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ABSTRACT

The basis for current propeller design methods 1s lifting
line theory supplemented by an approximate correction for lifting
surface effect. Recent studies have indicated that this correction
is not entirely satisfactory, and that a more exact 1ifting surface
theory for marine propellers is needed.

In the present work, methods are developed to determine pitch
and camber corrections for propellers with arbitrary blade outline and
radial load distribution. The pitch and camber is determined by the
requirement that the desired load distribution be obtaimed with the
sections operating at their ideal angle of attack. The method may be
used both for homogemeocus-flov and wake-adapted propellers.

The method is an adsptation of the vortex lattice method
developed for wings of arbitrary shape by Falkner. By replacing the
coatinmuous vortex distribution by a lattice of discrete vortex elements,
the singular integral equation occurring in lifting surface theory 1s
replaced by a set of linear slgebraic equations.

From the form of these equations, it is shown that a propeller
with symmetrical blades and with mean lines vhich are symmetrical about
the mid-chord has mo pitch correctiom due to lifting surface effect.

To obtain a preliminary check on the accuracy of vortex lattice
theory, methods of approximatimg propeller liftimg line theory are
developed, and numerical results obtained with an IBM 709 Computer are
given. These results agree substantially with existimg 1ifting lixe data.

Liftiag surface results obtaimed vith an IBM 709 amd an IBM 7090
computer are discussed. From these results it is teatatively comcluded
that am accuracy of + 2% in the camber correctiom may be achieved with
reasomable ccmputation times. The sample results imdicate that liftiag
surface correcticas are dependeat om such variables as blade shape and
circulation distribution, which are not takea imtc accouat im curreat
desiga methods.
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NOMENCLATURE

1ift coefficient = L/l/epvel
Fourier coefficients of circulation distribution
propeller dismeter
function defined in (2.19)
maximum camber of mean line
non-dimensional camber = (f/z)/CL
cire elation
non-dimensional sember = ['/2nRu¥*
non-dimensional circulation = I'/2nR A
mumber of blades ‘
slope of mean line with unit camber at point g

camber factor = camber in 3-dimensional flow/camber in 2-dimensional
flow } ,

rsdial terms in Fourier series for G distribution
chordwise terms in Fourier series for G distridbution
index ia coefficient matrix of equation (5.33) and (6.18)
index in coefficient matrix of equation (5.33) and (6.18)
chord length of expanded section

number of ra#dal lattice elements

number of chordwise lattice elements

mumber of radial control points

number of chordwise control points

propeller radius

radius, radius to a coﬁtrol poi.n"c

radius of a helical vortex element

non-dimensional vortex sheet strength = y/u#*

induced velocity
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Ugr Ups Uy 0, = axisl, tangential, radial, and normsl induced velocity

-
u
u*

V&

v

2 components

non-dimensional induced velocity = bmru/T

displacement velocity defined i3y Fig. k.1

axial, inflow velocity

resultant rel.tive. velocity at a dlade from 1lifting line theory
integration rule veights

angle of attack of section relative to Si

non-dimensional, pitch correction = e:./(!L

geometrical pitch angle .

hydrodynamiq pitch angle from lifting line theory

hydrodynamic pitech angle from Jlifting line theory at radius T,

‘vortex sheet styength

relative load factor defined In (4.19)

« chordvise lattige constants defined in (5.14)
non-dimensional radius ro/r

Goldstein factor

bydrodynamic advance coefficlent = x tan B N
chord«load factor defined in (5.20)

x/> = non-dimensional axial distance

transformed radlel coordinate according to (4.3) or (5.1),
fluid mass density

transformed chopdwise coordinate according to (5.1)

propeller rotational speed
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CHAPTER X

INTRODUCTION

Propelier Design Methods

The basis for current propeiler desigh methods is 1ifking line
theory supplemented by an approximate eorrection for lifting surfase
effeets A description of such methods may be found in recent publications
by Terbstt? () yon yenen(3ds (4, ana mexneras an Morgan(®). gtnce
the historical development of propeller theory is ireated extensively
in these yeferences, we will be coneerned primarily with a brisf
sumnayy Of the assumpttons end geperal methods of solution fnvolved in
propeller theoty e&s it is applied at the present time.

In lifting line theory, the propeller bl#des ere replaced by
straight radial vortex iines. A free voriex shset extends downstream
from eagh of the liftimg lines forming an approximately kelieal surface.
The propeller 1s @ssumed to Ye rotating with constant engulaxr veleosity
4n an axially directed stream whose weloelty msy he & function of
radius enly. The flow will then be steady relative to a cocxrdinate
system rotating with the propeller. %The flow 4a the neighbozhood of
the prepeller 15 assumed to be anaffected by the frec surface or Ly
extrancous 80114 dboundariese

Even -thls idesllzed model camnmot be soived ex=stly since the
valoslty induced by the vortex sheets ghd the position of the cheats
828 mtually dependen®. I% &s therefore mssumed that the induced

velocities are small compared with the resultant relative velocitics
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at the Yifting liness The elements of the free vorkex sheet ¢an then

be assumed to be helical lines of ¢onstant yadius and pitch, vwhere the
pitel Is determined by the angle of the resultant flow at the lifting
iine fnclwding indvuced veloeities. This letter refinement complicates
vatters ecuwevhat 9ince the pitech of the free voriex lines ard the
veloetiles induced at the 1ifting line are still intfrdependent, however,
& solmtion mey readlly be obtained by iteration. )

The Justifieation for neglecting the axial deformatlicn of the
vortex sheet is that the velocliy Imduced at the lifting line by an
element of the sheet decreases rapidly with distance sc that sn error
in the essumed position of the sheet Vecames less critical as the
distance dowastreem incresses.

The reletionship betveen the dbound vertex strength and the
induced velccities at the 11ting line may be determined by the Lerbs
indueticn factor methcd(l)’ (L) . Ia the special esgse when the inflow
velgeity 18 constant end the pitch of the free vortex sheet 1s 1a~
Qependent of radius, the ecirculation distritution may also be determined
by means of the Goldsteln factors(s) . These methodas will bBe discussed
furiher in Chepter 4.

Due to the low sapect xratio o't most marine propeller Blades,
the use of lifting line theory resulis in unscceptebly lesge errors
unlless supplemenied by & lifting surface correction of some kind. Some
early attempts to explain this discrepaney were based om the application
of two-dinmcnsional easeade theory, however, es pointed out by Lerbs(7),
this spplicatiea was not justified. The Lifiing surface eorrectlieon

which 48 presently used wes £irst developed hy Ludvieg and 3uzel 2a 191414(3)

(9), (10)

and later refined by Ginzel Their approach was to find the
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induced flow cuyvatuge a% the mids«ehord and.tO'as;ﬂﬂhis to delerming
the camber of the blade sectionse Tha pitch was stil) o be dsbermined
from lifting 11ne thecty by the requirement that the seetians be at
zero angle of gttack reletive to the Induced fliow.

Their theory is linearized to the extent that the blade
surfaece 1s assumed to lie in the nesighborhood ¢f & tziue Yelleal surface,
the vortex system end the point where the indnced velocity is to be
Qetermined is on the helical suriace rather than on the blade itself.
The curvature of the flow is related to the derivative of the normal
couponent of induced velocity in the chordwise direcetion,. or, more
briefly, the "dowavash derivative". They assume a constant e¢irculation
distribution over the chord, and with this simplification it is easy
to show that the downwash derivative 1s equal to the ;lowmrash produced
by a "remainder" vortex system consisting of a line vortex representing
the blade cutline and a set of chordwise vortiees connecting the leading

and trailing edge. '

Their results can be expressed in t’erm;el of a camber correction
fecior k wiuch is deined as the ratio of the ceamber required in threee
Qinensicnel flow to the camber in two-Afmensionsl propeller flow for
the seme 1i{t coefficient. While the theory can take into account the
contribution of the other blades to the dovnwash Qerivative, this
effect wvas negleected to simplify the campuiations. Their resulis show
that the camber.correction factor depends principally oa blade area
(espect ratlo) end on the radial efrculatlon &istributlon.

In order to apply their results to propeller seciicns which

8 not have a constant chor&w!se circulation distribution, the chord
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dengths are godffied In aweh 4 w2y that the actual sectton and the
eonstant-load section would have the same total lift and downwash
derlvative In two-dimehsional £lows

After the pitch has been determined from lifping lise theory
end the erwnber of the seetlons ffom the fudweig and Ginzed theory, the
deslgn 18 completed by superimposing the velocities induced by &
aymmebricad thickneas form to those dug o the cambered mean 1ine.

&3 L llpcertged thia alrvoil (heory, the veloeltfes dve to the
thiciness forn ecntridbuie to the local pressure, but not to the lift.
Mnally, en gllowance 13 made for visecus effects by edding & profile
drag {force cod by adding a small enzle of stisck or cazumder increment
(or both) to &llow ior “ch;: 1033 ol 11i¢ aitributed to the pregence of
the dboundary layer. Both theag correciions end the velecity incremenis
Que to thickness ere determined by a two-adluensional strip theory based
on the resultant inf{low velocity Ifvem lifting line theory.

Tt has been observed that propellers designed in this way do
not havé the correct piteh 4n many ceses., To explain this Lerbs(”
coasidered the possibllity that the induced curvature msy no%t be
constant over the chord end that = witeh correetlion might be necessary
to take this into aceount. o do this "the Weigsinger(3&) Liséing |

surface theory was applied approximately al ome point ob the blads. In
‘- this theory the bound circulation is concentrated at the 1/k chord
14ne and the dovmvash 1 determined at the 3/i chord l1ine., The pitch
iz then adfusied 30 that the bowndery eonditien at the 3/h chord line
45 satipfied.



This ¢érreetlon #s used in the design method deseribed by
Eckhardt and Mgrga.ncsf). Hovever, Vey Manen and Crowley(lﬂ found thad
this gorrection 4id net secem t0 help in bringing *their theoretical and
experimental results inte sgreement. The author is alsg of the qpindon
that the approximations invelvsd in applying thls correstion are such
that It is questionable whether 1t ean serve to improve the accuracy
of the Ludwelg - Ginzel theory. %his was illustrated in the prssent
author's diseussion to a paper glven by M rgan in 1959(12).

Another form of correction whieh has been used prineipally
at the Netherlands Ship Model Basin 18 &n empirical modlifeation in
the 1deal efficieney of the propeller, which results in & change in
pltch. Thls is epplled prineipally to wake-sdepited propellers and
includes the efiecls ol unsteady flow(s) « It 48 not possidble to say
how much ©f thig ecrrecilon is due to exrors In siecadyesiate propeller

theory. i

Current Research in SteadyeState Propeller Theory

The fact that current &esign methods are mot entirely
reliable has resulted in e recent Interest in propeller lifting surface
theory. There are many pessible spproaches, some of which will be
dis;ussed briefly 4n this sectiom.

While the Indwlez-%inzel theory has a mupber of inherent
simplifying assumptions, it ie s$211 by no means being epplled to its
full advantage at the present time. For examplad, thelr resultsg show a
very strong dependence of the eanber correct!.on‘on the radlal load
distribution, yet this fact 1s ignored in current desisn methods. It

(3)

appears that the design curves given by Van Manen are for an optimum
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radial load distribution, while $hose appearing in Eckhardi and M‘orga.n(5 )
arg for g reduced circulation &% the oute¥ part of the Ylade. However,
the latter is applied t0 propellexs with both optimum and hon-cptimum
eirculation distribution., Furthermore, the modifica®ion 4n efaﬂegtive
chord length due to changes in the chord-load distribution 4s not teken
Into uneeccunt, Iinally, ths effect of the other blades which wes
6riginally neglected to save numerical work eonld easily be taken into
account now due to the aveilability of high-speed digltal computers.

A reanalysis of {hc Ludlwelgand Ginzel theory has Just been completed
by Cox(l3 ) , and 1% 1is poasibl; that these new numerical results will
resuld 4n better agreement between theéry and experiment.

(lh) has been working on

Following another approach, Alef
the exact apélication of the Weissinger theory to propellers, although
to the authorts knowledge, no vnumerica.l results are available as yef.
While thls should be a distinct improvement over the approximate
application of the Weissinger theory, it 1s still subjeet to question
vhether or not this will offer any Improvement over the Iudweig aund Ginzel

thegry.
e
Work is also in progress atANetherla.nds Ship Model Basin by
Sparenberg(lS) on & more rigoxous lifting surface theory. In that
reference, the bYaslc integrol equatlon 18 derived. It s understood
that work 42 in progress to solve the imtegral equatfon for the special
case of elliptic Dlade cutlings with eonstant circulatlon over the

blade suyface, * »



General, Method of Approach

In the present work we eqnsider the solution of the lifting
surface problem for & propeller with arbitraty blade ottline, pltch
&istribution and clrculation &istributien operating in an axially .
directed velocity fielde It %s assumed that the radlal eirculation
distribution is glven ahd that the blade surfaca is t0 be Lormed from
a known mean-line type by deteruining the camber and pitch et each
radius. These two parxameters are %0 be determined by the requirement
that the desired radlal elrculation dilstribution ie obtained with the
seetions operating at thelyr ideal angls of atte.ckf The chovdwlse
circulation dlstribution will then be datermined by these two gondliions;
by the boundary condltion that the flow be tangent t¢ the blads surface,

@

and by the Kutta eenditlon. |

This approach differs from any of the theories discussed
n the preceding sections in that no restrictive assurmiions need de
made as to the eirculation distribution or blade cutline, and the
results may be gpplied both to open water or to wakeeadapted propellers.

The procedure is similar to a method developed by Falknerclé)‘ (a7), €
to determine the 11t distributlon of wings of ej.rbitrary shapee. The cen-
tinuous distribution of radial emd helical vortices 18 wepleced by a
lattice of discrete vortex linmes. The lattice can‘be consldered as
formed from a nunber of "hoxshoe" vortex elemants of eonstant strength

as shown schematically in Fig. 5.1. The vaelocity Induced &t en sxblirary

point in space by each lattice element ean be determined by Integration

w

*The ideal angle of attack, or condition of “shock -free entrance" is
defined as the angle of attack for which the infinite sucticm ab the
leading edge given by thin airfoll theory yanishes.

*®
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acéording %6 the law of Biot-Savarb{19) e (20) . By detexxnining '!;'he
veloeily et & number of oontrol points on the blade surfsee at the
nid~pointsof the lattlce & set of linear equations may be formed zelating
%he strengths of the lattice elements to the shape of the Hlade surfaces

The singular fntegral equatiod encountered in Jifting surﬁce
theory 43 therefors replaced by a set% of simdtansous linear equabions.
8ince the process is very largely pumexical, 1% 13 not necessary to maks
the uwsual simplifying assumptions as t0 the blade outline and edrcnlation
distribution,

The question naturally arises as to whether the lattlice
method will convergs ¢to the solution of the integral equation as the
spacing is made smalleyr. Obviously, if the spacing is made very small,
the coefficients in the equations will become large, éue to the proximity
of the control points to the vortex dlnes. Consequently, from &
computational point of view there w11l Ve & point of dlmindshing
returns after which the set of linesr equatlons will be 400 neé.rly
singular to be solved. The question of whethey a sufficlently accurate
solt;tion canbe obtained before this takes place cen be settled Ly
computlng special cases for which the solution of the Integral equation
1s known and cbserving how the erryor depends ¢n lattice spacing.

This was done by Falkner(}'B)

13 the case of wings of varigus
shapes and it was observed that errors of less than ene percent could

3
be achieved with latticeg of reascnable size. Since the convergence

*

+*The finest spacing used twenty vortices over the semi-span and eight
over the chord.
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propeyties of the lattlee shonld not ba altexsd dxastically by going
Jrom & plane t6 e helical surface, the method should be expected to
work In the case of a proPeiler.

It shouldd be mentloned that this approach has been studled

(21) and Strscheletzlq;(22). However, since

$0 eoms extent by Guilloton
thelr work was done in the pre-digital computer era, it 4s somewhat
questionable whether a numerigal solutlon en a small encugh scale to
Ye done by hand would offer any advantage in accuracy over existing
resultse This conclusion is based on the results of the present
work in which 4t was found that the neceséary computations were far
from trivial even for a large-scale dtgital computer and definitely
beyond the capaeity of small machines, not to mention humans.

Basic Assumptions

The assumptlens will be similar in part to those made in

difting Jine theory es descrlbed in the beginning of this chapter.

The fivid 1s assumed ¥o be frictlonless and Ingcompressible a.nd. the

flow in the neighborhood of the propeller ig assumed ¢o be unaffected
by & free surface, extryaneons solid boundardes, ox cavitation. The
inflow veloclty, as in 11fting line theory, is assumed to be axial and
a function of radius only.

The free vortex system is assvmed to lie on a helical surface
whose pltch is determined from Jifting line theory with the same radial
dood d4stribution. The piteh of this helicad referenge surface iay de
a funetlion of radfus. The blads surface is agsumed to be appro;q'.mately
on the helical reicrence surfsce. The problem is Jinearizeq $o the

extent that the boundary condition is applied on the helical
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purface rather than on the blade Iteelf and the induced veloclties

aye assumed to be small velative to the resu?.ta.nt inflow: As in 2ifbing
14ne thegry, the flow is assumed to lie on cylindrical surfaces concentrie
%ith the propelleﬁ axis of rotation. This assumption is obviously not
very xealistle near the tip of the blades, but should be reasonsble
elsewhere for moderate propeller loadings.

I% 1s assumed that the Kutta-condition holds, 1.e., that the
bomnd circulation is zero at thé tralling edge. It is also assumed
that the boumd circulation is gzero at the blade %ip and at the hub
reldius, and that the boundary eonditdon of zero radial velocity at
the b eylinder can be disregarded. These last two assumptions
congerning the hub are by no means essential to the vortex lattice
metho&, and 1% 1s beligveq that & more accurate representation of the
hub e¢ffect can bs added at a later time.

Outiine of Resultis *

In order to apply the vortex lattice method, the velocity
dndiced at an arbitrary point in space by a set of helical or radial
. vortices 4s ngeded. Expressions for these are derived in Chapters -
and 3 respectively, and maethods of computation and error estimates are
discusseds In Chapter 4 vortex dattice methods are epplied to solve
the liftdng line problem, beth for optimum propellers in homogeneous
fow, and for non-optimm gor wake-adapted propellersg. This is included
to Indicete to some extent the convergence properties of the lattice
method by eomparxison with knowm results. These results are also needed

in the s@lutlon of the lifting surface problem for symmetrical blades.
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In Chapter 5 a Jatticq solution §s developed foy propellers
of generally arbftrary blade tutline, segbion type, and radlal clrculation
distribution, and in Chapter § these results ave speclalized 2n the
case Of propellers with symmetrical bladese In the latter cass, the
Xesulting symuetry greatly simplifies the computationse

Finally, in Chapter 7 numerilcal Yesults f£op camber and pitch
corrections are presented and compared with results according to the

nep
Iuddeg and Ginzel theory.
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. CHAPTER 2

THE VELOCITY INDUCED BY HELICAL VORTEX LINES

Introduction

In this chapter the problem of determining the velocity
induced at, an arbitrary point in space by a set of helical vortices
will be considered. It will be assumed that the vortices are of tgue
helical shape, i.e., that their radius and pitch remains constant,
and that there will be g vortices of equal strength symmetrically
located around the circumference. The axial extent of the set of
vortices may either be finitg, as in the case of a vortex segment
lying on the blade surface, or gemi-infinite as in the case of the
free vortex system extending downstream from the trailing edge of the
blade.

The velocity induced by a vortex line of arbitrary shape may
be expressed in terms of an integral taken along the vortex line by
means of Bio?:-Sava.rt's Law(lg). Expressions for these integrals in
the case of helical vortices have been derived 'by Betz(23), Sté:helet’iw(aa)
" and others. However, since the derivation is very short, it will be
-included here for convenience since these references are not widely
available, This will also serve to establish the notatiom, which is
by no means universal.

