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ABSTRACT

The basis for current propeller design methods is lifting
line theory supplemented by an approximate correction for lifting
surface effect. Recent studies have indicated that this correction
is not entirely satisfactory, and that a more exact lifting surface
theory for marine propellers is needed.

In the present work, methods are developed to determine pitch
and camber corrections for propellers with arbitrary blade outline and
radial load distribution. The pitch and caber is determined by the
requirement that the desired load distribution be obtained with the
sections operating at their ideal angle of attack. The method may be
used both for homogeaeous-flow and wake-adapted propellers.

The method is an adaptation of the vortex lattice method
developed for wings of arbitrary shape by Falkner. By replacing the
continuous vortex distribution by a lattice of discrete vortex elements,
the singular integral equation occurring in lifting surface theory is
replaced by a set of linear algebraic equations.

From the form of these equations, it is shown that a propeller
with symetrical blades and with mean lines which are symetrical about
the mid-chord has no pitch correction due to lifting surface effect.

To obtain a preliminary check on the accuracy of vortex lattice
theory, methods of approximating propeller lifting line theory are
developed, and. mnaerical results obtained with an IBM 709 Ccputer are
given. These results agree substantially with existing lifting line data.

Lifting surface results obtained with an IBM 709 and an IBM 7090
ccmputer are discussed. Prcu these results it is tentatively concluded
that an accuracy of + 2% in the camber correction my be achieved with
reasonable ceputation times. The sample results indicate that lifting
surface corrections are dependent on such variables as blade shape and
circulation distribution, which are not taken into account in current
design methods.
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NOMENCLATURE

CL - lift coefficient = L/I/2pV2A

cij - Fourier coefficients of circulation distribution

D - propeller diameter

Fn  - function defined in (2.19)

f - maxivunm camber of mean line

- non-dimensional camber = (f)/cL

G - non-dimensional semr - r/2rRu*

G' - non-dimensional circulation - r/2rrR Va

9 - number of blades

h q - slope of mean line with unit camber at point qq

k - camber factor - camber in 3-dimensional flow/camber in 2-dimensional
flow

I - radial terms in Fourier series for G distribution

J - chordwise terms in Fourier series for G distribution

K - index in coefficient matrix of equation (5.33) and (6.18)

L - index in coefficient matrix of equation (5.33) and (6.18)

A - chord length of expanded section

M - nu ber of ra@al lattice elements

N - number of chordise lattice elements

P - number of radial control points

- number of chordwise control points

- propeller radius

r - radius, radius to a control point

r 0 - radius of a helical vortex element

S - non-dlmensional vortex sheet strength - y/u*

u - in~iced velocity
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u ut , Ur, u - axial, tangential, radial, and normal induced velocity
n components

non-dimensionma Induced velocity - 4iru/r

U* - displacement velocity defined f Fig. 4.1

V axial- nflov velocIty

V* - resultant relative velocity at a 'blade from liftI line theory

Wt - integration ruie veights

Q - angle of attack of section relative to 01

- non-dilensional pitch correction - a/CL

0 geometrical pitch azgle

S- hydrodynamic pitch amgl.e tzon lifting line theory

Pio hydrodynamic pitch angle Irm Wating line theory at radius r0

y * vortex sheet st-ength
CIV relative load fartor defined in (4.19)

CIO C2 - Chordwise lattlae constants defined in (5.14)

- non-dimensiona, radius o/.

JX - Goldstein :arter

I, - byarodynamic advance coefici~ent -u tn0

AnS - hord-load factor defined in (5.20)

- x/a w non-dinensional axial distance

p * transformed radial coordinate according to (4.3) or (5.1)t

fluid mass density

- transformed hoz-dv' e coordinate according to (5i)

w - propelle? rotational speed
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CHAPTER

INTROLUCTION

2Iropeller Design Met.od,

The basis for current pxoeller dSeIp methos is liftng IZOe

theory supplemented by an approximate correction for ij1tig sf:ae

effect. A desoriptoin of such methods may be fond In roceut pub.4UaaU.a
byUrbs(~s(), Va MaeZOp pa Eckhardt and Morgan ( e Finras

the historical development o: propeller theQry It treate extensively

In these referenaes, we vili be ceeerned primarily with a brief

esumary of the assumptions and general methods of solution Involved In

propeller thieoW as It Is applied at the present time.

Tn lifting line theory, the propellg Ulades are replaeed by

rtraigbt radial vortex ines. A Zzae vortex cheat extends downstream

from eah of the liting lines fxmijug au approxate y he3Aw1a surfaoe.

The propeller Is assumed to be rotating with @nstant ana%2ar veocity

in an aXilly directed stream whose Teloeity may be a 1£2mct!A of

radius only. The flow will then be steady relative to a o@adinae

lratem ratat gng ith the propeller. 2%@ flov In the nelghb~hoad at

the SMpel]er Is assumed to be tnaf.teted by the ire* &Ulte @ by

e solid boundarles.

Evea -this idealzod model cannot be ftlie dWet2 &IT*e the

Te"oaQIt7 ldced. by the vertea sheets std Uhe posbtM of tbe sihes

M Mtual2" dependent. It Ls therefere assumed ta&ab the lx*ieeA

Velocities are small compared with the resultant relative velocities



at the liftip!g lines* The elementg of the free v~rte vhe Canh MaAe

be assi2med to *oe helical 11ne9 of constal% radlUs andl yitg1i, 4Iler tho

,p:teI Ts determined by the@ angle ag the resultant fl.ow at the lift"n

litie fc .-odlg indtced veloiies. T~hin latter reftntent complioatel

tiatters ecwewbat elaace the pitchI tP the free vort~ex "ton arid the

veloeltie Induced at the lifting ]ine mx@ oti12. intarde;)enduato 'hwever,

a solt.o may rea4II1r be obtained br iterati.on.

The ,justf'eatlon foz' reglecting the ax~ial. dfoatio? of' tba

vortex sheaet Is that thie velocity laduae~ at the liting line byaz

element of the sheet deareases rapidly v4-th diatance so that aui err~or

£I the IaS~amed position of Usi sheet b ecamas j.esa criti~cal as the

itance downstream lItreaSes.

'The r'elationa~aip betweer the bound vo1rtex st2'enith a=i the

iWn~e velocileS at the liftig Il~e ay be determined by the Lerbs

Ii2eution iaetoa' methol (3.)o (4). in the special case when the Inflow

Velocity to constant and the _Dltrh of the free vortex sheet Is la-

dop!~enmt of radius, the eir~cUlation distribution m~y &1So be determi~ned,

by mea.us of the Goldste.1z% ftastors6 . 7hese methada vil be d.isQussed

Due to th~e loy aapect r'atio of xost marine propeller blades,

the uae of lif'ting line theory recalts inunance~eefbly laxp errors

unlewa oujppemeaed by a 1±ftivg surface correetiofl of some kind. Some

early attemapta to explain~ thlo dIscrepa~cy were ba-sed on the application

of tiio-d1menefonal eazeade tieOar, bowverj ets pointed o~t b~r Lerbs

this aplicatioai was not 4ustited. The tirtit svrace @orreCt!In

V'ICI Is pr'esently used was first devuioJW4 b luiea~ =d, zel 1la 1944(a~)

and later refined by, Ginzel~' (i) Their approach was to find the



induced flow cirwatue at the 391.obiord and t4 fte WU to ietermens

the camber oi the blade sections. The pitelh Vas still to be dat .zdel

from lift4ng liine theo? by the requirement that the seetiona be at

zero angle of attacs ralative to the Induced ;Cow.

leir theory i .inearizel to the exbext that the blade

surfaae Is asstmed to le In the nalg1berhood of ai trae helical mrWace,

the Vortex systam and the point where the Induced velociti, is to b0a

determined is oan the helical surface rather than on the blade itvelf.

2he curvature of the flov Is related to the derivative of the normal

Componlent of' induced velocity in the chiordw'±ae direction, or, Imore

briefly, the "downvash derivative". They assume p constant cIrculat±i

distribution over the chord, and with this sim* iication It is easy

to sbow that, the downwash derivative Is equal to the dow~wmsh Produced

by a "remainder" vortex system consisting of a line vortex representing

the blade outline and a act of chordwise vortices connecting the leading

en trailing edge.

Their results can be expressed in terms of a camber correction

tutor k which is de.'ined as the ratio of the camber reqired in three-

44mvisional flow to the camnber in two-dimensional propeller fw for

the sae lift coefficient. While the theory can take Into accouit the

co tribution of thc other Ib.adei to the downa h derivative. this

effect was neglected to slmplity the cmputations. Their xreulta shov

that the camber correction factor depends pricipally on bled arem

("pet ratio) and on the radial eirculation dietributicai.

La order to app3 their results to propeller mntioi© Which

do not have a constant chordwise circulation distribution, the chord
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lengts tre cod fied In 0eh ay that the actual section and the

Constant-load sectio w;ild have the same total Jift and downwash

clerVai±ve In two-dimemsionl £low*

After the pitch has beeil determined from lifting liAe thotV

vaI the oanber or tiao 3atons from the Ludweig and GInzel theory. the

desZa Is completed by mperimposing the velocities induced 'y a

a.mraetlcal thlekacaa fom to 'thse due to the camberd mren Ine.,

1%3 U 1zearizefl thii a!rol 'JA eor', the veloitile3 due to the

thioMesa form coutribute to the local prersure, but not to the lift.

TlnalVy ,a allovance is aade for viscous effects bv a4ddn a ~iile

4xa- £orce cad by addi, a small anle of attack or oauer Incrameni

(or both) to allov or the loss o: J.'Ut attributed to the prenee of

the bcurdary layer. Both tieae corrections and the Ve oitj l1nre=mt&

due to thicamws are determined by a tio-dinmerional str p theory based

gn the resultant iflow velocity from liiting line theory.

It has been observed that propellers designed In this vay do

rot have the correct pitch ia many cases. To explaan this Lerbs ( 7 )

co adered te possibility that the induced curvature may not be

constant over the chord and that r. iitch aoireeticn inight be Mecesss7

to take this Into account. To d thic tle VWissinai' l~tiaa

surface theor was applied appr imately at e poiat = the blade. In

this heM the bound airc-ulatLoa is ewacentrated at the 1/4 chord

line and the dniwash ls determined at the 3/4 c1wrd line. The vitch

Is the adjustd So that " bQnidry Condition at the 3/i e chorc lin.

Is satisfied.



-5-

This correetion used in the dezign method desoribed lb

Eckhardt and MOtgan ( . !1OVever, ,Va Manen and Crowley ( I I ) ound that

this Gorroction did act seem to help In bringing their theeeio.aL anl"

experimental results into agreement. The author is also of the opixdon

that the approximations Invol ed In applying tbi,% coare@aion tre Sfloh

that It is questionable whether It can serte to improve the acc~a4

of the Udwaig - finzel theoi7. 'his was illustrt'ed in the ]retent

authorle dismtssion to a papergiv±en by XZr~an in 19 9(1)

Another form of correction vhih has been used prineipa.ly

at the Netherlands Ship Model Basin I an empirical modification in

the ideal efficiency of the propeller, which resulta In a cjaanpe in

,ptb AhID Is am.,.Ilea pr2ni1pally to wake-ntdated. propellar. and

includes the e';ccta of.uaote&Ay1 flow( 3 ) . It In not i,)os.11e to say

how much of this correction in dte to errors in steudistate prpeller

theory.#

Current Research in Steady-State Propeller Theo

The fact that cui'reat degn methods are not entre .y

reliable, ha resulted in a reocnt Interest In prope~ler lifting sarface

theory. There are many possible aproachesu some of which will be

discussecl briefly In this section.

While the Ix-idC-ineJ.l Qeory has a iw.ber of -Laherent

simplifying assumptions, It Is still by no means beinG applied to Its

ftl advantage at the present time. For example, theu results show a

very strong dependence of the catter orection on the radial. Ual.

distribution, yet this fact Is Ignored In curent &ealg'n methods. It

appears that the design curves given by Van Manen ( 3 ) are for an optimum



radial load. distrbutionpi1 thile those appearing in Xckhardt and Morgan ( 5 )

are To a reduced circulatJoii at the ovite? 'art of the Ila&e. However,

the 'latter Is applied to prope!le$a with both optimum ahd ?lon-optimmu

Qirculat!.on distribution. Ylurthermore, the modificaioil In effeetive

chord. length due to changes ir the chord-load distribiblon Is not taken

Into ucccunt. Ffnaly the effect of the other blades which was

originally neglected to save numerical work awcd eas ly be taken into

account now due to the availability of high-speed digital computers.

A reanalysis of' Jic Lxdwe1V and Ginzel theory has Just been complete.

by Cox ,1 3  and it is possible that these new numerical results will

,result In better agreement between theory and experiment.

Following another approach, Alef (143 has been working on

the exaot application of the Weissinger theory to propellers, although

to the author's knowledge, no numerical results are available as yet.

While this should be a distinct Improvement over the approximate

application of the Weissinger theory It Is still subject to question

whether or not this wil offer any impxovemnt over the Ludweig and Glntel

theory.

Work is also in progress at Netherlands Ship Model Basin b.

Sparenberg l1 ) on a more rigorous 21,ftin surface theory. In that

reference, the lasic Integral eqqutlon lo derived. It Is understood

that work is in progress to solve the latetgral equation fOx the special

case of e/llptc blade outUlDw wit onstants , rulatIo 0 over the

blade surface.

@S



General Method of Approach

In the present, vor% w onsider tl~e solution og the lifting

,p aace polem 'o . propeller with arbitrarr blade oftline. j!tcht

distribution anI circulatio 41stributin opmtlng In aU wa I

directed velocity fiela. It Is assumed that the radial Cir'ulation

distribution is given and that the blade surface is to be formed fros

a known mean-line type by detemri~ng the eamber land p2tQL at each

radius. These tWo parameters axe to be determined by the re4Ixement

that the desired radial circulation d .tribut b Is obtained vith the

sections operating at their ideal angle of att ao.* Zie choIdw~se

41rculation distribution %Pill thea be determined by these two .€onditions;

by the boundary condition that the flow be tangent to the blade surface,

and by the Nutta *ondition.

This appr~aeh diZfers 1 Orem any of the theeries discujssed

lu the precedir sections In that no restrlctive assurnplns nead be

made as to the circulation distribtion or blade catline, and the

results may be applied both to open water or to wake-adapted propelers.

The procedure is stnlar to a methoe dvelope& Pa y hne. ) (i7), (1

to determine the lift distributlom of wings of arbitrary shape. The con-

tinuous distribution of radial and helical vortices is r ep ad by a.

lattice of discrete voxtex lines. 2he lattice ran be considerea as

formed from a number of 'Uxsho&" vQrtex elemente of emstaut strength

as shown schematieally I Fig. .L, The veloci.ty inced at an Vxbtrary

point in space by each 3lA+.tes element *au be determ1tad I negratloz

*The ideal angle of attack, or condition of "shock -free entrance" is

defined as the angle of attack for which the infinite suct" & the
leading edge given J7 tI4il al.g1. theor .vanishes*



accordtng to the -W oi 3ot-Zavab (P 9 ) , (20). BV 4ete~mining the

VeoaLy a a humbelo of oontwol pofts an the blade surfae at the

ntl.pyotf? t the lattice a set of linear ecqations may be formed xelafth

Itha strengths of the lattice elements to the shape of the blade surfaceo

Mae singalaz Itegral equatj.A encontered In a119Cine "1f 4e

thieory Is tberefore replaced by a set of falm.taneow2 U.near acu8.tions.

Utno the proess Is rny lae V =c wtm al, it IS not neassaz7 to mate

the usual simplifying assumptions as to the b Iade outln and Oirlation

disatzbitl'on.

The question naturally ariset as to vhather e lattice

method wilJI converge to the solaTtion of the integral eguation as the

spacing is made smaller. O'vbi aly# if the saeing is made very small,

the coefficients in the equations will becomelarge, due to the 2orlmity

of the control points to the vortex lines. Consequently# from a

computational point of viev there v= be e point 09 diminishing

returns after which the set of linear equations %MU be too nearly

singular to be solved. Vhe question of vhether a safficlen 2y accirate

solution can be obtained before this tawo ;Jace can be settled by

computing special cases for which the soltion of the integral euation

is known and observ±ng how the error depends on lattie spacing.

This Vas done by Falkur(18 ) UL the case of wings of Taragu9

shapes and it was obserred that errors of less than one percent could
*

be achieved with lattice. of reasonable size. * cj@ the converggnoe

**The finest spacing used twenty vortices over the semi-span and eight

over the chord.

5
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Tropezties of the lattlee shoild not 'be alte& Oastaal1? by going

rom & plane tO a, lielical surface, the metho, should be e~etea to

voxk In the case of a propeller.

lt should be mentioned that this approach has been atvdie&

,to some extent by Guilloton(2 1 ) and Strsceletzky(22). However. since

thei'V ork was done in the pre-digital compu-te era, it is somewhat

questionable whether a numerioal solution on a small enough scale to

'bo clone by hand would offer any advantage in aQccracy over existing

results. This conclusion is based on the results of the present

Vork In which It was found that the recessary computations were far

f.on trivial even gor a large-scale digital computer and definitely

'beyond the capaeity of small machines, not to mention humans.

Basic Assumptions

The ass-unpttons vM be similar in part to those made in

Iigting 1ije theryj as described In the beginning of this chapter.

The fluicl is assumed. o be frictionless and Inompressible and the

floW in the neighborhood of the propeller ia assumed to be unaffecte&

by a ree, suwfaee 1 extranems Slod boundaries. ox cavitation. The

Inflow Velocitvp as In liftn line theory, is assumed to be axiaJ and

a Zinction of radins only.

The free vort" s,stem i.s asstmd to lie on a helicat surface

Those pitch is determined from 1iting line thetry with the same radial

load di Stribution. The pitch ol this helical reference surfaze ray be

a Amton of radus. The nade see la assamied ft be ahelica mat

on tbe heJ.cal reilermae aaiftea T 7e problm is liTnearizerl tQ the

extent that the boundary condition is applied on the hielical
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Surface rather than on the blade Itself and the induced vetocLtlee

are assumed to be small telativS to the resultant in:loV4 As in liftlng

line theory, the flow is assumed to lie on cylindrical surfaces concenttle

Vith the propelleP axis of rotation. This assumption is obviously not

Vexy realist±e near the tip of the blades, but should be reasonable

Qlewhere for moderate propeller loadings,

I+ Is assumed that the 1Rutta-condition holds, I.e., that the

bouind Giralatien is zero at the trailing edge. Tt is also assumed

that the boud circulation Is rero at the blade tip and at the hub

.di±us. an& that the boundary Condition of zero radial velocity at

t1e bub oylindAr can be disregarde. These last two assumptions

CoweZZIng the hub are by n means essential to the vortex lattice

tietho,, mid it is believed that a atore accurate representation of the

Imb ef'fect rMa be added1 at a later time.

