerator of Y

1
is zero and Y, has a zero at origin. Hence Z, has a pole there

1 1
which may be removed as a series capacitance. If num Ev Z has its
last k terms missing, k reactive elements may be removed from Z in
this fashion. |

In a similar manner, if a = O,then.An =0 and Z has a zero
at infinity. This can be removed as a shunt capacitance. If the
first £ terms of num Ev Z are missing, 4 reactive elements may be
removed., If k + £ = n, which impliss that num Ev Z has zer;a only
at the origin and infinity, Z is synthesized by n reactive elements
and a resistive termination.

The Miyata synthesis procedure utilizes the above properties.
Consider the individual parts of Ev Z as given in eq. (5-24). For
each part, k + £ = n and thus each part may be realized by n reac-
tive elements and a resistance, assuming all the numerator coef-
ficients are positive. However this process would be computation;
ally laborious were it not for the fact that a prototype impedance
can be found and all other impedances computed from‘it. The pro-

totype is defined by its even part as

Ev zp = -3 (5-34)

My = Ny
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Zp is now obtained (using the Gewertsz procedure,5 for example) and
the numerator of each even part term is multiplied by Zp. The
resulting expressions are not in general prf, but their even parts
are always positive on the jw axis. Each expression is "divided
out™ until the order of its numerator no longer exceeds that of
its‘denomiﬁaid;. The result is the sum of an odd polynomial in s
(whose even part is zero) plus a rational function of s. Each
rational function so obtained has the same denominator (that of
Z) and an even paft identical with the portion of the even part
of Z from which it was derived. Thua-ii is the desired impedance.
Each such impedance'may now bé‘synthesized by n reactive and one
resistive element and the resulting networks zdded in series to
glve Z. |

The Miyata procedure may also be interpreted in terms of a
distributed Z rather than a split even part of Z. Consider Z4 in
eq. (5-27). The numerator of its even part is 34. Thus for 24,
A, and A, are missing in eq. (5-24). This means that two reactive
elements may be removed from 24 and Z4 may be expanded into the

following form

Z, " 1 (5-35)
L1
s bo
24+
bls

b
Thus a shunt inductor ( bi) and a series capacitor(s]-‘) may be
1 o

removed from Z, leaving a resistive termination (1 ohm). The
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process may be repeated for 22 and Zo and the results added in series
to give the Miyata synthésis of Z.

Eq. (5+35) is a Cauer-type expansion of 2 4 Whereas the previous
Darlington syntheses are Foster-type expansions. Once again, this
concept of synthesizing the distributed Z is useful in the develop-
ment of Miyata-type networks using the impedance operator. This is

discussed subsequently.

5.6 V Operator Split Even Part Synthesis

In this and the following section, the principles of the pre-
vious section are applied to the V operator. It is shown that the

Darlington split even part procedure and the Miyata procedure may

"be interpreted as syntheses of the V operator distributed in a

prescribed way.

The irpedance operator lends itself readily to even part
synthesis largely because of three relations developed in Chapter
II. These relations are eqs. (2-17), (2-48) and (2-50), which are

repeated below in slightly revised form,
num Bv Z = (nun Ev V)(num Ev ¢) (5-36)
VO = (V) 7V, ¢ e V)E = Vy0 V0 + oue VG (5-87)
nm Ev V = num Ev V; ¢+ numEv V, + ... num Ev Vn(5-58)
Eq. (5-35) points out that the zeros of num Ev Z are split between

num Ev V and num Ev {. Thus any of the zeros of num Ev Z which
{

e ——
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appear :Ln num Ev V are absent from num Ev {. This equation also
points out that mum Ev V can be split without interfering with the
relationship between num Ev Z and num Ev {. Egqs. (5-57) and (5-38)
are valid only if the denominators of ;"1’ V2 see Vn are equal ;)r
differ by a positive real constant. The three equations taken
together demonstrate that the Darlington split even part procedure
may be readily applied to the V operator, in-o?,her words num Ev V |
may be split, the individual parts synthesized, { included as the
termination in each synthesls, and the resulting networks assembled
in series to give the desired Z. Egs. (5-;57) and (5-38) point. out
that the synthesis may be considered in two ways, either as a
synthesis of the parts of Ev V or as a synthesis of the parts of the
diétributed V operator. To further illustrate this latter concept,

let Z in eq. (5-25) represent an impedance operator such that

(32 + ao)c +as

/4 (5-39)
s+ bo + blsc
Eq. (5-39) may be distributed in the following way.
czc*;‘i-s (al-c-.gs%ngs aoc"-;z-a
v -:2 *+ b, *blac_*—aéﬁ"bo +b,8( +:£+bo + b,sC
(5-40)

A EAAZRA
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4 V2 and Vo may now be synthesized by the Darlington procedure,
the proper terminations added, and the resulting networks placed
in series, assuming, as in eq. (5-25) that the numerator coefficient

i of Vol is positive,

Example 1

Let it be required to synthesize Z given by

| z.(sz*z)cz’%’
i ' s* 43+ 38,

i by synthesizing the distributed V operator and also by synthesizing

the split even part of V. The V operator and its even part' are

7
8 +gx8+2 4 2
v - T , By y =828 *6
j s!+33 +3 (s® + 3)°- 95

l The coefficients in num Ev V satisfy the requirements for a split

even part synthesis. Let V be distributed according to eq. (5-27).

i . 4 2
V'- ’2’8 + 3’5 #2’3’
| F*33+5 :{*53*5 :54'53*5
=V +V,+V
(o)

l‘ 4 2
4

' numEvV"s4-2s + 6

| -mnnEvV4*nmnEvV20numEvV°
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V4 and VS are synthesized by the n-type procedure while V2 requires

the m-type procedure, In the cases of V2 and Vo’ the terminations

are scaled to avoid transformers. The complete synthesis appears

in Fig. (5-8).

| L
o= (N 1
1
8 = ¢
§ -5 8 2
| . T
1 '
2 2 -2 2
S, [ 3s, . %
; J
L2 i)
—p——— 2s ——
38 CH 3
o VYN _J

Fig. (5-8) Split Fven Part Synthesis of V

The synthesis in Fig. (5-8) may also be achieved by synthe-

sizing the split even part of V given by

Ev V= 84 + £ = 932 + 2 9
z_2°'%5 2T_2°F ®T_2
Tig = Do My = Ny My = Dy

where the %-and g scaling factors again permit the synthesis of 2

without transformers.