Since these mteémls c;.hnot be solved explicitly, other methods
have generally been used in the past to obtain the induced velocity
components. In lié't;ing dine theory, for example, the velocity induced
on the lifting line by a set of semi-infinite helical vortices can de
reduced to the two-dimensional problem of finding the velocity induced

by a helical vortgx of infinite axial extent, as was first shown by Betz(23 ) .
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This can be treated as a two-dimensional potential problem and solutions
for the case of a set of helical vortex lines have been obtained by
Lerbs(l) and in the cagse of & set of true helical surfaces by Goldste:l.n(G).
i Wcr, in a vortex lattice approximation to the lifting-surface
_problem, the velocity induced at an arbitrary point in space by a segment
of & helical vortex line must be determined. Since this is now a three-
dimensional problem, the Biot-8avert integrals would appear to provide
the best way of obtaining the ipduced velocities.

In the csase oii’ a finite interval, the integration may be
performed by nmumerical methods as will be discussed later. In the
semi-infinite case, mumerical integration mey be used up to a sufficiently
large distance downstream at which point the remaining value of the
integral to infinity can be estimsted. Both of these steps introduce
errors normally defined in mumerical analysis as "truncation errors".
However, in this application the term "integratiom error” will mean the
error introduced by the numerical integrstion formula, vhile "truncatiom
error" will refer to the estimate of the integral to infinity. Both of
these errors will be considered in detail later in the chapter.

The Induced Velocity Components Determined by Biot-Savari's lav
As shown in Fig. (2.1), s right-handed cartesian coordinate

system is located with the x axis along the propeller axis of rotation
with positive direction dovnstream. The y axis passes through the
control point, i.e., the point in spece where the velocity is to be
determined. A cylindrical system (x, r, 9) is oriented so that the
line x = 0, 6 = O in the cylindrical system corresponds to the y axis
in the cartesian system.
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There will be g helical vortices (cne from each blade) which
have the following properties:

&) The vortices all start with the same axial coordinate
X, radial coordinate Ty but with different angular
coordinates 0 = cpp, p=1,2, ... &

b) The vortices are of constant radius r,, and constant
pitch angle P 10

Biot-Savart's Law may be written

T - {u.; j “8’3‘ S (2.1)

vhere I' = vortex strength (fta/sec)
8 = vector distance from vortex element to comtrol point (f£t)
al = ée‘ctor element of distance along the vortex (ft)
U = vector induced vélocity. (£t/sec)

The dd,s““unce 8 has the following x, y, and z components:

L [-xo - r 9 tan aio’ r-r cos (p + q:p), - r, sin

(9 + vp)] (2.2)
vhere @ is the angular coordinate meagured from L shown in Fig. (2.1;. )
The vortex element 4 is

it = [t&n Bjo» - 8in (p+ wp), cos (¢ + cpp):l r, & (2.3)

The cross-product dt x’§ is as follows

1 3 x
U XS = r ap | ten B -sin (p+9.) cos (Wp)
-x -r ¢ tan rer_ cos pr) -r, sin (Wp)
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‘
r - rcos (p » vp),

-r d <%tmam[uhwtygzvcw(v*%ﬂ
g - X cos (o t‘pl;),

®
tan aioi r-r, cos (p & cpp) -r, @ sin (p + cpp)]

- x sin (p + cpp) (2.%)

and the scelar quantity S5 is

3 2, 2 2
s .[(xo-rroq;ta.nﬁio) +r +r°-2rr°cos (Q""‘Pp)

(2.5)

]3/2

Substituting (2.2) thiough (2.5) in (2.1) and summing over the
g blades gives the following expressions for the axisl, tangential, and

radial velocity components

g
u, = r—-l"—?- jp; ij [ro -rcos (p+ cpp)] ap (2.6)

e 2
Co% Ip; 5 [man tron e 009y

- sta (¢ + @) (%, + 7, @ ten B, )] ap (2.7)

I‘ro 81 1
u = J‘p;"-sg [- (ro ¢ tan Bio + xo) cos (¢ + cpp)
4+ tan P, r_ sin (p + cpp)] &p (2.8)

The above equations, after due changes in nomenclature, are

3 2z o (22)
in agreement with Strgheletsky's

formula 35. Furthermore, in the
special case when one of the helix starting angles, Qp’ as well as the
axial starting points, x,, are zero, these expressions agree with those

: (23) (2)
given by Betz and Lerbs‘~/. This latter case corresponds to the
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the velocity components at a blade in propeller lifting line theory. .
Equations (2.6) - (2.8) can be made non-dimensional in terms
of the following variables

Nerfr .
. Sexfr (2.9)
The non-dimensional induced velocity components u can then be written
85
- 1
u, = 1 fp; ;)37-5 [‘n ~ cos (9 + cpp_)] &p (2.10)

2] ,
5] G [tan B,y {3 - M cos (9 + 9.}

- sin (p+9)) (£ + N ten B, )] ap (2.12)

¢ :
- 2 [ 1 .
u = i J 12.—_1 -7—D3 2 [tan Bio sin (p + cpp) -

- {p tan B, + &/T}cos (9 + cpp)] dp (2.12)
vhere the denominator in each of the integrsls above is
. /2 2 3/2
D3 s[(§+11¢ta.nﬁio) + 14+ 112-2‘ncos (q:+cpp)]
(2.13)
The non-dimensional velocity & 1s related to the Lerbs'l)

induction factors i by the relation

* The reason for selecting a different non-dimensional form is

based on a consideration of numerical accuracy. The total velocity at

a control point is to be obtained by summning the velocities induced
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by the elements of a lattice system. The velocity induced by the nearby
® ’elements will bectme very large as the lattice spacing becomes small,

80 that these must be computed to an incresasingly large mumber of

significant figures for a preecribed accurecy in the resultant velocity.

The quantity u will tend to imfinity as (1 - T])-l ag T - 1, hence .

requiring a fixed accuracy in u, (say three decimal places correct)

is equivalent to requiring a higher percentage accuracy s&s t‘che megnitude

of U increases.

On the other hand, the induction factors remain finite due
to the factor (1 - M), so that if the number of decima) pleces in the
conputation of the induction factors is sufficient for the nearby
elements of the lattice, thé induction factors for the distant elements
will be unnecessarily acgurate.

In general, the velocity component normal to a particular boundsry
is to be determined. Let (£, m, n) be the (x, y, 2) components of &
unit vector normal to the surface. The non-dimensional normal velocity
is then given by

un=luﬁ.-’»m1’.~.x_-0-nut . (2.15)

For purposes of computation, it is convenient to express the integral
in the following form

IZ (e +chcosgo+c5 sincp+c6cpcoscp+c7cpaincp)dcp

(dlcp + 4 cp+d3+dh cos¢+d5 s.’mc:p)jfr2
(2.16)

vhere the c's and d's are constants in the integration, but depend on

the blade index p. From (2.5) these constants can be written as
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c.=4c,. +mc. +ne

3" “a 3r 3t
oy =dey, tmCy. R Cy, .
ete. (2.17)

By expanding sin (o + cpp) and cos (P + q:P) in (2.10) - (2.12) and collecting
coefficients, the following expressions are obtained

°3a""2 *

Cha = ~T cos <pp

> sxial component

C5e = 1 810 @ F

c6.‘c7"°

c3r=0 . B

¢y = T tan B, sing - M¢cosq
¢ =T|2tan81 césq: + Mg ein g
or 2 ° P P - redial component
Cop = tan Bio cos cpp

c7r-TFta.n51° sincpp

- J
Gy = T taa By, ) ]
°ht"“2“”m coaq)p- ne cincpp
Coy ™ ‘n2 tan B,  sin ¥ - N ¢ cos ® Lta.ngentm component

Cep = 112 tan Bio sin q)p
Cog = -1]2 tan 510 cos vp

o

The coefficients of the dencminator, vhich are the same for
all f.hree compone@ts, are
2
dl = TF tan Bio

2
d2-2cplTFt¢n Byo



a -cp121]2tm2910+1+ﬂ2

3
dl‘ = -2 T cos (pp
d5 = 2 7 sin ® (2.18)

By considering the non-existent constants ¢1s Cp d6’ and 67
to be zero, and by defining & function F (¢) as follows

Fl=cp2 F.=¢ F,=1 Fh-coacp

2 3
F5=sinq> F; =@ cos @ F7-cpsintp (2.19)
a more compact expression for ﬁn is obtained
7
J’Z [Z s Fn ((p)] |
=l ap (2.20)

[0, 5, @2

If the integral is to be evaluated by an I point integration formula with

weights W,, (2.20) may be written

i - il pzl [Z Co Pt ]
T ol

vhere F_, means F_ (cpi). This is a convenient form for use with & digital

(2.22)

ni

computer. As 15’ described in Appendix ( A ), values of ’m

and stored in' a table so that only the constants n and dn need be computed

may be computed

for each integration. This results in a large saving in computaticn time,
vhich is important since the evaluation of these integrals represents
the major part of the numerical work in obtaining lifting surface solutions
by a lattice method.

The velocity component noml to & true helical surface can

be determined by substituting the components of the unit normal in (2.15).
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Choosing the positive direction for the normal to be directed upstream,
i.e., in the direction in which a propeller would normelly be devel oping
thrust, there follows

l---cosB:L m=0 n=+a1n31

u =-u cos 51 +uy sig Bi {2.23)

where Bi is the pitch angle of the helix at the control point redius r.

Integrat:l.on Errgr

In the case of a semi-infinite vortex, equations (2.10) - (2.12)
or (2.22) may be solved by numerical integration up to some angle Py
end the remaining contribution from Py to westimated. In this section
. the error introduced in the mumerical integration from O to Py will be
considered. These results may be applied equally well to the integration
of vortex segments cof finite length on the blades.

To get some idea of the spacing required, the error in the
axial component will be derived in the case of mumerical integrl.tion.by
Simpson's Rule. The expression for S:I.l‘plon'l m.l.e(eu) s including the

error term, is
X, .

2 ‘ 5
h . 3
_{x t(x)ax =B (g, + e, v £,)-3E ¥ (5) (2.23)
o
where the total length of -the interval X, = x, = 2h, and x, <g< Xye

Note that x and £ refer to thé varisble of integration in general, not o
the ecordifiates defined in Fig. (2.1).

If the megnitude of the maximum allowable error in one revolution
of the integration is ¢, the mumber of Simpson's Rule elements per

revolution is

% = n/h : (2.24)



and the maximum error per element is

5 *
T oenfr=gs £ (€) (2.25)
80 that the maximum integration spacing is:
1/4 :
h = e _ / (2.26)

“nofY (x)

If fIV (2) is interpreted as the maximum value in the interval, e¢ will

21

be an upper bound on the error for & spacing h.
The fourth derivetive of the integrand of (2.,10) after an
elementary, but lengthycalculation, may de expreﬁed as follows in

terms of the notation of Fig. (2.1). .

8
f_Iv (p) = ;1 [ r D, - r cos % D, + r sin % D3] (2.27)

where: Dl = Cl

D, = (0141-02) cos 9 +C, sin @

3

aincp-c3

2) cos @

D3+.(Cl+c

C, = 59.0625 g 11/2 gk _ 26 75 879/2 412 311 4 13,05 57T/2 g2
+ 15.0 3'7,/2 3t 8" - 1.5 3'5/2 8"

C2 = =22.5 3.7/2 3'2 + 9.0 3-5/2 g 4 3‘3/2
cy =525 92 83 - Us.0 sT/2 g g1 4 65752 8" L6552 g

s=d+e:pfcp2+gcos(p+hsincp
S'-e+2ﬁp-gsincp+hcoscp

8" =2f =gcos @ =hsing

"

3 = gsine¢g - hcos o

W

8 =gcosp+hsing
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2, .2 _2
d-xo ¥r rO

e-2x°~-r°t¢.n51°

2 2
4 r tl.n‘ Bio

g = =2r T, co8 cpp

h

ar r, sin q)p

Unfortunately, many of the terms in the above expression are
of the same magnitude, so that it does not seem fossible to obtain a
simple upper bound for £ 'Y (p) without being unresscnably comservative.

The above equations were therefore programmed for an IBM 650
and a few sample curves of eV (p) were computed.

Fig. (2.2) shows a sample plot of [f i (cp)]l"n+ for a three

and five-bladed propeller with T = 2 and B, = 20°. From (2.26) this
is seen to be inversely proportional to the spacing required. This
indicates that the spacing after one revolution can be about ten times
the initisl spacing for constant error.

When 1) is close to one, £he fourth derivative is initially

very large. The following values are for T = .95, aio = 20°, and g = 3
9° 2" (o) [e™ @/

0 3.31 x 10° 240
3 8.99 x 10 9
6 274 x 100 72

In order to 'gua.rl.ntee an error of less than .0001 per revolution
in this case, an initial spacing of about 05 degrees would be required,
while for T = 2 the initial speacing could dbe 2.8 degrees. After cne
revolution, & specing of arcund 30 degrees would be sufficient, regardless
of the value of 1.
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1 5
[2 () ex .Z W £ (%) + (const) £F (g) - (2.28)
o =1 ‘

vhere ;che weights and ordinates are given in Table A-2 in the Appendix.
While this formile w@d be very cumbersame for o.‘ hand celculation due
"to the irrational weights and unevenly spaced ordinates, on a digital
computer this would take the same length of time per point as Simpson's
Rule and would have a much higher degree of precision.

As a result of calculating a large rnumber of induced velocity
integrals, it was cbserved that in all cases & larger spacing between
points could be used with the 5 point Gauss Rule than with Simpson's
Rule. The advara.ntage was greatest for values of T near unity where
the Geauss rule spacing could be five times as large as the Simpson's
rule spacing for equal accuracy. .

As a result of these sample calculations, it was also noted
that when |1 - 7| was small it was not necessary to decrease the
specing when integrating the blades other than the index blade. By
. using & widg spacing for the non-index blades, a significant reduction
in computation time could be achieved, particularly for five or six-bladed
propellers.

Although the spacing required for a particular accturacy depends
on g, T, tan B 400 904 X, there is very little to be gained in including
a parameter which has a relatively small effect on the required spacing
since the time spent selecting and manipulating blocks of stored tables
. may affect any time savings in the actual integration proccss. It appears
as though the critical parameter is |1 - 1| and that the effect of
g, tan Bio and x, on the required spacing can be ignored. It also

appears peasonsble to divide |1 - 7| into'the following three regicns:



.02< [1-1] .10 -  Fine Spacing

d20< 1-1)<.25 Medium Spacing

.25 < Il -1 Coarse Spacing (2.29)
Values of ll - Tli < .02 were not considered, since this is the smallest
value which would be obteined with the vortex l&ttice systems anticipated.
Table (A-I) in the Appendix contains a list of angular intervals which
when divided into S5-point Geues ordinates will produce values of the
integrals correct to 3 decimsl places.

Truncation Error

An upper bound on the error introduced by truncating the
integration at some angle ¢, can be obiained as follows:

The integral to be estimated is:

o 8 ’
$u, =1 Itpt Z'l_ -:':375 [TI - cos (@ + cP],)]dﬂ’ | (2.30)

The denocminator cean be simplified as follows:
/2 2 3/2
p/2 - [(g+ novan by )f v 2s - 2ncos (91 9,)]
> 113 o> tan’ Bio i (2.31)

»

Subsituting (2.31) in (2.30) and replacing -cos (9 + @ )by 1,

, g
sole [Mel IQ& Je(ne1)
I a\- Tlgta.n3sio ;.1 tv3. ta.n3ai°<pt2

(2.32)
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Similarly from (2.11) the tangential velocity estimate is

g
- 1 (3+7) tan B, + €+N tan B, @
&6 u < p———— io _ io 7 . &
l t l 'n2 tan3 Bio ;-l L q:,3
(1+47) tan B, + §
= g 1l+ 1o
| a8 o, [ 21 tan B, @, te

For example, if | = 1, tan 3io=l, g =0s8ndg =3, the
meximim error introduced by truncating the integration after n revolutions

(Cpt = 2m) is shown in Table 2,1.

Table 2.1 Truncation Error Bound

No. of Revolutions n ]5 ﬁa] mex. |6 ﬁtl max.

1 .0760 .5500
2 0190 2570
3 .008k .1650
" - 0047 1240
5 0030 .0985
6 .0021 .0815
13 | .0005

While this estimate is very conservative, particularly in the
case of the tangentiel velocity, it illustrates the fuct that after
2 or 3 revolutions the error decreases very slowly. On the other hand,
after a few revolutions, the value of the integral to infinity can be
accurately estimated as follows?
For large values of Pyt
E 1. cos (p+ ?,)

- 1
U A ———
* 1l It ZA ¢

[
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8
Q-Zcmw IM
2 P

8
X
;F tu.n3 Bio [ P; L Ittp3 q;3
g
21 oin ¢ { 5'&5;3 ] (2.34)
= AN |

The last two integrals in (2.3L4) ean be reduced to the Sine Ingetral
[Si (q;)] and Cosine Inte§ral 1; Ci (cp)] which are tabulated functicns.
However, if the blades have equal angular spacing, the sums over cos cpp
and sin cpp are zero so that only the first term remsins. In this case
the estimated value of the integral becomes:

8u =~ - (2.35)

* 21 ta.n3 p:Lo q’ta

811£1hr]y » the approximate value of the tangential velocity is:

8 u, ~ £_ (2.36)
v ;?ma Bio cpta

An upper bound cn the error introduced by using (2.35) can

be cbtained as follows: )
Assume that the actual value of D3/ 2 and the spproximate
value differ by the factor [1 +¢ (cp)], .vhere ¢ << 1. Then

1 R M- cos (p+q)ap
Itn—37§ [Tl- cos (¢P+¢Pp):'d¢' 'ﬂIt s c)(n3¢3tu:3 5

M- cos (p+¢) dp ¢ (T -cos (p+¢)ap
It P tan’ Pio @ - It ™ e’ By, 9

=3

* e

6 Ea + § : (2.37)

Where

{n- (¢ +¢)]



«30-

1s the error in the approximetion § ﬁa' If €nax is the maximum value

of e (pj in the interval ¢, < ¢ <=, 8 can be written:

(n+1)
o] < | -mex l - (2.39)
2T|2 ta.n i q’tl :

The quantity €nax C20 be estimated as follows:

A+ e tandp, )= [(Esnptans, )?+1+ 17

=21 cos (p + q:p)]3/ 2

Solving for e:
c [(§+n¢ma 2+ 14 1P - 20 cos (p + ) P2 ;
™ ¢ tan’ B,
o] < [§2+2T!§<ptansio+n2¢2m2§1°+14n2+2n]3/2
- P t:381°+0 - (2.%0)

In the case vhen £ = O and cpe >> 1, the 3/2 power dn the

numerator can be expanded éiving the approximate result:

3 (1+ 2+2
2 2
%Ecp ta.nzaio

The maximum value of ¢ is when ¢ = @, . Substituting this in (2.39)

}c\ < (23’-&1)

gives the result

l + (20’”’2)
io q’t
Solving for Py
1/4
2 1
o - EL“ + n25+ 1) (213)
ll. ‘n tan 610

Taking the same numerical example a8 before, if T/ =1 tan B 10

£=0 g=3apd s =.0005, (2.43) gives the result:
P = 13.8 radians s 2 revolutions.



&

-31-

According to Table (2.1), it would require 13 revolutions to
obtain the same accuracy if the numerical integrations were used entirely.
Since Table (2,1) represents a very conservative estimate, the actual
saving in using the approximate value of the integral from Py to » is
somevhat less.

Bquation (2.43} dnd a similar one for the tangential veldcity
could be uged to determine Py However, this is also a little conservative,
8o that it is more efficient to use a more empirical way of deciding
vhen to stop the mumerical integration. This is done by estimating
the value of the integrals to infinity from (2.35) amd (2.36) after
each revolution in the numericsl integration has been completed. When
two successive estimates egree to the desired t‘olera.nce, the approximation

of the integral 1s assumed to have converged.

Fumerical Results

In ordex to check the preceding resﬁlts , induced velocity
components were computed corresponding to th¥ee mumerical examples given
by Vrench(QS). The velocity eamponents obtained by numerical :!.ntegratiog
converted to induction factors by (2.14) sgreed to four decimal places
with Wrench's values, vwhich was the total number of places given. Checks
against gross errors were made by comparing induction factors over a

(26), and in all

wider get of parameters with the tables given by Morgan
caseg the agreement was sati_sfwtory.

In addition, large mumbers of computations were made to
determine the optimum integration spacing as was discussed previously, .
however, since these results are of limited usefulness once the spacing

criterion has been established, this data will not be reported.