Cutline of Resuilt.

Zn order to apply the vortex lattice method, the velocity

.1ndaoeA at au arbitrary point in space by a set of helical or radial

Vatious is Vueded. Expressions for these are derived in Chapters 2

and 3 respectively, and methods of computation and error estimates are

discussed. In Chapter 4 Vortex lattice methods are applied to solve

the liftIng line problem, beth for optimum propell.2.es in homogeneous

'lowo and Tor non-optimunm or ake-adapted propellers. -This is inaluded

to ndeste to some extent the convergence properties of the lattice

usthc by comparison with kno results. These results are also needed

in the soliltiou of the lifting surface problem for symmetrical blades.



Tn Chater 5 a tattlcq solution fs developed fo ropellers

o: generale arbftrarr $bade out'llne, 8oeton type, and. 27ad~al circdIlation

&stribution, and in Chapter 6 these resv~ts a e speoialize I t the

case of propellers vith symmetricaj. I)lades. Tn the latter cases the

xesulting synetry greatly simplifies the computations.

Finally, In Chapter 7 numerics4 results for camber anl pitch

corrections are presented and compared with results according to the

LudMg and Ginzel theory.

4



CHAPTER 2

THE VELOCITY INMUCID BY HELICAL VORTEX LIES

Introduction

In this chapter the problem o determining the veloaity

induced at an arbitrary point in space by a set of helical vortices

will be considered. It will be assumed that the vortices are of t~ue

helical shape, i.e., that their radius and pitch remains constant4

and that there will be g vortices of equal strength syunetrIcally

located around the circumference. The axial extent of the set of

vortices may either be finite, as in the case of a vortex segment

lying on the blade surface, or semi-infinite as in the case of the

free vortex system extending downstream frou the trailing edge of the

blade.

The velocity induced by a vortex line of arbitrary shape may

be expressedl In terms of an integral taken along the vortex line by

means of Biot-Savart's Law . Expressions for these integrals in

the case of helical vortices have been derived by Betz(23) Sthelety

and others. However, since the derivation is very short, it will be

* include& here for convenience since these references are not widely

available. This will also serve to establish the notation., which is

by no means universal.

Since these integrals cannot be solved .explicitly, other methods

have generally been used In the past to obtain the induced velocity

ccmponets. In lifting line theory, for example, the velocity induce&

ou the lifting line by a set of semi-infinite helical vortices can be

reduced to the two-dimensional problem of finding the velocity induced

by a helical vortex of infinite axial extent, as was first shown by Betz(23).
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This can be treated as a two-dimensional potential problem and solutions

for the case of a set of helical vortex lines have been obtained by

Lerb ( 1 ) and in the case of a set of true helical surfaces by Goldstein(6 ) .

However, in a vortex lattice approximtion to the lifting-surface

--problem, the velocity induced at an arbitrary point in space by a segment

of a helical vortex line must be determined. Since this is now a three-

dimensional problem, the Biot-Savart integrals would appear to provide

the best way of obtaining the induced velocities*

In the case of a finite interval, the integration my be

performed by numerical methods as will be discussed later. In the

sei-infinilte case, numerical integration =ay be used up to a sufficiedtly

large distance downstream at which point the reinin' value of the

integral to infinity can be estimated. Both of these steps Introduce

errors nor=lly defined in numerical analysis as "truncation errors".

Bowever, in this application the term "integration error" will mean the

error introduced by the numerical integration formla, while "truncation

error" will .refer to the estimate of the integral to infinity. Both of

these errors will be considered in detail later in the chapter.

The Iduced Velocity Components Determined by Blot-Savart's lAv

As shown in Fig. (2.1), a right-handed cartesian coordiate

system is located with the x axis along the propeller axis of rotation

with positive direction dovnstream. The y axis passes through the

control point. i .e., the point in space where the velocity is to be

determined. A cylindrical system (x, r, 9) is oriented so that the

line x = 0, e - 0 in the cylindrical system corresponds to the y axis

in the carteslan system.
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There will be g helical vortices (one frcm each blade) which

have the following properties:

a) The vortices all start with the same axial coordinate

XoP reial coordinate rt, but with different angular

coordinates 9 - Tpy p - 1, 2, ... g.

b) The vortices are of constant radius ro, and constant

pitch angle 0io*

Biot-Savart's Law my be written

U M ; S3(2.1)

where r = vortex strength (ft 2 /sec)

S - vector distance frca vortex element to control point (ft)

dA - vector element of distance along the vortex (ft)

u - vector induced velocity. (ft/sec)

The distance S has the following x, y, and z ccmponents:

3 M o "X - Otan 0 , r - r° coo (g + cp)) - rs

C ,Y] (2.2)

where y is the angular coordinate measured fro as shown in Fig. (2.1'.

The vortex element dA is

dA- ta 0io -si ( +(P)p Cos (f+ T)l r d (2.3)

The cross-product dA X S is as follows

S-k
dA X S =r0 dr tan 0 -sin( y Cos (" p

-x 0-r 0 p tan rr o -r 0 sin 41



-16-

r rcos (y p),0 0 i r tan 0 ['sit T CPP - Cos (, + (P. J

0 0 O CP qp.
- X° cos (cp *p)

tan io [ r - r0 coB (q) - r0  p sin (p +

X x°  in ('r + C p) 2

and the scalar quantity S3 is

s -[(xo +ro tan 0 )2  r2 + r 2 r r coo. ( +p)]3/2

(2.5)

Substituting (2.2) th ough (2.5) in (2.1) and summing over the

g blades gives the following expressions for the axial, tangential, and

radial velocity components

rO 0 - r cos (. c ) d4 (2.6)

ua  0 L [tan r o  (r-rCs(p +CP

sin (= + 9s3  (X0 o pta o )]#(27r

Us r L 3 (r° 0 tan0 + X Cos( +p)x FJLs3 L' T  io o ) ' cos

* tan 0io r sin (cp 4 Tp)] (2.8)

The above equations, after due changes in nomenclature, are

ia~ ~ ~ ~ (gemn ihSr22

in agreement with Strheletky' formula 35. Furthermore, in the

special case when one of the helix starting angles, Tp, as well as the

axial starting points, xo, are zero, these expressions agree with those

given by Betz and Lerbs( ). This latter case corresponds to the



the velocity components at a blade In propeller lifting line theory,

Equations C.2) - (2.8) can Ibe made on-dimensional in terms

of the following variables

= o/r

= x/r (2.9)

-4TrrtL4

The non-dimensional induced velocity components u can then be written

Ua 3T co (( p.) c (2.10)

where the denominator in each of the integrals above Is

D3/2 +[ + 1tan oi) 2 + 1 + ? - 2 os cp + !P]3/2

(2.13)

The non-dimensional velocity u is related to the Lerbs(l)

induction factors i by the relation

The reason for selecting a different non-dimensional form is

based on a consideration of numerical accuracy. The total velocity at

a control point is to be obtained by auming the velocities induced



by the elements of a lattice system. The velocity induced by the nearby

elements will become very large as the lattice spacing becomes small,

so that these must be ccnputed to an increasingly large number of

significant figures for a prescribed accuracy in the resultant velocity.

The quantity u will tend to infinity as (1 - j)-i as I -I , hence

requiring a fixed accuracy in ui, (say three decimal places correct)

is equivalent to requiring a higher percentage accuracy as the agnitude

of u increases,

On the other hand, the induction factors remain finite due

to the factor (I - T), so that if the mmber of decimal places in the

computation of the induction factors is sufficient for the nearby

elements of the lattice, the induction factors for the distant elements

will be unnecessarily accurate.

In general, the velocity ccmponent normal to a particular boundary

is to be determined. Let (1, m, n) be the (x, y, z) components of a

unit vector normal to the surface. The non-dimensional normal velocity

is then given by

un =  r a a + t (2.1)

For purposes of computation, it is convenient to express the integral

in the following form

(c 3 + c4 cos c+c 5 sin o p) d

n ( 2  + d 2 ( + d 3 + d 4 c o s o d s in )3 2

(2.16)

where the c's and d's are constants in the integration, but depend on

the blade index p. From (2.5) these constants can be written as
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C3 C +3a 3r+n 3t

a Ac= +a r n  t

etc. (2.17)

By expending sin (cp + (pP) and cos (cp + qwp) in (2.10) -(2.12) and collecting

coefficients, the following expressions are obtained

c3a,

C1a - -71 con (P

c5axial 
coment

c6a c70 = 0

c3r 0

C4r 1?2 tan 0 sin T cogCOSp

c 5r 2tan 4 ocos + 1 uin -P radial component

c6r = tan 0io cos cp

c 7r-Ttn0isi 
1

c3 t -I tan Oio

c - ? ta 0io sin -P P 1 C cs 0 P tangential component

c6 t = 71 tan 0 io sinq,

c7  = Pi tan 0 oo4

The coefficients of the denominator, which are the sans for

all three co~onests, are

d- 2 2 tan 2po
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d , 3 l2 tan2 p i + 1 + i

d4 - -2 1 coo rf

. 2 1 sin (2.18)

By considering the non-existent constants CV, c2 , d6 , and

to be zero, and by defining a function F. (() as follows

F = (f 2 2 = ( 7F 3 = 1 4 = C o (

F5 =*goin c YP6 -(pc on f F7 - q7 in (2.19)
a more compact expression for Un is obtained

7

I I drf(2.20)

If the integral is to be evaluated by an I point integration forula with

weights Wi, (2.20) may be written

I gC.%

u=. Wi 7 .T (2.21)

d%13/2

where Fi means F (ci). This is a convenient form for use with a digital

computer. As is described in Appendix ( A ), values of Fni may be computed

and stored in" a table so that only the constants cn and dn need be computed

for each integration. This results in a large saving in computation time,

which is important since the evaluation of these integrals represents

the major part of the numerical work in obtaining lifting surface solutions

by a lattice method.

The velocity component normal to a true helical surface can

be determined by substituting the components of the urAt normal in (2.15).



Choosing the positive! direction for the normal to be directed upstream,

i.e., in the direction in which a propeller would normlly be devel oping

thrust, there follows

A -cos , a 0 n = +sin 0

zUn 4 a coo 0t + Zut sin0 (2.23)

where 01 is the pitch angle of the helix at the control point reaius r.

Integration Error

In the case of a semi-infinite vortex, equations (2.10) - (2.2)

or (2.22) may be solved by numerical integration up to same angle ept,

and the remaining contribution from ft to w estimated. In this section

the error introduced in the numerical. integration from 0 to ft will be

considered. These results may be applied equally well to the integration

of vortex segments of finite length on the blades.

To get some idea of the spacing required, the error in the

axial component will be derived in the case of mmerical integration by

Simpson's Rule. Zhe expression for Simpson's Rule2 includi the

error term, is

x2  ,h 5  (23
f (x)dx (f + Af+f 2 ) -( (2.23)

0

where the total length of -the interval x2 - x° = 2h, and x° <9: X29

Note that x and C refer' to the variable of integration in general, not to

the eoordihat~s defined ih Fig. (2.1).

If the magnitude of tde maxiaum allowable error in one revolution

of the integration is e, the isimber of Simpson's Rule elements per

revolution is

217. f/,h(2. 24)
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and the maximutm error per element is

ch/i h5  fI W (2.25)

so that the maxinum integration spacing is:

h =90 1/ (2.26)

If fV (C) is interpreted as the wxinim value in the interval, c will

be an upper bound on the error for a spacing b.

The fourth derivative of the integrand of (2.10) after an

elementary, but lengthy. calculation, may be expressed as follows in

terms of the notation of Fig. (2.1).

g
.IV (rf) =i r° D" r coo s, D2 + r sinp D3  (2.27)

P =1

where: D1 =C1

D2  (Cl + C2 ) co P +,C3 sin

D3 +(C+C 2 ) sin -c 3 coo,

C1 = 59.o625 sl/2 s ', - 78.75 W9/2 s '2 + 11.25 S7/2 "

+ 15.0 3-7 /2 S s''' - 1.5 s5/2 soy

C2 = -22.5 S"7/2 S 2 + 9.0 s-5/2 s,' + ,-3/2

C3 = 52.5 " 9/2 s' 3 - 45.o S-7/2 s, s,, + 655/2 s - 6 s,

= d + ep f 2 + g cos P +h sin

S' = e + 2fp - g sin r + h cos c

S" =2f - g cos - h sin7

3 =g sin p - h coof
Sagcos q+h Sinf
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o 2

e- 2 x ro tan 0io
f r0 ta0 ±0

g - -2r r coo 1o p

h=2rr ° sin p

Unfortunately, many of the terms in the above expression are

of the same magnitude, so that it does not seem 1ossible to obtain a

simple upper bound for f 1v (q) without being unreasonably corservative.

The above equations were therefore progrme& for an IBM 650

and a few sample curves of fly (q) were coputed.

Fig. (2.2) shown a samle plot of [f ()/ for a tlhree

and five-bladed propeller with 11 - 2 and o 200. From (2.26) this

is seen to be inversely proportional to the spacing required. This

indicates that the spacing after one revolution can be about ten tines

the initial spacing for constant error.

When 1 is close to one, the fourth derivative is initially

very large. The following values are for: 1 = .95, io = 20.and g = 3oi
IV [ 1 (P f I (,)jl/ 4

0 3.31 x 109  24o

3 8.99 x 1o 7  97

6 2.7 x 10T 72

In order to guarantee an error of less than .0001 per revolution

in this case, an initial spacing of about 905 degrees would be required,

while for 1) - 2 the initial spacing could be 2.8 degrees. After one

revolution, a spacing of around 30 degrees would be sufficient, regaraiess

of the value of 11.
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f f x (X X Wk f(3 ).+(on f, e (2.28)

where the weights and ordinates are given in Table A-2 in the Appendix.

While this formula would be very cumbersome for a hand calculation due

to the irxational weights and unevenly spaced ordinates, on a digital

computer this would take the same length of time per point as Simpson's

Rule and would have a much higher degree of precision.

As a result of calculating a large number of induced velocitr

integrals, it was observed that in all cases a larger spacing between

points could be used with the 5 point Gauss Rule than with Simpson's

Rule. The advantage was greatest for values of I near unity where

the Gauss rule spacing could be five times as large as the Simpson's

rule spacing for equal accuracy.

As a result of these sample calculations, it was also noted

that when II - 11 was sml it was not necessary to decrease the

spacing when integrating the blades other than the index blade. By

using a wide spacing for the non-index blades, a significant reduction

in ccmputation time could be achieved, particularly for five or six-bladed

propellers.

Although the spacing required for a particular accuracy depends

on g, 11, tan io' and x0, there is very little to be gained in including

a parameter which has a relatively small effect on the required spacing

since the time spent selecting and mainlating blocks of stored tables

may affect any time savings in the actual integration proccas. It appears

as though the critical parameter is 11 - IlI and that the effect of

g, tan Pio and x on the required spacing can be ignored. It also

appears reasonable to divide 11 - I I into -the following three regions:
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02< I- :5.10 Fine pacing

0 < .1 - 1 < .25 Medium Spacing

.25 < I - I Coarse Spacing (2.29)

Values of 11- i < .02 were not considered, since his is the illest

value which would be obtained with the vortex l.ttice systems anticipated.

Table (A-I) in the Appendix contains a list of angular intervals which

when divided into 5-point Gauss ordinates will produce values of the

integrals correct to 3 decimal places.

Truncation Error

An upper bound on the error introduced by truncating the

integration at some angle ct can be obtained as follows:

The integral to be estimated is:
'a g

8 .a 1 [1 - cos (q, + c~p) d (2.30)

The denominator can be simplified. as follows:

D3/2 [(C + Ictan 01)2 +l1+1If 21 coo (cp+~ p) ]3/2

>3 cp3 .tad 01o (2.31)

Subsituting (2.31) in (2-.30) and replacing -coo (cp + pf) by 1,

I8a~ TI ta7 u P3 Ft=
(2.o o P
(2.32)
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Similarly from (2.11) the tangential velocity estimate is

1 __1+1_ tail 0io, + L+A ta io drif tat 0- X P"So =l 6t 3"

t It 21 tan 0io Pti

For example, if 1 = 1, tan o= i, g = 0 and g = 3, the

maxinim error introduced by truncating the integration after a revolut~ions

(t = 2T) is shown in Table 2.1.

Table 2.1 Truncation Error Bound

No. of Revolutions n 6 'a mx. I uti Bax.

I .o76o .5500

2 .0190 .2570

3 0084 .1650

4 .047 -124o

5 .0030 .0985

6 .0021 .0815

13 .0005

While this estimate is very conservative, particularly in the

case of the tangential velocity, it illustrates the frct that after

2 or .3 revolutions the error decreases very slowly. On the other hand,

after a few revolutions, the value of the integral to infinity can be

accurately estimated as followst

For large values of 't:

1 g co - Pcos (+ Cp)
8 a% 11 tan3 io i d
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g g

PA..cos fpde
t,=3 0 - (P 3

The last two integrals in (2.34 ) gan be reduced to the Sine frgetral

[si ()]and Cosine Integkral Yci (q))] which are tabulated functions.

However, if the blades have equal angular spacing, the sums over cos 1P

and sin Ip are zero so that only the first term remains. In this case

the estimted value of the integral becomes:

a f 3 2 (2.35)
21 t in3 P. %t

Sim ilarly, the approximate value of the tangential velocity in:

8 Ow u- 9 2 2- (2.36)
S;~2'e tan2  ° Pio (C.t

An upper bound on the error introduced by using (2.35) can

be obtained as follows:

Assume that the actual value of D3/2 and the approxiute

value differ by the factor [1 + € ()], where e << 1. Then

It -coIt I (T + ) di

3 1 [.. )(113 (p3 tn 3  io)

1 tadn 3 ~ td P -

6 3 a + 6 (2.37)

Where

1 "e i {r- con ( e)- "co t(( 3  t +3 d3 (2.38)T;Z3-10tP
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is the error in the approximation 6 ua If e is the maximum value12a Max

of e (() in the interval Tt < <m' 6 can be written:

16(< (2.39)- 21 ta3 0 io Pt 2 1.

The quantity cM., can be estimated as follows:

(1 + )(TP 3 #3 tan pio) [( I 1 tan pio )2 + 1 + lf

-2 coo (g + 4p)3/2

Solving for e:

(+ I t ,0)2 + I + T - 21 coo (# + rP)3/2 -

T T3 tad 
Pi °o

2 + 2 C p t Po+ Tw 2 t2 + ,1 - . 21]3/2
+< 21 ~ ~ tan3 ~ 1io+ o(2.o)

I the case when 0 and >> 1, the 3/2 power in the

numerator can be expanded giving the approximate result:

.1( I 1 (2.41)

The mxiiz value of 0 is when cp 1. Substituting this In (2.39)

gives the result

1 (i + f + 21)(1 + 1) (2.42)
' tn' io It

Solving for ft

3, (l + + 2)(I + 1) 1/4

Tt if 5 1 .  (2.43)4 6 T t a n i o

Taking the same numerical example as before, if 1 - 1 tan o = 1

=0 g = 3 and 6 = .0005, (2.43) gives the result:

t 13.8 radians f 2 revolutions.
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According to Table (2.1), it would require 13 revolutions to

obtain the same accuracy if the numerical integrations were used entirely.