5.7 ¥V Operator Miyata-Type Synthesis

The Miyata procedure also applies in the case of the V
operator, again largely because of the relations in eqs. (5-36)
through (5-58). Alternatively, the V operator may be distributed,

each part expanded into a Cauer network, the appropriate termina-
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tions included, and the resulting networks placed in series. To
further illustrate the latter procedure, consider the Cauer expan-

sion of V,( in eq. (5-40), This is given by

R

V46 = 5 L - (5-41)
1 1
—
s bo
amm— c
bls

Note the similarity between eqs. (5-35) and (5-41). The only
difference is that the one-ohm termination in eq. (5-35) is re-
placed by ¢ in eq. (5-41). Stated another way, eq. (5-40) does
not specify the mammer in which the individual V operators are to
be synthesized; it merely states that each is to operate in a pre-

scribed way on { and the results summed to give V(.

Example 2
Let it be required to synthesize the Z of example 1 through

Cauer expansions of each part of the distributed V operator and
also by applying the Miyata procedure to the split even part of V.

The Cauer expansions of V

e V2 and Vb are

e \



N e
'

e mm—

Jm—
N

PR

~146~

When the terminations are included and the syntheses summed, the
network of Fig. (5-8) results.

The Miyata prototype in this case has an even part given by

EvV =
P (82 +—‘§ 2

1
3)% - 9s

Synthesizing Ev Vb gives

v = 1 g +3
P 9 2 .. .

s +3s8 +3

Multiplying the terms in num Ev V from example 1 by Vb gives

s4§§ + 3)
9(s" + 38 + 3)

- -232(3 + 3)
2+ 9(327* 35 + 3)

- 6(s +3) -
Vos Y

9(s“ + 38 + 3)

V4* and Vz’ are non-prf. The even parts of V and Vb* are

a4+ V2o
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‘ ‘ equal to those of V4, V2 and Vb, respectively.

Dividing out V4+ ard V2+ until the numerator degrees do not exceed

———

those of the denominator yields

-

K 2 3
L V4o ° T3 3

' 2s
I (P72 aveupaeiis R

'i‘ The reactive elemehts may now be removed from V,, V

2 V2 and Vb, again

#
yielding the network of Fig. (5-8).

5.8 The Bott-Duffin Network from the Distributed V Operator

I The Bott=Duffin network may be shown to result from a parti-
cular distribution of the rank 2 V operator developed in Chapter
III. To show this relationship, let Z,as given by eq. (3-1),be

reﬁritten as

(5-42)

*The networks resulting from the split even part Darlington and
Miyata procedures are not always identical as in Examples 1 and
i y 2, since it is not always possible to achieve a split even part
| Darlington synthesis without transformers, especially for impe-
dances of rank greater than four.
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or
51
Q we= ¢+ § )
2 Za . ,
E_‘s________. (5-43)
¢
a 1
a*sz—
a

If the pertinent driving point impedance is considered to be Z/Za
and the termination is defined as Z1 = Cl/za’ the Bott-Duffin V

operator is

Vep " s (5-44)
Let eq. (5-44) be distributed to give
a 8
Vep TSt oo . (5-45)
where
a® - 32 »
Ev VBD = 5 ?‘*} 5 (5-46)
a - 8 a =8

The requirement of positive coefficients is satisfied and
thus the first and second parts of V rmay be synthesized by the
n - and m-type Darlington procedures, respectively. The result is
the network of Fig. (5-9), which is the non-cascade representation
of the Bott-Duffin network.6 The positive real constant a is
arbitrary and may be chosen sé that Zl, given by
aZ - sZa

Zl = (5-47)
aZa - 82
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l Lo has a jo axis zero or pole at the point where the even part of Z

“ [ ‘ is zero,according to the Bott-Duffin procedure.

' 1
! | T &
: |
L 2/,

- 1
: s 1
- a Z:L
.- °

Fig. (5-9) Bott-Duffin Network

S wereemrd

Guillem:l.n7 also has an alternate method of obtaining the

[

Bott=-Duffin result* which is now reviewed so as to compare it with
the distributed operator procedure. Let Z,given by eq. (1-1) and
here assumed to be a minimum resistance function,be augmented by

" | the polynomial s + a to yield

(my +ny)(s +2a) (am +sn,) + (an, +8m) M+N,

] - -
| z (m2 + nz)(s +a) (am2 +en,) OTEnz + 8!'127 M,+ N,

(5-47)
The even part of Z is given by

(mymy - myny)(a® - 8%)
! Evz-mlm2 nyn,)(a” - 8

, 2 = Ny

(5-48)

*The method is actually a special application of a general proce-
dure for extending the Miyata synthesis procedure. In the general
procedure the polynomial s ¢ a is replaced by m ¢ n,e
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Eq. (5-48) may be separated to give

2, 2
b g - a (m.Jm2 - nlnz) o 8%(mm, - n.n,) (5-49)‘
v M2 N M '\YE
- ' 2~ Ve

2 R

The polynomial s + a is now specified to fulfill the condition
that M2 vanish at the point s = jmo where the even part of Z is zero.*
It follows thft Nl also vanishes at & = jao since mm, = nin, vanlishes
there. —

Each term in eq. (5~43) represents the even part of 'a prf
impedance. These impedances may be found from their even parts.

Since (mm, - nlnz)l/z is a factor of both M, and N,, the first impe-
dance in eq. (5-49) has jw axis zeros at s = o0 and at s = Jo and the
gsecond impedance has Jo axis zeros at 8 =0 and at s = ,jnoo. These
zeros may be removed from each impedance.

The impedance operator approach utilizes the synthesis of the
distributed V operator (with its built-in surplus factor) to achieve
the Bott-Duffin network whereas, in the Guillemin approach, Z is
augmented by the auxiliary polynomial at the outset and a split-
even part synthesis is used. Both methods employ the constant a
to create a finite jo axis zero or pole in the two resulting impe-

dances.