THE VELOCITY INDUCED BY RADIAL VORTRX LINRS

The velocity induced by a st¥aight radial vortex segment of
constant strength can be obtained by integration using B:Lpt-Savarb's
Law. While the helical case was somewhat complicated due €o the necessity
of using mumerical integration, the expressions obtained for the radial
case are very simple and may easily be integrated explicitly.ﬂ

The notation to be used is shown in Fig. 3.1, and :is substantially
the same as Fig. 2.1. A set of g radial vortex lines are located at

angles <pp and extend from ry tor The remeining notation is the same

2!
as in the helical case, except that the varisble of intégration 1s now
.
Ty instead of ¢.
The components of the vector element of vortex line d% are
da = [ O,Fdro cos tpp, dro sin cpp] (3.1)
and the distance from the vortex element to the control point is

Ll

8 = [-xo, r-r,cosq, T, sin <pp] (3.2)

Substituting these qua.ntitiéa into the expression for Biot-Savart's
Law (2.1), the following expressions for the velocity componente are

obtained

g

T
* a4 = 11'-“:"_ f Z -r sin ¢B_d rO
a : D 2 2 , 3/2
, =1 (xQ +1 4 - 2r r_ cos cpp)

u_ =0
r

l Z x, cos cp dr ( )
1 (x +T -bro -2rr°coscpp)
As in Chapter2,these can be expressed in terms cf the non-dimensional quantities

M=r/r E=x/r d=u ¥ (3.4)



FIG. 3.l COORDINATE SYSTEM
FOR RADIAL VORTICES
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resulting in the following expressions

T

&
ﬁa." -leincpp j %5

p=1

Ll
i &
S oy |
u, =8 cos ¢ d (3.5)
t Z P a ;gﬁ
1

where the denominator is

g3/2 . [ge +1 4+ 7 - 27 cos q’p:P/a (3.6)

Equations (3.5) can be integrated to give the fcllowing
% g

u, = :Sil sin ?, Ip u, =8 Z;l cos @, Ip (3.7)

where :
N-cose ﬂ2 o >
I =—5 29 73 £ + 8in“ ¢@_# O (3'8)
P (£%spin cpp)El 1 P
1
g3
I 2 1 €2 + sin® @, = O (3.9)

1)=2(’f]+coscpp)2 J
M

1

The latter form corresponds to the case when the vortex segment coincides
with the y axis, at which point the velocity is zero as can be seen
from (3.5)

As in Chapter 2, the velocity normal to a helical surface with

pitch angle B 1 at a radius r is

‘ u, = -u, cos Bi+ut sin Bi
vhich in this case can be written
g
u, = le [ sin @, cos Bi + £ cos cpp sin Bi:l Ip ( (3:10)

-
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SOLUTION OF PROPELLER LIFTING-LINE PROBLEMS BY VORTEX LATTICE METHODS

Introduction
Before applying vortex lattice methods to the solution of pro-
peller lifting surface problems, 1t would seem advisable to apply similar
methods to certain lifting line problems whose solutions are well known.
In particular, this would provide some preliminary information on the
spacing and arrangement of control points necessary to produce results
with sufficient accuracy for design applications. As will be shown in
Chapter 6, it is also necessary in the 1lifting suxface case to have
lifting-line regults obtained with an identical radial lattice arrangement.
Tbe two problems which will be discussed are:
l. To find the radial distribution of circulation to
produce a free vortex sheet of true helical shape in
homogeneous flow, i.e., the optimum propellex.
2. To find the radial distribution of circﬁlation to produce
a free vortex sheet with a specified ;adial pitch dis-
tribution in an axially symmetric velocity field.

Goldstein Factors

The solution of the first prcblem is expressed in terms of

Goldstein Factors which are defined as follows:

al’ -
12 (I‘, )\i, {_,) = ETE'-E: (l#.l)
¢

where: 3

Goldstein factor (non-dimensional)
k7

I' = Strength of bound vortex at radius r - (fte/sgc)

r

Radius of vortex element under consideration. (ft.)
u, = tangential camponent of induced velocity at the

1lifting line as shown in Fig. 4.1 (ft/sec)
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@

g = number of btlades

A = r/R tan B, = x tan B,

B i = angle of relative flow at the 1lifting line

X = non-dimensional radius r/R, where R is the (ft)

radiue of the propeller.
This problem was first solved by Goldstein(s) in 1929. If the contraction
and axial deformation of the free vortex system is neglected, the problem
can be reduced to the two-dimensiocnal problem of a rigid helical surface
moving with a fictitious displacement velocity 2u* as shown on Fig. 4.1.%
Goldstein's original paper included numericel ryesults fox two-bladed
propellers for 2 < l/li-f 10 and for four-bladed propellers for l./ki = 5.
Later Kramer(27) and Lock and Yeatman(28) obteined values for propellers
with 2-5 blades over the same range of xi. These were recomputed in
1956 by Tachmindji and Milam(29) by a more accurate method. Goldstein
Factors for g = 2-6 and 1.5 < l/ki < 6 were obtained using a Univac
computer at David Taylor Model Basin; and those results showed that
previous values could be off by as much as 6%. Techmindji and Milam(3o)
;nd.McCormick(3l) extended Goldstein's theory to include a finite pro-

peller b, however, their initial assumptions regarding the value of

the circulation at the hub are not the same.

*The velocities shown in the figure are at the lifting line. At a
large distance downstream the induced velocities are doubled, hence,
the displacement velocity is 2u¥ .
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Another way of computing Goldstein Factors is the induction
factor method developed by Ierbs(l). In this method, the velocilty
induced by each helical vortex line forming the sheet can be computed
from a potential as discussed in Chapter 2. The velocity induced at a
point on the 1lifting line by the entire sheet can be obtsined by integrating
over the radius. The resulting singular integral can be solved by ex-
panding both the circulation distributiont and the induction factors in
& Fourier series with a prescribed number of terms. The integral is
then approximated by e series of singular integrals of the Glauert type
whose value is known from wing lifting line theory(l9).

To obtain Goldstein factors by a lattice method the free vortex
sheet is réplaced by a finite number of helical line ¥ortices as shown
schematically in Fig. 4.2. The velocity induced at a point on the
lifting line by any of these vortex linés could be computed either
from the potential given by lerbs(7) or by numerical integra£ion as
gescribed in Chapter 2. In this case rumerical integration will be
used since this can ;asily be extended to the liftiﬁg surface case,

.
while the two-dimensionel potentlal for the induction factors cannot.

By‘computing the velocity induced by each element of the
latticerat a number of control points on the liftiné line, a set of
linear equations results relating the strength of the individual vortices
to the resultant slope of the flow at the control points. This can be
considered as another'way of getting around the singular integral which
occurs with the continuous vortex sheet. The equivalent step in the
induction factor method is determiming the Fourier coefficients of the
induction factors which are cbtained by ¢ne of the usual methods of

harmonic analysis from the induction factors evaluated at a number of

. 1e
x * »
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distinct points. In general, the velocity induced at some point on a
propeller blade will be due to both the free vortex system and the bound
vortices. However, in lifting line theory where the blades have been
replaced by straight, radial bound vorticefs only the free vortex systesm
need be considered. Fhis is because the resultant velocity &nduced
anywhere on one lifting line by a symmetrically arranged set of lifting
lines of equal strength is zero. .

To proceed with the specific formulation of the problem, it
igs first assumed that the strength of the bound vortex representing

each blade is given by an I term Fourier sine series

I
¢ (p) - 8L _ Y o sin i (4.2)
i=1

where G is the non-dimensional bound vortex strength and p is a new
PR *
variable which is zero at the hub radius Ty and m at the tip. The

variables p and x are related by

x=%(l+xh)-%(l-xh)cosp
—cos'l[ l+Xh-2X] (4.3)

l-xh

©
!

The vortex distribution given by (4.2) is automatically zero

at the hub and tip for any values of the coefficients s This is in

1.
accordance with the assumption made by Lerbs(l) and Tachmindji and Mila.m(3o)
that the circulation falls continuously to zero at the hub. However, as

dndicated by McCormick(3l) and a recent wnpublished study by Tachmindji,

*This 18 not the usual non-dimensional circulation which is defined as
G' = I'/enRV_ when V_ is the speed of advance. In the present work, it
is more cogeenient 8to use u* as the non-dimensionalizing velocity so
that G will be independent of loading. )
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the assumption of zero circulation at the hub does not appear to be
valid, but rather that the value at the hub should follow from the
solution of the boundary value problem.
In any event, to take tke hab into account using vortex
lattice methods, it would still be necessary to obtain a suitable
series expansion for the hub potential whose coefficients along with -
thosggin (%.2) could be obtained by including control points on the
hub cylinder as well as on the blade. However, since the effect of normal
size hubs (Xh < .2) cn overall propeller performance is small, the
solution for the hub potential will be considered at a later time. 1In
the meantime, the hub will be taeken into account only by requiring that
G (xh) = O while the radiasl velocity boundary condition will be dis-
regarded. As will be shown later in the numerical examples, the
@oldstein Fectors cobtained under these fairly crude assumptions are in
reasonable agreement with the values gives by Tachmindji and Milam(so).
The vortex lattice arrangement is shown schematically in .
Fig. 4.2, while the actual arrangements used in the mumerical examples
are shown in Fig. 4.3. The interval from r = Ty to r = R is divided
into M equal spaces and the radius to the inner end of the m'th space
is called r_ . The contimious bound vortex distribution G(r) is replaeced
by a stepped distribution whose value is equal to that of the éontinuous

distribution at the mid-point of each interval.
6 = O3 [(rghyey *+ (ro)pl] (R gm<m-1)
m 2 o’‘m+l o‘m - -

1
¢y = o3 ((z,); + 7] (m = 1)
6 = & R+ (=) )] (m = M) (4.4)

It
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The free vortex lines originate at (ro)m where the value of
G changes. Calling the free vortex at (ro )y ém there follgws

Gy =Gy - Gy %.5)
This can be made to hold form =1, 2, ..... M+ 1 by defining the
non-existent vortex segments

G -0 (4.6)

o~ GM+l
It should be noted that the same result could be obtained by noting
that the strength of the contimious free vortex sheet at a radius r is
dG/dr and replacing the derivative of G by the first order central
difference.

The free vortex lines can be considered as replacing a con-
tinuous vortex sheet which extends 1/2 space on either side of the free
vortex. The onlyexception is at both ends, where in the continuous
case, the sheet must end at the hub and blade tip. It.would therefore
seem reasonable to move the end vortices in 1/8 space so that they
would be located approximately in thé region which .would actually’

be occupied by the sheet. In this case, the free vortices are at the

following radii:

(ro)m=rh+(R'rb1'Z)(m'l) QEmSM‘
(ro)l =7 1/8 (R - rllz
M
(r )y =1 - /8 & - ) . (4.7)

The velocity is to be computed at P control points located at radii s
r2 NN .rp midway between free vortex elements. Therelis no restriction
on how many of the availgble control point positions are to be used.

te . . [
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The non-dimensional velocity components induced at rp by a set of semi-

infinite helical vortices originating from eazh blade with radius rom

are
@) = (u} by 2% Uy
a'mp = Ta’mp T p w G
m m
by ¢ 2. (u.)
(By)p = (p)yy — B = T VT
m ux @
m
b r 2 (u_)
() = (u) ___:em__’i_m (4.8)
nomp n’mp r u* G
m

vwhere u is the non~dimensional velocity as defined in Chapter 2, u is
the dimensional velocity and the subscripts a, t, and n denote axial,
tangentiel and normal camponents.
The requirement that the.relative flow at the lifting line
be of constent pitch can be seen from Fig. é;lﬁtc be
u u u

_t _ 8 _ n ~
u¥ = PETY Bi co8 Bi = ;—O-;E—B- = as—ri = const ()-#‘9)
. " .

expressed in terms of either the tangential, sxial, or normal components.
These relations make use of the known result that the resultant induced
velocity is normal to the helical surface formed, by the free vortex system.

The tangential velocity induged at X by the set of vortices ém is

M+l
)y = B m; (8 g O

M+l oI ‘
., - uk - -
5 % nz; (ut)mp iZ; &y (sin ip, - sin i pm-l)
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= u¥ sin Bip cos Bip (4.20)

®

which follows from (4.2), (4.5), (%.8%, and (4.9). The subscript i in
B i following generally, accepted propeller nomenclature stands for "induced
angle" and is not to be confused with the index i in the Fourier series.

Rearranging (4.10) and cancelling out u* gives
I M+l
) 8y ) () (stnip, -sinip )
i=1 m=1

= 2xp sin ﬁip cos Bip (%.11)

Substituting the geometrical relaticns
by

A=K ten By siny - _
L3 / &?'}' X?
cos Bip = fi (%.12)
2 2
. xp + li
into (4.11) gives the set of linear equations for the unknown coefficients
8y
I M+l
Z: a; E: (ut)mp (sin 1 p, - sin i pm-l)
i=1 m=1
2 .
2X
=% N (4.13)
x2 + lf

P =l, 2)‘0.--' I

By selecting I control points as indicated above a set of I equations
for the unknown coefficients results. The Goldstein factor at any

radius can then be determined in terms of the a's from (4.1) and (4.2)

(52 + 22) 1
w8 X +27) 2 a, sin 1p (b.14) -
& .
252 2 1= 1 y

i
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S¥nce the 4#nduced velocity components are all related by (4.9),

the set of equations for a, can be expressed in terms of the axial

i
component . \
I M. 3
- 2
) &y ) () (smip - sinip )= ’2&) | ()
i=1 m=1 XP + 11
or in terms of the #iormal componeft
I M+l 5
\ \vo- o _ 2%
Z a; L, (un)mp (sin i p, - #ini ﬁm—l) ="p (4.16)
i=1l m=1 "i + )‘2
i

Numerical Examples

Since the integral for the axial velocity is the easiest to
compute, equation (4.15) would be the most efficient. However, to test
the compu:ba.tion‘scht.eme for the normsl component which would be needed
later in the lifting surface case, a program using equation (4.16) was
also prepared. The greatest discrepancy between the results using the
axial and normal velocity was found tec be .000l.. The method of com-
putation is ‘discussed in Appendix (A ).

Figure 4.4 shows the Go)ldstein Factors for 3-bladed propellers
with zero hub diameter by a lattice arrangement with M = 24 and P = 8
shown schematically in Fig. 4.3. The curves shown in solid limes are
taken from Tachmindji and Mila.m(29) while the points and dotted lines
(where necessary) are the values cbtained from the lattice. Fig. 4.5
shows a comparison of five different lattice arrangements in the case
vhere g .= 3 and A 4= .5 which is the value of A 5 which showed the
greatest dis.agreement with existing date. Each of the lattice arrangements

are shown in Fig. 4.3.
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It is evident that the lattice results are in asgreement with
existing data both for low and high values of ki. In the region where
the agreement is not eas gogd, extreme variations in lattice arrangements
produce changes of no more than .003, while the basic disagreement with
(29) is about .010.

A possible explanation of the discrepancy may lie in the
method of computatién of the Goldstein Factors in (29). The solution
of the potential problem involves the solution of an infinite system
of linear equations relating the coefficients in the series expensions
of the potential outside and inside the propéller radius. For small
values of li’ an approximate solution to the set of equations may be
expressed in closed form. For large values of Li, this approximation
is not sufficiently accurate, and a more exact solution was developed
by Tachmindji and Milam for values of A

> .667. For values of A, < .k

i i
the approximate coefficients were used, and the range in between from

b4 < Ay < .667 were obtained by interpolation.
Since the only noticeable diségreement exists in the in-between
. rééion, it would seem likely that the lattice values are more accurate
in that intertal.
As &n additional check, calculations were made for 6-bladed
pr0pellgrs vwhere fhe approximate coefficients were known to be much
more accurate than for 3-bladed propellers. The results are shown in
Fig. 4.6 for A = .2, .4, and .667 and it can be seen that the agreement
is very satisfactory.

As was mentioned previously in the discussion of the hub

boundary condition, Goldstein Factors wgre esalculated for g = 3, li = «2,
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and % = 0.2. These are shown in Fig. 4.6 where §t can be seen that the
consequences of neglecting the boundary condition of zero radial velocity
at thg hubﬂé.'re. not too serious. | '

Finally, since &wo-bladed propellers were not included in
recent re-calculatfons of Goldstein Factors, a complete set was obtained
by the lattice method and the results appear in Fig. %.8. Shown on
the same plot are some values taken from Lock and Yeatman(38) which
seem to be in reasonably good agreement with the new data. These results
also seem to agree very closely with results eppearing in Goldstein's
original paper(6).

Non-Optimum or Wake-Adapted Propellers

w
-

The preceding development can be extended very easily to

the casge wh;rc the pitch of the free vortex system is arbitrary, and
the axial inflow velocity Va is a prescribed junction of radius. It is
assumed that the pitch angle of the free vorte® system B, (r) and the
geometrical inflow angle B(r) = tan™t (Va/wr)'is known and that the
nron-dimensional circulation G is to be determined. In this caée it
will be necessary to compute the normal velocity componen%, since the
resultant velocity is not necessarily normal to the free vortex sheets.

In this case the boundary condition may be written as follows.

M+1 I
5 ) e ) SO
(un)P = 2Xp (un)Jnp 8, (u; sinip -u* . sini pm_l)
m=1 i=1 .
= u* (cos 4.1
p(OBi)P (4.17)
In this case u* is a function of‘radius
u¥ = wr (tan Bi » tan B) N (4.18)
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as can be seen from Fig. 4.1. Introducing the ratio

u¥
- m=

4

(ten 8,) - (ten B) 7,
r

- . 019
T ] (ten B), - (tan B)J T

into (4.17) gives the result
M+l

I
E: 8y E: (un)mp ( cmp sinip - Cm-l,p sin 1 pm-l)
i=1l =1 '

= exp cos (Bii)p | (k.20)

For an optimum propeller in homogenecus flow

=1

Cmp ,

and (cos B.)_ = x./ 2422

ip X M
so that (4.20) reduces in that case to (4.16).

The program prepared for the computation of Goldstein Factors

was modified to accept an aribtrary distribution of B and Bi’ and the
results were found to be in agreement with the standard induction factor

method in use at the David Taylor Model Basin(32), except near the hub

where the lud boundary conditions are not the same.
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CHAPTER 5
LIFTING-SURFACE SOLUTIONS FOR BLADES OF ARBITRARY SHAPE

Introduction

In Fﬁhis chapter we consider the problem of determining the
~camber and pitch correction for a propeller with a prescribed blade
outline, mean line type, and redial lcad distribution. As indicated
in Chapter 1, the pitch and camber corrections ars determined by the
requirement that the prescribed radial load. distribution be obtained
with the sections operating at their ideal angle of attack. The
chordwise load distribution is unknown initially .and will be determined
along with the pitch and camber. o

The nomenclature used in this chapter is basically the same
as in the 1lifting line case except that an extra dimenaion must be
added due to the chordwiag load distribution. As shown in Figures 5.1
and 5.2, an (x', y', z") cartesian coordinate system is fixed on the
propeller with the #' axis axial and the y' axis passing through the
tip of the index blade. The z' axis completes the right-handed systenm.
A cylindrical system (x', r', 6) corresponds to the (x', y', z') system
with 6 = O on the y' axis and positive 6 ciockwise wvhen looking in the
positive x' direction.

A movable cartesian system (x, y, z) and a corresponding
cylindrical system (x, r, @) is oriented with the x axis axial and
the y axis (or ¢ = O line) passing through a particular control point
on the index blade.

There are ‘P x Q control points on the index blade vhere
p=1, 2, .... P indicates the radial position and q =1, 2, .... Q

indicates the chordwise position. It should be mentioned that all pairs
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of coordinates or subscripts referring to rsdial and chordwise directions
are given adjacent alphalgetic symbols with the higher symbol (alphabetically)
referring to the chordwise direction.

There will be P x Q possible positions for the movable system
and the notation y g’ for exsmple, means the y axis of the movable system
corresponding to the pq'th control point. Following this notation, the
quantittes 9

Pq
measured fram the fixed system.

and (xg )pq are the displacements of the movable system

A non-dimensional radius is defined as X = r/R vwhere R“s the
radius of the propeller. To distinguish the radius of a control point
from that of a helical vortex line (on the end of & bound vortex segment)
the latter is given a zero subscript. The non-dimensional quantities
M= ro/r and ¢ = x/r as defined in Chapter 2, will also be used.