Since Table (2.1) represents a very conservative estimate, the actual

saving in using the approximate value of the integral from (t to G is

somewhat less.

Equation (z. 43) and a similar one for the tangential velocity

could be used to determine ct" However, this is also a little conservative,

so that it is more efficient to use a more empirical way of deciding

when to stop the numerical integration. This is done by estimating

the value of the integrals to infinity from (2.35) aad (2.36) after

each revolution in the numerical integration has been completed. When

two successive estimates agree to the desired tolerance, the approximation

of the integral is assumed to have converged.

Numerical Results

In order to check the preceding results, induced velocity

components were computed corresponding to three numerical examples given

by Wrench ( 2 5 ) . The velocity ecmponents obtained by numerical integration

converted to indction factors by (2.14) agreed to four decimal tlaces

with Wrench's values, which was the total number of places given. Checks

against gross errors were made by comparing inducticn factors over a

wider set of parameters with the tables given by Morgan ( 2 6 ) , and in all

cases the agreement was satisfactory.

In addition, large numbers of cumputations were made to

determine the optiam- integration spacing as was discussed pievlously,.

however, since these results are of limited usefulness once the spacing

criteriou has been established, this data will not be reported.
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THE VELOCITY I]DCED BY RADIAL VORTEX LIEM

The velocity induced by a stlaight radial vortex segment of

constant strength can be obtained by integration using Biot-Saart's

Law. While the helical case was somewhat complicated due to the necessity

of using numerical integration, the expressions obtained for the radial

case are very simple and my easily be integrated explicitly.

The notation to be used is shown in Fig. 3.1, and is substantially

the same as Fig. 2.1. A set of g radial vortex lines are located at

angles Tp and extend from rI to r2 . The remaining notation is the same

as in the helical case, except that the variable of integration is now

r instead of q.

The components of the vector element of vortex line dl are

d2 0.[ , dr 0 cos cp P, dr 0 sin C] (3.1)

and the distance from the vortex element to the control point is

[-x0 , r- r 0 cos p, -r 0 sin p](32)

Substituting these quantities into the expression for Biot-Savart's

Law (2.1), the following expressions for the velocity components ae

obtained

u r g= -r sisyp~ dr 0a 2 v + ro2 -2 r° cos

u 0

r
r2  g x cos T dr°

t 2 2 2 2r r 0 co*r -2rF cosi = pp)3/2 ( " )

As in Chapter,these can be expressed in terms of the non-dimensional quantities

11=ro/r = X/r u - (3.4 )0 0 7-
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resulting in the following expressions

g
sin qpu fq; 3S

L

9
ut cos p J d (3.5)

where the denominator is

Z3/2 -9 [ 2 + 1+ I?2 - 2TI Qos yp]3/2 (3.6)

Equations (3.5) can be integrated to give the following

g g
ua ) sin cp Ip ut Cos Ip (317)

where - cos 22 + sin 2

_P (2 _on _ cp) 12 (

= -2. 2+ sin 2 P. 0
P 2 (1 + cos rf) 2  -p

The latter form corresponds to the case when the vortex segment coincides

with the y. axis, at which point the velocity is zero as can be seen

from (3.5)

As in Chapter 2, the velocity normal to a helical surface with

pitch angle 0i at a radius r is

un = "ia cos i + Zt sin 0i

which in this case can be written
g

Zn= p= [ sin p coi + cos p sin 0j Ip (3.10)



CHAPTER 4

SOJTION OF PROPELLER LIRTING-LINE PROBLEMS BY VORTEX LATTICE METHODS

Introduction

Before applying vortex lattice methods to the solution of pro-

peller lifting surface problems, it would seem advisable to apply similar

methods to certain lifting line problems whose solutions are well known.

In particular, this would provide some preliminary information on the

spacing and arrangement of control points necessary to produce results

with sufficient accuracy for design applications. As will be shown in

Chapter 6, it is also necessaij in the lifting surface case to have

lifting-line regults obtained with am identical radial lattice arrangement.

The two problems which will be discussed are:

1. To find the radial distribution of circulation to

produce a free vortex sheet of true helical shape in

homogeneous flow, i.e., the optimum propeller.

2. To find the radial distribution of circulation to produce

a free vortex sheet with a specified radial pitch dis-

tribution.in an axially symnetric velocity field.

Goldstein Factors

The solution of the first problem is expressed in terms of

Goldstein Factors which are defined as follows:

X (r, 1 (4.1)

where: K = Goldstein factor (non-dimensional)

r = Strength of bound vortex at radius r - (ft 2 /sec)

r = Radiiis of vortex element under consideration. (ft.)

u = tangential component of induced velocity at the

lifting line as shown in Fig. 4.1 (ft/see)
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0

g number of blades

I = r/R tan i = x tan

Pi =angle of relative flow at the lifting line

X= non-dimensional radius r/R, where R is the (ft)

radius of the propeller.

This problem was first solved by Goldstein (6 ) in 1929. If the contraction

and axial deformation of the free vortex system is neglected, the problem

can be reduced to the two-dimensional problem of a rigid helical surface

moving with a fictitious displacement velocity 2u* as shown on Fig. 4.1.*

Goldstein's original paper included numerical results fox two-bladed

propellers for 2 < 1/Xi < 10 and for four-bladed propellers for I/A i = 5.

Later Kramer( 2 7 ) and Lock and Yeatman (28)obtained values for propellers

with 2-5 blades over the same range of X These were recomputed in
i,

1956 by Tachmindji and Milam(29) by a more accurate method. Goldstein

Factors for g = 2-6 and 1.5 < 1/xi < 6 were obtained using a Univac

computer at David Taylor Model Basin, and those results showed that

previous values could be off by as much as 6%. Tachmi.ndJi and Milam(30)

and McCormick (31) extended Goldstein's theory to include a finite pro-

peller hub, however, their initial assumptions regarding the value of

the circulation at the hub are not the same.

*The velocities shown in the figure are at the lifting line. At a
large distance downstream the induced velocities are doubled, hence,
the displacement velocity is 2u.

0
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Another way of computing Goldstein Factors is the induction

factor method developed by Lerbs . In this method, the velocity

induced by each helical vortex line forming the sheet can be computed

from a otential as discussed in Chapter 2. The velocity incluced at a

point on the lifting line by the entire sheet can be obtined by integrating

over the radius. The resulting singular integral can be solved by ex-

panding both the circulation distributiol and the induction factors in

a Fourier series with a prescribed number of terms. The integral is

then approximated by a series of singular integrals of the Glauert type

whose value is known from wing lifting line theory( 1 9),

To obtain Goldstein factors by a lattice method the free vortex

sheet is replaced by a finite number of helical line Vortices as shown

schematically in Fig. 4.2. The velocity induced at a point on the

lifting line by any of these vortex lines could be computed either

from the potential given by Lerbs(7 ) or by numerical integration as

described in Chapter 2. In this case tunmerical integration will be

used since this can easily be extended to the lifting surface case,

while the to-dimensional potential for the induction factors cannot.

By computing the velocity induced by each element of the

latticeat a number of control points on the lifting line, a set of

linear equations results relating the strength of the individual vortices

to the resultant slope of the flow at the control points. This can be

considered as another way of gett:ng around the singular integral which

occurs with the continuous vortex sheet. The equivalent step in the

induction factor method is determiming the Fourier coefficients of the

induction factors which are obtained by one of the tsual methods of

harmonic analysis from the Induction factors evaluated at a number of

4e
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distinct points. In general, the velocity induced at some point on a

propeller blade will be due to both the free vortex system and the bound

vortices. However, in lifting line theory where the blades have been

replaced by straight, radial bound vortices only the free vortex system
9

need be considered. Xhis is because the resultant velocity Induced

anywhere on one lifting line by a symmetrically arranged set of lifting

lines of equal strength is zero.

To proceed with the specific formulation of the problem, it

is first assumed that the strength of the bound vortex representing

each blade is given by an I term Fourier sine series
I

(P) a. sin ip (4.2)
= RU = 1

where G is the non-dimensional bound vortex strength and p is a new
s*

variable which is zero at the hub radius rh and TT at the tip. The

variables p and X are related by

X=12(.+ X) -12 ( 1- Xh) cos P

p = cos-1 l+x -2 x 1  (4.3)

The vortex distribution given by (4.2) is automatically zero

at the hub and tip for any values of the coefficients ai. This is in

accordance with the assumption made by Lerbs( 1 ) and Tachmindji and Milam(30)

that the circulation falls continuously to zero at the hub. However, as

indicated by McCormick(3 1 ) and a recent -Apublished study by Tacbmindji,

*This is not the usual non-dimensional circulation which is defined as
GI = P/2rRV when V is the speed of advance. In the present work, it
is more conoenient ato use u* as the non-dimensionalizing velocity so
that G will be independent of loading.
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the assumption of zero circulation at the hub does not appear to be

valid, but rather that the value at the hub should follow from the

solution of the boundary value problem.

In any event, to take tIW imb into account using vortex

lattice methods, it would still be necessary to obtain a s iuiable

series expansion for the hub potential whose coefficients along with

those in (4.2) could be obtained by including control points on the

hub cylinder as well as on the blade. However, since the effect of normal

size hubs (Xh < .2) on overall propeller performance is small, the

solution for the hub potential will be considered at a later time. In

the meantime, the hub will be takem into account only by requiring that

G (Xh) = 0 while the radial velocity boundary condition will be dis-

regarded. As will be shown later in the numerical examples, the

ftldstein Factors obtained under these fairly crude assumptions are in

reasonable agreement with the values given by Tachmindji and Milam(30).

The vortex lattice arrangement is shown schematically in

Fig. 4.2, while the actual arrangements used in the numerical examples

are shown in Fig. 4.3. The interval from r = rh to r = R is divided

into M equal spaces and the radius to the inner end of the m'th space

is called r om. The continuous bound vortex distribution G(r) is replated

by a stepped distribution whose value is equal to that of the continuous

distribution at the mid-point of each interval.

G fl= !f(r.)M + (r ) ) ( < M< M-l1)
m L2 0m l

= ~ f(ro)2 + rh1] (m = 1)

GM =  Cl + (ro)m)] (m = M) (4.4)

M9
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The free vortex lines originate at (ro)m where the value of

G changes. Calling the free vortex at (r o) Gm there follQws

aG = Gi - GM t4-~5)

This can be made to hold for m = , 2..... M + by defining the

non-existent vortex segments

G 0 =GM+1 = 0 (4.6)

It should be noted that the same result could be obtained by noting

that the strength of the continous free vortex sheet at a radius r is

dG/dr and replacing the derivative of G by the first order central

difference.

The free vortex lines can be considered as replacing a con-

tinuous vortex sheet which extends 1/2 space on either side of the free

vortex. The onlyexception is at both ends, where in the continuous

case, the sheet must end at the hub and blade tip. It.would therefore

seem reasonable to move the end vortices in 1/8 space so that they

would be located approximatel in the regioni which vould. actually'

be occupied by the sheet. In this case, the free vortices are at the

following radii:

(ro) m =rh + (R rh) (m - ) 2 <m < M
M

(ro) 1 = rh + 1/8 (R - rh)

M

(ro)M+l = 1 - 1/8 U - rh) (4.7)

M

The velocity is to be computed at P control points located at radii rlj

r2 ......r midway between free vortex elements. There is no restriction
P

on how many of the avaiJlable control point positions are to be used.
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The non-djmensional velocity components induced at r by a set of semi-P

infinite helical vortices originating from each blade with radius r

are

(u 4T r 2 x (ua)m
a amp r u* G

m M

4Tr r 2yp (ut)mp
(Ut)mp = (ut)mp T 9 =

m u* Gm

4r r 2 X (Un)m
=n mp nmp 30 .n n * 5i

where u is the non-dimensional velocity as defined in Chapter 2, u is

the dimensional velocity and the subscripts a, t, and n denote axial,

tangential and normal components.

The requirement that the relative flow at the lifting line

be of constant pitch can be seen from Fig. 4.l tc be

ut u u~ 49
= = const (4.9)sin cos o

expressed in terms of either the tangential, axial, or normal components.

These relations make use of the known result that the resultant induced

velocity is normal to the helical surface formed by thC free vortex system.

The tangential velocity induced at X by the set of vortices Gm is

M+l

(Utp = 2 m ( t)mp dm

M+1l I
= U-- (uat)np , (sin ip m - sin i prol)
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=u* sin ip Cos pip (4.io)

which follows from (4.2), (4.5), (4.8), and (4.9). The subscript i in

01 following pneraly accepted propeller nomenclature stands for "induced

angle" and is not to be confused with the index i in the Fourier series.

Rearranging (4.10) and cancelling out u* gives
I M+l

Sai i ()MP (sin i Pm - sin i pro-1)

i=l M=!J

2X sin Pip cos Pip (4.11)

Substituting the geometrical relations

X = X tans sin 0 1i p ip ip
2 +2

cos ip = (4.12)
2

xpv XP i

into (4.11) gives the set of linear equations for the unknown coefficients

ai

I M+l
y a i X (Ut)mp (sin i P m " sin i p m-1)

i=l m=l

2X 2
X2 + )2

p = 1, 2. ..... I

By selecting I control points as indicated above a set of I equations

for the unknown coefficients results. The Goldstein factor at any

radius can then be determined in terms of the a's from (4.1) and (4.2)

2 X Xi i*= I
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Since the Induced velocity components are all related by (4.9),

the set of equations for ai can be expressed in terms of the axial

component

I M+3

a Z (Ua)mp (n i Pm - sin i prl)= 2M N (4.15)
i=l m=l 2+ 1 2

or in terms of the flormal componet
I M+l

a. i p ) (sin i Pm -in i Ml) 2X L (4.16)

i=l m=l + Xi

Numerical Examples

Since the integral for the axial velocity is the easiest to

compute, equation (4.15) would be the most efficient. However, to test

the computation scheme for the normal component which would be needed

later in the lifting surface case, a program using equation (4.16) was

also prepared. The greatest discrepancy between the results using the

axial and normal velocity was found to be .0001. The method of com-

putation is discussed in Appendix (A).
4

Figure 4.4 shows the Golstein Factors for 3-bladed propellers

with zero hub diameter by a lattice arrangement with M = 24 and P = 8

shown schematically in Fig. 4.3. The curves shown in solid liges are

taken from TachmindJi and Milam(29) while the points and dotted lines

(where necessary) are the values obtained from the lattice. Fig. 4.5

shows a comparison of five different lattice arrangements in the case

where g-= 3 and X= .5 which is the va.ue of Xi which showed the

greatest disagreement with existing data. Each ef the lattice arrangements

are shown in Fig. 4.3.
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It is evident that the lattice results are in agreement with

existing data both for low and high values of X In the region where

the agreement is not as goqd, extreme variations in lattice arrangements

produce changes of no more than .003, while the basic disagreement with

(29) is about .010.

A possible explanation of the discrepancy may lie in the

method of computation of the Goldstein Factors in (29). The solution

of the potential problem invol~es the solution of an infinite system

of linear equations relating the coefficients in the series expansions

of the potential outside and inside the propeller radius. For small

values of ) ,, an approximate solution to the set of equations may be

expressed in closed form. For large values of Xi, this approximation

is not sufficiently accurate, and a more exact solution was developed

by Tachmindji and Milam foi values of Xi > .667. For values of X, < .4

the approximate coefficients were used, and the range in between from

.4 < Xi < .667 were obtained by interpolatlon.

Since the only noticeable disagreement exists in the in-between

region, it woild seem likely that the lattice values are more accurate

in that interval.

As an additional check, calculations were made for 6-bladed

propellers where the approximate coefficients were known to be much

more accurate than for 3-bladed propellers. The results are shown in

Fig. 4.6 for Xi = .2,, .4, and .667 and it can be seen that the agreement

is very satisfactory.

As was mentioned previously in the discussion of the hub

boundary condition, Goldstein Factors were calculated for g = 3, X = .2.
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and Yh = 0.2. These are shown in Fig. 4.6 where it can be seen that the

consequences of neglecting the boundary conaition of zero radial veiocity

at thQ hub are not too serious.

Finally, since two-bladed propellers were not included in

recent re-calculations of Goldstein Factors, a complete set was obtained

by the lattice method and the results appear in Fig. 4.8. Shown on

the same plot are some values taken from Lock and Yeatman( 38 -which

seem to be in reasonably good agreement with the new data. These results

also seem to agree very closely with results appearing in Goldstein's

original paper (6 ).

Non-Optimum or Wake-Adapted Propellers

The preceding development can be extended very easily to

the case where the pitch of the free vortex system is arbitrary, and

the axial inflow velocity V is a prescribed function of radius. It is

assumed that the pitch angle of the free vorteo system 0i (r) and the

geometrical inflow angle 0(r, = tan "1 (Va/wr)'is known and that the

mon-dimensional circulation G is to be determined. In this case it

will be necessary to compute the normal velocity component , since the

resultant velocity is not necessarily normal to the free vortex sheets.

In this case the boundary condition may be written as follows.

M+l I

(Un)p = i (n)p i ai (u* sin i Pm U*m-i sin i

m=l i=1

= u* (cos i)p  (4.1)

In this case u* is a function of radius

u* = wr (tan i - tan 6) (4.18)
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as can be seen from Fig. 4.1. Introducing the ratio

m U* m F (tan 0ii)m " ( tan ) )m3 r 4.9

* [(taflPi) -_ ) )p (tsni)p p p

into (4.17) gives the result

I M+I
a ai X (Un)mp ( mp s in i Pr" m-l'p sin i Pro-1)

i=l m=l

= 2xp cos ( i) p  (4.20)

For an optimum propeller in homogeneous flow

Crp = 1

and (Cos 0 ) 2 + X 2

so that (4,20) reduces in that case to (4.16).

The program prepared for the computation of Goldstein Factors

was modified to accept an aribtrary distribution of 0 and 0i' and the

results were found to be in agreement with the standard induction factor

method in use at the David Taylor Model Basin(3 ) , except near the hub

where the hub boundary conditions are not the same.
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CHAPTER

LITING-SURPACR SOUITIONS FOR BLADES OF ARBITRARY SHAPE

Introduction

In this chapter we consider the problem of determining the

camber and pitch correction for a propeller with a prescribed blade

outline, mean line type, and radial load distribution. As indicated

in Chapter 1, the pitch and caiber corrections ars determined by the

requirement that the prescribed radial load, distribution be obtained

with the sections operating at their ideal angle of attack. The

chordwise load distribution is unknown initially and will be determined

along with the pitch and camber.