*If this requirement yields a negative a, then ¥, can be required
to vanish at s = jmo.
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CHAPTER VI
SUMMARY, CONCLUSIONS, FUTURE INVESTIGATION

6.1 Introduction

The final chapter consists of two parts. In the firﬁt portion,
a summary of the results of the previous chapters is presented and
conclusions are drawn therefrom. The summary is two~fold. Wirst the
overall contribution of the thesis in terms of the development of the
impedance operator concept and its application to network synthesis is
discussed. Secondly, a summary of the specific contributions result-
ing from a consideration of the properties of the various impedance
operators and their network realizatior;s“-is presented.'

The second portion of the chapter deals with possible further
applications of the impedance operator approach to network analysis
and synthesis., Special emphasis is given to the distributed impedance
operator and the possibility of achieving syntheses which do not in-
clude gyrators or transformers by relaxing the requirement of a single
termination.

6.2 Overall Contribution

In Section 1.1 it was stated tha’ the purpose of this thesis
was to develop a general, systematic, flexivle and easily applied
approach to driving point impedance synthesis using the concept of
the impedance operator. This purpose has been achieved in the pre-

vious five chapters. The impedance operator approach is general in

=151~
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that it is applicable for any configuration of even part zeros and
therefore permits the synthesis of any prf driving point impedance
through its use. It is systematic in that the same basic operations
are required no matter what the rank of the driving point impedance
or the type of cascade realization desired. The method is flexible
because of the arbitrary constants incorporated in each impedance
operater and the terminating impedances. These constants permit
considerable latitude in the network structures which realize a given
driving point impedance. The method is easy to apply, in that the
required computations for a given driving point impedance are straight-
forward and involve only a resasonable amount of algebra.

It has been shown that the synthesis procedures of Brune,
Darlington, Miyata and Bott-Duffin readily lend themselves to the
impedance operator approach., The Erune procedure results from a
specific synthesis of the rank 4 impedance operator in Section 3.4.
In Sections 5.6 and 5.7, it is shown that the split even part
Darlington and Miyata procedures may be considered as syntheses of
the distributed impedance operator in conjunction with Foster and
Caver expansions, respectively. The Bott-Duffin network is shown to
result from a particular distribution of the rank 2 impedance
operator in Section 5.8,

From the impedance operator approach, three cascade synthesis
procedures have been developed. These arc the procedures of Sec-
tions 3.5, 5.10 and 5.3. The procedure of Section 3.5 is an exten-

sion of the Bott~Duffin procedure and is a specific contribution of
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this tiaesis. It differs from the usual Bott=-Duffin procedure in

that two applications of Richards' Theorem are employed rather than
one. The extended procedure permits realizations of the form of

Fig. (3-11) which do not occur in the usual Bott-Duffin synthesis pro-
cedures. The procedure ;f Section 3.10 is a general cascade recipro-
cal synthesis procedure applicable to any prf driving point impedance.
As point=d out in the footnote to Section 3.]10, this synthesis proce-
dure is new but the philosophy behind it is that of Guillemin as
described in Section 1l.3. The procedure of Section 5.3 permits any
prf driving point impedance to be realized by a non-reciprocal cas-
cade synthesis procedure which does not require mutual coupling.
Again the procedure is new but one of the resulting networks has been
obtained by Fialkow and Gerst by a different method, as mentioned in
Section 5.3.

6.3 Specific Contributions

In addition to the overall contribution summarized above, there

are a number of specific contributions which are dispersed throughout
the thesis. The more important of these will now be summarized in
the order of their occurrence.
A. A general non-reciprocal Dariingtqn synthesis procedure appli-
cable to any prf driving point impedance (Theorem R) has been devel-
oped in Section 1.5 and applied to impedances of rank 2, 4 and € in
Sections 1.6 and 1.7 using the retwork sections of Migs. (1-2) and

(1-5). The results in Section 1.6 are not original4’ 14; whereas
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those in Section 1,7 are. The procedure is a non-cascade type since
all of the even part zeros are realized in one "box" rather than in
cascaded "boxes" as in Mg. (1-11). The realization is always in the
form of a lossless (generally non-reciprocal) network terminated in a
pure resistance,

B. The extended residue condition of eq. (1-25) and the fact that
the two extended residue conditions of eqs. (1-25) and (1-27) are
equivalent (Theorem C in Section 1.4) are specific contributions of
this thesis. The extended residue condition of eq. (1-27) is not;.z’]'4
Eq. (1-27) permits realizations in terms of the capacitive structure
of Tig. (1-5) whereas eq. (1-25) applies when the inductive structure
of Fig. 1-2 is desired. ‘1

c. The associative, commutative and distributed laws have been
applied to the impedance operator in Chapter II., The operatorl is
shown to always'l‘\obey the associative law through Theorem D in Sec-
tion 2.3; it is l‘@shovm to obey the commutative law only if the condi-~
tions of 'rheoreﬁ G in Section 2.7 are satisfied; and it is shown to
obey the distributive law only if the conditions of Theorem H in Sec-
tion 2.8 are satisfied.

D. T™vwo important theorems concerning the even parts of a series of
impedance operators are developed in Chapter II. These are Theorem
E in Section 2.4, which relates the even part numerators of a series
of cascaded impedance operators, and Theorem I in Section 2.8, which
relates the even part numerators of a distributed impedance operator.

The former has been used extensively in the development of impedance
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operator cascade syntheses throughout the thesis while the latter
has been applied in the distributed impedance syntheses in Chapter V,
E. The pseudo~-commutative property of the impedance operator dis-
cussed in Section 2.7 is included here because it permits resistance
to be included in the removed network section. This property merits
further study and thus is also included in the discussion of proposed
future investigations later in the chapter. '

F. The representation of the basic impedance operator re'lation.s in
matrix form has been presented in Section 2,5, No immediate advan-
tage of these matrix forms has been found (other than their concise=-
ness) but it is very possible that they could be of value in the
development of two-port synthesis procedures using the inpedance
operator approach.

G. The non-reciprocal network sections of Figs. (3-7), (3-8) and
(3-16) (similar to the Brune section and the Darlington C and D sec-
tions) merit inclusion here, not because they are new sections, but
rather because they have been arrived at in a new way, contain.erbi-
trary constants and can always be obtained through the elimination

of gyrators from other network sections, These points have been dis-
cussed in detail in Chapter III.