Finally, & curvilinear system is defined at any rsdius by the
intersection of an axial cylinder with the reference helical surface.
The oriéin is taken at the mid-chord line of the blade whose angular
coordinate in the (x', r', 0) system is 8. The s axis is along the helix
with the positive direction towards the trailing edge. The n axis is
perpendicular to s and lies on the gylindrical surface with positive )
direction upstream as shown in Fig. 5.2. If the cylindrical surface is
expanded and viewed from the propeller axis out towards the tip, & blade
section results as shown in Fig. 5.3. The chord length of the expanded
section is £(r), consequently, s = -4/2 corresponds to the leading edge
and s = +£/2, the trailing edge. The angle of attack of the section
relative to the reference helix is a and the maximum camber measured

from the nose-tail line is given tlie symbol f.

(%
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The Reference Helix

As stated in Chapter 1, the blade surface is assumed to de
approximately on a helical lsurface whose pif.ch at any given radius is
determined by the angle of relative flow according to lifting iine
theory with the same radial load distribution. However, this does not
define the surface completeiy since so far nothing has been said ebout
the relative orientation of the helical lines forming the surface.
Since actual propellers may have both rake and skew, an esscurate definition
of the blade surface is a fairly disagreeable gecmetrical problem. It
is alsc possible that the effects of same geometrical vagatiom/ﬁre of
the same order as the errors introduced by the basic sssumptions, such
a8 the neglect of the deformation of the vortex sheets. Consequently,
in the present work it will be assumed that the reference helix passes
through the y' axis. If the helix is of constant pitch, any raéie.l
line will be contained in the surface, however, this will obviocusly
not be so if the pitch.is a function of rsadius. In the latter case
it 418 further assumed that the bound vortex segments are radial, and
that the axial distance between a control point and a vortex element
is the same as if the helical surface were of constant pitch corresponding
to the pitch at the control point radius. While these. simplifying
egssumptions are not es‘sent.ial to the application of the vortex lattice
method, it would seem that a more exact geometrical treatment could
not be Justified until the effect of the principal variables have
been determined.

Bound Vortex Distribution

The bound circulation distributed over the blade surfsce will

be expressed by & trigonometric series in the varisbles p and ¢ which
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are related to r and s by

1 2
r-§(R+rh)--2(R- h}&osp

8 =-£/2cos 0 (5.1)
froa vhich there follows

r-rhwhenp-o,ranwhmpsn

8 =-4/2vheno =0, 8 =f/2vhenoc =1 (5.8
The vortex gheet strength Y can be converted to a non-dimensional
quantity 3 by dividing by the displacement velocity u* as defined in
the preceding chapter. It is assumed that S can be repreSented by a

series of the form

¥

I I J
3(9:0)=%73[Zc1° smipcot%+z z

=1 1=1 J=1

cy .sin 1 p 8in jsa] (5.3)

The second part is a Fourier sine series vh:}ch has the property that
8 = 0 along the edge of the blade for any values of the constants ciJ'
The first 'tem goes to zero all along the trailing edge, but tends to
infinity at the leading edge. For a fixed value of p this 1.3 the

chordwise circulation distribution of a flat plate at & small angle

of attack in two-dimensional flow. According to linearized two-dimensional
thin airfoil theory(33) the chordwise circulstion distribution of amy
mean-line can be cbtained 'by superimposing the flat plate distribution

and & genersl distribution wvhich is zero at both the leading and treiling
edge. The angle of attack for which the coefficient of the "flat plate”

tem is zero iB called the ideal angle of attack.
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The radial circulation distribution is obtained by integrating
Y over the chord at a particular radius

T (p) = f:Y (p,0) E o (5-4)
or 4n terms of non-dimensional quantities
1
e (o) =35 | slp,o) P o (5.5)
o]

where  is the non-dimensional circulation defined in the preceding

chapter as
r
‘i G = Do (5.6)
Suatituting (5.3) for 8 in (5.5) and integrating gives the result*
@ (p) =) (2e, +c, ) stnip (5.7)
i=1

If we nov require that a perticular radial lopd distribution G (p) 18

to be obtained in the sections operating at their ideal angle o} attack,
there follows that c, = O and that c,, are the known Fourier coefficients
of the radial circulation distribution. The remsining coefficients

1‘1’ 2’ ....I
43 3=2,3, 2. J

vhich do not contribute to the radial load distribution are to be
determined by the boundary conditions on the blade surface. For later

+use, it will be convenient to define
I

b, (p) -Z ¢y #inip _ " (5.8)
i=1

#The details appear in several aerodynamics texts such as "Theory of
Wing Sections" \33),
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so that (5.3) becomes

J
s (p, o) =7'§7,-,Z b, () stn 3 - (5.9)
| 3

provided the angle of attack at each radius is ideal.

Vortex Lattice

The continuous bound vortex sheet is to be approximated by
8 finite rmumber of radial bound vortex segments each with constant
strength. At the ende of each segment a free vortex of the same
strength mist be shed forming a "horseshoe" vortex system as shown
in Figs. 5.1 and 5.2, Naturally, parts of the free vortex system
originating from bound vortices at the same and immediately edjacent
radii coincide. Although this fact will be useful for computational
purpoges, each horseshoe system will be considered logically to be an
independent unit.

The lattice arrangement is obtained by dividing the interval
between the hub and blade tip into M equal spaces. Free vortices are

shed at radii

(r.) B(R-rh)(m-l)+r

o’‘m T h (5.20)

except at the ends, where they are moved in 1/8 space towards the
interior of the blade (as in the lifting line case). There are N ‘
radiel vortex elements bet\feen any two adjacent values of Tye These
will be centered at

. 'm '% [(ro)m * (ro)m + 1] ' (5.11)
and wiil be located by dividing the chord length at r n into N equal
panels wvith the bound vortex at the mid-point of each panel. The
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chordwise position relative to the mid-chord line is given by

amp%( 2n- X - 1) (5.12)

and the angular coordinate measuyed clockwise from the y' wxis is

O = Oy * n (°°’_ By )n (20 - N -1) (5.13)
m X

Control points are located at the midpoints of the panels
formed by the horseshoe elements. In general; there will be many more
horseshoe elements than control points, and it is campletely arbitrary
vhich of the possible control point arrangements are to be used. However,
to li:npliry the computations somewhat, it will be assumed that the
chordwise arrangement of caontrol points will be the same at each radial
position used. The mmber of chordwise control points 1s given by the

expression .
. "'2"Cl'c2

Q=
¢

(5.14)

vhere Cl is the Mu of radial vortex elements between each comtrol
point and Ca is the pumber of umused control point positions {Between '
the leading edge and the first control point. If (5.14) is a fraction,
only the integer pu.rt 18 to be retained. Fig. (5.4) shovs & mumber

of chordwvise lattice arrangements corresponding to various values of i,

Cl and C2. The control point angles are then given by
' £_ (cos Bi)p [2{(1 (¢ -1)+ C2 * 1) - l]

epq = §p + —%‘xp (.5‘15)

There are.a total of P radial positions used, and are subject only to

the restriction that P < M. The total mumber of control points is P x Q.
Relating Conintuous and lattice Distributicns

Let Gmn be the non-dimensiocnal strength of the bcund vortex
located at em and centered at Tpe The strengths of the individual
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elements are first of sll subject to the requirement that the redial
load distribution be the same as in the contimious case

icm «Gg (b)), {5.16)
n=l

The remeining N - 1 requirements will be that the lattice
and contimiocus distributions induce the same velocity at each of the
N - 1 possible control poimt positions in 2-dimensional flow. From
thin-airfoil theory the non-dimensional velocity induced at the ¢'th
control point by the N vortices at a particular radius T is

N
(uy)pg MO Som
o = Lm =1l 2(n-gq) =1 (5.17)

where u 1is the dimensional velocity normal to the vortex sheet. The
velocity induced at the same point by the contimuocus distribution can

*

be shown to be R

(w,) 2 o
m
_Tiu - TmXchon (.j+-'l-)<’q
J=0
-l [R-= 29 = 18
vhere 0, = cos I: . Ofcqjﬂ (5.18)

1

Eqiating (5.16) and (5.17) for each value of q the fallowing equation

is obtainead
) | o J
mn 2 .
Z-l -T__—)_”n-il-'iz 'chOl(J+l)aq

. 3=0 '
qg.l’ 2’ se e N-l (5019)
vhich combined with (5.16) results in a set of N linear equations for
the unknown Gm’



Let the solution of this set of egiations be expressed in the
form:
J
Con 'z Pnj Pam (5.20)
J=1
The chord load factors @u.n 3 &re constants which can be computed
once a.nd. for all. Values of 1 are given by ramer(ln and by Van Dorn
and deYoung(‘?’h) + The latter values are slightly different, the authors
stating that the former values are incorrect. However, on re-calculating
the chord loed factors, it would appear that Falkner's original values
are correct. Values of Pnj correct to 6 decimal phcel:, were re-computed
for N=2, 4, 6, 8and T =0, 1, 2, .... N=1 using an IBM 650 and these
results appear in Appendix ( C).
Velocity Induced by the Lattice in 3-Dimensional Flow

&

Let ﬁmq be the normal camponent of the non-dimensional
velocity induced by the complete horseshoe system Gmn at the control

point at T epq. The subscript n for "normal"” will be omitted in
this segtion since only the normal component will be considered. As
in Chapter 2, 4 is related to the dimensional velocity u by
- b r
u = 021.
mpq = 2Bq_ " P (5.2)
mn

- which cen &1s0 be expressed in terms of the nonedimensional circulation

2
a .ompg "% (5.22)

mnpq u* Gm

This velocity can be computed Wy a procedure which is outlined in
. Appendix ( A) using the results of Chapters 2 and 3.



Determining she Camber and Angle of Attack ©

AS Sl n;mtioned previously, it is sgsuméd that the blade
surface is to be formed such that its expanded sections mey all be
.derived from a single mean-line by suitably selecting the camber/length
ratio £/4 and angle of attack o at each radius. The angle of atteck is
to be measured from the induced inflow angle Bi determined from lifting
line theory. It is also assumed that the magnitude of the resultant
inflow velocity is the same as in the lifting line case, namely, V*.
The value of .£/£ and a4t each radius are determined by the boundary
condition that the flow be tangent to the mean line at each control
point. The slope of the mean line relative to B 4 at a particular
chordwise station is

% - By (2/2), : (5.23)

vhere hq is the slope of the mean line with unit camber ratio. As can
be seen from Fig. 5.5, the boundary condition can be written

M N , ’ :
y ml \" .
ay - b (2/4) = W [Z=l 1“"“"‘1] - (B - B), [(5.24)
assuming that the induced angles are small. Introducing (5.22) and’

noting that B, - B ~ u* cos Bi/V*, there follows

M
-1 Tl
a.p - hq (1’/1)p = 7;3 [u; (cos Bi)p +3 19 Lu*m
n .

}: ﬁmpq Gm.] : (5.25)

D=l

It is now convenient to express u*/V* in terms of the 1lift coefficient
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of the section. - From Kutta-Joukowski's law419)

aL = p V* I ar (5.26)
vhere dL is the lift force acting on an elemeant of Bound vortex of radius
drr and p is the fluid mess density*, The 1lifs coefficient 1is

aL er 2n Gy u*
CL'm - zv—* - (17'1)—)(;,';) (.27)

2
Replacing G by b, in (5.27) and combining with (5.25) and (5.20), there
follows
M

(g/¢)  -(4/D)
%- hq-—c-I-‘-B-ZT op[(con B:l.)p +%—x; Z—lc.p
) | J
fboard o

vhere C;np is a factor which takes into account that u* may be a function

of radius and is defined by

u* (tan B,) - (tan ﬁ)n | r
4 - m - i‘m n o (5.29)
mp u*p (tan Fi)p - (tan H)p [rp '

For optimum, open water gropellers, u* is independent of radius so that
C.p = 1 and may be cmitted in (5.28).

The quantities on the left in (5.28) are the a.f:gle of attack
and camber ratio per umit lift coefficient and are given the symbols

& =afc, Ia=(2/8)fc (5.30)

In two-dimensional flovw, these are constants vhich depend only om the
type of mean line. The ratio of the camber required in three-dimernsional

» )

#In all equations except (5.26) and (5.27) the symbol f is the trans-
formed radial coordinate. .

Y
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to that required for an equal 1lift coefficient in two-dimensional
flow is the camber correction factor as defined in current propeller
design methods (3), (5). However, a similar definition cannot be used
for the pitch corréction since the ides] angle of Qttack of many mean
Jines in }wo-dinemional flow is zero.

Bquation (5.28) written for each control point represents a
set of linear equations for &, £ and the coefficients of the non-lift-
producing part of the circulation distribution. Rearranging (5.28)

to put the unknowns on the left and introducing (5.8)
M N

[lm (bl) J . [lm (bl)p X, hq];. +Z ‘ Z"
m'r'&n N (/) _,"mp & jmpq
J I .
Z;und Z:lc“ sinip = -2 %, (cos ei)p
ﬂ N I
- Zn.___lcmp Zzlﬁmnpq Hnl Z=lcil sin 1 pp

p=1,2 ... P
a=1,2, ... Q (5.31)
If the number of radial teims I in the Fourier series for the circulatien distri-
bution is equal to the mumber of radial control point positions P, and if the
number of chordwise terms J is one less tha.n'Q, the number of unknowns will be
2P+ I (J-1)=2P+P (Q~-2) =PQ (5.32)
which equals the number of equations. The reason ¢hat J = Q - 1 is
that the first term of the series is determined in advance by specifying
the radial load distribution. Consequently, there must be at least ‘two
chordwise control points in order to determine a-pitch and camber correction.
The set of equations represented by (5.31) can be vritten in

matrix notation o ‘ .

Ay % = K
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vhere

-
f%%&ﬁ P-&-Umw
D 4 = 2p-1

p [

e WO xn e
Ay _(mta_’z_q B:.g 1) Q+q

M N I
Bk - I - 27&’ (cos B:'_)p - Z.ICW Z‘-J.- q Bl Z-lcﬂ‘ sin 1 p.

-

,

ap...l:=2p-l§2P-l
x, < %“Jsaga
ciJ s "2p* (1'1)(01 "l)"‘ J -1

-~

M ) | .
- k=(p-1)q
Z_lcqp Z_l“mpq"nj -2£+(1-I)?J-1)+J-l

k=(p-1)Q+gq

(5.33)



CHAPTER 6

A LIFXING SURFACE SOLUTIOK FOR PROPELLERS
WITH SYMMETRICAL BLADES

The Symletry of the Velocity Field

In the speciZl, case when both the blade outline and the mean
line are symmetrical about the y' &axis, an important simplification
results from the symetry of the integrals deteérmining ﬁmpq. As a
result, it can be shown that within the limitations of the assumptions
outlined in Chapter 1, a propeller with symmetrical blades has no pitch
correction due to lifting surface effect.

First of all, defining ¢ as the angle between a control
point and a radial bound vortex or an elememt of a helical vortéx, it
is evident that the ncn-dimensional normel velocity induéed by & bound
vortex Uy 18 an odd function of ¢, while the normal velocity indncéd
by an element of helical vortex 6u.h is an even f‘uncti&on of 9. This can
be seen from (3.9) and (3.10) for the bound vortices, since both sin ¢
and £ are odd functions of ¢. The fact that 6111.1 is an even function
of ¢ can be deduced from (2.10) and (2.11).

We now consider the velocity induced at three symmetrically
oriented control points (labeled L, M and R) as sketched in Fig. 6.1.
For simplicity, portions of three horseshoe vortex elements are shown
and are numbered 1, 2, and 3 with 2 on the y' axis and 1 and 3 symmetrically
arranged with respect to the y' axis.

The relative strength of the n'th bound vortex corresponding
to the j'th term in the Fourter sine series is given by j nJ as defined
in (5.19). However, it is 'sufficifnt to note-that p_ 3 is an even

function of n and © wvhen J is odd, and an' 6dd function of n and § when

J is even.
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We first determine the velocities induced at M by the vortices
located at 1 and 3 with strengths corresponding to the first tem in
the Fcurier éeries, which is axe only term contributing to the radial
load distributioﬁ. Since the strengths of 1 andz are egual in this
case, the velocity induced by the bound vortices cancels, while the two
helical vortices starting at 1 and 3 are equivalent to a ai.ngle vortex
of twice the strength starting at 2. Consequently, the velocity at M
due to the first term in the series ig the same as in 1lifting line
theory. It is also evident that the difference between the velocity
according to lifting line theory and the \’relocity induced at L and R
is an odd function of 8. Therefore, as far as the first term in the
series is concerned, the mean line should be symmetrical about the
mid-chord. -

Next consider the even terms in the sgeries, j ="2, 4, 6 ...
in which case the strengths of 1 and 3 will be equal and opposite. The
velocity induced at M by 1 and 3 will be non-gzero since the effects of
1 and 3 will add. Furthermore, the velocity induced at L and R willi

be equal, '
| Finally, we consider the cage when j = 3, 5, 7T ... 80 that
1 andat again have equal strengths. Using the same symmetry arguments
as in thg case of J = 1, we conclude that the velocity at M is the same
as if 1 a.ndzl were combined and located at 2, and that the difference
between the velocity aceerding to 1lifting line theory and the velocity
induced at L and R is an odd function of 6. However, for j > 1 the
total strength of the chordwise lattiee elements must be zero according
to (5.16), so that the induced velocity obtained by conbiz;ing all

the vortex elements at 2 must be zero. Hence, the velocity induced



at M is zero, and the velocities induced at L and R are equal and opposite.
Simplifying the Simultenecus Equations

We next ¢onsider the effect of this symmetry on the set of
equations given in (5.32). For simplicity it will be assumed that P = 1
and Q = 5, however, th® conclusions will be v#lid in. %hejageneralfocasez...

When written out, the equations would look as follows:

n8yy G+, B4 813 C1p * 8y C13 * 835 O = By (6.1)
8, a + By, ta 853 C1p * By O3 * 85 Oy = b, (6.2)
a8, a+0 t8 0 + 8y Oy = 0 (6.%)
a, a- L ?+ 823 C1p = 8oy ©13 * 85 © = (6.4)
84 a- 810 £+ 815 C1p = &) 13 * 815 ) -b, (6.5)

-

wvhere the a's and b's are elements of the A and B matrices respectively
as defined in (5.32). The unknowns a and f are the pitch and camber
factors defined in (5.29) and the c's are the unknown coefficients in
the circulation distribution defined in (5.3). The symmetry of the
coefficients has already been incorporated; for example, a53 has been
replaced by a13.
Elininating ¢, between (6.1) and (6.2) as well as between
(6.4) and (6.5), a reduced set of equations is obtained
dlla+d12?+d13c12+d1hcl3-e, (6.6)
an;+o + 8550540 =0 (6e7)
dd -Gy rage, - g, e e, (6.8)
where the 4's and e's are related to the a's and b's as follows
dy = 8 = 8y 85/8
1 = - b, a.l5/325 . (6.9)

e
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The unknown$a, ¥ and d,), can be eliminated between (6.6), (6.7) and
(6.8) to give the following

(d13 - 8, dll/allb ¢1p = 0 (6.10)
from which we conclude that 15 mst be gero, provided the constant in
parentheses is non-zero. However, since the constant is made up of
independently variable geometrical inputs, it will not be zero in general.

Consequently, it can be seen from (6.7) that q must also be
zero, hence, there is no pitch correction. Furthermore, it is evident

in this cage that (6.6) and (6.8) are redundant.

Bquations (€.1) and (6.5) may now be re-written as follows

&, t+ &4 13 * %5 Cq) = b, . (6.11)
812 ?- &) S13 * 85 Cqy b, (6.12)

showing that ey = O. PFollowing the same procedure, it can be concluded

mist be zero for all even values of J, 8o mt the circulation

that ¢ 13
distribution mist be an even function of 6.

By removing all the zero terms and redundant equations from
the original equations (6.1) - (6.5), the following equivalent set of

equations is obtained

8'12 f +_°lh c13 = bl
8, 4+ 8,1 ©13 = b, (6.13) -

which is a fgir]y drastic simplification.