The nomenclature used in this chapter is basically the same

as in the lifting line case except that an extra dimension must be

added due to the chordwise load distribution. As shown in Figures 5.1

and 5.2, an (x', y", z') cartesian coordinate system is fixed on the

propeller with the x' axis axial and the y' axis passing through the

tip of the index blade. The z' axis completes the right-handed system.

A cylindrical system (x', r', e) corresponds to the (x', y', z') system

with 6 = 0 on the y' axis and positive 0 clockwise when looking in the

positive x' direction.

A movable cartesian system (x, y, z) and a corresponding

cylindrical system (x, r, p) is oriented with the x axis axial and

the y axis (or p - 0 line) passing through a particular control point

on the index blade.

There are P x Q control points on the index blade where

p = 1, 2, .... P indicates the radial position and q =1 2, .... Q

indicates the chordwise pos:Ltton. It should be mentioned that all pairs
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of coordinates or subscripts referring to radial and chordvise directions

are given adjacent alphalftic symbols with the higher symbol (alphabetically)

referring to the chordvise direction.

There will be P x Q possible positions for the movable system

and the notktion ypq , for example, means the y axis of the movable system

corresponding to the pq'th control point. Following this notation, the

quantities e and (X*) are the displacements of the movable system
pq 0opq

measured from the fixed system.

A non-dimensical radius is defined as x = r/R where R is the

radius of the propeller. To distinguish the radiuj of a control point

from that of a helical vortex line (on the end of a bound vortex segment)

the latter is given a zero subscript. The non-dimensional quantities

= ro/r and C = x/r as defined in Chapter 2, will also be used.

Finally, a curvilinear system is defined at any radius by the

intersection of an axial cylinder with the reference helical surface.

The origin is taken at the mid-chord line of the blade whose angular

coordinate in the (x', r', e) system is D. The a axis is along the helix

with the positive direction towards the trailing edge. The n axis is

perpendicular to s and lies on the cylindrical surface with positive

direction upstream as shown in Fig. 5.2. If the cylindrical surface is

expanded and viewed frcm the propeller axis out towards the tip, a blade

section results as shown in Fig. 5.3. The chord length of the expanded

section is A(r), consequently, s = -1/2 corresponds to the leading edge

and s - +A/2, the trailing edge. The angle of attack of the section

relative to the reference helix is a and the a1-u- camber measured

from the nose-tail line is given the symbol f.
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The Reference Helix

As stated in Chapter 1, the blade surface is assumed to be

approximately on a helical surface whose pitch at any given radius is

determined by the angle of relative flow according to lifting line

theory with the same radial load distribution. However, this does not

define the surface completely since so far nothing has been said about

the relative orientation of the helical lines forming the surface.

Since actual propellers may have both rake and skew, an aecurate definition

of the blade surface is a fairly disagreeable geometrical problem. It

is also possible that the effects of some geometrical va~ation# of

the same order as the errors introduced by the basic assuptions, such

as the neglect of the deformation of the vortex sheets. Consequently,

in the present work .t will be assumed that the reference helix passes

through the y' axis. If the helix is of constant pitch, any radial

line will be contained in the surface, however, this All obviously

not be so if the pitch is a function of radius. In the latter case

it is further assumed that the bound vortex segments are radial, and

that the axial distance between a control point and a vortex element

is the same as if the helical surface were of constant pitch corresponding

to the pitch at the control point radius. While these simplifying

assumptions are not essential to the application of the vortex lattice

method, it would seem that a more exact geometrical treatment could

not be justified until the effect of the principal variables have

been determined.

Bound Vortex Distribution

The bound circulation distributed over the blade surface will

be expressed by a trigonometric series in the variable# p and a which
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are related to r and a by

r - 1 (R + r.) - (R - r.) aos p

a - -A/2 coo (5.1)

&cn vhich there follow

r - rh whenp= 0, r - Rwhen p -r

a -/2 when =0, s 1/2 when am= (5.

The vortex sheet strength y can be converted to a non-dimensional

quantity 3 by dividing by the displacement velocity u* as defined in

the preceding chapter. It is assumed that S can be represented by a

series of the form

I I J
4 (c ) sin i P c Ot Z

i-i i l 3-1

sin i p sin jiij (5-3)

The second part is a Fourier sine series which has the property that

8 w 0 along the edge of the blade for any values of the constants c

The first term goes to zero all along the trailing edge, but tends to

infinity at the leading edge. For a fixed value of p this is the

chordwise circulation distribution of a flat plate at a small angle

of attack in two-dimensional flow. According to lineartzed two-dimenional

thin airfoil theory(33 ) the chordwise circulation distribution of any

mean-line can be obtained by superimposing the flat plate distribution

and a general distribution which is zero at both the leading and trailing

edge. The angle of attack for which the coefficient of the "flat plate"

term is zero iS called the ideal angle of attack.
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The radial circulation distribution is obtained by integrating

y over the chord at a particular radius

r (p) - fry (p,a) 11 (5.l4)

at' u term of non..dimensiomal quantities

0

where G is the non-dimensional circulation defined In the preceding

chapter as

G (5.6)

Amatituting (5.3) for s in (5.5) and integrating gives the result*

I

a(p) = (2 cjO + cl) sin i p (5.7)
in).

It we now require that a particular radial lod distribution G (P) is

to be obtained in the sections operating at their ideal angle of attack,

there follows that c io , 0 and that c are the known Fourier coefficients

of the radial circulation distribution. The remaining coefficients

C ii j= 2, 3, .... J1

wAlch do not contribute to the radial load distribution are to be

determined by the boudary conditions on the blade surface. For later

-use, it will be convenient to define
I

b (p)=Z c 3 sini p '(5.8)
i=l

*The details app ar in several aerodynamics texts such as "Theory of
Wing Sections" (33).
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so that (5.3) becomes
J

3 (p) a) - bJ (p) sin J a (5.9)
J=1

provided the angle of attack at each radius is ideal.

Vortex Lattice

The continuous bound vortex sheet is to be approximated by

a finite number of radial bound vortex segments each with constant

strength. At the ends of each segment a free vortex of the same

strength mast be shed forming a "horseshoe" vortex system as Shovn

in Figs. 5.1 and 5.2. Naturally, parts of the free vortex system

originating from bound vortices at the same and immediately adjacent

radii coincide. Although this fact will be useful for computational

purpoAes, each horseshoe system will be considered logically to be an

independent unit.

The lattice arrangement is obtained by dividing the interval

between the hub and blade tip into M equal spaces. Free vortices are

shed at radii

(ro(m - (1 + rh (5-10)
14 (5.10)

except at the ends, where they are moved in 1/8 space towards the

interior of the blade (as in the lifting line case). There are R

radial vortex elements between any two adjacent values of r . These
0

will be centered at

rm- [(ro)m + (r ). l] (511)

and will be located by dividing the chord length at rm into N equal

panels with the bound vortex at the mid-point of each panel. The
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ebordiise position relative to the aid-chord line in given by

82 , A ( 2n- I - 1) (5.-12)

and the angular coordinate measured clocivise from the y' 64s is

ea. -,, + "a (cos ), (2p. l) (5.13)
NlD YXm

Control points are located at the midpoints of the panels

formed by the horseshoe elements. In general# there will be my more

horseshoe elements than control points, and it Is completely arbitrary

which of the possible control point arranements are to be used. However,

to simplify, the cctations somevhat, it will be assumed that the

chordwise arrangement of control points will be the same at each radial

position used. The number of chordwise contr6l points i's given by the

expres3ion 1-2 +" C1 - C2  (5.14)

.1

where C1 is the number of radial vortex elements between each control

point and C2 is the number of unused control point positinsf 1 etween

the leading edge and the first control point. If (5.14) is a fraction,

only the integer part is to be retained. Fig. (5.4) shows a number

of chordwise lattice arrangements corresponding to various values of k,

C1 and C 2 . The control point angles are then given byA (coo. JD 12l, (q -1) + C2 + 1).- IF]
-pq + ( (5.15)

*p ID Xp

here are. a total of P radial positions used., and are subject only to

the restriction that P < M. The total number of control points is P x Q.

Relating CoAtuous and Lattice Distributions

Let G. be the nm-dimensional strength of the bound vortex

located at %m and centered at r. The strengths of the individual
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elements are first of all subject to the requirement that the radial

load distrIpmtion be the same as in the continuous case

m

The reminin N - 1 requirements will be that the lattice

and continuous distributions induce the same velocity at each of the

N - 1 possible control poWat positions in 2-dimensional flow. frcm

thin-airfoil theory the non-dimensional velocity induced at the q'th

control point by the N vortices at a particular radius r. is

N
u* Li 1 2 (n - q) -1

where u is the dimensional velocity normal to the vortex sheet. Then

velocity induced at the same point by the continuous distribution can

be shown to be

(Unz - ,j coo(j+.),

J-0 ( )a

where a cos "1 F! .l 0<a <IT 0.48q L~

Ecating (5.19) and (.5.17) for each value of q the following equation

is obtained

1  2(n- ). IL bjc +1) aq

q , 2, *.. N - 1 (5.a.9).

which cumbined with (5.16) results in a set of N linear equations for

the unknown G.
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Let the solution of this set of e~iations be expressed in the

form:
J

Gm - Pnj b L, (5.20)
J=1

The chord load factors are constants which can be computed

once and for all. Values of I are given by Falkner( ! 7 ) and by Van Dorn

and deYoung ( 3 4 ) . The latter values are slightly different, the author.

stating that the former values are ipcorrect. However, on re-calculating

the chord load factors, it would appear that Falkner's original values

are correct. Values of pnj correct to 6 decimal places, were re-compated

for N - 2, 4, 6, 8 and J - 0, 1, 2, .... N-l using an IBM 650 and these

results appear in Appendix ( C).

Velocity Induced by the lattice in 3-DImensional Flow

Let ii be ,the normal cconent of the non-dmensionalupq

velocity induced by the complete horseshoe system Gm0 at the control

point at rI e . The subscript n for "normal" will be omitted in
ppq

this section since only the normal component will be considered. As

in Chapter 2, is related to the dimensional velocitj u by-

Sr(521)

which can also be expressed in terms of the nonedinensional circulation

. Mpg 2 YI(5.22)
Mlpq u* Gmn

This velocity can be computed t a procedure which is outlined in

Appendix (A) using the results of Chapters 2 and 3.
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9

Detezmduing the Comber and Angle of Attack 0

A W a a tioned prervousy, it is a.ssodu that the b4ade

surface is to be formed such that its expanded sections M all be

.derived from a single mean-line by suitably selecting the camber/length

ratio f/A and angle of attack a at each radius. Whe angle of attack is

to be measured from the inf.aced inflow angle P1 determined from lifting

line theory. It is also assumed that the magntude of the reltant

inflow velocity is the same as in the lifting line case, namely., V*.

The value of 'f/1 -and e ;At each radius are determined by the boundary

condition that the flow be tangent t6 the mean line at each control

point. The slope of the mean line relative to 0 at a particular±
chordwise station is

S- h (/A) (5.23)
p q p

%here h is the slope of the mean line w1th unit camber ratio. As canq

be seen from Fig * 5.5, the boundoa7 condition can be written

M N

assum .ng that the induced angles are small. Introducing (5.22) and'

noting that 0 " OW u* coo 0i/V*, there follows

pN qp 2 L m

G I M ( 5 -2 5 )

It in now convenient to express x*/V* in terms of the lift coefficient
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of the section. - ftm. Kutta-JoukoVski£ law 9 )

a -a p v* r= di' (5.26)

where dL is the 11ft force acting on an elemmt of bound vortex of radius

dr and p is the fluid =as density*, 7he lift coefficient is

CLa dL 2 2n O15u2
L Vi*2 Adr -* 7 7D)27)*

Replacing G by b*,in (5.27) and combining with (5.25) and (5.20), 'there

follows

. h(f A) -(AID) o
L-hq :2 . [(Cos O:ip +

N J

I Wp a j (5.26)

where _ is a factor which takes into account that u* ay be a function

of radius and is defined by

U* - (tan 0 )L - (tan r (29

zV (tan 01) P - (tan 0), [ ]
For optimm, open water propellers, u* is independent of radils so that

I landmy becmitted in (5.28).

The quantities on the left in (5.28) are the angle of attack

and camber ratio per unit lift coefficient and are given the symbols

& ' a/CL 1- (r/A)/cL (5.30)

In tvo-dinaiaonal flow, thzese are constants which depend only on the

type of mean line. The rtio of the camber required in three-dimesional

*In all equations e~ept (5.26) and (5.27) the symbol P is the trans-
formed radial coordinate.



-70-

to that required for an equa.l lift coefficient in two-dimensional

flow is the camber correction factor as defined in current propeller

design methods (3), (5). However, a siio definition cannot be used

for the pitch correction since the ded. angle of attack of many mean

lines in two-dimensional flow is zero.

Iquation (5.28) written for each control point represents a

set of linear equations for &, f and the coefficients of the non-lift-

producing part of the circulation distribution. Rearranging (5.28)

to put the unknowns on the left and introducing (5.8)

aT (b ) [4T (b ) M N

L(C/) "p (n-lDpq

J I

=nj =Cij in i Pm 2 p (coo Pi) ,

M N I

I C1 MP 7, m~npq Pni ci 1 sin i

=) ,., ... P

q- 1, 2, ... Q (5.31)

If the number of radial teusm I in the Fourier series for the circulation distri-

bution is equal to the number of radial control point positions P, and if the

number of chordwise terms J is one less than Q, the number of unknowns will be

2P+I (J-l)-2P+P (Q- 2)-PQ (5.32)

which equals the number of equations. The reason that J = Q - I is

that the first term of the series is determined in advance by specifying

the radial load distribution. Consequently, there must be at least two

chordwise control points in order to determine a .pitch and camber correction.

The set of equattons represented by (5.31) cai be written in

matrix notation
k1 X1 k
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where

Ak m Y.b1  k ~ kuP)Q+ ql [/DAp [A - .)

M N

Bk (C I. Ij) A sin i.

k -(p -1) Q + q

Fp . = - 1 < 2P
x, F o A m 2- < 2P

L c ij... A ~+ (i1. )(j -1) j (5-33
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CHAPTER 6

A LIFEING SURFACE SOLUTION FOR PROPELLERS

WITH SYNISTRICAL BLADES

The Syetry of the Velocity Field

In thi s ecial case when both the blade outline and the mean

line are syztetrical about the y' axis, an important simplification

results from the symmetry of the integrals determining Umpq. As a

result, it can be shown that within the limitations of the assumpti.ons

outlined in Chapter 1, a propeller with symmetrical blades has no pitch

correction due to lifting surface effect.

First of all, defining cp as the angle between a control

point and a radial bound vortex or an element of a helical vortdx, it

is evident that the non-dimensional normal velocity indured by a bound

vortex ub is an odd function of cp, while the normal velocity induced

by an element of helical vortex 6uh is an evea function of qp. This can

be seen frcs (3.9) and (3.10) for the bound vortices, since both sin

and C are odd functions of p. The fact that 6u, is an even function

of c can be deduced from (2.10) and (2.11).

We now consider the velocity induced at three symmetrically

oriented control points (labeled L, M and R) as sketched in Fig. 6.1.

For simplicity, portions of three horseshoe vortex elements are shown

and are numbered 1, 2, and 3 with 2 on the y' axis and 1 anG 3 symmetrically

arranged Writh respect to the y' axis.

The relative strength of the n'th bound vortex corresponding

to the J 'th term In the Fourier sine series is given by pnj as defined

in (5.19). However, it is "sufficient to note-that pnj is an even

function of n anA e when is odd, and anl odd function of n and e when

j is even.
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We first determine the velocities induced ai M by the vortices

located at I and 3 with strengths corresponding to the first term in

the Fcirier series, which is the only term contributing to the radial

load distribution. Since the strengths of 1 and a are e@l2 in this

case, the velocity induced by the bound vortices cancels, while the two

helical vortices starting at 1 and 3 are equivalent to a single vortex

of twice the strength starting at 2. Consequently, the velocity at M

due to the first term in the series is the same as in lifting line

theory. It is also evident that the difference between the velocity

according to lifting line theory and the velocity induced at L and R

is an odd function of 9. Therefore, as far as the first term in the

series is concerned, the mean line should be symmetrical about the

mid-chord.

Next consider the even terms in the series, J -*2, 4, 6

in which case the strengths of 1 and 3 will be equal and opposite. The

velocity induced at M by 1 and 3 will be non-zero since the effects of

1 and 3 Vill add. Furthermore, the velocity induced at L and R will

be equal.

Finally, we consider the case when J - 3, 5, 7 .. so that

1 and * again have equal strengths. Using the same syietry arguments

as in th* case of J = 1, we conclude that the velocity at N is the ame

as if 1 and A were combined and located at 2, and that the difference

between the velocitX aomrding to lifting line theory and the velocity

induced at L and R is an odd function of 9. However, for J > 1 the

total strength of the chordwise lattiee elements must be zero according

to (5.16), so that the induced velocity obtained by cmbiing all

the vortex elements at 2 must be zero. Hence, the velocity induced
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at M is zero, and the velocities induced at L and R are equal and opposite.

SIM1l2ing the Simultaneous Equations

We next eonsider the effect of this .symmetry on the set of

equations given in (5.32). For simplicity it will be assumed that P - 1

and Q - 5, however, the conclusions will be viLid in, thengeneralicase..

When written out, the equations would look as follows:

. 51, & + a12 t+ a1 3 c 12 + a1 4 '13 +a 1 5 c4 = b1  (6.1)

a'll + a22 f * a23 c12 c + a. 14 = b2  (6.2)

all + 0 + 3 3 c + 0 + a3 c 1 4 -0 (6.3)
+a3123 1-0k

all - a22 f + a.3 c.2 - a24 c.3 + a25 c.1 - -b2  (6.4)

all a-a2 ?+ a1 3 c12 - a14 c13 + 815 C14 = -b1  (6.5)

where the a's and b's are elements of the A and B matrices respectively

as defined in (5.32). The unknowns E and f are the pitch and camber

factors defined in (5.29) and the c's are the unknown coefficients in

the circulation distribution defined in (5.3). The synetry of the

coefficients has already been incorporated; for exaqmle, a has been

replaced by s3"

Eliminating c1 4 between (6.1) and (6.2) as well as between

(6.4) and (6.5), a reduced set of equations is obtained

,ll a + d12 + d1 C1 + d1 c13. e' (6.6)

all a + 0 + a3 3 c 12 + 0 a 0 (6.7)

dll 12 +dl3c 12- d.4 '3 -(6.3)

where the. d'Is and e'ls are related to the a's and b's as follows

d1 . - al -1 l a 15/a25

e 1 , =b 1- b 215/25(6.9)
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The unknown$;, ? and d_. can be elimiated between (6.6), (6.7) and

(6.8) to give the following

(d~ - a3 l/a)c 0 (6.10)

from which we conclude that c2 must be zero, provided the constant in

parentheses is non-zero. However, since the constant is made up of

independently variable geometrical inputs, it will not be zero in general.