He The non-reciprocal network sections of Figs. (4-1a) and (4-1b)
are of interest largely because of the fact that they realize six
even part gzeros (genertlly two real and four complex).

I. In the discussion of the rank 6 impedance operator in Section

4.2 (Theorem K), it was shown that a permutation of the three arbi-
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trary constants in no way changed the impedance operator or the ter-
minating impedance, CS' Thus Theorem K permits the "middle constant®,
b, to be positive real while a and c¢ are complex conjugates with a
non-negative real part. No application of this result has as yet been

fowmd., - -

6.4 Tuture Investigation

4.. ..Distribnted Operators e e

In Section 5.8, the rank 2 V operator of eq. (3-2) was changed
slightly in form and distributed into two parts. The resulting
synthesis yielded the Bott-~Duffin network of Fig. (5-9).

No other spécific distributed operator syntheses have been
developed in this thesiz and thus there is a considerable amount of
work still to be done in this area.

To illustrate a possible course for future study of the dis-
tributed impedance operator, consider the rank 4 V operator given by

eq. (3-13), which is repeated below.

Z
ab + 8(bZ, +agy,) + a® c—;—
v-ab.,(b T an (6=1)
Z. O z,

Its even part may be split as follows:

2 2 2,2 4
SRR L G

Rp =By MWy =N, My=Dn,

In order to achieve a Darlington split even part or a Miyata synthesis
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of eq. (6-2), it is necessary that all nwwerator coefficients be posi-
tive. The quantity aabz is always positive and the 54 coefficient is
mity. The guantity a2 + b2 may or may not be positive, depending on

the values of a and b. It is positive if

Re a > |Im al* (6=3)
Tt is always possible to chocse a (and therefore b) so that eq. (6-3)
is satisfied but, in so doing, it may not be possible to make Ev Za=
Ev Zb = 0 s0o as to reduce the rank of the termirating impedance
through zero cancellation synthesis. Thus a constraint 1s imposed on
the synthesis of eq. (6-2) by eq. (6-4).

Following the pattern of Section 5.6 and eq. (5~40), the syn-

thesis of eq. (6-2) may also be interpreted as the synthesis of V
distributed in the following way.

rA G Z 1.8~
a 2 , ab .ab 1b “a 1b
Q s ¢+ B s) [bza + a‘lb - -b—( z:’z;;-)]s ak(l + -z:b—)
Ve mp * My * my * 1Ny ! my, *+ Dy
- v, + v, | + v (6-4)

*A similar constraint is given by Guillemin’ for driving point impe-
dances of all ranks to the effect that all even part nurerator
coefficients are positive if the even part zeros of the given impe-
dance do not lie within 450 of the jJw axis.
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b a :
where D = + as in eq. (3-33) and
L o

num Ev V4 = 94

2)82

num Ev V, = - ('a2 +Db (6-5)

num Ev Vo = aab2

Eqs. (6-2), (6-3) and (6-4) raise several questions regarding
distributed operator synthesis procedures which should be investi-
gated.

1) Is it desirable to dj.atribute the impedance operator in ways
other than that of eq. (6-4) (where only one power of & appears in
EvV, EvV, and Ev Vo). Are there other distributions of V which
will always permit syntheses without transformers and/or gyrators or
will allow a reduction in the number of elements required in a given
synthesis?*

This latter question has been discussed by Kuh]'8 with regard to
splitting the even part of a driving point impedance finction. Kuh's
procedure splits the even part of Z into only two parts. Then
reactive elements are removed from each of these parts leaving ter-
minating impedances of reduced rank. The process is repeated on

these terminations.

*It has been suggested by Darlingtonm that a useful approach would

be to try to develop a synthesis without transformers and with no
more than k redundant elements.
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Pogsible application §f Kuh's procedure to the impedance opera-
tor should be investigated, Furthermore, other even ;;art separations,
in which more than one power of 8 appears in each of the parts of the
even part numerator, should be studied.

2) Is there any advantage to be gained by distributing the rank §
impedance operator of eq. (4-6) with its three arbitrary constants?
Iz it possible to chocse one of the arhbitrary constants to simplify
the distributed operator synthesis while retaining the other two con-
stants for rank reduction of the terminating impedance? Is it pos-
sible to cheose one or more of the arbitrary constants sc as to signi-
ficantly reduce the number of elements required in the synthesis of
the distributed operator?

3) In eqs. (5-1), (5-2) and (5-3), three specific impedance opera-
tors were presented. These operators were then cascaded in varibus

ways to achieve several cascaded operator syntheses, two of which did

. not require transformers. The question arises as to whether it might

not be possible and desirable to develop syntheses in which one or
'more of these three operators is distributed. Could a aynthésia pro-
cedure be developed which requires neither gyrators nor transformers,
perhaps ag#in through proper choice of one or more of the arbitrary
constants?

4) All of the distributed operator syntheses suggested by items 1,
2 and 3 above should also be investigated from the Miyata synthesis
point of view,A in which Cauer, rather than Fosten expansions are used,

It is again entirely possible that syntheses which do not require
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transformers or gyrators may be achieved, although in this case

undoubtedly at the expense of an additional number of elements.

B. Driving Point Impedances of 0dd Rank

Throughout this thesis, driving point impedances of eyen rank
have been considered. It has been assumed that, if impeéanéeq of
odd rank were encountered, the poles and zeros at the origin and
infinity could be removed prior to the application of the impe-
dance operator approach. The question arises as to whether it is
alwvays desirable to remove such poles and zeros at the outset from
a driving point impedance function. Consider, as a first example,
the discussion in Appendix VY., There it was shown that it is often,
but not always, possible to choose the constaﬁt, ¢, withaand b
remaining arbitrary, so as to achieve the syntheses of Figs. (4-4)
and (4-5). The lack of generality in Appendix V results from the
fact that Z was assumed finite and non-zero at both the origin and
infinity.v Suppose, for example, that Z has a gero at both the
origin and infinity. Then it is always possible to find a positive
real value for c¢ such that the synthesis of Fig. (4-4) is guaranteed
when v is positive and the synthesis of Fig. (4-5) when v is nega-
tive.