Modification of Precédgﬁjesults for Symmetrical Blades

The development in Chapter 5 will now be modified to take
adventage of these results. The contimuocus vortex sheet -strength‘(s.3)

is re-written as follows:



I J
S(p, 0) = ;75 Z Zl 5 ein 1 g 8in (2 - 1) o (6.14)
=] =

which 1s symmetrical about tke mid-chord. Control points wiil be dis-
tributed only over the downstream half of the chord, and in partic};hr
cannot be located at the mid-chord, since this will result in A being
singular. It is also convenient to define N as the nmumber of chordwise
lattice elements on each side of the mid-chord, so that the total mumber
is 2N.

The angular coordinates of the bound vortex elements are

given by the expression

2 (cos B,)
o = o .\._.X;..l...".“ Can-an-1) (6.15)

which replaces {(5.13). The number of chofdwise control points Q is
8till given by (5.14) since N has been re-defined. However, the ex-

pressicn for the control point angles (5.15) is now as follows
) (cos B,) ®
= —1 -
6y = B = [¢) (a-2)+¢y+1] (6.16)
The final set of equations is practically the same as in (5.30),
except that the terms containing the pitch correction a are no longer .

present.

bro(b)) x B o - J I
__(7755"&'3 £ Z-l mp Z‘-l “mmpq g-atpnJ 1&213 wiet P

P
M b= | I
= axp (cos Bi)p + Z=l cmp Z‘zl Vanpq Pa, Ztlcu sin 1 p

(6.17)
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Finally, the location of the matrix elements corresponding to (5.32) -

is a8 follows:

{‘“‘(bl) h k-‘p-l)Q-l-(i
_W-)gijlnp ....‘-.P |

N

Ag= <

M N i k=(p-1l) Q+a
- u 8 Py v gen
| m; cnp T L Fng m L =P+ (1-1)(J-1)+ j-1

M 2N I
By = 2’&) (cos Bi)P + n; Cmp nZ‘L Umpq P izl ¢,y 8in i py
vee. k= (p-l) Q+q

?nou JEPSP

5

C,o +ov B =P+ (4-1)(J-1) + $-1 (6.28)

)

There is cne important consjideration in us:[ng the simplified
set of equations given in (6.17). In the case of Chapter 5, the pitch
angle of the free vortex system B 1 for a prescribal radial circulation
distribution .did not have to be given exactly, since small errors in Bi
could be absorbed in the pitch correction. However, in this case any
discrepancy between G and pi will come out as an error in the camber
correction, since the assumed symmetry will riot actually be present.

A simple vay to avoid this difficulty is to obtain the relationship
between G and B 4 by the method discussed in Chapter 4, using precisely
the same radial lattice arrangement as in the lifting surface case.
This also happens to be convenient since the Fourier coefficients of

the circulation distribution c¢,, are cbtained directly in the lattice

11
soution of the lifting line problem.
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This procedure was incorporated in the computation scheme
which 18 gutlined in Appendix (A ). The resulting camber correction
factors are shown in Chapter 7, together with the results for asymmetrical

blades using the results of Chapter 5.
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CHAFTER T
RESULTS AND CORCLUSIONS

Analysis of Lifting Surface Results

There are two principal questions which need to be answered
in determining the effectiveness of the vortex lattice method. First
of all, it is important to determine how fine a lattice spacing is
necessary to produce results with the desired accuracy. ‘db'vioully,
the method would be of little practical value if the required spacing
were so small that unreasonably long computation times were needed. .In
addition, extremely small spacings would require special measures to
avoid the loss of significant figures which would also increase the
computation time.

The second question is whether the formulation of the lifting-
surfage problem with the simplifying assumptions mtr;':duced in Chapte(r 1
is an adequate representation of the physical situation.

Considering the first question, the convergence of the lattice
approximetion in a typical case was studied by computing camber corrections
using six different lattice spacings. The characteristics of the prqpeller
and the lattice parameters are given in Table 7.1l. The blade outline,

in this case, was symmetrical and corresponded to the Troost B-geries (35).

Table 7.1
Data for Test Calculations

Propeller Datea

Number of blades, g = 3

Expanded Area Ratio A_/A_ = 0.65

Mean line type - Paral 51%c

Inflovw velocity - constant (open water)
Circulation distribution - optimum
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Lattice Farameters

* Test
Radial lattice spaces, X
Chordvise lattice spaces, 2§
Radial control points, P
Chordvise control points, Q
Gomputation time (minutes) - IBM 709

PEWFroM
(U _TIRY .Y, o
weEeR
EnxsabPu
sw #—m?'o\

WHNWAANDN

The initial results of this test were fairly erratic, perticularly

near the tip of the blade. The reason for this was that too many ‘terms
in the Fourier series for the circulation distribution were retained,
&8 can be seen from the following considerations.

The mumerical results indicated that the normel velocity com-

ponent induced by the kmown part of the circulation distribmtion
I

. iZL ¢,; sinipsing A ) (7..1)

was &lmost & linear function of the chordwise distance s. It wvas also
noted that the 1ndnce.d velocity fields obtained from each of the lattice
arrangements were in good egreement, the ‘only noticesble differences
occurring with the largest spacing used. Consequently, the erratic

‘ results could only be due to the way in vhich the higher coefficients

in the circulation distribution were determined.

Since & parabolic mean line wag used In thegse examples, the
higher terms in the Fourler series would be zero if the velocity induced
by (7.1) were exactly a linear function of s, at vhich point the chord-
wise load distribution would be the same as in two-dimepsional flow.
However, in this case additional terms are required since the velocity
induced by (7.1) is not enctJ..y a' lineax function of s. These higher
terns induce velocity fields which vary more or less simséi‘dal]x‘ over
the chord. Since the coefficieats of thel.e terms are determined only by
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®

the boundary conditions st & few distinct points, completely erronecus
results are obtained nnleil & sufficient mumber of chordvise coutrol
points are used. In this case the nunber was insufficient, so that the
higher terms, while satisfying the boundary conditions at the control
points, made matters considéradbly vorse everywhere else.

Consequently, in the six test rune listed in Teble 7.1, the
camber corrections were re-computed simply by deleting all of the terms
in the circulation distribution except (7.1), and obtaining the camber
from the average value of aun/a_s at each radius.

The ceamber factors obtained in this way are shown.in Fig. 7.1.
It can be seen that the results obtained from three smallest specings
(24 x 8, 2k x 6, 24 x k) all agree to within + 2%, and that the only
large error occurs vith the cosrsest spacing (8 x4) at y = 0.85.

While the characteriltiés of this propeller are fairly typical,
this cne set of tests camnot be considered as establishing the convergence
of the lattice method under all conditicns. However, from these results
it is tentatively .’gonclud:d that the 24 x 8 spacing should give camber
corrections vhich are within + 2% of the values vhich wowld be cbtained .
from a contm vortex sheet. '

The second question, Aane],y, whether the formlation of the
lifting-surface problea with the simplifying assumptions introduced
" in Chapter 1 is an sdequate representation of the plwcica.i problem, is
something which is very difficult to answer due $0 the large number of ‘
varisbles involved. While a comparison between theory and experiment
might Dbe succesdful in one or twp particular cases, this is no assurance
that agreement will exist in general.

‘ Another aifficulty re_sults fram the fact that existing experimental

data include only overall measurements of thrust asd torque, so that it is

*
o
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impossible to determitte whether the desired radial lead distribution has =
been cbtained. The first swccessful pressure meassurements on a rotating
propeller blade were made réeently by Auwender(s-s) at the David Taylor
Model Basin with fairly elaborate instrumentation, however, even these
resul#s contain some experimental scatter. Evidently, it is very difficult
to locate enough pressure taps on the blade to determine the 1lift coefficient
accurately. The transmission of pressure readings fram a rotating shaft
alsc presents a difficult instrumentation problem.

In the present work camber corrections are given for eight propellers
showing the effect of a few of the many possible variables. These propellers
all have symmetrical B-Series blade outlines and a hub radius of 0.2. The
lattice arrangement is the same as in test 6 described previously, i.e., the
finest spacing posaible with the current program. As in the test runs,
the higher terms in the circulatioa distribution were deleted.

The first six results, shown in Pigs. 7.2 - 7.7, are for optimum,
open water propellers with parabolic mean lines. These results include
a limited number of vax:iations in erpanded area ratic LE/AO, hydrodynamic
advance coefficient, )‘i" and number of blades. Camber corrections given by
Van !B,nen(3 ) and Eckhardt and Morgan(5 ) are shown on the same plots for comperis

It 18 evident that the lattice results bave the same general shape
as those given Py Van Manen, both cambegr corrections becaming larger near
the tip of the blade. The Eckhardt and Morgan results, on the other hand,
become more or less comstant on the cuter regions of the blade. As mentiocned
in Chapter 1, the latter corrections are derived from Ludveic and Gingel results
for circulation distributions with reduced loeding at the tip. Conseqently,
the lattice results seem to sudstantiate the fact that a large camber correction
is necessary at the tip in order to achieve an, optimun redial load distribution
vith normal blade shapes. However, this increase nesr the tip is somevhat

less than the results given in Reference (3). ‘ .

.



3.0 — S N— -

. ]
F'G. 7.?. ! S asead ' FlGQ 703 . -
3 BLADES | '3 BLADES {1 _
. A/Ro=Q.35 I Ag/A0=0.35
%\, *0,333 A, *0.500
' /
o , , /
2.0 ' ¢ } ,/
, REF. (3)—¢ '/,————---/_—-
REF(SM~ | -1 T iy
4 /" A / o
/// ./, // /,, _ //
i v //' //,
?1‘ 4 'l/;o/ N~ /f . Pl /r//
TP | atTice | AT
1.0 : —T- —
3.0 | FIG. 7.4 FIG. 7.5 /
/
3 BLADES f 3 BLADES y
Ac /Ao = 0.65 / Ac/Ao = 0.65 /-7
A, =0.333 ! X, =0.500 /’
. [/ ..
Y /-
_ T //;, -
20 |1 [ -~ . A7/
. — 1 1
/} ' / // y ‘/
r/ / // ’
,// 5 " ‘\ @'// /'/1/
///-’ P 0\:74_9‘///
% o y 7 e
1 . s
S A ///'
£ /
1o L1
02 04 06 08° 10 04 06 08 IO
NON DIMENSIONAL  RADIUS X
FIGS. 7.27.5  CAMBER  CORRECTION K vs.

NON DIMENSIONAL RADIUS X



3.0
FIG. 7.6 FIG. 7.7
4 BLADES 4 BLADES :
A./Bo= 0.65 ¢ | A /Ao = Q.65 [ o
! ks
. 2 *0.333 f >1‘, Q.solo /j‘_
REF(s)jJ,__ 1 - /
2.0 o /// 4 /'/ 7
P j / P / /
REFS»1~. [ | V /| V S/
//7 // ’ /" /
// '/% \ 1/// /‘//
e g ' %
g /
A NLATTICE ad
1.0 = =
K 3o FIG. 7.8 FIG. 7.9
WAKE ADAPTED RADIAL LOAD
4 BLADES COMPARISON
A /Ao = 0.65 _ 3 BLADES .
A=0333 AT X=0.7 | Ac/Ac*C.65 #
2*0.333 AT X=0.7 ’{
2.0 "TIGWAKE ADAPT. 7| |© NON OPT
® OPEN WATER ® OPTIMUM
/ MO
= = -
\ ‘‘‘‘‘‘
\m j/
1.0
02 0.4 06 08 0 0.4 06 08 1.0
NON DIMENSIONAL RADIUS X
FIGS. 7.6-7.9 CAMBER CORRECTION K VS,

NON DIMENSIONAL .RADIUS X



-87-

Fig. 7.8 shows e comparison of a wvake-sdapted.and an open-water
propeller, both having the same advance coefficient at y = 0.7. The weke
distribution is taken from the mumerical example given by Kecker(sz). The
two results are practically identical. However, the wvake variatioa in
this example is fairly small, and the redial load distribution is almost
the ssme as in the open-water case. Consequently, it is péssible that
more extrems wake variations such as would cocur with lov speed cargo
ships might affect the camber correction.

Finally, the effect of redial load distributica is shown in
Fig. 7.9.for two open-water propellers. One propeller has a reduced
circulatioz; at the tip, following the pitch distribution recommended by
Eckbhardt and lbrm(S). The other is an optimum propeller vwith the same
advance coefficiest at y = 0.7. The results shov thbat a reduction in
local propeller loeding tends to reduce the camber correction, and vice versa.

The results given in Figs. 7.8 and 7.9 were obtained with a
slightly .different lattice arrangement 'consiating of sixteen radial
laté:l.ce spaces with addition.l half spaces at' the ends. Thils arrangement
wag found to give the ule'results as vith twenty-four equal spaces, but
with somewhat less computation time. _

To test the program for asymmetrical blades, two propellers
were run, one vith a symmetrical and the other with a skewed blade. All
other charecteristics were the same., The results showed that the camber
corrvctions for the two propellers vere pra.ctically. identical. However,
the propeller with skewed blades required an additional pitch correcticn
of abou$ 2.5 degrees/unit lift coefficient near the tip. While this
correttion is not very large, it indicates that a p'itch correction might

be incorparsted in the design of propellers with s Jarge amount of skev.
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Conclusitns

On the basis of the limited number of mmerical results described
in the preceding section, it appears that the vortex Jattice method 1s a
feasible wvay of cbtaining lifting surface corrections for merime propellers.
The method has the advantsge that variations in blade shape, wake, and
cirqulation distribution can be takea into account. The mumerical examples
given illustrate the fact that the latter, vhich is not takenm into account
in curreat design methods, ¢an effect the liftirg surface correctionm.

It is therefore recommended that a systematic series of cal-
culations of camber and pitch corrections hHe made covering a ‘wide variation
in such paremeters as mumber of blades, pitch, blaede shape, and' radial load
distribution, These results may be of use both for design a.ppl;.cations , and
to determine which pn.ruieters cause significant differences in f:hg 1lifeing
surface correction. .

At the same time, these results will permit am evaluation of the
affectiveness of the vortex lattice method by comparison with existing ex-
perimental results.. However; it would also be desiradble to build eand te.st
& number of model propellers designed according to these results. These
tests, if possible, should include pressure distribution measurements.

However, before this is done, it is recommended that a more
accurste tr'eet-ent of the hmub boundary condition be included in the lattice
method. As indicated in Chapter 4, the lattice method developed in- the
present 'vork tgkes the b into agcount in a ﬁirly crude way simply by
requiring tl;st the girculation at the huk be serg vhile neglecting the
¢onflition that the radial velocity mist be gzero. It 1s believed that the
preaen.cé of the lmd car be takeam imto accoun$ by s discrete source d.i.a-
tribution withim the lmb cylinder. The strength of the source distributioa

a



aand the value of the circulation at th: :ub could be determimed by imcluding
control points om the hub cylimder im addition to those om the blade surface.
This added refinement should not greatly increase the complexity of the
computations, and s:duld produce more accurate results in the immer part

of the Blade.

It 1s also recommended that the lifting surface progrems be
modified to accommodate finer lattice spacings with an increase in the
number of chordwise comtrol pointe in order to obtainm additional terms
in the Fourier Series for the circulation distribution. This would also
provide an additional check on the accuracy of the camber corrections

obtained with the preseat programs.
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APPENDIX A

PROGRAM DESCRIPTIONS

Introduction

Digital computer programs were prepared $o obtain numerical solutions
of the following Three problems

a) Determine the non-dimensional radial circulation distribution

‘for & lifting-line propeller with a prescribed distributiom Of
, ‘tenB and tanB,.
D)« Determine the camber and pitch correction for a propeller with
an arbitrary blade outlime, tan p and tan B 4 and mean-line type.
¢) Determine the camber correction under the same conditions as
(), but for the special case of & symmetrical blade and a °
mean-line vhich is symmetrical about the mid-chord.

A mumber of other programs were prepared to test various features
of the vortex lattice mM, however, thesge wue r.aot of gufficient genér&l
interest to be reported. . '

The above programs Were prepared for ¥se with the IBM 709 Date
Processing 3ystem at the M. I. T. Computation Center, and were run using
the Fortran Monitor s;rstem. The principal socurce program language was
FORTRAN, howeyer, some of the programs were written in FAP in order to
perform ‘certain operations not within the scope 6f the FORTRAN language.
Descriptions of these systems appear in References (37), (38), (39), snd
(%0).

Programs (b) and (c) were algo modified for use with the IBM 7090
installed at the David Taylor Model Basin, and sane' of the results
shown in Chapter ¥ were cbtained there.

‘Euch of the three programs eonsists of & mumber of specially prepared

subroutines as well as standard lidrary routines. In socme cases the same

subroutine can be used in all three programs.
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Brief descriptions of the principal subroutines will be given
in the following lectiogl. Hovever, these sections are intended only
%o fndicate the gengyel mode of operation and references to computer
14ngusge Will be avoidede Limstings of the source programs ere given
in Appendix B
Helicel Vortex Integration *

 The helical vortices are divided into two parts; ‘the I:rt on
the blsde vhich extends between the bound vortex elements closest to
the leading and trailing edges, and a dewnstream part vhich stérts at
the bound vortex nearest the trailing edge and exi.:ends an inrinite
distance downstream. As indicated in Chapfer 2, the velocity induced
%y the helical vortices on the blade is cbtained edtirely by mmerical
:I.ntegrati'on, while the integration of the downstream helices: is:Per- |
formed by mumerical integratiom up to & sufficiently large valiié of ¢,
and the femiining contribution estimated. ) .

It is assumed that the.mnerica_.l integration can be truncated
within the first six revolutions dovnstresm, i.e., g, < 12 m. Consequently,
it will be sufficient to divide the :L.nte,rval from the bound vorte‘x
nearest the leading edge to a poing six revolutions downstream into a
sequence of 5-point Gauss ordinates. At each ordinate, the functions
!'n((pi) and the weights V(cpi) defrined in (2.19) and (2.21) are ¢o be
conphted. Each integration may then be performed by ecamputing the con-
stants c and 4 defined in (2.18) and applying (2.21).

For the downstream integration it has been found empirically
that the angular intervals shown in Table A-1 when subdivided into S-point
Gauss ordinates result in total accumulated integration errors of less
than 0005 in the non-dimensional induced velocities defined in (2.10) - (2.12)
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Table A-l ing For l\mericsl Integration
' (In Degrees)

1st Revolution - Coarse Spacing - .25 < |1 - 1]

o, "30: 509 90: 180: 2710, 360

1st Revolution - Medium Spacing - .10< 1 - q| < .25

0, 5, 10, 20, 40, 60, 100, 150, 200, 270, 360

1st Revolution - Fine Spacing - .02< [1 - 9 < .10
0, 1, 2, &, 7, 10, 20, 30, 50, 75, 100, 150, 200, 250, 300, 360

2nd - 6th Revolution - .02 < [1 - 9

| O Dej}ce Spacing

®

Table A-2

Weights and Ordinates for Lgie'ndre-cauu Integration Formuilas

*

. K Weight, Uk Ordinate, xk -
1 .118464 : .0l6910 .
2 | .239314 230765 > 5 point rule
3 .28k 500000 ) C
b .23931% .769235 ,
5 .118k6k4 .953090 )

5 .288675 1 2 point rule

2 .5 ‘ .T711325 )
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The weights and ordinates for an interval of unit length is given in
Table A-2. ® &

From these two tables, a set of values of 9, may be obtained.
For each Py there will be seven elements of F;i an® one weight Wi, 80
that there will be a total &f forty numbers associated with each five-point
Gauss interval. The iota.l dovnstream integmation table consists of 1,840
elements.

The portion of the helical vortex on the blade is subdivided
intc a number of elements lying between bound vortex elements. These,
together with the six downstream revolutions, are shown schematically
in Fig. A.l1. The maximum pumber of chordwise bound vortex elements is
asgumed to be eight, so that & total of fifteen intervals on the blade
:_ls possible. v

The angular intervals 9;1 the blade depend on the geometry of
the dblade and will in general be different at each radius. Consequently,
it is impossible to subdivide these intervals into a fixed mumber of
Gauss Qrdinates. In this e¢ase, the minimum mumber of Gauss intervals
is determined such that the spacing will not exceed the initial spacing
necessary for the downstream integration for each of the three ranges
of |1 - 'n| . 8ince it is possible that many of the intervals on the
blade will be very small (such as 11 and 13 in Fig. A-1), provision
1s made for using a 2-point, Gauss Rule if the interval is less tha.n Lo
of one 5-p(;1nt Gauss interval. Finally, if the interval is less than
.5% of a Sepoint interval, the integral is approximated by its mean value.