Consequently, it can be seen from (6.7) that & must also be

zero, hence, there is no pitch correction. FLrthermore, it is evident

in this case that (6.6) and (6.8) are redundant.

Equations (6.1) and (6.5) may now be re-written as follows

a42 'L4 c13 + a15 c14 1 . (6.11)

-a, - a14 c1 3 + a15 c1 4 = -b1  (6.19)

showing that c1 4  0 0. Following the same procedure, it can be concluded

that c must be zero for all even values of J, so that the circulation
ij

distribution mst be an even function of e.

By removing asl the zero term and redundant equations frcm

the original equations (6.1) - (6.5), the following equivalent set of

equations Is obtained

a12 f + a14 c13 = b1

a22 f + a24 c13 - b2  (6.13)

which is a fairly drastic simplification.

Modification of Preceding Results for Symetrical Blades

The development in Chapter 5"will now be modified to take

advantage of these results. The continuous vortex sheet strength (5-3)

is re-written as follows:

0
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I J

s(p a) i j sin i p sin (2j - 1) a (6.14)

which is symetrical about the mid-chord. Control points will be dis-

tributed only over the downstream half of the chord, and in particular
cannot be located at the mid-chord, since this will result in A being

singular. It is also convenient to define I at the number of chordwise

lattice elements on each side of the mid-chord, so that the total number

is 2N.

The angular coordinates of the bound vortex elements are

given by the expression

A m (cos 0i~m (6.15)

which replaces (5.13). The number of chotdvise control points Q is

atill given by (5.14) since N has been re-defined. However, the ex-

pression for the control point angles (5.15) is now as follows

e (cos) [Cl (q ) + C2 +] (6.16)

The final set of equations is practically the same as In (5.30),

except that the terms containing the pitch correction a are no longer

present.

4n (2l)1M J I

p L, mp l 1-pq ;-2 n le 3

i 21 2

= (Cos Oip + Cmp 'npq~ pM8, ci ( Sin i

(6.17)
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Finaly, the location of the mtrix elements corresponding to (5.32)

is as follows:

LW (bl) p h -pp -1) Q + q
-7 A/D)p z . p

AMI,= M 2k 
-

BK % (cos 0j)p + I nZ. a 1n sin M

.... k - (p-l) Q + q

.XL 6 A P + 4-1)(J-P) + J-1

There is one important consideration in using the simplified

set of equations given in (6.17). In the case of Chapter 5, the pitch

angle of the free vortex system 0i for a prescribedradial circulation

distribution .did not have to be given exactly, since small errors in

could be absorbed in the pitch correction. However, 1n thIs case any

discrepancy between G and ft will come out as an error in the camber

correction, since the assumed symmetry will not actually be present.

A simple way to avoid this difficulty is to obtain the relationship

between G and i by the method discussed in Chapter 4, using precisely

the sam radial lattice arrangement as in the lifting surface case.

This also happens to be convenient since the Fourier coefficients of

the circulation distribution c are obtained directly in the lattice

solution of the lifting line problem.
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This procedure was incorporated in the computation scheme

which is outlined in Appendix (A ). The resulting camber correction

factors are shown in Chapter 7, together with the results for asyimetrical

blades using the results of Chapter 5,
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CHAPTER 7

RESULTS AND CONCUSIONS

Analysis of Lifting Surface Results

There are two principal questions which need to be answered

in determining the effectiveness of the vortex lattice method. First

of all, it is important to determine how fine a lattice spacing is

necessary to produce results with the desired accuracy. Obviously,

the method would be of little practical value if the required spacing

were so small that unreasonably long computation times were needed. In

addition, extremely smal spacings would require special measures to

avoid the loss of significant figures which would also increase the

computation time.

The second question is whether the formulation of the lifting-

surfaQe problem with the simplifying assumptions introduced in Chapter 1

is an adequate representation of the physical situation.

Considering the first question, the convergence of the lattice

approximation in a typical case was studied by ccmpting camber corrections

using six different lattice spacings. The characteristics of the propeller

and the lattice parameters are given in Table 7.1. The blade outline,

in this case, was symmetrical and corresponded to the Troost B-Series (35).

Table 7.1
Data for Test Calculations

Propeller Data

Number of blades, g = 3
Expanded Area Ratio AIJA = 0.65
Mean line type Parablc
Inflow velocity - constant (open water)
CJrculation distribution - optiumn
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lattice Parmetel's
9 Text 1 2 3 4 5 6

P0UAl lattice Spaces, N 8 8 8 24 24 24.
Chordwslattice spaces..2N 4 6 8 4 6 8
Radial control point., P 3 3 3 4 4 -
Chordwisecontrol points, Q1 2 3 1 2 3
&wpuctation time (imtes) - 709 2 3 5 5 11 17

The initial results of thjs test were fairly erratic, particularly

near the tip of the blade. The reason for this was that too inny terae

in the Fourier series for the circulation distribution were retained,

as can be seen frcu the following considerations.

The numerical results indicated that the normal velocity co.-

ponext indaced by the kown part of the circulation distribution
I

Z Ci sin I p sin a (7.1)

was alost a linear function of the chordwise distance s. It was also

noted that the induced velocity fields obtained from ewh of the lattice

arraagements vere in good agreement, the 'only noticeable differences

occurring with the largest spacing used. Consequently, the erratic

results could only be due to the way in vhich the higher coefficients

in the circulation distribution were determined.

Since a parabolic mean line was used In these exaqles, the

higheg term In the Forier series would be zero if the velocity Induced

by (7.1) were exactly a linear function of s, at which point the chord-

wise load distribution would be the same as in tvo-dimwsional flow.

Hoverer, in this case additional terum are required since the velocity

induced by (7.1) is not exactly a linear function of a. These hlgher

term induce velocity fields vhich vary more or less siuisoidally over

the chotd. Since the coefficients of these terms are detrauined only by
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the boundary conditions 4t a fev distinct points, completely erroneous

results are obtained unless a sufficient number of c4ordvise control

points are used. In this case the number was insufficient, so that the

higher term, while satisfying the boundary conditions at the control

points, mads matters considerb2l worse everywhere else.

Consequently, in the six tett runs listed in Table 7.1, the

camber corrections were re-ccmputed siply by deleting all of the term

in the circulation distribution except (7.1), and obtaining the camber

from the average value of 2un/Bs at each radius.

The camber factors obtained in this way are shown in Fig. 7.1.

It can be seen that the results obtai.ned from three smallest spacings

(24 x8, 2 x6, 24x )all agree to vithin 2%,andthattheonly

large error occurs with the coarsest spacing (8 x 4) at y - 0.85.

While the characteristics of this propeller are fairly typical,

this one set of tests cannot be considered as establish'n the convergence

of the lattibe method under a.3 conditions. However, from these results

is is tentatively concluded that the 24 x 8 spacing should give camber

correctioas which are within + 2% of the values Aich vmld be obtained

from a contimums vortex sheit.

The second question nely, whether the forualation of the

lifting-surface problem vth the simplifying assumptions introduced

in Chpter 1 is an adequate representation of the physical problem, is

something which is very difficult to answer due to the large number of

variables involved. While a comparison between theory and experiment

might be succesdful in one or tva particular cases, this is no assurance

tbat agreement will exist in general.

Another dfficulty results from the fact that existing experimental

data include only oveval measumnts of thrust and torque, so that it is
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impossible to determine whether the desired radial lead distribution has

been obtained. The first mccessful pressure measurements on a rotating

propeller blade were made renly by Auslaender(36) at the David Taylor

Model Basin with fairly elaborate instrumentation, however, even these

resu1 s contain some experimental scatter. Evidently, it is very difficult

to locate enough pressure taps on the blade to determine the lift coefficient

accurately. The transmission of pressure readings from a rotating shaft

also presents a difficult instrumentation problem.

In the present work camber corrections an given for eight propellers

showing the effect of a few of the many possible variables. These propellers

all have symmetrical B-Series blade outlines and a hub radius of 0.2. The

lattice arrangement is the same as in test 6 described previously, i.e., the

finest spacing possible with the current program. As in the test runs,

the higher terms in the circulation distribution were deleted.

The first six results, shown in Pigs. 7.2 - 7.7, are for optimaa,

open water propellers with parabolic mean lines. These results include

a limited number of variations in elpended area ratio AAo, hydrodynamic

advance coefficient, )i, and number of blades. Camber corrections given by

Van M~nen ( 3 ) and Eckhardt and Morgan(5) are shown on the same plots for cosparij

It is evident that the lattice results have the same general shape

as those given by Van Manen, both camber corrections becoaing larger near

the tip of the blade. The Eckhardt and Morgan results, on the other hand,

become more or less constant on the outer regions of the blade. As mentioned

in Chapter 1, the latter corrections are derived frm Ladaei and Glnsel results

for circulation distributions with reduced load' at the tip. Couseqaently,

the lattice results seem to substantiate the fact that a large camber correctioz

is necessary at the tip in order to achieve an optimam radial load distributiLon

with norml blade shapes. Hoever, this increase near the tip is somewhat

less than the results given in Reference (3).
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Fig. 7.8 hos a coparison of a wake-adaptejand an open-wter

propeller, both having the "sa advance coefficient at x = 0.7. The wake

distribution is taken from the inmerical euMqle given by Hecker(32). The

two results are practically identical. Nowever, the wake variation in

this ezample is fairly sull, and the radial li-Ad distribution is aluost

the same as in the open-water case. CoUsequently, it is ppsible that

more extreme wake variations such as would cecur with lov speed cargo

ships ight affect the camber correction.

Finally, the effect of radial load distribution is shown in

Fg. 7.9.for two open-ater propellers. One propeller has a reduced

circulation at the tip, following the pitch distribution recomended by

Eckhardt and Morgan ( 5 ). The other is an opti um propeller with the saw

advance coefficient at X = 0.7. The results show that a reduction in

local propeller loading tends to reduce the camber correction, and vice versa.

The results given n Figs. 7.8 and 7.9 were obtained vath a

slightly different lattice arrangement consisting of sixteen radial

lattice spaces with additional half spaces astthe ends. This arrangent

was found to give the saw "results as with twenty-fdr equal spaces, but

with somewhat less coputation time.

To test the program for asymmetrical blades, two propellers

were run, one with a symetrical and the other with a skewed blade. All

other characteristics were -the sme. The results shoved that the camber

corructions for the two propellers were practicall identical. Howev er,

the propeller with skewed blades rempired an additional pLtch correction

e about 2.5 degrees/unit lift coefficient near the tip. While this

correetion is not very large, it Indicates that a pitch correctton might

be a orWted n the design of propellers with a large amouf of skew.



Conclusions

On the basis of the limited number of numerical results described

in the preceding section, it appears that the vortex .attice method is a

feasible way of obtaining lifting surface corrections for marine propellers.

The method has the advaatage that variations in blade shape, vake, and

cirgulation distribution can be takes into account. The numerical examples

given illustrate the fact that the latter, iich is not taken into account

n current design methods, can effect the lifting surface correction.

It In therefore recomended that a systematic series of cal-

culations of camber and pitch corrections be made covering a 'wide variation

in such parameters as number of blades, pitch, blade shape, and radial load

distribution. These results may be of use both for design applications, and

to determine which parameters cause significant differences .in the lifting

surface correction.

At the same time, these results will permit an evaluation of the

effectiveness of the vortex lattice method by coarison with existing ex-

perimental results.. ZHoever, it would also be desirable to build and test

a number of model propellers designed according to these remlts. These

tests, if possible, should include pressure distribution ueiureeute.

However, before this is done, it is wecomended that a more

accurate treatment of the hub boundary condition be included in, the lattice

method. As indicated in Chapter 4, the lattice method developed in-the

present work takes the hub into aecaint in a fairly crude way siply by

requiring that the tirulation at the h& be sero while naglecting the

condition that the radial velocity must be zeo. It Is believed that the

presence of the bob can be takes Into account by a discrete source dis-

tribution ithi the hub cylinder. The strength of the source distribution



and the value of the circulation at the ]sb could be deterxined by Including
U

control po nts on the hub cylinder In additIon to those on the blade surfaece.

This added refinemeant should not greatly Increase the complexity of the

computations, and should produce more accurate results in the inner: part

of the blade.

It Is also recoended that the 3lifting surface program be

modified to acccomodate finer lattice spacings vith an increase in the

number of chordvise control points in order to obtain additinal terms

in the Fourier Series for the circulation distribution. This would also

provide an additional check on the accuracy of the camer corrections

obtained vith the present progrm.

*
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ATPhDIX A

PROGRAM DUSCRIPTIONS

Introduction

Digital computer programs were prepared to obtain numerical solutions

of the following Uhree problems

a) Determine the non-dimensional radial circulation distribution

for a lifting-line propeller with a prescribed distributiga Of

ta and tan "

b) *. Determine the camber and pitch correction for a propeller with

an arbitrary blade outline, tan 0 and tan 0 and mean-line type.

c) Determine the camber correction under the same conditions as

(b), but for the special case of a symetrical blade and a

mean-line which is symetrical about the mid-chord.

A number of other programs were prepared to test various features

of the vortex lattice method, however, these are not of sufficient general

interest to be reported.

The above programs were prepared for se with the IBM 709 Data

Processing System at the M. I. T. Computation Center, and were run using

the Fortran Monitor System. The principal source program lanuage was

FORTRAN, however, some of the programs were written in YAP in order to

perform certain operat.ions not within the scope 6f the FORTRAN language.

Descriptions of these systems appear in References (37), (38), (39), and

(J40).
Program (b) and Cc) were also Modified for use with the IBM 7090

installed at the David Taylor Model Basin, and some of the results

shown in Chapter 7 were dtained there.

Each of the three psograas consists of a number of specially prepared

subroutines as well as standard library routines. In acme cases the same

subroutine can be used in all three programs.



Brief descriptions of the principal subroutines will. be given

in the folloving sections. Hovever, these sections are intended only

to tndicate the genegsJ. mode of operation and references to cmuter

Jftguasg *ill be avoided. LIastings of the source programs are given

in Appendix B

Heica.Vortex Integration

The helical vortices are divided into two parts; tit irt on
0

the b~ge which extends between the bound vortex elements ciest to

the leeAing and trailing edges, and a downstream part vhich stikti at

the bound vortex nearest the trailing edge and extends an infinite

distance dovnatream. As indicated in Chapter 2. the velocity induced

'by the helical vortices on the blade is obtained eztirely by numerical

integration, while the Integration of the downstream kelice i's^i r-

formed by maerical integration up to a sufficiently large +dUt e6f p,

and the iemining cantribution estiated.

It is assumed that the numerical integration can be truncated

within the first six revolutions dovnstream, i.e., Pt < 12 w. Consequently,

it will be sufficient to divide the interval from the bound vortex

nearest the leading edge to a point six revolutions downstream into a

sequence of 5-point Gauss ordinates. At each ordinate, the functions

F(p,.) and the weights w(i) defined in (2-.19) and (2.21) axe to be

computed. Each integration my then be performed by omputing the con-

tants cn and d defined in (2.18) and applying (2.21).

For the downstream integration it has been found empirically

that the angular intervals shown in Table A-1 when subdivided into 5.point

Gauss ordinates result in total accumlated integration errors of less

than .0005 In the non-dimensional induced velocities defined in (2.10) - (2.l21



Table A-i Angular Spacing For Numerical Integration

(In Degrees)

1st Revolution - Coarse Spac~ng - .25 1* 1' - 11j

O, 20 50P 90, 180, 270, 360

lot Revouiion - Medium in - .l0 <i-i < "25

5, 20, 20, 4.0, 60, 100, 150, 200, 270, 360

lot Revolution - Fine Spacing - .02 < I - .1o

O, 1, 2, 4, 7, 10, 20, 30, 50, 75, 100, 150, 200, 250, 300, 3f6

2nd 6th Revolution - .02 <11 - qj

Table A-2

Weights and Ordinates for Legendre-Gauss Integration Forlas

K Weight, Wk Ordinate, Xk

1 .118464 .o4691o

2 .239314 .230765 5 point rule

3 .284"4 .o500o

.239314 .769235

5 LB46 .953090

1 .5 .288675 2 point rule

2 .5 .711325
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The weights and ordinates for an intervel of unit length is given in

Table A-2.

From these two tables, a set of values of Ti may be obtained.

For each cpi there will be seven elements of P and one weight Wi, so
ni W

that there will be a total f forty numbers associated with each five-point

Gauss interval. The total downstream integration table consists of 1,840

elements.

The portion of the helical vortex on the blade s subdivided

into a number of elements lying between bound vortex elements. These,

together with the six downstream revolutions, are shown schematically

in Fig. A.1. The maximum number of chordwise bound vortex elements is

assumed to be eight, so that a total of fifteen intervals on the blade

is possible.

The angulaw intervals on the blade depend on the geometry of

the blade and will in genera t be different at each radius. Conacquently,

it is impossible to subdivide these intervals into a fixed number of

Gauss ordinates. In this case, the minimum number of Gauss intervals

is determined such that the spacing will not exceed the initial spacing

necessary for the downstream integration for each of the three ranges

of Ii -1 i ' Since it is possible that many of the intervals on the

blade will be very small (such as Ul and 13 in Fig. A-1), provision

Is made for using a 2-point. Gauss Rule if the intervbL is less than 40%

of one 5-pint Gauss interval. Finally, if the interval is less than

.5% of a 5.point interval, the integral is approximated by its mean value.

It l obvious from geometrieal considerations that the parameter

I1 - 1.1 used in selecting the integration spacing is applicable only to

the index blade. It has been found that the integration of tht helices
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on the other blades my be done with the coarse spacing fgx 611 Valuf

of 11 , i ithot altering the final result.

The integration of the helical vortices requires three subrout~aes.

The downstream integration table is generated by a subrotitine called HUMBUG,

and this needs to be called only once at the beginning of each run. The

instruction CALL HUMUG (P, L) causes the 18WO elements of the table to

be computed and stored in increasing mmory locations starting at P.

Location L is the first element of an "add-ess directory" which requires

sixty-three storage locations in decreasing mmerical order starting

at L. The "Address directory" is a (21 x 3) array corresponding to the

twenty-one possible integration intervals shown in Fig. A-1 ana the three

possible spacings. Each element of the array contains the starting

addrqss of the integration table for that interval as well as the number

of angles qi in the interval. Subroutine HUMG fills in only the

first (6 x 3) elements, which correspond to the downstream part of the

integration.

.bxoutine LIST does more or less the same thifg for the

intervals on the blade. The calling sequence is

CALL LIST (NSPACE, ANGLES, L)

where NSPACZ is the number of spaces on the blade (which cannot exceed

15), ANGLES is the first element of a list of angles defining the limits

of each interval, and L is the "address directory" which is tae same &S

in the calling sequence for HUMBUG. The list of angles starts at the

bound vortex element nearest the leading edge, and Is stored in decreasing

memory locations. These are all angles in radians relative to the angle

of the trailing edge element, and will consequently all be < 0. Subroutine

LIST determines the number of integratioa spaces Jn. each interval, computes

the functions Fni and WI and stores them imediately fblloving tb functions
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generated by WBU and completes the sixty-three element address directory.