As a second example, consider the discussion in Appendix III.
There it was shown also that it is oftem, but not always possible,
to choose the constants a and b so as to achieve the transformerless

syntheses of Figs. (A-1) and (A-2). Suppose that Z in eq. (A-85) has
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a pole at 8 = oo, Then the numerator of Z will contain a temm
a Bn-i-l
n+l

its coefficient is always positive). Thus; employing the reasoning

and therefore eq, (A-36) will also contain this term (and

following eq. (A-36), it is always possible to find two suitable
roots of eq. (A-36) except in the case where the first coefficient
yields the minimum value of a. Thus the presence of the pole at
infinity eliminates one-half of the exceptional cases of eq. (A-36).
As a third example, consider the network section of Fig. (6-1).

Its Z parameters are

o- iz ©
Y, + Y
7 -3%T0
b S
1's %
+ X
D<—>( |% .
- 3 -
" T LI (6®
1°8 K‘E
* * It g
Fig. (6-1) e " T T

21 LIz ¢ 2

Let Y, = sC and Y, = %‘r . Then eq. (6-6) becomes

g -__ K . K’
N yx*c+1) K% 41
2
Zop = = (6-7)
s(K"C + L)

K2 KL
Z,, = s -
ﬁ s(k“c + L) "k%c + L
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The resulting neiwork appears in Fig. (6-2a). Now consider the net-
work of Fig. (6=-2b). By inspection, its Z parameters are given by

eq. (6-=7) and thus the networks of Figs. (6-2a) and (6-2b) are equi-

valent.
oYV ‘ o oYYV L e
sL ! XL
M=z -
kCle | K%c + 1L
K + L : D < *(
+K !
athg—r—————, ‘ -n—l- !
) C - 8C |
] ' -
| 2
| - _+_
| s(K“C +L)
i
o - [ o : —d
(a) (b)

Fig. (6-2) Eguivalent Networks

The network section to the right of the dotted line in Fig.
(6-2b) is a familiar one, being identical in form to that of Fig.
(3-2), which was obtained from the n-type synthesis of the rank 2 V
opsrator of eq. (3-2). Thus the two parts of Fig. (6-2) suggest two
opticns in the synthesis of a driving point impedance of odd rank
which has a pole at infinity. Either the pole can be removed first
and the synthesis leading to Fig. (3-2) employed or the impedance
can be synthesized directly without removing the pole leading to the
network of Fig. (6-2a). To handle other types of impedances of odd
rank, Y, and Y, can be selected differently than in eq. (6-7).
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The three above examples show a need for a further investi-

gation of the impedance operator approach as applied to driving point

impedancés of odd ranic.

c. Equivalent Networks

The impedance operator approach, because of the fact that the
basic operation of eq. (2-1) may be applied as many times as desired
in a given synthesis and because an additional arbitrary constant (s)
is included with each basic operation, can yield many equivalent
realizations for the same driving point impedance function. This
has been illustrated throughout the theais, notably in Chaptsrs III
and IV and in item B of Section 6.4. It has also been pointed out in
Section 1.5 that equivalent realizations can sometimes be obtained in
the form of bridged T, twin T, or lattices structures.’ These results
indicate the desirability of making a study of the use of the impe-

dance operator approach in obtaining equivalent networks.

D. Four=-Terminal Network Synthesis

This thesis has almost entirely concermned itself with the pro-
blem of driving point impedance synthesis. The use of the impedance
operator in transfer impedance synthesis and in the synthesis of two
terminal pair networks has not been discussed. Thus, the following
questions may be raised,
1) Can the impedance operator approach be used with profit in
synthesizing a prescribed 212 in, say, a filter design problem? Does

the impedance operator, with its arbitrary constants, provide a flexi-

»y o
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bility in such design problems not possessed by existing synthesis
procedures?

2) Can o general method be devised, using the impedance operator
approaéh, for the realization of a network whose four~-terminal im-
mittance parameters are specified.*‘ Do the matrix forms developed

in Section 2.9 offer any advantage In the solution of this problem?
]

E. 3seudo-Comuf.ative Property

 The pseudo-commutative property of the V operator is discussed
in Section 2.7. This property is especially interesting because it
permits resistance to be included in the impedance operator. As
pointed cut in that section, no study has been made of methods by

which a given driving point impedance might be separated to obtain

: Vx and y, or Vy and Yye Such a study should be undertaken.

One example in which the separation is straightforward is
afforded by refering to eqs. (3-1) and (3-R) and comparing the net-
work of Fig. (3-2) with those of Fig. (2-6). In Fig. (2-6), let

az
s Ty =G K=Z, (6-2)

8
Then the networks of Fig. (2-6) become those of Pig. (6-3). PMig.
(6=-3a) is identical with Fig. (3-2) and Fig. (6-2b) illustrates the

pseudo-commutative property in that the termination, cl’ which can

*3ome significant results have been obtained in regard to this pro-
blem by H. J. Nain and D. Hasony in unpublished work.
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(a) ' (b)

Tig. (6-3) Pseudo~-Commutative Networks

contain resistance, is now included as a part of the impedance
operator. The equivalence of Figs. (6-3a) and (6.3b) suggests that
it may be possible to develop a Darlington-type synthesis procedure
in which resistance can be included in the removed network sections
but which may require a prescribed (perhaps reactive) terminating

impedance. This matter merits further investigation.
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APPENDIX 1

Proofs of V Operator Properties

1.A Proof of Theorem D

m, + m, +n m_+n
et vy = bt v, = 2 v = 2 (=)
22 % Th T 6 6
Then- m. +n
"3 m +n ¥ 3 m3(m5 * nS) + nB(‘mé + né)
vy, = —L.b = (A=2)
23 m, + n_ '
m, + n, 7 ¥ ng mzp(m6 + né) + nA(m5 + n5)
and »
i [m.j;m5 + n5; + n3§m€2 + néi] .
1imim, +n,) + n,(m_+n 1
Vl(V2V3) - L6 6 Ao 5 5

o m,;(ms + ns) + njﬁe + n6)
27 "2 |m,(m, + ng) + 0, (ms +n,)

) (mlm3 + nﬁ) (mi + nﬁ) ¥ (ml.n3 + nlmA) (m6 + n6) (33)
(mznA + nsz)(m5 + ns) + (rnzm/+ + nan)(m6 + n6)

In a similar manner,

m, + n _
my m4 T 5, + ny ml(m3 + n3) + nl(mA + nA)
V1V2 = m. + n. (A=4).
my*m, m, + 1, my(m, +m,) + ny(my + n,)

ani
(m, + n.)
(mymy + mym, ) tng +—n§ + (myny + nym,)
(m_ + n)

(m2m4 + n2n3) + (mznl* + n2m3) (mé m »

(VyV,)V, =

) (m!m3 + 1:1]:1!)(1::5 + ns) + (mln3 + n'ﬂ!')(m6 + né) (1)
(m2m4 + nzna)(m6 + n6) +A(m2n1* + n2m3)(m5 + ns)

Therefore (vlvz)v3 = vl(v2v3) =V,V,V, _ (A-6)

~166~
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The result in eq. (A=-6) may be extended by mathematical induc-

tion to include any number of prf V operators.