It is obvious from geometrical considerationg that the parameter

(1 -] ﬁsed in selecting the integration spacing 1s applicable only to

the index blade, It has been found that the integration of the helices
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on the other hlades may be done with the coarse spacing for &11 values
of |1 - 1| witbout altering the final result.

| The integration of the helical vortices requires three subroutipes.
The downstream integration table is generated by a subroitine called HUMBUG,
and this.z.aeedl to be called only once at the beginping of each run. The
. instruction CALL HUMBUG (P, L) causes the 1840 elements of the table to
be computed and stored in increasing memory locations starting at P.
Location L is the first element of an "address directory” which requires
sixty-three gtorage locations in decreasing mumerical order starting
at L. The "Address directory" is a (21 x 3) array corresponding tg the
twenty-one possible integration intervals shown in Fig. A-l and the three
possible spacings. Each element of the array contains the starting
address of the integration table for that intervad as well as the mumber
of angles p, in the interval. Subroutine HUMBUG fills in only the
first (6 x 3) elements, which correspond to the downstream part of the
integration.

Subroutine LIST does more or less the same thing for the
intervals on the blade. The calling sequence 1is *
CALL LIST (NSPACE, ANGLES, L) '

vwhere NSPACE is the number of spaces on the blade (which cennot exceed
15), ANGLES is the first element of a list of angles defining the limits
of each interval, and L is the "adiress directory” which is the game as
in the calling sequence for HUMBUG. The list of angles starts at the
bound vortex element nearest the leading edge, and 1s stored in decreasing
memory locations. These are all angles in radians gelative to the angle
of the traillng edge element, and will consequently all be < 0. Subroutine
LIST determines the number of integration spaces in each interval, computes

the functions F i and wi and stores them immedlately following the functions



-99-

generated by HUNBUG and completes the sixty-three element address directory.
I1f the function table being generated begin¥ to exceed the size of core
ltoro.gef) an gmoz..;top resujis. This subroutine is called once at each
lattice radius. : |

The actual integration is performed in lubmtinc HRLIX which
ts called as follows:

CALL HELIX (ETA, TANBIO, TANBI, COSBI, PHIZ, NG, NSPACB, L, UN)
vhere the following arguments sre as defined in Chapter 2:

ETA = TAIBIO-tanﬁio TAIBI-tanBi

- COSBI = cos B, HHIZ = @ NG =g Ul-ﬁn

The arguments NSPACE and L are the same as in LIST. The angle ?, 18
meagsured from the particular control point to the start of the damtreai
belix, in sccordance with the notation of Fig. 2.1. The symbol UN
denotes the first of a sixteen-element array stored in decressing memory
locations. _ ’

HELIX starts by computing the constants ch and d'n' The ntepq:lon
is then performed according to (2.21) using the "address directory” to
locate the pre-camputed functions and to determine the mumber of points
in each interval. The first downstream interval, designated by 1 in
Fig. A-1 is computed first. If |1 - %] > .25 all g blades are integrated
simultanecusly. If |1 - 7| < .25 all but the index blade are integrated
using the coarse spacing, and the index blade is then computed using
the medium or fine spacing. After each downstream revolution has been

campleted, the integral to infinity is estimated from the relation
g cos B, (tanﬁlohnﬁ -7

u_ =
. 2 q’t. 1."“3—5:1.0

(A1)

v
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vhich is obtained from (2.35), (2.36) and (2.23). ‘'hen two suctessive
estimates agree to within .0005, the downstream integral is assumed to
have converged. If the mumber of spaces on the blade is zero, as would
be the gase in lifting line theory, the integration is complete. Otherwise
the interval closeat to the trailing edge, designated by 7 in Fig. A-l
is integrated using the fundtions computed by LIST. This process is
repeated for all the remaining ijntervals up to the bound vortex nearest
to the leading edge. The result of the preceding imterval is added to
each nev interval, so that the result is a table ¢f the integral from
(AJIGI.!)n to ». This is stored in decreasing memory locations starting
at UN. The first element of UN contains the value of the integral from
the leading edge dbound vortex to infinity..

The time required to perform the helical integration depends
on the pitch angle and the number of blades. For a three-bladed pro-
peller, the downstream integratior:\ takes roughly 1 - 1.5 seconds on an

. IBM 709. The integration on the blade is much faster, and a typical
average time including both downstream and on-blade intervals 1s 0.25
seconds per interval for a three-bladed propexler. This includes a px:o-
rated amount of the time spent in the data-generating ‘subroutines HUMBUG
and LIST. A six-bladed propeller would take a little less than twice

a8 long. Listings of HUMBUG, LIST AND HELIX appear in Appendix B.

General Lifting Line Program

. This progrem foxms and solves thé set of equations given in
(*.20), using the helical integration subreutines previously descrided.
The .input data consists of a 1list of nine values of the non-dimensional

radius y, with corresponding values of tan B1 and tan 8. The remaining
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data consists of the number of blades, g, the mumber of lattice spaces

M, the numbér of control points P and & list of the values of M containing
control points. If the pitch of the free vortex system is constant, the
first element in the list of tan Bi may be replaced with the advance

coefficient A,, and the remaining elements of tan B, and tan B left blank.

1}
The ren;.lt in either case is a table of the non-dimensional circulation
G defined in (4.2) as well as the Fourier coefficients of G« In addition,
if tan B § 0, the circulation is also expressed ij the form
tan B
r i
G' = a_'ma = G l:m - lj' (A.2)

in accordance with the definitions in (1) and (5). If A, is given,

i
the propeller is assumed to be optimm and 'the Goldstein factors x are
camputed from (k.14). S .

Since the input data is not necesmﬂ& «t the same set of
redii as required for the lattice, the.‘re’quirec‘l values p‘fttat B, end
tan B are cbtained by three-point Lagrengian interpolation. In sddition,

_8ince the conversion from the actual radius ‘.' to. the transformed radius
p according to (4.3) occurs very frequently in ﬁoth the 1ifting line
and 1ifting syrface programs, the tyransformation is performed in a
subroutine called MAP. Finmally, the printed output from this program
1s controlled by & subroutine called WAITER. .

The computation time in mimites on an IBM 709 can be approximated

E

by the following relation :
T % (.7 + .2A,) ‘ (a.3)

A listing of the programs apd a sample set gf results appear in Appendix B.
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Lifting Surface Progrems

M lifting surface programs were prepared, one corresponding
to the geneml’lcc'se ~c.overcd in Chapter 5, and the other fof the special
case of a ﬂyn;:t.rical blade as discussed in Chapter 6. Since both Pro-
grams are practically the saite, the general discusaion in this section
will epply to both unless specificelly indicated otherwise.

The input includes a Yist of nine values of y tegether with
corresponding values of tan B " and tan B as in the lifting line case.

In addition, the chord lengths t/D at each value of x is r@quired as’

well as the chord load factors u 3 defined in (5.19). In the general
program, the mid-chord‘ angles 8 shown in Fig. 5.1, and the radial load
distribution must be given at eachR valme of . The latter msy be given
in the form of Goldstein factors x, or either non-dimensional circulations
@ or G'.

In the '‘symmetrical blade program, the mid-chord angles are
zero by definition and need not be given. The other difference is
that the Fourier coefficients of G are given, rather than G itself. This
avoids the inmccuracies introduced by interpolation, since the total
strength of #ae bound vértex elements at a particular radius will be
exactly the game as in the lifting line case with the same radial lattiee
arrangement.finally, the slopes of the mean line with un:t camber ratio
hq defined 1n (5.22), the camber ratio for unit 1lift coefficient in |
two-dimengionel flow and the constants defining the lattice and control

point arrangement must be given.

In either case a maim program reads the data and ccmpu‘l':es the
various geometyxical properties associated with the lattice arrangement.

Fitoh angles emd chord lengthg at each of tie lattlce radii are cbtained

-
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by parabdlic interpolation. In the general, program & subroutine called
m camputes and solves the set of equations giwen in (5.32). In the
symmetrical blade case a similar sgbroutine called CAMBER computes and
solves the equations given in {6.18). «

The only elements #n (5.32) and (6.18) which require any
Significant amount of computation are the velocities indswced b¥ the
horseshoe elements, Gm‘npq'
consist of two semisinfinite helical vortex segments®gonnected dy a

As can be seen from Figs. 5.1 or 5.2, these

radial bound vortex. The velocity contribution of the bound vortex tay
be obtained eicplicitly by evaluating equations (3.9) and (3.10), and this
may be dgne very easily in & subroutine called BOUND. The velocity indnc;d
by the helical segments may be obtained from the subroutine HELIX described
previcusly. However, ccznnecting the right helical segment to the right
horseshoe requires & little bit of bookkeeping since the order in which
the radisl vortices intersect a perticular Relical vortex from above and
below depends on the 'outline of the blade.
The computation time requir_etf in mimutes on an IBM 709 can be
estimated By the following relation¥*
T= .62+ .0033 (PM (9 + X)) (A.4)
‘where the symbols are as defined in Chapter 5. This equatiqem holds
for both the general and symmetrical blade programs provided N is
interpreted as the total number of chardwise vortices. A listing of
th; programs .for computing the symmetrical blade case, and a sample set
of results appears in Appendix B. The programs for the genexel case are

very similar, end will therefore not be included. )

#An JBM 7090 is approximatelyp Live times as fast.
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AFPENDIX B

©

SOURCE PROGRAM LISTINGS

"SAMPLE PROGRAM OUTFUT



164
24
100

15

16
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TABLE B,1 LIFTING LINE MAIN PROGRAM

DIMENSTAN FTLLERO0O) sX(9)sXTRI¥9) 1XTR(9) 1DUMMY (943 ) sRZ (25)
1 »TANRZ(35) sR(24) sRHO( P53 s TANBI(24)sTRETA{24)9COSRI(24)sR(8)

2 sZETAL8925)2U(B25)0A(RsB)»FI16) 1GAMMA(Q)sGDTMBI9) sANS(995)

3 MCi8)»LZ(70)

COMMON  FILL9YPZsLZsANS sRZsTANBZsRsRHOsTANBI s TBETASLOSBIIBeZFTA

"1 UsAsEsGrPHIZIALAMIRHIZT s TEFMP s AMT o DFLMsHDEL Mo Y 9 AT +sSN1 SN2 TDEL

2 sTRIYCBISTRZIETAWWNINEF sMCoNSTOPSMT NPT s NGsNTM] yMOPT
FQUIVALENCE (XsDUMMY s ANS) s IXTRI»ANS(10)) s (XTBsANST19)) ’(GAMMAoANSt
1281 )+ (GDTMBANS(3T))

CALL OCTALS

CALL STOMAP

CALL HUMBUG(PZyLZ)

CALL CLOCK(2)

READ INPUT TAPE 451019NSTOP

FORMAT(I1)

IFI(NSTOP)} 164+2414

READ INPUT PAPF 441000 (XIN)sN=199)s (XTBTIN)sN=1359)s (XTRIN)sN=1+9)
1 MToNPTsNGs (MCIN)sN=18)

FORMAT(3(9FR.6/11114)

MAX=MT+1*

G=NG _

NTM120

PH12=0.0

ALAM=X(6)1%#XTBI(6)

RH=X(1).

MOPT=0

TFIXTBI(23) 74247

ALAM=XTBI(1)

MOPT =1 -
TF{RH) 29443 s
X(1)=401

Do 5 N=1+9
XTBI(N)=AGAM/XIN) >
CONT I NUE

No 36 M=1 s MAX

DO 36 I=1sNPT
2ETALIsM)=1,0

CONT INUE

PO 15 N=139

XTRI(N)=XTBTI(N)%#X(N)
XTRIN)=XTR(N)*X(N)

CONTINUE

no 16 M=143

DO 16 N=1s4

K=10-~N

TEMP=DUMMY (NsM) .

DUMMY { Ns M) =DUMMY (K oM )
DUMMY (K s M} =TEMP

CONT INUE '
AMT=MT

DELM=(1e=RH) /AMT

HDFLM=.5%DELM

AMz=RH-HDELM
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18
17

31

32
33

=L

102

=106~

RZ(1)=RH+¢25%HDELM

TEMP=RZ(1)

CALL INTERP(TEMPsYsXsXTRI+319)
TANBZ(1)=Y/RZ(1)

DO 9 M=1sMT

R(M)=AM+DELM,

AM=R (M)

TEMP=AM e

CALL MAP (TEMPsRH) , .
RHO (M) =TEMP

RZ (M+1)=R(M)+HDELM

IF(M-MT) 19510519
RZ(M+1)=RZ(M+1)~425%HDELM
TEMP=RZ (M+1)

CALL INTERP(TEMP,YsXsXTB15359)
TANBZ (M#1)=Y/RZ(M+1)

TEMP=R (M)

CALL INTFRP(TEMP Y XsXTR15399)
TANRT (M) =Y/R(M)

CALL INTERPUTEMPoY X sXTRe 3099
TBETA(M) =Y/R(M)
COSBI(M)=14/SORTF(1.+TANRI (M)#%2)
CONT INUE

PO 6 181 NPT

MS=MCI(1)

TDEL= R(MS)*(TANBI(MS)—THFTA(MS))
TBI=TANBI(MS)

C81=COSBI(MS) ’
B(I)=2.%#R(MS)*CR]
DO 6 M=1sMAX

TFIMOPT) 18418517
ZFTA(I9M)-R(M)*(TANRI(M)-TRFTA(M))/TDFL
TB2Z=TANBZ{M)

ETA=RZ(M)/R(MS)

CALL HELIX(ETAsTBZsTBIsCBIsPHIZsNGINTM1sLZ s WN)
UlLT»M)=WN .

CONT INUE
DO 8 1=1NPT

DO 8 ° & K=1sNPT

A(1+sK)=0,0

CONTINUE

RHO (MAX)=0,0

DO 34 I1=1sNPT

Al=1

SN1=00

DO 34 M=1sMAX

IF(M-1) 31931432

JfM

GO TO 33 ,
J=M-1

SN2= SINF(AI*RHO(M))

DO 130 K=1sNPT
A(KsT)1=A(KsT1)+U(KIM) R (SN2*ZETA(KsM)~SNI*ZETA(K sJ))
CONT INUE

EN1=6N2

CONT INUE

WRITF CMTDUT TAPE 291025 ((A(KsT)sT=1sNPT)sK=1sNPT)
FOPMAT(QﬁIS 8)
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DET=1.0

ME=XSIMEQF (BsNPTs1+AsBsDETE)

GO TO(12911911)sME .
CALL ERROR{20H ERROR IN XSIMFQF)
CALL EXIT

Do 13 M=1199
GAMMA (M) =0.0
TEMP=X{M)

XTBI(M)=XTBI(M}/TEMP
XTB{M)=XTB(M)/TEMP
CALL MAP(TEMPsRH)

Do 20 1=1sNPT
Al=l]

GAMMA (M) =GAMMA (M) +4SINF (AT ¥ TEMP %A (1,41)

CONT INUE
IF(MOPTY) 14422421

GDTMR(M)-((XTBI(M)/XTB(M))-lsO)*GAMMA(M)

GO TO 13

GDTMB(M)=( (X(M) %% 24 ALAM*¥H 21/ (2, #X (M) %%2#ALAM) ) ¥GAMMA (M) *G
CONTINUE

CALL WAITER

GO TOo 1

END
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TABLE B.2 MAIN PROGRAM- LIFTING SURFACE- SYMMETRICAL BLADE

DIMFNSION FILL(B0OO)sA{S58s586)sANSI24)sR{G6)sBUGIB) s CHORDI24)
COSRIIQUYVsCOFFZIRsTIsNI24)sF(56)sF(56) sHMUIBIT)sH(T )
PST(16)sP{16)9PSIE(E)sRZI25)sRIGLYIRHOL24) sSNRHOIR) sTANBZ(25))
FARRMI24) s TRFTA( 24 2 TIL (D4 s THFTA(R T sUl 2498977 sWN(16)9X(T)s
XCORDIGY s XTR1(9) s XTR(9) s XGAM(B) s XRHO{9) sMC(B) sNFLIP(16)
LZ{&2)sDUMMY (94 5)

COMMON FILLPZsLZyAsANSIBIBUG»COEFZ sCOSHIsCHORDsDsEFsHsHMU

2 sPsPSIsPSIEsRIRHOIRZ s SNRHOSTANBI» TANRZ s TBARSTHETASTIL sUsWNsXGAM

3 sALAMsANTsAMT s AMs AT s ANGLEsCBIsDELMIDET+ETAsGsGNZL s HDELMsPHIZy

4

5

N

RHvRBlORBZ)TBXiTBZvTEMP;UBoWoY,ZETAoMC,NFLIP;JIN.JOUTQJT:KTEST{
K101 sMSsNROTHIMT s NTsNPTsMZ1sNZ2sNGsNQT o NTTyNTMI1yNIPsNFsTBETA
EQUIVALENCE(XoFILLsDUMMY) s (XCORDYEsNDUMMY (10) ) s (XTRBI»PUMMY (19} )

1 (XTRyDUMMY (28319 EXRHODUMMY (3T} ®

CALL OCTALS

CALL STOMAP

CALL HUMBUGI(PZ L Z)

CALL CLOCK(2)

JIN=4

JouT=2

READ INPUT TAPE JINs100s(X(N)YsN=139) s (XCORDIN)IN=1+9) s (XTBI(N)
1 N=199)s(XTB{N)IN=11+9)

READ INPUT TAPE JUINs 101 sKTFSTIMT yNTsNPTINZ1sNZ2sNGs (MCIN)YsN=1+8)»
1 GNZL
NOT=({NT4+NZ1-NZ2-2)/NZ1
G=NG

JT=NQT

NBOTH=NT4+NT
NTT=NBOTH +" NBOTH
2ETA=0.