It the fuction table being generated begin# to exceed the size of core

storage, an Sor-.top resuts. This subroutine is called once at each

lattice radius.

The actual integration is performed in subro%&tine EI vhich

Is called as follows:

CALL HELI (ITA, TAMBIO, TARBI, COSBI, PHIZ, NG, NSPACN, Lg US)
where the following arguments *,re as defined in Chapter 2:

BU*. - i TAIBIO - tan io TANDI - tan i

COMI ucos 0 PRIZI 0 M = NG- g U 1 n

The arguments NSPACZ and L are the same as in LIST. The angle (p 0 is

measured from the particular control point to the start of the downstream

helix, in accordance with the notation of Fig. 2.1. The symbol UN

denotes the first of a sixtee n-element array stored in decreasing memory

locations.

HELIX starts by computing the constants C and d • The integration
n n

is then performed according to (2.21) using the "address directoryw to

locate the pre-coiuted functions and to determine the mumber of points

In each inerval. The first downstream interval, designated by 1 in

Fig. A-1 is computed first. If i - i > .25 all g blades are integrated

slimltaneously. If 1i - i I< .25 all but the index blade are Integrated

using the coarse spacing, and the index blade is then computed using

the medium or fine spacing. After each downstream revolution has been

copleted, the integral to infinity is estimated from the relation

gcog i ( tan a o 1 " )

2 ,t I?.ta' 0)
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which is obtained from (2.35), (2.36) and (2.23). When two sucdessive

estimates agree to within .0005, the downstream integral is assumed to

have converged. If the number of spaces on the blade is zero, as would

be the ease in lifting line theory, the Integration is complete. Otherwise

the interval closest to the trailing edge, designated by 7 in Fig. A-1

is integrated using the funetions computed by LIST. This process is

repeated for all the remainin Intervals up to the bound vortex nearest

to the leading edge. The result of the preceding interval is added to

each new interval, so that the result is a table df the tategral from

(ANGL)n to -. This is stored in decreasing memory locations starting

at UN. The first element of UN contains the value of the integral from

the eading edge bound vortex to infinity.

The time required to perform the helical integration depends

on the pitch angle and the number of blades. For a three-bladed pro-

peller, the downstream integration takes rcughly 1 - 1.5 seconds on an

IBM 709. The integration on the blade is mach faster, and a typical

average time including both downstream and on-blade intervals is 0.25

seconds per interval for a three-bladed propeller. This includes a pro-

rated amount of the time spent in the data-generating subroutines EUMBUG

and LIST. A six-bladed propeller would take a little less than twice

as long. Listings of HUMBUG, LIST AND HMLIX appear in Appendix B.

General Lifting Line Program

This program foms and solve$ the set of equations given in

(4.20), using the helical fntegration subroutines previously desciibeft.

The input data consists of a list of nine values of the non-dimensional

radius X, with, corresponding values of tan . 1 aM tan 0. The re ining

&@
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data consists of the number of bla", g, the number of lattice spaces

X, the number of control points P and a list of the values oZ N containing

control points. If the pitch of the free voftex system is constant., the

first elment in the list of tan Pi nay be replaced with the advance

coefficient X,. and the remaining elements of tan and tan 0 left blank.

The result in either case is a table of the non-dimensional circtaation

G defined in (4.2) as well as the Fourier coefficients of Go In addition,

if tan 0 j 0, the circulation is also expressed JA the form

G, r[tan a 11 (A.2)

in accordance with the definitions in (1) and (5). If I is given,

the propeller is assumed to be optimum and the Goldstein factors x are

comuted from (4i.14).

Since the input data is not necessarily at the mas set of

radii as required for the lattice, the required values of ta. 0 and

tan 0 afe obtained by three-point Iagrangian interpolation. In addition,

since the conversion from the actual radius 1P to the transformed radius

p according to (4.3) occurs very frequently in both the lifting line

and lifting swface programs, the tansformatiom is performed in a

subroutine called NAP. Finally, the printed output from this program

is cont.olled by a subratine ealled WAIR.

The computation time in minutes on an IBM 709 can be approximated

by the following relation

T ' (.7 + "./ii) (A.3)

A listIng of the progfam spd a saxple set of results appear in Appendix B.
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Lifting Surface Programs

Two lifting surface program were prepared, one corresponding

to the general case coverfd in Chapter 5, and the other for the special

case of a synmetrical blade as discussed in Chapter 6. Since both Tro-

gram are practically the snie, the general discussion in tAis section

will apply to both unless specifically indicated otherwise.

The input includes a list of nine values of x together with

corresponding values of tan i and tan 0 as in the lifting line case.

In addition, the chord lengths AID at each value of - is i equired as

well as the chord load factors 1nj defined in (5.19). In the general

p:rogram, the mid-chord angles e shown in Fig. 5 .1, and the radial load

distribution mst be given at each value of ). The latter my be given

in the form of Goldstein factors K, or either non-dimensional circulations

or G'.

In the -ymetrical blade program, the mid-chord angles are

zero by definition and need not be given. The other difference is

that the Fourier coefficients of G are given, rather than G itself. This

avoids the inaccuracies introduced by interpolation, since the total

strength of the bound vortex elements at a particular radius will be

exactly the Same as in th. lifting line case with the same radial lattiee

arrangement.Iinally, the slopes of the mean line with unit camber ratio

h defined In (5.22), the camber ratio for unit lift coefficient inq

two-dimefional flow and the constants defining the lattice and control

pojnt arrangement must be given.

In either case a maia program reads the data and ccmputes the

various geometrical properties associated with the lattice arrangement.

RUA afes #d chord 1eetb at each of tde Uttibe radii are obtained
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by parabolic interpolation. 'n the genera, program a subroutine caled
AML computes and solves the set of equations ¥%en in (532). In the

symmetrical blade case a similar subroutine called CAMWR computes and

solves t%* equations given in (6.1i).

The on3y elements In (5.32) and (6.18) which require any

Nignificant amount of computation are the velocities indsced by the

horseshoe elements, U pq. As can be seen from Figs. 5.1 or ;.2, these

consist of two semisinfinite hellcl vortex segments'oonnected by a

radial bound vortex. The velocity contribution of the bound vortex W

be obtained explicitly by evaluating equations (3.9) and (3.10), and this

may be done very easily in a subroutine called BOUND. The velocity induced

by the helical segments may be obtained from the subroutine [ELIX described

.previously. However, connecting the right helical segment to the right

horseshoe requires a little bit of bookkeeping since the order in which

the radial vortices intersect a particular helical vortex from above and

below depends on the outline of the blade.

92e computation time required in minutes on an IBM 709 can be

estimated by the folnowing relation*

T = .62 + .0033 (iW (9 + 1)) (A.4)

where the symbols are as defined in Chapter 5. This equatim holds

for both the general and symmetrical blide programs provided N is

interpreted as the total number bf chcrdwise vortices. A listing of

the programs .for computing the symetrical blade case, and a smple set

of results appears in Appendix B. The programs for the Sm I case are

very sifiar , and will therefore not be included.

*An IBM J0,0 is approximtel7 ZLve t~Jes as fast.
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TABLE 8.1 LIFTING LINE MAIN PROGRAM

DIMENSIM~ FfLL4S0OOX(9)sXTRIf)XTR(9) s*DUMMY'(991)*kZ(251
1 *-TANRZ(1.5) ,R(24) ,RHO(?59,TAN8I(241 ,TRFTA(24),COSRI (?4),A(8)
2 .ZETA(A,?5) ,U(q,#'S) A(R.R),F(161 ,OAMMA(qI,DTM!5(9) .ANS(9.5)9
3 MC(8),LZ(70)
COMMON FlLL9PZLZANS .RZ.TANRZ.R.RHO.TANBI ,TBETAd(OSAIBZFTA,
1 UAEGPHITZALAMRHZTTFMPAMTDFLMHOELMYAI 'SNi .SN2,TDEL
2 ,TRItCBI ,TBZETAWNtflIMCNSTOPPMTNPTNGNTM1,MOPT
FQUIVALENCE (X.D)UMMYANSW#XTItANS(1fl,(XT8,ANSfl9fl,(GAMMAANS(

1281) (GDTMB#ANS(37))
CALL OCTALS
CALL, STOMAP
CALL HUMBUG(PZtLZ)
CALL CLOCK(2)
READ INPUT TAPE 4,1O1*NSTOP

IF(NSTOP) 14*24914
24 READ INPUT TAPE 491OO,(X(N,*N=l,9,,(XTAT(N),N=1,Q),(XTR(N),N=199),

I MTNPToNG*(MC(N,,N=loR,
100 FORMAT(3(9FB*6/111 14)

MAX =MT +l1
G=NG
N TM 1 -
PHI Z=0.0
ALAM=X(6)*XTBI (6)
RH=X (1)
MCIPT=O
IF(XTBI(2',) 7s297

2 ALAMXTBI(l)
MOPTwl
IF(RH) 1 4 #1

4 X(1)=0O1
3 DO 5 N=1,9

X T I1(N)=ALAM/ X (1)
5 CONTINUE

DO 36 M=19MAX
DO 36 1=19NPT
ZETA( I .M)=1.O

36 CONTINUE
7 DO 15 N=109

XT8T (N I=XT8ICN) *X(N)
XTR (N) =XTB( N)*X( N)

15 CONTINUE
DO 16 M=lo3
DO 16 N=194
K-10-N
TEMP=DUMMY (N eM)
DUMMY(N#M) =DUMMY(K 'M)
DUMMY(KM)=TEMP

16 CONTINULP
AMT=MT
DELM=( 1.-RH) /AMT
HDFLM=.* ELM
AM=RH-HDFLM
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RZ( 1)=RH+*25*HDELM
TEMP=RZ(1) 

999Tl39
CALL !NTERP(TEMPYXXT!39
TAN8B (1) =Y/RZ (1)
DO 9 M=1.MT
R (M) =AM+DELM,
AM=R (M)
TEMPrAMe
CALL MAP(TFMPPRH)
RHO(M) =TEMP
RZ (M+1 )=R CM) +HDELM
IF(M-MT) 19o10919

10 RZ(M+1)=RZ(M+1)-.25*H)ELM
19 TEMP=RZ(M+1)

CALL LNTERP(TEMPvYqX9XTBI*3s9)
TANBZ(CM+1) =Y/RZ(M+l)
TEMP=R CM)
CALL INTFRP(TEMP9YtXtXTFRI,1,q)
TANRI CM) =Y/R(M)
CA~LL INTFR~s(TFMP9YXoXTp.;.99
TBETAC M) =Y/R CM)
COSB!(M)=l./SORTFC1.+TANRI(M)**2)

9 CONTINUE
DO 6 Is1.NPT
MS=MCC I)
TD)EL=RCMS)*(TANRT(MS)-TRETACMS))
TBI=TANBI (MS)
C I =COSBI( MS)
R(1 )=2.*R(MS)*Cnl
DO 6 M=19MAX
TF(MOPT) 18918917

is ZFTA(1,M)=R(M)*CTANRICM)-TRFTA(M))/TrWL'
17 TBZ=TANBZ(M)

ETA=RZ CM) /R(MS)

CALL HELIX(FTATBZTRICRIPHIZgNGNTM1,LZWN)
UC I M) =WN

6 CONTINUE
DO 8 1=1,NPT
DO 8 + K=19NPT
A( I K) =0.0

8 CONTINUE
RHO(MAX)=O.0
DO 34 I=lPNPT
A I ,I
SN 1=0.
D6 34 M=19MAX
IF (M-1) 31931932

31 J=M
GO TO 33

1-2 J=M- I
33 SN2=SINF(AI*RHO(M))

DO 30 K=1,NPT
-ACK,! )=A(K.I )+U(KM)*(SN2*ZETA(KM)-SN1*ZETA(KJ))

30 CONTIP1UE

V.4 CO?$T I NUE
WRITF CtJT.,PUT TAPF 2,10?,((A(K.T),T=1,NPT),K=1,NPT'

102 FORMATC4IIJ5.8)



DET=1 .0
ME=XS!ME0F(89NPT,1 ,A9B9DFTE)
GO TO(12911o11)#ME

11 CALL ERROR(20H ERROR IN XSIMFOF)
14 CALL'EXIT
12 DO0 13 M=109q

GAMMA CM) .0.0
TEMP*X(M)
XTBI (M)=XTBI (M)/TEMP
XTH~(M) =X'TB(M)/TEMP
CALL MAP(TEMPRH)
DO 20 1=1#NPT
AI
GAMMA(M)=GAMMA(M)+SINF(AI*TEMP)*A(Il,

20 CONTINUE
IF(MOPT) 14922#21

22 Gr)TMP(M)=((XTR(M,/XTB(M)H-1.0)*GiAMMA(MI
GO TO 13

21 GDTMB(M)=( (X(M)**2+ALAM**2)/(2.*X(M)**2*ALAM))*GAMMA(M)*G
13 CONTINUE

CALL WAITER
GO TO 1
END
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TABLE 8.2 MAIN PR~OGRAM- LIFTING SURFACE- SYMMETRICAL BLADE

D!MFNSION FILL(8000) ,A(569,i6)ANS(?4),R(56),RUG(8)9(HORD(24)9
I COS~iT(i4),COFFZ(8,7),fl(24),F('6),FKl6) ,HMU(897),H(7),

1 Y,'!",IC24) ,TBFTA(24) ,TIL( 24) ,TMFTA(R,7) ,U(24,8,7,,WN(16),X(9),
4 XCORD(9) ,XTD! (C) XTR(9) .XGAM(8) .XRHO(9) 'MC(8) ,NFLIP(16)t
5 LZ(61)#DUMMY(9,5)
COMMON FILLPZLZAANSBRUGCOEFZCOSBi CHIORDDEFHHMU

2 .P.PSI ,PSIBgRRHORZSNRHOTANBl ,TANBZTBARTHETA,-TILUWNXGAM
3 ,ALAMANTAMTAMtAlI ANGLE.CBI ,DELMDETETAGGNZLHELMPHI.,
4 RHoRBI 9RB2 ,TST 9TBZoTFMPUBWtYo ZETAoMC, NFL I PJIN,*JOUT9JT 9KTEST 0
5 K101,tMSNROTHMTNTNPT 9NZl.vNZ2 vNGNOT,#NTT,9NTM1oN I PoNF9T BETA
EOUIVALENCF(XFILLDUMM-Y) ,(XCORDE.t)UMMY( 10) , (XTBT,UMMY( 19))'
1 (XTnDUMMY(28))HtXRH0,DUMM-Y(37))
CALL OCTALS
CALL STOMAP
CALL HUMRUG(PZLZ)
CALL CLOCK(2)
J IN=4
JOUT=2

20 READ INPUT TAPE JTN,100,(X(N),N=l,9),(XCORD(N)oN=l,9),(XTBI(N),
1 N=1'9) ,(XTB(N) ,N=1.9)
READ INPUT TAPE JIN91i0lKTFSTMTNTNPTNZ1,N Z2,NG,(MC(N) ,N=1.8).
I GNZL
NOT=(NT+NZ1-NZ2-2 )/NZ1
G=N G
JT =NoT
NBOTH=NT+NT
NTT=NBOTH- +*NBOTH
ZETA=Oe
ALAM=O.
NTM1=NTT-1
RH=X(l1
READ INPUT TAPE JIN,102,((HMU(NJ),N=1,NT),J=1,JT),(H(N),N=1,NOT),
1 (XGAM(N)*N =1#8)
DO 51 N--1,8
COEFZ(Ntl I=XGAM(N)
DO 51 J=2#7
(OFFZ CNoJ) =0.

51 CONTINUE
IF(XTBI(2)) 792 97

2 ALAM=XTBI(1)
IF(RH) 39403

4 X(l)r,.01'
3 DO 5 N=199

XTRI (N)-ALAM/X(N)
5 CONTINUE
ZETA=-1.0O

7 DO 15 N=1*9
TEMP =X (N
CALL, MAPI TEMPRH)
XRHO(N )=TEMP
XTRlI(N)=XT8I(N)*X(N)
XTO(N) =XTB(N)*X(N)

15 CON1rTNUE
DO 16 M~lo5



-109-

DO 16 N=1#4
K=l 0-N
TFMP=DUMMY N .Ml
DUMMY (N#M) =DUMMY (K *M)
DUMMY( KoM) =TEMP

16 CONTINUE
ANT =NT
AMT=MT
DELM=( 1.-RH) /AMT
HDELM= .5*DELM
AM=RH-HDELM
RZ( 1)=RH+o25*HDELM
TEMP=RZ( 1)
CALL INTERP(TEMP*VX#XT8T,3,9)
TANT3Z( 1)=Y/RZ(I
DO 9 M=1#MT
R (M) =AM+DELM
AM=R (M)
TEMP =AM
CALL MAP(TEMPRH)
RHOH) =TEMP
RZ (M+1 )=R(M)+HDELM
IF(M--MT) 19910919

10 RZ(M4-1)=RZ(M+4-)25*HDFLM
19 TEMP=RZ(M+1)

CALL INTERP(TFMPYXXTPfq19q)
tANB2(M+1)=Y/RZ(M+1)
TEMP=R (M)
CALL INTERP(TEMPtYtXoXT8I,3,9)
TANBI (M)=Y/R(M)
CALL INTFRP(TEMPoyXXTA,3 '9)
T.BETA( M)=Y
TEMP=RHO(M)
CALL JNTERP( TEMPYXRHOXCORD,3i9)
CHORD( M)=Y
COSBI(M)=l./SORTF(1.+TAN8J(M)**2)

9 CONTINUE
DO 6 NzlNPT
M=MC (N)
D( N)=Oo
DO 6 1=1#NPT-

DN )=D(N)+XGAM( I)*I NF (A!*RHO( M))
6 CONTINUE

DO 30 *N=lPNT

K=NBOTH-NJ+]
DO 30 J=1,JT
HMU (K*J)=HMU( No

30 CONTINUE
WRITE OUTPUT TAPE JOUT,103.NTMATNPTNZlNZ2,U(1C(N),N=1,8),NG,
IALAMoRHoGN'L
WRITE OUTPUT TAPE bJOUTi,104,(CHORD(NngN=1,MT)
WRITE OUTPUT TA~PE JOUT,105#(TANSI(N)9N=],MT)
WRTTF OUTPUT TAPF JOUT,106*(TBFTA(N),N=1,MT)
WRTI OUTPUJT TAPE JOUT,107#(r)(N),N=,NPT)
WRITE OUTPUT TAPE JOUT,1t)8,((HMLJ(NJ),N=1,NT),J=1,JT)
WRITE OUTPUT TAPE JOUT,1099(H(N),N=1,NOT)