1.B  Proof of Iheérem E

Let Vy, V,, and'V, be ziven by eq. (A-1) and let V be defined

10
by eq. (A=-6). Let V also be given by
Mty
V=T _ (4~7)
2 2
where M1 and Nl are the even and odd parts, respectively, of the
numerator of V and M2 and N? are likewise for the denominator of V.

The numerator of the even part of V may be expressed as

num EvV = M1M2 - N1N2 (A-8)

end, by either eq. (A-3) or eq. (A-5),

num EvV

(mlm3 + nlnh)(mzm +1n,n )(m5 6~ 6)
- (mln3 nym, ) (m, 20y, + n,m )(m5m6 - n5n6)

= (mlm2 - nlnz)(mBmL - anL)(msm6 - n5n6)

(num EvVl)(num EVVZ)(num EvVB) (4=9)

The proof can be extanded by mathematical induction to ineclude

any number of prf V operators.

1.C Restrictions on 12 in Equation (2-31)

m F(s) + G(s) + n,F(s) _my +n
2%n F(a) T3(s) + n P(s) )= p e, (0

Checking V) and V, in eq. (2=30) gives:
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nom, m, = n ’
n,F(s) ~ nF(s) ~ m,F(s) + G(s) - mF(s) - G(s) {a-11)

Theref.‘drchi-.:and' ‘{2 ars commutativs.
The numerator and denominator in eq. (2-31) must each be
Rurwitz for V2 to be prf. If they are to be Hurwitz, then

mlF(s) + G(s) sz’(s) + a(s)
() T LR (a-12)

must be reactance functions. By expanding each term it follows that

G(s [ Q‘g!
an(s) and noF(S) (A-lB)
must be reactance functions. In addition,
num EvV2 20 (A-14)

everywhere on the jw axis. For eq. (A-1l4) to be satisfied requires

that

2
(mlm2 - nlnz) P(s) + G(s) F(s) (ml + mz) -G%(s) >0
(a-15)
everywhere on the jo axis (and hence in the right half plane).

1.D £ dV

Consider the operator V_ as ziven by eq. (2-35).

(m1 + szz) + (nl + Kznz)

Vx = —(ml py mz) r (nl T nz) (A=16)

For V_ to be prf, its mmerator and denominator must be Hurwitz and

num Evvx 2> 0 everywhere on the jw axis.
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The rutio of the even to odd parts of a Hurwitz polynomial is

a reastance functlion. Applying this test to the numerator of Vx

gives
2
m.+ Km l 1
2. =+ (a-17)
; X n. n
Kt dao—2 b2
nl 2 m sz m
1 4y AR, M,

Each of the four terms on the right hand side is a reactance func-
tion. Therefore the numerator of Vx is Hurwitz and gimilarly for

the denominator. GCheckinz the even part relationship zives

num Evi

t

(my + szz)(ml +m) - (n + Kznz)(nl +n,)

tt

m12 - nl2 + Kz(mz2 - n22) + (K2 + 1)(m1m2-nin2),;
) (A-18)

Each of the terms on the right hand side of eq. (A=-18) is
always positive on the jo axis (and therefore in the right half
plane). Therefore v_ is prf.

A similar proof shows that Vy is prf.

1.E Svntheges of the Networks of Figure (2-6)

Let Z, in eq. (2-38) be rewritten as

(A-19)

The form of 2, in eq. (A-19) can be matched to that in eq.
(2-5) to yield
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it K (a=21)

The network: of ®ig. (2-6a) follows directly.
To obtain the network of Fig. (2-6b), eq. {2-39) is rewritien

in the form of eq. (A=19) and the procedure repeated.
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APPENDIX II

i Use of Surplus Factors in the Synthesis of V Operators

Let 2 be given by

= 4k -
w z_S’\L (A23)

?

1 mm EvZ = 4 - 8 (A-24)
"j‘ Num EvZ is not a perfect square but can be made so if 2 is multiplied
B s + 2 '

: s+ 2°

} _{e+ (s + 2) -

. Z= (s + 4)(8 + 2) (4-25)

i, mm BvZ = (4 - 8°)° (A=26)
1) Z may now be synthesized by the customary reciprocal Darlington pro-
cedure with a one~olm resistive termination.

Now let Z by given by

z=ﬁc1+ﬁ—cl+s

= (A=27)
m2 + n2(1 4+ scl
- 2+1
v1 = et 4 (A.28)

FPollowing the above pattern, V is multiplied by §-§—§ to yield

V. = (s + 1)(s +2) _ gz + 38 + 2

| (A"'29)
L 1 (s + 4)(s + 2) 8% + 68 + 8
and
(6% +2) ¢ + 38
G =3 = £z (A=30)

s +8+6s(1

Eq. (A~30) does not give the same value of Z as eq. (A-27) and there-

Lo o gt e . ot 1 . R e
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fore, in general,* it is not permissible to utilize surplus factors

in the case of the V operator.

" am e ® o e @ = e = e - e e W m M Em W e @ @ @ s @ W e s @ = e -

#* V may always be multiplied by the ratio of two equal even poly-

nomials in s without changing Z.
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APPENDIX IIXI

Simplifications in the Syntheses of Rank /4 Operators

As mentioned in Sections 3.7 and 3.8, it is often, but not
aluays, possible to eimplify the netw&rks of Figs. (3-13), (3-14),
and (3-15) by proper choice »f the arbitrary constants. These sim-
plifications require that 2, = ¢,,. The ratio clb/za may be ob-

tained from eq..(3-23) and equated to unity, namely

Clb aZb - b2
S1p _ %% T %% )
2, “a -z " (a-31)

or

(a + b)(zﬁ - zb) =0 (A=32)

Eq. (A-32) gives three alternative conditions.

b =+aand 2' =0
a
b =-aandEvz #0 (A-33)
Z, =% (i.e. z, and 2, real and equal)
The condition b = + a is not sufficient by itself to make 2, = Clb'
From the foonote to eq. (3-16), it is also necessary that Z, = O.