ALAM=0,

NTM1=NTT=-1

RH=X(1) .
READ INPUT TAPE JIN»1029s { (HMUINsJ)sN=1sNT)sJ=29JT)s(HIN)sN=1sNQT )
1 (XGAM{N)sN=1+8)

DO 51 N=1,8

COEFZ{Ns1)=XGAM(N)

NDo 51 J=217

COFFZ(NsyJ)Y=0,

CONTINUE

IF(XTBI(Z2)) T9297

ALAM=XTBI(1)

IF(RH) 34493

X(l)’\ool ' ' -

DO & . N=1,9

XTRI(N)=ALAM/X(N)

CONTINUE *

ZETA==1.,0

NO 15 N=149 ’

TEMP=X{(N)

CALL MAP(TEMPRH)

XRHO(N)=TEMP

XTRIIN)=XTBI(N)®#X(N)

XTB(N)=XTBIN)*#X(N)

CONTINUE

DO 16 M=145
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30

16

19

DO 16 N=1»94

K=10~N

TEMP=DUMMY (NsM)
PUMMY (NsM) =DUMMY (K s M)
NUMMY (K M) =TEMP
CONTINUE

ANT=NT

AMT =MT
DELM=(1,=RH) /AMT
HDELM= .5®#DELM
AM=RH~-HDELM
RZ(1)=RH+,25%HDELM
TEMP=RZ(1)
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CALL INTERP(TEMPsY s XsXTRI1+359)

TANBZ(1Y=Y/RZI(1)
DO 9 M=1MT
R(M)=AM+DELM

AM=R (M)

TEMP=AM

CALL MAP(TEMP,RH)
RHO(M) =TEMP

RZ {M+1)=R(M)+HDELM
IF (M=-MT) 19510919

RZ {M4+1)=RZ(M+1)-,25%HDFLM

TEMP=RZ(M+1)

CALL INTERP{TFEMPsYsXsXTBI 9349}

TANBZ(M+1)=Y/RZ{(M+1)
TEMP=R (M)

CALL INTERP(TEMP Y sXsXTBI9359)

TANBI (M) =Y/R (M)

CALL INTEFRP(TEMPsY»X9sXTBs3+99}

TBETA(M)=Y

TEMP=RHO(M)

CALL INTERP(TEMP,sY s XRHOXCORNDY»319)
CHORD (M) =Y .
COSBI(M)y=1,/SQRTF (1 «+TANRI (M) *%2)
CONTINUE

DO 6 Nz1 9yNPT

M=MC(N)

D‘N)=oo

DO 6 I=19NPT -

Al=1
DIN)=D(N)+XGAM(I1)*#STINF (AL *RHO(M))
CONTINUE

po 30 « N=1yNT

K=NBOTH=-N+1

DO 30 J=19JT

HMU (Ko J)=HMU(INJ)
CONTINUE

°

WRITE OUTPUT TAPE JOUT 103 sNT sMT yNPTsNZ1sNZ29{MCI(N)sN=198)9sNG»

1 ALAMSRHsGNZL

WRITE OUTPUT TAPE “JOUT 104 s (CHORD(N) sN=1sMT)

WRITE OUTPUT TAPE JOUT»105 s (TANRTIN)sN=1sMT)

WRITF CUTPUT TAPF JOUT»106»(TRETA(N) sN=1sMT)

WRITF OUTPUT TAPE JOUTs107s(NIN}sN=1sNPT)

WRITE OUTPUT TAPE JOUTs108 ¢ ( (HMU(NsJ)sN=1sNT)sJ=1»JT)
WRITE OUTPUT TAPE JOUTS1N9s(HIN)IN=1NOT)
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CALL CAMBER
CALL CLOCK(2) .
GO TO 20
100 FORMAT(9F8,.8)
101 FORMAT(15145F846)
102 FORMAT(7F10,7}
103 FORMAT{(6HO NT=11s5H MT=(2+6H NPT=1196H NZ1=I11s6H NI2=I1+5H M
. 1C=814s5H NG=1197H ALAM=F6e4s5H RH=FH,397H GNZIL=F6.,4)
104 FORMAT(8HO CHORD=10F10.6)
105 FORMAT(8HO TANBI=10F10.6)
106 FORMAT(BHO TBETA=10F10,6)
107 FORMAT(BHO GAMMA=10F10.6)
108 FORMAT(8HO HMU =19F10,6)
109 FORMAT (880 H =10F10,6)
. END



100

101

103
104
105
106
107
108

TABLE B3

SUBROUTINE WAITER

«llle

WALTER SURROUTINF

DIMENSION FILL(BOOO)»X{ 9} o XTRI(O)sXTR(9) DUMMY (G 53 )sR2(25)
1 sTANRBZ{25)9R(24)sRHO(25) s TANRI(24)sTRFTAL24)+sC0SRTI124)9s8(8)
15(8925)9U(B926)9A(Bs8)9F(16)sGAMMALD) »GNTMR(9)sANSI9»5)sMC(B)

3 34 2070)

COMMON  FILLPZsLZsANS sREYTANBZRsRHO» TANBIsTRETAYCOSRIsRsSsUs A
EsGrPHIZ sALAMIRHIZETAYTEMPs AMT s DELMyHDELMs Y9 ATsSN19SN2s TDEL

2 STRIYCRISTHZsETAIWNINFT sMCyNSTOPIMT NPT NG sNTMY yMOPT

EQUIVALENCE (XsDUMMY sANS) s (XTBIsANS(10)) 9 (XTBsANS(19)) s (GAMMASANS:

28))s {GDTMRANS(37))

WRITE OUTPUT TAPE

291009NGoX{4) s ALAMIMT oNPT s (MCIN) sN=1:MPT)

WRITE OUTPUT TAPE 2+301

WRITE OUTPUT TAPE 2+s102s(A(Ns1)sN=1,NPT)

WRITE OUTPUT TAPE 2,103

TF(MOPT) 19192

WRITE OQUTPUT TAPE 2,104

WRITF GUTPUT TAPE 24105

GO 70 3

WRITF OUTPUT TAPE 24106

WRITE OUTPUT TAPE 2,107

DO 4 M=1 99

K=10-~-M

WRITE OUTPUT TAPE 21108+ (ANSIKIN)sN=1+5)

CONT INUE
"RETURN

FORMAT (25H1 NUMBER OF BLADES " G=114+17H LAMDA 1 AT X=F4.2+4H
11S F6e4/22H0 LATTICF SPACFS M=1246H I1»21H CONTROL POINTS
2AT M=8113) +

FORMAT (40HO FOURIER COEFFICIENTS OF G AlIY )

FORMAT (5HC 4F10.6)

FORMAT (25H0 G=GAMMA/TWO P1 R U#* )

FORMAT (270 GBAR=GAMMA/TWO P1 R VA)

FORMAT (51H0 X TAN RETA I TAN BETA G GBAR/)
FORMAT (2THO KAPPA=GOLDSTEIN FACTOR)

FORMAT {51HO . X TAN BRETA 1 TAN RETA G KAPPA/)

FORMAT(F942+F10439F11e39F10e4sF12.4)

END
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TABLE Be4 MAP SURRQUT INE

SUBROUTINE MAP (TEMP sRHY
IFITEMP=4999) 14142
TEMP=3,1415926

GO TO 19
CN=(1e+RH-2-*TEMP )/ (14-RH)
IF(ABSFICN)=400001) 17517518
TEMP=1,5707963

GO TQ 19=
CTN=SQRTF(1seCN®¥x2} /(N
TEMP=ATANF (CTN)

IF{CTN)Y 20519519
TEMP=TEMP+3,1415926

RETURN

END
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TABLE Be5 GAMBER SUBROUTINE

SUBROUTYNE CAMBRER .

OIMENSION FILL(B000)sA(56+56)1ANS{24)+R(56)sRUGIB)sGQHORD(24b e
COSRI(248 9 COFFZIBsT)sDI24) sEIRGIsF(B6) sHMU(B+7) sHI 734
PSI‘16)’P‘lb)oPSYB(a)oRZ(ZS)vR(ZQ)oRHO(24’0SNRHO(§)9TAN8Z(25)9
TANBTI(264) 9 TRBETA{24)oTTILI24) s THETAIRI 7Y sU(24989T7)1sWNI16)9X(0F)
XCORD(9) s XTRI(9) s XTRIG) s XGAMIB) s XRHO(9) sMC(B) sNFLIP (16}
LZ(6%)sDUMMY(9+5) sGAMMA (24

COMMON FILLPZesLZsAsANSsBsBUGICOEFZ +COSBL sCHORDIDSEoF sHoaHMU
sPsPSTsPSIBIRIRHOIRZsSNRHO s TANBIsTANBZ 9y ¥RBARSTHETASTIL sU s WN» XGAMe
s ALAMs ANT s AMT 9 AM o AT s ANGLEsCBIsDELMNETsETASGsGNZL s HDELMsPHIZ »
RHsRB1 sRB2sTBIsTRZ»TEMPsUB WY s ZETASMCoNFLIPSJINSJOUTsJT ¢KTEST
K101 sMSINBOTHIMT oNT NPT s NZ1 INZ2 sNGosNQT s NTT sNTM]1 sNIPsNFsTBETA
» GAMMA

EQUIVALENCE(XsFILL s DUMMY ) » (XCORD» EoDUMMY (101 ) s (XTBI +DUMMY (18} )

1 (XTRaDUMMY (28) ) { XRHO»DUMMY (37

NIP=2%(NZ1-N22-1)

NP=1

D0 1 M=19MT
TIL(M)=CHORD(M)#COSRT(M)/ (2, %ANT#R(M))
IF{M=-MCINP}) 14291

DO 3 NQ=1s»NQT
TEMP=2%#NZ1%NQ-NIP
THETAUNPsNQ) =T IL (M) *TEMP™
CONTINUE

NP=NP#+1

CONT INUE -
K101 =NPT*NQW

DO 4 K=14K101

B(K)zoo

DO 4 L=1,K101

A(KsL)=0,

CONTINUE .

DO 5 NU=1sNTM1+2
TEMP=NU-NBQTH
PST(NU)=TILEL1)*TEMP
PST(NU41)=PSTINU)

CONTINUE .

TBZ=TANBZI(1)

PN .

e RN R T )

PO 6 N=1,NTT i .
P(N)=PST(N)=PSI(NTT)

CONT §NUE,

CALL LIST(NTM1eP,L2)

PO 38 NP=1sNPT

MS=MC (NP )

ETA=RZ(1)/R{MS)

TBI=TANBI(MS)

CBI=COSBI(MS) . ‘

DO 38 NQ=1»NQT * M
PHIZ=PST(NTT)-THETA(NP,NQ) '

CALL HELIX{FTAVTRZsTRISCRIPHIZINGINTMLsL2ZsWN)
1IF (KTEST) 6096160

WRITF OUTPUT TAPE JOUTs101s(WNIN) sN=1 sNTT)

M=2 .
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DO 38 N=1sNBOTH
UININPINQ) =WN (M)
M=M+g2,

CONT INUE, o

“ DO 14 M=2sMT

IFIKTEST) 72973472
WRITE OUTPUT TAPE JOUT»104M
RB1=RZ (M)

RB2=R2Z (M+1)
GAMMA (M) =0.0

DO 21 1=19sNPT
Al=1]

SNRHO(1)=SINF(AI*RHO(M))

GAMMA (M) =GAMMA {M) +SNRHO( 1) *XGAM(T)
CONT INUVE

N=1 *

‘DO 22 NU=19sNTM1s2

TEMP=NU=NBOTH
PST(NU)Y=TIL(M)*TEMP
PSIB(NI=PST(NU)
IF{M=MT) 23424423
PST(NU+1)=TIL{M+1)*TEMP
GO TO 25
PST{NU+1)=PS1(NU)
IF(PSTI(NU+1)-PSTINU)) 26927927
NELIP({NU)=0
NPLIP(NU+1)=8

AM=PS1 (NU)
PST({NU)=PST(NU+1)
PST(NU+1) =AM

GO TO 84

NFLIP(NU)=8
NFLIP(NU+1)=0

N=N+1

CONTINUE

DO 8 NU=2 yNTM1 2
IF{PST(NU+1)-PSI(NU)) 93848
AM=PST (NU)
NF=NFLIP(NU) -1
PST(NU)=PS1(NU+1)
NFLIP(NU)=NFLIP(NU+1}+1
PST (NU+1)=AM
NFLIP(NU+1)=NF

CONTINUE

TBZ=TANBZ (M+1)

po 7 N=1sNTT
PIN)=PST(N)=PSE(NTT)
CONTINUE

CALL LIST(NTM1sPsLZ)
PO 14 NP=1sNPT
J1=(NP=1)%NQT
MS=MC(NP)

ETA=RZ (M+1)/RIMS)
TAI=TANBI(M3)
CBY1=COSBIMS)
IF(ZETAY 50951951

ZETASP VL TANREAM)=TRFTA(M) )/ (TRY-TRFTALMS) ) I *(R(HIZRINS))

ALAM=R (MS) #TR1



80
81

82

85

41

62
63

36

64
65
40

35
99
37

14

69

68

90

-ns.

IF(M=1) 80,80s81

BUGINP )=2,%#R(MS)#COSRI(MS)
DO 14 NQ=J +NQT
K=J1+NQ .

IP(M-MS) B3482483

”A(K9NP)-12.566375*GNZL*GAMMA(MS)*R(M')*H(NO’/CHORD(M*)

B(K)=B{K)+BUG(NP)
B(K1)=B(K1)+BUG(NP}

F‘K)?-'O.

DO 41 N=1+NBOTH
UIN+16sNPsNQI=UININP sNQ)
CONT INUE

PHIZ=PSI(NTT)~-THETA(NPsNQ)

CALL HELIX(ETAsTBZsTBEsCBIsPHIZINGINTML oL 2ZoWN)

IF (KTEST) 62463462

WRITE OUTPUT TAPE JOUT»101» (WNIN)sN=14NTT)
DO 36 NU=1sNTT .
N=NFLIP(NU)Y+(NU+1)/2

U(NsNPsNQ)=WNI{NU)

CONT INUE

Do 37 N=1sNBOTH
ANGLE=PSIBIN)-THETA(NP»NQ)

CALL BOUND(RB1sRB2sETA»ALAMsANGLE +NGsUB)
W=UB4+U(N+8sNPsNQ)~-U(N+169NPsNQ)

IFIKTESTY 64965464

WRITE OUTPUT TAPE JOUTs102sNPsNQsNsUBW
IF(JT=-2) 99940540 -

Do 35 [=YsNPT

DO 35 J=2+JdT

LNPTH(]-1)%(JT=114J-1
AKsL)=A{KsL)-SNRHO(1)*WxHMU(NsJ) *ARSF(ZETA)
CONT INUE

FIK)=F(K)+W¥HMU(N»o1)

CONT INUE

B4K)=B(K)+F (K)*GAMMA (M) *ABSF{ZETA) '
CONT INUE ’

WRITE OUTPUT TAPE JOUTs107

WRITF OUTPUT TAPE JOU1,103’((A(K,L;oL 15K101) 9K=1+K101)

WRITF OUTPUT TAPE JOUTs108

WRITE OUTPUT TAPF JOUT#103+(RIK)sK=1sK101)
DET=1.0

ME=XSIMEQGF(56sK101s1 AR DET E)

GO TO(683569969) sME

CALL ERROR(20H ERROR IN XSJIMEQF)
CALL EXIT

N:l . -

DO 90 K=1sNPY

M5=MCI(K}

ANS (N) =R (MS)

ANS (N+1)=A(Ks1)

ANS(N42)=14/A(Ky1)

N=N+3
CONT INUE
J=3#NPT
WRITE OUTPUT TAPE JOUTs109

WRITE OUTPUT TAPE JOUTs110+CANSIN) 4N=1+J)
K=NPT+] .

3



93

94
92

101
102
104
107
103
108
109
i10
111
112

-116-

DO 93 1=1,%P7T

1PPJ3=2) 92+93,93

RO 94 J=20JT

COEFZiIsl)=AlKo1)

K=K +1

CONT INUE

CONTINUE

WRETE MUTPET FAPE JOUTH13%

WRITE OUTPUT TAPE JOUT»112+((COEFZ(*1sJ)sJ=147})91=1+8)

RETURN

FORMAT ( 8H WN=8F843) :

FORMAT(S5H  P=13s5H Q=13,5H N=13s5H UB=FB8e3354 W=F8g3)
FORMAT (15HO #%%%%%%EXHXM=1]2)

FORMAT ( $3HO COEFFICIFNT MATRIX A(KsL)//)

FORMAT (8E15.5)

FORMAT { 2 8HO RIGHT HAND SIDE  B(KY//)

FORMAT ( 54HO RADIUS CAMBER FACTOR K CAMBER FACTOR 1/K)
FORMAT ( 7HO FSe3r8H F7e3913H F7e3)

FORMAT(48HQ CIRCULATION DISTRIBUTION COFFFICRENTS Cll1sJ))
FORMAT(T7E1545)
END



-~ W

N

~117-

' )
IABLE .6 SOUND SUPRQUT PNR

SUBRUBUTINE BOUNDIRRIsRR2sFTASALAMIANGL FaNGsUR)
G=NG

DEYBRL=6.28318513/G

S=30.

R=RB2/ETA

REAM=R/SQRTF (R*#2+ALAMN®%2 )
A=R##2 + { ALAMUANGLE ) %% 2

PHI=ANGEE

DO 1 N=1sNG

T=0.

CP=COSF(PHI)

SP=SINF(PHI) . ©
B==2.%R#*CP v
C=ALAMBR2AANGLE¥CP4R¥#p%SpP

X=RB1 o

D=B**2—4 *A

PO 2 I=142

IF{ARSFIND)I=40001) 393904,

Yom2 o ¥ {2 ¢ *X+RY/(DRSORTF{ASREX4XH%D) )
G0 TO 5
Yum]lo/ (2% (X+45%B)%%D)
[FT=1) 69796

T=T~-Y

X=RB?

GO TO 2 .
T=T+Y J ®
CONT INUE

5=5+T*C

PHI=PHI+DELBL
CONTINUEs

UB=S*RLAM

RETURN

END

&



*

HUMBUG

NUREV

NILE

TABRLE

FAP
COUNT
EMTRY
RSS
SXD
SXD
SXD
AXT
CLA
ADD
STA
TIX
CLA
ADD
STA
AXT
cLA
STO
TIX
CLA
STD
AXT
SXD
CLA
PD X
STA
AXC
SXD
LXD
TXI
LDQ
FMP
STO
LDQ
FMP
FSB
STO

SXD

PINTO

 AXT
LDO
FMP
“FAD
STO
STO
XCA
FMP
STO
CLA
STC
“LA
F <Y
N °R
p2s
T2

-m.

Bel HUMBUG SURROUTINE

176
HUMBLUFG
3 :
*-341]
*¥—%392
ko394
56%%
Migs1
1494
M+841
*=39191
24
ONE
*43
48,1
L+1s1
0,1
#-29191
ONE =«
XR1A
892
XR2A»2
M+8s2
091
*+41
0y2
XR1By1

XR1As1

*¥4+1919=1

PHI»1

=e0174532913

X

PHI+191

=4017453293

X .

DEL

XR1A»1

Ss1

DELTA+591 *
DEL

X

X .

1,2

*

X

0s2

=1,0

242

X

$COSy4
*4 2
HUMRUG-]
%2

i b A e i et



XCA

FMP X

STO 542

CLA X

%X $GIN4

NER *i 2

LT 43 HUMBUG=-Y

STG 4y2

XCA

FMP X

STO 692

LDQ GAISS+591

FMP DEL

STO T2 .

X1 *4+1929=8

TI1X PINTOs1 1}

LXD XR1B»1

[ B84 NILEslsl

LXD XR1As1

X1 *+19) 91

SXD XR1As1 &

L XD XR2A 2

TEX NUREV2+1

LXD HUMBUG=3»1 )

LXD HUMBUG=2y2

LXD HUMBUG~1:4

TRA 344

PZE 172040515

PLE 160050415

PZE 148050515

PZE 136050515

PZE 124090915

PZE . 09075

BSS 15

PZE 172050515

PLE 160090915

PZE 1480450915

PZE 136040515

PZE 124040415

PZE 60050950

BSS 15

PZE - 192040, 15

PZE 160040415

PZE 148040415

PZE 136090915

PZE 1240450915
L PZE 1000+0+30 . L
M PZE 0+0s15 .

PZE 60040910 .