CALL CAMBER
CALL CLOCK(Z)
GO TO 20

100 FORMAT(9F8,S)
101 FORMAT(1514sF8.6)
102 FORMAT(7F10.7)
103 FORMAT(6H0 NTaI1,5H Mt-T296H NPT=Ilo6H NZ1=I1.,6H NZ2ull.H M

1C=81495H N~l%1.l7H ALAM=F6o4t5H RH=FI.3p7H GNZL=F6.4)
104 FORMAT(8H0 CHORD=tOF1O.6)
105 FORMAT(8H0 TANE8J21OF10.6)
106 FORMAT(8HO TBETA=10F10.6)
107 FORMAT(BHO GAMMA=10F10.6)
108 FORMAT (8H0 HMU =10OF10.6)
109 FORMAT(840 H =10FlO.6)

END
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TABLE 8.3 WAJTFR SURROUTINF

SUBROUTINE WAITER
DIMENSION FILL(8OOO)vX(9)vXTPI(9)oXTP(9)s 0UMMY19*3)oRZ(25)
I ,TANRZ(25),R(24) ,RHOt?5).TANRI (24),TRFTA(24) .COSRII24).B(8)

t58,25) ,U( 8,2 ,A(8. tF( 16) ,GiAM4MA(9) ,GDTMB( 9) ,ANS(9.5) .MC( 8)
I s.Z ( 70)
COMMON fILLtPZtLZ tANS .Rd.TANBZ.RPHOTANBI .TAETACOSPA ,BS.UsA,
EG.PHIZALAM, AH.ZETATE14PAMTDELMHDFLMYAISN1,SN2,TDFL

2 9,TrpiCBITBZETAWN~t)FTMCNSTOPMTNPTNGNTM1,MOPT
EQUIVALENCE (XDLMMYANS),(XTRI.ANS(1O)),(XTRANS(19fl,(GAMMAANS(
28)). (GDTMBsANS( 37))
WRITE OUTPUT TAPE 2,1OONGX(4),ALAMMTNPT,(MC(N),N=1;"PT)
WRITE OUTPUT TAPE 2.101
WRITE OUTPUT TAPE 29102o(A(N#1)*Nu1,NPT)
WRITE OUTPUT TAPE 29103
IF(MOPT) 19192

1 WRITE OUTPUT TAPE 29104
WRITF OUTPUT TAPE 20105
GO TO 3

2 WRITF OUTPUT TAPE 2*106
WRITE OUTPUT TAPE 2.107

3 DO 4 M-109
K=10-M
WRITE OUTPUT TAPE 29I089(ANS(KoN)9N=.,5)

4 CONTINUE
RETURN

100 FORMAT(25HI NUMBER OF 8LAD)ES 'G=II.17H LAMDA I AT XuF4.294H
115 F6*4/22H0 LATTICF SPACFS M=1296H Tlo21H CONTROL POINTS
?AT M-183)

101 FORMAT(40H0 FOURIER COFFITCIENTS OF G A(I)
102 FORMAT(5HO 4F10,6)
101 FORMAT(25H0 GwGAMMA/TWO P1 R U*
104 FORMAT(27t0 GSAR=GAMMA/TWO P1 R VA)
105 EORMAT(51H0 X TAN BETA I TAN BETA G GPAR/)
106 FORMAT(27H0 KAPPA=GOLDSTFTN FACTOR)
107 FORMAT(51HO , X TAN IETA I TAN BETA 6 KAPPA/)
108 EORMA'(F9.2,E1O.3,E1 1.3.FIO.4 ,Fl2.4)

END
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TABLE 8.4 MAP SU9RQUTINE

SUBROUTINE MAP (TEI4PRH?
IF(TFMP-9999 191#2

2 TEMP=3*1415926
GO TO 19

1 CN= (1 +RH-2a*TFMP )/ ( .RH
IF(ABSF(CN)-.O000) 17,17,18

1.7 TEMP~1..57O 7963
GO TO 19*

18 CTN=SQRTF(1..-CN**2)/CN
TEMP=ATANF (CTN)
IF(CTN) 20919i,19

20 TEMP=TEMP+3.1415926
19 RETURN

EN D
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TAIILF. 8.5 (4,MBFR SUBROUT4NI.

SUFROUTNE CAMBR~P
PIME NSION FILt-(8000) A5*69 SZ)R,6)~uiSo*OD26
I COSRT(741 ,0FFZ(8,7) Q(24),E(' 6)oF('t6),HMU(897) ,H(710
2 P5!416),P'tl6),PSTB(8),RZ(25)9R(24i ,RFO(24),SNRHO~ih ,TANFBZ(25),
I TAN8I(24) ,TRFTA(24)sTTL(74) ,T4TA(R,7)#U(24,8,7),WN(16) ,X(93#
4 XCORr)(9,,XTAI(9),XTp(9) ,XGAM(B) .XRHO(9).Mr(8),NFLIP(16).
5 LZ(6S)oDUMMY(995)#GAMMA(241
COMMON FILL*PZLZA ,ANS,BEUGCOEFZ oCO4F3I CHORDDE.Fdf4,HMU
,P4'SIPSIBRRHORZSNRHOTANBI.TANBZV8AR.THIETATJLUWNXGAMa

3 ,ALAM*A#4T, AMTAM, A 1 ,ANGLE vCB I DELMD)ET, ETA #GtGNZLofipELMo PHIZ 9
4, RHRB1 ,RB2,TBT TRZTEMPUBWYZETAMCNFLIPJTNJOUTJTKTESTs
5 K101,MSN8OTHMT.NTNPTNZlNZ2,NGNQTNTTNTM1,NIPNF.TBETA
6 ,GAMMA
EQlilVALENCE(XFTLLDUMMY),(XCORD,!9oDUMMY(10fl,(XTR!,DUMMY(19))#
I (XTPDUMMY(28)),(XRHODUMMY(37))
NIP=?*(NZI-NZ2-1)
NP~l
DO 1 M=loMT
T!L(MCHORD(Mi*OSM(M)/(2.*ANT*R(M))
!FIM-MC(NP)) 192 91

2 DO 3 NQ=19NQT
TEMP=~2*NZ1*NO-NIP
THETA( NPtNO) =TIL(M)*TEMP-

3 CONTINUE
NP=NP.*1

1 CONTINUE
KIO01=NPT*NQW
DO 4 Kz1,KiI
13(K) =0.
DO 4 L=19KI1O1
A (K#sL =0.

4 CONTINUE
DO 5 NU=1#NTM192
TEMP=NU-NBQTH
PSI(NU)=TILf1)*TEMP'
PS! (NU+1,=PSI(NU)

5 CONTINUE
TBZ=TANBZ( 1)
DO 6 N=l1NTT
P(N)=PSI (N)-PSI(NTT)

6 CONTINUE
CALL. LIS'(NTM10P.LZ)
DO 38 NP=19NPT
MS=MC (NP)
ETA=RZ(1 )/R(MS)
TBI=TANBI (MS)
CBIJCOSBI(MS)
0O 38 NQ=1PNOT
PHIZ=PSI (NTT)-THETA(NPNO)
CALL HEL IX(FTA TBZT9I sCRI PHJZNGNTM1,LZWN)
IF (KTEST) 60961960

60 WRITF OUTPUT TAPE JOUTv10j.9(WN(N)vNxl9NTT)
61 M=2



DO 38 N=ltNBOT'H
VJi(N9NPo*NQ) =WN (J4

38 CONTINUF,
DO 14' M=,MT
IF(KT!tST) 72973o72

72 WRITE OUTPUT TAPE I)OUT91049M
73 RBI=RZ(M)

RB 2=R? 0p4+1)
GAMMA(M) =0.0

19 DO 21 I=loNPT
AI=I
SNRHO( I)=SINF(AI*RHO(M))
GAMMA(M)=GAMMA(M)+SNRHO(I)*XGAM(T)

21 CONTINUE
N= 1
DO 22 NU=1.NTM19?
TEMP=NU-NBOTH
PS I(NU)=TIL(M)*TEMP
PSIB(N)=PSI(NU)
IF(NI-MT) 23924923

23 PSI(NU+1)=TIL(M+1)*TEMP
GO TO 25

24 PS!(NU+1)=PSI(NU)
25 IF(PSI(NU+1)-PSI(NU)) 26927*27
26 NFLIP(NU)=O

N!L IP (NU+ ) =8
AM=PST (NU)
PSY (NU =PS I(NU+1)
PS I(NU+1 ) AM
GO TO 84

27 NFLIP(NU)=8
NFL IP (NU+1 =0

84 N=N+l
22 CONTIN UE

DO 8 Nt=2,NTM1,2
TF(PSI(4U4-I)-PSI(NU)) 998#8

9 AM=PSI(NU)
NF=NFL IP NU)-t.
PSI (NU)=P I (N6L+1)
NFL!P( NU )=NFL IP( NU+ 1) +1
PSI CNU+1)=AM
NFL! P (NU+1 =NF

8 CONTINUE
TBZ=TANBZ(M+l)
DO 7 N=1#NTT
P(N)=PSI(N)-PSI(NTT)

7 CONTINUE
CALL LIST(NTMi.P9LZ)
DO 14 NP=1,NPT
J = (NP-i) *NQT
MS =MC (NP )
ETAeZ (M+1 )/eS
TRIi=TAN3I (MS)

IF(ZETA) 50t51,51
%Ij ZETA*+ 4f TjAI 114-mI A (M) WTfFk14)It .iR"

50 ALAM=R(MSI*TnI



80 !8UG(NP 1=2.*R(MS)*COSR! (MS)
81 DO 14 NO=49NOT

K=JI,+NO
IIP(M-MS) 83982983

82 -A(IeNP ,=12.,r66,;75*G-NZL*GAMMA(MS)*R(MS)*H(No) /CHORO(MIE)
B(K I=B(K )+BUG(NP)
B(Kl =B(K1 )+F3UG(NPi

89 F(K)'=Oo
DO 41 N = 1 oNf4TH
U( N+169,NP9NQ)=U(N9NPtN0)

41 CONTINUE
PHI1Z=PS I( NTT I-THETA( NP#,NO I
CALL HELIX(FTATBZTF3!,CRI ,PH4ZNGNTM1,LZWN)
IF WKEST) 62%63#62

62 WRITF OUTPUT TAPE JOUT,'IloI(WN(NIN=INTT)
63 DO 36 NU=1,NTT

N=NFLIP(NU)+(NU+1 1/2
U(N, NP ,NQ =WN(INU I

36 CONTINUE
DO 37 N=19NBOTH
ANGLE=PSIE3(N)-THETA(NPNG)
CALL BOUND(IRB1 .RB2 ETAALAMANGLE .NG.UB)
W=UB+U(N+8,NPNQ)-U(N+169NPNQI
IF(KTEST9 64965964

64 WRITF OUTPUJT TAPE JOUT9102#NPNONUBW
65 IF(JT-2) 910940940
40 DO 3'5 1=1.NPT

DO 35 J=2,,JT
L=NPT+( I-I)*(JT-1,4J-1
A(KL)=A(KL)-SNRHO( fl*W*HMU(NJ)*ARSF(ZETAI

35 CONTINUE
99 F(K)I=F(K I+W*HMLJ(Nol)
37 CONTINUE

BIK) =B(KI+F( K)*GAMMA(M,)*ABSF(ZETA)
14 CONTINUE

WRITE OUTPUT TAPE JOUT9107
WRITF OUTPUT TAPE JOUT,91O3,((A(KL),L=t.K1O1IK=1,KIOI)
WRITF OUTPUT. TAPE JOUTP108
WRITE OUTPUT TAPE J0UT,1Olt(R(K)9K=1.KIlIl
DET=1*0 0r
ME=X5IMEOF(56,KlI,1ARDETqE)
*GO TO(68,69969)tMEo

69 CALL ERROR(20H ERROR IN XSINIEOF)
CALL EXIT

68 N=l1
DO 90 K=1,NPT
MS=MC (K I
ANS(INI=R(IMS I
ANS(IN+1 I=A (K .1)
ANS CN+2 1=1./A (K, i
N= N +3

90 CONTINUE
J-3*NPT
WRITE OUTPUT TAPE JOUT*109
WRITE OUTPU9T TAPE JOUToll1OdANS((IN=19JI
K=NPT*1



*DO 94 I A.PT
IlrJj-2) 92.93993

93 90 94 J=29JT

K =K + 1
94 !CONTINUE
92  CONTINUE

WRIT, ('UTPLIT TAPE JOUT911
WRIT OUIPUT TAPFJQUT,112,H(COEFZ(I.tj),J1.7),io=l,8)
RETURN

101 FORMAT(8H WN=BF8*3)
102 FORMAT(5H P=13p5H 0=13#5H N=I3,9H UB=F8.3i54 W=F8*3)
104 FORMAT(15H0 ***********M=12)
107 FORMAT(IIHO COF.FFICIFNT MATRIX A(KgLl//)
103 FORMAT(8E15*5)
108 FORMAT(28HO RIGHT HAND SIDF B(Kl//)
109 FORMAT(54H0 RADIUS CAMBER FACTOR k CAMBER FACTOR 1/K)
110 FORMAT(7H0 F5.3#4W$ F7o3,IlH F7*3)
III FORMAT(48H0 CIRCULATION DISTRIFIUTION COFFFICIJENTS C(I*J))
112 FORMAT(7E15*5)

END



&3 Li 6 e o u Nr S U PR WUT IN F

SUBRNJT lNC BOUND( R3 ,Rill, FTA At-ANjoANGL FNGU(Ml

D E t B 1. =6 ZS,18 53G
sm0.
R=RF32/ ETA
RtAM=R/SOfITF(R**2+ALAM**2
A=R**2-( ALAM*ANGLE )**2
PHI =ANGI!F
DO, 1 N=1,NG
T=o.
CP=COSF( PHIT
SP=SINF(PHI)
8=-2o.*R*CP o
C=ALAt4**2*ANGLE*CP+4R**?*SP
X=RBI
D = B**'2 -4- .*
DO 2 1I f 2
IF(AF3SF(Dn-.OO0l 1 39394.

4 Y=-2.*(2.*X+P,/fr)*SORTFrA+p*X+X**2))
GY0 TO0 5

5 I'F(Y -I 6 97 v,6
7 T=T-Y

X= R 32
GO TO 2

6 T=T+Y
2 CONTINUE

S=S+T*C
PHI=PHI+DELBL

I CONTTNUL,-
UB=S*R LAM
RE TURN
END



lABVtE R.7 HUMBOG StU)ROUTINE

COUNT 176
ENITRY HUI4f3LJG
RSS 3

OLMP3UG SXD *-9
SXD *-9
SXD *A39
AXT 56#1
CLA M 801
ADD 194
STA M + 8 1

CLA 294
ADD~ ONE
STA *4-3
AXT 4891
CLA L+1.91
STO f
TIX *-291,91
CLA ONE
S TD XR1A
AXT 892

NUREV SXD XR2AP2

CLA M+8 92
PDX 0,1
STA *4-1

AXC 092
NILE SXD XR1F3,1

LXD XR1Atl
TXI *+-191 9-1
LDQ PHI 91
FMP =90174532q3
STO X
LDQ PHI+lql
FMP =*017453293
FSB x
STO DEL
.SXD X R 1A 91
AXT 59,1

PINTO LDO DEL T.+5 91
FMP DEL
-FAD X

STO 192
XCA
FtAP x
STO 0.2
CLA =10
STC 2 22
!LA

5x S CO1S,4



XCA

FMP X
STO 592
CLA X
ISX SI N,4

NIR *#&
Pit HUMBUG-1
STO 4*2
XCA
FMP X
STO 6P2

LDQ GAUSS+5#1
FMP DEL

STO 7,2
TXI +1,2t-8
TIX PINTOolil
LXD XRIBql
TI* NILE,191

LXD XRIA,1
TXI *+1919-
SXD XR1AI
LXD XR2A#2
TIX N$REV,2,1

LXD HUMBUG-391
LXD HUMBUG-2,2
LXD HUMBUG-i 4
TRA 3,4
PZE 172090.15

PZE 1600,0.15
PZE 11480,0.15
PZE 136090915
PZE 1240,0#15

PZE 0.0.75
855 15
PZE 1720,0,15
PiE 1600.0,15
PZE 1480,0,15
PZE 136090,15
PZE 1240#0915
PZE 600,0,50

855 15
PZE 1120,0,15
PZE 1600,0o15
PZE 1480,0,15
PZE 1360,0,15

• PZE 1240,0,15

L PZE 1000,0,30
M PZE 0,0,15

PZE 600,0,10

PIE 1000,0,6
PZE 1240,0,3
PZE 1360,0,3
PZE 148090.3
PZE 1600,0,3
PZE 1720,0.3

ONE PZF 10.1

PHI D!C 0.o1o.



DF~. 16 80 * 1800. '18(TQ .91920. ?OftQ. ,11
DELA DEr, .046910,. 183855.2692ZJ. .269D3$9.*183855

XR1A PZE
XRIF3 PZE
XRZA PZF
DEL pzt
x PZE'

LPN D



iMLE 9*8 01 SWR0UTINF.