Similarly, the condition b = - a is insufficient. From the footnote
to eq. (3-18), it is also necessary that EvZ, # 0.

The first condition in eq. (A-33) requires that a and b be
positive real, while the second condition requires them to be imagi-
nary. The first condition cannot always be satisfied (consider the
simple case Z = s). Assuming proper choice of a, the second condi-
tion can always be satisfied but leads to the trivial result of eq.

(3-18), The third condition requires that the equation

=178~
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Z-a=0 o (a=34)
yield two roots of s (2 - 2,=0and 2 -3 = 0) which are positive
real or complex conjugates with non-negative real part. To inves-

tigate when eq. (A-34) is valid, let 2 in its most general form be

substituted thereiln.

n
a tas+ .... a8
o] 1 n

~-a=0 , (A=35)
b +b,s+t ceee b 8
o 1l n

(a ~ba) + sla, =b,a) + seuuns sn(a -ba)=0
o o 1 1 n n (A=36)
One of the coeff{icients in eq. (A-36) will yield a minimum

value of a for which that term and all others are positive. Let a
be chosen to make that term zero. If the term chogsen is an interior
term, the resulting polynomial is non-Hurwitz (an interior term is
missing) and must have at least one zero in the right half plane.
But all the coefficients in eq. (A=-32) are positive for the partic-
ular choice of a and thus the equation can have no positive real
roots. Therefore any richt half plane zeros mus! be complex con-~
jugates and there must be at least one such pair. The same argument
applies if a is chosen to make all coefficients negative except the

one which becomes zero. )

Thus, except for the case where the first coefficient yields
the minimum o and the last coefficient the maximum e (or vice versa),
it is possible to find at least two roots, s = a and s = b, which

are complex conjugates with a non-negative real part such that Za =

Zb.
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Whea eq. (A-31) holds, the network of Fiz. (3-13) reduces to
that of Pig. (A=-1) but the a and b constants are no longer completely

arbitrary.* The components of Fig. (A-l) are derived from eq.

1

(3-33) with &y, = 2, and therefore D = 2 (a + b).
[+
-,
Dtz (
a
z “2
2 s
S
atb
abZ '
o 1 (atbls

Fiz. (A-1l) FEliminating the Transformer from Fig. (3-13).

It is interestiny to note that at s = + § /gg, the network of
Fig. (A-1) reduces to a gyrator terminated in ¢, (z = zaz/(z), which
illustrates the invértiné property of the gyrator.

Similarly, when eq. (A=-31) holds, the networks of Figs. (3-14)
and (3-15) are simplified since the non-reciprocal term in eq. (3-37)
ro’ucee to a single cvrator. Then, choosing kx = Z_, V in eq. (3-35)

becomesg
szza2+z (a+b)+z2ab
V= 5 -4 4 (a-37)
s + sza(a 4+ b) + ab

num EvV = z&2 (32 + ab)2 - za2 sz(a + b)2 (A-38)

The components of V are

* Generally, there is a range of a and b values which satisfies
eq. (A=34).

© e e ey S P
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sza(a + b)
V=V =72
“ 8° + ab
(A~39)
sza(a + b)
v z —_— 1
12 32 + ab a

21
The resulting network appears in Figz. (A-2). Again at s = j/:g, 2

becomes Zaz/'c2 as in Figz. (A-1).

O~
+ 2
a
D= >
za
2 g,
2
Za(a:!-b)s — Za(a+b)
ab s
O

Fig. (A-2) Eliminating the Loaded Gyrators from Figs. (3-14)
and (3-15).
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APPENDIX IV

Proof of Theorem K

Theorem K: If a and ¢ are complex conjugates with a non-negative
real part and b is positive real, then CB as given in eq. (4-4) and

V as given by equation (4-6) are prf.

Proof: If it can be shown that the coefficients of the V-operator
in eq. (4-6) are unchanged by a permutation of the constants a, b,
and ¢, then V and (3 remain prf as explained in Section 4.2. The

coefficient Gy = (Zagzc)/tlb = l/D3 is examined as follows:

zﬂtgg - bf.!g - °Clb

= =40
Cp e Wy - Ky, (4-40)
Gy 2%, = °Z,
2 g o
.. a2 - b2
>1b = B ___a (A—A_Z)
2, 82, = b

Combining these three equations yields

2%, Efgfg(az -¢%) + azbze(c2 -b2) + oz zl(b2 - &%)
Clb ) b2, (a2 - cz) + a2 (c2 - 2) + o2, (b2 - 32)
(A-43)

tting a = b, b=c and ¢ = a in eq. (A-43) produces no

change in this V coefficient. The remaining V coefficlents can be
shown to obey the same rule. Thus a permutation of a, b and ¢ pno-

duce no change in V and hence no change in (3.

=177-
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APPENDIX V

Simplifications in the Synthesis of a Rank 6 Oparator

Eqs. (4=21) and (4=-23), which must be eatisfied if the networks

of Figs. (4~4) and (4=5) are to be valid, are repeated below.

aza(b -c) + bzb(c -a) + ch(a -b) =0 (4=21)

Za(b -c) + Zb(c - a) + Zc(a -b)=0 (4=23)

Let zc-.'rx be the value of 2 o which makes eq. (4-21) valid (n-type syn-
thesis) and likewise let 2o be the value of Z_ which makes eq.
(4=23) valid (m-type syniLesis). Then, solving eqs. (4-21) and
(4=23) for z, gives

ab(za - zb) aZ, - b2,

Zen =" Sa-® * Ta-b (hetd)
c(Z -Z) aZ, - bZ
= D b ____8 -
zom— a-b + a->b (A-45)

To investigate whether a positive real c can be found such that
eqs. (A-44) and (A=45) are satisfied with a and b arbitrary, define
the following.

a=x+jy =x = Jy
(a=46)
Za=u+jv zb=u-jv
Then eqs. (A=44) and (A=45) become
%
= oL (24 2 4 M P X -
ch--cy(x +y°) + (A=47)

|arg z2(s)| < |arg s| for 0 < |arg 8| < g Therefore uy - vx =

ux( i - ﬁ)ia alvays positive. It follows that uy + vx is also al-
ways positive.