PLE 1000+046

PZE , 1240+0+3

PZE 136090, 3

PZE 148040493

PZE 16009043

P2E 17204043
ONE P2E 11091

PH1! DFC Oo’]0.20"00'70'16..'7000300050.’75.91000”50.’20009?500



DELTA

BAUSS
XR1A
XR18
XR2A
DEL

X

DEE
DEC
DEG
DEC
DEG
NES
PZE
PZE
p2e
pze
Pze
ND

-120-

3000533600 ’00 ’éq ')100.2‘). !(400 060. '100-’150. 9300. ’zVQo
B60490.9200950.39083180,9270,336049360.+480,980002720,
T30+1840049960491080.11080451500.91320+9148049146404515800
16800 01800. ’18“0- 91920. ,?04045 ’z’.&ot
00469101,183855042692359+269239+418385%
¢11B464+,3393049.28408464,239%14 e118464



TABLE 8.8 ° LTS SWBROUTINE
[c]

* F 414
COUNT 176
ENTRY  LIST
BSs 3

) LIS? sSXD *#=3y1
SXD #2392
SXD *-3,4
CLA* 194
STD NUH
CLA 234
STA A542
ADD =01
STA A5
cLA 3.4
ADD =01
STA A9
SUB =06
STA *41
CLA * %

STO LAST
STA *+3
AXC LA XY
SXD A7s4
AXT 191

A8 SXD M1
LXD NUH» 1
CLA 06000000
STD N

A4 SXD NUs1
LXD Ne2
TX1 *4+19201
SXD N2

. * AS CLA *¥y1

STQ X
cLa *¥%g1
FSR X
STO DFL
LXD M1
Fnp EPSLN+3,1°
STQ D .
CLA )
FS® =l
TPl GS
FAD 24399
TPL G2
CLA =01000000
STO 8
STO H
cLA =010000000
$TD A2
3 1) KL
TRA .9

62 CLA =07000000



*»

@5

A6

A9

A7

A3

Al

sST®

cLA
5TD
CLA
S%¥D
CLA
5TO
TRA
CLA
UFA
ANA
STD
LDQ
MPY
ALS
sTD
CLA
310
CLA
STD
CLA
LRS
ORA
FAD
STO
CLA
FOP
STQ
CLA
suUB
XCA
MPY
ALS
ADD
PDX
LDQ
MPY
ARS

STA
CLA
STD
CLA
ST0
STA
AXC
TXL
TXH
LXD
SXD
LXD
LDG
FMP
FAD
STO
TSX
NTR
P2ZE

=]l22=

A2

06000000

KL

=01000000

H

=82000000

B

A6

D
=0211001000000
=0000777000000
H

H
=@5000000

17

B

=0§000000

Kb

=050800000

A2

H

18
=0233000600000
=02%3000000000
TEMP

DEL

TEMP

DEL

M

=01000000

=025000000

17

N

*% 91

LAST .
=010000000

1

LAST

LAST

B

LAST .
LAST

*41

**’2

ERRORs291316
ERROR»2 o %%

Hol

Py}

KL»sl

DELTA+11

DER

x L4

1¢2
$COS+4
42
LIST-1



STH 342
XCA
FMP ) XY
STO @ 592
CLA 142
TSX $SINs &
NTR *42
PZE . LIS5Te=1
s10 &,
XCA
FMP 1¢2
STO T 692
LDQ 142
FMP 192
STO 042
CLA =¥« 0
STO 29?7
LPNO GAUSS+1 91
FMP DEL
STO T2
TX? *41929-8
TX1 *4+19101 .
A2 TXL Al»1
CLA X
FAD DEL
STO X
LXn Pel -
TI1X 39191
LXD Nleol
T1X Abely}
LXD Ms1
X1 *+19191 °
TXL ABs1+3
LXD LIST-3,1
LXD LIST=242
LXD LIST-144
TRA 494
ERROR TSX IMIST 94
NU PZE
NUH PZE
N PZE
M PZE
LAST PZE * 1 v
X PLE * N @
DEL PZE «
EPSLN DEC e017459e0872794734907
D PZ2E
B PZE )
H P2E ’ °
KL PZE
TEMP PZE .
DEC 050.866025;.2886750.95109Qo.769235915s.230765
OELTA DEC «046910
nee 10965905900 18488,,230208,7°848044y,239314
GAUSS DEC ¢118464 )
p PZE

END



TABLE

FAP
COUNT
ENTRY

HELEX SXD
SXA
SXA
REM
LOO*
FMP
XCA
FMP»
STO
CLA»
ARS
STA
ORA
FAD
5T0
CLS*
STO
LOQ*
FMP#
510
Lna
FMD
STO
LDO*
FMP»
STO

. LDQ#
FMPx
FSB»
FDP
FMp ‘
el 24
FMP
STO
CLA
STO
CLA
FSB+
55P
FsA
PL
A
TPL
CLA
ADD
Tma

MED CLA

ADD

STOD

ROUGH GLA
.

-124t

Be9 HELTX SUBROUTINE

46%

HELIX

HELIX=214

RESTOs1

RESTO#152

THIS 1S THE START OF
5e4

184

24

X2

XY

18

BLADS
=0233000000000
=0233000000000
GFLO

Ged

CONST

194

24

E&

E4

€4

ETrR

1e4

104

E1 +
294

344

194

ETR
=-,012665148
204

GFLO
TRUNK
=01000000
TEMP

z]le0

1+4

=425
ROUGH
=.19

MED

TEMP
=02000000
L 23 ]

TEMP
01000000
TEMP

TEMP

AHE PARAM PART

1/R%p§

BETS CONSTANTS



Bl ADS

¥Loop

STD
AXG
SXA
AXG
SXA
AXT
CLA
STO
CLA
FS$B
FDP
FMP
FAD#*
ST0
TSX
NTR
PZE

‘SYO

CLA
TSX
NTR
PZE
STO
LXD
LXA
STZ
STZ
LDQ*
FMpP
STC
LDQ#
FMP
STO
LDQ
FMP
STO
LDQ
FMP«
STO
LDQ
FMP
CHS
FAD
ST0
LNe
sMP
FAD
STO
LDQe
FMP
CHS
FAD
ST0
[Walel 2
sMp
FSB
570
LDO»

®

M
CBUG»2
Cr2
NDBUGs g
De2

091
=1.0

4

GFLO

K

GFLO
=6.2831853
Se4
PHIK
$COSs4
#42
HELIX=2
CPK
PHIK
$SINsG
*4 2
HEL I X=2
SPK
HELIX=2y4
Ce?2
~-692
-542 *
194 »
CPK N
E2

| XY

SPK

€3

E2

ES8 .
ES

E3

E4

E6

b ¥4

E2

€6
E7
E3
) 04
ES
E8
344
E4

E1
-4y2
F XX
£e
€2
~392
%98



FMP
CHS
FAD
STO
LDO#*
FMP
STO
LDG*
FMP
SO
LXA
LOQ
STQ
FMP*
XCA
STQ
FMP
STO
LoQ
FMP*
STO
LDO*
FMP*
FAD
FAD
STO
LDO*
Flap
XCA
STQ
FMP
CHS
STO
1.DQ
FMP
STO
572
sT2
TX1
SXA
LXA
TXI
SXA
cLA
FAD
STO
TIX
REM
CLA*
STD
CLA®
STD
CLA
STA
ClA
STA
LLA

€3

E2
=242
394
E6
-142
344
ES
02
Ds2
ETB
-692
544

TEMP
=2.0
~592
TEMP
514
TEMP
194
194
=140
TEMP
-442
194
=240

TEMP
CPK

~3492

TEMP

SPK -
=292

~192

02

419297

D2

Cr2

*4+19297

Co2

K

=140

K

KLOOPs 191
START HELIX PART
T4

NT

PERFORMS INTEGRATION
NO OF ON BLADE INTERVALS

NO OF BLADES



NUBLD

NUREV

Als

Al5

A7

A8

Al
A3

ADD
STA
STA
CLA
STA
ADD
STA
CLA
ARS
5SM
ADD
STA
CLA
STD
ST2
cLA
STO
ST
SXD
CLA
sug
XCA
MPY
ALS
ADD
PDX
CLA
STO
CLA
PDX
CLA
STO
CLA
ADD
STA
STA
SUB
eTA
CLA
ARS
ANA
SSM
ADD
STD
LXD
CLA
STA
LXD
SXD
CLA
STA
AXT
AXT
ST12Z
STz
Lho
FMp
FAD

=01
Al4
Al5
994
Al
=01
All+l
NT

18

94

Al3
=01000000
N

XNFEW

M

MBUG

X

NTBUG» 4
MBUG
=01000000

=025000000
1y

N

0s1

**'!

LNM

N

O0»i

**’l

LN1

LN

=07

A3

AS

=02

A4

MBUG

1
=01000G00

NG
NGBUG
LN1s1
A9

AR0
NGRUGs 2
XRRUG»?2
*473

*41

0,2

XY

T1

T2

**’2
*xy 4

T

L+1

USED JO CHECK CONVERGENCE
INTEGRATION SPAGING FACTOR
SAVE ORIGINAL M

SQELECT DATA TABLE

21 (Me1)+N
L+1 BEING BACKWARDS STORAGE
ADDR OF PsOsNO OF POINTS

L+] SELECT DATA TABLE
FOR M=1 SPACING

SET UP

ADDRESSFS

FOR FIRST

POINT IN

INTERVAL

GET NO OF BLADES
IN FIRST GROUP

NGBUG=NG IF Me]
NGBUG=NG-1 IF M NOT 1
POINTS PFR INTERVAL COARSE

TIX AT741,41
NO OF RLADES TN FIRST GROUP

T*K-2 FINDS € AND D
5 TERMS FOR ONE POINT
SUM NUMFRATOR HFRFE
SUM DENOMINATOR HERE
C+7%*NG

PINsM)+8*J-1



A2

A5

A8

P1ANO

AlC

NUENO

ST0
LDQ
FMP
FAD
STO
TX1
TIiX
LDQ
FMP
XCA
FMP
TSX
NTR
PLE
ST0
CLA
FOP
FMP
FAD
STO
LXD
TNX
SXD
CLA
ADD
STA
TRA
CLA
ADD
STA
STA
suB
STA
TIX
CLA
SuB
T2€
CLA
STA
CLA
ADD
STA
STA
SuB
STa
CLA
ADD
STA
CLA
ST1p
LXD
TRA
CLA
SUR
TMI
TRA
CLA

«126-

T1

Nhy2 o D+T7#NG=-2

*%y4 P(NsM)+B%J-13

T2

T2

H+192e-1

Als4s] DOING 1 POINT FOR 1 BUADE
T2 DONE 1} POINT FOR 1 BLADE
T2

T2

$SQORT 94

*42

HEL1X-2

T2 DENOM* %3/ 2

T1

T2

* % P{NsM)y4+8# J=-13WE IGHT

X

X

XRBUG»?

PTANOs2 1 .

XRRUG»? SET UP FOR SAME POINT
A6 NEXT RLADE

=Q7

A6

A6

A3 NEXT POINT 1ST BLADE GROUP
=010

A3 SET UP

AS ADDRESSFS

=02 FOR NEXT POINT

A4y IN INTFRPVAL

LA FRIR| A6 OR A7

MBUG IST GROUP DONE
=Q10NNO0N

NUINT IF M=1 ALL RLADRES HAVE REEN DONE
A8

Al0 TIX A6s1s}

LNM

=07 SET UP FOR

A3 MEDTIUM OR FINE

AS SPACING ON

=02 INDEX READE

A4

A6 PIC® UP

=07 INDFX RLADE

A6

=01000000Q

MRUG PAKE M

LNMs} NON=COARSE SPACING

Al » HACK 10O PO INDEX BLADE
N NEXT JNTFRVAL
=07000NN0

42 .
SLADE

XNFW



STO XOoLb .
LDQ N
MPY N
ARS 1 ‘
ORA =023300000000
FAD (0233000000000
ST0 T1 TEMP STORAGE
CLA TRUNK
FDR® T1 ‘ ‘
XCA ®
FAD X ‘
STO XNEW
FSB XOoLD
$SP :
FSB =,0005% ALLOWABLE TRUNCATION ERROR
™I CONVR ' '
CLA A9 o
STA Al0 , ' TIX A7s191
LXD Ns1 -
TXI *¥+39191
SXD Nl .
TXL NUREV»1 6 . DO MAX 6 REVS DOWNSTREAM
CONVR LDQ XNEW
*MP CONST )
Al3 STO * % ’ WN DOWNSTREAM HELIX DONE
CLA NT ‘ NO OF INTERVALS ON BLADE .
TZE RESTO NO INTEGRATION ON BLADE RETURN
CLA =07000000
STD N
LXD NTyr6
sSXD NTRUG4
TRA NUBLD
BLADE L XD NTRUG 4
L®o X
FMP CONSY .
All FAD LA XY WN
STO ®xe4 WN+1
LXD Nyl
TX1 *4+19191]
SXD Nyl
TIX NUBLD G s
RESTO AXT *¥,1]
AXT *xy2
LXD HELIX=2 4
TRA 104
A9 P2E A7
N P2E
NT PZE
NG PZE
NTBUG PZE
NGRUG PZ2E
M PZE
MBUG P2E
XRBUG PZE
LNM P2E
LN1 PZE&
¢ PZE

D PZE



ADRC
ADRD
TRUNK
CONST
SPK
CPK

K
PHIK
GFLO
TEMP
ETB

X
XOoLo
XNEW
T1

T2

CBUG

DBUG
E1
E2
E3
E4
ES
E6
E7
E8
Xz

PZE
PZE
PZE
PZE
PZE
PZE
PZE
END

CRUG+1
DBUG-1

41 =

41



.131.

TABLE B.10 ~ LIFTING=-LINE PROGRAN SAMPLE OUTFUT

OFTINUM OFEN-WATER PROFELLER

i
{7 NUMBER QOF BLADES G=3 LaMpR 1 AT %=0.70 1% G, 3333
~ LATTICE SPRCES M=24 4 CONTROL POINTZ MHT M= 4 10 16 22
FOURIER COEFFICIENTS OF G RCI>
. 0.139690 -0.008823 -0.00034t -0.000429 L
' G=GRAMMA-TWO PI R U=
§ KAPPR=GOLDSTEIN FACTOR
‘ X THN BETR I TRN BETA G KAFFA L
— T. 20 1. 66T =0, I -0,
0. 30 1.1 11 -0. 0.0gz3 * 0.£330
U. a0 U. I3 =0, 0.1137 0.8670
0.5%0 0.667 -0. 0.1320 0.8577 N .
: 0. GO 0. 556 ~U. 0.140% ~ T0.€274 -
, 0.70 0.476 -0 0.1398 . a.771¢6
; U.BUO U.317 = 0.7252 I i A
0.90 0,370 ~-0. Q. 1006 0.5146
.00 U. 333 ~Ue 0. 0000 0, G000
. THE DRTE IS MAY 4, 1961,
L2 THE TIWNE 15 T3719.S - -
[ ]
WAKE-ADAPTED PROFELLER
. NUMBER OF BLROES (=3 LAMDA I AT =0, 70 15 0. 33322
o LATTICE SPHLES M=24 4 CONTRGL FCINTS £7 M= 4 10 16 22
e _FOURIER COEFFICIENTZ OF G AcId .
e 0.142769 -0.0039872 -0, 000706 0, Q07 e
G=GRMMA-/TYO P1 R U=
- B GBAR=GRMMH. TWO F1 R VA
X TAN EETA I  TAN BETA G :F {F
- 0.20 1,415 0.910 0. . ®
0.30 1.006 0.691 DOy PR (=D
T 0.40 0.737 0.5637 0.1153 U.C4sn
0.50 0.0646 0.475 €. 1392 O, L4085 .
‘ - 0.60 U..543 Medly Qo1 $3? Qe La§3d
0.70 Q.576 0.261 Cein%g €047y
0.€0 0.421 Q.227 0.1 3000 DU Tl
0.90 Q.277 Q.20 . 1082 Cov Z00
1.00 0,342 0,265 CH, G0 o, Comg
o THE DRTE IS MY  a. 1961,

THE TXMENISV2541.G



L4 NAME ORIGIN
{MAIN) 00144
MIST 02764
(FPT} 07013
(CSHY) 07475
ISTRC) 14236
{CMPR) 16027
{MOVE) 16324
{PRNT) 17153
STOMAP 17732
{SPHM) 20636
(RTN) 21000
{RCH) 22601
(WRS) 22601
ATN 22750
SORT 23242
LOUMP 245C1
XSIMEQ 25005

THE DATE IS APRI
THE TIME IS 1508

NT=3 MT= 8 NP
CHORD= 0,233404
TANBI= 0:969200
TBETA= 04
GAMMA® 04114489
HMU = 0,109375
H = -14333333
COEFFICIENT
~0,24452E~00
0.17587€ 01
0,
-0,80969€ 00
RIGHT HAND
~0.27468E-00
RADIUS
04450
04650

0.850

ENTRY
00163
02773
07021
07511
14240
16031
16326
17156
17737
20641
22450
22673
22666
22752
23246
24504
25376
L 17y 1961,
oh

T=3 NZl=]
04259304
04692286
Oe
04126195
0.182292

~24666666
MATRIX A(K
0.
~0¢51862E 01
0+84853E 01
Oe
~0.86532E 01
SI0E BIK)

-0456039€ 00

TAKLE 3.1] - LIFING SURNCE - STMETRICAL BIADS SAMPLE OUTIVT

NAME ORIGIN ENTRY
MAP 01374 01402
HELIX 03032 03037
EXIT 07438 07463
{F2EF) 07761 10154
{PRLT) 14616 15032
{DCOR) 16114 16116
(NBLX) 16404 16407
(PSTN} 17353 17387
(CSHM) 20161 20164
(WTC) 20642 20708
(FILY 21000 22437
{ETT} 22601 22672
{RDS) 22601 226¢5
ATAN 22750 22752
{TYES) 23337 23337
TIME 24510 24562
MOVIE) 25627 25627

NZ2=0 MC= 3 5
04282426 04300560
04538444 06440545
0o Qe
02106211

04208233 (0o189887

L)

0,
=0.41693E 01
O,
=0,40484E-00
0412562€ 02

~C.44718E-00

CAMBER FACTOR K CAMBER FACT

14169
14295
1.682

0856
Oel 12

0594

CIRCULATIOM DISTRIBUTION COEFFICIENTS <C{IsJ)

0,12837€~00
=0,49850E-02
042%8T0E-02
04
=0
-Ce
=04
THE DATE IS #PR]
TTE TIME 1S 1511

=0444394E~03
=0413892E-02
0¢10633E-02

.
L 17 1961
3

SUBPROGRAM S
NAME
OCTALS
INTESP
EXITM
FTNPM
(RSLT)
(FLO))
(OCT))
(EXIR)
{SPH)
{WER)
{ IOH)
{REW}
(108)

SIN
(EXE)
CLOCK

7 [o} 0
04311472
04372769
Oe

-0.002532 ~
3

~0452090E 01

0428334E 01
~0+70600€ 00
-0+85590E 01
=0s77153E 01

~0+90505E N0
OR 1/K

TORAGE MAP

ORIGIN ENTRY
01522 01531
03754 03757
07433 07441
07761 10023
14616 14753
16175 16204
16467 16471

NAME ORIGIN
HUMBUG 02130
BOUND 04221
{TSHM) 07475
(F2PM) 07761
(SVLT) 14616
{FIX)) 16175
(0CTD) 16520

17474 17886 ASEIX) 17474

20168 20201
20642 20654
21000 21002
22601 22671
22601 22606
23047 23012
23340 23344
24510 24515

[o] [ 0 NG=3
04313185 00298909
04323067 04285059
O O

04187355

=0e43664E 01

Os

e
0e¢11601E 02

~N.69949E 0O

(5THM) 2016%

(eDC) 20733
(TCO) 22601
(WEF} 22601
(TRC) 22601

Qs 23067
RECOUP 24317
GETTM 24644

ALAM=0 2423

06228215
00255053
Oe

0025272E 01
=0435300E-00
=0eT4031F 01
=0+57495€ 01

-0+13839E 0}

ENTRY
02137
04230
07%20
10017
14633
16202
16522
17477
20211
20764
22675
22670
22676
230n
24322
24646

NAME ORIGIN
LIST 02454
AKL 04573

(TEH] 07473
{PCUP) 14238
(BCD)) 16008
(ILSC) 16262
(OPCD) 16%7%
(SPOT) 17701
(STH) 20168

(RER) 20731
(TEF) 22601
{8SR} 22601
(lou) 227132
SQR 23242

ERROR 24325
XDETRM 2%00S

RH=04¢200 GNZL=0s0ORND

~0e 48904E=00 De

Oe
0422122F 01

Os

ENTRY
02464
04610
07521
14341
16010
16264
16577
17703
20236
20742
22674
22667
22735
23246
24331
25526

=04 TA322F 01
0483255F 01
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APPENDIX C

TABLE OF CHORD-LOAD FACTORS Bny DEFINED IN (5.20)

n J=1 J=2 J=3 J=14 J=5 J=6 J =17
11.5 ' |
¥=2| 5 2 : I : :
1 |.195312 | .292969 ‘ ‘ ' .
2 | .304688 152344 l | I |
N=b | 3 | .304688 |[-.152344 [ | | ,
bl 195312 | -.292969 | | ' |
1| .109375 | .182292 | .189887 | .134187 [ !
2 | .182292 182292 | -.002532 | -.184823 | I
N=6 | 3 | .208333 L0694k | -.187355 | -.131896 !
b | .208333 | -.069ukk | -.187355 | .131896 | |
5 | .182292 | -.182292 | -.002532 .isu823 | |
6 | .109375 | -.182292 .189887 | -.13487 | |
1 072007 126010 . 146058 .129591 .080010 .010426 | -.052892
2 123367 .154209 .068072 | -.069119 | -.154856 | -.124451 004068
3 | 147079 .110310 | -.065429 | -.153981 | -.05kk23 118564 k7254
=8 | L 157547 .0393687 | -.148701 | -.076562 .129269 .108879 -.098430
5 157547 | -.039387 | -.148701 | +.076562 .129269 | -.108879 -.098430
6 | .147079 | ~.110310 | ~.065429 | +.153981 | -.154k23 |-.11856k k7254
7 | -123367 | -.154209 .068072 | +.069119 | -.154856 | +.12bks51 .004068
8 | .072007 | -.126010 146058 | -.129591 | =.129591 .080010 -.052892
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