COfJNT 176
ENTRY L1.5T

LIST SXD *-9

,5XD *-#
CLA* 1 o4
STD NUH

fl- A 2*4
STA A5+2
AMD =01
,5TA A5
CLA 394
ADD =01
STA A9

ST4 +

STO LAST
STA *+
AXC *9
SXD A 7,p4
AXT 191

A8 SXD *
LXD NUHv1
CLA =06000000
STD 1

A4 SXD Nu;1l
LXD N,2
TXI *+1,2,1
SXD N*2

A5 CLA *O
STO x
CLA *$
FSR x
STO DFL
LXD Mol
FDP EPSLN+3,p*
STO D
CLA r)
FS M =64
TPL G5
FAD .*399
TPL. G2
CLA =01000000
STO 8
STO H
(CLA =010000000
STD 42
SYD KL
TRA 46

G 2 CLA =07000000
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STOi A2
CLA =q)600000W
STD KL
CLA =01000000
STD H
CLA =(2000000
STD B
TRA A6

65 CLA D
UFA =0211001000000

AffA =0000777000000
,5TD H
LDO H
MPY =05000000
ALS IT
STD B
CLA =0,0o00o

C A =05600001)
STD A2
CLA H
LRS 18
ORA =0233000000000

FAD =0213000000000
STO TEMP
CLA DEL
FDP TEMP
STO DEL

A6 CLA M
SUB =01000000
XCA
MPY =025000000
ALS 17
ADD N
PDX **$I
LDO LAST
MPY =010000000'
ARS 1
ADD LAST
STA LAST
CtA B
STD LAST
CLA LAST

A9 STO
STA
AXC **92
TXL ERROR,29316

,A7 TXH ERROR,2,**
LXD H,1

A3 SXI) P 01
LXD KLl

Al LDQ DELTA+1,1
FMP DEL
FAD
STO 1'2
TSX SCOS,4
NTR *+2
PZE LI5T-1



ST(Q 3 Z
XCA
FMP t2
STO 59,2
CLA 192
TSX $S!N94
NTR 2
PZE *L IS Trie

516 492
XCA
FMP 1.2
STO 6.92
LDQ 1 s2
FMP 192
STO 0,92
CLA =t.0
SrO 2 9?
L DO GAUSS+1.*I
FMP DEf.
STO 7 92
TX 1 *12-
TXI *+4 1,191

A2 TXL AlIP1
CLA x
FAD DEL
STO x
(Lx r Poi
T TX A?, 911, 1
LXD N4uel
T IX A4 91 91
LXD M,91
TX! *+-1,91,t1
TXL A8,1t3
LXD L IST-39d
LXD L!ST-2,2
LXD LIST-194
TRA 4P4

ERROR TSX IST*4
NU PZE
NUH PZE
N PZE
M PZE
LAST PZE
x &
DEL PZE
EPSLN DEC O01745**087?79o34Q07
D PZE
B PZE
H PZE
KL PZE
TEMP PZE

D EC .59,8660259*865.500.;939*9206
OFLIA #)fr. .046910

DEC 1 ~o95otf44*3019,N449~91
GAUS5S DEC *118464
P PZE

END



TABLE R.9 HELIX 6UPROUTTNF,

* FAP
COUNT 469
FONTRY HELIX

HELIX SXD HELIX-2916
SXA REST091
SXA RCITO+1,2
REM T141S iS THE 4TART OF IHr, PARAMP6ART 16ETS CONSTANTS
LDO* 5,4
FNIP* 144
XCA
FMP* 2#4
STO Xz
CLA* 694
ARS 18
STA BLADS
ORA =0233000000000
FAD =0233000O0000
STO GFLO
CLS* 494
ST0 CONST
L DO* 194
FMP* 2 94
STO E
L DO E4

STO ET P.
LDQ* 1.94
FMP* 19,4
STO El
LDO* 2,4
FMP* 394
F.SB8 1.94
FDP ETS
FfAP *=-.012665148 1 /Fk*Pi
FDPV# 294
FMP GFLO
SrO TRUNK
CLA =07000000
STO TEMP
CLA 21.0
FSA#* 1*4

4 SSP
FSB =.25
TVL ROUCH

TPL MED
CLA TEMP
ADD =02000000

MED CLA TEMP
ADD) .01000000
STD TEMP

ROUGH CLA TE#4P



STD M
A~r. CBUG#.

SXA C 92
AXr. D4UG9
SXA D92

84ACS AXT 0,1
CLA =1.0
STO

PeLOOP CLA GFLO
FS&B K
FDP GFLO
FMP =6.283185J
FAD* 594
STO PHIK
TSX SCOSs4
NTR 2
PZE HELIX-2
'STO CPK
CLA PHI K
TSX SSIN,4
NTR 2
PZE HELIX-02

4STO sp&,
LXD HELIX-294
LXA C92
STZ -692
STZ -5#2
LDQ* 194
F#4P CPK
srTo E2
LDQ* 194
FMP SPK
STO @3
LDQ E2
FMP E4
STO E5
LDQ E3
FMP* E4
STO E6
LDO XZ
FMP E2
CHS
FAD E6
STO E7
LOG E3
PMP t
FAD E
STO E8
LD04F 394
FMP E4
CHS
FAD El
STO -4#2
I.DQ* 394
PMP Ell
FS8 E2
STO -3,,2
LDO*



FjP E

CHS
FAD E
STO -2.92
LDO* 394
FMP E6
STO -1.#2
LDO* 394
FMP E5
510 092
LXA D 92
LDO ETB
STO -6*2
FMP* 5,94
XCA
STO TENIP
FkiP =2,0
STO -5,2
LDO TEMP
FMP* 594
STO TEMP
LDO* 1 P4
FMP* 1,P4
FAD =1.0
FAD TEMP
STO -492
L DO* 194
F A P =2 o0
XCA
STO TEMP
FMP CPK
CHS
STO -392
I-DO TEIMP
FMP SPK
STO -2 92
STZ -192
STZ 0 #2
TX! *4+.1,2 7
SXA D 92
LXA C 92
TX! *+ 1,92 97
SXA C92
CLA K
FAD = 100
STO K
TIX V*LO0Pg1l
REM START HELIX PART PERFORMS TNTEGRATION
CLA* 794
STD NT No OF ON BLADE INTERVAI.6
CLA* 6o4
STD NG 'NO Of K3ADES
CLA ADRC
STA Al
C 1,A ADRD
STA A2
JCL A 8,4



ADD =01
ZTA A14 L+I
STA 415
CLA 9,4
STA All
ADD =01
STA All+l
CLA NT
ARS 18
sSM
ADD 9.4
STA A13
CLA =01000000
STD NSTZ XNEW UtED 10 CHECK CONVERGEN !

NUBLD CLA M INTEGRATION SPAGING FACTOR
STO MBUG SAVE ORIGINAL 4
STZ X
SXD NTBUG*4

NUREV CLA M13UG
SUB =01000000

XCA
MPY =075000000 4ELE.T DATA TABLE
ALS 17
AD3 N
PDX 0,1 21(M-1)+N

A14 CLA **,I L+I BEING BACKWARDS STORAGE
4TO LNM ADDR OF PONO OF POINTS
CLA N
PDX 0,I

A15 CLA **9* L+I SELECT DATA TABLE
STO LNI FOR M=I ZPACING
CLA LN1 SET UP
ADD =07 ADDRESSFS
STA A3 FOR FIRST
STA A5 POINT IN
SUB =02 INTERVAL
STA A4
CLA MB4JG GET NO OF BLADES
ARS 1 IN FIRST GROUP
ANA =01000000
SSM 14GBUU=NG IF Mal
ADD NG NGBUG=NG-1 IF M NOT 1
STD NGBUG
LXD LN1,1 POINTS PFR INTERVAL COARSE
CLA A9
STA ASO TIX A7,101

A7 LXD NGPUC,.2 NO OF BLADES IN FIRST GROUP
SXD XRBUG*2
CLA *+3
STA *+I

Ag AX! 0,2 7*K-2 FTNDS C AND D
AXT 5,4 5 TERMS FOR ONE POINT
STZ Ti SUM NUMERATOR HFRE
STZ T2 SUM DENOMINATOR HERE

Al LDQ *,2 C+7*NG
A3. FMP **,4 P(NM)+R*J-l

FAD TI



A2 LDO *# D+7*NG-?
A4 FMP **4P(N*M)+93*J-3

FAD T2

TX! 492-
TIX Ali.491 DOING I POJI4T FOR 1 BLADE
LDO T2 DONE 1 POINT FOR 1 BLADC
FMP T2
XCA
FMP T2
TSX $SRTo4
NTR 2
PZE HELIX-Z
STO Tj DENOM**1/2
CLA Tl
FDP T2

A5 FMP **P(NoM)+8*J-1*WEIG3HT

FAD X
STO X
LX!) XRBUG92
TNX PIAN09291
SXD, XRRUG,? ZET UP FOR SAME POINT

A8 CLA A6 NFXI RLAnlE
ADD =07
STA A6
TRA A6

PIANO CLA A3 NEXT POP4*T 1ST BLADE QROUP
ADD =010
SIA A3 .SET UP
STA A5 ADDRESSFS
SUB =02 FOR NEXT POINT
STA A4 IN IN!TFPVAL

AIO TIX1*K9 A6 OR A7
CLA MSUG 1ST GROUP DONE
SUB =OIC0oonf
TZE NUINT IF NM=1 ALL PLADES HAVE BEEN DONE
CLA A8
STA A10 TIX A69191
CLA LNM
ADD =07 SCT UP FOR
STA A3 MEDIUM OR FINE
STA A5 ZPACING ON
SUB =0? INDEX BLAD)E
STA A4

CLA A6 PT10 UP
ADD! =07 INDFX RLADC
STA A6
(-6A =01000000)
STO ~413U~ f3AKE M-
ODf LNM~l NCN-COAPSE SPACING
TRA Sf ACA T0O 0INVL) 9LADT

NUINo C4A RNCXT INTFrVAt
SUR =07OOO
TM! +

(iSA XNFW
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STO XOLD
LDQ N
MPY N
ARS 1
ORA :0233000000000
FAD :0233000000000
STO Ti TEMP STORAGE
CLA TRUNK
FD TI
XCA
FAD X
STO XNEW
FSB XOLD
SSP
FSB =.0005 ALLOWABLE TRUNCATION ERROR
TM! CONVR
CLA A9
S1A AI TIX A 7,1,
LXD N,1
TXI *+
SXD N 1
TXL NUREV,1,6 DO MAX 6 REVS DOWNSTREAM

tONVR LDQ XNEW
rMP CONST

A13 STO ** WN DOWNSTREAM HELIX DONE
CLA NT NO OF INTERVALS ON BLADE
TZE RESTO NO INTEGRATION ON BLADE RETURN
CLA =07000000
STD N
LXD NT94
SXD NTBUGs4
TRA NUBLD

BLADE LXD RTRUG,4
LT)O X
FMP CONS?

All FAD **,4 WN
STO **4 WN+1
LX0 NdI
TXI *+l,1,1
SXD R,1
TIX NUBLD,4,1

RESTO AXT **,1
AXT **92
LXD HELIX-2,4
TRA 10,4

A9 PZE A7
N PZE
NT PZE
NG PZE
NTBUG PZE
NGRUG PZE
M PZE
MBUG PZV
XRRUG PZE
LNM PZE
LNI PZF
q PZE
D PZE
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ADRC PZE C8UG+l
ADRO PZE DBUG-1
TRUNK PZE
CONST PZE
SPK PZE
CPK PZE
K PZE
PHIK PZE
GFLC PZE
TEMP PZE
ETB PZE
x PZE
XOLD PZE
XNEW PZE
Ti PZE

F8SS 41
CBUG PZE

85S5 41
DBUG PZE
El PZE
E2 PZE
E3 PZE

94 PZE
E5 PZE

E6 PZE
E7 PZE
E8 PZE
xz PiE

END



T ]DE .10 - LIJTZImB 1O0NKU 8AKK=WZW

OflDUN OPUN-VATUI PROPELER

NUMBER OF BLADES G=3 LMDA I AT X=0. 70 It 0.3333

LATTICE SPACES M=24 4 CONTROL POINTS AT M= 4 10 16 22

FOURIER COEFFICIENTS OF G A(I) _

0.139690 -0.008823 -0.000341 -0.000429

G=GAMMA/TWO PI R U*

KAPPA=GOLSTEIN FACTOR

X TAN BETA I TAN BETA G KAPPA _

U.2 0 •667 -0.
0.30 1.111 -0. 0.0828 0.8330
U.4u U.1333 -0. 0.1137 0.8670
0.50 U.667 -0. 0.1320 0.6577

0.70 0.476 -01. 0,139 0.7716
eUU U. 411 -0, 0T1-22 ... .77T

0.90 0.370 -0. 0.1006 0.5146
•.UU u.,J , -U. 0.000

THE DATE IS MAY 4, 1961.
IIE lint _0 1 .51 1. '1")

WAVADM)f PROPELE

NUMBER OF BLADES G=3 LAMIDA I AT ,"-.7C IS 0. ,-33

LATTICE SPACES M=24 4 CONtTFOL Fi INTS F-7 M= 4 10 1 22

FOURIER COEFFICIENT'S OF G ACI)

0.142769 -0.009572 -0.o000906 O.00r,-9r.

G=GRNMR/TWU PI R U*

GBAR=GMM/4,TIWO PI R VA

X TAN bETA I TAN BETA G GIR R
0.20 1.415 0.910 0.
0.30 1.006 0.691 Q. cl ' 4 3:?4
0.40 0.787 0.563 0.1153 0.C,4t,')
0.50 0.(,46 0.475 c.1.3'#2 0. c 4P5
0.60 0.543 1.41g 1Q g 1431 40P4,
0.O f0.%7 6  e.361 t* & 4.%_ [ C4"I
O.e0. 0.421 0. 7 ('.1 20 O., 4C:,
0.90 0.377 0.290 0. !0 . G., 30"

.00 0.-;4Ad' Qi. 265 Cf. oe r 11. c ci.6
THE DATE IS MkY 4. 19I1.
THE TIME IS 2J.,



WU 1.12 - Lmin &= OM SI SW& U IM W 0

SUBPROGRAM STORAGE MAP
NAME ORIGIN ENTRY NAME ORIGIN ENTRY NAME ORIGIN ENTRY NAME ORIGIN ENTRY NAME ORIGIN ENTRY
IMAIN) 00144 00163 MAP 01374 01402 OCTALS 01522 01531 HUMBUG 02130 02137 LIST 02454 02464
MIST 02764 02773 HELIX 03032 03037 LNTEaP 03754 0.3757 BOUND 04221 04230 AKL 04573 04610
(FPT) 07013 07021 EXIT 07435 07463 EXITM 07435 07441 (TSIM) 07475 07520 (TAH) 07673 0751
(CSH) 07475 07511 (F2EFI 07761 10156 FTNPM 07761 10023 IF2PMI 07761 10017 IPCUPI 14736 14341
ISTPC) 14236 14240 (PRLT) 14616 15032 (RSLT) 14616 14753 (SVLT) 14616 14633 (BCD)) 16005 16010
(CMPR) 16027 16031 0DCOR) 16114 16116 (FLO)) 16175 16204 iFIX)) 16175 1620Z lILSC) 16262 16264
(MOVE) 16324 16326 INBLK) 16404 16407 (OCT)) 16467 16471 (OCTO 16520 16522 IOPCO) 16575 16577
(PRNT) 17153 17156 (PSTNI 1735.3 17357 C1..2 1,7424 1iSSh J SETKI 13474 17477 (SPOT) 17701 17703
STOMAP 17732 17737 (CSHM) 20161 20164 (SPH) 20165 20201 (THM) 20165 20211 (STH) 20165 20236
ISPHM) 20636 20641 (WTC) 20642 20705 (WER) 20642 20654 )IDC) 20733 20764 (RER) 20731 70742
(RTN) 21000 22450 (FILl 21000 22437 (IOH) 71000 21002 (TCO) 22601 27675 (TEF) 22601 22674
(RCH) 22601 22673 (ETT) 22601 22672 (REW) 22601 22671 IWEF) 22601 22670 I8SR) 22601 22667
(WRS) 22601 22666 (RDS) 22601 22665 (IOS) 22601 22606 (TRC) 22601 22676 (IOU) 22132 22735
ATN 22750 22752 ATAN 22750 22752 SIN 2.?307 .2.10.72 C05 73067.2.3011 SOR 23242 23246
SORT 23242 23246 (TES] 23337 23337 IEXE) 23340 23344 RECOUP 24317 24322 ERROR 24325 24331
LOUMP 24501 24504 TIME 24510 24562 CLOCK 24510 24515 GETTM 24644 24646 XOETRM 25005 25526
XSIMEO 25005 25376 MOVIE) 25627 25627

THE DATE IS APRIL 17, 1961.
THE TIME IS 1508.4

NT-3 MT- 8 NPT.3 NZ11 NZ20 MC- 3 5 7 0 0 0 0 0 NG-3 ALAM-0.2423 RH.0.200 GNZL.O.OAMf

CHORD 0.233404 0.259304 0.282426 0.300560 0.311472 0.313185 0.298909 0.228216

TANBI- 0.969200 0.692286 0.538444 0.440545 0.372769 0.32-3067 0.285059 0.255053

TBETA- 0. 0. 0. 0. 0. 0. 0. 0.

GAMMA- 0.114489 0.126195 0.106211

HMU - 0.109375 0.182292 0.208333 0.189887 -0.002532 -0.187355

H - -1.333333 -2.666666 k

COEFFICIENT MATRIX A(K*L)

-0o.24452E-00 0. 0. -0.52090E 01 -0.43664E 01 0.25272E 01 -0.48904E-00 0.
0. -0.51862E 01 -0.41693E 01 0.28334E 01 0. -0.35300E-00 0. -0.74377F 01
0.17587E 01 0.84853E 01 0. -0.70600E 00 6. -0.74031F 01 0.22122F 01 0.P3755F I1
0. 0. -0.40484E-00 -0.85590E 01 O.11601E 02 -0.57495E 01 0. 0.

-0.80969E 00 -0.86532E 01 0.12562E 02 -0.77153E 01

RIGHT HAND SIOE BK)

-0.27468E-00 -0.56039F 00 -0.44718E-00 -0.9n505E 00 -M.69949E MM -0.13839E 0

RADIUS CAMBER FACTOR K CAMBER FACTOR 1/K

0.450 1.169 0.856

0.650 1.295 0.112

0.850 1.682 0.594

CIRCULATION DISTRIBUTION COEFFICIENTS C)IJ)

0.12837E-00 -0.44394E-03 0. 0. 0. 0. 0.
-0.49850E-02 -0.13892E-02 0. 0. 0. 0. 0.
0.25870E-02 0.10633E-02 0. 0. 0. 0. 0.
-0. 0. 0. O 0. 0. 0.
-0. 0. 0. 0. 0. 0. 0.
-0. 0. 0. 0. 0. 0. 0.
-0. 0. 0. 0. 0. 0. 0.
-0. 0. 0. 0. 0. 0. 0.

THE vATE IS APRIL 17, 1961.
TTE TIME IS 1511.3
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APP NDIX C

TABL 0 CEORD-LOAD DIT0M DEFInEM II (5.20)

n 1-1 J=2 J=3 J=4 J-5 J-6 J-7

N=2 1 .5 III
2 .5 ,

I I I
1 .195312? .29)2969I I,

2 .3o4.152344 I I
]1,4 3 .304688 -. 152344 I I I

4 .1953.2 -. 292969

1 .109375 .182292 .18988T .134187 I
2 .182292' .182292 -. 002532 -. 18e823

1=6 3 .208333 .069444 -. 187355 -. 131896
4 .2O8333 -. 069444 -.187355 •13896 I
5 .182292 -. 182292 -. 002532 .i84823 I
6 .109375 -. 182292 .189887 -. 134187

1 .072007 .26oio .i46o58 .129591 .080010 .010426 -. 052892
2 .123367 .154209 .o68072 -. o69119 -. 15856 -.124451 .004068
3 .147079 .110310 -. o65429 -. 153981 -. o54423 .118564 .147254

1=8 4 .157547 .039387 -. 1 487Ol -. 076562 .129269 .108879 -. o98430
5 .157547 -. 039387 -. 148701 +.076562 .129269 -.108879 -. 098430
6 .147079 -. 110310 -. 065429 +.153981 -. 154423 -. 118564 .147254
7 .123367 -. 154209 .068072 +.069119 - .154856 +.124451 .004068
8 .072007 -.226010 .16058 -.129591 -.12991 .080010 -. 052892
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