«178w
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*

zcm =e y + y (A 108)

In eq. (A-46), x and u are alvays positive and y may always be chosen
positive. Then v may be either positive or negative. Eqs. (A-47)
and {A-48) are plotted in Fig, (A~3) for v positive and in Fig. (A-4)
for v negative. The curves are shown as never crossing which may be
verified by ﬁoting that the difference Zcm - ch does not change

sigﬁ for all positive real c. ‘

Let Zc be expressed in the general form

a +» ; + a (.3n
z, = =2 i _— © (A=49)
bo + blc + ... bnc

and require that none of the coefficients vanish (Z has no pole or

zero at the origin or infinity). Intersections of eq. (A-49) with
eqs. (4~47) and (A-48) in the first quadrants of Figs. (A-3) and
(A-4) are the desired solutionms.

For small values of c, Z, in eq. (A~49) approaches

%o
2,=g (4-50)
(s
vhile for large values of c, Z, approaches .
a
z_==2 (a-51)
e b
3
.. T TTTTTTTETmTEoT S
|arg z(s)| < |arg s| for 0 < |arg s| < 3 Therefore uy = vx =

ux:(i - E) is always positive. It follows that uy + vx is also al-

ways positive.
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Let

W—-;—“:r s H—;—Y—x=G (A=52)

Four cases must be considered in each figure. These are tabulated
as follows:

1. >F Zc must intersect Zm pA o must intersect ch

> G

Bd 'ﬂp Oo“op

2. >F Zc must intersect both no intersection

Zm and ch guaranteed
<G

i S

o

3. —=<7F no intersection Zc must intersect both

guarantead zm and 2 on
> G

i S

<F zc must intersect 2 on ze must intersect zcm

<G

il Yol Ny

In every instance except Case 3 for a positive v and Case 2
for a negative v, an intersection is guaranteed and thus a positive
real value of ¢ exists with a and b arbitrary such that either the
n-type section of Fig. (4-4) or the m-type section of Fig. (4=5) may
be removed from Z with a and b arbitrary. 1In these two cases, inter-
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sections may exist but ars not guarantesd. This last statement is

illustrated in Example 3.

Example 1
Synthesize Z given by

33 + l% 32 + 28 f 4

8 +1.,32+%8+1,

Z =

where

num Fvz = (2 - ;2)(82 + 25 + 2)(32 -2s + 2)

Choosing a and b so that Bvz, = Evzb= 0 makes CB four less in

rank than 2.
a=1+j , b=1~]
Then
8+ j2 8 - §2
2 =T 17 T
Thus

8
x=1l,y=1l,us= YT é;

This is a positive v, Case 1 example and therefore an m-type syn-

#
thesis is guaranteed. Solving eq. (4=-23) for c¢ gives

lzb - Fﬁg;f (b - a)ig _ -6 + 172c

P ey e e e b wrn s oo x p s S

' .
. #

e

¢ = o -

zb - za 2
which ylelds

(2¢ = 7)(c + 1.)(«:2 -20+2)=0

The positive real root 1s ¢ = %.

'Kp n~type synthesis is possible in this case.
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The caloculations then yield

2 - 36 z 5
: | Clbr'?ﬁi y T T3
| " S1b

o (2 + % 82)2 - % 8 9s + 30

2 2+26) -Lez 250415
gi and from the above relations and eqs. (4—3)’ (4=5) and (4=6)
. =2 =8*2 -1
At , Lae 518 =gy k=1
i o + 42 624 4o+ 7
b V=
. 83 + ;% 32 + léi s+ 7
b I
| where .
5 num EvV = (l% 52 + 7)2 - 32(52 + 9)2
;

The synthesis of V can now be obtained directly throuéh substitution
?1 in eqs. (4=14), (4=25) and (4=27). The result appears in Fig. (A-5).
¥ b +1
4
D " q
k]
i’ 363s
11
- L)
i )
N 208 828
2 77% 7 é/.éz
)
H
i as
1n

§ g | |
H Fig. (A-5) m~Type Rank 6, ¢ = 7/2.
[}
!

¥ gl
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Em.m_g
Synthesize Z given by
z=§_3+2§2+§§+4
83+782+6s+2
where
- 2y, 2 2
num BvZ = (2 - 8%)(s“ + 28 + 2)(8° - 28 + 2)

Choosing a and b as in example 1,

a=1+j , b=1=j
Then .
~ 23=4d 7. = &34
“a 5 ' % 5
Thus

x=1l,y=1l,us=s %, VE - %‘

This is a -v Case 1 example and thus an n-type synthesis leading to
Fig. (4-4) is guaranteed. The required value of ¢ is y6/3, which

is obtained from eq. (4-21). No m=type synthesis is possible.

Example 3
Synthesize Z given by
3 2
g=B-t2s +9s+ ]

8 + 992 + 58 + 16
where

num Evz = (4 - 82)(82 + 28 + 2)(s2 -~ 28 + 2)
Again choosing a and b as in examples 1 and 2
a 58 b 58

This is a +v Case 3 example and thus neither type of synthesis is
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guaranteed and a further check is necessary,
For an n~type synthesis, from eq. (4=21)

_ ab(Zb - Zg) _ 5
vz, - aza + (a - b)zc 18 - 292,

c

which reduces to
(¢2 = 2¢ + 2)(11c® = T7c + 40) = O
The roots are

There are two positive real roots and therefore an n-type synthesis
leading to Fig. (4~4) is guaranteed.
For an m-type synthesis, using eq. (4-23)

.= aZb - bZ§¥+ (b - a)Zg _ -26 + 582c

2, - 2, - 5

which reduces to

(c2 -2c + 2)(- 5c2 - 23¢c - 179) = 0

The roots are
C=1+j, l-J, 2.3 + j5"5, 2.3 "1505

There are no positive real roots and thus an m=type synthesis lead-

ing to Pig. (4=5) is impossible for this choice of a and b.
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